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Preface to the Second Edition

Since the first edition of Using Algebraic Geometry was published in 1998, the
field of computational algebraic geometry and its applications has developed rap-
idly. Many new results concerning topics we discussed have appeared. Moreover,
a number of new introductory texts have been published. Our goals in this revision
have been to update the references to reflect these additions to the literature, to
add discussions of some new material, to improve some of the proofs, and to fix
typographical errors. The major changes in this edition are the following:

• A unified discussion of how matrices can be used to specify monomial or-
ders in §2 of Chapter 1.

• A rewritten presentation of the Mora normal form algorithm in §3 of Chap-
ter 4 and the division of §4 into two sections.

• The addition of two sections in Chapter 8: §4 introduces the Gröbner fan of
an ideal and §5 discusses the Gröbner Walk basis conversion algorithm.

• The replacement of §5 of Chapter 9 by a new Chapter 10 on the theory
of order domains, associated codes, and the Berlekamp-Massey-Sakata de-
coding algorithm. The one-point geometric Goppa codes studied in the first
edition are special cases of this construction.

• The Maple code has been updated and Macaulay has been replaced by
Macaulay 2.

We would like to thank the many readers who helped us find typographical
errors in the first edition. Special thanks go to Rainer Steinwandt for his heroic
efforts. We also want to give particular thanks to Rex Agacy, Alicia Dicken-
stein, Dan Grayson, Serkan Hoşten, Christoph Kögl, Nick Loehr, Jim Madden,
Mike O’Sullivan, Lyle Ramshaw, Hal Schenck, Hans Sterk, Mike Stillman, Bernd
Sturmfels, and Irena Swanson for their help.

August, 2004 David Cox
John Little

Donal O’Shea
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Preface to the First Edition

In recent years, the discovery of new algorithms for dealing with polynomial
equations, coupled with their implementation on inexpensive yet fast computers,
has sparked a minor revolution in the study and practice of algebraic geometry.
These algorithmic methods and techniques have also given rise to some exciting
new applications of algebraic geometry.

One of the goals of Using Algebraic Geometry is to illustrate the many uses
of algebraic geometry and to highlight the more recent applications of Gröbner
bases and resultants. In order to do this, we also provide an introduction to some
algebraic objects and techniques more advanced than one typically encounters in
a first course, but which are nonetheless of great utility. Finally, we wanted to
write a book which would be accessible to nonspecialists and to readers with a
diverse range of backgrounds.

To keep the book reasonably short, we often have to refer to basic results in
algebraic geometry without proof, although complete references are given. For
readers learning algebraic geometry and Gröbner bases for the first time, we
would recommend that they read this book in conjunction with one of the fol-
lowing introductions to these subjects:

• Introduction to Gröbner Bases, by Adams and Loustaunau [AL]

• Gröbner Bases, by Becker and Weispfenning [BW]

• Ideals, Varieties and Algorithms, by Cox, Little and O’Shea [CLO]

We have tried, on the other hand, to keep the exposition self-contained outside
of references to these introductory texts. We have made no effort at complete-
ness, and have not hesitated to point the reader to the research literature for more
information.

Later in the preface we will give a brief summary of what our book covers.

The Level of the Text

This book is written at the graduate level and hence assumes the reader knows the
material covered in standard undergraduate courses, including abstract algebra.

vii



viii Preface to the First Edition

But because the text is intended for beginning graduate students, it does not re-
quire graduate algebra, and in particular, the book does not assume that the reader
is familiar with modules. Being a graduate text, Using Algebraic Geometry cov-
ers more sophisticated topics and has a denser exposition than most undergraduate
texts, including our previous book [CLO].

However, it is possible to use this book at the undergraduate level, provided
proper precautions are taken. With the exception of the first two chapters, we
found that most undergraduates needed help reading preliminary versions of the
text. That said, if one supplements the other chapters with simpler exercises and
fuller explanations, many of the applications we cover make good topics for an
upper-level undergraduate applied algebra course. Similarly, the book could also
be used for reading courses or senior theses at this level. We hope that our book
will encourage instructors to find creative ways for involving advanced under-
graduates in this wonderful mathematics.

How to Use the Text

The book covers a variety of topics, which can be grouped roughly as follows:

• Chapters 1 and 2: Gröbner bases, including basic definitions, algorithms
and theorems, together with solving equations, eigenvalue methods, and
solutions over R.

• Chapters 3 and 7: Resultants, including multipolynomial and sparse resul-
tants as well as their relation to polytopes, mixed volumes, toric varieties,
and solving equations.

• Chapters 4, 5 and 6: Commutative algebra, including local rings, standard
bases, modules, syzygies, free resolutions, Hilbert functions and geometric
applications.

• Chapters 8 and 9: Applications, including integer programming, combina-
torics, polynomial splines, and algebraic coding theory.

One unusual feature of the book’s organization is the early introduction of resul-
tants in Chapter 3. This is because there are many applications where resultant
methods are much more efficient than Gröbner basis methods. While Gröbner
basis methods have had a greater theoretical impact on algebraic geometry, resul-
tants appear to have an advantage when it comes to practical applications. There
is also some lovely mathematics connected with resultants.

There is a large degree of independence among most chapters of the book.
This implies that there are many ways the book can be used in teaching a course.
Since there is more material than can be covered in one semester, some choices
are necessary. Here are three examples of how to structure a course using our text.

• Solving Equations. This course would focus on the use of Gröbner bases
and resultants to solve systems of polynomial equations. Chapters 1, 2, 3
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and 7 would form the heart of the course. Special emphasis would be placed
on §5 of Chapter 2, §5 and §6 of Chapter 3, and §6 of Chapter 7. Optional
topics would include §1 and §2 of Chapter 4, which discuss multiplicities.

• Commutative Algebra. Here, the focus would be on topics from classical
commutative algebra. The course would follow Chapters 1, 2, 4, 5 and 6,
skipping only those parts of §2 of Chapter 4 which deal with resultants.
The final section of Chapter 6 is a nice ending point for the course.

• Applications. A course concentrating on applications would cover inte-
ger programming, combinatorics, splines and coding theory. After a quick
trip through Chapters 1 and 2, the main focus would be Chapters 8 and 9.
Chapter 8 uses some ideas about polytopes from §1 of Chapter 7, and mod-
ules appear naturally in Chapters 8 and 9. Hence the first two sections of
Chapter 5 would need to be covered. Also, Chapters 8 and 9 use Hilbert
functions, which can be found in either Chapter 6 of this book or Chapter 9
of [CLO].

We want to emphasize that these are only three of many ways of using the text.
We would be very interested in hearing from instructors who have found other
paths through the book.

References

References to the bibliography at the end of the book are by the first three letters
of the author’s last name (e.g., [Hil] for Hilbert), with numbers for multiple papers
by the same author (e.g., [Mac1] for the first paper by Macaulay). When there is
more than one author, the first letters of the authors’ last names are used (e.g.,
[AM] for Atiyah and Macdonald), and when several sets of authors have the same
initials, other letters are used to distinguish them (e.g., [BoF] is by Bonnesen and
Fenchel, while [BuF] is by Burden and Faires).

The bibliography lists books alphabetically by the full author’s name, fol-
lowed (if applicable) by any coauthors. This means, for instance, that [BS] by
Billera and Sturmfels is listed before [Bla] by Blahut.

Comments and Corrections

We encourage comments, criticism, and corrections. Please send them to any of
us:

David Cox dac@cs.amherst.edu
John Little little@math.holycross.edu

Don O’Shea doshea@mhc.mtholyoke.edu

For each new typo or error, we will pay $1 to the first person who reports it
to us. We also encourage readers to check out the web site for Using Algebraic
Geometry, which is at

http://www.cs.amherst.edu/˜dac/uag.html
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This site includes updates and errata sheets, as well as links to other sites of inter-
est.
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§2 Monomial Orders and Gröbner Bases for Modules . . . . . . . . . 207
§3 Computing Syzygies . . . . . . . . . . . . . . . . . . . . . . . . 222
§4 Modules over Local Rings . . . . . . . . . . . . . . . . . . . . . 234

6 Free Resolutions 247
§1 Presentations and Resolutions of Modules . . . . . . . . . . . . . 247
§2 Hilbert’s Syzygy Theorem . . . . . . . . . . . . . . . . . . . . . 258
§3 Graded Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . 266
§4 Hilbert Polynomials and Geometric Applications . . . . . . . . . 280

7 Polytopes, Resultants, and Equations 305
§1 Geometry of Polytopes . . . . . . . . . . . . . . . . . . . . . . . 305
§2 Sparse Resultants . . . . . . . . . . . . . . . . . . . . . . . . . . 313
§3 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
§4 Minkowski Sums and Mixed Volumes . . . . . . . . . . . . . . . 332
§5 Bernstein’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 342
§6 Computing Resultants and Solving Equations . . . . . . . . . . . 357

8 Polyhedral Regions and Polynomials 376
§1 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . 376
§2 Integer Programming and Combinatorics . . . . . . . . . . . . . . 392
§3 Multivariate Polynomial Splines . . . . . . . . . . . . . . . . . . 405
§4 The Gröbner Fan of an Ideal . . . . . . . . . . . . . . . . . . . . 426
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Chapter 1

Introduction

Algebraic geometry is the study of geometric objects defined by polynomial
equations, using algebraic means. Its roots go back to Descartes’ introduc-
tion of coordinates to describe points in Euclidean space and his idea of
describing curves and surfaces by algebraic equations. Over the long his-
tory of the subject, both powerful general theories and detailed knowledge
of many specific examples have been developed. Recently, with the devel-
opment of computer algebra systems and the discovery (or rediscovery) of
algorithmic approaches to many of the basic computations, the techniques
of algebraic geometry have also found significant applications, for example
in geometric design, combinatorics, integer programming, coding theory,
and robotics. Our goal in Using Algebraic Geometry is to survey these
algorithmic approaches and many of their applications.

For the convenience of the reader, in this introductory chapter we will
first recall the basic algebraic structure of ideals in polynomial rings. In §2
and §3 we will present a rapid summary of the Gröbner basis algorithms de-
veloped by Buchberger for computations in polynomial rings, with several
worked out examples. Finally, in §4 we will recall the geometric notion of
an affine algebraic variety , the simplest type of geometric object defined by
polynomial equations. The topics in §1, §2, and §3 are the common prereq-
uisites for all of the following chapters. §4 gives the geometric context for
the algebra from the earlier sections. We will make use of this language at
many points. If these topics are familiar, you may wish to proceed directly
to the later material and refer back to this introduction as needed.

§1 Polynomials and Ideals

To begin, we will recall some terminology. A monomial in a collection of
variables x1, . . . , xn is a product

(1.1) xα1
1 xα2

2 · · · xαn
n

1



2 Chapter 1. Introduction

where the αi are non-negative integers. To abbreviate, we will sometimes
rewrite (1.1) as xα where α = (α1, . . . , αn) is the vector of exponents in the
monomial. The total degree of a monomial xα is the sum of the exponents:
α1 + · · · + αn. We will often denote the total degree of the monomial xα

by |α|. For instance x3
1x

2
2x4 is a monomial of total degree 6 in the variables

x1, x2, x3, x4, since α = (3, 2, 0, 1) and |α| = 6.
If k is any field, we can form finite linear combinations of monomials

with coefficients in k. The resulting objects are known as polynomials in
x1, . . . , xn. We will also use the word term on occasion to refer to a product
of a nonzero element of k and a monomial appearing in a polynomial. Thus,
a general polynomial in the variables x1, . . . , xn with coefficients in k has
the form

f =
∑
α

cαxα,

where cα ∈ k for each α, and there are only finitely many terms cαxα in
the sum. For example, taking k to be the field Q of rational numbers, and
denoting the variables by x, y, z rather than using subscripts,

(1.2) p = x2 + 1
2 y2z − z − 1

is a polynomial containing four terms.
In most of our examples, the field of coefficients will be either Q, the

field of real numbers, R, or the field of complex numbers, C. Polynomi-
als over finite fields will also be introduced in Chapter 9. We will denote
by k[x1, . . . , xn] the collection of all polynomials in x1, . . . , xn with co-
efficients in k. Polynomials in k[x1, . . . , xn] can be added and multiplied
as usual, so k[x1, . . . , xn] has the structure of a commutative ring (with
identity). However, only nonzero constant polynomials have multiplicative
inverses in k[x1, . . . , xn], so k[x1, . . . , xn] is not a field. However, the set
of rational functions {f/g : f, g ∈ k[x1, . . . , xn], g �= 0} is a field, denoted
k(x1, . . . , xn).

A polynomial f is said to be homogeneous if all the monomials appearing
in it with nonzero coefficients have the same total degree. For instance,
f = 4x3 + 5xy2 − z3 is a homogeneous polynomial of total degree 3 in
Q[x, y, z], while g = 4x3 + 5xy2 − z6 is not homogeneous. When we study
resultants in Chapter 3, homogeneous polynomials will play an important
role.

Given a collection of polynomials, f1, . . . , fs ∈ k[x1, . . . , xn], we can
consider all polynomials which can be built up from these by multiplication
by arbitrary polynomials and by taking sums.

(1.3) Definition. Let f1, . . . , fs ∈ k[x1, . . . , xn]. We let 〈f1, . . . , fs〉
denote the collection

〈f1, . . . , fs〉 = {p1f1 + · · · + psfs : pi ∈ k[x1, . . . , xn] for i = 1, . . . , s}.
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For example, consider the polynomial p from (1.2) above and the two
polynomials

f1 = x2 + z2 − 1

f2 = x2 + y2 + (z − 1)2 − 4.

We have

(1.4)
p = x2 + 1

2 y2z − z − 1

= (− 1
2 z + 1)(x2 + z2 − 1) + ( 1

2 z)(x2 + y2 + (z − 1)2 − 4).

This shows p ∈ 〈f1, f2〉.

Exercise 1.
a. Show that x2 ∈ 〈x − y2, xy〉 in k[x, y] (k any field).
b. Show that 〈x − y2, xy, y2〉 = 〈x, y2〉.
c. Is 〈x − y2, xy〉 = 〈x2, xy〉? Why or why not?

Exercise 2. Show that 〈f1, . . . , fs〉 is closed under sums in k[x1, . . . , xn].
Also show that if f ∈ 〈f1, . . . , fs〉, and p ∈ k[x1, . . . , xn] is an arbitrary
polynomial, then p · f ∈ 〈f1, . . . , fs〉.

The two properties in Exercise 2 are the defining properties of ideals in
the ring k[x1, . . . , xn].

(1.5) Definition. Let I ⊂ k[x1, . . . , xn] be a non-empty subset. I is said
to be an ideal if
a. f + g ∈ I whenever f ∈ I and g ∈ I, and
b. pf ∈ I whenever f ∈ I, and p ∈ k[x1, . . . , xn] is an arbitrary

polynomial.

Thus 〈f1, . . . , fs〉 is an ideal by Exercise 2. We will call it the ideal
generated by f1, . . . , fs because it has the following property.

Exercise 3. Show that 〈f1, . . . , fs〉 is the smallest ideal in k[x1, . . . , xn]
containing f1, . . . , fs, in the sense that if J is any ideal containing
f1, . . . , fs, then 〈f1, . . . , fs〉 ⊂ J .

Exercise 4. Using Exercise 3, formulate and prove a general criterion for
equality of ideals I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉 in k[x1, . . . , xn].
How does your statement relate to what you did in part b of Exercise 1?

Given an ideal, or several ideals, in k[x1, . . . , xn], there are a number of
algebraic constructions that yield other ideals. One of the most important
of these for geometry is the following.
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(1.6) Definition. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I is
the set

√
I = {g ∈ k[x1, . . . , xn] : gm ∈ I for some m ≥ 1}.

An ideal I is said to be a radical ideal if
√

I = I.

For instance,

x + y ∈
√
〈x2 + 3xy, 3xy + y2〉

in Q[x, y] since

(x + y)3 = x(x2 + 3xy) + y(3xy + y2) ∈ 〈x2 + 3xy, 3xy + y2〉.
Since each of the generators of the ideal 〈x2+3xy, 3xy+y2〉 is homogeneous
of degree 2, it is clear that x + y /∈ 〈x2 + 3xy, 3xy + y2〉. It follows that
〈x2 + 3xy, 3xy + y2〉 is not a radical ideal.

Although it is not obvious from the definition, we have the following
property of the radical.

• (Radical Ideal Property) For every ideal I ⊂ k[x1, . . . , xn],
√

I is an
ideal containing I.

See [CLO], Chapter 4, §2, for example. We will consider a number of other
operations on ideals in the exercises.

One of the most important general facts about ideals in k[x1, . . . , xn] is
known as the Hilbert Basis Theorem. In this context, a basis is another
name for a generating set for an ideal.

• (Hilbert Basis Theorem) Every ideal I in k[x1, . . . , xn] has a finite gener-
ating set. In other words, given an ideal I, there exists a finite collection
of polynomials {f1, . . . , fs} ⊂ k[x1, . . . , xn] such that I = 〈f1, . . . , fs〉.

For polynomials in one variable, this is a standard consequence of the one-
variable polynomial division algorithm.

• (Division Algorithm in k[x]) Given two polynomials f, g ∈ k[x], we can
divide f by g, producing a unique quotient q and remainder r such that

f = qg + r,

and either r = 0, or r has degree strictly smaller than the degree of g.

See, for instance, [CLO], Chapter 1, §5. The consequences of this result for
ideals in k[x] are discussed in Exercise 6 below. For polynomials in several
variables, the Hilbert Basis Theorem can be proved either as a byproduct of
the theory of Gröbner bases to be reviewed in the next section (see [CLO],
Chapter 2, §5), or inductively by showing that if every ideal in a ring R is
finitely generated, then the same is true in the ring R[x] (see [AL], Chapter
1, §1, or [BW], Chapter 4, §1).
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ADDITIONAL EXERCISES FOR §1

Exercise 5. Show that 〈y − x2, z − x3〉 = 〈z − xy, y − x2〉 in Q[x, y, z].

Exercise 6. Let k be any field, and consider the polynomial ring in one
variable, k[x]. In this exercise, you will give one proof that every ideal in
k[x] is finitely generated. In fact, every ideal I ⊂ k[x] is generated by a
single polynomial: I = 〈g〉 for some g. We may assume I �= {0} for there is
nothing to prove in that case. Let g be a nonzero element in I of minimal
degree. Show using the division algorithm that every f in I is divisible by
g. Deduce that I = 〈g〉.

Exercise 7.
a. Let k be any field, and let n be any positive integer. Show that in k[x],√〈xn〉 = 〈x〉.
b. More generally, suppose that

p(x) = (x − a1)e1 · · · (x − am)em .

What is
√〈p(x)〉?

c. Let k = C, so that every polynomial in one variable factors as in b.
What are the radical ideals in C[x]?

Exercise 8. An ideal I ⊂ k[x1, . . . , xn] is said to be prime if whenever a
product fg belongs to I, either f ∈ I, or g ∈ I (or both).
a. Show that a prime ideal is radical.
b. What are the prime ideals in C[x]? What about the prime ideals in R[x]

or Q[x]?

Exercise 9. An ideal I ⊂ k[x1, . . . , xn] is said to be maximal if there
are no ideals J satisfying I ⊂ J ⊂ k[x1, . . . , xn] other than J = I and
J = k[x1, . . . , xn].
a. Show that 〈x1, x2, . . . , xn〉 is a maximal ideal in k[x1, . . . , xn].
b. More generally show that if (a1, . . . , an) is any point in kn, then the

ideal 〈x1 − a1, . . . , xn − an〉 ⊂ k[x1, . . . , xn] is maximal.
c. Show that I = 〈x2 + 1〉 is a maximal ideal in R[x]. Is I maximal

considered as an ideal in C[x]?

Exercise 10. Let I be an ideal in k[x1, . . . , xn], let � ≥ 1 be an integer,
and let I� consist of the elements in I that do not depend on the first �
variables:

I� = I ∩ k[x�+1, . . . , xn].

I� is called the �th elimination ideal of I.
a. For I = 〈x2 + y2, x2 − z3〉 ⊂ k[x, y, z], show that y2 + z3 is in the first

elimination ideal I1.
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b. Prove that I� is an ideal in the ring k[x�+1, . . . , xn].

Exercise 11. Let I, J be ideals in k[x1, . . . , xn], and define

I + J = {f + g : f ∈ I, g ∈ J}.
a. Show that I + J is an ideal in k[x1, . . . , xn].
b. Show that I + J is the smallest ideal containing I ∪ J .
c. If I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉, what is a finite generating set

for I + J?

Exercise 12. Let I, J be ideals in k[x1, . . . , xn].
a. Show that I ∩ J is also an ideal in k[x1, . . . , xn].
b. Define IJ to be the smallest ideal containing all the products fg where

f ∈ I, and g ∈ J . Show that IJ ⊂ I ∩ J . Give an example where
IJ �= I ∩ J .

Exercise 13. Let I, J be ideals in k[x1, . . . , xn], and define I :J (called
the quotient ideal of I by J) by

I :J = {f ∈ k[x1, . . . , xn] : fg ∈ I for all g ∈ J}.
a. Show that I :J is an ideal in k[x1, . . . , xn].
b. Show that if I ∩ 〈h〉 = 〈g1, . . . , gt〉 (so each gi is divisible by h), then a

basis for I : 〈h〉 is obtained by cancelling the factor of h from each gi:

I : 〈h〉 = 〈g1/h, . . . , gt/h〉.

§2 Monomial Orders and Polynomial Division

The examples of ideals that we considered in §1 were artificially simple. In
general, it can be difficult to determine by inspection or by trial and error
whether a given polynomial f ∈ k[x1, . . . , xn] is an element of a given
ideal I = 〈f1, . . . , fs〉, or whether two ideals I = 〈f1, . . . , fs〉 and J =
〈g1, . . . , gt〉 are equal. In this section and the next one, we will consider a
collection of algorithms that can be used to solve problems such as deciding
ideal membership, deciding ideal equality, computing ideal intersections
and quotients, and computing elimination ideals. See the exercises at the
end of §3 for some examples.

The starting point for these algorithms is, in a sense, the polynomial
division algorithm in k[x] introduced at the end of §1. In Exercise 6 of §1,
we saw that the division algorithm implies that every ideal I ⊂ k[x] has
the form I = 〈g〉 for some g. Hence, if f ∈ k[x], we can also use division
to determine whether f ∈ I.
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Exercise 1. Let I = 〈g〉 in k[x] and let f ∈ k[x] be any polynomial. Let
q, r be the unique quotient and remainder in the expression f = qg + r
produced by polynomial division. Show that f ∈ I if and only if r = 0.

Exercise 2. Formulate and prove a criterion for equality of ideals I1 =
〈g1〉 and I2 = 〈g2〉 in k[x] based on division.

Given the usefulness of division for polynomials in one variable, we may
ask: Is there a corresponding notion for polynomials in several variables?
The answer is yes, and to describe it, we need to begin by considering
different ways to order the monomials appearing within a polynomial.

(2.1) Definition. A monomial order on k[x1, . . . , xn] is any relation > on
the set of monomials xα in k[x1, . . . , xn] (or equivalently on the exponent
vectors α ∈ Z

n
≥0) satisfying:

a. > is a total (linear) ordering relation;
b. > is compatible with multiplication in k[x1, . . . , xn], in the sense that if

xα > xβ and xγ is any monomial, then xαxγ = xα+γ > xβ+γ = xβxγ ;
c. > is a well-ordering . That is, every nonempty collection of monomials

has a smallest element under >.

Condition a implies that the terms appearing within any polynomial f
can be uniquely listed in increasing or decreasing order under >. Then
condition b shows that that ordering does not change if we multiply f by
a monomial xγ . Finally, condition c is used to ensure that processes that
work on collections of monomials, e.g., the collection of all monomials less
than some fixed monomial xα, will terminate in a finite number of steps.

The division algorithm in k[x] makes use of a monomial order implicitly :
when we divide g into f by hand, we always compare the leading term
(the term of highest degree) in g with the leading term of the intermediate
dividend. In fact there is no choice in the matter in this case.

Exercise 3. Show that the only monomial order on k[x] is the degree order
on monomials, given by

· · · > xn+1 > xn > · · · > x3 > x2 > x > 1.

For polynomial rings in several variables, there are many choices of mono-
mial orders. In writing the exponent vectors α and β in monomials xα and
xβ as ordered n-tuples, we implicitly set up an ordering on the variables xi

in k[x1, . . . , xn]:

x1 > x2 > · · · > xn.

With this choice, there are still many ways to define monomial orders. Some
of the most important are given in the following definitions.
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(2.2) Definition (Lexicographic Order). Let xα and xβ be monomials
in k[x1, . . . , xn]. We say xα >lex xβ if in the difference α − β ∈ Z

n, the
leftmost nonzero entry is positive.

Lexicographic order is analogous to the ordering of words used in
dictionaries.

(2.3) Definition (Graded Lexicographic Order). Let xα and xβ be
monomials in k[x1, . . . , xn]. We say xα >grlex xβ if

∑n
i=1 αi >

∑n
i=1 βi,

or if
∑n

i=1 αi =
∑n

i=1 βi, and xα >lex xβ .

(2.4) Definition (Graded Reverse Lexicographic Order). Let xα

and xβ be monomials in k[x1, . . . , xn]. We say xα >grevlex xβ if
∑n

i=1 αi >∑n
i=1 βi, or if

∑n
i=1 αi =

∑n
i=1 βi, and in the difference α − β ∈ Z

n, the
rightmost nonzero entry is negative.

For instance, in k[x, y, z], with x > y > z, we have

(2.5) x3y2z >lex x2y6z12

since when we compute the difference of the exponent vectors:

(3, 2, 1) − (2, 6, 12) = (1,−4,−11),

the leftmost nonzero entry is positive. Similarly,

x3y6 >lex x3y4z

since in (3, 6, 0) − (3, 4, 1) = (0, 2,−1), the leftmost nonzero entry is posi-
tive. Comparing the lex and grevlex orders shows that the results can be
quite different. For instance, it is true that

x2y6z12 >grevlex x3y2z.

Compare this with (2.5), which contains the same monomials. Indeed, lex
and grevlex are different orderings even on the monomials of the same
total degree in three or more variables, as we can see by considering pairs of
monomials such as x2y2z2 and xy4z. Since (2, 2, 2) − (1, 4, 1) = (1,−2, 1),

x2y2z2 >lex xy4z.

On the other hand by Definition (2.4),

xy4z >grevlex x2y2z2.

Exercise 4. Show that >lex, >grlex, and >grevlex are monomial orders in
k[x1, . . . , xn] according to Definition (2.1).

Exercise 5. Show that the monomials of a fixed total degree d in two
variables x > y are ordered in the same sequence by >lex and >grevlex.
Are these orderings the same on all of k[x, y] though? Why or why not?
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For future reference, we next discuss a general method for specifying
monomial orders on k[x1, . . . , xn]. We start from any m× n real matrix M
and write the rows of M as w1, . . . , wm. Then we can compare monomials
xα and xβ by first comparing their w1-weights α ·w1 and α ·w1. If α ·w1 >
β · w1 or β · w1 > α · w1, then we order the monomials accordingly.
If α · w1 = β · w1, then we continue to the later rows, breaking ties
successively with the w2-weights, the w3-weights, and so on through the
wm-weights. This process defines an order relation >M . In symbols: xα >M

xβ if there is an � ≤ m such that α · wi = β · wi for i = 1, . . . , � − 1, but
α · w� > β · w�.

To obtain a total order by this construction, it must be true that ker(M)∩
Z

n = {0}. If the entries of M are rational numbers, then this property
implies that m ≥ n, and M has full rank n. The same construction also
works for M with irrational entries, but there is a small subtlety concerning
what notion of rank is appropriate in that case. See Exercise 9 below. To
guarantee the well-ordering property of monomial orders, it is sufficient
(although not necessary) to require that M have all entries nonnegative.

Exercise 6. All the monomial orders we have seen can be specified as >M

orders for appropriate matrices M .
a. Show that the lex order with x > y > z is defined by the identity matrix

M =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ ,

and similarly in k[x1, . . . , xn] for all n ≥ 1.
b. Show that the grevlex order with x > y > z is defined by either the

matrix

M =

⎛⎝ 1 1 1
1 1 0
1 0 0

⎞⎠
or the matrix

M ′ =

⎛⎝ 1 1 1
0 0 −1
0 −1 0

⎞⎠
and similarly in k[x1, . . . , xn] for all n ≥ 1. This example shows that
matrices with negative entries can also define monomial orders.

c. The grlex order compares monomials first by total degree (weight vector
w1 = (1, 1, 1)), then breaks ties by the lex order. This, together with
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part a, shows >grlex=>M for the matrix

M =

⎛⎜⎜⎝
1 1 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ .

Show that we could also use

M ′ =

⎛⎝ 1 1 1
1 0 0
0 1 0

⎞⎠ .

That is, show that the last row in M is actually superfluous. (Hint:
Making comparisons, when would we ever need to use the last row?)

d. One very common way to define a monomial order is to compare weights
with respect to one vector first, then break ties with another standard
order such as grevlex. We denote such an order by >w,grevlex . These
weight orders are studied, for instance, in [CLO], Chapter 2, §4, Exercise
12. Suppose w = (2, 4, 7) and ties are broken by grevlex with x > y > z.
To define this order, it is most natural to use

M =

⎛⎜⎜⎝
2 4 7
1 1 1
1 1 0
1 0 0

⎞⎟⎟⎠ .

However, some computer algebra systems (e.g., Maple V, Release 5
and later versions with the Groebner package) require square weight
matrices. Consider the two matrices obtained from M by deleting a
row:

M ′ =

⎛⎝ 2 4 7
1 1 1
1 1 0

⎞⎠ M ′′ =

⎛⎝ 2 4 7
1 1 1
1 0 0

⎞⎠ .

Both have rank 3 so the condition ker(M) ∩ Z
3 = {0} is satisfied.

Which matrix defines the >w,grevlex order?
e. Let m > n. Given an m × n matrix M defining a monomial order >M ,

describe a general method for picking an n × n submatrix M ′ of M to
define the same order.

In Exercise 8 below, you will prove that >M defines a monomial order
for any suitable matrix M . In fact, by a result of Robbiano (see [Rob]), the
>M construction gives all monomial orders on k[x1, . . . , xn].

We will use monomial orders in the following way. The natural gener-
alization of the leading term (term of highest degree) in a polynomial in
k[x] is defined as follows. Picking any particular monomial order > on
k[x1, . . . , xn], we consider the terms in f =

∑
α cαxα. Then the leading
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term of f (with respect to >) is the product cαxα where xα is the largest
monomial appearing in f in the ordering >. We will use the notation LT>(f)
for the leading term, or just LT(f) if there is no chance of confusion about
which monomial order is being used. Furthermore, if LT(f) = cxα, then
LC(f) = c is the leading coefficient of f and LM(f) = xα is the leading
monomial . Note that LT(0), LC(0), and LM(0) are undefined.

For example, consider f = 3x3y2 + x2yz3 in Q[x, y, z] (with variables
ordered x > y > z as usual). We have

LT>lex
(f) = 3x3y2

since x3y2 >lex x2yz3. On the other hand

LT>grevlex
(f) = x2yz3

since the total degree of the second term is 6 and the total degree of the
first is 5.

Monomial orders are used in a generalized division algorithm.

• (Division Algorithm in k[x1, . . . , xn]) Fix any monomial order > in
k[x1, . . . , xn], and let F = (f1, . . . , fs) be an ordered s-tuple of poly-
nomials in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can be written
as

(2.6) f = a1f1 + · · · + asfs + r,

where ai, r ∈ k[x1, . . . , xn], for each i, aifi = 0 or LT>(f) ≥ LT>(aifi),
and either r = 0, or r is a linear combination of monomials, none of which
is divisible by any of LT>(f1), . . . , LT>(fs). We will call r a remainder of
f on division by F .

In the particular algorithmic form of the division process given in [CLO],
Chapter 2, §3, and [AL], Chapter 1, §5, the intermediate dividend is reduced
at each step using the divisor fi with the smallest possible i such that LT(fi)
divides the leading term of the intermediate dividend. A characterization
of the expression (2.6) that is produced by this version of division can
be found in Exercise 11 of Chapter 2, §3 of [CLO]. More general forms
of division or polynomial reduction procedures are considered in [AL] and
[BW], Chapter 5, §1.

You should note two differences between this statement and the division
algorithm in k[x]. First, we are allowing the possibility of dividing f by
an s-tuple of polynomials with s > 1. The reason for this is that we will
usually want to think of the divisors fi as generators for some particular
ideal I, and ideals in k[x1, . . . , xn] for n ≥ 2 might not be generated by
any single polynomial. Second, although any algorithmic version of division,
such as the one presented in Chapter 2 of [CLO], produces one particular
expression of the form (2.6) for each ordered s-tuple F and each f , there are
always different expressions of this form for a given f as well. Reordering
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F or changing the monomial order can produce different ai and r in some
cases. See Exercise 7 below for some examples.

We will sometimes use the notation

r = f
F

for a remainder on division by F .
Most computer algebra systems that have Gröbner basis packages pro-

vide implementations of some form of the division algorithm. However, in
most cases the output of the division command is just the remainder f

F
,

the quotients ai are not saved or displayed, and an algorithm different from
the one described in [CLO], Chapter 2, §3 may be used. For instance, the
Maple Groebner package contains a function normalf which computes a
remainder on division of a polynomial by any collection of polynomials.
To use it, one must start by loading the Groebner package (just once in a
session) with

with(Groebner);

The format for the normalf command is

normalf(f, F, torder);

where f is the dividend polynomial, F is the ordered list of divisors (in
square brackets, separated by commas), and torder specifies the monomial
order. For instance, to use the >lex order, enter plex, then in parenthe-
ses, separated by commas, list the variables in descending order. Similarly,
to use the >grevlex order, enter tdeg, then in parentheses, separated by
commas, list the variables in descending order. Let us consider dividing
f1 = x2y2 − x and f2 = xy3 + y into f = x3y2 + 2xy4 using the lex order
on Q[x, y] with x > y. The Maple commands

(2.7)

f := x^3*y^2 + 2*x*y^4;

F := [x^2*y^2 - x, x*y^3 + y];

normalf(f,F,plex(x,y));

will produce as output

(2.8) x2 − 2y2.

Thus the remainder is f
F

= x2 − 2y2. The normalf procedure uses the
algorithmic form of division presented, for instance, in [CLO], Chapter 2,
§3.

The Groebner package contains several additional ways to specify mono-
mial orders, including one to construct >M for a square matrix M with
positive integer entries. Hence it can be used to work with general mono-
mial orders on k[x1, . . . , xn]. We will present a number of examples in later
chapters.
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ADDITIONAL EXERCISES FOR §2

Exercise 7.
a. Verify by hand that the remainder from (2.8) occurs in an expression

f = a1f1 + a2f2 + x2 − 2y2,

where a1 = x, a2 = 2y, and fi are as in the discussion before (2.7).
b. Show that reordering the variables and changing the monomial order to

tdeg(x,y) has no effect in (2.8).
c. What happens if you change F in (2.7) to

F = [x2y2 − x4, xy3 − y4]

and take f = x2y6? Does changing the order of the variables make a
difference now?

d. Now change F to

F = [x2y2 − z4, xy3 − y4],

take f = x2y6 + z5, and change the monomial order to plex(x,y,z).
Also try lex orders with the variables permuted and other monomial
orders.

Exercise 8. Let M be an m × n real matrix with nonnegative entries.
Assume that ker(M) ∩ Z

n = {0}. Show that >M is a monomial order on
k[x1, . . . , xn].

Exercise 9. Given w ∈ (Rn)+ define xα >w xβ if α · w > β · w.
a. Give an example to show that >w is not necessarily a monomial order

on k[x1, . . . , xn].
b. With n = 2, let w = (1,

√
2). Show that >w is a monomial order on

k[x1, x2] in this case.
c. What property of the components of the vector w ∈ (Rn)+ guarantees

that >w does define a monomial order on k[x1, . . . , xn]? Prove your
assertion. (Hint: See Exercise 11 of Chapter 2, §4 of [CLO].)

§3 Gröbner Bases

Since we now have a division algorithm in k[x1, . . . , xn] that seems to
have many of the same features as the one-variable version, it is natural
to ask if deciding whether a given f ∈ k[x1, . . . , xn] is a member of a
given ideal I = 〈f1, . . . , fs〉 can be done along the lines of Exercise 1 in
§2, by computing the remainder on division. One direction is easy. Namely,
from (2.6) it follows that if r = f

F
= 0 on dividing by F = (f1, . . . , fs),

then f = a1f1 + · · · + asfs. By definition then, f ∈ 〈f1, . . . , fs〉. On the
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other hand, the following exercise shows that we are not guaranteed to get
f

F
= 0 for every f ∈ 〈f1, . . . , fs〉 if we use an arbitrary basis F for I.

Exercise 1. Recall from (1.4) that p = x2 + 1
2 y2z − z − 1 is an element

of the ideal I = 〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉. Show, however,
that the remainder on division of p by this generating set F is not zero.
For instance, using >lex, we get a remainder

pF = 1
2 y2z − z − z2.

What went wrong here? From (2.6) and the fact that f ∈ I in this case,
it follows that the remainder is also an element of I. However, pF is not
zero because it contains terms that cannot be removed by division by these
particular generators for I. The leading terms of f1 = x2 + z2 − 1 and
f2 = x2 + y2 + (z − 1)2 − 4 do not divide the leading term of pF . In order
for division to produce zero remainders for all elements of I, we need to be
able to remove all leading terms of elements of I using the leading terms
of the divisors. That is the motivation for the following definition.

(3.1) Definition. Fix a monomial order > on k[x1, . . . , xn], and let I ⊂
k[x1, . . . , xn] be an ideal. A Gröbner basis for I (with respect to >) is a
finite collection of polynomials G = {g1, . . . , gt} ⊂ I with the property
that for every nonzero f ∈ I, LT(f) is divisible by LT(gi) for some i.

We will see in a moment (Exercise 3) that a Gröbner basis for I is indeed
a basis for I, i.e., I = 〈g1, . . . , gt〉. Of course, it must be proved that
Gröbner bases exist for all I in k[x1, . . . , xn]. This can be done in a non-
constructive way by considering the ideal 〈LT(I)〉 generated by the leading
terms of all the elements in I (a monomial ideal). By a direct argument
(Dickson’s Lemma: see [CLO], Chapter 2, §4, or [BW], Chapter 4, §3, or
[AL], Chapter 1, §4), or by the Hilbert Basis Theorem, the ideal 〈LT(I)〉 has
a finite generating set consisting of monomials xα(i) for i = 1, . . . , t. By the
definition of 〈LT(I)〉, there is an element gi ∈ I such that LT(gi) = xα(i)

for each i = 1, . . . , t.

Exercise 2. Show that if 〈LT(I)〉 = 〈xα(1), . . . , xα(t)〉, and if gi ∈ I are
polynomials such that LT(gi) = xα(i) for each i = 1, . . . , t, then G =
{g1, . . . , gt} is a Gröbner basis for I.

Remainders computed by division with respect to a Gröbner basis are
much better behaved than those computed with respect to arbitrary sets
of divisors. For instance, we have the following results.

Exercise 3.
a. Show that if G is a Gröbner basis for I, then for any f ∈ I, the remainder

on division of f by G (listed in any order) is zero.



§3. Gröbner Bases 15

b. Deduce that I = 〈g1, . . . , gt〉 if G = {g1, . . . , gt} is a Gröbner basis for
I. (If I = 〈0〉, then G = ∅ and we make the convention that 〈∅〉 = {0}.)

Exercise 4. If G is a Gröbner basis for an ideal I, and f is an arbitrary
polynomial, show that if the algorithm of [CLO], Chapter 2, §3 is used, the
remainder on division of f by G is independent of the ordering of G. Hint:
If two different orderings of G are used, producing remainders r1 and r2,
consider the difference r1 − r2.

Generalizing the result of Exercise 4, we also have the following important
statement.

• (Uniqueness of Remainders) Fix a monomial order > and let I ⊂
k[x1, . . . , xn] be an ideal. Division of f ∈ k[x1, . . . , xn] by a Gröbner
basis for I produces an expression f = g + r where g ∈ I and no term
in r is divisible by any element of LT(I). If f = g′ + r′ is any other such
expression, then r = r′.

See [CLO], Chapter 2, §6, [AL], Chapter 1, §6, or [BW], Chapter 5, §2.
In other words, the remainder on division of f by a Gröbner basis for I
is a uniquely determined normal form for f modulo I depending only on
the choice of monomial order and not on the way the division is performed.
Indeed, uniqueness of remainders gives another characterization of Gröbner
bases.

More useful for many purposes than the existence proof for Gröbner
bases above is an algorithm, due to Buchberger, that takes an arbitrary
generating set {f1, . . . , fs} for I and produces a Gröbner basis G for I
from it. This algorithm works by forming new elements of I using expres-
sions guaranteed to cancel leading terms and uncover other possible leading
terms, according to the following recipe.

(3.2) Definition. Let f, g ∈ k[x1, . . . , xn] be nonzero. Fix a monomial
order and let

LT(f) = cxα and LT(g) = dxβ ,

where c, d ∈ k. Let xγ be the least common multiple of xα and xβ . The
S-polynomial of f and g, denoted S(f, g), is the polynomial

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

Note that by definition S(f, g) ∈ 〈f, g〉. For example, with f = x3y −
2x2y2 + x and g = 3x4 − y in Q[x, y], and using >lex, we have xγ = x4y,
and

S(f, g) = xf − (y/3)g = −2x3y2 + x2 + y2/3.
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In this case, the leading term of the S-polynomial is divisible by the
leading term of f . We might consider taking the remainder on division by
F = (f, g) to uncover possible new leading terms of elements in 〈f, g〉. And
indeed in this case we find that the remainder is

(3.3) S(f, g)
F

= −4x2y3 + x2 + 2xy + y2/3

and LT(S(f, g)
F
) = −4x2y3 is divisible by neither LT(f) nor LT(g). An

important result about this process of forming S-polynomial remainders is
the following statement.

• (Buchberger’s Criterion) A finite set G = {g1, . . . , gt} is a Gröbner basis

of I = 〈g1, . . . , gt〉 if and only if S(gi, gj)
G

= 0 for all pairs i �= j.

See [CLO], Chapter 2, §7, [BW], Chapter 5, §3, or [AL], Chapter 1, §7.
Using this criterion above, we obtain a very rudimentary procedure for
producing a Gröbner basis of a given ideal.

• (Buchberger’s Algorithm)

Input: F = (f1, . . . , fs)

Output: a Gröbner basis G = {g1, . . . , gt} for I = 〈F 〉, with F ⊂ G

G := F

REPEAT

G′ := G

FOR each pair p �= q in G′ DO

S := S(p, q)
G′

IF S �= 0 THEN G := G ∪ {S}
UNTIL G = G′

See [CLO], Chapter 2, §6, [BW], Chapter 5, §3, or [AL], Chapter 1, §7. For

instance, in the example above we would adjoin h = S(f, g)
F

from (3.3)
to our set of polynomials. There are two new S-polynomials to consider
now: S(f, h) and S(g, h). Their remainders on division by (f, g, h) would
be computed and adjoined to the collection if they are nonzero. Then we
would continue, forming new S-polynomials and remainders to determine
whether further polynomials must be included.

Exercise 5. Carry out Buchberger’s Algorithm on the example above,
continuing from (3.3). (You may want to use a computer algebra system
for this.)

In Maple, there is an implementation of a more sophisticated version of
Buchberger’s algorithm in the Groebner package. The relevant command
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is called gbasis, and the format is

gbasis(F,torder);

Here F is a list of polynomials and torder specifies the monomial order.
See the description of the normalf command in §2 for more details. For
instance, the commands

F := [x^3*y - 2*x^2*y^2 + x,3*x^4 - y];

gbasis(F,plex(x,y));

will compute a lex Gröbner basis for the ideal from Exercise 4. The output
is

(3.4) [−9y + 48y10 − 49y7 + 6y4, 252x − 624y7 + 493y4 − 3y]

(possibly up to the ordering of the terms, which can vary). This is not the
same as the result of the rudimentary form of Buchberger’s algorithm given
before. For instance, notice that neither of the polynomials in F actually
appears in the output. The reason is that the gbasis function actually
computes what we will refer to as a reduced Gröbner basis for the ideal
generated by the list F .

(3.5) Definition. A reduced Gröbner basis for an ideal I ⊂ k[x1, . . . , xn]
is a Gröbner basis G for I such that for all distinct p, q ∈ G, no monomial
appearing in p is a multiple of LT(q). A monic Gröbner basis is a reduced
Gröbner basis in which the leading coefficient of every polynomial is 1, or
∅ if I = 〈0〉.

Exercise 6. Verify that (3.4) is a reduced Gröbner basis according to this
definition.

Exercise 7. Compute a Gröbner basis G for the ideal I from Exercise 1
of this section. Verify that pG = 0 now, in agreement with the result of
Exercise 3.

A comment is in order concerning (3.5). Many authors include the con-
dition that the leading coefficient of each element in G is 1 in the definition
of a reduced Gröbner basis. However, many computer algebra systems (in-
cluding Maple, see (3.4)) do not perform that extra normalization because
it often increases the amount of storage space needed for the Gröbner basis
elements when the coefficient field is Q. The reason that condition is often
included, however, is the following statement.

• (Uniqueness of Monic Gröbner Bases) Fix a monomial order > on
k[x1, . . . , xn]. Each ideal I in k[x1, . . . , xn] has a unique monic Gröbner
basis with respect to >.
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See [CLO], Chapter 2, §7, [AL], Chapter 1, §8, or [BW], Chapter 5, §2.
Of course, varying the monomial order can change the reduced Gröbner
basis guaranteed by this result, and one reason different monomial orders
are considered is that the corresponding Gröbner bases can have different,
useful properties. One interesting feature of (3.4), for instance, is that the
second polynomial in the basis does not depend on x. In other words, it
is an element of the elimination ideal I ∩ Q[y]. In fact, lex Gröbner bases
systematically eliminate variables. This is the content of the Elimination
Theorem from [CLO], Chapter 3, §1. Also see Chapter 2, §1 of this book
for further discussion and applications of this remark. On the other hand,
the grevlex order often minimizes the amount of computation needed to
produce a Gröbner basis, so if no other special properties are required, it
can be the best choice of monomial order. Other product orders and weight
orders are used in many applications to produce Gröbner bases with special
properties. See Chapter 8 for some examples.

ADDITIONAL EXERCISES FOR §3

Exercise 8. Consider the ideal I = 〈x2y2 − x, xy3 + y〉 from (2.7).
a. Using >lex in Q[x, y], compute a Gröbner basis G for I.
b. Verify that each basis element g you obtain is in I, by exhibiting

equations g = A(x2y2 − x) + B(xy3 + y) for suitable A, B ∈ Q[x, y].
c. Let f = x3y2 + 2xy4. What is f

G
? How does this compare with the

result in (2.7)?

Exercise 9. What monomials can appear in remainders with respect to
the Gröbner basis G in (3.4)? What monomials appear in leading terms of
elements of the ideal generated by G?

Exercise 10. Let G be a Gröbner basis for an ideal I ⊂ k[x1, . . . , xn] and
suppose there exist distinct p, q ∈ G such that LT(p) is divisible by LT(q).
Show that G \ {p} is also a Gröbner basis for I. Use this observation,
together with division, to propose an algorithm for producing a reduced
Gröbner basis for I given G as input.

Exercise 11. This exercise will sketch a Gröbner basis method for
computing the intersection of two ideals. It relies on the Elimination
Theorem for lex Gröbner bases, as stated in [CLO], Chapter 3, §1. Let
I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn] be an ideal. Given f(t), an arbitrary
polynomial in k[t], consider the ideal

f(t)I = 〈f(t)f1, . . . , f(t)fs〉 ⊂ k[x1, . . . , xn, t].

a. Let I, J be ideals in k[x1, . . . , xn]. Show that

I ∩ J = (tI + (1 − t)J) ∩ k[x1, . . . , xn].
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b. Using the Elimination Theorem, deduce that a Gröbner basis G for I∩J
can be found by first computing a Gröbner basis H for tI + (1 − t)J
using a lex order on k[x1, . . . , xn, t] with the variables ordered t > xi

for all i, and then letting G = H ∩ k[x1, . . . , xn].

Exercise 12. Using the result of Exercise 11, derive a Gröbner basis
method for computing the quotient ideal I : 〈h〉. Hint: Exercise 13 of §1
shows that if I ∩ 〈h〉 is generated by g1, . . . , gt, then I : 〈h〉 is generated by
g1/h, . . . , gt/h.

§4 Affine Varieties

We will call the set kn = {(a1, . . . , an) : a1, . . . , an ∈ k} the affine n-
dimensional space over k. With k = R, for example, we have the usual
coordinatized Euclidean space R

n. Each polynomial f ∈ k[x1, . . . , xn] de-
fines a function f : kn → k. The value of f at (a1, . . . , an) ∈ kn is
obtained by substituting xi = ai, and evaluating the resulting expres-
sion in k. More precisely, if we write f =

∑
α cαxα for cα ∈ k, then

f(a1, . . . , an) =
∑

α cαaα ∈ k, where

aα = aα1
1 · · · aαn

n .

We recall the following basic fact.

• (Zero Function) If k is an infinite field, then f : kn → k is the zero
function if and only if f = 0 ∈ k[x1, . . . , xn].

See, for example, [CLO], Chapter 1, §1. As a consequence, when k is infinite,
two polynomials define the same function on kn if and only if they are equal
in k[x1, . . . , xn].

The simplest geometric objects studied in algebraic geometry are the
subsets of affine space defined by one or more polynomial equations. For
instance, in R

3, consider the set of (x, y, z) satisfying the equation

x2 + z2 − 1 = 0,

a circular cylinder of radius 1 along the y-axis (see Fig. 1.1).
Note that any equation p = q, where p, q ∈ k[x1, . . . , xn], can be rewrit-

ten as p − q = 0, so it is customary to write all equations in the form
f = 0 and we will always do this. More generally, we could consider the
simultaneous solutions of a system of polynomial equations.
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Figure 1.1. Circular cylinder

(4.1) Definition. The set of all simultaneous solutions (a1, . . . , an) ∈ kn

of a system of equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fs(x1, . . . , xn) = 0

is known as the affine variety defined by f1, . . . , fs, and is denoted by
V(f1, . . . , fs). A subset V ⊂ kn is said to be an affine variety if V =
V(f1, . . . , fs) for some collection of polynomials fi ∈ k[x1, . . . , xn].

In later chapters we will also introduce projective varieties. For now,
though, we will often say simply “variety” for “affine variety.” For example,
V(x2 + z2 − 1) in R

3 is the cylinder pictured above. The picture was
generated using the Maple command

implicitplot3d(x^2+z^2-1,x=-2..2,y=-2..2,z=-2..2,

grid=[20,20,20]);

The variety V(x2 + y2 + (z − 1)2 − 4) in R
3 is the sphere of radius 2

centered at (0, 0, 1) (see Fig. 1.2).
If there is more than one defining equation, the resulting variety can be

considered as an intersection of other varieties. For example, the variety
V(x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4) is the curve of intersection of the
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Figure 1.2. Sphere
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Figure 1.3. Cylinder-sphere intersection

cylinder and the sphere pictured above. This is shown, from a viewpoint
below the xy-plane, in Fig. 1.3.

The union of the sphere and the cylinder is also a variety, namely V((x2+
z2 − 1)(x2 + y2 + (z− 1)2 − 4)). Generalizing examples like these, we have:

Exercise 1.
a. Show that any finite intersection of affine varieties is also an affine

variety.
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b. Show that any finite union of affine varieties is also an affine variety.
Hint: If V = V(f1, . . . , fs) and W = V(g1, . . . , gt), then what is
V(figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t)?

c. Show that any finite subset of kn, n ≥ 1, is an affine variety.

On the other hand, consider the set S = R \ {0, 1, 2}, a subset of R.
We claim S is not an affine variety. Indeed, if f is any polynomial in
R[x] that vanishes at every point of S, then f has infinitely many roots.
By standard properties of polynomials in one variable, this implies that
f must be the zero polynomial. (This is the one-variable case of the Zero
Function property given above; it is easily proved in k[x] using the division
algorithm.) Hence the smallest variety in R containing S is the whole real
line itself.

An affine variety V ⊂ kn can be described by many different sys-
tems of equations. Note that if g = p1f1 + p2f2 + · · · + psfs, where
pi ∈ k[x1, . . . , xn] are any polynomials, then g(a1, . . . , an) = 0 at each
(a1, . . . , an) ∈ V(f1, . . . , fs). So given any set of equations defining a va-
riety, we can always produce infinitely many additional polynomials that
also vanish on the variety. In the language of §1 of this chapter, the g as
above are just the elements of the ideal 〈f1, . . . , fs〉. Some collections of
these new polynomials can define the same variety as the f1, . . . , fs.

Exercise 2. Consider the polynomial p from (1.2). In (1.4) we saw that
p ∈ 〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉. Show that

〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉 = 〈x2 + z2 − 1, y2 − 2z − 2〉
in Q[x, y, z]. Deduce that

V(x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4) = V(x2 + z2 − 1, y2 − 2z − 2).

Generalizing Exercise 2 above, it is easy to see that

• (Equal Ideals Have Equal Varieties) If 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 in
k[x1, . . . , xn], then V(f1, . . . , fs) = V(g1, . . . , gt).

See [CLO], Chapter 1, §4. By this result, together with the Hilbert Basis
Theorem from §1, it also makes sense to think of a variety as being defined
by an ideal in k[x1, . . . , xn], rather than by a specific system of equations.
If we want to think of a variety in this way, we will write V = V(I) where
I ⊂ k[x1, . . . , xn] is the ideal under consideration.

Now, given a variety V ⊂ kn, we can also try to turn the construction of
V from an ideal around, by considering the entire collection of polynomials
that vanish at every point of V .

(4.2) Definition. Let V ⊂ kn be a variety. We denote by I(V ) the set

{f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.
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We call I(V ) the ideal of V for the following reason.

Exercise 3. Show that I(V ) is an ideal in k[x1, . . . , xn] by verifying that
the two properties in Definition (1.5) hold.

If V = V(I), is it always true that I(V ) = I? The answer is no, as
the following simple example demonstrates. Consider V = V(x2) in R

2.
The ideal I = 〈x2〉 in R[x, y] consists of all polynomials divisible by x2.
These polynomials are certainly contained in I(V ), since the corresponding
variety V consists of all points of the form (0, b), b ∈ R (the y-axis). Note
that p(x, y) = x ∈ I(V ), but x /∈ I. In this case, I(V(I)) is strictly larger
than I.

Exercise 4. Show that the following inclusions are always valid:

I ⊂
√

I ⊂ I(V(I)),

where
√

I is the radical of I from Definition (1.6).

It is also true that the properties of the field k influence the relation
between I(V(I)) and I. For instance, over R, we have V(x2 + 1) = ∅
and I(V(x2 + 1)) = R[x]. On the other hand, if we take k = C, then
every polynomial in C[x] factors completely by the Fundamental Theorem
of Algebra. We find that V(x2 + 1) consists of the two points ±i ∈ C, and
I(V(x2 + 1)) = 〈x2 + 1〉.

Exercise 5. Verify the claims made in the preceding paragraph. You may
want to start out by showing that if a ∈ C, then I({a}) = 〈x − a〉.

The first key relationships between ideals and varieties are summarized
in the following theorems.

• (Strong Nullstellensatz) If k is an algebraically closed field (such as C)
and I is an ideal in k[x1, . . . , xn], then

I(V(I)) =
√

I.

• (Ideal-Variety Correspondence) Let k be an arbitrary field. The maps

affine varieties I−→ ideals

and

ideals V−→ affine varieties

are inclusion-reversing, and V(I(V )) = V for all affine varieties V . If k
is algebraically closed, then
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affine varieties I−→ radical ideals

and

radical ideals V−→ affine varieties

are inclusion-reversing bijections, and inverses of each other.

See, for instance [CLO], Chapter 4, §2, or [AL], Chapter 2, §2. We con-
sider how the operations on ideals introduced in §1 relate to operations on
varieties in the following exercises.

ADDITIONAL EXERCISES FOR §4

Exercise 6. In §1, we saw that the polynomial p = x2 + 1
2 y2z − z − 1 is

in the ideal I = 〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉 ⊂ R[x, y, z].
a. What does this fact imply about the varieties V(p) and V(I) in R

3?
(V(I) is the curve of intersection of the cylinder and the sphere pictured
in the text.)

b. Using a 3-dimensional graphing program (e.g. Maple’s implicitplot3d
function from the plots package) or otherwise, generate a picture of the
variety V(p).

c. Show that V(p) contains the variety W = V(x2 − 1, y2 − 2). Describe
W geometrically.

d. If we solve the equation

x2 + 1
2 y2z − z − 1 = 0

for z, we obtain

(4.3) z =
x2 − 1

1 − 1
2 y2

.

The right-hand side r(x, y) of (4.3) is a quotient of polynomials or, in the
terminology of §1, a rational function in x, y, and (4.3) is the equation
of the graph of r(x, y). Exactly how does this graph relate to the variety
V(x2 + 1

2 y2z − z − 1) in R
3? (Are they the same? Is one a subset of

the other? What is the domain of r(x, y) as a function from R
2 to R?)

Exercise 7. Show that for any ideal I ⊂ k[x1, . . . , xn],
√√

I =
√

I. Hence√
I is automatically a radical ideal.

Exercise 8. Assume k is an algebraically closed field. Show that in
the Ideal-Variety Correspondence, sums of ideals (see Exercise 11 of §1)
correspond to intersections of the corresponding varieties:

V(I + J) = V(I) ∩ V(J).
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Also show that if V and W are any varieties,

I(V ∩W ) =
√

I(V ) + I(W ).

Exercise 9.
a. Show that the intersection of two radical ideals is also a radical ideal.
b. Show that in the Ideal-Variety Correspondence above, intersections

of ideals (see Exercise 12 from §1) correspond to unions of the
corresponding varieties:

V(I ∩ J) = V(I) ∪ V(J).

Also show that if V and W are any varieties,

I(V ∪W ) = I(V ) ∩ I(W ).

c. Show that products of ideals (see Exercise 12 from §1) also correspond
to unions of varieties:

V(IJ) = V(I) ∪ V(J).

Assuming k is algebraically closed, how is the product I(V )I(W ) related
to I(V ∪W )?

Exercise 10. A variety V is said to be irreducible if in every expression
of V as a union of other varieties, V = V1 ∪ V2, either V1 = V or V2 = V .
Show that an affine variety V is irreducible if and only if I(V ) is a prime
ideal (see Exercise 8 from §1).

Exercise 11. Let k be algebraically closed.
a. Show by example that the set difference of two affine varieties:

V \ W = {p ∈ V : p /∈ W}
need not be an affine variety. Hint: For instance, consider k[x] and let
V = k = V(0) and W = {0} = V(x).

b. Show that for any ideals I, J in k[x1, . . . , xn], V(I :J) contains
V(I) \ V(J), but that we may not have equality. (Here I :J is the
quotient ideal introduced in Exercise 13 from §1.)

c. If I is a radical ideal, show that V(I) \ V(J) ⊂ V(I : J) and that any
variety containing V(I) \ V(J) must contain V(I :J). Thus V(I :J) is
the smallest variety containing the difference V(I) \ V(J); it is called
the Zariski closure of V(I) \ V(J). See [CLO], Chapter 4, §4.

d. Show that if I is a radical ideal and J is any ideal, then I :J is also a
radical ideal. Deduce that I(V ): I(W ) is the radical ideal corresponding
to the Zariski closure of V \ W in the Ideal-Variety Correspondence.



Chapter 2

Solving Polynomial Equations

In this chapter we will discuss several approaches to solving systems of
polynomial equations. First, we will discuss a straightforward attack based
on the elimination properties of lexicographic Gröbner bases. Combining
elimination with numerical root-finding for one-variable polynomials we get
a conceptually simple method that generalizes the usual techniques used
to solve systems of linear equations. However, there are potentially severe
difficulties when this approach is implemented on a computer using finite-
precision arithmetic. To circumvent these problems, we will develop some
additional algebraic tools for root-finding based on the algebraic structure
of the quotient rings k[x1, . . . , xn]/I. Using these tools, we will present
alternative numerical methods for approximating solutions of polynomial
systems and consider methods for real root-counting and root-isolation.
In Chapters 3, 4 and 7, we will also discuss polynomial equation solving.
Specifically, Chapter 3 will use resultants to solve polynomial equations,
and Chapter 4 will show how to assign a well-behaved multiplicity to each
solution of a system. Chapter 7 will consider other numerical techniques
(homotopy continuation methods) based on bounds for the total number
of solutions of a system, counting multiplicities.

§1 Solving Polynomial Systems by Elimination

The main tools we need are the Elimination and Extension Theorems. For
the convenience of the reader, we recall the key ideas:

• (Elimination Ideals) If I is an ideal in k[x1, . . . , xn], then the �th
elimination ideal is

I� = I ∩ k[x�+1, . . . , xn].

Intuitively, if I = 〈f1, . . . , fs〉, then the elements of I� are the linear com-
binations of the f1, . . . , fs, with polynomial coefficients, that eliminate
x1, . . . , x� from the equations f1 = · · · = fs = 0.

26
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• (The Elimination Theorem) If G is a Gröbner basis for I with respect
to the lex order (x1 > x2 > · · · > xn) (or any order where monomi-
als involving at least one of x1, . . . , x� are greater than all monomials
involving only the remaining variables), then

G� = G ∩ k[x�+1, . . . , xn]

is a Gröbner basis of the �th elimination ideal I�.
• (Partial Solutions) A point (a�+1, . . . , an) ∈ V(I�) ⊂ kn−� is called a

partial solution. Any solution (a1, . . . , an) ∈ V(I) ⊂ kn truncates to
a partial solution, but the converse may fail—not all partial solutions
extend to solutions. This is where the Extension Theorem comes in. To
prepare for the statement, note that each f in I�−1 can be written as a
polynomial in x�, whose coefficients are polynomials in x�+1, . . . , xn:

f = cq(x�+1, . . . , xn)xq
� + · · · + c0(x�+1, . . . , xn).

We call cq the leading coefficient polynomial of f if xq
� is the highest

power of x� appearing in f .
• (The Extension Theorem) If k is algebraically closed (e.g., k = C), then

a partial solution (a�+1, . . . , an) in V(I�) extends to (a�, a�+1, . . . , an) in
V(I�−1) provided that the leading coefficient polynomials of the elements
of a lex Gröbner basis for I�−1 do not all vanish at (a�+1, . . . , an).

For the proofs of these results and a discussion of their geometric meaning,
see Chapter 3 of [CLO]. Also, the Elimination Theorem is discussed in §6.2
of [BW] and §2.3 of [AL], and [AL] discusses the geometry of elimination
in §2.5.

The Elimination Theorem shows that a lex Gröbner basis G successively
eliminates more and more variables. This gives the following strategy for
finding all solutions of the system: start with the polynomials in G with the
fewest variables, solve them, and then try to extend these partial solutions
to solutions of the whole system, applying the Extension Theorem one
variable at a time.

As the following example shows, this works especially nicely when V(I)
is finite. Consider the system of equations

(1.1)

x2 + y2 + z2 = 4

x2 + 2y2 = 5

xz = 1

from Exercise 4 of Chapter 3, §1 of [CLO]. To solve these equations, we
first compute a lex Gröbner basis for the ideal they generate using Maple:

with(Groebner):
PList := [x^2+y^2+z^2-4, x^2+2*y^2-5, x*z-1];
G := gbasis(PList,plex(x,y,z));
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This gives output

G := [1 + 2z4 − 3z2, y2 − z2 − 1, x + 2z3 − 3z].

From the Gröbner basis it follows that the set of solutions of this system in
C

3 is finite (why?). To find all the solutions, note that the last polynomial
depends only on z (it is a generator of the second elimination ideal I2 =
I ∩ C[z]) and factors nicely in Q[z]. To see this, we may use

factor(2*z^4 - 3*z^2 + 1);

which generates the output

(z − 1)(z + 1)(2z2 − 1).

Thus we have four possible z values to consider:

z = ±1,±1/
√

2.

By the Elimination Theorem, the first elimination ideal I1 = I ∩ C[y, z] is
generated by

y2 − z2 − 1

2z4 − 3z2 + 1.

Since the coefficient of y2 in the first polynomial is a nonzero constant,
every partial solution in V(I2) extends to a solution in V(I1). There are
eight such points in all. To find them, we substitute a root of the last
equation for z and solve the resulting equation for y. For instance,

subs(z=1,G);

will produce:

[−1 + x, y2 − 2, 0],

so in particular, y = ±√2. In addition, since the coefficient of x in the first
polynomial in the Gröbner basis is a nonzero constant, we can extend each
partial solution in V(I1) (uniquely) to a point of V(I). For this value of z,
we have x = 1.

Exercise 1. Carry out the same process for the other values of z as well.
You should find that the eight points

(1,±
√

2, 1), (−1,±
√

2,−1), (
√

2,±
√

6/2, 1/
√

2), (−
√

2,±
√

6/2,−1/
√

2)

form the set of solutions.

The system in (1.1) is relatively simple because the coordinates of the
solutions can all be expressed in terms of square roots of rational numbers.
Unfortunately, general systems of polynomial equations are rarely this nice.
For instance it is known that there are no general formulas involving only



§1. Solving Polynomial Systems by Elimination 29

the field operations in k and extraction of roots (i.e., radicals) for solving
single variable polynomial equations of degree 5 and higher. This is a fa-
mous result of Ruffini, Abel, and Galois (see [Her]). Thus, if elimination
leads to a one-variable equation of degree 5 or higher, then we may not be
able to give radical formulas for the roots of that polynomial.

We take the system of equations given in (1.1) and change the first term
in the first polynomial from x2 to x5. Then executing

PList2 := [x^5+y^2+z^2-4, x^2+2*y^2-5, x*z-1];
G2 := gbasis(PList2,plex(x,y,z));

produces the following lex Gröbner basis:

(1.2) [2 + 2z7− 3z5− z3, 4y2 − 2z5 + 3z3 + z− 10, 2x + 2z6− 3z4− z2].

In this case, the command

factor(2*z^7 - 3*z^5 - z^3 + 2);

gives the factorization

2z7 − 3z5 − z3 + 2 = (z − 1)(2z6 + 2z5 − z4 − z3 − 2z2 − 2z − 2),

and the second factor is irreducible in Q[z]. In a situation like this, to
go farther in equation solving, we need to decide what kind of answer is
required.

If we want a purely algebraic, “structural” description of the solutions,
then Maple can represent solutions of systems like this via the solve
command. Let’s see what this looks like. Entering

solve(convert(G2,set),{x,y,z});
you should generate the following output:

{{y = RootOf( Z2 − 2, label = L4), x = 1, z = 1},
{y = 1/2RootOf( Z2

− 2RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)5

+ 3RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)3

+ RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)

− 10, label = L1),

x = RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)4

− 1/2RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)2 − 1

+ RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)5

− 1/2RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)3

− RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2),

z = RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)}}
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Here RootOf(2 Z6 +2 Z5− Z4− Z3−2 Z2−2 Z−2) stands for any one
root of the polynomial equation 2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z −
2 = 0. Similarly, the other RootOf expressions stand for any solution of
the corresponding equation in the dummy variable Z.

Exercise 2. Verify that the expressions above are obtained if we solve for
z from the Gröbner basis G2 and then use the Extension Theorem. How
many solutions are there of this system in C

3?

On the other hand, in many practical situations where equations must
be solved, knowing a numerical approximation to a real or complex solu-
tion is often more useful, and perfectly acceptable provided the results are
sufficiently accurate. In our particular case, one possible approach would
be to use a numerical root-finding method to find approximate solutions of
the one-variable equation

(1.3) 2z6 + 2z5 − z4 − z3 − 2z2 − 2z − 2 = 0,

and then proceed as before using the Extension Theorem, except that we
now use floating point arithmetic in all calculations. In some examples,
numerical methods will also be needed to solve for the other variables as
we extend.

One well-known numerical method for solving one-variable polynomial
equations in R or C is the Newton-Raphson method or, more simply but
less accurately, Newton’s method. This method may also be used for equa-
tions involving functions other than polynomials, although we will not
discuss those here. For motivation and a discussion of the theory behind
the method, see [BuF] or [Act].

The Newton-Raphson method works as follows. Choosing some initial
approximation z0 to a root of p(z) = 0, we construct a sequence of numbers
by the rule

zk+1 = zk − p(zk)
p′(zk)

for k = 0, 1, 2, . . . ,

where p′(z) is the usual derivative of p from calculus. In most situations,
the sequence zk will converge rapidly to a solution z of p(z) = 0, that is,
z = limk→∞ zk will be a root. Stopping this procedure after a finite number
of steps (as we must!), we obtain an approximation to z. For example, we
might stop when zk+1 and zk agree to some desired accuracy, or when a
maximum allowed number of terms of the sequence have been computed.
See [BuF], [Act], or the comments at the end of this section for additional
information on the performance of this technique. When trying to find all
roots of a polynomial, the trickiest part of the Newton-Raphson method is
making appropriate choices of z0. It is easy to find the same root repeatedly
and to miss other ones if you don’t know where to look!
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Fortunately, there are elementary bounds on the absolute values of the
roots (real or complex) of a polynomial p(z). Here is one of the simpler
bounds.

Exercise 3. Show that if p(z) = zn + an−1z
n−1 + · · · + a0 is a monic

polynomial with complex coefficients, then all roots z of p satisfy |z| ≤ B,
where

B = max{1, |an−1| + · · · + |a1| + |a0|}.
Hint: The triangle inequality implies that |a + b| ≥ |a| − |b|.

See Exercise 10 below for another better bound on the roots. Given any
bound of this sort, we can limit our attention to z0 in this region of the
complex plane to search for roots of the polynomial.

Instead of discussing searching strategies for finding roots, we will use a
built-in Maple function to approximate the roots of the system from (1.2).
The Maple function fsolve finds numerical approximations to all real (or
complex) roots of a polynomial by a combination of root location and
numerical techniques like Newton-Raphson. For instance, the command

fsolve(2*z^6+2*z^5-z^4-z^3-2*z^2-2*z-2);

will compute approximate values for the real roots of our polynomial (1.3).
The output should be:

−1.395052015, 1.204042437.

(Note: In Maple, 10 digits are carried by default in decimal calculations;
more digits can be used by changing the value of the Maple system variable
Digits. Also, the actual digits in your output may vary slightly if you
carry out this computation using another computer algebra system.) To
get approximate values for the complex roots as well, try:

fsolve(2*z^6+2*z^5-z^4-z^3-2*z^2-2*z-2,complex);

We illustrate the Extension Step in this case using the approximate value

z = 1.204042437.

We substitute this value into the Gröbner basis polynomials using

subs(z=1.204042437,G2);

and obtain

[2x − 1.661071025,−8.620421528 + 4y2,−.2 ∗ 10−8].

Note that the value of the last polynomial was not exactly zero at our
approximate value of z. Nevertheless, as in Exercise 1, we can extend this
approximate partial solution to two approximate solutions of the system:

(x, y, z) = (.8305355125,±1.468027718, 1.204042437).
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Checking one of these by substituting into the equations from (1.2), using

subs(z=1.204042437,y=1.468027718,x=.8305355125, G2);

we find

[0,−.4 ∗ 10−8,−.2 ∗ 10−8],

so we have a reasonably good approximate solution, in the sense that our
computed solution gives values very close to zero in the polynomials of the
system.

Exercise 4. Find approximate values for all other real solutions of this
system by the same method.

In considering what we did here, one potential pitfall of this approach
should be apparent. Namely, since our solutions of the one-variable equation
are only approximate, when we substitute and try to extend, the remaining
polynomials to be solved for x and y are themselves only approximate. Once
we substitute approximate values for one of the variables, we are in effect
solving a system of equations that is different from the one we started
with, and there is little guarantee that the solutions of this new system are
close to the solutions of the original one. Accumulated errors after several
approximation and extension steps can build up quite rapidly in systems
in larger numbers of variables, and the effect can be particularly severe if
equations of high degree are present.

To illustrate how bad things can get, we consider a famous cautionary
example due to Wilkinson, which shows how much the roots of a polynomial
can be changed by very small changes in the coefficients.

Wilkinson’s example involves the following polynomial of degree 20:

p(x) = (x + 1)(x + 2) · · · (x + 20) = x20 + 210x19 + · · · + 20!.

The roots are the 20 integers x = −1,−2, . . . ,−20. Suppose now that we
“perturb” just the coefficient of x19, adding a very small number. We carry
20 decimal digits in all calculations. First we construct p(x) itself:

Digits := 20:
p := 1:
for k to 20 do p := p*(x+k) end do:

Printing expand(p) out at this point will show a polynomial with some
large coefficients indeed! But the polynomial we want is actually this:

q := expand(p + .000000001*x^19):
fsolve(q,x,complex);
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The approximate roots of q = p+ .000000001 x19 (truncated for simplicity)
are:

− 20.03899,−18.66983 − .35064 I, −18.66983 + .35064 I,

− 16.57173 − .88331 I, −16.57173 + .88331 I,

− 14.37367 − .77316 I, −14.37367 + .77316 I,

− 12.38349 − .10866 I, −12.38349 + .10866 I,

− 10.95660, −10.00771, −8.99916, −8.00005,

− 6.999997, −6.000000, −4.99999, −4.00000,

− 2.999999, −2.000000, −1.00000.

Instead of 20 real roots, the new polynomial has 12 real roots and 4 com-
plex conjugate pairs of roots. Note that the imaginary parts are not even
especially small!

While this example is admittedly pathological, it indicates that we should
use care in finding roots of polynomials whose coefficients are only approx-
imately determined. (The reason for the surprisingly bad behavior of this p
is essentially the equal spacing of the roots! We refer the interested reader
to Wilkinson’s paper [Wil] for a full discussion.)

Along the same lines, even if nothing this spectacularly bad happens,
when we take the approximate roots of a one-variable polynomial and try
to extend to solutions of a system, the results of a numerical calculation can
still be unreliable. Here is a simple example illustrating another situation
that causes special problems.

Exercise 5. Verify that if x > y, then

G = [x2 + 2x + 3 + y5 − y, y6 − y2 + 2y]

is a lex Gröbner basis for the ideal that G generates in R[x, y].

We want to find all real points (x, y) ∈ V(G). Begin with the equation

y6 − y2 + 2y = 0,

which has exactly two real roots. One is y = 0, and the second is in the
interval [−2,−1] because the polynomial changes sign on that interval.
Hence there must be a root there by the Intermediate Value Theorem from
calculus. Using fsolve to find an approximate value, we find the nonzero
root is

(1.4) −1.267168305

to 10 decimal digits. Substituting this approximate value for y into G yields

[x2 + 2x + .999999995, .7 ∗ 10−8].
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Then use

fsolve(x^2 + 2*x + .999999995);

to obtain

−1.000070711, −.9999292893.

Clearly these are both close to x = −1, but they are different. Taken
uncritically, this would seem to indicate two distinct real values of x when
y is given by (1.4).

Now, suppose we used an approximate value for y with fewer decimal
digits, say y

.= −1.2671683. Substituting this value for y gives us the
quadratic

x2 + 2x + 1.000000054.

This polynomial has no real roots at all. Indeed, using the complex option
in fsolve, we obtain two complex values for x:

−1. − .0002323790008 I, −1. + .0002323790008 I.

To see what is really happening, note that the nonzero real root of y6 −
y2 + 2y = 0 satisfies y5 − y + 2 = 0. When the exact root is substituted
into G, we get

[x2 + 2x + 1, 0]

and the resulting equation has a double root x = −1.
The conclusion to be drawn from this example is that equations with

double roots, such as the exact equation

x2 + 2x + 1 = 0

we got above, are especially vulnerable to the errors introduced by numer-
ical root-finding. It can be very difficult to tell the difference between a
pair of real roots that are close, a real double root, and a pair of complex
conjugate roots.

From these examples, it should be clear that finding solutions of polyno-
mial systems is a delicate task in general, especially if we ask for information
about how many real solutions there are. For this reason, numerical meth-
ods, for all their undeniable usefulness, are not the whole story. And they
should never be applied blindly. The more information we have about the
structure of the set of solutions of a polynomial system, the better a chance
we have to determine those solutions accurately. For this reason, in §2 and
§3 we will go to the algebraic setting of the quotient ring k[x1, . . . , xn]/I
to obtain some additional tools for this problem. We will apply those tools
in §4 and §5 to give better methods for finding solutions.

For completeness, we conclude with a few additional words about the
numerical methods for equation solving that we have used. First, if z is a
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multiple root of p(z) = 0, then the convergence of the Newton-Raphson se-
quence zk can be quite slow, and a large number of steps and high precision
may be required to get really close to a root (though we give a method for
avoiding this difficulty in Exercise 8). Second, there are some choices of z0
where the sequence zk will fail to converge to a root of p(z). See Exercise 9
below for some simple examples. Finally, the location of z in relation to z0
can be somewhat unpredictable. There could be other roots lying closer to
z0. These last two problems are related to the fractal pictures associated to
the Newton-Raphson method over C—see, for example, [PR]. We should
also mention that there are multivariable versions of Newton-Raphson for
systems of equations and other iterative methods that do not depend on
elimination. These have been much studied in numerical analysis. For more
details on these and other numerical root-finding methods, see [BuF] and
[Act]. Also, we will discuss homotopy continuation methods in Chapter 7,
§5 of this book.

ADDITIONAL EXERCISES FOR §1

Exercise 6. Use elimination to solve the system

0 = x2 + 2y2 − y − 2z

0 = x2 − 8y2 + 10z − 1

0 = x2 − 7yz.

How many solutions are there in R
3; how many are there in C

3?

Exercise 7. Use elimination to solve the system

0 = x2 + y2 + z2 − 2x

0 = x3 − yz − x

0 = x − y + 2z.

How many solutions are there in R
3; how many are there in C

3?

