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Preface

My personal interest in the physics of fragmentation of materials predates
considerably my introduction to the seminal war years efforts of Sir Nevill F.
Mott on the subject. While pursuing my doctoral thesis topic at Washington
State University on the effects of shock waves on ferrimagnetic material, I be-
came concerned with the distribution and size of magnetic domains persisting
after passage of a shock wave. I found an article by the eminent solid-state
physicist Charles Kittel (1949) in which he demonstrated that magnetic do-
mains form in order to reduce the self-magnetic energy of the ferrimagnetic
material. Kittel showed that through a balance of this magnetic energy and
the domain wall interface energy, he could provide a sensible estimate of the
size of domains. I applied these methods to magnetic domain formation under
shock in ferrimagnetic materials in my thesis work.

My interest in fragmentation returned in the middle 1970s when substan-
tial efforts at the Department of Energy National Laboratories turned toward
the nation’s pressing requirements for energy and other natural resources at
that time. One specific project undertaken at Sandia National Laboratories
was that of finding methods for preparing oil shale deposits for the extrac-
tion of their oil bearing content while still underground. Our group at Sandia
explored novel methods of explosively fragmenting the oil bearing rock in
preparation for the retorting process used to recover the oil, and undertook
various experimental, theoretical and computational studies of the processes of
explosion-induced fracture and fragmentation. Concepts from my thesis work
found direct application to this study. At that time, we benefited mostly from
earlier and concurrent work in the petroleum and rock mechanics community.

It was sometime later in the 1980s when we at Sandia attempted to apply
some of the earlier theoretical and computational fragmentation methods to
the explosive disruption of nuclear weapons systems that we became aware of
the vast amount of research that had been performed on the fragmentation
of conventional munitions. We began to hear repeated references to the fa-
mous Mott distribution (well known to the munitions community), and finally
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managed to get nearly illegible copies of Mott’s war years reports from the
database at Southwest Research Institute.

My first reading of Mott’s internal reports and 1947 open literature paper
was painful and it was only after several readings over several years that I
started to grow the deep appreciation for the incisive physical thinking and
strong mathematical talent that this scientist brought to bear on the subject.
This appreciation is greatly enhanced when one reflects on the events of the
war years during which this scientific study was carried out.

Over the past nine years while with Applied Research Associates I have
had the opportunity to work on various programs in which the dynamic frag-
mentation of materials was a central issue. Each time I would find that some
specific aspect of Mott’s earlier studies had particular relevance to the prob-
lems at hand. In each instance I would find myself expending an undue amount
of time pursuing the physics, the mathematics, and the intent of Mott’s the-
ories and analyses. I would frequently propose and solve parallel problems in
an effort to gain a better understanding of Mott’s work.

During the past two years I decided to collect together these past efforts,
and the present text is the result of that endeavor.

Toward the end of this undertaking I located and read Mott’s autobiogra-
phy [Sir Nevill Mott: A Life in Science, Taylor & Francis, 1986]. One chapter
dwells on his experiences of the war years, and offers some thoughtful insight
into the mood and temperament of the times in which he carried out this
research.

I would like to thank Lee Davison and Yasuyuki Horie for their assistance
in interfacing with Springer Publishing. One consideration was whether or not
to include the unpublished reports of Nevill Mott on fragmentation theory in
the present text. It was decided to include them as it is difficult to acquire
legible copies. Those furnished are best available copies of the original reports
with some minor computational cleanup for which I thank Craig Doolittle at
Applied Research Associates. Springer Publishing made the decision to also
transcribe the Mott reports. The serviceability of the present book is markedly
enhanced through their efforts, and I express my appreciation for their un-
dertaking of this task. In editing the transcribed reports I have attempted to
maintain a faithful reproduction of the originals.

Permission to include Mott’s reports was required, and I am grateful to
Professor Neil Bourne for putting me in touch with Samuel Ellis of the UK
Defense Ordnance Safety Group in which archives the original reports of Mott
reside. I am in turn indebted to Samuel Ellis for not only obtaining the nec-
essary permission, but also providing best available copies of Mott’s original
reports including the retyping of the two difficult-to-read pages.

During this process two further fragmentation reports by Nevill Mott of
which I was not aware surfaced. These latter two reports are also included.
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One report is particularly interesting in that Mott speaks quite disparagingly
of the fragment distribution that has been the hallmark of fragmentation arena
testing for the past sixty years.

Albuquerque, New Mexico D.E. Grady
July, 2005
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1

Introduction

For a brief period during the latter part of World War II, N. F. Mott, then
professor of physics at the University of Bristol (later knighted and a Nobel
laureate), undertook an effort to theoretically describe the statistical fragmen-
tation of bodies subjected to intense impulsive loads. Specifically, he focused
on fragmentation resulting from the explosive rupture of cylindrical bombs
(referred to by Mott as H.E. shells or shell cases). Over a period of about
six months in 1943, three internal UK Ministry of Supply reports emerged,
which provided the core of his theoretical efforts (Mott and Linfoot, 1943;
Mott, 1943a,b). In late 1943 through 1944 three further internal reports (Mott,
1943c; Mott, 1944; Mott et al., 1944) undertook critical examination and ex-
perimental testing of his seminal theory of fragmentation. Sometime later he
more formally prepared selected portions of these efforts for open literature
publication (Mott, 1947). Finally, apparently under stimulus from an earlier
conference on fracture in metals held at Cambridge University, Mott (1948)
published an extended note titled by him “Fracture of Metals: Some Theo-
retical Considerations.” Some of his most forward-thinking thoughts on the
micromechanical and molecular aspects of fracture are included in this last
publication.

For scientists and engineers concerned with the dynamic fracture and frag-
mentation of solid bodies subject to the intense transient loads imparted by
explosive detonation or high velocity impact, Mott’s original publications con-
tain the seminal theoretical concepts from which numerous later modeling ef-
forts and engineering formulae emerged. The original physical ideas conceived
by Mott and the accompanying mathematical analysis pursued are unique
and fascinating. They clearly reflect the unusual insight and scientific accom-
plishment of this individual.

Mott’s theoretical results, as put forth in the original internal reports
and the later open literature publication have, unfortunately, not been fully
appreciated in work by later authors and, in some cases, not fully understood.
The presentation by Mott is terse, leaving much for the reader to fill in.
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Considerable reflection, with pencil in hand, is required to begin to appreciate
the richness and insight offered in these works.

The present book surveys the theoretical analysis put forth by Mott with
particular focus on his efforts to characterize the size and distribution of
fragments resulting from a dynamic fragmentation event. This book also pur-
sues additional new theoretical analysis. The intent of this analysis, however,
is to delve further into the physical ideas and unfinished analysis implicit in
Mott’s original study. The thesis being that with further time and inclination,
those are avenues that Mott himself might have pursued. These additional ef-
forts fall short of exhausting the fruitful thoughts put forth by Mott in his
original reports.

Mott pursued several approaches, as his thoughts on the nature of statis-
tical fragmentation matured. Early on he was influenced by the theoretical
efforts of Lineau (1936) who, a few years before him, examined in depth the
statistical distribution of fragment lengths resulting from the random par-
titioning of a one-dimensional body (a line). This Lineau distribution was
intriguingly close in form to experimental fragment mass distribution data
on exploding metal shells available to him at the time. This led Mott, along
with Linfoot, in his first report to pursue in some detail the fragment size
distributions resulting from the random geometric partitioning of two- and
three-dimensional bodies. These efforts, in fact, led to the familiar Mott dis-
tribution in which the log of the cumulative fragment number is proportional
to the square root of the fragment mass. This Mott distribution continues to-
day as the most common means of representing fragmenting munitions data.
Further, the geometric fragmentation problems explored early on by Mott have
in the intervening years, provided the source for a large amount of analysis.

Mott became disenchanted with the random geometric approach to the
dynamic fragmentation problem as his scientific investigation progressed. He
noted the likelihood that both nonuniqueness of the statistical algorithms
used, and the lack of statistical homogeneity in the experimental fragmenta-
tion event, could easily negate applicability of predicted distributions from
the geometric theory. He then embarked on an entirely different, and more
physically-based, theoretical study of the statistical fragmentation problem.

In this second exploration of dynamic fragmentation of rapidly expand-
ing shells, concepts emerge concerning the statistical activation of fractures
and the interplay among an ensemble of fractures as the propagation of stress
release waves ensue. The instructive analysis in which an elementary momen-
tum solution leads to the diffusive nature of tensile stress release from fracture
sites is illustrative of this latter effort. This latter approach leads to a cou-
pled physical and statistical theory of fragmentation in which the physical
properties governing the fragment size and distribution length scales emerge.

Mott’s approach to dynamic fragmentation has been objected to by some
more recent workers in the field as too phenomenological in form. A closer
look at Mott’s efforts, however, reveal extraordinary and successful attempts
by him to relate phenomenological parameters from his statistical theory to
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the underlying microscopic and atomic physics. Mott was, in fact, an advocate
of multiscale physics long before this topic gained its current fashionability.
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2

Geometric Fragmentation Statistics

The statistical issues governing the fragmentation of a body are not well in
hand even to this day. Perhaps foremost in the list of objectives is the predic-
tion of the distribution in the size of fragments resulting from a fragmentation
event. One intriguing approach to this problem has simply been to investi-
gate the statistically most random way of partitioning a given topology into
a number of discrete entities. This approach to statistical fragmentation has
been commonly identified as geometric fragmentation.

As noted in the introduction, Mott was initially led in pursuit of a theoret-
ical description of the distribution in fragments from a fragmenting cylinder
event by then recent work of Lineau (1936). Fragmenting munitions data avail-
able to Mott at the time appeared consistent with the exponential expression
resulting from Lineau’s one-dimensional model. Thus, his early efforts focused
on extending the same geometric statistics approach to the topology of a nat-
urally fragmenting cylinder.

In the present section we pursue some of the approaches to obtaining
representations of fragment size distributions using the methods of geometric
fragmentation statistics. In particular the well-known Mott distribution will
be developed and examined.

2.1 Lineau Distribution

Fundamental to geometric fragmentation are the theoretical efforts of Lineau
(1936). He considered the elementary problem of an extended body such as
a glass rod or a stretching wire subjected to forces resulting in the multiple
fracturing of that body. If any point on the body is as likely as another to
fracture the problem is statistically well posed. The problem is modeled as that
of an infinite one-dimensional body, or line, in which breaks are introduced
with equal probability at any point on that line, as is illustrated in Fig. 2.1.

Thus, as stated, the random geometric fragmentation of a one-dimensional
body appears decidedly unambiguous. An analytic solution requires only a
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n Fragments of 
Variable length l

Total Line Length of L n-1 Fractures

Fig. 2.1. Line of total length L broken at random into fragments of variable length
l by n − 1 fractures

proper probabilistic description of the random breaks, and the lengths of
the segments delineated by these breaks. We shall show later that even this
prescription for the statistical fragmentation of a one-dimensional body is
arguable. At this point, however, we proceed with the solution leading to the
one-dimensional Lineau fragment size distribution.

Consider a line of length L in which breaks on the line are introduced at
random [Grady, 1990]. Since we are initially interested in partitioning the line
into a large number of fragments (the average length is very small compared
to the total length L) the finite length of the line is not of consequence and
can effectively be considered infinite (Fig. 2.1). The average spacing between
breaks λ or equivalently the frequency of breaks per unit length ho = 1/λ
characterizes the statistical distribution. The random distribution of points
on a line is described by Poisson statistics.

If an arbitrary length l of the line is examined then the probability of
finding n points (fractures) within the length l is given by,

P (n, l) =
(l/λ)n

e−l/λ

n!
. (2.1)

The most probable distribution in fragment lengths is determined by observing
that the probability of finding no fractures within the length l is,

P (0, l) = e−l/λ , (2.2)

while the probability of finding one fracture within the subsequent length
increment dl is

P (1, dl) = (1/λ) dl . (2.3)

The probability of occurrence of fragments of length l within a tolerance of
increment dl is then,

f (l) dl = P (0, l) P (1, dl) = (1/λ) e−l/λdl , (2.4)

where,
f (l) = (1/λ) e−l/λ , (2.5)
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is the fragment length probability density distribution while the integral of
f (l),

F (l) = 1 − e−l/λ , (2.6)

is the cumulative fragment distribution.
If a distribution of No fragments satisfies the present statistical premises,

then the analytic expression,

N (l) = Noe
−l/λ , (2.7)

characterizes the cumulative number distribution of fragments larger than
length l. Assigning a density per unit length of the one-dimensional body it
is readily shown that the cumulative mass fraction of fragments is given by,

M (l) = 1 − (1 + l/λ) e−l/λ . (2.8)

The latter is commonly a more tractable experimental description.
Equation (2.7) can be written in the differential form,

dN

N
= − 1

λ
dl , (2.9)

providing a useful form for generalizing to fragmentation events in which the
distribution is biased toward specific fragment sizes. This is accomplished
through a dependence of the distribution length scale λ = λ (l) on the frag-
ment size.

2.1.1 Binomial Distribution

When the number of breaks within the body length L is few then the fragment
size probability distribution will depend on the body length. Here probabilistic
aspects of the problem are governed by the binomial probability function,

Pj,k (p) =
k!

j! (k − j)!
pj (1 − p)k−j

, (2.10)

when, Pj,k (p) is the probability of j successes in k attempts while p is the
probability of a single success.

Consider then a one-dimensional body of length L in which n−1 randomly
distributed breaks partition the body into n fragments.

Consider further a region of length, l < L within the domain of L. The
probability of a single fracture occurring within the region is the ratio p = l/L.
Thus, from the binomial probability function, the probability that none of the
n − 1 fractures occurs within the region l is just,

P0,n−1(l/L) =
(n − 1)!

0! (n − 1)!

(
l

L

)0 (
1 − l

L

)n−1

, (2.11)

= (1 − l/L)n−1
.
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Given that the n−1 fractures are outside of the region l the probability that a
single fracture occurs within the interval dl is the ratio p = dl/ (L − l). Again,
from (2.10).

P1,n−1

(
dl

L − 1

)
=

(n − 1)!
1! (n − 2)!

(
dl

L − l

)1 (
1 − dl

L − l

)n−2

, (2.12)

∼= n − 1
L

(
dl

1 − l/L

)
.

The probability of finding a fragment of length l within an interval dl is then
the product of (2.11) and (2.12), or

f (l) dl =
n − 1

L

(
1 − l

L

)n−2

dl , (2.13)

where f (l) is the fragment length probability density distribution. The cumu-
lative probability distribution is then,

F (l) = 1 − (1 − l/L)n−1
. (2.14)

With the probability density function from (2.13) the expected value for the
fragment length is found to be λ = L/n. Equation (2.14) can then be written,

F (l) = 1 − e−(1−L/λ)ln(1−l/L) , (2.15)

which, in the limit λ � L and l � L yields the cumulative fragment proba-
bility distribution for a Poisson process on an infinite line in (2.6).

Probability density curves for number of fragments equal to n = 2, 3, 4,
and 5 are illustrated in Fig. 2.2, along with the Poisson approximation to the
n = 5 fragments case.

2.2 Mott-Linfoot Fragment Distribution

Mott and Linfoot (1943) referenced the earlier work of Lineau (1936) and fur-
thered his random geometric fragmentation ideas in pursuit of a sensible frag-
ment size distribution relation for the description of fragmenting munitions.
Their acceptance of the Lineau approach was bolstered by fragmenting muni-
tions data available to them at the time which were found to plot reasonably
linear in a log number versus cube root of the fragment mass representation.
Since m1/3 is proportional to a length measure of the fragment they reasoned
that the same random variable considered in the Lineau one-dimensional de-
velopment applied in the multidimensional fragmentation event. Further, in
examining fragments from the available data, they observed that a substantial
portion retained inner and outer surfaces of the original munitions case. This
suggested that the fragmentation of a plate or areal region in which event
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Fig. 2.2. Illustrates fragment probability distributions for fragmentation of unit
length body into n = 2, 3, 4 and 5 fragments. Dashed line shows the Poisson distri-
bution approximation to the n = 5 fragments case

the appropriate length scale would be proportional to m1/2. Thus, a plot of
log number versus m1/2 should, by the reasoning given, provide a better fit to
the fragment distribution data. In notation consistent with the development
of the Lineau distribution in the preceding section, the fragment cumulative
probability distribution proposed by Mott and Linfoot (1943) would be,

F (m) = 1 − e−(m/µ)1/2
, (2.16)

where the characteristic mass µ is the distribution scale parameter. The cor-
responding probability density distribution is then,

f (m) =
1
2µ

(
m

µ

)−1/2

e−(m/µ)1/2
. (2.17)

This distribution in various forms has been successfully used by numerous
researchers over the past six decades to organize and compare vast amounts
of exploding munitions fragmentation data. Mott expended considerable sub-
sequent effort in a quest to justify the functional form assumed in (2.16) and
(2.17).

2.2.1 Random Lines Fragmentation

In these initial efforts to justify their distribution Mott and Linfoot (1943)
pursued a very reasonable geometric model. They considered the statistical
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partitioning of a surface by the random disposition of vertical and horizontal
lines. The spacing of lines in the two orientations was assumed to be indepen-
dently governed by the Lineau distribution. Thus,

fx (x) =
1
xo

e−x/xo , (2.18)

and
fy (y) =

1
yo

e−y/yo , (2.19)

where the average spacing or frequency of lines in the vertical and horizontal
direction was allowed to differ. It is not difficult to see that this geometric
model might sensibly replicate the statistical behavior of an exploding mu-
nition. The random lines correlate with observed longitudinal and transverse
fractures, while the ratio xo/yo simulate the elongated nature or aspect ratio
of exploding munitions fragments as illustrated in Fig. 2.3a.

We will subsequently show, as did Mott, that this distribution does not
correspond well with the distribution in (2.16) and (2.17) (the Mott distribu-
tion) arrived at intuitively by Mott and Linfoot. In a later section, however,
it will be shown that this geometric algorithm, when effectively generalized,

(e) (f)

(c) (d)

(b)(a)

Fig. 2.3. Various geometric random fragmentation algorithms explored by Mott
and others
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quite nicely approximates the statistical representation of the biaxial frag-
mentation of expanding shells.

The probability density distribution over fragment length and width is
then provided by a juxtaposition of (2.18) and (2.19),

f (x, y) =
1

xoyo
e−x/xo−y/yo . (2.20)

Mott and Linfoot (1943) then proceeded to solve for the distribution in frag-
ment size through the following approach: Let z =

√
xy, where xy is the

fragment area, provide a measure of the fragment size. The cumulative dis-
tribution for fragments of size larger than z is then provided by the integral
expression,

1 − F (z) =
∫∫

xy>z2

1
xoyo

e−x/xo−y/yodxdy . (2.21)

The double integral over area is written,

1
xoyo

∞∫
0

e−x/xo




∞∫
z2/x

e−y/yody


 dx , (2.22)

which readily reduces to,

1
xo

∞∫
0

e
− 1

xo

(
x+ xo

yo
z2
x

)
dx . (2.23)

With the change of variable,

x = z

√
xo

yo
η , (2.24)

the integral becomes,

z
√

xoyo

∞∫
0

e
− z√

xoyo
(η+ 1

η )dη . (2.25)

Introducing the characteristic length zo =
√

xoyo and making the further
change of variable η = eθ yields,

z

zo

∞∫
−∞

e−
z

zo
(eθ+e−θ)eθdθ , (2.26)

which in turn transforms to the integral of the hyperbolic function,
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2
z

zo

∞∫
0

e−2 z
zo

cosh θ cosh θdθ . (2.27)

The solution of the integral was recognized by Mott and Linfoot as a modified
Bessel function. Integral solutions for modified Bessel functions of integer
order (Abramowitz and Stegun, 1954) provides,

Kn (u) =

∞∫
0

e−u cosh θ cosh nθdθ , (2.28)

for the modified Bessel function of order n. Thus, we arrive at the cumulative
probability distribution over fragment size z,

F (z) = 1 − 2
z

zo
K1 (2z/zo) . (2.29)

The probability density distribution follows directly from dF (z) /dz = f (z)
and the modified Bessel function relation (Abramowitz and Stegun, 1954),

d

du
(uK1 (u)) = −uKo (u) , (2.30)

or,
f (z) = 4

z

z2
o

Ko (2z/zo) . (2.31)

An alternative solution method is instructive. Again, start with (2.20)
for the probability density distribution over fragment length and width. A
transformation to a probability distribution g (a, r) over the fragment area,

a = xy , (2.32)

and the fragment aspect ratio,

r = x/y , (2.33)

is sought.
The differential invariant,

f (x, y) dxdy = g (a, r) dadr ,

leads to

dxdy =
∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ dadr ,

for the differential element through the transformation Jacobian (Buck, 1965).
The transformed probability density function is then,

g (a, r) = f (x (a, r) , y (a, r))
∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ . (2.34)
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Calculating the Jacobian through (2.32) and (2.33),
∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ =
1
2
r−1 , (2.35)

yields,

g (a, r) =
1

2xoyo

1
r
e
−
(

1
xo

√
ar+ 1

yo

√
a/r

)
, (2.36)

for the probability density distribution in fragment area and aspect ratio.
To obtain the probability density distribution over area h(a), irrespective

of aspect ratio, integrate over all r,

h (a) =
1

2xoyo

∞∫
0

1
r
e
−
(

1
xo

√
ar+ 1

yo

√
a/r

)
dr . (2.37)

Changing the integration variable through r = (xo/yo)e2η gives,

h (a) =
2
ao

∞∫
0

e−2
√

a
ao

cosh ηdη , (2.38)

where ao = xoyo. The general integral relation for the modified Bessel function
of (2.28) yields,

h (a) =
2
ao

Ko

(
2
√

a/ao

)
. (2.39)

The present distribution function over fragment area is equivalent to that of
Mott and Linfoot in (2.31) if the transformation a = z2 is performed.

The cumulative distribution over fragment area H (a) is readily ob-
tained through the integration of (2.39) and the relation K ′

1 (u) = −Ko (u)
(Abramowitz and Stegun, 1954),

H (a) = 1 − 2
√

a/aoK1

(
2
√

a/ao

)
. (2.40)

The density distribution in (2.36) can be pursued further to provide the prob-
ability density function over aspect ratio k (r) irrespective of fragment size.
The integral over fragment area,

k (r) =
1

2xoyo

∞∫
0

1
r
e
−
(√

r
xo

+ 1
yo

√
r

)√
a
da , (2.41)

through the transformation,

ξ =
(√

r

xo
+

1
(yo

√
r)

)√
a ,
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Fig. 2.4. A comparison of the Mott distribution and the Bessel fragment size (area)
distribution resulting from the random Lineau placement of vertical and horizontal
lines on the surface

yields,

k (r) =
1
ro

1
(1 + r/ro)

2

∞∫
0

ξe−ξdξ , (2.42)

where ro = xo/yo. Thus,

k (r) =
1
ro

1
(1 + r/ro)

2 , (2.43)

provides the probability density distribution over fragment aspect ratio.
The probability distribution (both density and cumulative) for the random

orthogonal lines geometric fragmentation problem is compared with the Mott
distribution in Fig. 2.4 with both distributions normalized to unity. This latter
distribution is discussed further in a subsequent chapter. The comparison
reveals differences, as was noted by Mott and Linfoot, which failed to provide
the justification sought by them. A calculated distribution variance (second
moment about the mean) of five for the Mott distribution (2.17) significantly
exceeds a variance of three calculated for the Bessel distribution in (2.39).
The Mott distribution would predict a larger number of both small and large
fragments.

Mott and Linfoot then pursued the geometric fragmentation problem in
which orientation as well as placement of lines on the area was a random
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variable as illustrated in Fig. 2.3b. They were unable, however, to determine
the size distribution for this fragmentation algorithm except in the small frag-
ment limit, which did agree with the proposed dependence of fragment number
proportional to the square root of fragment area. Computer solutions of this
geometric fragmentation algorithm [Grady and Kipp, 1985] suggest reasonable
agreement with the Mott distribution over the full range of fragment sizes.

By considering the geometric problem of randomly oriented vertical and
horizontal lines, and then the extension to randomly oriented lines as shown in
Fig. 2.3b, Mott and Linfoot tacitly observe that the generated fragment size
distribution would probably depend on the algorithm chosen to randomly
partition the area. This algorithm dependence of geometric fragmentation
methods will be pursued later.

2.2.2 Cylindrical Segmentation Fragmentation

First, however, it is of interest to outline the final geometric fragmentation
algorithm pursued by Mott before this line of study was dropped by him. If
the fragment size distribution generated in a random geometric fragmentation
process is dependent on the fragmentation algorithm, as is becoming apparent,
then an algorithm which most closely replicates the event of interest might
be expected to better approximate the statistical features sought. Indeed, the
present algorithm reasonably approximates the longitudinal fractures and sub-
sequent circumferential breakup observed in a munition fragmentation event.
This proximity to the problem of concern most likely guided Mott in selecting
this final geometric fragmentation process for study.

This final algorithm is illustrated in Fig. 2.3e. The method consists of first
inscribing randomly positioned horizontal lines, and then segmenting each
horizontal strip with randomly positioned vertical lines where the average
spacing within any strip is proportional to the width of that strip. In pursuing
the size distribution solution to this problem, Mott also changed the functional
form governing the random placement of horizontal lines and vertical line
segments. We will here, however, proceed one step at a time and assume that
the Lineau distribution governs the placement of the line and line segments
as in the preceding exercise.

It is found in carrying through the solution for the fragment size distribu-
tion for this geometric algorithm, with a Lineau distribution of vertical lines
and horizontal line segments, that the analysis is not tractable and that the
resulting distribution does not converge. Mott must have also observed this
difficulty and the observation may have motivated his selection of a distri-
bution function different than the Lineau form. It is also possible that this
selection was not arbitrary, but was motivated by physical ideas emerging
from the more physically-based theories he was starting to pursue.

In any case, in pursuing the solution to this alternative geometric frag-
mentation algorithm posed by Mott, it becomes apparent that the probabil-
ity density distribution for fragments over the areal region cannot simply be
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obtained by a juxtaposition of the two linear distributions as was done in the
previous analysis. It will initially be necessary to work with number distribu-
tions because of difficulties in normalizing the probability distribution. Note
first that given a probability density distribution in fragment lengths f (x),
the total length dL of fragments of length x within increment dx is just,

dL = xdN = Noxf (x) dx , (2.44)

or

L = No

∞∫
0

xf (x) dx = No〈x〉 , (2.45)

where 〈x〉 is the expected value of x and No is the total fragment number.
For the Lineau distribution as written in (2.18) the expected value is just
〈x〉 = L/No = xo.

In the geometric fragmentation algorithm illustrated in Fig. 2.3e the region
is assumed to be of equal height and width L. Consider one strip of width y.
The number of segments (fragments) within this one strip of length x, within
increment dx, is just,

dNx = Nxo
1
xo

e−x/xodx =
L

x2
o

e−x/xodx , (2.46)

where the Lineau distribution in fragment lengths is assumed. Correspond-
ingly, the number of strips of width, y within increment dy is

dNy =
L

y2
o

e−y/yody . (2.47)

Thus, the number of fragments of length x and width y per unit area (setting
L2 = 1) is just the product,

dN = dNxdNy =
1

x2
oy

2
o

e−x/xo−y/yodxdy . (2.48)

At this point Mott supplemented the geometric fragmentation algorithm with
the assumption that within a strip of width y the average fragment length
was proportional to y or,

xo = py . (2.49)

Mott suggested that the constant p was approximately 5 based on munitions
fragments that he had the opportunity to inspect. The present assumption
was clearly motivated by observation of fragments from a cylindrical munition
fragmentation event in which the nature of the breakup leads to an abundance
of elongated fragments.

The resulting fragment number distribution is accordingly,

dN =
1

p2y2
oy2

e−y/yo−x/pydxdy . (2.50)
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We again introduce the change of variables,

a = xy, r = x/y , (2.51)

with Jacobian, ∣∣∣∣∂ (x, y)
∂ (a, r)

∣∣∣∣ = 1/2r , (2.52)

leading to the number distribution,

dN =
1

2p2y2
o

1
a
e
−
√

a

ry2
o
−r/p

da dr , (2.53)

over fragment area a and aspect ratio r. The number distribution over frag-
ment area is then the integral,

dN

da
= n (a) =

1
2p2y2

o

1
a

∞∫
0

e
−
√

a

ry2
o
−r/p

dr , (2.54)

or, with the variable change r = pη,

n (a) =
1

2py2
o

1
a

∞∫
0

e
−
√

a

py2
o

1√
η
−η

dη . (2.55)

Unfortunately, the integral within (2.55) is not finite. Cursory examination
of the distribution shows an unbounded number density distribution as both
area a and aspect ratio r become small. Thus, this very natural statistical
fragmentation geometry, when combined with the Lineau (Poisson) place-
ment of the fractures, leads to an ill-defined fragment distribution. Although
not explicitly discussed in his reports Mott must have tread this path and
encountered the same difficulty. Undaunted, he proposed a novel solution re-
sulting in an analytically regular fragment size distribution for the geometric
fragmentation problem addressed above. Some further background is neces-
sary, however, to fully appreciate the approach he pursued. Mott’s treatment
of this final geometric fragmentation algorithm will be revisited in Sect. 2.5.

2.3 Poisson Fragment Distribution
and Statistical Heterogeneity

Mott and Linfoot proposed a representation for the statistical distribution
of fragment sizes resulting from a munitions fragmentation event which was
independent of any specific fragmentation process, geometric or otherwise.
Namely, that a measure of the fragment size (proportional to the square root
of the fragment area) was distributed over fragment number according to
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the Poisson process put forth by Lineau (1936). They then pursued analytic
methods to justify the assumed fragment distribution, an approach that served
Mott well throughout the course of his theoretical career. As illustrated in the
previous section, the statistical geometric methods were not fully successful
in validating the proposed distribution.

Others have pursued alternative statistical assumptions regarding the dis-
tribution of fragment sizes and have similarly undertaken efforts to justify
their assumptions. Here we consider the approach of Grady and Kipp (1985)
as it parallels the fragmentation assumptions and geometric statistics justi-
fication attempts of Mott and Linfoot (1943). The comparison more starkly
brings out features and weaknesses of the approach.

2.3.1 Grady–Kipp Postulate

Within the intervening years since the seminal study of Mott, considerable
opportunity has risen to test the distribution of Mott and Linfoot. Although
the linear dependence of the logarithm of fragment number against the square
root of fragment mass proposed by Mott and Linfoot has in many comparisons
been quite satisfactory, there have also been examples of obvious discrepancy.
For example, munitions fragment data have been obtained which plot linear in
log number versus cube root of fragment mass. This dependence has of course
been suggested to apply to thick-walled munitions in which the preponderance
of fragments are of size smaller than the wall thickness, as is tacit in the initial
development of Mott and Linfoot. Other disparities between the Mott-Linfoot
distribution and munitions fragmentation data have also been observed.

Grady and Kipp (1985) have offered an alternative development and ex-
planation for the distributions in fragment sizes observed in munitions frag-
mentation. They first suggest that if such fragmentation can be represented by
mechanism-independent statistical descriptions that perhaps fragment mass,
as opposed to fragment size (either m1/2 or m1/3 in the Mott-Linfoot devel-
opment), is the more appropriate random variable. They then propose that
the mass of the fragment is distributed over fragment number according to a
Poisson (or binomial if the fragment number is small) process, which parallels
the development of Lineau in Sect. 2.1.

Thus, if the fragment mass is viewed as a random scalar variable, then the
random fragmentation of the mass is analogous to the one-dimensional Lineau
problem. Fragmentation is determined by breaks distributed randomly over
the scalar measure of mass. The breaks determine a Poisson variate and lead
to a cumulative fragment probability distribution,

F (m) = 1 − e−m/µ , (2.56)

and density distribution,

f(m) =
1
µ

e−m/µ . (2.57)
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In contrast to the Mott distribution, the present distribution keeps the same
linear exponential functional form for both area and volume fragmentation.

2.3.2 Sequential Segmentation

Grady and Kipp (1985) also pursued justification of their fragment distribu-
tion relations through geometric fragmentation methods. With the availability
of computational resources they were not restricted to geometries with ana-
lytic solutions. The algorithms pursued by them are illustrated in Figs. 2.3c
and 2.3d. The method is as follows: A point was selected at random on the unit
area. Then a random vertical or horizontal direction in Fig. 2.3c or random
arbitrary direction in Fig. 2.3d was determined and a line drawn through the
point and terminated at the area boundary. A second point was randomly se-
lected and a random line again drawn bisecting the sub area within which the
point fell. This process was sequentially repeated until the desired intensity
of fragmentation was achieved.

It was found that distributions from both the horizontal and vertical lines,
and randomly oriented lines, sequential segmentation geometric processes con-
verged to the linear-exponential distributions in (2.56) and (2.57) with suffi-
cient numbers of fragments for the geometric fragmentation of an area. With
some reflection, it is recognized that this geometric algorithm is replicating
the Poisson partitioning of a scalar area or volume. Thus, the agreement is
expected.

The linear exponential (Poisson) density and cumulative distribution is
shown in Fig. 2.5 and differs markedly from the Mott distribution. The much
broader Mott distribution has a variance a factor of five larger than the Poisson
distribution.

2.3.3 Statistical Heterogeneity

Considering the substantial difference between the exponential distribution
and the Mott distribution in Fig. 2.5, and the historic success of the latter in
describing munitions fragment distribution data, one may question how the
exponential distribution can be offered as a viable representation. Grady and
Kipp (1985) provide the following argument in support of the exponential
distribution.

In the statistical fragmentation problems considered up to this point, sta-
tistical homogeneity over the fragmented region was tacitly assumed. Namely,
the average fragment size did not vary from point to point within the region of
consideration. In application, uniform or homogeneous fragmentation is usu-
ally not achieved. Normally, due to complexity of the device geometry and
dynamic loading, the intensity of fracture will vary throughout the body and,
correspondingly, the average fragment size will also be a function of position.
A uniformly expanding ring or the uniform expansion of a spherical shell are
unique experimental geometries in which nearly homogeneous fragmentation
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Fig. 2.5. A comparison of the Mott distribution and the Exponential, or Poisson,
fragment size (area) distribution resulting from the random segmentation of the
surface

is achieved. Most experimental geometries will lead to statistically inhomoge-
neous fragmentation. This concept was considered by Lineau (1936), but was
not pursued.

Additionally, there is some evidence that fracture mechanisms may marked-
ly differ for different parts of the fragment size distribution. This was briefly
suggested by Mott for the fragmentation of exploding cylinders and has been
pursued in more detail by Odintsov (1992). This possibility will be considered
further later in this section.

The linear exponential distribution based on a Poisson process over a scalar
mass region,

f(m) =
1
µ

e−m/µ , (2.58)

proposed by Grady and Kipp (1985), assumed statistical homogeneity with
average mass µ constant over the region of interest. A second distribution
with a different average fragment size could be described equally well with a
distribution of the form of (2.58). A mixing of the two distributions would not
be characterized by a linear exponential distribution. The distribution would,
rather, be represented by the bi-linear form,

f (m) =
g1

µ1
e−m/µ1 +

g2

µ2
e−m/µ2 , (2.59)

where g1 and g2 are the number fractions of the respective homogeneous dis-
tributions, while µ1 and µ2 are the corresponding average fragment masses.
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More generally, any statistically inhomogeneous distribution could be approx-
imated with a Poisson mixture [Puri and Goldie, 1979],

f (m) =
n∑
1

gi

µi
e−m/µi . (2.60)

It can be shown that any Poisson mixture representation of a fragment
distribution will have a larger variance than a statistically homogeneous lin-
ear exponential representation of that same distribution. It is instructive to
compare, for example, the bi-linear distribution from (2.59) with the Mott
distribution. Normalizing the Mott distribution to the average fragment mass
x = m/µ,

f (x) =
1√
2x

e−
√

2x , (2.61)

and similarly the bi-linear distribution with x = m/µ and µ = g1µ1 + g2µ2,

f (x) =
g1

α1
e−x/α1 +

g2

α2
e−x/α2 , (2.62)

where α1 = µ1/µ and α2 = µ2/µ.
Constrain the integral of the distribution and the first moment to unity in

(2.62),

g1 + g2 = 1 , (2.63)

α1g1 + α2g2 = 1 . (2.64)

The second and third distribution moments (equivalently the distribution vari-
ance and skewness) can also be equated to the corresponding moments for the
Mott distribution yielding,

2
(
g1α

2
1 + g2α

2
2

)
= 6 , (2.65)

6
(
g1α

3
1 + g2α

3
2

)
= 90 , (2.66)

uniquely constraining the four constants in the bi-linear distribution. A com-
parison of the Mott and bi-linear distributions (actually complementary cumu-
lative distributions) with identical distribution moments is shown in Fig. 2.6.
Although significant visual differences are observed, the bi-linear distribution
does start to capture the important features of the Mott distribution. The
distributions are compared in a semi-logarithmic representation in which a
single exponential (Poisson) distribution plots linear. Better agreement can,
of course, be achieved as more terms are included in the Poisson mixture
representation.

A mixture of Weibull distributions (referred to as a hyper Weibull distri-
bution) has been proposed by Odintsov (1992) of the form
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Fig. 2.6. Comparison of the Mott and Poisson fragment size complementary cumu-
lative distribution with a bilinear (Poisson mixture) distribution approximation

f (m) =
n∑
1

gi
ni

µi

(
m

µi

)ni−1

e−(m/µi)
ni

, (2.67)

with mean fragment size,

µ =
n∑
1

giµiΓ(1 + 1/ni) . (2.68)

This distribution, of course, reduces to the Poisson (hyper exponential) mix-
ture provided in (2.60) when the ni for each distribution component is set to
unity. The latter specialized mixture was pursued in some detail be Odintsov.

The issue emphasized in the present section, however, is the statistically
inhomogeneous character of experimental fragment distributions. Attempts
to represent such distributions with analytic forms developed from homoge-
neous statistical fragmentation models will be at best approximate. Also, the
theoretical logical inconsistencies are not fully satisfying. The introduction of
Poisson mixtures to describe statistically inhomogeneous distributions is in-
herently reasonable. Acceptance of a Poisson (linear exponential) distribution
as the homogeneous basis function as has been proposed [Grady and Kipp,
1985; Odintsov, 1992], has not been fully justified, and is open to criticism as
later developments will illustrate.
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2.3.4 Multimodal Distributions

The power of the mixture distribution representation is illustrated in the
description of multimodal fragment distributions as emphasized by Odintsov
(1992). Commonly the mass spectra of fragments over size is desired and is
obtained from the probability distribution through,

dM = mdN = mNof(m)dm . (2.69)

Let ϕ(m) = dM/dm so that,

ϕ(m) =
1
µ

mf(m) , (2.70)

for the distribution of the mass of the fragment over the fragment size (or
weight) m and with µ = 1/No.

For a bilinear Poisson mixture normalized to a fragment size scale of µ = 1
as in (2.62), the mass distribution in (2.70) becomes,

ϕ(x) = x

(
g1

α1
e−x/α1 +

g2

α2
e−x/α2

)
. (2.71)

Two distributions are plotted from (2.71) and are shown in Fig. 2.7 for differ-
ent values of the distribution parameters. In both distributions the number
ratio is the same at g1/g2 = 1. When the size ratio is not large (α1/α2 = 4
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Fig. 2.7. Mass distribution for bilinear Poisson fragment distribution mixtures for
selected distribution parameters illustrating both unimodal and bimodel character
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Fig. 2.8. Fragment mass distributions for explosive fragmentation of low carbon and
high carbon content steel cylinders and associated bilinear exponential distribution
fit in uncalibrated units [Odintsov, 1992]

in Fig. 2.7) the distribution is unimodal. As the size ratio increases (or corre-
spondingly decreases), however, a mode separation is observed in the distrib-
ution yielding a distinct bimodal distribution (α1/α2 = 10 in Fig. 2.7).

Odintsov (1992) has reported detailed fragment distribution properties
from explosion-induced natural fragmentation experiments on low-carbon and
high-carbon steel cylinders. Histogram distributions for one low-carbon and
one high-carbon steel tests are plotted in Fig. 2.8 in uncalibrated units. Bi-
linear curve fits to the data by Odintsov are also shown. The distribution for
the low-carbon steel is distinctly bimodal where as that of high-carbon steel
is nearly unimodal.

Odintsov attributes the bimodal character of the distributions to two dis-
tinct populations of fragments with possibly distinct fracture mechanisms.
The first population is composed of the larger fragments created by through-
the-thickness fractures, which retain sections of both the inner and outer sur-
faces of the original cylinder. The second population is composed of the smaller
angular shards created by fracture intersections, near either the inner surface
(shear fracture dominated) or the outer surface (tensile fracture dominated).
These failure modes were also noted by Mott.

The more brittle high-carbon steel is dominated by fragments from the
second population and consequently is nearly unimodal in character. The
more ductile low-carbon steel has sensible contributions from both fragment
populations leading to the observed bimodal nature of the distribution.
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2.4 Voronoi-Dirichlet Fragment Distribution

The present discussions of random geometric fragmentation would be remiss
without consideration of the Voronoi-Dirichlet construction [e.g., Boots and
Murdoch, 1983]. This method for the random partitioning of space has re-
ceived by far the lion’s share of attention in a much broader spectrum of
literature. The resulting distributions have been proposed for such applica-
tions as the distribution of galactic matter throughout the universe [Kiang,
1966] and the formation of geologic columnar structures such as the Giant’s
Causeway in Northern Ireland [Weaire and Rivier, 1984] to name but a few.

The construction algorithm in two dimensions is illustrated in Fig. 2.3f. As
in the Grady-Kipp construction, the method begins with a random (statisti-
cally homogeneous) distribution of points on the surface (or within the volume
if three-dimensional space is considered). Space is then randomly partitioned
by construction of perpendicular bisecting lines (or surfaces) as illustrated.
On a regular (periodic) lattice of points the same process creates the Wigner-
Seitz cells used, for example, in the construction of Brillouin zones in solid
state physics [Kittel, 1971]. The space is also randomly partitioned through
the reciprocal, or dual, Delauney construction [Watson, 1981] created through
the joining, with lines (or surfaces), the points in each Voronoi-Dirichlet cell.

Analytic relations for the fragment size distributions resulting from the
Voronoi-Dirichlet construction have not been directly determined. A compu-
tational determination of the resulting fragment size distributions has been
widely pursued, however [e.g., Crain, 1978], and an analytic expression which
successfully reproduce the computational distributions has been arrived at by
intuitive means [Kiang, 1966].

Both the analytic distributions and the process of developing them are
of interest to the present pursuit of statistical fracture through geometric
means. First Kiang (1966) considered the one-dimensional Voronoi-Dirichlet
construction, where points are distributed at random on a line (a Poisson
process), and then the degenerate perpendicular bisector (the midpoint) of
each point pair is determined. Thus, the Voronoi-Dirichlet distribution on a
line is the dual of the Lineau distribution considered earlier (or the degenerate
Delauney distribution). Whereas, in the Lineau distribution random points on
the line were considered as breaks or fractures, in the present Voronoi-Dirichlet
distribution these same random points constitute in some sense the centroid
of fragments with fractures occurring at the bisector points.

2.4.1 One-Dimensional Voronoi–Dirichlet Distribution

The fragment size distribution for the one-dimensional Voronoi-Dirichlet dis-
tribution can be determined directly as follows. The probability of finding a
length l between a Poisson point pair is given by the Lineau distribution,

f(l)dl =
1
λ

e−l/λ . (2.72)
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The probability of finding a point pair of length l1 adjacent to a point pair of
length l2 is then the product,

f(l1)f(l2)dl1dl2 =
1
λ2

e−(l1+l2)/λdl1dl2 . (2.73)

Implementing the transformation,

L = (l1 + l2)/2 , (2.74)

ξ = (l1 − l2)/2 , (2.75)

leads to the distribution,

f(L) =
1
λ2

L∫
−L

e−2L/λdξ , (2.76)

where L is the length between midpoints of the point pairs. Integration provide
the Voronoi-Dirichlet distribution of fragments on a line,

f(L) =
2
λ

(
2L

λ

)
e−2L/λ . (2.77)

Comparison of the one-dimensional Voronoi distribution (2.77) and the Lin-
eau, or Poisson, distribution is provided in Fig. 2.9.

2.4.2 Two and Three Dimensional Analytic Distributions

The distribution in (2.77) is a gamma function of order n = 2. Kiang (1966)
offered without proof that symmetrically higher order gamma functions would
provide analytic fragment distributions for Voronoi-Dirichlet partitioning of
an area or a volume. Following Kiang we will write the general expression for
the fragment distribution over mass,

f(m) =
1
µ

n

Γ(n)

(
nm

µ

)n−1

e−nm/µ , (2.78)

where n = 2, 4 or 6 for a line, surface or volume fragmentation, respectively.
Computational distributions from Voronoi-Dirichlet constructions on an

area performed by Kiang (1966) were in acceptable agreement with (2.78) for
n = 4. A degree of controversy was generated by Kiang’s proposal among
subsequent authors as to the adequacy of (2.78); both for and against. Appar-
ently the construction of computer algorithms to generate Voronoi-Dirichlet
fragment distributions is not a trivial exercise. In any case, for the present
geometric fragmentation investigations, (2.78) is an adequate analytic repre-
sentation of Voronoi-Dirichlet distributions in line and area fragmentation.
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Fig. 2.9. A comparison of the one-dimensional Voronoi distribution and the Lineau,
or Poisson, fragment length distribution resulting from the random segmentation of
the line according to the respective algorithms

Fragment size (area) distributions resulting from both the Voronoi algo-
rithm and the sequential segmentation algorithm (Poisson distribution) are
compared with the Mott distribution from (2.17) in Fig. 2.10. The three den-
sity distributions are normalized to unit expected value. The comparisons
reveal the stark differences resulting from differing randomization algorithms
and differ markedly from the proposed distribution of Mott.

2.5 Mott Cylinder Segmentation Algorithm

Mott undertook one final attempt at justifying through geometric methods the
proposed m1/2 distribution. The approach was explored earlier in Sect. 2.2.
From the elongated and sliver-shaped fragments recovered from exploding mu-
nitions tests Mott surmised that fracture in an end-detonated metal shell with
cylindrical symmetry would occur through longitudinal running cracks with
occasional crack branching and crack intersection resulting in the observed
fragments. Thus he proposed the statistical algorithm illustrated in Fig. 2.3e
and analyzed earlier with the Lineau distribution of the lines and line seg-
ments. To randomly distribute the longitudinal and transverse line features
on the plane he made the interesting selection of the one-dimensional Voronoi-
Dirichlet distribution discussed in the previous section rather than the Lineau
distribution used in his earlier geometric pursuits. He may have made this
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Fig. 2.10. Comparison of the Mott, Poisson and Voronoi distributions for the ran-
dom fragmentation of an area

choice for one of two reasons. It is possible that he carried through the analy-
sis using the Lineau distribution, as was attempted earlier in this chapter, and
found (as was shown in the earlier section) that a solution could not be ob-
tained. Alternatively, ideas to emerge in his later work, and to be discussed in
the next chapter, may have influenced this selection: namely, that the physics
of fracture interaction precludes the close proximity of parallel fracture, and
thus limits the number of smaller fragments. The Voronoi-Dirichlet distribu-
tion is observed to better provide a statistical constraint limiting the number
of the close parallel fractures and hence the number of smaller fragments.

Following the methods outlined previously, but using the Voronoi-Dirichlet
distribution from (2.77) to determine the random placement of longitudinal
lines and transverse line segments, the following size distribution over frag-
ment area is obtained,

f(a) =
2
ao

1√
4a/ao

∞∫
0

(
ξ
√

4a/ao − 1
) (

1 + 1
/
ξ2
)
e−ξ

√
4a/ao−1/ξ2

dξ . (2.79)

This relation corresponds to the distribution provided by Mott and differs
only in the distribution variable λ =

√
a/ao used by him where ao = py2

o .
The corresponding cumulative distribution is then,

F (a) =
√

4a/ao

∞∫
0

(
1 + 1

/
ξ2
)
e−ξ

√
4a/ao−1/ξ2

dξ . (2.80)
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Fig. 2.11. A comparison of the cumulative and density fragment size distributions
from the Mott distribution and the geometric cylinder segmentation distribution

The plot in Fig. 2.11 compares the Mott distribution with the cylindrical
segmentation algorithm proposed by Mott using the Voronoi algorithm for
randomly distributing the partitioning lines and line segments. This figure
corresponds to Fig. 2.4 in which the Mott distribution is compared with the
random vertical and horizontal lines algorithm. A final comparison is shown
in Fig. 2.12 in which the density distributions resulting from both algorithms
considered by Mott are compared with the Mott distribution over a wider
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Fig. 2.12. A comparison of the probability density fragment distributions from
the Mott distribution, the geometric cylinder segmentation distribution, and the
geometric random horizontal and vertical lines (Bessel) distribution. Approximately
95% of the fragment area (mass) is included in the range of the plotted distributions
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spectrum of fragment sizes. It is interesting that the distributions from the
two algorithms tend to straddle the Mott-Linfoot proposed distribution, each
with respectively larger and smaller variance. It is unlikely that anything else
can be said.

At this point a degree of healthy suspicion as to the applicability of random
geometric fragmentation algorithms to actual physical fragmentation phenom-
ena should be embraced. Later, it will be shown that some utility of these
methods can be made use of in modeling the statistical fragmentation phe-
nomena, but they should be employed only with a sensible understanding of
the underlying physics.

References

Abramowitz, M. and Stegun, I.A. eds. (1954), Handbook of Mathematical Function,
No. 55, National Bureau of Standards Applied Mathematics Series, U.S. Govern-
ment Printing Office.

Boots, B.N. and Murdoch, D.J. (1983), The Spatial Arrangement of Random
Voronoi Polygons, Computers and Geosciences, 9, 351–365.

Buck, R.C. (1965), Advanced Calculus, McGraw-Hill, New York.
Crain, I.K. (1978), The Monte-Carlo Generation of Random Polygons, Computers

and Geosciences, 4, 131–141.
Grady, D.E. (1990), Particle Size Statistics in Dynamic Fragmentation, J. Appl.

Phys. 68, 12, 6099–6105.
Grady, D.E. and Kipp, M.E. (1985), Geometric Statistics and Dynamic Fragmenta-

tion, J. Appl. Phys., 58, 3, 1210–1222.
Kittel, C. (1971), Introduction to Solid State Physics, John Wiley & Sons, New York.
Kiang, T. (1966), Mass Distributions of Asteroids, Stars and Galaxies, Zeitschrift

für Astrophysik, 64, 426–432.
Lineau, C.C. (1936), Random Fracture of a Brittle Solid, J. Franklin Inst., 221,

485–494, 674–686, 769–787.
Mott, N.F. and Linfoot, E.H. (1943), A Theory of Fragmentation, Ministry of Supply

AC3348.
Odintsov, V.A. (1992), Hyperexponential Spectra of Exponential Fracture, Mechan-

ics of Solids, (Meckhanika Tverdogo Tela), 27, 5, 42–48.
Puri, P.S. and Goldie, C.M. (1979), Poisson Mixtures and Quasi-Infinite Divisibility

of Distributions, J. Appl. Prob., 16, 138–153.
Watson, D.F. (1981), Computation the n-Dimensional Delaunay Tessellation with

Application to Voronoi Polytopes, The Computer Journal, 24, 167–172.
Weaire, D. and Rivier, N. (1984), Soap, Cells and Statistics – Random Patterns in

Two Dimensions, Contemp. Phys., 25, 1, 59–99.



3

Physics-Based Statistical Methods

Mott reached closure in his exploration of geometric fragmentation statistics
early in his third internal report. In the remainder of this report he undertook
a seminal investigation of the fragmentation of exploding shells, and developed
a statistical theory of dynamic fragmentation elegant in its formulation and
insightful in the physics explored. His theoretical effort has been noted in
numerous subsequent studies in dynamic fragmentation but has received little
in-depth study. Consequently, the fragmentation theory of Mott now over
60 years in the literature has been neither validated nor refuted. Efforts in
the present section attempt to assess and broaden the physical principles of
dynamic fragmentation first proposed by Mott. The efforts go beyond the
initial analysis of Mott, however, both in the range of fracture processes, as
well as in the analytic development.

3.1 Statistical Theory of Mott

The dynamic fracture analysis pursued by Mott is decidedly one-dimensional.
It is best visualized as that of a uniformly stretching rod or expanding ring
such as illustrated in Fig. 3.1. The model can be usefully abstracted to
fragmentation applications, such as a rapidly expanding cylinder in which
the circumferential stretching rate substantially exceeds the axial, or a one-
dimensional spall event within a body experiencing increasing tension within
a region of uniform axial velocity gradient. Here, for clarity, the model explo-
ration will focus on a stretching filament of material of unit cross section as
depicted by the expanding ring in Fig. 3.1. Prior to fracture, the body is uni-
formly stretched to an axial strain ε which is increasing at a constant strain
rate ε̇.

Mott considered the body to be rigid perfectly plastic and straining in
tension under a constant flow stress Y . The Mott kinematic conditions will
be referred to as plastic fracture. Tensile loading in which the body remains
elastic up to the point of fracture will also be considered (elastic fracture). Here
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Fig. 3.1. The one-dimensional Mott problem. A one-dimensional ring of material
undergoes outward expansion at constant velocity, u. Prior to fracture response of
the body is uniform tensile stretching at a strain rate ε̇ = u/r. Instantaneous fracture
occurs at random sites and waves originate at points of fracture which propagate
at finite speeds, relieving tensile stress and further stretching. Strain-dependent
fracture continues only in regions not yet encompasses by the stress-relieved waves

tensile stress is related to strain and strain rate according to σ = Eε = Eε̇t
where E is the appropriate elastic modulus.