Exercise 8. In this exercise we will study exactly why the performance
of the Newton-Raphson method is poor for multiple roots, and suggest a
remedy. Newton-Raphson iteration for any equation p(z) = 0 is an example
of fixed point iteration, in which a starting value z0 is chosen and a sequence

(1.5) zk+1 = g(zk) for k = 0, 1, 2, . . .

is constructed by iteration of a fixed function g(z). For Newton-Raphson
iteration, the function g(z) is g(z) = Np(z) = z − p(z)/p′(z). If the se-
quence produced by (1.5) converges to some limit z, then z is a fixed point
of g (that is, a solution of g(z) = z). It is a standard result from analysis
(a special case of the Contraction Mapping Theorem) that iteration as in
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(1.5) will converge to a fixed point z of g provided that |g′(z)| < 1, and z0
is chosen sufficiently close to z. Moreover, the smaller |g′(z)| is, the faster
convergence will be. The case g′(z) = 0 is especially favorable.
a. Show that each simple root of the polynomial equation p(z) = 0 is a

fixed point of the rational function Np(z) = z − p(z)/p′(z).
b. Show that multiple roots of p(z) = 0 are removable singularities of

Np(z) (that is, |Np(z)| is bounded in a neighborhood of each multiple
root). How should Np be defined at a multiple root of p(z) = 0 to make
Np continuous at those points?

c. Show that N ′
p(z) = 0 if z is a simple root of p(z) = 0 (that is, if

p(z) = 0, but p′(z) �= 0).
d. On the other hand, show that if z is a root of multiplicity k of p(z) (that

is, if p(z) = p′(z) = · · · = p(k−1)(z) = 0 but p(k)(z) �= 0), then

lim
z→z

N ′
p(z) = 1 − 1

k
.

Thus Newton-Raphson iteration converges much faster to a simple
root of p(z) = 0 than it does to a multiple root, and the larger the
multiplicity, the slower the convergence.

e. Show that replacing p(z) by

pred(z) =
p(z)

GCD(p(z), p′(z))

(see [CLO], Chapter 1, §5, Exercises 14 and 15) eliminates this difficulty,
in the sense that the roots of pred(z) = 0 are all simple roots.

Exercise 9. There are cases when the Newton-Raphson method fails to
find a root of a polynomial for lots of starting points z0.
a. What happens if the Newton-Raphson method is applied to solve the

equation z2 + 1 = 0 starting from a real z0? What happens if you take
z0 with nonzero imaginary parts? Note: It can be shown that Newton-
Raphson iteration for the equation p(z) = 0 is chaotic if z0 is chosen in
the Julia set of the rational function Np(z) = z − p(z)/p′(z) (see [PR]),
and exact arithmetic is employed.

b. Let p(z) = z4 − z2 − 11/36 and, as above, let Np(z) = z − p(z)/p′(z).
Show that ±1/

√
6 satisfies Np(1/

√
6) = −1/

√
6, Np(−1/

√
6) = 1/

√
6,

and N ′
p(1/
√

6) = 0. In the language of dynamical systems, ±1/
√

6 is
a superattracting 2-cycle for Np(z). One consequence is that for any z0
close to ±1/

√
6, the Newton-Raphson method will not locate a root of

p. This example is taken from Chapter 13 of [Dev].

Exercise 10. This exercise improves the bound on roots of a polynomial
given in Exercise 3. Let p(z) = zn + an−1z

n−1 + · · ·+ a1z + a0 be a monic
polynomial in C[z]. Show that all roots z of p satisfy |z| ≤ B, where

B = 1 + max{|an−1|, . . . , |a1|, |a0|}.
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This upper bound can be much smaller than the one given in Exercise 3.
Hint: Use the Hint from Exercise 3, and consider the evaluation of p(z) by
nested multiplication:

p(z) = (· · · ((z + an−1)z + an−2)z + · · · + a1)z + a0.

§2 Finite-Dimensional Algebras

This section will explore the “remainder arithmetic” associated to a
Gröbner basis G = {g1, . . . , gt} of an ideal I ⊂ k[x1, . . . , xn]. Recall from
Chapter 1 that if we divide f ∈ k[x1, . . . , xn] by G, the division algorithm
yields an expression

(2.1) f = h1g1 + · · · + htgt + f
G

,

where the remainder f
G

is a linear combination of the monomials xα /∈
〈LT(I)〉. Furthermore, since G is a Gröbner basis, we know that f ∈ I if
and only if f

G
= 0, and the remainder is uniquely determined for all f .

This implies

(2.2) f
G

= gG ⇐⇒ f − g ∈ I.

Since polynomials can be added and multiplied, given f, g ∈ k[x1, . . . , xn]
it is natural to ask how the remainders of f + g and fg can be computed
if we know the remainders of f, g themselves. The following observations
show how this can be done.

• The sum of two remainders is again a remainder, and in fact one can
easily show that f

G
+ gG = f + g

G
.

• On the other hand, the product of remainders need not be a remain-

der. But it is also easy to see that f
G · gG

G

= fg
G

, and f
G · gG

G

is a
remainder.

We can also interpret these observations as saying that the set of remain-
ders on division by G has naturally defined addition and multiplication
operations which produce remainders as their results.

This “remainder arithmetic” is closely related to the quotient ring
k[x1, . . . , xn]/I. We will assume the reader is familiar with quotient rings,
as described in Chapter 5 of [CLO] or in a course on abstract algebra.
Recall how this works: given f ∈ k[x1, . . . , xn], we have the coset

[f ] = f + I = {f + h : h ∈ I},
and the crucial property of cosets is

(2.3) [f ] = [g] ⇐⇒ f − g ∈ I.
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The quotient ring k[x1, . . . , xn]/I consists of all cosets [f ] for f ∈
k[x1, . . . , xn].

From (2.1), we see that f
G ∈ [f ], and then (2.2) and (2.3) show that we

have a one-to-one correspondence

remainders ←→ cosets

f
G ←→ [f ].

Thus we can think of the remainder f
G

as a standard representative of its
coset [f ] ∈ k[x1, . . . , xn]/I. Furthermore, it follows easily that remainder
arithmetic is exactly the arithmetic in k[x1, . . . , xn]/I. That is, under the
above correspondence we have

f
G

+ gG ←→ [f ] + [g]

f
G · gG

G

←→ [f ] · [g].

Since we can add elements of k[x1, . . . , xn]/I and multiply by constants
(the cosets [c] for c ∈ k), k[x1, . . . , xn]/I also has the structure of a vector
space over the field k. A ring that is also a vector space in this fashion
is called an algebra. The algebra k[x1, . . . , xn]/I will be denoted by A
throughout the rest of this section, which will focus on its vector space
structure.

An important observation is that remainders are the linear combinations
of the monomials xα /∈ 〈LT(I)〉 in this vector space structure. (Strictly
speaking, we should use cosets, but in much of this section we will identify
a remainder with its coset in A.) Since this set of monomials is linearly
independent in A (why?), it can be regarded as a basis of A. In other
words, the monomials

B = {xα : xα /∈ 〈LT(I)〉}
form a basis of A (more precisely, their cosets are a basis). We will refer to
elements of B as basis monomials. In the literature, basis monomials are
often called standard monomials.

The following example illustrates how to compute in A using basis
monomials. Let

(2.4) G = {x2 + 3xy/2 + y2/2 − 3x/2 − 3y/2, xy2 − x, y3 − y}.
Using the grevlex order with x > y, it is easy to verify that G is a Gröbner
basis for the ideal I = 〈G〉 ⊂ C[x, y] generated by G. By examining the
leading monomials of G, we see that 〈LT(I)〉 = 〈x2, xy2, y3〉. The only
monomials not lying in this ideal are those in

B = {1, x, y, xy, y2}
so that by the above observation, these five monomials form a vector space
basis for A = C[x, y]/I over C.
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We now turn to the structure of the quotient ring A. The addition op-
eration in A can be viewed as an ordinary vector sum operation once we
express elements of A in terms of the basis B in (2.4). Hence we will consider
the addition operation to be completely understood.

Perhaps the most natural way to describe the multiplication operation
in A is to give a table of the remainders of all products of pairs of elements
from the basis B. Since multiplication in A distributes over addition, this
information will suffice to determine the products of all pairs of elements
of A.

For example, the remainder of the product x · xy may be computed as
follows using Maple. Using the Gröbner basis G, we compute

normalf(x^2*y,G,tdeg(x,y));

and obtain
3
2

xy − 3
2

x +
3
2

y2 − 1
2

y.

Exercise 1. By computing all such products, verify that the multiplication
table for the elements of the basis B is:

(2.5)

· 1 x y xy y2

1 1 x y xy y2

x x α xy β x
y y xy y2 x y
xy xy β x α xy
y2 y2 x y xy y2

where

α = −3xy/2 − y2/2 + 3x/2 + 3y/2

β = 3xy/2 + 3y2/2 − 3x/2 − y/2.

This example was especially nice because A was finite-dimensional as a
vector space over C. In general, for any field k ⊂ C, we have the following
basic theorem which describes when k[x1, . . . , xn]/I is finite-dimensional.

• (Finiteness Theorem) Let k ⊂ C be a field, and let I ⊂ k[x1, . . . , xn] be
an ideal. Then the following conditions are equivalent:
a. The algebra A = k[x1, . . . , xn]/I is finite-dimensional over k.
b. The variety V(I) ⊂ C

n is a finite set.
c. If G is a Gröbner basis for I, then for each i, 1 ≤ i ≤ n, there is an

mi ≥ 0 such that xmi
i = LT(g) for some g ∈ G.

For a proof of this result, see Theorem 6 of Chapter 5, §3 of [CLO], Theorem
2.2.7 of [AL], or Theorem 6.54 of [BW]. An ideal satisfying any of the above
conditions is said to be zero-dimensional . Thus

A is a finite-dimensional algebra ⇐⇒ I is a zero-dimensional ideal.
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A nice consequence of this theorem is that I is zero-dimensional if and
only if there is a nonzero polynomial in I ∩ k[xi] for each i = 1, . . . , n. To
see why this is true, first suppose that I is zero-dimensional, and let G be a
reduced Gröbner basis for any lex order with xi as the “last” variable (i.e.,
xj > xi for j �= i). By item c above, there is some g ∈ G with LT(g) = xmi

i .
Since we’re using a lex order with xi last, this implies g ∈ k[xi] and hence
g is the desired nonzero polynomial. Note that g generates I ∩ k[xi] by the
Elimination Theorem.

Going the other way, suppose I ∩k[xi] is nonzero for each i, and let mi be
the degree of the unique monic generator of I ∩ k[xi] (remember that k[xi]
is a principal ideal domain—see Corollary 4 of Chapter 1, §5 of [CLO]).
Then xmi

i ∈ 〈LT(I)〉 for any monomial order, so that all monomials not in
〈LT(I)〉 will contain xi to a power strictly less than mi. In other words, the
exponents α of the monomials xα /∈ 〈LT(I)〉 will all lie in the “rectangular
box”

R = {α ∈ Z
n
≥0 : for each i, 0 ≤ αi ≤ mi − 1}.

This is a finite set of monomials, which proves that A is finite-dimensional
over k.

Given a zero-dimensional ideal I, it is now easy to describe an algorithm
for finding the set B of all monomials not in 〈LT(I)〉. Namely, no matter
what monomial order we are using, the exponents of the monomials in
B will lie in the box R described above. For each α ∈ R, we know that
xα /∈ 〈LT(I)〉 if and only if xαG = xα. Thus we can list the α ∈ R in some
systematic way and compute xαG for each one. A vector space basis of A
is given by the set of monomials

B = {xα : α ∈ R and xαG = xα}.
See Exercise 13 below for a Maple procedure implementing this method.

The vector space structure on A = k[x1, . . . , xn]/I for a zero-
dimensional ideal I can be used in several important ways. To begin, let
us consider the problem of finding the monic generators of the elimina-
tion ideals I ∩ k[xi]. As indicated above, we could find these polynomials
by computing several different lex Gröbner bases, reordering the variables
each time to place xi last. This is an extremely inefficient method, however.
Instead, let us consider the set of non-negative powers of [xi] in A:

S = {1, [xi], [xi]2, . . .}.
Since A is finite-dimensional as a vector space over the field k, S must
be linearly dependent in A. Let mi be the smallest positive integer for
which {1, [xi], [xi]2, . . . , [xi]mi} is linearly dependent. Then there is a linear
combination

mi∑
j=0

cj [xi]j = [0]
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in A in which the cj ∈ k are not all zero. In particular, cmi �= 0 since mi is
minimal. By the definition of the quotient ring, this is equivalent to saying
that

(2.6) pi(xi) =
mi∑
j=0

cjx
j
i ∈ I.

Exercise 2. Verify that pi(xi) as in (2.6) is a generator of the ideal
I ∩ k[xi], and develop an algorithm based on this fact to find the monic
generator of I ∩ k[xi], given any Gröbner basis G for a zero-dimensional
ideal I as input.

The algorithm suggested in Exercise 2 often requires far less computa-
tional effort than a lex Gröbner basis calculation. Any ordering (e.g. grevlex)
can be used to determine G, then only standard linear algebra (matrix op-
erations) are needed to determine whether the set {1, [xi], [xi]2, . . . , [xi]m}
is linearly dependent. We note that the univpoly function from Maple’s
Groebner package is an implementation of this method.

We will next discuss how to find the radical of a zero-dimensional ideal
(see Chapter 1 for the definition of radical). To motivate what we will
do, recall from §1 how multiple roots of a polynomial can cause problems
when trying to find roots numerically. When dealing with a one-variable
polynomial p with coefficients lying in a subfield of C, it is easy to see that
the polynomial

pred =
p

GCD(p, p′)

has the same roots as p, but all with multiplicity one (for a proof of this, see
Exercises 14 and 15 of Chapter 1, §5 of [CLO]). We call pred the square-free
part of p.

The radical
√

I of an ideal I generalizes the idea of the square-free part
of a polynomial. In fact, we have the following elementary exercise.

Exercise 3. If p ∈ k[x] is a nonzero polynomial, show that
√〈p〉 = 〈pred〉.

Since k[x] is a PID, this solves the problem of finding radicals for all
ideals in k[x]. For a general ideal I ⊂ k[x1, . . . , xn], it is more difficult
to find

√
I, though algorithms are known and have been implemented in

Macaulay 2, REDUCE, and Singular. Fortunately, when I is zero-dimen-
sional, computing the radical is much easier, as shown by the following
proposition.

(2.7) Proposition. Let I ⊂ C[x1, . . . , xn] be a zero-dimensional ideal.
For each i = 1, . . . , n, let pi be the unique monic generator of I ∩ C[xi],
and let pi,red be the square-free part of pi. Then√

I = I + 〈p1,red, . . . , pn,red〉.
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Proof. Write J = I + 〈p1,red, . . . , pn,red〉. We first prove that J is a
radical ideal, i.e., that J =

√
J . For each i, using the fact that C is alge-

braically closed, we can factor each pi,red to obtain pi,red = (xi − ai1)(xi −
ai2) · · · (xi − aidi), where the aij are distinct. Then

J = J + 〈p1,red〉 =
⋂
j

(J + 〈x1 − a1j〉),

where the first equality holds since p1,red ∈ J and the second follows from
Exercise 9 below since p1,red has distinct roots. Now use p2,red to decompose
each J + 〈x1 − a1j〉 in the same way. This gives

J =
⋂
j,k

(J + 〈x1 − a1j , x2 − a2k〉).

If we do this for all i = 1, 2, . . . , n, we get the expression

J =
⋂

j1,...,jn

(J + 〈x1 − a1j1 , . . . , xn − anjn〉).

Since 〈x1 − a1j1 , . . . , xn − anjn〉 is a maximal ideal, the ideal J + 〈x1 −
a1j1 , . . . , xn − anjn〉 is either 〈x1 − a1j1 , . . . , xn − anjn〉 or the whole ring
C[x1, . . . , xn]. It follows that J is a finite intersection of maximal ideals.
Since a maximal ideal is radical and an intersection of radical ideals is
radical, we conclude that J is a radical ideal.

Now we can prove that J =
√

I. The inclusion I ⊂ J is built into
the definition of J , and the inclusion J ⊂ √I follows from the Strong
Nullstellensatz, since the square-free parts of the pi vanish at all the points
of V(I). Hence we have

I ⊂ J ⊂
√

I.

Taking radicals in this chain of inclusions shows that
√

J =
√

I. But J is
radical, so

√
J = J and we are done.

A Maple procedure that implements an algorithm for the radical of a
zero-dimensional ideal based on Proposition (2.7) is discussed in Exercise
16 below. It is perhaps worth noting that even though we have proved
Proposition (2.7) using the properties of C, the actual computation of
the polynomials pi,red will involve only rational arithmetic when the input
polynomials are in Q[x1, . . . , xn].

For example, consider the ideal

(2.8) I = 〈y4x + 3x3 − y4 − 3x2, x2y − 2x2, 2y4x − x3 − 2y4 + x2〉

Exercise 4. Using Exercise 2 above, show that

I ∩ Q[x] = 〈x3 − x2〉
and

I ∩ Q[y] = 〈y5 − 2y4〉.
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Writing p1(x) = x3 − x2 and p2(y) = y5 − 2y4, we can compute the
square-free parts in Maple as follows. The command

p1red := simplify(p1/gcd(p1,diff(p1,x)));

will produce

p1,red(x) = x(x − 1).

Similarly,

p2,red(y) = y(y − 2).

Hence by Proposition (2.7),
√

I is the ideal

〈y4x + 3x3 − y4 − 3x2, x2y− 2x2, 2y4x− x3 − 2y4 + x2, x(x− 1), y(y− 2)〉.
We note that Proposition (2.7) yields a basis, but usually not a Gröbner
basis, for

√
I.

Exercise 5. How do the dimensions of the vector spaces C[x, y]/I and
C[x, y]/

√
I compare in this example? How could you determine the number

of distinct points in V(I)? (There are two.)

We will conclude this section with a very important result relating the
dimension of A and the number of points in the variety V(I), or what is
the same, the number of solutions of the equations f1 = · · · = fs = 0 in
C

n. To prepare for this we will need the following lemma.

(2.9) Lemma. Let S = {p1, . . . , pm} be a finite subset of C
n. There exist

polynomials gi ∈ C[x1, . . . , xn], i = 1, . . . , m, such that

gi(pj) =
{

0 if i �= j, and
1 if i = j.

For instance, if pi = (ai1, . . . , ain) and the first coordinates ai1 are
distinct , then we can take

gi = gi(x1) =

∏
j �=i(x1 − aj1)∏
j �=i(ai1 − aj1)

as in the Lagrange interpolation formula. In any case, a collection of poly-
nomials gi with the desired properties can be found in a similar fashion. We
leave the proof to the reader as Exercise 11 below. The following theorem
ties all of the results of this section together, showing how the dimension
of the algebra A for a zero-dimensional ideal gives a bound on the number
of points in V(I), and also how radical ideals are special in this regard.

(2.10) Theorem. Let I be a zero-dimensional ideal in C[x1, . . . , xn], and
let A = C[x1, . . . , xn]/I. Then dimC(A) is greater than or equal to the
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number of points in V(I). Moreover, equality occurs if and only if I is a
radical ideal.

Proof. Let I be a zero-dimensional ideal. By the Finiteness Theorem,
V(I) is a finite set in C

n, say V(I) = {p1, . . . , pm}. Consider the mapping

ϕ : C[x1, . . . , xn]/I −→ C
m

[f ] �→ (f(p1), . . . , f(pm))

given by evaluating a coset at the points of V(I). In Exercise 12 below,
you will show that ϕ is a well-defined linear map.

To prove the first statement in the theorem, it suffices to show that ϕ
is onto. Let g1, . . . , gm be a collection of polynomials as in Lemma (2.9).
Given an arbitrary (λ1, . . . , λm) ∈ C

m, let f =
∑m

i=1 λigi. An easy com-
putation shows that ϕ([f ]) = (λ1, . . . , λm). Thus ϕ is onto, and hence
dim(A) ≥ m.

Next, suppose that I is radical. If [f ] ∈ ker(ϕ), then f(pi) = 0 for all
i, so that by the Strong Nullstellensatz, f ∈ I(V(I)) =

√
I = I. Thus

[f ] = [0], which shows that ϕ is one-to-one as well as onto. Then ϕ is an
isomorphism, which proves that dim(A) = m if I is radical.

Conversely, if dim(A) = m, then ϕ is an isomorphism since it is an
onto linear map between vector spaces of the same dimension. Hence ϕ is
one-to-one. We can use this to prove that I is radical as follows. Since the
inclusion I ⊂ √I always holds, it suffices to consider f ∈ √I = I(V(I))
and show that f ∈ I. If f ∈ √I, then f(pi) = 0 for all i, which implies
ϕ([f ]) = (0, . . . , 0). Since ϕ is one-to-one, we conclude that [f ] = [0], or in
other words that f ∈ I, as desired.

In Chapter 4, we will see that in the case I is not radical, there are
well-defined multiplicities at each point in V(I) so that the sum of the
multiplicities equals dim(A).

ADDITIONAL EXERCISES FOR §2

Exercise 6. Using the grevlex order, construct the monomial basis B for
the quotient algebra A = C[x, y]/I, where I is the ideal from (2.8) and
construct the multiplication table for B in A.

Exercise 7. In this exercise, we will explain how the ideal I = 〈x2 +
3xy/2 + y2/2 − 3x/2 − 3y/2, xy2 − x, y3 − y〉 from (2.4) was constructed.
The basic idea was to start from a finite set of points and construct a
system of equations, rather than the reverse.
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To begin, consider the maximal ideals

I1 = 〈x, y〉, I2 = 〈x − 1, y − 1〉,
I3 = 〈x + 1, y − 1〉, I4 = 〈x − 1, y + 1〉,

I5 =〈x − 2, y + 1〉
in C[x, y]. Each variety V(Ij) is a single point in C

2, indeed in Q
2 ⊂

C
2. The union of the five points forms an affine variety V , and by the

algebra-geometry dictionary from Chapter 1, V = V(I1 ∩ I2 ∩ · · · ∩ I5).
An algorithm for intersecting ideals is described in Chapter 1. Use it

to compute the intersection I = I1 ∩ I2 ∩ · · · ∩ I5 and find the reduced
Gröbner basis for I with respect to the grevlex order (x > y). Your result
should be the Gröbner basis given in (2.4).

Exercise 8.
a. Use the method of Proposition (2.7) to show that the ideal I from (2.4)

is a radical ideal.
b. Give a non-computational proof of the statement from part a using the

following observation. By the form of the generators of each of the ideals
Ij in Exercise 7, V(Ij) is a single point and Ij is the ideal I(V(Ij)). As
a result, Ij =

√
Ij by the Strong Nullstellensatz. Then use the general

fact about intersections of radical ideals from part a Exercise 9 from §4
of Chapter 1.

Exercise 9. This exercise is used in the proof of Proposition (2.7). Suppose
we have an ideal I ⊂ k[x1, . . . , xn], and let p = (x1 − a1) · · · (x1 − ad),
where a1, . . . , ad are distinct. The goal of this exercise is to prove that

I + 〈p〉 =
⋂
j

(I + 〈x1 − aj〉).

a. Prove that I + 〈p〉 ⊂ ⋂
j(I + 〈x1 − aj〉).

b. Let pj =
∏

i �=j(x1 − ai). Prove that pj · (I + 〈x1 − aj〉) ⊂ I + 〈p〉.
c. Show that p1, . . . , pn are relatively prime, and conclude that there are

polynomials h1, . . . , hn such that 1 =
∑

j hjpj .
d. Prove that

⋂
j(I +〈x1−aj〉) ⊂ I +〈p〉. Hint: Given h in the intersection,

write h =
∑

j hjpjh and use part b.

Exercise 10. (The Dual Space of k[x1, . . . , xn]/I) Recall that if V is a
vector space over a field k, then the dual space of V , denoted V ∗, is the
k-vector space of linear mappings L : V → k. If V is finite-dimensional,
then so is V ∗, and dim V = dim V ∗. Let I be a zero-dimensional ideal in
k[x1, . . . , xn], and consider A = k[x1, . . . , xn]/I with its k-vector space
structure. Let G be a Gröbner basis for I with respect to some monomial
ordering, and let B = {xα(1), . . . , xα(d)} be the corresponding monomial



46 Chapter 2. Solving Polynomial Equations

basis for A, so that for each f ∈ k[x1, . . . , xn],

f
G

=
d∑

j=1

cj(f)xα(j)

for some cj(f) ∈ k.
a. Show that each of the functions cj(f) is a linear function of f ∈

k[x1, . . . , xn]. Moreover, show that cj(f) = 0 for all j if and only if
f ∈ I, or equivalently [f ] = 0 in A.

b. Deduce that the collection B∗ of mappings cj given by f �→ cj(f),
j = 1, . . . , d gives a basis of the dual space A∗.

c. Show that B∗ is the dual basis corresponding to the basis B of A. That
is, show that

cj(xα(i)) =
{

1 if i = j
0 otherwise.

Exercise 11. Let S = {p1, . . . , pm} be a finite subset of C
n.

a. Show that there exists a linear polynomial �(x1, . . . , xn) whose values
at the points of S are distinct .

b. Using the linear polynomial � from part a, show that there exist
polynomials gi ∈ C[x1, . . . , xn], i = 1, . . . , m, such that

gi(pj) =
{

0 if i �= j, and
1 if i = j.

Hint: Mimic the construction of the Lagrange interpolation polynomials
in the discussion after the statement of Lemma (2.9).

Exercise 12. As in Theorem (2.10), suppose that V(I) = {p1, . . . , pm}.
a. Prove that the map ϕ : C[x1, . . . , xn]/I → C

m given by evaluation at
p1, . . . , pm is a well-defined linear map. Hint: [f ] = [g] implies f−g ∈ I.

b. We can regard C
m as a ring with coordinate-wise multiplication. Thus

(a1, . . . , am) · (b1, . . . , bm) = (a1b1, . . . , ambm).

With this ring structure, C
m is a direct product of m copies of C. Prove

that the map ϕ of part a is a ring homomorphism.
c. Prove that ϕ is a ring isomorphism if and only if I is radical. This

means that in the radical case, we can express A as a direct product
of the simpler rings (namely, m copies of C). In Chapter 4, we will
generalize this result to the nonradical case.

Exercise 13. In Maple, the SetBasis command finds a monomial basis B
for the quotient algebra A = k[x1, . . . , xn]/I for a zero-dimensional ideal I.
However, it is instructive to have the following “home-grown” version called
kbasis which makes it easier to see what is happening.
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kbasis := proc(GB,VList,torder)

# returns a list of monomials forming a basis of the quotient
# ring, where GB is a Groebner basis for a zero-dimensional
# ideal, and generates an error message if the ideal is not
# 0-dimensional.

local B,C,v,t,l,m,leadmons,i;

if is_finite(GB,VList) then
leadmons:={seq(leadterm(GB[i],torder),i=1..nops(GB))};
B:=[1];
for v in VList do
m:=degree(univpoly(v,GB),v);
C:=B;
for t in C do
for l to m-1 do
t:=t*v;
if evalb(not(1 in map(u->denom(t/u),leadmons))) then
B:=[op(B),t];

end if;
end do;

end do;
end do;
return B;

else
print(‘ideal is not zero-dimensional‘);

end if
end proc:

a. Show that kbasis correctly computes {xα : xα /∈ 〈LT(I)〉} if A is finite-
dimensional over k and terminates for all inputs.

b. Use either kbasis or SetBasis to check the results for the ideal from
(2.4).

c. Use either kbasis or SetBasis to check your work from Exercise 6
above.

Exercise 14. The algorithm used in the procedure from Exercise 13 can
be improved considerably. The “box” R that kbasis searches for elements
of the complement of 〈LT(I)〉 is often much larger than necessary. This is
because the call to univpoly, which finds a monic generator for I ∩ k[xi]
for each i, gives an mi such that xmi

i ∈ 〈LT(I)〉, but mi might not be as
small as possible. For instance, consider the ideal I from (2.4). The monic
generator of I ∩ C[x] has degree 4 (check this). Hence kbasis computes
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x2G
, x3G

and rejects these monomials since they are not remainders. But
the Gröbner basis G given in (2.4) shows that x2 ∈ 〈LT(I)〉. Thus a smaller
set of α containing the exponents of the monomial basis B can be deter-
mined directly by examining the leading terms of the Gröbner basis G,
without using univpoly to get the monic generator for I ∩ k[xi]. De-
velop and implement an improved kbasis that takes this observation into
account.

Exercise 15. Using either Setbasis or kbasis, develop and implement a
procedure that computes the multiplication table for a finite-dimensional
algebra A.

Exercise 16. Implement the following Maple procedure for finding the
radical of a zero-dimensional ideal given by Proposition (2.7) and test it on
the examples from this section.

zdimradical := proc(PList,VList)

# constructs a set of generators for the radical of a
# zero-dimensional ideal.

local p,pred,v,RList;

if is_finite(PList,VList) then
RList := PList;
for v in VList do
p := univpoly(v,PList);
pred := simplify(p/gcd(p,diff(p,v)));
RList:=[op(RList),pred]

end do;
return RList

else
print(‘Ideal not zero-dimensional; method does not apply‘)

end if
end proc:

Exercise 17. Let I ⊂ C[x1, . . . , xn] be an ideal such that for every 1 ≤
i ≤ n, there is a square-free polynomial pi such that pi(xi) ∈ I. Use
Proposition (2.7) to show that I is radical.

Exercise 18. For 1 ≤ i ≤ n, let pi be a square-free polynomial. Also let
di = deg(pi). The goal of this exercise is to prove that 〈p1(x1), . . . , pn(xn)〉
is radical using only the division algorithm.
a. Let r be the remainder of f ∈ C[x1, . . . , xn] on division by the pi(xi).

Prove that r has degree at most di − 1 in xi.
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b. Prove that r vanishes on V(p1(x1), . . . , pn(xn)) if and only if r is
identically 0.

c. Conclude that 〈p1(x1), . . . , pn(xn)〉 is radical without using Proposition
(2.7).

Exercise 19. In this exercise, you will use Exercise 18 to give an ele-
mentary proof of the result of Exercise 17. Thus we assume that I ⊂
C[x1, . . . , xn] is an ideal such that for every 1 ≤ i ≤ n, there is a
square-free polynomial pi such that pi(xi) ∈ I. Take f ∈ C[x1, . . . , xn]
such that fN ∈ I for some N > 0. Let z be a new variable and set
J = 〈p1(x1), . . . , pn(xn), z − f〉 ⊂ C[x1, . . . , xn, z].
a. Prove that there is a ring isomorphism

C[x1, . . . , xn, z]/J ∼= C[x1, . . . , xn]/〈p1(x1), . . . , pn(xn)〉
and conclude via Exercise 18 that J is zero-dimensional and radical.

b. Without using Proposition (2.7), show that there is a square-free
polynomial g such that g(z) ∈ J .

c. Explain why GCD(g, zN ) is 1 or z, and conclude that z = p(z)g(z) +
q(z)zN for some polynomials p, q.

d. Under the isomorphism of part a, show that z = p(z)g(z) + q(z)zN

maps to f = q(f)fN + h, where h ∈ 〈p1(x1), . . . , pn(xn)〉. Conclude
that f ∈ I.

This argument is due to M. Mereb.

§3 Gröbner Basis Conversion

In this section, we will use linear algebra in A = k[x1, . . . , xn]/I to show
that a Gröbner basis G for a zero-dimensional ideal I with respect to one
monomial order can be converted to a Gröbner basis G′ for the same ideal
with respect to any other monomial order. The process is sometimes called
Gröbner basis conversion, and the idea comes from a paper of Faugère,
Gianni, Lazard, and Mora [FGLM]. We will illustrate the method by con-
verting from an arbitrary Gröbner basis G to a lex Gröbner basis Glex

(using any ordering on the variables). The Gröbner basis conversion method
is often used in precisely this situation, so that a more favorable monomial
order (such as grevlex) can be used in the application of Buchberger’s al-
gorithm, and the result can then be converted into a form more suited for
equation solving via elimination. For another discussion of this topic, see
[BW], §1 of Chapter 9.

The basic idea of the Faugère-Gianni-Lazard-Mora algorithm is quite
simple. We start with a Gröbner basis G for a zero-dimensional ideal I,
and we want to convert G to a lex Gröbner basis Glex for some lex order.
The algorithm steps through monomials in k[x1, . . . , xn] in increasing lex
order. At each step of the algorithm, we have a list Glex = {g1, . . . , gk} of
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elements in I (initially empty, and at each stage a subset of the eventual
lex Gröbner basis), and a list Blex of monomials (also initially empty, and
at each stage a subset of the eventual lex monomial basis for A). For each
input monomial xα (initially 1), the algorithm consists of three steps:

(3.1) Main Loop. Given the input xα, compute xαG. Then:
a. If xαG is linearly dependent on the remainders (on division by G) of the

monomials in Blex, then we have a linear combination

xαG −∑
jcjxα(j)

G
= 0,

where xα(j) ∈ Blex and cj ∈ k. This implies that

g = xα −∑
jcjx

α(j) ∈ I.

We add g to the list Glex as the last element. Because the xα are con-
sidered in increasing lex order (see (3.3) below), whenever a polynomial
g is added to Glex, its leading term is LT(g) = xα with coefficient 1.

b. If xαG is linearly independent from the remainders (on division by G)
of the monomials in Blex, then we add xα to Blex as the last element.

After the Main Loop acts on the monomial xα, we test Glex to see if we
have the desired Gröbner basis. This test needs to be done only if we added
a polynomial g to Glex in part a of the Main Loop.

(3.2) Termination Test. If the Main Loop added a polynomial g to Glex,
then compute LT(g). If LT(g) is a power of x1, where x1 is the greatest
variable in our lex order, then the algorithm terminates.

The proof of Theorem (3.4) below will explain why this is the correct way
to terminate the algorithm. If the algorithm does not stop at this stage, we
use the following procedure to find the next input monomial for the Main
Loop:

(3.3) Next Monomial. Replace xα with the next monomial in lex order
which is not divisible by any of the monomials LT(gi) for gi ∈ Glex.

Exercise 3 below will explain how the Next Monomial procedure works.
Now repeat the above process by using the new xα as input to the Main
Loop, and continue until the Termination Test tells us to stop.

Before we prove the correctness of this algorithm, let’s see how it works
in an example.

Exercise 1. Consider the ideal

I = 〈xy + z − xz, x2 − z, 2x3 − x2yz − 1〉
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in Q[x, y, z]. For grevlex order with x > y > z, I has a Gröbner basis
G = {f1, f2, f3, f4}, where

f1 = z4 − 3z3 − 4yz + 2z2 − y + 2z − 2

f2 = yz2 + 2yz − 2z2 + 1

f3 = y2 − 2yz + z2 − z

f4 = x + y − z.

Thus 〈LT(I)〉 = 〈z4, yz2, y2, x〉, B = {1, y, z, z2, z3, yz}, and a remainder
f

G
is a linear combination of elements of B. We will use basis conversion

to find a lex Gröbner basis for I, with z > y > x.
a. Carry out the Main Loop for xα = 1, x, x2, x3, x4, x5, x6. At the end of

doing this, you should have

Glex = {x6 − x5 − 2x3 + 1}
Blex = {1, x, x2, x3, x4, x5}.

Hint: The following computations will be useful:

1G = 1

xG = −y + z

x2G
= z

x3G
= −yz + z2

x4G
= z2

x5G
= z3 + 2yz − 2z2 + 1

x6G
= z3.

Note that 1G
, . . . , x5G

are linearly independent while x6G
is a linear

combination of x5G
, x3G

and 1G. This is similar to Exercise 2 of §2.
b. After we apply the Main Loop to x6, show that the monomial provided

by the Next Monomial procedure is y, and after y passes through the
Main Loop, show that

Glex = {x6 − x5 − 2x3 + 1, y − x2 + x}
Blex = {1, x, x2, x3, x4, x5}.

c. Show that after y, Next Monomial produces z, and after z passes through
the Main Loop, show that

Glex = {x6 − x5 − 2x3 + 1, y − x2 + x, z − x2}
Blex = {1, x, x2, x3, x4, x5}.

d. Check that the Termination Test (3.2) terminates the algorithm when
Glex is as in part c. Hint: We’re using lex order with z > y > x.
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e. Verify that Glex from part c is a lex Gröbner basis for I.

We will now show that the algorithm given by (3.1), (3.2) and (3.3)
terminates and correctly computes a lex Gröbner basis for the ideal I.

(3.4) Theorem. The algorithm described above terminates on every in-
put Gröbner basis G generating a zero-dimensional ideal I, and correctly
computes a lex Gröbner basis Glex for I and the lex monomial basis Blex

for the quotient ring A.

Proof. We begin with the key observation that monomials are added
to the list Blex in strictly increasing lex order. Similarly, if Glex =
{g1, . . . , gk}, then

LT(g1) <lex · · · <lex LT(gk),

where >lex is the lex order we are using. We also note that when the Main
Loop adds a new polynomial gk+1 to Glex = {g1, . . . , gk}, the leading
term LT(gk+1) is the input monomial in the Main Loop. Since the input
monomials are provided by the Next Monomial procedure, it follows that
for all k,

(3.5) LT(gk+1) is divisible by none of LT(g1), . . . , LT(gk).

We can now prove that the algorithm terminates for all inputs G gener-
ating zero-dimensional ideals. If the algorithm did not terminate for some
input G, then the Main Loop would be executed infinitely many times, so
one of the two alternatives in (3.1) would be chosen infinitely often. If the
first alternative were chosen infinitely often, Glex would give an infinite list
LT(g1), LT(g2), . . . of monomials. However, we have:

• (Dickson’s Lemma) Given an infinite list xα(1), xα(2), . . . of monomials
in k[x1, . . . , xn], there is an integer N such that every xα(i) is divisible
by one of xα(1), . . . , xα(N).

(See, for example, Exercise 7 of [CLO], Chapter 2, §4). When applied to
LT(g1), LT(g2), . . ., Dickson’s Lemma would contradict (3.5). On the other
hand, if the second alternative were chosen infinitely often, then Blex would
give infinitely many monomials xα(j) whose remainders on division by G
were linearly independent in A. This would contradict the assumption that
I is zero-dimensional. As a result, the algorithm always terminates for G
generating a zero-dimensional ideal I.

Next, suppose that the algorithm terminates with Glex = {g1, . . . , gk}.
By the Termination Test (3.2), LT(gk) = xa1

1 , where x1 >lex · · · >lex xn.
We will prove that Glex is a lex Gröbner basis for I by contradiction.
Suppose there were some g ∈ I such that LT(g) is not a multiple of any of
the LT(gi), i = 1, . . . , k. Without loss of generality, we may assume that g
is reduced with respect to Glex (replace g by gGlex).



§3. Gröbner Basis Conversion 53

If LT(g) is greater than LT(gk) = xa1
1 , then one easily sees that LT(g) is

a multiple of LT(gk) (see Exercise 2 below). Hence this case can’t occur,
which means that

LT(gi) < LT(g) ≤ LT(gi+1)

for some i < k. But recall that the algorithm places monomials into Blex

in strictly increasing order, and the same is true for the LT(gi). All the
non-leading monomials in g must be less than LT(g) in the lex order. They
are not divisible by any of LT(gj) for j ≤ i, since g is reduced. So, the non-
leading monomials that appear in g would have been included in Blex by
the time LT(g) was reached by the Next Monomial procedure, and g would
have been the next polynomial after gi included in Glex by the algorithm
(i.e., g would equal gi+1). This contradicts our assumption on g, which
proves that Glex is a lex Gröbner basis for I.

The final step in the proof is to show that when the algorithm terminates,
Blex consists of all basis monomials determined by the Gröbner basis Glex.
We leave this as an exercise for the reader.

In the literature, the basis conversion algorithm discussed here is called
the FGLM algorithm after the authors Faugère, Gianni, Lazard, and Mora
of the paper [FGLM] in which the algorithm first appeared. We should
also mention that while the FGLM algorithm assumes that I is zero-
dimensional, there are methods which apply to the positive-dimensional
case. For instance, if degree bounds on the elements of the Gröbner basis
with respect to the desired order are known, then the approach described
above can also be adapted to treat ideals that are not zero-dimensional. An
interesting related “Hilbert function-driven” basis conversion method for
homogeneous ideals has been proposed by Traverso (see [Trav]). However,
general basis conversion methods that apply even when information such
as degree bounds is not available are also desirable. Such a method is the
Gröbner Walk to be described in Chapter 8.

The ideas used in Gröbner basis conversion can be applied in other
contexts. In order to explain this, we need to recast the above discus-
sion using linear maps. Recall that we began with a Gröbner basis G of a
zero-dimensional ideal I and our goal was to find a lex Gröbner basis Glex

of I. However, for G, the main thing we used was the normal form f
G

of a
polynomial f ∈ k[x1, . . . , xn].

Let’s write this out carefully. Let B be the monomial basis of A =
k[x1, . . . , xn]/I determined by G. Denote f

G
by L(f) and Span(B) by

V , so that L(f) = f
G ∈ V = Span(B). Thus we have a map

(3.6) L : k[x1, . . . , xn] −→ V.

In Exercise 10 of §2, you showed that L is linear with kernel equal to I.
Using this, the Main Loop (3.1) can be written as follows.
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(3.7) Main Loop, Restated. Given the input xα, compute L(xα). Then:
a. If L(xα) is linearly dependent on the images under L of the monomials

in Blex, then we have a linear combination

L(xα) −∑
jcjL(xα(j)) = 0,

where xα(j) ∈ Blex and cj ∈ k. This implies that L
(
x−∑j cjx

α(j)
)

= 0.
Since I is the kernel of L, we have

g = xα −∑
jcjx

α(j) ∈ I.

We add g to Glex as the last element.
b. If L(xα) is linearly independent from the images under L of the

monomials in Blex, then we add xα to Blex as the last element.

If we combine (3.7) with the Termination Test (3.2) and Next Monomial
(3.3), then we get the same algorithm as before. But even more is true, for
this algorithm computes a lex Gröbner basis of the kernel for any linear
map (3.6), provided that V has finite dimension and the kernel is an ideal
of k[x1, . . . , xn]. You will prove this in Exercise 9 below.

As an example of how this works, pick distinct points p1, . . . , pm ∈ kn

and consider the evaluation map

L : k[x1, . . . , xn] −→ km, L(f) = (f(p1), . . . , f(pm)).

The kernel is the ideal I(p1, . . . , pm) of polynomials vanishing at the given
points. It follows that we now have an algorithm for computing a lex
Gröbner basis of this ideal! This is closely related to the Buchberger-Möller
algorithm described in [BuM]. You will work out an explicit example in
Exercise 10.

For another example, consider

(3.8) I = {f ∈ C[x, y] : f(0, 0) = fx(0, 0) = fy(0, 0) − fxx(0, 0) = 0}.
In Exercise 11, you will show that I is an ideal of C[x, y]. Since I is the
kernel of the linear map

L : C[x, y] −→ C
3, L(f) = (f(0, 0), fx(0, 0), fy(0, 0) − fxx(0, 0)),

the above algorithm can be used to show that {y2, xy, x2 + 2y} is a lex
Gröbner basis with x > y for the ideal I. See Exercise 11 for the details.

There are some very interesting ideas related to these examples. Dif-
ferential conditions like those in (3.8), when combined with primary
decomposition, can be used to describe any zero-dimensional ideal in
k[x1, . . . , xn]. This is explained in [MMM1] and [MöS] (and is where we
got (3.8)). The paper [MMM1] also describes other situations where these
ideas are useful, and [MMM2] makes a systematic study of the different
representations of a zero-dimensional ideal and how one can pass from one
representation to another.
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ADDITIONAL EXERCISES FOR §3

Exercise 2. Consider the lex order with x1 > · · · > xn and fix a power
xa

1 of x1. Then, for any monomial xα in k[x1, . . . , xn], prove that xα > xa
1

if and only if xα is divisible by xa
1 .

Exercise 3. Suppose Glex = {g1, . . . , gk}, where LT(g1) < · · · < LT(gk),
and let xα be a monomial. This exercise will show how the Next Monomial
(3.3) procedure works, assuming that our lex order satisfies x1 > · · · > xn.
Since this procedure is only used when the Termination Test fails, we can
assume that LT(gk) is not a power of x1.
a. Use Exercise 2 to show that none of the LT(gi) divide xa1+1

1 .
b. Now consider the largest 1 ≤ k ≤ n such that none of the LT(gi) divide

the monomial

xa1
1 · · · xak−1

k−1 xak+1
k .

By part a, k = 1 has this property, so there must be a largest such k. If
xβ is the monomial corresponding to the largest k, prove that xβ > xα

is the smallest monomial (relative to our lex order) greater than xα

which is not divisible by any of the LT(gi).

Exercise 4. Complete the proof of Theorem (3.4) by showing that when
the basis conversion algorithm terminates, the set Blex gives a monomial
basis for the quotient ring A.

Exercise 5. Use Gröbner basis conversion to find lex Gröbner bases for
the ideals in Exercises 6 and 7 from §1. Compare with your previous results.

Exercise 6. What happens if you try to apply the basis conversion algo-
rithm to an ideal that is not zero-dimensional? Can this method be used
for general Gröbner basis conversion? What if you have more information
about the lex basis elements, such as their total degrees, or bounds on those
degrees?

Exercise 7. Show that the output of the basis conversion algorithm is
actually a monic reduced lex Gröbner basis for I = 〈G〉.

Exercise 8. Implement the basis conversion algorithm outlined in (3.1),
(3.2) and (3.3) in a computer algebra system. Hint: Exercise 3 will be useful.
For a more complete description of the algorithm, see pages 428–433 of
[BW].

Exercise 9. Consider a linear map L : k[x1, . . . , xn] → V , where V has
finite dimension and the kernel of L is an ideal. State and prove a version
of Theorem (3.4) which uses (3.7), (3.2), and (3.3).
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Exercise 10. Use the method described at the end of the section to find
a lex Gröbner basis with x > y for the ideal of all polynomials vanishing
at (0, 0), (1, 0), (0, 1) ∈ k2.

Exercise 11. Prove that (3.8) is an ideal of C[x, y] and use the method
described at the end of the section to find a lex Gröbner basis with x > y
for this ideal.

§4 Solving Equations via Eigenvalues and
Eigenvectors

The central problem of this chapter, finding the solutions of a system of
polynomial equations f1 = f2 = · · · = fs = 0 over C, rephrases in fancier
language to finding the points of the variety V(I), where I is the ideal gen-
erated by f1, . . . , fs. When the system has only finitely many solutions,
i.e., when V(I) is a finite set, the Finiteness Theorem from §2 says that
I is a zero-dimensional ideal and the algebra A = C[x1, . . . , xn]/I is a
finite-dimensional vector space over C. The first half of this section ex-
ploits the structure of A in this case to evaluate an arbitrary polynomial
f at the points of V(I); in particular, evaluating the polynomials f = xi

gives the coordinates of the points (Corollary (4.6) below). The values of
f on V(I) turn out to be eigenvalues of certain linear mappings on A. We
will discuss techniques for computing these eigenvalues and show that the
corresponding eigenvectors contain useful information about the solutions.

We begin with the easy observation that given a polynomial f ∈
C[x1, . . . , xn], we can use multiplication to define a linear map mf from
A = C[x1, . . . , xn]/I to itself. More precisely, f gives the coset [f ] ∈ A,
and we define mf : A → A by the rule: if [g] ∈ A, then

mf ([g]) = [f ] · [g] = [fg] ∈ A.

Then mf has the following basic properties.

(4.1) Proposition. Let f ∈ C[x1, . . . , xn]. Then
a. The map mf is a linear mapping from A to A.
b. We have mf = mg exactly when f − g ∈ I. Thus two polynomials give

the same linear map if and only if they differ by an element of I. In
particular, mf is the zero map exactly when f ∈ I.

Proof. The proof of part a is just the distributive law for multiplication
over addition in the ring A. If [g], [h] ∈ A and c ∈ k, then

mf (c[g] + [h]) = [f ] · (c[g] + [h]) = c[f ] · [g] + [f ] · [h] = cmf ([g]) + mf ([h]).
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Part b is equally easy. Since [1] ∈ A is a multiplicative identity, if mf = mg,
then

[f ] = [f ] · [1] = mf ([1]) = mg([1]) = [g] · [1] = [g],

so f −g ∈ I. Conversely, if f −g ∈ I, then [f ] = [g] in A, so mf = mg.

Since A is a finite-dimensional vector space over C, we can represent mf

by its matrix with respect to a basis. For our purposes, a monomial basis
B such as the ones we considered in §2 will be the most useful, because
once we have the multiplication table for the elements in B, the matrices
of the multiplication operators mf can be read off immediately from the
table. We will denote this matrix also by mf , and whether mf refers to the
matrix or the linear operator will be clear from the context. Proposition
(4.1) implies that mf = m

f
G , so that we may assume that f is a remainder.

For example, for the ideal I from (2.4) of this chapter, the matrix for the
multiplication operator by f may be obtained from the table (2.5) in the
usual way. Ordering the basis monomials as before,

B = {1, x, y, xy, y2},
we make a 5× 5 matrix whose jth column is the vector of coefficients in the
expansion in terms of B of the image under mf of the jth basis monomial.
With f = x, for instance, we obtain

mx =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 3/2 0 −3/2 1
0 3/2 0 −1/2 0
0 −3/2 1 3/2 0
0 −1/2 0 3/2 0

⎞⎟⎟⎟⎟⎠ .

Exercise 1. Find the matrices m1, my, mxy−y2 with respect to B in this
example. How do my2 and (my)2 compare? Why?

We note the following useful general properties of the matrices mf (the
proof is left as an exercise).

(4.2) Proposition. Let f, g be elements of the algebra A. Then
a. mf+g = mf + mg.
b. mf ·g = mf · mg (where the product on the right means composition of

linear operators or matrix multiplication).

This proposition says that the map sending f ∈ C[x1, . . . , xn] to the
matrix mf defines a ring homomorphism from C[x1, . . . , xn] to the ring
Md×d(C) of d × d matrices, where d is the dimension of A as a C-vector
space. Furthermore, part b of Proposition (4.1) and the Fundamental
Theorem of Homomorphisms show that [f ] �→ mf induces a one-to-one ho-
momorphism A → Md×d(C). A discussion of ring homomorphisms and the
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Fundamental Theorem of Homomorphisms may be found in Chapter 5, §2
of [CLO], especially Exercise 16. But the reader should note that Md×d(C)
is not a commutative ring, so we have here a slightly more general situation
than the one discussed there.

For use later, we also point out a corollary of Proposition (4.2). Let h(t) =∑m
i=0 cit

i ∈ C[t] be a polynomial. The expression h(f) =
∑m

i=0 cif
i makes

sense as an element of C[x1, . . . , xn]. Similarly h(mf ) =
∑m

i=0 ci(mf )i is
a well-defined matrix (the term c0 should be interpreted as c0I, where I is
the d × d identity matrix).

(4.3) Corollary. In the situation of Proposition (4.2), let h ∈ C[t] and
f ∈ C[x1, . . . , xn]. Then

mh(f) = h(mf ).

Recall that a polynomial f ∈ C[x1, . . . , xn] gives the coset [f ] ∈ A. Since
A is finite-dimensional, as we noted in §2 for f = xi, the set {1, [f ], [f ]2, . . .}
must be linearly dependent in the vector space structure of A. In other
words, there is a linear combination

m∑
i=0

ci[f ]i = [0]

in A, where ci ∈ C are not all zero. By the definition of the quotient ring,
this is equivalent to saying that

(4.4)
m∑

i=0

cif
i ∈ I.

Hence
∑m

i=0 cif
i vanishes at every point of V(I).

Now we come to the most important part of this discussion, culminating
in Theorem (4.5) and Corollary (4.6) below. We are looking for the points in
V(I), I a zero-dimensional ideal. Let h(t) ∈ C[t], and let f ∈ C[x1, . . . , xn].
By Corollary (4.3),

h(mf ) = 0 ⇐⇒ h([f ]) = [0] in A.

The polynomials h such that h(mf ) = 0 form an ideal in C[t] by the
following exercise.

Exercise 2. Given a d × d matrix M with entries in a field k, consider
the collection IM of polynomials h(t) in k[t] such that h(M) = 0, the d× d
zero matrix. Show that IM is an ideal in k[t].

The nonzero monic generator hM of the ideal IM is called the minimal
polynomial of M . By the basic properties of ideals in k[t], if h is any poly-
nomial with h(M) = 0, then the minimal polynomial hM divides h. In
particular, the Cayley-Hamilton Theorem from linear algebra tells us that
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hM divides the characteristic polynomial of M . As a consequence, if k = C,
the roots of hM are eigenvalues of M . Furthermore, all eigenvalues of M
occur as roots of the minimal polynomial. See [Her] for a more complete
discussion of the Cayley-Hamilton Theorem and the minimal polynomial
of a matrix.

Let hf denote the minimal polynomial of the multiplication operator mf

on A. We then have three interesting sets of numbers:

• the roots of the equation hf (t) = 0,
• the eigenvalues of the matrix mf , and
• the values of the function f on V(I), the set of points we are looking

for.

The amazing fact is that all three sets are equal.

(4.5) Theorem. Let I ⊂ C[x1, . . . , xn] be zero-dimensional, let f ∈
C[x1, . . . , xn], and let hf be the minimal polynomial of mf on A =
C[x1, . . . , xn]/I. Then, for λ ∈ C, the following are equivalent:
a. λ is a root of the equation hf (t) = 0,
b. λ is an eigenvalue of the matrix mf , and
c. λ is a value of the function f on V(I).

Proof. a ⇔ b follows from standard results in linear algebra.
b ⇒ c: Let λ be an eigenvalue of mf . Then there is a corresponding

eigenvector [z] �= [0] ∈ A such that [f − λ][z] = [0]. Aiming for a con-
tradiction, suppose that λ is not a value of f on V(I). That is, letting
V(I) = {p1, . . . , pm}, suppose that f(pi) �= λ for all i = 1, . . . , m.

Let g = f − λ, so that g(pi) �= 0 for all i. By Lemma (2.9) of this
chapter, there exist polynomials gi such that gi(pj) = 0 if i �= j, and
gi(pi) = 1. Consider the polynomial g′ =

∑m
i=1 1/g(pi)gi. It follows that

g′(pi)g(pi) = 1 for all i, and hence 1 − g′g ∈ I(V(I)). By the Nullstellen-
satz, (1 − g′g)� ∈ I for some � ≥ 1. Expanding by the binomial theorem
and collecting the terms that contain g as a factor, we get 1 − g̃g ∈ I for
some g̃ ∈ C[x1, . . . , xn]. In A, this last inclusion implies that [1] = [g̃][g],
hence g has a multiplicative inverse [g̃] in A.

But from the above we have [g][z] = [f − λ][z] = [0] in A. Multiplying
both sides by [g̃], we obtain [z] = [0], which is a contradiction. Therefore
λ must be a value of f on V(I).

c ⇒ a: Let λ = f(p) for p ∈ V(I). Since hf (mf ) = 0, Corollary (4.3)
shows hf ([f ]) = [0], and then (4.4) implies hf (f) ∈ I. This means hf (f)
vanishes at every point of V(I), so that hf (λ) = hf (f(p)) = 0.

Exercise 3. We saw earlier that the matrix of multiplication by x in the
5-dimensional algebra A = C[x, y]/I from (2.4) of this chapter is given by
the matrix displayed before Exercise 1 in this section.
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a. Using the minpoly command in Maple (part of the linalg package) or
otherwise, show that the minimal polynomial of this matrix is

hx(t) = t4 − 2t3 − t2 + 2t.

The roots of hx(t) = 0 are thus t = 0,−1, 1, 2.
b. Now find all points of V(I) using the methods of §1 and show that the

roots of hx are exactly the distinct values of the function f(x, y) = x
at the points of V(I). (Two of the points have the same x-coordinate,
which explains why the degree and the number of roots are 4 instead of
5!) Also see Exercise 7 from §2 to see how the ideal I was constructed.

c. Finally, find the minimal polynomial of the matrix my, determine its
roots, and explain the degree you get.

When we apply Theorem (4.5) with f = xi, we get a general result
exactly parallel to this example.

(4.6) Corollary. Let I ⊂ C[x1, . . . , xn] be zero-dimensional. Then the
eigenvalues of the multiplication operator mxi on A coincide with the
xi-coordinates of the points of V(I). Moreover, substituting t = xi in
the minimal polynomial hxi yields the unique monic generator of the
elimination ideal I ∩ C[xi].

Corollary (4.6) indicates that it is possible to solve equations by comput-
ing eigenvalues of the multiplication operators mxi . This has been studied
in papers such as [Laz], [Möl], and [MöS], among others. As a result a whole
array of numerical methods for approximating eigenvalues can be brought
to bear on the root-finding problem, at least in favorable cases. We include
a brief discussion of some of these methods for the convenience of some
readers; the following two paragraphs may be safely ignored if you are fa-
miliar with numerical eigenvalue techniques. For more details, we suggest
[BuF] or [Act].

In elementary linear algebra, eigenvalues of a matrix M are usually
determined by solving the characteristic polynomial equation:

det(M − tI) = 0.

The degree of the polynomial on the left hand side is the size of the matrix
M . But computing det(M − tI) for large matrices is a large job itself, and
as we have seen in §1, exact solutions (and even accurate approximations
to solutions) of polynomial equations of high degree over R or C can be
hard to come by, so the characteristic polynomial is almost never used in
practice. So other methods are needed.

The most basic numerical eigenvalue method is known as the power
method . It is based on the fact that if a matrix M has a unique dom-
inant eigenvalue (i.e., an eigenvalue λ satisfying |λ| > |µ| for all other
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eigenvalues µ of M), then starting from a randomly chosen vector x0, and
forming the sequence

xk+1 = unit vector in direction of Mxk,

we almost always approach an eigenvector for λ as k → ∞. An approxi-
mate value for the dominant eigenvalue λ may be obtained by computing
the norm ‖Mxk‖ at each step. If there is no unique dominant eigenvalue,
then the iteration may not converge, but the power method can also be
modified to eliminate that problem and to find other eigenvalues of M . In
particular, we can find the eigenvalue of M closest to some fixed s by ap-
plying the power method to the matrix M ′ = (M − sI)−1. For almost all
choices of s, there will be a unique dominant eigenvalue of M ′. Moreover, if
λ′ is that dominant eigenvalue of M ′, then 1/λ′ + s is the eigenvalue of M
closest to s. This observation makes it possible to search for all the eigen-
values of a matrix as we would do in using the Newton-Raphson method to
find all the roots of a polynomial. Some of the same difficulties arise, too.
There are also much more sophisticated iterative methods, such as the LR
and QR algorithms, that can be used to determine all the (real or complex)
eigenvalues of a matrix except in some very uncommon degenerate situa-
tions. It is known that the QR algorithm, for instance, converges for all
matrices having no more than two eigenvalues of any given magnitude in
C. Some computer algebra systems (e.g., Maple and Mathematica) provide
built-in procedures that implement these methods.

A legitimate question at this point is this: Why might one consider apply-
ing these eigenvalue techniques for root finding instead of using elimination?
There are two reasons.

The first concerns the amount of calculation necessary to carry out this
approach. The direct attack—solving systems via elimination as in §1—
imposes a choice of monomial order in the Gröbner basis we use. Pure lex
Gröbner bases frequently require a large amount of computation. As we saw
in §3, it is possible to compute a grevlex Gröbner basis first, then convert it
to a lex basis using the FGLM basis conversion algorithm, with some savings
in total effort. But basis conversion is unnecessary if we use Corollary (4.6),
because the algebraic structure of C[x1, . . . , xn]/I is independent of the
monomial order used for the Gröbner basis and remainder calculations.
Hence any monomial order can be used to determine the matrices of the
multiplication operators mxi .

The second reason concerns the amount of numerical versus symbolic
computation involved, and the potential for numerical instability. In the
frequently-encountered case that the generators for I have rational coef-
ficients, the entries of the matrices mxi will also be rational, and hence
can be determined exactly by symbolic computation. Thus the numerical
component of the calculation is restricted to the eigenvalue calculations.
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There is also a significant difference even between a naive first idea for
implementing this approach and the elimination method discussed in §1.
Namely, we could begin by computing all the mxi and their eigenvalues
separately. Then with some additional computation we could determine
exactly which vectors (x1, . . . , xn) formed using values of the coordinate
functions actually give approximate solutions. The difference here is that
the computed values of xi are not used in the determination of the xj ,
j �= i. In §1, we saw that a major source of error in approximate solutions
was the fact that small errors in one variable could produce larger errors
in the other variables when we substitute them and use the Extension
Theorem. Separating the computations of the values xi from one another,
we can avoid those accumulated error phenomena (and also the numerical
stability problems encountered in other non-elimination methods).

We will see shortly that it is possible to reduce the computational effort
involved even further. Indeed, it suffices to consider the eigenvalues of only
one suitably-chosen multiplication operator mc1x1+···+cnxn . Before devel-
oping this result, however, we present an example using the more naive
approach.

Exercise 4. We will apply the ideas sketched above to find approximations
to the complex solutions of the system:

0 = x2 − 2xz + 5

0 = xy2 + yz + 1

0 = 3y2 − 8xz.

a. First, compute a Gröbner basis to determine the monomial basis for the
quotient algebra. We can use the grevlex (Maple tdeg) monomial order:

PList := [x^2 - 2*x*z + 5, x*y^2 + y*z + 1, 3*y^2 - 8*x*z];
G := gbasis(PList,tdeg(x,y,z));
B := SetBasis(G,tdeg(x,y,z))[1];

(this can also be done using the kbasis procedure from Exercise 13 in
§2) and obtain the eight monomials:

[1, x, y, xy, z, z2, xz, yz].

(You should compare this with the output of SetBasis or kbasis for
lex order. Also print out the lex Gröbner basis for this ideal if you have
a taste for complicated polynomials.)

b. Using the monomial basis B, check that the matrix of the full
multiplication operator mx is
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0 −5 0 0 0 −3/16 −3/8 0
1 0 0 0 0 0 0 0
0 0 0 −5 0 0 0 0
0 0 1 3/20 0 0 0 3/40
0 0 0 0 0 5/2 0 0
0 0 0 −2 0 0 0 −1
0 2 0 0 1 0 0 0
0 0 0 −3/10 0 −3/16 −3/8 −3/20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix can also be computed using the MulMatrix command in
Maple.

c. Now, applying the numerical eigenvalue routine eigenvals from Maple,
check that there are two approximate real eigenvalues:

−1.100987715, .9657124563,

and 3 complex conjugate pairs. (This computation can be done in several
different ways and, due to roundoff effects, the results can be slightly
different depending on the method used. The values above were found
by expressing the entries of the matrix of mx as floating point numbers,
and applying Maple’s eigenvals routine to that matrix.)

d. Complete the calculation by finding the multiplication operators my,
mz, computing their real eigenvalues, and determining which triples
(x, y, z) give solutions. (There are exactly two real points.) Also see
Exercises 9 and 10 below for a second way to compute the eigenvalues
of mx, my, and mz.

In addition to eigenvalues, there are also eigenvectors to consider. In fact,
every matrix M has two sorts of eigenvectors. The right eigenvectors of M
are the usual ones, which are column vectors v �= 0 such that

M v = λv

for some λ ∈ C. Since the transpose MT has the same eigenvalues λ as M ,
we can find a column vector v′ �= 0 such that

MT v′ = λv′.

Taking transposes, we can write this equation as

w M = λw,

where w = v′T is a row vector. We call w a left eigenvector of M .
The right and left eigenvectors for a matrix are connected in the following

way. For simplicity, suppose that M is a diagonalizable n×n matrix, so that
there is a basis for C

n consisting of right eigenvectors for M . In Exercise 7
below, you will show that there is a matrix equation MQ = QD, where
Q is the matrix whose columns are the right eigenvectors in a basis for
C

n, and D is a diagonal matrix whose diagonal entries are the eigenvalues
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of M . Rearranging the last equation, we have Q−1M = DQ−1. By the
second part of Exercise 7 below, the rows of Q−1 are a collection of left
eigenvectors of M that also form a basis for C

n.
For a zero-dimensional ideal I, there is also a strong connection between

the points of V(I) and the left eigenvectors of the matrix mf relative to
the monomial basis B coming from a Gröbner basis. We will assume that
I is radical. In this case, Theorem (2.10) implies that A has dimension m,
where m is the number of points in V(I). Hence, we can write the monomial
basis B as the cosets

B = {[xα(1)], . . . , [xα(m)]}.
Using this basis, let mf be the matrix of multiplication by f . We can relate
the left eigenvectors of mf to points of V(I) as follows.

(4.7) Proposition. Suppose f ∈ C[x1, . . . , xn] is chosen such that the
values f(p) are distinct for p ∈ V(I), where I is a radical ideal not con-
taining 1. Then the left eigenspaces of the matrix mf are 1-dimensional
and are spanned by the row vectors (pα(1), . . . , pα(m)) for p ∈ V(I).

Proof. If we write mf = (mij), then for each j between 1 and m,

[xα(j)f ] = mf ([xα(j)]) = m1j [xα(1)] + · · · + mmj [xα(m)].

Now fix p ∈ V(f1, . . . , fn) and evaluate this equation at p to obtain

pα(j)f(p) = m1jp
α(1) + · · · + mmjp

α(m)

(this makes sense by Exercise 12 of §2). Doing this for j = 1, . . . , m gives

f(p)(pα(1), . . . , pα(m)) = (pα(1), . . . , pα(m)) mf .

Exercise 14 at the end of the section asks you to check this computation
carefully. Note that one of the basis monomials in B is the coset [1] (do
you see why this follows from 1 /∈ I?), which shows that (pα(1), . . . , pα(m))
is nonzero and hence is a left eigenvector for mf , with f(p) as the
corresponding eigenvalue.

By hypothesis, the f(p) are distinct for p ∈ V(I), which means that the
m × m matrix mf has m distinct eigenvalues. Linear algebra then implies
that the corresponding eigenspaces (right and left) are 1-dimensional.

This proposition can be used to find the points in V(I) for any zero-
dimensional ideal I. The basic idea is as follows. First, we can assume that
I is radical by replacing I with

√
I as computed by Proposition (2.7). Then

compute a Gröbner basis G and monomial basis B as usual. Now consider
the function

f = c1x1 + · · · + cnxn,

where c1, . . . , cn are randomly chosen integers. This will ensure (with small
probability of failure) that the values f(p) are distinct for p ∈ V(I). Rel-
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ative to the monomial basis B, we get the matrix mf , so that we can use
standard numerical methods to find an eigenvalue λ and corresponding left
eigenvector v of mf . This eigenvector, when combined with the Gröbner
basis G, makes it trivial to find a solution p ∈ V(I).

To see how this is done, first note that Proposition (4.7) implies

(4.8) v = c(pα(1), . . . , pα(m))

for some nonzero constant c and some p ∈ V(I). Write p = (a1, . . . , an).
Our goal is to compute the coordinates ai of p in terms of the coordinates
of v. Equation (4.8) implies that each coordinate of v is of the form cpα(j).

The Finiteness Theorem implies that for each i between 1 and n, there is
mi ≥ 1 such that xmi

i is the leading term of some element of G. If mi > 1,
it follows that [xi] ∈ B (do you see why?), so that cai is a coordinate of
v. As noted above, we have [1] ∈ B, so that c is also a coordinate of v.
Consequently,

ai =
cai

c

is a ratio of coordinates of v. This way, we get the xi-coordinate of p for
all i satisfying mi > 1.

It remains to study the coordinates with mi = 1. These variables appear
in none of the basis monomials in B (do you see why?), so that we turn
instead to the Gröbner basis G for guidance. Suppose the variables with
mi = 1 are xi1 , . . . , xi�

. We will assume that the variables are labeled so
that x1 > · · · > xn and i1 > · · · > i�. In Exercise 15 below, you will show
that for j = 1, . . . , �, there are elements gj ∈ G such that

gj = xij + terms involving xi for i > ij .

If we evaluate this at p = (a1, . . . , an), we obtain

(4.9) 0 = aij + terms involving ai for i > ij.

Since we already know ai for i /∈ {i1, . . . , i�}, these equations make it
a simple matter to find ai1 , . . . , ai�

. We start with ai�
. For j = �, (4.9)

implies that ai�
is a polynomial in the coordinates of p we already know.

Hence we get ai�
. But once we know ai�

, (4.9) shows that ai�−1 is also a
polynomial in known coordinates. Continuing in this way, we get all of the
coordinates of p.

Exercise 5. Apply this method to find the solutions of the equations given
in Exercise 4. The x-coordinates of the solutions are distinct, so you can
assume f = x. Thus it suffices to compute the left eigenvectors of the
matrix mx of Exercise 4.

The idea of using eigenvectors to find solutions first appears in the
pioneering work of Auzinger and Stetter [AS] in 1988 and was further de-
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veloped in [MöS], [MT], and [Ste]. Our treatment focused on the radical
case since our first step was to replace I with

√
I. In general, whenever

a multiplication map mf is nonderogatory (meaning that all eigenspaces
have dimension one), one can use Proposition (4.7) to find the solutions.
Unfortunately, when I is not radical, it can happen that mf is deroga-
tory for all f ∈ k[x1, . . . , xn]. Rather than replacing I with

√
I as we

did above, another approach is to realize that the family of operators
{mf : f ∈ k[x1, . . . , xn]} is nonderogatory, meaning that its joint left
eigenspaces are one-dimensional and hence are spanned by the eigenvec-
tors described in Proposition (4.7). This result and its consequences are
discussed in [MT] and [Mou1]. We will say more about multiplication maps
in §2 of Chapter 4.

Since the left eigenvectors of mf help us find solutions in V(I), it is
natural to ask about the right eigenvectors. In Exercise 17 below, you will
show that these eigenvectors solve the interpolation problem, which asks
for a polynomial that takes preassigned values at the points of V(I).

This section has discussed several ideas for solving polynomial equations
using linear algebra. We certainly do not claim that these ideas are a com-
putational panacea for all polynomial systems, but they do give interesting
alternatives to other, more traditional methods in numerical analysis, and
they are currently an object of study in connection with the implementa-
tion of the next generation of computer algebra systems. We will continue
this discussion in §5 (where we study real solutions) and Chapter 3 (where
we use resultants to solve polynomial systems).

ADDITIONAL EXERCISES FOR §4

Exercise 6. Prove Proposition (4.2).

Exercise 7. Let M, Q, P, D be n × n complex matrices, and assume D is
a diagonal matrix.
a. Show that the equation MQ = QD holds if and only if each nonzero

column of Q is a right eigenvector of M and the corresponding diagonal
entry of D is the corresponding eigenvalue.

b. Show that the equation PM = DP holds if and only if each nonzero
row of P is a left eigenvector of M and the corresponding diagonal entry
of D is the corresponding eigenvalue.

c. If MQ = QD and Q is invertible, deduce that the rows of Q−1 are left
eigenvectors of M .

Exercise 8.
a. Apply the eigenvalue method from Corollary (4.6) to solve the system

from Exercise 6 of §1. Compare your results.
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b. Apply the eigenvalue method from Corollary (4.6) to solve the system
from Exercise 7 from §1. Compare your results.

Exercise 9. Let Vi be the subspace of A spanned by the non-negative
powers of [xi], and consider the restriction of the multiplication operator
mxi : A → A to Vi. Assume {1, [xi], . . . , [xi]mi−1} is a basis for Vi.
a. What is the matrix of the restriction mxi |Vi with respect to this basis?

Show that it can be computed by the same calculations used in Exer-
cise 4 of §2 to find the monic generator of I ∩ C[xi], without computing
a lex Gröbner basis. Hint: See also Exercise 11 of §1 of Chapter 3.

b. What is the characteristic polynomial of mxi |Vi and what are its roots?

Exercise 10. Use part b of Exercise 9 and Corollary (4.6) to give another
determination of the roots of the system from Exercise 4.

Exercise 11. Let I be a zero-dimensional ideal in C[x1, . . . , xn], and
let f ∈ C[x1, . . . , xn]. Show that [f ] has a multiplicative inverse in
C[x1, . . . , xn]/I if and only if f(p) �= 0 for all p ∈ V(I). Hint: See the
proof of Theorem (4.5).

Exercise 12. Prove that a zero-dimensional ideal is radical if and only if
the matrices mxi are diagonalizable for each i. Hint: Linear algebra tells
us that a matrix is diagonalizable if and only if its minimal polynomial is
square-free. Proposition (2.7) and Corollary (4.6) of this chapter will be
useful.

Exercise 13. Let A = C[x1, . . . , xn]/I for a zero-dimensional ideal I,
and let f ∈ C[x1, . . . , xn]. If p ∈ V(I), we can find g ∈ C[x1, . . . , xn]
with g(p) = 1, and g(p′) = 0 for all p′ ∈ V(I), p′ �= p (see Lemma (2.9)).
Prove that there is an � ≥ 1 such that the coset [g�] ∈ A is a generalized
eigenvector for mf with eigenvalue f(p). (A generalized eigenvector of a
matrix M is a nonzero vector v such that (M−λI)mv = 0 for some m ≥ 1.)
Hint: Apply the Nullstellensatz to (f − f(p))g. In Chapter 4, we will study
the generalized eigenvectors of mf in more detail.

Exercise 14. Verify carefully the formula f(p)(pα(1), . . . , pα(m)) =
(pα(1), . . . , pα(m)) mf used in the proof of Proposition (4.7).

Exercise 15. Let > be some monomial order, and assume x1 > · · · > xn.
If g ∈ k[x1, . . . , xn] satisfies LT(g) = xj , then prove that

g = xj + terms involving xi for i > j.

Exercise 16. (The Shape Lemma) Let I be a zero-dimensional radical
ideal such that the xn-coordinates of the points in V(I) are distinct. Let
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G be a reduced Gröbner basis for I relative to a lex monomial order with
xn as the last variable.
a. If V(I) has m points, prove that the cosets 1, [xn], . . . , [xm−1

n ] are
linearly independent and hence are a basis of A = k[x1, . . . , xn]/I.

b. Prove that G consists of n polynomials

g1 = x1 + h1(xn)

...

gn−1 = xn−1 + hn−1(xn)

gn = xm
n + hn(xn),

where h1, . . . , hn are polynomials in xn of degree at most m − 1. Hint:
Start by expressing [x1], . . . , [xn−1], [xm

n ] in terms of the basis of part a.
c. Explain how you can find all points of V(I) once you know their xn-

coordinates. Hint: Adapt the discussion following (4.9).

Exercise 17. This exercise will study the right eigenvectors of the matrix
mf and their relation to interpolation. Assume that I is a zero-dimensional
radical ideal and that the values f(p) are distinct for p ∈ V(I). We write
the monomial basis B as {[xα(1)], . . . , [xα(m)]}.
a. If p ∈ V(I), Lemma (2.9) of this chapter gives us g such that g(p) = 1

and g(p′) = 0 for all p′ �= p in V(I). Prove that the coset [g] ∈ A
is a right eigenvector of mf and that the corresponding eigenspace has
dimension 1. Conclude that all eigenspaces of mf are of this form.

b. If v = (v1, . . . , vm)t is a right eigenvector of mf corresponding to the
eigenvalue f(p) for p as in part a, then prove that the polynomial

g̃ = v1x
α(1) + · · · + vmxα(m)

satisfies g̃(p) �= 0 and g̃(p′) = 0 for p′ �= p in V(I).
c. Show that we can take the polynomial g of part a to be

g =
1

g̃(p)
g̃.

Thus, once we know the solution p and the corresponding right
eigenvector of mf , we get an explicit formula for the polynomial g.

d. Given V(I) = {p1, . . . , pm} and the corresponding right eigenvectors of
mf , we get polynomials g1, . . . , gm such that gi(pj) = 1 if i = j and 0
otherwise. Each gi is given explicitly by the formula in part c. The in-
terpolation problem asks to find a polynomial h which takes preassigned
values λ1, . . . , λm at the points p1, . . . , pm. This means h(pi) = λi for
all i. Prove that one choice for h is given by

h = λ1g1 + · · · + λmgm.
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Exercise 18. Let A = k[x1, . . . , xn]/I, where I is zero-dimensional. In
Maple, MulMatrix computes the matrix of the multiplication map mxi rel-
ative to a monomial basis computed by SetBasis. However, in §5, we will
need to compute the matrix of mf , where f ∈ k[x1, . . . , xn] is an arbitrary
polynomial. Develop and code a Maple procedure getmatrix which, given
a polynomial f , a monomial basis B, a Gröbner basis G, and a term or-
der, produces the matrix of mf relative to B. You will use getmatrix in
Exercise 6 of §5.

§5 Real Root Location and Isolation

The eigenvalue techniques for solving equations from §4 are only a first way
that we can use the results of §2 for finding roots of systems of polynomial
equations. In this section we will discuss a second application that is more
sophisticated. We follow a recent paper of Pedersen, Roy, and Szpirglas
[PRS] and consider the problem of determining the real roots of a system
of polynomial equations with coefficients in a field k ⊂ R (usually k =
Q or a finite extension field of Q). The underlying principle here is that
for many purposes, explicitly determined, bounded regions R ⊂ R

n, each
guaranteed to contain exactly one solution of the system can be just as
useful as a collection of numerical approximations. Note also that if we
wanted numerical approximations, once we had such an R, the job of finding
that one root would generally be much simpler than a search for all of the
roots! (Think of the choice of the initial approximation for an iterative
method such as Newton-Raphson.) For one-variable equations, this is also
the key idea of the interval arithmetic approach to computation with real
algebraic numbers (see [Mis]). We note that there are also other methods
known for locating and isolating the real roots of a polynomial system (see
§8.8 of [BW] for a different type of algorithm).

To define our regions R in R
n, we will use polynomial functions in the

following way. Let h ∈ k[x1, . . . , xn] be a nonzero polynomial. The real
points where h takes the value 0 form the variety V(h)∩R

n. We will denote
this by VR(h) in the discussion that follows. In typical cases, VR(h) will
be a hypersurface—an (n− 1)-dimensional variety in R

n. The complement
of VR(h) in R

n is the union of connected open subsets on which h takes
either all positive values or all negative values. We obtain in this way a
decomposition of R

n as a disjoint union

(5.1) R
n = H+ ∪ H− ∪ VR(h),

where H+ = {a ∈ R
n : h(a) > 0}, and similarly for H−. Here are some

concrete examples.
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Exercise 1.
a. Let h = (x2 +y2−1)(x2 +y2−2) in R[x, y]. Identify the regions H+ and

H− for this polynomial. How many connected components does each of
them have?

b. In this part of the exercise, we will see how regions like rectangular
“boxes” in R

n may be obtained by intersecting several regions H+ or
H−. For instance, consider the box

R = {(x, y) ∈ R
2 : a < x < b, c < y < d}.

If h1(x, y) = (x − a)(x − b) and h2(x, y) = (y − c)(y − d), show that

R = H−
1 ∩ H−

2 = {(x, y) ∈ R
2 : hi(x, y) < 0, i = 1, 2}.

What do H+
1 , H+

2 and H+
1 ∩ H+

2 look like in this example?

Given a region R like the box from part b of the above exercise, and
a system of equations, we can ask whether there are roots of the system
in R. The results of [PRS] give a way to answer questions like this, using
an extension of the results of §2 and §4. Let I be a zero-dimensional ideal
and let B be the monomial basis of A = k[x1, . . . , xn]/I for any monomial
order. Recall that the trace of a square matrix is just the sum of its diagonal
entries. This gives a mapping Tr from d× d matrices to k. Using the trace,
we define a symmetric bilinear form S by the rule:

S(f, g) = Tr(mf · mg) = Tr(mfg)

(the last equality follows from part b of Proposition (4.2)).

Exercise 2.
a. Prove that S defined as above is a symmetric bilinear form on A, as

claimed. That is, show that S is symmetric, meaning S(f, g) = S(g, f)
for all f, g ∈ A, and linear in the first variable, meaning

S(cf1 + f2, g) = cS(f1, g) + S(f2, g)

for all f1, f2, g ∈ A and all c ∈ k. It follows that S is linear in the
second variable as well.

b. Given a symmetric bilinear form S on a vector space V with basis
{v1, . . . , vd}, the matrix of S is the d× d matrix M = (S(vi, vj)). Show
that the matrix of S with respect to the monomial basis B = {xα(i)}
for A is given by:

M = (Tr(mxα(i)xα(j))) = (Tr(mxα(i)+α(j))).

Similarly, given the polynomial h ∈ k[x1, . . . , xn] used in the decompo-
sition (5.1), we can construct a bilinear form

Sh(f, g) = Tr(mhf · mg) = Tr(mhfg).

Let Mh be the matrix of Sh with respect to B.
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Exercise 3. Show that Sh is also a symmetric bilinear form on A. What
is the i, j entry of Mh?

Since we assume k ⊂ R, the matrices M and Mh are symmetric matrices
with real entries. It follows from the real spectral theorem (or principal axis
theorem) of linear algebra that all of the eigenvalues of M and Mh will be
real . For our purposes the exact values of these eigenvalues are much less
important than their signs.

Under a change of basis defined by an invertible matrix Q, the matrix
M of a symmetric bilinear form S is taken to QtMQ. There are two fun-
damental invariants of S under such changes of basis—the signature σ(S),
which equals the difference between the number of positive eigenvalues and
the number of negative eigenvalues of M , and the rank ρ(S), which equals
the rank of the matrix M . (See, for instance, Chapter 6 of [Her] for more
information on the signature and rank of bilinear forms.)

We are now ready to state the main result of this section.

(5.2) Theorem. Let I be a zero-dimensional ideal generated by polyno-
mials in k[x1, . . . , xn] (k ⊂ R), so that V(I) ⊂ C

n is finite. Then, for
h ∈ k[x1, . . . , xn], the signature and rank of the bilinear form Sh satisfy:

σ(Sh) = #{a ∈ V(I) ∩ R
n : h(a) > 0} − #{a ∈ V(I) ∩ R

n : h(a) < 0}
ρ(Sh) = #{a ∈ V(I) : h(a) �= 0}.

Proof. This result is essentially a direct consequence of the reasoning
leading up to Theorem (4.5) of this chapter. However, to give a full proof
it is necessary to take into account the multiplicities of the points in
V(I) as defined in Chapter 4. Hence we will only sketch the proof in
the special case when I is radical. By Theorem (2.10), this means that
V(I) = {p1, . . . , pm}, where m is the dimension of the algebra A. Given
the basis B = {[xα(i)]} of A, Proposition (4.7) implies that (pα(i)

j ) is an
invertible matrix.

By Theorem (4.5), for any f , we know that the set of eigenvalues of mf

coincides with the set of values of the f at the points in V(I). The key new
fact we will need is that using the structure of the algebra A, for each point
p in V(I) it is possible to define a positive integer m(p) (the multiplicity)
so that

∑
p m(p) = d = dim(A), and so that (t − f(p))m(p) is a factor of

the characteristic polynomial of mf . (See §2 of Chapter 4 for the details.)
By definition, the i, j entry of the matrix Mh is equal to

Tr(mh·xα(i)·xα(j)).

The trace of the multiplication operator equals the sum of its eigenvalues.
By the previous paragraph, the sum of these eigenvalues is

(5.3)
∑

p∈V(I)

m(p)h(p)pα(i)pα(j),
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where pα(i) denotes the value of the monomial xα(i) at the point p. List
the points in V(I) as p1, . . . , pd, where each point p in V(I) is repeated
m(p) times consecutively. Let U be the d × d matrix whose jth column
consists of the values p

α(i)
j for i = 1, . . . , d. From (5.3), we obtain a matrix

factorization Mh = UDU t, where D is the diagonal matrix with entries
h(p1), . . . , h(pd). The equation for the rank follows since U is invertible.
Both U and D may have nonreal entries. However, the equation for the
signature follows from this factorization as well, using the facts that Mh has
real entries and that the nonreal points in V(I) occur in complex conjugate
pairs. We refer the reader to Theorem 2.1 of [PRS] for the details.

The theorem may be used to determine how the real points in V(I) are
distributed among the sets H+, H− and VR(h) determined by h in (5.1).
Theorem (5.2) implies that we can count the number of real points of
V(I) in H+ and in H− as follows. The signature of Sh gives the difference
between the number of solutions in H+ and the number in H−. By the same
reasoning, computing the signature of Sh2 we get the number of solutions
in H+ ∪ H−, since h2 > 0 at every point of H+ ∪ H−. From this we can
recover #V(I) ∩ H+ and #V(I) ∩ H− by simple arithmetic. Finally, we
need to find #V(I) ∩ VR(h), which is done in the following exercise.

Exercise 4. Using the form S1 in addition to Sh and Sh2 , show that
the three signatures σ(S), σ(Sh), σ(Sh2) give all the information needed to
determine #V(I) ∩ H+, #V(I) ∩ H− and #V(I) ∩ VR(h).

From the discussion above, it might appear that we need to compute
the eigenvalues of the forms Sh to count the numbers of solutions of the
equations in H+ and H−, but the situation is actually much better than
that. Namely, the entire calculation can be done symbolically, so no recourse
to numerical methods is needed. The reason is the following consequence
of the classical Descartes Rule of Signs.

(5.4) Proposition. Let Mh be the matrix of Sh, and let

ph(t) = det(Mh − tI)

be its characteristic polynomial. Then the number of positive eigenvalues of
Sh is equal to the number of sign changes in the sequence of coefficients of
ph(t). (In counting sign changes, any zero coefficients are ignored.)

Proof. See Proposition 2.8 of [PRS], or Exercise 5 below for a proof.
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For instance, consider the real symmetric matrix

M =

⎛⎜⎜⎝
3 1 5 4
1 2 6 9
5 6 7 −1
4 9 −1 0

⎞⎟⎟⎠ .

The characteristic polynomial of M is t4 − 12t3 − 119t2 + 1098t − 1251,
giving three sign changes in the sequence of coefficients. Thus M has three
positive eigenvalues, as one can check.

Exercise 5. The usual version of Descartes’ Rule of Signs asserts that the
number of positive roots of a polynomial p(t) in R[t] equals the number of
sign changes in its coefficient sequence minus a non-negative even integer.
a. Using this, show that the number of negative roots equals the number

of sign changes in the coefficient sequence of p(−t) minus another non-
negative even integer.

b. Deduce (5.4) from Descartes’ Rule of Signs, part a, and the fact that all
eigenvalues of Mh are real.

Using these ideas to find and isolate roots requires a good searching
strategy. We will not consider such questions here. For an example showing
how to certify the presence of exactly one root of a system in a given region,
see Exercise 6 below.

The problem of counting real solutions of polynomial systems in regions
R ⊂ R

n defined by several polynomial inequalities and/or equalities has
been considered in general by Ben-Or, Kozen, and Reif (see, for instance,
[BKR]). Using the signature calculations as above gives an approach which
is very well suited to parallel computation, and whose complexity is rela-
tively manageable. We refer the interested reader to [PRS] once again for
a discussion of these issues.

For a recent exposition of the material in this section, we refer the reader
to Chapter 6 of [GRRT]. One topic not mentioned in our treatment is
semidefinite programming. As explained in Chapter 7 of [Stu5], this has
interesting relations to real solutions and sums of squares.

ADDITIONAL EXERCISES FOR §5

Exercise 6. In this exercise, you will verify that the equations

0 = x2 − 2xz + 5

0 = xy2 + yz + 1

0 = 3y2 − 8xz

have exactly one real solution in the rectangular box

R = {(x, y, z) ∈ R
3 : 0 < x < 1, −3 < y < −2, 3 < z < 4}.
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a. Using grevlex monomial order with x > y > z, compute a Gröbner
basis G for the ideal I generated by the above equations. Also find the
corresponding monomial basis B for C[x, y, z]/I.

b. Implement the following Maple procedure getform which computes the
matrix of the symmetric bilinear form Sh.

getform := proc(h,B,G,torder)

# computes the matrix of the symmetric bilinear form S_h,
# with respect to the monomial basis B for the quotient
# ring. G should be a Groebner basis with respect to
# torder.

local d,M,i,j,p,q;

d:=nops(B);
M := array(symmetric,1..d,1..d);
for i to d do
for j from i to d do
p := normalf(h*B[i]*B[j],G,torder);
M[i,j]:=trace(getmatrix(p,B,G,torder));
end do;

end do;
return eval(M)
end proc:

The call to getmatrix computes the matrix mhxα(i)xα(j) with respect to
the monomial basis B = {xα(i)} for A. Coding getmatrix was Exercise
18 in §4 of this chapter.

c. Then, using

h := x*(x-1);

S := getform(h,B,G,tdeg(x,y,z));

compute the matrix of the bilinear form Sh for h = x(x − 1).
d. The actual entries of this 8 × 8 rational matrix are rather complicated

and not very informative; we will omit reproducing them. Instead, use

charpoly(S,t);

to compute the characteristic polynomial of the matrix. Your result
should be a polynomial of the form:

t8 − a1t
7 + a2t

6 + a3t
5 − a4t

4 − a5t
3 − a6t

2 + a7t + a8,

where each ai is a positive rational number.
e. Use Proposition (5.4) to show that Sh has 4 positive eigenvalues. Since

a8 �= 0, t = 0 is not an eigenvalue. Explain why the other 4 eigenvalues
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are strictly negative, and conclude that Sh has signature

σ(Sh) = 4 − 4 = 0.

f. Use the second equation in Theorem (5.2) to show that h is nonvanishing
on the real or complex points of V(I). Hint: Show that Sh has rank 8.

g. Repeat the computation for h2:

T := getform(h*h,B,G,tdeg(x,y,z));

and show that in this case, we get a second symmetric matrix with ex-
actly 5 positive and 3 negative eigenvalues. Conclude that the signature
of Sh2 (which counts the total number of real solutions in this case) is

σ(Sh2) = 5 − 3 = 2.

h. Using Theorem (5.2) and combining these two calculations, show that

#V(I) ∩ H+ = #V(I) ∩ H− = 1,

and conclude that there is exactly one real root between the two planes
x = 0 and x = 1 in R

3. Our desired region R is contained in this infinite
slab in R

3. What can you say about the other real solution?
i. Complete the exercise by applying Theorem (5.2) to polynomials in y

and z chosen according to the definition of R.

Exercise 7. Use the techniques of this section to determine the number
of real solutions of

0 = x2 + 2y2 − y − 2z

0 = x2 − 8y2 + 10z − 1

0 = x2 − 7yz

in the box R = {(x, y, z) ∈ R
3 : 0 < x < 1, 0 < y < 1, 0 < z < 1}. (This

is the same system as in Exercise 6 of §1. Check your results using your
previous work.)

Exercise 8. The alternative real root isolation methods discussed in §8.8
of [BW] are based on a result for real one-variable polynomials known as
Sturm’s Theorem. Suppose p(t) ∈ Q[t] is a polynomial with no multiple
roots in C. Then GCD(p(t), p′(t)) = 1, and the sequence of polynomials
produced by

p0(t) = p(t)

p1(t) = p′(t)

pi(t) = −rem(pi−1(t), pi−2(t), t), i ≥ 2

(so pi(t) is the negative of the remainder on division of pi−1(t) by pi−2(t) in
Q[t]) will eventually reach a nonzero constant, and all subsequent terms will
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be zero. Let pm(t) be the last nonzero term in the sequence. This sequence
of polynomials is called the Sturm sequence associated to p(t).
a. (Sturm’s Theorem) If a < b in R, and neither is a root of p(t) = 0, then

show that the number of real roots of p(t) = 0 in the interval [a, b] is
the difference between the number of sign changes in the sequence of
real numbers p0(a), p1(a), . . . , pm(a) and the number of sign changes in
the sequence p0(b), p1(b), . . . , pm(b). (Sign changes are counted in the
same way as for Descartes’ Rule of Signs.)

b. Give an algorithm based on part a that takes as input a polynomial
p(t) ∈ Q[t] with no multiple roots in C, and produces as output a
collection of intervals [ai, bi] in R, each of which contains exactly one
root of p. Hint: Start with an interval guaranteed to contain all the
real roots of p(t) = 0 (see Exercise 3 of §1, for instance) and bisect
repeatedly, using Sturm’s Theorem on each subinterval.



Chapter 3

Resultants

In Chapter 2, we saw how Gröbner bases can be used in Elimination Theory.
An alternate approach to the problem of elimination is given by resultants.
The resultant of two polynomials is well known and is implemented in many
computer algebra systems. In this chapter, we will review the properties
of the resultant and explore its generalization to several polynomials in
several variables. This multipolynomial resultant can be used to eliminate
variables from three or more equations and, as we will see at the end of the
chapter, it is a surprisingly powerful tool for finding solutions of equations.

§1 The Resultant of Two Polynomials

Given two polynomials f, g ∈ k[x] of positive degree, say

(1.1)
f = a0x

l + · · · + al, a0 �= 0, l > 0

g = b0x
m + · · · + bm, b0 �= 0, m > 0.

Then the resultant of f and g, denoted Res(f, g), is the (l + m) × (l + m)
determinant

(1.2) Res(f, g) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1 a0

a2 a1
. . .

... a2
. . . a0

al

...
. . . a1

al a2
. . .

...
al︸ ︷︷ ︸

m columns

b0
b1 b0

b2 b1
. . .

... b2
. . . b0

bm

...
. . . b1

bm b2
. . .

...
bm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

l columns

77
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where the blank spaces are filled with zeros. When we want to emphasize
the dependence on x, we will write Res(f, g, x) instead of Res(f, g). As a
simple example, we have

(1.3) Res(x3 + x− 1, 2x2 + 3x + 7) = det

⎛⎜⎜⎜⎜⎝
1 0 2 0 0
0 1 3 2 0
1 0 7 3 2
−1 1 0 7 3

0 −1 0 0 7

⎞⎟⎟⎟⎟⎠ = 159.

Exercise 1. Show that Res(f, g) = (−1)lmRes(g, f). Hint: What happens
when you interchange two columns of a determinant?

Three basic properties of the resultant are:

• (Integer Polynomial) Res(f, g) is an integer polynomial in the coefficients
of f and g.
• (Common Factor) Res(f, g) = 0 if and only if f and g have a nontrivial

common factor in k[x].
• (Elimination) There are polynomials A, B ∈ k[x] such that A f + B g =

Res(f, g). The coefficients of A and B are integer polynomials in the
coefficients of f and g.

Proofs of these properties can be found in [CLO], Chapter 3, §5. The Integer
Polynomial property says that there is a polynomial

Resl,m ∈ Z[u0, . . . , ul, v0, . . . , vm]

such that if f, g are as in (1.1), then

Res(f, g) = Resl,m(a0, . . . , al, b0, . . . , bm).

Over the complex numbers, the Common Factor property tells us that
f, g ∈ C[x] have a common root if and only if their resultant is zero. Thus
(1.3) shows that x3 + x − 1 and 2x2 + 3x + 7 have no common roots in C

since 159 �= 0, even though we don’t know the roots themselves.
To understand the Elimination property, we need to explain how resul-

tants can be used to eliminate variables from systems of equations. As an
example, consider the equations

f = xy − 1 = 0

g = x2 + y2 − 4 = 0.

Here, we have two variables to work with, but if we regard f and g as
polynomials in x whose coefficients are polynomials in y, we can compute
the resultant with respect to x to obtain

Res(f, g, x) = det

⎛⎝ y 0 1
−1 y 0

0 −1 y2 − 4

⎞⎠ = y4 − 4y2 + 1.
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By the Elimination property, there are polynomials A, B ∈ k[x, y] with
A · (xy − 1) + B · (x2 + y2 − 4) = y4 − 4y2 + 1. This means Res(f, g, x)
is in the elimination ideal 〈f, g〉 ∩ k[y] as defined in §1 of Chapter 2, and it
follows that y4 − 4y2 + 1 vanishes at any common solution of f = g = 0.
Hence, by solving y4 − 4y2 + 1 = 0, we can find the y-coordinates of the
solutions. Thus resultants relate nicely to what we did in Chapter 2.

Exercise 2. Use resultants to find all solutions of the above equations f =
g = 0. Also find the solutions using Res(f, g, y). In Maple, the command
for resultant is resultant.

More generally, if f and g are any polynomials in k[x, y] in which x
appears to a positive power, then we can compute Res(f, g, x) in the same
way. Since the coefficients are polynomials in y, the Integer Polynomial
property guarantees that Res(f, g, x) is again a polynomial in y. Thus, we
can use the resultant to eliminate x, and as above, Res(f, g, x) is in the
elimination ideal 〈f, g〉 ∩ k[y] by the Elimination property. For a further
discussion of the connection between resultants and elimination theory, the
reader should consult Chapter 3 of [CLO] or Chapter XI of [vdW].

One interesting aspect of the resultant is that it can be expressed in
many different ways. For example, given f, g ∈ k[x] as in (1.1), suppose
their roots are ξ1, . . . , ξl and η1, . . . , ηm respectively (note that these roots
might lie in some bigger field). Then one can show that the resultant is
given by

(1.4)

Res(f, g) = am
0 bl

0

l∏
i=1

m∏
j=1

(ξi − ηj)

= am
0

l∏
i=1

g(ξi)

= (−1)lmbl
0

m∏
j=1

f(ηj).

A proof of this is given in the exercises at the end of the section.

Exercise 3.
a. Show that the three products on the right hand side of (1.4) are all

equal. Hint: g = b0(x − η1) · · · (x − ηm).
b. Use (1.4) to show that Res(f1f2, g) = Res(f1, g)Res(f2, g).

The formulas given in (1.4) may seem hard to use since they involve the
roots of f or g. But in fact there is a relatively simple way to compute
the above products. For example, to understand the formula Res(f, g) =
am
0
∏l

i=1 g(ξi), we will use the techniques of §2 of Chapter 2. Thus, consider
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the quotient ring Af = k[x]/〈f〉, and let the multiplication map mg be
defined by

mg([h]) = [g] · [h] = [gh] ∈ Af ,

where [h] ∈ Af is the coset of h ∈ k[x]. If we think in terms of remainders
on division by f , then we can regard Af as consisting of all polynomials h
of degree < l, and under this interpretation, mg(h) is the remainder of gh
on division by f . Then we can compute the resultant Res(f, g) in terms of
mg as follows.

(1.5) Proposition. Res(f, g) = am
0 det(mg : Af → Af ).

Proof. Note that Af is a vector space over k of dimension l (this is clear
from the remainder interpretation of Af ). Further, as explained in §2 of
Chapter 2, mg : Af → Af is a linear map. Recall from linear algebra that
the determinant det(mg) is defined to be the determinant of any matrix M
representing the linear map mg. Since M and mg have the same eigenvalues,
it follows that det(mg) is the product of the eigenvalues of mg, counted with
multiplicity.

In the special case when g(ξ1), . . . , g(ξl) are distinct, we can prove our
result using the theory of Chapter 2. Namely, since {ξ1, . . . , ξl} = V(f), it
follows from Theorem (4.5) of Chapter 2 that the numbers g(ξ1), . . . , g(ξl)
are the eigenvalues of mg. Since these are distinct and Af has dimension
l, it follows that the eigenvalues have multiplicity one, so that det(mg) =
g(ξ1) · · · g(ξl), as desired. The general case will be covered in the exercises
at the end of the section.

Exercise 4. For f = x3 + x− 1 and g = 2x2 + 3x + 7 as in (1.3), use the
basis {1, x, x2} of Af (thinking of Af in terms of remainders) to show

Res(f, g) = 12 det(mg) = det

⎛⎝ 7 2 3
3 5 −1
2 3 5

⎞⎠ = 159.

Note that the 3× 3 determinant in this example is smaller than the 5× 5
determinant required by the definition (1.2). In general, Proposition (1.5)
tells us that Res(f, g) can be represented as an l× l determinant, while the
definition of resultant uses an (l + m) × (l + m) matrix. The getmatrix
procedure from Exercise 18 of Chapter 2, §4 can be used to construct
the smaller matrix. Also, by interchanging f and g, we can represent the
resultant using an m × m determinant.

For the final topic of this section, we will discuss a variation on Res(f, g)
which will be important for §2. Namely, instead of using polynomials in the
single variable x, we could instead work with homogeneous polynomials in
variables x, y. Recall that a polynomial is homogeneous if every term has
the same total degree. Thus, if F, G ∈ k[x, y] are homogeneous polynomials
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of total degrees l, m respectively, then we can write

(1.6)
F = a0x

l + a1x
l−1y + · · · + aly

l

G = b0x
m + b1x

m−1y + · · · + bmym.

Note that a0 or b0 (or both) might be zero. Then we define Res(F, G) ∈ k
using the same determinant as in (1.2).

Exercise 5. Show that Res(xl, ym) = 1.

If we homogenize the polynomials f and g of (1.1) using appropriate
powers of y, then we get F and G as in (1.6). In this case, it is obvious that
Res(f, g) = Res(F, G). However, going the other way is a bit more subtle,
for if F and G are given by (1.6), then we can dehomogenize by setting
y = 1, but we might fail to get polynomials of the proper degrees since a0
or b0 might be zero. Nevertheless, the resultant Res(F, G) still satisfies the
following basic properties.

(1.7) Proposition. Fix positive integers l and m.
a. There is a polynomial Resl,m ∈ Z[a0, . . . , al, b0, . . . , bm] such that

Res(F, G) = Resl,m(a0, . . . , al, b0, . . . , bm)

for all F, G as in (1.6).
b. Over the field of complex numbers, Res(F, G) = 0 if and only if the

equations F = G = 0 have a solution (x, y) �= (0, 0) in C
2 (this is

called a nontrivial solution).

Proof. The first statement is an obvious consequence of the determinant
formula for the resultant. As for the second, first observe that if (u, v) ∈ C

2

is a nontrivial solution, then so is (λu, λv) for any nonzero complex number
λ. We now break up the proof into three cases.

First, if a0 = b0 = 0, then note that the resultant vanishes and that we
have the nontrivial solution (x, y) = (1, 0). Next, suppose that a0 �= 0 and
b0 �= 0. If Res(F, G) = 0, then, when we dehomogenize by setting y = 1, we
get polynomials f, g ∈ C[x] with Res(f, g) = 0. Since we’re working over
the complex numbers, the Common Factor property implies f and g must
have a common root x = u, and then (x, y) = (u, 1) is the desired nontrivial
solution. Going the other way, if we have a nontrival solution (u, v), then
our assumption a0b0 �= 0 implies that v �= 0. Then (u/v, 1) is also a
solution, which means that u/v is a common root of the dehomogenized
polynomials. From here, it follows easily that Res(F, G) = 0.

The final case is when exactly one of a0, b0 is zero. The argument is a
bit more complicated and will be covered in the exercises at the end of the
section.
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We should also mention that many other properties of the resultant,
along with proofs, are contained in Chapter 12 of [GKZ].

ADDITIONAL EXERCISES FOR §1

Exercise 6. As an example of how resultants can be used to eliminate
variables from equations, consider the parametric equations

x = 1 + s + t + st

y = 2 + s + st + t2

z = s + t + s2.

Our goal is to eliminate s, t from these equations to find an equation
involving only x, y, z.
a. Use Gröbner basis methods to find the desired equation in x, y, z.
b. Use resultants to find the desired equations. Hint: Let f = 1 + s + t +

st − x, g = 2 + s + st + t2 − y and h = s + t + s2 − z. Then eliminate
t by computing Res(f, g, t) and Res(f, h, t). Now what resultant do you
use to get rid of s?

c. How are the answers to parts a and b related?

Exercise 7. Let f, g be as in (1.1). If we divide g by f , we get g = q f + r,
where deg(r) < deg(g) = m. Then, assuming that r is nonconstant, show
that

Res(f, g) = a
m−deg(r)
0 Res(f, r).

Hint: Let g1 = g − (b0/a0)xm−lf and use column operations to subtract
b0/a0 times the first l columns in the f part of the matrix from the columns
in the g part. Expanding repeatedly along the first row gives Res(f, g) =
a

m−deg(g1)
0 Res(f, g1). Continue this process to obtain the desired formula.

Exercise 8. Our definition of Res(f, g) requires that f, g have positive
degrees. Here is what to do when f or g is constant.
a. If deg(f) > 0 but g is a nonzero constant b0, show that the determinant

(1.2) still makes sense and gives Res(f, b0) = bl
0.

b. If deg(g) > 0 and a0 �= 0, what is Res(a0, g)? Also, what is Res(a0, b0)?
What about Res(f, 0) or Res(0, g)?

c. Exercise 7 assumes that the remainder r has positive degree. Show that
the formula of Exercise 7 remains true even if r is constant.

Exercise 9. By Exercises 1, 7 and 8, resultants have the following three
properties: Res(f, g) = (−1)lmRes(g, f); Res(f, b0) = bl

0; and Res(f, g) =
a

m−deg(r)
0 Res(f, r) when g = q f + r. Use these properties to describe an

algorithm for computing resultants. Hint: Your answer should be similar
to the Euclidean algorithm.
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Exercise 10. This exercise will give a proof of (1.4).
a. Given f, g as usual, define res(f, g) = am

0
∏l

i=1 g(ξi), where ξ1, . . . , ξl

are the roots of f . Then show that res(f, g) has the three properties of
resultants mentioned in Exercise 9.

b. Show that the algorithm for computing res(f, g) is the same as the
algorithm for computing Res(f, g), and conclude that the two are equal
for all f, g.

Exercise 11. Let f = a0x
l + a1x

l−1 + · · · + al ∈ k[x] be a polynomial
with a0 �= 0, and let Af = k[x]/〈f〉. Given g ∈ k[x], let mg : Af → Af be
multiplication by g.
a. Use the basis {1, x, . . . , xl−1} of Af (so we are thinking of Af as

consisting of remainders) to show that the matrix of mx is

Cf =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 −al/a0
1 0 · · · 0 −al−1/a0
0 1 · · · 0 −al−2/a0
...

...
. . .

...
...

0 0 · · · 1 −a1/a0

⎞⎟⎟⎟⎟⎟⎠ .

This matrix (or more commonly, its transpose) is called the companion
matrix of f .

b. If g = b0x
m + · · · + bm, then explain why the matrix of mg is given by

g(Cf ) = b0C
m
f + b1C

m−1
f + · · · + bmI,

where I is the l × l identity matrix. Hint: By Proposition (4.2) of
Chapter 2, the map sending g ∈ k[x] to mg ∈ Ml×l(k) is a ring
homomorphism.

c. Conclude that Res(f, g) = am
0 det(g(Cf )).

Exercise 12. In Proposition (1.5), we interpreted Res(f, g) as the de-
terminant of a linear map. It turns out that the original definition (1.2)
of resultant has a similar interpretation. Let Pn denote the vector space
of polynomials of degree ≤ n. Since such a polynomial can be written
a0x

n + · · · + an, it follows that {xn, . . . , 1} is a basis of Pn.
a. Given f, g as in (1.1), show that if (A, B) ∈ Pm−1⊕Pl−1, then A f +B g

is in Pl+m−1. Conclude that we get a linear map Φf,g : Pm−1 ⊕ Pl−1 →
Pl+m−1.

b. If we use the bases {xm−1, . . . , 1} of Pm−1, {xl−1, . . . , 1} of Pl−1 and
{xl+m−1, . . . , 1} of Pl+m−1, show that the matrix of the linear map
Φf,g from part a is exactly the matrix used in (1.2). Thus, Res(f, g) =
det(Φf,g), provided we use the above bases.

c. If Res(f, g) �= 0, conclude that every polynomial of degree ≤ l + m − 1
can be written uniquely as A f +B g where deg(A) < m and deg(B) < l.
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Exercise 13. In the text, we only proved Proposition (1.5) in the special
case when g(ξ1), . . . , g(ξl) are distinct. For the general case, suppose f =
a0(x − ξ1)a1 · · · (x − ξr)ar , where ξ1, . . . , ξr are distinct. Then we want to
prove that det(mg) =

∏r
i=1 g(ξi)ai .

a. First, suppose that f = (x − ξ)a. In this case, we can use the basis
of Af given by {(x − ξ)a−1, . . . , x − ξ, 1} (as usual, we think of Af as
consisting of remainders). Then show that the matrix of mg with respect
to the above basis is upper triangular with diagonal entries all equal to
g(ξ). Conclude that det(mg) = g(ξ)a. Hint: Write g = b0x

m + · · ·+ bm

in the form g = c0(x − ξ)m + · · · + cm−1(x − ξ) + cm by replacing x
with (x− ξ) + ξ and using the binomial theorem. Then let x = ξ to get
cm = g(ξ).

b. In general, when f = a0(x − ξ1)a1 · · · (x − ξr)ar , show that there is a
well-defined map

Af −→ (k[x]/〈(x − ξ1)a1〉) ⊕ · · · ⊕ (k[x]/〈(x − ξr)ar 〉)
which preserves sums and products. Hint: This is where working with
cosets is a help. It is easy to show that the map sending [h] ∈ Af to
[h] ∈ k[x]/〈(x − ξi)ai〉 is well-defined since (x − ξi)ai divides f .

c. Show that the map of part b is a ring isomorphism. Hint: First show
that the map is one-to-one, and then use linear algebra and a dimension
count to show it is onto.

d. By considering multiplication by g on

(k[x]/〈(x − ξ1)a1〉) ⊕ · · · ⊕ (k[x]/〈(x − ξr)ar 〉)
and using part a, conclude that det(mg) =

∏r
i=1 g(ξi)ai as desired.

Exercise 14. This exercise will complete the proof of Proposition (1.7).
Suppose that F, G are given by (1.6) and assume a0 �= 0 and b0 = · · · =
br−1 = 0 but br �= 0. If we dehomogenize by setting y = 1, we get
polynomials f, g of degree l, m − r respectively.
a. Show that Res(F, G) = ar

0Res(f, g).
b. Show that Res(F, G) = 0 if and only F = G = 0 has a nontrivial

solution. Hint: Modify the argument given in the text for the case when
a0 and b0 were both nonzero.

§2 Multipolynomial Resultants

In §1, we studied the resultant of two homogeneous polynomials F, G in
variables x, y. Generalizing this, suppose we are given n + 1 homogeneous
polynomials F0, . . . , Fn in variables x0, . . . , xn, and assume that each Fi

has positive total degree. Then we get n + 1 equations in n + 1 unknowns:

(2.1) F0(x0, . . . , xn) = · · · = Fn(x0, . . . , xn) = 0.



§2. Multipolynomial Resultants 85

Because the Fi are homogeneous of positive total degree, these equations
always have the solution x0 = · · · = xn = 0, which we call the trivial solu-
tion. Hence, the crucial question is whether there is a nontrivial solution.
For the rest of this chapter, we will work over the complex numbers, so
that a nontrivial solution will be a point in C

n+1 \ {(0, . . . , 0)}.
In general, the existence of a nontrivial solution depends on the coef-

ficients of the polynomials F0, . . . , Fn: for most values of the coefficients,
there are no nontrivial solutions, while for certain special values, they exist.

One example where this is easy to see is when the polynomials Fi are all
linear, i.e., have total degree 1. Since they are homogeneous, the equations
(2.1) can be written in the form:

(2.2)

F0 = c00x0 + · · · + c0nxn = 0

...

Fn = cn0x0 + · · · + cnnxn = 0.

This is an (n + 1) × (n + 1) system of linear equations, so that by linear
algebra, there is a nontrivial solution if and only if the determinant of the
coefficient matrix vanishes. Thus we get the single condition det(cij) = 0
for the existence of a nontrivial solution. Note that this determinant is a
polynomial in the coefficients cij .

Exercise 1. There was a single condition for a nontrivial solution of (2.2)
because the number of equations (n + 1) equaled the number of unknowns
(also n + 1). When these numbers are different, here is what can happen.
a. If we have r < n + 1 linear equations in n + 1 unknowns, explain why

there is always a nontrivial solution, no matter what the coefficients are.
b. When we have r > n + 1 linear equations in n + 1 unknowns, things

are more complicated. For example, show that the equations

F0 = c00x + c01y = 0

F1 = c10x + c11y = 0

F2 = c20x + c21y = 0

have a nontrivial solution if and only if the three conditions

det
(

c00 c01
c10 c11

)
= det

(
c00 c01
c20 c21

)
= det

(
c10 c11
c20 c21

)
= 0

are satisfied.

In general, when we have n + 1 homogeneous polynomials F0, . . . , Fn ∈
C[x0, . . . , xn], we get the following Basic Question: What conditions must
the coefficients of F0, . . . , Fn satisfy in order that F0 = · · · = Fn = 0 has
a nontrivial solution? To state the answer precisely, we need to introduce
some notation. Suppose that di is the total degree of Fi, so that Fi can be
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written

Fi =
∑

|α|=di

ci,αxα.

For each possible pair of indices i, α, we introduce a variable ui,α. Then,
given a polynomial P ∈ C[ui,α], we let P (F0, . . . , Fn) denote the number
obtained by replacing each variable ui,α in P with the corresponding coef-
ficient ci,α. This is what we mean by a polynomial in the coefficients of the
Fi. We can now answer our Basic Question.

(2.3) Theorem. If we fix positive degrees d0, . . . , dn, then there is a
unique polynomial Res ∈ Z[ui,α] which has the following properties:
a. If F0, . . . , Fn ∈ C[x0, . . . , xn] are homogeneous of degrees d0, . . . , dn,

then the equations (2.1) have a nontrivial solution over C if and only if
Res(F0, . . . , Fn) = 0.

b. Res(xd0
0 , . . . , xdn

n ) = 1.
c. Res is irreducible, even when regarded as a polynomial in C[ui,α].

Proof. A complete proof of the existence of the resultant is beyond the
scope of this book. See Chapter 13 of [GKZ] or §78 of [vdW] for proofs.
At the end of this section, we will indicate some of the intuition behind
the proof when we discuss the geometry of the resultant. The question of
uniqueness will be considered in Exercise 5.

We call Res(F0, . . . , Fn) the resultant of F0, . . . , Fn. Sometimes we write
Resd0,...,dn instead of Res if we want to make the dependence on the degrees
more explicit. In this notation, if each Fi =

∑n
j=0 cijxj is linear, then the

discussion following (2.2) shows that

Res1,...,1(F0, . . . , Fn) = det(cij).

Another example is the resultant of two polynomials, which was discussed in
§1. In this case, we know that Res(F0, F1) is given by the determinant (1.2).
Theorem (2.3) tells us that this determinant is an irreducible polynomial
in the coefficients of F0, F1.

Before giving further examples of multipolynomial resultants, we want to
indicate their usefulness in applications. Let’s consider the implicitization
problem, which asks for the equation of a parametric curve or surface. For
concreteness, suppose a surface is given parametrically by the equations

(2.4)

x = f(s, t)

y = g(s, t)

z = h(s, t),

where f(s, t), g(s, t), h(s, t) are polynomials (not necessarily homogeneous)
of total degrees d0, d1, d2. There are several methods to find the equation
p(x, y, z) = 0 of the surface described by (2.4). For example, Chapter 3 of
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[CLO] uses Gröbner bases for this purpose. We claim that in many cases,
multipolynomial resultants can be used to find the equation of the surface.

To use our methods, we need homogeneous polynomials, and hence we
will homogenize the above equations with respect to a third variable u. For
example, if we write f(s, t) in the form

f(s, t) = fd0(s, t) + fd0−1(s, t) + · · · + f0(s, t),

where fj is homogeneous of total degree j in s, t, then we get

F (s, t, u) = fd0(s, t) + fd0−1(s, t)u + · · · + f0(s, t)ud0 ,

which is now homogeneous in s, t, u of total degree d0. Similarly, g(s, t)
and h(s, t) homogenize to G(s, t, u) and H(s, t, u), and the equations (2.4)
become

(2.5) F (s, t, u) − xud0 = G(s, t, u) − yud1 = H(s, t, u) − zud2 = 0.

Note that x, y, z are regarded as coefficients in these equations.
We can now solve the implicitization problem for (2.4) as follows.

(2.6) Proposition. With the above notation, assume that the system of
homogeneous equations

fd0(s, t) = gd1(s, t) = hd2(s, t) = 0

has only the trivial solution. Then, for a given triple (x, y, z) ∈ C
3, the

equations (2.4) have a solution (s, t) ∈ C
2 if and only if

Resd0,d1,d2(F − xud0 , G − yud1 , H − zud2) = 0.

Proof. By Theorem (2.3), the resultant vanishes if and only if (2.5) has
a nontrivial solution (s, t, u). If u �= 0, then (s/u, t/u) is a solution to
(2.4). However, if u = 0, then (s, t) is a nontrivial solution of fd0(s, t) =
gd1(s, t) = hd2(s, t) = 0, which contradicts our hypothesis. Hence, u = 0
can’t occur. Going the other way, note that a solution (s, t) of (2.4) gives
the nontrivial solution (s, t, 1) of (2.5).

Since the resultant is a polynomial in the coefficients, it follows that

(2.7) p(x, y, z) = Resd0,d1,d2(F − xud0 , G − yud1 , H − zud2)

is a polynomial in x, y, z which, by Proposition (2.6), vanishes precisely
on the image of the parametrization. In particular, this means that the
parametrization covers all of the surface p(x, y, z) = 0, which is not
true for all polynomial parametrizations—the hypothesis that fd0(s, t) =
gd1(s, t) = hd2(s, t) = 0 has only the trivial solution is important here.

Exercise 2.
a. If fd0(s, t) = gd1(s, t) = hd2(s, t) = 0 has a nontrivial solution, show

that the resultant (2.7) vanishes identically. Hint: Show that (2.5) always
has a nontrivial solution, no matter what x, y, z are.
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b. Show that the parametric equations (x, y, z) = (st, s2t, st2) define the
surface x3 = yz. By part a, we know that the resultant (2.7) can’t be
used to find this equation. Show that in this case, it is also true that
the parametrization is not onto—there are points on the surface which
don’t come from any s, t.

We should point out that for some systems of equations, such as

x = 1 + s + t + st

y = 2 + s + 3t + st

z = s − t + st,

the resultant (2.7) vanishes identically by Exercise 2, yet a resultant can
still be defined—this is one of the sparse resultants which we will consider
in Chapter 7.

One difficulty with multipolynomial resultants is that they tend to be
very large expressions. For example, consider the system of equations given
by 3 quadratic forms in 3 variables:

F0 = c01x
2 + c02y

2 + c03z
2 + c04xy + c05xz + c06yz = 0

F1 = c11x
2 + c12y

2 + c13z
2 + c14xy + c15xz + c16yz = 0

F2 = c21x
2 + c22y

2 + c23z
2 + c24xy + c25xz + c26yz = 0.

Classically, this is a system of “three ternary quadrics”. By Theorem (2.3),
the resultant Res2,2,2(F0, F1, F2) vanishes exactly when this system has a
nontrivial solution in x, y, z.

The polynomial Res2,2,2 is very large: it has 18 variables (one for each
coefficient cij), and the theory of §3 will tell us that it has total degree
12. Written out in its full glory, Res2,2,2 has 21,894 terms (we are grateful
to Bernd Sturmfels for this computation). Hence, to work effectively with
this resultant, we need to learn some more compact ways of representing
it. We will study this topic in more detail in §3 and §4, but to whet the
reader’s appetite, we will now give one of the many interesting formulas for
Res2,2,2.

First, let J denote the Jacobian determinant of F0, F1, F2:

J = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂F0

∂x

∂F0

∂y

∂F0

∂z

∂F1

∂x

∂F1

∂y

∂F1

∂z

∂F2

∂x

∂F2

∂y

∂F2

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which is a cubic homogeneous polynomial in x, y, z. This means that the
partial derivatives of J are quadratic and hence can be written in the
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following form:

∂J

∂x
= b01x

2 + b02y
2 + b03z

2 + b04xy + b05xz + b06yz

∂J

∂y
= b11x

2 + b12y
2 + b13z

2 + b14xy + b15xz + b16yz

∂J

∂z
= b21x

2 + b22y
2 + b23z

2 + b24xy + b25xz + b26yz.

Note that each bij is a cubic polynomial in the cij . Then, by a classical for-
mula of Salmon (see [Sal], Art. 90), the resultant of three ternary quadrics
is given by the 6 × 6 determinant

(2.8) Res2,2,2(F0, F1, F2) =
−1
512

det

⎛⎜⎜⎜⎜⎜⎜⎝
c01 c02 c03 c04 c05 c06
c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
b01 b02 b03 b04 b05 b06
b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26

⎞⎟⎟⎟⎟⎟⎟⎠ .

Exercise 3.
a. Use (2.8) to explain why Res2,2,2 has total degree 12 in the variables

c01, . . . , c26.
b. Why is the fraction −1/512 needed in (2.8)? Hint: Compute the

resultant Res2,2,2(x2, y2, z2).
c. Use (2.7) and (2.8) to find the equation of the surface defined by the

equations

x = 1 + s + t + st

y = 2 + s + st + t2

z = s + t + s2.

Note that st = st + t2 = s2 = 0 has only the trivial solution, so that
Proposition (2.6) applies. You should compare your answer to Exercise 6
of §1.

In §4 we will study the general question of how to find a formula for a
given resultant. Here is an example which illustrates one of the methods
we will use. Consider the following system of three homogeneous equations
in three variables:

(2.9)

F0 = a1x + a2y + a3z = 0

F1 = b1x + b2y + b3z = 0

F2 = c1x
2 + c2y

2 + c3z
2 + c4xy + c5xz + c6yz = 0.

Since F0 and F1 are linear and F2 is quadratic, the resultant involved is
Res1,1,2(F0, F1, F2). We get the following formula for this resultant.
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(2.10) Proposition. Res1,1,2(F0, F1, F2) is given by the polynomial

a2
1b

2
2c3 − a2

1b2b3c6 + a2
1b

2
3c2 − 2a1a2b1b2c3 + a1a2b1b3c6

+ a1a2b2b3c5 − a1a2b
2
3c4 + a1a3b1b2c6 − 2a1a3b1b3c2 − a1a3b

2
2c5

+ a1a3b2b3c4 + a2
2b

2
1c3 − a2

2b1b3c5 + a2
2b

2
3c1 − a2a3b

2
1c6

+ a2a3b1b2c5 + a2a3b1b3c4 − 2a2a3b2b3c1 + a2
3b

2
1c2 − a2

3b1b2c4 + a2
3b

2
2c1.

Proof. Let R denote the above polynomial, and suppose we have a non-
trivial solution (x, y, z) of (2.9). We will first show that this forces a slight
variant of R to vanish. Namely, consider the six equations

(2.11) x · F0 = y · F0 = z · F0 = y · F1 = z · F1 = 1 · F2 = 0,

which we can write as
a1x

2 + 0 + 0 + a2xy + a3xz + 0 = 0
0 + a2y

2 + 0 + a1xy + 0 + a3yz = 0
0 + 0 + a3z

2 + 0 + a1xz + a2yz = 0
0 + b2y

2 + 0 + b1xy + 0 + b3yz = 0
0 + 0 + b3z

3 + 0 + b1xz + b2yz = 0
c1x

2 + c2y
2 + c3z

2 + c4xy + c5xz + c6yz = 0.

If we regard x2, y2, z2, xy, xz, yz as “unknowns”, then this system of six
linear equations has a nontrivial solution, which implies that the determi-
nant D of its coefficient matrix is zero. Using a computer, one easily checks
that the determinant is D = −a1R.

Thinking geometrically, we have proved that in the 12 dimensional space
C

12 with a1, . . . , c6 as coordinates, the polynomial D vanishes on the set

(2.12) {(a1, . . . , c6) : (2.9) has a nontrivial solution} ⊂ C
12.

However, by Theorem (2.3), having a nontrivial solution is equivalent to
the vanishing of the resultant, so that D vanishes on the set

V(Res1,1,2) ⊂ C
12.

This means that D ∈ I(V(Res1,1,2)) =
√〈Res1,1,2〉, where the last equality

is by the Nullstellensatz (see §4 of Chapter 1). But Res1,1,2 is irreducible,
which easily implies that

√〈Res1,1,2〉 = 〈Res1,1,2〉. This proves that D ∈
〈Res1,1,2〉, so that D = −a1R is a multiple of Res1,1,2. Irreducibility then
implies that Res1,1,2 divides either a1 or R. The results of §3 will tell us
that Res1,1,2 has total degree 5. It follows that Res1,1,2 divides R, and since
R also has total degree 5, it must be a constant multiple of Res1,1,2. By
computing the value of each when (F0, F1, F2) = (x, y, z2), we see that the
constant must be 1, which proves that R = Res1,1,2, as desired.

Exercise 4. Verify that R = 1 when (F0, F1, F2) = (x, y, z2).

The equations (2.11) may seem somewhat unmotivated. In §4 we will see
that there is a systematic reason for choosing these equations.
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The final topic of this section is the geometric interpretation of the resul-
tant. We will use the same framework as in Theorem (2.3). This means that
we consider homogeneous polynomials of degree d0, . . . , dn, and for each
monomial xα of degree di, we introduce a variable ui,α. Let M be the total
number of these variables, so that C

M is an affine space with coordinates
ui,α for all 0 ≤ i ≤ n and |α| = di. A point of C

M will be written (ci,α).
Then consider the “universal” polynomials

Fi =
∑

|α|=di

ui,αxα, i = 0, . . . , n.

Note that the coefficients of the xα are the variables ui,α. If we evaluate
F0, . . . , Fn at (ci,α) ∈ C

M , we get the polynomials F0, . . . , Fn, where Fi =∑
|α|=di

ci,αxα. Thus, we can think of points of C
M as parametrizing all

possible (n + 1)-tuples of homogeneous polynomials of degrees d0, . . . , dn.
To keep track of nontrivial solutions of these polynomials, we will use

projective space P
n(C), which we write as P

n for short. Recall the following:

• A point in P
n has homogeneous coordinates (a0, . . . , an), where ai ∈ C

are not all zero, and another set of coordinates (b0, . . . , bn) gives the
same point in P

n if and only if there is a complex number λ �= 0 such
that (b0, . . . , bn) = λ(a0, . . . , an).
• If F (x0, . . . , xn) is homogeneous of degree d and (b0, . . . , bn) =

λ(a0, . . . , an) are two sets of homogeneous coordinates for some point
p ∈ P

n, then

F (b0, . . . , bn) = λdF (a0, . . . , an).

Thus, we can’t define the value of F at p, but the equation F (p) = 0
makes perfect sense. Hence we get the projective variety V(F ) ⊂ P

n,
which is the set of points of P

n where F vanishes.

For a homogeneous polynomial F , notice that V(F ) ⊂ P
n is determined

by the nontrivial solutions of F = 0. For more on projective space, see
Chapter 8 of [CLO].

Now consider the product C
M×P

n. A point (ci,α, a0, . . . , an) ∈ C
M×P

n

can be regarded as n + 1 homogeneous polynomials and a point of P
n. The

“universal” polynomials Fi are actually polynomials on C
M × P

n, which
gives the subset W = V(F0, . . . , Fn). Concretely, this set is given by

(2.13)

W = {(ci,α, a0, . . . , an) ∈ C
M × P

n : (a0, . . . , an) is a

nontrivial solution of F0 = · · · = Fn = 0, where

F0, . . . , Fn are determined by (ci,α)}
= {all possible pairs consisting of a set of equations

F0 = · · · = Fn = 0 of degrees d0, . . . , dn and

a nontrivial solution of the equations}.
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Now comes the interesting part: there is a natural projection map

π : C
M × P

n −→ C
M

defined by π(ci,α, a0, . . . , an) = (ci,α), and under this projection, the
variety W ⊂ C

M × P
n maps to

π(W ) = {(ci,α) ∈ C
M : there is (a0, . . . , an) ∈ P

n

such that (ci,α, a0, . . . , an) ∈ W}
= {all possible sets of equations F0 = · · · = Fn = 0 of

degrees d1, . . . , dn which have a nontrivial solution}.
Note that when the degrees are (d0, d1, d2) = (1, 1, 2), π(W ) is as in (2.12).

The essential content of Theorem (2.3) is that the set π(W ) is defined
by the single irreducible equation Resd0,...,dn = 0. To prove this, first note
that π(W ) is a variety in C

M by the following result of elimination theory.

• (Projective Extension Theorem) Given a variety W ⊂ C
M × P

n and the
projection map π : C

M ×P
n → C

M , the image π(W ) is a variety in C
M .

(See, for example, §5 of Chapter 8 of [CLO].) This is one of the key reasons
we work with projective space (the corresponding assertion for affine space
is false in general). Hence π(W ) is defined by the vanishing of certain
polynomials on C

M . In other words, the existence of a nontrivial solution
of F0 = · · · = Fn = 0 is determined by polynomial conditions on the
coefficients of F0, . . . , Fn.

The second step in the proof is to show that we need only one polynomial
and that this polynomial is irreducible. Here, a rigorous proof requires
knowing certain facts about the dimension and irreducible components of
a variety (see, for example, [Sha], §6 of Chapter I). If we accept an intuitive
idea of dimension, then the basic idea is to show that the variety π(W ) ⊂
C

M is irreducible (can’t be decomposed into smaller pieces which are still
varieties) of dimension M−1. In this case, the theory will tell us that π(W )
must be defined by exactly one irreducible equation, which is the resultant
Resd0,...,dn = 0.

To prove this, first note that C
M × P

n has dimension M + n. Then
observe that W ⊂ C

M × P
n is defined by the n + 1 equations F0 = · · · =

Fn = 0. Intuitively, each equation drops the dimension by one, though
strictly speaking, this requires that the equations be “independent” in an
appropriate sense. In our particular case, this is true because each equation
involves a disjoint set of coefficient variables ui,α. Thus the dimension of
W is (M + n)− (n + 1) = M − 1. One can also show that W is irreducible
(see Exercise 9 below). From here, standard arguments imply that π(W )
is irreducible. The final part of the argument is to show that the map
W → π(W ) is one-to-one “most of the time”. Here, the idea is that if
F0 = · · · = Fn = 0 do happen to have a nontrivial solution, then this
solution is usually unique (up to a scalar multiple). For the special case
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when all of the Fi are linear, we will prove this in Exercise 10 below. For the
general case, see Proposition 3.1 of Chapter 3 of [GKZ]. Since W → π(W )
is onto and one-to-one most of the time, π(W ) also has dimension M − 1.

ADDITIONAL EXERCISES FOR §2

Exercise 5. To prove the uniqueness of the resultant, suppose there are
two polynomials Res and Res′ satisfying the conditions of Theorem (2.3).
a. Adapt the argument used in the proof of Proposition (2.10) to show that

Res divides Res′ and Res′ divides Res. Note that this uses conditions a
and c of the theorem.

b. Now use condition b of Theorem (2.3) to conclude that Res = Res′.

Exercise 6. A homogeneous polynomial in C[x] is written in the form
axd. Show that Resd(axd) = a. Hint: Use Exercise 5.

Exercise 7. When the hypotheses of Proposition (2.6) are satisfied, the
resultant (2.7) gives a polynomial p(x, y, z) which vanishes precisely on the
parametrized surface. However, p need not have the smallest possible total
degree: it can happen that p = qd for some polynomial q of smaller total
degree. For example, consider the (fairly silly) parametrization given by
(x, y, z) = (s, s, t2). Use the formula of Proposition (2.10) to show that in
this case, p is the square of another polynomial.

Exercise 8. The method used in the proof of Proposition (2.10) can be
used to explain how the determinant (1.2) arises from nontrivial solutions
F = G = 0, where F, G are as in (1.6). Namely, if (x, y) is a nontrivial
solution of (1.6), then consider the l + m equations

xm−1 · F = 0

xm−2y · F = 0

...

ym−1 · F = 0

xl−1 · G = 0

xl−2y · G = 0

...

yl−1 · G = 0.

Regarding this as a system of linear equations in unknowns xl+m−1,
xl+m−2y, . . . , yl+m−1, show that the coefficient matrix is exactly the trans-
pose of (1.2), and conclude that the determinant of this matrix must vanish
whenever (1.6) has a nontrivial solution.
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Exercise 9. In this exercise, we will give a rigorous proof that the set W
from (2.13) is irreducible of dimension M − 1. For convenience, we will
write a point of C

M as (F0, . . . , Fn).
a. If p = (a0, . . . , an) are fixed homogeneous coordinates for a point

p ∈ P
n, show that the map C

M → C
n+1 defined by (F0, . . . , Fn) �→

(F0(p), . . . , Fn(p)) is linear and onto. Conclude that the kernel of this
map has dimension M − n − 1. Denote this kernel by K(p).

b. Besides the projection π : C
M × P

n → C
M used in the text, we also

have a projection map C
M×P

n → P
n, which is projection on the second

factor. If we restrict this map to W , we get a map π̃ : W → P
n defined

by π̃(F0, . . . , Fn, p) = p. Then show that

π̃−1(p) = K(p) × {p},
where as usual π̃−1(p) is the inverse image of p ∈ P

n under π̃, i.e., the
set of all points of W which map to p under π̃. In particular, this shows
that π̃ : W → P

n is onto and that all inverse images of points are
irreducible (being linear subspaces) of the same dimension.

c. Use Theorem 8 of [Sha], §6 of Chapter 1, to conclude that W is
irreducible.

d. Use Theorem 7 of [Sha], §6 of Chapter 1, to conclude that W has di-
mension M − 1 = n (dimension of P

n) + M − n − 1 (dimension of the
inverse images).

Exercise 10. In this exercise, we will show that the map W → π(W ) is
usually one-to-one in the special case when F0, . . . , Fn have degree 1. Here,
we know that if Fi =

∑n
j=0 cijxj , then Res(F0, . . . , Fn) = det(A), where

A = (cij). Note that A is an (n + 1) × (n + 1) matrix.
a. Show that F0 = · · · = Fn = 0 has a nontrivial solution if and only if A

has rank < n + 1.
b. If A has rank n, prove that there is a unique nontrivial solution (up to

a scalar multiple).
c. Given 0 ≤ i, j ≤ n, let Ai,j be the n × n matrix obtained from A by

deleting row i and column j. Prove that A has rank < n if and only if
det(Ai,j) = 0 for all i, j. Hint: To have rank ≥ n, it must be possible
to find n columns which are linearly independent. Then, looking at the
submatrix formed by these columns, it must be possible to find n rows
which are linearly independent. This leads to one of the matrices Ai,j .

d. Let Y = V(det(Ai,j) : 0 ≤ i, j ≤ n). Show that Y ⊂ π(W ) and that
Y �= π(W ). Since π(W ) is irreducible, standard arguments show that Y
has dimension strictly smaller than π(W ) (see, for example, Corollary 2
to Theorem 4 of [Sha], §6 of Chapter I).

e. Show that if a, b ∈ W and π(a) = π(b) ∈ π(W ) \ Y , then a = b. Since
Y has strictly smaller dimension than π(W ), this is a precise version of
what we mean by saying the map W → π(W ) is “usually one-to-one”.
Hint: Use parts b and c.



§3. Properties of Resultants 95

§3 Properties of Resultants

In Theorem (2.3), we saw that the resultant Res(F0, . . . , Fn) vanishes if
and only if F0 = · · · = Fn = 0 has a nontrivial solution, and is irreducible
over C when regarded as a polynomial in the coefficients of the Fi. These
conditions characterize the resultant up to a constant, but they in no way
exhaust the many properties of this remarkable polynomial. This section
will contain a summary of the other main properties of the resultant. No
proofs will be given, but complete references will be provided.

Throughout this section, we will fix total degrees d0, . . . , dn > 0 and let
Res = Resd0,...,dn ∈ Z[ui,α] be the resultant polynomial from §2.

We begin by studying the degree of the resultant.

(3.1) Theorem. For a fixed j between 0 and n, Res is homogeneous in
the variables uj,α, |α| = dj , of degree d0 · · · dj−1dj+1 · · · dn. This means
that

Res(F0, . . . , λFj, . . . , Fn) = λd0···dj−1dj+1···dnRes(F0, . . . , Fn).

Furthermore, the total degree of Res is
∑n

j=0 d0 · · · dj−1dj+1 · · · dn.

Proof. A proof can be found in §2 of [Jou1] or Chapter 13 of [GKZ].

Exercise 1. Show that the final assertion of Theorem (3.1) is an immedi-
ate consequence of the formula for Res(F0, . . . , λFj, . . . , Fn). Hint: What
is Res(λF0, . . . , λFn)?

Exercise 2. Show that formulas (1.2) and (2.8) for Resl,m and Res2,2,2
satisfy Theorem (3.1).

We next study the symmetry and multiplicativity of the resultant.

(3.2) Theorem.
a. If i < j, then

Res(F0, . . . , Fi, . . . , Fj , . . . , Fn) =

(−1)d0···dnRes(F0, . . . , Fj , . . . , Fi, . . . , Fn),

where the bottom resultant is for degrees d0, . . . , dj , . . . , di, . . . , dn.
b. If Fj = F ′

jF
′′
j is a product of homogeneous polynomials of degrees d′

j

and d′′
j , then

Res(F0, . . . , Fj , . . . , Fn) =

Res(F0, . . . , F
′
j , . . . , Fn) · Res(F0, . . . , F

′′
j , . . . , Fn),

where the resultants on the bottom are for degrees d0, . . . , d
′
j , . . . , dn and

d0, . . . , d
′′
j , . . . , dn.
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Proof. A proof of the first assertion of the theorem can be found in §5 of
[Jou1]. As for the second, we can assume j = n by part a. This case will
be covered in Exercise 9 at the end of the section.

Exercise 3. Prove that formulas (1.2) and (2.8) for Resl,m and Res2,2,2
satisfy part a of Theorem (3.2).

Our next task is to show that the analog of Proposition (1.5) holds
for general resultants. We begin with some notation. Given homogeneous
polynomials F0, . . . , Fn ∈ C[x0, . . . , xn] of degrees d0, . . . , dn, let

(3.3)
fi(x0, . . . , xn−1) = Fi(x0, . . . , xn−1, 1)

F i(x0, . . . , xn−1) = Fi(x0, . . . , xn−1, 0).

Note that F 0, . . . , Fn−1 are homogeneous in C[x0, . . . , xn−1] of degrees
d0, . . . , dn−1.

(3.4) Theorem. If Res(F 0, . . . , Fn−1) �= 0, then the quotient ring A =
C[x0, . . . , xn−1]/〈f0, . . . , fn−1〉 has dimension d0 · · · dn−1 as a vector space
over C, and

Res(F0, . . . , Fn) = Res(F 0, . . . , Fn−1)dn det(mfn : A → A),

where mfn : A → A is the linear map given by multiplication by fn.

Proof. Although we will not prove this result (see [Jou1], §§2, 3 and 4 for
a complete proof), we will explain (non-rigorously) why the above formula
is reasonable. The first step is to show that the ring A is a finite-dimensional
vector space over C when Res(F 0, . . . , Fn−1) �= 0. The crucial idea is to
think in terms of the projective space P

n. We can decompose P
n into two

pieces using xn: the affine space C
n ⊂ P

n defined by xn = 1, and the
“hyperplane at infinity” P

n−1 ⊂ P
n defined by xn = 0. Note that the

other variables x0, . . . , xn−1 play two roles: they are ordinary coordinates
for C

n ⊂ P
n, and they are homogeneous coordinates for the hyperplane at

infinity.
The equations F0 = · · · = Fn−1 = 0 determine a projective variety V ⊂

P
n. By (3.3), f0 = · · · = fn−1 = 0 defines the “affine part” C

n ∩ V ⊂ V ,
while F 0 = · · · = Fn−1 = 0 defines the “part at infinity” P

n−1 ∩ V ⊂ V .
Hence, the hypothesis Res(F 0, . . . , Fn−1) �= 0 implies that there are no
solutions at infinity. In other words, the projective variety V is contained in
C

n ⊂ P
n. Now we can apply the following result from algebraic geometry:

• (Projective Varieties in Affine Space) If a projective variety in P
n is

contained in an affine space C
n ⊂ P

n, then the projective variety must
consist of a finite set of points.

(See, for example, [Sha], §5 of Chapter I.) Applied to V , this tells us that V
must be a finite set of points. Since C is algebraically closed and V ⊂ C

n
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is defined by f0 = · · · = fn−1 = 0, the Finiteness Theorem from §2
of Chapter 2 implies that A = C[x0, . . . , xn−1]/〈f0, . . . , fn−1〉 is finite
dimensional over C. Hence det(mfn : A → A) is defined, so that the
formula of the theorem makes sense.

We also need to know the dimension of the ring A. The answer is provided
by Bézout’s Theorem:

• (Bézout’s Theorem) If the equations F0 = · · · = Fn−1 = 0 have de-
grees d0, . . . , dn−1 and finitely many solutions in P

n, then the number
of solutions (counted with multiplicity) is d0 · · · dn−1.

(See [Sha], §2 of Chapter II.) This tells us that V has d0 · · · dn−1
points, counted with multiplicity. Because V ⊂ C

n is defined by f0 =
· · · = fn−1 = 0, Theorem (2.2) from Chapter 4 implies that the
number of points in V , counted with multiplicity, is the dimension of
A = C[x0, . . . , xn−1]/〈f0, . . . , fn−1〉. Thus, Bézout’s Theorem shows that
dim A = d0 · · · dn−1.

We can now explain why Res(F 0, . . . , Fn−1)dn det(mfn) behaves like a
resultant. The first step is to prove that det(mfn) vanishes if and only if
F0 = · · · = Fn = 0 has a solution in P

n. If we have a solution p, then
p ∈ V since F0(p) = · · · = Fn−1(p) = 0. But V ⊂ C

n, so we can write
p = (a0, . . . , an−1, 1), and fn(a0, . . . , an−1) = 0 since Fn(p) = 0. Then
Theorem (2.6) of Chapter 2 tells us that fn(a0, . . . , an−1) = 0 is an eigen-
value of mfn , which proves that det(mfn) = 0. Conversely, if det(mfn) = 0,
then one of its eigenvalues must be zero. Since the eigenvalues are fn(p)
for p ∈ V (Theorem (2.6) of Chapter 2 again), we have fn(p) = 0 for some
p. Writing p in the form (a0, . . . , an−1, 1), we get a nontrivial solution of
F0 = · · · = Fn = 0, as desired.

Finally, we will show that Res(F 0, . . . , Fn−1)dn det(mfn) has the homo-
geneity properties predicted by Theorem (3.1). If we replace Fj by λFj for
some j < n and λ ∈ C \ {0}, then λF j = λF j , and neither A nor mfn are
affected. Since

Res(F 0, . . . , λF j , . . . , Fn−1) =

λd0···dj−1dj+1···dn−1Res(F 0, . . . , F j , . . . , Fn−1),

we get the desired power of λ because of the exponent dn in the for-
mula of the theorem. On the other hand, if we replace Fn with λFn, then
Res(F 0, . . . , Fn−1) and A are unchanged, but mfn becomes mλfn = λmfn .
Since

det(λmfn) = λdim A det(mfn)

it follows that we get the correct power of λ because, as we showed above,
A has dimension d0 · · · dn−1.

This discussion shows that the formula Res(F 0, . . . , Fn−1)dn det(mfn)
has many of the properties of the resultant, although some important points
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were left out (for example, we didn’t prove that it is a polynomial in the
coefficients of the Fi). We also know what this formula means geometrically:
it asserts that the resultant is a product of two terms, one coming from
the behavior of F0, . . . , Fn−1 at infinity and the other coming from the
behavior of fn = Fn(x0, . . . , xn−1, 1) on the affine variety determined by
vanishing of f0, . . . , fn−1.

Exercise 4. When n = 2, show that Proposition (1.5) is a special case
of Theorem (3.4). Hint: Start with f, g as in (1.1) and homogenize to get
(1.6). Use Exercise 6 of §2 to compute Res(F ).

Exercise 5. Use Theorem (3.4) and getmatrix to compute the resultant
of the polynomials x2 + y2 + z2, xy + xz + yz, xyz.

The formula given in Theorem (3.4) is sometimes called the Poisson
Formula. Some further applications of this formula will be given in the
exercises at the end of the section.

In the special case when F0, . . . , Fn all have the same total degree d > 0,
the resultant Resd,...,d has degree dn in the coefficients of each Fi, and its
total degree is (n + 1)dn. Besides all of the properties listed so far, the
resultant has some other interesting properties in this case:

(3.5) Theorem. Res = Resd,...,d has the following properties:
a. If Fj are homogeneous of total degree d and Gi =

∑n
j=0 aijFj, where

(aij) is an invertible matrix with entries in C, then

Res(G0, . . . , Gn) = det(aij)dn

Res(F0, . . . , Fn).

b. If we list all monomials of total degree d as xα(1), . . . , xα(N) and pick
n + 1 distinct indices 1 ≤ i0 < · · · < in ≤ N , the bracket [i0 . . . in] is
defined to be the determinant

[i0 . . . in] = det(ui,α(ij)) ∈ Z[ui,α(j)].

Then Res is a polynomial in the brackets [i0 . . . in].

Proof. See Proposition 5.11.2 of [Jou1] for a proof of part a. For part b,
note that if (aij) has determinant 1, then part a implies Res(G0, . . . , Gn) =
Res(F0, . . . , Fn), so Res is invariant under the action of SL(n + 1, C) =
{A ∈ M(n+1)×(n+1)(C) : det(A) = 1} on (n + 1)-tuples of homogeneous
polynomials of degree d. If we regard the coefficients of the universal poly-
nomials Fi as an (n + 1) × N matrix (ui,α(j)), then this action is matrix
multiplication by elements of SL(n+1, C). Since Res is invariant under this
action, the First Fundamental Theorem of Invariant Theory (see [Stu1],
Section 3.2) asserts that Res is a polynomial in the (n + 1) × (n + 1)
minors of (ui,α(j)), which are exactly the brackets [i0 . . . in].
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Exercise 6. Show that each bracket [i0 . . . in] = det(ui,α(ij)) is invariant
under the action of SL(n + 1, C).

We should mention that the expression of Res in terms of the brackets
[i0 . . . in] is not unique. The different ways of doing this are determined
by the algebraic relations among the brackets, which are described by
the Second Fundamental Theorem of Invariant Theory (see Section 3.2
of [Stu1]).

As an example of Theorem (3.5), consider the resultant of three ternary
quadrics

F0 = c01x
2 + c02y

2 + c03z
2 + c04xy + c05xz + c06yz = 0

F1 = c11x
2 + c12y

2 + c13z
2 + c14xy + c15xz + c16yz = 0

F2 = c21x
2 + c22y

2 + c23z
2 + c24xy + c25xz + c26yz = 0.

In §2, we gave a formula for Res2,2,2(F0, F1, F2) as a certain 6× 6 determi-
nant. Using Theorem (3.5), we get quite a different formula. If we list the
six monomials of total degree 2 as x2, y2, z2, xy, xz, yz, then the bracket
[i0i1i2] is given by

[i0i1i2] = det

⎛⎝ c0i0 c0i1 c0i2

c1i0 c1i1 c1i2

c2i0 c2i1 c2i2

⎞⎠ .

By [KSZ], the resultant Res2,2,2(F0, F1, F2) is the following polynomial in
the brackets [i0i1i2]:

[145][246][356][456] − [146][156][246][356] − [145][245][256][356]

− [145][246][346][345] + [125][126][356][456] − 2[124][156][256][356]

− [134][136][246][456] − 2[135][146][346][246] + [235][234][145][456]

− 2[236][345][245][145] − [126]2[156][356] − [125]2[256][356]

− [134]2[246][346] − [136]2[146][246] − [145][245][235]2

− [145][345][234]2 + 2[123][124][356][456] − [123][125][346][456]

− [123][134][256][456] + 2[123][135][246][456] − 2[123][145][246][356]

− [124]2[356]2 + 2[124][125][346][356] − 2[124][134][256][356]

− 3[124][135][236][456] − 4[124][135][246][356] − [125]2[346]2

+ 2[125][135][246][346] − [134]2[256]2 + 2[134][135][246][256]

− 2[135]2[246]2 − [123][126][136][456] + 2[123][126][146][356]

− 2[124][136]2[256] − 2[125][126][136][346] + [123][125][235][456]

− 2[123][125][245][356] − 2[124][235]2[156] − 2[126][125][235][345]

− [123][234][134][456] + 2[123][234][346][145] − 2[236][134]2[245]

− 2[235][234][134][146] + 3[136][125][235][126] − 3[126][135][236][125]
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− [136][125]2[236] − [126]2[135][235] − 3[134][136][126][234]

+ 3[124][134][136][236] + [134]2[126][236] + [124][136]2[234]

− 3[124][135][234][235] + 3[134][234][235][125] − [135][234]2[125]

− [124][235]2[134] − [136]2[126]2 − [125]2[235]2

− [134]2[234]2 + 3[123][124][135][236] + [123][134][235][126]

+ [123][135][126][234] + [123][134][236][125] + [123][136][125][234]

+ [123][124][235][136] − 2[123]2[126][136] + 2[123]2[125][235]

− 2[123]2[134][234] − [123]4.

This expression for Res2,2,2 has total degree 4 in the brackets since the
resultant has total degree 12 and each bracket has total degree 3 in the cij.
Although this formula is rather complicated, its 68 terms are a lot simpler
than the 21,894 terms we get when we express Res2,2,2 as a polynomial in
the cij !

Exercise 7. When F0 = a0x
2 +a1xy +a2y

2 and F1 = b0x
2 + b1xy + b2y

2,
the only brackets to consider are [01] = a0b1 − a1b0, [02] = a0b2 − a2b0
and [12] = a1b2 − a2b1 (why?). Express Res2,2 as a polynomial in these
three brackets. Hint: In the determinant (1.2), expand along the first row
and then expand along the column containing the zero.

Theorem (3.5) also shows that the resultant of two homogeneous poly-
nomials F0(x, y), F1(x, y) of degree d can be written in terms of the
brackets [ij]. The resulting formula is closely related to the Bézout Formula
described in Chapter 12 of [GKZ].

For further properties of resultants, the reader should consult Chapter 13
of [GKZ] or Section 5 of [Jou1].

ADDITIONAL EXERCISES FOR §3

Exercise 8. The product formula (1.4) can be generalized to arbi-
trary resultants. With the same hypotheses as Theorem (3.4), let V =
V(f0, . . . , fn−1) be as in the proof of the theorem. Then

Res(F0, . . . , Fn) = Res(F 0, . . . , Fn−1)dn

∏
p∈V

fn(p)m(p),

where m(p) is the multiplicity of p in V . This concept is defined in [Sha], §2
of Chapter II, and §2 of Chapter 4. For this exercise, assume that V consists
of d0 · · · dn−1 distinct points (which means that all of the multiplicities
m(p) are equal to 1) and that fn takes distinct values on these points.
Then use Theorem (2.6) of Chapter 2, together with Theorem (3.4), to
show that the above formula for the resultant holds in this case.
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Exercise 9. In Theorem (3.4), we assumed that the field was C. It turns
out that the result is true over any field k. In this exercise, we will use this
version of the theorem to prove part b of Theorem (3.2) when Fn = F ′

nF ′′
n .

The trick is to choose k appropriately: we will let k be the field of rational
functions in the coefficients of F0, . . . , Fn−1, F

′
n, F ′′

n . This means we regard
each coefficient as a separate variable and then k is the field of rational
functions in these variables with coefficients in Q.
a. Explain why F 0, . . . , Fn−1 are the “universal” polynomials of degrees

d0, . . . , dn−1 in x0, . . . , xn−1, and conclude that Res(F 0, . . . , Fn−1) is
nonzero.

b. Use Theorem (3.4) (over the field k) to show that

Res(F0, . . . , Fn) = Res(F0, . . . , F
′
n) · Res(F0, . . . , F

′′
n ).

Notice that you need to use the theorem three times. Hint: mfn =
mf ′

n
◦ mf ′′

n
.

Exercise 10. The goal of this exercise is to generalize Proposition (2.10)
by giving a formula for Res1,1,d for any d > 0. The idea is to apply Theo-
rem (3.4) when the field k consists of rational functions in the coefficients
of F0, F1, F2 (so we are using the version of the theorem from Exercise 9).
For concreteness, suppose that

F0 = a1x + a2y + a3z = 0

F1 = b1x + b2y + b3z = 0.

a. Show that Res(F 0, F 1) = a1b2 − a2b1 and that the only solution of
f0 = f1 = 0 is

x0 =
a2b3 − a3b2

a1b2 − a2b1
y0 = − a1b3 − a3b1

a1b2 − a2b1
.

b. By Theorem (3.4), k[x, y]/〈f0, f1〉 has dimension one over C. Use
Theorem (2.6) of Chapter 2 to show that

det(mf2) = f2(x0, y0).

c. Since f2(x, y) = F2(x, y, 1), use Theorem (3.4) to conclude that

Res1,1,d(F0, F1, F2) = F2(a2b3 − a3b2,−(a1b3 − a3b1), a1b2 − a2b1).

Note that a2b3 − a3b2, a1b3 − a3b1, a1b2 − a2b1 are the 2 × 2 minors of
the matrix (

a1 a2 a3
b1 b2 b3

)
.

d. Use part c to verify the formula for Res1,1,2 given in Proposition (2.10).
e. Formulate and prove a formula similar to part c for the resultant

Res1,...,1,d. Hint: Use Cramer’s Rule. The formula (with proof) can be
found in Proposition 5.4.4 of [Jou1].
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Exercise 11. Consider the elementary symmetric functions σ1, . . . , σn ∈
C[x1, . . . , xn]. These are defined by

σ1 = x1 + · · · + xn

...

σr =
∑

i1<i2<···<ir

xi1xi2 · · · xir

...

σn = x1x2 · · · xn.

Since σi is homogeneous of total degree i, the resultant Res(σ1, . . . , σn)
is defined. The goal of this exercise is to prove that this resultant equals
−1 for all n > 1. Note that this exercise deals with n polynomials and n
variables rather than n + 1.
a. Show that Res(x + y, xy) = −1.
b. To prove the result for n > 2, we will use induction and Theorem (3.4).

Thus, let

σi = σi(x1, . . . , xn−1, 0)

σ̃i = σi(x1, . . . , xn−1, 1)

as in (3.3). Prove that σi is the ith elementary symmetric function in
x1, . . . , xn−1 and that σ̃i = σi + σi−1 (where σ0 = 1).

c. If A = C[x1, . . . , xn−1]/〈σ̃1, . . . , σ̃n−1〉, then use part b to prove that
the multiplication map mσ̃n : A → A is multiplication by (−1)n. Hint:
Observe that σ̃n = σn−1.

d. Use induction and Theorem (3.5) to show that Res(σ1, . . . , σn) = −1
for all n > 1.

Exercise 12. Using the notation of Theorem (3.4), show that

Res(F0, . . . , Fn−1, x
d
n) = Res(F 0, . . . , Fn−1)d.

§4 Computing Resultants

Our next task is to discuss methods for computing resultants. While Theo-
rem (3.4) allows one to compute resultants inductively (see Exercise 5 of §3
for an example), it is useful to have other tools for working with resultants.
In this section, we will give some further formulas for the resultant and
then discuss the practical aspects of computing Resd0,...,dn . We will begin
by generalizing the method used in Proposition (2.10) to find a formula for
Res1,1,2. Recall that the essence of what we did in (2.11) was to multiply
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each equation by appropriate monomials so that we got a square matrix
whose determinant we could take.

To do this in general, suppose we have F0, . . . , Fn ∈ C[x0, . . . , xn] of
total degrees d0, . . . , dn. Then set

d =
n∑

i=0

(di − 1) + 1 =
n∑

i=0

di − n.

For instance, when (d0, d1, d2) = (1, 1, 2) as in the example in Section 2,
one computes that d = 2, which is precisely the degree of the monomials
on the left hand side of the equations following (2.11).

Exercise 1. Monomials of total degree d have the following special prop-
erty which will be very important below: each such monomial is divisible
by xdi

i for at least one i between 0 and n. Prove this. Hint: Argue by
contradiction.

Now take the monomials xα = xa0
0 · · · xan

n of total degree d and divide
them into n + 1 sets as follows:

S0 = {xα : |α| = d, xd0
0 divides xα}

S1 = {xα : |α| = d, xd0
0 doesn’t divide xα but xd1

1 does}
...

Sn = {xα : |α| = d, xd0
0 , . . . , x

dn−1
n−1 don’t divide xα but xdn

n does}.
By Exercise 1, every monomial of total degree d lies in one of S0, . . . , Sn.
Note also that these sets are mutually disjoint. One observation we will
need is the following:

if xα ∈ Si, then we can write xα = xdi
i · xα/xdi

i .

Notice that xα/xdi
i is a monomial of total degree d − di since xα ∈ Si.

Exercise 2. When (d0, d1, d2) = (1, 1, 2), show that S0 = {x2, xy, xz},
S1 = {y2, yz}, and S2 = {z2}, where we are using x, y, z as variables.
Write down all of the xα/xdi

i in this case and see if you can find these
monomials in the equations (2.11).

Exercise 3. Prove that the number of monomials in Sn is exactly
d0 · · · dn−1. This fact will play an extremely important role in what fol-
lows. Hint: Given integers a0, . . . , an−1 with 0 ≤ ai ≤ di − 1, prove that
there is a unique an such that xa0

0 · · · xan
n ∈ Sn. Exercise 1 will also be

useful.
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Now we can write down a system of equations that generalizes (2.11).
Namely, consider the equations

(4.1)

xα/xd0
0 · F0 = 0 for all xα ∈ S0

...

xα/xdn
n · Fn = 0 for all xα ∈ Sn.

Exercise 4. When (d0, d1, d2) = (1, 1, 2), check that the system of
equations given by (4.1) is exactly what we wrote down in (2.11).