At onset of breakup fractures are considered to occur at random in both
time (or equivalently strain) and in spatial location on the stretching body
as illustrated in Fig. 3.1. Following Mott it is assumed that fractures occur
instantaneously relieving the tensile stress at the point of fracture to zero.
Thus fracture resistance at the point of breakage and corresponding fracture
energy during the breakage process is ignored.

Mott argued that the fracture energy was not significant. Rather, he pro-
posed that the statistical nature of the fracture process determined both the
characteristic fragment size, as well as the distribution in fragment sizes.

Mott’s assumption of both instantaneous fracture and the insignificance
of fracture energy can, and should, be examined further. This issue will be
investigated in some detail in a later section.

Mott used observations of fracture in notched-bar specimens of steels to
support the theoretical approach. He noted that the reduction in the cross-
sectional area (the strain) before fracture was not the same from test to test.
Scatter in the strain to fracture of a few percent over a number of tests was
observed. He then proposed that strain to fracture was a random variable in
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the stretching body, and that fracture when the circumferential strain achieved
some critical level was governed by probabilistic causes.

Following fracture at a point, waves propagate away from the fracture
relieving the tensile stress and subsequent stretching within the regions en-
compassed by the waves. For plastic fracture, in which waves are propagating
into media stretching plastically at a constant flow stress Y these waves are
diffusive (Mott waves) and the distance traveled depends on time and physical
properties according to,

x =
√

2Y t/ρε̇ . (3.1)

If fracture is elastic, release waves propagate according to,

x =
√

E/ρt , (3.2)

where c =
√

E/ρ is the elastic wave speed.
Fracture physics in either the plastic or the elastic model is governed by

the competition of waves of release emanating from existing fractures, with
continuing fracture occurring within regions of the body not yet subsumed by
these waves.

3.2 Mott Wave Propagation

Equation (3.1) describes the time-dependent propagation of tensile stress re-
lease from points of fracture, and is representative of the insightful physics
introduced by Mott in pursuing an understanding of the dynamic fracture
process.

3.2.1 Mott Rigid Plastic Solution

To pursue his analysis of the distribution of the fracture spacing resulting
in the dynamic fracture of an expanding cylindrical shell, it was necessary
to establish the speed at which waves, signaling the drop in tensile stress,
propagated outward from points of fracture. Accordingly, Mott considered a
one-dimensional rod of unit cross section stretching plastically under a tensile
stress Y and uniformly at a constant stretching rate, ε̇. Fracture was initiated
by setting the tensile stress to zero at time t = 0 at some Lagrangian position,
say h = 0. Regions of the rod experiencing tensile stress less than Y were
considered rigid. Mott then realized that a boundary (herein called a Mott
wave) separated rod material stretching uniformly at stress Y in front of the
boundary from rigid material moving at the same uniform velocity behind
the boundary. This boundary (Mott wave) propagates away from the point
of fracture at h = 0. Features of the stress and velocity associated with the
Mott wave at some time t > 0 are illustrated in Fig. 3.2. Location of the Mott
wave is identified by x(t), while crack opening displacement is given by y(t).
The velocity field is then,
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Fig. 3.2. Stress and velocity field at time t after fracture at position h = 0 drops
tensile stress from Y to zero

u (h, t) =
{

ε̇x (t) 0 ≤ h < x (t)
ε̇h x (t) ≤ h ≤ ho

, (3.3)

where, ho is some arbitrary distance.
The corresponding stress field is equally apparent. The total momentum

of the rod within the region 0 ≤ h ≤ ho is just,

ρε̇x2 +

ho∫
x

ρε̇hdh =
1
2
ρε̇(x2 + h2

o) . (3.4)

Equating the time rate of change of momentum to the imbalance in tensile
stress yields the differential equation,

ρε̇x
dx

dt
= Y , (3.5)

for the position x(t) of the Mott wave at time t. Integration readily yields,

x (t) =

√
2Y t

ρε̇
. (3.6)

Thus, fractures occurring in the stretching body lead to the propagation of
waves, away from these points of fracture, which unload the tensile stress. The
time dependent motions of these Mott waves are governed by both material
properties and kinematic conditions according to the relation above. Within
regions subsumed by Mott waves, further fracture will not occur. Subsequent
fracture will only occur in regions, not yet reached by the unloading Mott
waves, which continue to stretch unimpeded at a rate ε̇ and flow stress Y .
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Mott recognized that excessively high velocities of the interface x(t), at
early times, was a consequence of the rigid-plastic assumption and inconsistent
with a more rigorous elastic-plastic treatment of the problem. He acknowledges
an analysis due to E. H. Lee, which was published some years later [Lee, 1967].
Lee considered the same initial and boundary conditions posed by Mott, but
treated material response behind the interface as elastic. It is shown that the
initial drop in stress from σ = Y to σ = 0 at the origin h = 0 propagates as a
decaying shock discontinuity in stress and particle velocity at an elastic wave
speed c. This shock discontinuity decays to zero at a distance of,

h =
2Y

ρcε̇
= λ , (3.7)

and at a time of,
τ = λ/c . (3.8)

Subsequent reflected elastic waves and the interface x(t) are acceleration dis-
continuities (discontinuities in the slopes of stress and particle velocities).
Continued solution reveals that the interface x(t) is a polygon in the h vs. t
domain with vertices,

h = nλ , t = n2λ/c , n = 1, 2, 3, . . . (3.9)

where each segment propagates at a velocity of,

cn =
c

2n − 1
. (3.10)

The rigid-plastic solution of Mott (1947) and the elastic-plastic solution
of Lee (1967) are compared in Fig. 3.3. The former is found to envelop the
elastic-plastic solution touching at the vertices. Within several characteristic
distances λ the rigid-plastic solution is found to be a very good approximation
to both the position of the interface, and to the stress and velocity field behind
the interface.

3.2.2 The Diffusion Solution

It is the simplicity of Mott’s analysis which so vividly reveals the underlying
physics. It is readily apparent that Mott’s solution is intended to apply at
the point at which hardening in the stretching rod saturates, and the tension
versus strain loses its hyperbolic character. At this point of stationary tension,
the governing equations become parabolic, and the diffusive nature implicit
in the motion of the Mott wave is expected.

The diffusive character of the stress release process can in fact be readily
demonstrated by writing the linear diffusion relation,

∂2σ

∂h2
− 1

κ

∂σ

∂t
= 0 , (3.11)
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Fig. 3.3. Comparisons of interface x(t) separating plastic region and rigid plastic
region according to solutions of Mott (1947) and Lee (1967)

with the diffusion constant,
κ = Y/2ρε̇ . (3.12)

Consider the same problem treated by Mott in which fracture at t = 0 and
h = 0 instantly decreases the tensile stress from σ = Y to σ = 0. This classic
solution [e.g., Matthews and Walker, 1964] can be immediately written down
for the stress,

σ/Y = erf (ξ) , (3.13)

and the velocity,

u

ε̇
√

4κt
=

√
4
π

exp
(
−ξ2

)
+ 2ξerf (ξ) − ξ . (3.14)

In (3.13) and (3.14) the similarity parameter,

ξ = h/
√

4κt , (3.15)

has been introduced. The present diffusion equation solution and the rigid-
plastic solution of Mott are compared in Fig. 3.4.

The rigid-plastic solution of Mott, the elastic-plastic solution of Lee, and
the solution to the diffusion equation are, of course, only models of the actual
processes of fracture and stress unloading occurring in the rupture of a rapidly
stretching ductile shell. Which model most accurately depicts reality probably
cannot be answered. All, however, reveal physics of the fracture process and
point to the decidedly diffusive nature of stress wave propagation.
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Fig. 3.4. Comparisons of solutions for Mott’s rigid-plastic model and a linear stress-
diffusion model of fracture in a stretching plastic rod

3.2.3 Fracture Energy Solution

One further extension of the fracture wave analysis developed by Mott is of
interest. Mott was convinced at the time of development of the rigid-plastic
fracture release wave solution that energy dissipated at the point of fracture
was inconsequential and could be ignored. Hence, the assumption of instanta-
neous stress drop at the point and time of fracture was inherently sensible. The
solution method is readily amenable to considerations of fracture when the
fracture energy is not inconsequential, [Grady et al., 1984; Kipp and Grady,
1985].

From (3.4), which equates the rate of change of momentum of the circum-
ferential strip of stretching case material 0 ≤ h ≤ ho, adjacent to a fracture
initiated at h = 0 and at time t = 0, to the misbalance in tensile stress at
opposite ends of that strip, obtain,

ρε̇x
dx

dt
= σ (ho) − σ (0) . (3.16)

The boundary condition in Mott’s solution method sets σ(0) = 0 at t = 0
corresponding to instantaneous stress release at the moment of fracture. It is
reasonable, however, to consider a model in which the tensile stress is reduced
gradually over time from σ(0) = Y to σ(0) = 0 as the crack opens. This model
would replicate a fracture resisting crack opening and thus, dissipate energy
in the crack-opening process. As illustrated in Fig. 3.5, a coordinate y(t) iden-
tifies the crack-open displacement, while x(t) determines the position of the
rigid-plastic boundary. A fracture resistance is proposed in which the bound-
ary tensile stress reduces linearly to zero at y = yc. (Other possible models for
the boundary resistance are considered in Chap. 4.) An energy of fracture is
then given by Γ = Y yc/2, the area under the stress-displacement curve. The
concepts are quite analogous to crack-opening-displacement models of Dug-
dale (1960) and Barenblatt (1962) in the treatment of quasistatic fracture
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Fig. 3.5. The sketch on the left illustrates crack-opening displacement y due to
motion of the rigid section of the strip. On the right the resisting tensile stress as a
function of crack-opening displacement is shown which dissipates an energy Γ when
displacement achieves a value yc

resistance. Equation (3.16) then gives the momentum balance relation,

ρε̇x
dx

dt
=

Y 2

2Γ
y , (3.17)

while motion of the crack-opening displacement provides,

dy

dt
= ε̇x . (3.18)

The coupled (3.17) and (3.18) are readily solved yielding,

x (t) =
1
12

Y 2

ρΓ
t2 , (3.19)

for motion of the rigid-plastic boundary during the crack-opening displace-
ment 0 ≤ y ≤ yc. The solution for crack-opening displacement is in turn given
by,

y (t) =
1
36

ε̇Y 2

ρΓ
t3 . (3.20)

When y exceeds yc (completion of fracture) the original solution of Mott
applies.

Setting y = yc in (3.20) and using the expression for fracture energy,
Γ = Y yc/2, the time tf at which fracture is complete can be calculated,

tf =
(

72ρΓ2

Y 3ε̇

)1/3

. (3.21)

Correspondingly, the distance xf traveled by the rigid-plastic boundary
during the time of fracture completion from (3.19) is,
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is compared with original instantaneous-fracture solution of Mott

xf =
(

3Γ
ρε̇2

)1/3

. (3.22)

The motion of the rigid-plastic boundary with the present resisting fracture
energy model is compared with Mott’s original instantaneous-fracture solu-
tion in Fig. 3.6. Equation (3.19) governs the motion until the fracture time
tf at a distance xf is achieved. Subsequent motion is governed by the same
free-boundary conditions as that of instantaneous fracture. The principal ef-
fect is to cause a delay in the boundary motion compared to the motion of
instantaneous fracture.

It is apparent that if two fractures initiate within a time tf and with
spacing between them of less than 2xf they will interfere with each other
before the fracture growth process is complete. Such interactions have been
studied and have shown under certain criteria that one or the other of the two
fractures will arrest growth and not complete the fracture process [Kipp and
Grady, 1985]. Out of this study a nominal fracture spacing of twice xf or,

xo =
(

24Γ
ρε̇2

)1/3

, (3.23)

has been proposed when conditions in the fracture process favor sufficient frac-
ture initiation sites such that fracture interaction and competition processes
governed by energy requirements determines the breakup intensity.

Thus, like Lee’s elastic-plastic solution places a lower bound on the dis-
tance of interface propagation before Mott’s rigid-plastic solution is adequate,
the present analysis places a lower bound on fracture spacing governing Mott’s
instantaneous fracture assumption.
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The above analysis, of course, opens further questions. What, for exam-
ple, would be the effect on the calculated fracture properties if crack-opening
resistance models other than linear softening were pursued? Also, to what
extent are fracture properties sensitive to the scale of initial perturbations
responsible for fracture onset? These extended issues detract, however, from
the pursuit of Mott’s fracture theory, but have been included in a section of
the next chapter.

3.3 Statistical Fundamentals

Mott proposed that the occurrence of fracture in a stretching body is gov-
erned by a fracture frequency probability function λ(ε) of the strain ε. The
expression λ(ε)dεdl is the chance that a fracture will occur in a length dl at
a strain ε within an interval dε. Dimensionally it can be considered the ran-
dom frequency of fracture per unit strain and length of the stretching body.
It is useful for both later developments, and for the present conceptualiza-
tion to consider an expanding ring composed of a large number No of equal
length segments. Imagine further each of these segments stretching indepen-
dently, but at the same rate. For the moment it is also convenient to consider
segments of unit initial length. Then at a strain ε,

dN

N
= −λ (ε) dε , (3.24)

is the fraction of the surviving segments N that fracture as the strain is in-
creased from ε to ε+dε. Equation (3.24) is integrated to provide the surviving
number of segments as a function of strain,

N = Noe
−
∫

λ(ε)dε . (3.25)

Equation (3.25) readily provides the cumulative probability distribution
for fracture within a body of unity length at or before a strain ε is achieved,

F (ε) = 1 − e−
∫

λ(ε)dε . (3.26)

The probability of a unit length surviving when strain ε is achieved is, of
course,

1 − F (ε) = e−
∫

λ(ε)dε . (3.27)

The complementary cumulative probability density function for a unit length
surviving to strain ε and fracturing within the subsequent unit strain interval
is,

f (ε) =
dF (ε)

dε
= λ (ε) e−

∫
λ(ε)dε = (1 − F ) λ (ε) . (3.28)

In the statistical theory of reliability or life testing the function λ(ε) is com-
monly known as the hazard function or the conditional failure (mortality)
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function [Hahn and Shapiro, 1967] and is more generally identified as h(ε)
in later analysis. Typically time rather than strain is the random variable.
However, in the present development time and strain are related through a
constant strain rate ε = ε̇t, and the two random variables are synonymous.

Mott (1943) proposed three functional forms for the fracture frequency
function λ(ε). They are

λ (ε) = λo, a constant , (3.29)

λ (ε) =
n

σ

( ε

σ

)n−1

, (n ≥ 1) , (3.30)

λ (ε) = Aeγε . (3.31)

The first is, of course, a special case of the second power law representation
for n = 1 leading to a constant or uniform fracture frequency. Mott sug-
gested that the first two expressions could be zero up to some ε = εo taking
their functional representation thereafter. This is not of consequence. Much
of Mott’s attention attended to the later exponential representation for λ(ε)
in (3.31).

The three fracture frequency functions are illustrated in Fig. 3.7. Although,
diversely different in this representation, it was shown by Mott that their con-
sequences on fragment size and distribution were not dramatically different.
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Fig. 3.7. The fracture frequency hazard functions for strain-to-fracture proposed
by Mott are compared. The parameters are for the uniform function, λo = 15; the
power-law function, σ = 1, n = 12: and the exponential function, A = 0.1, γ = 5
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Their functional forms have been explored extensively in treatise on sta-
tistics [e.g., Hahn and Shapiro, 1967]. The first constant hazard function leads
to the familiar exponential probability distribution used, for example, in ra-
dioactive decay. The second power-law hazard function leads to the Weibull
distribution commonly used in the breaking strength of materials. This dis-
tribution reduces to the exponential distribution for n = 1 and the Rayleigh
distribution for n = 2. The third hazard function is a form of asymptotic or
extreme-value probability distribution and leads to the Gumbel extreme value
distribution [Hahn and Shapiro, 1967].

We will principally pursue the consequences of a power law function and
the resulting Weibull distribution for the statistical fragmentation of a one-
dimensional stretching body. It has, in the intervening years, become the
common statistical representation for strength of solids. Doremus (1983) has
pointed out, however, that in spite of popularity of the Weibull distribution,
the normal distribution, and the Gumbel distribution, can in some applica-
tions better characterize strength data in solids. He points out that Weibull
selected the power law form for mathematical convenience and that there was
no theoretical basis. There are important differences between the two distri-
butions for the present fragmentation application, which will be pointed out
after details of the distributions are discussed.

The Weibull probability density function for fracture within a unit circum-
ferential length of the cylinder is,

f (ε) =
n

σ

( ε

σ

)n−1

e−(ε/σ)n

, (3.32)

while the cumulative distribution function is,

F (ε) = 1 − e−(ε/σ)n

. (3.33)

Shape and scale parameters of the distributions are n and σ, respectively.
Both probability-density and cumulative probability distribution functions
are shown in Fig. 3.8. Curves illustrate the tendency for the fracture to center
about a fixed strain to failure with increasing shape parameter n. The expected
value for strain to failure is given by,

σ Γ
(

1 +
1
n

)
, (3.34)

where Γ( ) is the gamma function. The standard deviation about the mean is
provided by,

σ

[
Γ
(

1 +
2
n

)
−
(

Γ
(

1 +
1
n

))2
]1/2

∼= 1.28
σ

n
. (3.35)

The asymptotic limit as n → ∞ for the standard deviation is shown in (3.35)
and is a reasonable estimate over much of the range of n. The functional
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Fig. 3.8. Probability density and cumulative probability distributions for power-
law fracture frequency function (Weibull distribution) with selected values of shape
parameter n. The scale parameter is σ = 1

form of these statistical properties for the Weibull distribution is illustrated
in Fig. 3.9.

For a body of arbitrary length l the hazard function λ(ε) is replaced by
lλ(ε) in previous relations. It is readily shown that σ in (3.34) and (3.35) is
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Fig. 3.9. Expected value and standard deviation for strain-to-fracture with increas-
ing values of the Weibull shape parameter n. The scale parameter is σ = 1
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then replaced by σ/l1/n illustrating the size dependence of fracture strength
common to Weibull statistics.

With reasonably high values of n the power-law hazard function and
Weibull distribution quite adequately describe the several percent scatter in
failure strain observed in metal tensile specimens. This analytic distribution
thus provides a reasonable statistical representation for describing the multi-
ple fragmentation process in rapidly stretching bodies such as the expanding
ring illustrated in Fig. 3.1.

In contrast, the strain-to-fracture exponential hazard function λ(ε) =
A exp(γε) and the resulting fracture distribution function chosen by Mott for
study is, like the power law hazard function and Weibull distribution func-
tion, a form of extreme value distribution. More specifically it is commonly
known as the Gumbel extreme value distribution [Hahn and Shapiro, 1967].
Characteristics of the distribution are more transparent rewriting the hazard
function in the form,

λ (ε) =
1
σ

e(ε−µ)/σ , (3.36)

where the correspondence σ = 1/γ and (1/σ) exp(−µ/σ) = A is made with
the relation of Mott. The probability density function for strain-to-fracture is
then,

f (ε) =
1
σ

exp
(

1
σ

(ε − µ) − e(1/σ)(ε−µ)

)
. (3.37)

Both hazard function and probability density function for Gumbel distribution
are illustrated in Fig. 3.10. The parameter µ is seen to be the distribution
mode and location parameter, while the expected strain to fracture is,

µ − neσ , (3.38)

where ne = 0.577 is the Euler number. The distribution standard deviation
is,

1.283σ . (3.39)

Thus, not unlike the Weibull distribution, as σ approaches zero the expected
value approaches the mode µ and the distribution converges to a delta func-
tion.

It is important at this juncture to point out a very significant difference
between the Gumbel extreme value distribution (selected by Mott for appli-
cation to fragmentation statistics) and the Weibull distribution. Whereas the
latter has both a distribution scale and shape parameter, the Gumbel distrib-
ution parameters determine only the scale and the location of the distribution
but are lacking a shape parameter. This difference will be shown to have an
important influence on the theoretically predicted dependence of fragment
size on the strain rate. The Gumbel distribution will yield a unique inverse
first power dependence on strain rate. Over physically reasonable values of the
shape parameter n the Weibull distribution predicts a strain rate dependence
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Fig. 3.10. Illustrates the Mott strain-to-failure distribution (Gumbel extreme value
distribution) with distribution location parameter µ = 1 and several values of the
scale parameter σ

ranging between an inverse first power and an inverse two-thirds power. Mott
commented on these differences but did not provide strong justification for
selection of the Gumbel distribution.

3.4 The Mott Distribution

The physical and statistical principles just outlined were then used by Mott
to determine a distribution in fragment lengths (or fracture spacing) resulting
from the plastic fracture of the expanding Mott ring. It should be emphasized
that this one-dimensional distribution bears no relationship to the earlier two-
dimensional Mott distribution arrived at intuitively by Mott and Linfoot from
Lineau’s theoretical efforts.

Mott noted that he was not able to develop an analytic solution and pro-
ceeded with a graphical method which is described below. It seems likely
that with a modest amount of additional time to reflect on his theory Mott
would have developed an analytic solution, which was his nature. It is inter-
esting that nearly concurrently other workers [Johnson and Mehl, 1939] were
pursuing transformation reaction kinetics in metals and developed analytic
tools ideally suited to Mott’s statistical fragmentation theory. This sensible
extension to the Mott development will also be described here.

The graphical solution to the statistical fragment size distribution derived
by Mott proceeds as follows: A parameter D is defined, which is a function of
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time t (or strain) such that 0 ≤ D (t) ≤ 1. At any time D(t) is the fraction of
the stretching body (Fig. 3.1) which has been subsumed by the Mott release
wavelets propagating from the points of fracture. Since further fractures are
assumed to occur only in the fraction of the body not yet encompassed by
these release wavelets 1 − D, clearly the probable number of fractures which
will appear in the time increment t to t + dt is,

dN = (1 − D) λ (ε̇t) ε̇dt . (3.40)

As previously pointed out, Mott chose to explore the fracture frequency rela-
tion λ (ε̇t) = A exp (γε̇t).

The release fraction D(t) of the plastic stretching body considered by Mott
is determined by the collective Mott waves emanating from fractures initiating
prior to time t. Each Mott wave propagates according to,

xi =
√

2Y/ρε̇ (t − ti)
1/2

, (3.41)

where ti is the initiation time of the ith fracture. Introducing a dimensionless
time through,

ξ = γε = γε̇t , (3.42)

Equation (3.41) becomes,

xi =
√

2Y/ρε̇2γ (ξ − ξi)
1/2

, (3.43)

where Mott recognizes the radical expression on the right of (3.43) as the
normalizing length scale (proportional to the average fragment length) for
the distribution in fragment lengths.

To determine the fragment distribution Mott worked with (3.40) and
(3.43). A graphical solution was carried out whereby he introduced fractures
at random at successive times determined by (3.40), and computed the col-
lective release fraction of the body D(t) with (3.43). Performing this task a
number of times provided a credible histogram of the distribution in fragment
lengths. The resulting distribution obtained by Mott as both a density dis-
tribution and a complementary cumulative distribution is shown in Fig. 3.11.
The normalizing length, Lo is that identified in (3.43). From the graphical
distribution Mott noted that the average fragment size was about 1.5 Lo.
Again this distribution bears no relation to the Mott distribution inferred by
Mott and Linfoot from Lineau’s theoretical efforts, and that is commonly used
to represent munitions fragmentation data.

This author is aware of only one effort to duplicate the statistical size
distribution analysis performed by Mott. Wesenberg and Sagartz (1977) per-
formed fragmentation experiments through magnetic inductive expansion of
aluminum cylindrical shells (see Chap. 8). Using computer methods and an
appropriate random number generator, they produced fragment size distri-
butions by solving the same pair of equations as Mott (3.40) and (3.43).
Distribution results were compared with their fragmentation data.
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Fig. 3.11. The fractional number density distribution (left) and fractional comple-
mentary cumulative number distribution (right) determined by Mott (1947) for the
fragmentation of a uniformly stretching plastic body. Normalizing length scale Lo is
identified in the text

Wesenberg and Sagartz displayed their calculated distributions as the aver-
age of the individual results of 10 rings, 100 rings, and 1000 rings, respectively,
and concluded that a reasonably large number of calculations was required to
achieve sensible convergence. Their distribution resulting from the average of
1000 rings is shown in Fig. 3.12 and compared with the distribution of Mott.
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by Weisenberg and Sagartz (1977)
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3.5 Dynamic Fracture as a Statistical
Transformation Process

In the present and subsequent subsections the essential ideas proposed by
Mott on statistical fracture and fragmentation will be pursued further. The
analytic statistical methods to be described will not necessarily provide im-
proved predictive capabilities. They will, however, provide alternative points
of view and provide analytic relations which are potentially amenable to gen-
eralization to more complex fragmentation problems. These methods also help
to clarify scaling features in the predicted fragment sizes and distributions.

The processes of dynamic fracture and fragmentation involve spatially and
temporally random nucleation and growth of fractures that have similarities to
other nucleation and growth phenomena (melting, recrystallization, detona-
tion reaction, etc.). In fracture, as in some of the other phenomena, nucleation
and growth of a single fracture can be treated in substantial detail. It is the
impingement or influence of one fracture, or region of growth, on others which
compounds the complexity of the total nucleation and growth process.

To treat problems of nucleation and growth, Johnson and Mehl (1939)
and Avrami (1939) introduced the concept of an extended volume fraction Dx.
The factor Dx is defined as the volume fraction of the body transformed disre-
garding further transformation nucleation in previously transformed material
(exclusion), and disregarding the overlap of growing transformation regions
(impingement). The extended volume fraction will exceed unity.

The actual transformed volume fraction D of the body is determined from
the ratio in the change of the extended and the actual transformed volume
fraction, namely,

dD/dDx = 1 − D , (3.44)

which integrates to,
D = 1 − e−Dx . (3.45)

In the present context the quantities Dx and D will apply to the stress-
relieved portion of the stretching ring (Fig. 3.1) during dynamic fracture. The
Johnson–Mehl–Avrami (JMA) relation is applicable to two-dimensional bod-
ies or areas, as well as to one-dimensional bodies or lines. Further discussion
of the statistical relationship between D and Dx is addressed in Chap. 4.

Although the work of Johnson and Mehl (1939) and Avrami (1939) was
focused on phase transformations in materials, their results have more general
application. Their result (the JMA relation) is based on the statistics of sur-
vival, in this case, survival at any time of the, as yet, untransformed volume.
The concept is independent of the physics involved and is applicable to any
nucleation and growth process which is random in nature. The JMA relation
allows initial attention to focus on the physics of the nucleation and growth
process at a single site. Equation (3.45) will then account for the coalescence
of multiple transforming regions.
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Consequently, analogous to Mott’s (3.40), an expression for the number
of fractures per unit length which occur at a past time τ within interval dτ ,
ignoring the stress-released regions, is

dNx = λ (η) dη . (3.46)

In (3.46) η = ε̇τ is identified as a non-dimensional time or, equivalently,
as the strain at past time τ . Release waves from fractures at past time τ (or
η) will have propagated a distance,

x = g (ε − η) , (3.47)

at the present time t (or ε = ε̇t). The function, g(ε) accounts for either elastic
wave speed in elastic fracture or Mott’s diffusive wave speed for plastic fracture
provided previously in (3.1) and (3.2). Therefore, the increment in extended
stress release region due to the earlier fracture is,

dDx = 2g (ε − η) dNx = 2g (ε − η) λ (η) dη , (3.48)

where the factor of 2 accounts for right and left facing release waves from each
fracture. Integrating over past time to the present yields,

Dx = 2

ε∫
0

g (ε − η) λ (η) dη . (3.49)

Equation (3.45) then provides,

D (ε) = 1 − e−Dx(ε) , (3.50)

the fractional stress-relieved region at any time in the dynamic fracture
process.

3.6 Fragment Size in the Mott Fracture Process

Perhaps most basic to a dynamic fragmentation event is the characteristic size
of the fragments produced. An experiment, such as the rapidly expanding ring
shown in Fig. 3.1, results in a number of fragments that can be counted. This
number can be divided by the circumferential length of the ring to determine
an average fragment length. Additional testing reveals that the number of
fractures produced is dependent on both the mechanical properties of the
test material as well as the dynamic conditions achieved. This dependence is
readily illustrated in Fig. 3.13 in which fragment numbers from similar tests on
rapidly expanding aluminum and copper rings are plotted against the radial
expansion velocity imparted to the ring at fracture [Grady and Benson, 1983].



52 3 Physics-Based Statistical Methods

0

5

10

15

0 50 100 150 200 250

Aluminum
Copper

Copper

Aluminum

Expansion Velocity  (m/s)

F
ra

gm
en

t N
um

be
r

0

5

10

15

0

5

10

15

0 50 100 150 200 2500 50 100 150 200 250

Aluminum
Copper

Copper

Aluminum

Expansion Velocity  (m/s)

F
ra

gm
en

t N
um

be
r

Fig. 3.13. Representative tests showing fragment number versus expansion velocity
for fragmenting aluminum and copper ring experiments [Grady and Benson, 1983]

3.6.1 Analysis of Elastic Fracture

In pursuing further the extended statistical approach initiated in the previous
section in treating the dynamic fracture model posed by Mott, the power-law
fracture frequency function (which results in Weibull extreme value statistics)
will be used. Consider first, elastic fracture in which fracture release waves
travel at a constant elastic wave velocity. Salient features of the analysis are
readily illustrated by the elastic fracture case, while the mathematics are
modestly simpler. Accordingly, the power-law fracture frequency from (3.30)
and the elastic wave speed (3.2) yield through (3.49),

Dx = 2
c

ε̇

n

σn

ε∫
0

(ε − η) ηn−1dη , (3.51)

where the elastic wave speed c =
√

E/ρ has been introduced. The substitution
y = η/ε yields,

Dx = 2
c

ε̇

n

σn
εn+1

1∫
0

(1 − y) yn−1dy , (3.52)

where the integral has the solution in terms of the gamma function,

Γ (n) Γ (2)
Γ (n + 2)

=
1

n (n + 1)
. (3.53)
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Consequently,

Dx =
2c

(n + 1) ε̇σn
εn+1 , (3.54)

and, through (3.50),
D = 1 − e−

2c
(n+1)ε̇σn εn+1

. (3.55)

Fracture activation within the unrelieved portion of the stretching body is
then calculated through,

dN = (1 − D) λ (ε) dε . (3.56)

Substituting the appropriate relations, the number of fractures per unit length
occurring in the fragmentation process is obtained from the integral over all
time,

N =
n

σn

∞∫
0

εn−1e−(aε)n+1
dε , (3.57)

where the notation has been simplified through,

an+1 =
2c

(n + 1) ε̇σn
. (3.58)

Substitute y = (aε)n+1 in (3.57) yields,

N =
1

(aσ)n
n

n + 1

∞∫
0

y
n

n+1−1e−ydy , (3.59)

where the integral is the complete gamma function Γ(n/(n + 1)). In the
original notation, the fracture number per unit length is arrived at,

N =
(

n

n + 1

) 1
n+1

Γ
(

n

n + 1

)(
ε̇n

2cσ

) n
n+1

. (3.60)

For the special case of n = 1,

N =
1
2

√
πε̇

cσ
, (3.61)

while for large n approximately,

N =
ε̇n

2cσ
. (3.62)
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3.6.2 Analysis of Plastic Fracture

A solution for the plastic fracture problem considered by Mott follows similar
analysis. Using instead the relation for the diffusive propagation of Mott waves
(3.1) the expression for the extended fracture release region corresponding to
(3.51) becomes,

Dx = 2

√
2Y

ρε̇2

n

σn

ε∫
0

(ε − η)1/2
ηn−1dη , (3.63)

or with y = η/ε,

Dx = 2

√
2Y

ρε̇2

n

σn
εn+1/2

1∫
0

(1 − y)1/2
yn−1dy . (3.64)

Solving for the integral, √
π

2n + 1
Γ (n)

Γ (n + 1/2)
, (3.65)

yields,

Dx =
√

π
n

n + 1/2
Γ (n)

Γ (n + 1/2)

√
2Y

ρε̇2

εn+1/2

σn
. (3.66)

The total number of fractures is calculated similarly through the simplifica-
tion,

Dx = (aε)n+1/2
, (3.67)

leading to the integral expression for the fragment number,

N =
1

(aσ)n
n

n + 1/2

∞∫
0

y
n

n+1/2−1e
−y

dy , (3.68)

and yielding,

N =
1

(aσ)n
n

n + 1/2
Γ
(

n

n + 1/2

)
. (3.69)

The fragment number per unit length in the original notation for plastic frac-
ture in the Mott model becomes,

N = βn

(
ρε̇2

2πY

n

σ

) n
2n+1

, (3.70)

where,

βn =
(

2n

2n + 1

) 1
2n+1

(
1√
n

Γ (n + 1/2)
Γ (n)

) 2n
2n+1

Γ
(

2n

2n + 1

)
. (3.71)
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Again the special cases yield for n = 1,

N = Γ
(

2
3

)(
ρε̇2

12Y σ

)1/3

, (3.72)

while for large n approximately,

N =

√
ρε̇2

2πY

n

σ
. (3.73)

Comparing standard deviation for the power-law fracture frequency
(
 1.28σ/n) with that for extreme-value function explored by Mott (
 1.28/γ)
we find from (3.73) that an average fragment length of 1/N gives,

√
π

√
2Y

ρε̇2

σ

n
=

√
πLo , (3.74)

where Lo is the same distribution length scale determined by Mott ((3.43)
and Fig. 3.11). Mott determined graphically that an average fragment length
was approximately 1.5 Lo, close indeed to the analytic result in (3.74).

3.6.3 Analysis with the Mott Fracture Hazard Function

The same analysis can be carried through with the strain-to-fracture acti-
vation function assumed by Mott, namely, the Gumbel extreme value dis-
tribution provided by (3.37) and displayed in Fig. 3.10. Using the release
propagation function,

g (ε − η) =

√
2Y

ρε̇2
(ε − η)1/2

, (3.75)

and the activation function,

λ (η) =
1
σ

e(η−µ)/σ , (3.76)

the extended fracture release region corresponding to (3.63) becomes,

Dx =
2
σ

√
2Y

ρε̇2

ε∫
0

(ε − η)1/2
e(η−µ)/σdη . (3.77)

The Gumbel distribution has the awkward feature of providing finite values
for negative ε. For realistic values of σ and µ, however, this contribution is
vanishing small and the integral in (3.77) over the interval [−∞, ε] can be
assumed providing, after the substitution y = ε − η,
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Dx =
2
σ

√
2Y

ρε̇2
e(ε−µ)/σ

∞∫
0

y1/2e−y/σdy , (3.78)

or,

Dx = 2Γ (2/3)

√
2Y σ

ρε̇2
e(ε−µ)/σ . (3.79)

Using the relation between D and Dx from (3.45) and,

N =

∞∫
0

(1 − D)λ (ε) dε ,

results in,

N =
1
σ

∞∫
0

e(ε−µ)/σe−be(ε−µ)/σ

dε , (3.80)

where b is the pre-exponential term in (3.79). The substitution y =
exp(ε − η)/σ, and recognizing that the lower limit is approximately zero for
µ/σ � 1, yields,

N =
1√
π

√
ρε̇2

2Y σ
. (3.81)

Accounting for the differing definitions of σ in the power-law and exponential
hazard functions, (3.81) and (3.73) are identical. Recall that Mott used γ =
1/σ in his application of the Gumbel distribution.

Again, it is emphasized that the lack of a shape parameter in the Gumbel
extreme value distribution leads to a unique first power dependence of frag-
ment number on strain rate (3.81). In contrast, strain rate dependence based
on the Weibull extreme value statistics depends on the distribution shape
parameter n (3.70).

3.7 Size Distribution in the Mott Fracture Process

The statistical analysis developed in the last several sections can be further
pursued to provide analytic solutions for the distributions in fragment size.
These analytic distribution solutions correspond to the graphic distribution
determined in the original analysis of Mott shown in Fig. 3.11. The solution
method is somewhat more detailed in that it is necessary to assess statisti-
cally when fracture release waves initiate and when they arrest, thus deter-
mining the unbroken distance spanned by the wave. The process is illustrated
in Fig. 3.14 in which release waves originating from two separate fractures
propagate distances l1 and l2, respectively, before colliding and arresting. The
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Fig. 3.14. Release waves originating from fracture 1 and fracture 2 travel distances
l1 and l2, respectively, before arresting. The distance l1 + l2 constitutes the length
of one fragment

distance, l1 + l2 constitutes the length of one fragment. The statistical frag-
ment size distribution is then the probability function for the expectation of
fragments of this specified length.

The solution is carried out for both elastic and plastic (Mott) fracture in
the present subsection. The solution method is also presented in general terms
in a later chapter, providing a clearer display of the solution methodology.

3.7.1 Analysis of Elastic Fracture

The solution will again be pursued first for that of elastic fracture in which
fracture release waves travel at the constant speed c =

√
E/ρ. Also a power-

law fracture frequency expression continues to be assumed. The analysis will
start with the solution for the extended length fraction of stress relieved region
from (3.54),

Dx =
2c

(n + 1) ε̇σn
εn+1 = (aε)n+1

, (3.82)

where,
D = 1 − e−Dx = 1 − e−(aε)n+1

. (3.83)

Calculate first the number of activated release waves Nx without regard for
exclusion (activation within previous stress relieved region) or impingement
(collision and arrest of opposing release waves). The symbols Nx and N refer
here to the number of Mott waves and not the number of fractures as in
previous sections. The rate of activation of release waves Ix is,

Ix = 2λ (ε) = 2
n

σ

( ε

σ

)n−1

, (3.84)

where the factor of 2 accounts for both a right and left facing wave emanating
from each fracture point. Nx is then simply,
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Nx =

ε∫
0

Ixdε = 2
( ε

σ

)n

. (3.85)

But at any time (or strain) a fraction D of the length of the body has been
stress relieved. The actual number of active release waves is,

N = Nx (1 − D) = 2
( ε

σ

)n

e−(aε)n+1
, (3.86)

accounting for both exclusion and impingement.
The rate of change of N is then,

dN

dε
=

2n

σn
εn−1e−(aε)n+1 − 2 (n + 1) an+1

σn
ε2ne−(aε)n+1

. (3.87)

From (3.87) we identify the rate of activation of release waves,

I+ =
2n

σn
εn−1e−(ae)n+1

, (3.88)

and the rate of arrest of release waves,

I− = −2 (n + 1) an+1

σn
ε2ne−(aε)n+1

. (3.89)

The activation rate I+ can also be calculated from the extended activation
rate Ix by accounting for exclusion,

I+ = Ix (1 − D) =
2n

σn
εn−1e−(aε)n+1

. (3.90)

Also, note that the arrest rate may be written,

I− = − (n + 1) an+1εnN . (3.91)

With the above relations, we will now proceed to calculate the number of
waves which activated at an earlier time η and arrested at a later time ε. The
unbroken distance l spanned by these waves will all be the same (Fig. 3.14).

Accordingly, the number δN of release waves activated at time η within
increment δη is, from (3.88),

δN =
2n

σn
ηn−1e−(aη)n+1

δη . (3.92)

The fraction of δN arrested at later time ε is, from (3.91),

d (δN) = − (n + 1) an+1εn (δN) dε . (3.93)

Equation (3.93) can be separated and integrated to obtain,
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δN = Ae−(aε)n+1
, (3.94)

where A is a constant of integration. Setting ε equal to the early time η in
(3.94) the constant of integration is seen from (3.92) to be,

A =
2n

σn
ηn−1δη , (3.95)

and consequently, (3.94) becomes,

δN =
2n

σn
ηn−1e−(aε)n+1

δη . (3.96)

Substituting the results of (3.96) into the right side of (3.93) yields,

d (δN) = −2n (n + 1) an+1

σn
εnηn−1e−(aε)n+1

δηdε . (3.97)

We now make the variable change,

x =
c

ε̇
(ε − η) , (3.98)

where x is the distance traveled by the release wave over the time interval
ε − η.

At the same time switching the incremental order on the left hand side
(3.97) results in,

δ (dN) = −2n (n + 1) an+1

σn

ε̇

c
dx

(
η +

ε̇

c
x

)n

ηn−1e−an+1(η+ ε̇
c x)n+1

δη . (3.99)

Integrating over all past time η provides,

dN = −2n (n + 1) an+1

σn

ε̇

c
dx

∞∫
0

(
η +

ε̇

c
x

)n

ηn−1e−an+1(η+ ε̇
c x)n+1

δη . (3.100)

Substituting y for the exponential exponent simplifies the integral to,

dN

dx
= −2n

σn

ε̇

c

(
ε̇x

c

)n−1
∞∫
b

[
(y/b)1/(n+1) − 1

]n−1

e−ydy , (3.101)

where,

b =
2

n + 1

(
ε̇

cσ

)n

xn+1 . (3.102)

Equation (3.101), when normalized, provides the probability distribution in
lengths of unbroken release wave segments, such as l1 and l2 in Fig. 3.14. It
does not, however, provide the distribution in fragment length as release wave
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segments combined in pairs to constitute fragments (i.e., l1 and l2 in Fig. 3.14
combine to make a fragment of length, l = l1 + l2).

Thus, the distribution in fragment lengths is,

f (l) dl =
∫

l=l1+l2

p (l1) p (l2) dlidl2 , (3.103)

where p(li) is the normalized distribution in release wave segments and the
integral is over all release wave segment length l1 and l2 which sum to l.

Equation (3.101) is not analytically tractable for arbitrary values of n. It
is readily solved for n = 1, however, and this solution is provided here. Recall
that n = 1 corresponds to a statistically uniform rate of fracture activation
following onset of the first fracture. For n = 1 (3.101) reduces to,

dN

dx
= − 2

σ

ε̇

c

∞∫
b

e−ydy , (3.104)

or,
dN

dx
=

2ε̇

σc
e−

ε̇
σc x2

. (3.105)

Integrating (3.105) provides the normalizing factor and the probability distri-
bution in release wave segments,

p (x) = 2

√
ε̇

πσc
e−

ε̇
σc x2

. (3.106)

or, after introducing a length scale,

lo =

√
2σc

ε̇
, (3.107)

Equation (3.103) provides the integral,

f (l) dl =
8

πl2o

∫
l=l1+l2

e−2(l21+l22)/l2odl1dl2 . (3.108)

The integral is completed through,

l = l1 + l2, ξ = l1 − l2,

dl1dl2 = [∂ (l1, l2) /∂ (l, ξ)] dldξ ,

yielding,

f (l) =
4

πl2o
e−(l/lo)2

l∫
−l

e−(ξ/lo)2dξ , (3.109)
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and finally,

f (l) =
4√
π

1
lo

e−(l/lo)2erf (l/lo) , (3.110)

where erf ( ) is the error function. The cumulative distribution is provided by,

F (l) =

l∫
0

f (l) dl , (3.111)

while the expected value of l is,

〈l〉 =

∞∫
0

lf (l)dl =

√
2
π

lo , (3.112)

identically equal to 〈l〉 = 1/N for the predicted fragment number per unit
length from (3.61). Both the probability density and complementary cumula-
tive distributions for fragment length based on elastic fracture are shown in
Fig. 3.15.
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Fig. 3.15. Calculated probability density and complementary cumulative distribu-
tions in fragment lengths based on the Mott theoretical model for elastic fracture

3.7.2 Analysis of Plastic Fracture

The similar solution for the plastic fracture process pursued by Mott fol-
lows identical steps. A plastic wave speed, c =

√
2Y/ρ, introduced into the
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relation for the diffusive propagation of Mott waves yields (3.66) for the ex-
tended length fraction of stress-relieved region. Assuming as before, a power-
law relation for the rate of fracture activation, the probability distribution in
lengths of unbroken release wave segments corresponding to (3.101) is,

1
x

dN

dx
= −4n

σn

(
ε̇

c

)2 (
ε̇x

c

)2(n−1)
∞∫
b

[
(y/b)2/(2n+1) − 1

]n−1

e−ydy , (3.113)

where,

b =
2
√

πn

2n + 1
Γ (n)

Γ (n + 1/2)

(
ε̇

c

)2n
x2n+1

σn
. (3.114)

As before, the analytic solution cannot be pursued further for arbitrary
values of n. For the special case of n = 1 (3.113) reduces to,

1
x

dN

dx
= − 4

σ

(
ε̇

c

)2
∞∫
b

e−ydy , (3.115)

with,

b =
4
3
σ

(
ε̇

c

)2

x3 , (3.116)

yielding,
dN

dx
=

4
σ

(
ε̇

c

)2

xe−
4
3

1
σ ( ε̇

c )
2
x3

. (3.117)

Introducing the length scale,

lo =
(

3σ

4

( c

ε̇

)2
)1/3

, (3.118)

and normalizing, (3.117) leads to,

p (x) = β
x

l2o
e−(x/lo)3dx , (3.119)

for the probability density distribution of segment lengths corresponding to
(3.106) for elastic fracture and where β = 3/Γ (2/3).

Combining segment lengths in pairs as discussed in the paragraphs leading
to (3.103) provides the fragment size distribution for plastic fracture,

f (l) =
β2

4
1
lo

(
l

lo

)3

e−
1
4 (l/lo)3

1∫
0

(
1 − y2

)
e−

3
4 (l/lo)3y2

dy . (3.120)

The integral in (3.120) can be manipulated into an error function expression
if desired, although, it is readily computed with most available math software.
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The expected fragment size is calculated from the integral,

〈s〉 =

∞∫
0

lf (l) dl . (3.121)

Performed numerically the integral yields 〈s〉 
 1.48lo with lo provided from
(3.118). This calculation agrees, as it should, with the previous calculation for
the total fragment number per unit length in (3.72).

It is also of interest to compare the present analytic distribution with
that generated graphically by Mott (1947). Comparisons for both probability
density and complementary cumulative probability distributions are shown
in Fig. 3.16. Recall, however, that the assumed laws governing the statistical
fracture frequency differ markedly in the two calculations. Mott assumed an
exponentially escalating rate of fracture activation (3.31). A power law frac-
ture frequency (3.30) was assumed in the analytic derivation which, for the
sake of analytic tractability, was reduced to a uniform rate of fracture activa-
tion (3.29) corresponding to n = 1 in the power law expression. Influence of
the differing fracture frequency laws on the statistical distribution in fragment
lengths is not known.

Mott’s graphical distribution and the present analytic distribution agree
quite well as the comparison in Fig. 3.16 shows. Modest differences are perhaps
best revealed in the comparison of the complementary cumulative distribu-
tions. The present distribution for plastic fracture differs from that of elastic
fracture as comparison with the plot in Fig. 3.17 reveals. The comparisons in-
dicate that the law governing the propagation of release waves from the point
of fracture (diffusive Mott waves versus elastic waves) is the first order effect
in governing the distribution shape. The fracture frequency law, on the other
hand, appears to have a smaller influence on the shape of the distribution.
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Fig. 3.16. Comparison of the present analytic distribution in fragment lengths for
plastic fracture with the graphical distribution of Mott
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Fig. 3.17. Analytic length distributions for models of elastic and plastic fracture
based on Mott statistical fragmentation

The normalizing length scale lo for the two distributions in Fig. 3.16 are,

lo =
√

2Y/ρε̇2γ ,

from the Mott (1947) analysis and,

lo =
[
(3σ/4)

(
2Y/ρε̇2

)]1/3
,

from the analytic solution. The separate derivations are based on markedly
different assumed fracture frequency laws. That the two distributions suc-
cessfully overlay without adjustment of the independent length scales seems
remarkable.
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4

Further Features of the Mott Statistical Theory

In this chapter some of the theoretical issues introduced by Mott are expanded
on and discussed in further detail. Additionally, several issues inspired by
Mott’s ideas are introduced. First, the statistical development of Mott uses
facets of classical survival (or hazard) statistics. Survival statistics methods
are pursued here in an alternative way to directly develop statistical fragment
size distributions. Next, the statistical treatment of the interaction of multi-
ple fractures was not treated in the original work of Mott (1947). This part
of the theory was applied to both the one- and two-dimensional fragmenta-
tion problem and is considered in further detail in this chapter. Further, the
analytic determination of statistical fragment size distributions from the sta-
tistical theory has been performed in the previous chapter for specific Mott
fracture activation and growth laws. This development involves analytic de-
tails, which are not readily transparent. Here, a more general development
of the size distribution relations is developed, which provides a clearer out-
line of the procedures. After completion of fracture, continued expansion of
the fragments also results in a statistical distribution of opening cracks and
the associated crack-opening displacement. An analysis is presented which
provides an analytic statistical description of the crack-opening displacement
for the one-dimensional expanding Mott cylinder. The solution provided ear-
lier for Mott fracture including fracture resistance was restricted to a linear
decreasing fracture resistance with crack opening displacement. Here the so-
lution is extended to a power law crack-opening resistance which provides for
discussion of fracture resistance ranging from brittle to ductile in character.
Lastly, the Mott γ parameter integral to the Mott fragment size prediction is
examined further.

4.1 Mott Theory and Survival Statistics

Mott’s thoughts on the statistical distribution of fragment sizes from a frag-
mentation event were initially stimulated by the one-dimensional geometric
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theory of Lineau (1936). Through deeper consideration of the physics and
statistics of dynamic fragmentation his theoretical efforts developed into the
analytic approaches pursued in detail in the previous chapter. Equipped with
this theoretical progression, an enlightening approach to the development of
appropriate statistical fragment size distribution relations can be pursued by
returning to the original ideas of Lineau.

4.1.1 The Survival Statistics Approach
to Fragment Size Distributions

To avoid the one-dimensional fragmentation model constraint imposed by
Lineau, the following consideration of the fragment size distribution data will
be embraced: Consider a collection of No fragments which are the consequence
of a particular fragmentation event. Arbitrarily select one fragment at a time,
weigh the fragment, and consecutively mark a point on a line a distance from
the previous fragment point equal to the mass measure m of the fragment. The
length of the line is equal to the total mass M = Σmi of the distribution. The
model is now conceptually that of Lineau accept that fragmentation in one
(line), two (area) or three (volume) dimensions are equally viable.

Now, starting at any break (the start, or origin, of the line is as good
as any) define a function h (m), where h (m) dm is the chance that a break
will be encountered. Then, according to the tenets of survival statistics, the
probability of finding a fragment of size m within interval dm is just the
product of finding no breaks within the interval 0 to m, and one break within
the interval m to m + dm, or,

f (m) dm = e
−

m∫
0

h(m)dm

h (m) dm . (4.1)

Thus the fragment probability density distribution is just,

f (m) = h (m) e
−

m∫
0

h(m)dm

, (4.2)

and the cumulative fragment distribution is,

F (m) = 1 − e
−

m∫
0

h(m)dm

. (4.3)

This derivation of the fragment distribution is fully rigorous. The unknown
of course is the functional form of the hazard function h (m). This function is
determined either by exploring physics specific to the fragmentation process
of interest, or else by hypothesizing a functional form and validating through
experiment.

For example, given no additional insight into the fragmentation process
there is little reason to assume a bias of h (m) toward either the large or the
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small masses and the simplest assumption is h (m) = ho, a constant (a Poisson
process). Thus f (m) in (4.2) is,

f (m) = hoe
−hom , (4.4)

and the cumulative fragment number distribution is,

F (m) = 1 − e−m/µ , (4.5)

where µ = 1/ho is the distribution scale parameter and the average frag-
ment mass. Applicability of this distribution to dynamic fragmentation was
suggested by Grady and Kipp (1985) and is discussed in Chap. 2.

Mott and Linfoot (1943), following the theoretical work of Lineau (1936)
and inspection of some exploding munitions fragmentation data were led to
assume that a linear size measure, x of the fragment dimension was a random
variable and hence hodx provided the chance of fracture determining a frag-
ment of mass m. Mott was interested in the breakup of thin-walled cylinders
where fragment dimensions were large compared to wall thickness. Hence,
x ∼ m1/2 and dx ∼ m−1/2dm/2. Thus, an appropriate hazard function for
the Mott and Linfoot distribution is,

h (m) =
1
2µ

(
m

µ

)−1/2

, (4.6)

and (4.2) becomes,

f (m) =
1
2µ

(
m

µ

)−1/2

e−(m/µ)1/2
, (4.7)

with the corresponding cumulative fragment distribution,

F (m) = 1 − e−(m/µ)1/2
, (4.8)

familiar to munitions fragmentation analysts.
It is reasonable to consider extending the functional dependence of h (m)

to,

h (m) =
β

µ

(
m

µ

)β−1

, (4.9)

which leads to the cumulative fragment size distribution relation of the
Weibull form,

F (m) = 1 − e−(m/µ)β

. (4.10)

This relation clearly encompasses the previous examples. Namely, β = 1/2
corresponds to the distribution arrived at by Mott and Linfoot (1943), while
β = 1 corresponds to that suggested by Grady and Kipp (1985).
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Generality of the parameter β for a munitions-specific scaling equation is
warranted for several reasons. Mott and Linfoot argued that when the frag-
ment distribution was dominated by fragments of a size less than the case
thickness, that β = 1/3 was probably more appropriate. For specific munitions
systems a range of expansion strain rates will lead to statistical heterogeneity
(a different size parameter at different positions along the munitions case).
This breakup feature will broaden the distribution leading to smaller effective
values of β. On the other hand, a degree of case scoring, or other processes,
with the intention of biasing the distribution toward a unique size has the
effect of increasing the distribution shape parameter β. (Note that as β ap-
proaches infinity (4.10) approaches a Heaviside function with all fragments
the same size.)