Since Fi has total degree di, it follows that xα/xdi
i · Fi has total degree

d. Thus each polynomial on the left side of (4.1) can be written as a linear
combination of monomials of total degree d. Suppose that there are N such
monomials. (In the exercises at the end of the section, you will show that N
equals the binomial coefficient

(
d+n

n

)
.) Then observe that the total number

of equations is the number of elements in S0 ∪ · · · ∪ Sn, which is also N .
Thus, regarding the monomials of total degree d as unknowns, we get a
system of N linear equations in N unknowns.

(4.2) Definition. The determinant of the coefficient matrix of the N ×N
system of equations given by (4.1) is denoted Dn.

For example, if we have

(4.3)

F0 = a1x + a2y + a3z = 0

F1 = b1x + b2y + b3z = 0

F2 = c1x
2 + c2y

2 + c3z
2 + c4xy + c5xz + c6yz = 0,

then the equations following (2.11) imply that

(4.4) D2 = det

⎛⎜⎜⎜⎜⎜⎜⎝
a1 0 0 a2 a3 0
0 a2 0 a1 0 a3
0 0 a3 0 a1 a2
0 b2 0 b1 0 b3
0 0 b3 0 b1 b2
c1 c2 c3 c4 c5 c6

⎞⎟⎟⎟⎟⎟⎟⎠ .

Exercise 5. When we have polynomials F0, F1 ∈ C[x, y] as in (1.6), show
that the coefficient matrix of (4.1) is exactly the transpose of the matrix
(1.2). Thus, D1 = Res(F0, F1) in this case.

Here are some general properties of Dn:
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Exercise 6. Since Dn is the determinant of the coefficient matrix of (4.1),
it is clearly a polynomial in the coefficients of the Fi.
a. For a fixed i between 0 and n, show that Dn is homogeneous in the

coefficients of Fi of degree equal to the number µi of elements in Si.
Hint: Show that replacing Fi by λFi has the effect of multiplying a
certain number (how many?) equations of (4.1) by λ. How does this
affect the determinant of the coefficient matrix?

b. Use Exercise 3 to show that Dn has degree d0 · · · dn−1 as a polynomial
in the coefficients of Fn. Hint: If you multiply each coefficient of Fn by
λ ∈ C, show that Dn gets multiplied by λd0···dn−1 .

c. What is the total degree of Dn? Hint: Exercise 19 will be useful.

Exercise 7. In this exercise, you will prove that Dn is divisible by the
resultant.
a. Prove that Dn vanishes whenever F0 = · · · = Fn = 0 has a nontrivial

solution. Hint: If the Fi all vanish at (c0, . . . , cn) �= (0, . . . , 0), then
show that the monomials of total degree d in c0, . . . , cn give a nontrivial
solution of (4.1).

b. Using the notation from the end of §2, we have V(Res) ⊂ C
N , where C

N

is the affine space whose variables are the coefficients ui,α of F0, . . . , Fn.
Explain why part a implies that Dn vanishes on V(Res).

c. Adapt the argument of Proposition (2.10) to prove that Dn ∈ 〈Res〉, so
that Res divides Dn.

Exercise 7 shows that we are getting close to the resultant, for it enables
us to write

(4.5) Dn = Res · extraneous factor.

We next show that the extraneous factor doesn’t involve the coefficients of
Fn and in fact uses only some of the coefficients of F0, . . . , Fn−1.

(4.6) Proposition. The extraneous factor in (4.5) is an integer polyno-
mial in the coefficients of F 0, . . . , Fn−1, where F i = Fi(x0, . . . , xn−1, 0).

Proof. Since Dn is a determinant, it is a polynomial in Z[ui,α], and we
also know that Res ∈ Z[ui,α]. Exercise 7 took place in C[ui,α] (because of
the Nullstellensatz), but in fact, the extraneous factor (let’s call it En) must
lie in Q[ui,α] since dividing Dn by Res produces at worst rational coeffi-
cients. Since Res is irreducible in Z[ui,α], standard results about polynomial
rings over Z imply that En ∈ Z[ui,α] (see Exercise 20 for details).

Since Dn = Res ·En is homogeneous in the coefficients of Fn, Exercise 20
at the end of the section implies that Res and En are also homogeneous
in these coefficients. But by Theorem (3.1) and Exercise 6, both Res and
Dn have degree d0 · · · dn−1 in the coefficients of Fn. It follows immediately
that En has degree zero in the coefficients of Fn, so that it depends only
on the coefficients of F0, . . . , Fn−1.
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To complete the proof, we must show that En depends only on the coef-
ficients of the F i. This means that coefficients of F0, . . . , Fn−1 with xn to
a positive power don’t appear in En. To prove this, we use the following
clever argument of Macaulay (see [Mac1]). As above, we think of Res, Dn

and En as polynomials in the ui,α, and we define the weight of ui,α to be
the exponent an of xn (where α = (a0, . . . , an)). Then, the weight of a
monomial in the ui,α, say um1

i1,α1
· · · uml

il,αl
, is defined to be the sum of the

weights of each uij ,αj multiplied by the corresponding exponents. Finally, a
polynomial in the ui,α is said to be isobaric if every term in the polynomial
has the same weight.

In Exercise 23 at the end of the section, you will prove that every term
in Dn has weight d0 · · · dn, so that Dn is isobaric. The same exercise will
show that Dn = Res ·En implies that Res and En are isobaric and that the
weight of Dn is the sum of the weights of Res and En. Hence, it suffices to
prove that En has weight zero (be sure you understand this). To simplify
notation, let ui be the variable representing the coefficient of xdi

i in Fi.
Note that u0, . . . , un−1 have weight zero while un has weight dn. Then
Theorems (2.3) and (3.1) imply that one of the terms of Res is

±ud1···dn
0 ud0d2···dn

1 · · · ud0···dn−1
n

(see Exercise 23). This term has weight d0 · · · dn, which shows that the
weight of Res is d0 · · · dn. We saw above that Dn has the same weight, and
it follows that En has weight zero, as desired.

Although the extraneous factor in (4.5) involves fewer coefficients than
the resultant, it can have a very large degree, as shown by the following
example.

Exercise 8. When di = 2 for 0 ≤ i ≤ 4, show that the resultant has total
degree 80 while D4 has total degree 420. What happens when di = 3 for
0 ≤ i ≤ 4? Hint: Use Exercises 6 and 19.

Notice that Proposition (4.6) also gives a method for computing the
resultant: just factor Dn into irreducibles, and the only irreducible factor
in which all variables appear is the resultant! Unfortunately, this method
is wildly impractical owing to the slowness of multivariable factorization
(especially for polynomials as large as Dn).

In the above discussion, the sets S0, . . . , Sn and the determinant Dn de-
pended on how the variables x0, . . . , xn were ordered. In fact, the notation
Dn was chosen to emphasize that the variable xn came last. If we fix i
between 0 and n − 1 and order the variables so that xi comes last, then
we get slightly different sets S0, . . . , Sn and a slightly different system of
equations (4.1). We will let Di denote the determinant of this system of
equations. (Note that there are many different orderings of the variables
for which xi is the last. We pick just one when computing Di.)
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Exercise 9. Show that Di is homogeneous in the coefficients of each Fj

and in particular, is homogeneous of degree d0 · · · di−1di+1 · · · dn in the
coefficients of Fi.

We can now prove the following classical formula for Res.

(4.7) Proposition. When F0, . . . , Fn are universal polynomials as at the
end of §2, the resultant is the greatest common divisor of the polynomials
D0, . . . , Dn in the ring Z[ui,α], i.e.,

Res = ±GCD(D0, . . . , Dn).

Proof. For each i, there are many choices for Di (corresponding to the
(n− 1)! ways of ordering the variables with xi last). We need to prove that
no matter which of the various Di we pick for each i, the greatest common
divisor of D0, . . . , Dn is the resultant (up to a sign).

By Exercise 7, we know that Res divides Dn, and the same is clearly
true for D0, . . . , Dn−1. Furthermore, the argument used in the proof of
Proposition (4.6) shows that Di = Res · Ei, where Ei ∈ Z[ui,α] doesn’t
involve the coefficients of Fi. It follows that

GCD(D0, . . . , Dn) = Res · GCD(E0, . . . , En).

Since each Ei doesn’t involve the variables ui,α, the GCD on the right
must be constant, i.e., an integer. However, since the coefficients of Dn are
relatively prime (see Exercise 10 below), this integer must be ±1, and we
are done. Note that GCD’s are only determined up to invertible elements,
and in Z[ui,α], the only invertible elements are ±1.

Exercise 10. Show that Dn(xd0
0 , . . . , xdn

n ) = ±1, and conclude that as
a polynomial in Z[ui,α], the coefficients of Dn are relatively prime. Hint:
If you order the monomials of total degree d appropriately, the matrix of
(4.1) will be the identity matrix when Fi = xdi

i .

While the formula of Proposition (4.7) is very pretty, it is not particularly
useful in practice. This brings us to our final resultant formula, which will
tell us exactly how to find the extraneous factor in (4.5). The key idea,
due to Macaulay, is that the extraneous factor is in fact a minor (i.e., the
determinant of a submatrix) of the N × N matrix from (4.1). To describe
this minor, we need to know which rows and columns of the matrix to
delete. Recall also that we can label the rows and columns of the matrix
of (4.1) using all monomials of total degree d =

∑n
i=0 di − n. Given such

a monomial xα, Exercise 1 implies that xdi
i divides xα for at least one i.

(4.8) Definition. Let d0, . . . , dn and d be as usual.
a. A monomial xα of total degree d is reduced if xdi

i divides xα for exactly
one i.
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b. D′
n is the determinant of the submatrix of the coefficient matrix of (4.1)

obtained by deleting all rows and columns corresponding to reduced
monomials xα.

Exercise 11. When (d0, d1, d2) = (1, 1, 2), we have d = 2. Show that all
monomials of degree 2 are reduced except for xy. Then show that the D′

3 =
a1 corresponding to the submatrix (4.4) obtained by deleting everything
but row 2 and column 4.

Exercise 12. Here are some properties of reduced monomials and D′
n.

a. Show that the number of reduced monomials is equal to
n∑

j=0

d0 · · · dj−1dj+1 · · · dn.

Hint: Adapt the argument used in Exercise 3.
b. Show that D′

n has the same total degree as the extraneous factor in (4.5)
and that it doesn’t depend on the coefficients of Fn. Hint: Use part a
and note that all monomials in Sn are reduced.

Macaulay’s observation is that the extraneous factor in (4.5) is exactly
D′

n up to a sign. This gives the following formula for the resultant as a
quotient of two determinants.

(4.9) Theorem. When F0, . . . , Fn are universal polynomials, the resul-
tant is given by

Res = ±Dn

D′
n

.

Further, if k is any field and F0, . . . , Fn ∈ k[x0, . . . , xn], then the above
formula for Res holds whenever D′

n �= 0.

Proof. This is proved in Macaulay’s paper [Mac2]. For a modern proof,
see [Jou2].

Exercise 13. Using x0, x1, x2 as variables with x0 regarded as last, write
Res1,2,2 as a quotient D0/D

′
0 of two determinants and write down the

matrices involved (of sizes 10 × 10 and 2 × 2 respectively). The reason for
using D0/D

′
0 instead of D2/D

′
2 will become clear in Exercise 2 of §5. A

similar example is worked out in detail in [BGW].

While Theorem (4.9) applies to all resultants, it has some disadvantages.
In the universal case, it requires dividing two very large polynomials, which
can be very time consuming, and in the numerical case, we have the awk-
ward situation where both D′

n and Dn vanish, as shown by the following
exercise.
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Exercise 14. Give an example of polynomials of degrees 1, 1, 2 for which
the resultant is nonzero yet the determinants D2 and D′

2 both vanish. Hint:
See Exercise 10.

Because of this phenomenon, it would be nice if the resultant could be
expressed as a single determinant, as happens with Resl,m. It is not known
if this is possible in general, though many special cases have been found. We
saw one example in the formula (2.8) for Res2,2,2. This can be generalized
(in several ways) to give formulas for Resl,l,l and Resl,l,l,l when l ≥ 2 (see
[GKZ], Chapter 3, §4 and Chapter 13, §1, and [Sal], Arts. 90 and 91). As an
example of these formulas, the following exercise will show how to express
Resl,l,l as a single determinant of size 2l2 − l when l ≥ 2.

Exercise 15. Suppose that F0, F1, F2 ∈ C[x, y, z] have total degree l ≥ 2.
Before we can state our formula, we need to create some auxiliary equations.
Given nonnegative integers a, b, c with a + b + c = l − 1, show that every
monomial of total degree l in x, y, z is divisible by either xa+1, yb+1, or
zc+1, and conclude that we can write F0, F1, F2 in the form

(4.10)

F0 = xa+1P0 + yb+1Q0 + zc+1R0

F1 = xa+1P1 + yb+1Q1 + zc+1R1

F2 = xa+1P2 + yb+1Q2 + zc+1R2.

There may be many ways of doing this. We will regard F0, F1, F2 as
universal polynomials and pick one particular choice for (4.10). Then set

Fa,b,c = det

⎛⎝ P0 Q0 R0
P1 Q1 R1
P2 Q2 R2

⎞⎠.

You should check that Fa,b,c has total degree 2l − 2.
Then consider the equations

(4.11)

xα · F0 = 0, xα of total degree l − 2

xα · F1 = 0, xα of total degree l − 2

xα · F2 = 0, xα of total degree l − 2

Fa,b,c = 0, xaybzc of total degree l − 1.

Each polynomial on the left hand side has total degree 2l − 2, and you
should prove that there are 2l2 − l monomials of this total degree. Thus we
can regard the equations in (4.11) as having 2l2 − l unknowns. You should
also prove that the number of equations is 2l2 − l. Thus the coefficient
matrix of (4.11), which we will denote Cl, is a (2l2 − l) × (2l2 − l) matrix.

In the following steps, you will prove that the resultant is given by

Resl,l,l(F0, F1, F2) = ± det(Cl).
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a. If (u, v, w) �= (0, 0, 0) is a solution of F0 = F1 = F2 = 0, show that
Fa,b,c vanishes at (u, v, w). Hint: Regard (4.10) as a system of equations
in unknowns xa+1, yb+1, zc+1.

b. Use standard arguments to show that Resl,l,l divides det(Cl).
c. Show that det(Cl) has degree l2 in the coefficients of F0. Show that the

same is true for F1 and F2.
d. Conclude that Resl,l,l is a multiple of det(Cl).
e. When (F0, F1, F2) = (xl, yl, zl), show that det(Cl) = ±1. Hint: Show

that Fa,b,c = xl−1−ayl−1−bzl−1−c and that all monomials of total degree
2l−2 not divisible by xl, yl, zl can be written uniquely in this form. Then
show that Cl is the identity matrix when the equations and monomials
in (4.11) are ordered appropriately.

f. Conclude that Resl,l,l(F0, F1, F2) = ± det(Cl).

Exercise 16. Use Exercise 15 to compute the following resultants.
a. Res(x2 + y2 + z2, xy + xz + yz, x2 + 2xz + 3y2).
b. Res(st+ su+ tu+u2(1−x), st+ su+ t2 +u2(2−y), s2 + su+ tu−u2z),

where the variables are s, t, u, and x, y, z are part of the coefficients.
Note that your answer should agree with what you found in Exercise 3
of §2.

Other determinantal formulas for resultants can be found in [DD], [SZ],
and [WZ]. We should also mention that besides the quotient formula given
in Theorem (4.9), there are other ways to represent resultants as quo-
tients. These go under a variety of names, including Morley forms [Jou1],
Bezoutians [ElM1], and Dixon matrices [KSY]. See [EmM] for a survey.
Computer implementations of resultants are available in [Lew] (for the
Dixon formulation of [KSY]) and [WEM] (for the Macaulay formulation of
Theorem (4.9)). Also, the Maple package MR implementing Theorem (4.9)
can be found at http://minimair.org/MR.mpl.

We will end this section with a brief discussion of some of the practical
aspects of computing resultants. All of the methods we’ve seen involve
computing determinants or ratios of determinants. Since the usual formula
for an N × N determinant involves N ! terms, we will need some clever
methods for computing large determinants.

As Exercise 16 illustrates, the determinants can be either numerical ,
with purely numerical coefficients (as in part a of the exercise), or sym-
bolic, with coefficients involving other variables (as in part b). Let’s begin
with numerical determinants. In most cases, this means determinants whose
entries are rational numbers, which can be reduced to integer entries by
clearing denominators. The key idea here is to reduce modulo a prime p and
do arithmetic over the finite field Fp of the integers mod p. Computing the
determinant here is easier since we are working over a field, which allows
us to use standard algorithms from linear algebra (using row and column
operations) to find the determinant. Another benefit is that we don’t have
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to worry how big the numbers are getting (since we always reduce mod p).
Hence we can compute the determinant mod p fairly easily. Then we do this
for several primes p1, . . . , pr and use the Chinese Remainder Theorem to
recover the original determinant. Strategies for how to choose the size and
number of primes pi are discussed in [CM] and [Man2], and the sparseness
properties of the matrices in Theorem (4.9) are exploited in [CKL].

This method works fine provided that the resultant is given as a single
determinant or a quotient where the denominator is nonzero. But when we
have a situation like Exercise 14, where the denominator of the quotient
is zero, something else is needed. One way to avoid this problem, due to
Canny [Can1], is to prevent determinants from vanishing by making some
coefficients symbolic. Suppose we have F0, . . . , Fn ∈ Z[x0, . . . , xn]. The
determinants Dn and D′

n from Theorem (4.9) come from matrices we will
denote Mn and M ′

n. Thus the formula of the theorem becomes

Res(F0, . . . , Fn) = ± det(Mn)
det(M ′

n)

provided det(M ′
n) �= 0. When det(M ′

n) = 0, Canny’s method is to
introduce a new variable u and consider the resultant

(4.12) Res(F0 − u xd0
0 , . . . , Fn − u xdn

n ).

Exercise 17. Fix an ordering of the monomials of total degree d. Since
each equation in (4.1) corresponds to such a monomial, we can order the
equations in the same way. The ordering of the monomials and equations
determines the matrices Mn and M ′

n. Then consider the new system of
equations we get by replacing Fi by Fi − u xdi

i in (4.1) for 0 ≤ i ≤ n.
a. Show that the matrix of the new system of equations is Mn−u I, where

I is the identity matrix of the same size as Mn.
b. Show that the matrix we get by deleting all rows and columns corre-

sponding to reduced monomials, show that the matrix we get is M ′
n−u I

where I is the appropriate identity matrix.

This exercise shows that the resultant (4.12) is given by

Res(F0 − u xd0
0 , . . . , Fn − u xdn

n ) = ± det(Mn − u I)
det(M ′

n − u I)

since det(M ′
n − u I) �= 0 (it is the characteristic polynomial of M ′

n). It
follows that the resultant Res(F0, . . . , Fn) is the constant term of the poly-
nomial obtained by dividing det(Mn − u I) by det(M ′

n − u I). In fact, as
the following exercise shows, we can find the constant term directly from
these polynomials:

Exercise 18. Let F and G be polynomials in u such that F is a multiple
of G. Let G = bru

r + higher order terms, where br �= 0. Then F = aru
r +

higher order terms. Prove that the constant term of F/G is ar/br.
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It follows that the problem of finding the resultant is reduced to comput-
ing the determinants det(Mn − u I) and det(M ′

n − u I). These are called
generalized characteristic polynomials in [Can1].

This brings us to the second part of our discussion, the computation
of symbolic determinants. The methods described above for the numerical
case don’t apply here, so something new is needed. One of the most interest-
ing methods involves interpolation, as described in [CM]. The basic idea is
that one can reconstruct a polynomial from its values at a sufficiently large
number of points. More precisely, suppose we have a symbolic determinant,
say involving variables u0, . . . , un. The determinant is then a polynomial
D(u0, . . . , un). Substituting ui = ai, where ai ∈ Z for 0 ≤ i ≤ n,
we get a numerical determinant, which we can evaluate using the above
method. Then, once we determine D(a0, . . . , an) for sufficiently many
points (a0, . . . , an), we can reconstruct D(u0, . . . , un). Roughly speaking,
the number of points chosen depends on the degree of D in the variables
u0, . . . , un. There are several methods for choosing points (a0, . . . , an),
leading to various interpolation schemes (Vandermonde, dense, sparse,
probabilistic) which are discussed in [CM]. We should also mention that
in the case of a single variable, there is a method of Manocha [Man2] for
finding the determinant without interpolation.

Now that we know how to compute resultants, it’s time to put them to
work. In the next section, we will explain how resultants can be used to
solve systems of polynomial equations. We should also mention that a more
general notion of resultant, called the sparse resultant , will be discussed in
Chapter 7.

ADDITIONAL EXERCISES FOR §4

Exercise 19. Show that the number of monomials of total degree d in
n + 1 variables is the binomial coefficient

(
d+n

n

)
.

Exercise 20. This exercise is concerned with the proof of Proposi-
tion (4.6).
a. Suppose that E ∈ Z[ui,α] is irreducible and nonconstant. If F ∈ Q[ui,α]

is such that D = EF ∈ Z[ui,α], then prove that F ∈ Z[ui,α]. Hint:
We can find a positive integer m such that mF ∈ Z[ui,α]. Then apply
unique factorization to m · D = E · mF .

b. Let D = EF in Z[ui,α], and assume that for some j, D is homogeneous
in the uj,α, |α| = dj . Then prove that E and F are also homogeneous
in the uj,α, |α| = dj .

Exercise 21. In this exercise and the next we will prove the formula for
Res2,2,2 given in equation (2.8). Here we prove two facts we will need.
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a. Prove Euler’s formula, which states that if F ∈ k[x0, . . . , xn] is
homogeneous of total degree d, then

d F =
n∑

i=0

xi
∂F

∂xi
.

Hint: First prove it for a monomial of total degree d and then use
linearity.

b. Suppose that

M = det

⎛⎝A1 A2 A3
B1 B2 B3
C1 C2 C3

⎞⎠,

where A1, . . . , C3 are in k[x0, . . . , xn]. Then prove that

∂M

∂xi
= det

⎛⎝ ∂A1/∂xi A2 A3
∂B1/∂xi B2 B3
∂C1/∂xi C2 C3

⎞⎠ + det

⎛⎝A1 ∂A2/∂xi A3
B1 ∂B2/∂xi B3
C1 ∂C2/∂xi C3

⎞⎠
+ det

⎛⎝A1 A2 ∂A3/∂xi

B1 B2 ∂B3/∂xi

C1 C2 ∂C3/∂xi

⎞⎠.

Exercise 22. We can now prove formula (2.8) for Res2,2,2. Fix F0, F1, F2 ∈
C[x, y, z] of total degree 2. As in §2, let J be the Jacobian determinant

J = det

⎛⎝ ∂F0/∂x ∂F0/∂y ∂F0/∂z
∂F1/∂x ∂F1/∂y ∂F1/∂z
∂F2/∂x ∂F2/∂y ∂F2/∂z

⎞⎠.

a. Prove that J vanishes at every nontrivial solution of F0 = F1 = F2 = 0.
Hint: Apply Euler’s formula (part a of Exercise 21) to F0, F1, F2.

b. Show that

x · J = 2 det

⎛⎝ F0 ∂F0/∂y ∂F0/∂z
F1 ∂F1/∂y ∂F1/∂z
F2 ∂F2/∂y ∂F2/∂z

⎞⎠,

and derive similar formulas for y · J and z · J . Hint: Use column
operations and Euler’s formula.

c. By differentiating the formulas from part b for x · J , y · J and z · J with
respect to x, y, z, show that the partial derivatives of J vanish at all
nontrivial solutions of F0 = F1 = F2 = 0. Hint: Part b of Exercise 21
and part a of this exercise will be useful.

d. Use part c to show that the determinant in (2.8) vanishes at all nontrivial
solutions of F0 = F1 = F2 = 0.

e. Now prove (2.8). Hint: The proof is similar to what we did in parts b–f
of Exercise 15.
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Exercise 23. This exercise will give more details needed in the proof of
Proposition (4.6). We will use the same terminology as in the proof. Let
the weight of the variable ui,α be w(ui,α).
a. Prove that a polynomial P (ui,α) is isobaric of weight m if and only if

P (λw(ui,α)ui,α) = λmP (ui,α) for all nonzero λ ∈ C.
b. Prove that if P = QR is isobaric, then so are Q and R. Also show that

the weight of P is the sum of the weights of Q and R. Hint: Use part a.
c. Prove that Dn is isobaric of weight d0 · · · dn. Hint: Assign the variables

x0, . . . , xn−1, xn respective weights 0, . . . , 0, 1. Let xγ be a monomial
with |γ| = d (which indexes a column of Dn), and let α ∈ Si (which
indexes a row in Dn). If the corresponding entry in Dn is cγ,α,i, then
show that

w(cγ,α,i) = w(xγ) − w(xα/xdi
i )

= w(xγ) − w(xα) +
{

0 i < n
dn i = n.

Note that xγ and xα range over all monomials of total degree d.
d. Use Theorems (2.3) and (3.1) to prove that if ui represents the coefficient

of xdi
i in Fi, then ±ud1···dn

0 · · · ud0···dn−1
n is in Res.

§5 Solving Equations via Resultants

In this section, we will show how resultants can be used to solve polynomial
systems. To start, suppose we have n homogeneous polynomials F1, . . . , Fn

of degree d1, . . . , dn in variables x0, . . . , xn. We want to find the nontrivial
solutions of the system of equations

(5.1) F1 = · · · = Fn = 0.

But before we begin our discussion of finding solutions, we first need to
review Bézout’s Theorem and introduce the important idea of genericity .

As we saw in §3, Bézout’s Theorem tells us that when (5.1) has finitely
many solutions in P

n, the number of solutions is d1 · · · dn, counting multi-
plicities. In practice, it is often convenient to find solutions in affine space.
In §3, we dehomogenized by setting xn = 1, but in order to be compatible
with Chapter 7, we now dehomogenize using x0 = 1. Hence, we define:

(5.2)
fi(x1, . . . , xn) = Fi(1, x1, . . . , xn)

F i(x1, . . . , xn) = Fi(0, x1, . . . , xn).

Note that fi has total degree at most di. Inside P
n, we have the affine space

C
n ⊂ P

n defined by x0 = 1, and the solutions of the affine equations
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(5.3) f1 = · · · = fn = 0

are precisely the solutions of (5.1) which lie in C
n ⊂ P

n. Similarly, the
nontrivial solutions of the homogeneous equations

F 1 = · · · = Fn = 0

may be regarded as the solutions which lie “at ∞”. We say that (5.3) has
no solutions at ∞ if F 1 = · · · = Fn = 0 has no nontrivial solutions. By
Theorem (2.3), this is equivalent to the condition

(5.4) Resd1,...,dn(F 1, . . . , Fn) �= 0.

The proof of Theorem (3.4) implies the following version of Bézout’s
Theorem.

(5.5) Theorem (Bézout’s Theorem). Assume that f1, . . . , fn are de-
fined as in (5.2) and that the affine equations (5.3) have no solutions at ∞.
Then these equations have d1 · · · dn solutions (counted with multiplicity),
and the ring

A = C[x1, . . . , xn]/〈f1, . . . , fn〉
has dimension d1 · · · dn as a vector space over C.

Note that this result does not hold for all systems of equations (5.3). In
general, we need a language which allows us to talk about properties which
are true for most but not necessarily all polynomials f1, . . . , fn. This brings
us to the idea of genericity.

(5.6) Definition. A property is said to hold generically for polynomials
f1, . . . , fn of degree at most d1, . . . , dn if there is a nonzero polynomial in
the coefficients of the fi such that the property holds for all f1, . . . , fn for
which the polynomial is nonvanishing.

Intuitively, a property of polynomials is generic if it holds for “most”
polynomials f1, . . . , fn. Our definition makes this precise by defining
“most” to mean that some polynomial in the coefficients of the fi is non-
vanishing. As a simple example, consider a single polynomial ax2 + bx + c.
We claim that the property “ax2 + bx + c = 0 has two solutions, counting
multiplicity” holds generically. To prove this, we must find a polynomial
in the coefficients a, b, c whose nonvanishing implies the desired property.
Here, the condition is easily seen to be a �= 0 since we are working over the
complex numbers.

Exercise 1. Show that the property “ax2 + bx + c = 0 has two distinct
solutions” is generic. Hint: By the quadratic formula, a(b2 − 4ac) �= 0
implies the desired property.
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A more relevant example is given by Theorem (5.5). Having no solutions
at ∞ is equivalent to the nonvanishing of the resultant (5.4), and since
Resd1,...,dn(F 1, . . . , Fn) is a nonzero polynomial in the coefficients of the
fi, it follows that this version of Bézout’s Theorem holds generically. Thus,
for most choices of the coefficients, the equations f1 = · · · = fn = 0
have d1 · · · dn solutions, counting multiplicity. In particular, if we choose
polynomials f1, . . . , fn with random coefficients (say given by some random
number generator), then, with a very high probability, Bézout’s Theorem
will hold for the corresponding system of equations.

In general, genericity comes in different “flavors”. For instance, consider
solutions of the equation ax2 + bx + c = 0:

• Generically, ax2 + bx + c = 0 has two solutions, counting multiplicity.
This happens when a �= 0.
• Generically, ax2 + bx + c = 0 has two distinct solutions. By Exercise 1,

this happens when a(b2 − 4ac) �= 0.

Similarly, there are different versions of Bézout’s Theorem. In particular,
one can strengthen Theorem (5.5) to prove that generically, the equations
f1 = · · · = fn = 0 have d1 · · · dn distinct solutions. This means that
generically, (5.3) has no solutions at ∞ and all solutions have multiplicity
one. A proof of this result will be sketched in Exercise 6 at the end of the
section.

With this genericity assumption on f1, . . . , fn, we know the number of
distinct solutions of (5.3), and our next task is to find them. We could
use the methods of Chapter 2, but it is also possible to find the solutions
using resultants. This section will describe two closely related methods,
u-resultants and hidden variables, for solving equations. The next section
will discuss further methods which use eigenvalues and eigenvectors.

The u-Resultant
The basic idea of van der Waerden’s u-resultant (see [vdW]) is to start with
the homogeneous equations F1 = · · · = Fn = 0 of (5.1) and add another
equation F0 = 0 to (5.1), so that we have n + 1 homogeneous equations in
n + 1 variables. We will use

F0 = u0x0 + · · · + unxn,

where u0, . . . , un are independent variables. Because the number of
equations equals the number of variables, we can form the resultant

Res1,d1,...,dn(F0, F1, . . . , Fn),

which is called the u-resultant . Note that the u-resultant is a polynomial
in u0, . . . , un.
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As already mentioned, we will sometimes work in the affine situa-
tion, where we dehomogenize F0, . . . , Fn to obtain f0, . . . , fn. This is the
notation of (5.2), and in particular, observe that

(5.7) f0 = u0 + u1x1 + · · · + unxn.

Because f0, . . . , fn and F0, . . . , Fn have the same coefficients, we write the
u-resultant as Res(f0, . . . , fn) instead of Res(F0, . . . , Fn) in this case.

Before we work out the general theory of the u-resultant, let’s do an
example. The following exercise will seem like a lot of work at first, but its
surprising result will be worth the effort.

Exercise 2. Let

F1 = x2
1 + x2

2 − 10x2
0 = 0

F2 = x2
1 + x1x2 + 2x2

2 − 16x2
0 = 0

be the intersection of a circle and an ellipse in P
2. By Bézout’s Theorem,

there are four solutions. To find the solutions, we add the equation

F0 = u0x0 + u1x1 + u2x2 = 0.

a. The theory of §4 computes the resultant using 10× 10 determinants D0,
D1 and D2. Using D0, Theorem (4.9) implies

Res1,2,2(F0, F1, F2) = ±D0

D′
0

.

If the variables are ordered x2, x1, x0, show that D0 = det(M0), where
M0 is the matrix

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 u2 0 0 0 0 0 0 0
0 u0 0 u2 u1 0 0 0 0 0
0 0 u0 u1 0 u2 0 0 0 0
0 0 0 u0 0 0 0 u1 u2 0
−10 0 0 0 1 1 0 0 0 0
0 −10 0 0 0 0 1 0 1 0
0 0 −10 0 0 0 0 1 0 1
−16 0 0 1 1 2 0 0 0 0
0 −16 0 0 0 0 1 1 2 0
0 0 −16 0 0 0 0 1 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Also show that D′
0 = det(M ′

0), where M ′
0 is given by

M ′
0 =

(
1 1
1 2

)
.

Hint: Using the order x2, x1, x0 gives S0 = {x3
0, x

2
0x1, x

2
0x2, x0x1x2},

S1 = {x0x
2
1, x

3
1, x

2
1x2} and S2 = {x0x

2
2, x1x

2
2, x

3
2}. The columns in M0

correspond to the monomials x3
0, x2

0x1, x2
0x2, x0x1x2, x0x

2
1, x0x

2
2, x3

1,
x2

1x2, x1x
2
2, x

3
2. Exercise 13 of §4 will be useful.
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b. Conclude that

Res1,2,2(F0, F1, F2) = ± (2u4
0 + 16u4

1 + 36u4
2 − 80u3

1u2 + 120u1u
3
2

− 18u2
0u

2
1 − 22u2

0u
2
2 + 52u2

1u
2
2 − 4u2

0u1u2).

c. Using a computer to factor this, show that Res1,2,2(F0, F1, F2) equals

(u0 + u1 − 3u2)(u0 − u1 + 3u2)(u2
0 − 8u2

1 − 2u2
2 − 8u1u2)

up to a constant. By writing the quadratic factor as u2
0 − 2(2u1 + u2)2,

conclude that Res1,2,2(F0, F1, F2) equals

(u0 +u1−3u2)(u0−u1 +3u2)(u0 +2
√

2u1 +
√

2u2)(u0−2
√

2u1−
√

2u2)

times a nonzero constant. Hint: If you are using Maple, let the resul-
tant be res and use the command factor(res). Also, the command
factor(res,RootOf(x^2-2)) will do the complete factorization.

d. The coefficients of the linear factors of Res1,2,2(F0, F1, F2) give four
points

(1, 1,−3), (1,−1, 3), (1, 2
√

2,
√

2), (1,−2
√

2,−
√

2)

in P
2. Show that these points are the four solutions of the equations

F1 = F2 = 0. Thus the solutions in P
2 are precisely the coefficients of

the linear factors of Res1,2,2(F0, F1, F2)!

In this exercise, all of the solutions lay in the affine space C
2 ⊂ P

2

defined by x0 = 1. In general, we will study the u-resultant from the affine
point of view. The key fact is that when all of the multiplicities are one,
the solutions of (5.3) can be found using Res1,d1,...,dn(f0, . . . , fn).

(5.8) Proposition. Assume that f1 = · · · = fn = 0 have total degrees
bounded by d1, . . . , dn, no solutions at ∞, and all solutions of multiplicity
one. If f0 = u0 + u1x1 + · · · + unxn, where u0, . . . , un are independent
variables, then there is a nonzero constant C such that

Res1,d1,...,dn(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)

f0(p).

Proof. Let C = Resd1,...,dn(F 1, . . . , Fn), which is nonzero by hypothesis.
Since the coefficients of f0 are the variables u0, . . . , un, we need to work over
the field K = C(u0, . . . , un) of rational functions in u0, . . . , un. Hence, in
this proof, we will work over K rather than over C. Fortunately, the results
we need are true over K, even though we proved them only over C.

Adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8) yields

Res1,d1,...,dn(f0, . . . , fn) = C det(mf0),

where mf0 : A → A is the linear map given by multiplication by f0 on the
quotient ring
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A = K[x1, . . . , xn]/〈f1, . . . , fn〉.
By Theorem (5.5), A is a vector space over K of dimension d1 · · · dn, and
Theorem (4.5) of Chapter 2 implies that the eigenvalues of mf0 are the
values f0(p) for p ∈ V(f1, . . . , fn). Since all multiplicities are one, there
are d1 · · · dn such points p, and the corresponding values f0(p) are distinct
since f0 = u0+u1x1 + · · ·+unxn and u0, . . . , un are independent variables.
Thus mf0 has d1 · · · dn distinct eigenvalues f0(p), so that

det(mf0) =
∏

p∈V(f1,...,fn)

f0(p).

This proves the proposition.

To see more clearly what the proposition says, let the points of
V(f1, . . . , fn) be pi for 1 ≤ i ≤ d1 · · · dn. If we write each point as
pi = (ai1, . . . , ain) ∈ C

n, then (5.7) implies

f0(pi) = u0 + ai1u1 + · · · + ainun,

so that by Proposition (5.8), the u-resultant is given by

(5.9) Res1,d1,...,dn(f0, . . . , fn) = C

d1···dn∏
i=1

(
u0 + ai1u1 + · · · + ainun

)
.

We see clearly that the u-resultant is a polynomial in u0, . . . , un. Further-
more, we get the following method for finding solutions of (5.3): compute
Res1,d1,...,dn(f0, . . . , fn), factor it into linear factors, and then read off the
solutions! Hence, once we have the u-resultant, solving (5.3) is reduced to
a problem in multivariable factorization.

To compute the u-resultant, we use Theorem (4.9). Because of our
emphasis on f0, we represent the resultant as the quotient

(5.10) Res1,d1,...,dn(f0, . . . , fn) = ±D0

D′
0

.

This is the formula we used in Exercise 2. In §4, we got the determinant D0
by working with the homogenizations Fi of the fi, regarding x0 as the last
variable, and decomposing monomials of degree d = 1 + d1 + · · ·+ dn − n
into disjoint subsets S0, . . . , Sn. Taking x0 last means that S0 consists of
the d1 · · · dn monomials

(5.11) S0 = {xa0
0 xa1

1 · · · xan
n : 0 ≤ ai ≤ di − 1 for i > 0,

∑n
i=0ai = d}.

Then D0 is the determinant of the matrix M0 representing the system of
equations (4.1). We saw an example of this in Exercise 2.

The following exercise simplifies the task of computing u-resultants.

Exercise 3. Assuming that D′
0 �= 0 in (5.10), prove that D′

0 does not
involve u0, . . . , un and conclude that Res1,d1,...,dn(f0, . . . , fn) and D0 differ
by a constant factor when regarded as polynomials in C[u0, . . . , un].
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We will write D0 as D0(u0, . . . , un) to emphasize the dependence on
u0, . . . , un. We can use D0(u0, . . . , un) only when D′

0 �= 0, but since D′
0 is

a polynomial in the coefficients of the fi, Exercise 3 means that generically,
the linear factors of the determinant D0(u0, . . . , un) give the solutions of
our equations (5.3). In this situation, we will apply the term u-resultant to
both Res1,d1,...,dn(f0, . . . , fn) and D0(u0, . . . , un).

Unfortunately, the u-resultant has some serious limitations. First, it is
not easy to compute symbolic determinants of large size (see the discussion
at the end of §4). And even if we can find the determinant, multivariable
factorization as in (5.9) is very hard, especially since in most cases, floating
point numbers will be involved.

There are several methods for dealing with this situation. We will de-
scribe one, as presented in [CM]. The basic idea is to specialize some of the
coefficients in f0 = u0 + u1x1 + · · · + unxn. For example, the argument of
Proposition (5.8) shows that when the xn-coordinates of the solution points
are distinct, the specialization u1 = · · · = un−1 = 0, un = −1 transforms
(5.9) into the formula

(5.12) Res1,d1,...,dn(u0 − xn, f1, . . . , fn) = C

d1···dn∏
i=1

(
u0 − ain

)
,

where ain is the xn-coordinate of pi = (ai1, . . . , ain) ∈ V(f1, . . . , fn). This
resultant is a univariate polynomial in u0 whose roots are precisely the xn-
coordinates of solutions of (5.3). There are similar formulas for the other
coordinates of the solutions.

If we use the numerator D0(u0, . . . , un) of (5.10) as the u-resultant, then
setting u1 = · · · = un = 0, un = −1 gives D0(u0, 0, . . . , 0,−1), which
is a polynomial in u0. The argument of Exercise 3 shows that generically,
D0(u0, 0, . . . , 0,−1) is a constant multiple Res(u0−xn, f1, . . . , fn), so that
its roots are also the xn-coordinates. Since D0(u0, 0, . . . , 0,−1) is given by
a symbolic determinant depending on the single variable u0, it is much
easier to compute than in the multivariate case. Using standard techniques
(discussed in Chapter 2) for finding the roots of univariate polynomials
such as D0(u0, 0, . . . , 0,−1), we get a computationally efficient method for
finding the xn-coordinates of our solutions. Similarly, we can find the other
coordinates of the solutions by this method.

Exercise 4. Let D0(u0, u1, u2) be the determinant in Exercise 2.
a. Compute D0(u0,−1, 0) and D0(u0, 0,−1).
b. Find the roots of these polynomials numerically. Hint: Try the Maple

command fsolve. In general, fsolve should be used with the complex
option, though in this case it’s not necessary since the roots are real.

c. What does this say about the coordinates of the solutions of the equa-
tions x2

1 + x2
2 = 10, x2

1 + x1x2 + 2x2
2 = 16? Can you figure out what

the solutions are?
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As this exercise illustrates, the univariate polynomials we get from the
u-resultant enable us to find the individual coordinates of the solutions,
but they don’t tell us how to match them up. One method for doing this
(based on [CM]) will be explained in Exercise 7 at the end of the section.
We should also mention that a different u-resultant method for computing
solutions is given in [Can2].

All of the u-resultant methods make strong genericity assumptions on
the polynomials f0, . . . , fn. In practice, one doesn’t know in advance if a
given system of equations is generic. Here are some of the things that can go
wrong when trying to apply the above methods to non-generic equations:

• There might be solutions at infinity. This problem can be avoided by
making a generic linear change of coordinates.
• If too many coefficients are zero, it might be necessary to use the sparse

resultants of Chapter 7.
• The equations (5.1) might have infinitely many solutions. In the language

of algebraic geometry, the projective variety V(F1, . . . , Fn) might have
components of positive dimension, together with some isolated solutions.
One is still interested in the isolated solutions, and techniques for finding
them are described in Section 4 of [Can1].
• The denominator D′

0 in the resultant formula (5.10) might vanish. When
this happens, one can use the generalized characteristic polynomials
described in §4 to avoid this difficulty. See Section 4.1 of [CM] for details.
• Distinct solutions might have the same xi-coordinate for some i. The

polynomial giving the xi-coordinates would have multiple roots, which
are computationally unstable. This problem can be avoided with a
generic change of coordinates. See Section 4.2 of [CM] for an example.

Also, Chapter 4 will give versions of (5.12) and Proposition (5.8) for the
case when f1 = · · · = fn = 0 has solutions of multiplicity > 1.

Hidden Variables
One of the better known resultant techniques for solving equations is the
hidden variable method. The basic idea is to regard one of variables as a
constant and then take a resultant. To illustrate how this works, consider
the affine equations we get from Exercise 2 by setting x0 = 1:

(5.13)
f1 = x2

1 + x2
2 − 10 = 0

f2 = x2
1 + x1x2 + 2x2

2 − 16 = 0.

If we regard x2 as a constant, we can use the resultant of §1 to obtain

Res(f1, f2) = 2x4
2 − 22x2

2 + 36 = 2(x2 − 3)(x2 + 3)(x2 −
√

2)(x2 +
√

2).
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The resultant is a polynomial in x2, and its roots are precisely the x2-
coordinates of the solutions of the equations (as we found in Exercise 2).

To generalize this example, we first review the affine form of the resultant.
Given n + 1 homogeneous polynomials G0, . . . , Gn of degrees d0, . . . , dn in
n + 1 variables x0, . . . , xn, we get Resd0,...,dn(G0, . . . , Gn). Setting x0 = 1
gives

gi(x1, . . . , xn) = Gi(1, x1, . . . , xn),

and since the gi and Gi have the same coefficients, we can write the re-
sultant as Resd0,...,d1(g0, . . . , gn). Thus, n + 1 polynomials g0, . . . , gn in n
variables x1, . . . , xn have a resultant. It follows that from the affine point
of view, forming a resultant requires that the number of polynomials be one
more than the number of variables.

Now, suppose we have n polynomials f1, . . . , fn of degrees d1, . . . , dn in
n variables x1, . . . , xn. In terms of resultants, we have the wrong numbers
of equations and variables. One solution is to add a new polynomial, which
leads to the u-resultant. Here, we will pursue the other alternative, which
is to get rid of one of the variables. The basic idea is what we did above:
we hide a variable, say xn, by regarding it as a constant. This gives n
polynomials f1, . . . , fn in n − 1 variables x1, . . . , xn−1, which allows us to
form their resultant. We will write this resultant as

(5.14) Resxn

d1,...,dn
(f1, . . . , fn).

The superscript xn reminds us that we are regarding xn as constant.
Since the resultant is a polynomial in the coefficients of the fi, (5.14) is a
polynomial in xn.

We can now state the main result of the hidden variable technique.

(5.15) Proposition. Generically, Resxn

d1,...,dn
(f1, . . . , fn) is a polynomial

in xn whose roots are the xn-coordinates of the solutions of (5.3).

Proof. The basic strategy of the proof is that by (5.12), we already know
a polynomial whose roots are the xn-coordinates of the solutions, namely

Res1,d1,...,dn(u0 − xn, f1, . . . , fn).

We will prove the theorem by showing that this polynomial is the same as
the hidden variable resultant (5.14). However, (5.14) is a polynomial in xn,
while Res(u0− xn, f1, . . . , fn) is a polynomial in u0. To compare these two
polynomials, we will write

Resxn=u0
d1,...,dn

(f1, . . . , fn)

to mean the polynomial obtained from (5.14) by the substitution xn = u0.
Using this notation, the theorem will follow once we show that

Resxn=u0
d1,...,dn

(f1, . . . , fn) = ±Res1,d1,...,dn(u0 − xn, f1, . . . , fn).



§5. Solving Equations via Resultants 123

We will prove this equality by applying Theorem (3.4) separately to the
two resultants in this equation.

Beginning with Res(u0 − xn, f1, . . . , fn), first recall that it equals the
homogeneous resultant Res(u0x0 − xn, F1, . . . , Fn) via (5.2). Since u0 is
a coefficient, we will work over the field C(u0) of rational functions in u0.
Then, adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8), we
see that Res(u0x0 − xn, F1, . . . , Fn) equals

(5.16) Res1,d1,...,dn−1(−xn, F 1, . . . , Fn−1)dn det(mfn),

where −xn, F 1, . . . , Fn−1 are obtained from u0x0 − xn, F1, . . . , Fn−1 by
setting x0 = 0, and mfn : A → A is multiplication by fn in the ring

A = C(u)[x1, . . . , xn]/〈u − xn, f1, . . . , fn〉.
Next, consider Resxn=u0(f1, . . . , fn), and observe that if we define

f̂i(x1, . . . , xn−1) = fi(x1, . . . , xn−1, u0),

then Resxn=u0(f1, . . . , fn) = Res(f̂1, . . . , f̂n). If we apply Theorem (3.4)
to the latter resultant, we see that it equals

(5.17) Resd1,...,dn−1(F̃1, . . . , F̃n−1)dn det(mf̂n
),

where F̃i is obtained from f̂i by first homogenizing with respect to x0 and
then setting x0 = 0, and mf̂n

: Â → Â is multiplication by f̂n in

Â = C(u0)[x1, . . . , xn−1]/〈f̂1, . . . , f̂n〉.
To show that (5.16) and (5.17) are equal, we first examine (5.17). We

claim that if fi homogenizes to Fi, then F̃i in (5.17) is given by

(5.18) F̃i(x1, . . . , xn−1) = Fi(0, x1, . . . , xn−1, 0).

To prove this, take a term of Fi, say

c xa0
0 · · · xan

n , a0 + · · · + an = di.

Since x0 = 1 gives fi and xn = u0 then gives f̂i, the corresponding term
in f̂i is

c 1a0xa1
1 · · · xan−1

n−1 uan
0 = cuan

0 · xa1
1 · · · xan−1

n−1 .

When homogenizing f̂i with respect to x0, we want a term of total degree
di in x0, . . . , xn−1. Since cuan

0 is a constant, we get

cuan
0 · xa0+an

0 xa1
1 · · · xan−1

n−1 = c · xa0
0 · · · xan−1

n−1 (u0x0)an .

It follows that the homogenization of f̂i is Fi(x0, . . . , xn−1, u0x0), and since
F̃i is obtained by setting x0 = 0 in this polynomial, we get (5.18).

Once we know (5.18), Exercise 12 of §3 shows that

Res1,d1,...,dn−1(−xn, F 1, . . . , Fn−1) = ±Resd1,...,dn−1(F̃1, . . . , F̃n−1)
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since F i(x1, . . . , xn) = Fi(0, x1, . . . , xn). Also, the ring homomorphism

C(u0)[x1, . . . , xn] → C(u0)[x1, . . . , xn−1]

defined by xn �→ u0 carries fi to f̂i. It follows that this homomorphism
induces a ring isomorphism A ∼= Â (you will check the details of this in
Exercise 8). Moreover, multiplication by fn and f̂n give a diagram

(5.19)

A ∼= Â

mfn

⏐⏐� ⏐⏐�mf̂n

A ∼= Â

In Exercise 8, you will show that going across and down gives the same map
A → Â as going down and across (we say that (5.19) is a commutative
diagram). From here, it is easy to show that det(mfn) = det(mf̂n

), and it
follows that (5.16) and (5.17) are equal.

The advantage of the hidden variable method is that it involves re-
sultants with fewer equations and variables than the u-resultant. For
example, when dealing with the equations f1 = f2 = 0 from (5.13), the u-
resultant Res1,2,2(f0, f1, f2) uses the 10× 10 matrix from Exercise 2, while
Resx2

2,2(f1, f2) only requires a 4 × 4 matrix.
In general, we can compute Resxn(f1, . . . , fn) by Theorem (4.9), and as

with the u-resultant, we can again ignore the denominator. More precisely,
if we write

(5.20) Resxn

d1,...,dn
(f1, . . . , fn) = ± D̂0

D̂′
0

,

then D̂′
0 doesn’t involve xn. The proof of this result is a nice application of

Proposition (4.6), and the details can be found in Exercise 10 at the end
of the section. Thus, when using the hidden variable method, it suffices
to use the numerator D̂0—when f1, . . . , fn are generic, its roots give the
xn-coordinates of the affine equations (5.3).

Of course, there is nothing special about hiding xn—we can hide any of
the variables in the same way, so that the hidden variable method can be
used to find the xi-coordinates of the solutions for any i. One limitation of
this method is that it only gives the individual coordinates of the solution
points and doesn’t tell us how they match up.

Exercise 5. Consider the affine equations

f1 = x2
1 + x2

2 + x2
3 − 3

f2 = x2
1 + x2

3 − 2

f3 = x2
1 + x2

2 − 2x3.
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a. If we compute the u-resultant with f0 = u0 + u1x1 + u2x2 + u3x3, show
that Theorem (4.9) expresses Res1,2,2,2(f0, f1, f2, f3) as a quotient of
determinants of sizes 35 × 35 and 15 × 15 respectively.

b. If we hide x3, show that Resx3
2,2,2(f1, f2, f3) is a quotient of determinants

of sizes 15 × 15 and 3 × 3 respectively.
c. Hiding x3 as in part b, use (2.8) to express Resx3

2,2,2(f1, f2, f3) as the
determinant of a 6 × 6 matrix, and show that up to a constant, the
resultant is (x2

3 + 2x3 − 3)4. Explain the significance of the exponent 4.
Hint: You will need to regard x3 as a constant and homogenize the fi

with respect to x0. Then (2.8) will be easy to apply.

The last part of Exercise 5 illustrates how formulas such as (2.8) allow
us, in special cases, to represent a resultant as a single determinant of
relatively small size. This can reduce dramatically the amount of compu-
tation involved and explains the continuing interest in finding determinant
formulas for resultants (see, for example, [DD], [SZ], and [WZ]).

ADDITIONAL EXERCISES FOR §5

Exercise 6. In the text, we claimed that generically, the solutions of n
affine equations f1 = · · · = fn = 0 have multiplicity one. This exercise
will prove this result. Assume as usual that the fi come from homogeneous
polynomials Fi of degree di by setting x0 = 1. We will also use the following
fact from multiplicity theory: if F1 = · · · = Fn = 0 has finitely many
solutions and p is a solution such that the gradient vectors

∇Fi(p) =
( ∂Fi

∂x0
(p), . . . ,

∂Fi

∂xn
(p)

)
, 1 ≤ i ≤ n

are linearly independent, then p is a solution of multiplicity one.
a. Consider the affine space C

M consisting of all possible coefficients of the
Fi. As in the discussion at the end of §2, the coordinates of C

M are ci,α,
where for fixed i, the ci,α are the coefficients of Fi. Now consider the set
W ⊂ C

M × P
n × P

n−1 defined by

W = {(ci,α, p, a1, . . . , an) ∈ C
M × P

n × P
n−1 : p is a

nontrivial solution of F0 = · · · = Fn = 0 and

a1∇F1(p) + · · · + an∇Fn(p) = 0}.

Under the projection map π : C
M × P

n × P
n−1 → C

M , explain why
a generalization of the Projective Extension Theorem from §2 would
imply that π(W ) ⊂ C

M is a variety.
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b. Show that π(W ) ⊂ C
M is a proper variety, i.e., find F1, . . . , Fn such

that (F1, . . . , Fn) ∈ C
M \ π(W ). Hint: Let Fi = Πdi

j=1(xi − jx0) for
1 ≤ i ≤ n.

c. By parts a and b, we can find a nonzero polynomial G in the co-
efficients of the Fi such that G vanishes on π(W ). Then consider
G · Res(F 1, . . . , Fn). We can regard this as a polynomial in the co-
efficients of the fi. Prove that if this polynomial is nonvanishing at
f1, . . . , fn, then the equations f0 = · · · = fn = 0 have d1 · · · dn many
solutions in C

n, all of which have multiplicity one. Hint: Use Theorem
(5.5).

Exercise 7. As we saw in (5.12), we can find the xn-coordinates of the
solutions using Res(u − xn, f1, . . . , fn), and in general, the xi-coordinates
can be found by replacing u−xn by u−xi in the resultant. In this exercise,
we will describe the method given in [CM] for matching up coordinates to
get the solutions. We begin by assuming that we’ve found the x1- and x2-
coordinates of the solutions. To match up these two coordinates, let α and
β be randomly chosen numbers, and consider the resultant

R1,2(u) = Res1,d1,...,dn(u − (αx1 + βx2), f1, . . . , fn).

a. Use (5.9) to show that

R1,2(u) = C ′
d1···dn∏

i=1

(
u − (αai1 + βai2)

)
,

where C ′ is a nonzero constant and, as in (5.9), the solutions are pi =
(ai1, . . . , ain).

b. A random choice of α and β will ensure that for solutions pi, pj , pk, we
have αai1 + βaj2 �= αak1 + βak2 except when pi = pj = pk. Conclude
that the only way the condition

α · (an x1-coordinate) + β · (an x2-coordinate) = root of R1,2(u)

can hold is when the x1-coordinate and x2-coordinate come from the
same solution.

c. Explain how we can now find the first two coordinates of the solutions.
d. Explain how a random choice of α, β, γ will enable us to construct a poly-

nomial R1,2,3(u) which will tell us how to match up the x3-coordinates
with the two coordinates already found.

e. In the affine equations f1 = f2 = 0 coming from (5.13), compute
Res(u − x1, f1, f2), Res(u − x2, f1, f2) and (in the notation of part a)
R1,2(u), using α = 1 and β = 2. Find the roots of these polynomials
numerically and explain how this gives the solutions of our equations.
Hint: Try the Maple command fsolve. In general, fsolve should be
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used with the complex option, though in this case it’s not necessary
since the roots are real.

Exercise 8. This exercise is concerned with Proposition (5.15).
a. Explain what Theorem (3.4) looks like if we use (5.2) instead of (3.3),

and apply this to (5.16), (5.17) and Proposition (5.8).
b. Show carefully that the the ring homomorphism

C(u)[x1, . . . , xn] −→ C(u)[x1, . . . , xn−1]

defined by xn �→ u carries fi to f̂i and induces a ring isomorphism
A ∼= Â .

c. Show that the diagram (5.19) is commutative and use it to prove that
det(mfn) = det(mf̂n

).

Exercise 9. In this exercise, you will develop a homogeneous version of the
hidden variable method. Suppose that we have homogeneous polynomials
F1, . . . , Fn in x0, . . . , xn such that

fi(x1, . . . , xn) = Fi(1, x1, . . . , xn).

We assume that Fi has degree di, so that fi has degree at most di. Also
define

f̂i(x1, . . . , xn−1) = fi(x1, . . . , xn−1, u).

As we saw in the proof of Proposition (5.15), the hidden variable resul-
tant can be regarded as the affine resultant Resd1,...,dn(f̂1, . . . , f̂n). To get
a homogeneous resultant, we homogenize f̂i with respect to x0 to get a
homogeneous polynomial F̂i(x0, . . . , xn−1) of degree di. Then

Resd1,...,dn(f̂1, . . . , f̂n) = Resd1,...,dn(F̂1, . . . , F̂n).

a. Prove that

F̂i(x0, . . . , xn−1) = Fi(x0, x1, . . . , x0u).

Hint: This is done in the proof of Proposition (5.15).
b. Explain how part a leads to a purely homogeneous construction of the

hidden variable resultant. This resultant is a polynomial in u.
c. State a purely homogeneous version of Proposition (5.15) and explain

how it follows from the affine version stated in the text. Also explain why
the roots of the hidden variable resultant are an/a0 as p = (a0, . . . , an)
varies over all homogeneous solutions of F1 = · · · = Fn = 0 in P

n.

Exercise 10. In (5.20), we expressed the hidden variable resultant as a
quotient of two determinants ±D̂0/D̂

′
0. If we think of this resultant as a

polynomial in u, then use Proposition (4.6) to prove that the denominator
D̂′

0 does not involve u. This will imply that the numerator D̂0 can be
regarded as the hidden variable resultant. Hint: By the previous exercise,
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we can write the hidden variable resultant as Res(F̂1, . . . , F̂n). Also note
that Proposition (4.6) assumed that xn is last, while here D̂0 and D̂′

0 mean
that x0 is taken last. Thus, applying Proposition (4.6) to the F̂i means
setting x0 = 0 in F̂i. Then use part a of Exercise 9 to explain why u
disappears from the scene.

Exercise 11. Suppose that f1, . . . , fn are polynomials of total degrees
d1, . . . , dn in k[x1, . . . , xn].
a. Use Theorem (2.10) of Chapter 2 to prove that the ideal 〈f1, . . . , fn〉 is

radical for f1, . . . , fn generic. Hint: Use the notion of generic discussed
in Exercise 6.

b. Explain why Exercise 16 of Chapter 2, §4, describes a lex Gröbner basis
(assuming xn is the last variable) for the ideal 〈f1, . . . , fn〉 when the fi

are generic.

§6 Solving Equations via Eigenvalues and
Eigenvectors

In Chapter 2, we learned that solving the equations f1 = · · · = fn = 0 can
be reduced to an eigenvalue problem. We did this as follows. The monomials
not divisible by the leading terms of a Gröbner basis G for 〈f1, . . . , fn〉 give
a basis for the quotient ring

(6.1) A = C[x1, . . . , xn]/〈f1, . . . , fn〉.
(see §2 of Chapter 2). Using this basis, we find the matrix of a multiplication
map mf0 by taking a basis element xα and computing the remainder of
xαf0 on division by G (see §4 of Chapter 2). Once we have this matrix, its
eigenvalues are the values f0(p) for p ∈ V(f1, . . . , fn) by Theorem (4.5)
of Chapter 2. In particular, the eigenvalues of the matrix for mxi are the
xi-coordinates of the solution points.

The amazing fact is that we can do all of this using resultants! We first
show how to find a basis for the quotient ring.

(6.2) Theorem. If f1, . . . , fn are generic polynomials of total degree
d1, . . . , dn, then the cosets of the monomials

xa1
1 · · · xan

n , where 0 ≤ ai ≤ di − 1 for i = 1, . . . , n

form a basis of the ring A of (6.1).

Proof. Note that these monomials are precisely the monomials obtained
from S0 in (5.11) by setting x0 = 1. As we will see, this is no accident.
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By f1, . . . , fn generic, we mean that there are no solutions at ∞, that all
solutions have multiplicity one, and that the matrix M11 which appears
below is invertible.

Our proof will follow [ER] (see [PS1] for a different proof). There are
d1 · · · dn monomials xa1

1 · · · xan
n with 0 ≤ ai ≤ di − 1. Since this is the

dimension of A in the generic case by Theorem (5.5), it suffices to show
that the cosets of these polynomials are linearly independent.

To prove this, we will use resultants. However, we have the wrong number
of polynomials: since f1, . . . , fn are not homogeneous, we need n + 1 poly-
nomials in order to form a resultant. Hence we will add the polynomial
f0 = u0 + u1x1 + · · · + unxn, where u0, . . . , un are independent vari-
ables. This gives the resultant Res1,d1,...,dn(f0, . . . , fn), which we recognize
as the u-resultant. By (5.10), this resultant is the quotient D0/D

′
0, where

D0 = det(M0) and M0 is the matrix coming from the equations (4.1).
We first need to review in detail how the matrix M0 is constructed.

Although we did this in (4.1), our present situation is different in two ways:
first, (4.1) ordered the variables so that xn was last, while here, we want
x0 to be last, and second, (4.1) dealt with homogeneous polynomials, while
here we have dehomogenized by setting x0 = 1. Let’s see what changes this
makes.

As before, we begin in the homogeneous situation and consider monomi-
als xγ = xa0

0 · · · xan
n of total degree d = 1 + d1 + · · · + dn − n (remember

that the resultant is Res1,d1,...,dn). Since we want to think of x0 as last, we
divide these monomials into n + 1 disjoint sets as follows:

Sn = {xγ : |γ| = d, xdn
n divides xγ}

Sn−1 = {xγ : |γ| = d, xdn
n doesn’t divide xγ but x

dn−1
n−1 does}

...

S0 = {xγ : |γ| = d, xdn
n , . . . , xd1

1 don’t divide xγ but x0 does}

(remember that d0 = 1 in this case). You should check that S0 is precisely
as described in (5.11). The next step is to dehomogenize the elements of
Si by setting x0 = 1. If we denote the resulting set of monomials as S′

i,
then S′

0 ∪ S′
1 ∪ · · · ∪ S′

n consists of all monomials of total degree ≤ d in
x1, . . . , xn. Furthermore, we see that S′

0 consists of the d1 · · · dn monomials
in the statement of the theorem.

Because of our emphasis on S′
0, we will use xα to denote elements of S′

0
and xβ to denote elements of S′

1 ∪ · · · ∪ S′
n. Then observe that

if xα ∈ S′
0, then xα has degree ≤ d − 1,

if xβ ∈ S′
i, i > 0, then xα/xdi

i has degree ≤ d − di.

Then consider the equations:
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xα f0 = 0 for all xα ∈ S′
0

(xβ/xd1
1 ) f1 = 0 for all xβ ∈ S′

1

...

(xβ/xdn
n ) fn = 0 for all xβ ∈ S′

n.

Since the xα f0 and xβ/xdi
i fi have total degree ≤ d, we can write these

polynomials as linear combinations of the xα and xβ . We will order these
monomials so that the elements xα ∈ S′

0 come first, followed by the
elements xβ ∈ S′

1 ∪ · · · ∪ S′
n. This gives a square matrix M0 such that

M0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

xα1

xα2

...
xβ1

xβ2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα1 f0
xα2 f0

...
xβ1/xd1

1 f1
xβ2/xd1

1 f1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where, in the column on the left, the first two elements of S′
0 and the first

two elements of S′
1 are listed explicitly. This should make it clear what the

whole column looks like. The situation is similar for the column on the
right.

For p ∈ V(f1, . . . , fn), we have f1(p) = · · · = fn(p) = 0. Thus,
evaluating the above equation at p yields

M0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

pα1

pα2

...
pβ1

pβ2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

pα1 f0(p)
pα2 f0(p)

...
0
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To simplify notation, we let pα be the column vector (pα1 , pα2 , . . .)T given
by evaluating all monomials in S′

0 at p (and T means transpose). Similarly,
we let pβ be the column vector (pβ1 , pβ2 , . . .)T given by evaluating all
monomials in S′

1 ∪ · · · ∪ S′
n at p. With this notation, we can rewrite the

above equation more compactly as

(6.3) M0

(
pα

pβ

)
=
(

f0(p) pα

0

)
.

The next step is to partition M0 so that the rows and columns of M0
corresponding to elements of S′

0 lie in the upper left hand corner. This
means writing M0 in the form
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M0 =
(

M00 M01
M10 M11

)
,

where M00 is a µ × µ matrix for µ = d1 · · · dn, and M11 is also a square
matrix. With this notation, (6.3) can be written

(6.4)
(

M00 M01
M10 M11

)(
pα

pβ

)
=
(

f0(p) pα

0

)
.

By Lemma 4.4 of [Emi1], M11 is invertible for most choices of f1, . . . , fn.
Note that this condition is generic since it is given by det(M11) �= 0 and
det(M11) is a polynomial in the coefficients of the fi. Hence, for generic
f1, . . . , fn, we can define the µ × µ matrix

(6.5) M̃ = M00 −M01M
−1
11 M10.

Note that the entries of M̃ are polynomials in u0, . . . , un since these vari-
ables only appear in M00 and M01. If we multiply each side of (6.4) on the
left by the matrix (

I −M01M
−1
11

0 I

)
,

then an easy computation gives(
M̃ 0
M10 M11

)(
pα

pβ

)
=
(

f0(p) pα

0

)
.

This implies

(6.6) M̃ pα = f0(p) pα,

so that for each p ∈ V(f1, . . . , fn), f0(p) is an eigenvalue of M̃ with pα as
the corresponding eigenvector. Since f0 = u0+u1x1+ · · ·+unxn, the eigen-
values f0(p) are distinct for p ∈ V(f1, . . . , fn). Standard linear algebra
implies that the corresponding eigenvectors pα are linearly independent.

We can now prove the theorem. Write the elements of S′
0 as xα1 , . . . , xαµ ,

where as usual µ = d1 · · · dn, and recall that we need only show that the
cosets [xα1 ], . . . , [xαµ ] are linearly independent in the quotient ring A. So
suppose we have a linear relation among these cosets, say

c1[xα1 ] + · · · + cµ[xαµ ] = 0.

Evaluating this equation at p ∈ V(f1, . . . , fn) makes sense by Exercise 12
of Chapter 2, §4 and implies that c1p

α1 + · · · + cµpαµ = 0. In the generic
case, V(f1, . . . , fn) has µ = d1 · · · dn points p1, . . . , pµ, which gives µ
equations

c1p
α1
1 + · · · + cµp

αµ

1 = 0

...

c1p
α1
µ + · · · + cµpαµ

µ = 0.
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In the matrix of these equations, the ith row is (pα1
i , . . . , p

αµ

i ), which in
the notation used above, is the transpose of the column vector pα

i obtained
by evaluating the monomials in S′

0 at pi. The discussion following (6.6)
showed that the vectors pα

i are linearly independent. Thus the rows are
linearly independent, so c1 = · · · = cµ = 0. We conclude that the cosets
[xα1 ], . . . , [xαµ ] are linearly independent.

Now that we know a basis for the quotient ring A, our next task it to find
the matrix of the multiplication map mf0 relative to this basis. Fortunately,
this is easy since we already know the matrix!

(6.7) Theorem. Let f1, . . . , fn be generic polynomials of total degrees
d1, . . . , dn, and let f0 = u0 + u1x1 + · · · + unxn. Using the basis of
A = C[x1, . . . , xn]/〈f1, . . . , fn〉 from Theorem (6.2), the matrix of the
multiplication map mf0 is the transpose of the matrix

M̃ = M00 −M01M
−1
11 M10

from (6.5).

Proof. Let Mf0 = (mij) be the matrix of mf0 relative to the basis
[xα1 ], . . . , [xαµ ] of A from Theorem (6.2), where µ = d1 · · · dn. The proof
of Proposition (4.7) of Chapter 2 shows that for p ∈ V(f1, . . . , fn), we
have

f0(p)(pα1 , . . . , pαµ) = (pα1 , . . . , pαµ) Mf0 .

Letting pα denote the column vector (pα1 , . . . , pαµ)T as in the previous
proof, we can take the transpose of each side of this equation to obtain

f0(p) pα =
(
f0(p)(pα1 , . . . , pαµ)

)T

=
(
(pα1 , . . . , pαµ) Mf0

)T

= (Mf0)
T pα,

where (Mf0)
T is the transpose of Mf0 . Comparing this to (6.6), we get

(Mf0)
T pα = M̃ pα

for all p ∈ V(f1, . . . , fn). Since f1, . . . , fn are generic, we have µ points
p ∈ V(f1, . . . , fn), and the proof of Theorem (6.2) shows that the corre-
sponding eigenvectors pα are linearly independent. This implies (Mf0)

T =
M̃ , and then Mf0 = M̃T follows easily.

Since f0 = u0 + u1x1 + · · ·+ unxn, Corollary (4.3) of Chapter 2 implies

Mf0 = u0 I + u1 Mx1 + · · · + un Mxn ,

where Mxi is the matrix of mxi relative to the basis of Theorem (6.2). By
Theorem (6.7), it follows that if we write

(6.8) M̃ = u0 I + u1 M̃1 + · · · + un M̃n,
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where each M̃i has constant entries, then Mf0 = M̃T implies that Mxi =
(M̃i)T for all i. Thus M̃ simultaneously computes the matrices of the n
multiplication maps mx1 , . . . , mxn .

Exercise 1. For the equations

f1 = x2
1 + x2

2 − 10 = 0

f2 = x2
1 + x1x2 + 2x2

2 − 16 = 0

(this is the affine version of Exercise 2 of §5), show that M̃ is the matrix

M̃ =

⎛⎜⎜⎝
u0 u1 u2 0
4u1 u0 0 u1 + u2
6u2 0 u0 u1 − u2
0 3u1 + 3u2 2u1 − 2u2 u0

⎞⎟⎟⎠ .

Use this to determine the matrices Mx1 and Mx2 . What is the basis of
C[x1, x2]/〈f1, f2〉 in this case? Hint: The matrix M0 of Exercise 2 of §5 is
already partitioned into the appropriate submatrices.

Now that we have the matrices Mxi , we can find the xi-coordinates of
the solutions of (5.3) using the eigenvalue methods mentioned in Chap-
ter 2 (see especially the discussion following Corollary (4.6)). This still
leaves the problem of finding how the coordinates match up. We will follow
Chapter 2 and show how the left eigenvectors of Mf0 , or equivalently, the
right eigenvectors of M̃ = (Mf0)

T , give the solutions of our equations.
Since M̃ involves the variables u0, . . . , un, we need to specialize them

before we can use numerical methods for finding eigenvectors. Let

f ′
0 = c0 + c1x1 + · · · + cnxn,

where c0, . . . , cn are constants chosen so that the values f ′
0(p) are distinct

for p ∈ V(f1, . . . , fn). In practice, this can be achieved by making a ran-
dom choice of c0, . . . , cn. If we let M̃ ′ be the matrix obtained from M̃ by
letting ui = ci, then (6.6) shows that pα is a right eigenvector for M̃ ′

with eigenvalue f ′
0(p). Since we have µ = d1 · · · dn distinct eigenvalues in a

vector space of the same dimension, the corresponding eigenspaces all have
dimension 1.

To find the solutions, suppose that we’ve used a standard numerical
method to find an eigenvector v of M̃ ′. Since the eigenspaces all have
dimension 1, it follows that v = c pα for some solution p ∈ V(f1, . . . , fn)
and nonzero constant c. This means that whenever xα is a monomial in S′

0,
the corresponding coordinate of v is cpα. The following exercise shows how
to reconstruct p from the coordinates of the eigenvector v.

Exercise 2. As above, let p = (a1, . . . , an) ∈ V(f1, . . . , fn) and let v be
an eigenvector of M̃ ′ with eigenvalue f ′

0(p). This exercise will explain how



134 Chapter 3. Resultants

to recover p from v when d1, . . . , dn are all > 1, and Exercise 5 at the end
of the section will explore what happens when some of the degrees equal 1.
a. Show that 1, x1, . . . , xn ∈ S′

0, and conclude that for some c �= 0, the
numbers c, ca1, . . . , can are among the coordinates of v.

b. Prove that aj can be computed from the coordinates of v by the formula

aj =
caj

c
for j = 1, . . . , n.

This shows that the solution p can be easily found using ratios of certain
coordinates of the eigenvector v.

Exercise 3. For the equations f1 = f2 = 0 of Exercise 1, consider the
matrix M̃ ′ coming from (u0, u1, u2, u3) = (0, 1, 0, 0). In the notation of
(6.8), this means M̃ ′ = M̃1 = (Mx1)

T . Compute the eigenvectors of this
matrix and use Exercise 2 to determine the solutions of f1 = f2 = 0.

While the right eigenvectors of M̃ relate to the solutions of f1 = · · · =
fn = 0, the left eigenvectors give a nice answer to the interpolation problem.
This was worked out in detail in Exercise 17 of Chapter 2, §4, which applies
without change to the case at hand. See Exercise 6 at the end of this section
for an example.

Eigenvalue methods can also be applied to the hidden variable resul-
tants discussed earlier in this section. We will discuss this very briefly.
In Proposition (5.15), we showed that the xn-coordinates of the solutions
of the equations f1 = · · · = fn = 0 could be found using the resul-
tant Resxn

d1,...,dn
(f1, . . . , fn) obtained by regarding xn as a constant. As we

learned in (5.20),

Resxn

d1,...,dn
(f1, . . . , fn) = ± D̂0

D̂′
0

,

and if M̂0 is the corresponding matrix (so that D̂0 = det(M̂0)), one could
ask about the eigenvalues and eigenvectors of M̂0. It turns out that this
is not quite the right question to ask. Rather, since M̂0 depends on the
variable xn, we write the matrix as

(6.9) M̂0 = A0 + xn A1 + · · · + xl
nAl,

where each Ai has constant entries and Al �= 0. Suppose that M̂0 and the
Ai are m×m matrices. If Al is invertible, then we can define the generalized
companion matrix

C =

⎛⎜⎜⎜⎜⎜⎝
0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im

−A−1
l A0 −A−1

l A1 −A−1
l A2 · · · −A−1

l Al−1

⎞⎟⎟⎟⎟⎟⎠ ,



§6. Solving Equations via Eigenvalues and Eigenvectors 135

where Im is the m ×m identity matrix. Then the correct question to pose
concerns the eigenvalues and eigenvectors of C. One can show that the
eigenvalues of the generalized companion matrix are precisely the roots of
the polynomial D̂0 = det(M̂0), and the corresponding eigenvectors have a
nice interpretation as well. Further details of this technique can be found
in [Man2] and [Man3].

Finally, we should say a few words about how eigenvalue and eigenvector
methods behave in the non-generic case. As in the discussion of u-resultants
in §5, there are many things which can go wrong. All of the problems listed
earlier are still present when dealing with eigenvalues and eigenvectors, and
there are two new difficulties which can occur:

• In working with the matrix M0 as in the proof of Theorem (6.2), it can
happen that M11 is not invertible, so that M̃ = M00 − M01M

−1
11 M10

doesn’t make sense.
• In working with the matrix M̂0 as in (6.9), it can happen that the leading

term Al is not invertible, so that the generalized companion matrix C
doesn’t make sense.

Techniques for avoiding both of these problems are described in [Emi2],
[Man1], [Man2], and [Man3].

Exercise 4. Express the 6 × 6 matrix of part c of Exercise 5 of §5 in the
form A0 + x3A1 + x2

3A2 and show that A2 is not invertible.

The idea of solving equations by a combination of eigenvalue/eigenvector
methods and resultants goes back to the work of Auzinger and Stetter [AS].
This has now become an active area of research, not only for the resultants
discussed here (see [BMP], [Man3], [Mou1] and [Ste], for example) but also
for the sparse resultants to be introduced in Chapter 7. Also, we will say
more about multiplication maps in §2 of Chapter 4.

ADDITIONAL EXERCISES FOR §6

Exercise 5. This exercise will explain how to recover the solution p =
(a1, . . . , an) from an eigenvector v of the matrix M̃ ′ in the case when some
of the degrees d1, . . . , dn are equal to 1. Suppose for instance that di = 1.
This means that xi /∈ S′

0, so that the ith coordinate ai of the solution
p doesn’t appear in the eigenvector pα. The idea is that the matrix Mxi

(which we know by Theorem (6.7)) has all of the information we need. Let
c1, . . . , cµ be the entries of the column of Mxi corresponding to 1 ∈ S′

0.
a. Prove that [xi] = c1[xα1 ] + · · · + cµ[xαµ ] in A, where S′

0 =
{xα1 , . . . , xαµ}.

b. Prove that ai = c1p
α1 + · · · + cµpαµ .
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It follows that if we have an eigenvector v as in the discussion preced-
ing Exercise 2, it is now straightforward to recover all coordinates of the
solution p.

Exercise 6. The equations f1 = f2 = 0 from Exercise 1 have solutions
p1, p2, p3, p4 (they are listed in projective form in Exercise 2 of §5). Apply
Exercise 17 of Chapter 2, §4, to find the polynomials g1, g2, g3, g4 such that
gi(pj) = 1 if i = j and 0 otherwise. Then use this to write down explicitly
a polynomial h which takes preassigned values λ1, λ2, λ3, λ4 at the points
p1, p2, p3, p4. Hint: Since the x1-coordinates are distinct, it suffices to find
the eigenvectors of Mx1 . Exercise 1 will be useful.



Chapter 4

Computation in Local Rings

Many questions in algebraic geometry involve a study of local properties of
varieties, that is, properties of a single point, or of a suitably small neigh-
borhood of a point. For example, in analyzing V(I) for a zero-dimensional
ideal I ⊂ k[x1, . . . , xn], even when k is algebraically closed, it some-
times happens that V(I) contains fewer distinct points than the dimension
d = dim k[x1, . . . , xn]/I. In this situation, thinking back to the conse-
quences of unique factorization for polynomials in one variable, it is natural
to ask whether there is an algebraic multiplicity that can be computed
locally at each point in V(I), with the property that the sum of the multi-
plicities is equal to d. Similarly in the study of singularities of varieties, one
major object of study is local invariants of singular points. These are used
to distinguish different types of singularities and study their local structure.
In §1 of this chapter, we will introduce the algebra of local rings which is
useful for both these types of questions. Multiplicities and some invariants
of singularities will be introduced in §2. In §3 and §4, we will develop al-
gorithmic techniques for computation in local rings parallel to the theory
of Gröbner bases in polynomial rings. Applications of these techniques are
given in §5.