4.1.2 Mott Release Waves and Survival Statistics

Mott’s statistical interacting release waves theory of dynamic fragmentation
finds application within the present survival statistics development. In the
one-dimensional stretching ring or rod considered by Mott, (4.2) takes the
form,

f (l) = h (l) e
−

l∫
0

h(l)dl

, (4.11)

where the hazard function, h (l), now provides the chance h (l) dl of a fracture
in the length interval l to l + dl. The likelihood of achieving a fracture within
the neighborhood of an earlier fracture is governed for plastic fracture by the
diffusive Mott wave propagating according to,

x =
√

2Y t/ρε̇ . (4.12)

Thus, a point at distance l from an earlier fracture has the opportunity
to fracture within a time, t ∝ l2 before being passed over by a propagating
release wave. It is thus physically reasonable to select a hazard function of the
form,

h (l) =
3
λ2

l2 , (4.13)

where λ will be the resulting distribution scale parameter (β = 3 in (4.9)).
Equation (4.10) then provides the fragment length probability density

function for Mott plastic fracture,

f (l) =
3
λ3

l2e−(l/λ)3 , (4.14)

and the cumulative fragment probability distribution,

F (l) = 1 − e−(l/λ)3 . (4.15)

In contrast, for Mott elastic fracture release waves propagate according to,
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x =
√

E/ρt . (4.16)

Similar arguments would suggest the hazard function,

h (l) =
2
λ2

l , (4.17)

leading to the probability density function,

f (l) =
2
λ2

le−(l/λ)2 , (4.18)

and cumulative probability function,

F (l) = 1 − e−(l/λ)2 . (4.19)

Comparison of the various distributions are provided in Fig. 4.1. All curves
are scaled to the expected fragment length. Length scales in each case for
the Weibull distributions are adjusted, as the physical considerations leading
to the respective hazard functions in (4.13) and (4.17) do not provide the
characteristic length scale. For elastic fracture, the Mott analytic solution
derived in the previous chapter (3.110) is very well represented by a Weibull
distribution with Weibull shape parameter of β = 2 (4.18). The analytic
solution for plastic fracture also obtained in the previous chapter in (3.120) is
adequately, but less satisfactorily, represented by a Weibull distribution with
β = 3 (4.14). It is interesting, but physically unmotivating, to note that with a
Weibull parameter of β = 3.4 the plastic fracture analytic solution in Fig. 4.1
can be represented at least, as well, as the elastic fracture comparison.
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Fig. 4.1. Comparisons of Mott analytic solutions for both elastic and plastic frac-
ture with Weibull distributions based on physically motivated hazard functions as
described in the text
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Fig. 4.2. Hazard functions for selected one-dimensional fragment size distributions

4.1.3 The Voronoi Hazard Function

It is instructive to examine the hazard function for the Voronoi fragment size
distribution considered in Chap. 2. The one-dimensional Voronoi distribution
in the form,

f(l) =
4l

λ2
e−2l/λ , (4.20)

results from a hazard function of the form,

h(l) =
2
λ

2l/λ

1 + 2l/λ
. (4.21)

The Voronoi hazard function is compared with the constant Poisson hazard
function and the two previous hazard functions derived for Mott plastic frac-
ture and Mott elastic fracture in Fig. 4.2. The character of the Voronoi hazard
function for higher dimensions (area or volume fragmentation) is qualitatively
similar.

The Voronoi hazard function has physically attractive functional similar-
ities to the hazard functions developed for Mott elastic and plastic fracture.
Namely, a reduction in the probability of the smaller fragments, at least ap-
proximately accounting for the interaction and competition of nearby fractures
during the fracture activation and growth process. For large fragments, how-
ever, the Voronoi hazard function takes on the same characteristics as the
Poisson distribution of constant equal likelihood.

4.2 The Statistical Interaction of Fractures

The activation and subsequent stress release of fractures initiated as a con-
sequence of the tensile stretching of a ductile metal shell is illustrated
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Fig. 4.3. Illustrates activation and subsequent stress release of multiple fractures
in the dynamic expansion of ductile metal shells for the Mott cylinder (upper) and
a biaxially expanding sheet

schematically in Fig. 4.3. The Mott cylinder considered previously illustrates
the uniform expansion and one-dimensional (circumferential) fracture of a ring
or cylinder. The biaxially stretching surface, on the other hand, depicts the
two-dimensional (in-plane) fracture of the expanding surface.

In the Mott statistical theory of fragmentation a function λ(ε) character-
izes the rate of activation of fractures in the unruptured stretching plastic
body. It is a material property which characterizes the initial or evolving de-
fect structure of the material including interior and/or surface features. In
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Fig. 4.4. Illustrates fracture activation exclusion and release wave impingement
which must be accounted for in the statistical fragmentation theory

energy-limited fragmentation λ(ε) also accounts for the fracture toughness or
shear band energy which must be overcome to initiate a fracture as will be
addressed in the next chapter. The material function λ(ε) cannot, however,
account for the interaction of multiple fractures through stress relief, or Mott,
waves. Also, the fracture activation law does not exclude attempts to activate
fractures within previously stress-relieved regions as illustrated in Fig. 4.4.
The interaction of activated fractures and associated stress release regions is
not explicitly treated in the theory developed by Mott.

Similarly, the stress release growth function g(ε), which determines the
distance or domain of the stress release region as a function of continued ex-
pansion or stretching ε after fracture activation, is developed from the physics
of wave propagation after a single fracture has occurred at some point. It was
modeled as either elastic fracture or diffusive plastic fracture in Chap. 3. It
does not account for the behavior when the stress-release zones from two
nearby fractures begin to interact.

Thus, early in the fracture process when the number of fractures and as-
sociated release domains are sufficiently diluted, such that the rate of fracture
activation is sufficiently well represented by λ(ε), and such that interactions
between neighboring release zones are negligible, then the fraction of the re-
gion stress relieved by fracture is readily calculated from the superposition,
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dAx

1 A

Fig. 4.5. The random placement of overlapping circles illustrates the statistical
model accounting for exclusion and impingement developed by Johnson and Mehl
(1939)

Dx(ε) =

ε∫
0

2g(ε − η)λ(η)dη . (4.22)

As the stress release region becomes appreciable, however, (4.22) becomes in-
creasingly in error (note that Dx(ε) will eventually exceed unity). The inter-
action effects alluded to above, and not accounted for in (4.22) are collectively
referred to as fracture domain impingement and exclusion, and are illustrated
in Fig. 4.4.

4.2.1 Johnson–Mehl Treatment

A seminal study in the statistical theory of accounting for exclusion and im-
pingement in kinetic processes of materials was put forth by Johnson and
Mehl (1939). The essential idea is illustrated in Fig. 4.5 in which random size
circles of area, dAxi, are placed at random on a region of unit size. The total
projected area of i circles placed on the region is then the sum,

Ax =
∑

i

dAxi . (4.23)

The actual area covered by the circles (the area fraction due to the unit size
of the region), because of overlap of the circles, is the union of the i circles,

A =
⋃
i

dAxi , (4.24)

such that A < Ax. In the random placement of an additional circle of area
dAx, as shown in the figure, the probability of any element of that circle falling



76 4 Further Features of the Mott Statistical Theory

r
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Fig. 4.6. The Getis and Jackson (1971) statistical model proceeds from the Poison
probability of random circles covering an arbitrary point multiple times

outside of the area A is,
P (A) = 1 − A . (4.25)

Consequently, the probable change in area A is just,

dA = P (A)dAx = (1 − A)dAx , (4.26)

which integrates to,
A = 1 − e−Ax . (4.27)

4.2.2 Getis–Jackson Treatment

The statistical process for dealing with extinction and impingement in kinetic
processes was interpreted by Getis and Jackson (1971) in another way. In
Fig. 4.6, circles placed at random on the region are assumed to come from a
distribution of circles with expected value in radius of E(r2). The projected
fraction is then,

Ax = πE(r2)n , (4.28)

where, n is the average number of circle centers per unit area of the region.
Random placement of the circle centers is a Poisson point process in which
case the probability of k circles covering a particular point in the region is,

P (k) =
Ak

xe−Ax

k!
. (4.29)

The fraction of the region covered is then,
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A = P (k ≥ 1) = 1 − P (k = 0) , (4.30)

or,
A = 1 − e−Ax , (4.31)

equivalent to the derivation of Johnson and Mehl (1939).
This statistical theory is used to account for the exclusion of fracture

activation and the impingement of stress release regions in the present devel-
opment of the Mott fragmentation theory and, accordingly, the area fraction
of stress release regions at any expansion ε is,

D(ε) = 1 − e−Dx(ε) , (4.32)

where Dx(ε) is provided by (4.22).
Although, not specifically pursued by Mott, application of the Johnson–

Mehl or the Getis–Jackson statistical model to the Mott theory of the fragmen-
tation of rapidly expanding ductile shells seems appropriate. The statistical
model is particularly appropriate within the context of the Mott fragmenta-
tion model for the propagation of Mott stress release waves, which excludes
communication of signals of any type to regions ahead of the release waves. In
applications within metals with both elastic and plastic hardening properties
applicability could probably be questioned. The approach is nonetheless phys-
ically attractive, leads to tractable analytic solutions for a number of features
of the fracture process, and can be experimentally tested.

4.3 Length Distributions in the Fragmenting Mott Ring

The Mott fragmentation theory, when combined with the statistical treat-
ment of extinction and impingement, leads to continuous analytic predictions
of features of the fracture process such as number of fractures, fracture spac-
ing, and cumulative strain, along with the time dependence of these features
through the fracture process. A remarkable product of this theory is analytic
relations for the statistical distributions for fragment size in the fragmen-
tation event. Here we focus on the one-dimensional fragmentation event in
which fragment size is unambiguously determined by the fragment length. An
approach for determining size distributions in the two-dimensional fragmen-
tation of an expanding area is pursued in a later chapter. These distribution
relations for one-dimensional fragmentation were derived previously for sev-
eral specific fracture activation and stress release growth laws in Chap. 3. Here
the size distribution relation is developed in general terms. This development,
when not buried in the algebra of a specific analysis, provides insight into the
workings of the theoretical model.

First, the number density of fractures at any time, or strain (ε = ε̇t),
during the fracture process is given by,
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Fig. 4.7. Activation and arrest of Mott stress release waves from points of fracture

N(ε) =

ε∫
0

(1 − D(η))λ(η)dη =

ε∫
0

e−Dx(η)λ(η)dη . (4.33)

This fracture number relation is appropriate for one-dimensional fracture on
the circumference of the Mott cylinder, as well as two-dimensional fracture of
an expanding surface.

As previously noted, fracture on the Mott cylinder (ring) uniquely charac-
terizes the size of fragments. Namely, they are the arc lengths of the regions
between fractures. Random fracture activation on the surface, however, does
not uniquely constrain fragment dimensions. Further assumptions concerning
the extension and intersection of fractures are necessary, before assessment of
statistical fragment size can be accomplished. Through the remainder of this
section focus is strictly on the one-dimensional fragmentation problem.

When a fracture occurs at a point on the Mott cylinder, two Mott release
waves are created and propagate away from the fracture as illustrated in
Fig. 4.7. Therefore, ignoring exclusion and impingement, the number of Mott
waves N activated at strain ε is,

N(ε) = 2

ε∫
0

λ(η) dη . (4.34)

Again, N is the Mott wave number, and not the fracture number, in the
present analysis.

To account for the collision and arrest of active Mott waves as illustrated
in the figure, and to account for attempted activation within zones of stress
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release, (4.34) is multiplied by the exclusion and impingement factor (1−D),

N(ε) = 2(1 − D(ε))

ε∫
0

λ(η) dη = 2e−Dx(ε)

ε∫
0

λ(η) dη , (4.35)

providing the number of active Mott waves at any strain ε. The rate of change
of N(ε) is then,

dN(ε)
dε

= 2e−Dx(ε)λ(ε) − N(ε)
dDx(ε)

dε
, (4.36)

which will be written as,

dN(ε)
dε

= I+(ε) − N(ε)I−(ε) . (4.37)

The rate of activation of Mott waves is provided by I+(ε), while the fractional
rate of active Mott waves arrested at strain ε is given by I−(ε).

The effort now will focus on determining the number of Mott waves which
activated at some earlier strain η and arrested at later strain ε. These waves
will have all propagated the same distance determined by the release domain
growth law g(ε − η). Therefore, let,

δNo = I+(η)δη , (4.38)

specify the number of Mott waves activated at earlier strain η within increment
δη. Further, let δN be the number of the original δNo surviving at strain ε > η.
Then the number arrested at strain ε within increment dε is just,

d(δN) = −δNI−(ε) dε . (4.39)

Equations (4.36) and (4.37) provide I−(ε) and (4.39) integrates to,

δN = Ce−Dx(ε) . (4.40)

The constant of integration C is determined from the requirement δN = δNo

at ε = η and provides,

δN = I+(η)eDx(η)−Dx(ε)δη . (4.41)

Substituting from (4.39) finally yields,

d2N = I+(η)I−(ε)eDx(η)−Dx(ε)dηdε , (4.42)

for the number of Mott waves activated at strain η and arrested at strain ε.
The change of integration variables,

u = ε + η , v = ε − η , (4.43)
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and integration over u provides,

p(x) ∝
∫

u=ε+η

I+(η)I−(ε)eDx(η)−Dx(ε)dηdε , (4.44)

where, x = g(ε− η) is the distance of Mott wave propagation from activation
to arrest and p(x) is the statistical distribution in Mott propagation distances.
Equation (4.44) does not, however, provide the distribution in fragment size.
As shown in Fig. 4.8, Mott wave propagation distances combine in pairs to
determine the length of a fragment. Thus the analytic expression for the sta-
tistical distribution in fragment lengths is,

f(x)dx =
∫

ξ=x1−x2

p(x1)p(x2) dx1dx2 , (4.45)

where p(x1) and p(x2) are the distributions provided in (4.44). The change of
variables,

x = x1 + x2 , ξ = x1 − x2 , (4.46)

completes the integration in (4.45).
For the special Mott problem in which the activation rate λ(ε) = λo, a

constant, and Mott wave propagate according to g(ε) =
√

2Y ε/ρε̇2, (4.45)
provides the distribution,
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f (x) =
β2

4
1
xo

(
x

xo

)3

e−
1
4 (x/xo)3

1∫
0

(
1 − y2

)
e−

3
4 (x/xo)3y2

dy , (4.47)

Derived in Chap. 3.

4.4 Distributions in Crack-Opening Displacement

The expanding Mott cylinder undergoes multiple fracture which is statistically
random in both the position and the time of occurrence of the fractures.
Following fracture, the fragment segments continue to expand outward and
the crack-opening displacement at the points of fracture that separate the
segments continues growing to accommodate the expansion and separation
of the individual outwardly directed fragments. The dimension of the gaps
between segments (the crack-opening displacement) and the statistical spread
in the dimensions of these gaps at any time after fracture are the subject of
the discussion and analysis in this section.

The issue of crack-opening displacement has application, for example, in
assessing fracture gap spacing after breakup of an exploding cylinder through
which detonation products will escape. Alternatively, at greater expansion,
the same statistical issue will apply to the spacing of fragments and possible
statistical interaction with an intercepting target.

The dynamics in the neighborhood of a single fracture is illustrated in
Figs. 4.9 and 4.10. In Fig. 4.9 the conditions of a uniform velocity gradient cor-
responding to the stretching rate ε̇ prior to fracture activation is depicted by
the dashed line. After fracture Mott waves propagate away from the fracture
separating regions in front of the waves and flowing plastically at stretching
rate ε̇, from rigid regions behind the waves moving at uniform velocity. The
velocity profile at some time t after fracture is illustrated by the solid line
shown in Fig. 4.9.

Opposing Mott waves are activated at neighboring fractures to the right
and left of the fracture depicted in the figures. The collision of two opposing
Mott waves from adjacent fractures concludes velocity gradients and plastic
flow within the intervening mass segment. This segment continues to move at
a constant velocity equal to the velocity at the position of the collision point
of the Mott waves.

The segment to the left of the fracture moves away from the position of
the initial fracture at a velocity ∆u1 = x1ε̇, while that to the right, at a
velocity ∆u2 = x2ε̇, where x1 and x2 are the distances between the fracture
point and the respective Mott wave collision points, as shown in Fig. 4.10.
The crack-opening displacement is then,

w(t) = (x1 + x2)ε̇t , (4.48)

where t is the time after fracture.
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pletion of wave interaction
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Fig. 4.11. Distribution in crack-opening displacement. Displacement is normalized
by characteristic crack-opening displacement wo(t)

There is a characteristic time tc over which the statistical fracture process
and interaction of propagating Mott waves proceeds. This characteristic time
was derived from the Mott wave solution derived previously. The time after
fracture in (4.48) is assumed to be sensibly larger than tc.

At any time t there will be a statistical spread fc(w) in the crack-opening
displacement w(t) provided by (4.48). This comes about because the distances
of stress release x1 and x2, determined by the propagation distances of Mott
waves emanating from the fractures, are themselves random. These same dis-
tances, when interpreted as the propagation distances between two adjacent
fractures, determine the length of the intervening fragment segment. They
also uniquely determine the statistical distribution in fragment lengths for
the one-dimensional Mott fragmentation problem as developed previously and
provided in (4.47). Although, the distances x1 and x2 govern the crack-opening
displacement in (4.48) are on opposite sides of the fracture, the statistical de-
velopment of fc(w) is equivalent. Consequently, the distribution fc(w), shown
in Fig. 4.11, and the fragment length distribution f(x) from (4.47) are related
according to,

fc(w)dw = f(x)dx , (4.49)

or,

fc(w) = fc(x(w))
dx

dw
. (4.50)
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The characteristic crack-opening displacement at time t is wo(t) = xoε̇t, where
xo is the characteristic fragment length scale.

The distribution in crack-opening displacement fc(w) is shown in Fig. 4.11.
Displacement is normalized by the characteristic crack-opening displacement
wo(t) = xoε̇t. Thus, fragment lengths and crack-opening displacement exhibit
the same distribution in spread about the mean. Also, the distribution in
crack-opening does not depend on the time after fracture.

4.5 Extended Solutions in Mott Waves

The inclusion of a transient boundary stress to model fracture resistance in the
Mott fracture wave analysis has added a further dimension to both qualitative
and quantitative understanding of the dynamic fracture process. This analysis
determines the distance the rigid-plastic interface (Mott wave) must propagate
to accommodate both crack-opening displacement and flux of energy to the
fracture region to complete the fracture process. Hence, it provides an estimate
of fracture spacing or fragment size when fracture energy principals control
the growth and completion of dynamic fracture. The analysis further reveals
that a characteristic time from fracture inception to fracture completion is
determined by the rate at which momentum and energy can be fluxed into the
fracture region. The dependence of this characteristic time on both material
and kinematic properties is identified in the solution. This characteristic time
determines in turn the additional strain accommodated by the body following
onset of the fracture process.

4.5.1 Alternative Fracture Resistance Models

This analysis has to date, assumed a simple crack-opening displacement model
that leads to tractable and readily solvable equations governing the dynamic
fracture process. Namely, the assumption is that of a linearly decreasing re-
sisting fracture stress with crack-opening displacement. This restricted crack
opening resistance solution was developed in Chap. 3.

One can readily imagine other, possibly more realistic, models for the
resisting fracture stress. The questions naturally arise as to the sensitivity of
the calculated fracture properties to the assumed fracture resistance model
and to what additional physical insights might be revealed by this further
dimension in the fracture physics.

Other possible models are contrasted with the linear crack-opening dis-
placement model in Fig 4.12. One might reasonable expect that a more brittle
fracture process would be modeled by the concave downward resistance ver-
sus displacement curve in which a more abrupt drop in resisting stress occurs
with increasing crack-opening displacement. In contrast, a more ductile frac-
ture resistance would be more sensibly mirrored by the concave upward curve
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Fig. 4.12. Alternative crack-opening tensile stress versus displacement models

in which fracture resistance drops more rapidly, initially, but with a tendency
to delay full fracture to somewhat larger crack-opening displacement.

A fuller spectrum of crack-opening resistance models including the three
illustrated in Fig. 4.12 can be explored with a power-law softening model of
the form for the tensile stress at the crack location h = 0,

σ (0) = Yf

(
1 −

(
y

yc

)1/m
)

, (4.51)

where the range of valid values for the parameter m will be determined by
the final solution but will encompass the range of crack opening behavior
suggested in Fig. 4.12. The fracture energy Γ is then determined from the
integral,

Γ =

yc∫
0

σ (0) dy . (4.52)

Completing the integral provides,

Γ =
1

m + 1
Yfyc . (4.53)

The constant flow stress Y has been replaced with the symbol Yf in the
present analysis while yc is the crack opening displacement at which stress in
the fracture achieves zero.

The governing equations during crack opening become,
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ρε̇
xdx

dt
= Yf

(
y

yc

)1/m

, (4.54)

dy

dt
= ε̇x . (4.55)

The following nondimensional variables are defined,

Y = y/yc, X = x/
√

Yf/ρε̇2, T = ε̇t , (4.56)

along with the single nondimensional constant,

α =
1
yc

√
Yf

ρε̇2
. (4.57)

The governing equations for the Mott fracture wave with general fracture
resistance are then, in dimensionless form,

X
dX

dT
= Y 1/m , (4.58)

dY

dT
= αX . (4.59)

The governing equations are readily integrated through the following proce-
dure. Let,

V =
1
2

dX2

dT
. (4.60)

Equation (4.58) becomes,
Y = V m . (4.61)

Then,
dY

dT
=

dV m

dT
=

V

X

dV m

dX
, (4.62)

and, from (4.59),
V

X

dV m

dX
= αX . (4.63)

The differential expression,

mV mdV = αX2dX , (4.64)

is then integrated providing,

m

m + 1
V m+1 =

α

3
X3 , (4.65)

where the initial condition V = 0 at X = 0 has been employed. Continuing
the solution yields,
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V = X
dX

dT
=

(
m + 1

m

) 1
m+1 (α

3

) 1
m+1

X
3

m+1 . (4.66)

Variables are separable yielding the differential expression,

X
m−2
m+1 dX =

(
m + 1

m

) 1
m+1 (α

3

) 1
m+1

dT . (4.67)

Integrating with initial conditions X = 0 at T = 0 gives,

X =
(

2m − 1
m + 1

) m
2m−1

(
2m − 1

3m

) 1
2m−1

α
1

2m−1 T
m+1
2m−1 . (4.68)

Substituting (4.68) into (4.59) and solving yields,

Y =
(

2m − 1
m + 1

) m
2m−1

(
2m − 1

3m

) 2m
2m−1

α
2m

2m−1 T
3m

2m−1 . (4.69)

The dimensionless time to fracture Tf is calculated from (4.69) by setting
y = yc or, equivalently, Y = 1,

Tf =
(

m + 1
2m − 1

)1/3 ( 3m

2m − 1

)2/3 ( 1
α

)2/3

. (4.70)

The distance traveled by the rigid-plastic boundary through substitution of
Tf into (4.68) is,

Xf =
(

3m

m + 1
1
α

)1/3

. (4.71)

At this point the fracture energy,

Γ =
n

n + 1
Yfyc =

1
m + 1

Yfyc . (4.72)

is introduced into the solution. A further dimensionless constant β is defined
through,

α =
1
yc

√
Yf

ρε̇2
=

Yf

(m + 1) Γ

√
Yf

ρε̇2
=

1
(m + 1) β

, (4.73)

where,

β =
Γ/Yf√
Yf/ρε̇2

. (4.74)

The travel distance and fracture time then become,

Xf = (3mβ)1/3
, (4.75)

and,
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Fig. 4.13. A plot of the rigid–plastic boundary travel distance and fracture time as
a function of the ductility parameter m

Tf =
m + 1
2m − 1

(3mβ)2/3 =
m + 1
2m − 1

X2
f . (4.76)

The parameter m will be identified as a ductility parameter. (Increasing m
leads to increasingly ductile fracture behavior according to the earlier intro-
ductory discussion.) Both travel distance of the rigid-plastic boundary and
the time to fracture from (4.75) and (4.76) are plotted as a function of the
parameter m in Fig. 4.13. The functional behavior of both offer insight into
the processes of dynamic fracture of plastically stretching bodies.

The parameter Xf has previously been related to the natural spacing of
fractures and fragment size [Kipp and Grady, 1985] with the linear soften-
ing model for crack opening displacement, m = 1, as discussed in Chap. 3.
Equation (4.75) reveals that Xf is not independent of m, but increases mod-
estly with m. Inferred fracture spacing is not sensitive to the parameter m,
however, with variations in m from about 0.5 to 4 providing only a factor of
two variation in spacing. Fracture spacing for linear softening would be nearly
centered within this range.

The time from fracture inception to completion has more interesting char-
acter exhibiting, for a fixed fracture energy, a minimum with increasing frac-
ture time toward both increasingly ductile-like (larger m), and brittle-like
(smaller m) fracture. Toward the larger m, the increased crack-opening dis-
placement to full separation yc requires a corresponding increased in rigid
plastic boundary travel distance and hence an increased fracture time. In
contrast for smaller values of m the relatively small stress difference over
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turbation of reduced crack-opening resistance of δYf below floor stress Yf

much of the crack-opening displacement before abrupt failure leads to slow
acceleration and correspondingly increased fracture time.

It is also observed that for m > 0.5 the governing equations and subsequent
motions based on power-law softening are self-starting. That is no perceptible
perturbation is required to initiate onset of fracture growth. This is not the
case for m ≤ 0.5 as is reflected in Fig. 4.13, with fracture time asymptotically
tending to infinity as m approaches 0.5 from above.

A perturbation can be introduced and its effects on the fracture dynam-
ics explored by, for example, reducing the boundary stress at time zero as
illustrated in Fig 4.14. Introducing a dimensionless perturbation parameter
∆ = δYf/Yf the governing equations equivalent to (4.58) and (4.59) are,

X
dX

dT
= ∆ + (1 − ∆) Y 1/m , (4.77)

dY

dT
= αX . (4.78)

By similar methods the integral solution for motion of the rigid plastic
interface is readily obtained for the linear softening model (m = 1) in the
form,

T =

x∫
0

XdX√
2α (1 − ∆) X3/3 + ∆2

. (4.79)

Early and late time motions are readily understood without completing the
integral. The early solution reduces to the form,
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T =

x∫
0

XdX

∆
, (4.80)

yielding the square root dependent motion X ∼=
√

2∆T originally obtained by
Mott, but driven by the perturbation stress difference ∆. In contrast late time
motion yield X ∼= αT 2/6, the solution of Kipp and Grady (1985) for linear
softening crack-opening displacement.

Equating terms within the radical in (4.79) identifies the travel distance
at which transition from early to late time motion occurs,

X ≈
(

3
2

∆2

α

)1/3

. (4.81)

Comparison with the travel distance Xf at fracture, (4.71) shows that for
modest perturbation amplitudes the solution and fracture properties are dom-
inated by the late time motion.

The foregoing solutions, thus, provide additional physical insight into the
fracture dynamics when variations in the crack-opening resistance is explored.
Variations from nominally brittle behavior to quite ductile behavior influence
both the time dependence of the fracture process as well as the characteristic
distance of crack interaction.

4.5.2 Influence of a Strain Gradient on Fragmentation Size

Time dependent explosive detonation can lead to gradients in the expansion
strain and a statistical difference in the strain to fracture of neighboring point
on an expanding metal shell. This strain gradient will lead to an increase in
the characteristic fracture spacing. An assessment of the influence of a strain
gradient term on the characteristic fracture spacing is provided here base on
the Mott wave interaction approach. The situation is illustrated in Fig. 4.15
where fracture has initiated at x = 0 and t = 0 while fracture at position x is
delayed a time τ caused by a strain gradient term εx delaying achievement of
the fracture strain. The objective will be to determine the minimum spacing
for fracture one and fracture two allowed by the Mott wave interaction.

Fracture initiation at x = 0 reaches completion at t = t1 while the Mott
release wave originating from that fracture has propagated a distance x1 =
xf = 3

√
3Γ/ρε̇2 from the earlier energy based analysis of fracture spacing. A

similar Mott release wave originating from fracture two, which initiates at a
delayed time τ = εxx/ε̇, reaches a point x2 at a time t2 at fracture completion.
The additional distance x2−x1 traveled by a Mott release wave over the time
t2 − t1 = τ determines the minimum fracture spacing x.

This distance,

x2 − x1 =

√
2Y t2
ρε̇

−
√

2Y t1
ρε̇

, (4.82)
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readily leads to,

x = xf

(
1 +

√
1 +

2Y τ

ρε̇x2
f

)
. (4.83)

Replacing with τ = εxx/ε̇ yields an implicit expression for the fracture spacing
in terms of the zero strain gradient fracture spacing and the magnitude of the
strain gradient,

x = xf

(
1 +

√
1 +

2Y εxx

ρε̇2x2
f

)
. (4.84)

This expression is readily solved for the fragment size dependence on the strain
gradient,

x = 2xf (1 + Lεx) , (4.85)

where the length scale,

L =
(

Y 3

3ρ2ε̇4Γ

)1/3

, (4.86)

depends on both material and kinematic properties.

4.6 The Mott Fragmentation γ Parameter

In developing theoretical descriptions of matter, Mott was not inclined to-
ward relations in which arbitrary material constants were inserted that could
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be established only through curve fit to the data of interest. The Gumbel dis-
tribution Mott selected to describe the statistical activation of fractures has
a single scale parameter, identified by him as γ, which, in addition to sev-
eral known properties, determined the average fragment size. Mott expended
some effort in identifying the underlying physical basis for γ and attempted
to independently calculate its value.

Two approaches were pursued by Mott. In the first approach he proposed
a fracture test through which γ could be independently assessed. Later he
attempted to determine γ through analysis of the microscopic flaw structure
governing statistical fracture. Both approaches are reviewed here.

4.6.1 Mott γ From Tensile Fracture Tests

The size, or spacing, length scale emerging from the statistical fragmentation
theory of Mott is,

µ =

√
2Y

ρε̇2

1
γ

, (4.87)

where, γ is the scale parameter in the exponential hazard function,

λ(ε) = Aeγε , (4.88)

and the corresponding Gumbel probability density function,

f(ε) = Aeγε−A
γ eγε

, (4.89)

illustrated in Fig. 4.16. The standard deviation in strain to fracture from the
Gumbel probability distribution is approximately 1.28/γ.

Mott proposed that the statistical variation in strain to fracture from
static tensile fracture could be used to calculate γ. Strain to fracture values
for a 0.4% carbon steel from Mott’s report are plotted in Fig. 4.17. From the
calculated standard deviation for the scatter in strain to fracture for this data,
a value of γ = 88 is arrived at.

Sensible properties for the same steel in an exploding cylinder fragmenta-
tion event would be Y ∼= 1 GPa, ρ ∼= 8000 kg/m3, and ε̇ ∼= 5 × 103/s. These
values in (4.87) lead to a calculated fracture spacing of µ ≈ 1.1 cm, a very
reasonable estimate of the observed fragment size.

4.6.2 Mott γ From Microscopic Flaw Considerations

In the statistical development of fragmentation pursued by Mott (1943, 1947)
it was recognized that some measure of the spread in strain to fracture was
central in determining the characteristic spacing of fractures. In Mott’s contin-
uum development the parameter γ, related to the standard deviation in strain
to failure in the Gumbel extreme value distribution, quantified this measure
of spread in strain to fracture.
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Fig. 4.16. Statistical characteristics of the exponential hazard function and the
Gumbel probability density function
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Mott was not satisfied with simply accepting γ as an empirical parameter
in his theory. He pursued several efforts in deriving γ from other, more in-
trinsic, properties of the material, and attempted to uncover the underlying
physics on several length scales. The previous subsection describes his esti-
mates of γ based on statistical fracture data. He subsequently attempted to
determine γ from microscopic fracture-producing flaw characteristics of the
material.

Mott (1947) referred to the then recent theory of Griffith on the strength
of brittle solids in which onset of fracture occurred when the stress load T
achieved a critical condition of the form T ∼ A/c1/2. In this failure criterion
c is the length of the responsible microcrack while A is a function of elastic
and surface energy properties of the material. Mott noted that no comparable
theory existed for ductile metals. He then proceeded by assuming fracture to
begin at sites of weakness distributed throughout the material, and governed
by a critical condition of the form,

T ∼ A/cn , (4.90)

where again, c is a characteristic length scale of the fracture producing weak-
nesses and n is a number probably reasonably close to 1/2. Mott additionally
assumed that the microcracks were Gaussian distributed in the microcrack
length c and that the tension was governed by a hardening relation of the
plastic strain of the form,

T = Y + H ln(1 + ε) . (4.91)

Through clever analysis Mott manipulated the Gaussian distribution into a
form in which the parameter γ could be extracted,

γ ∼ 1
n

H

TF

1
(1 + εF )

. (4.92)

In (4.92) H is the hardening parameter while TF and εF the tension and
plastic strain at fracture. Mott made quantitative predictions of fragment size
and noted that trends inferred from (4.92) were consistent with observations
then available.

4.6.3 Closing Observations of Mott

Mott’s perception of the physical processes of ductile fracture in metals con-
tinued to mature over the remaining several years in which he found time
to reflect on this problem. His most sophisticated thoughts are included in
what appears to be his last writing focused on the issues of ductile fracture
[Mott, 1948]. Mott suggested that cleavage fracture in metals was unlikely
except at the fastest fracture velocities. By incorporating inertial energy into
the Griffith energy balance he developed the first expression of the velocity of
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a growing crack and noted a limiting velocity commensurate with the sound
speed in the material. Applicability and limitations of the Mott crack velocity
solution have been address by later workers [e.g., Freund, 1990; Lawn, 1993].

Mott also noted in the later work that the concept of intrinsic sites of
weakness governing fracture in a ductile metal was probably not appropriate.
Rather, ductile fracture required plastic strain and the accumulation of a
local critical level of microscopic damage before onset of fracture at a point in
the material. He cited several examples which clearly showed that a critical
plastic strain criterion is inadequate and that the state of stress triaxiality
under which the strain accumulates is essential to the fracture criterion. Mott
was probably the first to recognize this central tenet of the ductile fracture
process.
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5

Reconciling Mott-Statistical
and Energy-Based Fragmentation

In earlier sections the statistical fragmentation theory of Mott was considered
in some depth. An alternative fragmentation theory based on energy balance
principals has also been pursued by the present author and others. As posed,
the two theories appear to be based on strikingly different principals. In the
present section attempts are pursued to understand and reconcile differences
between the two theories. For the purpose of this reconciliation the essential
features of both theories are summarized. This summary represents a conden-
sation of same the material provided in the previous sections.

The present discussion will focus on the one-dimensional expanding ductile
ring fragmentation as originally posed by Mott. To provide an experimental
grounding for the theoretical comparisons the dynamic fragmenting ring data
on uranium 6% niobium [Grady and Olsen, 2003], discussed in further detail
later in this report, is used.

5.1 Mott Statistics-Based Fragmentation

As has been pursued here in some detail, three technical reports published
within the first half of 1943 revealed the maturing of Mott’s understanding of
the dynamic fragmentation process and, in the last of these reports, a statisti-
cal theory of fragmentation emerged, which is still one of the leading theories
available. The theory was published several years later in the open literature
[Mott, 1947]. This development is summarized in the following subsections.

5.1.1 The Mott Cylinder

The Mott theory of fragmentation is most readily conceptualized by again
considering the Mott cylinder (or ring) illustrated in Fig. 5.1. The Mott cylin-
der is an idealization of an expanding cylindrical shell whose outward motion
is imparted by some radial impulse. Mott, in particular, focused on the nat-
ural fragmentation of exploding pipe bombs. The model is applicable to other
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Fig. 5.1. Mott cylinder illustrating the one-dimensional activation and interaction
of fractures leading to the statistical fragmentation of the body

test conditions such as the magnetically driven metal ring data considered in
the present section.

An explosively-driven expanding metal cylinder is a decidedly multidimen-
sional fragmentation event, and fragmentation of the Mott cylinder is only an
approximation to this event. The theory attempts to capture the character-
istic circumferential spacing of fractures and the statistical distribution in
the spacing. It is not intended to account for the axial propagation and in-
teraction of cracks within a finite length cylinder. The Mott cylinder is an
expanding metal body with radial velocity u and radius r at the time when
multiple fracture and break up of the cylinder proceeds. Just preceding break
up, the cylinder body is in circumferential tension and undergoing uniform
circumferential stretching at a rate given by the ratio ε̇ = u/r.

Mott proposed that fragmentation proceeded through the random spatial
and temporal occurrence of fractures resulting in a distribution in fragment
lengths. Release waves propagate away from the sites of fracture relieving
the tension and precluding the possibility for further fracture within the re-
gions encompassed by tension release waves. Fragmentation is complete when
fracture-induced release waves subsume the entire cylinder.

Thus, within the model for dynamic fragmentation proposed by Mott, two
physical issues need to be addressed. First, is the issue of when and where
fractures occur on the Mott cylinder. Second, is the nature of propagation of
tensile release waves (Mott waves) away from the sites of fracture. Here each
issue will be addressed in turn.
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5.1.2 Mott Fracture Activation

Mott put forth arguments that energy dissipation was not of consequence in
the fracture process and proposed instead a statistical strain-to-fracture cri-
terion. Mott assumed that fractures occurred at random, around the circum-
ference of the cylinder at a frequency governed by a strain dependent hazard
function λ(ε) [e.g., Hahn and Shapiro, 1967], such that λ(ε)dε provided the
statistical number of fractures occurring within a unit length of the cylinder
circumference in the strain interval dε. It is important to recognize that Mott
considered λ(ε) to be an independently measurable property of the material.
An alternative and complementary application of the hazard function yields,

F (ε) = 1 − e−L
∫

λ(ε)dε, (5.1)

for the cumulative probability of fracture failure in tensile test specimens of
length L. Mott in fact used tensile test data on steels to estimate parameters
in the function λ(ε) as discussed in the preceding section.

Mott expected λ(ε) to be a strongly increasing function of strain and
suggested both an exponential and a power-law function. The former leads
to Gumbel statistics, while the latter yields Weibull statistics. Relative differ-
ences between the two distributions were identified earlier in this report. Mott
pursued the exponential hazard function. Here the two-parameter power-law
hazard function,

λ(ε) =
n

σ

( ε

σ

)n−1

, (5.2)

will be used. For reasonably large n the parameter σ is the expected value
of the strain to fracture of a unit length while σ/n is proportional to the
standard deviation in the strain to fracture.

5.1.3 Mott Tension Release

Statistical fracture in the Mott cylinder can now be generally addressed. The
tensile release function is,

Dx(ε) =

ε∫
0

2g(ε − η)λ(η) dη , (5.3)

where λ(η)dη is the statistical number of fractures activated on the Mott
cylinder at a strain η within interval dη. The function g(ε− η) is the distance
traveled by a tensile stress release wave over the strain interval ε − η for one
fracture. (Since strain rate is assumed to be constant over the duration of the
fracture process, strain and time are synonymous through ε = ε̇t.)

In (5.3) Dx(ε) is seen to provide the fraction of the Mott cylinder which
has been encompassed by stress release waves emanating from sites of fracture
at a current strain ε. The equation also determines the fraction of the cylinder
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in which further fracture is precluded. A form of (5.3) was derived by Mott
in the original 1943 report [Mott, 1943] and discussed in the previous several
chapters.

An inspection of (5.3) reveals that the function Dx(ε) will exceed unity at
sufficiently large strain. This non-physical result is a consequence of not ac-
counting for two factors in the fracture activation and stress wave propagation
process. First, the fracture activation function λ(ε) does not exclude the ac-
tivation of further fractures within regions previously stress relieved. Second,
the stress release function g(ε) does not account for the impingement and the
overlap of opposing release waves from separate neighboring fractures. Thus,
(5.3) is only applicable for a dilute number of fractures early in the fracture
and release process.

To account for fracture exclusion and wave impingement in the statistically
random Mott model, a statistical method introduced by Johnson and Mehl
(1939) discussed in the previous chapter is used. Exclusion and impingement
is accounted for through the relation,

D(ε) = 1 − e−Dx(ε) , (5.4)

providing the fraction of the Mott cylinder D(ε) encompassed by fracture
stress release waves at any strain ε. D(ε) and Dx(ε) are equivalent at early
times as they should be. The function D(ε) does approach unity as ε becomes
large.

5.1.4 Fracture Stress Release Function

A functional form of the stress release function g(ε) must be specified. There
are several possibilities. If the expanding Mott cylinder is elastic at the time of
fracture, then a constant elastic release wave velocity governed by the elastic
modulus is sensible. Mott, however, considered an expanding ductile metal
cylinder and assumed a material on the tensile yield surface governed by a
constant flow stress Y . Instantaneous fracture and rigid-ideally-plastic consti-
tutive response leads to the stress release function,

g(ε) =

√
2Y

ρε̇2
ε . (5.5)

It was shown earlier that diffusion rather than wave propagation governs stress
release under the assumed physical conditions.

5.1.5 Fracture Number Prediction

Given explicit forms for the fracture activation function from (5.2) and the
stress release function from (5.5), statistical predictions of the number of frac-
tures (and fragments) produced in the break-up of the Mott cylinder can be
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determined. Accounting for the stress relieved fraction of the cylinder D(ε),
the number of fractures at a strain ε is given by,

N(ε) =

ε∫
0

(1 − D(η))λ(η) dη . (5.6)

Completing the integral in (5.3) and using (5.4) to obtain D(ε), integration
of (5.6) to infinite strain yields,

N = βn

(
ρε̇2

2πY

n

σ

)n/(2n+1)

, (5.7)

for the number of fractures per unit length, where the numerical constant is,

βn =
(

2n

2n + 1

)1/(2n+1) ( 1√
n

Γ (n + 1/2)
Γ (n)

)2n/(2n+1)

Γ
(

2n

2n + 1

)
. (5.8)

For reasonably large n the constant βn approaches one in (5.7) and the power
approaches one-half, leading to a linear dependence of fracture number on
the expansion strain rate. The fracture number is determined by the standard
deviation (
 1.283 σ/n) of the power-law fracture frequency function λ(ε) as
was noted by Mott. The statistical temporal history of fractures appearing on
the Mott cylinder can be determined by retaining the strain dependence of
the integral in (5.6).

5.1.6 Fracture Distribution Prediction

Additionally, the random placement of fractures on the Mott cylinder both
in space and in time, as assumed in the Mott model, allows for calculation of
the statistical distribution of fracture spacing (fragment lengths). This calcu-
lation was performed graphically by Mott and has been completed by analytic
methods as shown in the previous section for the special case of n = 1 in the
power-law fracture frequency function. The calculated analytic distribution in
fracture spacing by this analytic method is,

f (x) =
β2

4
1
xo

(
x

xo

)3

e−
1
4 (x/xo)3

1∫
0

(
1 − y2

)
e−

3
4 (x/xo)3y2

dy , (5.9)

where β = 3Γ(2/3) and xo = (3σY/2ρε̇2)1/3. The sensitivity of the size dis-
tribution to the functional form of the fracture frequency function λ(ε) is not
known, but comparison of the analytic distribution from (5.9) and the graph-
ical distribution of Mott suggests that this sensitivity is probably small. Both
the analytic and the graphical distribution are again compared in Fig. 5.2.
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Fig. 5.2. Comparison of the graphic and the analytic solution for the Mott distri-
bution of fragment lengths

In summary, the statistics-based theory of dynamic fragmentation devel-
oped in the seminal study of Mott provides a physically plausible and in-
tellectually satisfying description of the fragmentation process. Within the
one-dimensional model of the Mott cylinder the theory is fully predictive,
providing the average fragment size and the distribution about the average,
as well as the statistical temporal history of fracture and the strain-to-fracture.

5.2 Energy-Based Fragmentation

A theory of dynamic fragmentation based on markedly different initial as-
sumptions has also been pursued [Grady et al., 1984; Kipp and Grady, 1985].
Again, the one-dimensional fracture and fragmentation on the Mott cylinder
in Fig. 5.1 provides the model for consideration of the theory in the present
context. The fundamental difference in the two theories is that Mott assumed
energy dissipated in the fracture process was not of concern, and that frac-
ture at a site on the cylinder would be effectively instantaneous. In contrast,
energy dissipation and an associated fracture delay time lies at the heart of
the energy-based fragmentation theory.
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5.2.1 Fracture Calculation

Formulation of the energy-based fragmentation theory on the expanding duc-
tile Mott cylinder proceeds by extending the stress release analysis developed
by Mott to calculate the time history of plastic release waves (Mott waves) em-
anating from sites of fracture. The extension of the analysis has been pursued
in Chaps. 3 and 4, and proceeds by considering, rather than instantaneous
fracture, a fracture resistance which reduces from the flow stress Y to zero
as a crack-opening-displacement parameter y goes from zero to some critical
crack opening displacement yc. An assumption of linear reduction of the frac-
ture resistance then leads to a fracture energy dissipation Γ = Y yc/2. The
assumption of other functional forms for the reduction of fracture resistance
(Chap. 4) does not markedly alter the value of Γ. Momentum balance for the
rigid ideally plastic problem leads to the following differential expression for
the position x of the Mott release wave [Kipp and Grady, 1985],

ρε̇x
dx

dt
=

Y 2

2Γ
y , (5.10)

while motion of the crack opening displacement gives,

dy

dt
= ε̇x . (5.11)

The coupled equations are readily solved yielding,

x(t) =
1
12

Y 2

ρΓ
t2 , (5.12)

for the motion of the Mott release wave while crack opening over 0 ≤ y ≤ yc

is given by,

y(t) =
1
36

ε̇Y 2

ρΓ
t3 . (5.13)

The time to fracture is determined by the time for the crack opening displace-
ment to achieve yc and is calculated to be,

tc =
(

72ρΓ2

Y 3ε̇

)1/3

. (5.14)

Over the time tc the Mott release wave travels a distance from the site of
fracture,

xc =
(

3Γ
ρε̇2

)1/3

. (5.15)
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5.2.2 Fragment Size and Fragmentation Toughness

The distance xc over which the Mott release wave propagates determines
the minimum spacing of separate fractures permitting fracture completion
without interaction of release waves. The theory assumes that the nominal
fragment length xo is given by twice the distance xc or,

xo = 2xc =
(

24Γ
ρε̇2

)1/3

. (5.16)

The fracture resistance Γ is considered to be a property of the material
characterizing the dissipation in the fracture growth process. It is possible,
under certain failure modes, to estimate the fracture resistance Γ from other
material properties [Kipp and Grady, 1985]. Fracture toughness is the prop-
erty commonly used to quantify the static (and dynamic) fracture resistance
of metals. Thus, it is sensible in the present development to define a prop-
erty with the dimensions of fracture toughness through the relation of linear
elastic fracture mechanics relating fracture strain energy release and fracture
toughness. Namely,

Kf =
√

2EΓ , (5.17)

where E is the elastic modulus. The property Kf will be identified as the frag-
mentation toughness of the metal and will not presume any relationship to the
clearly defined static fracture toughness Kc. Frequently, however, Kc is found
to provide a very adequate first order estimate for the fragmentation tough-
ness as will be shown in later chapters. The expression for the characteristic
fracture spacing from (5.16) then becomes,

xo =

(√
12Kf

ρcε̇

)2/3

. (5.18)

The energy-based theory does not address the issue of the statistical dis-
tribution of fragment sizes. It is assumed that (5.18) provides an average
fragment size and that the fragment number per unit length is provided by
the inverse of (5.18), or,

N =

(
ρcε̇√
12Kf

)2/3

. (5.19)

Thus, (5.19) provides the energy-based spatial fracture frequency prediction
to be compared with (5.7) of the Mott statistical theory.

5.3 Comparisons of the Fragmentation Theories
with Experiment

A range of diverse experimental fragmentation investigations could be used,
and in fact has been used, to explore the predictive abilities of Mott’s
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Fig. 5.3. Fragment number versus expansion velocity at fracture for U6Nb expand-
ing ring fragmentation tests

statistics-based theory and the more recent energy-based fragmentation the-
ory. Here, consideration will be restricted to a recent quite-thorough study of
dynamic fragmentation of magnetically driven uranium-6%-niobium (U6Nb)
metal rings with pertinent experimental data shown in Figs. 5.3 and 5.4.
Further details on the experimental test method are provided in a later chap-
ter. The experimental geometry nicely replicates the fragmentation model
assumed by Mott and provides data directly comparable with the theoretical
predictions.

5.3.1 Experimental Fragmentation Results

In the selected study U6Nb metal rings approximately 30 mm in diameter and
with a 0.75 mm square cross section were accelerated by a pulsed magnetic field
to radial velocities in the range of 50–300 m/s. Actual acceleration is provided
by an aluminum pusher ring which accommodates most of the induced electric
current. The aluminum ring is arrested prior to fragmentation allowing free
flight of the U6Nb ring preceding break up. Additional details are provided
in Chap. 8.

Radial velocity history of the U6Nb rings was measured with time-resolved
velocity interferometry or VISAR [Barker and Hollenbach, 1972]. Measured
deceleration of the freely expanding ring prior to fragmentation was used to
calculate a tensile flow stress of nominally one GPa for the selected heat
treated material. Fragmentation for the corresponding material occurred at
an expansion of approximately 30%.
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U6Nb expanding ring fragmentation test with the theoretical Mott fragment size
distribution

In each test the number of fragments produced (equivalently, the number
of fractures) was determined. Fragment number versus the expansion velocity
at fragmentation are shown for the series of U6Nb expanding ring experiments
in Fig. 5.3. The anomalous point high on the graph is the consequence of one
test on a markedly differently heat treated U6Nb sample (discussed further in
Chap. 8). A least squares fit, excluding the one anomalous point, provided the
power law representation of the data shown in Fig. 5.3. In one representative
test each fragment was separately weighed and the complementary cumulative
fragment size distribution shown in Fig. 5.4 was obtained.

5.3.2 Comparison with the Mott Statistics-Based Theory

Weibull parameters σ and n are necessary in the Mott statistical theory to
predict the fragment number dependence on velocity (or strain rate) and
are not available for the U6Nb material tested. Hence, only sensibility of
the experimental results can be examined. The observed experimental power
law dependence of fragment number on expansion velocity is close to two-
thirds and indicates that the Weibull parameter n in (5.7) is very close to
unity. Assuming that n = 1, the second Weibull parameter is calculated to be
σ = 7.7×10−5m. The standard deviation in strain to fracture calculated from
(5.1) is approximately σ/L. Considering specimens of length one centimeter,
the nominal length of fragments in the ring tests, a scatter in strain to fracture
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of approximately 0.01 or about 3% of the observed 0.30 strain to fracture is
calculated. Thus, the Weibull parameters within the Mott statistical theory
for the fragmentation of U6Nb rings are quite plausible.

Prediction of the distribution in fracture spacing is also a facet of Mott’s
statistical theory. Comparison of both the graphic distribution generated by
Mott and the analytic distribution from (5.9), both displayed in Fig. 5.2, are
compared with the distribution determined experimentally in Fig. 5.4. The
observed distribution and the theoretical distributions based on the Mott
statistical fracture theory are also in reasonable accord.

5.3.3 Comparison with the Energy-Based Theory

The energy-based fragmentation theory directly predicts from (5.19) a two-
thirds power dependence of fragment number on strain rate or, equivalently,
the expansion velocity at fracture. A two-thirds power dependence curve is
compared with the data and the experimental fit in Fig. 5.3 and shows sensible
agreement with the data.

To further test the energy-based theory the fragmentation toughness is
calculated through (5.19) for each experiment. This representation is shown
in Fig. 5.5. A value of Kf in excess of 60 MPa·m1/2 determined from the
fragmentation data is remarkably close to a static fracture toughness of ap-
proximately 90–110 MPa·m1/2 measured on similar U6Nb alloys.
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Other features observed in the U6Nb ring fragmentation experiments also
attest to the importance of energy dissipation and finite fracture time in the
dynamic fracture process. Inspection of fragments revealed fully developed
necking regions – a signature of fractures which were enveloped with tensile
release (Mott) waves and fracture growth arrested before full fracture and
separation was achieved.

5.3.4 Comments on the Mott Fracture Frequency Function

In the development of the Mott statistical fragmentation theory a statisti-
cal fracture frequency function was required. Mott discussed two very viable
functional forms; the power law,

λ(ε) =
n

σ

( ε

σ

)n−1

, (5.20)

and the exponential law,
λ(ε) = Aeγε . (5.21)

The latter equation, written in a more common statistical form is,

λ (ε) =
1
σ

e(ε−µ)/σ , (5.22)

where the correspondence to the Mott parameters, introduced in Chap. 3,
σ = 1/γ and A = (1/σ) exp(−µ/σ), is made.