In this chapter, we will often assume that k is an algebraically closed
field containing Q. The results of Chapters 2 and 3 are valid for such fields.

§1 Local Rings

One way to study properties of a variety V is to study functions on the
variety. The elements of the ring k[x1, . . . , xn]/I(V ) can be thought of as
the polynomial functions on V . Near a particular point p ∈ V we can also
consider rational functions defined at the point, power series convergent
at the point, or even formal series centered at the point. Considering the
collections of each of these types of functions in turn leads us to new rings
that strictly contain the ring of polynomials. In a sense which we shall make
precise as we go along, consideration of these larger rings corresponds to

137
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looking at smaller neighborhoods of points. We will begin with the following
example. Let V = kn, and let p = (0, . . . , 0) be the origin. The single
point set {p} is a variety, and I({p}) = 〈x1, . . . , xn〉 ⊂ k[x1, . . . , xn].
Furthermore, a rational function f/g has a well-defined value at p provided
g(p) �= 0.

(1.1) Definition. We denote by k[x1, . . . , xn]〈x1,...,xn〉 the collection of all
rational functions f/g of x1, . . . , xn with g(p) �= 0, where p = (0, . . . , 0).

The main properties of k[x1, . . . , xn]〈x1,...,xn〉 are as follows.

(1.2) Proposition. Let R = k[x1, . . . , xn]〈x1,...,xn〉. Then
a. R is a subring of the field of rational functions k(x1, . . . , xn) containing

k[x1, . . . , xn].
b. Let M = 〈x1, . . . , xn〉 ⊂ R (the ideal generated by x1, . . . , xn in R).

Then every element in R \ M is a unit in R (i.e., has a multiplicative
inverse in R).

c. M is a maximal ideal in R, and R has no other maximal ideals.

Proof. As above, let p = (0, . . . , 0). Part a follows easily since R is closed
under sums and products in k(x1, . . . , xn). For instance, if f1/g1 and f2/g2
are two rational functions with g1(p), g2(p) �= 0, then

f1/g1 + f2/g2 = (f1g2 + f2g1)/(g1g2).

Since g1(p) �= 0 and g2(p) �= 0, g1(p) · g2(p) �= 0. Hence the sum is an
element of R. A similar argument shows that the product (f1/g1) · (f2/g2)
is in R. Finally, since f = f/1 is in R for all f ∈ k[x1, . . . , xn], the
polynomial ring is contained in R.

For part b, we will use the fact that the elements in M = 〈x1, . . . , xn〉
are exactly the rational functions f/g ∈ R such that f(p) = 0. Hence if
f/g /∈ M , then f(p) �= 0 and g(p) �= 0, and g/f is a multiplicative inverse
for f/g in R.

Finally, for part c, if N �= M is an ideal in R with M ⊂ N ⊂ R, then
N must contain an element f/g in the complement of M . By part b, f/g
is a unit in R, so 1 = (f/g)(g/f) ∈ N , and hence N = R. Therefore M
is maximal. M is the only maximal ideal in R, because it also follows from
part b that every proper ideal I ⊂ R is contained in M .

Exercise 1. In this exercise you will show that if p = (a1, . . . , an) ∈ kn

is any point and

R = {f/g : f, g ∈ k[x1, . . . , xn], g(p) �= 0},
then we have the following statements parallel to Proposition (1.2).
a. R is a subring of the field of rational functions k(x1, . . . , xn).
b. Let M be the ideal generated by x1 − a1, . . . , xn − an in R. Then every

element in R \ M is a unit in R (i.e., has a multiplicative inverse in R).
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c. M is a maximal ideal in R, and R has no other maximal ideals.

An alternative notation for the ring R in Exercise 1 is

R = k[x1, . . . , xn]〈x1−a1,...,xn−an〉,

where 〈x1 − a1, . . . , xn − an〉 is the ideal I({p}) in k[x1, . . . , xn], and in R
we allow denominators that are not elements of this ideal.

In the following discussion, the term ring will always mean a commuta-
tive ring with identity. Every ring has maximal ideals. As we will see, the
rings that give local information are the ones with the property given by
part c of Proposition (1.2) above.

(1.3) Definition. A local ring is a ring that has exactly one maximal
ideal.

The idea of the argument used in the proof of part c of the proposition
also gives one general criterion for a ring to be a local ring.

(1.4) Proposition. A ring R with a proper ideal M ⊂ R is a local ring
if every element of R \ M is a unit in R.

Proof. If every element of R \ M is a unit in R, the unique maximal
ideal is M . Exercise 5 below asks you to finish the proof.

Definition (1.1) above is actually a special case of a general procedure
called localization that can be used to construct many additional examples
of local rings. See Exercise 8 below. An even more general construction
of rings of fractions is given in Exercise 9. We will need to use that
construction in §3 and §4.

We also obtain important examples of local rings by considering functions
more general than rational functions. One way such functions arise is as
follows. When studying a curve or, more generally, a variety near a point,
one often tries to parametrize the variety near the point. For example, the
curve

x2 + 2x + y2 = 0

is a circle of radius 1 centered at the point (−1, 0). To study this curve
near the origin, we might use parametrizations of several different types.

Exercise 2. Show that one parametrization of the circle near the origin
is given by

x =
−2t2

1 + t2
, y =

2t
1 + t2

.

Note that both components are elements of the local ring k[t]〈t〉.
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In this case, we might also use the parametrization in terms of
trigonometric functions:

x = −1 + cos t, y = sin t.

The functions sin t and cos t are not polynomials or rational functions, but
recall from elementary calculus that they can be expressed as convergent
power series in t:

sin t =
∞∑

k=0

(−1)kt2k+1/(2k + 1)!

cos t =
∞∑

k=0

(−1)kt2k/(2k)! .

In this case parametrizing leads us to consider functions more general than
polynomials or rational functions.

If k = C or k = R, then we can consider the set of convergent power
series in n variables (expanding about the origin)

(1.5)
k{x1, . . . , xn} =

{∑
α∈Zn

≥0
cαxα : cα ∈ k and the series

converges in some neighborhood of 0 ∈ kn
}
.

With the usual notion of addition and multiplication, this set is a ring (we
leave the verification to the reader; see Exercise 3). In fact, it is not difficult
to see that k{x1, . . . , xn} is also a local ring with maximal ideal generated
by x1, . . . , xn.

No matter what field k is, we can also consider the set k[[x1, . . . , xn]] of
formal power series

(1.6) k[[x1, . . . , xn]] =
{∑

α∈Zn
≥0

cαxα : cα ∈ k
}
,

where, now, we waive the condition that the series need converge. Alge-
braically, a formal power series is a perfectly well defined object and can
easily be manipulated—one must, however, give up the notion of evaluating
it at any point of kn other than the origin. As a result, a formal power series
defines a function only in a rather limited sense. But in any case we can
define addition and multiplication of formal series in the obvious way and
this makes k[[x1, . . . , xn]] into a ring (see Exercise 3). Formal power series
are also useful in constructing parametrizations of varieties over arbitrary
fields (see Exercise 7 below).

At the beginning of the section, we commented that the three rings
k[x1, . . . , xn]〈x1,...,xn〉, k{x1, . . . , xn}, and k[[x1, . . . , xn]] correspond to
looking at smaller and smaller neighborhoods of the origin. Let us make
this more precise. An element f/g ∈ k[x1, . . . , xn]〈x1,...,xn〉 is defined not
just at the origin but at every point in the complement of V(g). The do-
main of convergence of a power series can be a much smaller set than the
complement of a variety. For instance, the geometric series 1 + x + x2 + · · ·
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converges to the sum 1/(1 − x) ∈ k[x]〈x〉 only on the set of x with |x| < 1
in k = R or C. A formal series in k[[x1, . . . , xn]] is only guaranteed to con-
verge at the origin. Nevertheless, both k{x1, . . . , xn} and k[[x1, . . . , xn]]
share the key algebraic property of k[x1, . . . , xn]〈x1,...,xn〉.

(1.7) Proposition. k[[x1, . . . , xn]] is a local ring. If k = R or k = C

then k{x1, . . . , xn} is also a local ring.

Proof. To show that k[[x1, . . . , xn]] is a local ring, consider the ideal
M = 〈x1, . . . , xn〉 ⊂ k[[x1, . . . , xn]] generated by x1, . . . , xn. If f /∈ M ,
then f = c0 + g with c0 �= 0, and g ∈ M . Using the formal geometric series
expansion

1
1 + t

= 1 − t + t2 + · · · + (−1)ntn + · · · ,
we see that

1
c0 + g

=
1

c0(1 + g/c0)

= (1/c0)
(
1 − g/c0 + (g/c0)2 + · · · ).

In Exercise 4 below, you will show that this expansion makes sense as
an element of k[[x1, . . . , xn]]. Hence f has a multiplicative inverse in
k[[x1, . . . , xn]]. Since this is true for every f /∈ M , Proposition (1.4) implies
that k[[x1, . . . , xn]] is a local ring.

To show that k{x1, . . . , xn} is also a local ring, we only need to show
that the formal series expansion for 1/(c0 + g) gives a convergent series.
See Exercise 4.

All three types of local rings share other key algebraic properties with
rings of polynomials. See the exercises in §4. By considering the power
series expansion of a rational function defined at the origin, as in the proof
above, we have k[x1, . . . , xn]〈x1,...,xn〉 ⊂ k[[x1, . . . , xn]]. In the case k = R

or C, we also have inclusions:

k[x1, . . . , xn]〈x1,...,xn〉 ⊂ k{x1, . . . , xn} ⊂ k[[x1, . . . , xn]].

In general, we would like to be able to do operations on ideals in these
rings in much the same way that we can carry out operations on ideals in
a polynomial ring. For instance, we would like to be able to settle the ideal
membership question, to form intersections of ideals, compute quotients,
compute syzygies on a collection of elements, and the like. We will return
to these questions in §3 and §4.

ADDITIONAL EXERCISES FOR §1

Exercise 3. The product operations in k[[x1, . . . , xn]] and k{x1, . . . , xn}
can be described in the following fashion. Grouping terms by total degree,
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rewrite each power series

f(x) =
∑

α∈Z
n
≥0

cαxα

as
∑

n≥0 fn(x), where

fn(x) =
∑

α∈Z
n
≥0

|α|=n

cαxα

is a homogeneous polynomial of degree n. The product of two series f(x)
and g(x) is the series h(x) for which

hn = fng0 + fn−1g1 + · · · + f0gn.

a. Show that with this product and the obvious sum, k[[x1, . . . , xn]] is a
(commutative) ring (with identity).

b. Now assume k = R or k = C, and suppose f, g ∈ k{x1, . . . , xn}. From
part a, we know that sums and products of power series give other formal
series. Show that if f and g are both convergent on some neighborhood
U of (0, . . . , 0), then f + g and f · g are also convergent on U .

Exercise 4. Let h ∈ 〈x1, . . . , xn〉 ⊂ k[[x1, . . . , xn]].
a. Show that the formal geometric series expansion

1
1 + h

= 1 − h + h2 − h3 + · · ·

gives a well-defined element of k[[x1, . . . , xn]]. (What are the homoge-
neous components of the series on the right?)

b. Show that if h is convergent on some neighborhood of the origin, then
the expansion in part a is also convergent on some (generally smaller)
neighborhood of the origin. (Recall that

1
1 + t

= 1 − t + t2 − t3 + · · ·

is convergent only for t satisfying |t| < 1.)

Exercise 5. Give a complete proof for Proposition (1.4).

Exercise 6. Let F be a field. A discrete valuation of F is an onto mapping
v : F \ {0} → Z with the properties that
1. v(x + y) ≥ min{v(x), v(y)}, and
2. v(xy) = v(x) + v(y).

The subset of F consisting of all elements x satisfying v(x) ≥ 0, together
with 0, is called the valuation ring of v.

a. Show that the valuation ring of a discrete valuation is a local ring. Hint:
Use Proposition (1.4).
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b. For example, let F = k(x) (the rational function field in one variable),
and let f be an irreducible polynomial in k[x] ⊂ F . If g ∈ k(x), then
by unique factorization in k[x], there is a unique expression for g of the
form g = fa · n/d, where a ∈ Z, and n, d ∈ k[x] are not divisible by
f . Let v(g) = a ∈ Z. Show that v defines a discrete valuation on k(x).
Identify the maximal ideal of the valuation ring.

c. Let F = Q, and let p be a prime integer. Show that if g ∈ Q, then by
unique factorization in Z, there is a unique expression for g of the form
g = pa · n/d, where a ∈ Z, and n, d ∈ Z are not divisible by p. Let
v(g) = a ∈ Z. Show that v defines a discrete valuation on Q. Identify
the maximal ideal of this valuation ring.

Exercise 7. (A Formal Implicit Function Theorem) Let f(x, y) ∈ k[x, y]
be a polynomial of the form

f(x, y) = yn + c1(x)yn−1 + · · · + cn−1(x)y + cn(x),

where ci(x) ∈ k[x]. Assume that f(0, y) = 0 has n distinct roots ai ∈ k.
a. Starting from y

(0)
i (x) = ai, show that there is a unique ai1 ∈ k such

that y
(1)
i (x) = ai + ai1x satisfies

f(x, y
(1)
i (x)) ≡ 0 mod 〈x2〉.

b. Show that if we have a polynomial y
(�)
i (x) = ai + ai1x + · · · + ai�x

�,
that satisfies

f(x, y
(�)
i (x)) ≡ 0 mod 〈x�+1〉,

then there exists a unique ai,�+1 ∈ k such that

y
(�+1)
i (x) = y

(�)
i (x) + ai,�+1x

�+1

satisfies

f(x, y
(�+1)
i (x)) ≡ 0 mod 〈x�+2〉.

c. From parts a and b, deduce that there is a unique power series yi(x) ∈
k[[x]] that satisfies f(x, yi(x)) = 0 and yi(0) = ai.

Geometrically, this gives a formal series parametrization of the branch of
the curve f(x, y) passing through (0, ai): (x, yi(x)). It also follows that
f(x, y) factors in the ring k[[x]][y]:

f(x, y) =
n∏

i=1

(y − yi(x)).

Exercise 8. Let R be an integral domain (that is, a ring with no zero-
divisors), and let P ⊂ R be a prime ideal (see Exercise 8 of Chapter 1, §1
for the definition, which is the same in any ring R). The localization of R
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with respect to P , denoted RP , is a new ring containing R, in which every
element in R not in the specified prime ideal P becomes a unit. We define

RP = {r/s : r, s ∈ R, s /∈ P},
so that RP is a subset of the field of fractions of R.
a. Using Proposition (1.4), show that RP is a local ring, with maximal

ideal M = {p/s : p ∈ P, s /∈ P}.
b. Show that every ideal in RP has the form IP = {a/s : a ∈ I, s /∈ P},

where I is an ideal of R contained in P .

Exercise 9. The construction of RP in Exercise 8 can be generalized in
the following way. If R is any ring, and S ⊂ R is a set which is closed under
multiplication (that is, s1, s2 ∈ S implies s1 · s2 ∈ S), then we can form
“fractions” a/s, with a ∈ R, s ∈ S. We will say two fractions a/s and b/t
are equivalent if there is some u ∈ S such that u(at − bs) = 0 in R. We
call the collection of equivalence classes for this relation S−1R.
a. Show that forming sums and products as with ordinary fractions gives

well-defined operations on S−1R.
b. Show that S−1R is a ring under these sum and product operations.
c. If R is any ring (not necessarily an integral domain) and P ⊂ R is a

prime ideal, show that S = R \ P is closed under multiplication. The
resulting ring of fractions S−1R is also denoted RP (as in Exercise 8).

Exercise 10. Let R = k[x1, . . . , xn] and I = 〈f1, . . . , fm〉 be an ideal in
R. Let M = 〈x1, . . . , xn〉 be the maximal ideal of polynomials vanishing
at the origin and suppose that I ⊂ M .
a. Show that the ideal M/I generated by the cosets of x1, . . . , xn in R/I

is a prime ideal.
b. Let IRM denote the ideal generated by the fi in the ring RM , and

let (R/I)M/I be constructed as in Exercise 8. Let r/s ∈ RM , let [r], [s]
denote the cosets of the numerator and denominator in R/I, and let [r/s]
denote the coset of the fraction in RM/IRM . Show that the mapping

ϕ : RM/IRM → (R/I)M/I

[r/s] �→ [r]/[s]

is well defined and gives an isomorphism of rings.

Exercise 11. Let R = k[x1, . . . , xn]〈x1,...,xn〉. Show that every ideal I ⊂
R has a generating set consisting of polynomials f1, . . . , fs ∈ k[x1, . . . , xn].

Exercise 12. (Another interpretation of k{x1, . . . , xn}) Let k = R or C

and let U ⊂ kn be open. A function f : U → k is analytic if it can be
represented by a power series with coefficients in k at each point of U . One
can prove that every element of k{x1, . . . , xn} defines an analytic function
on some neighborhood of the origin. We can describe k{x1, . . . , xn} in
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terms of analytic functions as follows. Two analytic functions, each defined
on some neighborhood of the origin, are equivalent if there is some (smaller)
neighborhood of the origin on which they are equal. An equivalence class
of analytic functions with respect to this relation is called a germ of an
analytic function (at the origin).
a. Show that the set of germs of analytic functions at the origin is a ring

under the usual sum and product of functions.
b. Show that this ring can be identified with k{x1, . . . , xn} and that the

maximal ideal is precisely the set of germs of analytic functions which
vanish at the origin.

c. Consider the function f : R → R defined by

f(x) =
{

e−1/x2
if x > 0

0 if x ≤ 0.

Show that f is C∞ on R, and construct its Taylor series, expanding
at a = 0. Does the Taylor series converge to f(x) for all x in some
neighborhood of 0 ∈ R?

If k = R, the example given in part c shows that the ring of germs of
infinitely differentiable real functions is not equal to k{x1, . . . , xn}. On
the other hand, it is a basic theorem of complex analysis that a complex
differentiable function is analytic.

§2 Multiplicities and Milnor Numbers

In this section we will see how local rings can be used to assign local
multiplicities at the points in V(I) for a zero-dimensional ideal I. We will
also use local rings to define the Milnor and Tjurina numbers of an isolated
singular point of a hypersurface.

To see what the issues are, let us turn to one of the most frequent com-
putations that one is called to do in a local ring, that of computing the
dimension of the quotient ring by a zero-dimensional ideal. In Chapter 2, we
learned how to compute the dimension of k[x1, . . . , xn]/I when I is a zero-
dimensional polynomial ideal. Recall how this works. For any monomial
order, we have

dim k[x1, . . . , xn]/I = dim k[x1, . . . , xn]/〈LT(I)〉,
and the latter is just the number of monomials xα such that xα /∈ 〈LT(I)〉.
For example, if

I = 〈x2 + x3, y2〉 ⊂ k[x, y],

then using the lex order with y > x for instance, the given generators form
a Gröbner basis for I. So

dim k[x, y]/I = dim k[x, y]/〈LT(I)〉 = dim k[x, y]/〈x3, y2〉 = 6.
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The rightmost equality follows because the cosets of 1, x, x2, y, xy, x2y form
a vector space basis of k[x, y]/〈x3, y2〉. The results of Chapter 2 show that
there are at most six common zeros of x2 + x3 and y2 in k2. In fact, from
the simple form of the generators of I we see there are precisely two distinct
points in V(I): (−1, 0) and (0, 0).

To define the local multiplicity of a solution of a system of equations,
we use a local ring instead of the polynomial ring, but the idea is much
the same as above. We will need the following notation. If I is an ideal
in k[x1, . . . , xn], then we sometimes denote by Ik[x1, . . . , xn]〈x1,...,xn〉 the
ideal generated by I in the larger ring k[x1, . . . , xn]〈x1,...,xn〉.

(2.1) Definition. Let I be a zero-dimensional ideal in k[x1, . . . , xn],
so that V(I) consists of finitely many points in kn, and assume that
(0, 0, . . . , 0) is one of them. Then the multiplicity of (0, 0, . . . , 0) as a point
in V(I) is

dimk k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉.

More generally, if p = (a1, . . . , an) ∈ V(I), then the multiplicity of p, de-
noted m(p), is the dimension of the ring obtained by localizing k[x1, . . . , xn]
at the maximal ideal M = I({p}) = 〈x1 − a1, . . . , xn − an〉 corresponding
to p, and taking the quotient:

dim k[x1, . . . , xn]M/Ik[x1, . . . , xn]M .

Since k[x1, . . . , xn]M is a local ring, it is easy to show that the quo-
tient k[x1, . . . , xn]M/Ik[x1, . . . , xn]M is also local (see Exercise 6 below).
The intuition is that since M is the maximal ideal of p ∈ V(I), the ring
k[x1, . . . , xn]M/Ik[x1, . . . , xn]M should reflect the local behavior of I at
p. Hence the multiplicity m(p), which is the dimension of this ring, is a
measure of how complicated I is at p. Theorem (2.2) below will guarantee
that m(p) is finite.

We can also define the multiplicity of a solution p of a specific system
f1 = · · · = fs = 0, provided that p is an isolated solution (that is, there
exists a neighborhood of p in which the system has no other solutions).
From a more sophisticated point of view, this multiplicity is sometimes
called the local intersection multiplicity of the variety V(f1, . . . , fs) at p.
However, we caution the reader that there is a more sophisticated notion of
multiplicity called the Hilbert-Samuel multiplicity of I at p. This is denoted
e(p) and is discussed in [BH], Section 4.6.

Let us check Definition (2.1) in our example. Let R = k[x, y]〈x,y〉 be
the local ring of k2 at (0, 0) and consider the ideal J generated by the
polynomials x2 + x3 and y2 in R. The multiplicity of their common zero
(0, 0) is dim R/J .

Exercise 1. Notice that x2 + x3 = x2(1 + x).
a. Show that 1 + x is a unit in R, so 1/(1 + x) ∈ R.
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b. Show that x2 and y2 generate the same ideal in R as x2 + x3 and y2.
c. Show that every element f ∈ R can be written uniquely as f = g/(1 +

h), where g ∈ k[x, y] and h ∈ 〈x, y〉 ⊂ k[x, y].
d. Show that for each f ∈ R, the coset [f ] ∈ R/〈x2, y2〉R is equal to the

coset [g(1 − h + h2)], where g, h are as in part c.
e. Deduce that every coset in R/〈x2, y2〉R can be written as [a + bx + cy +

dxy] for some unique a, b, c, d ∈ k.

By the result of Exercise 1,

dim R/J = dim R/〈x2, y2〉R = 4.

Thus the multiplicity of (0, 0) as a solution of x2 + x3 = y2 = 0 is 4.
Similarly, let us compute the multiplicity of (−1, 0) as a solution of this

system. Rather than localizing at the prime ideal 〈x + 1, y〉, we change
coordinates to translate the point (−1, 0) to the origin and compute the
multiplicity there. (This often simplifies the calculations; we leave the fact
that these two procedures give the same results to the exercises.) So, set
X = x + 1, Y = y (we want X and Y to be 0 when x = −1 and y = 0)
and let S = k[X, Y ]〈X,Y 〉. Then x2 + x3 = (X − 1)2 + (X − 1)3 =
X3 − 2X2 + X and y2 = Y 2 and we want to compute the multiplicity
of (0, 0) as a solution of X3 − 2X2 + X = Y 2 = 0. Now we note that
X3 − 2X2 + X = X(1 − 2X + X2) and 1/(1 − 2X + X2) ∈ S. Thus,
the ideal generated by X and Y 2 in S is the same as that generated by
X3 − 2X + X and Y 2 and, therefore,

dim S/〈X3 − 2X2 + X, Y 2〉S = dim S/〈X, Y 2〉S = 2.

Again, the equality on the right follows because the cosets of 1, Y are a basis
of S/〈X, Y 2〉. We conclude that the multiplicity of (−1, 0) as a solution of
x3 + x2 = y2 = 0 is 2.

Thus, we have shown that the polynomials x3 + x2 and y2 have two
common zeros, one of multiplicity 4 and the other of multiplicity 2. When
the total number of zeros is counted with multiplicity, we obtain 6, in
agreement with the fact that the dimension of the quotient ring of k[x, y]
by the ideal generated by these polynomials is 6.

Exercise 2.
a. Find all points in V(x2 − 2x + y2, x2 − 4x + 4y4) ⊂ C

2 and compute
the multiplicity of each as above.

b. Verify that the sum of the multiplicities is equal to

dim C[x, y]/〈x2 − 2x + y2, x2 − 4x + 4y4〉.
c. What is the geometric explanation for the solution of multiplicity > 1

in this example?
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Before turning to the question of computing the dimension of a quotient
of a local ring in more complicated examples, we will verify that the total
number of solutions of a system f1 = · · · = fs = 0, counted with multiplic-
ity, is the dimension of k[x1, . . . , xn]/I when k is algebraically closed and
I = 〈f1, . . . , fs〉 is zero-dimensional. In a sense, this is confirmation that
our definition of multiplicity behaves as we would wish. In the following
discussion, if {p1, . . . , pm} is a finite subset of kn, and Mi = I({pi}) is the
maximal ideal of k[x1, . . . , xn] corresponding to pi, we will write

k[x1, . . . , xn]Mi = {f/g : g(pi) �= 0} = Oi

for simplicity of notation.

(2.2) Theorem. Let I be a zero-dimensional ideal in k[x1, . . . , xn] (k
algebraically closed) and let V(I) = {p1, . . . , pm}. Then, there is an
isomorphism between k[x1, . . . , xn]/I and the direct product of the rings
Ai = Oi/IOi, for i = 1, . . . , m.

Proof. For each i, i = 1, . . . , m, there are ring homomorphisms

ϕi : k[x1, . . . , xn] → Ai

f �→ [f ]i,

where [f ]i is the coset of f in the quotient ring Oi/IOi. Hence we get a
ring homomorphism

ϕ : k[x1, . . . , xn] → A1 × · · · × Am

f �→ ([f ]1, . . . , [f ]m).

Since f ∈ I implies [f ]i = 0 ∈ Ai for all i, we have I ⊂ ker(ϕ).
So to prove the theorem, we need to show first that I = ker(ϕ) (by
the fundamental theorem on ring homomorphisms, this will imply that
im(ϕ) ∼= k[x1, . . . , xn]/I), and second that ϕ is onto.

To prepare for this, we need to establish three basic facts. We use the
notation f ≡ g mod I to mean f − g ∈ I.

(2.3) Lemma. Let Mi = I({pi}) in k[x1, . . . , xn].
a. There exists an integer d ≥ 1 such that (∩m

i=1Mi)d ⊂ I.
b. There are polynomials ei ∈ k[x1, . . . , xn], i = 1, . . . , m, such that∑m

i=1 ei ≡ 1 mod I, eiej ≡ 0 mod I if i �= j, and e2
i ≡ ei mod I.

Furthermore, ei ∈ IOj if i �= j and ei − 1 ∈ IOi for all i.
c. If g ∈ k[x1, . . . , xn] \ Mi, then there exists h ∈ k[x1, . . . , xn] such that

hg ≡ ei mod I.

Proof of the Lemma. Part a is an easy consequence of the Nullstel-
lensatz. We leave the details to the reader as Exercise 7 below.

Turning to part b, Lemma (2.9) of Chapter 2 implies the existence of
polynomials gi ∈ k[x1, . . . , xn] such that gi(pj) = 0 if i �= j, and gi(pi) = 1
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for each i. Let

(2.4) ei = 1 − (1 − gd
i )d,

where d is as in part a. Expanding the right-hand side of (2.4) with the
binomial theorem and canceling the 1s, we see that ej ∈ Md

i for j �= i. On
the other hand, (2.4) implies ei − 1 ∈ Md

i for all i. Hence for each i,∑
j

ej − 1 = ei − 1 +
∑
j �=i

ej

is an element of Md
i . Since this is true for all i,

∑
j ej − 1 ∈ ∩m

i=1M
d
i .

Because the Mi are distinct maximal ideals, Mi + Mj = k[x1, . . . , xn]
whenever i �= j. It follows that ∩m

i=1M
d
i = (∩m

i=1Mi)d (see Exercise 8
below). Hence

∑
j ej − 1 ∈ (∩m

i=1Mi)d ⊂ I. Similarly, eiej ∈ ∩m
i=1M

d
i =

(∩m
i=1Mi)d ⊂ I whenever i �= j, and the congruence e2

i ≡ ei mod I now
follows easily (see Exercise 9 below). This implies ei(ei − 1) ∈ IOj for all
i, j. If i �= j, then ei − 1 is a unit in Oj since ei(pj) = 0. Thus ei ∈ IOj .
The proof that ei − 1 ∈ IOi follows similarly using ei(pi) = 1.

For part c, by multiplying by a constant, we may assume g(pi) = 1.
Then 1− g ∈ Mi, and hence taking h = (1 + (1− g) + · · ·+ (1− g)d−1)ei,

hg = h(1 − (1 − g)) = (1 − (1 − g)d)ei = ei − (1 − g)dei.

Since (1 − g)d ∈ Md
i and ei ∈ Md

j for all j �= i, as shown above, we have
(1 − g)dei ∈ I by part a, and the lemma is established.

We can now complete the proof of Theorem (2.2). Let f ∈ ker(ϕ), and
note that that kernel is characterized as follows:

ker(ϕ) = {f ∈ k[x1, . . . , xn] : [f ]i = 0 for all i}
= {f : f ∈ IOi for all i}
= {f : there exists gi /∈ Mi with gif ∈ I}.

For each of the gi, by part c of the lemma, there exists some hi such that
higi ≡ ei mod I. As a result, f ·∑m

i=1 higi =
∑m

i=1 hi(gif) is an element of
I, since each gif ∈ I. But on the other hand, f ·∑m

i=1 higi ≡ f ·∑i ei ≡
f mod I by part b of the lemma. Combining these two observations, we see
that f ∈ I. Hence ker(ϕ) ⊂ I. Since we proved earlier that I ⊂ ker(ϕ), we
have I = ker(ϕ).

To conclude the proof, we need to show that ϕ is onto. So let
([n1/d1], . . . , [nm/dm]) be an arbitrary element of A1 × · · · × Am, where
ni, di ∈ k[x1, . . . , xn], di /∈ Mi, and the brackets denote the coset in Ai.
By part c of the lemma again, there are hi ∈ k[x1, . . . , xn] such that
hidi ≡ ei mod I. Now let F =

∑m
i=1 hiniei ∈ k[x1, . . . , xn]. It is easy to

see that ϕi(F ) = [ni/di] for each i since ei ∈ IOj for i �= j and ei−1 ∈ IOi

by part b of the lemma. Hence ϕ is onto.

An immediate corollary of this theorem is the result we want.
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(2.5) Corollary. Let k be algebraically closed, and let I be a zero-
dimensional ideal in k[x1, . . . , xn]. Then dim k[x1, . . . , xn]/I is the number
of points of V(I) counted with multiplicity. Explicitly, if p1, . . . , pm are the
distinct points of V(I) and Oi is the ring of rational functions defined at
pi, then

dim k[x1, . . . , xn]/I =
∑m

i=1 dimOi/IOi =
∑m

i=1m(pi).

Proof. The corollary follows immediately from the theorem by taking
dimensions as vector spaces over k.

A second corollary tells us when a zero-dimensional ideal is radical.

(2.6) Corollary. Let k be algebraically closed, and let I be a zero-
dimensional ideal in k[x1, . . . , xn]. Then I is radical if and only if every
p ∈ V(I) has multiplicity m(p) = 1.

Proof. If V(I) = {p1, . . . , pm}, then Theorem (2.10) of Chapter 2 shows
that dim k[x1, . . . , xn]/I ≥ m, with equality if and only if I is radical.
By Corollary (2.5), this inequality can be written

∑m
i=1 m(pi) ≥ m. Since

m(pi) is always ≥ 1, it follows that
∑m

i=1 m(pi) ≥ m is an equality if and
only if all m(pi) = 1.

We next discuss how to compute multiplicities. Given a zero-dimensional
ideal I ⊂ k[x1, . . . , xn] and a polynomial f ∈ k[x1, . . . , xn], let mf be
multiplication by f on k[x1, . . . , xn]/I. Then the characteristic polynomial
det(mf − uI) is determined by the points in V(I) and their multiplicities.
More precisely, we have the following result.

(2.7) Proposition. Let k be an algebraically closed field and let I be a
zero-dimensional ideal in k[x1, . . . , xn]. If f ∈ k[x1, . . . , xn], then

det(mf − uI) = (−1)d
∏

p∈V(I)

(u − f(p))m(p),

where d = dim k[x1, . . . , xn]/I and mf is the map given by multiplication
by f on k[x1, . . . , xn]/I.

Proof. Let V(I) = {p1, . . . , pm}. Using Theorem (2.2), we get a diagram:

k[x1, . . . , xn]/I ∼= A1 × · · · × Am

mf

⏐⏐� ⏐⏐� mf

k[x1, . . . , xn]/I ∼= A1 × · · · × Am

where mf : A1× · · · ×Am → A1× · · · ×Am is multiplication by f on each
factor. This diagram commutes in the same sense as the diagram (5.19) of
Chapter 3.
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Hence we can work with mf : A1 × · · · × Am → A1 × · · · × Am. If
we restrict to mf : Ai → Ai, it suffices to show that det(mf − uI) =
(−1)m(pi)(u − f(pi))m(pi). Equivalently, we must show that f(pi) is the
only eigenvalue of mf on Ai.

To prove this, consider the map ϕi : k[x1, . . . , xn] → Ai defined in the
proof of Theorem (2.2), and let Qi = ker(ϕi). In Exercise 11 below, you
will study the ideal Qi, which is part of the primary decomposition of I. In
particular, you will show that V(Qi) = {pi} and that k[x1, . . . , xn]/Qi

∼=
Ai. Consequently, the eigenvalues of mf on Ai equal the eigenvalues of mf

on k[x1, . . . , xn]/Qi, which by Theorem (4.5) of Chapter 2 are the values
of f on V(Qi) = {pi}. It follows that f(pi) is the only eigenvalue, as
desired.

The ideas used in the proof of Proposition (2.7) make it easy to determine
the generalized eigenvectors of mf . See Exercise 12 below for the details.

If we know the points p1, . . . , pm of V(I) (for example, we could find
them using the methods of Chapters 2 or 3), then it is a simple matter to
compute their multiplicities using Proposition (2.7). First pick f so that
f(p1), . . . , f(pm) are distinct, and then compute the matrix of mf relative
to a monomial basis of k[x1, . . . , xn]/I as in Chapters 2 or 3. In typical
cases, the polynomials generating I have coefficients in Q, which means
that the characteristic polynomial det(mf − uI) is in Q[u]. Then factor
det(mf − uI) over Q, which can easily be done by computer (the Maple
command is factor). This gives

det(mf − uI) = hm1
1 · · · hmr

r ,

where h1, . . . , hr are distinct irreducible polynomials over Q. For each
pi ∈ V(I), f(pi) is a root of a unique hj , and the corresponding exponent
mj is the multiplicity m(pi). This follows from Proposition (2.7) and the
properties of irreducible polynomials (see Exercise 13). One consequence is
that those points of V(I) corresponding to the same irreducible factor of
det(mf − uI) all have the same multiplicity.

We can also extend some of the results proved in Chapter 3 about resul-
tants. For example, the techniques used to prove Theorem (2.2) give the
following generalization of Proposition (5.8) of Chapter 3 (see Exercise 14
below for the details).

(2.8) Proposition. Let f1, . . . , fn ∈ k[x1, . . . , xn] (k algebraically
closed) have total degrees at most d1, . . . , dn and no solutions at ∞. If
f0 = u0 + u1x1 + · · · + unxn, where u0, . . . , un are independent variables,
then there is a nonzero constant C such that

Res1,d1,...,dn(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)

(
u0 + u1a1 + · · · + unan

)m(p)
,

where a point p ∈ V(f1, . . . , fn) is written p = (a1, . . . , an).
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This tells us that the u-resultant of Chapter 3, §5, computes not only
the points of V(f1, . . . , fn) but also their multiplicities. In Chapter 3, we
also studied the hidden variable method , where we set xn = u in the equa-
tions f1 = · · · = fn = 0 and regard u as a constant. After homogenizing
with respect to x0, we get the resultant Resx0,...,xn−1(F̂1, . . . , F̂n) from
Proposition (5.9) in Chapter 3, which tells us about the xn-coordinates of
the solutions. In Chapter 3, we needed to assume that the xn-coordinates
were distinct. Now, using Proposition (2.8), it is easy to show that when
f1, . . . , fn have no solutions at ∞,

(2.9)
Res1,d1,...,dn(u − xn, f1, . . . , fn) = Resx0,...,xn−1(F̂1, . . . , F̂n)

= C
∏

p∈V(f1,...,fn)

(
u − an

)m(p)

where p ∈ V(f1, . . . , fn) is written p = (a1, . . . , an). See Exercise 14 for
the proof.

The formulas given in (2.9) and Proposition (2.8) indicate a deep relation
between multiplicities using resultants. In fact, in the case of two equations
in two unknowns, one can use resultants to define multiplicities. This is
done, for example, in Chapter 8 of [CLO] and Chapter 3 of [Kir].

Exercise 3. Consider the equations

f1 = y2 − 3 = 0

f2 = 6y − x3 + 9x,

and let I = 〈f1, f2〉 ⊂ k[x, y].
a. Show that these equations have four solutions with distinct x coordi-

nates.
b. Draw the graphs of f1 = 0 and f2 = 0. Use your picture to explain

geometrically why two of the points should have multiplicity > 1.
c. Show that the characteristic polynomial of mx on C[x, y]/I is u6−18u4+

81u2 − 108 = (u2 − 3)2(u2 − 12).
d. Use part c and Proposition (2.7) to compute the multiplicities of the

four solution points.
e. Explain how you would compute the multiplicities using Res(f1, f2, y)

and Proposition (2.8). This is the hidden variable method for com-
puting multiplicities. Also explain the meaning of the exponent 3 in
Res(f1, f2, x) = (y2 − 3)3.

Besides resultants and multiplicities, Theorem (2.2) has other interest-
ing consequences. For instance, suppose that a collection of n polynomials
f1, . . . , fn has a single zero in kn, which we may take to be the origin. Let
I = 〈f1, . . . , fn〉. Then the theorem implies

(2.10) k[x1, . . . , xn]/I ∼= k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉.
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This is very satisfying, but there is more to the story. With the above
hypotheses on f1, . . . , fn, one can show that most small perturbations of
f1, . . . , fn result in a system of equations with distinct zeroes, each of which
has multiplicity one, and that the number of such zeroes is precisely equal to
the multiplicity of the origin as a solution of f1 = · · · = fn = 0. Moreover,
the ring k[x1, . . . , xn]/I turns out to be a limit, in a rather precise sense,
of the set of functions on these distinct zeroes. Here is a simple example.

Exercise 4. Let k = C so that we can take limits in an elementary sense.
Consider the ideals It = 〈y − x2, x3 − t〉 where t ∈ C is a parameter.
a. What are the points in V(It) for t �= 0? Show that each point has

multiplicity 1, so Ai
∼= k for each i.

b. Now let t → 0. What is V(I0) and its multiplicity?
c. Using the proof of Theorem (2.2), work out an explicit isomorphism

between C[x, y]/It, and the product of the Ai for t �= 0.
d. What happens as t → 0? Identify the image of a general f in C[x, y]/I0,

and relate to the image of f in the product of Ai for t �= 0.

Local rings give us the ability to discuss what’s happening near a
particular solution of a zero-dimensional ideal. This leads to some rich
mathematics, including the following.

• As explained in Exercise 11, the isomorphism A ∼= A1×· · ·×Am of The-
orem (2.2) is related to primary decomposition. A method for computing
this decomposition using the characteristic polynomial of a multiplication
map is discussed in [Mon] and [YNT].
• The local ring Ai can be described in terms of the vanishing of certain

linear combinations of partial derivatives. This is explained in [MMM1],
[MMM2], [Möl], and [MöS], among others.
• When the number of equations equals the number of unknowns as in

Chapter 3, the ring A is a complete intersection. Some of the very deep al-
gebra related to this situation, including Gorenstein duality , is discussed
in [ElM2].

The book [Stu5] gives a nice introduction to the first two bullets. The
reader should also consult [YNT] for many other aspects of the ring A
and [Rou] for an interesting method of representing the solutions and their
multiplicities.

We also remark that we can compute multiplicities by passing to the for-
mal power series ring or, in the cases k = R or C, to the ring of convergent
power series. More precisely, the following holds.
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(2.11) Proposition. Let I ⊂ k[x1, . . . , xn] be a zero-dimensional ideal
such that the origin is a point of V(I) of multiplicity m. Then

m = dim k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉
= dim k[[x1, . . . , xn]]/Ik[[x1, . . . , xn]].

If, moreover, k = R or C, so that we can talk about whether a power series
converges, then

m = dim k{x1, . . . , xn}/Ik{x1, . . . , xn}
as well.

To see the idea behind why this is so, consider the example we looked at
in Exercise 1 above. We showed that dim k[x, y]〈x,y〉/〈x2 + x3, y2〉 = 4 by
noting that in k[x, y]〈x,y〉, we have

〈x2 + x3, y2〉 = 〈x2, y2〉
because 1/(1 + x) ∈ k[x, y]〈x,y〉. As in §1, we can represent 1/(1 + x) as
the formal power series 1 − x + x2 − x3 + x4 − · · · ∈ k[[x, y]] and then

(x2 + x3)(1 − x + x2 − x3 + x4 − · · ·) = x2

in k[[x, y]]. This shows that, in k[[x, y]], 〈x2 + x3, y2〉 = 〈x2, y2〉. It follows
that

dim k[[x, y]]/〈x2, y2〉 = 4

(as before, the four monomials 1, x, y, xy form a vector space basis of
k[[x, y]]/〈x2, y2〉). If k = C, the power series 1 − x + x2 − x3 + x4 − · · ·
is convergent for x with |x| < 1, and precisely the same reasoning shows
that 〈x2 + x3, y2〉 = 〈x2, y2〉 in k{x, y} as well. Therefore,

dim k{x, y}/〈x2, y2〉k{x, y} = 4.

It is possible to prove the proposition by generalizing these observations,
but it will be more convenient to defer it to §5, so that we can make use of
some additional computational tools for local rings.

We will conclude this section by introducing an important invariant in
singularity theory—the Milnor number of a singularity. See [Mil] for the
topological meaning of this integer. One says that an analytic function
f(x1, . . . , xn) on an open set U ⊂ C

n has a singularity at a point p ∈ U
if the n first-order partial derivatives of f have a common zero at p. We
say that the singular point p is isolated if there is some neighborhood of
p containing no other singular points of f . As usual, when considering a
given singular point p, one translates p to the origin. If we do this, then
the assertion that the origin is isolated is enough to guarantee that

dim C{x1, . . . , xn}/〈∂f/∂x1, . . . , ∂f/∂xn〉 < ∞.
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Here, we are using the fact that in a neighborhood of the origin, any analytic
function can be represented by a convergent power series. Thus f and its
partial derivatives can be regarded as elements of C{x1, . . . , xn}.

(2.12) Definition. Let f ∈ C{x1, . . . , xn} have an isolated singularity
at the origin. The Milnor number of the singular point, denoted µ, is given
by

µ = dim C{x1, . . . , xn}/〈∂f/∂x1, . . . , ∂f/∂xn〉.

In view of Proposition (2.11), if the function f is a polynomial, the Milnor
number of a singular point p of f is just the multiplicity of the common
zero p of the partials of f .

Exercise 5. Each of the following f(x, y) ∈ C[x, y] has an isolated
singular point at (0, 0). For each, determine the Milnor number by
computing

µ = dim C[[x, y]]/〈∂f/∂x, ∂f/∂y〉.
a. f(x, y) = y2 − x2 − x3.
b. f(x, y) = y2 − x3.
c. f(x, y) = y2 − x5.

In intuitive terms, the larger the Milnor number is, the more complicated
the structure of the singular point is. To conclude this section, we mention
that there is a closely related invariant of singularities called the Tjurina
number, which is defined by

τ = dim k[[x1, . . . , xn]]/〈f, ∂f/∂x1, . . . , ∂f/∂xn〉.
Over any field k, the Tjurina number is finite precisely when f has an
isolated singular point.

ADDITIONAL EXERCISES FOR §2

Exercise 6. If p ∈ V(I) and M = I({p}) is the maximal ideal of p, then
prove that k[x1, . . . , xn]M/Ik[x1, . . . , xn]M is a local ring. Also show that
the dimension of this ring, which is the multiplicity m(p), is≥ 1. Hint: Show
that the map k[x1, . . . , xn]M/Ik[x1, . . . , xn]M → k given by evaluating a
coset at p is a well-defined linear map which is onto.

Exercise 7. Using the Nullstellensatz, prove part a of Lemma (2.3).

Exercise 8. Let I and J be any two ideals in a ring R such that I +J = R
(we sometimes say I and J are comaximal).
a. Show that IJ = I ∩ J .
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b. From part a, deduce that if d ≥ 1, then Id ∩ Jd = (I ∩ J)d.
c. Generalize part b to any number of ideals I1, . . . , Ir if Ii + Ij = R

whenever i �= j.

Exercise 9. Show that if ei are the polynomials constructed in (2.4) for
part b of Lemma (2.3), then e2

i ≡ ei mod I. Hint: Use the other two
statements in part b.

Exercise 10. In this exercise, we will use Theorem (2.2) to give a new
proof of Theorem (4.5) of Chapter 2. Let Ai be the local ring Oi/IOi as
in the proof of Theorem (2.2). For f ∈ k[x1, . . . , xn], let mf : Ai → Ai be
multiplication by f . Also, the coset of f in Ai will be denoted [f ]i.
a. Prove that mf is a vector space isomorphism if and only if [f ]i ∈ Ai is

invertible; i.e., there is [g]i ∈ Ai such that [f ]i[g]i = [1]i.
b. Explain why [f ]i is in the maximal ideal of Ai if and only if f(pi) = 0.
c. Explain why each of the following equivalences is true for a polynomial

f ∈ k[x1, . . . , xn] and λ ∈ C: λ is an eigenvalue of mf ⇔ mf−λ is not
invertible⇔ [f − λ]i ∈ Ai is not invertible⇔ [f − λ]i is in the maximal
ideal of Ai ⇔ f(p) = λ. Hint: Use parts a and b of this exercise and
part b of Exercise 1 from §1.

d. Combine part c with the isomorphism k[x1, . . . , xn]/I ∼= A1× · · · ×Am

and the commutative diagram from Proposition (2.7) to give a new proof
of Theorem (4.5) of Chapter 2.

Exercise 11. (Primary Decomposition) Let I be a zero-dimensional ideal
with V(I) = {p1, . . . , pm}. This exercise will explore the relation be-
tween the isomorphism A = k[x1, . . . , xn]/I ∼= A1 × · · · × Am and the
primary decomposition of I. More details on primary decomposition can
be found in [CLO], Chapter 4, §7. We begin with the homomorphism
ϕi : k[x1, . . . , xn] → Ai defined by ϕ(f) = [f ]i ∈ Ai (this is the nota-
tion used in the proof of Theorem (2.2)). Consider the ideal Qi defined
by

Qi = ker(ϕi) = {f ∈ k[x1, . . . , xn] : [f ]i = [0]i in Ai}.
We will show that the ideals Q1, . . . , Qm give the primary decomposition
of I. Let Mi = I({pi}).
a. Show that I ⊂ Qi and that Qi = {f ∈ k[x1, . . . , xn] : there exists u in

k[x1, . . . , xn] \Mi such that u · f ∈ I}.
b. If g1, . . . , gm are as in the proof of Theorem (2.2), show that for j �= i,

some power of gj lies in Qi. Hint: Use part a and the Nullstellensatz.
c. Show that V(Qi) = {pi} and conclude that

√
Qi = Mi. Hint: Use part

b and the Nullstellensatz.
d. Show that Qi is a primary ideal , which means that if fg ∈ Qi, then

either f ∈ Qi or some power of g is in Qi. Hint: Use part c. Also, Ai is
a local ring.
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e. Prove that I = Q1 ∩ · · · ∩ Qm. This is the primary decomposition of I
(see Theorem 7 of [CLO], Chapter 4, §7).

f. Show that k[x1, . . . , xn]/Qi
∼= Ai. Hint: Show that ϕi is onto using the

proof of Theorem (2.2).

Exercise 12. (Generalized Eigenspaces) Given a linear map T : V → V ,
where V is a finite-dimensional vector space, a generalized eigenvector of
λ ∈ k is a nonzero vector v ∈ V such that (T − λI)m(v) = 0 for some
m ≥ 1. The generalized eigenspace of λ is the space of the generalized
eigenvectors for λ. When k is algebraically closed, V is the direct sum of its
generalized eigenspaces (see Section 7.1 of [FIS]). We will apply this theory
to the linear map mf : A → A to see how the generalized eigenspaces of
mf relate to the isomorphism A ∼= A1 × · · · × Am of Theorem (2.2).
a. In the proof of Proposition (2.7), we proved that f(pi) is the only eigen-

value of mf : Ai → Ai. Use this to show that the generalized eigenspace
of mf is all of Ai.

b. If f(p1), . . . , f(pm) are distinct, prove that the decomposition of A =
k[x1, . . . , xn]/I into a direct sum of generalized eigenspaces for mf is
precisely the isomorphism A ∼= A1 × · · · × Am of Theorem (2.2).

Exercise 13.
a. If h ∈ Q[u] is irreducible, prove that all roots of h have multiplicity one.

Hint: Compute hred.
b. Let h ∈ Q[u] be irreducible and let λ ∈ C be a root of h. If g ∈ Q[u]

and g(λ) = 0, prove that h divides g. Hint: If GCD(h, g) = 1, there are
polynomials A, B ∈ Q[u] such that Ah + Bg = 1.

c. If h1 and h2 are distinct irreducible polynomials in Q[u], prove that h1
and h2 have no common roots.

d. Use parts a and c to justify the method for computing multiplicities
given in the discussion following Proposition (2.7).

Exercise 14. Prove Proposition (2.8) and the formulas given in (2.9).
Hint: Use Exercise 12 and Proposition (5.8) of Chapter 3.

Exercise 15.
a. Let �1, . . . , �n be homogeneous linear polynomials in k[x1, . . . , xn] with

V(�1, . . . , �n) = {(0, . . . , 0)}. Compute the multiplicity of the origin as
a solution of �1 = · · · = �n = 0.

b. Now let f1, . . . , fn generate a zero-dimensional ideal in k[x1, . . . , xn],
and suppose that the origin is in V(f1, . . . , fn) and the Jacobian matrix

J =
(
∂fi/∂xj

)
has nonzero determinant at the origin. Compute the multiplicity of the
origin as a solution of f1 = · · · = fn = 0. Hint: Use part a.



158 Chapter 4. Computation in Local Rings

Exercise 16. We say f ∈ C[x1, . . . , xn] has an ordinary double point at
the origin 0 in C

n if f(0) = ∂f/∂xi(0) = 0 for all i, but the matrix of
second-order partial derivatives is invertible at 0:

det(∂2f/∂xi∂xj)
∣∣
(x1,...,xn)=(0,...,0) �= 0.

Find the Milnor number of an ordinary double point. Hint: Use Exercise 15.

Exercise 17. Let I be a zero-dimensional ideal in k[x1, . . . , xn] and let
p = (a1, . . . , an) ∈ V(I). Let X1, . . . , Xn be a new set of variables,
and consider the set I ⊂ k[X1, . . . , Xn] consisting of all f(X1 + a1, . . . ,
Xn + an) where f ∈ I.
a. Show that I is an ideal in k[X1, . . . , Xn], and that the origin is a point

in V(I).
b. Show that the multiplicity of p as a point in V(I) is the same as the

multiplicity of the origin as a point in V(I). Hint: One approach is to
show that

ϕ : k[x1, . . . , xn] → k[X1, . . . , Xn]

f(x1, . . . , xn) �→ f(X1 + a1, . . . , Xn + an)

defines an isomorphism of rings.

§3 Term Orders and Division in Local Rings

When working with an ideal I ⊂ k[x1, . . . , xn], for some purposes
we can replace I with its ideal of leading terms 〈LT(I)〉. For example,
if I is zero-dimensional, we can compute the dimension of the quo-
tient ring k[x1, . . . , xn]/I by using the fact that dim k[x1, . . . , xn]/I =
dim k[x1, . . . , xn]/〈LT(I)〉. The latter dimension is easy to compute since
〈LT(I)〉 is a monomial ideal—the dimension is just the number of monomi-
als not in the ideal). The heart of the matter is to compute 〈LT(I)〉, which
is done by computing a Gröbner basis of I.

A natural question to ask is whether something similar might work in a
local ring. An instructive example occurred in the last section, where we
considered the ideal I = 〈x2 + x3, y2〉. For R = k[x, y]〈x,y〉 or k[[x, y]] or
k{x, y}, we computed dim R/IR by replacing I by the monomial ideal

Ĩ = 〈x2, y2〉.
Note that Ĩ is generated by the lowest degree terms in the generators
of I. This is in contrast to the situation in the polynomial ring, where
dim k[x, y]/I was computed from 〈LT(I)〉 = 〈x3, y2〉 using the lex leading
terms.

To be able to pick out terms of lowest degree in polynomials as leading
terms, it will be necessary to extend the class of orders on monomials we
can use. For instance, to make the leading term of a polynomial or a power
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series be one of the terms of minimal total degree, we could consider what
are known as degree-anticompatible (or anti-graded) orders. By definition
these are orders that satisfy

(3.1) |α| < |β| =⇒ xα > xβ .

We still insist that our orders be total orderings and be compatible with
multiplication. As in Definition (2.1) of Chapter 1, being a total ordering
means that for any α, β ∈ Z

n
≥0, exactly one of the following is true:

xα > xβ , xα = xβ , or xα < xβ .

Compatibility with multiplication means that for any γ ∈ Z
n
≥0, if xα > xβ ,

then xα+γ > xβ+γ . Notice that property (3.1) implies that 1 > xi for all
i, 1 ≤ i ≤ n. Here is a first example.

Exercise 1. Consider terms in k[x].
a. Show that the only degree-anticompatible order is the antidegree order:

1 > x > x2 > x3 > · · · .
b. Explain why the antidegree order is not a well-ordering.

Any total ordering that is compatible with multiplication and that
satisfies 1 > xi for all i, 1 ≤ i ≤ n is called a local order . A degree-
anticompatible order is a local order (but not conversely—see Exercise 2
below).

Perhaps the simplest example of a local order in n variables is degree-
anticompatible lexicographic order, abbreviated alex , which first sorts by
total degree, lower degree terms preceding higher degree terms, and which
sorts monomials of the same total degree lexicographically.

(3.2) Definition (Antigraded Lex Order). Let α, β ∈ Z
n
≥0. We say

xα >alex xβ if

|α| =
n∑

i=1

αi < |β| =
n∑

i=1

βi,

or if

|α| = |β| and xα >lex xβ .

Thus, for example, in k[x, y], with x > y, we have

1 >alex x >alex y >alex x2 >alex xy >alex y2 >alex x3 >alex · · · .
Similarly one defines degree-anticompatible reverse lexicographic, or

arevlex, order as follows.
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(3.3) Definition (Antigraded Revlex Order). Let α, β ∈ Z
n
≥0. We

say xα >arevlex xβ if

|α| < |β|, or |α| = |β| and xα >revlex xβ .

So, for example, we have

1 >arevlex x >arevlex y >arevlex z >arevlex x2 >arevlex

xy >arevlex y2 >arevlex xz >arevlex yz >arevlex z2 >arevlex · · · .
Degree-anticompatible and local orders lack one of the key properties

of the monomial orders that we have used up to this point. Namely, the
third property in Definition (2.1) from Chapter 1, which requires that a
monomial order be a well-ordering relation, does not hold. Local orders
are not well-orderings. This can be seen even in the one-variable case in
Exercise 1 above.

In §4 of this chapter, we will need to make use of even more general
orders than degree-anticompatible or local orders. Moreover, and somewhat
surprisingly, the whole theory can be simplified somewhat by generalizing
at once to consider the whole class of semigroup orders as in the following
definition.

(3.4) Definition. An order > on Z
n
≥0 or, equivalently, on the set of

monomials xα, α ∈ Z
n
≥0 in k[x1, . . . , xn] or any of the local rings

k[x1, . . . , xn]〈x1,...,xn〉, k{x1, . . . , xn}, or k[[x1, . . . , xn]], is said to be a
semigroup order if it satisfies:
a. > is a total ordering on Z

n
≥0;

b. > is compatible with multiplication of monomials.

Semigroup orders include the monomial orders, which have the additional
well-ordering property, as well as local orders and other orders which do
not. Since the property of being a well-ordering is often used to assert that
algorithms terminate, we will need to be especially careful in checking that
procedures using semigroup orders terminate.

Recall that in §2 of Chapter 1 we discussed how monomial orders can be
specified by matrices. If M is an m× n real matrix with rows w1, . . . , wm,
then we define xα >M xβ if there is an � ≤ m such that α · wi = β · wi

for i = 1, . . . , � − 1, but α · w� > β · w�. Every semigroup order can be
described by giving a suitable matrix M . The following exercise describes
the necessary properties of M and gives some examples.

Exercise 2.
a. Show that >M is compatible with multiplication for every matrix M as

above.
b. Show that >M is a total ordering if and only if ker(M) ∩ Z

n
≥0 =

{(0, . . . , 0)}.
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c. Show that the lex monomial order with x1 > x2 > · · · > xn is the
order >I , where I is the n × n identity matrix.

d. Show that the alex order is the order >M defined by the matrix

M =

⎛⎜⎜⎜⎝
−1 −1 · · · −1

0 −1 · · · −1
...

...
. . .

...
0 0 · · · −1

⎞⎟⎟⎟⎠ .

e. Show that the arevlex order is the order >M for

M =

⎛⎜⎜⎜⎜⎜⎝
−1 −1 · · · −1 −1

0 0 · · · 0 −1
0 0 · · · −1 0
...

... ··· ...
...

0 −1 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ .

f. Find a local order that is not degree-anticompatible. Hint: What is it
about the corresponding matrices that makes alex and arevlex degree-
anticompatible, resp. local?

If f =
∑

α cαxα ∈ k[x1, . . . , xn] is a polynomial and > is a semi-
group order, we define the multidegree, the leading coefficient, the leading
monomial, and the leading term of f exactly as we did for a monomial
order:

multideg(f) = max{α ∈ Z
n
≥0 : cα �= 0}

LC(f) = cmultideg(f)

LM(f) = xmultideg(f)

LT(f) = LC(f) · LM(f).

In addition, each semigroup order > defines a particular ring of fractions
in k(x1, . . . , xn) as in Exercise 9 of §1 of this chapter. Namely, given >, we
consider the set

S = {1 + g ∈ k[x1, . . . , xn] : g = 0, or LT>(g) < 1}.
S is closed under multiplication since if LT>(g) < 1 and LT>(g′) < 1, then
(1 + g)(1 + g′) = 1 + g + g′ + gg′, and LT(g + g′ + gg′) < 1 as well by the
definition of a semigroup order.

(3.5) Definition. Let > be a semigroup order on monomials in the ring
k[x1, . . . , xn] and let S = {1 + g : LT(g) < 1}. The localization of
k[x1, . . . , xn] with respect to > is the ring

Loc>(k[x1, . . . , xn]) = S−1k[x1, . . . , xn] = {f/(1 + g) : 1 + g ∈ S}.



162 Chapter 4. Computation in Local Rings

For example, if > is a monomial order, then there are no nonzero mono-
mials smaller than 1 so S = {1} and Loc>(k[x1, . . . , xn]) = k[x1, . . . , xn].
On the other hand, if > is a local order, then since 1 > xi for all i,

{g : g = 0, or LT>(g) < 1} = 〈x1, . . . , xn〉.
Hence, for a local order, we have that S is contained in the set of units in
k[x1, . . . , xn]〈x1,...,xn〉 so Loc>(k[x1, . . . , xn]) ⊂ k[x1, . . . , xn]〈x1,...,xn〉. But
in fact, by adjusting constants between the numerator and the denominator
in a general f/h ∈ k[x1, . . . , xn]〈x1,...,xn〉, it is easy to see that f/h =
f ′/(1 + g) for some 1 + g ∈ S. Hence if > is a local order, then

Loc>(k[x1, . . . , xn]) = k[x1, . . . , xn]〈x1,...,xn〉.

The next two exercises give some additional, more general, and also
quite suggestive examples of semigroup orders and their associated rings of
fractions.

Exercise 3. Using >alex on the x-terms, and >lex on the y-terms, define
a mixed order >mixed by xαyβ >mixed xα′

yβ′
if either yβ >lex yβ′

, or
yβ = yβ′

and xα >alex xα′
.

a. Show that >mixed is a semigroup order and find a matrix M such that
>mixed = >M .

b. Show that >mixed is neither a well-ordering, nor degree-anticompatible.
c. Let g ∈ k[x1, . . . , xn, y1, . . . , ym]. Show that 1 >mixed LT>mixed

(g) if
and only if g depends only on x1, . . . , xn, and is in 〈x1, . . . , xn〉 ⊂
k[x1, . . . , xn].

d. Let R = k[x1, . . . , xn, y1, . . . , ym]. Deduce that Loc>mixed
(R) is the

ring k[x1, . . . , xn]〈x1,...,xn〉[y1, . . . , ym], whose elements can be written
as polynomials in the yj , with coefficients that are rational functions of
the xi in k[x1, . . . , xn]〈x1,...,xn〉.

Exercise 4. If we proceed as in Exercise 3 but compare the x-terms first,
we get a new order defined by >mixed′ by xαyβ >mixed′ xα′

yβ′
if either

xα >alex xα′
, or xα = xα′

and yβ >lex yβ′
.

a. Show that >mixed′ is a semigroup order and find a matrix U such that
>mixed′=>U .

b. Show that >mixed′ is neither a well-ordering, nor degree-anticompatible.
c. Which elements f ∈ k[x1, . . . , xn, y1, . . . , yn] satisfy 1 >mixed′

LT>mixed′ (f)?
d. What is Loc>mixed′ (k[x1, . . . , xn, y1, . . . , ym])?

Note that the order >mixed from Exercise 3 has the following elimination
property : if xα >mixed xα′

yβ′
, then β′ = 0. Equivalently, any monomial

containing one of the yj is greater than all monomials containing only
the xi. It follows that if the >mixed leading term of a polynomial depends
only on the xi, then the polynomial does not depend on any of the yj .
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We will return to this comment in §4 after developing analogs of the divi-
sion algorithm and Gröbner bases for general term orders, because this is
precisely the property we need for elimination theory.

Given any semigroup order > on monomials in k[x1, . . . , xn], there is a
natural extension of > to Loc>(k[x1, . . . , xn]), which we will also denote
by >. Namely, if 1 + g ∈ S as in Definition (3.5), the rational function
1/(1+g) is a unit in Loc>(k[x1, . . . , xn]), so it shouldn’t matter in defining
the leading term of f/(1 + g). For any h ∈ Loc>(k[x1, . . . , xn]), we write
h = f/(1 + g) and define

multideg(h) = multideg(f)

LC(h) = LC(f)

LM(h) = LM(f)

LT(h) = LT(f).

Exercise 5. Write A = k[x1, . . . , xn] and let h ∈ A.
a. Show that multideg(h), LC(h), LM(h), LT(h) are well-defined in Loc>(A)

in the sense that if h = f/(1+g) = f ′/(1+g′), then multideg(h), LC(h),
LM(h), LT(h) will be the same whether f or f ′ is used to compute them.

b. Let r ∈ R be defined by the equation

h = LT(h) + r.

Show that either r = 0 or LT(r) < LT(h).

In Exercise 8, you will show that if > is a local order, then ev-
ery nonempty subset has a maximal element. This allows us to define
multideg(h), LC(h), LM(h), LT(h) when h ∈ k[[x1, . . . , xn]] (or h ∈
k{x1, . . . , xn} if k = R or C). Moreover, in this case, the multidegree and
leading term of h = f/(1 + g) ∈ k[x1, . . . , xn]〈x1,...,xn〉 agree with what
one obtains upon viewing h as a power series (via the series expansion of
1/(1 + g)).

The goal of this section is to use general semigroup orders to develop
an extension of the division algorithm in k[x1, . . . , xn] which will yield
information about ideals in R = Loc>(k[x1, . . . , xn]). The key step in the
division algorithm for polynomials is the reduction of a polynomial f by a
polynomial g. If LT(f) = m · LT(g), for some term m = cxα, we define

Red (f, g) = f − m g,

and say that we have reduced f by g. The polynomial Red (f, g) is just what
is left after the first step in dividing f by g—it is the first partial dividend.
In general, the division algorithm divides a polynomial by a set of other
polynomials by repeatedly reducing the polynomial by members of the set
and adding leading terms to the remainder when no reductions are possible.
This terminates in the case of polynomials because successive leading terms
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form a strictly decreasing sequence, and such sequences always terminate
because a monomial order is always a well-ordering.

In the case of a local order on a power series ring, one can define Red (f, g)
exactly as above. However, a sequence of successive reductions need no
longer terminate. For example, suppose f = x and we decide to divide f
by g = x − x2, so that we successively reduce by x − x2. This gives the
reductions:

f1 = Red (f, g) = x2

f2 = Red (f1, g) = x3

...

fn = Red (fn−1, g) = xn+1,

and so on, which clearly does not terminate. The difficulty, of course, is
that under the antidegree order in k[x]〈x〉 or k[[x]], we have the infinite
strictly decreasing sequence of terms x > x2 > x3 > · · ·.

We can evade this difficulty with a splendid idea of Mora’s. When divid-
ing fi by g, for instance, we allow ourselves to reduce not just by g, but
also by the result of any previous reduction. That is, we allow reductions
by f itself (which we can regard as the “zeroth” reduction), or by any of
f1, . . . , fi−1. More generally, when dividing a set of polynomials or power
series, we allow ourselves to reduce by the original set together with the
results of any previous reduction. So, in our example, where we are divid-
ing f = x by g = x − x2, the first reduction is f1 = Red (f, g) = x2. For
the next reduction, we allow ourselves to reduce f1 by f as well as g. One
checks that

Red (f1, f) = Red (x2, x) = 0,

so that we halt. Moreover, this reduction being zero implies x2 = xf .
If we combine this with the equation f = 1 · g + x2 which gives f1 =
Red (f, g) = x2, we obtain the relation f = g + xf, or (1 − x)f = g. This
last equation tells us that in k[x]〈x〉, we have

f =
1

1 − x
g.

In other words, the remainder on division of f by g is zero since x and
x − x2 = x(1 − x) generate the same ideal in k[x]〈x〉 or k[[x]].

Looking at the above example, one might ask whether it would always
suffice to first reduce by g, then subsequently reduce by f . Sadly, this
is not the case: it is easy to construct examples where the sequence of
reductions does not terminate. Suppose, for example, that we wish to divide
f = x + x2 by g = x + x3 + x5.

Exercise 6. Show that in this case too, f and g generate the same ideal
in k[[x]] or k[x]〈x〉.
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Reducing f by g and then subsequently reducing the results by f0 = f
gives the sequence

f1 = Red (f, g) = x2 − x3 − x5

f2 = Red (f1, f) = −2x3 − x5

f3 = Red (f2, f) = 2x4 − x5

f4 = Red (f3, f) = −3x5

f5 = Red (f4, f) = 3x6

f6 = Red (f5, f) = −3x7,

and so on, which again clearly does not terminate. However, we get
something which does terminate by reducing f5 by f4:

f5 = Red (f4, f) = 3x6

f̃6 = Red (f5, f4) = 0.

From this, we can easily give an expression for f :

f = 1 · g + (x − 2x2 + 2x3 − 3x4) · f + f5.

However, we also have

f5 = 3x6 = 3x5 · x = 3x5 · x + x2

1 + x
=

3x5

1 + x
f.

Backsubstituting this into the previous equation for f and multiplying by
1 + x, we obtain

(1 + x)f = (1 + x)g + (1 + x)(x − 2x2 + 2x3 − 3x4)f + 3x5f.

Then moving xf to the right-hand side gives an equation of the form

f = (unit) · g + (polynomial vanishing at 0) · f.

This, of course, is what we want according to Exercise 6; upon transposing
and solving for f , we have f = (unit) · g.

Our presentation will now follow the recent book [GrP], which describes
the algorithms underlying the latest version of the computer algebra sys-
tem Singular. We will introduce this system in the next section. Since we
deal with orders that are not well-orderings, the difficult part is to give a
division process that is guaranteed to terminate. The algorithm and termi-
nation proof from [GrP] use a clever synthesis of ideas due to Lazard and
Mora, but the proof is (rather amazingly) both simpler and more general
than Mora’s original one. Using reductions by results of previous reduc-
tions as above, Mora developed a division process for polynomials based
on a local order. His proof used a notion called the écart of a polynomial, a
measurement of the failure of the polynomial to be homogeneous, and the
strategy in the division process was to perform reductions that decrease
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the écart. This is described, for instance, in [MPT]. Also see Exercise 11
below for the basics of this approach. Lazard had shown how to do the
same sort of division by homogenizing the polynomials and using an ap-
propriate monomial order defined using the local order. In implementing
Singular, the authors of [GrP] found that Mora’s algorithm could be made
to work for any semigroup order. The same result was found independently
by Gräbe (see [Grä]). Theorem (3.10) below gives the precise statement.

To prepare, we need to describe Lazard’s idea mentioned above. We will
specify the algorithm by using the homogenizations of f and the fi with
respect to a new variable t. If g ∈ k[x1, . . . , xn] is any polynomial, we
will write gh for the homogenization of g with respect to t. That is, if
g =

∑
α cαxα and d is the total degree of g, then

gh =
∑
α

cαtd−|α|xα.

(3.6) Definition. Each semigroup order > on monomials in the xi extends
to a semigroup order >′ on monomials in t, x1, . . . , xn in the following way.
We define taxα >′ tbxβ if either a + |α| > b + |β|, or a + |α| = b + |β| and
xα > xβ .

In Exercise 12 below, you will show that >′ is actually a monomial order
on k[t, x1, . . . , xn].

By the definition of >′, it follows that if ta > ta
′
xβ for some a, a′, β with

a = a′ + |β|, then 1 > xβ . Hence, writing R = Loc>(k[x1, . . . , xn]),

(3.7) ta > ta
′
xβ and a = a′ + |β| ⇒ 1 + xβ is a unit in R.

It is also easy to see from the definition that if g ∈ k[x1, . . . , xn], then
homogenization takes the >-leading term of g to the >′-leading term of gh—
that is, LT>′(gh) = taLT>(g), where a = d− |multideg>(g)|. Conversely, if
G is homogeneous in k[t, x1, . . . , xn], then dehomogenizing (setting t = 1)
takes the leading term LT>′(G) to LT>(g), where g = G|t=1.

Given polynomials f, f1, . . . , fs and a semigroup order >, we want to
show that there is an algorithm (called Mora’s normal form algorithm) for
producing polynomials h, u, a1, . . . , as ∈ k[x1, . . . , xn], where u = 1 + g
and LT(g) < 1 (so u is a unit in Loc>(k[x1, . . . , xn])), such that

(3.8) u · f = a1f1 + · · · + asfs + h,

where LT(ai)LT(fi) ≤ LT(f) for all i, and either h = 0, or LT(h) ≤ LT(f)
and LT(h) is not divisible by any of LT(f1), . . . , LT(fs).

Several comments are in order here. First, note that the inputs
f, f1, . . . , fs, the remainder h, the unit u, and the quotients a1, . . . , as in
(3.8) are all polynomials. The equation (3.8) holds in k[x1, . . . , xn], and as
we will see, all the computations necessary to produce it also take place in a
polynomial ring. We get a corresponding statement in Loc>(k[x1, . . . , xn])
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by multiplying both sides by 1/u:

f = (a1/u)f1 + · · · + (as/u)fs + (h/u).

By Exercise 11 of §1, restricting to ideals generated by polynomials entails
no loss of generality when we are studying ideals in k[x1, . . . , xn]〈x1,...,xn〉 =
Loc>(k[x1, . . . , xn]) for a local order >. But the major reason for re-
stricting the inputs to be polynomials is that that allows us to specify
a completely algorithmic (i.e., finite) division process. In k[[x1, . . . , xn]]
or k{x1, . . . , xn}, even a single reduction—computing Red (f, g)—would
take infinitely many computational steps if f or g were power series with
infinitely many non-zero terms.

Second, when dividing f by f1, . . . , fs as in (3.8), we get a “remainder”
h whose leading term is not divisible by any of the LT(fi). In contrast, if
we divide using the division algorithm of Chapter 1, §2, we get a remainder
containing no terms divisible by any of the LT(fi). Conceptually, there
would be no problem with removing a term not divisible by any of the
LT(fi) and continuing to divide. But as in the first comment, this process
may not be finite.

On the surface, these differences make the results of the Mora normal
form algorithm seem weaker than those of the division algorithm. Even so,
we will see in the next section that the Mora algorithm is strong enough
for many purposes, including local versions of Buchberger’s criterion and
Buchberger’s algorithm.

Instead of working with the f, fi, h, ai, and u directly, our statement of
the algorithm will work with their homogenizations, and with the order >′

from Definition (3.6). Let F = fh and Fi = fh
i for i = 1, . . . , s. We first

show that there are homogeneous polynomials U, A1, . . . , An such that

(3.9) U · F = A1F1 + · · · + AsFs + H,

where LT(U) = ta for some a,

a + deg(F ) = deg(Ai) + deg(Fi) = deg(H)

whenever Ai, H �= 0. Note that since U is homogeneous, if LT(U) = ta,
then by (3.7) when we set t = 1, the dehomogenization u is a unit in
Loc>(k[x1, . . . , xn]). The other conditions satisfied by U, A1, . . . , As, H are
described in the following theorem.

(3.10) Theorem (Homogeneous Mora Normal Form Algorithm).
Given nonzero homogeneous polynomials F, F1, . . . , Fs in k[t, x1, . . . , xn]
and the monomial order >′ extending the semigroup order > on monomials
in the xi, there is an algorithm for producing homogeneous polynomials
U, A1, . . . , As, H ∈ k[t, x1, . . . , xn] satisfying

U · F = A1F1 + · · · + AsFs + H,
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where LT(U) = ta for some a,

a + deg(F ) = deg(Ai) + deg(Fi) = deg(H)

whenever Ai, H �= 0, taLT(F ) ≥′ LT(Ai)LT(Fi), and no LT(Fi) divides
tbLT(H) for any b ≥ 0.

Proof. We give below the algorithm for computing the remainder H.
(The computation of the Ai and U is described in the correctness argument
below.) An important component of the algorithm is a set L consisting of
possible divisors for reduction steps. As the algorithm proceeds, this set
records the results of previous reductions for later use, according to Mora’s
idea.

Input: F, F1, . . . , Fs ∈ k[t, x1, . . . , xn] homogeneous and nonzero
Output: H as in the statement of Theorem (3.10)

H := F ; L := {F1, . . . , Fs}; M := {G ∈ L : LT(G)|LT(taH) for some a}
WHILE (H �= 0 AND M �= ∅) DO

SELECT G ∈ M with a minimal
IF a > 0 THEN

L := L ∪ {H}
H := Red(taH, G)
IF H �= 0 THEN

M := {G ∈ L : LT(G)|LT(taH) for some a}
We claim that the algorithm terminates on all inputs and correctly

computes H as described in the statement of the theorem.
To prove termination, letMj denote the monomial ideal

〈LT(L)〉 = 〈LT(G) : G ∈ L〉 ⊂ k[t, x1, . . . , xn]

after the jth pass through the WHILE loop (j ≥ 0). The loop either leaves
L unchanged or adds the polynomial H. Thus

Mj ⊂ Mj+1.

Notice that when H is added to L, LT(H) does not lie inMj , for if it did,
then we would have

LT(G)|LT(H)

for some G ∈ L. Thus LT(G)|LT(t0H), which would contradict our choice
of H since a was chosen to be minimal, yet adding H to L requires a > 0.
It follows that Mj ⊂ Mj+1 is a strict inclusion when a new element is
added to L during the jth pass.

Since the polynomial ring k[t, x1, . . . , xn] satisfies the ascending chain
condition on ideals, there is some N such that MN = MN+1 = · · ·.
By what we just proved, it follows that no new elements are added to L
after the Nth pass through the WHILE loop. Thus, from this point on,
the algorithm continues with a fixed set of divisors L, and at each step a
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reduction takes place decreasing the >′-leading term of H. Since >′ is a
monomial order on k[t, x1, . . . , xn], the process must terminate as in the
proof of the usual division algorithm.

To prove correctness, observe that the algorithm terminates when H = 0
or M = ∅. In the latter case, {F1, . . . , Fs} ⊂ L tells us that LT(Fi) doesn’t
divide LT(tbH) = tbLT(H) for any 1 ≤ i ≤ s and b ≥ 0. Thus H has the
correct divisibility properties when it is nonzero.

It remains to show that H satisfies an identity of the form (3.9) with
LT(U) = ta. We will count passes through the WHILE loop starting at
j = 0 and let Hj be the value of H at the beginning of the jth pass
through the loop (so H0 = F at the start of the 0th pass). We will prove
by induction on j ≥ 0 that we have identities of the form

(3.11) UkF = A1,kF1 + · · · + As,kFs + Hk, 0 ≤ k ≤ j,

where Uk and Ai,k are homogeneous with

LT(Uk) = tak

such that ak+deg(F ) = deg(Ai,k)+deg(Fi) = deg(Hk) and, for 0 < k ≤ j,

(3.12) ak−1 ≤ ak and tak LT(Hk−1) >′ tak−1LT(Hk).

Since H0 = F , setting U0 = 1 and Al,0 = 0 for all l shows that ev-
erything works for j = 0. Now assume j > 0. We need to prove that the
polynomial Hj+1 produced by the jth pass through the loop satisfies the
above conditions.

If no LT(G) divides tbLT(Hj) for any b ≥ 0 and G ∈ L, then the algorithm
terminates with Hj and we are done. Otherwise some G ∈ L satisfies
LT(G)|LT(taHj) with a minimal. Hence there is a term M such that

LT(taHj) = M LT(G).

There are two possibilities to consider: either G = Fi for some i, or G = H�

for some � < j.
If G = Fi for some i, and a is chosen as above, then Hj+1 =

Red(taHj , Fi) means that

taHj = M Fi + Hj+1.