The power law leads to the Weibull extreme value cumulative probability
of fracture function,

F (ε) = 1 − e−(ε/σ)n

, (5.23)

and probability density function,

f (ε) =
n

σ

( ε

σ

)n−1

e−(ε/σ)n

. (5.24)

Correspondingly, the exponential law,

λ (ε) =
1
σ

e(ε−µ)/σ, (5.25)

provides a Gumbel cumulative probability,

F (ε) = 1 − exp
(
−e(1/σ)(ε−µ)

)
, (5.26)

and probability density function,

f (ε) =
1
σ

exp
(

1
σ

(ε − µ) − e(1/σ)(ε−µ)

)
. (5.27)
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Although, both extreme value representations of the statistical fracture
frequency have two parameters, they are far from equivalent. The parame-
ter σ in both is the distribution scale parameter. The Weibull representation
also has a distribution shape parameter n, whereas the Gumbel distribution,
in contrast, is lacking a shape parameter, but specifies instead the distribu-
tion location parameter µ. The Mott fragment number prediction based on a
Gumbel fracture frequency representation is,

N =
1√
π

√
ρε̇2

2Y σ
. (5.28)

The location parameter µ plays no role in the fragment number prediction
either in terms of the fragment length scale or in the strain rate dependence.
The parameter µ does govern the strain to fracture, however.

The fragment number prediction based on a Weibull representation is,

N = βn

(
ρε̇2

2πY

n

σ

)n/(2n+1)

, (5.29)

and it is observed that the fragment number depends on both the distribution
scale and shape parameter.

A location parameter could also be included in the power law fracture
frequency and Weibull fracture probability by the replacement ε → ε−µ. The
resulting distribution would then be a three parameter representation. Again,
however, the location parameter would control only the strain to fracture
and would not influence either the fragment length scale or the strain rate
dependence. Equation (5.29) would remain the same.

As the shape parameter n in the Weibull distribution becomes large, the
character of the two extreme value distributions becomes similar. The frag-
ment number becomes dependent on the strain rate to the first power in both
cases and the fragment size scale is determined solely by the distribution stan-
dard deviation (proportional to σ in both cases). As the standard deviation
approaches zero both density distributions uniformly converge to a Dirac delta
function.

Experimental data, however, suggest a two-thirds power strain rate de-
pendence of fragment number in some cases (although not all). The U6Nb
fragmenting ring data discussed here, for example, certainly supports such
strain rate dependence. The Weibull fracture frequency representation (with
shape parameter n = 1) supports this experimental observation. The Gumbel
distribution does not.

5.4 Statistical and Energy-Based Theory
of Fragmentation

Both Mott’s statistical theory and the energy-based theory have features in ac-
cord with the results of the U6Nb expanding ring fragmentation experiments.
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Frequency, and in particular, the statistical spread in spacing of fractures
are consistent with predictions of the Mott theory. The favorable strain rate
dependence and the very close agreement between static fracture toughness
and the inferred dynamic toughness are, on the other hand, supportive of the
energy-based theory. It would seem that a broader theory encompassing con-
cepts from both the statistics-based and the energy-based approaches would
be appropriate.

5.4.1 Merging of Theories

The statistical fragmentation theory of Mott is based on two functional prop-
erties characterizing response of the material in a dynamic fragmentation
event. First, is a strain-dependent fracture activation function λ(ε), which
has been selected here as the power law form,

λ(ε) =
n

σ

( ε

σ

)n−1

. (5.30)

Second, is the diffusion-governed tensile stress release propagation function
from sites of fracture,

g(ε) =

√
2Y

ρε̇2
ε . (5.31)

Together the Mott theory yields the spatial fracture frequency from (5.7),

N = βn

(
ρε̇2

2πY

n

σ

)n/(2n+1)

. (5.32)

In contrast, the energy-based theory yields for the average spatial fracture
frequency,

N =
(

ρε̇2

24Γ

)1/3

. (5.33)

The theories are equivalent, if the Weibull constants have the unique values,

n = 1 , (5.34)

and,

σ = β3
1

12
π

Γ
Y

∼= 5
Γ
Y

. (5.35)

Thus, the requisites of the energy theory would uniquely constrain the Weibull
parameters and the functional form of the fracture activation function of
Mott’s statistical theory. Equation (5.35) identifies a material-specific length
scale σ and requires, through (5.30), that the fracture activation function be
constrained to a constant λ(ε) = λo = σ−1.

The fracture activation functions proposed by Mott, and as constrained
by the energy theory, are illustrated in Figs. 5.6 and 5.7. The function λ(ε) in
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Fig. 5.6. Graphical interpretation of fracture functions in the merging of Mott
statistics-based and energy-based fragmentation theories
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Fig. 5.6 specifies fracture activation frequency as increasing plastic strain ε is
achieved. Thus, increasing expansion rates are required to achieve increasing
levels of strain to fracture. Below the strain at which the two functions cross
in Fig. 5.6, the lower rate of fracture activation is provided by the rapidly
increasing power-law expression for λ(ε). Above the cross-over strain the con-
stant expression for λ(ε) = λo, inferred from energy considerations, provides
the lesser rate of fracture activation.

From the Mott statistical development outlined earlier, the cumulative
strain to fracture is calculated from the expression,

εf =

∞∫
0

(1 − D)dη . (5.36)

It is readily shown that the cumulative strain to fracture is εf = αnε̇2/(2n+1)

where αn is a constant function of the material properties. The strain εf in-
creases with the expansion rate ε̇. Thus, the comparison indicates that, with
increasing expansion rate, a strain to fracture which exceeds the cross-over
strain is eventually achieved. Fragmentation and the frequency of fractures
become governed by fracture energy dissipation properties above the cross-
over strain.

This observation suggests a reinterpretation of the fracture activation func-
tions. The rapidly increasing Mott power law function would, more appropri-
ately, be the fracture seeding function. This function characterizes the per-
turbations and defects in the body leading to fracture (the seeds of fracture),
but does not necessarily specify the fracture activation process itself. Above
the cross-over strain the constant energy-based function provides the fracture
survival rate. Below the cross-over strain the fracture seeding function limits
the fracture activation and there is a one-to-one correspondence between frac-
tures seeded and fractures that survive. Above the cross-over strain, however,
many fractures are initiated, but energy requirements limit fracture survival
and only a subset of fractures seeded achieve completion.

5.4.2 Strain to Fracture

In the statistical theory of Mott, both strain to fracture and fracture frequency
are uniquely determined through the parameters σ and n in the power-law
fracture activation function. The theory of Mott, however, cannot also account
for the two-thirds power dependence of the average fragment number on strain
rate predicted by the energy-based theory, and also observed in the U6Nb
expanding ring experiments.

With the extended statistical energy-based theory, strain to fracture in
addition to the statistical fragment size and strain-rate dependence features
can be accounted for. Prediction is dependent on proper selection of the Mott
fracture seeding function,
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λ(ε) =
n

σ

( ε

σ

)n−1

, (5.37)

and the energy governed fracture survival function,

λ(ε) = λo , (5.38)

where, λo has the unique material dependence specified in (5.35). The cumu-
lative number n(ε), or integral of the fracture seeding and fracture survival
functions (the integral of (5.37) and (5.38)), are plotted in Fig. 5.7 (compare
with Fig. 5.6). The new parameter revealed in Fig. 5.7 is the constant of in-
tegration εo of the fracture survival function. The Mott fracture function is
determined by the solid segments of both of the functions shown in Fig. 5.7.

The theory has acquired an additional material parameter, but now sup-
ports the prediction of strain to fracture in addition to the statistical frac-
ture frequency, spacing distribution, and associated strain-rate dependence.
At fracture strain rates into the energy-governed fragmentation regime it is
readily shown that the statistical strain to fracture from (5.36) is,

εf = εo + α1ε̇
2/3 , (5.39)

where, α1 is calculated through (5.36) from the energy-based Mott fracture
properties. Experimental support for a strain rate dependence of the strain to
fracture is presented in Chap. 8.

This broader interpretation of fragmentation merges both the statistical
principals of Mott and the fracture energy requirements of the energy-based
theory. A wider set of properties characterizing the solid body of interest is
required, however. The Mott seeding function characterizes the defect state
of the body governing the strain-dependent nucleation of potential fractures.
Weibull parameters in the two-parameter power law function serve this pur-
pose in the present development. The Mott survival function incorporates the
energy dissipation, or fragmentation toughness, properties of the material.
Further material properties and supporting theory are needed to establish
onset of the strain to fracture.

5.5 Computational Simulations of Ring Fragmentation

Partial support for the extended theory is provided by a one-dimensional
computational simulation of the Mott fragmentation process performed by
Kipp and Grady (1986). At that time it was recognized that interplay between
dynamics of the fragmentation event and the population of flaws seeding the
multiple fracture process could lead to conditions in which flaw structure
controlled the extent of fragmentation on one hand while energy limitations
controlled fragmentation on the other. A rationale for analytically merging
the range of behaviors was not recognized, however.
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The following computer simulations of dynamic fragmentation were per-
formed to support experimental fragmenting ring studies performed at that
time [Grady et al., 1984]. A one-dimensional finite difference wave code was
used to calculate the response of an aluminum rod or wire 0.1 m in length and
1.0 mm in diameter stretching plastically at a flow stress Y = 100 MPa and
at a uniform stretching rate ε̇ = 104/s. Fracture sites were introduced ran-
domly in time according to a constant nucleation rate parameter λ(ε) = λo,
and randomly placed within the length of the rod. The nucleation rate λo was
the only parameter varied over the series of calculations. When fracture was
nucleated at a computational cell, stress in that cell was relaxed from the flow
stress Y to zero as the cell distended, such that the plastic fracture energy
within that cell of Γ = 20 kJ/m2 was dissipated. The number of fragments
produced as the nucleation rate λo was varied over approximately one order
of magnitude was determined from the simulations and are shown in Fig. 5.8.
Although, not directly duplicating the conditions of Fig. 5.7, the relationship
is apparent.

At reduced nucleation rates every fracture nucleation site grows to full frac-
ture. The number of fractures and the corresponding characteristic fragment
size is, thus, governed fully by the flaw structure and the fracture nucleation
(seeding) function. As the nucleation rate is increased the number of nucleated
fracture sites which fail to grow to completion correspondingly increases. At

Flaw
Dominated
(Mott Theory)

Energy
Dominated
(Energy Theory)

Nucleation Rate  (# /µs)

F
ra

gm
en

t N
um

be
r

0.4 4 10 401

100 mm Aluminum Rod
Strain Rate = 104/s

0

4

8

12

16

1

5

Y
Nucleation Rate

Flaw
Dominated
(Mott Theory)

Energy
Dominated
(Energy Theory)

Nucleation Rate  (# /

F
ra

gm
en

t N
um

be
r

0.4 4 10 4010.4 4 10 401

100 mm Aluminum Rod
Strain Rate = 104/s

0

4

8

12

16

0

4

8

12

16

1

5

Y
Nucleation Rate

1

5

Y
Nucleation Rate

Fig. 5.8. Fragment number from computational simulations of a uniformly stretch-
ing aluminum rod [Kipp and Grady, 1986]



5.6 Fracture Physics 115

0

5

10

15

0 5 10 15

Calculation

Mott
Graphical 
Distribution

(Kipp and Grady, 1986)

100 mm Aluminum Rod
Strain Rate = 104/s

0

5

10

15

0

5

10

15

0 5 10 150 5 10 15

Calculation

Fragment Size (mm)

Mott
Graphical 
Distribution

Analytic
Distribution

(Kipp and Grady, 1986)

100 mm Aluminum Rod
Strain Rate = 104/s

C
um

ul
at

iv
e 

F
ra

gm
en

t N
um

be
r
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the highest nucleation rates the number of fragments becomes independent of
the number of fracture sites nucleated and is determined strictly by the frac-
ture energy Γ resisting fracture growth. The energy governed constant fracture
survival rate, λo

∼= Y ε̇/5Γ, identified in Fig. 5.8, is sensibly consistent with
the expected transition from flaw limited to energy-limited fragmentation.

A cumulative fragment length distribution from one computational simu-
lation is compared with the predicted graphic and analytic Mott distribution
in Fig. 5.9. The computational distribution is also fully consistent with the
statistical theory.

5.6 Fracture Physics

Of the properties required to characterize the fragmentation response of an
expanding metal cylinder, the fracture energy captured through the property
Γ is probably the most apparent. That some degree of work must be ex-
pended, and some fracture energy overcome, in opening the cracks delineat-
ing the fragment boundaries produced in the fragmentation event is inherently
reasonable. Less apparent are details of the deformation mechanisms occur-
ring in the fracture growth and dissipation process. Plastic necking, adiabatic
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shearing, and ductile fracture are all viable mechanisms. It is likely that all
of the above mentioned mechanisms will contribute to some degree.

Considerably less intuitive are the material features responsible for onset
of fracture; analytically expressed in this development by the Mott seeding
function and quantified by the Weibull parameters in the power-law hazard
function. In most events leading to the dynamic expansion and fragmentation
of ductile metal rings and shells a degree of stable plastic stretching is accom-
modated before the fracture occurs. This deformation is most likely a con-
sequence of stabilizing plastic hardening of the component metal. As plastic
hardening saturates, however, continued stretching and thinning becomes in-
herently unstable and susceptible to perturbations in the deformation. Sources
of these perturbations are far from certain. Granularity of the device metal is
a reasonable source of deformation perturbations. Perturbations from metal
granularity leading to fracture would suggest sensitivity of the fragmentation
process (particularly the effective strain to fracture) to grain size and related
material issues.

There are also convincing indications that surface features, either inherent
or induced, play a role in the perturbations seeding fracture onset. Imper-
fections in metal-explosive interfaces leading to deformation perturbation as
detonation-induced shock waves are coupled into the metal system are also
suspect.
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6

Application to the Biaxial Fragmentation
of Shells

Much of the development of a statistical energy-based theory of fragmentation
of stretching ductile metals has been restricted to one-dimensional geometries
such as expanding rings or, at best, a uniformly expanding cylinder where
the theory is intended to describe the average and statistical spacing of axial
fractures. In this chapter an analysis will be extended to describe the breakup
of a biaxial expanding shell or membrane of ductile metal in which stretching
rates in mutually orthogonal directions are each nonzero and are, in general,
different. A specific case of interest, of course, is that of a stretching spherical
shell segment in which the orthogonal stretching rates are the same.

In the development of the present two-dimensional fragmentation theory
it will be assumed that at a point on the surface of the expanding shell or-
thogonal principal stretching directions can be determined and that fracture
in the two principle directions are independent and governed by the condi-
tions of the linear fragmentation theory developed in the earlier sections. This
approach is illustrated in Fig. 6.1, where principal stretching directions on a
surface are identified and a corresponding statistical distribution of fractures
along the x and y stretching directions partition the surface into a statistical
distribution of fragment areas.

6.1 The Fragment Size and Aspect Ratio Scales

Within the energy governed region of the linear statistical fragmentation the-
ory a fracture activation rate, and a corresponding fracture spacing length
scale, has been determined in the previous chapter based on a property of the
material identified as the fragmentation toughness and the rate of stretching
leading to fracture. The same relation will be used to determine the frac-
ture spacing length scale in both orthogonal principal stretching directions.
Namely,
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x
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x

Fig. 6.1. Illustrates independent application of linear statistical fragmentation the-
ory in orthogonal principal stretching directions to implement fragmentation of the
surface at a point

xo =

(√
12Kf

ρcε̇x

)2/3

, (6.1)

and,

yo =

(√
12Kf

ρcε̇y

)2/3

. (6.2)

The fragment area scale is then determined from,

ao = xoyo =

(√
12Kf

ρc¯̇ε

)4/3

, (6.3)

where,
¯̇ε =

√
ε̇xε̇y . (6.4)

The nominal fragment aspect ratio is provided by,

ro = xo/yo = (ε̇x/ε̇y)−2/3
. (6.5)

Predictions of the fragment area scale based on (6.3) as a function of the
stretching rate are shown in Fig. 6.2. The predicted curve is based on the
equiaxial explosion driven expansion and fragmentation of a spherical shell
segment of a common metal. The experimentally observed fracture fabric was
in sensible qualitative and quantitative agreement with the predicted behav-
ior. At typical stretching rates of a few times 103/s up to about 104/s for
explosively loaded metal shells a fragment size scale on the order of a square
centimeter or less, is predicted consistent with experimental observation. In-
creasing strain rate decreases this size scale. Increased toughness, on the other
hand, is predicted to increase fragment size.



6.2 The Biaxial Fragment Distribution Properties 119

103 104 105

Stretching Rate (s–1)

0.01

0.1

1.0

10

F
ra

gm
en

t A
re

a 
(c

m
2 )

4
312 f

o
K

a
c

Fig. 6.2. Fragment area scale versus mean stretching rate based on energy deter-
mined characteristic fracture spacing and properties for equiaxial expansion of a
metal

6.2 The Biaxial Fragment Distribution Properties

The dynamic fragmentation of a rapidly stretching metal shell involves a com-
plexity of rapidly opening fissures and cracks that result in a multiplicity of
separate fragments. Individual fragments continue on outward divergent paths
at the velocity at which breakup occurred. Although the size scale determined
previously adequately characterizes the number density and average size of
these fragments, a statistical distribution in fragment size is clearly observed.
The objective here will be to apply the linear statistical fragmentation theory
to characterize the distribution in area fragment size observed experimentally.

In the linear theory, based on the Mott statistical premise, as constrained
by the energy-based fracture spacing, a statistical distribution in fracture
spacing was determined. The resulting distribution was found to satisfacto-
rily describe linear fragmentation experiments such as the expanding ring
studies. In the present development the assumption of independent statistical
fracture in mutually orthogonal principal stretching directions is continued.
The statistical size distribution to be pursued is as illustrated in Fig. 6.3. In
either the x direction, or in the orthogonal y direction, the statistical spac-
ing of fractures (lines) is governed by the linear Mott statistical distribution
with independent length scales of xo and yo provided through (6.1) and (6.2),
respectively. The statistical distribution in spacing in the x direction derived
previously is,
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x

y

Fig. 6.3. Illustrates independent statistical distributions of fracture spacing in or-
thogonal x and y principal stretching directions. Areas determined by intersecting
lines will model statistical distribution in fragment areas and fragment aspect rations

f (x) =
β2

4
1
xo

(
x

xo

)3

e−
1
4 (x/xo)3

1∫
0

(
1 − y2

)
e−

3
4 (x/xo)3y2

dy , (6.6)

where, β = 3/Γ(2/3). An equivalent distribution applies to the spacing distri-
bution in the y direction. With further analytic manipulation the integral in
(6.6) can be expressed as an error function, if useful. The careful reader will
note that the length scale x0 in (6.6) is not precisely the expected value of
the fragment size (see (3.121)). Uncertainties resulting from the assumptions
leading to (6.1) and (6.2) provide allowance for this lack of rigor.

6.2.1 Fragment Area Distribution

The linear Mott distribution provided by (6.6) is not convenient for an analytic
determination of the distribution in fragment areas provided by the overlap of
horizontal and vertical lines as illustrated in Fig. 6.3. The approach pursued
here will be to approximate the distribution from (6.6) with another more
analytically tractable distribution. The distributions that will be tried are the
Weibull distribution,

f(x) =
n

xo

(
x

xo

)n−1

e−(x/xo)n

, (6.7)

and the gamma distribution,

f(x) =
1
xo

n

Γ(n)

(
nx

xo

)n−1

e−nx/xo . (6.8)
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Fig. 6.4. Mott linear fragment size distribution compared with Weibull and Gamma
distribution approximations

The Weibull and gamma distributions with the distribution parameter n ad-
justed to provide the optimum fit to the Mott distribution are compared
with the Mott distribution from (6.6) in Fig. 6.4. Values of n = 3.45 for the
Weibull distribution and n = 8.0 for the gamma distribution yielded the ob-
served results. The Weibull distribution clearly provides the closer fit to the
desired Mott distribution. Both Weibull and gamma distributions will be car-
ried through the analysis in developing a fragment area distribution. Both are
analytically tractable and both solutions provide a measure of sensitivity to
the fit between the Mott distribution in (6.6) and either of the approximations
in (6.7) and (6.8).

Working first with the Weibull distribution, an expression assessing the
two-dimensional statistical partitioning of the surface in Fig. 6.3 is immedi-
ately written as a juxtaposition of (6.7) and the corresponding distribution in
the y direction. Namely,

f(x, y) =
n2

xoyo

(
xy

xoyo

)n−1

e−(x/xo)n

e−(y/yo)n

, (6.9)

provides the probability density distribution for fragment areas of length x
and width y. Equation (6.9) can be transformed to distribution over fragment
area,

a = xy , (6.10)
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and aspect ratio,
r = x/y . (6.11)

The differential invariant,

f(x, y)dxdy = g(a, r) dadr , (6.12)

leads to,

dxdy =
∣∣∣∣∂(x, y)
∂(a, r)

∣∣∣∣ dadr , (6.13)

for the differential element through the transformation Jacobian [Buck, 1965].
Accordingly, the transformed probability density function is,

g(a, r) = f(x(a, r), y(a, r))
∣∣∣∣∂(x, y)
∂(a, r)

∣∣∣∣ . (6.14)

Calculating the Jacobian through (6.10) and (6.11),
∣∣∣∣∂(x, y)
∂(a, r)

∣∣∣∣ =
1
2r

, (6.15)

yields,

g(a, r) =
1
2

n2

(xoyo)n

an−1

r
e−( 1

xo

√
ar)n

e
−
(

1
yo

√
a/r

)n

. (6.16)

The distribution over fragment area is then written as the integral expression,

h(a) =
n2

2ao

(
a

ao

)n−1
∞∫
0

1
r
e
−
(√

a/ao

)n[(r/ro)n/2+(r/ro)−n/2]dr , (6.17)

where, ao = xoyo and ro = xo/yo. The substitution,

r = roe
2η/n , (6.18)

provides,

h(a) =
2n

ao

(
a

ao

)n−1
∞∫
0

e
−2
(√

a/ao

)n
cosh η

dη . (6.19)

The integral is a modified Bessel function [Abramowitz and Stegun, 1954]
yielding, for the area distribution, based on a Weibull approximation for the
linear spacing distribution,

h(a) =
2
ao

(
a

ao

)n−1

Ko

(
2
(√

a/ao

)n)
. (6.20)

A similar exercise using the gamma approximation provides,
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Fig. 6.5. Fragment area distributions base on Weibull and gamma distribution
approximations to the Mott linear distribution

h(a) =
2
ao

(
n

Γ(n)

)2 (
n2a

ao

)n−1

Ko

(
2n

√
a/ao

)
. (6.21)

Area distributions resulting from the Weibull and the gamma distribution
approximations to the linear Mott statistical fracture spacing distribution are
shown in Fig. 6.5. The Weibull approximation provides a noticeably better
fit to the linear distribution in Fig. 6.4 and is expected to provide the better
representation of the area distribution based on the Mott theory.

Comparison of the Weibull approximation to the Mott area distribution
based on random line partitioning of the area is compared with experimental
results from the dynamic near-spherical expansion fragmentation of a metal
shell in Fig. 6.6. The theoretical distribution reasonably represents the mea-
sured experimental distribution.

6.2.2 Fragment Linear Size Distribution

It is common in the experimental analysis and display of radiographic data of
fragmentation of expanding metal surfaces to express the distribution in terms
of a characteristic linear fragment size. For example, we will here identify the
fragment size s = a1/2, where a is the previous fragment area defined above.
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Fig. 6.6. A comparison of the theoretical distribution for fragment areas with ex-
perimental results

The statistical distribution in fragment size s is a straightforward transfor-
mation of the area distributions provided above. For completeness the ap-
propriate statistical size distributions and their pictorial representation will
be provided here. The appropriate transformation for (6.20), based on the
Weibull approximation to the linear Mott distribution, leads to,

h(s) =
4n

so

(
s

so

)2n−1

Ko (2(s/so)n) , (6.22)

for the statistical size distribution. In contrast, (6.21) based on the gamma
approximation provides,

h(s) =
4
so

(
nn

Γ(n)

)2 (
s

so

)2n−1

Ko (2n(s/so)) . (6.23)

Both size distributions are shown and compared in Fig. 6.7.

6.2.3 Fragment Aspect Ratio Distribution

The analysis pursued here also lends itself to a sensible assessment of the
statistical distribution in fragment aspect ratio. Working with the distribution
provided by the Weibull representation of the Mott distribution as written
in (6.16), substitute the parameters ro = xo/yo, ξ = a/ao and ρ = r/ro.
Integration over the fragment area variable is then written,
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Fig. 6.7. Fragment size distributions base on Weibull and gamma distribution ap-
proximations to the Mott linear distribution

k(r) =
1
2

n2

ro

1
ρ

∞∫
0

ξn−1e−(ρn/2+ρ−n/2)ξn/2
dξ . (6.24)

Equation (6.24) is readily integrated providing,

k(r) =
n

ro

ρn−1

(1 + ρn)2
. (6.25)

The distribution over fragment aspect ratio with n = 3.45 is shown in Fig. 6.8.
A similar distribution can be derived for the gamma distribution approxima-
tion to the Mott distribution.

6.3 Biaxial Strain to Failure Model

Neither the statistical fragmentation theory of Mott, nor the energy-based
theory of fragmentation addresses the underlying deformation that a rapidly
expanding metal shell can sustain before onset of fracture. Other physical
considerations must be explored in pursuing a theory of the onset of fracture
leading to the statistical fragmentation accompanying the disintegration of
the expanding shell.
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Fig. 6.8. Statistical distribution in fragment aspect ratio

As discussed earlier, Mott explored this issue on several levels. He pursued
the ductile failure of steel tensile specimens in evaluating the critical gamma
parameter in his relation for the prediction of fragment size. He also presaged
the direction of much later work in forecasting the internal damage evolution
through loss of cohesion in plastic straining metals and the dependence of this
phenomenon on the local state of stress triaxiality.

The explosive impulsive load leads rapidly to the divergent plastic stretch-
ing and thinning of the metal shell. The onset of fracture is dependent on the
thermo-plastic deformation properties and the geometry of the metal shell.
The driving explosive pressure quickly diminishes to a negligible level and the
outward divergent inertia of the body sustains the plastic deformation.

The latter comment, of course, introduces complicating considerations.
The Gurney theory of explosive shell expansion [Gurney, 1943] assumes a
sustained driving pressure reduced only by subsequent expansion of the accel-
erated shell. In energetic ideal explosives, however, much of the accelerating
energy is imparted in the initial shock with rapid drop in the later driving
pressure. Less ideal explosives, in contrast, will impart a larger fraction of the
kinetic energy in late time push.

In any case both inertia and strain hardening of the plastic flow affect
stability of the expanding and thinning shell. Sufficient inertia can lead to ac-
celeration stresses which stabilize small perturbations in the thinning process
[Romero 1991]. Inertial stabilization in this sense, however, does not appear
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to play a significant role in governing the onset of fracture in the breakup of
explosive driven shells.

Deformation hardening in the flow process appears paramount in stabi-
lizing the plastic expansion and is the principal mechanism through which
many materials sustain appreciable plastic deformation before rupture. The
present dynamic expansion and rupture of metal shells have similarities to the
extensive field of quasi-steady metal forming [e.g., Bartlat 1989]. The present
application can be profitably studied through exploitation of this literature.

In essence plastic strain hardening stabilizes the thinning instabilities
brought about by the reduction of in-plane tension caused by thinning of the
stretching shell. While strain hardening dominates geometric softening (reduc-
tion in the tensile force due to the concomitant reduction in cross-sectional
area), thinning through stable plastic expansion ensues. Saturation of strain
hardening, however, ultimately leads to instability and rupture.

Plastic thinning instabilities are not unique to the dynamic environment.
Within the physics introduced, namely rate independent strain hardening and
geometric softening, the onset and subsequent growth of thinning instabilities
would proceed the same on any time scale from static to rapid dynamic.
Additional physical considerations markedly alter the dynamic event, however.
These include the properties of material inertia and thermal conductivity in
addition to rate sensitivity of the flow properties.

On the length scale of thinning instabilities, plastic dissipation in the dy-
namic event is effectively adiabatic. Plastic dissipation and the accompanying
thermal softening will alter the effective stress versus strain behavior. Onset of
instability would consequently occur earlier than in the corresponding static
isothermal event. Adiabatic thermal softening would also localize the thinning
instability growth process, markedly changing the character of the thinning
and necking region. Unbounded thermal localization in the thinning region is
constrained by local inertia, however.

The influence of adiabatic thermal softening on the onset of the tensile
thinning instability is expected to be a second order effect. Thermal softening
in the subsequent plastic flow during the growth of this instability under
the appropriate loading conditions can profoundly alter the failure process,
however. Along planes of maximum plastic shear (approximately 45 degrees
with respect to the plane of the thinning shell) perturbations in the local
temperature or deformation can lead to localized adiabatic shear deformation
(adiabatic shear bands) within thin planar regions. Rupture of the expanding
shell is then accommodated by the plastic shearing and separation of the body
along the planes of adiabatic shear.

Adiabatic shear band failure, like fracture, is enhanced by inhomogeneities
in the stress or deformation field. And also like fracture, adiabatic shear bands
have a propensity for propagating from a site of initiation through the plane
of shear rather than evolving homogeneously throughout that plane. Thus,
shear bands depend sensitively on the nature of surface defects, which are the
dominant source of stress and subsequent deformation inhomogeneity.
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Thinning instability and adiabatic shear deformation can cooperate in a
more complex serial failure process. Thinning instability can initiate when
saturation of plastic strain hardening is overcome by the thinning geomet-
ric softening. Adiabatic deformation inhomogeneities brought about during
growth of the thinning region can, in turn, trigger local adiabatic shear defor-
mation and complete the failure process.

Plastic thinning instability and localization of adiabatic shear deformation
are potential contributions to the processes of failure and rupture of dynami-
cally expanding metal shells. Neither mechanism, however, is either complete,
or necessary to the breakup process. Rupture ultimately requires the break-
ing of molecular bonds and the development of damage within the deforming
material. In the fracture of metal this process has been shown to require a
level of plastic deformation combined with a state of tensile stress triaxiality.
This underlying physics has been noted from at least the early works of Mott
[Mott, 1948] and has been addressed in considerable detail by later workers
[e.g., Hancock and Mackenzie, 1976]. This feature of fracture is recognized, but
will not be pursued in detail in the present development of a failure criterion.

6.3.1 Biaxial Strain Fracture Criterion

A theory and analytic model appropriate to the present dynamic fragmenta-
tion of biaxial expanding ductile shells is sought to predict the onset of frac-
ture of a generally biaxial stretching sheet element of metal as illustrated in
Fig. 6.9. Plastic stretching is brought about by an outward expansion velocity

x

y

y

x

t

u

Fig. 6.9. Biaxial expanding element of metal plate with current thickness t due to
imparted outward velocity u. Principal in-plane plastic stretching rates are identified
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u imparted to the body. Current thickness of the element is t, while in-plane
principal stretching rates are ε̇x and ε̇y, respectively. Equivalent plastic strain
rate in the element is provided through the relation,

˙̄ε =

√
2
9

[
(ε̇x − ε̇y)2 + (ε̇y − ε̇z)

2 + (ε̇z − ε̇x)2
]

. (6.26)

Through-the-thickness stretching rate ε̇z is related to the current thickness t of
the element through the relation ε̇z = ṫ/t. The present problem is adequately
addressed by considering motions characterized by the constant proportion-
ality α of the in-plane stretching rates,

α = ε̇y/ε̇x . (6.27)

Special cases, of course, include spherical, or equiaxial, expansion (α = 1),
uniaxial cylindrical expansion (α = 0), and the expanding ring (α = −1/2).

Combining (6.26) and (6.27), along with the incompressibility condition,

ε̇x + ε̇y + ε̇z = 0 , (6.28)

yields,

˙̄ε = −
√

4
3

(1 + α + α2)
(1 + α)2

ε̇z . (6.29)

Equivalent plastic strain rates relative to the thinning rate and expansion rate
as a function of α are illustrated in Fig. 6.10.

The plane stress (σz = 0), effective stress is provided by,

σ̄ =
√

σ2
x + σ2

y − σxσy , (6.30)

where σx and σy are the in-plane principal stresses. In the present development
stresses and strains are thickness averages through the sheet and only in-plane
stresses are non-zero. For the corresponding proportional loading to the elastic
limit,

σx = E
1 + αν

1 − ν2
εx , (6.31)

σy = E
α + ν

1 − ν2
εx , (6.32)

where E is Young’s modulus and ν is Poisson’s ratio. The stress ratio is then,

σy

σx
=

α + ν

1 + αν
. (6.33)

For a von Mises yield condition,

σx =
Y√

1 − β + β2
, (6.34)
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Fig. 6.10. The ratio of equivalent plastic stretching rate to the thinning rate is
shown by the solid curve. The ratio to the expansion rate is provided by the bro-
ken curve. Values for expanding ring, expanding sphere and a uniaxial expanding
cylinder geometries are identified

σy =
βY√

1 − β + β2
, (6.35)

where, Y is the yield stress and β is the stress ratio in (6.33). Equation (6.30)
for a von Mises material gives σ̄ = Y .

A power-law hardening representation for the adiabatic effective stress
versus strain behavior of the material of concern will be assumed of the form,

σ̄ = Aε̄n , (6.36)

where both the coefficient A and the exponent n may, in general, depend on
the biaxial proportionality parameter α. An effective in-plane tension T is
provided by the product of the effective stress and the current thickness,

T = σ̄t = Aε̄nt . (6.37)

In the present model, onset of fracture is assumed to occur according to a
maximum load instability criterion; namely, when the tension T (ε̄) achieves
a maximum under the proportional deformation loading. This instability cri-
terion has been found to satisfactorily reproduce results of more detailed sta-
bility analyses [e.g., Romero, 1991]. The maximum of T (ε̄) is identified from
the differential,
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dT = nAε̄n−1tdε̄ + Aε̄ndt . (6.38)

From (6.29),
ε̄ = −f(α)εz , (6.39)

where, f(α) is identified in the equation and,

dε̄ = −f(α)dεz = −f(α)dt/t . (6.40)

Combining (6.38) and (6.40), and equating the differential to zero, yields for
the fracture criterion the critical effective fracture strain,

ε̄f = f(α)n(α) =

√
4
3

(1 + α + α2)
(1 + α)2

n(α) , (6.41)

where the possible dependence of n on the biaxial proportionality parameter
α is noted. Identifying through-the-thickness strain as εz = ln t/to thinning
at fracture is,

tf
to

= e−n(α) . (6.42)

Zero plastic volume strain for proportional loading of the familiar geometries
requires that,

rf t
κ(α)
f = rot

κ(α)
o , (6.43)

where, κ(α) = 1/2, 1, and 2 for an expanding sphere, uniaxial cylinder, and
expanding ring geometry, respectively. The radial expansion at failure is then,

rf

ro
= eκ(α)n(α) . (6.44)

In the absence of further data it is sensible to propose that the power-law
hardening coefficient n in (6.36) be independent of the proportionality para-
meter α. The expanding ring data for U6Nb [Grady and Olsen, 2003] then
provide a measure of the coefficient n for the dynamic expansion and fracture
of the ductile uranium alloy. The data of Olsen indicate that rf/ro

∼= 1.3 and
(6.44) provides n 
 0.13.

Based on a power law hardening exponent of n 
 0.13 for the uranium alloy
U6Nb, the through-the-thickness thinning, radial expansion, and equivalent
plastic strain is shown in Fig. 6.11 as a function of the biaxial stretching para-
meter α. It is notable that both expansion and equivalent plastic strain reduce
markedly as biaxial deformation approaches cylindrical, and then spherical,
expansion.

Concerning the load maximum localization and fracture criterion, it has
been noted [e.g., Storen and Rice, 1975; Needleman and Tvergaard, 1992] that
only for α ≤ 0 is there a line of zero extension determining the orientation of
the thinning localization. For α > 0 a line of zero extension does not exist.
Nonetheless, deformation localization when both in-plane principal strains are



132 6 Application to the Biaxial Fragmentation of Shells

-1.0 -0.5 0 0.5 1.0 1.5
0

0.25

0.50

0.75

1.00

1.25

1.50

y x

f ot t

( )f

D
ef

or
m

at
io

n 
to

 F
ra

ct
ur

e

f or r

Ring

Cylinder Sphere

-1.0 -0.5 0 0.5 1.0 1.5-1.0 -0.5 0 0.5 1.0 1.5
0

0.25

0.50

0.75

1.00

1.25

1.50

0

0.25

0.50

0.75

1.00

1.25

1.50

y x

f ot t

( )f

D
ef

or
m

at
io

n 
to

 F
ra

ct
ur

e

f or r

Ring

Cylinder Sphere

Fig. 6.11. Equivalent strain, thinning and radial expansion at fracture onset for
U6Nb uranium alloy based on a power law hardening and load maximum model

positive is observed. Romero (1991) has demonstrated instability of the Levy-
von Mises equations of a biaxial stretching (α = 0) perfectly plastic plate,
providing some justification of the load maximum criterion outlined here.

The power law hardening relation in (6.36) might be expected to depend
on the biaxial load path α if deformation softening due to growth of microvoid
damage in turn depended on the state of stress triaxiality [e.g., Mott, 1948;
Hancock and MacKenzie, 1976]. Stress triaxiality equals 1/3 for α = −1/2
and 2/3 for α = 1. Additional test data would, of course, be needed to assess
such load path dependence.
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7

Scaling Relations for Fragmenting Shells

Mott (1943) recognized the need for scaling relations to allow designers the
immediate ability to assess effects of parameter changes on the fragmenta-
tion characteristics of exploding bombs and warheads. Following extensive
and insightful analysis, Mott arrived at the following scaling relations for the
fragmentation of exploding cylindrical shells,

n (m) dm = Be−M/MAdm , (7.1)

MA = Ct5/6d
1/3
2 (1 + t/d2) . (7.2)

In Mott’s notation (7.1) provides a statistical fragment size distribution with
n(m)dm being the number of fragments with mass between m and m + dm,
while M = m1/2 and MA is a fragment size scale parameter dependent on
the case inner diameter d2 and case wall thickness t according to (7.2). In
(7.1) and (7.2), B and C are constants dependent on explosive and metal
properties of the specific system. The development of Mott’s scaling relations
is discussed later.

7.1 Fracture Model Based Scaling Relations

Here an alternative set of scaling relations for exploding munitions fragmen-
tation is considered with the same intentions as Mott. This is undertaken
for several reasons. First, additional physics of dynamic fragmentation has
been explored since the seminal study of Mott, and efforts are taken to in-
corporate this science into the scaling relations. Further, a broader range of
both explosives and of case metals and their metallurgical preparation are of
current interest and the intention is to include material, as well as geometry
properties, explicitly into the scaling relations.
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One reasonable representation of appropriate scaling relations is presented
here:

N (m) = Noe
−(m/µ)β

, (7.3)

µ

ρt3
= a

(r

t

)2n/α
(

Gt2−α

ρu2

)n/α

. (7.4)

Equation (7.3) is the statistical fragment size distribution with N(m) the cu-
mulative number of fragments with masses greater than mass m, No is the
total number of fragments, and µ is the distribution scale parameter charac-
terizing the mean fragment size in the explosive event. The constant β is a
reasonably constrained distribution shape parameter.

Equation (7.4) provides the distribution scale parameter µ in terms of
geometric and kinematic properties of the exploding munitions. Briefly, a is
a fragment aspect ratio parameter r and t are munitions case radius and
thickness, G characterizes fracture resistance of the munitions case, while
u is the effective expansion velocity of the case imparted by the explosive
detonation. Exponent parameters, n and α, are physical constants. The above
parameters will be discussed more fully in the following paragraphs.

7.1.1 Fragment Distribution Scaling Relation

We strive here for a physically based analytic description of the fragment size
distribution resulting from an exploding munitions event. The method pur-
sued complements and extends the approach pursued by Lineau (1936), and
furthered in the works of Mott. It is in a sense quite general, encompassing the
distributions proposed by Mott, as well as, later efforts. Features of survival
statistics considered in Chap. 4 are applied.

Consider, a mass M broken into No fragments and, for the purpose of
illustrating the theoretical development, consider the measure of this mass
identified on a horizontal scale with mass units as shown in Fig. 7.1. No

fragments are determined by No − 1 randomly placed breaks. At any break,
consider the probability that the mass of the corresponding fragment is mass
m within an interval dm. Couched within the framework of survival, or hazard,
statistics [Hahn and Shapiro, 1967] this probability is,

f (m) dm = h (m) e−
∫

h(m)dmdm , (7.5)

where, h(m)dm is the chance of a random break in the fragment mass interval
m to m + dm as described in Chap. 4.

The statistical fragment size distribution is constrained by specifying the
functional dependence of h(m) on the fragment mass m. This is done by either
exploring additional physics specific to the fragmentation process, or by hy-
pothesis to be tested by data, or alternative random fragmentation processes,
such as the geometric methods pursued in Chap. 2.
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No Fragments of
Variable Mass m

Fig. 7.1. Line of length corresponding to total mass M broken at random into N
fragment length of variable mass m by No-1 fractures

The simplest assumption is h (m) = ho, a constant. Thus f(m) in (7.5) is,

f (m) = hoe
−hom , (7.6)

and the complementary cumulative fragment number distribution is,

N (m) = Noe
−m/µdm , (7.7)

where, µ = 1/ho is the distribution scale parameter. The possible applicability
of this distribution was suggested by Grady and Kipp (1985).

Mott and Linfoot (1943), following the theoretical work of Lineau (1936),
assumed that a linear size measure x of the fragment dimension was a ran-
dom variable and hence hodx provided the chance of fracture determining a
fragment of mass m. They considered the breakup of thin walled cylinders
where fragment dimensions were large compared to the wall thickness. This
suggests x ∼ m1/2 and dx ∼ m−1/2dm/2. Thus,

h (m) =
1
2µ

(
m

µ

)−1/2

, (7.8)

is an appropriate hazard function and (7.5) becomes,

f (m) =
1
2µ

(
m

µ

)−1/2

e−(m/µ)1/2
, (7.9)

and the corresponding complementary cumulative number distribution,

N (m) = Noe
−(m/µ)1/2

. (7.10)

In the present development of fragmentation scaling relations we limit the
functional dependence of h(m) to,
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h (m) =
β

µ

(
m

µ

)β−1

, (7.11)

which, when integrated, leads to the size distribution scaling relation of the
Weibull form,

N (m) = Noe
−(m/µ)β

. (7.12)

This relation clearly encompasses the previous examples. Namely, β = 1/2
corresponds to the distribution arrived at by Mott and Linfoot (1943), while
β = 1 corresponds to that suggested by Grady and Kipp (1985). Additionally,
Mott’s later physics based statistical fragmentation theory suggests values of
β greater than unity.

Generality of the parameter β for a munitions-specific scaling equation is
warranted for a number of reasons. Mott and Linfoot argued that when the
fragment distribution was dominated by fragments of a size less than the case
thickness that β = 1/3 was probably more appropriate. For a specific munition
system a range of expansion strain rates will lead to statistical heterogeneity
(a different size parameter at different positions along the munitions case).
This breakup feature will broaden the distribution leading to smaller effective
values of β. On the other hand, a degree of case scoring, or other processes,
with the intention of biasing the distribution toward a unique size has the ef-
fect of increasing the distribution shape parameter β. As β approaches infinity,
(7.12) approaches a Heaviside function.

In the complementary cumulative fragment number distribution, the total
fragment number is not readily determined experimentally. It is not, however,
a third distribution parameter but is constrained by the total mass of the
distribution. The differential of the number distribution from (7.12) provides,

dN = No
β

µ

(
m

µ

)β−1

e−(m/µ)β

dm . (7.13)

The mass differential is then,

dM = mdN = Noβ

(
m

µ

)β

e−(m/µ)β

dm . (7.14)

Carrying out the integration it is readily shown that the total number and
mass are related through,

No =
Mo

µΓ ((1 + β)/β)
. (7.15)

7.1.2 Fragment Mass Scaling Relation

When fragments from the exploded cylindrical case retain portions of the
inner and outer case surfaces, while length and width dimensions are sensibly
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Fig. 7.2. Representative fragment identifying fragment thickness (and case wall
thickness), fragment width, and fragment length, where a is the nominal fragment
length-to-width aspect ratio

larger than the fragment (case) thickness t, as illustrated in Fig. 7.2, then
the fragment mass scale parameter from the fragment distribution relation is
related to a characteristic fracture spacing s through,

µ = aρs2t . (7.16)

In (7.16) fragment length is related to the fragment width s through an aspect
ratio a, which may depend on details of the detonation and the case geometry.

If the distribution is dominated by fragments of dimension smaller than
the case thickness then,

µ = aρs3 , (7.17)

will be assumed. Equations (7.16) and (7.17) can be generally written,

µ = aρt3
(s

t

)n

, (7.18)

where n = 2 yields (7.16), while n = 3 gives (7.17). In this form the distribu-
tion size parameter µ is conveniently scaled to a cubic fragment of dimension
equal to the case thickness t.

The nominal fracture spacing s will be written,

s =
(

G

ρε̇2

)1/α

, (7.19)

where, the constant α ranges from 2 ≤ α ≤ 3 for the fragment spacing models
considered. The constant G is case metal fracture resistance with dimensions
of energy per unit area when α = 3 and energy per unit volume when α = 2.
The dominant circumferential stretching rate is ε̇ = u/r. Substitution and
rearrangement leads to the scaling relation provided previously,
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µ

ρt3
= a

(r

t

)2n/α
(

Gt2−α

ρu2

)n/α

. (7.20)

In the dimensionless scaling relation for the size parameter µ, three effecting
terms on the right hand side are noted. First is the aspect ratio a, which may
in general depend on the size parameter µ. In the fragmentation of cylindrical
cases, however, biaxiality of strain rate and the detonation contact sweep
velocity are the principal physical conditions controlling a. An estimate of
fragment aspect ratio in case fragmentation was provided by Mott (1943).

A measure of the munitions case curvilinearity (ratio of case radius to
thickness) is included in the second term on the right. This term provides the
geometric contribution to the stretching rate driving fragmentation.

The last term on the right includes the ratio of two energy densities (en-
ergy per unit volume). In the denominator is a measure of the expansion
kinetic energy of the exploding munitions case. It is the product of the den-
sity and the square of the outward expansion velocity of the case metal at the
time of breakup and fragmentation. It is reasonably estimated as the terminal
expansion velocity of the munitions case brought about by the explosive accel-
eration. This velocity is readily calculated with current continuum computer
codes. Alternatively, Gurney equations [e.g., Gurney, 1943; Jones et al., 1980]
are quite adequate for calculating munitions case expansion velocities. The
latter have the added benefit of explicitly revealing scaling behavior among
explosive and munitions case properties.

In the numerator of the final term is a property G, which determines the
fragmentation resistance of the munitions case metal. This fragmentation re-
sistance depends on the model for fragmentation assumed to best describe the
material response. The model may include material properties such as frac-
ture or shear band toughness, yield stress, or properties characterizing failure
from intrinsic or dynamic imperfects of the munitions case. The fragmenta-
tion energy may depend explicitly on the case thickness and directly affect
the scaling of system performance.

Several models of the case fragmentation process have been pursued in
the previous chapters leading to a measure of the fragmentation resistance G.
The energy-based theory of dynamic fragmentation provides,

G = 48Γ , (7.21)

or in terms of the fragmentation toughness,

G = 24K2
f/ρc2 . (7.22)

The observant analysis will note that the expressions above are a factor of two
larger than the value of G resulting from (3.23). Equtions (7.21) and (7.22)
result from a different formulation of the energy based fragment size theory
[see Grady and Kipp, 1993; Kipp and Grady, 1995]. These expressions are
used here to maintain consistency with the presentation of the same results
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earlier [Grady, 1999; Reedal et al., 1999]. The parameter α in the size scaling
relation is α = 3, when (7.21) or (7.22) is applied.

The statistical fragmentation theory of Mott (1943) is also amenable to
the present scaling relation formulation. In terms of the Mott γ factor the
following expression for the fracture resistance can be determined,

G = 2πY/γ , (7.23)

where α = 2 in (7.20).

7.2 The Mott Scaling Relations

Mott in 1943 developed two relations, which were intended for scaling explod-
ing HE shells with respect to the statistical distribution in the sizes of metal
fragments resulting from the explosion. They were, in his notation,

N (m) dm = Be−M/MAdM , (7.24)

MA = Ct5/6d
1/3
2 (1 + t/d2) . (7.25)

In (7.24) and (7.25), B and C are constants, while M = m1/2, where m is a
fragment mass. Cylinder dimensions are provided by d2 and t. The geometry
is illustrated in Fig. 7.3.

Equation (7.24) is a description of the statistical fragment size distribution,
which is discussed in some detail in Chap. 2. Equation (7.25) provides a scaling
relation (restricted to cylindrical geometries) for the characteristic fragment
size. These relations continue to be used, frequently inappropriately, up to the
present day.

d1/2

d2/2

t

d1/2

d2/2

t

Fig. 7.3. Fragmenting cylinder geometry in the Mott scaling relations
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Here we assess the second Mott scaling relation provided in (7.25). The
size scale parameter MA in the statistical fragment distribution from (7.24),
has dimensions of m1/2 and can be written,

MA ∝
√

ρtsl , (7.26)

where, l and s are characteristic length and width of resulting fragments,
while t is the through-the-case thickness of a fragment. Mott assumed initially,
and later provided analytic support for, a constant proportionality between
fragment length and width,

l ∝ s , (7.27)

and therefore,
MA ∝

√
ρts2 . (7.28)

Mott pursued two theories in establishing a predictive relation for the
circumferential fracture spacing s and, through (7.28), the mean fragment
size. First was a work transfer wherein a resisting work of fracture is equated
to a driving kinetic energy in the expanding cylinder breakup. The second
was the tensile strain activation of statistically distributed fracture sites. He
clearly favored the second analytic pursuit and in later discussions offered
arguments which downplayed applicability of the former.

It was, however, the former work balance calculation which led to the
precise form of the oft quoted fragment size scaling rules of Mott. To calculate
the characteristic fracture spacing s, Mott equated the work W required to
open a single fracture with the stretching kinetic energy on both sides of the
fracture. This calculation provided the following relation for the characteristic
fragment width,

s =
[
24r2W

ρu2

]1/3

. (7.29)

Combining material parameters into a constant of proportionality K (7.28)
and (7.29) are solved for,

MA = Kr2/3t1/2u−2/3 . (7.30)

The parameters r and t are values for the radius and thickness of the cylinder
at the time of fracture. Since the product rt is proportional to the constant
cross-sectioned area (volume) of the expanding cylindrical shell it is a rea-
sonable approximation, as pointed out by Mott, to replace these geometry
parameters with their initial values in (7.30).

The remaining step in developing the size scaling relation is to relate the
velocity at breakup to dimensions of the cylinder. Mott defines the following
ratio of the outer diameter d1 and inner diameter d2 of the cylindrical shell,

R =
d2
1 − d2

2

d2
2

, (7.31)
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which is readily identified as proportional to the ratio of the cross-sectional
area (or mass) of the metal shell to that of the contained explosive charge.
For example,

R ∝ Mg/Cg , (7.32)

is the ratio of metal mass to explosive charge mass common to the Gurney
analysis [Gurney, 1943; Jones et al., 1980] in cylindrical geometry. Mott pro-
posed that the product,

Ru2 = constant , (7.33)

leading to the formula for the expansion velocity,

u = uod2/
√

d2
1 − d2

2 , (7.34)

where uo is considered to be a property only of the explosive-metal system.
The property uo will depend on the extent of expansion and is selected to
correspond to the expansion at fragmentation. Mott attributed this velocity
formula to a theoretical treatment of G. I. Taylor and reference an internal
report in his presentation.

Equations (7.33) and (7.34) are recognized as a consequence of energy
conservation arguments. Writing,

1
2
Mgu

2 (r) + CgU (r) = constant , (7.35)

where the first term is the kinetic energy of the expanding metal shell, while
U(r) is the specific compressional energy of the expanding explosive products.
If the compressional energy U(r) is identified as a material constant E at the
initial cylinder radius r = ro then (7.35) leads to,

u (r) =
√

2E√
Mg/Cg

(
1 − U (r)

E

)
= uo (r)

√
Cg/Mg , (7.36)

where, r in uo(r) is the radius at which fracture occurs, and uo(r) is the
explosive and metal specific uo identified in (7.34).

Similarities of this analysis with concurrent work of Gurney (1943) are
evident. Gurney, in fact, references the work of Taylor in the closing pages of
his study. Mott and Taylor fail to account for kinetic energy of the expanding
explosive products, a factor prominent in the development of Gurney.

Using 2r = (d1 + d2) /2 and 2t = (d1 − d2) in (7.30) and combining with
(7.34) leads to,

MA = Ct5/6d
1/3
2 (1 + t/d2) , (7.37)

for the geometric scaling law of Mott for the characteristic fragment size. The
Mott constant C is dependent on case metal and explosive properties. It is
readily calculated in terms of the properties introduced by Mott as,

C ∝ ρ1/6W 1/3u−2/3
o , (7.38)

where the proportionality constant requires knowledge of the fragment aspect
ratio.
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Fig. 7.4. Full Scale Representation of 8” ID × 8” L Unit

7.3 Application to Exploding Cylinder Fragmentation

Exploding steel cylinder tests appropriate for testing the scaling relation pro-
vided in (7.3) and (7.4) have been reported previously [Grady et al., 2001;
Chhabildas et al., 2001]. Explosive fragmentation experiments were performed
on both heat-treated and as-received AERMET-100 steel cylindrical shells.
Three separate geometries were tested. A representative geometry is shown in
Fig. 7.4. Two units of each geometry were tested – one each on heat-treated
(ht) and as-received (ar) steel. Four tests were performed on right circular
cylindrical shells with length equal to inner diameter. Replica scaling effects
were investigated in this geometry, where tests were identified as full scale (FS)
with length ∼= 20 cm, or half scale (HS) with length ∼= 10 cm. Wall thickness
to inner radius ratio was t/r = 0.08.

Two additional tests were performed on thick-walled cylinders (TW),
t/r = 0.4, with length equal to twice the inner diameter. These tests, when
compared with half-scale tests, investigated strain rate scaling of fragmenta-
tion at a fixed inner diameter.

In these tests high-speed photography provided data for onset of fracture
and explosive gas breakout. Flash radiography provided statistical velocity
data on fragment ejecta. Soft recovery of fragments was pursued by capture
in attapulgite/cellutex arresting media. Mass and dimension measurements on
all collected fragments provided statistical data on fragment size and shape.

7.3.1 Fragment Distribution Data

Fragment distributions for the six experiments performed were determined.
Cumulative distributions for the half- and full-scale tests on the heat treated
material shown in Fig. 7.5 are representative. An analytic representation pro-
posed as one of the two scaling relations of the form,
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Fig. 7.5. Fragment distributions for AerMet 100 steel fragmentation tests

N (m) = Noe
−(m/µ)β

, (7.39)

was fit to the fragment distribution data. Analytic curves are also shown
in Fig. 7.5. Distribution parameters for the six experiments are provided in
Table 7.1. Recall that the number parameter is not independent, but is con-
strained by the total recovered fragment mass M through the relation provided
in (7.15).

7.3.2 Distribution Scale Parameter Data

Scale parameter µ for the four half-scale and full-scale experiments normalized
by ρt3(0.52 g (HS), 4.4 g (FS)) is plotted in Fig. 7.6. Tests on heat-treated steel



146 7 Scaling Relations for Fragmenting Shells

Table 7.1. Fragment Distribution Parameters

Parameter HS(ht) FS(ht) HS(ar) FS(ar) TW(ht) TW(ar)

Scale(µ) 0.31 g 2.6 g 0.70 g 5.2 g 5.0 g 7.5 g
Shape(β) 0.67 0.67 0.55 0.85 0.55 0.55
Num.(No) 66 79 42 88 76 69

HS = half scale, FS = full scale, TW = thick wall, ht = heat treated,
ar = as received.

Material properties assumed for AERMET-100 steel: Y = 1.5 GPa, Kf =
70 MPa/m1/2, ρ = 7900 kg/m3, c = 5000 m/s, γ = 80

are clearly consistent with replica scaling. Distributions for tests on as-received
steel do not as tightly constrain µ, but values here are also not inconsistent
with replica scaling. Observations on scaling have implications on the several
theories predicting the fragmentation resistance G in the scaling equations.

The energy-based theory based on a fracture toughness, Kf fragmentation
resistance predicts,

G = 24K2
c /ρc2 , (7.40)

with exponent α = 3. Mott’s statistics-based theory, on the other hand, yields,
with exponent α = 2,

G = 2πY/γ . (7.41)
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Fig. 7.6. Distribution scale parameter for cylinder fragmentation tests
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Separate material properties for the two preparations of AERMET-100
steel were not available. Precise values are not critical to the present observa-
tions, however, and the very reasonable values used are included in Table 7.1.
No attempt is made to account for the obvious difference in strength proper-
ties of heat-treated and as-received steels. An expansion velocity u = 2000 m/s
and an aspect ratio of a = 1.5 assumed are consistent with measured velocities
and inspection of recovered fragments. Calculations of the scale parameter µ
from the scaling equation based on either the Kf energy expression or the
Mott statistical expression are compared with experiment in Fig. 7.6.

It is interesting that fracture resistances determined from Mott’s statistical
theory and the energy-based theory of Kipp and Grady provide equally rea-
sonable quantitative predictions of the experimental fragment size scale µ. The
Mott theory is consistent with the observed replica scaling, whereas the frac-
ture toughness based theory is not. It is well known [e.g., Lawn and Wilshaw,
1975] that for ductile fracture in metals, yield stress and fracture toughness
can be related through a process zone length scale. When this length scale
approaches characteristic specimen dimensions (shell case thickness for exam-
ple) size effects can be observed. Present replica scaling results for fragment
size suggest that the effective toughness must depend on case thickness. Con-
sidering realities of the complex fracture mechanisms in expanding cylinder
fragmentation including cooperative interaction of adiabatic shear banding
along with shear and tensile fracture such dependence should probably not be
surprising.

A further comparison is made with fragmentation data from the 4×4 half-
scale (HS) cylinders and the 4× 8 thick wall (TW) cylinders. Both units have
the same inner diameter of 4 inches (the same charge diameter), but the sub-
stantial difference in wall thickness will lead to markedly different expansion
velocities and fragmentation strain rates. Strain rate histories are calculated
with the CTH continuum solid dynamics (CSD) wavecode. Maximum strain
rates of approximately 1.1× 104/s and 2.6× 104/s are calculated for the TW
units and HS units, respectively. Maximum strain rates occur at about 10–20
percent strain.

The size scale parameter µ for the respective tests is plotted as a function
of the corresponding calculated maximum strain rate in Fig. 7.7. Again the
data is compared with predictions based on Mott’s statistical theory and the
energy-based fragmentation toughness controlled theory. The same properties
assumed for AERMET-100 steel provided in Table 7.1 were used.

As before both theories provide a reasonable absolute prediction of the size
scale parameter. Dependence on strain rate of µ ∼ ε̇3 for the Mott theory, in
contrast to µ ∼ ε̇2 for the Kf -energy theory, again appears to be in better
agreement with the data. This agreement is certainly true for the heat-treated
steel. It is less certain for the as-received steel.
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Fig. 7.7. Distribution scale parameter for cylinder fragmentation tests and depen-
dence on expansion strain rate for the three test types

7.3.3 Distribution Shape Parameter Data

In the distribution representation,

N (m) = Noe
−(m/µ)β

, (7.42)

was selected to describe the present fragment data. The shape parameter β
provides a measure of the spread in fragment size.

For the present six experiments β was found to range over about 0.55 ≤
β ≤ 0.85 with an average of 0.65. The initial baseline distribution proposed
in the first of the Mott papers [Mott and Linfoot, 1943] required β = 1/2.
It is noted that present experimental values are not significantly higher than
the Mott baseline β and this distribution with β = 1/2 certainly has a long
history of adequately quantifying munitions fragmentation data.

Nonetheless, it can be effectively argued that (7.42), with β = 1/2, is not
the fundamental theoretical representation for natural fragmentation. These
arguments are voiced earlier in this study and are probably supported most
strongly by Mott’s later theoretical efforts. The distribution shape parame-
ters β from the distribution of the analytic form in (7.42) that were fit to the
fragment number versus mass distribution data for the steel cylinder fragmen-
tation tests are shown in Fig. 7.8. The parameter β ranges between 0.5 and
1.0 and shows no trend with the experimental parameters varied in the tests.
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Grady and Kipp (1985) have proposed (7.42) with β = 1 for the basis
distribution. It has been suggested in the present report that this is the least
biased distribution when no additional knowledge of the breakup physics is
available. This distribution has been used within the CTH wavecode fragmen-
tation model.

Accepting the Grady and Kipp distribution (β = 1) as the basis distribu-
tion for a statistically homogeneous event. In the present application statisti-
cal homogeneity implies that each and every point of the expanding cylinder
fragments under the same driving strain rate. If this is not the case (which is
always in practice) then the mean fragment size (and scale parameter µ) would
vary with position and the distribution would be statistically heterogeneous.
A distribution of the form of (7.42) with β = 1 would then apply at every
point with µ a function of position. The heterogeneous distribution is formed
from a superposition of each and every point distribution (a Poisson mixture
as described in Chap. 2). To fit such a distribution with a single function of
the form of (7.42) would require reduction of the shape parameter β to some
value less than unity.

A CTH simulation on one of the right cylinder explosive fragmentation
experiments [Kipp, 2001] provides the mass distribution over strain rate at
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Fig. 7.9. The cylinder mass distribution over break up strain rate as determined
from CTH wave code simulation

fragmentation shown in Fig. 7.9. The spread in strain rates was not suffi-
cient to account for the observed reduction in the shape parameter β through
statistical heterogeneity. It is suspected that not addressing the issue of aspect
ratio of fragments may account in part for the present disagreements.
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8

Experimental Fragmentation

A number of studies over the intervening years since Mott’s seminal theoretical
efforts in dynamic fragmentation have been undertaken which allow testing
of his theories. Some were pursued specifically for that purpose. Others were
undertaken for other applications, but nonetheless provide useful test data for
examining aspects of the theory.

Selected experiment studies are examined in the present section and com-
pared with the fragmentation theory of Mott. This selection is, of course, not
exhaustive. We will show that many of the theoretical concepts introduced
stand up well to experimental scrutiny. Certain mysteries remain unresolved,
however, and provide the challenge for yet more advanced theoretical efforts
in fragmentation.

8.1 Olsen Expanding Ring

The expanding ring experiment to test the dynamic deformation and failure
properties of engineering metals has continued to be pursued at Lawrence Liv-
ermore National Laboratory (LLNL) [Gourdin, 1989; Gourdin et al., 1989].
Extended development of the ring method provided an effective technique for
assessing the dynamic tensile strength and strain-to-fracture properties, as
well as the statistical fracture and fragmentation characteristics of the mate-
rial. Here, we focus on extensive dynamic data obtained with the technique
on uranium-6%-niobium (U6Nb) metal [Olsen, 2000; Grady and Olsen, 2003].
Data for this study were examined in an earlier section. Here a more thorough
examination of the test method and the experimental results is undertaken.

8.1.1 The Experimental Method

Expanding ring tests were performed on machined U6Nb rings subjected to
selected metallurgical heat treatment. Test samples were rings 34.4 mm inner
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Fig. 8.1. Test configuration and diagnostics for expanding metal ring experiments
are illustrated schematically

diameter and square cross section 0.76 mm on a side. The test configuration
is illustrated schematically in Fig. 8.1.

The magnetic field excited by pulsing an electric current through a solenoid
accelerates a metal driver ring and sample (U6Nb) ring radially outward. Ex-
pansion velocities ranging from about 100 to 300 m/s are achieved depending
on the current amplitude. An arrestor fixture stops the driver permitting con-
tinued free flight of the sample ring. Velocity history of the ring is determined
from time resolved velocity, or VISAR, measurements [Barker and Hollenbach,
1972] of the motion at one point on the ring. Free flight of the test ring is
allowed through onset of fracture and fragmentation. Broken ring fragments
are arrested and recovered within a stationary wax cavity in the experimental
test fixture.

8.1.2 The Experimental Results

As noted, velocity histories of the U6Nb rings were measured with time-
resolved velocity interferometry. Measured deceleration of the freely expand-
ing ring prior to fragmentation, was used to calculate tensile flow stress of
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Fig. 8.2. Selected tensile stress versus strain to failure at an expansion rate of
approximately 1.3 × 104/s

the ring up to the time of fracture. Tensile stress, as a function of strain, for
several aged and one annealed test sample is shown in Fig. 8.2. Strain rate
during the free expansion deformation was approximately 1.3×104/s. Tensile
stress for the several aged samples was approximately 1.0 GPa to a fracture
strain (increase in radius) of about 30%. On the other hand, the one annealed
ring specimen exhibited a tensile flow stress of about 2.5 GPa and failed at a
somewhat earlier 20% strain.

In each test the number of fragments produced (equivalently, the number of
fractures) was determined. Fragment number versus the expansion velocity at
fragmentation are shown for the series of U6Nb expanding ring experiments in
Fig. 8.3. The anomalous point high on the graph is the one test on a markedly
differently heat treated U6Nb sample identified as annealed in Fig. 8.2 and is
discussed further, later in this section. A least squares fit, excluding the one
anomalous point, provided the power law representation of the data shown in
Fig. 8.3. Dynamic toughness data for the same data in Fig. 8.3, as calculated
through the energy-based relation relating fragment number to toughness,

N =

(
ρcε̇√
12Kf

)2/3

, (8.1)

are shown in Fig. 8.4.
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Fig. 8.3. Fragment number versus expansion velocity at fracture for U6Nb expand-
ing ring fragmentation tests
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Fig. 8.5. Comparison of cumulative fragment distribution for one representative
U6Nb expanding ring fragmentation test with the theoretical Mott fragment size
distribution

In one representative test each fragment was separately weighed and the
cumulative fragment size distribution shown in Fig. 8.5 was obtained. The
data presented in Figs. 8.2 through 8.5 are also provided in Table 8.1.

8.1.3 Some Experimental Observations

The present study of dynamic fragmentation is afforded invaluable insight
through a more in-depth examination of the expanding ring experimental
fragmentation results. A metallographic image of a representative fracture is
shown in Fig. 8.6. The outer deformed surface of the stretched ring exhibits an
undulating, uneven surface characteristic of heterogeneous slip-line plasticity.
The reduced area of the fracture surface points to a pre-fracture deformation
localization through plastic necking. The failure process is completed through
pervasive ductile extension fracture through the narrowest portion of the neck-
ing region. Arrested necking regions were also observed in a number of the
recovered fragments.

Ductile deformation, through dimple plasticity, is clearly evident in the
expanded image of the fracture surface shown in the upper fractograph in
Fig. 8.7. The dimple morphology appears tri-modal. Dimple sizes range from
2–3 µm for the smallest up to 15–30 µm for the largest. Inclusions observed
within larger dimples are probably fracture initiation sites. Dimple size may
reflect local fracture speed in the failure process.
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Table 8.1. Expanding ring fracture and fragmentation data

Velocity at Expansion at Stress at Cumulative
Test Failure Failure Failure Number of Distribution
Number (m/s) (%) (GPa) Fragments Mass (g) Num.

22 87.9 – 13 13 0.092 1
42 82.3 0.88 11 11 0.088 2
44 45.1 0.77 8 8 0.078 3
30 73.1 0.9 14 14 0.077 4
14 144.9 0.89 20 20 0.074 5
24 177.9 1.1 18 18 0.074 6
20 192.1 1.18 21 21 0.071 7
16 126.5 – 19 19 0.071 8
26 176.2 1.05 18 18 0.070 9
52 162.2 1.15 18 18 0.069 10
54 160.4 0.89 20 20 0.068 11
10 191.7 0.95 20 20 0.058 12
56 250.8 0.97 23 23 0.056 13
60 239.6 1.15 1.16 28 0.044 14
28 165.7 21 2.65 45 0.039 15
62 171.5 31.7 1.08 18 0.035 16
66 159.4 31.1 1.03 20 0.033 17
68 235.5 31.9 1.01 23 0.025 18
70 259.4 20.7 1.2 27

The failure morphology shown in Fig. 8.6 and the expanded view of the
fracture surface in the upper picture in Fig. 8.7 is illustrative of the fracture
data examined in the present theoretical study. Data from these tests fall
within the scatter of the curve shown in the fragment number plot in Fig. 8.3
even though these data represent materials subjected to several different ag-
ing treatments. All, however, were quenched from elevated temperature leav-
ing the metal in the more ductile alpha phase. The modestly different aging
treatments shows no apparent influence on either the fracture behavior or the
fragmentation statistics.

The present fracture behavior of quenched U6Nb shows marked similarity
to observations of spall fracture in U6Nb [Hixson, et al. 2000, and Zurek,
et al. 2000]. Similarities extend to both the character of dimple plasticity on
fracture surfaces and identification of carbide inclusion fracture initiation sites
in higher resolution metallography. The similarity is not surprising in that
strain rates at fracture in necking regions of the expanding ring tests exceed
104/s, approaching that of the spall experiments. Additionally, tensile stress
triaxiality is amplified within necking regions again approaching conditions
comparable to the spall experiment.

The anomalous data point observed in Figs. 8.2 through 8.4 corresponds,
in contrast, to a sample in which the heat treatment left most of the metal in
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Fig. 8.6. Expanding ring dynamic fracture characteristics

the more brittle gamma phase. A corresponding fractograph of the fracture
surface from the ring experiment on this sample is shown in the lower image of
Fig. 8.7. The predominantly cleavage fracture character differs starkly from
that of the more ductile fracture in the alpha phase material shown above
(actually a variant α′′ of the alpha phase, e.g., Addessio, et al. (2003)).

The expanding ring experiment is also unique, in providing a uniformly
straining dynamic unconfined tension experiment, in which both tensile stress
and plastic strain can be readily measured. Both stress and strain are deter-
mined in the present tests through velocity interferometry measurements of
the radial velocity history. The effective measurement duration occurs from
the time of decouple from the driving, current-carrying ring to the time of
localization onset and failure. Strain and strain rate within this measure-
ment period are provided by the velocity and displacement history. Stress is
determined from the deceleration of free expansion through solution of the
governing momentum equations.

Measured stress versus strain histories provided in Fig. 8.2 for selected ex-
periments include several alpha phase materials subjected to different aging
treatments and the one test on predominantly gamma phase metal. As previ-
ously stated, rings of the alpha phase materials achieve a dynamic flow stress
of approximately 1.0 GPa before failing at expansions approaching 30% and
higher. It should also be emphasized that failure in these materials proceeds
first through deformation localization and ductile necking, and subsequently
by extension fracture. Numerous arrested necking regions were observed in
recovered fragments.
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Fig. 8.7. Fractography of fracture surfaces for predominantly alpha phase (upper
photo) and gamma phase (lower photo) U6Nb expanding ring samples

The test on the largely gamma phase U6Nb sample exhibited, in con-
trast, a dynamic flow stress well in excess of 2 GPa and a markedly re-
duced strain to failure (Fig. 8.2). Further evidence for the starkly more brit-
tle character of dynamic fracture of U6Nb in this preparation is provided
by the significantly reduced indications of ductile necking preceding exten-
sion fracture, clear indications of cleavage fracture as evident in Fig. 8.7,
the larger number of fragments shown in Fig. 8.3 and the correspondingly
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reduced fracture energy provided in Fig. 8.4. Although a static fracture tough-
ness value for the present predominantly gamma phase metal was not avail-
able, an appreciable reduction from the alpha phase material would be ex-
pected.

A final comment on the comparison of the dynamic toughness inferred
through the energy-based theory with the static fracture toughness in Fig. 8.5
is warranted. The reasonably close agreement between the dynamic and static
values is remarkable and speaks strongly for an energy-controlled mechanism
governing the characteristic fracture spacing and fragment number. On the
other hand, one may question why they differ by almost a factor of two. First,
there is a number of simplifying theoretical assumptions in the quantitative
development of the energy theory which could readily account for the dif-
ference. But putting these explanations aside, there is an interesting material
issue which could easily contribute to the difference. Dissipation resulting from
the propagation of a through-going fracture in an engineering size sample of
metal accounts for the observed fracture toughness of the material. Dissipa-
tion on the fracture surface is heterogeneous on some length scale, however
dissipation at any point on the surface may exceed or be less than the aver-
age. The present metal rings with substantially less than a square millimeter
cross section, combined with the statistical selectivity of weaker fracture sites,
could lead to effectively lower dynamic fracture energy, as is observed. This
possible material dependent difference would suggest something other than
geometric scaling if the size of the test rings were varied. This complication
has not been explored.

8.2 Grady and Benson Expanding Ring

The expanding ring fragmentation study on U6Nb metal described in the
previous section nicely supports features of both Mott’s statistical theory and
the energy-based theory of dynamic fragmentation, and offers ideas for merg-
ing the two theories, as was pursued in Chap. 5. Here we will discuss earlier
expanding ring tests of Grady and Benson (1983) in which the experimental
results do not as tidily support the theoretical predictions. These experiments,
in fact, motivated the experimental efforts of LLNL from which the reported
study on U6Nb metal emerged. This previous work was in turn stimulated by
even earlier experiments using explosives to drive expanding rings [Perrone,
1968; Hoggatt and Recht, 1969; Warnes et al., 1981] and magnetic loading
methods [Walling and Forrestal, 1973].

8.2.1 The Experimental Method

The experimental method used in the study is described in detail in Grady
and Benson (1983) with further analysis of the data provided in Grady
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Fig. 8.8. Electromagnetic launch experiment illustrating assembled test (top) and
assembly component parts (bottom) including, launching solenoid test ring and in-
sulating plastic support pieces [Grady and Benson, 1983]

et al. (1984) and Kipp and Grady (1985, 1986). Briefly, a fast-discharge pulsed-
power system was used to electromagnetically accelerate metal rings in a radi-
ally expanding geometry. The test assembly is illustrated in Fig. 8.8 in which
the solonoidal coil carrying the driving current is sheathed with supporting,
and insulating, plastic cylindrical sections and the test metal ring. The tech-
nique provided uniform radial acceleration of the ring to velocities of several
hundred meters per second, although a slight figure-of-eight motion was im-
parted presumably due to the helicity of the driving coil. Another down side
to the technique was an induced electric current in the test ring and the uncer-
tain influence of inductive heating on the plastic flow and fracture properties
of the metal. Estimates of heating are provided in the paper of Grady and
Benson (1983).

Acceleration history and the velocity at fracture were measured with
streak-camera methods. A variety of experiments were performed on alu-
minum and copper rings to assess the statistical fragmentation properties,
including, the strain-to-fracture, the number and size statistics of fragments
created, and details of the fracture process. Both the soft OFHC and the
1100-O aluminum selected for testing in the study fractured in dynamic ten-
sion through ductile necking followed by extension fracture at a late stage in
the necking process. Representative fracture and arrested necking behavior in
the dynamic tests are illustrated for the aluminum in Fig. 8.9. Static tension
tests were also performed on comparable sized dog-bone shaped specimens.



8.2 Grady and Benson Expanding Ring 163

Fig. 8.9. Expanding ring fracture characteristics on 1100-O aluminum illustrating
a completed fracture (left) and an arrested neck (right) [Grady and Benson, 1983]

8.2.2 Fragment Number Experiments

A series of fragmenting ring experiments was performed on 1100-O aluminum
and soft OFHC copper, where the initial capacitor voltage was selected to
vary the strain rate at the time of fracture. Velocities ranging from about 20
to 200 m/s were achieved which corresponded to strain rates from about 103/s
to 104/s. At the lowest voltages it was not uncommon to recover markedly
expanded, but unfractured rings. In these experiments, the number of frag-
ments from each test were counted and correlated with the expansion velocity
at fracture. These data are plotted in Fig. 8.10.

Clearly, fragment number data for ring fragmentation of these two duc-
tile metals is better described by a linear dependence on expansion velocity.
This behavior contrasts with the two-thirds power dependence observed for
the U6Nb ring data. In searching for a possible experimental reason for the
different behavior, electric current flow in the fragmenting aluminum and cop-
per rings is a possible suspect. A pusher ring was used in the technique to
fragment the U6Nb rings keeping residual electric currents to a minimum.
Increasing currents at the higher driving velocities might be expected to in-
fluence breakup through excessive heating in the thinning fracture zones.

Ignoring this complication, the functional trend of the fragment number
versus velocity for the soft aluminum and copper data is better captured
with the earlier Mott statistical prediction of fragment number than with the
energy-based prediction. Working with relations developed earlier, fragment
number per unit length is provided by,

N =

√
ρε̇2

2πY

n

σ
. (8.2)
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Fig. 8.10. Fragment number data for aluminum and copper ring tests. Curves are
the least squares linear fits and predictions from energy-based fragmentation theory

Equation (8.2) is appropriate for sensibly large n, and N is determined by
the statistical standard deviation in strain-to-fracture, (∼= 1.28σ/n) as well as
the flow stress Y , metal density ρ and the expansion strain rate ε̇. The ring
is then predicted to break into a total number of fragments,

NT = 2πRN =
(

2πρ

Y

n

σ

)1/2

u . (8.3)

A measure of the standard deviation in the strain-to-fracture is not known
so a forward prediction of fragment number cannot be made. Linear fits to the
data, shown in Fig. 8.10, can be made, however, and the necessary back calcu-
lation performed for the strain-to-fracture standard deviation calculated from
(8.3). Values of 0.051 and 0.096 are obtained for copper and aluminum, respec-
tively. The standard deviation in strain-to-fracture for copper is found to be
about 12% of the measured static strain-to-fracture (
0.4) and is not unrea-
sonable. The calculated standard deviation in strain-to-fracture for aluminum
is approximately equal to the static strain-to-fracture (
0.1) and seems un-
reasonably large. Dynamic strains for this ductile aluminum are substantially
larger, however, and considerations in the following subsection will show that
this statistical failure measure is also sensible.

The corresponding total fragment number expression based on the fracture
energy theory is,
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NT = 2π

(
ρR

24Γ

)1/3

u2/3 , (8.4)

where Γ is the fracture energy. Equation (8.4) is clearly at odds with the
functional dependence on the expansion velocity in Fig. 8.10. Nonetheless,
predictions based on (8.4) are enlightening. The fracture energy Γ for the two
metals was estimated from the measured static tensile flow stress at fracture
and the deformation strain in the fracture zone inferred from the geometry of
the neck and fracture deformation. Values of Γ = 0.03 MJ/m2 for aluminum
and Γ = 0.07 MJ/m2 for copper were calculated and are probably reasonable
within ±50%. The values for Γ correspond to effective fracture toughness
of 60 MPa·m1/2 and 140 MPa·m1/2 for aluminum and copper, respectively.
Fragment number curves based on (8.4) are shown with the data in Fig. 8.10
and, although functionally wrong, the reasonable agreement in magnitude is
encouraging. An interesting feature to ponder is the scale dependence of the
energy-based relation (dependence on the ring radius R) in comparison to the
scale independence of the Mott relation in (8.3). This scale dependence has
not been explored in any of the previous ring studies.

A fascinating observation is provided by the plot shown in Fig. 8.11, where
the fragment number data for both aluminum and copper are plotted as a
function of the radial kinetic enrgy, ρu2/2. It is remarkable that the data
are effectively collapsed in this plot. The curve is a best fit of the fragment
number to the kinetic energy of the form NT = (T/τ)1/2 with a value of
τ = 64 MJ/m3. Both the statistical Mott and the energy-based relations for
fragment number in (8.3) and (8.4) contain ρu2 in the numerator. Overlay of
the two data sets in Fig. 8.11 then requires that the corresponding governing
fracture properties in either theory for the two materials scale to effect the
invariance. This overlay of the data could certainly be fortuitous but it is
certainly intriguing and warrants further study.

8.2.3 Fracture Strain Experiments

A further intriguing feature of the dynamic expanding ring experiments is
plastic strain accumulated in the metal up to the point of fracture and frag-
mentation. In the work of Olsen (2000) in the previous section on U6Nb this
strain was simply determined by the amount of expansion incurred at the
point of fracture as determined through the VISAR velocity history measure-
ments. In the present study strain to fracture was pursued in somewhat more
depth.

Both of the ductile metals investigated in the present study exhibit sub-
stantial hardening in tension, and static strains-to-fracture of approximately
0.08 and 0.40 were measure for the ductile aluminum and copper, respectively.
These static values provide a reference for examining the strains accumulated
in the dynamic fracture process.

Before investigating the experimental results of the expanding ring tests
of Grady and Benson (1983), it is instructive to examine the fracture strain
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Fig. 8.11. Fragment number data plotted against expansion kinetic energy ρu2/2

behavior inferred from the several theories pursued here. Fracture in the Mott
theory is characterized by a statistical strain-to-fracture and the cumulative
strain-at-fracture completion is provided by the integral,

εf =

∞∫
0

(1 − D)ε̇dt . (8.5)

The factor of 1−D accounts for the fraction of the length over which strain-
ing has arrested due to the propagation of Mott release waves from sites of
fracture. This factor is provided by,

1 − D = e−
∫

λ(ε)dε . (8.6)

A power law representation of λ(ε), which has been pursued extensively in the
present text, provides a Weibull description of the strain-to-fracture statistics.
Alternatively, an exponential representation, and Gumbel statistics, as was
pursued by Mott, could be used. Weibull statistics leads to a cumulative failure
strain in (8.5) of,

εf = αn

(
σn√

2Y/ρε̇2

) 2
2n+1

. (8.7)

For small values of the distribution shape parameter n the failure strain in
(8.7) exhibits a more complex dependence on properties. (For n = 1 a depen-
dence on strain rate of εf ∼ ε̇2/3 is predicted.) However, for sensibly large n,
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as is expected to be the case, (8.7) approaches εf
∼= σ, and failure strain is

effectively independent of the expansion rate, as well as other governing mate-
rial properties. The Mott approach using Gumbel statistics leads immediately
to a rate independent cumulative failure strain.

In the energy-based approach to fragmentation, the theory examines a
representative fracture from fracture inception until completion. It was shown
in Sect. 3 that, if the fracture resistance is characterized by a dissipation
energy Γ, a time,

tf =
(

72ρΓ2

Y 3ε̇

)1/3

, (8.8)

is required for fracture completion and within this time a Mott release wave
propagates a distance,

xf =
(

3Γ
ρε̇2

)1/3

, (8.9)

from the fracture. Within this region a nominal strain,

εf = εfo +

tf∫
0

ε̇dt , (8.10)

is achieved, where εfo is the strain at fracture onset. Equation (8.10) yields,

εf = εfo +
(

72ρΓ2ε̇2

Y 3

)1/3

, (8.11)

and, if the onset of fracture strain εfo is independent of strain rate, a two-
thirds power dependence on strain rate is expected, with a quantitative pre-
diction provided by (8.11) if the material parameters governing Mott frag-
mentation are known.

There are various methods for assessing the fracture strain in the present
expanding ring experiments and two of these methods are explored here. First,
it was convenient to soft capture all of the fragments, measure the total length
L =

∑
Li of the fragments, and identify a fracture strain εf = 1−L/Lo, where

Lo is the initial circumferential length of the test ring. This strain measure is
plotted as a function of expansion velocity in Fig. 8.12 for the same copper
and aluminum fragmenting ring fragment number data shown in Figs. 8.10
and 8.11.

Curves through the data are based on (8.11) and values of Y and Γ deter-
mined from the static tension tests. Fracture onset strain εfo was selected to
best fit the fracture data. This estimate of εfo is somewhat larger than the
static tensile strain-to-fracture for the two metals. For contrast, the strain rate
independent fracture strain intrinsic to the Mott theory is also illustrated.

The various comparisons in Fig. 8.12 certainly raise questions concern-
ing the accumulation of strain up to and during the expanding ring breakup
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Fig. 8.12. Strain at fragmentation for aluminum and copper rings. Comparisons
with energy-based and Mott theories are shown along with measured static strain-
to-fracture

process. Intrinsic rate dependence during deformation leading up to the frac-
ture process is certainly possible and could account for the observations within
the context of the Mott statistical theory. Nevertheless, the reasonably close
quantitative agreement of the measured excess strain with predictions based
on the energy theory suggests that at least some of the features of the addi-
tional cumulative straining implied by the theory during the time-dependent
fracture process are probably correct.

An alternative method for determining the strain-to-fracture in the ring
experiments is to interrogate the accumulated strain in individual fragments.
This can be done by both weighing each individual fragment and measuring
its length. The extension, or fracture strain, corresponding to an individual
fragment is provided by,

L

Lo
= 1 + εf =

L

M

MT

2πRo
, (8.12)

where, L and M are the measured residual length and mass of the fragment,
respectively, MT the total mass of the ring, and 2πRo the initial circumference
of the ring. This approach was pursued in the earlier study [Grady and Benson,
1983], but was not reported in the publication of that study. Four fragments
each were randomly selected from four separate tests conducted on the ductile
aluminum at approximately the same expansion velocities (in the range of
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310–350 m/s), and in which 12 to 13 fragments for each ring was achieved.
(These were not the same experiments reported in Figs. 8.10–8.12.) Fragment
extension determined through (8.12) is plotted against cumulative fragment
number for the sixteen fragments in Fig. 8.13.
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Fig. 8.13. Strain at fragmentation determined from the measured length and weight
of individual aluminum fragments. A Weibull function is fit to the cumulative frag-
ment number data

In this presentation of the data the recovered fragments showed a marked
statistical spread in the strain-to-fracture. The distribution in Fig. 8.13 was
fit to a cumulative Weibull distribution,

N(εf )/No = 1 − e−(εf /σ)n

. (8.13)

A best fit to the data provides a scale parameter σ = 0.45 and shape para-
meter of n = 4.5. A standard deviation in strain-to-fracture of approximately
1.28σ/n ∼= 0.13 is in reasonable agreement with the value of 0.096, previously
back calculated from the fragment number data and the Mott relation in (8.3).

Thus, aspects of the Mott statistical theory are apparently playing a role
in the breakup process. Namely, a statistical spread in the time, and strain,
at which fractures achieve completion. This feature of the fracture process is
further emphasized in the expanding tube experiments of Winter (1979) and
the more recent tests of Vogler et al. (2003).
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8.2.4 Fragment Size Statistics

Fragmentation of the expanding ring appears to be a random process. Both
the breaks in the ring, as well as the well-defined necking regions constituting
arrested fractures, appear to be statistically dispersed around the circumfer-
ence of the ring. Fragments collected from any given test can vary in length
by a factor of ten or more. This statistical fragmentation behavior was also
noted in the expanding ring tests on U6Nb metal discussed in the previous
subsection. Sensible agreement with the Mott treatment of the fragmenta-
tion statistics was found, although this was actually only quantified in the
experimental study for one test.

The statistical distribution in fragment size (or length) was also explored
in the present study. As in the case for fracture strain, there are different ways
that the data can be displayed. For the one experiment on U6Nb a cumulative
distribution in fragment size was presented. The number of fragments from
that one test was too sparse to provide a meaningful density distribution.

In the present series of tests five experiment on 1100-O aluminum con-
ducted at nominally the same expansion velocity, and in which 11 to 13 frag-
ments each were produced, were combined and their collective density distri-
bution was determined. A histogram of the fragment number versus mass is
provided in Fig. 8.14. The mass intervals are 2.5 mg and, since aluminum den-
sity is approximately 2.7 mg/mm3, each interval adds about one mm to the
fragment length. The mode of the experimental distribution peaks somewhere
in the range of 10–20 mg, and tails off for both larger and smaller fragments.

A best fit to the experimental data with both an exponential (Lineau)
and an analytic Mott distribution is also shown in Fig. 8.14. The exponential
distribution, as presented, is clearly at odds with the data. Note, however,
that fragments at the small end of the distribution are within a factor of two
to three times the initial cross section dimension of the metal ring (1 mm ∼
2.7 mg). One might expect different physics to govern fracture at this length
scale. Thus an exponential distribution with a tail off at the small fragment
end due to this different physics might not be an unreasonable representation
of the data.

The Mott distribution appears to be a better description of the data.
Selecting rings with 11, 12 and 13 fragments probably unfairly broadens the
distribution by about 10%. The several large fragments in the large end tail
of the distribution are totally at odds with the Mott distribution, however.

Very distinct arrested necking regions such as shown in Fig. 8.9, were a
conspicuous feature in the present expanding ring experiments. For the sake
of interest a fragment size distribution for this same set of five tests was
generated by also considering the well-defined necks as completed fractures.
This distribution is provided in Fig. 8.15, and again compared with the Mott
and the exponential Lineau theoretical representations of the data.

The Mott distribution does appear to capture the general trend of the
experimental distribution. Again, however, it is not clear whether the decrease
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Fig. 8.14. A collective histogram of the fragments from five ring test on 1100-O
aluminum in which 11 to 13 fragments were produced. The fragment mass in mg is
approximately equal to the length in mm

in fragments at the small end of the distribution is due to the Mott interaction
physics, or just due to the fact that fragment lengths are approaching the ring
cross-section dimension. Also, as in the case of the fragment distribution in
Fig. 8.14, there are several long segments of a size at odds with the Mott
distribution.

It is also of interest to examine the fragment statistics over the wider
range of expansion velocities achieved in the study. Representations of the
fragment distributions such as shown in Fig. 8.14 become difficult, however,
because of the limited number of fragments produced in some of the tests.
One possible approach for examining the random nature of the fragmentation
event is to pick a statistical measure in the spread of the fragments size, such
as the standard deviation for each test, and compare this with the theoretically
predicted standard deviation. This approach has been carried out for a limited
number of the tests on 1100-O aluminum. For each ring fragmentation test the
standard deviation is calculated and normalized by the average fragment size.
This normalized standard deviation is plotted as a function of the number of
fragments in each test in Fig. 8.16.

For comparison, the corresponding statistical measure is calculated for
several of the theoretical distributions. The normalized standard deviation
for the Lineau (exponential) distribution is unity. For some of the tests ex-
amined, the number of fragments produced was small (four in one – six in



172 8 Experimental Fragmentation

0

10

20

30

40

0 10 20 30 40 50 60 70

Fragment Mass (mg)

Mott
Distribution

F
ra

gm
en

t N
um

be
r

Lineau
Distribution

Fragment
Distribution

Necking Regions
Distribution

0

10

20

30

40

0

10

20

30

40

0 10 20 30 40 50 60 70 10 20 30 40 50 60 700

Fragment Mass (mg)

Mott
Distribution

F
ra

gm
en

t N
um

be
r

Lineau
Distribution

Fragment
Distribution

Necking Regions
Distribution

Fig. 8.15. A collective histogram for the same five ring test as the previous figure,
where well defined arrested necks are also included in the partitioning of circumfer-
ential fragments

another). Consequently, it is sensible to calculate the same statistical parame-
ter for the binomial distribution, which is equivalent to the Lineau distribution
assumptions on a finite line length. The normalized standard deviation for the
binomial distribution is also shown in Fig. 8.16. The normalized standard de-
viation of the Mott distribution (∼0.321) is also shown in the Fig. 8.16.

Clearly, the experimental data are statistically tighter than predicted by
a Lineau (or binomial) distribution. There is also a tendency for the standard
deviation of the data to decrease with decreasing fragment number as sug-
gested by the binomial distribution. The measured standard deviations are
not, however, in agreement with the Mott distribution.

Usually it was an errant large fragment in the collection which markedly
increased the experimental standard deviation, but not in every case. Nonethe-
less, the data disagree with the Mott prediction of the spread in fragment size
by nearly a factor of two. So again, the present ring data suggest that the
fragmentation process is more complex than the simpler theories predict.

8.3 Weisenberg and Sagartz Expanding Cylinder

An interesting experiment intermediate between the expanding ring tests dis-
cussed previously, and exploding cylinder tests considered in Sect. 7, was
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Fig. 8.16. Standard deviation normalized by the average fragment size plotted
against the number of fragments produced in the test for the expanding ring frag-
mentation experiments on 1100-O aluminum

performed by Weisenberg and Sagartz (1977). In that study they used similar
inductive methods powered by a large capacitor discharge system to rapidly
expand and fracture thin cylinders of 6061-T6 aluminum. Current is carried by
an internal copper conductor. The copper driver applies a radial driving pres-
sure approaching 2 GPa for several microseconds accelerating the aluminum
cylinder to its terminal radial velocity. Cylinders were 127 mm in diameter
and 102 mm in length with a wall thickness of 1.27 mm. Dynamic fracture was
observed photographically to occur at about 30% expansion strain and at a
strain rate of approximately 104/s. This value is slightly below the approxi-
mately 40% strain in the 1100-O aluminum ring experiments in the previous
section at a comparable strain rate.

During the deformation proceeding fracture, slip lines formed at angles of
approximately 30◦ to the axis of the cylinder. Fracture then occurred along
these slip lines and propagated until breakup was complete. Fragments from
one test [Weisenberg and Sagartz, 1977] collected and displayed are shown in
Fig. 8.17. The collection nicely illustrates the nature of the dynamic fracture
process, including the tendency toward oblique fracture along plastic slip lines
and arrested fractures due to unloading Mott waves. Details of the deformation
processes leading to fracture are more readily observed in the high speed
photograph of one cylinder test shown in Fig. 8.18.
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Fig. 8.17. Fragments from one magnetic expanding cylinder test on 6061-T6 alu-
minum [Weisenberg and Sagartz, 1977]

Fig. 8.18. High speed photograph illustrating deformation and fracture features in
the expanding aluminum cylinder tests of Weisenberg and Sagartz (1977)
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Fig. 8.19. Experimental fragment size data for expanding aluminum ring tests of
Weisenberg and Sagartz (1977) and comparisons with statistical Mott theories

A total of 125 fragments were collected from 11 equivalent tests. All frag-
ments were assigned an effective length by weight. Accordingly a histogram
of the statistical size distribution for the aluminum cylinder data is provided
in Fig. 8.19. In this figure the ordinate identifies the number of fragments
normalized to a single ring which occurred within the corresponding fragment
size (length) interval. The abscissa identified fragment size as a fraction of the
original circumference of the ring.

Experimental fragment size data of Weisenberg and Sagartz (1977) in
Fig. 8.19 are compared with both Mott’s graphical distribution and the an-
alytic distribution for plastic fracture developed previously in Sects. 3 and
4. Both distributions satisfactorily describe the relatively narrow spectrum
of fragment lengths. It is straightforward to calculate the scatter in strain-to-
fracture necessary within the Mott theory to account for the average fragment
size displayed in the ring data. Using reasonable values of Y = 300 MPa and
ρ = 2700 kg/m3 for 6061-T6 aluminum at an expansion strain rate of 104/s
a standard deviation in strain-to-fracture of about 0.25 is calculated from
the Mott relation for fragment number. This estimated scatter in strain-to-
fracture is probably not inconsistent with a nominal 0.3 strain-to-fracture
determined in the experiments of Weisenberg and Sagartz (1977) although,
it is somewhat larger than determined for 1100-O aluminum in the previous
ring tests.
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8.4 Winter’s Expanding Cylinder

A further seminal experimental study of dynamic fragmentation performed in
part to explore features of the Mott theory of fragmentation was conducted
by Winter (1979). In that work thin cylinders (17 mm diameter and 1 mm
wall thickness) of selected metals were loaded to fracture failure with a light
gas gun. Metal cylinders were approximately half filled with an elastomeric
material and nylon solid cylinder projectiles accelerated to velocities of several
hundred meters per second were caused to enter the cylinder and strike the
elastomeric material near the midpoint of the cylinder. Pressures brought
about by the impact led to radial loading and plastic expansion of the metal
cylinder. The intensity of the load and expansion speed of the cylinder was
determined by the impact velocity of the nylon cylinder.

The test geometry and nature of the impact-induced deformation and sub-
sequent failure are illustrated in Fig. 8.20. The cylinders experience rapid,
relatively symmetric radial bulging at the waist. Radial velocity of the bulge
extremum accelerates rapidly to a constant velocity and circumferential strain
rates as determined from this velocity ranged from about 1 × 104/s to
4 × 104/s. Axial stretching rates within the bulge region were reported to
be about one-third the circumferential strain rate.
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Fig. 8.20. Illustrated gun-accelerated-projectile technique for conducting dynamic
expanding metal cylinder fracture experiments
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Fig. 8.21. Plot of fracture number as a function of cylinder expansion for the four
experiments on naval brass of Winter (1979)

High-speed photography was the principal diagnostic providing deforma-
tion history as well as imaging inception and growth of axial fractures as
dynamic deformation exceeded the failure limits of the material. Data are
reported for aluminum, steel, copper, brass, and bronze. The more compre-
hensive study was that on naval brass. Metallurgical examination of fracture
surfaces of recovered fragments revealed the shear fracture characteristics com-
mon to explosive fragmentation of metal shells.

Unique to this study was the effort to explore the temporal history of
fracture inception. The multiple Kerr cell photographic images acquired at
a rate of one every few microseconds (4 µs per frame was reported for the
illustrated test on brass) provided a measure of the accumulation over time
of the number of axial fractures participating in the failure process.

Results for the four tests on brass conducted by Winter (1979) at suc-
cessively higher strain rates are shown in Fig. 8.21. Only fractures within
the field of view imaged by the camera are included in this plot, which was
approximately one-third of the cylinder.

This early study by Winter (1979) highlights a number of features unique
to the failure of rapidly expanding ductile metal shells. The data focusing on
the temporal history of fracture activation, is, however, absolutely unique and
is central to the statistics-based fragmentation theory of Mott. Attention of
the present efforts will address these data.
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Each of the four tests on the brass cylinders shown in Fig. 8.21 illustrates
the fact that the fractures responsible for cylinder failure do not all appear
simultaneously but emerge statistically over time and expansion, in keeping
with the statistical fracture criteria postulated by Mott. These data also illus-
trate that there is, in some sense, a measure of plastic strain incurred before
fracture failure, although, a clear criteria for quantifying this strain-to-failure
is less certain. Winter proposed a criteria based on a certain level of observable
crack opening, which, from his plots of strain-to-failure, appears to correspond
roughly to the cylinder expansion upon appearance of the last fracture. One
might as readily propose strain-to-failure as the expansion upon appearance
of the first fracture.

We will here also identify a strain-to-failure for the four experiments on
naval brass for purposes of assessing the fragmentation theory of Mott. First,
however, the theory will be pursued further to better understand the sense of
strain-to-failure in Mott’s statistics based theory. This pursuit will also reveal
the coupling between the characteristic fracture spacing and the temporal
occurrence of fractures necessitated by the theory of Mott and supported by
the data of Winter.

In the earlier development of Mott’s theory for ductile fracture in Chap. 3,
the total number of fractures per unit circumferential length was provided
through integration over all expansion 0 ≤ ε < ∞. Equally valid would be the
expression providing the predicted number of fractures up to an expansion ε,

N (ε) =
2n

(2n + 1) (aσ)n

y∫
0

y
2n

2n+1−1e−ydy , (8.14)

where, y = (aε)(2n+1)/2 and with a provided in Sect. 3, where similar devel-
opments were pursued. The equation is readily integrated providing,

N (ε) = βn

( n

πd2σ

) n
2n+1

G

(
2n

2n + 1
, y

)
, (8.15)

where, βn is the function of n provided in Chap. 3, and is sensibly unity for
all n greater than one. The length scale d =

(
2Y

/
ρε̇2

)1/2and G (· , y) is the
normalized gamma function, approaching unity as y approaches infinity.

A similar development can be put forth for the plastic strain accumulated
through the cylinder expansion and fracture process. Early in the expansion
before fracture initiates, expansion ε and the plastic strain εp are the same.
When fractures initiate and Mott waves emanate from the points of fracture,
regions encompassed by the waves will seize straining and the expansion and
cumulative plastic strain will diverge. Analytically this is written,

εp (ε) =

ε∫
0

(1 − D)dε , (8.16)
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where, D is the fraction of circumference subsumed by Mott waves at expan-
sion ε. This expression provides the integral,

εp (ε) =
2

(2n + 1)a

y∫
0

y
2

2n+1−1e−ydy , (8.17)

with a and y the same as in the previous relations. Integration yields,

εp (ε) = αn

(
σn

d

) 2
2n+1

G

(
2

2n + 1
, y

)
, (8.18)

where,

αn =
(

2
2n + 1

) 2n−1
2n+1

[
1√
π

Γ (n + 1/2)
nΓ (n)

] 2
2n+1

Γ
(

2
2n + 1

)
, (8.19)

is again close to unity for n greater than one.
Plots of the number of fractures and the cumulative plastic strain from

(8.15) and (8.18) respectively, are shown in Fig. 8.22. The respective curves
are normalized to σ and d equal to one, while n = 7 was chosen for illustration
which corresponds to a standard deviation in the strain-to-fracture of 1.28σ/n
or about 20%.
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Fig. 8.22. Illustrates the temporal history of fragment number and cumulative
plastic strain as a function of expansion
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The plot illustrates the essential physics governing fragmentation in the
Mott theory. Namely, the statistical spread in the strain-to-failure, governed
by the parameter n when σ is fixed within a Weibull representation of the
hazard function, determines both the characteristic fracture spacing (total
fracture number) and the statistical temporal history of the appearance of
fractures. Thus, within the Mott theory, the result of a certain characteristic
fracture spacing requires a corresponding spread in the temporal occurrence
of those fractures. The data of Winter (1979) for naval brass, in which both
total fracture number and temporal history were measured, are therefore a
unique and stringent test of the Mott theory.

In Fig. 8.22 the cumulative plastic strain is, according to the statistical
Mott theory, observed to diverge smoothly from the cylinder expansion when
fracture initiates and plateaus to a unique failure strain upon completion of
the fracture process. The plot suggests that a reasonable observable estimate
of the strain-to-failure is determined by the midpoint of the fracture number
curve in the same plot. The data of Winter are consistent with this strain-to-
failure interpretation.

Strain-to-failure by the above criteria as well as total fragment number for
the four naval brass experiments of Winter (1979) are plotted as a function of
expansion rate in Fig. 8.23. Assessing strain-to-failure from the midpoint of
the number history curves in Fig. 8.21 reveals a degree of inconsistency in the
data. Namely, the first (lowest expansion rate) and third test provide the low-
est and the highest strain-to-failure, respectively, while the second and fourth
are nominally the same. Error bars indicated in strain-to-failure are estimated
from plotting uncertainties and photographic imaging frequency. These vari-
ations cannot be accounted for with Mott’s statistics and perhaps relate to
sensitivity of the dynamic fracture to preparation differences in individual
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Fig. 8.23. Failure strain and fragment number from data of Winter (1979) on ex-
panding naval brass cylinders. Curves represent the best fit with Mott fragmentation
theory
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cylinders (surface finish for example). In any case, these experimental varia-
tions in strain-to-failure are not captured in the theoretical representation to
be described.

The fracture number data shown represent the fractures imaged by the
photographic method over approximately a third of the circumference of the
cylinder as described by Winter (1979). Error bars shown correspond to plus
or minus one fracture.

Mott’s theoretical equations for the total fracture number and the final
strain-to-fracture ((8.15) and (8.18) for expansion approaching infinity) pro-
vided the best fit to the data in Fig. 8.23 by adjusting σ and n. The values
were n = 7 and σ = 0.18 in S. I. units. A flow stress Y = 300 MPa and density
ρ = 8450 kg/m3 was used for the naval brass.

The statistical fracture number histories from (8.15) for the four experi-
mental strain rates using the Mott parameters σ and n determined above from
the final fracture number and plastic strain data for naval brass are shown in
Fig. 8.24. Figures 8.23 and 8.24 clearly illustrate the coupling between final
fracture spacing and the statistical appearance of fractures central to the the-
ory of Mott. A comparison of the predicted histories of the fracture number
in Fig. 8.24 with the experimental histories of Winter (1979) in Fig. 8.21 sup-
ports the Mott theoretical approach. Although the predicted curves cannot
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the four naval brass experiments of Winter (1979) based on the Mott parameters n
and σ selected to fit the fragment number and strain-to-fracture data
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capture the scatter in translation of the several tests, the history of individual
experimental tests is nicely reproduced by the theory.

8.5 Natural Fragmentation of an Exploding Cylinder

Smooth-walled explosively-loaded metal cylinders fragment without the aid of
fragmentation enhancing techniques. In the natural fragmentation of explod-
ing cylinders the statistical distribution in the size and velocity of fragments
is determined thorough a complex interplay among explosive characteristics,
geometry of the explosive-case system, and mechanical properties of the case
metal. As noted in previous chapters, early attempts to introduce some sci-
entific order to such violent event are attributed to Mott (1943, 1947, 1948),
Taylor (1963), and Gurney (1943), among others. Chapter 7 of the present
text is focused on issues of scaling of exploding cylinders. Literally thousand
of arena tests of explosively-driven fragmenting cases in which various frag-
mentation data have been collected have been performed over the intervening
decades.

In the present section discussion is focused on one study in which explo-
sive and case metal were particularly well characterized, and quite thorough
diagnostics were used to interrogate the explosive natural fragmentation event
[Grady, and Hightower, 1992]. These results are considered in light of Mott’s
statistical and the energy-based predictions of fragmentation.

8.5.1 Natural Fragmentation Experiment

An explosive fragmentation experiment was performed on a 15.2 cm diameter
smooth wall metal cylinder. The cylinder was 38.1 cm in length with a wall
thickness of 5.7 mm. The cylinder was machined of 4140 steel and heat treated
to a Rockwell hardness of 40 (Y = 1.1 GPa). The cylinder was filled with RX-
35-AN explosive and the cylinder ends were confined. The explosive was center
detonated at one end.

The insensitive high explosive RX-35-AN used in the present study has
been calibrated through instrumented copper cylinder expansion experiments
to provide expansion velocity data for purposes of establishing appropriate
nonideal explosive equation-of-state parameters [Grady, 1990]. The measured
expansion velocity data are scaled with appropriate Gurney relations to de-
termine expansion velocity behavior for the steel cylinder experiment.

High speed front-lit photography using a CORDIN framing camera with
5 µs frame intervals was used to observe acceleration and breakup of the ex-
panding cylinder. The opening of fractures and emergence of explosive gases
were consistent with the 1.20–1.25 strain to fracture measured on recovered
fragments. An expansion velocity of 1760–1830 m/s determined from the pho-
tographs compare well with the limiting Gurney velocity of about 1800 m/s
calculated for this cylinder.
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Multiple flash radiography was used to determine fragment velocity, tra-
jectory and pattern for a 40◦ sector of the cylinder. Fragments from this sector
were captured in fiberboard bundles which were placed approximately 6 me-
ters from the event. From the bundles, 161 fragments were recovered which
represents 90% of the weight of the 40◦ cylinder sector.