If we multiply the equation (3.11) with k = j by ta and substitute, then
we obtain

taUjF = taA1,jF1 + · · · + taAs,jFs + taHj

= taA1,jF1 + · · · + taAs,jFs + M Fi + Hj+1.

Taking Uj+1 = taUj and

Al,j+1 =
{

taAl,j if l �= i
taAl,j + M if l = i,
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we get an expression of the form (3.11) with k = j + 1. Also note that
LT(Uj+1) = ta+aj .

On the other hand, if G is a result H� of a previous reduction, then
Hj+1 = Red(taHj , H�) means that

taHj = M H� + Hj+1.

Now take (3.11) with k = j (resp. k = �) and multiply by ta (resp. M).
Subtracting gives the equation

(taUj −M U�)F = (taA1,j −M A1,�)F1 + · · ·+(taAs,j −M As,�)Fs +Hj+1.

Setting Uj+1 = taUj−M U� and Al,j+1 = taAl,j−M Al,�, we see that (3.11)
holds for k = j + 1. As for LT(Uj+1), note that (3.12) implies taj LT(H�) >′

ta�LT(Hj) since � < j. Thus

ta+aj LT(H�) = tataj LT(H�) >′ tata�LT(Hj) = ta�LT(taHj) = ta�M LT(H�),

which gives ta+aj >′ ta�M. Using LT(Uj) = taj and LT(U�) = ta� , we obtain

LT(Uj+1) = LT(taUj − M U�) = ta+aj .

Finally, note that LT(Uj+1) = ta+aj in both cases, so that aj+1 = a +
aj ≥ aj . Also

LT(taHj) >′ LT(Hj+1)

since Hj+1 is a reduction of taHj . From here, it is straightforward to show
that (3.12) holds for k = j + 1. This completes the induction and shows
that H has the required properties.

To finish the proof, we need to show that

a + deg(F ) = deg(Ai) + deg(Fi) and taLT(F ) ≥′ LT(Ai)LT(Fi)

when Ai �= 0. You will do this in Exercise 13.

Next, we claim that after homogenizing, applying the homogeneous Mora
normal form algorithm, and dehomogenizing, we obtain an expression (3.8)
satisfying the required conditions. Here is the precise result.

(3.13) Corollary (Mora Normal Form Algorithm). Suppose that
f, f1, . . . , fs ∈ k[x1, . . . , xn] are nonzero and > is a semigroup order on
monomials in the xi. Then there is an algorithm for producing polynomials
u, a1, . . . , as, h ∈ k[x1, . . . , xn] such that

uf = a1f1 + · · · + asfs + h,

where LT(u) = 1 (so u is a unit in Loc>(k[x1, . . . , xn])), LT(ai)LT(fi) ≤
LT(f) for all i with ai �= 0, and either h = 0, or LT(h) is not divisible by
any LT(fi).

Proof. See Exercise 14.
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Exercise 7. Carry out the Mora normal form algorithm dividing f =
x2 + y2 by f1 = x − xy, f2 = y2 + x3 using the alex order in k[x, y].

In Loc>(k[x1, . . . , xn]), we get a version of the Mora algorithm that
doesn’t require f to be a polynomial. Recall from Exercise 5 that LT(f)
makes sense for any nonzero f ∈ Loc>(k[x1, . . . , xn]).

(3.14) Corollary. Let > be a semigroup order on monomials in the
ring k[x1, . . . , xn] and let R = Loc>(k[x1, . . . , xn]). Let f ∈ R and
f1, . . . , fs ∈ k[x1, . . . , xn] be nonzero. Then there is an algorithm for
computing h, a1, . . . , as ∈ R such that

f = a1f1 + · · · + asfs + h,

where LT(ai)LT(fi) ≤ LT(f) for all i with ai �= 0, and either h = 0, or
LT(h) ≤ LT(f) and LT(h) is not divisible by any of LT(f1), . . . , LT(fs).

Proof. If we write f in the form f ′/u′ where f ′, u′ ∈ k[x1, . . . , xn] and
u′ is a unit in R, then dividing f ′ by f1, . . . , fs via Corollary (3.13) gives

u · f ′ = a′
1f1 + · · · + a′

sfs + h′,

where u, h′, a′
1, . . . , a

′
s are as in the corollary. Also observe that LT(h′) ≤

LT(h) follows from LT(a′
i)LT(fi) ≤ LT(f ′). Since the leading term of a unit is

a nonzero constant (see Exercise 2), dividing a polynomial by a unit doesn’t
affect the leading term (up to multiplication by a nonzero constant). Thus,
dividing the above equation by the unit u u′ gives

f = a1f1 + · · · + asfs + h,

where ai = a′
i/(uu′), h = h′/(uu′) clearly have the required properties.

In the next section, we will use the Mora normal form algorithm to extend
Buchberger’s algorithm for Gröbner bases to ideals in local rings.

ADDITIONAL EXERCISES FOR §3

Exercise 8. Let > be a local order on monomials in k[x1, . . . , xn]〈x1,...,xn〉
and k[[x1, . . . , xn]].
a. Show that every nonempty set of monomials has a maximal element

under >. Hint: Define >r by xα >r xβ if and only if xα < xβ . Use
Corollary 6 of Chapter 2, §4 of [CLO] to prove that >r is a well-ordering.

b. Use part a to define multideg(h) and LT(h) for h ∈ k[[x1, . . . , xn]].
c. Let i : k[x1, . . . , xn]〈x1,...,xn〉 ↪→ k[[x1, . . . , xn]] denote the inclusion

obtained by writing each h ∈ k[x1, . . . , xn]〈x1,...,xn〉 in the form f/(1+g)
and then expanding 1/(1 + h) in a formal geometric series. Show that
multideg(h) = multideg(i(h)).
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d. Deduce that

LM>(h) = LM>(i(h)), LC>(h) = LC>(i(h)), and LT>(h) = LT>(i(h)).

Exercise 9. In the homogeneous Mora normal form algorithm (3.10),
suppose that h = 0 after dehomogenizing. Show that f belongs to the
ideal generated by f1, . . . , fs in the ring R = Loc>(k[x1, . . . , xn]). Is the
converse always true?

Exercise 10. How should the homogeneous Mora normal form algorithm
(3.10) be extended to return the quotients Ai and the unit U as well as the
polynomial H? Hint: Use the proof of correctness.

Exercise 11. This exercise describes the way Mora based the original
version of the normal form algorithm (for local orders) on the écart of a
polynomial. Let g �= 0 ∈ k[x1, . . . , xn], and write g as a finite sum of
homogeneous nonzero polynomials of distinct total degrees:

g =
k∑

i=1

gi, gi homogeneous,

with deg(g1) < · · · < deg(gk). The order of g, denoted ord(g), is the total
degree of g1. The total degree of g, denoted deg(g) is the total degree of gk.
The écart of g, denoted E(g), is the difference of the degree of g and the
order of g:

E(g) = deg(g) − ord(g).

By convention, we set E(0) = −1. Thus E(g) ≥ −1 for all g. (The word
écart is French for “difference” or “separation”—clearly a good description
of the meaning of E(g)!)
a. Let > be a local order and let f and g be two nonzero polynomials such

that LT(g) divides LT(f). Then show that

E(Red (f, g)) ≤ max(E(f), E(g)).

b. In the one-variable case, part a gives a strategy that guarantees termi-
nation of division. Namely, at each stage, among all the polynomials by
which we can reduce, we reduce by the polynomial whose écart is least.
Show that this will ensure that the écarts of the sequence of partial
dividends decreases to zero, at which point we have a monomial which
can be used to reduce any subsequent partial dividend to 0.

c. Apply this strategy, reducing by the polynomial with the smallest pos-
sible écart at each step, to show that g divides f in k[x]〈x〉 in each of
the following cases.
1. g = x + x2 + x3, f = x2 + 2x7. Note that there is no way to produce

a sequence of partial dividends with strictly decreasing écarts in this
case.
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2. g = x + x2 + x3, f = x + x2 + x3 + x4. Note that after producing
a monomial with the first reduction, the écart must increase.

Exercise 12. Let > be a semigroup order on monomials in k[x1, . . . , xn]
and extend to >′ on monomials in t, x1, . . . , xn as in the text: define
taxα >′ tbxβ if either a + |α| > b + |β| or a + |α| = b + |β|, but xα > xβ .
a. Show that >′ is actually a monomial order on k[t, x1, . . . , xn].
b. Show that if > = >M for an m× n matrix M , then >′ is the order >M ′

where M ′ is the (m + 1) × (n + 1) matrix⎛⎜⎜⎜⎝
1 1 · · · 1
0
... M
0

⎞⎟⎟⎟⎠ .

Exercise 13. Prove that at every stage of the homogeneous Mora normal
form algorithm from Theorem (3.10), the polynomials U, A1, . . . , As, H are
homogeneous and satisfy the conditions

a + deg(F ) = deg(Ai) + deg(Fi) = deg(H)

taLT(F ) ≥′ LT(Ai)LT(Fi)

whenever Ai, H �= 0.

Exercise 14. Prove Corollary (3.13) using the homogeneous polynomials
produced by the homogeneous Mora normal form algorithm described in
the proof of Theorem (3.10). Hint: See the paragraph following (3.7).

Exercise 15. In [GrP], Mora’s original notion of écart (described in
Exercise 11) is modified to create a version of the Mora normal form algo-
rithm which works directly with the polynomial ring k[x1, . . . , xn] and the
semigroup order >. Define the écart of f ∈ k[x1, . . . , xn] to be

ecart(f) = deg(f) − deg(LT(f)).

Given nonzero polynomials f, f1, . . . , fs ∈ k[x1, . . . , xn], prove that the
remainder h from Corollary (3.13) is produced by the following algorithm.

h := f ; L := {f1, . . . , fs}; M := {g ∈ L : LT(g)|LT(h)}
WHILE (h �= 0 AND M �= ∅) DO

SELECT g ∈ M with ecart(g) minimal
IF ecart(g) > ecart(h) THEN

L := L ∪ {h}
h := Red(h, g)
IF h �= 0 THEN

M := {g ∈ L : LT(g)|LT(h)}
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§4 Standard Bases in Local Rings

In this section, we want to develop analogs of Gröbner bases for ideals in
any one of our local rings R = k[x1, . . . , xn]〈x1,...,xn〉, R = k{x1, . . . , xn},
or R = k[[x1, . . . , xn]]. Just as for well-orderings, given an ideal I in R,
we define the set of leading terms of I, denoted LT(I), to be the set of all
leading terms of elements of I with respect to >. Also, we define the ideal
of leading terms of I, denoted 〈LT(I)〉, to be the ideal generated by the set
LT(I) in R. Also just as for ideals in polynomial rings, it can happen that
I = 〈f1, . . . , fs〉 but 〈LT(I)〉 �= 〈LT(f1), . . . , LT(fs)〉 for an ideal I ⊂ R.
By analogy with the notion of a Gröbner basis, we make the following
definition.

(4.1) Definition. Let > be a semigroup order and let R be the ring of
fractions Loc>(k[x1, . . . , xn]) as in Definition (3.5), or let > be a local
order and let R = k[[x1, . . . , xn]] or k{x1, . . . , xn}. Let I ⊂ R be an
ideal. A standard basis of I is a set {g1, . . . , gt} ⊂ I such that 〈LT(I)〉 =
〈LT(g1), . . . , LT(gt)〉.

In the literature, the term “standard basis” is more common than
“Gröbner basis” when working with local orders and the local rings
R = k[x1, . . . , xn]〈x1,...,xn〉, k[[x1, . . . , xn]], or k{x1, . . . , xn} so we use that
terminology here.

Every nonzero ideal in these local rings has standard bases. As a result,
there is an analog of the Hilbert Basis Theorem for these rings: every ideal
has a finite generating set. The proof is the same as for polynomials (see
Exercise 2 of Chapter 1, §3 and Exercise 2 below). Moreover, the Mora
normal form algorithm—Corollary (3.13)—is well behaved when dividing
by a standard basis. In particular, we obtain a zero remainder if and only
if f is in the ideal generated by the standard basis (see Exercise 2).

However, in order to construct algorithms for computing standard bases,
we will restrict our attention once more to ideals that are generated in
these rings by collections of polynomials. Most of the ideals of interest
in questions from algebraic geometry have this form. This will give us
algorithmic control over such ideals. For example, we obtain a solution of
the ideal membership problem for ideals generated by polynomials in the
local rings under consideration.

Given polynomial generators for an ideal, how can we compute a stan-
dard basis for the ideal? For the polynomial ring k[x1, . . . , xn] and Gröbner
bases, the key elements were the division algorithm and Buchberger’s algo-
rithm. Since we have the Mora algorithm, we now need to see if we can carry
Buchberger’s algorithm over to the case of local or other semigroup orders.
That is, given a collection f1, . . . , fs of polynomials, we would like to find
a standard basis with respect to some local order of the ideal 〈f1, . . . , fs〉
they generate in a local ring R. More generally, one could also look for
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algorithms for computing standard bases of ideals in Loc>(k[x1, . . . , xn])
for any semigroup order.

It is a pleasant surprise that the ingredients fall into place with no dif-
ficulty. First, the definition of S-polynomials in this new setting is exactly
the same as in k[x1, . . . , xn] (see Definition (3.2) of Chapter 1), but here
we use the leading terms with respect to our chosen semigroup order.

Next, recall that Buchberger’s algorithm consists essentially of forming
S-polynomials of all elements in the input set F = {f1, . . . , fs} of poly-
nomials, finding remainders upon division by F , adding to F any nonzero
remainders, and iterating this process (see §3 of Chapter 1). Since we have
the Mora normal form algorithm, whose output is a sort of remainder on
division, we can certainly carry out the same steps as in Buchberger’s algo-
rithm. As with any algorithm, though, we have to establish its correctness
(that is, that it gives us what we want) and that it terminates.

In the case of well-orders, correctness of Buchberger’s algorithm is guar-
anteed by Buchberger’s criterion, which states that a finite set G is a
Gröbner basis if and only if the remainder upon division by G of every
S-polynomial formed from pairs of elements of G is 0 (see Chapter 1, §3).

The following theorem gives analogs of Buchberger’s criterion and
Buchberger’s algorithm for the ring of a semigroup order.

(4.2) Theorem. Let S ⊂ k[x1, . . . , xn] be finite, let > be any semigroup
order, and let I be the ideal in R = Loc>(k[x1, . . . , xn]) generated by S.
a. (Analog of Buchberger’s Criterion) S = {g1, . . . , gt} is a standard basis

for I if and only if applying the Mora normal form algorithm given in
Corollary (3.13) to every S-polynomial formed from elements of the set
S yields a zero remainder.

b. (Analog of Buchberger’s Algorithm) Buchberger’s algorithm, using the
Mora normal form algorithm in place of the usual polynomial division
algorithm, computes a polynomial standard basis for the ideal generated
by S, and terminates after finitely many steps.

Proof. Let f
S,Mora

be the remainder h computed by Corollary (3.13) on
division of f by S. If S is a standard basis of I, then since S(gi, gj) ∈ I for

all i, j, Exercise 2 implies that S(gi, gj)
S,Mora

= 0 for all i, j.

Conversely, we need to show that S(gi, gj)
S,Mora

= 0 for all i, j
implies that S is a standard basis, or equivalently that 〈LT(I)〉 =
〈LT(g1), . . . , LT(gt)〉, using the order >. We will give the proof in the special
case when > is degree-anticompatible, meaning that |α| > |β| ⇒ xα < xβ .
Examples are the orders >alex or >arevlex from Definitions (3.2) and (3.3).
Given f ∈ I = 〈g1, . . . , gt〉, we prove that LT(f) ∈ 〈LT(g1), . . . , LT(gt)〉 as
follows. Consider the nonempty set

Sf = {max{LT(aigi)} : a1, . . . , as ∈ R satisfy f =
∑t

i=1aigi}.
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For a general semigroup order, we can’t claim that Sf has a minimal
element, even though Sf is bounded below by LT(f). However, in Exer-
cise 3, you will show that this is true for degree-anticompatible orders.
Hence we can let δ = min Sf . From here, the rest of the argument that
LT(f) ∈ 〈LT(g1), . . . , LT(gt)〉 is a straightforward adaptation of the proof
of Theorem 6 of Chapter 2, §6 of [CLO] (you will verify this in Exercise 4).
This proves Buchberger’s criterion for degree-anticompatible orders. The
general case requires an analysis of the syzygy module of g1, . . . , gs (see
Theorem 2.5.9 of [GrP] for the details).

For part b, observe that the usual proof that Buchberger’s algorithm
terminates and yields a Gröbner basis depends only on the ascending chain
condition for polynomial ideals (applied to the chain of monomial ideals
generated by the leading terms of the “partial bases” constructed as the
algorithm proceeds—see the proof of Theorem 2 of [CLO], Chapter 2, §2).
It does not require that the order used for the division process be a well-
order. It follows that, replacing each ordinary remainder computation by a
computation of the remainder from Mora’s algorithm, we get an algorithm
that terminates after a finite number of steps. Moreover, on termination,
the result gives a standard basis for I by part a.

The Mora normal form algorithm and standard basis algorithms using lo-
cal orders or more general semigroup orders > are not implemented directly
in the Gröbner basis packages in Maple or Mathematica. They could be
programmed directly in those systems, however, using the homogenization
process and the order >′ from Definition (3.6). Alternatively, according to
Lazard’s original idea, the standard Buchberger algorithm could be applied
to the homogenizations of a generating set for I. This approach is sketched
in Exercise 5 below and can be carried out in any Gröbner basis implemen-
tation. Experience seems to indicate that standard basis computation with
Mora’s normal form algorithm is more efficient than computation using
Lazard’s approach, however. The CALI package for REDUCE does con-
tain an implementation of Buchberger’s algorithm using semigroup orders
including local orders.

There is also a powerful package called Singular described in [GrP] and
available via the World Wide Web from the University of Kaiserslautern
(see the Singular homepage at http://www.singular.uni-kl.de/) that
carries out these and many other calculations. In particular, Singular is
set up so that local orders, monomial orders (well-orderings), and mixed
orders can be specified in a unified way as >M orders for integer matrices
M . This means that it can be used for both Gröbner and standard basis
computations. Here is a very simple Singular session computing a standard
basis of the ideal generated by

x5 − xy6 + z7, xy + y3 + z3, x2 + y2 − z2
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in R = k[x, y, z]〈x,y,z〉 using the alex order, and computing the multiplicity
of the origin as a solution of the corresponding system of equations.

> ring r = 32003, (x,y,z), Ds;
> ideal i = x5-xy6+z7, xy+y3+z3, x2+y2-z2;
> ideal j=std(i);
4(2)s5.8-s(2)s9..s(3).10.---sH(11)
product criterion:8 chain criterion:7
> j;
j[1]=x2+y2-1z2
j[2]=xy+y3+z3
j[3]=y3-1yz2-1xy3-1xz3
j[4]=xz4-1y6+2y4z2-1y3z3+2yz5-1xy6+z7
j[5]=y2z4-1z6+xy6-2xy4z2+xy3z3-2xyz5+x2y6-1xz7
j[6]=yz7
j[7]=z9
> vdim(j);
24

Singular can work either with a finite field of coefficients or with k = Q

or a finite extension of Q. The first line here defines the characteristic of the
field, the ring variables, and the monomial order. The Ds is an abbreviation
for the alex order, which could also be specified by a matrix as follows

> ring r = 32003, (x,y,z), ((-1,-1,-1),(0,-1,-1),(0,0,-1));

as in Exercise 2 of §3. The ideal I is defined by the three polynomials above,
J contains the standard basis (seven polynomials in all), and the vdim
command computes the dimension of dim R/〈LT(J)〉. For more information
about this very flexible package, we refer the interested reader to [GrP].

We’ve already commented on how standard bases enable one to solve
the ideal membership problem in local rings, just as Gröbner bases solve
the corresponding problem in polynomial rings. Another important use of
Gröbner bases is the computation of dim k[x1, . . . , xn]/I when this dimen-
sion is finite. For the local version of this result, we will use the following
terminology: given a local order > and an ideal I in one of the local
rings k[x1, . . . , xn]〈x1,...,xn〉, k[[x1, . . . , xn]] or k{x1, . . . , xn}, we say that
a monomial xα is standard if

xα /∈ 〈LT(I)〉.
Then we have the following result about standard monomials.

(4.3) Theorem. Let R be one of the local rings k[x1, . . . , xn]〈x1,...,xn〉,
k[[x1, . . . , xn]] or k{x1, . . . , xn}. If I ⊂ R is an ideal and > is a local
order, then the following are equivalent.
a. dim R/I is finite.
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b. dim R/〈LT(I)〉 is finite.
c. There are only finitely many standard monomials.

Furthermore, when any of these conditions is satisfied, we have

dim R/I = dim R/〈LT(I)〉 = number of standard monomials

and every f ∈ R can be written uniquely as a sum

f = g + r,

where g ∈ I and r is a linear combination of standard monomials. In
addition, this decomposition can be computed algorithmically when R =
k[x1, . . . , xn]〈x1,...,xn〉.

Proof. We first prove a⇒ c. Suppose that xα(1), . . . , xα(m) are standard
monomials with m > dim R/I. It follows easily that there is a nontrivial
linear combination

f =
�∑

i=1

cix
α(i) ∈ I, ci ∈ k.

Then LT(f) ∈ 〈LT(I)〉 implies that some xα(i) ∈ 〈LT(I)〉, which is im-
possible since xα(i) is standard. This shows that the number of standard
monomials is bounded above by dim R/I.

For c ⇒ a, suppose that R = k[x1, . . . , xn]〈x1,...,xn〉. Then Exercise 11
of §1 implies that I is generated by polynomials, which means that we can
compute a polynomial standard basis G of I. Now take f ∈ R and divide
f by G using Corollary (3.14) to obtain

f = g1 + h1,

where g1 ∈ I and either h1 = 0 or LT(h1) /∈ 〈LT(G)〉 = 〈LT(I)〉 (since G is
a standard basis) and LT(f) ≥ LT(h1). Note that we are using the extension
of LT to R studied in Exercise 5 of §3.

If h1 �= 0, let LT(h1) = c1x
α(1), c1 ∈ k, c1 �= 0. Thus xα(1) is standard

and, by Exercise 5 of §3, h1 = c1x
α(1) +r1, where r1 = 0 or xα(1) > LT(r1).

If r1 �= 0, then applying the above process gives

r1 = g2 + h2 = g2 + c2x
α(2) + r2

with g2 ∈ I, xα(2) standard, and r2 = 0 or xα(2) > LT(r2). If we combine
this with the formula for f , we obtain

f = g1 + h1 = g1 + c1x
α(1) + r1 = (g1 + g2) + c1x

α(1) + c2x
α(2) + r2,

where g1 + g2 ∈ I, xα(1), xα(2) standard, and xα(1) > xα(2) > LT(r2) if
r2 �= 0. We can continue this process as long as we have nonzero terms to
work with. However, since there are only finitely many standard monomials,
this process must eventually terminate, which shows that f has the form
g + r described in the statement of the theorem. We will leave it for the
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reader to prove uniqueness and describe an algorithm that carries out this
process (see Exercise 6 below). It follows that the cosets of the standard
monomials give a basis of R/I, proving

dim R/I = number of standard monomials

when R = k[x1, . . . , xn]〈x1,...,xn〉.
When R = k{x1, . . . , xn} or R = k[[x1, . . . , xn]], if we assume that we

can perform the Mora Normal Form Algorithm on inputs from R, then the
above argument applies for any f ∈ R. The details of how this works will
be discussed in Exercise 2 below. This completes the proof of c ⇒ a and
the final assertions of the theorem.

It remains to prove b ⇔ c. This follows immediately from what we have
already proved since I and 〈LT(I)〉 have the same standard monomials.

When R = k[[x1, . . . , xn]] or R = k{x1, . . . , xn}, there are more pow-
erful versions of Theorem (4.3) that don’t assume that dim R/〈LT(I)〉 is
finite. In these situations, the remainder r is an infinite series, none of
whose terms are in 〈LT(I)〉. See, for example, [Hir] or [MPT]. However, for
R = k[x1, . . . , xn]〈x1,...,xn〉, it is possible to find ideals I ⊂ R where nice
remainders don’t exist (see [AMR], Example 2).

ADDITIONAL EXERCISES FOR §4

Exercise 1. In this exercise and the next, we will show that every ideal
I in one of our local rings R has standard bases, and derive consequences
about the structure of R. Let > be any local order on R.
a. Explain why 〈LT(I)〉 has a finite set of generators.
b. For each xα(i), i = 1, . . . , t, in a finite set of generators of 〈LT(I)〉, let

gi ∈ I be an element with LT(gi) = xα(i). Deduce that G = {g1, . . . , gt}
is a standard basis for I.

Exercise 2. If we ignore the fact that infinitely many computational steps
are needed to perform reductions on power series in k[[x1, . . . , xn]] or
k{x1, . . . , xn}, then the Mora Normal Form Algorithm can be performed
with inputs that are not polynomials. Hence we can assume that the Mora
algorithm works for R, where R is either k[[x1, . . . , xn]] or k{x1, . . . , xn}.
a. Let G be a standard basis for an ideal I ⊂ R. Show that we obtain a

zero remainder on division of f by G if and only if f ∈ I.
b. Using part a, deduce that every ideal I ⊂ R has a finite basis. (This is

the analog of the Hilbert Basis Theorem for k[x1, . . . , xn].)
c. Deduce that the ascending chain condition holds for ideals in R. Hint:

See Exercise 13 of §2 of Chapter 5.

Exercise 3. Let > be a degree-anticompatible order on one of our local
rings R. Show that any nonempty set of monomials S that is bounded
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below (meaning that there exists a monomial xα such that xβ ≥ xα for all
xβ ∈ S) has a smallest element.

Exercise 4. Carry out the proof of the analog of Buchberger’s Criterion
for degree-anticompatible orders, using Exercise 3 and the discussion before
the statement of Theorem (4.2).

Exercise 5. This exercise discusses an alternative method due to Lazard
for computing in local rings. Let >′ be the order in k[t, x1, . . . , xn] from
Definition (3.6). Given polynomials f1, . . . , fs, let fh

1 , . . . , fh
s be their

homogenizations in k[t, x1, . . . , xn], and let G be a Gröbner basis for
〈fh

1 , . . . , fh
s 〉 with respect to the >′ consisting of homogeneous polynomi-

als (such Gröbner bases always exist—see Theorem 2 in Chapter 8, §3 of
[CLO], for instance). Show that the dehomogenizations of the elements of
G (that is, the polynomials in k[x1, . . . , xn] obtained from the elements of
G by setting t = 1) are a standard basis for the ideal generated by F in
the local ring R with respect to the semigroup order >.

Exercise 6. Let I ⊂ R = k[x1, . . . , xn]〈x1,...,xn〉 be an ideal such that
dim R/〈LT(I)〉 is finite for some local order on R. Describe an algorithm
which for the input f ∈ R computes the remainder r from Theorem (4.3).

§5 Applications of Standard Bases

We will consider some applications of standard bases in this section. The
multiplicity, and Milnor and Tjurina number computations we introduced
in §2 can be carried out in an algorithmic fashion using standard bases. We
begin by using Theorem (4.3) to prove Proposition (2.11), which asserts
that if I is a zero-dimensional ideal of k[x1, . . . , xn] such that 0 ∈ V(I),
then the multiplicity of 0 is

(5.1)

dim k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉
= dim k[[x1, . . . , xn]]/Ik[[x1, . . . , xn]]

= dim k{x1, . . . , xn}/Ik{x1, . . . , xn},
where the last equality assumes k = R or C. The proof begins with the
observation that by Theorem (2.2), we know that

dim k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉 < ∞.

By Theorem (4.3), it follows that this dimension is the number of standard
monomials for a standard basis S for I ⊂ k[x1, . . . , xn]〈x1,...,xn〉. However,
S is also a standard basis for Ik[[x1, . . . , xn]] and Ik{x1, . . . , xn} by Buch-
berger’s criterion. Thus, for a fixed local order, the standard monomials are
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the same no matter which of the local rings R we are considering. Then
(5.1) follows immediately from Theorem (4.3).

This gives an algorithm for computing multiplicities. Exercises 2 and 3
below give some nice examples. In the same way, we can compute the Milnor
and Tjurina numbers defined in §2 (see Exercise 4).

Standard bases in local rings have other geometric applications as well.
For instance, suppose that V ⊂ kn is a variety and that p = (a1, . . . , an)
is a point of V . Then the tangent cone to V at p, denoted Cp(V ), is defined
to be the variety

Cp(V ) = V(fp,min : f ∈ I(V )),

where fp,min is the homogeneous component of lowest degree in the poly-
nomial f(x1 + a1, . . . , xn + an) obtained by translating p to the origin (see
part b of Exercise 17 of §2). A careful discussion of tangent cones, including
a Gröbner basis method for computing them, can be found in Chapter 9,
§7 of [CLO]. However, standard bases give a more direct way to compute
tangent cones than the Gröbner basis method. See Exercise 5 below for an
outline of the main ideas.

Here is another sort of application, where localization is used to con-
centrate attention on one irreducible component of a reducible variety. To
illustrate the idea, we will use an example from Chapter 6, §4 of [CLO]. In
that section, we showed that the hypotheses and the conclusions of a large
class of theorems in Euclidean plane geometry can be expressed as polyno-
mial equations on the coordinates of points specified in the construction of
the geometric figures involved in their statements. For instance, consider
the theorem which states that the diagonals of a parallelogram ABCD in
the plane intersect at a point that bisects both diagonals (Example 1 of
[CLO], Chapter 6, §4). We place the vertices A, B, C, D of the parallelogram
as follows:

A = (0, 0), B = (u, 0), C = (v, w), D = (a, b),

and write the intersection point of the diagonals AD and BC as N = (c, d).
We think of the coordinates u, v, w as arbitrary; their values determine the
values of a, b, c, d. The conditions that ABCD is a parallelogram and N is
the intersection of the diagonals can be written as the following polynomial
equations:

h1 = b − w = 0

h2 = (a − u)w − bv = 0

h3 = ad − cw = 0

h4 = d(v − u) − (c − u)w = 0,

as can the conclusions of the theorem (the equalities between the lengths
AN = DN and BN = CN)
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g1 = a2 − 2ac − 2bd + b2 = 0

g2 = 2cu − 2cv − 2dw − u2 + v2 + w2 = 0.

Since the geometric theorem is true, we might naively expect that the
conclusions g1 = g2 = 0 are satisfied whenever the hypothesis equations
h1 = h2 = h3 = h4 = 0 are satisfied. If we work over the algebraically
closed field C, then the Strong Nullstellensatz shows that our naive hope
is equivalent to

gi ∈ I(V(h1, h2, h3, h4)) =
√
〈h1, h2, h3, h4〉.

However, as the following exercise illustrates, this is unfortunately not true.

Exercise 1. Use the radical membership test from [CLO], Chapter 4, §2
to show that

g1, g2 /∈
√
〈h1, h2, h3, h4〉 ⊂ C[u, v, w, a, b, c, d].

Thus neither conclusion g1, g2 follows directly from the hypothesis equa-
tions.

In fact, in [CLO], Chapter 6, §4 we saw that the reason for this was
that the variety V(h1, h2, h3, h4) ⊂ C

7 defined by the hypotheses is ac-
tually reducible, and the conclusion equations gi = 0 are not identically
satisfied on several of the irreducible components of H. The points on the
“bad” components correspond to degenerate special cases of the configu-
ration A, B, C, D, N such as “parallelograms” in which two of the vertices
A, B, C, D coincide. In [CLO], Chapter 6, §4 we analyzed this situation very
carefully and found the “good” component of H, on which the conclusions
g1 = g2 = 0 do hold. Our purpose here is to point out that what we did
in [CLO] can also be accomplished more easily by localizing appropriately.

Note that taking (u, v, w) = (1, 1, 1) gives an “honest” parallelogram.
If we now translate (1, 1, 1) to the origin as in Exercise 17 of §2, and
write the translated coordinates as (U, V, W, a, b, c, d), the hypotheses and
conclusions become

h1 = b −W − 1 = 0

h2 = (a − U − 1)(W + 1) − b(V + 1) = 0

h3 = ad − c(W + 1) = 0

h4 = d(V − U) − (c − U − 1)(W + 1)

g1 = a2 − 2ac − 2cd + b2 = 0

g2 = 2c(U + 1) − 2c(V + 1) − 2d(W + 1) − (U + 1)2

+ (V + 1)2 + (W + 1)2 = 0.

Using Singular, we can compute a standard basis for the ideal generated
by the hi in the localization R = Q[U, V, W ]〈U,V,W 〉[a, b, c, d] as follows.
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> ring r = 0, (a,b,c,d,U,V,W), (Dp(4),Ds(3));
> ideal i = b-W-1, (a-U-1)*(W+1)-b*(V+1), ad-c*(W+1), d*(V-U)-
(c-U-1)*(W+1);
> ideal j = std(i);
> j;
j[1]=a+aW-1b-1bV-1-1U-1W-1UW
j[2]=b-1-1W
j[3]=c+cW+dU-1dV-1-1U-1W-1UW
j[4]=2d+2dU+2dW+2dUW-1-1U-2W-2UW-1W2-1UW2

The first line sets up the ring R by specifying the coefficient field k = Q

and a mixed order on the variables as in Exercise 3 of §3 of this chapter, with
alex on the variables U, V, W , ordinary lex on a, b, c, d, and all monomials
containing a, b, c, d greater than any monomial in U, V, W alone. If we now
apply the Mora algorithm from Corollary (3.13), which is provided in the
Singular command reduce, we find that both conclusions are actually in
the ideal generated by h1, h2, h3, h4 in R.

> poly g=a2-2ac-2bd+b2;
> poly h=reduce(g,j);
> h;
0
> poly m = 2c*(U+1)-2c*(V+1)-2d*(W+1)-(U+1)^2+(V+1)^2+(W+1)^2;
> poly n = reduce(m,j);
> n;
0

This shows that locally near the point with (u, v, w) = (1, 1, 1) on the
variety V(h1, h2, h3, h4), the conclusions do follow from the hypotheses.
Using the mixed order in the Mora algorithm, we have an equation

u · g1 = a1h1 + · · · + a4h4,

where u ∈ Q[U, V, W ] is a unit in Q[U, V, W ]〈U,V,W 〉, and a similar equation
for g2. In particular, this shows that Proposition 8 of Chapter 6, §4 of [CLO]
applies and the conclusions g1, g2 follow generically from the hypotheses
hi, as defined there.

Along the same lines we have the following general statement, showing
that localizing at a point p in a variety V implies that we ignore components
of V that do not contain p.

(5.2) Proposition. Let I ⊂ k[x1, . . . , xn] and suppose that the origin in
kn is contained in an irreducible component W of V(I). Let f1, . . . , fs ∈
k[x1, . . . , xn] be a standard basis for I with respect to a local order, and let
g ∈ k[x1, . . . , xn]. If the remainder of g on division by F = (f1, . . . , fs)
using the Mora algorithm from Corollary (3.13) is zero, then g ∈ I(W )
(but not necessarily in I).
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Proof. If the remainder is zero, the Mora algorithm yields an equation

u · g = a1f1 + · · · + asfs,

where u ∈ k[x1, . . . , xn] is a unit in k[x1, . . . , xn]〈x1,...,xn〉. Since W ⊂
V(I), u · g is an element of I(W ). But W is irreducible, so I(W ) is a prime
ideal, and hence u ∈ I(W ) or g ∈ I(W ). The first alternative is not possible
since u(0) �= 0. Hence g ∈ I(W ).

It is natural to ask if we can carry out operations on ideals in local rings
algorithmically in ways similar to the Gröbner basis methods reviewed
in Chapter 1 for ideals in polynomial rings. In the final part of this sec-
tion, we will show that the answer is yes when R = k[x1, . . . , xn]〈x1,...,xn〉.
Since many of the proofs in the polynomial case use elimination, we first
need to study elimination in the local context. The essential point will
be to work the new ring k[x1, . . . , xn]〈x1,...,xn〉[t], whose elements can be
thought of first as polynomials in t whose coefficients are elements of
k[x1, . . . , xn]〈x1,...,xn〉.

In this situation, if we have an ideal I ⊂ k[x1, . . . , xn]〈x1,...,xn〉[t], the
basic problem is to find the intersection

I0 = I ∩ k[x1, . . . , xn]〈x1,...,xn〉.

Note that I0 is analogous to an elimination ideal of a polynomial ideal. This
elimination problem can be solved using a local order > on the local ring
to construct a suitable semigroup order on S = k[x1, . . . , xn]〈x1,...,xn〉[t] as
follows (see [AMR] and [Grä] for the details).

(5.3) Definition. An elimination order on S is any semigroup order >elim

on the monomials on S defined in the following way. Let > be a local order
in k[x1, . . . , xn]〈x1,...,xn〉. Then define

tkxα >elim tlxβ

for k, l ∈ Z≥0, and α, β ∈ Z
n
≥0 if and only if k > l, or k = l and

α > β. In other words, an elimination order is a product order combin-
ing the degree order on powers of t and the given local order > on xα in
k[x1, . . . , xn]〈x1,...,xn〉.

Elimination orders on S are neither local nor well-orders. Hence, the
full strength of the Mora algorithm for general semigroup orders is needed
here. We have the following analog of the Elimination Theorem stated in
Chapter 2, §1.

(5.4) Theorem (Local Elimination). Fix an elimination order >elim

on S = k[x1, . . . , xn]〈x1,...,xn〉[t]. Let I ⊂ S be an ideal, and let G be a
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polynomial standard basis for I with respect to >elim. Then

G ∩ k[x1, . . . , xn] = {g ∈ G : LT(g) does not contain t}
and this is a standard basis of I0 = I ∩ k[x1, . . . , xn]〈x1,...,xn〉.

Proof. Let G = {g1, . . . , gt} be a standard basis of I and G0 = {g ∈ G :
LT(g) does not contain t}. By the definition of >elim, the condition that
LT(g) does not contain t implies that g does not contain t. Since G0 ⊂ I0,
we need only show that if f ∈ I0 ∩ k[x1, . . . , xn], then f can be written as
a combination of elements in G0 with coefficients in k[x1, . . . , xn]〈x1,...,xn〉.
Since f ∈ I and {g1, . . . , gt} is a standard basis of I, the Mora algorithm
gives an expression

f = a1g1 + · · · + atgt

(see Exercise 2 of §4), where LT(f) ≥ LT(aigi) for all ai �= 0. By our
choice of order, we have ai = 0 for gi /∈ G0 and gi ∈ k[x1, . . . , xn]〈x1,...,xn〉
otherwise, since t does not appear in LT(f).

With this out of the way, we can immediately prove the following.

(5.5) Theorem. Let I, J ⊂ k[x1, . . . , xn]〈x1,...,xn〉 and f ∈ k[x1, . . . , xn].
a. I ∩ J = (t · I + (1 − t) · J) ∩ k[x1, . . . , xn]〈x1,...,xn〉.
b. I : 〈f〉 = 1

f · (I ∩ 〈f〉).
c. I : f∞ = (I + 〈1 − f · t〉) ∩ k[x1, . . . , xn]〈x1,...,xn〉.
d. f ∈ √I if and only if 1 ∈ I + 〈1 − f · t〉 in k[x1, . . . , xn]〈x1,...,xn〉[t].

Proof. The proofs are the same as for polynomial ideals. (See Chapter 1
of this book, §2 and §3 of Chapter 4 of [CLO], and [AL] or [BW].)

We remind the reader that the stable quotient of I with respect to f ,
denoted I : f∞, is defined to be the ideal

I : f∞ = {g ∈ R : there exists n ≥ 1 for which fng ∈ I}.
The stable quotient is frequently useful in applications of local algebra. We
also remark that the division in part b, where one divides the common
factor f out from all generators of I ∩ 〈f〉 in k[x1, . . . , xn]〈x1,...,xn〉, uses
the Mora algorithm.

Just as the ability to do computations in polynomial rings extends to
allow one to do computations in quotients (i.e., homomorphic images of
polynomial rings), so, too, the ability to do computations in local rings
extends to allow one to do computations in quotients of local rings. Sup-
pose that J ⊂ k[x1, . . . , xn]〈x1,...,xn〉 and let R = k[x1, . . . , xn]〈x1,...,xn〉/J .
Then one can do computations algorithmically in R due to the following
elementary proposition.
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(5.6) Proposition. Let I1, I2 ⊂ R be ideals, and let I1, I2 denote their
preimages in k[x1, . . . , xn]〈x1,...,xn〉. Let f ∈ k[x1, . . . , xn]〈x1,...,xn〉 and
[f ] ∈ R be its coset. Then:
a. I1 ∩ I2 = (I1 ∩ I2)/J;
b. I1 : [f ] = (I1 : f)/J;
c. I1 : [f ]∞ = (I1 : f∞)/J.

Using a standard basis of J allows one to determine whether f, g ∈ R
represent the same element in R (that is, whether [f ] = [g].) One can also
compute Hilbert functions and syzygies over R.

The techniques we have outlined above also extend to rings that are fi-
nite algebraic extensions of k[x1, . . . , xn]〈x1,...,xn〉 in k[[x1, . . . , xn]]. This
allows us to handle computations involving algebraic power series in
k[[x1, . . . , xn]] algorithmically. See [AMR] for details. There are still many
open questions in this area, however. Basically, one would hope to handle
any operations on ideals whose generators are defined in some suitably al-
gebraic fashion (not just ideals generated by polynomials), but there are
many instances where no algorithms are known.

ADDITIONAL EXERCISES FOR §5

Exercise 2.
a. Let f1, . . . , fn ∈ k[x1, . . . , xn] be homogeneous polynomials of de-

grees d1, . . . , dn, respectively. Assume that I = 〈f1, . . . , fn〉 is
zero-dimensional, and that the origin is the only point in V(I). Show
that the multiplicity is also the dimension of

k[x1, . . . , xn]/〈f1, . . . , fn〉,
and then prove that the multiplicity of 0 as a solution of f1 = · · · =
fn = 0 is d1 · · · dn. Hint: Regard f1, . . . , fn as homogeneous polynomi-
als in x0, x1, . . . , xn, where x0 is a new variable. Using x0, x1, . . . , xn

as homogeneous coordinates for P
n, show that f1 = · · · = fn = 0 have

no nontrivial solutions when x0 = 0, so that there are no solutions at
∞ in the sense of Chapter 3. Then use Bézout’s Theorem as stated in
Chapter 3.

b. Let f(x1, . . . , xn) be a homogeneous polynomial of degree d with an
isolated singularity at the origin. Show that the Milnor number of f at
the origin is (d − 1)n.

Exercise 3. Determine the multiplicity of the solution at the origin for
each of the following systems of polynomial equations.
a. x2 + 2xy4 − y2 = xy − y3 = 0.
b. x2 + 2y2 − y − 2z = x2 − 8y2 + 10z = x2 − 7yz = 0.
c. x2 + y2 + z2 − 2x4 = x3 − yz − x = x − y + 2z = 0.
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Exercise 4. Compute the Milnor and Tjurina numbers at the origin of
the following polynomials (all of which have an isolated singularity at 0).
a. f(x, y) = (x2 + y2)3 − 4x2y2. The curve V(f) ⊂ R

2 is the four-leaved
rose—see Exercise 11 of [CLO], Chapter 3, §5.

b. f(x, y) = y2 − xn, n ≥ 2. Express the Milnor number as a function of
the integer n.

c. f(x, y, z) = xyz + x4 + y4 + z4.

Exercise 5. (Tangent Cones) For each f ∈ 〈x1, . . . , xn〉, let fmin be the
homogeneous component of lowest degree in f . Let V = V(f1, . . . , fs) ⊂
kn be a variety containing the origin.
a. Let G = {g1, . . . , gt} be a standard basis for

I = 〈f1, . . . , fs〉k[x1, . . . , xn]〈x1,...,xn〉

with respect to a degree-anticompatible order >. Explain why LT>(gi)
is one of the terms in gi,min for each i.

b. Show that V(g1,min, . . . , gt,min) is the tangent cone of V at the origin.
c. Consider the variety V = V(x3 − yz − x, y2 + 2z3) in k3. Using the

>alex order on k[x, y, z]〈x,y,z〉, with x > y > z, show that the two given
polynomials in the definition of V are a standard basis for the ideal they
generate, and compute the tangent cone of V at the origin using part b.

Exercise 6. For an r-dimensional linear subspace L ⊂ C
n, a polynomial

f ∈ C[x1, . . . , xn] restricts to a polynomial function fL on L.
a. Show that if f has an isolated singularity at the origin in C

n, then for al-
most all r-dimensional subspaces L ⊂ C

n, fL has an isolated singularity
at the origin in L.

b. One can show, in fact, that there is an open dense set N of all r-
dimensional subspaces of C

n such that the Milnor number µ(fL) of fL

at the origin does not depend on the choice of L in N . This number
is denoted µr(f). Show that µ1(f) = mult(f) − 1 where mult(f) (the
multiplicity of f) is the degree of the lowest degree term of f that occurs
with nonzero coefficient.

c. Compute µ2(f) and µ3(f) if
1. f = x5 + y4 + z7;
2. f = x4 + y5 + z6 + xyz;
3. f = x5 + xy6 + y7z + z15;
4. f = x5 + y7z + z15.
Note that if n is the number of variables, then µn(f) = µ(f), so that
µ3(f) is just the usual Milnor number for these examples. To com-
pute these numbers, use the milnor package in Singular and note that
planes of the form z = ax + by are an open set in the set of all planes
in C

3. One could also compute these Milnor numbers by hand. Note
that examples 1, 3, and 4 are weighted homogeneous polynomials. For
further background, the reader may wish to consult [Dim] or [AGV].
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d. A family {ft ∈ C[x1, . . . , xn]} of polynomials with an isolated singular-
ity at the origin for t near 0 is µ-constant if µ(f0) = µ(ft) for t near 0.
Show that ft = x5 + y4 + z7 + tx8y2 and ft = x5 + txy6 + y7z + z15

are µ-constant families but ft = x4 + y5 + z6 + txyz is not.
e. If f ∈ C[x1, . . . , xn] has an isolated singularity at the origin, the n-tuple

of integers (µ1(f), . . . , µn(f)) is called the Teissier µ∗-invariant of f .
One says that a family {ft} is µ∗-constant if µ∗(f0) = µ∗(ft). Show that
ft = x5 + txy6 + y7z + z15 is µ-constant, but not µ∗ constant. This is a
famous example due to Briançon and Speder—there are very few known
examples of µ-constant families that are not µ∗-constant. At the time of
writing, it is not known whether there exist µ-constant families in which
µ1 is not constant. The attempt to find such examples was one of the
issues that motivated the development of early versions of Singular.



Chapter 5

Modules

Modules are to rings what vector spaces are to fields: elements of a given
module over a ring can be added to one another and multiplied by elements
of the ring. Modules arise in algebraic geometry and its applications be-
cause a geometric structure on a variety often corresponds algebraically to
a module or an element of a module over the coordinate ring of the variety.
Examples of geometric structures on a variety that correspond to modules
in this way include subvarieties, various sets of functions, and vector fields
and differential forms on a variety. In this chapter, we will introduce mod-
ules over polynomial rings (and other related rings) and explore some of
their algebra, including a generalization of the theory of Gröbner bases for
ideals.

§1 Modules over Rings

Formally, if R is a commutative ring with identity, an R-module is defined
as follows.

(1.1) Definition. A module over a ring R (or R-module) is a set M
together with a binary operation, usually written as addition, and an op-
eration of R on M , called (scalar) multiplication, satisfying the following
properties.
a. M is an abelian group under addition. That is, addition in M is associa-

tive and commutative, there is an additive identity element 0 ∈ M , and
each element f ∈ M has an additive inverse −f satisfying f +(−f) = 0.

b. For all a ∈ R and all f, g ∈ M , a(f + g) = af + ag.
c. For all a, b ∈ R and all f ∈ M , (a + b)f = af + bf .
d. For all a, b ∈ R and all f ∈ M , (ab)f = a(bf).
e. If 1 is the multiplicative identity in R, 1f = f for all f ∈ M .

The properties in the definition of a module may be summarized by
saying that the scalar multiplication by elements of R interacts as nicely

189
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as possible with the addition operation in M . The simplest modules are
those consisting of all m× 1 columns of elements of R with componentwise
addition and scalar multiplication:⎛⎜⎜⎜⎝

a1
a2
...

am

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
b1
b2
...

bm

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
a1 + b1
a2 + b2

...
am + bm

⎞⎟⎟⎟⎠ , c

⎛⎜⎜⎜⎝
a1
a2
...

am

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ca1
ca2
...

cam

⎞⎟⎟⎟⎠ ,

for any a1, . . . , am, b1, . . . , bm, c ∈ R. We call any such column a vector
and the set of all such Rm.

One obtains other examples of R-modules by considering submodules of
Rm, that is, subsets of Rm which are closed under addition and scalar
multiplication by elements of R and which are, therefore, modules in their
own right.

We might, for example, choose a finite set of vectors f1, . . . , fs and con-
sider the set of all column vectors which can be written as an R-linear
combination of these vectors:

{a1f1 + · · · + asfs ∈ Rm, where a1, . . . , as ∈ R}.
We denote this set 〈f1, . . . , fs〉 and leave it to you to show that this is an
R-module.

Alternatively, consider an l × m matrix A with entries in the ring R. If
we define matrix multplication in the usual way, then for any f ∈ Rm, the
product Af is a vector in Rl. We claim (and leave it to you to show) that
the set

ker A ≡ {f ∈ Rm : Af = 0}
where 0 denotes the vector in Rl all of whose entries are 0 is an R-module.

Exercise 1. Let R be any ring, and Rm the m × 1 column vectors with
entries in R.
a. Show that the set 〈f1, . . . , fs〉 of R-linear combinations of any finite set

f1, . . . , fs of elements of Rm is a submodule of Rm.
b. If A is an l × m matrix with entries in R, show that ker A is a submodule

of Rm.
c. Let A be as above. Show that the set

im A ≡ {g ∈ Rl : g = Af , for some f ∈ Rm}
is a submodule of Rl. In fact, show that it is the submodule consisting
of all R-linear combinations of the columns of A considered as elements
of Rl.

d. Compare parts a and c, and conclude that 〈f1, . . . , fs〉 = im F where F
is the m × s matrix whose columns are the vectors f1, . . . , fs.
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The modules Rm are close analogues of vector spaces. In fact, if R = k is
a field, then the properties in Definition (1.1) are exactly the same as those
defining a vector space over k, and it is a basic fact of linear algebra that
the vector spaces km exhaust the collection of (finite-dimensional) k-vector
spaces. (More precisely, any finite dimensional k-vector space is isomorphic
to km for some m.) However, submodules of Rm when R is a polynomial
ring can exhibit behavior very different from vector spaces, as the following
exercise shows.

Exercise 2. Let R = k[x, y, z].
a. Let M ⊂ R3 be the module 〈f1, f2, f3〉 where

f1 =

⎛⎝ y
−x
0

⎞⎠ , f2 =

⎛⎝ z
0
−x

⎞⎠ , f3 =

⎛⎝ 0
z
−y

⎞⎠ .

Show that M = ker A where A is the 1 × 3 matrix ( x y z ).
b. Show that the set {f1, f2, f3} is minimal in the sense that M �= 〈fi, fj〉,

1 ≤ i < j ≤ 3.
c. Show that the set {f1, f2, f3} is R-linearly dependent. That is, show that

there exist a1, a2, a3 ∈ R = k[x, y, z], not all zero, such that a1f1 +
a2f2 + a3f3 = 0, where 0 is the zero vector in R3.

d. Note that the preceding two parts give an example of a submodule of
k[x, y, z]3 in which there is a minimal generating set which is not linearly
independent. This phenomenon cannot occur in any vector space.

e. In fact more is true. Show that there is no linearly independent set
of vectors which generate the module M . Hint: First show that any
linearly independent set could have at most two elements. A fairly brutal
computation will then give the result.

On the other hand, some of the familiar properties of vector spaces carry
over to the module setting.

Exercise 3. Let M be a module over a ring R.
a. Show that the additive identity 0 ∈ M is unique.
b. Show that each f ∈ M has a unique additive inverse.
c. Show that 0f = 0 where 0 ∈ R on the left hand side is the zero element

of R and 0 ∈ M on the right hand side is the identity element in M .

Before moving on, we remark that up to this point in this book, we
have used the letters f, g, h most often for single polynomials (or elements
of the ring R = k[x1, . . . , xn]). In discussing modules, however, it will be
convenient to reserve the letters e, f, g, h to mean elements of modules over
some ring R, most often in fact over R = k[x1, . . . , xn]. In addition, we
will use boldface letters e, f , g, h for column vectors (that is, elements of
the module Rm). This is not logically necessary, and may strike you as
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slightly schizophrenic, but we feel that it makes the text easier to read.
For single ring elements, we will use letters such as a, b, c. Occasionally, for
typographical reasons, we will need to write vectors as rows. In these cases,
we use the notation (a1, . . . , am)T to indicate the column vector which is
the transpose of the row vector ( a1 . . . am ).

Many of the algebraic structures studied in Chapters 1 through 4 of this
text may also be incorporated into the general context of modules as the
exercise below shows. Part of what makes the concept of a module so useful
is that it simultaneously generalizes the notion of ideal and quotient ring.

Exercise 4.
a. Show that an ideal I ⊂ R is an R-module, using the sum and product

operations from R.
b. Conversely, show that if a subset M ⊂ R is a module over R, then M

is an ideal in R.
c. Let I be an ideal in R. Show that the quotient ring M = R/I is an

R-module under the quotient ring sum operation, and the scalar mul-
tiplication defined for cosets [g] ∈ R/I, and f ∈ R by f [g] = [fg] ∈
R/I.

d. (For readers of Chapter 4) Show that the localization M = RP of R at
a prime ideal P ⊂ R is a module over R, where the sum is the ring sum
operation from RP , and the scalar product of b/c ∈ RP by a ∈ R is
defined as a · b/c = ab/c ∈ RP .

e. Let M, N be two R-modules. The direct sum M ⊕ N is the set of all
ordered pairs (f, g) with f ∈ M , and g ∈ N . Show that M ⊕ N is
an R-module under the component-wise sum and scalar multiplication
operations. Show that we can think of Rm as the direct sum

Rm = R ⊕ R ⊕ . . . ⊕ R

of R with itself m times.

We have already encountered examples of submodules of Rm. More gen-
erally, a subset of any R-module M which is itself an R-module (that is,
which is closed under addition and multiplication by elements of R) is called
a submodule of M . These are the analogues of vector subspaces of a vector
space.

Exercise 5. Let F ⊂ M be a subset and let N ⊂ M be the collection of
all f ∈ M which can be written in the form

f = a1f1 + · · · + anfn,

with ai ∈ R and fi ∈ F for all i. Show that N is a submodule of M .

The submodule N constructed in this exercise is called the submodule
of M generated by F . Since these submodules are natural generalizations
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of the ideals generated by given subsets of the ring R, we will use the
same notation—the submodule generated by a set F is denoted by 〈F 〉. If
〈F 〉 = M , we say that F spans (or generates) M . If there is a finite set
that generates M , then we say that M is finitely generated .

Exercise 6.
a. Let R be a ring. Show that M = Rm is finitely generated for all m. Hint:

Think of the standard basis for the vector space km and generalize.
b. Show that M = k[x, y] is a module over R = k[x] using the ring sum

operation from k[x, y] and the scalar multiplication given by polynomial
multiplication of general elements of M by elements in R. However, show
that M is not finitely generated as an R-module.

If N is a submodule of M , then the set of equivalence classes of elements
of M where f ∈ M is deemed equivalent to g ∈ M if and only if f − g ∈ N
forms an R-module with the operations induced from M (we ask you to
check this below). It is called the quotient of M by N and denoted by
M/N .

Exercise 7. As above, let M, N be R-modules with N ⊂ M , let [f ] =
{g ∈ M : g − f ∈ N} be the set of all elements of M equivalent to f ,
and denote the set of all sets of equivalent elements by M/N . These sets
of equivalent elements are called equivalence classes or cosets. Note that
we can write [f ] = f + N . Show that M/N is an R-module if we define
addition by [f ] + [g] = [f + g] and the scalar multiplication by a[f ] = [af ]
by a ∈ R. Hint: You need to show that these are well-defined. Also show
that the zero element is the set [0] = N .

The quotient module construction takes a little getting used to, but is
extremely powerful. Several other constructions of modules and operations
on modules are studied in the additional exercises.

After defining any algebraic structure, one usually defines maps that
preserve that structure. Accordingly, we consider module homomorphisms,
the analogues of linear mappings between vector spaces.

(1.2) Definition. An R-module homomorphism between two R-modules
M and N is an R-linear map between M and N . That is, a map ϕ : M → N
is an R-module homomorphism if for all a ∈ R and all f, g ∈ M , we have

ϕ(af + g) = aϕ(f) + ϕ(g).

This definition implies, of course, that ϕ(f + g) = ϕ(f) + ϕ(g) and
ϕ(af) = aϕ(f) for all a ∈ R and all f, g ∈ M .

When M and N are free modules, we can describe module homomor-
phisms in the same way that we specify linear mappings between vector
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spaces. For example, letting M = N = R, every R-module homomorphism
ϕ : R → R is given by multiplication by a fixed f ∈ R—if g ∈ R, then
ϕ(g) = fg. To see this, given ϕ, let f = ϕ(1). Then for any a ∈ R,

ϕ(a) = ϕ(a · 1) = a · ϕ(1) = af = fa.

Conversely, by the distributive law in R, multiplication by any f defines
an R-module homomorphism from R to itself.

More generally ϕ is a module homomorphism from Rl to Rm if and only
if there exist l elements f1, . . . , fl ∈ Rm such that

ϕ((a1, . . . , al)T ) = a1f1 + · · · + alfl

for all (a1, . . . , al)T ∈ Rl. Given ϕ, and letting e1, e2, . . . , el be the
standard basis vectors in Rl (that is ei is the column vector with a 1
in the ith row and a 0 in all other rows), we can see this as follows.
For each i, let fi = ϕ(ei). Each (a1, . . . , al)T can be written uniquely
as (a1, . . . , al)T = a1e1 + · · · + alel. But then, since ϕ is a homomor-
phism, knowing ϕ(ej) = fj determines the value of ϕ((a1, . . . , al)T ) for all
(a1, . . . , al)T ∈ Rl. Then expanding each fj in terms of the standard basis
in Rm, we see that ϕ may be represented as multiplication by a fixed m× l
matrix A = (aij) with coefficients in R. The entries in the jth column give
the coefficients in the expansion of fj = ϕ(ej) in terms of the standard
basis in Rm. We record the result of this discussion as follows (the second
part of the proposition is a result of Exercise 1).

(1.3) Proposition. Given any R-module homomorphism ϕ : Rm → Rl,
there exists an l × m matrix A with coefficients in R such that ϕ(f) = Af
for all f ∈ Rm. Conversely, multiplication by any l × m matrix defines an
R-module homomorphism from Rm to Rl.

The discussion above actually shows that an R-module homomorphism
ϕ : M → N between two R-modules is always determined once one knows
the action of ϕ on a set of generators of M . However, unlike the situation in
which M = Rm, one cannot define a homomorphism ϕ on M by specifying
ϕ arbitrarily on a set of generators of M . The problem is that there may be
relations among the generators, so that one must be careful to choose values
of ϕ on the generators so that ϕ is well-defined. The following exercise
should illustrate this point.

Exercise 8. Let R = k[x, y].
a. Is there any R-module homomorphism ϕ from M = 〈x2, y3〉 ⊂ R to R

satisfying ϕ(x2) = y and ϕ(y3) = x? Why or why not?
b. Describe all k[x, y]-homomorphisms of 〈x2, y3〉 into k[x, y].

As in the case of vector spaces, one can develop a theory of how the same
homomorphism can be represented by matrices with respect to different sets
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of generators. We carry out some of this development in the exercises. We
have already defined the kernel and image of matrix multiplication. The
same definitions carry over to arbitrary homomorphisms.

(1.4) Definition. If ϕ : M → N is an R-module homomorphism between
two R-modules M and N , define the kernel of ϕ, denoted ker(ϕ), to be the
set

ker(ϕ) = {f ∈ M : ϕ(f) = 0},
and the image of ϕ, denoted im(ϕ), to be the set

im(ϕ) = {g ∈ N : there exists f ∈ M with ϕ(f) = g}.
The homomorphism ϕ is said to be an isomorphism if it is both one-to-one
and onto, and two R-modules M, N are called isomorphic, written M ∼= N
if there is some isomorphism ϕ : M → N .

The proofs of the following statements are the same as those of the
corresponding statements for linear mappings between vector spaces, and
they are left as exercises for the reader.

(1.5) Proposition. Let ϕ : M → N be an R-module homomorphism
between two R-modules M and N . Then
a. ϕ(0) = 0.
b. ker(ϕ) is a submodule of M .
c. im(ϕ) is a submodule of N .
d. ϕ is one-to-one (injective) if and only if ker(ϕ) = {0}.
Proof. See Exercise 16.

When we introduce the notions of linear combinations and linear inde-
pendence and R is not a field (for example when R = k[x1, . . . , xn]), the
theory of modules begins to develop a significantly different flavor from that
of vector spaces. As in linear algebra, we say that a subset F = {f1, . . . , fn}
of a module M is linearly independent over R (or R-linearly independent)
if the only linear combination a1f1 + · · · + anfn with ai ∈ R and fi ∈ F
which equals 0 ∈ M is the trivial one in which a1 = · · · = an = 0. A set
F ⊂ M which is R-linearly independent and which spans M is said to be
a basis for M .

Recall from linear algebra that every vector space over a field has a basis.
In Exercise 2, we saw that not every module has a basis. An even simpler
example is supplied by the ideal M = 〈x2, y3〉 ⊂ R studied in Exercise 8
(which is the same as the R-module generated by x2 and y3 in R). The
set {x2, y3} is not a basis for M as a module because x2 and y3 are not
R-linearly independent. For example, there is a linear dependence relation
y3x2 − x2y3 = 0, but the coefficients y3 and −x2 are certainly not 0. On
the other hand, because {x2, y3} spans M , it is a basis for M as an ideal .
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More generally, any ideal M in R = k[x1, . . . , xn] which requires more
than a single polynomial to generate it cannot be generated by an R-linearly
independent set. This is true because any pair of polynomials f1, f2 ∈ R
that might appear in a generating set (an ideal basis) satisfies a non-trivial
linear dependence relation f2f1 − f1f2 = 0 with coefficients in R. Thus the
meaning of the word “basis” depends heavily on the context, and we will
strive to make it clear to the reader which meaning is intended by using the
phrases “ideal basis” or “module basis” to distinguish between the alter-
natives when there is a possibility of confusion. The following proposition
gives a characterization of module bases.

(1.6) Proposition. Let M be a module over a ring R. A set F ⊂ M is a
module basis for M if and only if every f ∈ M can be written in one and
only one way as a linear combination

f = a1f1 + · · · + anfn,

where ai ∈ R, and fi ∈ F .

Proof. The proof is the same as the corresponding statement for bases
of vector spaces.

The examples above show that, unlike vector spaces, modules need not
have any generating set which is linearly independent. Those that do are
given a special name.

(1.7) Definition. Let M be a module over a ring R. M is said to be a free
module if M has a module basis (that is, a generating set that is R-linearly
independent).

For instance, the R-module M = Rm is a free module. The standard
basis elements

e1 =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , e2 =

⎛⎜⎜⎜⎜⎜⎝
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , . . . , em =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
...
1

⎞⎟⎟⎟⎟⎟⎠ ,

form one basis for M as an R-module. There are many others as well. See
Exercise 19 below.

We remark that just because a module has a single generator, it need
not be free. As an example, let R be any polynomial ring and f ∈ R
a nonzero polynomial. Then M = R/〈f〉 is generated by the set [1] of
elements equivalent to 1. But [1] is not a basis because f · [1] = [f ] = [0] =
0 ∈ M .
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In the following exercise we will consider another very important class of
modules whose construction parallels one construction of vector subspaces
in kn, and we will see a rather less trivial example of free modules.

Exercise 9. Let a1, . . . , am ∈ R, and consider the set M of all solutions
(X1, . . . , Xm)T ∈ Rm of the linear equation

a1X1 + · · · + amXm = 0.

a. Show that M is a submodule of Rm. (In fact, this follows from Exercise 1
because M = ker A where A is the row matrix A = ( a1 . . . am ).)

b. Take R = k[x, y], and consider the following special case of the linear
equation above:

X1 + x2X2 + (y − 2)X3 = 0.

Show that f1 = (−x2, 1, 0)T , and f2 = (−y + 2, 0, 1)T form a basis for
M as an R-module in this case.

c. Generalizing the previous part, show that if R = k[x1, . . . , xn], and one
of the coefficients ai in a1X1 + · · ·+ amXm = 0 is a non-zero constant,
then the module M of solutions is a free R-module.

It can be difficult to determine whether a submodule of Rm is free. For
example, the following, seemingly innocuous, generalization of Exercise 9
follows from the solution in 1976 by Quillen [Qui] and Suslin [Sus] of a
famous problem raised by Serre [Ser] in 1954. We will have more to say
about this problem in the Exercises 25–27 and later in this chapter.

(1.8) Theorem (Quillen-Suslin). Let R = k[x1, . . . , xn] and sup-
pose that a1, . . . , am ∈ R are polynomials that generate all of R (that
is 〈a1, . . . , am〉 = 〈1〉 = R). Then the module M of all solutions
(X1, . . . , Xm)T ∈ Rm of the linear equation

a1X1 + · · · + amXm = 0

is free.

In 1992, Logar and Sturmfels [LS] gave an algorithmic proof of the
Quillen-Suslin result, and in 1994 Park and Woodburn [PW] gave an al-
gorithmic procedure that allows one to compute a basis of ker A where
A is an explicitly given unimodular row. The procedure depends on
some algorithms that we will outline later in this chapter (and is quite
complicated).

Exercise 10.
a. Let a1, . . . , am ∈ R. Show that the homomorphism Rm → R given by

matrix multiplication f �→ Af by the row matrix A = ( a1 · · · am )
is onto if and only if 〈a1, . . . , am〉 = R. Hint: A is onto if and only if
1 ∈ im(A). Such a matrix is often called a unimodular row .
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b. Show that Theorem (1.8) generalizes Exercise 9c.
c. Let R = k[x, y] and consider the equation

(1 + x)X1 + (1 − y)X2 + (x + xy)X3 = 0.

That is, consider ker A in the special case A = ( a1 a2 a3 ) =
( 1 + x 1 − y x + xy ). Show 1 ∈ 〈a1, a2, a3〉.

d. Theorem (1.8) guarantees that one can find a basis for M = ker A in
the special case of part c. Try to find one. Hint: This is hard to do
directly—feel free to give up after trying and to look at Exercise 25.

e. In Exercise 25, we will show that the “trivial” relations,

h1 =

⎛⎝ a2
−a1
0

⎞⎠ , h2 =

⎛⎝ a3
0
−a1

⎞⎠ , h3 =

⎛⎝ 0
a3
−a2

⎞⎠
generate ker A. Assuming this, show that {h1, h2, h3} is not linearly in-
dependent and no proper subset generates ker A. This gives an example
of a minimal set of generators of a free module that does not contain a
basis.

The fact that some modules do not have bases (and the fact that even
when they do, one may not be able to find them) raises the question of
how one explicitly handles computations in modules. The first thing to
note is that one not only needs a generating set, but also the set of all
relations satisfied by the generators—otherwise, we have no way of knowing
in general whether two elements expressed in terms of the generators are
equal or not.

For instance, suppose you know that M is a Q[x, y]-module and that
f1, f2, f3 is a generating set. If someone asks you whether 4f1 + 5f2 + 6f3
and f1 + 3f2 + 4f3 represent the same element, then you cannot tell unless
you know whether the difference, 3f1 + 2f2 + 2f3, equals zero in M . To
continue the example, if you knew that every relation on the f1, f2, f3 was
a Q[x, y]-linear combination of the relations 3f1 + (1 + x)f2 = 0, f1 +
(2x + 3)f2 + 4yf3 = 0, and (2 − 2x)f2 + 4f3 = 0, then you could settle
the problem provided that you could decide whether 3f1 + 2f2 + 2f3 = 0
is a Q[x, y]-linear combination of the given relations (which it is).

Exercise 11. Verify that (no matter what fi are), if every linear relation
on the f1, f2, f3 is a Q[x, y]-linear combination of the relations 3f1 + (1 +
x)f2 = 0, f1 + (2x + 3)f2 + 4yf3 = 0 and (2 − 2x)f2 + 4f3 = 0, then
3f1 + 2f2 + 2f3 = 0 is a Q[x, y]-linear combination of the given relations.

It is worthwhile to say a few more words about relations at this point.
Suppose that F = (f1, . . . , ft) is an ordered t-tuple of elements of some
R-module M , so that f1, . . . , ft ∈ M . Then a relation on F is an R-linear
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combination of the fi which is equal to 0:

a1f1 + · · · + atft = 0 ∈ M.

We think of a relation on F as a t-tuple (a1, . . . , at) of elements of R.
Equivalently. we think of a relation as an element of Rt. Such relations are
also called syzygies from the Greek word συζυγια meaning “yoke” (and
“copulation”). In fact we have the following statement.

(1.9) Proposition. Let (f1, . . . , ft) be an ordered t-tuple of elements fi ∈
M . The set of all (a1, . . . , at)T ∈ Rt such that a1f1 + · · · + atft = 0 is
an R-submodule of Rt, called the (first) syzygy module of (f1, . . . , ft), and
denoted Syz(f1, . . . , ft).

Proof. Let (a1, . . . , at)T , (b1, . . . , bt)T be elements of Syz(f1, . . . , ft),
and let c ∈ R. Then

a1f1 + · · · + atft = 0

b1f1 + · · · + btft = 0

in M . Multiplying the first equation on both sides by c ∈ R, adding to the
second equation and using the distributivity properties from the definition
of a module, we obtain

(ca1 + b1)f1 + · · · (cat + bt)ft = 0.

This shows (ca1 + b1, . . . , cat + bt)T is also an element of Syz(f1, . . . , ft).
Hence Syz(f1, . . . , ft) is a submodule of Rt.

This proposition allows us to be precise about what it means to “know”
all relations on a fixed set of generators of a module. If there are t genera-
tors, then the set of relations is just a submodule of Rt. In Exercise 32 (and
in the next section), we will show that any submodule of Rt, and hence
any syzygy module, is finitely generated as a module, provided only that
every ideal of R is finitely generated (i.e., provided that R is Noetherian).
Hence, we “know” all relations on a set of generators of a module if we can
find a set of generators for the first syzygy module.

Since we think of elements of Rt as column vectors, we can think of
a finite collection of syzygies as columns of a matrix. If M is a module
spanned by the t generators f1, . . . , ft, then a presentation matrix for M is
any matrix whose columns generate Syz(f1, . . . , ft) ⊂ Rt. So, for example,
a presentation matrix A for the module of Exercise 11 would be

A =

⎛⎝ 3 1 0
1 + x 2x + 3 2 − 2x

0 4y 4

⎞⎠ .

If A is a presentation matrix for a module M with respect to some gener-
ating set of M , then we shall say that A presents the module M . Note that
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the number of rows of A is equal to the number of generators in the gener-
ating set of M . The following proposition is easy to prove, but exceedingly
useful.

(1.10) Proposition. Suppose that A is an l×m matrix with entries in R,
and suppose that A is the presentation matrix for two different R-modules
M and N . Then
a. M and N are isomorphic as R-modules
b. M (and, hence, N) is isomorphic to Rl/ARm where ARm denotes the

image im A of Rm under multiplication by A.

Proof. Part b clearly implies part a, but it is more instructive to prove
part a directly. Since A is a presentation matrix for M , there is a set of
generators m1, . . . , ml such that the columns of A generate the module of
syzygies on m1, . . . , ml. Similarly, there is a set of generators n1, . . . , nl

of N such that the columns of A generate Syz(n1, . . . , nl). Define a ho-
momorphism ϕ : M → N by setting ϕ(mi) = ni and extending linearly.
That is, for any c1, . . . , cl ∈ R, set ϕ(

∑
cimi) =

∑
cini. We leave it to

the reader to show that ϕ is well-defined (that is, if
∑

cimi =
∑

dimi in
M for d1, . . . , dl ∈ R, then ϕ(

∑
cimi) = ϕ(

∑
dimi)) and one-one. It is

clearly onto.
To show part b, note that if A is an l ×m matrix, then ARm is the sub-

module of Rl generated by the columns of A. The quotient module Rl/ARm

is generated by the cosets e1 + ARm, . . . , el + ARm (where e1, . . . , el

denotes the standard basis of unit vectors in Rl), and (c1, . . . , cl)T ∈
Syz(e1 + ARm, . . . , el + ARm) if and only if (c1, . . . , cl)T ∈ ARm if and
only if (c1, . . . , cl)T is in the span of the columns of A. This says that A is
a presentation matrix for Rl/ARm. Now apply part a.

The presentation matrix of a module M is not unique. It depends on
the set of generators that one chooses for M , and the set of elements that
one chooses to span the module of syzygies on the chosen set of generators
of M . We could, for example, append the column (3, 2, 2)T to the matrix
A in the example preceding Proposition (1.10) above to get a 3 × 4 pre-
sentation matrix (see Exercise 11) of the same module. For a rather more
dramatic example, see Exercise 30 below. In the exercises, we shall give a
characterization of the different matrices that can present the same module.
The following exercise gives a few more examples of presentation matrices.

Exercise 12. Let R = k[x, y].

a. Show that the 2 × 1 matrix
(

x
0

)
presents the R module k[y] ⊕ k[x, y]

where k[y] is viewed as an R-module by defining multiplication by x to
be 0.
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b. What module does the 1 × 2 matrix ( x 0 ) present? Why does the
1 × 1 matrix (x) present the same module?

c. Find a matrix which presents the ideal M = 〈x2, y3〉 ⊂ R as an R-
module.

The importance of presentation matrices is that once we have a presen-
tation matrix A for a module M , we have a concrete set of generators and
relations for M (actually for an isomorphic copy of M), and so can work
concretely with M . As an example, we characterize the homomorphisms of
M into a free module.

(1.11) Proposition. If A is an l×m presentation matrix for an R-module
M , then any R-module homomorphism ϕ : M → Rt can be represented by
a t× l matrix B such that BA = 0, where 0 denotes the t×m zero matrix.
Conversely, if B is any t × l matrix with entries in R such that BA = 0,
then B defines a homomorphism from M to Rt.

Proof. To see this, note that for M to have an l×m presentation matrix
means that M can be generated by l elements f1, . . . , fl, say. Hence, ϕ is
determined by ϕ(f1), . . . , ϕ(fl), which we think of as columns of the t × l
matrix B. We leave it as an exercise to show that ϕ is well-defined if and
only if BA = 0.

Conversely, if A is a presentation matrix of M with respect to a gener-
ating set {f1, . . . , fl}, and if B is any t × l matrix with entries in R such
that BA = 0, then B defines a homomorphism from M to Rt by mapping∑

cimi to Bc where c = ( c1 · · · cl )T ∈ Rl. Again, we leave the proof
that the homomorphism is well-defined if BA = 0 as an exercise.

ADDITIONAL EXERCISES FOR §1

Exercise 13. The ring k[x, y] can be viewed as a k-module, as a k[x]-
module, as a k[y]-module, or as a k[x, y]-module. Illustrate the differences
between these structures by providing a nontrivial example of a map from
k[x, y] to itself which is
a. a k-module homomorphism, but not a k[x]-module, k[y]-module, or

k[x, y]-module homomorphism,
b. a k[x]-module homomorphism, but not a k[y]-module, or k[x, y]-module

homomorphism,
c. a k[y]-module homomorphism, but not a k[x]-module, or k[x, y]-module

homomorphism,
d. a ring homomorphism, but not a k[x, y]-module homomorphism.

Exercise 14. Let N1, N2 be submodules of an R-module M .
a. Show that N1 + N2 = {f1 + f2 ∈ M : fi ∈ Ni} is also a submodule

of M .
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b. Show that N1 ∩ N2 is a submodule of M .
c. If N1 and N2 are finitely generated, show that N1 + N2 is also finitely

generated.

Exercise 15. Show that every free module with a finite basis is isomorphic
to Rm for some m. One can actually show more: namely, that any finitely
generated free module is isomorphic to Rm. See Exercise 19.

Exercise 16. Prove Proposition (1.5).

Exercise 17. Let R = k[x, y, z] and let M ⊂ R3 be the module described
in Exercise 2. Explicitly describe all homomorphisms M �→ Rl. Hint: The
set of relations on f1, f2, f3 is generated by a single element which you can
easily find.

Exercise 18. Complete the proof of Proposition (1.11).

Exercise 19. Let R = k[x1, . . . , xn].
a. Show that if A = (aij) is any invertible s × s matrix with coefficients

in k, then the vectors

fi = ai1e1 + · · · + aises,

i = 1, . . . , s also form a basis of the free module Rs.
b. Show that a finitely generated module N over a ring R is free if and

only if N is isomorphic to M = Rs as a module, for some s. (In view
of Exercise 15, the point is to show that if a module is free and has a
finite set of generators, then it has a finite basis.)

c. Show that A = (aij) is an invertible s × s matrix with coefficients in
R if and only if det A is a non-zero element of k. Repeat part a with A
invertible with coefficients in R. Hint: Consider the adjoint matrix of A
as defined in linear algebra.

Exercise 20. Let M and N be R-modules.
a. Show that the set hom(M, N) of all R-module homomorphisms from M

to N is an R-module with a suitable definition of addition and scalar
multiplication.

b. If M is presented by a matrix A, and N is presented by a matrix B, what
conditions must a matrix C representing a homomorphism ϕ : M → N
satisfy? Hint: Compare with Proposition (1.11).

c. Find a matrix D presenting hom(M, N).

Exercise 21. Suppose that M, N are R-modules and N ⊂ M .
a. Show that the mapping ν : M → M/N defined by ν(f) = [f ] = f + N

is an R-module homomorphism.
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b. Let ϕ : M → N . Show that there is an R-module isomorphism between
M/ ker(ϕ) and im(ϕ).

Exercise 22. Let N1 and N2 be submodules of an R-module M , and
define

(N1 :N2) = {a ∈ R : af ∈ N1 for all f ∈ N2}.
Show that (N1 :N2) is an ideal in R. The ideal (0:N) is also called the
annihilator of N , denoted ann(N).

Exercise 23.
a. Let M be an R-module, and let I ⊂ R be an ideal. Show that IM =
{af : a ∈ I, f ∈ M} is a submodule of M .

b. We know that M/IM is an R-module. Show that M/IM is also an
R/I-module.