From the recovered fragments, it was observed that fracture was predom-
inantly along elongated strips with the fracture parallel to the axis of the
cylinder. A number of the fragments were 4 to 5 times longer than they were
wide. Both tensile and shear fracture were observed from examination of frac-
ture surfaces. Shear fracture appeared to be the dominant breakup mecha-
nism. Fragment size statistics were determined from the recovered fragments
for comparisons with the present fragmentation analysis.

8.5.2 Strain to Fracture

Within the fragmentation theories considered, it is necessary to establish the
radial expansion velocity of the exploding cylinder at the moment of fracture
to provide a measure of the strain rate at which breakup occurs. An early
theory used to calculate the fracture strain of explosively expanding cylinders
is due to Taylor (1963). Later improvements on Taylor’s theory have been
offered, however predicted fracture strains do not differ significantly from that
of Taylor. Taylor’s analysis led to a relation for the circumferential stress in
the shell subjected to an internal pressure P given by σ(y) = Y −P (1− y/h)
where Y is the yield stress in simple tension, h is the shell thickness and y is a
coordinate through the thickness, 0 ≤ y ≤ h. Thus σ(0) = Y −P (compression)
at the inner surface and σ(h) = Y (tension) at the outer surface. The crossover
point occurs at an interior point of the shell. Taylor assumed that failure
occurs when the internal pressure within the expanding cylinder decreases to
a value such that tension is just achieved at the inner surface.

It is common to assume ideal gas behavior for the explosive products and
develop an expression for pressure versus expansion radius to calculate frac-
ture strain with the Taylor method. The RX-35-AN explosive used in the
present study was not suited to an ideal gas description of the explosive prod-
ucts, however. Instead, the velocity history data was used, through appropri-
ate Gurney expressions, to calculate pressure versus radius behavior [Grady,
1990].

Through this method, an internal pressure of P = Y = 1.1 GPa, corre-
sponding to the yield stress of 4140 steel, is calculated at an expansion radius
of R/Ro = 1.24. This fracture strain calculated through the Taylor criterion
is compared with through-the-thickness measurements on a number of frag-
ments recovered from the natural fragmentation experiment on the 4140 steel
cylinder in Fig. 8.25. The comparison is reasonably consistent with the Taylor
prediction.

Also shown is a best fit to the data of a Mott statistical strain to frac-
ture function of the Gumbel type. The distribution curve required a mode,
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Fig. 8.25. Strain to fracture data from thickness measurements of individual frag-
ments. Comparison with prediction of Taylor theory and a best fit to a Mott strain
to fracture statistical distribution (Gumbel distribution)

µ = 0.22, and scale parameter, σ = 0.025. (The standard deviation is 1.283 σ
whereas the Mott gamma parameter is γ = 1/σ).

The analyses of Gurney were then applied to determine the radial expan-
sion velocity at the predicted fracture strain [Grady, 1990]. For the present
experiment an expansion velocity of 1530 m/s was calculated. This value will
be used in the subsequent fragmentation analysis to establish the strain rate
at the time of fragmentation of ε̇ ≈ 1.6 × 104/s.

8.5.3 Fragment Size

Calculations of fragment size will be based on the several theoretical ap-
proaches considered in some detail in the earlier chapters. The statistics-based
theory of Mott was found to provide a characteristic fracture spacing relation
dependent on the current flow stress and circumferential strain rate, and on
the spread in the strain to fracture (Mott’s γ property) according to,

s =

√
2Y

ρε̇2

1
γ

, (8.20)

Alternatively, an energy theory of fragmentation based on an extension
of Mott’s fracture interaction analysis [Kipp and Grady, 1985] including a
fracture resistance property, leads to a circumferential fracture spacing of,
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Fig. 8.26. Mechanisms of tension and shear fracture observed 4140 steel cylinder
fragmentation

s =
(

24Γ
ρε̇2

)1/3

, (8.21)

where Γ is the fracture energy dissipated, and the work required, to compete
the single fracture process. Comparisons of the present natural fragmentation
data will be made with the several predictions of fracture spacing provided in
(8.20) and (8.21).

8.5.4 Fragmentation Energy

Calculation of the nominal circumferential fracture spacing from (8.21) re-
quires knowledge of the fragmentation energy Γ. The fragmentation energy is
a material and mechanism dependent property which is determined through
experimental measurements and models of the fracture dissipation process.
There are two predominant modes of fracture in the breakup of an expand-
ing metal shell which are illustrated in Fig. 8.26. The first is tensile fracture
where failure proceeds by the opening of mode I cracks. Fracture dissipation
is governed by the material fracture toughness Kc, and an estimate of the
fragmentation energy is provided by,

Γ =
K2

c

2E
, (8.22)

where E is the elastic modulus of the material. Here it is assume that the static
fracture toughness Kc provides a reasonable measure of the fragmentation
toughness Kf . Material properties for the 4140 steel tested in the present
study are provided in Table 8.2, and provide a fragmentation energy of Γ ≈
16 kJ/m2 for tensile fracture.

In explosively-expanding cylinders, shear fracture preceded by localized
adiabatic shear banding on the planes of fracture is also an important mode
of failure. In determining the fragmentation energy associated with shear frac-
ture, we will assume that the energy is principally accounted for by dissipation
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Table 8.2. 4140 Steel Properties

ρ (kg/m3) 7870
Hardness (HRC) ∼ 40
E (GPa) 200

Kc (MN/m3/2) 80
Y (GPa) 1.1
χ (m2/s) 1.5 × 10−5

c (J/kg K◦ ) 450
α (K◦−1) 7.5 × 10−4

Γ Tensile (kJ/m2) 16
Γ Shear (kJ/m2) 19

in the adiabatic shear banding process. Grady and Kipp (1987) have analyzed
the energy dissipated in adiabatic shear banding and have arrived at the ex-
pression,

Γ =
ρc

α

(
9ρ3c2χ3

Y 3α2γ̇

)1/4

. (8.23)

In (8.4), γ̇ is the shear strain rate and is approximately equal to the cir-
cumferential stretching rate in the present application (≈1.6 × 104/s). The
new material properties include the specific heat c, the thermal diffusion co-
efficient χ, and the thermal softening coefficient α. From properties provided
in Table 8.2 a fragmentation energy of Γ ≈ 19 kJ/m2 is obtained for shear
fracture, which is remarkably close to that calculated for toughness governed
tensile fracture.

Whether tensile or shear fracture dominated in the present fragmenta-
tion test on 4140 steel was not clear. Metallography on explosively fractured
specimens indicated that this steel had a strong tendency to shear band and
fracture along shear banded planes. There was also observation of fracture on
planes oriented at approximately 45◦ to the shell surface, a further indication
of shear dominated fracture. The close numerical values for the tensile and
shear fragmentation energies will lead to similar predictions of circumferen-
tial fracture spacing, however. This similarity in magnitude of the two energy
values is still not understood.

8.5.5 Distribution in Fracture Spacing and Comparison
with Predictions

The present study is focused on predicting the circumferential fragmentation
intensity. It does not consider axial breakup of the longitudinal strips. To make
a statistical comparison of the fragment size data with the present analysis, the
following reduction of the data was performed: Every fragment was weighed
and the length of every fragment was measured. An effective rectangle was
assumed for a fragment such that the mass is given by m = ρwtl where ρ is
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Fig. 8.27. Number histogram of the 161 fragments from the natural fragmenta-
tion of the 4140 steel cylinder and comparisons with predictions of circumferential
fracture spacing

the density and w, t and l are the width, thickness and length, respectively.
A circumferential fragment width was then calculated for each fragment from
w = m/ρtl where m and l are the measured values and t is the initial wall
thickness of the cylinder. The width w then provides an effective average
measure of fracture spacing for that fragment in terms of the initial cylinder
dimensions. A fragment of length l was then considered to be a fraction of
a strip of length L, given by n = l/L, where L is the length of the cylinder.
Through this method, a number versus circumferential width distribution was
determined for the fracture spacing data.

The experimental circumferential fragment number data are plotted as a
number histogram in Fig. 8.27. The same data are plotted as a cumulative
number distribution in Fig. 8.28. The number data on the ordinate has been
scaled from the 40 degree sector to a full cylinder. Initial wall thickness of the
cylinder is identified in each figure for reference.

Predictions of the nominal fracture spacing based on the energy governed
expression from (8.21) using both the tensile fracture energy (∼16 kJ/m2)
and the shear band enhance fracture energy (∼19 kJ/m2) are identified
in the figures. Specifically, the values are s = 4.6 mm (tension) and s =
4.9 mm (shear) referenced to initial circumferential dimensions. Predictions
are slightly smaller than reported in Grady and Hightower (1992) because of
a slightly different method of calculating the strain rate.
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Fracture spacing predictions based on the Mott statistical theory through
(8.20) additionally requires the γ property characterizing the statistical strain
to fracture material behavior. Mott provided several methods for estimating
γ. Here the statistical spread in fracture strain reported in Fig. 8.25 for the
present fragmentation test will be used to determine γ. A value of γ = 40
calculated earlier in this section combined with the flow stress and density
values from Table 8.2 yield a fracture spacing of 4.2 mm.

It is readily observed that all of the predicted values for fracture spacing
are in sensible agreement with each other and the measured data. The 10%
to 90% spread in fragment number ranges over about 3 mm and 7 mm easily
spanning the predicted values. The close agreement between the energy-based
prediction and Mott’s statistics based prediction is intriguing and not fully
understood. As discussed in Chap. 5, where the two theories are compared,
the present agreement in predictions occurs in the regime of energy controlled
fragmentation where Mott statistics is expected to characterizes the statistical
fracture activation rather than the fracture survival and completion processes.
This comparison also apparently carries over to the statistical variation in
circumferential stretching, and corresponding fragment thickness strain, in
the energy governed dynamic breakup process. Almost obscured in the data
in Fig. 8.28 is a fit of the cumulative distribution with the Mott statistical
fracture spacing distribution developed in Chap. 3. Again the agreement is
surprisingly good. Disconcerting, however, is the observation that fracture
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Fig. 8.28. Cumulative fragment number plot and comparisons with predicted frag-
ment size and distribution
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spacing in the present test span the thickness of the cylinder case bringing
into question issues of thin case versus thick case behavior.

8.6 Tube Fragmentation Tests of Vogler and Coworkers

The seminal techniques developed by Winter (1979) have been revisited and
extended in the dynamic fragmentation study of Vogler et al. (2003). Much of
the early observations of Winter are supported in this extended investigation.
Additionally, new results are reported due in part to the different materials
studied and a broader range of diagnostic techniques.

8.6.1 Experimental Methods

Two well characterized metals were examined in this experimental study. The
first was a heat treated AerMet 100 steel that has received considerable atten-
tion in fragmenting munitions applications [Wilson et al., 2001; Chhabildas
et al., 2001]. Scaling studies of cylinder fragmentation performed on this steel
are discussed in Chap. 7. The second is a highly ductile alloy of uranium,
U6Nb, discussed in an early section in the present chapter.

The experimental test technique replicates much of that developed by Win-
ter (1979). The test metals are produced in tubes 50.8 mm in length, 12.7 mm
in inner diameter and with several tube wall thicknesses. Controlled inner
loading is produced through a gas gun acceleration and insertion of a solid
cylinder lexan projectile 25.4 mm in length striking an identical stationary
lexan cylinder at the center point of the metal tube as previously illustrated
in Fig. 8.20. The impact pressure and subsequent outward motion leads to dy-
namic budging of the metal cylinder causing in turn, rapid plastic straining,
multiply dynamic fracture, and statistical fragmentation of the test metal.

Various diagnostic techniques were used to interrogate the dynamic fail-
ure and fragmentation process. High-speed photography provided detailed
measurement of the expansion history along with the temporal evolution of
dynamic fracture activation and propagation. Time resolved velocity interfer-
ometery or VISAR [Barker and Hollenbach, 1972] provided detailed expansion
velocity history including initial shock intensity. PVDF pressure gages were
mounted interior to measure impact generated pressure amplitude and quan-
titative pressure history of the cylinder loading function. Lastly, soft recovery
methods captured fragment debris for post test evaluation and metallography.

8.6.2 Experimental Results

Results representative of the study are shown from high speed photographic
imaging of the dynamic tests in Fig. 8.29. The images on the left are for a
heat-treated AerMet tube with a 3 mm wall thickness. Comparable images for
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Fig. 8.29. The images on the left are for heat treated AerMet 100 steel at 15.4 µs
and 23.4 µs after impact. Images on the right are for U6Nb uranium 18.3 µs and
25.1 µs after impact. Impact velocities were 1.92 km/s for steel and 1.86 km/s for
uranium, respective

an experiment on a U6Nb tube are shown on the right. Timing of the images
after impact are provided in the figure caption.

Initial expansion of the tube is visually homogeneous and cracking is not
observed until some time after impact. For the one AerMet tube, fracture was
first perceived at 10.4 µs after impact. This first observation corresponds to
a circumferential strain at the maximum bulge of 18%. Comparable strains
determined from the deformed thickness of collected fragments ranged over
about 9% and 16%. Strains determined from the observation of first fracture
on three U6Nb experiments were 12%, 21% and 24%, respectively. Strains
inferred from fragments collected ranged over about 15% to 23%. Such scatter
in strain to fracture should not be surprising and is consistent with similar
results in the study of Winter.

After fractures become visible in the photographic imaging, their number
increases rapidly. In the AerMet 100 experiment shown in the left of Fig. 8.29
a maximum of seven cracks were visible at 15.4 µs after impact. That num-
ber decreased, however, as the axially propagating cracks intersected and coa-
lesced. The velocity of the principle cracks could be measured. Growth was not
steady, especially immediately after activation, but measured velocities ranged
from about 0.54 to 1.7 km/s. This crack speed compares with a Rayleigh wave
speed for steel of 2.84 km/s.

The VISAR velocity profile measurements for comparable tests on AerMet
steel and U6Nb uranium are shown in Fig. 8.30. The three VISAR locations
are illustrated in the inset, and recorded radial motion at 5 mm intervals
along the tube axis. Reverberation of the loading shock wave through the wall
thickness is clearly observed as the radial acceleration proceeds. Maximum
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Fig. 8.30. Velocity measurements with VISAR for AerMet 100 steel (left) and
U6Nb uranium (right) are shown as solid curves. CTH computational simulations
are the broken curves compared with the measured data

radial velocity is achieved near the VISAR location b and is about 10% of the
projectile impact velocity.

Computational simulations of the dynamic event were performed using the
Sandia National Laboratories CTH shock physics code [Bell et al., 2000]. A
Mie-Gruneisen equation of state model and von Mises ideal plasticity strength
model were used for the participating materials. A Johnson-Cook fracture
model [Johnson and Cook, 1983] was employed to determine fracture onset in
the test metals. Simulations are compared with the measured velocity data in
Fig. 8.30. Agreement with the data is reasonable although significant diver-
gence at later time is observed. This discrepancy is attributed to both overly
simplistic metal strength models, and to motion irregularities brought about
by the statistical fracture and fragmentation process.

In selected tests under comparable impact conditions fragments from the
dynamic event were soft recovered, counted and weighed. Fragment distribu-
tion data for one heat treated AerMet steel specimen and three U6Nb spec-
imens are shown in Fig. 8.31. Cumulative fragment number is provided on
the ordinate while cumulative fragment mass fraction (fraction of total tube
mass) is shown on the abscissa. A representative fragment from each metal is
also shown in the figure.

Typically a large section of the tubular specimen nearest the projectile
insertion end remained intact. For the AerMet steel test provided in Fig. 8.31
this section was 48% of the whole tube mass. For the AerMet steel test fourteen
fragments with mass greater that one gram were recovered. These fragments
constituted the steeper portion of the distribution curve in Fig. 8.31. Thirteen
smaller fragments were also recovered and complete the smaller particle shal-
low portion of the distribution curve. Steel fragments were generally elongated
as the photograph illustrates in Fig. 8.31. Shear fracture at approximately 45
degrees to the surface normal was the rule. Fragments also exhibited crack
steps and arrested fractures.
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Fig. 8.31. Cumulative fragment number distributions versus fragment mass fraction
for steel and uranium tube fragmentation tests. Representative recovered fragments
for (b) heat treated AerMet 100 steel and (c) U6Nb uranium are also shown

The fragment mass distribution trend for U6Nb uranium, also shown
in Fig. 8.31, is similar to that of steel but with markedly more fragments.
Fragments were significantly more jagged and irregular, and tended to be
more equi-dimensional. Significant deformation-induced surface roughening
was also noted on the uranium fragments.

Fragment distributions for both the heat treated AerMet steel and U6Nb
uranium were adequately fit to a bilinear distribution of the form,

N(m) = N l
oe

−m/µl + Ns
o e−m/µs . (8.24)

Argument for the application of a bilinear mixture distribution are considered
in Chap. 2 and have been discussed in earlier studies [Grady and Kipp, 1985;
Odintsov, 1992]. Since large fragments dominate the distribution, the fitted
distribution parameter µl was used along with the circumferential strain rate
determined from VISAR or high-speed photography in the relation,

Kf =

√
ρc2ε̇2µl

24
, (8.25)

to provide a measure of the effective fragmentation toughness under the
present test conditions. For two AerMet heat-treated steel experiments strain
rate at fracture of 5 × 104/s was determined and toughness values of 62 and
71 MPa m1/2 were obtained. For four U6Nb uranium tests the measured dis-
tributions provided toughness values of 49, 55, 58 and 61 MPa m1/2. These
values are remarkably close to the fragmentation toughness determined from
expanding ring experiments on U6Nb discussed earlier in the present chapter.



8.7 Steel Cylinder Fragmentation of Mock and Holt 193

8.6.3 Summary

The present extension of the expanding tube test technique initially explored
by Winter (1979) is shown to provide a valuable method for investigating
the phenomena of dynamic fracture and fragmentation. Additionally, barring
the stochastic nature of dynamic fracture, the test method is found to be very
reproducible, especially in the initial expansion phase of the tube. The method
is quite amenable to the combined use of VISAR, high-speed photography and
soft-recovery diagnostics.

The steel and uranium metals studied in the present investigation exhibit
strikingly different fracture and fragmentation characteristics. Some of these
features are not yet well understood. The outwardly more brittle fracture
appearance and more abundant fragmentation of the uranium alloy was not
expected but may relate to the propensity for this metal to undergo adiabatic
shear failure.

The sensible agreement of the fragmentation toughness determined in the
expanding tube method with other dynamic methods and with static frac-
ture toughness values is encouraging. This agreement should be viewed with
caution, however, as some of the assumptions important to the model are not
realized in the expanding tube test. Nonetheless, the reasonable agreement
among the different test methods suggest that the model must capture some
of the physics reasonably well and should continue as a useful engineering
tool.

8.7 Steel Cylinder Fragmentation of Mock and Holt

An instructive study of metal fragmentation is provided by the experimental
investigation of Mock and Holt (1983) into the explosive-driven fragmentation
of iron and steel cylindrical shells. In that study explosive loading was per-
formed on the more ductile Armco iron and on HF-1 steel subjected to several
heat treatments producing markedly more brittle response. Thick-walled test
cylinders provided large numbers of fragments, and well-constrained fragment
distributions. The study also included a detailed examination of fragment
morphology and provided a classification scheme for the sorting of fragments.
Both distributions and fragment classification provide unique data for test-
ing statistical theories and examine the physical processes governing dynamic
fracture over several ferrous metals with different fracture characteristics.

8.7.1 Experimental Methods

Explosive fragmentation tests were performed on metal open-end cylindrical
shells approximately 20 cm in length, 7.5 cm in inner diameter and 2 cm in
wall thickness. The explosive was cast-in-place composition B explosive which
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was detonated at one end and extended well beyond each end of the metal
cylinder.

The first metal was as-received Armco iron. The second, was an HF-1 steel
heat treated to a tempered martensite state. The third, was also HF-1 steel
heat treated to a more brittle cementite and pearlite structure. Six fragmenta-
tion tests, two on each metal, were performed. Fragments were soft captured
in sawdust and extracted with magnetic methods. Over 99% of the original
cylinder mass was recovered on all tests. Over 1400 fragments weighing more
that 1 gr (0.065 g) were collected from the Armco iron tests and contributed
to the data analysis. Similarly, over 10,000 and 12,000 fragments, respectively,
were collected for the two heat treatments of HF-1 steels.

8.7.2 Fragment Distributions

Cumulative fragment number greater than mass m versus fragment mass is
plotted in Fig. 8.32 for both experiments on Armco iron. Separate symbols
are not used to distinguish between the two tests because they overlay within
the statistical scatter. One curve in the figure represents the distribution of all
(total) of the fragments collected. The other curve identifies the distribution
of specific type 1 fragments which will be described shortly.
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Fig. 8.32. Fragment mass distributions for Armco iron exploding cylinder tests
[Mock and Holt, 1983]

In Fig. 8.33 similar fragment distributions are shown for the total number
of fragments for the first (heat treatment A) and second (heat treatment B)
preparations for the HF-1 steel. Again, two tests were performed on each
heat treatment, so the two curves represent the resulting distributions for
approximately 21,000 and 25,000 fragments, respectively.

It was pointed out by Mock and Holt (1983) that the distributions in
Figs. 8.32 and 8.33 for the total number of fragments were well described
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Fig. 8.33. Fragment mass distributions for HF-1 steel exploding cylinder tests
[Mock and Holt, 1983]

with a linear curve in these semi logarithmic plots with the exception of the
upturn associated with the smaller fragment end of the distribution. These
curves would correspond to β = 1 for the general scaling relation suggested
in Chap. 7. Grady and Kipp (1985) have shown that the data of Mock and
Holt are very well described by a bilinear exponential, or Poisson mixture,
distribution as described in Chap. 2.

8.7.3 Fragment Morphology

A further feature of the study of Mock and Holt (1983) was the classification
of fragments according to the shape and the mode of fracture governing the
fragment separation process. The author’s noted that attempts to type sort
fragments resulting from exploding munitions events goes back to at least the
early reports of Mott. Several of these reports by Mott do in fact examine the
shape and fracture surface features of collected fragments, and comment on
the several fracture processes possibly responsible. In Fig. 8.34 sketches from
the report of Mott are reproduce and illustrate the classification of fragments
observed by him. He suggested that failure probably initiated on the inner
surface of the munition cylinder as shear rupture, transitioned to extension
fracture at some interior point, and culminated at the cylinder outer surface.
In his observations, fragments of type 1–4 were commonest with occasional
fragment of type 5. He also pointed out that for mild steel and carbon steel,
through-going shear rupture was frequently observed as illustrated in his lower
sketch in Fig. 8.34.

Mock and Holt (1983) found the more extensive fragment classification
scheme shown in Fig. 8.34 more appropriate to the Armco iron and HF-1
steel cylinder tests performed by them. This method suggested four princi-
ple fragment types comprised of type 1 fragments (including both inner and
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Fig. 8.34. Classification schemes for fragment type resulting from exploding muni-
tions fragmentation. (a) Original sketches of Mott (1943). (b) Fragmentation clas-
sification of Mock and Holt (1983)

outer cylinder surfaces), type 2 (outer cylinder surface only), type 3 (inner
cylinder surface only), and type 4 (no cylinder surface). Fragments were fur-
ther subtyped according to the shear or extension character of the fracture
surfaces.

Sorting of the fragments according to this scheme was carried out for the
tests performed. It was shown that for the more ductile Armco iron fragments
of type 1 (both inner and outer fragment surface) constituted very close to
80% of the total cylinder mass. The authors further showed that the distri-
bution for only the type 1 fragments for the Armco iron tests plotted linear
on a semi logarithmic cumulative number versus mass graph over the full
range of the data as illustrated in Fig. 8.32. Fragments of the remaining type
contributed to the small mass upturn adequately described by a bilinear expo-
nential distribution. Behavior is reminiscent of the cylinder tests of Odintsov
(1992) discussed in Chap. 2.

Sorting of fragments from tests on HF-1 steel, on the other hand, resulted
in less than 5% of the mass of type 1 fragments. A complex mix of fragments
of type 2 through type 4 constituted the preponderance of the fragment mass
distribution.

A final noteworthy observation in the tests of Mock and Holt were corre-
lations among static strength properties of the several metals and features of
the fragmentation results. Armco iron provided a tensile strength of approxi-
mately 300 MPa and a permanent elongation to fracture of 34%. In contrast,
the two heat treatments of HF-1 steels, A and B, respectively, exhibited 1100
MPa and 880 MPa tensile strengths and elongations to fracture of 3% and
1%. Some variations in properties with respect to orientation relative to rolling
direction were noted, however.

For comparison, expected fragment mass for the fragment distributions
for Armco iron and for the HF-1 steel with heat treatments A and B were
µ = 41 g, 3.6 g and 2.5 g respectively, based on a linear exponential descrip-
tion of the linear portion of the respective distributions. Estimating a circum-
ferential strain rate from Gurney considerations of approximately 104/s the
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respective mass scale parameters in (8.25) of the previous section yield frag-
mentation toughness values of Kf = 185, 55, and 45 MPa m1/2, respectively
for the three metals.

Type 1 fragments which were large enough to include both inner and outer
surfaces of the original cylinder were examined to infer other feature of the
dynamic fracture event. These included all of the type 1 fragments from each
of the HF-1 steel experiments (approximately 25 to 50 fragments per test) and
a comparable representative number from the Armco iron tests. A permanent
dynamic strain to fracture was estimated from the change in thickness relative
to the initial cylinder wall thickness. These engineering strain values were
0.34 and 0.36 for the two Armco iron tests, 0.11 and 0.12 for HF-1 steel heat
treatment A, and 0.12 and 0.14 for heat treatment B.

Lastly the authors showed that the extent of shear fracture through the
thickness before transition to the more brittle extension fracture behavior was
dependent on the metal properties. For Armco iron shear fracture proceeded
through nearly one-half (approximately 45%) of the cylinder wall thickness
before transitioning to extension fracture. For the two HF-1 steels this shear
fracture distance was reduced to about 25% and 20% of the wall thickness for
heat treatments A and B, respectively.
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Part II

Transcription and Facsimiles
of Reports of N.F. Mott



Preface by Sam Ellis

The copies of these papers were released by the Science and Technology Di-
vision of the Defence Ordnance Safety Group (DOSG) DOSG is the UK
Ministry of Defence’s focal point for Ordnance, Munitions, and Explosives
(OME) Safety. It is a support group within the joint Defence Procurement
Agency/Defence Logistics Agency Technical Enabling Service work stream.
The organization contains a mix of military and civilian staff with science,
engineering, and safety management expertise. It provides independent safety
advice and assessment, interpretation of tests and trials, development of OME
design standards, and qualification of energetic materials throughout the Min-
istry of Defence.

DOSG was formed in 2000 by merging the Ordnance Board, the Chief
Inspectorate Naval Ordnance, the Explosives Storage and Transport Commit-
tee support group, and some of the Aircraft Weapons Advisory Committees.
The work of all these bodies depended on fragmentation models – from basic
models for single warheads to complex models for stacks of munitions and
buildings – and the Science and Technology division provides advice not only
on the application of models but trials management and data analysis to allow
development and verification of these models. It also maintains a comprehen-
sive library of technical documents that dates back to the 1920’s with the
majority of them from the Ordnance Board archives.

The Ordnance Board has a history going back nearly 600 years to the
Office of Ordnance (1414–1597). As with most organizations minor changes
were made to the name over the years, for example it was known as the Board
of Ordnance between 1597 and 1855 and the Ordnance Committee between
1915 and 1938. It was finally designated the Ordnance Board when together
with the Research, Design and Inspection Departments, and the Royal Ord-
nance Factories, it came under the administration of the Ministry of Supply in
July 1939. The organization’s remit extended beyond safety and it dealt with
all requests for development of new or improvement of existing armament
stores. The Board, when it formally met to review publications, comprised
some 20 senior military officers, the heads of other major organizations (such
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as the Chief Inspector Naval Ordnance, the Superintendent of the Research
Department, the Director of the National Physical Laboratory, and the Di-
rector of Scientific Research at the Ministry of Supply) plus some 20 associate
members including a number of distinguished scientists and engineers with 9
of them being Fellows of the Royal Society.

Mott’s wartime work produced six classified papers on fragmentation, in
1943 and 1944, for the Fragmentation Panel of the Static Detonation Commit-
tee of the Advisory Council of Scientific Research and Technical Development
of the Ministry of Supply. An unclassified paper describing some of the find-
ings was published in the Proceedings of the Royal Society in 1947. Despite
the fact that an enormous effort has been, and is still being, expended on
developing models for fragmentation Mott’s fundamental work is still being
used both directly and indirectly. Although he did not work directly for the
Ordnance Board the continuing importance of this work lead to Mott being
formally made an Associate Member of the Ordnance Board in January 1985.

Yours sincerely
Sam Ellis



Biographies of Sir Nevill Francis Mott

Nevill Francis Mott was born in Leeds, U.K., on September 30th, 1905. His
parents, Charles Francis Mott and Lilian Mary (née) Reynolds, met when
working under J.J. Thomson in the Cavendish Laboratory; his great grandfa-
ther was Sir John Richardson, the arctic explorer. He was educated at Clifton
College, Bristol and St. John’s College, Cambridge, where he studied mathe-
matics and theoretical physics. He started research in Cambridge under R.H.
Fowler, in Copenhagen under Niels Bohr and in Göttingen under Max Born,
and spent a year as a lecturer at Manchester with W.L. Bragg before ac-
cepting a lectureship at Cambridge. Here he worked on collision theory and
nuclear problems in Rutherford’s laboratory. In 1933 he went to the chair of
theoretical physics at Bristol, and under the influence of H. W. Skinner and
H. Jones turned to the properties of metals and semiconductors. Work dur-
ing his Bristol period before the war included a theory of transition metals,
of rectification, hardness of alloys (with Nabarro) and of the photographic
latent image (with Gurney). After a period of military research in London
during the war, he became head of the Bristol physics department, publishing
papers on low-temperature oxidation (with Cabrera) and the metal-insulator
transition.

In 1954 he was appointed Cavendish Professor of Physics, a post which he
held till 1971, serving on numerous government and university committees.
The research for which he was awarded the Nobel Prize began about 1965.
Some of his main books are “The Theory of Atomic Collisions” (with H.S.W.
Massey), “Electronic Processes in Ionic Crystals” (with R.W. Gurney) and
“Electronic Processes in Non-Crystalline Materials” (with E.A. Davis).

Outside research in physics he has taken a leading part in the reform
of science education in the United Kingdom and is still active on commit-
tees about educational problems. He was chairman of a Pugwash meeting in
Cambridge in 1965. He was chairman of the board and is now president of
Taylor & Francis Ltd., scientific publishers since 1798. He was Master of his
Cambridge college (Gonville and Caius) from 1959–66. He was President of



206 Biographies of Sir Nevill Francis Mott

the International Union of Physics from 1951 to 1957, and holds more than
twenty honorary degrees, including Doctor of Technology at Linkoping.

In 1930 he married Ruth Eleanor Horder. They have two daughters and
three grandchildren, Emma, Edmund and Cecily Crampin.

For the last ten years he has lived in a village, Aspley Guise, next door to
his son-in-law and family. During this period he has written an autobiography
“A Life in Science” (Taylor and Francis, London, 1986), which provides a
fascinating history of the time and events. He also edited a book with several
authors on a religion-science interface “Can Scientists Believe?” (James and
James, London), together with many scientific papers, mainly in the last 3
years on high-temperature superconductors.

From Nobel Lectures, Physics 1971–1980, Editor Stig Lundqvist, World
Scientific Publishing Co., Singapore, 1992.

This autobiography/biography was written at the time of the award and
later published in the book series Les Prix Nobel/Nobel Lectures. The infor-
mation is sometimes updated with an addendum submitted by the Laureate.
To cite this document, always state the source as shown above.

Sir Nevill F. Mott died on August 8, 1996.



1

A Theory of Fragmentation

N.F. Mott and E.H. Linfoot

(January 1943), Ministry of Supply, A.C.3348

Summary. A tentative theory is given to account for the mean fragment sizes of
certain types of bomb and shell, and for the relative numbers of large and small
fragments.

1.1 The Mean Fragment Size

The theory given here is applicable only to casings which expand plastically
before rupture. This may not be the case for brittle materials such as cast
iron.

We consider first fragmentation of the type occurring in the 3.7 inch A.A.
shell. The larger fragments appear from inspection to be formed as shown in
Fig. 1.1, which represents a section through part of the casing. Cracks start
on the inside, at such points as A1, A2, A3 . . . and spread outwards to B1, B2,
B3. This type of break-up has been discussed in Report No. 2232 from the
Dept. of Metallurgy of the University of Sheffield, Ref. A.C. 3098. The widths
of typical fragments are of the order 1 cm; the length, parallel to the axis of
the shell, is considerably greater.

At the moment of rupture, let r be the radius of the shell casing, t its
thickness and V the velocity with which it is moving outwards. We suppose
that rupture takes place when work-hardening has proceeded to such an extent
that a crack will propagate itself with the expenditure of less energy than
further plastic flow. Suppose that the casing then splits along two lines distant
a apart; the cracks are represented by AB, A′B′ in Fig. 1.2, which, like Fig. 1.1,
represents a cross section through the shell casing. A splinter of cross section
ABB′A′ is then flying outwards with velocity V. The top surface AB of the
fragment will have, in addition to the large outward velocity V, a velocity
at right angles to it of amount 1

2V α, where α = a/r. Similarly the bottom
surface A′B′ will have a downward velocity of the same amount. Referred to
axes moving with the fragment, the metal will have kinetic energy, per unit
length parallel to the axis of the shell, equal to
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where ρ is the density of the metal. Since rα = a, this becomes

1
24

tV 2ρa3/r2 (1.1)

We now make the assumption that if the energy (1.1) is great enough to
form a new crack through the fragment, it will do so, and the fragment will
break into two. If W is the energy per unit area required to form a crack, the
energy required for this is Wt. Thus no fragment will be formed with thickness
a greater than that given by equating Wt to (1.1), which gives

a =
[
24 r2W

ρV 2

]1/3

(1.2)

For W we may take a value given by impact tests; according to Southwell
(Trans. Manchester Assoc. of Engineers, 1937) this ranges from 70 to 800
ft/lbs. per sq. inch. We should take a value appropriate to the metal at the
moment of rupture, i.e. after plastic deformation, when it will be very brittle.
We therefore take the lower value, 70 ft/lbs. It is realised that the energy of
rupture is not, in practice, proportional to the area, so our value will be very
approximate. Moreover heating of the metal during its expansion may have an
effect. Fortunately, since W occurs as W 1/3, the value of a is not very sensitive
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to the value of W . A measurement of the rupture energy for cold-worked H.E.
steel would be of interest1.

For r we take 2.2 inches, and for V , the velocity of the fragments,
2500 ft/sec. We obtain for a

a = 0.55 inches

in good agreement with the observed value.
For steels where fracture is due to shear we have no information from

which the magnitude of W can be estimated.
We have not been able to find a theory to account for the average length

of the splinters in this type of shell. For shells or bombs which bulge out in
the middle before breaking up, the dimension parallel to the axis might be
determined by the same mechanism, r being the radius of curvature of an
axial section of the casing.

We may use formula (1.2) to compare the mean fragment sizes of bombs
with different charge-weight ratios, sizes etc., Since, however, we have no the-
ory of what determines the lengths of the splinters from a shell, we confine
ourselves to a bomb which, at the moment of bursting, is roughly spherical.
Then we can take the mean weight of a fragment to be proportional to ρa2t,
and thus to

ρ1/3 r4/3 W 2/3 V −4/3t

If ro, to refer to the bomb before expansion, and r, the radius at the moment
of burst is equal to εro, then t = to/ε2, so that the mean fragment weight is
proportional to

r4/3
o ρ1/3to W 2/3

/
V 4/3 ε2/3 (1.3)

If we keep the charge constant and vary the thickness to, we expect for heavy
casings that V 2 will be proportional to 1/to; thus the average weight of frag-
ment is proportional to t

5/3
o if ε is constant; actually, however, thick cased

shells expand further than thin ones before breaking up, so we expect a rather
less rapid variation with to than this.

1.2 Distribution of Fragment Weights

It was pointed out to the present authors by Dr. L.L. Welch (private commu-
nication dated 24th Sept. 1941) that the distributions of fragments from two
such different projectiles as the 3′′ U.P. (initial fragment velocity 4500 ft/sec.)
and the 3.7′′ A.A. shell (fragment velocity about 2500 ft/sec) can be fitted
approximately to the same law. This law is the following: if N(m) dm is the
number of fragments with weights between m and m + dm, then
1 It is of interest to compare the much smaller rupture energy for a brittle substance

such as quartz, which from experiments on grinding sand appears to be of the
order 61 ft/lbs. per sq. ft. (Martin, Trans. Ceramic Society, 23, 61, 1923).
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N(m)dm = Ce−M/Mo dM (1.4)

where M = m1/3 and C and Mo are constants. For the shell and the U.P.,
Mo has respectively the values (in (ounces)1/3)

3.7′′ shell 3′′ U.P.
Mo 0.33 0.15

The agreement is shown below:

Shell U.P.

oz. obs. calc. obs. calc.

1/50 – 1/25 not recovered 570 528
1/25 – 1/4 452 454 751 793
1/4 – 1/2 131 129 93 101
1/2 – 4 193 181 64 56

4 – 8 5 13 0 0
>8 1 5

The total number of fragments is CMo and the total weight 6Mo
4C, so the

average weight is 6Mo
3, or 0.21 ounces for the 3.7 inch shell. The distribution

is very skew, however, so that there are a large number of fragments with
weights considerably greater than the average.

This observed distribution law suggested a theoretical explanation along
the following lines: m1/3 is proportional to the mean linear dimension of a
fragment, and if this is written x, it suggests that the number of fragments
with lengths between x and x + dx is given by

Ce−x/xo dx

Such a formula can be derived for a rod or line broken up at random in
one dimension only. Consider a line AB of length l, cut at random into n + 1
pieces; each cut is independent of the positions of all the others and is equally
likely to be at any point between A and B. Consider then any interval ξ of
the line. The average number of cuts that it contained is nξ/l and the chance
that it does not contain one at all is

e−nξ/l

Consider then any one cut, and let us calculate the chance that the next cut
to the right is in an interval dx at a distance x; this is

e−nx/l ndx

l
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Thus the number intervals of lengths between x and x + dx is

l

x2
o

e−x/xo dx, xo =
l

n
(1.5)

This immediately suggests that (1.4) is a three dimensional analogue of (1.5).
We might expect that if a solid is broken up “at random”, e.g. by planes cut
at random through it, the distribution of fragment weights will be given, at
any rate approximately, by (1.4). Unfortunately we have been unable to prove
this; a mathematical discussion is given in Sect. 3.

Inspection shows, however, that for the 3.7′′ shell fragments of weight
greater than about half an ounce usually have part of the original inner and
outer surfaces on them; thus we should expect that, for the heavier fragments
at any rate a distribution law of the type

Ndm = Ce−αm1/2
d(m1/2) (1.6)

would give a better fit than (1.4). It was in fact found that for this shell and
for the 4.7′′ A.A. shell and 3′′ U.P., either formula (1.4) or (1.6) would give
an equally good agreement for fragments of medium size, and that (1.6) was
somewhat better for the largest fragments.

For a detailed comparison with experiment, Dr. Paymans results with
model bombs are the most suitable, because they include an analysis of frag-
ments down to one milligram. We should expect to get the most exact fit
with (1.6), and the greatest divergence from (1.4), for very thin casings. Fig-
ure 1.3 shows the fragmentation of a model bomb with casing of thickness
0.018′′ filled with tetryl (W. Payman, Fragmentation Report IV, R.C. 276).
The quantity ν, of which the logarithm is plotted as ordinate, is the number
of fragments between two given weights m1 and m2, divided by the interval
(m2

1/2 − m1
1/2), or m

1/3
2 − m

1/3
1 , according to the method of plotting; the

abscissae are the mean of the extreme masses, namely 1
2 (m1/2

1 + m
1/2
2 ) or

1
2 (m1/3

1 + m
1/3
2 ). It will be seen that the fit with formula (1.6) is much better

than with formula (1.4). The weights are here in grammes.
Figure 1.4 shows what happens for a much thicker casing 0.3 inches thick.

It will be seen that formula (1.6) gives fair agreement for the larger fragments,
but that there are too many very small ones. This is to be expected, because
small fragments will be broken off the ends or edges of the large ones.

The slopes of all these curves, plotted according to formula (1.6), give
what seems to us the best indication of the mean linear size. The quantity a
of formula (1.2) might be equated to 1/α

√
t.

We have not, however, attempted at this stage to compare formulae such as
(1.3) with the mean fragment weight of any bomb or shell, because our theory
is incomplete, as it does not account for the length of splinters from shells,
but only for their breadth, and for bombs which do not give long splinters
we have not been able to find experimental information about mean weights
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and speeds. Further, a direct comparison with theory would only be possible
where most fragments are projected under the same conditions, e.g. from a
long cylinder detonated from one end, or a spherical bomb detonated in the
middle.

1.3 Mathematical Discussion of the Distribution Law
for Fragment Sizes

Distribution laws of the types (1.4) and (1.6) have been proposed in a number
of papers for the weights or diameters of mineral particles after crushing, of
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sand particles and so on2. We do not know of any attempt to derive mathe-
matically the two or three dimensional formulae.

We discuss first the case where a thin sheet is broken up into rectangular
fragments by two sets of parallel lines. The analysis will be appropriate if a
shell casing is broken up by cracks parallel to the axis at an average distance,
say, xo apart, and the lengths have an average value yo independent of the
breadth and are distributed according to the usual law. According to our as-
sumptions, the number with breadths between x and x + dx is proportional
to exp(−x/xo)dx, and the number with lengths between y and y + dy pro-
portional to exp(−y/yo)dy. Thus the number per unit area with area greater
than a2 is given by

1
(xoyo)2

∫ ∫
exp

[
− x

xo
− y

yo

]
dxdy

where the integration is for all positive values of xy for which xy > a2. Inte-
grating with respect to y we obtain
2 cf. Lienau. J. Franklin Inst. 1935, p. 485, where other references are given.
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1
x2

oy

∞∫
0

exp
[
− x

xo
− a2

xyo

]
dx

Putting x = a
√

xo

yo
eθ, the integral becomes

1
xoyo

z

∞∫
0

e−z cosh θ cosh θdθ

where
z =

2a
√

xoyo

This is equal to
− z

xoyo
K1(z)

Differentiating with respect to a, we find for the number of fragments for
which a lies between a and a + da

2
(xoyo)3/2

zKo(z)da

for large z this behaves like

(
1
2
πz

)1/2

e−z

and for small z like
z log z

The function log(zKo(z)) is plotted against z in Fig. 1.5; it will be seen that
it is nearly linear except for small z.

If a thin shell casing is broken up at random, and a denotes the square
root of the area, and νda the number of fragments such that a lies between a
and a + da, then a plot of log ν against a should give a closer approximation
to a straight line than Fig. 1.5. The proof is as follows:

We must first define what we mean by “at random”. We suppose that the
sheet is cut by a large number of straight lines, of which the directions are
random. Consider any one of these lines; then we may take it that a length
L of this line is cut by L/xo other lines, and that the number of intervals
of length between x and x + dx is Ldxe−x/xo/x2

o. Also that L sin θdθ/2xo of
these lines make an angle with it between θ and θ + dθ(0 ≤ θ ≤ π).

If the fragments were all of the same shape, then we should have ν =
exp(−a/ao) exactly. They are, however, much more nearly all the same shape
than when the sheet is cut up by two parallel sets of lines, as was assumed
above. Then, if one side of a fragment is very small, there is no particular
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likelihood that the other one is. On the other, with random fragmentation,
any very small interval a on one of the lines cutting the sheet is probably one
side of a small triangle of area of the order a2. Thus we have more very small
fragments than with the above distribution. A similar argument shows that
we should have more very large ones. Thus if log ν is plotted against a, a
straighter line should be obtained than that shown in Fig. 1.5.

We can prove that ν tends to a constant non-zero value as a → 0. The
very small fragments will nearly all be triangles. If θ, φ are the two angles of
one of these triangles adjacent to a side of base x the area is
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1
2
x2

/
(cot θ + cot φ)

Thus the number of fragments with area less than a2 is proportional to
∫ ∫ ∫

e−x/xo sin θ sin φ dx dθ dφ

the integral being over all values of x, θ, φ such that

1
2
x2 < a2(cot θ + cot φ)

The integral becomes, on integrating with respect to x,

π∫
0

π−θ∫
0

xo

{
1 − e−

a
xo

[2(cot θ+cot φ)]1/2
}

sin θ dθ sin φ dφ

The first term in the expansion of this function in ascending powers of a is

a

∫ ∫ √
2(cot θ + cot φ) sin θ sin φ dθ dφ

which does not vanish. Thus ν(a) tends to a constant value as a tends to zero.
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2

Fragmentation of H.E. Shells:
a Theoretical Formula for the Distribution
of Weights of Fragments

N.F. Mott

(March 1943) Ministry of Supply, A.C. 3642

Summary. It is suggested, following earlier theoretical work, that for all cylindrical
shells and bombs the number of fragments of weights between m and m + dm will
be given by the formula

B e−M/MAdM, M = m1/2 ,

where MA is given in terms of the dimensions of the casing by

MA = Ct5/6d
1/3
2

(
1 +

t

d2

)

and where t is the thickness and d2 the internal diameter of the casing in inches.
Comparison with observed fragmentation of service weapons gives

C = 0.30 (TNT)

= 0.325 (Amatol 50/50)

2.1 Purpose of Report

In a recent report on this subject (D.S.R. extra-mural report F. 72/80,
A.C.3348), two facts about fragmentation of shells were pointed out:

(a) On the basis of certain hypotheses about the method of break-up, it was
shown that no fragment could be formed from the cylindrical part of the
casing with breadth greater than

[
24r2W

ρV 2

]1/3

(2.1)

where r is the radius of the shell casing and V its velocity, both at the
moment of break-up, ρ is the density of the steel and W the energy per
unit area required to rupture it. Taking reasonable values of W , a value
of the breadth was obtained of the order observed (1

2 inch for the 3.7′′

shell). No theory was given to account for the lengths of the fragments.
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(b) It was pointed out that the fragment distribution for many projectiles fits
the formula

B e−M/MAdm M = m1/2 (2.2)

for the number of fragments with weights between m and m + dm, the
fit breaking down for very small fragments. It was shown that formulae
of this type could be derived mathematically for a sheet breaking up at
random, and that

MA/
√

ρt (2.3)

would give a measure of the average linear dimension of the fragments,
where t is the thickness of the shell casing at the moment of break-up.

In this report we suggest that the ratio of (2.1) to (2.3) should be the
same for all shells. This might be the case if the average ratio of length to
breadth of fragments were the same for all shells; so that the length would
be a constant multiple of formula (2.1). We have no experimental evidence to
show whether this is so.

It is realised, also, that the derivation of formula (2.1), which gives an
upper limit to the breadth, is incompatible with a random break-up. Nev-
ertheless it seems reasonable to equate the length (2.3) which describes the
fragment distribution actually observed with a multiple of the length (2.1)
obtained from theory.

It must also be pointed out that the theory on which formulae (2.1) and
(2.2) are based applies only to the cylindrical part of the casing; in the 3.7′′

shell, for instance, about 1/5th of the metal is in the base. We should there-
fore expect only rather approximate agreement between the theory and the
observed results.

Assuming, however, that (2.1) and (2.3) are proportional and that W , ρ
are the same for all shells, we obtain

MA = Kr2/3t1/2/V 2/3

where K is a constant, r and t refer to the casing at the moment of break-up;
since however rt remains constant during the expansion, the error in taking
them to apply to the case before expansion will be small.

We assume V 2 to be proportional, not to the charge-weight ratio of the
whole shell, but to the charge-weight ratio of a cross-section of it. The amount
of metal in the base of the shell will obviously not affect the velocity of most
of the fragments. If d1, d2 are the outer and inner diameters then

R =
d 2
1 − d 2

2

d 2
2
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gives the ratio (by volume) of metal to charge. We assume that

RV 2 = const.

where the constant depends only on the type of explosive.
Taking r equal to 1/4(d1 + d2), this gives

MA = (d1 + d2)(d1 − d2)5/6d
−2/3

2 x const.

which may be written

MA = Ct5/6d
1/3

2

(
1 +

t

d2

)

where t is the thickness of the casing, d2 is its internal diameter, and C a
constant.

The purpose of this report is to see to what extent this formula is in
agreement with the facts for standard shells.

For most shells the case thickness increases towards the base; we have taken
the value in the middle of the shell the values were obtained from drawings
in the possession of the Ordnance Board. We have found MA by plotting as
ordinates the number of fragments in each weight category m1 to m2 say,
which we write n(m) ∆m, divided by the interval ∆M = m

1/2
2 −m

1/2
1 . The

abscissa are the quantity 1
2 (m1/2

1 +m
1/2
2 ). In many cases an excellent straight

line is obtained; for some of the thicker casings the agreement was less good,
and then a line was drawn to fit for fragments of medium weight. The plots
are shown in Fig. 2.1.

2.2 Projectiles Considered

(a) The standard 3 ′′ U.P. filled TNT. The fragmentation has been investi-
gated by Dr. Payman (D.S.R. extra-mural report AC. 3133, 2.12.42). The
fit with formula (2.2) is excellent. Ordnance Board give the thickness of
the case as between 0.25 and 0.30 inches; Paymen, however, states that
the charge-weight ratio of a cross-section is 0.5. Taking the sp. gravity of
TNT to be 1.42 and of steel to be 7.8, this gives t = 0.25.

We thus take

MA = 0.134, d2 = 2.5, t = 0.25

(b) Payman has also fragmented a U.P. with thick sides, so that

t = 0.5
′′

d1 = 3.25
′′

d2 = 2.25
′′

The fit with formula (2.2) is not so good; we find

MA = 0.265 ± 0.015
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(c) Shell, H.E., O.F. 95 mm. TK and SP (25 lbs). This is a high capacity
projectile with charge-weight ratio equal to 12.5%. The dimensions are

d1 = 3.69
′′

t = 0.45
′′ − 0.40

′′

The thickness is fairly constant along the length of the shell. The frag-
mentation with TNT and 50/50 Amatol are given in O.B. Proc. 21099
and the fit with formula (2.2) is excellent, giving

TNT
MA = 0.23

Amatol\50/50
0.26

(d) Shell, H.E., B.L., 5.5′′ 70 lb. and 80 lb. The fragmentation with Amatol
50/50 is given in O.B. Proc. 21051, and gives

70 lb. 80 lb.
MA 0.64 0.46 ± 0.03
t 0.95 c. 0.62

The thickness of the case of the 80 lb. projectile varies between 0.4′′ at
the nose and 1.0′′ at the base. That of the 70 lb. is more nearly constant.
The agreement between formula (2.2) and the fragmentation observed is
not very good for the 80 lb. weapon, which is not surprising in view of
the shape.

(e) 3.7 ′′ and 4.5′′ shells, H.E. The fragmentation with TNT fillings are
taken from Dr. Welch’s report, quoted from O.B. Proc. 19226. The agree-
ment with the theoretical formula is good. The values are:

3.7′′ 4.5′′

MA 0.36 0.49
t 0.58–0.63 0.875

(f) 25 pdr. Shell H.E. The calibre is 3.435′′ and thickness 0.65′′. The frag-
mentation with TNT and Amatol 50/50 is given in O.B. Proc. 21099, the
agreement with formula (2.2) being fair. We estimate for MA

TNT Amatol 50/50

0.35 ± 0.03 0.38 ± 0.02

(g) 3 ′′ shell H.E., filling TNT. The thickness; is 0.65′′. The fragmentation
has been investigated in Dr. Payman’s Laboratory (D.S.R. extra-mural re-
ports 72/174, A.C. 3011 and 3515 dated 14.11.42 and 17.1.43), with and
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without smoke box and with two exploders. This shell has the smallest
charge-weight ratio (defined for a cross-section of the shell) of any inves-
tigated. The agreement between the fragmentation observed and formula
(2.2) is very poor. MA is about 0.4 ± 0.1 for the standard shell. The frag-
mentation is stated to be incomplete and variable owing to an insufficient
exploder.

2.3 Bofors 40 mm. Filled TNT

The calibre is 1.56′′ and the thickness 0.24′′. The fragmentation has been in-
vestigated in Dr. Payman’s Laboratory (extra-mural reports D.S.R.F. 72/174,
A.C. 3432 dated 30.1.43). The material is a load-steel alloys, and the charge
compressed TNT. The fragment velocity was also determined and was
630 m/sec. The fragmentation did not fit well with formula (2.2) and the
number of fragments obtained was small. We find

MA = 0.135 ± 0.015

2.3.1 Results

These are shown in Table 2.1; the projectiles are classified in order of the ratio
R, which gives the ratios of the volumes occupied by metal and explosive in a
cross-section. The velocities of the shell fragments are also shown, assuming
RV 2 to be constant and the 3.7′′ shell to give a fragment velocity of 2500 ft/sec.
In P.D.E. report 1942/67 it is stated that the fragment velocity of the U.P. is
4500 ft/sec., instead of the 4200 shown here. If this is correct these velocities
should be raised proportionally.

Within the limits of the considerable uncertainties in the date – particu-
larly in the thickness of the casing, the ratio

C = MA/t5/6d
1/3

2

(
1 +

t

d2

)

remains remarkably constant for the two types of explosive.
According to the P.D.E. report quoted above, substituting Amatol 50/50

for TNT in the U.P. degrades the velocity from 4500 to 4000. Since according
to the theory

MA ∝ 1/V 2/3

the values of the constant should be in the ratio (4500/4000)2/3 = 1.08 for
the two explosives1. We therefore set
1 This ratio is in fair agreement with that found for the two 95 mm. shells, where

the values of MA are in the ratio 1–1.2.
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C = 0.30 (TNT)
= 0.325 (Amatel 50/50)

These values can then be used to work out MA for any shell.
For reference we give the formula from which the fragment velocities are

calculated, based on the assumptions above: these are

V = Vo
d2√

d2
1 − d2

2

(2.4)

where

Vo = 2750 (TNT)
2450 (Amatel 50/50)

It is of interest to compare the velocities given by Taylor’s2 theory of
the expansion of long cylindrical cased charge of TNT. Taking the specific
gravities of TNT and steel to be 1.42 and 7.8, the velocities of the casing after
expanding by various amounts are given by the above formula (2.4) with the
following values of Vo.

Percentage expansion 11 30 67
Vo (ft/sec.) 2000 2200 2500

2 G.I. Taylor. A theoretical analysis of the explosion of a cylindrical bomb detonated
at one end. Ministry of Home Security, Civil Defence Research Commitee, RC.193.
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3

A Theory of the Fragmentation
of Shells and Bombs

N.F. Mott

(May 1943), Ministry of Supply, A.C.4035

Summary. In a recent report on this subject1, a tentative theory was put forward
to account for the sizes of the fragments obtained from steel projectiles. In a further
note2, the theory was compared with the observed fragmentation of service shells.
In this report an attempt is made to extend and to improve the theory, as far as is
possible without a satisfactory theory of rupture in metals, which does not exist at
present.

Before discussing the theory of fragmentation in Part II of this paper we shall
give in Part I a summary of the information available about the velocities, weights
and shapes of fragments and the mechanisms by which the explosive transfers its
energy to them. We shall confine ourselves as far as possible to cylindrical projec-
tiles of uniform diameter, both internal and external; shells with conical cavities are
obviously less suitable for the deduction of theoretical conclusions. The rocket head
is particularly suitable from this point of view, as is also the German 88 mm shell,
and a special British 3.7′′ shell recently fragmented by C.S.A.R., Millersford.

PART I

3.1 Expansion of the Casing

It is well known that steel casings expand considerably before rupture; this
can be seen most clearly by examining the larger fragments which contain part
of the inner and outer surfaces; the case has become thinner by an amount
which varies very little from one fragment to another3. The present author has
examined fragments from the following projectiles which have a uniform case
1 A Theory of Fragmentation, by N.F. Mott and E.H. Linfoot, D.S.R. Extra-Rural

Report A.C. 3348
2 A.O.R.G. Memo. No. 24. “Fragmentation of H.E. Shells; a theoretical formula for

the distribution of weights of fragments”
3 Report R.C. 282 from Dept. of Metallurgy, University of Sheffield.
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thickness: A German 88 mm shell, a special British 3.7′′ shell with cylindrical
cavity, and three rocket shells fragmented in the Safety in Mines Research
Station, Buxton. The filling was TNT in each case; the results are as follows:

Table 3.1.

Thickness of
Carbon External
content diameter Casing Fragment Extension

Type of Shell of shell % (mm) (mm) (mm) %

German AA 88 mm 0.7 88 15 11.8 27
British A.A. 3.7′′ 0.4−0.5 94 16.5 12.8 30

(cylindrical cavity)
Service A.A. rocket head 0.4−0.5 85 6.75 4.5 50
Thick cased rocket head 0.4−0.5 85 12.8 9 42
Thick cased rocket head 0.15 85 12.8 8.5 50

Further evidence is available from photographic records of the explosions
of model bombs obtained at the Safety in Mines Research Station, Buxton4).
According to these, model bombs 2′′ in dia. with mild steel casings filled with
tetryl expanded by the following amounts before breaking up:

Thickness of case (inches) Expansion (%)
0.125 67
0.30 100

The result obtained that the thicker cased bomb expands further may
however be due to end effects; it is not confirmed by the two rocket heads in
Table 3.1.

3.2 Fragment Velocities

A theoretical treatment of the expansion of the casing of a long cylindrical
cased charge of TNT has been given by G.I. Taylor5. Apart from the unknown
end effect at the base of the shell, his results should be applicable to the nose-
fuzed projectiles considered here.

According to Taylor the velocity of the casing can be expressed by the
following formula:

V = Vo d2

/√
d2
1 − d2

2 (3.1)

4 Report R.C. 236 from the Safety in Mines Research Station.
5 Report to M. of H. S. No. R.C. 193.
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where d1, d2 are the external and internal diameters of the casing before
expansion, and Vo is given for different degrees of expansion in Table 3.2
Actual velocities calculated for certain shells are also given:

Table 3.2.

Velocities in ft/sec

% Expansion 11 30 67 124 200

Vo 2000 2400 2700 3000 3100
V (88 mm shell) 1750 2100 2400 2700 2800
V (3′′ U.P.) 2750 3300 3700 4100 4250

These figures neglect the work done in deforming the case; assuming a con-
stant6 resistance to elongation To (poundals/sq.ft) and a density ρ for the
steel, a short calculation gives for the reduction in velocity due to this cause

δV =
To

ρV
log(1 + ε) (3.2)

Assuming To to be 30 tons/sq.in., we obtain the following values:

Table 3.3.

% Expansion 11 30 67 124 200

V (88 mm shell) 1700 2000 2300 2500 2550

The work done against the plastic forces does not decrease the fragment
velocity appreciably, except perhaps for projectiles of very low charge-weight
ratio (A.P. shells). The work done in rupturing the case is probably quite
negligible.

It cannot be assumed that the fragments are projected from the shell with
the velocity of the casing at the moment of break-up; the following observa-
tions show this:

(1) According to (unpublished) results obtained at Buxton, model bombs of
similar dimensions made of steel and cast iron give fragments of about the
same velocity. The cast iron gives very fine fragmentation and probably
breaks up without plastic expansion.

(2) By grooving the charge, controlled fragments can be obtained of a desired
size from U.P. casings. These fragments do not show thinning, but have

6 In steels the resistance is, of course, not constant, but increases somewhat as the
metal hardens.
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the original thickness of the case. The case must therefore have broken
before expansion. Nevertheless the velocity of the fragments is appreciably
the same as for the normal shell without a grooved charge (unpublished
results with model bomb).

Both these results show that the explosive must continue to exert pressure
on the fragments after break-up, and up to about 20 or 30% expansion the
pressure cannot depend much on whether the case has broken or not.

Evidence about fragment velocities is contradictory; at Buxton all frag-
ments from a given model bomb are found to have approximately the same
speed, except for a few very small ones of high velocity, probably acquired
from the expanding gases after break-up; at Millersford, on the other hand,
whilst most of the fragments from shells of the 88 mm or 3.7′′ type have frag-
ments with speeds in the range 2000−2500 ft/sec., there are a considerable
number with much lower speeds down to 1000 ft/sec., and thus with speeds
less than the calculated velocity of the casing before breakup. The origin of
these is unexplained.

Photographic measurements of the velocity with which the casing of a
model bomb expands have been made at Buxton; surprisingly enough, the
velocity of the case comes out in one case to be greater than that of the
fragments7.

In view of these contradictory results we shall take theoretical values for
the velocities of the casing, calculated as in Table 3.3; these agree at any rate
as regards order of magnitude with observed fragment velocities.

3.3 Types of Fragmentation Observed

The cross sections of the large fragments from a cylindrical shell are usually of
one or other of the types shown in Fig. 3.1; on the outside of the case (along
AB) the rupture is brittle, with shear rupture from B to C. Types 1 and 4
are the commonest, with small pieces of triangular cross section frequently
shearing off (as in type 5 in Fig. 3.1).

5
4 3 2 1 B

A

C

Fig. 3.1.

In some casings the rupture is by shear only, fragments of the types shown
in Fig. 3.2 being observed. This has been observed both for mild steel and
7 cf. Reference [4]; values given on pp. 2 and 5 for a model bomb with 0.018′′ casing.
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Fig. 3.2.

carbon steel casings. In the theories of part II we have limited ourselves to
rupture which is at least partly brittle.

Fragments are commonly five to ten times as long as they are wide.

3.4 Weights of Fragments

The most usual classification is by weighing. The present writer has pointed
out8 that for many shells and bombs the weight distribution satisfies the
following formula; the number of fragments with weights between m and m+
dm is equal to

Ce−M/MAdM, M = m1/2 (3.3)

where C,MA are constants. Since C depends on the total weight of the casing,
the fineness of the fragmentation is given by a single parameter MA. Apart
from any theoretical significance of formula (3.3), it provides a convenient
practical method of comparing the fragmentation of different projectiles.

Using MA
2 as a measure of the mean fragment weight, the following factors

appear to affect it in the following ways:

1. Type of Steel: there is little evidence that the tensile strength or yield point
affects the fragmentation, but the carbon content certainly does. Thus two
similar projectiles, the German 88 mm and the British 5.7′′ shell give the
following values of MA:

Diameter Thickness Steel, carbon MA (ounce)1/2

(mm) (mm) %
88 mm shell 88 15 0.7 0.19
3.7′′ shell 94 16.5 0.4–5 0.36

Also 3.25′′ rocket heads of carbon (0.4%) and mild steels, thickness 0.5
gave the following values of MA:

Carbon 0.30 (ounce)1/2

Mild steel 0.33

2. Calibre of shell: for given charge-weight a big shell undoubtedly gives bigger
fragments. For example, values of MA for a large and for a small shell of
similar capacities are (U.B. Proc. 21099 and 21051)

8 Reference [1].
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MA

95 mm shell Amatol 50/50 0.26
5.5′′ (80 lb. shell) (140 mm Amatol 50/50 0.46

3. Charge-weight ratio: this affects both the thickness of the casing and its
velocity at the moment of break-up. That the velocity at the moment of
break-up has a profound influence on the fragmentation is shown by two
facts:
(a) That a 250 lb. bomb fragmented in water gives only about a quarter

as many fragments as when exploded in air9.
(b) The well known gross fragmentation of that part of an H.E. shell with

direct acting fuze which is in contact with the ground at the moment
of explosion; large pieces can be picked from the crater.

Apart from its influence on the velocity, a thin casing will of course give
thinner fragments than a thick one. Whether it affects the other dimensions
will be discussed below.

Values of MA for two otherwise similar rocket heads with thicknesses
0.265′′ and 0.5′′ are [2]

Thickness 0.263′′ 0.5′′

MA 0.134 0.255 (ounce)1/2

The velocity of expansion could be altered at will without affecting the size
or thickness of the casing by putting a lead covering round the outside of the
shell. Experiments to determine the effect of this or the fragmentation would
be of great interest. The pressure distribution within the case would also be
altered (cf. Sect. 3.11).

3.5 Dimensions of Fragments

The primary process in fragmentation must be splitting parallel to the axis of
the shell, with subsequent rupture at the ends, and production of secondary
fragments of type 5 in Fig. 3.1. Assuming that cracking (e.g. along BC in
Fig. 3.3) precedes shear rupture (e.g. along CD), the first task of any theory
of fragmentation must be to account for the distance AB in Fig. 3.3 between
the edges of the average fragment. The observed distributions of the breadth
AB are shown in Figs. I and II at the end of this paper10. It is of course true
9 Compilation of data on Trials on Explosive Effects of Aircraft Bombs. R.D.

Woolwich, 1938
10 In this report Mott included hand drawn sketches within the text identified as

Arabic numbered figures as well as graphs appended at the end of the text iden-
tified as Roman numbered figures. The four graphs are identified as Figs. I, II, III
and IV in this transcription. This identification agrees with the original with the
exception of the present Fig. IV. Further author’s notes will attempt to clarify
this apparent miss-numbering in the original.
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that the length AB often varies considerably along the length of a fragment,
and a visual estimate of the mean breadth is subject to error; nevertheless the
general shape of the curves is significant. We plot against fragment breadth
not the total number of fragments, but the total length of all fragments (placed
end to end) in each category.

The following points will be noted:

(a) The rather sharp cut-off for large breadths.
(b) The much narrower fragments obtained with the German 88 mm shell

(0.7% carbon steel) than with the British 3.7′′ shell or thick cased rocket
head, (0.45% steel but similar diameter and casing thickness).

(c) The narrower fragments obtained with the thin cased (high capacity)
rocket head than with the thick cased projectiles of similar steel.

The lengths of fragments from the German 88 mm shell are shown in
Fig. III; the curve does not show the same cut-off at high values. In Fig. IV
we show the length distribution for fragments of different breadths; there is
obviously a rough correlation, broad fragments being longer11. The average
length of fragments in different categories is given in Table 3.4.

Table 3.4.

Lengths in mm

Breadth (mm) 2−3 4 5 6 7 8 9 10

Thick-cased U.P.
(carbon steel) 39 39 56 44 37 50 36
Thick-cased U.P.
(mild steel) 34 35 33 36 47 58 54
Service U.P. 27 30 28 29︸ ︷︷ ︸
German 88 mm 5.5 10 14.8 21.7

Evidence for correlation between breadth and length is not marked except
for the German shell. For the British shells a ratio of length to breadth of the
order 5 seems to be normal, for the German shell a somewhat smaller value.

3.6 Weight Distribution of Fragments

The formula (3.3) was derived by the author1 on the assumption of some sort
of random break-up; Figs. 3.1 to 3.3 show however that neither the break-up
parallel or perpendicular to the axis can be considered random as would be
11 Although Mott refers to Figs. III and IV discussion in this paragraph is clearly

covered by the data in Fig. III.
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Fig. 3.3.

the case if the breadths were distributed according to the law: number of frag-
ments with breadths between a and a + da is preportional to exp(−a/ao)da.
It therefore seems worth while to attempt a derivation of (3.3) from different
assumptions.

Let us assume:

(a) that the casing is broken into strips and that the number of strips with
breadths between x and x + dx is

Cx exp(−x/xo) dx (3.4)

This does not represent the facts exactly, but gives a nearer approximation
than the random fracture.

(b) that each strip is broken up according to the same law, and that the
average length of fragment is proportional to the thickness x of the strip.
Thus from a strip of length l the number of fragments of length between
y and y + dy is

ye−y/px l dy/(px)3 (3.5)

where p is a factor (of the order 5).

Then the number of fragments of area greater than a2 is

Cl

p3

∫
xy

∫
>a2

y

x2

[
exp

(
− x

xo
− y

px

)]
dx dy

This reduces to

const λ

∞∫
0

(
1 +

1
z2

)
exp

(
−λz − 1

z2

)
dz, λ = a/xo p1/2

and thus the number of fragments with area such that a(=
√

area) lies between
a and a + da is

const f(λ)dλ

where

f(λ) =

∞∫
0

{(
1 +

1
z2

)
− λ

(
z +

1
z

)}
exp

(
−λz − 1

z2

)
dz (3.6)
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Fig. 3.4.

This function is plotted logarithmically in Fig. V over all values of λ from 0 to
10, i.e. over a range of log10 f equal to 3, which is about the range over which
the fragment distribution is usually plotted. It will be seen that the deviation
from a straight line is not very large12.

Weight distributions of actual fragments are likely to deviate from this
theoretical curve for the following reason : the narrower fragments frequently
break as shown in Fig. 3.4, thus having a smaller depth than they should.
Moreover the removal of the triangular pieces from the base of the smaller frag-
ments will obviously make a greater proportional difference to their weight.
This will result in a shift of the whole upper part of the curve in Fig. V some-
what to the left. On the other hand, on reaching the weight categories of the
small triangular fragments, a large number of new fragments appear which
are not included in the analysis given above. Thus the curve should appear
as the dotted curve in Fig. V, which is very similar to those observed.

PART II

THEORY OF THE MEAN FRAGMENT SIZE

3.7 Dependence on Velocity

We consider that the fragmentation will be determined by the properties of
the casing at the moment of break-up, and will not depend, for instance, on
the pressures to which the case has been subjected during the expansion. The
factors that may be of importance are thus

(a) Properties of the steel at the moment of rupture − for example the true
ultimate tensile strength rather than the yield point.

(b) The rate of increase of plastic strain; this is equal to V/r, where V is the
velocity of the case and r its radius.

(c) The thickness of the casing.
(d) The pressure of the explosive at the moment of break-up; according to

Taylor’s calculations this is from 60–25 tons/sq. in. for casings that break
up after a 25 to 50% expansion; this is much less than the initial pressure,
which is of the order 1000 tons/sq. in.

12 A Fig. V does not appear in the original graphs however discussions in this para-
graph clearly refer to the upper plot in the present Fig. IV.
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Fig. 3.5.

The theory which we shall develop suggests that (c) and (d) are of minor
importance in determining the breadths and lengths of fragments. As in the
author’s previous report, we take the point of view that it is the kinetic energy
of the case which tears it to pieces; the fragmentation would be almost the
same if the expanding explosive could be miraculously removed just before
the case broke up, leaving it to fly into pieces under its own momentum.

In the author’s previous report1 the following derivation of the fragment
breadth was given. Suppose that ABCD in Fig. 3.5 is the cross section of a
fragment which has just broken along BA, CD. The fragment is still in a state
of plastic flow, the rate of increase of plastic strain being V/r. The kinetic
energy of this flow of metal is

1
2
ρt V 2

1
2 α∫

− 1
2 α

rθ2dθ =
1
24

V 2 tρa3/r2

It was argued that if this were greater than the energy Wt required to rupture
the metal, the fragment would split in half. Thus the value

a =
[
24r2W

ρV 2

]1/3

(3.7)

would give an upper limit to the possible breadth of a fragment.
Agreement with observation, i.e. values of a of the order 1 cm, was obtained

with values of W given by the notched bar impact test for a brittle steel, i.e.
40 ft/lbs. per sq. inch.13 Since W occurs only as W 1/3, the values obtained
are not very sensitive to W .
13 Measurements were made at the N.P.L. of the Izod value of test pieces cut from

a 3.7′′ H. E. shell casing which had been extended 20% in the direction originally
circumferential to the shell, to represent the state of the steel at the moment of
rupture; values obtained for specimens with the usual 10 × 8 mm section at the
notch were, for the energy absorbed to fracture

5.0 5.9 5.0 ft. lbs.

This gives 45 ft. lbs/sq. inch. (Ref. Eng. Dept/OYY/RE/B. 104 A, 5.3.43).
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Equation (3.7) will certainly give a lower limit to the maximum fragment
breadth, if W is the true fracture energy under the conditions existing in
an H.E. shell. It is doubtful however if this bears any relation to the energy
expended in the notched bar test, most of which is probably due to plastic
deformation of the metal in the neighbourhood of the notch until the formation
of a true crack of atomic width at its apex, leading to brittle rupture. The
actual work necessary to separate two planes of atoms in a metal is of course
much less, of the order 10−3 ft. lbs/sq. inch.

We shall therefore attempt a theory of fragmentation based on the assump-
tion that the energy of fracture is negligible. In addition we shall make the
following assumption: fracture can start at any one of a number of places on
the surface or in the body of the casing, and once started will rapidly spread
across it. During the initial stages of the expansion, it is very unlikely (or even
impossible) that a crack will start anywhere; as the expansion increases the
chance of a crack forming in any part of the case increases. We introduce a
function f(s) ds dx, which gives the chance that a crack will form on a length
dx of the circumference of the casing as the strain increases from s to s + ds.
We may take f(s) to be zero up to a certain value of s (the rupture point), or
we may assume a very rapid increase of f(s) in the neighbourhood of the rup-
ture point. We shall find that the form of f(s) determines the mean fragment
size.

As before we consider a fragment that has just broken along the lines AB,
CD (Fig. 3.6), and ask whether it is likely to break again. As soon as a fracture
has formed along AB, for instance, the metal in the neighbourhood of AB will
stop flowing. A boundary A′B′ between the part of the metal which is still in
plastic flow and the metal which has stopped flowing will move downwards
with a velocity that can be calculated. It will soon reach the boundary C′D′

moving upwards from the lower crack; when this has happened, no further
crack can form. For a fragment of average width, therefore, the chance of a
new crack forming before A′B′ and C′D′ meet each other must be small. This
chance can be calculated by comparing the function f(s), giving the rate of
formation of cracks, with the time available before the surfaces join.
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The velocity with which the surface A′B′ moves can be determined as
follows, if we assume that this is small compared with the velocity of sound in
steel: Let a be the breadth of the fragment, x the breadth of the part that has
stopped flowing, and To the stress required to cause plastic flow. The velocity
upwards of all material above A′B′ is then

V

r

(
1
2
a − x

)

Therefore the equation of motion of the block ABB′A′ is

To = −ρx
d

dt

{(
1
2
a − x

)
V

r

}

which gives

To =
ρV

r
x

dx

dt
(3.8)

Thus
1
2
x2/t = rTo/ρV , (3.9)

and the time which the fragment takes to stop expanding is

a2ρV/8Tor ,

which is of order 10−6 secs. if a ∼7 mm The increase in the strain s of the
material during this time is of the order 10−2.

From (3.9) we find

ẋ = Tor/ρV x ∼ 6 × 104/x cm/sec

so the velocity, except for very thin fragments, is considerably less than that
of sound in steel (5 × 105 cm/sec.).

We have now to make some assumption about the function f(s). We could
assume alternatively that.

(a) f(s) is zero up to a definite value so (the rupture point) and is then
constant and equal to fo, say.

(b) f(s) is zero up to so, and then increases, as c(s − so)n say.
(c) f(s) is never zero, but increases rapidly in the neighbourhood of the rup-

ture point, as Aeγs say.

The hypothesis (c) is the most attractive, for reasons that will be given in
the next section; but they all lead to somewhat similar conclusions about the
fragmentation.

An idea of the order of magnitude of the constants involved can be obtained
from the behaviour of steel in tensile tests, if we make the assumption that
the behaviour in static tests is similar to that at high rates of strain. In tensile
tests, steels nearly always fracture after necking; the reduction of area thus
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gives a measure of the strain at which fracture occurs. Specimens prepared
from one sample of carbon steel show a certain seatter in the measured values
of the reduction of area; thus, if a steel fractures on the average for a reduction
of area of 50%, individual specimens will show values between 49 and 51
approximately. The following, for instance, are values14 for a normalised 0.4%
carbon steel:

58 56
1
2

59
1
2

59 per cent

Now according to our assumptions, the chance that a specimen of length l
will fracture before the strain reaches a value s is

1 − exp


l

s∫
0

f(s)ds


 (3.10)

In case (a) this gives
1 − exp [−fol(s − so)] (3.11)

and in case (c), to a sufficient approximation

1 − exp
[
− lA

γ
eγs

]
(3.12)

Suppose that we assume that an increase in s by ∆s increases the chance that
fracture has taken place from 10 to 90%. Then we find from (3.11) and (3.12)

fol = 2.2/∆s (case a)
γ = 3.1/∆s (case c)

In case (a) it is not clear what value of l should be taken, since the maximum
strain only occurs at the neck. In case (c), however, l does not occur in the
formula for γ; if, in accordance with the experimental values given above, we
take ∆s = 0.02, we obtain

γ = 155

A plot of the functions (3.11) and (3.12), showing the chance that a fracture
has occurred when the strain (reduction in area) is s, is given in Fig. VI for
lfo = 100 and for γ = 150. The origin of s for curve (c) is arbitrary15.

Experiments on the extent to which the reduction in area at the breaking
point fluctuates from specimen to specimen, carried out for a sufficiently large
sample, would shed light on the nature of the function f(s).

With any of these form of f(s), an estimate of the order of magnitude of
the breadth a can be made as follows: At each crack, after a time t, a breadth
14 N.P.L. Report to A.R. Committee, Paper 4755
15 A Fig. VI does not appear in the original graphs however discussions in this

paragraph refer to the lower curves plotted in the present Fig. IV.
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2
(

2Tor

V ρ

)1/2

t1/2

has stopped expanding and is thus “safe” from cracking. Since the strain
increases as V t/r, when the strain has increased by ∆s after the formation of
a given crack, a breadth round it equal to

β(∆s)1/2, β = 23/2

(
To

ρ

)1/2
r

V

is “safe” also. If we neglect the overlapping of “safe” areas, a proportion

β

s∫
f(s′)

√
s − s′ ds′

is safe when the strain is s. When this approaches unity, the break up is com-
plete. Thus a, the average breadth, is given as regards its order of magnitude,
by eliminating s between

β

s∫
f(s′)

√
s − s′ ds′ � 1 (3.13)

s∫
f(s′) ds′ � 1/a

With the forms for f(s) suggested above we obtain the following:

(a) Equations (3.13) lead to

a =
(

2
3

)2/3

fo 2

√
To

ρ

( r

V

)2/3

This gives the same power of (r/V ) as the author’s previous theory, and
with fo = 100 cm−1, values of a of the order 0.5 cm

(b) Equation (3.13) give

a = (n + 1)

[
Γ(n + 1)Γ

(
3
2

)
Γ

(
n + 5

2

)
]1− 1

2n+3

C
−1

2n+3 β1− 1
2n+3

It will be seen that the fragment size is proportional to (r/V )1−
1

2n+3 and
thus to some power of r/V between 1 and 2/3.

(c) With f(s) = Aeγs, the (3.13) give us

Aβeγs

∞′∫
0

e−γs′
s1/2 ds′ = 1

Aeγs

∞∫
0

e−γs′
ds′ = 1/a

−1/3
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and hence

a =

√
2πTo

ρ

1
V

1
γ1/2

With γ = 100, To = 60 tons/sq. inch, this gives 0.7 cm for a normal
shall of the calibres considered here.

It will be seen that a is now proportional to r/V .
Our formulae suggest, then, that the mean width of fragment will be pro-

portional to
const. (r/V )s,

where s lies between 2/3 and 1, the constant will depend on the nature of the
steel; it may depend on the thickness of the case and pressure of the explosive,
but consideration of the next section suggests that it will not.

We have not been able to find an analytical expression for the number
of fragments with breadth between a and a + da, but our equations for the
break-up enable a distribution to be found graphically. We limit ourselves
to the form (c) for f(s). The theory is at present one-dimensional; we are
considering the division of a line (a circumference of the shell.) by random
fracture. Let l be the length of this line; then as before where each crack is
formed, a space on each side of it equal to

(
2To

ρ

)1/2
r

V
(∆s)1/2

is safe from further cracking when s has increased by ∆s. If N is the number
of cracks already formed then the rate of increase of N is given by

dN

dS
= ApleγS

where p the proportion of the line where cracks can still form. The first crack
will form, on the average, when

Aleγs/γ = 1

If the value of s given by this equation be denoted by so, and a new variable
σ defined by

σ = γ(s − so) ,

then the rate of increase in the number of cracks is given by the equation

dN

dσ
= peσ

Also, if a crack is formed when σ = σ1, the region round it where subsequent
cracking is impossible is at any subsequent instant
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Table 3.5. Values of γ deduced from observed distributions of fragment breadths

Rocket head∗ Rocket head
88 mm shell 3.7′′ shell (thick case) (thin case)

xo (cm) observed 0.37 0.56 0.44 0.31
2r (cm) 11.4 12.2 12.8 12.8
V (cm/sec) 64,000 63,000 76,000 110,000

γ = 2To
ρ

(
r

V xo

)2
230 105 125 124

∗ The values of xo for 0.15 and 0.45% carbon are about the same.

2xo(σ − σ1)1/2 (3.14)

where

xo =
(

2To

ργ

)1/2
r

V

A line drawn on paper can now be cut at random, using playing cards or
dice. Initially σ is supposed to be zero; after each successive cut is made σ is
supposed to increase by dσ where

dσ = 1/peσ

After each new cut is made, the “safe” region round all cuts made earlier
must be increased according to formula (3.14). Any arbitrary value of the
ratio l/xo may be taken. We took l/xo = 20. The line is repeatedly cut until
the whole region is “safe” from further cracking. The lengths of all intervals
are then measured and recorded, and the process repeated a number of times
until enough data are obtained to draw a histogram, in which the numbers of
“fragments” (i.e. intervals) are plotted against their lengths. The results are
shown in Fig. II(c)16. The similarity to the distributions of fragment breadths
observed in Figs. I and II (a) and (b) is satisfactory.

By comparing Fig. V with the observed fragment distributions and espe-
cially the values of their upper limits, we have estimated in Table 3.5 the
value of xo for the projectiles investigated17. The values are not correct to
more than ±10%.

From these values we have attempted to deduce γ. For this we require
the radius of the shell at the moment of break-up (r), the velocity of the
casing and the true ultimate tensile strength, To. The two former quantities
are deduced from the values given in Part I. To deduce To from a tensile test
we require the stress at the moment of rupture at the base of the neck, which
16 This theoretical curve is an inset identified by Mott as “(c) Theory” in the graph

provided in the present Fig. II.
17 Again Fig. V refer to the curves provided in the upper plot in the present Fig.

IV.
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is of course considerably greater that the U.T.S. given in engineering tables.
For steels the following values are given by Korber and Rohland, (Mitt. d. K.
Wilhelm Inst. f. Eisenforschung, 5 (1924) 55).

Carbon Reduction in Area True Ultimate Stress
(%) (%) kg/mm2 tons/sq.inch
0.13 70 78 51
0.25 63 80 52
0.45 57 82 53
0.55 50 87 57

These will probably be somewhat higher for high rates of strain;18 we have
thus assumed

To = 80 tons/sq. inch
= 100 ′′ ′′

for British (0.45% carbon) and German (0.7% carbon) shell steels respectively.
For the values of γ we cannot claim an accuracy greater than ±30%; within

these limits the British shells (0.45% carbon) show the same value, which is of
the order expected. The German shell shows a higher value, which we assume
to be due to the higher carbon content of the steel.

3.8 Dependence on Thickness and Pressure

We have seen that the hypothesis

f(s) = Aeγs γ ∼ 100

fits the facts well both for the fragmentation of shells and for the consistency
of the rupture point, and seems a priori more likely than the other hypotheses.
We have now to consider the following points:

(a) Is γ likely to depend on the thickness of the casing, or the pressure of the
gases at the moment of rupture?

(b) Why is γ larger for steels with high carbon content?
(c) Can we deduce a factor γ of this order from any known property of the

metal?

It has not at present been possible to answer point (b); to the others an
answer can be given:

Let us make the following assumptions about fracture in ductile metals:
18 cf. G.I. Taylor, Stress Strain Relationship on Impact. Civil Defence Research

Committee. R.C. 36.
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(i) Cracks can start at a limited number of points or regions in the metal of
which we assume that there are n per unit volume.

(ii) Cracks will start at these points, on the average, when the strain has
increased to a value s1

(iii) The strains at which cracks will form at the individual points of weakness
show a certain scatter about the value s1; it is natural to represent this
scatter by a Gaussian distribution. We thus assume that the number of
points per cm3 at which a crack will form as the strain increases from s
to s + ds is

n

s2

√
2π

exp
[
−(s − s1)2

s2
2

]
ds ,

For a tensile specimen of cross sectional area A, this gives us for our function
f (s)

f(s) =
nA

s2

√
2π

exp
[
−(s − s1)2

s2
2

]
cm−1 (3.15)

We are interested only in the tail end of this curve where f(s) first becomes
appreciable; let us then define the rupture point so as the strain for which one
crack per cm is expected, so that

∫ so

f(s)ds = 1 , (3.16)

and write
s = so + s′

Then we obtain from (3.15)

f(s) � nA

s2

√
2π

exp
[
−(s1 − so)2

s2

]
eγs′

with
γ = 2(s1 − so)/s 2

2 (3.17)

Also from (3.16)

nAs2

2
√

2π(s1 − so)
exp

[
−(s1 − so)2

s2

]
= 1 ,

whence (
s1 − so

s2

)2

= loge

[
nAs2

2
√

2π(s1 − so)

]
(3.18)

Hence from (3.17) we obtain finally

γ = 2 loge

[
nAs2

2
√

2π(s1 − so)

]
/(s1 − so) (3.19)
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Since n comes within the logarithm, its exact value is not important. For
a number of reasons we expect the distance between the points where rupture
can start to be of the order 10−4 to 10−5 cm. This is for instance the distance
between the slip bands19 in a metal, the “dislocations” in G.I. Taylor’s theory
of slip,20 or the “crystallites” whose existence has been suggested in cold
worked metals.21 We thus take n of the order 1015; the other terms within the
square bracket are negligible in comparison and we obtain

γ = 2 loge 1015/(s1 − so)

= 69/(s1 − so)
(3.20)

From formulae (3.19), (3.20) we deduce:

(a) That γ is practically independent of the cross section of the specimen,
and thus of the thickness of the shell casing.

(b) That γ is practically independent of the pressure of the explosive at the
moment of rupture, because (cf. footnote 12) the pressure must vanish
at the outside surface, and if the formation of cracks were confined to a
small layer near the surface only, it would not affect γ appreciably.

(c) The properties of the steel affect the value of γ only through the value of
s1 − so, and if s1 is of the order unity, as is not unlikely, values of γ in
agreement with observation are obtained.

3.9 Lengths of Fragments

Up till this section we have discussed only the breadths of fragments, believing
that splitting parallel to the axis is the primary process in fragmentation. We
have now to discuss the factor determining their lengths.

Observation on fragments of marks cut on the surface of the case shows
that shell casings do not stretch parallel to their axis; we must therefore look
for an explanation of rupture at the ends of the fragments different from that
given for the longitudinal cracks.

If cracks start at A and B and spread to the right, and from C and D
and spread to the left, then as Professor Andrew22 has pointed out, when
the cracks bounding two fragments meet, there will be a tendency to split,
as at E. According however to the hypothesis on which this paper is based,
a split like this is only likely to take place if the steel between the cracks A
19 cf. for example, Orowan, Nature, 147, 452 (1941) or the beautiful photographs of

worked steel obtained with the electron microscope by Heidonreich and Peck, J.
Applied Physics, 14, 24 (1943).

20 Proc. Roy. Soc. A. 145, 362 (1934).
21 Smith and Wood. Proc. Roy. Soc. A. 178, 93 (1941).
22 Report R.C. 342 from the Dept. of Metallurgy of the University of Sheffield

(31.8.42).
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A

B

E

C

D

Fig. 3.7.

and B has already stopped flowing before the crack D reaches it; otherwise
the crack D will be unaware of the presence of the cracks A and B and will
penetrate between them. If however plastic flow has stopped, the different di-
rections in which the two fragments are moving will, we consider, lead to their
separation.

Let u be the velocity with which each crack extends. As soon as a crack
has formed, the region spreads in which flow has stopped, so that after a time
t its width a is given by

a = 2
(

2rTo

ρV

)1/2

t1/2

Thus a crack starting at 0 in Fig. 3.8 and which has spread to a length 2b is
surrounded by a region bounded by two parabolas, in which plastic flow has
stopped; the breadth PQ of this region is

2
[
2rTob

ρV u

]1/2

As a rough criterion for the condition that the region between two cracks
should be no longer in flow, we write a, the width of the crack, equal to half
this;

a =
[
2rTob

ρV u

]1/2

Thus the ratio, length to breadth, is equal to

2b

a
=

[
ρV ua

rTo

]
(3.21)

According to (3.14), a for the average fragment is proportional to r/V ; we
obtain

2b

a
= 2

√
πρ

2To

u

γ1/2
(3.22)

With To = 60 tons/sq. inch = 9 × 109 c.g.s. units, ρ = 8, γ = 100, this gives

2b/a = 0.7 × 10−5u

If we equate u to the velocity of sound in steel, 5 × 105 cm/sec., we obtain

2b/a � 3.5
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2b

Q

0

P

Fig. 3.8.

Fig. 3.9.

Fig. 3.10.

in fair agreement with experiment. The hypothesis that cracks spread with
the speed of sound is not unlikely to be correct, if the atomic cohesion only
has to be overcome, and no plastic deformation is involved.

Formula (3.18) suggests that the length/breadth ratio of the average frag-
ment is independent of the calibre of capacity of the projectile, but will be less
for the German high carbon steel (large γ) than for the British steel. These
conclusions seem to be born out by the figures of Table 3.4.

3.10 Shape of Cross Section of Fragments

We have already remarked on the types of rupture observed, and pointed out
that the type of rupture shown in Fig. 3.10 is usual, with a brittle crack on the
outside of the casing and shear rupture at 45◦ on the inside. In this section
we attempt an explanation of this double type of rupture. For this purpose
we calculate the stresses in the case during plastic expansion.

According to G.I. Taylor’s calculations, the pressure at various stages in
the expansion of a long cylindrical cased charge are given by the following
figures, where r is the radius of the inner surface of the case and ro its initial
value:
At the moment of break-up, therefore, the pressure is of the same order as
the yield stress, and both will be of comparable importance in determining
the stresses in the material for thick casings.
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Table 3.6.

r/ro 1.0 1.05 1.1 1.3 1.54 2.4

pressure dynes/
cm2 × 10−9 150 49 25 8.4 4.0 2.0
pressure tons/
sq. in. 1000 320 160 55 26 13

In a cylindrical tube subject to an internal pressure just great enough to
cause flow, the stresses have been worked out.23 The radial and tangential
stresses are, at distance r from the axis

Sr = −To log
b

r

St = To

(
1 − log

b

r

)

where b, a are the external and internal radii; the pressure necessary to cause
flow is

To log
b

a

Here To = 2 So/
√

3 where So is the shearing stress. If p is the actual pressure
of the gases, we have an additional pressure at the surface

p − To log
b

a

giving a hydrostatic pressure at a distance r from the axis equal to
(

p − To log
b

a

)
a

b − a

(
b

r
− 1

)

The stresses can thus be resolved into

(1) A tangential stress To

(2) A hydrostatic pressure equal to
(

p − To log
b

a

)
a(b − r)
(b − a)r

+ To log
b

r
,

which vanishes at the outside surface and reaches the value p at the inner
surface.

Now it is known that hydrostatic pressure makes fracture more difficult,
while having little effect on the resistance to glide. For nonplastic materials,
where fracture starts from a microscopic crack, the following account of the
23 Nadai, Plasticity, McGraw Hill Book Co., p. 188:
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effect of hydrostatic pressure has been given by A.A. Griffiths in a well-known
paper.24 Suppose elliptical cracks are acted on by a stress T and a hydrostatic
pressure P ; the angle made by the plane of any crack to the normal to T is
denoted by θ, and θ is distributed over all values Fig. 3.11. Then T will be
great enough to cause cracks to spread under the following conditions:

T

θ

Fig. 3.11.

(a) 4p < 3T If this condition is fulfilled, cracks for which θ = 0 will be the
first to spread, where T reaches a value k + p, where k depends on the
elastic constants and surface tension of the metal, and the dimensions of
the crack.

(b) 4p > 3T Under these conditions cracks for which θ = 0 will not be the
first to spread, but those for which

cos 2θ =
1
2

T

2p − T

At the critical pressure given by 4p = 3T , this gives θ = 45◦.
In plastic materials it is probable that the high tensile stress T near the

apex of a crack will cause cracks to form in crystal grains near to it. As the
apex of the crack travels inwards, if a point is reached where 4p exceeds 3T ,
the crack should abruptly change its direction by 45◦. This is just what is
observed.

Since T is certainly greater than To, an necessary condition for such a
change of direction will be

4
3
p > To

where p is the pressure exerted by the explosive. For casings that break up
at 30 and 50% expansions respectively, the calculated values of 4p/3 are 73
and 35 tons per sq. inch, which are of the same order as To, though they are
somewhat less than the values that we have assumed to hold for the metal at
high rates of strain.

For this reason we put forward the above explanation somewhat tenta-
tively.
24 Proc. Int. Congress for Applied Mechanics. Delft (1924), p. 55.
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3.11 Comparison with Observed Fragmentation
of Service Projectiles

In this memorandum we have reached the following conclusions:
For a given type of steel

(a) The ratio of length to breadth of fragments is constant.
(b) The average fragment area is proportional to (r/V )2s, where s lies between

2/3 and 1, probably nearer the latter value.
(c) The weight distribution is given approximately by formula (3.3)

We may thus equate MA of formula (3.3) to

const t1/2(r/V )s

where the value of the constant depends on the properties of the steel, or,
making use of formula (3.1) for the velocity

MA = const t5/6d
1/3

2

(
1 +

t

d2

)
s =

2
3

MA = const td
1/2

2

(
1 +

t

d2

)
s = 1

where the constant depends on the type of explosive and steel, d2 is the inter-
nal diameter and t the thickness of the casing. The first of these formulae has
already been compared with experiment in 2), in which MA was determined
for a number of service weapons.

Comparison with fragmentation of observed projectiles should show
whether s = 1 or s = 2/3 or some intermediate value gives the best fit.
Ursell25 has determined the best value of MA for three model bombs frag-
mented by Payman,26 with thicknesses 0.018, 0.125 and 0.3 inches (diameter
2′′). He comes to the conclusion that MA is proportional to 1/V 1.2. The cas-
ings of these bombs were of mild steel and gave shear fracture, and so are not
directly comparable with our theory. Unfortunately the range of values of r
and v available in British shells of carbon steel for which detailed information
is available is not great enough to allow any certain conclusion to be drawn.

Observed values of MA for a number of projectiles filled with TNT are
shown in Table 3.7; we have limited ourselves to those with a reasonably
cylindrical cross section. It looks as though s = 1 gave rather a better fit than
s = 2/3.

25 A.W.A.S. Report No. 46; Ministry of Supply No. A.C. 3817
26 loc. cit.,



Table 3.7.

d1 t MA (oz)1/2 MA MA

Projectile inches inches observed t5/6d
1/3
2

(
1 + t

d2

)
td

1/2
2

(
1 + t

d2

)
3′′ U.P. 3.25 0.265 0.134 0.265 0.27
95 mm shell 3.7 0.425 0.23 0.29 0.26
U.P. (thick

cased) 3.5 0.50 0.30 0.32 0.29
3.7′′ shell 3.7 0.60 0.36 0.32 0.275 ± .015
25 pr. shell 3.43 0.65 0.35 ± 0.03 0.29 ± .025 0.245 ± .02

3 A Theory of the Fragmentation of Shells and Bombs 267



2

8

37

40

75

115

109

114 98

60

28

12 9 2 4 2 3

19

40
39

28

6
2

FIG. I
Total length
of fragments
with different
breadths. The figures
give number counted

36

27

33
22

14

6

2

British 3.7˝
A.A. shell.
Cylindrical cavity

German 88 mm.
shell

Thick cased
rocker head

0.4 carbon sheet

4 6 8 10
Breadth of fragment

To
ta

l L
en

gt
h 

of
 fr

ag
m

en
ts

 in
 e

ac
h 

ca
te

go
ry

12 14 16 mm

Fig. I.

N.F. Mott268



2 4 6 8 10
Breadth of fragment

To
ta

l L
en

gt
h 

of
 fr

ag
m

en
ts

 in
 e

ac
h 

ca
te

go
ry

12 mm

10

x/x0

3

24

5

8

N
o.

 o
f f

ra
gm

en
ts

(c)

(b)
Normal (thin

cased) rocket
head; diameter
3.25˝ thickness

0.265.˝

Rocker head,
thick case
mild steel.

(a)

Theory.16

2
2

4

11

28
25

25
21 17

21

6
3

2 2

4 6 8 10 12 14mm.

20 30

FIG. II

Fig. II.

3 A Theory of the Fragmentation of Shells and Bombs 269



10 20 30 40 50 Length (mm)

1–2
mm

3–5
mm

6–15 mm

all
breadths

(d)

(c)

(b)

(a)

Fig.III

88 mm. German
shell.

Numbers of
fragments with
different lengths

(a)  breadths 1–2 mm.
(b)  breadths 3–5 mm.
(c)  breadths 6–15 mm.
(d)  all fragments.

Fig. III.

N.F. Mott270



0

2 4 6 8 10

(a)
(b)

Fig. III

Fig. IV

λ

0.25

0.5

0.75

2.0

Lo
g 

N
C

ha
nc

e 
of

 r
up

tu
re

1.0

0

0.01 0.02 0.03
Strain above critical strain

Fig. IV.

3 A Theory of the Fragmentation of Shells and Bombs 271



Facsimiles of N.F. Mott: A Theory of the
Fragmentation of Shells and Bombs



274 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 275



276 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 277



278 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 279



A Theory of the Fragmentation of Shells and Bombs280



A Theory of the Fragmentation of Shells and Bombs 281



282 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 283



284 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 285



286 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 287



288 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 289



290 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 291



292 A Theory of the Fragmentation of Shells and Bombs



A Theory of the Fragmentation of Shells and Bombs 293



294 A Theory of the Fragmentation of Shells and Bombs



4

Fragmentation of Shell Casings
and the Theory of Rupture in Metals

N.F. Mott

(August, 1943), Ministry of Supply, A.C.4613

Summary. In para. 2 the Griffith theory of rupture in brittle materials is reviewed;
in paras. 3 and 4 the information available about the stress strain curves of metals
at high rates of strain is reviewed, and it is suggested that the increase in the yield
point of steel of a given composition is independent of the degree of cold work. A
correlation is also suggested between the variations of yield point with temperature
and with rate of strain. In para. 5 the evidence is discussed for the hypothesis that
metals in a given state of plastic strain will fracture when the maximum principal
stress reaches a given value. It is shown that the fracture stress of steel is either
independent of strain or increases slowly with it. The fracture stress appears to
increase with rate of strain, by about the same amount as the yield point. In para. 6
it is pointed out that two well-defined types of rupture occur, brittle and shear; the
condition for the occurrence of either is discussed. Para. 7 applies the conclusions
reached to certain phenomena observed in the rupture of bomb and shell casings.
Para. 8 discusses the evidence that the rupture stress increases with rate of strain.
Para. 9 discusses the scatter observed in the values of the reduction in area obtained
in tensile tests; this scatter was assumed in a previous report on fragmentation to be
responsible for the average size of fragments. It is shown that a numerical estimate
of the order of magnitude of this scatter, and of its dependence on the properties
of the steel, can be made using very general assumptions about the mechanism of
rupture. It appears probable that the magnitudes of the scatter will be the same for
shear rupture as for brittle rupture.

FRAGMENTATION AND RUPTURE OF METALS

4.1 Purpose of Report

In a recent report1 the present author has given a theory of fragmentation
which attempts to account for the size of fragments from a bomb or shell of
given dimensions and filling. The purpose of the present report is:
1 A Theory of the fragmentation of shells and bombs. M. of S. Extra-Mural Report

A.C.4035.
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(a) To extend the theory and in particular to attempt to account for the
differences in fragmentation shown by high and low carbon steels.

(b) To review the information available about fracture of ductile metals; it is
probable that the study of fragmentation can throw considerable light on
the processes involved, which may be useful in other fields, such as that
of armour piercing projectiles.

4.2 Fracture of Non-Ductile Materials;
the Theory of A.A. Griffith

While no molecular theory exists to account for fracture in ductible materials,
for non-ductile materials such as glass the accepted theory is that due to Grif-
fith2. Griffith explains the discrepancy of 100 to 1000 between the observed
and the theoretical tensile strength of materials such as glass or rocksalt by
postulating the existence of surface cracks, which weaken the specimen; con-
siderable experimental evidence exists in support of this hypothesis. Griffith
has given a quantitative theory of the weakening effect of certain types of
crack, based on Inglis’ solution of the equations determining the stresses round
an elliptical cavity. He gives a condition that a crack of width 2c and length,
perpendicular to the plane of the paper, large compared with c should spread
when subjected to a stress P . This condition is

P =

√
2Eσ

πc
(4.1)

where E is Young’s modulus and σ the surface tension. The formula is ob-
tained by treating the cross-section of the crack as an ellipse of zero eccen-
tricity, and assuming that Hooke’s law is valid up to the apex of the crack. A
formula differing from (4.1) by a factor 0.8 has been derived by Orowan3 on
rather similar assumptions.

Griffith has also considered the behaviour of cracks under biaxial stresses.
A material is supposed to be subject to stresses P, Q as shown, and P is
greater than Q. It is also supposed to contain cracks oriented at all angles
θ to the normal to P . As P is increased certain of the cracks will begin to
spread and the material will fracture. The question at issue is, which crack
will begin to spread first, and how does the critical value of P depend on Q?

According to Griffith, two cases may be distinguished:

(a) 3P + Q > 0. In this case cracks for which θ = 0 spread first and the
critical value K of P , given by (4.1) above, is independent of Q.

(b) 3P + Q < 0. In this case rupture takes place when

2 A.A. Griffith. Trans. Roy. Soc. 221, 180 (1920).
II. Int. Congress Applied Mechanics, Delft, p. 55 (1924).

3 E. Orowan. Zs. f. Kristallographie, 89, 327 (1934).
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2c

P

P

Fig. 4.1.

(P − Q)2 + 8K(P + Q) = 0 (4.2)

at an angle θ given by

cos 2θ = −1
2

P − Q

P + Q

Two interesting cases arise:

(i) Compressive stress, P = 0, Q = −T . Then Q = 8K, so rupture takes
place at 8 times the stress necessary under tension, and at an angle θ
equal to 30◦.

(ii) Hydrostatic pressure. Owing to the two dimensional nature of the Grif-
fith theory, we shall have to make the assumption that stresses perpen-
dicular to the plane of the paper in Fig. 4.2 do not affect the stress for
rupture. With this assumption, if the specimen is subjected to a hydro-
static pressure p, we may write p = −Q. If p < 3P , rupture is determined
by the maximum principal stress, at a value independent of p.

Q Q

P

P

θ

Fig. 4.2.

If a specimen is initially under tensile stress T , for example from a spring,
and both spring and specimen are immersed in a hydrostatic pressure p, the
maximum tensile stress is T − p. In a recent paper4 Bridgman has called
P (= T −p) the net stress and T the true stress, which is perhaps unfortunate
since P is actually the stress in the material.
4 P.W. Bridgman. ORSD Report 1347, “Plastic Deformation of Steel under High

Pressure”.
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Since the tensile strength of a material such as glass is determined by the
size of the largest of a comparatively small number of random surface cracks,
we should expect a large fluctuation in the strength of specimens prepared in
the same way. Some values of the fluctuation have been given by Holland and
Turner of the Dept. of Glass Technology, University of Sheffield5. The bend-
ing stresses of flat drawn sheets of thickness 0.27 cm with sides mechanically
ground and polished showed, when 25 specimens were tested, coefficients of
variation of from 8 to 18%.

4.3 Plastic Flow and Strain Hardening in Metals

In this report we shall deal always with the true stress, which we shall de-
note by P , and not the engineering stress, which is the product of P and the
reduction of area of the specimen, at the base of the neck if necking has com-
menced. It is obvious that P , not the engineering stress, determines fracture
phenomena in the metal.

The following relation between strain s and true stress P has been given
by Bridgman (loc. cit.,) and by Hollomon6

P = P1 + P2 loge

Ao

A
(4.3)

where A1, Ao, are the area and initial area of the specimen, so that

s = (Ao − A)/A

Bridgman’s investigations were carried out under high hydrostatic pressure
which is almost without effect on the stress-strain curve but enables the strain
to be carried to much higher values without rupture. Hollomon investigates
two steels with different carbon and nickel contents. For a given steel he finds
a wide variety of values of P1 depending on the heat treatment, but a fairly
constant value of P2, as follows:

Composition of steel P2

C Ni (1000 p.s.i)

0.44 0 73
0.19 1.83 73
0.20 0 55

The formula is not satisfactory near the yield point of the unworked metal
5 A. J. Holland and W.E.S. Turner. Effect of Width on the Breaking Stress of Sheet

Glass. Proc. Soc. Glass Technology, (1956), vol. 20, p. 72.
6 U.S.A. Ordnance Dept. Report No. 630/7. “Tensile Properties of Steel”. Oct. 17

(1942).
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4.4 Yield at High Rates of Strain

For a discussion of fragmentation we require information about the yield point,
at high rates of strain, of steels at the rupture point. Little evidence exists
about this, most investigations being confined to the beginning of the stress-
strain curve. We therefore attempt a theoretical estimate of the increase in
yield stress to be expected.

At rates of strain of the order 500 sec−1 the tensile yield strength of low
tensile steels is about doubled7; for instance, that of a medium carbon steel
increased from 18 to 28 tons and a mild steel by about the same amount.
On the other hand the tensile strength of hard steels is scarcely affected. In
compressive tests at high striking velocities the actual rate of yield is not
known, but must be much higher. It is found8 that a variety of steels with
yield points between 18 and 72 tons/sq. inch showed approximately the same
increase of yield point, about 35 tons/sq. inch. Between 1,600 and 2,500 ft/sec.
the striking velocity has no effect on the yield point9.

According to a theory put forward by Becker10, it is not unexpected that
the absolute values of the yield points of steels should increase by the same
amount. According to Becker, the “dislocations” responsible for plastic flow
will move under a stress P with velocity

v = C exp
[
− (Po − P )2V

2GkT

]
(4.4)

Here Po is the stress required to move them at the absolute zero of temper-
ature, T the absolute temperature, G the shear modulus and V a volume
determined by the thickness of the disloction zone. If λ is the distance be-
tween dislocations and a the interatomic distance, then the rate of shear is
av/λ2. C/a should be of the order of the period of atomic vibrations, namely
10−12 sec−1; thus for the rate of shear we obtain

ds

dt
=

(a

λ

)2

× 1012 exp
[
− (Po − P )2 V

2GkT

]
.