Exercise 24.
a. Let L, M, N be R-modules with L ⊂ M ⊂ N . Describe the homomor-

phisms which relate the three quotient modules and show that N/M is
isomorphic to (N/L)/(M/L).

b. Let M, N be submodules of an R-module P . Show that (M + N)/N is
isomorphic to M/(M ∩ N).

(Note: The result in part a is often called the Third Isomorphism The-
orem and that in part b the Second Isomorphism Theorem. The First
Isomorphism Theorem is the result established in part b of Exercise 21.)

Exercise 25. This is a continuation of Exercise 10. We let R = k[x, y]
and consider the equation

(1 + x)X1 + (1 − y)X2 + (x + xy)X3 = 0.

That is, we consider ker A in the special case A = ( a1 a2 a3 ) =
( 1 + x 1 − y x + xy ). Since 1 ∈ 〈a1, a2, a3〉 (part c of Exercise 10),
Theorem (1.8) guarantees that one can find a basis for M = ker A in the
special case of Exercise 10c. We find a basis for M as follows.
a. Find a triple of polynomials f = (f1, f2, f3)T ∈ R3 such that (1+x)f1 +

(1 − y)f2 + (x + xy)f3 = 1.
b. By multiplying the relation Af = 1 in part a by 1 + x and transposing,

then by 1 − y and transposing, and finally by x + xy and transposing,
find three vectors g1, g2, g3 ∈ ker A (these vectors are the columns of
the 3 × 3 matrix I − f · A, where I is the 3 × 3 identity matrix). Show
these vectors span ker A. Hint: If Af = 0, then f = (I − f · A)f is a
linear combination of the colums of I − f · A.

c. Show that {g1, g2} is a basis.
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d. Use part b to show that the “trivial” relations

h1 =

⎛⎝ a2
−a1
0

⎞⎠, h2 =

⎛⎝ a3
0
−a1

⎞⎠, h3 =

⎛⎝ 0
a3
−a2

⎞⎠
generate ker A. As pointed out in Exercise 10, they supply an example
of a minimal set of generators of a free module that does not contain a
basis.

Exercise 26. The goal of this exercise is to show how Theorem (1.8)
follows from the solution of the Serre problem. An R-module M is called
projective if it is a direct summand of a free module: that is, if there is an
R-module N such that M ⊕N is a finitely generated free module. In 1954,
Serre asked whether every projective R-module when R is a polynomial
ring is free and Quillen and Suslin independently proved that this was the
case in 1976.
a. Show that Z/6 = Z/3 ⊕ Z/2, so that Z/3 is a projective Z/6-

module which is clearly not a free Z/6-module. (So, the answer to
Serre’s question is definitely negative if R is not a polynomial ring
k[x1, . . . , xn].)

b. Let R = k[x1, . . . , xn] and let A = ( a1 · · · al ) be a 1 × l matrix
such that 1 ∈ 〈a1, . . . , al〉. Then multiplication by A defines an onto
map Rl → R. Show that (ker A) ⊕ R ∼= Rl, so that ker A is projective.
Hint: Fix f ∈ Rl such that Af = 1. Given any h ∈ Rl, write h =
h1 + h2 (uniquely) with h2 = (Ah)f and h1 = h− (Ah)f ∈ ker A. The
Quillen-Suslin result now implies Theorem (1.8).

Exercise 27. The purpose of this exercise is to generalize the methods
of Exercise 25 to further investigate the result of Theorem (1.8). Let R =
k[x1, . . . , xn] and let A = ( a1 · · · al ) be a 1 × l matrix such that
1 ∈ 〈a1, . . . , al〉.
a. Choose f ∈ Rl such that Af = 1. Generalize the result of Exercise 25b

to show that the columns of I − f · A are elements of Syz (a1, . . . , al)
that generate Syz (a1, . . . , al).

b. Show that one can extract a basis from the columns of I − f · A in the
case that one of the entries of f is a nonzero element of R.

c. The preceding part shows Theorem (1.8) in the special case that there
exists f ∈ Rl such that Af = 1 and some entry of f is a non-zero
element of k. Show that this includes the case examined in Exercise 9c.
Also show that if f is as above, then the set {h ∈ Rl : Ah = 1} =
f + Syz(a1, . . . , al).

d. There exist unimodular rows A with the property that no f ∈ Rl such
that Af = 1 has an entry which is a nonzero element of k. (In the
case R = k[x, y], the matrix A = ( 1 + xy + x4 y2 + x − 1 xy − 1 )
provides such an example.)
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Exercise 28. Let ϕ : M → N be an R-module homomorphism. The
cokernel of ϕ is by definition the module coker(ϕ) = N/im(ϕ). Show that
ϕ is onto if and only if coker(ϕ) = {0}. (Note that in terms of this definition,
Proposition (1.10) says that if M is an R-module with an l×m presentation
matrix A, show that M is isomorphic to the cokernel of the homomorphism
from Rl to Rm given by multiplication by A.)

Exercise 29. We have just seen that a presentation matrix determines a
module up to isomorphism. The purpose of this exercise is to characterize
the operations on a matrix which do not change the module it presents.
a. Let A be the m × n matrix representing a homomorphism ϕ : Rn →

Rm with respect to bases F = (f1, . . . , fn) of Rn and bases G =
(g1, . . . , gm) of Rm. Let F ′ = (f ′

1, . . . , f
′
n) be another basis of Rn and

P = (pij) the n× n invertible matrix with pij ∈ R such that F = F ′P .
Similarly, let G′ = (g′

1, . . . , g
′
m) be another basis of Rm and Q = (qij)

the m × m invertible matrix with qij ∈ R such that G = G′Q. Show
that A′ = QAP−1 represents ϕ with respect to the bases F ′ of Rn

and G′ of Rm. Hint: Adapt the proof of the analogous result for vector
spaces.

b. If A is an m × n presentation matrix for an R-module M , and if A′ =
QAP−1 with P any n × n, and Q any m ×m, invertible matrices with
coefficients in R, show that A′ also presents M .

c. In particular if A′ is an m × n matrix obtained from A by adding c,
c ∈ R, times the ith column of A to the jth column of A, or c times
the ith row of A to the jth row of A, show that A′ and A present the
same module. Hint: If A′ is obtained from A by adding c times the ith
column of A to the jth column of A then A′ = AP where P is the
m × m matrix with ones along the diagonal and all other entries zero
except the ijth, which equals c.

d. If A′ is obtained from A by deleting a column of zeroes (assume that A
is not a single column of zeroes), show that A and A′ present the same
module. Hint: A column of zeroes represents the trivial relation.

e. Suppose that A has at least two columns and that its jth column is ei

(the standard basis vector of Rm with 1 in the ith row and all other
entries zero). Let A′ be obtained from A by deleting the ith row and
jth column of A. Show that A and A′ present the same module. Hint:
To say that a column of A is ei is to say that the ith generator of the
module being presented is zero.

Exercise 30. Let R = k[x, y] and consider the R-module M presented by
the matrix

A =

⎛⎝ 3 1 0
1 + x 2x + 3 2 − 2x

0 4y 4

⎞⎠
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(compare Exercise 6 and the discussion preceding Exercise 7). Use the 1
in row 1 and column 2 and elementary row operations to make the second
column e2. Use the operation in part e of the preceding exercise to reduce
to a 2 × 2 matrix. Make the entry in row 2 and column 2 a 1 and use row
operations to clear the entry in row 2 column 1, and repeat the operation in
part e. Conclude that the 1× 1 matrix (−8− 5x + 6y(x− 1)) also presents
M , whence M = k[x, y]/〈−8 − 5x + 6y(x − 1)〉.

Exercise 31. The purpose of this exercise is to show that two matrices
present the same module if and only if they can be transformed into one
another by the operations of Exercise 29.
a. Let A be a presentation matrix of the R-module M with respect to

a generating set f1, . . . , fm. Suppose that g1, . . . , gs ∈ M and write
gi =

∑
bjifj with bji ∈ R. Let B = (bij). Show that the block matrix(

A −B
0 I

)
presents M with respect to the generators (f1, . . . , fm; g1, . . . , gs).

b. Suppose that g1, . . . , gs also generate M and that A′ presents M with
respect to this set of generators. Write fi =

∑
cjigj and let C = (cij).

Show that the block matrix

D =
(

A −B I 0
0 I −C A′

)
presents M with respect to the generators (f1, . . . , fm; g1, . . . , gs).

c. Show that D can be reduced to both A and to A′ by repeatedly applying
the operations of Exercise 29. Hint: Show that row operations give the
block matrix (

A 0 I − BC BA′

0 I −C A′

)
which reduces by part d of Exercise 29 to the matrix

( A I − BC BA′ ) .

Show that the columns of I−BC and of BA′ are syzygies, hence spanned
by the columns of A.

d. Show that any presentation matrix of a module can be transformed
into any other by a sequence of operations from Exercise 29 and their
inverses.

Exercise 32.
a. Show that if every ideal I of R is finitely generated (that is, if R is

Noetherian), then any submodule M of Rt is finitely generated. Hint:
Proceed by induction. If t = 1, M is an ideal, hence finitely generated.
If t > 1, show that the set of first components of vectors in M is an
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ideal in R , hence finitely generated. Suppose that ri ∈ R, 1 ≤ i ≤ s
generate this ideal, and choose column vectors f1, . . . , fs ∈ M with
first components r1, . . . , rs respectively. Show that the submodule M ′

of M consisting of vectors in M with first component 0 is finitely gen-
erated. Show that f1, . . . , fs together with any generating set of M ′ is
a generating set of M .

b. Show that if R is Noetherian, any submodule of a finitely generated
R-module M is finitely generated. Hint: If M is generated by f1, . . . , fs

it is an image of Rs under a surjective homomorphism.

Exercise 33. There is another way to view Exercise 31 which is frequently
useful, and which we outline here. If A and A′ are m× t matrices such that
A′ = QAP−1 for an invertible m×m matrix Q and an invertible t×t matrix
P , then we say that A′ and A are equivalent. Equivalent matrices present
the same modules (because we can view P ∈ GL(t, R) and Q ∈ GL(m, R)
as a change of basis in Rt and Rm respectively, where for any n, GL(n, R)
is the group of n × n invertible matrices with entries in R).
a. Let A be an m× t matrix and A′ an r× s matrix with coefficients in R.

Show that A and A′ present identical modules if and only if the matrices(
A 0 0 0
0 Ir 0 0

)
and

(
0 0 Im 0
0 0 0 A′

)
are equivalent. Hint: This is equivalent to Exercise 31.

b. In part a above, show that we can take P = I.
c. Two matrices A and A′ are called Fitting equivalent if there exist identity

and zero matrices such that(
A 0 0
0 I 0

)
and

(
I 0 0
0 A′ 0

)
are equivalent. Show that A and A′ present the same module if and only
if A and A′ are Fitting equivalent.

§2 Monomial Orders and Gröbner Bases for Modules

Throughout this section R will stand for a polynomial ring k[x1, . . . , xn].
The goals of this section are to develop a theory of monomial orders in the
free modules Rm and to introduce Gröbner bases for submodules M ⊂ Rm,
in order to be able to solve the following problems by methods generalizing
the ones introduced in Chapter 1 for ideals in R.

(2.1) Problems.
a. (Submodule Membership) Given a submodule M ⊂ Rm and f ∈ Rm,

determine if f ∈ M .
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b. (Syzygies) Given an ordered s-tuple of elements (f1, . . . , fs) of Rm (for
example, an ordered set of generators), find a set of generators for the
module Syz(f1, . . . , fs) ⊂ Rs of syzygies.

One can restate problem 2.1b as that of finding a presentation matrix
for a submodule of Rm. It is easy to see why Gröbner bases might be
involved in solving the submodule membership problem. When m = 1,
a submodule of Rm is the same as an ideal in R (see Exercise 4b of §1).
Division with respect to a Gröbner basis gives an algorithmic solution of the
ideal membership problem, so it is natural to hope that a parallel theory
for submodules of Rm might be available for general m. In the next section,
we shall see that Gröbner bases are also intimately related to the problem
of computing syzygies.

As we will see, one rather pleasant surprise is the way that, once we
introduce the terminology needed to extend the notion of monomial orders
to the free modules Rm, the module case follows the ideal case almost
exactly. (Also see Exercise 6 below for a way to encode a module as a
portion of an ideal and apply Gröbner bases for ideals.)

Let us first agree that a monomial m in Rm is an element of the form
xαei for some i. We say m contains the standard basis vector ei. Every
element f ∈ Rm can be written in a unique way as a k-linear combination
of monomials mi

f =
n∑

i=1

cimi,

where ci ∈ k, ci �= 0. Thus for example, in k[x, y]3

(2.2)

f =

⎛⎝ 5xy2 − y10 + 3
4x3 + 2y

16x

⎞⎠
= 5

⎛⎝ xy2

0
0

⎞⎠ −
⎛⎝ y10

0
0

⎞⎠ + 3

⎛⎝ 1
0
0

⎞⎠
+ 4

⎛⎝ 0
x3

0

⎞⎠ + 2

⎛⎝ 0
y
0

⎞⎠ + 16

⎛⎝ 0
0
x

⎞⎠
= 5xy2e1 − y10e1 + 3e1 + 4x3e2 + 2ye2 + 16xe3,

which is a k-linear combination of monomials. The product c · m of a
monomial m with an element c ∈ k is called a term and c is called its
coefficient. We say that the terms cimi, ci �= 0, in the expansion of f ∈ Rm

and the corresponding monomials mi belong to f .
If m, n are monomials in Rm, m = xαei, n = xβej, then we say that

n divides m (or m is divisible by n) if and only if i = j and xβ divides
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xα. If n divides m we define the quotient m/n to be xα/xβ ∈ R (that is,
m/n = xα−β). Note that the quotient is an element of the ring R, and if n
divides m, we have (m/n) · n = m, which we certainly want. If m and n
are monomials containing the same basis element ei, we define the greatest
common divisor, GCD(m, n), and least common multiple, LCM(m, n) to
be the greatest common divisor and least common multiple, respectively, of
xα and xβ , times ei. On the other hand, if m, n contain different standard
basis vectors, we define LCM(m, n) = 0.

We say that a submodule M ⊂ Rm is a monomial submodule if M can
be generated by a collection of monomials. As for monomial ideals, it is
easy to see that f is in a monomial submodule M if and only if every
term belonging to f is in M . Monomial submodules have properties closely
paralleling those of monomial ideals.

(2.3) Proposition.
a. Every monomial submodule of Rm is generated by a finite collection of

monomials.
b. Every infinite ascending chain M1 ⊂ M2 ⊂ · · · of monomial submodules

of Rm stabilizes. That is, there exists N such that MN = MN+1 = · · · =
MN+� = · · · for all � ≥ 0.

c. Let {m1, . . . , mt} be a set of monomial generators for a monomial sub-
module of Rm, and let ε1, . . . , εt denote the standard basis vectors in
Rt. Let mij = LCM(mi, mj). The syzygy module Syz(m1, . . . , mt)
is generated by the syzygies σij = (mij/mi)εi − (mij/mj)εj , for all
1 ≤ i < j ≤ t (σij = 0 unless mi and mj contain the same standard
basis vector in Rm).

Proof. For part a, let M be a monomial submodule of Rm. For each i,
let Mi = M ∩ Rei be the subset of M consisting of elements whose jth
components are zero for all j �= i. In Exercise 5 below, you will show that
Mi is an R-submodule of M . Each element of Mi has the form fei for some
f ∈ R. By Exercise 4 of §1 of this chapter, Mi = Iiei for some ideal Ii ⊂ R,
and it follows that Ii must be a monomial ideal. By Dickson’s Lemma for
monomial ideals (see, for instance, [CLO], Theorem 5 of Chapter 2, §4),
it follows that Ii has a finite set of generators xα(i1), . . . , xα(idi). But then
the

xα(11)e1, . . . , x
α(1d1)e1

xα(21)e2, . . . , x
α(2d2)e2

...

xα(m1)em, . . . , xα(mdm)em

generate M .
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Part b follows from part a. See Exercise 5 below.
For part c, first observe that if (a1, . . . , at)T is a syzygy on a collection

of monomials and we expand in terms of the standard basis in Rm:

0 = a1m1 + · · · + atmt = f1e1 + · · · + fnen,

then f1 = · · · = fn = 0, and the syzygy is a sum of syzygies on subsets
of the mj containing the same ei. Hence we can restrict to considering
collections of monomials containing the same ei:

m1 = xα1ei, . . . , ms = xαsei.

Now, if (a1, . . . , as)T is a syzygy in Syz(m1, . . . , ms), we can collect terms
of the same multidegree in the expansion a1x

α1 + · · · + asx
αs = 0. Each

sum of terms of the same multidegree in this expansion must also be zero,
and the only way this can happen is if the coefficients (in k) of those terms
sum to zero. Hence (a1, . . . , as)T can be written as a sum of syzygies of
the form

(c1x
α−α1 , . . . , csx

α−αs)T ,

with c1, . . . , cs ∈ k satisfying c1 + · · · + cs = 0. Such a syzygy is called
a homogeneous syzygy , and we have just shown that all syzygies are sums
of homogeneous syzygies. (Compare with Lemma 7 of Chapter 2, §9 of
[CLO].)

When s = 3, for instance, we can write a syzygy

(c1x
α−α1 , c2x

α−α2 , c3x
α−α3)T

with c1 + c2 + c3 = 0 as a sum:

(c1x
α−α1 ,−c1x

α−α2 , 0)T + (0, (c1 + c2)xα−α2 , c3x
α−α3)T ,

where (c1x
α−α1 ,−c1x

α−α2)T = c1(xα−α1 ,−xα−α2)T is a syzygy on
the pair of monomials xα1 , xα2 and ((c1 + c2)xα−α2 , c3x

α−α3)T =
−c3(xα−α2 ,−xα−α3)T is a syzygy on the pair xα2 , xα3 .

In fact, for any s, every homogeneous syzygy can be written as a sum
of syzygies between pairs of monomials in a similar way (see Exercise 5
below). Also observe that given two monomials xα and xβ and some xγ

that is a multiple of each, then the syzygy (xγ−α,−xγ−β)T is a monomial
times

σ = (LCM(xα, xβ)/xα,−LCM(xα, xβ)/xβ)T .

From here, part c of the proposition follows easily.

If M = 〈m1, . . . , mt〉 and f is an arbitrary element of Rm, then f ∈ M
if and only if every term of f is divisible by some mi. Thus, it is easy to
solve the submodule membership problem for monomial submodules.
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Extending the theory of Gröbner bases to modules will involve three
things: defining orders on the monomials of Rm, constructing a division
algorithm on elements of Rm, and extending the Buchberger algorithm to
Rm. Let us consider each in turn.

The definition of a monomial order on Rm is the same as the definition in
R (see (2.1) from Chapter 1 of this book). Namely, we say that an ordering
relation > on the monomials of Rm is a monomial ordering if:

a. > is a total order,
b. for every pair of monomials m, n ∈ Rm with m > n, we have xαm >

xαn for every monomial xα ∈ R, and
c. > is a well-ordering .

Exercise 1. Show that condition c is equivalent to xαm > m for all
monomials m ∈ Rm and all monomials xα ∈ R such that xα �= 1.

Some of the most common and useful monomial orders on Rm come by
extending monomial orders on R itself. There are two especially natural
ways to do this, once we choose an ordering on the standard basis vectors.
We will always use the “downward” ordering on the entries in a column:

e1 > e2 > · · · > em,

although any other ordering could be used as well. (Note that this is the
reverse of the numerical order on the subscripts.)

(2.4) Definition. Let > be any monomial order on R.
a. (TOP extension of >) We say xαei >TOP xβej if xα > xβ , or if xα = xβ

and i < j.
b. (POT extension of >) We say xαei >POT xβej if i < j, or if i = j and

xα > xβ .

This terminology follows [AL], Definitions 3.5.2 and 3.5.3 (except for
the ordering on the ei). Following Adams and Loustaunau, TOP stands
for “term-over-position,” which is certainly appropriate since a TOP order
sorts monomials first by the term order on R, then breaks ties using the
position within the vector in Rm. On the other hand, POT stands for
“position-over-term.”

Exercise 2. Verify that for any monomial order > on R, both >TOP and
>POT define monomial orders on Rm.

As a simple example, if we extend the lex order on k[x, y] with x > y to
a TOP order on k[x, y]3 we get an order >1 such that the terms in (2.2)
are ordered as follows.
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x3

0

⎞⎠ >1

⎛⎝ xy2

0
0

⎞⎠ >1

⎛⎝ 0
0
x

⎞⎠ >1

⎛⎝ y10

0
0

⎞⎠ >1

⎛⎝ 0
y
0

⎞⎠ >1

⎛⎝ 1
0
0

⎞⎠ .

If we extend the same lex order to a POT order on k[x, y]3 we get an order
>2 such that⎛⎝ xy2

0
0

⎞⎠ >2

⎛⎝ y10

0
0

⎞⎠ >2

⎛⎝ 1
0
0

⎞⎠ >2

⎛⎝ 0
x3

0

⎞⎠ >2

⎛⎝ 0
y
0

⎞⎠ >2

⎛⎝ 0
0
x

⎞⎠ .

In either case, we have e1 > e2.
Once we have an ordering > on monomials, we can write any element

f ∈ Rm as a sum of terms

f =
t∑

i=1

cimi

with ci �= 0 and m1 > m2 > · · · > mt. We define the leading coefficient,
leading monomial , and leading term of f just as in the ring case:

LC>(f) = c1

LM>(f) = m1

LT>(f) = c1m1.

If, for example,

f =

⎛⎝ 5xy2 − y10 + 3
4x3 + 2y

16x

⎞⎠ ∈ k[x, y]3

as in (2.2), and >TOP is the TOP extension of the lex order on k[x, y]
(x > y), then

LC>TOP (f) = 4, LM>TOP (f) = x3e2, LT>TOP (f) = 4x3e2.

Similarly, if >POT is the POT extension of the lex order, then

LC>P OT (f) = 5, LM>P OT (f) = xy2e1, LT>P OT (f) = 5xy2e1.

Once we have a monomial ordering in Rm we can divide by a set F ⊂ Rm

in exactly the same way we did in R.

(2.5) Theorem (Division Algorithm in Rm). Fix any monomial or-
dering on Rm and let F = (f1, . . . , fs) be an ordered s-tuple of elements of
Rm. Then every f ∈ Rm can be written as

f = a1f1 + · · · + asfs + r,

where ai ∈ R, r ∈ Rm, LT(aifi) ≤ LT(f) for all i, and either r = 0 or r is
a k-linear combination of monomials none of which is divisible by any of
LM(f1), . . . , LM(fs). We call r the remainder on division by F .
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Proof. To prove the existence of the ai ∈ R and r ∈ Rm it is sufficient
to give an algorithm for their construction. The algorithm is word-for-word
the same as that supplied in [CLO], Theorem 3 of Chapter 2, §3, or [AL],
Algorithm 1.5.1 in the ring case. (The module version appears in [AL] as
Algorithm 3.5.1). The proof of termination is also identical.

Instead of reproducing the formal statement of the algorithm, we describe
it in words. The key operation in carrying out the division process is the
reduction of the partial dividend p (p = f to start) by an fi such that
LT(fi) divides LT(p). If LT(p) = t · LT(fi) for a term t ∈ R, we define

Red (p, fi) = p − tfi

and say that we have reduced p by fi. One divides f by F by successively
reducing by the first fi in the list (that is, the element with the smallest
index i) for which reduction is possible, and keeping track of the quotients.
If at some point, reduction is not possible, then LT(p) is not divisible by
any of the LT(fi). In this case, we subtract the lead term of p, place it into
the remainder and again try to reduce with the fi. The process stops when
p is reduced to 0.

The following exercise gives a simple example of division in the module
setting. When calculating by hand, it is sometimes convenient to use a
format similar to the polynomial long division from [CLO] Chapter 2, but
we will not do that here.

Exercise 3. Let

f = (5xy2 − y10 + 3, 4x3 + 2y, 16x)T ∈ k[x, y]3

as in (2.2), and let

f1 = (xy + 4x, 0, y2)T

f2 = (0, y − 1, x − 2)T .

Let > stand for the POT extension of the lex order on k[x, y] with x > y.
Then LT(f) = 5x2ye1, LT(f1) = xye1, and LT(f2) = ye2. Let p be the
intermediate dividend at each step of the algorithm—set p = f to start
and a1 = a2 = 0 and r = 0.
a. Since LT(f1) divides LT(f), show that the first step in the division will

yield intermediate values a1 = 5y, a2 = 0, r = 0, and p = Red (f , f1) =
(−20xy − y10 + 3, 4x3 + 2y, 16x − 5y3)T .

b. LT(p) is still divisible by LT(f1), so we can reduce by f1 again. Show that
this step yields intermediate values a1 = 5y − 20, a2 = 0, r = 0, and
p = (80x − y10 + 3, 4x3 + 2y, 16x − 5y3 + 20y2)T .

c. Show that in the next three steps in the division, the leading term of
p is in the first component, but is not divisible by the leading term of
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either of the divisors. Hence after three steps we obtain intermediate
values a1 = 5y − 10, a2 = 0, r = (80x − y10 + 3, 0, 0)T , and p =
(0, 4x3 + 2y, 16x − 5y3 + 20y2)T .

d. The leading term of p at this point is 4x3e2, which is still not divisible
by the leading terms of either of the divisors. Hence the next step will
remove the term 4x3e2 and place that into r as well.

e. Complete the division algorithm on this example.
f. Now use the TOP extension of the lex order and divide f by (f1, f2)

using this new order.

The division algorithm behaves best when the set of divisors has the
defining property of a Gröbner basis.

(2.6) Definition. Let M be a submodule of Rm, and let > be a monomial
order.
a. We will denote by 〈LT(M)〉 the monomial submodule generated by the

leading terms of all f ∈ M with respect to >.
b. A finite collection G = {g1, . . . , gs} ⊂ M is called a Gröbner basis for

M if 〈LT(M)〉 = 〈LT(g1), . . . , LT(gs)〉.

The good properties of ideal Gröbner bases with respect to division
extend immediately to this new setting, and with the same proofs.

(2.7) Proposition. Let G be a Gröbner basis for a submodule M ⊂ Rm,
and let f ∈ Rm.
a. f ∈ M if and only if the remainder on division by G is zero.
b. A Gröbner basis for M generates M as a module: M = 〈G〉.

Part a of this proposition gives a solution of the submodule membership
problem stated at the start of this section, provided that we have a Gröbner
basis for the submodule M in question. For example, the divisors f1, f2 in
Exercise 3 do form a Gröbner basis for the submodule M they generate,
with respect to the POT extension of the lex order. (This will follow from
Theorem (2.9) below, for instance.) Since the remainder on division of f is
not zero, f /∈ M .

Some care must be exercised in summarizing part b of the proposition
in words. It is not usually true that a Gröbner basis is a basis for M as
an R-module—a Gröbner basis is a set of generators for M , but it need
not be linearly independent over R. However, Gröbner bases do exist for
all submodules of Rm, by essentially the same argument as for ideals.

Exercise 4. By Proposition (2.3), 〈LT(M)〉 = 〈m1, . . . , mt〉 for some
finite collection of monomials. Let fi ∈ M be an element with LT(fi) = mi.
a. Show that {f1, . . . , ft} is a Gröbner basis for M .
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b. Use Proposition (2.7) to show that every submodule of Rm is finitely
generated.

Reduced and monic Gröbner bases may be defined as for ideals, and there
is a unique monic (reduced) Gröbner basis for each submodule in Rm once
we choose a monomial order.

Exercise 4 also shows that every submodule of Rm is finitely generated.
Using this, it is straightforward to show that submodules of Rm satisfy
the ascending chain condition (ACC), which asserts that every infinite
ascending chain M1 ⊂ M2 ⊂ · · · of submodules of Rm stabilizes; that
is, there is an N such that MN = MN+1 = · · · = MM+� = · · · for all
� ≥ 0. We proved this for monomial submodules in Proposition (2.3) and
you will prove it for arbitrary submodules of Rm in Exercise 13 below.

Now we turn to the extension of Buchberger’s Algorithm to the module
case.

(2.8) Definition. Fix a monomial order on Rm, and let f , g ∈ Rm. The
S-vector of f and g, denoted S(f , g), is the following element of Rm. Let
m = LCM(LT(f), LT(g)) as defined above. Then

S(f , g) =
m

LT(f)
f − m

LT(g)
g.

For example, if f = (xy − x, x3 + y)T and g = (x2 + 2y2, x2 − y2)T in
k[x, y]2 and we use the POT extension of the lex order on R = k[x, y] with
x > y, then

S(f , g) = xf − yg

= (−x2 − 2y3, x4 − x2y + xy + y3)T .

The foundation for an algorithm for computing Gröbner bases is the
following generalization of Buchberger’s Criterion.

(2.9) Theorem (Buchberger’s Criterion for Submodules). A set
G = {g1, . . . , gs} ⊂ Rm is a Gröbner basis for the module it generates if
and only if the remainder on division by G of S(gi, gj) is 0 for all i, j.

Proof. The proof is essentially the same as in the ideal case.

For example, G = {f1, f2} from Exercise 3 is a Gröbner basis for the
submodule it generates in k[x, y]3, with respect to the POT extension of
the lex order. The reason is that the leading terms of the fi contain different
standard basis vectors, so their least common multiple is zero. As a result,
the S-vector satisfies S(f1, f2) = 0, and Buchberger’s Criterion implies that
G is a Gröbner basis.
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For a less trivial example, if we define M to be the matrix

M =
(

a2 + b2 a3 − 2bcd a − b
c2 − d2 b3 + acd c + d

)
,

over R = k[a, b, c, d] then a TOP grevlex Gröbner basis G for the submodule
generated by the columns of M has four elements:

(2.10)

g1 = (b2,−ac/2 − bc/2 + c2/2 − ad/2 − bd/2 − d2/2)T ,

g2 = (a − b, c + d)T

g3 = (−2bcd, b3 − abc/2 + b2c/2 − ac2 + bc2/2 − abd/2 + b2d/2

+ acd + ad2 − bd2/2)T

g4 = (0, a2c + b2c − ac2 + bc2 + a2d + b2d + ad2 − bd2)T .

Note that LT(g1) = b2e1 and LT(g2) = ae1 for the TOP extension of grevlex
on k[a, b, c, d]. Hence

S(g1, g2) = ag1 − b2g2

= (b3,−a2c/2 − abc/2 + ac2/2 − a2d/2 − abd/2 − ad2/2

− b2c − b2d)T

= bg1 − (1/2)g4,

so that S(g1, g2) reduces to 0 on division by G. It is easy to check that all
the other S-vectors reduce to 0 modulo G as well.

To compute Gröbner bases, we need a version of Buchberger’s Algorithm.
Using Theorem (2.9), this extends immediately to the module case.

(2.11) Theorem (Buchberger’s Algorithm for Submodules). Let
F = (f1, . . . , ft) where fi ∈ Rm, and fix a monomial order on Rm. The
following algorithm computes a Gröbner basis G for M = 〈F 〉 ⊂ Rm, where

S(f , g)
G′

denotes the remainder on division by G′, using Theorem (2.5):

Input: F = (f1, . . . , ft) ⊂ Rm, an order >

Output: a Gröbner basis G for M = 〈F 〉, with respect to >

G := F

REPEAT

G′ := G
FOR each pair f �= g in G′ DO

S := S(f , g)
G′

IF S �= 0 THEN G := G ∪ {S}
UNTIL G = G′.
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Proof. Once again, the proof is the same as in the ideal case, using the
fact from Proposition (2.3) that the ascending chain condition holds for
monomial submodules to ensure termination.

Unfortunately, the Gröbner basis packages in Maple and Mathematica
do not allow computation of Gröbner bases for submodules of Rm for
m > 1 by the methods introduced above. The CALI package for REDUCE,
CoCoA, Singular and Macaulay 2 do have this capability however. For
instance, the Gröbner basis in (2.10) was computed using the implementa-
tion of Buchberger’s Algorithm in the computer algebra system Macaulay 2
(though in this small example, the computations would also be feasible by
hand). In Exercise 8 below, you will see how the computation was done. In
Exercise 9, we re-do the computation using the computer algebra system
Singular. Exercises 10 and 11 explain how to trick Maple into doing mod-
ule computations, and Exercise 12 presents an additional application of the
techniques of this section—computation in the quotient modules Rm/M .

While the exercises below illustrate how to use Macaulay 2 , Singular,
and Maple, we will not cover CoCoA. The interested reader should consult
[KR] for information about this capable system.

ADDITIONAL EXERCISES FOR §2

Exercise 5. This exercise will supply some of the details for the proof of
Proposition (2.3).
a. Show that if M is a submodule of Rm and Mi = M ∩ Rei, then Mi is

a submodule of M .
b. Using part a of Proposition (2.3), show that monomial submodules of

Rm satisfy the ascending chain condition. That is, for every infinite
ascending chain M1 ⊂ M2 ⊂ · · · of monomial submodules of Rm, there
exists N such that MN = MN+1 = · · · = MN+� for all � ≥ 0. Hint:
Consider ∪∞

n=1Mn, which is also a monomial submodule.

Exercise 6. In this exercise, we will see how the theory of submodules of
Rm can be “emulated” via ideals in a larger polynomial ring obtained by
introducing additional variables X1, . . . , Xm corresponding to the standard
basis vectors in Rm. Write S = k[x1, . . . , xn, X1, . . . , Xm], and define a
mapping ϕ : Rm → S as follows. For each f ∈ Rm, expand f =

∑m
j=1 fjej ,

where fj ∈ R, and let F = ϕ(f) ∈ S be the polynomial F =
∑m

j=1 fjXj .
a. Show that S can be viewed as an R-module, where the scalar mul-

tiplication by elements of R is the restriction of the ring product in
S.

b. Let S1 ⊂ S denote the vector subspace of S consisting of polynomials
that are homogeneous linear in the Xj (the k-span of the collection of
monomials of the form xαXj). Show that S1 is an R-submodule of S.
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c. For each submodule M = 〈f1, . . . , fs〉 ⊂ Rm, let Fi = ϕ(fi) ∈ S. Show
that ϕ(M) equals 〈F1, . . . , Fs〉S ∩ S1, where 〈F1, . . . , Fs〉S denotes the
ideal generated by the Fi in S.

d. Show that a Gröbner basis for the module M could be obtained by
applying a modified form of Buchberger’s Algorithm for ideals to I =
〈F1, . . . , Fs〉S. The modification would be to compute remainders only
for the S-polynomials S(Fi, Fj) that are contained in S1, and ignore all
other S-pairs.

Exercise 7. Let R = k[x], the polynomial ring in one variable. Let M
be a submodule of Rm for some m ≥ 1. Describe the form of the unique
monic reduced Gröbner basis for M with respect to the POT extension of
the degree order on R. In particular, how many Gröbner basis elements
are there whose leading terms contain each ei? What is true of the ith
components of the other basis elements if some leading term contains ei?

Using Macaulay 2 to Compute in Modules.

Since we have not used Macaulay 2 before in this book, and since
it is rather different in design from general computer algebra systems
such as Maple, a few words about its set-up are probably appropriate
at this point. For more information on this program, we refer the reader
to the Macaulay 2 website http://www.math.uiuc.edu/Macaulay2/.
Macaulay 2 is a computer algebra system specifically designed for com-
putations in algebraic geometry and commutative algebra. Its basic
computational engine is a full implementation of Buchberger’s algorithm
for modules over polynomial rings. Built-in commands for manipulating
ideals and submodules in various ways, performing division as in The-
orem (2.5), computing Gröbner bases, syzygies, Hilbert functions, free
resolutions (see Chapter 6 of this book), displaying results of computations,
etc. Introductions to Macaulay 2 may be found in [EGSS] and Appendix C
of [Vas].

Before working with a submodule of Rm in Macaulay 2 , the base ring
R must be defined. In our examples, R is always a polynomial ring over a
field. In Macaulay 2 , Q is written QQ, while a finite field such as Z/〈31991〉
is written ZZ/31991. Over the latter, polynomials in variables x, y, z are
entered via the command

R = ZZ/33191[x, y, z]

at the Macaulay 2 prompt “in :”, where i stands for “input” and n is the
number of the input. The default is the grevlex order on the polynomial
ring, and a TOP extension to submodules in Rm with the standard basis
ordered e1 < · · · < em. This “upward” order is the opposite of what we
used in Definition (2.4). To change to our “downward” order, enter the
command
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R = ZZ/33191[x, y, z, MonomialOrder =>{Position => Down}].

Exercise 8.
a. In these examples, we will work over R = k[a, b, c, d] with k = Q, so

enter

R = QQ[a..d]

at the prompt in a Macaulay 2 session.
b. To define the submodule generated by the columns of

M =
(

a2 + b2 a3 − 2bcd a − b
c2 − d2 b3 + acd c + d

)
,

enter the command

M = matrix{{a^2 + b^2, a^3 − 2 ∗ b ∗ c ∗ d, a − d},
{c^2 − d^2, b^3 + a ∗ c ∗ d, c + d}}.

c. The gb command computes the Gröbner basis for the module generated
by the columns of a matrix. The result of this computation has the data
type “GroebnerBasis”. To get a matrix, one uses the command gens to
get the generators in matrix form. Thus you should issue the command
gens gb M. Compare with the Gröbner basis given above in (2.10)—they
should be the same.

Using Singular to Compute in Modules.

We used Singular in the last chapter for computations in local rings.
This very powerful program is also very well-suited for computations in
modules over polynomial rings. We demonstrate by redoing Exercise 8 using
Singular.

Exercise 9.
a. We will work over R = k[a, b, c, d] with k = Q, so enter

ring R=0, (a,b,c,d), (dp,C);

at the > prompt in a Singular session. The first term “ring R=0” as-
serts that R will be a ring with characteristic 0 and the second that R
have indeterminates a, b, c, d. Had we wanted k = Z/31991 and inde-
terminates x, y, z, we would have entered “ring R=31991, (x,y,z)” at
the prompt >. The third term specifies the ordering. Examples of possi-
ble well-orderings on R are lex , grevlex , and grlex , specified by lp, dp
and Dp respectively. In our case, we chose grevlex. The letter C indicates
the “downward” order e1 > e2 > · · · > em on the standard basis el-
ements of the free module Rm. The lower-case c indicates the reverse,
“upward” order em > · · · > e2 > e1 on basis elements. The pair (dp,
C) indicates the TOP extension of dp to Rm using the downward order
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on standard basis elements. This is the ordering we used in Exercise
8. Had we wanted a POT extension, we would have written (C, dp).
A POT extension of a pure lex ordering on R to Rm with the upward
ordering e1 < · · · < em would be specified by entering (c, lp).

b. To define the submodule M generated by the columns of the matrix M
in part b of Exercise 8 above, enter, for example,

> vector s1 = [a2 + b2, c2 − d2];

> vector s2 = [a3 − 2bcd, b3 + acd];

> vector s3 = [a − b, c + d];

> module M = s1, s2, s3;

(We have shown the prompt > which you should not re-enter.) Note that
the command vector s1 = [a2+b2,c2-d2]; defines the vector s1 =
(a2 + b2, c2 − d2)T ∈ R2.

c. To define a module N generated by a Gröbner basis of s1, s2, s3, enter

module N = std(M);

after the prompt >.
d. To see the result, type N; after the prompt >. Verify that you get the

same result (up to multiplication by 2) as in (2.10).
e. In addition to the TOP, downward extension of graded reverse lex, ex-

periment with the following different extensions of the graded reverse
lex order on R to the free modules Rm: POT and upward; TOP and
upward; POT and downward. For which of these does the Gröbner ba-
sis of M = 〈s1, s2, s3〉 have the fewest number of elements? the least
degree? What about different extensions of the lex order on R?

Using Maple to Compute in Modules.

It is also possible to use Maple to find Gröbner bases of submodules
of Rm. The basic idea is the observation from Exercise 6 that submodules
of Rm can be “emulated” in a larger polynomial ring. We first need to
study how this works with respect to monomial orders on modules.

Exercise 10. Let R = k[x1, . . . , xn] and S = k[x1, . . . , xn, X1, . . . , Xm].
We also have the map ϕ which sends f =

∑m
j=1 fjej ∈ Rm to F =∑m

j=1 fjXj. In the notation of part b of Exercise 6, we have an isomorphism
ϕ : Rm ∼= S1. Now consider the following monomial orders >1 and >2 on S:

xαXβ >1 xγXδ ⇐⇒ xα >grevlex xγ , or xα = xγ and Xβ >grevlex Xδ

xαXβ >2 xγXδ ⇐⇒ Xβ >grevlex Xδ, or Xβ = Xδ and xα >grevlex xγ .

(These are examples of elimination orders.) Also let >TOP and >POT

denote the TOP and POT extensions to Rm of the grevlex order on R.



§2. Monomial Orders and Gröbner Bases for Modules 221

a. Prove that the restriction of >1 to S1 agrees with >TOP via the
isomorphism ϕ.

b. Similarly, prove that the restriction of >2 to S1 agrees with >POT via ϕ.

By using the Ore algebra and Groebner packages of Maple, we can
compute Gröbner bases as follows.

Exercise 11. We will compute the Gröbner basis of (2.10) as follows. In
Maple, first issue the commands

with(Ore_algebra):
S := poly_algebra(a,b,c,d,e1,e2);
F :=[(a^2+b^2)*e1+(c^2-d^2)*e2,
(a^3-2*b*c*d)*e1+(b^3+a*c*d)*e2,(a-b)*e1+(c+d)*e2];
T := termorder(S,lexdeg([d,c,b,a],[e1,e2]),[e1,e2]);

to enter the TOP extension of grevlex. (The Maple command lexdeg im-
plements the orders >1 and >2 of Exercise 10, depending on which set of
variables is put first, though due to a bug in the Groebner package, one
needs to reverse the variables in the first argument of lexdeg.) Then show
that the command

gbasis(F, T);

computes the Gröbner basis (2.10). Hint: Use the command

collect(GB, {e1, e2}, distributed);
to make the Gröbner basis easier to read.

Exercise 12. In this exercise, we will show how Gröbner bases can be
applied to perform calculations in the quotient modules Rm/M for M ⊂
Rm.
a. Let G be a Gröbner basis for M with respect to any monomial order on

Rm. Use Theorem (2.5) to define a one-to-one correspondence between
the cosets in Rm/M and the remainders on division of f ∈ Rm by G.

b. Deduce that the set of monomials in the complement of 〈LT(M)〉 forms
a vector space basis for Rm/M over k.

c. Let R = k[a, b, c, d]. Find a vector space basis for the quotient module
R2/M where M is generated by the columns of the matrix from Exercise
8, using the TOP grevlex Gröbner basis from (2.10). (Note: R2/M is not
finite-dimensional in this case.)

d. Explain how to compute the sum and scalar multiplication operations in
Rm/M using part a. Hint: see Chapter 2, §2 of this book for a discussion
of the ideal case.

e. R = k[x1, . . . , xn]. State and prove a criterion for finite-dimensionality
of Rm/M as a vector space over k generalizing the Finiteness Theorem
from Chapter 2, §2 of this book.
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Exercise 13. Prove that submodules of Rm satisfy the ACC. Hint: Given
M1 ⊂ M2 ⊂ · · ·, show that M = M1 ∪M2 ∪ · · · is a submodule. Then use
part b of Exercise 4.

§3 Computing Syzygies

In this section, we begin the study of syzygies on a set of elements of a
module, and we shall show how to solve Problem (2.1) b of the last section.
Once again R will stand for a polynomial ring k[x1, . . . , xn]. Solving this
problem will allow us to find a matrix presenting any submodule of Rm for
which we know a set of generators.

Gröbner bases play a central role here because of the following key ob-
servation. In computing a Gröbner basis G = {g1, . . . , gs} for an ideal
I ⊂ R with respect to some fixed monomial ordering using Buchberger’s
algorithm, a slight modification of the algorithm would actually compute a
set of generators for the module of syzygies Syz(g1, . . . , gs) as well as the
gi themselves. The main idea is that Buchberger’s S-polynomial criterion
for ideal Gröbner bases is precisely the statement that a set of generators
is a Gröbner basis if and only if every homogeneous syzygy on the leading
terms of the generators “lifts” to a syzygy on the generators, in the sense
described in the following theorem. The “lifting” is accomplished by the
division algorithm.

To prepare for the theorem, let S(gi, gj) be the S-polynomial of gi and
gj:

S(gi, gj) =
xγij

LT(gi)
· gi − xγij

LT(gj)
· gj ,

where xγij is the least common multiple of LM(gi) and LM(gj) (see (2.2)
of Chapter 1 of this book). Since G is a Gröbner basis, by Buchberger’s
Criterion from §3 of Chapter 1, the remainder of S(gi, gj) upon division by
G is 0, and the division algorithm gives an expression

S(gi, gj) =
s∑

k=1

aijkgk,

where aijk ∈ R, and LT(aijkgk) ≤ LT(S(gi, gj)) for all i, j, k.
Let aij ∈ Rs denote the column vector

aij = aij1e1 + aij2e2 + · · · + aijses =

⎛⎜⎜⎜⎝
aij1
aij2

...
aijs

⎞⎟⎟⎟⎠ ∈ Rs
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and define sij ∈ Rs by setting

(3.1) sij =
xγij

LT(gi)
ei − xγij

LT(gj)
ej − aij

in Rs. Then we have the following theorem of Schreyer from [Schre1].

(3.2) Theorem. Let G = {g1, . . . , gs} be a Gröbner basis of an ideal I in
R with respect to some fixed monomial order, and let M = Syz(g1, . . . , gs).
The collection {sij, 1 ≤ i, j ≤ s} from (3.1) generates M as an R-module.

Part of this statement is easy to verify from the definition of the sij .

Exercise 1. Prove that sij is an element of the syzygy module M for all
i, j.

The first two terms

xγij

LT(gi)
ei − xγij

LT(gj)
ej

in expression (3.1) for sij form a column vector which is a syzygy on the
leading terms of the gi (that is, an element of Syz(LT(g1), . . . , LT(gs))). The
“lifting” referred to above consists of adding the additional terms −aij in
(3.1) to produce a syzygy on the gi themselves (that is, an element of
Syz(g1, . . . , gs)).

A direct proof of this theorem can be obtained by a careful reconsid-
eration of the proof of Buchberger’s Criterion (see Theorem 6 of [CLO],
Chapter 2, §6). Schreyer’s proof, which is actually significantly simpler,
comes as a byproduct of the theory of Gröbner bases for modules, and it
establishes quite a bit more in the process. So we will present it here.

First, let us note that we can parallel in the module case the observations
made above. Let G = {g1, . . . , gs} be a Gröbner basis for any submodule
M ⊂ Rm with respect to some fixed monomial order >. Since G is a
Gröbner basis, by Theorem (2.9) now, the remainder of S(gi, gj) on division
by G is 0, and the division algorithm gives an expression

S(gi, gj) =
s∑

k=1

aijkgk,

where aijk ∈ R, and LT(aijkgk) ≤ LT(S(gi, gj)) for all i, j, k.
Write ε1, . . . , εs for the standard basis vectors in Rs. Let mij =

LCM(LT(gi), LT(gj)), and let aij ∈ Rs denote the column vector

aij = aij1ε1 + aij2ε2 + · · · + aijsεs ∈ Rs.
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For the pairs (i, j) such that mij �= 0, define sij ∈ Rs by setting

sij =
mij

LT(gi)
εi − mij

LT(gj)
εj − aij

in Rs, and let sij be zero otherwise. Since a Gröbner basis for a module
generates the module by Proposition (2.7), the following theorem includes
Theorem (3.2) as a special case. Hence, by proving this more general result
we will establish Theorem (3.2) as well.

(3.3) Theorem (Schreyer’s Theorem). Let G ⊂ Rm be a Gröbner basis
with respect to any monomial order > on Rm. The sij form a Gröbner basis
for the syzygy module M = Syz(g1, . . . , gs) with respect to a monomial or-
der >G on Rs defined as follows: xαεi >G xβεj if LT>(xαgi) > LT>(xβgj)
in Rm, or if LT>(xαgi) = LT>(xβgj) and i < j.

Proof. We leave it to the reader as Exercise 1 below to show that >G is a
monomial order on Rs. Since S(gi, gj) and S(gj , gi) differ only by a sign,
it suffices to consider the sij for i < j only. We claim first that if i < j,
then

(3.4) LT>G (sij) =
mij

LT(gi)
εi.

Since we take i < j, this term is larger than (mij/LT(gj))εj in the >G order.
It is also larger than any of the terms in aij , for the following reason. The
aijk are obtained via the division algorithm, dividing S = S(gi, gj) with
respect to G. Hence LT>(S) ≥ LT>(aij�g�) for all � = 1, . . . , s (in Rm).
However, by the definition of the S-vector,

LT>

(
mij

LT(gi)
gi

)
> LT>(S),

since the S-vector is guaranteed to produce a cancellation of leading terms.
Putting these two inequalities together establishes (3.4).

Now let f =
∑s

i=1 fiεi be any element of the syzygy module M , let
LT>G (fiεi) = miεi for some term mi appearing in fi. Further, let LT>G (f) =
mvεv for some v. With this v fixed, we set

s =
∑
u∈S

muεu,

where S = {u : muLT>(gu) = mvLT>(gv)}.
One can show without difficulty that s is an element of Syz({LT>(gu) :

u ∈ S}). By part c of Proposition (2.3) of this chapter, it follows that s is
an element of the submodule of Rs generated by the

σuw =
muw

LT>(gu)
εu − muw

LT>(gw)
εw,
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where u < w are elements of S. Then (3.4) implies that LTG(s) is divisible
by LTG(sij) for some i < j. So by definition the sij form a Gröbner basis
for M with respect to the >G order.

Exercise 2. Verify that the order >G introduced in the statement of the
theorem is a monomial order on Rm.

Theorem (3.3) gives the outline for an algorithm for computing
Syz(g1, . . . , gs) for any Gröbner basis G = {g1, . . . , gs} using the divi-
sion algorithm. Hence we have a solution of Problem (2.1) b in the special
case of computing syzygies for Gröbner bases. Using this, we will see how
to compute the module of syzygies on any set of generators {f1, . . . , ft} for
a submodule of Rm.

So suppose that we are given f1, . . . , ft ∈ Rm, and that we compute a
Gröbner basis G = {g1, . . . , gs} for M = 〈f1, . . . , ft〉 = 〈G〉. Let F =
(f1, . . . , ft) and G = (g1, . . . , gs) be the m × t and m × s matrices in
which the fi’s and gi’s are columns, respectively. Since the columns of F
and G generate the same module, there are a t × s matrix A and an s × t
matrix B, both with entries in R, such that G = FA and F = GB. The
matrix B can be computed by applying the division algorithm with respect
to G, expressing each fi in terms of the gj . The matrix A can be generated
as a byproduct of the computation of G. This is because each S-vector
remainder that is added to G in the basic Buchberger algorithm, Theorem
(2.11), comes with an expression in terms of the fi, computed by division
and substitution. However, the matrix A can also be computed in an ad
hoc way as in simple examples such as the following.

Suppose, for example, that m = 1, so that M is an ideal, say M =
〈f1, f2〉 in R = k[x, y], where

f1 = xy + x, f2 = y2 + 1.

Using the lex monomial order with x > y, the reduced Gröbner basis for
M consists of

g1 = x, g2 = y2 + 1.

Then it is easy to check that

f1 = (y + 1)g1

g1 = −(1/2)(y − 1)f1 + (1/2)xf2,

so that

(3.5) G = (g1, g2) = (f1, f2)
(−(y − 1)/2 0

x/2 1

)
= FA
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and

(3.6) F = (f1, f2) = (g1, g2)
(

y + 1 0
0 1

)
= GB.

If we express G in terms of F using the equation G = FA then substitute
F = GB on the right, we obtain an equation G = GBA. Similarly, F =
FAB. What we have done here is analogous to changing from one basis to
another in a vector space, then changing back to the first basis. However, in
the general R-module case, it is not necessarily true that AB and BA equal
identity matrices of the appropriate sizes. This is another manifestation of
the fact that a module need not have a basis over R. For instance, in the
example from (3.5) and (3.6) above, we have

AB =
(−(y2 − 1)/2 0

(xy + x)/2 1

)
,

and

BA =
(−(y2 − 1)/2 0

x/2 1

)
.

In addition to connecting F with G, the matrices A and B also connect
the syzygies on F and G in the following ways.

(3.7) Lemma.
a. Let s ∈ Rs (a column vector) be an element of Syz(g1, . . . , gs), then

the matrix product As is an element of Syz(f1, . . . , ft).
b. Similarly, if t ∈ Rt (also a column vector) is an element of

Syz(f1, . . . , ft), then Bt ∈ Rs is an element of Syz(g1, . . . , gs).
c. Each column of the matrix It − AB also defines an element of

Syz(f1, . . . , ft).

Proof. Take the matrix equation G = FA and multiply on the right
by the column vector s ∈ Syz(g1, . . . , gs). Since matrix multiplication is
associative, we get the equation

0 = Gs = FAs = F (As).

Hence As is an element of Syz(f1, . . . , ft). Part b is proved similarly, starting
from the equation F = GB. Finally, F = FAB implies

F (It − AB) = F − FAB = F − F = 0,

and part c follows immediately.

Our next result gives the promised solution to the problem of computing
syzygies for a general ordered t-tuple F = (f1, . . . , ft) of elements of Rm

(not necessarily a Gröbner basis).
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(3.8) Proposition. Let F = (f1, . . . , ft) be an ordered t-tuple of elements
of Rm, and let G = (g1, . . . , gs) be an ordered Gröbner basis for M = 〈F 〉
with respect to any monomial order in Rm. Let A and B be the matrices
introduced above, and let sij, 1 ≤ i, j,≤ s be the basis for Syz(g1, . . . , gs)
given by Theorem (3.3) or (3.2). Finally, let S1, . . . , St be the columns of
the t × t matrix It − AB. Then

Syz(f1, . . . , ft) = 〈Asij , S1, . . . , St〉.
Proof. 〈Asij , S1, . . . , St〉 is a submodule of Syz(f1, . . . , ft), so to prove
the proposition, we must show that every syzygy on F can be expressed
as an R-linear combination of the Asij and the Sk. To see this, let t be
any element of Syz(f1, . . . , ft). By part b of Lemma (3.7), Bt is an element
of Syz(g1, . . . , gs). Since the sij are a Gröbner basis for that module, and
hence a generating set for Syz(g1, . . . , gs), there are aij ∈ R such that

Bt =
∑
ij

aijsij.

But multiplying both sides by A on the left, this implies

ABt =
∑
ij

aijAsij,

so that

t = ((It − AB) + AB)t

= (It − AB)t +
∑
ij

aijAsij.

The first term on the right in the last equation is an R-linear combination
of the columns S1, . . . , St of (It−AB), hence t ∈ 〈Asij , S1, . . . , St〉. Since
this is true for all t, the proposition is proved.

Note that the hypothesis in Proposition (3.8) above that G is a Gröbner
basis is needed only to ensure that the gi generate and that the sij are
a basis for the module of syzygies. More generally, if we have any set of
generators for a module M , and a set of generators for the module of
syzygies of that set of generators, then we can find a generating set of
syzygies on any other generating set of M .

(3.9) Corollary. Let the notation be as above, but assume only that G =
(g1, . . . , gs) is a set of generators for M and that D is a matrix presenting
M , so the columns of D generate Syz(g1, . . . , gs). Then the block matrix

( AG It − AB )

presents M with respect to the generating set f1, . . . , ft.
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Proof. This follows immediately from the proof of Proposition (3.8)
above. We have also seen this result in part c of Exercise 31 in §1.

As an example of Proposition (3.8), we use the F, G, A, B from (3.5) and
(3.6) and proceed as follows. Since

S(g1, g2) = y2g1 − xg2 = −x = −g1,

by Theorem (3.3) we have that

s12 =
(

y2 + 1
−x

)
generates Syz(g1, g2). Multiplying by A we get

As12 =
(−(y − 1)/2 0

x/2 1

)(
y2 + 1
−x

)
=
(−(y3 − y2 + y − 1)/2

(xy2 − x)/2

)
.

Exercise 3. Verify directly that As12 gives a syzygy on (f1, f2).

Continuing the example, the columns of I2 − AB are

S1 =
(

(y2 + 1)/2
−(xy + x)/2

)
, S2 =

(
0
0

)
.

So by the proposition

Syz(f1, f2) = 〈As12, S1〉.
This example has another instructive feature as shown in the following
exercise.

Exercise 4. Show that As12 above is actually a multiple of S1 by a non-
constant element of R. Deduce that S1 alone generates Syz(f1, f2), yet As12
does not. Compare to Exercise 12.

Hence, the Asij are alone not sufficient to generate the syzygies on F in
some cases.

Let us now return to the situation where M is a submodule of Rm and
f1, . . . , ft and g1, . . . , gs are different sets of generators of M . At first
glance, Corollary (3.9) seems a little asymmetric in that it privileges the
g’s over the f ’s (in Proposition (3.8), this issue does not arise, because
it seems sensible to privilege a Gröbner basis over the set of generators
from which it was computed). Given presentations for Syz(f1, . . . , ft) and
Syz(g1, . . . , gs), Exercise 31 of §1 provides a block matrix which presents
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M with respect the combined set of generators f1, . . . , ft, g1, . . . , gs (and
which reduces to the matrices F and G separately). It is worth pausing,
and phrasing a result that links the set of syzygies on any two generating
sets of the same module M .

(3.10) Proposition. Suppose that f1, . . . , ft and g1, . . . , gs are ordered
sets of elements of Rm which generate the same module M . Then, there
are free R-modules L and L′ such that

Syz(f1, . . . , ft) ⊕ L ∼= Syz(g1, . . . , gs) ⊕ L′.

Proof. We claim that N = Syz(f1, . . . , ft, g1, . . . , gs) is a direct sum of
a module isomorphic to Syz(f1, . . . , ft) and a free module. In fact, N is the
set of vectors (c1, . . . , ct, d1, . . . , ds)T ∈ Rt+s such that

c1f1 + · · · + ctft + d1g1 + · · · + dsgs = 0.

Now consider the submodule K ⊂ N obtained by taking those elements
with all di = 0. Note that K is clearly isomorphic to Syz(f1, . . . , ft). More-
over, since the fj generate M , we can write gi =

∑
aijfj . Then, each of

the t vectors nk = (ak1, . . . , akt, 0, . . . , 0,−1, 0, . . . , 0)T , with all terms in
the (t + j)th place, 0 < j ≤ s, equal to 0 except the (t + k)th term which
is −1, belongs to N . Moreover, the nk, 1 ≤ k ≤ t, are clearly linearly
independent, so they generate a free submodule of N , which we will call
L. Clearly K ∩ L = ∅. To see that N = K + L, suppose that we have an
element (c1, . . . , ct, d1, . . . , ds)T ∈ N . Then

0 = c1f1 + · · · + ctft + d1g1 + · · · + dsgs

= c1f1 + · · · + ctft + d1

∑
aijfj + · · · + ds

∑
asjfj

=
∑

i

(ci +
∑

j

djaji)fi,

so that

(c1, . . . , ct, d1, . . . , ds)T +
∑

djnj

= (c1 +
∑

j

djaj1, . . . , ct +
∑

j

djajt, 0, . . . , 0)T ,

which belongs to K. This proves the claim. Similarly, we show that N is a
direct sum of Syz(g1, . . . , gs) and the result follows.

Modules which become isomorphic after addition of free modules are
often called equivalent . The proposition shows that any two modules of
syzygies on any different sets of generators of the same module are equiv-
alent. We leave it as an exercise to show that any modules of syzygies on
equivalent modules are equivalent.
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As an application, we will develop a syzygy-based algorithm for com-
puting ideal and submodule intersections. For ideals, this method is more
efficient than the elimination-based algorithm given in Chapter 1, §3, Ex-
ercise 11. We start with the ideal case. The following statement gives
a connection between the intersection I ∩ J and syzygies on a certain
collection of elements of R2.

(3.11) Proposition. Let I = 〈f1, . . . , ft〉 and J = 〈g1, . . . , gs〉 be ideals
in R. A polynomial h0 ∈ R is an element of I ∩ J if and only if h0 appears
as the first component in a syzygy

(h0, h1, . . . , ht, ht+1, . . . , ht+s)T ∈ Rs+t+1

in the module

S = Syz(v0, v1, . . . , vt, vt+1, . . . , vs+t)

where

v0 =
(

1
1

)
, v1 =

(
f1
0

)
, . . . , vt =

(
ft

0

)
,

vt+1 =
(

0
g1

)
, . . . , vs+t =

(
0
gs

)
in R2.

Proof. Suppose that

0 = h0v0 + h1v1 + · · · + htvt + ht+1vt+1 + · · · + hs+tvs+t.

From the first components, we obtain an equation

0 = h0 + h1f1 + · · · + htft + 0 + · · · + 0,

so h0 ∈ 〈f1, . . . , ft〉 = I. Similarly from the second components, h0 ∈
〈g1, . . . , gs〉 = J . Hence h0 ∈ I ∩ J .

On the other hand, in Exercise 7 below, you will show that every h0 ∈ I∩
J appears as the first component in some syzygy on the v0, . . . , vs+t.

Exercise 5. Show that Proposition (3.11) extends to submodules M, N ⊂
Rm in the following way. Say M = 〈f1, . . . , ft〉, N = 〈g1, . . . , gs〉 where
now the fi, gj ∈ Rm. In R2m, consider the vectors v01, . . . , v0m, where v0i

is formed by concatenating two copies of the standard basis vector ei ∈ Rm

to make a vector in R2m. Then take v1, . . . , vt, where vi is formed by
appending m zeros after the components of fi, and vt+1, . . . , vt+s, where
vt+j is formed by appending m zeroes before the components of gj . Show
that the statement of Proposition (3.11) goes over to this setting in the
following way: (h01, . . . , h0m)T ∈ M ∩ N if and only if the h01, . . . , h0m

appear as the first m components in a syzygy in the module
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Syz(v01, . . . , v0m, v1, . . . , vt, vt+1, . . . , vs+t)

in Rn+t+s.

Exercise 6.
a. Using Propositions (3.8) and (3.11) and the previous exercise, develop

an algorithm for computing a set of generators for M ∩ N .
b. In the ideal case (m = 1), show that if a POT extension of a monomial

order > on R is used and G is a Gröbner basis for the syzygy module S
from Proposition (3.11), then the first components of the vectors in G
give a Gröbner basis for I ∩ J with respect to >.

Macaulay 2 has a built-in command syz for computing the module of
syzygies on the columns of a matrix using the method developed here. For
instance, with the matrix

M =
(

a2 + b2 a3 − 2bcd a − b
c2 − d2 b3 + acd c + d

)
,

from the examples in §2, we could use: syz M to compute syzygies. Note:
this produces a set of generators for the syzygies on the columns of the
original matrix M , not the Gröbner basis for the module they generate.
Try it! Your output should be:

i7 : syz M

o7 = {2} | -ab3+b4+a3c+a3d-a2cd+abcd-2bc2d-2bcd2 |
{3} | -a2c-b2c+ac2-bc2-a2d-b2d-ad2+bd2 |
{1} | a2b3+b5-a3c2+a3cd+ab2cd+2bc3d+a3d2-2bcd3 |

3 1
o7 : Matrix R <--- R

One can also use Singular (or CoCoA or CALI) to compute modules of
syzygies. To do this in Singular define R and M as in Exercise 9 of §2, we
enter syz(M); at the prompt >. Depending on how wide your screen size is
set, your output will be:

>syz(M);
_[1]=a2b3*gen(3)+b5*gen(3)+a3c2*gen(3)+a3cd*gen(3)+ab2cd
*gen(3)+2bc3d*gen(3)+a3d2*gen(3)-2bcd3*gen(3)-ab3*gen(1)
+b4*gen(1)+a3c*gen(1)+a3d*gen(1)-a2cd*gen(1)+abcd*gen(1)
-2bc2d*gen(1)-2bcd2*gen(1)-a2c*gen(2)-b2c*gen(2)+ac2*gen
(2)-bc2*gen(2)-a2d*gen(2)-b2d*gen(2)-ad2*gen(2)+bd2*gen(
2)

Note that Singular uses the notation gen(1), gen(2), . . . to refer to
the module elements e1, e2, . . .. There are a range of options for formatting
output. To get output in a format closer to that given by Macaulay 2 above,
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change the ordering on the module to POT, upward. That is, define the
ring R using the command

ring R = 0, (a, b, c, d), (c, dp);

Try it.

ADDITIONAL EXERCISES FOR §3

Exercise 7. Complete the proof of Proposition (3.11) by showing that
every element of the intersection I ∩ J appears as the first component h0
in some syzygy in

S = Syz(v0, v1, . . . , vt, vt+1, . . . , vs+t).

Exercise 8. Let I = 〈F 〉 = 〈xz − y, y2 + z, yz + 2x〉 in k[x, y, z].
a. Find the monic reduced lex Gröbner basis G = (g1, . . . , gs) for I and

the “change of basis” matrices A,B such that G = FA, F = GB.
b. Find a set of generators for Syz(G) using Theorem (3.3).
c. Compute a set of generators for Syz(F ) using Proposition (3.8).

Exercise 9. Let (m1, . . . , mt) be any ordered t-tuple of elements of Rm,
and let S = Syz(m1, . . . , mt) ⊂ Rt. Show that for any 1 ≤ s ≤ t, the
projection of S onto the first (that is, the top) s components (that is, the
collection N of (a1, . . . , as) ∈ Rs such that a1, . . . , as appear as the first
s elements in some element of S) forms a submodule of Rs. Hint: N is not
the same as Syz(m1, . . . , ms).

Exercise 10. In this exercise, you use syzygies to compute the ideal quo-
tient I :J . Recall from part b of Exercise 13 from Chapter 1, §1 of this book
that if I ∩ 〈h〉 = 〈g1, . . . , gt〉, then I : 〈h〉 = 〈g1/h, . . . , gt/h〉.
a. Using Proposition (3.11) (not elimination), give an algorithm for

computing I : 〈h〉. Explain how the gi/h can be computed without
factoring .

b. Now generalize part a to compute I :J for any ideals I, J . Hint: If J =
〈h1, . . . , hs〉, then by [CLO], Chapter 4, §4, Proposition 10,

I :J =
s⋂

j=1

(I : 〈hj〉).

Exercise 11. Show that a homogeneous syzygy (c1x
α−α1 , . . . , csx

α−αs)T

on a collection of monomials xα1 , . . . , xαs in R can be written as a sum
of homogeneous syzygies between pairs of the xαi . (See the proof of
Proposition (2.3) part c.)
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Exercise 12. If f1, f2 ∈ R are nonzero, use unique factorization to show
that Syz(f1, f2) is generated by a single element. Compare with Exercise 4.

Exercise 13.
a. Show that the notion of equivalence defined after Proposition (3.10) is

an equivalence relation on R-modules. (That is, show that it is reflexive,
symmetric and transitive.)

b. Suppose that M and M ′ are two R-modules which are equivalent in the
sense described after Proposition (3.10). That is, there are free modules
L and L′ such that M ⊕L is isomorphic to M ′ ⊕L′. Show that any two
modules of syzygies on M and M ′ are equivalent.

Exercise 14. Re-do Exercise 27, parts a and b, from §1 using Proposi-
tion (3.8). In fact, write out and prove Proposition (3.8) in the special
case that F = (f1, . . . , ft) is an ordered set of elements of R such that
1 ∈ 〈f1, . . . , ft〉 (in which case the Gröbner basis G consists of the single
element {1}).

Exercise 15. This exercise will show that one Gröbner basis computation
can accomplish multiple tasks simultaneously. Let R be a polynomial ring
with a monomial order >, and for any integer m ≥ 1, let >m denote the
POT extension of > to Rm. Given f1, . . . , fs ∈ R, our goal is to compute
the following:
• A Gröbner basis G with respect to > for the ideal 〈f1, . . . , fs〉,
• For each g ∈ G, polynomials h1, . . . , hs such that g =

∑s
i=1 hifi, and

• A Gröbner basis G′ with respect to >s for the syzygy module
Syz(f1, . . . , fs).

To do this, we will work in the free module of Rs+1 with standard basis
e0, e1, . . . , es. Then consider the submodule M ⊂ Rs+1 generated by

mi = fie0 + ei = (fi, 0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , s.

In other words, mi has fi in the 0th component, 1 in the ith component,
and 0s elsewhere. Let G′′ be a reduced Gröbner basis of M with respect to
>s+1.

a. Prove that M ∩ ({0} × Rs) = {0} × Syz(f1, . . . , fs).
b. Prove that the set G = {g ∈ R | g �= 0 and there are h1, . . . , hs ∈ R

with (g, h1, . . . , hs) ∈ G′′} is a reduced Gröbner basis with respect to
> for the ideal 〈f1, . . . , fs〉.

c. If g ∈ G and (g, h1, . . . , hs) ∈ G′′ as in part b, then show that g =
h1f1 + · · · + hsfs.
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d. Prove that the set G′ defined by {0}×G′ = G′′∩ ({0}×Rs) is a reduced
Gröbner basis with respect to >s for the syzygy module Syz(f1, . . . , fs).

This exercise is based on an observation of T. Sederberg.

§4 Modules over Local Rings

The last two sections have dealt with modules over polynomial rings. In
this section, we consider modules over local rings. It turns out that the
adaptation of Gröbner basis techniques to local rings outlined in Chapter 4,
extends without difficulty to the case of modules over local rings. Moreover,
as we shall see, modules over local rings are simpler in many ways than
modules over a polynomial ring.

As in the preceding sections, R will denote the polynomial ring
k[x1, . . . , xn] and we shall let Q denote any one of the local rings obtained
from R considered in Chapter 4. More precisely, corresponding to any point
p = (p1, . . . , pn) of affine n-space kn, we obtain the localization Rp of R,

Rp = {f/g : f, g ∈ R and g(p) �= 0}
= {rational functions defined at p}.

If k = R or C, we can also consider the ring of convergent power series at
p, denoted k{x1 − p1, . . . , xn − pn}, and for general k, we can study the
ring of formal power series at p, denoted

k[[x1 − p1, . . . , xn − pn]].

The notation Q will refer to any of these. By the local ring at the point
p, we will mean Rp. Whenever convenient, we take the point p to be the
origin 0 ∈ kn in which case Rp = R0 = k[x1, . . . , xn]〈x1,...,xn〉.

In Chapter 4, we restricted ourselves to ideals in Q generated by polyno-
mials. We make the analogous restriction in the case of modules. That is,
we shall only consider Q-modules which are either submodules of Qs which
can be generated by polynomials (that is by vectors all of whose entries
are polynomials) or modules that have a presentation matrix all of whose
entries are in R.

Exercise 1. If Q = k[x1, . . . , xn]〈x1,...,xn〉, show that any submodule of
Qm can be generated by generators which are finite k-linear combinations
of monomials.

Given any R-module M and any point p ∈ kn, there is a natural Rp-
module, denoted Mp and called the localization of M at p, obtained by
allowing the elements of M to be multiplied by elements of Rp. If M is an
ideal I in R, then Mp is just the ideal IRp. If M ⊂ Rs is generated by
vectors f1, . . . , ft, then Mp is generated by f1, . . . , ft, where the entries in
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the vectors fi are considered as rational functions and one allows multipli-
cation by elements of Rp. If M is presented by the m × n matrix A, then
Mp is also presented by A. We leave the proof as an exercise.

Exercise 2. Let M be an R-module, and A a presentation matrix for M .
If p ∈ kn is any point, show that A is a presentation matrix for the Rp-
module Mp. Hint: The columns of A continue to be syzygies over Rp, so
one only needs to observe that any Rp-linear relation on the generators is
a multiple of an R-linear relation on the generators.

It is worth noting, however, that even though the presentation matrix
A of M is also a presentation matrix for Mp, the matrix A may simplify
much more drastically over Rp than over R. For example, let R = k[x, y]
and consider the matrix

A =

⎛⎝ x x2

1 + y y2

xy 0

⎞⎠ .

This does not simplify substantially over R under the rules of Exercise 29
from §1. However, over R0, we can divide the second row by 1 + y, which
is a unit in R0, and use the resulting 1 in the first column, second row, to
clear out all other elements in the first column. We obtain the matrix on
the left which reduces further as shown⎛⎜⎜⎝

0 x2 − xy2

1+y

1 y2

1+y

0 −xy3

1+y

⎞⎟⎟⎠ −→
(

x2 − xy2

1+y
−xy3

1+y

)
−→

(
x2 − xy2

1+y−xy3

)

−→
(

x2 + yx2 − xy2

−xy3

)
.

Thus, the matrix A presents an R0-module isomorphic to the ideal 〈y3, x +
xy − y2〉.

Exercise 3. Let A be as above.
a. Consider the R-module M presented by the matrix A. Prove that M is

isomorphic to the ideal 〈y3, yx2,−y2 + x + xy〉.
b. Show that in R0 the ideal 〈y3, yx2,−y2 + x + xy〉 is equal to the ideal
〈y3, x + xy − y2〉.

To extend the algorithmic methods outlined in Chapter 4 to submod-
ules of Qm, one first extends local orders on Q to orders on Qm. Just as
for well-orderings, there are many ways to extend a given local order. In
particular, given a local order on Q one has both TOP and POT exten-
sions to Qm. The local division algorithm (Theorem (3.10) of Chapter 4)
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extends to elements of k[x1, . . . , xn]n〈x1,...,xn〉 in exactly the same way as
the ordinary division algorithm extends to k[x1, . . . , xn]n. One has to give
up the determinate remainder, and the proof of termination is delicate, but
exactly the same as the proof of the local division algorithm. One defines
Gröbner (or standard) bases, and S-vectors exactly as in the polynomial
case and checks that Buchberger’s criterion continues to hold: that is, a set
{f1, . . . , ft} of vectors in Qm is a standard basis exactly when each S-vector
on any pair fi, fj ∈ Qm has remainder 0 when divided by {f1, . . . , ft}, the
division being done using the extended local division algorithm. This imme-
diately provides an algorithm for extending a set of polynomial vectors in
Qm to a standard basis of polynomial vectors (provided only that one can
show termination after a finite number of steps, which follows exactly as
in the case of Mora’s algorithm for elements of Q). This algorithm is often
called Mora’s algorithm for modules, and is implemented on the computer
algebra programs CALI and Singular.

Once we have a method for getting standard bases, we immediately get
an algorithm for determining whether an element belongs to a submodule
of Qm generated by polynomial vectors. Likewise, everything we said about
syzygies in the last section continues to hold for modules over local rings.
In particular, a set of generators {f1, . . . , fs} for a submodule of Qm is a
standard basis precisely when every syzygy on the leading terms of the fi
lifts to a syzygy on the fi, Schreyer’s Theorem for computation of syzygies
given a standard basis carries over word for word, and the analogues of
Proposition (3.8) and Corollary (3.9) continue to hold without change.
Thus, we can compute syzygies on any set of polynomial vectors in Qm.

In the rest of this section, we shall detail a number of ways in which mod-
ules over local rings are different, and better behaved, than modules over
polynomial rings. This is important, because one can often establish facts
about modules over polynomial rings, by establishing the corresponding
facts for their localizations.

Minimal generating sets
Given a finitely generated module M over a ring, define the minimal number
of generators of the module M , often denoted µ(M), to be the smallest
number of elements in any generating set of M . If the module M is free,
one can show that any basis has µ(M) elements (in particular, all bases
have the same number of elements). However, if M is not free (or if you
don’t know whether it is free), it can be quite difficult to compute µ(M).
The reason is that an arbitrary set of generators for M will not, in general,
contain a subset of µ(M) elements that generate. In fact, one can easily
find examples of sets of generators which are unshortenable in the sense
that no proper subset of them generates.
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Exercise 4. Let R be the ring k[x, y] and let M be the ideal generated by
{xy(y − 1), xy(x − 1), x(y − 1)(x − 1)}.
a. Show that this set is unshortenable. Hint: The least inspired way of

doing this is to compute Gröbner bases, which can be done by hand.
A more elegant way is to argue geometrically. Each of the generators
defines a union of three lines and the variety corresponding to M is the
intersection of the three sets of three lines.

b. Show that M = 〈xy2 − x2y, x2 − x〉.

We should also mention that Exercise 10e of §1 gives an example of a
free module with an unshortenable set of µ(M) + 1 generators.

For modules M over a local ring Q, however, this problem does not arise.
Unshortenable sets of generators are minimal, and any set of generators
contains an unshortenable set.

Exercise 5. Let R = k[x, y] and M be as in Exercise 4. Let M0 be the
ideal in R0 obtained by localizing at the origin.
a. Since {xy(y − 1), xy(x − 1), x(y − 1)(x − 1)} generates M in R, it

generates M0 in R0. Show that this set of generators is shortenable.
What is the shortest unshortenable subset of it that generates M0?

b. Answer the same questions for the set 〈xy2 − x2y, x2 − x〉.
c. With the notation of Exercise 10 of §1, let N be the R-module generated

by {h1, h2, h3} ⊂ R3 and N0 ⊂ (R0)3 the R0-module they generate.
Find an unshortenable subset of {h1, h2, h3} that generates N0.

Moreover, it turns out to be easy to compute µ(M) when M is a module
over a local ring Q. The reason is the following extremely simple, and ex-
tremely useful, result and its corollaries which hold for all finitely-generated
modules over a local ring.

(4.1) Lemma (Nakayama’s Lemma). Let Q be a local ring with max-
imal ideal m, and let M be a finitely generated Q-module. If mM = M ,
then M = 0.

Proof. Suppose that M �= 0, and let f1, . . . , fs be a minimal set of
generators of M . Then fs ∈ mM . Thus, fs = a1f1 + · · · + asfs for some
a1, . . . , as ∈ m. Hence,

(1 − as)fs = a1f1 + · · · + as−1fs−1.

But 1 − as is a unit because as ∈ m, so we have that fs is a Q-linear com-
bination of f1, . . . , fs−1. This contradicts the minimality of the generating
set.

As a corollary, we obtain the following (equivalent) statement.
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(4.2) Corollary. Let Q be a local ring with maximal ideal m, let M be
a finitely generated Q-module, and let N be a submodule of M . If M =
mM + N , then M = N .

Proof. Note that m(M/N) = (mM + N)/N . Now apply Nakayama’s
lemma to M/N .