Expressing P in terms of ds/dt we find

P = Po −
√

2GkT

V

[
2 loge

(a

λ
106

)
− log

(
ds

dt

)]1/2

. (4.5)

7 The determination of static and dynamic yield stresses by a ball method, by
R.M. Davies, M. of S. Extra-Mural Report A.C.1228. Brown and Vincent, Proc.
Inst. Mech. Engineers, vol. 145, p. 126 (1941).

8 D.S.I.R. Road Research Lab. Report MOS/172/ACW. Nov. (1942).
9 Road Research Labortory Report, MOS/33/ACW. Nov. 1941.

10 R. Becker. Zs. f. Physik, 26, 919 (1925); E. Orowan, Proc. Phys. Soc. 52, 19
(1940).
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For a constant, just observable, rate of strain, this gives the well-known rela-
tion between yield point and temperature11

P = Po − A
√

T (4.6)

We might expect that V would be a property of the material but not of
the internal strains. This may not be true of λ, but as a/λ comes within a
logarithm, its exact value does not much matter. Taking λ/a = 100, (4.5)
gives us12

P = Po − B
√

T

[
8.0 − log10

(
ds

dt

)]1/2

, (4.7)

where ds/dt is the rate of strain in sec−1 and B does not depend on the degree
of cold work of the material.

The suggestion made here, that the term in the stress sensitive to rates
and temperature is independent of cold work, agrees qualitatively with the
fact that the increase of yield point shown by steels of widely different yield
points is about the same. More exact verification can be obtained from the
dependence of the yield point on temperature. The values are from H.W.
Russell13. It will be seen that, for a given material the change of yield point
with temperature depends little on the heat treatment or cold work14.

For carbon steel, assuming that the yield point is that for which ds/dt =
10−3 sec−1, comparing these values with (4.7) gives

√
11(

√
300 −

√
70)B = 70

which gives
B = 2.35 × 103 lbs/sq. in.

Thus at room temperature the yield stress is related to the rate of strain
by the equation
11 See, for instance, Orowan, Zs. f. Physik, 89, 605 (1934) for Zn and Cd crystals.
12 Perhaps the term in this equation most open to doubt is that due to our choice

of a/λ, namely, 8.0. According to this equation, the whole stress-strain curve of
a metal should remain unchanged if temperature and rate of strain are changed
in such a way that

T [8 − log10(ds/dt)]

remains constant. Some confirmation of this hypothesis is given by some results
on copper due to Nadai (J. Applied Mech. vol, 8, p. A77 (1941)). He finds that
the U.T.S. was equal to 30,000 lbs/sq.inch for the following values of T and ds/dt

T (degrees K) 300 473 673 873
log10(ds/dt) −3.5 1.5 3 4
10−3x T [8 − log10 (ds/dt)] 3.45 3.1 3.4 3.5

13 Symposium in the Effect of Temperature in the Properties of Metals. Am. Soc.
for Testing Materials and Am. Soc. Mech. Engineers, (1931), p. 658.

14 These data and discussion in the following several paragraphs refer to Table 4.1.
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Table 4.1.

Yield point (1000 lbs/sq.in)
Metal Room temp. Liquid air. Difference

Cold-rolled copper 43.3 50.4 7.1
Annealed copper 12.7 18.3 5.6

Annealed 0.4 carbon steel 45.8 114.1 68.3
Treated 0.4 carbon steel 76.9 150.2 73.3

Annealed 3 p. c. nickel steel 57.0 110.0 53.0
Treated 3 p. c. nickel steel 76.4 132.0 55.6

P = Po − 41 × 103

√
8.0 − log10

(
ds

dt

)
lbs/sq.inch (4.8)

Taking as before ds/dt = 10−3 for static tests, we obtain the following values
of the increment in the yield stress for a 0.4 carbon steel with any degree of
cold work

ds/dt (sec−1) 1 102 103 104

Increase in yield stress
(1000 lbs/sq. inch) 20 36 44 54

The values are of the order observed.
For copper, according to the values of Table 415, the increase in yield

point with lowered temperature is only about 1/10th of the value observed
for steel. We should thus expect an increase at high rates of strain of the order
4000 lbs/sq. inch.

4.5 Fracture in Ductile Metals

A ductile metal specimen under tension extends a certain amount and then
fractures, the reduction of area at the neck at fracture being a well repro-
ducible quantity with a small coefficient of variation. Fracture, when it takes
place, cannot be determined by surface cracks, because

(a) Surface conditions are found not to affect the strain at which rupture
occurs.

(b) Rupture is observed to begin at the centre of tensile specimens.

It has therefore been suggested on several sides that a metal, in a given
state of plastic strain, will fracture when the greatest principal stress reaches
15 Reference to Table 4.1 was clearly intended here.
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Fig. 4.3.

a critical value PF , called in the literature the “Technical tensile strength”
(German “Reissfestigkeit”). When a metal is strained under tension, PF will
change in some unknown way with strain, and the yield stress PY will increase
according to the usual stress-strain curve (e.g. (4.3)). When the two curves
cross the metal fractures.

We shall in this report assume that such a rupture stress PF exists, and
that it is independent of the components of principal stress other than the
maximum. Not much evidence exists for this assumption; if fracture took
place according to the Griffith theory starting from internal cracks, formed
by the cold work, then the two dimensional theory of para. 2 suggests that the
stress for fracture should be independent of the other components. Difficulties
in applying the Griffith theory to ductile materials, however, are:

(i) The Griffith theory is based on the existence of high concentrations of
stress at the apex of a crack; it is difficult to see how such high concen-
trations can exist in a ductile material16.

(ii) The stresses inside a cold-worked metal are certainly very unhomoge-
neous; if the cracks were formed initially in regions of high local stress,
the stress there would be quite different from the applied stress.

On the experimental side, Bridgman (loc. cit.,) has recently made some
measurements of the stress-strain curves of steel under high pressure
(13, 000 kg/cm2). He finds, as was to be expected, that much higher strains,
up to values of Ao/A equal to 10 could be obtained without rupture; for if T is
the applied stress, 1

2T is the shear stress and T − p is the maximum principal
stress. He finds that rupture occurs at a value of T − p (called by him the
“net” stress), which is, roughly, independent of pressure. This may mean that
the rupture stress PF is independent of the other components of stress and of
the degree of strain; or if PF increases with strain (cold work), then it must
increase also with pressure. Unfortunately Bridgman did not carry out the
experiment of extending the specimen under pressure past the rupture point,
then reducing the pressure and determing the rupture stress.
16 An interesting discussion of the way in which cracks may spread in ductile mate-

rials has been given by Orowan, Proc. Int. Congreee of Physics, London (1934),
vol. II, p. 81.
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Fig. 4.4.

An extensive investigation of the tensile strengths of notched bars has been
made by Ludwig and Kunze17, with a view to determining the true stress
for rupture. The idea of this work is to extrapolate the ultimate strength
(maximum load divided by initial core area of notch) of notched specimens
to the case of vanishing notch angle and vanishing core area. It is assumed
that the high stresses at the edge of the notch are relieved by plastic flow,
which is not however sufficient to affect the state of cold work in the interior
of the core. The stress is thus assumed to be uniform throughout the core;
and since further plastic flow is impossible, the stress distribution in the core
must correspond to a negative pressure. The rupture stresses obtained in this
way will correspond to this limiting case, and be valid for uniaxial stresses
only if the rupture stress depends on the maximum stress component only.

For some reason which is not clear, Kunze calculates the stress in the
core of the notch from the elastic Poisson contraction, which can scarcely be
justified, since by hypothesis plastic deformation takes place at the apex. The
stress could be calculated directly by dividing the tension by the area.

Kunze gives curve of fracture stress PF against plastic strain (the speci-
mens being strained before the notch was made). Kunze’s curve of PF first
rises18 with increasing strain, and then drops. We believe that this drop does
not actually exist, and was obtained owing to the failure of the hardened
metal to relieve the abnormal stress concentrations in the neighbourhood of
the notch19. Any rapid fall of PF near the normal rupture point is precluded
by Bridgman’s result quoted above.

Some values of the true ultimate tensile stress for some metals are given
below for reference (from Ludwig, Bestimmung d. Reissfestigkeit aus Gleich-
massigen Dehnung, Z. f. Metallkunde, 18, 269 (1926))20.

17 Described in a number of papers; for a review see “Kohasionsfestigkeit” by W.
Kunze, Mit. d. deutschen Material prufungsanstalten, Sonderheft, 20, p.1 (1932).
See also a critical review of this work by D.J. McAdam, J. of Applied Mechanics,
vol. 8, p. 155 A, (1941).

18 For single crystals of zinc and certain other materials, e.g. W, Te, NaCl, there is
a considerable rise of PF with plastic strain, c.f. Kristalplastizitat, Schmid and
Boas, p. 175.

19 This drop has also been criticised by McAdam on different grounds.
20 Reference here is to Table 4.2.
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Table 4.2.

Material Yield Stress∗ True U.T.S.∗

Al (pure) 4.0 24.6
Cu (pure) 4.2 53.0
Ni (pure) 10.5 128.7
Steel (0.08% C) 21.6 87
Steel (0.13% C) 26.2 93.1
Steel (0.2% C, 2.9 Ni. annealed) 46.3 100.8
Steel (0.45% C rolled) 41.0 104.0

∗Tensile stresses in kg/mm2 (to convert to tons/sq. inch multiply by 0.64).

Fig. 4.5.

4.6 Brittle and Shear Rupture

These two types of rupture can, and usually do, occur in the same tensile
specimen. Brittle rupture occurs perpendicular to the direction of the principal
stress, and the material in the neighbourhood of the fracture does not show
especially heavy cold work; shear rupture takes place at 45◦ to it, and the
material is heavy strained round it.

Shear rupture occurs in the following circumstances:

(a) Cup and cone fracture, usual in tensile tests on ductile metals. Fracture
is known to start in the middle of the specimen, where a brittle rupture
is obtained; shear rupture occurs at the edges.

(b) According to Bridgman’s experiments tensile rupture under high hydro-
static pressure is entirely by shear; a cone or series of cones marks the
fractured surface (Fig. 4.6).

(c) Under pure shear metals will normally fail by shear fracture, as shown by
the behaviour of sheet metal when cut by scissors.

(d) Shell and bomb casings which show plastic expansion before fracture,
break up as shown in Fig. 4.7. With shells brittle rupture occurs on the
outside of the shell case, shear rupture inside; with bombs (higher rates
of strain than in shells) shear rupture alone is frequently observed.

We suggest that, for a metal with a given degree of cold work, there exists
a critical shear stress SR at which shear rupture will occur. This will normally
be greater than the shear stress for yield; but the facts listed under (c) and (d)
above suggest that if SR and yield stress are plotted against strain, the curves
will ultimately cross, if brittle fracture has been prevented. In the tensile test
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Fig. 4.6.

(a)

(b)

Fig. 4.7.

giving cup and cone fracture, when the brittle fracture has occurred in the
centre of the test piece, the stresses near the surface will be raised to a high
value giving a high rate of strain. We must deduce from the occurrence of the
cup and cone fracture that, when the shear stress SR is reached, the material
prefers to rupture by shear, even though the tensile stress exceeds the critical
value PF . This is a rather surprising result.

We have at present no idea why, at a certain critical shear stress, shear
should become unstable in this way.

4.7 Rupture of Bomb Casings

The stress distribution within a bomb casing has been discussed in the author’s
previous report (A.C.4035). It consists of:

(a) A uniform21 tangential stress equal to the yield stress of the metal at the
strain and rate of flow concerned.

(b) A hydrostatic pressure decreasing from that of the explosive gases at the
inner surface to zero at the outer.

Interesting experiments on the break-up of thick cased cylindrical bombs
have been made by Porter (ARD, Swamsea). These bombs broke by shear
rupture; it was found possible to fit together the fragments, showing that
break-up took place after a very definite expansion. For bombs of different
case thickness it was found that rupture took place at the same percentage
elongation of the inner surface. This suggests that shear fracture starts at the
inner surface. This is natural, because the shear stress is (slightly) greatest
there, owing to the greater strain hardening. Porter also found that the strains
21 If the case is thick, the strain will not be exactly uniform, because the strain will

be greater at the inside surface, since the expansion of the inner circumference is
greater than that of the outer.
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reached at the inner surface were much greater than those obtainable in static
tests. This is not surprising, because rupture in brittle static tests will be
determined by brittle fracture, a process which cannot take place at the high
pressures at the inner surface, where the resultant tangential stress is reduced
and may be negative.

We suppose that the condition for shear rupture is that the shear stress
at the inside of the case reaches the critical value SR before the tensile stress
at the outside reaches PF .

For casings that fracture, as in Fig. 4.9(a), there is evidence that for some
shells at any rate the cracks start from the outside sometime before normal
break-up, and penetrate slowly through the case22. The evidence is as follows.

(a) Porter23 has shown from work on bombs with grooves on the outer surface
that, when the pieces are fitted together, they appear as in Fig. 4.8.

(b) A metallographic and X-ray examination24 of fragments from a British
3.7′′ shell shows much greater elongation of the crystal grains near the
inner surface than the outer. The effect, however, was not observed with
a fragment from a German shell (0.7 carbon as compared with 0.4)

Fig. 4.8.

The explanation of this effect must be the following: fracture starts at
the outer surface when the tensile stress reaches the critical value PF . In the
more ductile metals the crack cannot spread into the region where the tensile
stress is below PF ; in other words, the stress is not appreciably enhanced
near the vertex of the crack. This fact speaks against the Griffith mechanism,
according to which a large crack of macroscopic dimensions would spread
under the influence of a very small stress.

A difference of this type between the behaviours of brittle and tough steels
seems to be shown by notched bar impact tests. The facts quoted are given
in the discussion of Notched Bar Impact Testing, Trans. Menchester Assoc.
of Engineers (1937).

Figure 4.9(a) shows a notched specimen and Figs. 4.9(b) and (c) the type
of load-deflection curve that can be obtained for brittle and tough steels re-
spectively, when the specimen is bent statically; the area under the curve is
the work done to fracture, which agrees well with the work done in impact
tests. We interpret these curves as follows:
22 Reference to Fig. 4.7(a) is apparently intended here.
23 Controlled Fragmentation on Anti-Personnel Bombs, AC.1241, October, (1941).
24 N.P.L. Investigation Ref. G.C. 774, June (1943).
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In the rising parts of the curve, plastic deformation is taking place at the
base of the crack, until the rupture point is reached at the surface, because,
as in Fig. 4.3, the curve for PF crosses the curve for the yield point. Since,
however, the stress at the base of the crack is not uniaxial, the shear stress is
less than half the maximum tensile stress, and a crack will start for a smaller
plastic strain than in the normal tensile test.

In steels of the type shown in Fig. 4.9b, the rapid drop in the curve shows
that a crack, once started, will go right across the specimen, although the
upper part (Fig. 4.9a) has not been appreciably strained. The propagation of
the crack appears to require no further energy25. In impact tests it is stated
that as soon as the crack started to traverse the body of the specimen, it did
so with explosive suddenness (loc. cit. p.151). For metals showing curves of
type (c), on the other hand, it is clear that the crack cannot propagate itself
into the unhardened material until further bending with work hardening has
taken place.

4.8 Thinning of Fragments; Dependence
of Rupture Stress on Rate of Strain

The thinning observed in bomb and shell fragments is usually of the order 30
to 50%, and thus the plastic strain is not much less than that obtained in static
tests. In casings that break by brittle rupture from the outside, we have seen
in the last section that there is some uncertainty as to when cracking begins;
25 The calculated energy required to separate two rows of atoms is quite negligible.
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for casings that break by shear rupture, on the other hand, the observed
expansion shows that the outer surface can expand by 50% without brittle
fracture; in other words, that the strain at which fracture occurs under simple
uniaxial stress is at any rate not decreased by a high rate of shear.

This is also in agreement with results obtained in high speed tensile tests.
For instance, Clark and Datwyler (Am. Soc. Testing Materials, (1941),) using
a rate of strain of the order 102, find the following values of the reduction in
area at fracture:

Yield Point (lbs.) Max. load R. in A.

Static Dynamic Static Dynamic Static Dynamic

Cold-rolled steel
(composition not stated) 265 352 280 360 48 50.7
18–8 Cr. Ni Alloy steel 303 371 385 466 69 54
Brass (cold-rolled) 138 192 177 202 44 50
Aluminium 50 76 59 79 69 75

It will be seen that, in spite of the considerable increase of yield point
with rate of strain, the reduction in area changes in either direction, by a
small factor only.

If PF , the fracture stress, is independent of strain, then by (4.3) rupture
occurs when

P1 + P2 log
Ao

A
= PF ,

i.e. when
Ao

A
= e(PF −P1)/P2

Since P2 is roughly independent of rate of strain and of the order
70,000 lbs/sq. in., while P1 is increased by about 60,000, we see that, if PF is
independent of rate of strain, fracture should occur for a very small reduction
in area or none at all. Since this is contrary to the observed facts, it follows
that

EITHER PF decreases rapidly with increasing strain,
OR PF increases with rate of strain by about the same amount as the

yield stress Po.

We have seen that the first hypothesis (that of Kunze) is not compatible
with Bridgman’s results, that under pressure a very high degree of plastic
deformation can be achieved in a tensile test. We are thus driven to the
second conclusion, that the rupture stress of a material increases with rate
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of strain26. This result, that the rupture stress increases with rate of strain
is somewhat unexpected. Similar evidence does not exist for the dependence
on temperature, where for steels the reduction in area drops considerably at
liquid air temperature. Thus for an annealed carbon steel H.W. Russell (loc.
cit.,) gives a drop from 49 to 7.1%, suggesting that the rupture stress does
not increase with the yield stress.

4.9 Coefficient of Dispersion of Rupture Points

In the author’s previous paper on fragmentation, it was suggested that the
strain (reduction of area) at which a metal fractures in tensile tests is a quan-
tity which shows a certain scatter about a mean value. It was suggested that,
per unit volume of metal, the chance that a crack would start as the strain
increased from s to s + ds could be represented by a function of the form

Ceγs ds

With this assumption, the average size of fragments could be calculated and
it was deduced that γ should have the values

γ � 110 Low and medium (0.4) carbon steel.
� 230 0.7% carbon steel.

So high a value gives a dispersion of the rupture points of about 1%.
An examination27 of the fragment weights from service bombs and shells

shows that, for medium carbon steels, the fragmentation does not depend on
whether the rupture is brittle (starting from the outer surface) or by shear.
Thus γ must be roughly the same for either type of rupture.

In this section, then, we attempt a derivation of γ from the most general
hypotheses; the method is an improvement of that given in para. 9 of AC.
4035.

We have seen (para. 2) that in glass, where the fracture stress is deter-
mined by the largest of a comparatively small number of Griffith cracks, the
values of the tensile stress show a large scatter (10%). In metals we shall as-
sume that rupture, whether brittle or shear, starts at one of a much larger
number of “singular points” of unspecified nature, distributed throughout the
26 The rise in temperature due to the work done against the resistance of the steel

to shear is not sufficient to affect the properties greatly. Using formula (4.3) for
the stress-strain relation, with P1 = 52 tons/sq. inch (for high rates of strain) and
P2 = 33 tons/sq.inch, we calculate for a 50% increase of radius that the rise of
temperature should be 19◦ C. This will give a change in Po of the order 2 tons/sq.
inch.

27 A.O.R.G. Memo. No. 113 (Aug. 1943).
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volume. Let N be the number of such points per unit volume; we may safely
assume N−1/3 to be of the order 10−3 −10−5 cm. since distances of this order
always occur in any analysis of the structure of the “real” crystal. It is not, of
course, suggested that the same type of centre is responsible for both types of
rupture.

Let c be some parameter specifying the size of the “singular points”. For in-
stance, if they were Griffith cracks, 2c would be the width of a crack (Fig. 4.1).
We shall assume that the values of c are distributed at random about some
mean value co according to the Gaussian distribution function; thus the num-
ber of points for which c lies between c and c + dc is

B dc exp
[
− (c − co)2

2τ2

]
(4.9)

where

B

∞∫
0

exp
[
− (c − co)2

2τ2

]
dc = N

We may expect the distribution to be fairly wide about the mean value; as a
guess we shall put 2τ2 = c2

o. Then clearly

B = N/co × factor of order unity

Consider a tensile specimen of unit volume; then the largest “crack”, or
singular point, is the one that will cause rupture. The chance that for this
“crack” the size parameter c will exceed the value c is

A

∞∫
c

exp
[
− (c − co)2

c2
o

]
dc (4.10)

If we put this equal to unity we obtain an expression for the size of crack cR

actually responsible for rupture.
For values c in the neighbourhood of cR we write

c − cR

cR
= x ,

so that, neglecting terms in x2

(c − co)2

c2
o

=
(cR − co)2

c2
o

+
2xcR(cR − co)

c2
o

Thus (4.10) becomes

c2
oB

2(cR − co)
exp

[
− (cR − c2

o

c2
o

]
exp

[
−2x(cR − co)cR

c2
o

]
(4.11)
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When x vanishes this must be unity, which gives for CR

(
cR − co

co

)2

= loge

c2
oB

2 (cR − co)

Since B ∼ N/co, and N is a very large number (109 − 1015), we may write

cR − co

co
�

√
loge N = θ , (4.12)

Also, the chance that the greatest crack is greater than c may from (4.11) be
written eβx

β =
2(cR − co)cR

c2
o

= 2θ(1 + θ)

by (4.12).
Now let us assume the following relation between c, the size of the singular

points, and P , the strain to rupture them

P = const/cn .

Thus if the points were Griffith cracks we should have by formula (4.1) n =
1/2. Thus in the neighbourhood of the rupture point

∆P/PF = −n∆c/cR

= −nx

Also let us assume the stress-strain relation (4.3), namely

P = P1 + P2 log(1 + s) ,

so that
∆P = P2

∆s

1 + s

It follows that
βx = −β∆P

PF n
= − P2β∆s

PF n(1 + sR)

where sR is the strain at rupture. It follows that our parameter γ is given by

γ =
P2

nPF

β

1 + sR

=
2
n

P2

PF

θ(1 + θ)
1 + sR

It will be seen that, in this formula, the only unknown quantities are n
and θ; also that as θ2 is equal to log N , the values does not depend much on
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the choice of N , the number of singular points per unit volume. We thus have
reason to believe that γ might be of the same order, at any rate, for brittle
and shear rupture.

Taking N = 1015, and n = 1/2, as for Griffith cracks, we find θ = 5.85
and

γ = 160P2/PF (1 + sR)

Some values for the other constants have been deduced from some curves
given by Korber and Rohland (loc. cit.,)

Reduction in True
area R U.T.S. P2 γ (calc.)

Iron .83 54 34 20
Steel 0.1 C .70 70 42 42

0.13 C .70 78 45 40
0.25 C .63 80 45 53
0.45 C .57 82 38 67
0.55 C .50 87 39 69

The values of γ are somewhat too low, but in view of the very crude state
of the theory the agreement may be considered satisfactory. The rise in γ with
increasing carbon content is in agreement with observation.
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A Theory of Fragmentation: Application
to Wire Wound Bombs
such as the American 20 lb, F.

N.F. Mott

(May, 1944), Ministry of Supply, A.C.6338

Summary. A theory of fragmentation of bomb and shell casings of ductile materials
proposed by the present author in earlier reports is applied to the break-up of the
helically wound coil of steel strip that forms part of the casing of this bomb. For
this strip the break-up is one dimensional, and it is possible to formulate the theory
in a much more exact form than for a solid case. The theory is restated in a form
applicable to this bomb, and it is suggested that experiments with model bombs of
this type would yield information of a fundamental nature about fracture of metals.
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5.1 Introduction

In several recent papers, [1–4], the present author has attempted a theory
of the break-up of cylindrical bomb and shell cases of steel or other ductile
materials. An exact mathematical theory can at present be given only for cases
giving fragments of which the dimensions parallel to the axis of the cylinder
are predetermined, either by grooves or for cases formed by wrapping wire or
steel strip helically about thin inner tube. The theory is then able to make
predictions about the lengths of the fragments of ring or strip that will be
formed.

It would be extremely difficult to extend this one dimensional theory to
the two dimensional break-up of a solid steel case in any rigorous way; in
the author’s reports on the subject a number of arbitrary assumptions were
made, which do in fact give a fairly satisfactory method of estimating fragment
weights of service bombs and shells. In the last section of this report these
assumptions are reviewed.

The American 20 lb. fragmentation bomb has a helically wrapped coil
of drawn steel strip around a thin inner tube. The fragmentation has been
determined in [5], and fragments of strip of the form shown in Fig. 5.1 are
obtained. The cross section, originally square, becomes rectangular owing to
plastic extension, and fracture is by shear, fragments up to 1 inch long being
obtained. There is no necking. The bomb is therefore ideally suited to the
application of theory.

before fracture

after fracture

cross section side view

Fig. 5.1.

In this report the theory is restated so as to apply to this bomb, mainly
in the hope that it will be possible to do experiments on model bombs of
this type. From such experiments information of considerable value about the
mechanism of fracture in metals could be obtained.
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r
(a) (b)

Fig. 5.2.

5.2 Mathematical Theory of Fragmentation

The problem can be stated in the following way: a ring (or helix) of some
ductile material such as steel (Fig. 5.2a) is set in motion by the pressure of a
detonating explosive acting on its inner surface, or by the pressure of a liner
acted on by the explosive, and after a given amount of plastic flow it breaks
up (Fig. 5.2b). We require to find the average length of fragment, and the
distribution of fragment lengths.

The problem was solved in [2] by making the following assumptions about
the process of fracture:

(a) That a crack, having once started, propagates itself instantaneously across
the ring.

(b) That fracture does not take place at a definite value of the strain, but that
there is a certain small scatter about a mean value. It was assumed that,
as the strain increased from a value s to a value s + ds, the probability of
a fracture occurring per unit length of specimen would be

Aeγsds (5.1)

The constants A and γ may depend on the area of the cross section of
the specimen as well as on its composition and on the rate of strain1. The

1 Using formula (5.1), the chance that the specimen of length l breaks before a
strain s is reached is

p = 1 − exp

{
−A

γ
eys

}

The average strain for fracture, s, is given by

so =

∫ ∞

0

s
dp

ds
ds

=
1

γ

{
loge

(
γ

A

)
+ e

}

where

ε =

∫ ∞

−∞
x ex exp(−e−x) dx = −0.577
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aC
AB B´

x

Fig. 5.3.

validity of these assumptions, and the numerical values of the constants,
is discussed in para. 3.

If r is the radius of the case and V its velocity outwards, the rate of strain
is V/r. We shall assume this to be constant while the case is breaking up;
in other words, that the whole process is over before V/r has changed much.
With this assumption, the problem is the same as that of calculating the
break-up of an infinite length of straight wire in which the rate of strain is
everywhere equal to V/r.

Suppose that such a wire breaks at a point A (Fig. 5.3). At a time t after
fracture occurs a length x on each side of the fracture will be free from stress.
Our first problem is to calculate the relation between x and t. This was done
by the author [2] by an approximate method in which the velocity of sound
in steel was taken to be large compared with all velocities concerned. The
calculation is as follows: we take an arbitrary point C on the strip distant a
from A, and axes of reference through C. Then relative to C the velocity of
the stress-free region AB is

V

r
(a − x)

If ρ is the density of the steel and Y its flow stress in tension at the moment
just before fracture for the rates of strain concerned, then the equation of
motion of AB is

Y = −ρx
d

dt

{
(a − x)

V

r

}

which gives, on integrating,

x2/t = 2rY/ρV (5.2)

Lee [9] has given an exact solution for the motion of the boundary B based
on the recently developed theory of plastic waves. He finds that it moves with
the velocity c of sound in steel for a distance 2Y r/ρcV , then with one-third of
this velocity for an equal distance, then with one-fifth of the velocity and so
on. For distances exceeding 2Y r/ρ cV , the two solutions give almost identical

The root-mean-square of the scatter about this value is{∫
(s − so)

2 dp

ds
ds

}
= 1.28/γ



5 Application to Wire Wound Bombs such as the American 20 lb, F. 331

results (Fig. 5.7 of Dr. Lee’s report)2. The results to be discussed below for
the American 20 1b. bomb suggest that for steel the solution (5.2) should be
adequate, though this may not be the case for other materials.

Using (5.1) and (5.2), the distribution of fragment lengths can be found
as follows: Consider a length l of the wire. Suppose a crack forms at a given
value of s; then when s has increased by ∆s, by (5.2) a space on each side of
it equal to

r

V

(
2Y

ρ

)1/2

(∆s)1/2

is safe from further cracking. If N is the number of fractures already formed,
then by (5.1) the rate of increase of N is given by

dN

ds
= Apleγs

where p is the proportion of the line where cracks can still form. It is convenient
to introduce a new variable σ = γs.

Then
dN

dσ
=

Ap

γ
leσ (5.3)

and, if a fracture forms at a strain σ1, the region round it on each side which
is safe from cracking is at any subsequent value of σ

xo(σ − σ1)1/2 (5.4)

where
xo = (2Y/ργ)1/2r/V (5.5)

The distribution of fragment lengths was now found experimentally. A
line was drawn on paper about 10 inches long and xo taken to be 1

2 in., it
was assumed that a ratio of l/xo of 20 would give approximately the same
distribution as an infinite ratio. The first fracture could be taken to occur for
a value σo of σ so that

Al

γ
eσo = 1 ,

and successive fractures after unit increments of dN , i.e. increments d of σ
equal to

dσ = 1/pe(σ−σo)

After each fracture was made, at a random position, the length round it and
round previous fractures where plastic flow had stopped was marked off and
the process repeated until fragmentation was complete. It was then repeated
with a new line, until sufficient fragments were obtained to draw a histrogram.
This is shown in Fig. 5.5.
2 E. H. Lee reproduces this solution in his later review article on plastic wave

propagation; see 1967 reference to Lee in Part I.
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We see, therefore, that most of the fragments will have lengths between
xo and 2xo where xo is given by (5.5).

It will be seen that the distribution is very unlike the Poisson distribution
function ce−x/xodx, which would give the numbers of fragments with lengths
between x and x + dx for purely random fracture.

The changes made by the use of Lee’s more accurate solution for the release
of stress after a fracture will be small if 2Y r/ρ cV is less than xo and thus if

γ <
1
2

E

Y
∼ 100

where E is Young’s modulus.
Comparison with experiment for the American 20 lb. F. bomb, at any rate,

suggests that this is the case.

5.3 The Value of γ

Formula (5.5) shows the way in which the average fragment length depends
on the velocity and radius of the case at the moment of break-up (as r/V )
and also on the constants Y and ρ of the material of the case. We now have
to discuss how γ will depend on the material and cross section of the wire.

A tentative theory of the constant γ was given by the author in [4] and [6].
As so little is known of the fundamental cause of fracture in ductile metals
the theory was based on a number of assumptions which may or may not be
correct. In this report we shall make assumptions as general as possible in
order to obtain

(a) The dependence of γ on the cross section of the specimen
(b) The dependence on the stress-strain curve

We assume that fracture starts at one of a number of weak places within
the material; and that, per unit volume, the number of these which will start
a fracture when the maximum principal stress is between S and S + dS is

AecSdS

Reasons for expecting the exponential form are given in the references quoted.
Fracture for a specimen of volume V will normally take place when

∫ S

0

AV exp (cS) dS = 1

If we therefore set
(V A/c) exp (cS1) = 1 (5.6)

the chance that fracture will take place when S is in the range dS is
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exp [c (S − S1)] dS/c

If the relationship between stress and strain is of the form

S = f (s) ,

then the chance that a fracture will occur when s increases by ds is

exp [cf ′ (s1) (s − s1)] f ′ (s) ds/c

and thus we have for γ
γ = cf ′ (s1)

where s1 is the average strain for fracture. If the stress-strain curve is of the
form suggested by Bridgman and others

f (s) = P1 + P2 log (1 + s) , (5.7)

we have
γ = CP2/ (1 + s1) (5.8)

It will be seen that the only term in (5.8) which depends on the volume is
s1. A short calculation using (5.6) shows that

V
dy

dV
=

1
1 + s1

and since γ itself is probably equal to 10 at least, and 1 + s of the order 2, we
see that the variation with volume is likely to be of the form

y ∼ 10 +
1
2

loge V (V in c.c.)

so that the dependence on V is small.3

Formula (5.7) also enables a comparison to be made between the dispersion
of R. of A. to be expected in the brittle fracture of a ring or helix round a
bomb,

A

(a) (b)

B

Fig. 5.4.

and in the tensile test of a material. In the former fracture will begin at A
on the outside of the shell case (Fig. 5.4a) where the stress is purely radial;
3 For a comparable treatment of brittle materials compare [11].



334 N.F. Mott

in the latter it will begin on the axis of the specimen in a region of triaxial
stress (B in Fig. 5.4b). According to current ideas [6] the maximum principal
stress determines fracture, and the effect of radial stress in the neck is to
enable a larger longitudinal stress to exist without causing flow. Thus, owing
to the necking, the longitudinal stress on the axis increases more rapidly with
strain than it should according to formula (5.7). γ will therefore be larger
(dispersion smaller) in tensile tests than bombs. According to the analyses in
a neck given by Bridgman [10], however, the stress on the axis of a necked
specimen is likely to be not more than 30 per cent greater than the mean
stress across the neck, and thus, unless P2 is much smaller for high rates of
strain than in tensile tests (less work-hardening) we expect a change of γ only
of this order. The dispersion of the reduction of area in tensile tests will thus
give us the order of magnitude of γ.

It must be pointed out that the theory of fragmentation given here is only
applicable if a crack, once it has started on the outside of the specimen, travels
at once right through it. It has been pointed out in [4] and [6] that this will
happen in some steels of a notch brittle type and not in others.

There is no theoretical reason to believe that γ will have the same value
when fracture is by shear as when it is of brittle type. It is by shear in the
bomb considered below. The dispersion of the stress or strain at fracture in
static tension tests would give an independent value of γ for shear fracture.

5.4 Comparison with the Fragmentation
of the American 20 lb. F. Bomb

Fracture with this bomb is by shear and there is no necking.
Figure 5.5 shows the experimental length distribution fitted to the theo-

retical, a value of xo of 0.44 in. giving the best fit.
γ was calculated from formula (5.5) to be equal to 12, using the above

value of xo and the following values of the other constants

V = 2, 000 ft./sec.
Y = 100 tons/sq. in.

r = 2.07 inches.

V , since it refers to the velocity at the moment of break-up, has been taken
slightly smaller than the observed fragment velocity 2890 ft./sec.

Y , the stress at fracture at this high rate of strain might be anything
between, say, 80 and 150 tons/sq. in.; the value of γ obtained may thus be in
error by up to 50 per cent.
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5.5 Suggestions for Experimental Work

The first prediction of the theory that needs to be verified is that for given
V and r the cross section of the wire makes little difference to the fragment
length, but that for very thin wire a small increase in the fragment length will
occur. This could be tested by winding casings of cylindrical model bombs with
wires of different thicknesses, keeping the total weight of casing constant. It
might be best to wind thick and thin wire round the same bomb.

Secondly, measurements should be made of the dependence of the fragment
length on composition of the steel strip.

Finally, the theoretical result that for given wire the fragment length is
proportional to r/V should be tested by using model bombs of different di-
ameters and charge-weight ratios.

It would also be of interest to try to determine γ from the dispersion in the
values of the reduction in area at which fracture occurs in tensile or torsion
tests; as shown above, values obtained by this method should be only slightly
greater than for bomb casings.

5.6 Connection of the Theory with the Fragmentation
of a Solid Casing

Certain features of the theory can obviously be extended to the break-up of
a solid cylindrical casing; thus the same general arguments show that the
lengths and breadths of fragments should depend only on the value of r/V at
the moment of break-up and on the properties of the steel at that moment,
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and that they will be independent of the thickness of the case except insofar
as this affects V .

Values of γ deduced from the steel strip of the American 20 lb. F bomb
are considerably smaller than those deduced for solid cases, assuming that the
breadth of each fragment is the same as it would be for a thin strip [2]. It is
probable that this assumption is not correct.

The considerations of this paper do no affect the attempts made in a
number of reports (2 and 3) to develop a semi-empirical set of rules for the
prediction of the fragmentation of service bombs and shells. The above con-
siderations show that the average fragment weight must be proportional to

t(r/V )s (5.9)

where t is the thickness of the case and s a constant, for which the values 2
and 4/3 have been tried. Some reasons were given in [2] for considering s = 2
the most probable value, but s = 4/3 gave a rather better fit. Since V is the
velocity of the case at the moment of break-up, not the observed fragment
velocity, its value was calculated from G.I. Taylor’s theory of the expansion
of the case of a long cylindrical bomb.

In the reports quoted the formula

e−M/MA M = m1/2 (5.10)

was used for the proportion of fragments with weight greater than m. A
formula of this type frequently represents the weights of solids broken up at
random; however it is doubtful whether it can be said to have any theoretical
justification for the fragmentation of shell casings, since the one dimensional
break-up discussed in para. 2 does not give a Poisson distribution. Actually
an alternative formula due to Payman [7] gives a rather better fit. According
to this formula the proportion by weight of the case that fragments into pieces
greater than m is

e−αm (5.11)

Either formula can be combined with (5.6) by equating the average weight,

M2
A or 1/α to const. t(r/V )s

the constant being supposed to depend on the properties of the steel only.
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Fragmentation of Service Projectiles

N.F. Mott, J.H. Wilkinson, and T.H. Wise

(December, 1944), Ministry of Supply, A.C.6338

Summary. In previous reports, formulae have been given by means of which the
fragment weight distribution could be deduced from the design of the shell. The
derivation of these formulæ can be divided into two parts, as follows:

(1) It is assumed that the distance between fractures on the surface of the shell
casing depends only on the rate of strain at the moment of fracture, and thus
on r/v, where r is the radius and v the velocity of the case at this moment.

(2) The theory of plastic waves is used to deduce what function of r/v this distance
should be, and a formula for the average weight is thereby deduced.

An attempt at a rigorous application of the plastic wave theory can only be
made for wire-wound or ring bombs, where the one dimensional break-up of a long
strip has to be considered. For solid casings, therefore, in this report the assumption
(1) above is maintained, and the best function of r/v to fit the experimental data
is determined empirically. The investigation confirms a theoretical formula already
given, formula (6.8) of this report, as giving, satisfactorily, the fragment weight
distribution of Service shells.

In order to test the dependence of fragment weight distribution on r/v, values
had to be estimated for the velocity of the case. It is suggested that this is to be
associated with the mode of the curve plotting number of fragments against velocity.
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6.1 Introduction

A series of reports has been issued, dealing with the theory of the break-up of
shell and bomb casings. The aim of such theories is to attempt to predict the
fragment weight distribution in terms of the design of the projectile, type of
explosive and properties of the steel case. In [1], a fairly complete theory was
given for a long cylindrical wire-wound bomb; the theory predicts the length
distribution of the fragments of the wire casing in terms of one unknown para-
meter depending on the steel, and seems in fair accord with the small amount
of experimental evidence available. Earlier attempts to obtain a theory of the
break-up of solid casings contain some arbitrary assumptions, and it seems
worth while to re-examine the experimental data from a partly theoretical,
partly empirical point of view.

The assumptions made in this report are as follows:

(a) The fragment weight distribution is taken to be given by either Payman’s
formula [2] or that due to Welch, as modified by Mott and Linfoot [3].
These are to be regarded as empirical. The formulae are
(i) The proportion p by weight of the case breaking into fragments greater

than w is given by
log10 p = −cw (6.1)
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(ii) The number of fragments in any random sample with weights between
w and w + dw is

B exp(−M/MA)dM M = w1/2 (6.2)

Either 1/c or M2
A may be regarded as proportional to the average fragment

weight and it is the purpose of this report to relate this to the design of the
projectile.

Consider now the fragmentation of a very long cylindrical case. We make
the following assumptions:

(i) After the usual plastic expansion, fracture occurs on any circumference of
the cylinder when the external radius is r and velocity of the outside of
the casing vc, and all the cracks which ultimately lead to fracture occur
during a time interval so short that r does not change appreciably.

(ii) Fracture starts from the outside of the casing.

Neither assumption is necessarily true in general; the considerable and
fairly uniform thinning of fragments, suggests that (i) is often valid. (ii) may
not be the case when fracture is by shear, but is probably correct if fracture
is partly tensile; the hoop stress is a maximum on the outside of the case.

If these assumptions are valid, the distance between cracks must depend
only on the rate of strain of the metal on the surface of the case at the moment
of fracture, and also on the properties of the metal. The rate of strain is equal
to vc/r. Thus the area of the external surface of a typical fragment must be a
function of r/vc. The weight of the average fragment, divided by the thickness
t, will therefore be a function of r/vc. Thus, if we take M2

A as our measure of
the average weight, we may write

MA/
√

t = f(r/vc) (6.3)

We shall make a further assumption, namely, that for a given steel the
percentage expansion before fracture is constant. Then, in (6.3), we may take
r and t to refer to the dimensions of the case before detonation.

In this report, we examine the fragmentation of Service projectiles in re-
lation to (6.3). We plot log(MA/

√
t) against log(r/vc). The possibility of ob-

taining a smooth curve depends upon the following two assumptions:

(1) The steels of which Service projectiles are made can be taken as having
the same composition and mechanical properties.

(2) The different shapes of the projectiles, i.e. the ratio of length to breadth
and the tapering at the ends are not important in determining fragmen-
tation.

The results are shown in Figs. 6.5 and 6.7, and a similar plot for log ct in
Fig. 6.6. The scatter about the straight line is doubtless due to differences in
shell steel and shape, and also to different degrees of break-up in the collecting
media used, when this has not been allowed for (points 4, 8, 9, 10). More
detailed discussion of these curves will be given in para. 3.
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In these curves, MA is determined from the observed data by the method
of [4], which gives a unique value; the values taken are shown in Appendix II.
The thickness (t) and external diameter (do) were measured in each case
on the cylindrical portion of the projectile, except for the 250 and 500 lb.
S.A.P. bombs, the 40 lb. G.P. bomb and the 20 lb. F. bomb. In these cases,
mean values were taken. Again, the values assumed are given in Appendix II;
manufacturing tolerances may be an additional cause of scatter.

The chief difficulty is to make an estimate of vc, the velocity of the case
at the moment of break-up. The position with regard to this is discussed in
the next section.

6.2 Velocity of the Casing

According to theoretical calculations, for a long cylindrical casing filled with a
given explosive, and if the speed of reaction in the detonation wave is assumed
infinite, the velocity of the case, after a given expansion, will depend only on
the charge-weight ratio. Also, after an expansion of from 30 to 50 per cent.,
at which the case normally breaks, the case will have attained nearly its
final velocity. Flash photographs taken in the United States confirm that the
silhouette of the case before rupture is approximately straight.

Since shell casings break after a fairly well defined expansion, one would
expect all the fragments from a long thin casing to have the same velocity.
For Service projectiles, however, the fragment velocities show a wide spread.
Whether or not this is due to end effects, is not clear. Some assumption must
therefore be made about the relation between the casing velocity to be used
in formula (6.3) and the observed fragment velocities.

In Figs. 6.1, 6.2 and 6.3, we have plotted the results of a number of mea-
surements of fragment velocity by C.S.A.R. in the following manner: the or-
dinates are the number of fragments with velocities between 250 n and 250
(n + 1) ft./sec. (n being integral); the abscissæ are 250 (n + 1

2 ). It is found
that these curves usually contain a number of peaks; the peak corresponding
to the greatest velocity is usually the highest. The velocity of the top of this
peak we denote by vc, and make the assumption that this corresponds to the
casing velocity that a long tube of the same dimensions would have.

There is some indeterminacy in the estimation of vc from the available
experimental evidence; the range within which we consider that it can be
fixed is shown on the curves 1–4. We have assumed that the peaks are to be
drawn as symmetrically as possible; if this were not done, the choice of vc

would be somewhat more arbitrary.
In Fig. 6.4, vc is plotted against

√
(E/c), where E/c, the charge-weight

ratio, is defined by

E/c =
ρE

ρs

d2
1

d2
o − d 2

1

(6.4)
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where d1, do are the internal and external diameters and ρs, ρE the densities
of steel and of T.N.T. which was the filling in all the projectiles considered
here. For the bombs previously mentioned, whose shapes differed considerably
from that of a cylinder, a mean value of E/c was obtained by measuring the
internal and external diameters at a number of points along the casing and
evaluating by means of Simpson’s rule. On the same curve, we have plotted
two values for the casing velocity obtained by flash photography (O.S.R.D.
reports). They appear to lie on the same curve, thus confirming our hypothesis
that the casing velocity is to be identified with the high velocity peak for the
fragments.

This curve has been extrapolated to zero velocity at that value of
√

(E/c)
for which the energy of the explosive would be just sufficient to expand the
case by 100 per cent., assuming an average resistance to yield during the
expansion of 50 tons/sq. inch.

6.3 Fragment Weight Distribution

In Figs. 6.5 and 6.6, we have plotted log(MA/
√

t) and log(ct) against log(do/vc),
vc being determined from the curve of Fig. 6.4. The points lie reasonably well
on a curve, approximately a straight line if trials with 3.7 in. shell with thin
walls are excluded.

If the wide spread of fragment velocities comes from the end effects, then,
since some of the fragments come from the ends, it might be considered more
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logical to take log (do/vM ) as abscissæ, where vM is the mean velocity. For
the series of 3.7 in. shells, the difference between vc and vM is abnormally
large. A plot with these abscissæ is shown in Fig. 6.3; the points for the 3.7
in. shell appear to be a little closer to the others but these shell still seem to
give abnormally coarse fragmentation.

Straight lines fitted to these (excluding the 3.7 in. shells), by the method
of least squares, give the following:

MA√
t

= 50.7
(

do

vc

)0.739

(6.5)

ct = 2.89 × 10−5

(
vc

do

)1.337

(6.6)

MA√
t

= 22.6
(

do

vM

)0.623

(6.7)

Formula (6.5) can be used to predict MA if vc is read off the curve of Fig. 6.4.
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APPENDIX I

References of papers from which velocities were taken.

vc vM

Projectile (f.s.) (f.s.) Reference

1. 4 in. (31 lb.) shell 2000 1680 A.R.D. Expl. Report 153/43
2. 4 in. (35 lb.) shell 2100 1890 A.R.D. Expl. Report 58/43
3. 4.5 in. Q.F. H.E. shell 2110 2020 A.R.D. Expl. Report 145/43
4. 25 pr. shell 2180 2250 A.R.D. Expl. Report 391/43
5. 20 lb. F bomb 3770 3620 A.R.D. Expl. Report 70/44 (rds. 6 & 7)
6. 18 lb. F bomb (0.3 in. wall) 5090 4770 A.R.D. Expl. Report 75/44
7. 18 lb. F bomb (0.5 in. wall) 3770 3540 A.R.D. Expl. Report 75/44
8. 3 in. U.P. 4150 3940 A.R.D. Expl. Report 380/43 (rds. 1,5,6)
9. 40 lb. G.P. bomb Mk.I 3950 – –

10. 95 mm. 3510 – –
11. 3.7 in. shell 2410 2020 A.R.D. Expl. Report 223/43
12. 500 lb. S.A.F. bomb (tail 4000 3030∗ A.R.D. Expl. Report 73/44

initiated)
13. 250 lb. S.A.P. bomb (tail 4000 3070∗ A.R.D. Expl. Report 73/44

initiated)
14. (a) 3.7 in. Q.F. H.E. 2410 2210 A.R.D. Expl. Report 115/44

(b) 3.7 in. (0.5 in. wall 3310 2850 A.R.D. Expl. Report 115/44
24 ton steel)

(c) 3.7. in. (0.38 in. wall 3780 3370 A.R.D. Expl. Report 115/44
24 ton steel)

(d) 3.7 in. (0.38 in. wall 3780 3370 A.R.D. Expl. Report 115/44
19 ton steel)

(e) 3.7 in. (0.31 in. wall 4300 3790 A.R.D. Expl. Report 115/44
24 ton steel)

15. Italian F bomb (wire wound) – – A.R.D. Expl. Report 301/43
16. 4.2 in. smooth bore – – A.R.D. Expl. Report 17/44

Flash photographs for casing S.R.7 44/1440
velocities

∗Average of all velocities given in reference quoted.

All these projectiles were filled T.N.T. (The original filling of the Italian
F bomb was not known for certain, but was thought to have been T.N.T.).
The 250 lb. S.A.P. bomb was filled T.N.T./Beeswax 93/7. Values of vM from
reports quoted, values of vc taken from the curve in Fig. 6.4.
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APPENDIX II

References of papers giving fragment weight distributions; do and t are
taken from drawings; values for the actual shells fragmented may differ slightly.
MA and c are calculated by the shortened methods given in A.R.D. Theoretical
Research Report 23/44 (A.C. 6998; SD/FP. 281) and S.M.R.B. Buxton. Cased
Charges XXV, Application to Service shell of a simplified method of assessing
fragmentation cell tests. (A.C. 5392; SD/FP. 190). MA may thus differ from
values given in the reports.

t1/2 do Collecting

Projectile MA c (in.)1/2 (in.) Medium Reference

1. 4 in. (31 lb.) shell 0.432 0.216 0.89 3.95 Strawboard A.R.D. Exp. Rep. 153/43

(Rds. 1, 3, 5)

2. 4 in. (35 lb.) shell 0.413 0.248 0.89 4.00 Strawboard A.R.D. Exp. Rep. 58/43

(Rds. 7, 8, 9)

3. 4.5 in. shell 0.492 0.172 0.91 4.43 Strawboard A.R.D. Exp. Rep. 145/43

(Rds. 1, 2, 3)

4. 25 pr. shell 0.350 0.342 0.81 3.43 Sawdust SD/FP.218 (Buxton

report)

5. 20 lb. F bomb 0.258 0.590 0.61 3.90 Strawboard A.R.D. Exp. Rep. 70/44

6. 18 lb. F bomb 0.145 1.914 0.55 5.00 Strawboard A.R.D. Exp. Rep. 75/44

(0.3 in. wall)

7. 18 lb. F bomb 0.247 0.683 0.71 5.00 Strawboard A.R.D. Exp. Rep. 75/44

(0.5 in. wall)

8. 3 in. U.P. 0.128 2.30 0.52 3.25 Sawdust SD/FP. 190 (Buxton

report)

9. 40 lb. G.P. bomb 0.290 0.502 0.69 4.94 Sand O.B. Proc. 1598

10. 95mm. shell 0.212 0.900 0.65 3.70 Sand O.B. Proc. 21099

11. 3.7 in. shell 0.396 0.256 0.81 3.70 Strawboard A.R.D. Exp. Rep. 223/43

12. 500 lb. S.A.P. 0.651 0.097 1.00 11.35 Strawboard A.R.D. Exp. Rep. 73/43

bomb (tail

initiated)

13. 250 lb. S.A.P. 0.544 0.143 0.87 9.00 Strawboard A.R.D. Exp. Rep. 73/43

bomb (tail

initiated)

14. (a) 3.7 in. Service 0.421 0.240 0.81 3.7 Strawboard A.R.D. Exp. Rep. 115/44

(b) 3.7 in. C 0.365 0.308 0.71 3.7 Strawboard A.R.D. Exp. Rep. 115/44

(c) 3.7 in. B 0.281 0.537 0.62 3.7 Strawboard A.R.D. Exp. Rep. 115/44

(d) 3.7 in. A 0.253 0.653 0.62 3.7 Strawboard A.R.D. Exp. Rep. 115/44

(e) 3.7 in. D 0.228 0.816 0.56 3.7 Strawboard A.R.D. Exp. Rep. 115/44
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APPENDIX III

In the following table we compare values of MA obtained by various methods.
Column 1 contains the values given in Appendix II as determined from trials;
Column 2 contains corresponding values calculated from (6.5) of this report,
using the data of Appendices I and II; Column 3 contains values obtained by
using the formula

MA = 0.3 t5/6d
1/3
2 (1 + t/d2) (6.8)

where t is the thickness and d2 the internal diameter of the projectile. For
completeness, we give, in Column 4, the values of MA obtained from (6.7) of
this report. This equation is, however, not so useful as (6.5) or (6.8) above,
which both predict MA from a knowledge of the dimensions of the projectile,
whereas (6.7) requires a knowledge of trial velocities.

MA
Projectile

(see Appendix II) Column 1 Column 2 Column 3 Column 4

1 0.432 0.453 0.440 0.463
2 0.413 0.441 0.440 0.435
3 0.492 0.484 0.469 0.454
4 0.350 0.348 0.355 0.322
5 0.258 0.192 0.216 0.195
6 0.145 0.167 0.194 0.173
7 0.247 0.267 0.303 0.269
8 0.128 0.134 0.154 0.141
9 0.290 0.250 0.287 –

10 0.212 0.208 0.238 –
11 0.396 0.342 0.359 0.361
12 0.651 0.665 0.699 0.696
13 0.544 0.487 0.512 0.520
14(a) 0.421 0.342 0.359 0.341

(b) 0.365 0.237 0.280 0.255
(c) 0.281 0.188 0.219 0.201
(d) 0.253 0.188 0.219 0.201
(e) 0.228 0.154 0.183 0.169
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