Recall from Exercise 23 of §1 of this chapter that if R is any ring, I
any ideal of R, and M an R-module, then M/IM is an R/I-module. If, in
addition, I is a maximal ideal, then R/I is a field, so M/IM is a vector
space over R/I (any module over a field k is a k-vector space). If M is
finitely generated, then M/IM is finite-dimensional. In fact, if f1, . . . , fs

generate M as an R-module, then the residue classes [f1], . . . , [fs] in
M/IM span M/IM as a vector space. If R is a local ring Q with maxi-
mal ideal m, then the converse is true: if [f1], . . . , [fs] span M/mM , then
M = 〈f1, . . . , fs〉+ mM and Corollary (4.2) to Nakayama’s lemma implies
that M = 〈f1, . . . , fs〉. In fact, we can say more.

(4.3) Proposition. Let Q, m be a local ring, k = Q/m its residue field
(the underlying field of constants), and M any finitely generated Q-module.
a. f1, . . . , fs is a minimal generating set of M if and only if the cosets

[f1], . . . , [fs] form a basis of the k-vector space M/mM .
b. Any generating set of M contains a minimal generating set. Any

unshortenable set of generators of M is a minimal set of generators.
c. One can extend the set f1, . . . , ft to a minimal generating set of M , if

and only if the cosets [f1], . . . , [ft] are linearly independent over k.

Proof. The first statement follows from the discussion preceding the
proposition. The second two statements follow as in linear algebra and
are left as exercises.

An example may make this clearer. Suppose that Q = k[[x, y]] and let
M = 〈f1, f2〉 ⊂ k[[x, y]]2 be the Q-module generated by

f1 =
(

x2 + y2 + xy
x3

)
, f2 =

(
x

y2 + x5

)
.

Then, mM = 〈x, y〉M is generated by xf1, yf1, xf2, yf2. Anything in M is of
the form p(x, y)f1+q(x, y)f2 where p, q are formal power series. Since we can
always write p(x, y) = p(0, 0)+xp1(x, y)+yp2(x, y) for some (non-unique)
choice of power series p1, p2 and, similarly, q(x, y) = q(0, 0) + xq1(x, y) +
yq2(x, y) we see that p(x, y)f1 +q(x, y)f2 is congruent to p(0, 0)f1 +q(0, 0)f2
modulo 〈xf1, yf1, xf2, yf2〉. The latter is a k-linear combination of [f1] and
[f2]. (The reader can also check that [f1] and [f2] are k-linearly independent.)

If M is a module over a local ring, then Proposition (4.3) gives a method
to determine µ(M) in principle. One might ask, however, if there is a way
to determine µ(M) from a presentation of M . Can one, perhaps, find a
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presentation matrix of M/mM . There is a very satisfying answer to this.
First we need a little lemma, which applies to any ring.

(4.4) Lemma. Let P be any ring (e.g. R, Q, R/J, . . .), let I be an ideal
in P , let M be any finitely generated P -module, and let A be a presentation
matrix for M . If we let A denote the matrix obtained from A by interpreting
each entry in A as its residue class modulo I, then A presents M/IM .

Proof. To say an m × s matrix A presents M is to say that there are
generators f1, . . . , fm of M and that if a1f1 + · · · + amfm = 0 with
a1, . . . , am ∈ P is any relation, then the column vector (a1, . . . , am)T

is a P -linear combination of the columns of M . It is clear that the
images [f1], . . . , [fm] generate M/IM . So we need only show that the
columns of A span the set of all syzygies on the [fi]. So, suppose that
[r1][f1] + · · ·+ [rm][fm] = 0 in P/I (here ri ∈ P and [ri] is the coset ri + I
it represents). Then r1f1 + · · · + rmfm ∈ IM . Thus,

r1f1 + · · · + rmfm = b1f1 + · · · + bmfm

for some bi ∈ I, whence

(r1 − b1)f1 + · · · + (rm − bm)fm = 0.

By assumption, (r1 − b1, . . . , rm − bm)T is a P -linear combination of the
columns of A. Hence ([r1− b1], . . . , [rm− bm])T is a P/I linear combination
of the columns of A. But [ri−bi] = [ri] because bi ∈ I, for all i = 1, . . . , m.
Thus the columns of A generate all syzygies on [f1], . . . , [fm], and this
completes the proof.

And, now, for the result we alluded to above.

(4.5) Proposition. Let M be an R-module, R = k[x1, . . . , xn], and sup-
pose that A is a matrix presenting M . If p ∈ kn is any point in affine
n-space, let A(p) be the matrix obtained by evaluating all the entries of
A (which are polynomials aij ∈ R) at p. Then A(p) presents Mp/mpMp,
where mp is the unique maximal ideal 〈x1 − p1, . . . , xn − pn〉 in Rp.

Proof. Write A = (aij). Since A presents M , it also presents the Rp-
module Mp by Exercise 2 above. By Lemma (4.4), [A] = (aij mod mp)
presents Mp/mpMp. But aij ≡ aij(p) mod mp (exercise!).

(4.6) Corollary. Let M and A be as above. For any p ∈ kn, µ(Mp) =
m − rk(A(p)), where rk(A(p)) denotes the usual rank of a matrix over a
field k (that is, the number of linearly independent rows or columns).

Proof. By Proposition (4.3), µ(Mp) = dim Mp/mpMp. Suppose that A
is an m × s matrix. We know that A(p) presents Mp/mpMp. Then, by
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Proposition (1.10), Mp/mpMp is isomorphic to km/A(p)ks (where A(p)ks

is the image of A(p)), and the dimension of the latter is m− rk(A(p)).

Minimal presentations
As a result of the discussion above, we have have a privileged set of pre-
sentation matrices of any finitely generated module M over a local ring Q.
Namely, we choose a minimal set of generators of M . The set of syzygies
on this set is again a module over the local ring Q, so we choose a minimal
generating set for this set of syzygies. As usual, we arrange the syzygies as
columns to obtain a matrix, which we call a minimal presentation matrix
of M . We claim that the dimensions of this matrix do not depend on the
choice of minimal generating set of M , and that any minimal presentation
matrix can be obtained from another by a change of generators.

(4.7) Proposition.
a. Minimal presentation matrices for finitely generated modules M over

a local ring Q are essentially unique in the following sense. Let F =
(f1, . . . , fm) and G = (g1, . . . , gm) be two minimal generating sets for
M . Let A be an m × s minimal presentation matrix for M with respect
to F . Similarly, let B be an m × t minimal presentation matrix for M
with respect to G. Then s = t and B = CAD, where C is the m × m
change of basis matrix satisfying F = GC, and D is an invertible s × s
matrix with entries in Q.

b. If a presentation matrix A for M is a minimal presentation matrix then
all entries of A belong to the maximal ideal of Q.

Proof. To prove part a, first note that we have F = GC and G = FC ′

for some m×m matrices with entries in Q. By Proposition (4.3), reducing
mod m, the matrices C and C ′ are invertible m × m matrices over k. By
Corollary (3.9) of this chapter, the columns of CA are in T = Syz(G),
and by the preceding remarks, the cosets of those columns in T/mT must
be linearly independent over k. Hence, we must have s ≤ t. Similarly, the
columns of C ′B are in S = Syz(F ), and the cosets of those columns in
S/mS must be linearly independent over k. Hence, t ≤ s. It follows that
s = t, so that by Proposition (4.3) the columns of CA are a minimal
generating set for Syz(G). Hence, B = CAD for some invertible s × s
matrix D.

For part b, we claim that no entry of a minimal presentation matrix
A can be a unit of Q. Indeed, if the i, j entry were a unit, then fi could
be expressed in terms of the other fk, contradicting the assertion that
{f1, . . . , fm} is minimal.

If we are given an explicit set of generators for a submodule M of Qm,
then the last assertion of the lemma provides an algorithm for computing
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the minimal presentation of M . One prunes the given set of generators so
that it is minimal, computes a basis of the module of syzygies on the chosen
set, and discards any syzygies which involve units.

For example, the minimal presentation matrix of the ideal 〈x, y, z〉 ⊂
k[[x, y, z]] is the matrix with Koszul relations as columns

A =

⎛⎝ y z 0
−x 0 z
0 −x −y

⎞⎠
We have seen that free modules are the simplest modules. However, it is

sometimes difficult to actually determine whether a given module is free.
Given a presentation matrix of a module over a local ring, there is a criterion
which allows one to determine whether or not the module is free. To do
this, we introduce a sequence of ideals which are defined in terms of the
presentation matrix for a module, but which turn out to be independent of
the presentation.

Let M be a finitely generated R-module (R any ring) and let A be a
presentation matrix for M . Then the ideal of ith minors Ii(A) is the ideal
generated by the ith minors of A (that is, by the determinants of i × i
submatrices of A). Here, we define the 0th minor of A to be 1 (so that
I0(A) = R). More generally, if i < 0, we define Ii(A) = R. If i exceeds the
number of rows or number of columns of A, we define the ith minor to be
0, so that Ii(A) = 0 for sufficiently large i. Although defined in terms of
a presentation matrix A, the ideals will turn out to yield invariants of the
module M .

(4.8) Lemma. Let M be an R-module, R any ring. If A and B are ma-
trices that both present M , and that have the same number of rows, then
Ii(A) = Ii(B) for all i.

Proof. We leave the proof as an exercise—see Exercise 10.

The restriction that the presentation matrices have the same number of

rows is irksome, but necessary. The matrices A = ( 0 ) and B =
(

1
−1

)
clearly present the same module (namely, the free module R). Note that
I0(A) = R, I1(A) = 〈0〉, while I0(B) = R, I1(B) = R. It turns out to be
more convenient to change the indexing of the ideals of minors.

(4.9) Definition. If M is an R-module presented by A, the ith Fitting
invariant Fi(M) is defined by setting Fi(M) = Im−i(A) where A has m
rows.

Notice that with this shift in index, the Fitting invariants of the free R-
module R are Fi(R) = R for i > 0 and Fi(R) = 〈0〉 for i ≤ 0, no matter
whether we use the matrix A or B above to compute the Fi.
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(4.10) Proposition. The Fitting invariants of a module depend only on
the module, and not on the presentation. That is, isomorphic modules have
isomorphic Fitting invariants.

Proof. This is an immediate corollary of Lemma (4.8) and the definition
of the Fitting invariants. See Exercise 10.

For modules over local rings, it is easy to show that necessary and suffi-
cient conditions for a module to be free can be given in terms of the Fitting
invariants.

(4.11) Proposition. Let Q be a local ring, M a finitely generated Q-
module. Then M is free of rank r if and only if Fi(M) = 0 for i < r and
Fi(M) = R for i ≥ r.

Proof. By Proposition (4.10), Fi(M) does not depend on the choice of
matrix A presenting M . If M is free of rank r, then we can take A to
be the m × 1 matrix all of whose entries are 0. Computing Fi using this
presentation gives Fi(M) = 0 for i < r and Fi(M) = R for i ≥ r.

Conversely, suppose that A is some m × s matrix presenting M , and
suppose that I0(A) = I1(A) = · · · = Im−r(A) = R and Im−r+1(A) = 0.
Since R is local, this means that some (m−r)× (m−r) minor of A is a unit
(an R-linear combination of elements of a local ring which is a unit must
be such that one of the elements is a unit). This minor is a sum of terms,
each a product of m − r terms of R. Again because R is local, one such
summand must be a unit, and, hence, the m− r terms that multiply to give
it must be units. By exchanging columns and rows of A, we may assume
that a11, a22, . . . , am−r,m−r are units. By row and column operations we
may arrange that a11 = a22 = · · · = am−r,m−r = 1 and that all other
entries in the first m − r rows and first m − r columns are zero.

We claim that all other entries of A must be zero. To see this, suppose
that some other entry were nonzero, say f ∈ A. We could arrange that
am−r+1,m−r+1 = f by leaving the first m − r columns and rows fixed,
and exchanging other rows and columns as necessary. But then the (m −
r + 1) × (m − r + 1) minor obtained by taking the determinant of the
submatrix consisting of the first m − r + 1 rows and columns would equal
f and Im−r+1(A) could not equal zero.

Since A is m × s, we conclude that A presents a module with m genera-
tors, the first m− r of which are equal to zero and the last r of which only
satisfy the trivial relation. This says that M is free of rank r.

Projective modules
Besides free modules, there is another class of modules over any ring which
are almost as simple to deal with as free modules. These are the so-called
projective modules.
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(4.12) Definition. If R is any ring, an R-module M is said to be projective
if there is an R-module N such that M ⊕ N is a free module.

That is, a projective module is a summand of a free module. Such a
notion arises when dealing with syzygies, as shown by the following exercise
(compare Exercise 26 of §1).

Exercise 6.
a. Suppose that a module M has generators g1, . . . , gs so that the module

of syzygies Syz (g1, . . . , gs) is free. Then let f1, . . . , ft be another gener-
ating set of M . Use Proposition (3.10) of the preceding section to prove
that Syz (f1, . . . , ft) is projective.

b. Let {f1, . . . , ft} ⊂ R, R any ring, be a set of elements such that
〈f1, . . . , ft〉 = R. Show that Syz(f1, . . . , ft) is projective. Hint: Use
part a.

Every free module is clearly a projective module, but not conversely. In
Exercise 26a of §1, we point out that Z/6 = Z/3 ⊕ Z/2, but Z/3 is clearly
not a free (Z/6)-module.

Over a local ring, however, it is easy to show that any projective module
is free.

(4.13) Theorem. If Q is a local ring, and M a projective Q-module, then
M is free.

Proof. By assumption, there is a module N such that M ⊕ N ∼= Qs,
for some s. We may harmlessly view M as a submodule of Qs. Choose a
minimal generating set f1, . . . , fm of M . If we let m denote the maximal
ideal of Q, then f1+mM, . . . , fm+mM are a basis of M/mM Since M∩N =
{0}, f1 + mM + mN, . . . , fm + mM + mN are linearly independent in
M/(mM + mN) ⊂ (M + N)/m(M + N). Therefore, by the second part of
Proposition (4.3), f1, . . . , fm extend to a minimal generating set of M ⊕N ,
which is a basis, hence linearly independent over Q. But then, f1, . . . , fm
must be linearly independent over Q, and hence a basis of M . Thus, M is
free.

For a long time, it was an open question as to whether the above result
continues to hold for polynomial rings over a field. The assertion that such
is the case (that is, that every projective k[x1, . . . , xn]-module is free) is
known as Serre’s conjecture and was finally proved by Quillen and Suslin
independently in 1976 (see Theorem (1.8), and Exercises 26 and 27 of §1
for more information).

Since modules over local rings are so much simpler than modules over
a polynomial ring, one often tries to establish results about modules over
polynomial rings by establishing the result for the localizations of the mod-
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ules at all points. One then hopes that this will be enough to establish the
result for modules over the polynomial ring.

We give one example of this here, phrased to make its algorithmic
importance clear. We learned it from M. Artin’s Algebra [Art].

(4.14) Theorem. Let M be a finitely generated module over a polynomial
ring R = k[x1, . . . , xn] with k = C and let A be an m×s matrix presenting
M . Then M is a free module of rank r if and only if for every p ∈ C

n the
matrix A(p) has rank m − r (as above, A(p) is the matrix with entries in
C obtained by evaluating the polynomial entries of A at the point p).

Proof. We prove the easy direction, and make some comments about the
reverse direction. Suppose that A presents M . Choose a free basis e1, . . . , er

and let A′ be the r × 1 matrix of zeros presenting M with respect to this
basis. It follows from Exercise 33 of §1 that the matrices

D =
(

A 0
0 Ir

)
and D′ =

(
Im 0
0 A′

)
are such that rank(D(p)) = rank(D′(p)) for all p ∈ kn. (See Exercise 12)
However, D′ is a constant matrix of rank m. Thus, D(p) has rank m for
all p. It follows that A(p) has rank m − r for all p.

To get the converse, in the exercises we ask you to show that if
rank(A(q)) = m − r for all q in some neighborhood of p (we assumed
that k = C to make sense of this), then Mp is free of rank m− r. We then
ask you to show that if Mp is free of rank m − r for all p ∈ C

n, then M is
projective of rank m− r. The Quillen-Suslin theorem then implies that M
is free.

ADDITIONAL EXERCISES FOR §4

Exercise 7.
a. Let M be a finitely generated free R-module. Show that any two bases

of M have the same number of elements.
b. Let M be any finitely generated R-module. Show that the maximal

number of R-linearly independent elements in any generating set of M
is the same. (This number is called the rank of M .)

Exercise 8. Prove the second and third parts of Proposition (4.3).

Exercise 9. Suppose that f ∈ R = k[x1, . . . , xn] and p = (p1, . . . , pn) ∈
kn. Show that mp = 〈x1 − p1, . . . , xn − pn〉 is the maximal ideal of Rp.
Explain why f ≡ f(p) mod mp. (Compare the proof of Proposition (4.5).)
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Exercise 10. Show that the Fitting ideals of M are an ascending sequence
of ideals which do not depend on the choice of presentation matrix of M
as follows.
a. Given a finite generating set f1, . . . , fs for M , let A = (aij) be the

presentation matrix constructed by choosing one set of generators of
Syz(f1, . . . , fs) and let B = (bij) a presentation matrix constructed by
choosing another set of syzygies which generate. Show that the Fitting
ideals constructed from the matrix A are the same as the Fitting ideals
constructed from the matrix B. Hint: The hypotheses imply that the
columns of B can be expressed in terms of the columns of A. It is then
clear that I1(A) ⊃ I1(B). To see that I2(A) ⊃ I2(B) write out the two
by two minors of B in terms of the entries of A. Generalize to show that
Ii(A) ⊃ Ii(B). Expressing the columns of A in terms of those of B gives
the reverse containments.

b. Show that the Fitting ideals do not depend on the choice of generators
f1, . . . , fs of M . Hint: Compare the ideals generated by the i× i minors
of a presentation matrix with respect to the generators f1, . . . , fs and
those generated by the i× i minors of a presentation matrix with respect
to the generators f1, . . . , fs, f , where f is any element of M .

c. Show that 0 = F0(M) ⊂ F1(M) ⊂ · · · ⊂ Fs+1(M) = R where s is as
in part a.

Exercise 11. In the ring Z[
√−5], show that the ideal 〈2, 1 +

√−5〉 ⊂
Z[
√−5] is a projective Z[

√−5]-module which is not free.

Exercise 12. Show directly from Exercise 31 of §1 (that is, do not use
Exercise 33) that the matrices

D =
(

A 0
0 Ir

)
and D′ =

(
Im 0
0 A′

)
in the proof of Theorem (4.14) are such that rank(D(p)) = rank(D′(p)) for
all p ∈ kn. Hint: Use the result of Exercise 31, and compare the result of
multiplying the matrix therein on the left by(

Im B
0 Ir

)
and

(
Im 0
0 A′

)
.

Exercise 13. Suppose that k = C, that A presents M . Show that Mp

is free of rank r if and only if rank(A(q)) = m − r, for all q in some
neighborhood of p.

Exercise 14. Let R = k[x1, . . . , xn]. Show that M is a projective R-
module if and only if Mp is a projective (hence free) Rp-module for all
p ∈ kn.
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Exercise 15. Let R be a ring and let A = ( a1 · · · am ) be a
1 × m unimodular matrix (in this situation, unimodular means that R =
〈a1, . . . , am〉). Also note that ker A is the syzygy module Syz(a1, . . . , am).
Prove that ker A is a free R-module if and only if there exists an invertible
m × m matrix B with coefficients in R whose first row is A. Thus, the
statement that the kernel of any unimodular row is free is equivalent to the
statement that any unimodular row with coefficients in k[x1, . . . , xn] is the
first row of a square matrix with polynomial coefficients and determinant 1.



Chapter 6

Free Resolutions

In Chapter 5, we saw that to work with an R-module M , we needed not
just the generators f1, . . . , ft of M , but the relations they satisfy. Yet
the set of relations Syz (f1, . . . , ft) is an R-module in a natural way and,
hence, to understand it, we need not just its generators g1, . . . , gs, but the
set of relations Syz (g1, . . . , gs) on these generators, the so-called second
syzygies. The second syzygies are again an R-module and to understand it,
we again need a set of generators and relations, the third syzygies, and so
on. We obtain a sequence, called a resolution, of generators and relations of
successive syzygy modules of M . In this chapter, we will study resolutions
and the information they encode about M . Throughout this chapter, R
will denote the polynomial ring k[x1, . . . , xn] or one of its localizations.

§1 Presentations and Resolutions of Modules

Apart from the possible presence of nonzero elements in the module of
syzygies on a minimal set of generators, one of the important things that
distinguishes the theory of modules from the theory of vector spaces over
a field is that many properties of modules are frequently stated in terms of
homomorphisms and exact sequences. Although this is primarily cultural,
it is very common and very convenient. In this first section, we introduce
this language.

To begin with, we recall the definition of exact.

(1.1) Definition. Consider a sequence of R-modules and homomorphisms

· · · −→ Mi+1
ϕi+1−→ Mi

ϕi−→ Mi−1 −→ · · ·
a. We say the sequence is exact at Mi if im(ϕi+1) = ker(ϕi).
b. The entire sequence is said to be exact if it is exact at each Mi which

is not at the beginning or the end of the sequence.

247



248 Chapter 6. Free Resolutions

Many important properties of homomorphisms can be expressed by say-
ing that a certain sequence is exact. For example, we can phrase what it
means for an R-module homomorphism ϕ : M → N to be onto, injective,
or an isomorphism:

• ϕ : M → N is onto (or surjective) if and only if the sequence

M
ϕ→ N → 0

is exact, where N → 0 is the homomorphism sending every element of
N to 0. To prove this, recall that onto means im(ϕ) = N . Then the
sequence is exact at N if and only if im(ϕ) = ker(N → 0) = N , as
claimed.
• ϕ : M → N is one-to-one (or injective) if and only if the sequence

0 → M
ϕ→ N

is exact, where 0 → M is the homomorphism sending 0 to the additive
identity of M . This is equally easy to prove.
• ϕ : M → N is an isomorphism if and only if the sequence

0 → M
ϕ→ N → 0

is exact. This follows from the above since ϕ is an isomorphism if and
only if it is one-to-one and onto.

Exact sequences are ubiquitous. Given any R-module homomorphism or
any pair of modules, one a submodule of the other, we get an associated
exact sequence as follows.

(1.2) Proposition.
a. For any R-module homomorphism ϕ : M → N , we have an exact

sequence

0 → ker(ϕ) → M
ϕ→ N → coker(ϕ) → 0,

where ker(ϕ) → M is the inclusion mapping and N → coker(ϕ) =
N/im(ϕ) is the natural homomorphism onto the quotient module, as in
Exercise 12 from §1 of Chapter 5.

b. If Q ⊂ P is a submodule of an R-module P , then we have an exact
sequence

0 → Q → P
ν→ P/Q → 0,

where Q → P is the inclusion mapping, and ν is the natural
homomorphism onto the quotient module.

Proof. Exactness of the sequence in part a at ker(ϕ) follows from the
above bullets, and exactness at M is the definition of the kernel of a ho-
momorphism. Similarly, exactness at N comes from the definition of the



§1. Presentations and Resolutions of Modules 249

cokernel of a homomorphism (see Exercise 28 of Chapter 5, §1), and exact-
ness at coker(ϕ) follows from the above bullets. In the exercises, you will
show that part b follows from part a.

Choosing elements of an R-module M is also conveniently described in
terms of homomorphisms.

(1.3) Proposition. Let M be an R-module.
a. Choosing an element of M is equivalent to choosing a homomorphism

R → M .
b. Choosing t elements of M is equivalent to choosing a homomorphism

Rt → M .
c. Choosing a set of t generators of M is equivalent to choosing a homo-

morphism Rt → M which is onto (i.e., an exact sequence Rt → M →
0).

d. If M is free, choosing a basis with t elements is equivalent to choosing
an isomorphism Rt → M .

Proof. To see part a, note that the identity 1 is the distinguished element
of a ring R. Choosing an element f of a module M is the same as choosing
the R-module homomorphism ϕ : R → M which satisfies ϕ(1) = f . This
is true since ϕ(1) determines the values of ϕ on all g ∈ R:

ϕ(g) = ϕ(g · 1) = g · ϕ(1) = gf.

Thus, choosing t elements in M can be thought of as choosing t R-module
homomorphisms from R to M or, equivalently, as choosing an R-module
homomorphism from Rt to M . This proves part b. More explicitly, if we
think of Rt as the space of column vectors and denote the standard basis in
Rt by e1, e2, . . . , et, then choosing t elements f1, . . . , ft of M corresponds
to choosing the R-module homomorphism ϕ : Rt → M defined by set-
ting ϕ(ei) = fi, for all i = 1, . . . , t. The image of ϕ is the submodule
〈f1, . . . , ft〉 ⊂ M . Hence, choosing a set of t generators for M corresponds
to choosing an R-module homomorphism Rt → M which is onto. By our
previous discussion, this is the same as choosing an exact sequence

Rt → M → 0.

This establishes part c, and part d follows immediately.

In the exercises, we will see that we can also phrase what it means to
be projective in terms of homomorphisms and exact sequences. Even more
useful for our purposes, will be the interpretation of presentation matrices
in terms of this language. The following terminology will be useful.

(1.4) Definition. Let M be an R-module. A presentation for M is a set
of generators f1, . . . , ft, together with a set of generators for the syzygy
module Syz (f1, . . . , ft) of relations among f1, . . . , ft.
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One obtains a presentation matrix for a module M by arranging the gen-
erators of Syz (f1, . . . , ft) as columns—being given a presentation matrix
is essentially equivalent to being given a presentation of M . To reinter-
pret Definition (1.4) in terms of exact sequences, note that the generators
f1, . . . , ft give a surjective homomorphism ϕ : Rt → M by part c of
Proposition (1.3), which means an exact sequence

Rt ϕ→ M → 0.

The map ϕ sends (g1, . . . , gt) ∈ Rt to
∑t

i=1 gifi ∈ M . It follows that a
syzygy on f1, . . . , ft is an element of the kernel of ϕ, i.e.,

Syz (f1, . . . , ft) = ker(ϕ : Rt → M).

By part c of Proposition (1.3), choosing a set of generators for the syzygy
module corresponds to choosing a homomorphism ψ of Rs onto ker(ϕ) =
Syz (f1, . . . , ft). But ψ being onto is equivalent to im(ψ) = ker(ϕ), which
is just the condition for exactness at Rt in the sequence

(1.5) Rs ψ→ Rt ϕ→ M → 0.

This proves that a presentation of M is equivalent to an exact sequence of
the form (1.5). Also note that the matrix of ψ with respect to the standard
bases of Rs and Rt is a presentation matrix for M .

We next observe that every finitely generated R-module has a presenta-
tion.

(1.6) Proposition. Let M be a finitely generated R-module.
a. M has a presentation of the form given by (1.5).
b. M is a homomorphic image of a free R-module. In fact, if f1, . . . , ft is

a set of generators of M , then M ∼= Rt/S where S is the submodule of
Rt given by S = Syz(f1, . . . , ft). Alternatively, if we let the matrix A
represent ψ in (1.5), then ARs = im(ψ) and M ∼= Rt/ARs.

Proof. Let f1, . . . , ft be a finite generating set of M . Part a follows from
the fact noted in Chapter 5, §2 that every submodule of Rt, in particular
Syz (f1, . . . , ft) ⊂ Rt, is finitely generated. Hence we can choose a finite
generating set for the syzygy module, which gives the exact sequence (1.5)
as above.

Part b follows from part a and Proposition 1.10 of Chapter 5, §1.

Here is a simple example. Let I = 〈x2 − x, xy, y2 − y〉 in R = k[x, y].
In geometric terms, I is the ideal of the variety V = {(0, 0), (1, 0), (0, 1)}
in k2. We claim that I has a presentation given by the following exact
sequence:

(1.7) R2 ψ→ R3 ϕ→ I → 0,
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where ϕ is the homomorphism defined by the 1 × 3 matrix

A = ( x2 − x xy y2 − y )

and ψ is defined by the 3 × 2 matrix

B =

⎛⎝ y 0
−x + 1 y − 1

0 −x

⎞⎠ .

The following exercise gives one proof that (1.7) is a presentation of I.

Exercise 1. Let S denote Syz(x2 − x, xy, y2 − y).
a. Verify that the matrix product AB equals the 1× 2 zero matrix, and ex-

plain why this shows that im(ψ) (the module generated by the columns
of the matrix B) is contained in S.

b. To show that S is generated by the columns of B, we can use Schreyer’s
Theorem—Theorem (3.3) from Chapter 5 of this book. Check that the
generators for I form a lex Gröbner basis for I.

c. Compute the syzygies s12, s13, s23 obtained from the S-polynomials on
the generators of I. By Schreyer’s Theorem, they generate S.

d. Explain how we could obtain a different presentation

R3 ψ′
→ R3 ϕ→ I → 0

of I using this computation, and find an explicit 3 × 3 matrix
representation of the homomorphism ψ′.

e. How do the columns of B relate to the generators s12, s13, s23 of S?
Why does B have only two columns? Hint: Show that s13 ∈ 〈s12, s23〉
in R3.

We have seen that specifying any module requires knowing both gener-
ators and the relations between the generators. However, in presenting a
module M , we insisted only on having a set of generators for the module of
syzygies. Shouldn’t we have demanded a set of relations on the generators
of the syzygy module? These are the so-called second syzygies.

For example, in the presentation from part d of Exercise 1, there is a
relation between the generators sij of Syz(x2 − x, xy, y2 − y), namely

(1.8) (y − 1)s12 − s13 + xs23 = 0,

so (y − 1,−1, x)T ∈ R3 would be a second syzygy.
Likewise, we would like to know not just a generating set for the second

syzygies, but the relations among those generators (the third syzygies), and
so on. As you might imagine, the connection between a module, its first
syzygies, its second syzygies, and so forth can also be phrased in terms of
an exact sequence of modules and homomorphisms. The idea is simple—we
just iterate the construction of the exact sequence giving a presentation. For
instance, starting from the sequence (1.6) corresponding to a presentation
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for M , if we want to know the second syzygies as well, we need another
step in the sequence:

Rr λ→ Rs ψ→ Rt ϕ→ M → 0,

where now the image of λ : Rr → Rs is equal to the kernel of ψ (the
second syzygy module). Continuing in the same way to the third and higher
syzygies, we produce longer and longer exact sequences. We wind up with
a free resolution of M . The precise definition is as follows.

(1.9) Definition. Let M be an R-module. A free resolution of M is an
exact sequence of the form

· · · → F2
ϕ2→ F1

ϕ1→ F0
ϕ0→ M → 0,

where for all i, Fi
∼= Rri is a free R-module. If there is an � such that

F�+1 = F�+2 = · · · = 0, but F� �= 0, then we say the resolution is finite,
of length �. In a finite resolution of length �, we will usually write the
resolution as

0 → F� → F�−1 → · · · → F1 → F0 → M → 0.

For an example, consider the presentation (1.7) for

I = 〈x2 − x, xy, y2 − y〉
in R = k[x, y]. If

a1

⎛⎝ y
−x + 1

0

⎞⎠ + a2

⎛⎝ 0
y − 1
−x

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠ ,

ai ∈ R, is any syzygy on the columns of B with ai ∈ R, then looking
at the first components, we see that ya1 = 0, so a1 = 0. Similarly from
the third components a2 = 0. Hence the kernel of ψ in (1.7) is the zero
submodule. An equivalent way to say this is that the columns of B are a
basis for Syz(x2−x, xy, y2−y), so the first syzygy module is a free module.
As a result, (1.7) extends to an exact sequence:

(1.10) 0 → R2 ψ→ R3 ϕ→ I → 0.

According to Definition (1.9), this is a free resolution of length 1 for I.

Exercise 2. Show that I also has a free resolution of length 2 obtained
by extending the presentation given in part d of Exercise 1 above:

(1.11) 0 → R
λ→ R3 ψ→ R3 ϕ→ I → 0,

where the homomorphism λ comes from the syzygy given in (1.8).
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Generalizing the observation about the matrix B above, we have the
following characterization of finite resolutions.

(1.12) Proposition. In a finite free resolution

0 → F�
ϕ�→ F�−1

ϕ�−1−→ F�−2 → · · · → F0
ϕ0→ M → 0,

ker(ϕ�−1) is a free module. Conversely, if M has a free resolution in which
ker(ϕ�−1) is a free module for some �, then M has a finite free resolution
of length �.

Proof. If we have a finite resolution of length �, then ϕ� is one-to-one by
exactness at F�, so its image is isomorphic to F�, a free module. Also, ex-
actness at F�−1 implies ker(ϕ�−1) = im(ϕ�), so ker(ϕ�−1) is a free module.
Conversely, if ker(ϕ�−1) is a free module, then the partial resolution

F�−1
ϕ�−1−→ F�−2 → · · · → F0

ϕ0→ M → 0

can be completed to a finite resolution of length �

0 → F� → F�−1
ϕ�−1−→ F�−2 → · · · → F0

ϕ0→ M → 0,

by taking F� to be the free module ker(ϕ�−1) and letting the arrow F� →
F�−1 be the inclusion mapping.

Both (1.11) and the more economical resolution (1.10) came from the
computation of the syzygies sij on the Gröbner basis for I. By Schreyer’s
Theorem again, the same process can be applied to produce a free resolu-
tion of any submodule M of a free module over R. If G = {g1, . . . , gs} is
a Gröbner basis for M with respect to any monomial order, then the sij

are a Gröbner basis for the first syzygy module (with respect to the >G
order from Theorem (3.3) of Chapter 5). Since this is true, we can iterate
the process and produce Gröbner bases for the modules of second, third,
and all higher syzygies. In other words, Schreyer’s Theorem forms the basis
for an algorithm for computing any finite number of terms in a free resolu-
tion. This algorithm is implemented in Singular, in CoCoA, in the CALI
package for REDUCE, and in the resolution command of Macaulay 2.

For example, consider the homogeneous ideal

M = 〈yz − xw, y3 − x2z, xz2 − y2w, z3 − yw2〉
in k[x, y, z, w]. This is the ideal of a rational quartic curve in P

3. Here is a
Macaulay 2 session calculating and displaying a free resolution for M :

i1 : R = QQ[x,y,z,w]

o1 = R

o1 : PolynomialRing
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i2 : M = ideal(z^3-y*w^2,y*z-x*w,y^3-x^2*z,x*z^2-y^2*w)

3 2 3 2 2 2
o2 = ideal (z - y*w , y*z - x*w, y - x z, x*z - y w)

o2 : Ideal of R

i3 : MR = resolution M

1 4 4 1
o3 = R <-- R <-- R <-- R

0 1 2 3

o3 : ChainComplex

i4 : MR.dd

1
o4 = -1 : 0 <----- R : 0

0

1 4
0 : R <--------------------------------------- R : 1

{0} | yz-xw y3-x2z xz2-y2w z3-yw2 |

4 4
1 : R <--------------------------- R : 2

{2} | -y2 -xz -yw -z2 |
{3} | z w 0 0 |
{3} | x y -z -w |
{3} | 0 0 x y |

4 1
2 : R <-------------- R : 3

{4} | w |
{4} | -z |
{4} | -y |
{4} | x |

o4 : ChainComplexMap

The output shows the matrices in a finite free resolution of the form

(1.13) 0 → R → R4 → R4 → M → 0,
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from the “front” of the resolution “back.” In particular, the first matrix
(1×4) gives the generators of M , the columns of the second matrix give gen-
erators for the first syzygies, and the third matrix (4× 1) gives a generator
for the second syzygy module, which is free.

Exercise 3.
a. Verify by hand that at each step in the sequence (1.13), the image of the

mapping “coming in” is contained in the kernel of the mapping “going
out.”

b. Verify that the generators of M form a Gröbner basis of M for the grevlex
order with x > y > z > w, and compute the first syzygy module using
Schreyer’s theorem. Why is the first syzygy module generated by just 4
elements (the columns of the 4 × 4 matrix), and not 6 =

(4
2

)
elements

sij as one might expect?

The programs Singular and CALI can be used to compute resolutions of
ideals whose generators are not homogeneous (and, more generally, modules
which are not graded), as well as resolutions of modules over local rings.
Here, for example, is a Singular session computing a resolution of the ideal

(1.14) I = 〈z3 − y, yz − x, y3 − x2z, xz2 − y2〉
in k[x, y, z] (note that I is obtained by dehomogenizing the generators of
M above).

> ring r=0, (x,y,z), dp;
> ideal I=(z3-y,yz-x,y3-x2z,xz2-y2);
> res(I,0);
[1]:
_[1]=z3-y
_[2]=yz-x
_[3]=y3-x2z
_[4]=xz2-y2

[2]:
_[1]=x*gen(1)-y*gen(2)-z*gen(4)
_[2]=z2*gen(2)-y*gen(1)+1*gen(4)
_[3]=xz*gen(2)-y*gen(4)-1*gen(3)

[3]:
_[1]=0

The first line of the input specifies that the characteristic of the field is
0, the ring variables are x, y, z, and the monomial order is graded reverse
lex. The argument “0” in the res command says that the resolution should
have as many steps as variables (the reason for this choice will become
clear in the next section). Here, again, the output is a set of columns that
generate (gen(1), gen(2), gen(3), gen(4) refer to the standard basis
columns e1, e2, e3, e4 of k[x, y, z]4).
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See the exercises below for some additional examples. Of course, this
raises the question whether finite resolutions always exist. Are we in a
situation of potential infinite regress or does this process always stop even-
tually, as in the examples above? See Exercise 11 below for an example
where the answer is no, but where R is not a polynomial ring. We shall
return to this question in the next section.

ADDITIONAL EXERCISES FOR §1

Exercise 4.
a. Prove the second bullet, which asserts that ϕ : M → N is one-to-one if

and only if 0 → M → N is exact.
b. Explain how part b of Proposition (1.2) follows from part a.

Exercise 5. Let M1, M2 be R-submodules of an R-module N . Let M1 ⊕
M2 be the direct sum as in Exercise 4 of Chapter 5, §1, and let M1 + M2 ⊂
N be the sum as in Exercise 14 of Chapter 5, §1.
a. Let ε : M1∩M2 → M1⊕M2 be the mapping defined by ε(m) = (m, m).

Show that ε is an R-module homomorphism.
b. Show that δ : M1 ⊕M2 → M1 + M2 defined by δ(m1, m2) = m1 −m2

is an R-module homomorphism.
c. Show that

0 → M1 ∩M2
ε→ M1 ⊕M2

δ→ M1 + M2 → 0

is an exact sequence.

Exercise 6. Let M1 and M2 be submodules of an R-module N .
a. Show that the mappings ψi : Mi → M1 + M2 (i = 1, 2) defined by

ψ1(m1) = m1 + 0 ∈ M1 + M2 and ψ2(m2) = 0 + m2 ∈ M1 + M2 are
one-to-one module homomorphisms. Hence M1 and M2 are submodules
of M1 + M2.

b. Consider the homomorphism ϕ : M2 → (M1 + M2)/M1 obtained by
composing the inclusion M2 → M1 + M2 and the natural homomor-
phism M1 + M2 → (M1 + M2)/M1. Identify the kernel of ϕ, and
deduce that there is an isomorphism of R-modules (M1 + M2)/M1 ∼=
M2/(M1 ∩M2).

Exercise 7.
a. Let

0 → Mn
ϕn−→ Mn−1

ϕn−1−→ Mn−2
ϕn−2−→ · · · ϕ1−→ M0 → 0

be a “long” exact sequence of R-modules and homomorphisms. Show
that there are “short” exact sequences

0 → ker(ϕi) → Mi → ker(ϕi−1) → 0
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for each i = 1, . . . , n, where the arrow Mi → ker(ϕi−1) is given by the
homomorphism ϕi.

b. Conversely, given

0 → ker(ϕi) → Mi
ϕi−→ Ni → 0

where Ni = ker(ϕi−1) ⊂ Mi−1, show that these short exact sequences
can be spliced together into a long exact sequence

0 → ker(ϕn−1) → Mn−1
ϕn−1−→ Mn−2

ϕn−2−→ · · · ϕ2−→ M1
ϕ1−→ im(ϕ1) → 0.

c. Explain how a resolution of a module is obtained by splicing together
presentations of successive syzygy modules.

Exercise 8. Let Vi, i = 0, . . . , n be finite dimensional vector spaces over
a field k, and let

0 → Vn
ϕn−→ Vn−1

ϕn−1−→ Vn−2
ϕn−2−→ · · · ϕ1−→ V0 → 0

be an exact sequence of k-linear mappings. Show that the alternating sum
of the dimensions of the Vi satisfies:

n∑
�=0

(−1)� dimk(V�) = 0.

Hint: Use Exercise 7 and the dimension theorem for a linear mapping ϕ :
V → W :

dimk(V ) = dimk(ker(ϕ)) + dimk(im(ϕ)).

Exercise 9. Let

0 → F� → · · · → F2 → F1 → F0 → M → 0

be a finite free resolution of a submodule M ⊂ Rn. Show how to obtain
a finite free resolution of the quotient module Rn/M from the resolution
for M . Hint: There is an exact sequence 0 → M → Rn → Rn/M → 0 by
Proposition (1.2). Use the idea of Exercise 7 part b to splice together the
two sequences.

Exercise 10. For each of the following modules, find a free resolution
either by hand or by using a computer algebra system.
a. M = 〈xy, xz, yz〉 ⊂ k[x, y, z].
b. M = 〈xy − uv, xz − uv, yz − uv〉 ⊂ k[x, y, z, u, v].
c. M = 〈xy − xv, xz − yv, yz − xu〉 ⊂ k[x, y, z, u, v].
d. M the module generated by the columns of the matrix

M =
(

a2 + b2 a3 − 2bcd a − b
c2 − d2 b3 + acd c + d

)
in k[a, b, c, d]2.
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e. M = 〈x2, y2, z2, xy, xz, yz〉 ⊂ k[x, y, z].
f. M = 〈x3, y3, x2y, xy2〉 ⊂ k[x, y, z].

Exercise 11. If we work over other rings R besides polynomial rings, then
it is not difficult to find modules with no finite free resolutions. For example,
consider R = k[x]/〈x2〉, and M = 〈x〉 ⊂ R.
a. What is the kernel of the mapping ϕ : R → M given by multiplication

by x?
b. Show that

· · · x→ R
x→ R

x→ M → 0

is an infinite free resolution of M over R, where x denotes multiplication
by x.

c. Show that every free resolution of M over R is infinite. Hint: One way
is to show that any free resolution of M must “contain” the resolution
from part b in a suitable sense.

Exercise 12. We say that an exact sequence of R-modules

0 −→ M
f−→ N

g−→ P −→ 0

splits if there is a homomorphism ϕ : P → N such that g ◦ ϕ = id.
a. Show that the condition that the sequence above splits is equivalent

to the condition that N ∼= M ⊕ P such that f becomes the inclusion
a �→ (a, 0) and g becomes the projection (a, b) �→ b.

b. Show that the condition that the sequence splits is equivalent to the
existence of a homomorphism ψ : N → M such that ψ ◦ f = id. Hint:
use part a.

c. Show that P is a projective module (that is, a direct summand of a free
module—see Definition (4.12) of Chapter 5) if and only if every exact
sequence of the form above splits.

d. Show that P is projective if and only if given every homomorphism
f : P → M1 and any surjective homomorphism g : M2 → M1, there
exists a homomorphism h : P → M2 such that f = g ◦ h.

§2 Hilbert’s Syzygy Theorem

In §1, we raised the question of whether every R-module has a finite free
resolution, and we saw in Exercise 11 that the answer is no if R is the finite-
dimensional algebra R = k[x]/〈x2〉. However, when R = k[x1, . . . , xn] the
situation is much better, and we will consider only polynomial rings in this
section. The main fact we will establish is the following famous result of
Hilbert.
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(2.1) Theorem (Hilbert Syzygy Theorem). Let R = k[x1, . . . , xn].
Then every finitely generated R-module has a finite free resolution of length
at most n.

A comment is in order. As we saw in the examples in §1, it is not true
that all finite free resolutions of a given module have the same length.
The Syzygy Theorem only asserts the existence of some free resolution of
length ≤ n for every finitely-generated module over the polynomial ring in
n variables. Also, remember from Definition (1.9) that length ≤ n implies
that an R-module M has a free resolution of the form

0 → F� → · · · → F1 → F0 → M, � ≤ n.

This has � + 1 ≤ n + 1 free modules, so that the Syzygy Theorem asserts
the existence of a free resolution with at most n + 1 free modules in it.

The proof we will present is due to Schreyer. It is based on the follow-
ing observation about resolutions produced by the Gröbner basis method
described in §1, using Schreyer’s Theorem—Theorem (3.3) of Chapter 5.

(2.2) Lemma. Let G be a Gröbner basis for a submodule M ⊂ Rt with re-
spect to an arbitrary monomial order, and arrange the elements of G to form
an ordered s-tuple G = (g1, . . . , gs) so that whenever LT(gi) and LT(gj)
contain the same standard basis vector ek and i < j, then LM(gi)/ek >lex
LM(gj)/ek, where >lex is the lex order on R with x1 > · · · > xn. If the vari-
ables x1, . . . , xm do not appear in the leading terms of G, then x1, . . . , xm+1
do not appear in the leading terms of the sij ∈ Syz(G) with respect to the
order >G used in Theorem (3.3) of Chapter 5.

Proof of the lemma. By the first step in the proof of Theorem (3.3)
of Chapter 5,

(2.3) LT>G (sij) = (mij/LT(gi))Ei,

where mij = LCM(LT(gi), LT(gj)), and Ei is the standard basis vector
in Rs. As always, it suffices to consider only the sij such that LT(gi) and
LT(gj) contain the same standard basis vector ek in Rt, and such that i < j.
By the hypothesis on the ordering of the components of G, LM(gi)/ek >lex
LM(gj)/ek. Since x1, . . . , xm do not appear in the leading terms, this implies
that we can write

LM(gi)/ek = xa
m+1ni

LM(gj)/ek = xb
m+1nj ,

where a ≥ b, and ni, nj are monomials in R containing only xm+2, . . . , xn.
But then lcm(LT(gi), LT(gj)) contains xa

m+1, and by (2.3), LT>G (sij) does
not contain x1, . . . , xm, xm+1.

We are now ready for the proof of Theorem (2.1).
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Proof of the theorem. Since we assume M is finitely generated as
an R-module, by (1.5) of this chapter, there is a presentation for M of the
form

(2.4) F1
ϕ1→ F0 → M → 0

corresponding to a choice of a generating set (f1, . . . , fr0) for M , and a
Gröbner basis G0 = {g1, . . . , gr1} for Syz(f1, . . . , fr0) = im(ϕ1) ⊂ F0 =
Rr0 with respect to any monomial order on F0. Order the elements of G0
as described in Lemma (2.2) to obtain a vector G0, and apply Schreyer’s
Theorem to compute a Gröbner basis G1 for the module Syz(G0) ⊂ F1 =
Rr1 (with respect to the >G0 order). We may assume that G1 is reduced.
By the lemma, at least x1 will be missing from the leading terms of G1.
Moreover if the Gröbner basis contains r2 elements, we obtain an exact
sequence

F2
ϕ2→ F1

ϕ1→ F0 → M → 0

with F2 = Rr2 , and im(ϕ2) = Syz(G1). Now iterate the process to obtain
ϕi : Fi → Fi−1, where im(ϕi) = Syz(Gi−1) and Gi ⊂ Rri is a Gröbner
basis for Syz(Gi−1), where each time we order the Gröbner basis Gi−1 to
form the vector Gi−1 so that the hypothesis of Lemma (2.2) is satisfied.

Since the number of variables present in the leading terms of the Gröbner
basis elements decreases by at least one at each step, by an easy induction
argument, after some number � ≤ n of steps, the leading terms of the
reduced Gröbner basis G� do not contain any of the variables x1, . . . , xn.
At this point, we will have extended (2.4) to an exact sequence

(2.5) F�
ϕ�→ F�−1 → · · · → F1

ϕ1→ F0 → M → 0,

and the leading terms in G� will be non-zero constants times standard
basis vectors from F�. In Exercise 8 below, you will show that this implies
Syz(G�−1) is a free module, and G� is a module basis as well as a Gröbner
basis. Hence by Proposition (1.12) we can extend (2.5) to another exact
sequence by adding a zero at the left, and as a result we have produced a
free resolution of length � ≤ n for M .

Here are some additional examples illustrating the Syzygy Theorem. In
the examples we saw in the text in §1, we always found resolutions of
length strictly less than the number of variables in R. But in some cases,
the shortest possible resolutions are of length exactly n.

Exercise 1. Consider the ideal I = 〈x2 − x, xy, y2 − y〉 ⊂ k[x, y] from
(1.7) of this chapter, and let M = k[x, y]/I, which is also a module over
R = k[x, y]. Using Exercise 9 from §1, show that M has a free resolution
of length 2, of the form

0 → R2 → R3 → R → M → 0.
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In this case, it is also possible using localization (see Chapter 4) to show
that M has no free resolution of length ≤ 1. See Exercise 9 below for a
sketch.

On the other hand, we might ask whether having an especially short finite
free resolution indicates something special about an ideal or a module. For
example, if M has a resolution 0 → Rr → M → 0 of length 0, then M is
isomorphic to Rr as an R-module. Hence M is free, and this is certainly a
special property! From Chapter 5, §1, we know this happens for ideals only
when M = 〈f〉 is principal. Similarly, we can ask what can be said about
free resolutions of length 1. The next examples indicate a special feature
of resolutions of length 1 for a certain class of ideals.

Exercise 2. Let I ⊂ k[x, y, z, w] denote the ideal of the twisted cubic in
P

3, with the following generators:

I = 〈g1, g2, g3〉 = 〈xz − y2, xw − yz, yw − z2〉.
a. Show that the given generators form a grevlex Gröbner basis for I.
b. Apply Schreyer’s Theorem to find a Gröbner basis for the module of

first syzygies on the given generators for I.
c. Show that s12 and s23 form a basis for Syz(xz − y2, xw − yz, yw − z2).
d. Use the above calculations to produce a finite free resolution of I, of the

form

0 → R2 A→ R3 → I → 0.

e. Show that the determinants of the 2× 2 minors of A are just the gi (up
to signs).

Exercise 3. (For this exercise, you will probably want to use a computer
algebra system.) In k2 consider the points

p1 = (0, 0), p2 = (1, 0), p3 = (0, 1)

p4 = (2, 1), p5 = (1, 2), p6 = (3, 3),

and let Ii = I({pi}) for each i, so for instance I3 = 〈x, y − 1〉.
a. Find a grevlex Gröbner basis for

J = I({p1, . . . , p6}) = I1 ∩ · · · ∩ I6.

b. Compute a free resolution of J of the form

0 → R3 A→ R4 → J → 0,

where each entry of A is of total degree at most 1 in x and y.
c. Show that the determinants of the 3× 3 minors of A are the generators

of J (up to signs).

The examples in Exercises 2 and 3 are instances of the following general
result, which is a part of the Hilbert-Burch Theorem.
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(2.6) Proposition. Suppose that an ideal I in R = k[x1, . . . , xn] has a
free resolution of the form

0 → Rm−1 A→ Rm B→ I → 0

for some m. Then there exists a nonzero element g ∈ R such that B =
( gf̃1 . . . gf̃m ), where f̃i is the determinant of the (m − 1) × (m − 1)
submatrix of A obtained by deleting row i. If k is algebraically closed and
V(I) has dimension n − 2, then we may take g = 1.

Proof. The proof is outlined in Exercise 11 below.

The full Hilbert-Burch Theorem also gives a sufficient condition for the
existence of a resolution of the form given in the proposition. For example,
such a resolution exists when the quotient ring R/I is Cohen-Macaulay of
codimension 2. This condition is satisfied, for instance, if I ⊂ k[x, y, z] is
the ideal of a finite subset of P

2 (including the case where one or more
of the points has multiplicity > 1 as defined in Chapter 4). We will not
give the precise definition of the Cohen-Macaulay condition here. Instead
we refer the interested reader to [Eis], where this and many of the other
known results concerning the shapes of free resolutions for certain classes of
ideals in polynomial and local rings are discussed. In particular, the length
of the shortest finite free resolution of an R-module M is an important
invariant called the projective dimension of M .

ADDITIONAL EXERCISES FOR §2

Exercise 4. Let I be the ideal in k[x, y] generated by the grevlex Gröbner
basis

{g1, g2, g3} = {x2 + 3/2xy + 1/2y2 − 3/2x − 3/2y, xy2 − x, y3 − y}
This ideal was considered in Chapter 2, §2 (with k = C), and we saw there
that V(I) is a finite set containing 5 points in k2, each with multiplicity 1.
a. Applying Schreyer’s Theorem, show that Syz(g1, g2, g3) is generated by

the columns of the matrix

A =

⎛⎝ y2 − 1 0
−x − 3y/2 + 3/2 y
−y/2 + 3/2 −x

⎞⎠
b. Show that the columns of A form a module basis for Syz(g1, g2, g3), and

deduce that I has a finite free resolution of length 1:

0 → R2 A→ R3 → I → 0.

c. Show that the determinants of the 2× 2 minors of A are just the gi (up
to signs).
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Exercise 5. Verify that the resolution from (1.8) of §1 has the form given
in Proposition (2.6). (In this case too, the module being resolved is the
ideal of a finite set of points in k2, each appearing with multiplicity 1.)

Exercise 6. Let

I = 〈z3 − y, yz − x, y3 − x2z, xz2 − y2〉
be the ideal in k[x, y, z] considered in §1 see (1.16).
a. Show that the generators of I are a Gröbner basis with respect to the

grevlex order.
b. The sres command in Singular produces a resolution using Schreyer’s

algorithm. The Singular session is as follows.

> ring r=0, (x,y,z), (dp, C);
> ideal I=(z3-y,yz-x,y3-x2z,xz2-y2);
> sres(I,0);
[1]:
_[1]=yz-x
_[2]=z3-y
_[3]=xz2-y2
_[4]=y3-x2z

[2]:
_[1]=-z2*gen(1)+y*gen(2)-1*gen(3)
_[2]=-xz*gen(1)+y*gen(3)+1*gen(4)
_[3]=-x*gen(2)+y*gen(1)+z*gen(3)
_[4]=-y2*gen(1)+x*gen(3)+z*gen(4)

[3]:
_[1]=x*gen(1)+y*gen(3)-z*gen(2)+1*gen(4)

Show that the displayed generators are Gröbner bases with respect to
the orderings prescribed by Schreyer’s Theorem from Chapter 5, §3.

c. Explain why using Schreyer’s Theorem produces a longer resolution in
this case than that displayed in §1.

Exercise 7. Find a free resolution of length 1 of the form given in
Proposition (2.6) for the ideal

I = 〈x4 − x3y, x3y − x2y2, x2y2 − xy3, xy3 − y4〉
in R = k[x, y]. Identify the matrix A and the element g ∈ R in this case
in Proposition (2.6). Why is g �= 1?

Exercise 8. Let G be a monic reduced Gröbner basis for a submodule
M ⊂ Rt, with respect to some monomial order. Assume that the leading
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terms of all the elements of G are constant multiples of standard basis
vectors in Rt.
a. If ei is the leading term of some element of G, show that it is the leading

term of exactly one element of G.
b. Show that Syz(G) = {0} ⊂ Rs.
c. Deduce that M is a free module.

Exercise 9. In this exercise, we will sketch one way to show that every
free resolution of the quotient R/I for

I = 〈x2 − x, xy, y2 − y〉 ⊂ R = k[x, y]

has length ≥ 2. In other words, the resolution 0 → R2 → R3 → R →
R/I → 0 from Exercise 1 is as short as possible. We will need to use some
ideas from Chapter 4 of this book.
a. Let M be an R-module, and let P be a maximal ideal in R. Generalizing

the construction of the local ring RP , define the localization of M at P ,
written MP , to be the set of “fractions” m/f , where m ∈ M , f /∈ P ,
subject to the relation that m/f = m′/f ′ whenever there is some g ∈ R,
g /∈ P such that g(f ′m − fm′) = 0 in M . Show that MP has the
structure of a module over the local ring RP . If M is a free R-module,
show that MP is a free RP -module.

b. Given a homomorphism ϕ : M → N of R-modules, show that there is
an induced homomorphism of the localized modules ϕP : MP → NP

defined by ϕP (m/f) = ϕ(m)/f for all m/f ∈ MP . Hint: First show
that this rule gives a well-defined mapping from MP to NP .

c. Let
M1

ϕ1→ M2
ϕ2→ M3

be an exact sequence of R-modules. Show that the localized sequence

(M1)P
(ϕ1)P−→ (M2)P

(ϕ2)P−→ (M3)P

is also exact.
d. We want to show that the shortest free resolution of M = R/I for

I = 〈x2−x, xy, y2−y〉 has length 2. Aiming for a contradiction, suppose
that there is some resolution of length 1: 0 → F1 → F0 → M → 0.
Explain why we may assume F0 = R.

e. By part c, after localizing at P = 〈x, y〉 ⊃ I, we obtain a resolu-
tion 0 → (F1)P → RP → MP → 0. Show that MP is isomorphic to
RP /〈x, y〉RP

∼= k as an RP -module.
f. But then the image of (F1)P → RP must be 〈x, y〉. Show that we obtain

a contradiction because this is not a free RP -module.

Exercise 10. In R = k[x1, . . . , xn], consider the ideals
Im = 〈x1, x2, . . . , xm〉

generated by subsets of the variables, for 1 ≤ m ≤ n.
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a. Find explicit resolutions for the ideals I2, . . . , I5 in k[x1, . . . , x5].
b. Show in general that Im has a free resolution of length m − 1 of the

form

0 → R(m
m) → · · · → R(m

3 ) → R(m
2 ) → Rm → I → 0,

where if we index the basis Bk of R(m
k ) by k-element subsets of

{1, . . . , m}:
Bk = {ei1...ik

: 1 ≤ i1 < i2 < · · · < ik ≤ m},
then the mapping ϕk : R(m

k ) → R( m
k−1) in the resolution is defined by

ϕk(ei1...ik
) =

k∑
j=1

(−1)j+1xij ei1...ij−1ij+1...ik
,

where in the term with index j, ij is omitted to yield a (k − 1)-element
subset. These resolutions are examples of Koszul complexes. See [Eis]
for more information about this topic.

Exercise 11. In this exercise, we will sketch a proof of Proposition (2.6).
The basic idea is to consider the linear mapping from Km−1 to Km defined
by the matrix A in a resolution

0 → Rm−1 A→ Rm B→ I → 0,

where K = k(x1, . . . , xn) is the field of rational functions (the field of
fractions of R) and to use some linear algebra over K.
a. Let V be the space of solutions of the the homogeneous system of linear

equations XA = 0 where X ∈ Km is written as a row vector. Show
that the dimension over K of V is 1. Hint: The columns A1, . . . , Am−1
of A are linearly independent over R, hence over K.

b. Let B = ( f1 . . . fm ) and note that exactness implies that BA = 0.
Let f̃i = (−1)i+1 det(Ai), where Ai is the (m− 1)× (m− 1) submatrix
of A obtained by deleting row i. Show that X = (f̃1, . . . , f̃m) is also an
element of the space V of solutions of XA = 0. Hint: append any one of
the columns of A to A to form an m×m matrix Ã, and expand det(Ã)
by minors along the new column.

c. Deduce that there is some r ∈ K such that rf̃i = fi for all i = 1, . . . , m.
d. Write r = g/h where g, h ∈ R and the fraction is in lowest terms, and

consider the equations gf̃i = hfi. We want to show that h must be a
nonzero constant, arguing by contradiction. If not, then let p be any
irreducible factor of h. Show that A1, . . . , Am−1 are linearly dependent
modulo 〈p〉, or in other words that there exist r1, . . . , rm−1 not all in
〈p〉 such that r1A1 + · · · + rm−1Am−1 = pB for some B ∈ Rm.

e. Continuing from part d, show that B ∈ Syz(f1, . . . , fm) also, so that
B = s1A1 + · · · + sm−1Am−1 for some si ∈ R.
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f. Continuing from part e, show that (r1−ps1, . . . , rm−1−psm−1)T would
be a syzygy on the columns of A. Since those columns are linearly in-
dependent over R, ri − psi = 0 for all i. Deduce a contradiction to the
way we chose the ri.

g. Finally, in the case that V(I) has dimension n − 2, show that g must
be a nonzero constant also. Hence by multiplying each fi by a nonzero
constant, we could take g = 1 in Proposition (2.6).

§3 Graded Resolutions

In algebraic geometry, free resolutions are often used to study the homo-
geneous ideals I = I(V ) of projective varieties V ⊂ P

n and other modules
over k[x0, . . . , xn]. The key fact we will use is that these resolutions have
an extra structure coming from the grading on the ring R = k[x0, . . . , xn],
that is the direct sum decomposition

(3.1) R =
⊕
s≥0

Rs

into the additive subgroups (or k-vector subspaces) Rs = k[x0, . . . , xn]s,
consisting of the homogeneous polynomials of total degree s, together with
0. To begin this section we will introduce some convenient notation and
terminology for describing such resolutions.

(3.2) Definition. A graded module over R is a module M with a family
of subgroups {Mt : t ∈ Z} of the additive group of M . The elements of Mt

are called the homogeneous elements of degree t in the grading, and the
Mt must satisfy the following properties.
a. As additive groups,

M =
⊕
t∈Z

Mt.

b. The decomposition of M in part a is compatible with the multiplication
by elements of R in the sense that RsMt ⊂ Ms+t for all s ≥ 0 and all
t ∈ Z.

It is easy to see from the definition that each Mt is a module over the
subring R0 = k ⊂ R, hence a k-vector subspace of M . If M is finitely-
generated, the Mt are finite dimensional over k.

Homogeneous ideals I ⊂ R are the most basic examples of graded
modules. Recall that an ideal is homogeneous if whenever f ∈ I, the ho-
mogeneous components of f are all in I as well (see for instance, [CLO],
Chapter 8, §3, Definition 1). Some of the other important properties of
these ideals are summarized in the following statement.
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• (Homogeneous Ideals) Let I ⊂ k[x0, . . . , xn] be an ideal. Then the
following are equivalent:
a. I is a homogeneous ideal.
b. I = 〈f1, . . . , fs〉 where fi are homogeneous polynomials.
c. A reduced Gröbner basis for I (with respect to any monomial order)

consists of homogeneous polynomials.

(See for instance [CLO], Theorem 2 of Chapter 8, §3.)
To show that a homogeneous ideal I has a graded module structure, set

It = I ∩ Rt. For t ≥ 0, this is the set of all homogeneous elements of total
degree t in I (together with 0), and It = {0} for t < 0. By the definition
of a homogeneous ideal, we have I = ⊕t∈ZIt, and RsIt ⊂ Is+t is a direct
consequence of the definition of an ideal and the properties of polynomial
multiplication.

The free modules Rm are also graded modules over R provided we take
(Rm)t = (Rt)m. We will call this the standard graded module structure on
Rm. Other examples of graded modules are given by submodules of the free
modules Rm with generating sets possessing suitable homogeneity proper-
ties, and we have statements analogous to those above for homogeneous
ideals.

(3.3) Proposition. Let M ⊂ Rm be submodule. Then the following are
equivalent.
a. The standard grading on Rm induces a graded module structure on M ,

given by taking Mt = (Rt)m ∩M—the set of elements in M where each
component is a homogeneous polynomial of degree t (or 0).

b. M = 〈f1, . . . , fr〉 in Rm where each fi is a vector of homogeneous
polynomials of the same degree di.

c. A reduced Gröbner basis (for any monomial order on Rm) consists of
vectors of homogeneous polynomials where all the components of each
vector have the same degree.

Proof. The proof is left to the reader as Exercise 8 below.

Submodules, direct sums, and quotient modules extend to graded mod-
ules in the following ways. If M is a graded module and N is a submodule
of M , then we say N is a graded submodule if the additive subgroups
Nt = Mt ∩N for t ∈ Z define a graded module structure on N . For exam-
ple, Proposition (3.3) says that the submodules M = 〈f1, . . . , fr〉 in Rm

where each fi is a vector of homogeneous polynomials of the same degree
di are graded submodules of Rm.

Exercise 1.
a. Given a collection of graded modules M1, . . . , Mm, we can produce the

direct sum N = M1 ⊕ · · · ⊕Mm as usual. In N , let
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Nt = (M1)t ⊕ · · · ⊕ (Mm)t.

Show that the Nt define the structure of a graded module on N .
b. If N ⊂ M is a graded submodule of a graded module M , show that the

quotient module M/N also has a graded module structure, defined by
the collection of additive subgroups

(M/N)t = Mt/Nt = Mt/(Mt ∩ N).

Given any graded R-module M , we can also produce modules that are
isomorphic to M as abstract R-modules, but with different gradings, by
the following trick of shifting the indexing of the family of submodules.

(3.4) Proposition. Let M be a graded R-module, and let d be an integer.
Let M(d) be the direct sum

M(d) =
⊕
t∈Z

M(d)t,

where M(d)t = Md+t. Then M(d) is also a graded R-module.

Proof. The proof is left to the reader as Exercise 9.

For instance, the modules (Rm)(d) = R(d)m are called shifted or twisted
graded free modules over R. The standard basis vectors ei still form a
module basis for R(d)m, but they are now homogeneous elements of degree
−d in the grading, since R(d)−d = R0. More generally, part a of Exercise 1
shows that we can consider graded free modules of the form

R(d1) ⊕ · · · ⊕ R(dm)

for any integers d1, . . . , dm, where the basis vector ei is homogeneous of
degree −di for each i.

Exercise 2. This exercise will generalize Proposition (3.3). Suppose that
we have integers d1, . . . , dm and elements f1, . . . , fs ∈ Rm such that

fi = (fi1, . . . , fim)T

where the fij are homogeneous and deg fi1 − d1 = · · · = deg fim − dm

for each i. Then prove that M = 〈f1, . . . , fs〉 is a graded submodule of
F = R(d1) ⊕ · · · ⊕ R(dm). Also show that every graded submodule of F
has a set of generators of this form.

As the examples given later in the section will show, the twisted free
modules we deal with are typically of the form

R(−d1) ⊕ · · · ⊕ R(−dm).
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Here, the standard basis elements e1, . . . , em have respective degrees
d1, . . . , dm.

Next we consider how homomorphisms interact with gradings on
modules.

(3.5) Definition. Let M, N be graded modules over R. A homomorphism
ϕ : M → N is said to a graded homomorphism of degree d if ϕ(Mt) ⊂ Nt+d

for all t ∈ Z.

For instance, suppose that M is a graded R-module generated by homo-
geneous elements f1, . . . , fm of degrees d1, . . . , dm. Then we get a graded
homomorphism

ϕ : R(−d1) ⊕ · · · ⊕ R(−dm) −→ M

which sends the standard basis element ei to fi ∈ M . Note that ϕ is onto.
Also, since ei has degree di, it follows that ϕ has degree zero.

Exercise 3. Suppose that M is a finitely generated R-module. As usual,
Mt denotes the set of homogeneous elements of M of degree t.
a. Prove that Mt is a finite dimensional vector space over the field k and

that Mt = {0} for t � 0. Hint: Use the surjective map ϕ constructed
above.

b. Let ψ : M → M be a graded homomorphism of degree zero. Prove that
ψ is an isomorphism if and only if ψ : Mt → Mt is onto for every t.
Conclude that ψ is an isomorphism if and only if it is onto.

Another example of a graded homomorphism is given by an m×p matrix
A all of whose entries are homogeneous polynomials of degree d in the
ring R. Then A defines a graded homomorphism ϕ of degree d by matrix
multiplication

ϕ : Rp → Rm

f �→ Af.

If desired, we can also consider A as defining a graded homomorphism of
degree zero from the shifted module R(−d)p to Rm. Similarly, if the entries
of the jth column are all homogeneous polynomials of degree dj , but the
degree varies with the column, then A defines a graded homomorphism of
degree zero

R(−d1) ⊕ · · · ⊕ R(−dp) → Rm.

Still more generally, a graded homomorphism of degree zero

R(−d1) ⊕ · · · ⊕ R(−dp) → R(−c1) ⊕ · · · ⊕ R(−cm)

is defined by an m× p matrix A where the ij entry aij ∈ R is homogeneous
of degree dj − ci for all i, j. We will call a matrix A satisfying this condition
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for some collection dj of column degrees and some collection ci of row
degrees a graded matrix over R.

The reason for discussing graded matrices in detail is that these matrices
appear in free resolutions of graded modules over R. For example, consider
the resolution of the homogeneous ideal

M = 〈z3 − yw2, yz − xw, y3 − x2z, xz2 − y2w〉
in R = k[x, y, z, w] from (1.13) of this chapter, computed using Macaulay 2.
The ideal itself is the image of a graded homomorphism of degree zero

R(−3) ⊕ R(−2) ⊕ R(−3)2 → R,

where the shifts are just the negatives of the degrees of the generators,
ordered as above. The next matrix in the resolution:

A =

⎛⎜⎜⎝
−y2 −xz −yw −z2

z w 0 0
x y −z −w
0 0 x y

⎞⎟⎟⎠
(whose columns generate the module of syzygies on the generators of M)
defines a graded homomorphism of degree zero

R(−4)4 A→ R(−2) ⊕ R(−3)3.

In other words, dj = 4 for all j, and c2 = c3 = c4 = 3, c1 = 2 in the
notation as above, so all entries on rows 2, 3, 4 of A are homogeneous of
degree 4 − 3 = 1, while those on row 1 have degree 4 − 2 = 2. The whole
resolution can be written in the form

(3.6) 0 → R(−5) → R(−4)4 → R(−2) ⊕ R(−3)3 → M → 0,

where all the arrows are graded homomorphisms of degree zero.
Here is the precise definition of a graded resolution.

(3.7) Definition. If M is a graded R-module, then a graded resolution of
M is a resolution of the form

· · · → F2
ϕ2→ F1

ϕ1→ F0
ϕ0→ M → 0,

where each F� is a twisted free graded module R(−d1)⊕ · · · ⊕R(−dp) and
each homomorphism ϕ� is a graded homomorphism of degree zero (so that
the ϕ� are given by graded matrices as defined above).

The resolution given in (3.6) is clearly a graded resolution. What’s nice
is that every finitely generated graded R-module has a graded resolution
of finite length.
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(3.8) Theorem (Graded Hilbert Syzygy Theorem). Let R =
k[x1, . . . , xn]. Then every finitely generated graded R-module has a finite
graded resolution of length at most n.

Proof. This follows from the proof of Theorem (2.1) (the Syzygy The-
orem in the ungraded case) with minimal changes. The reason is that by
Proposition (3.3) and the generalization given in Exercise 2, if we apply
Schreyer’s theorem to find generators for the module of syzygies on a ho-
mogeneous ordered Gröbner basis (g1, . . . , gs) for a graded submodule of
R(−d1) ⊕ · · · ⊕ R(−dp), then the syzygies sij are also homogeneous and
“live” in another graded submodule of the same form. We leave the details
of the proof as Exercise 5 below.

The resolution command in Macaulay 2 will compute a finite graded
resolution using the method outlined in the proof of Theorem (3.8).
However, the resolutions produced by Macaulay 2 are of a very special
sort.

(3.9) Definition. Suppose that

· · · → F�
ϕ�→ F�−1 → · · · → F0 → M → 0

is a graded resolution of M . Then the resolution is minimal if for every
� ≥ 1, the nonzero entries of the graded matrix of ϕ� have positive degree.

For an example, the reader should note that the resolution (3.6) is a
minimal resolution. But not all resolutions are minimal, as shown by the
following example.

Exercise 4. Show that the resolution from (1.11) can be homogenized to
give a graded resolution, and explain why it is not minimal. Also show that
the resolution from (1.10) is minimal after we homogenize.

In Macaulay 2, resolution computes a minimal resolution.
We will soon see that minimal resolutions have many nice properties.

But first, let’s explain why they are called “minimal”. We say that a set
of generators of a module is minimal if no proper subset generates the
module. Now suppose that we have a graded resolution

· · · → F�
ϕ�→ F�−1 → · · · → F0 → M → 0.

Each ϕ� gives a surjective map F� → im(ϕ�), so that ϕ� takes the stan-
dard basis of F� to a generating set of im(ϕ�). Then we can characterize
minimality as follows.
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(3.10) Proposition. The above resolution is minimal if and only if for
each � ≥ 0, ϕ� takes the standard basis of F� to a minimal generating set
of im(ϕ�).

Proof. We will prove one direction and leave the other as an exercise.
Suppose that for some � ≥ 1 the graded matrix A� of ϕ� has entries of
positive degree. We will show that ϕ�−1 takes the standard basis of F�−1 to
a minimal generating set of im(ϕ�−1). Let e1, . . . , em be the standard basis
vectors of F�−1. If ϕ�−1(e1), . . . , ϕ�−1(em) is not a minimal generating set,
then some ϕ�−1(ei) can be expressed in terms of the others. Reordering the
basis if necessary, we can assume that

ϕ�−1(e1) =
m∑

i=2

aiϕ�−1(ei), ai ∈ R.

Then ϕ�−1(e1− a2e2− · · ·− amem)=0, so (1,−a2, . . . ,−am) ∈ ker(ϕ�−1).
By exactness, (1,−a2, . . . ,−am) ∈ im(ϕ�). Since A� is the matrix of ϕ�,
the columns of A� generate im(ϕ�). We are assuming that the nonzero
components of these columns have positive degree. Since the first entry of
(1,−a2, . . . ,−am) is a nonzero constant, it follows that this vector cannot
be an R-linear combination of the columns of A�. This contradiction proves
that the ϕ�−1(ei) give a minimal generating set of im(ϕ�−1).

The above proposition shows that minimal resolutions are very intuitive.
For example, suppose that we have built a graded resolution of an R-module
M out to stage � − 1:

F�−1
ϕ�−1→ F�−2 → · · · → F0 → M → 0.

We extend one more step by picking a generating set of ker(ϕ�−1) and
defining ϕ� : F� → ker(ϕ�−1) ⊂ F�−1 by mapping the standard basis of
F� to the chosen generating set. To be efficient, we should pick a minimal
generating set, and if we do this at every step of the construction, then
Proposition (3.10) guarantees that we get a minimal resolution.

Exercise 5. Give a careful proof of Theorem (3.8) (the Graded Syzygy
Theorem), and then modify the proof to show that every finitely generated
graded module over k[x1, . . . , xn] has a minimal resolution of length ≤ n.
Hint: Use Proposition (3.10).

We next discuss to what extent a minimal resolution is unique. The first
step is to define what it means for two resolutions to be the same.

(3.11) Definition. Two graded resolutions · · · → F0
ϕ0→ M → 0 and

· · · → G0
ψ0→ M → 0 are isomorphic if there are graded isomorphisms

α� : F� → G� of degree zero such that ψ0 ◦ α0 = ϕ0 and, for every � ≥ 1,
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the diagram

(3.12)
F�

ϕ�−→ F�−1
α� ↓ ↓ α�−1

G�
ψ�−→ G�−1

commutes, meaning α�−1 ◦ ϕ� = ψ� ◦ α�.

We will now show that a finitely generated graded module M has a
unique minimal resolution up to isomorphism.

(3.13) Theorem. Any two minimal resolutions of M are isomorphic.

Proof. We begin by defining α0 : F0 → G0. If e1, . . . , em is the standard
basis of F0, then we get ϕ0(ei) ∈ M , and since G0 → M is onto, we can
find gi ∈ G0 such that ψ0(gi) = ϕ0(ei). Then setting α0(ei) = gi defines a
graded homomorphism α0 : F0 → G0 of degree zero, and it follows easily
that ψ0 ◦ α0 = ϕ0.

A similar argument gives β0 : G0 → F0, also a graded homomorphism
of degree zero, such that ϕ0 ◦ β0 = ψ0. Thus β0 ◦ α0 : F0 → F0, and if
1F0 : F0 → F0 denotes the identity map, then

(3.14) ϕ0 ◦ (1F0 − β0 ◦ α0) = ϕ0 − (ϕ0 ◦ β0) ◦ α0 = ϕ0 − ψ0 ◦ α0 = 0.

We claim that (3.14) and minimality imply that β0 ◦α0 is an isomorphism.
To see why, first recall from the proof of Proposition (3.10) that the

columns of the matrix representing ϕ1 generate im(ϕ1). By minimal-
ity, the nonzero entries in these columns have positive degree. If we let
〈x1, . . . , xn〉F0 denote the submodule of F0 generated by xiej for all i, j,
it follows that im(ϕ1) ⊂ 〈x1, . . . , xn〉F0.

However, (3.14) implies that im(1F0 − β0 ◦ α0) ⊂ ker(ϕ0) = im(ϕ1). By
the previous paragraph, we see that v − β0 ◦ α0(v) ∈ 〈x1, . . . , xn〉F0 for
all v ∈ F0. In Exercise 11 at the end of the section, you will show that this
implies that β0 ◦ α0 is an isomorphism. In particular, α0 is one-to-one.

By a similar argument using the minimality of the graded resolution
· · · → G0 → M → 0, α0 ◦ β0 is also an isomorphism, which implies
that α0 is onto. Hence α0 is an isomorphism as claimed. Then Exercise
12 at the end of the section will show that α0 induces an isomorphism
ᾱ0 : ker(ϕ0) → ker(ψ0).

Now we can define α1. Since ϕ1 : F1 → im(ϕ1) = ker(ϕ0) is onto, we
get a minimal resolution

· · · → F1
ϕ1→ ker(ϕ0) → 0,

of ker(ϕ0) (see Exercise 7 of §1), and similarly

· · · → G1
ψ1→ ker(ψ0) → 0
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is a minimal resolution of ker(ψ0). Then, using the isomorphism ᾱ0 :
ker(ϕ0) → ker(ψ0) just constructed, the above argument easily adapts
to give a graded isomorphism α1 : F1 → G1 of degree zero such that
ᾱ0 ◦ ϕ1 = ψ1 ◦ α1. Since ᾱ0 is the restriction of α0 to im(ϕ1), it follows
easily that (3.12) commutes (with � = 1).

If we apply Exercise 12 again, we see that α1 induces an isomorphism
ᾱ1 : ker(ϕ1) → ker(ψ1). Repeating the above process, we can now define
α2 with the required properties, and continuing for all �, the theorem now
follows easily.

Since we know by Exercise 5 that a finitely generated R-module M has a
finite minimal resolution, it follows from Theorem (3.13) that all minimal
resolutions of M are finite. This fact plays a crucial role in the following
refinement of the Graded Syzygy Theorem.

(3.15) Theorem. If

· · · → F�
ϕ�→ F�−1 → · · · → F0 → M → 0,

is any graded resolution of M over k[x1, . . . , xn], then the kernel ker(ϕn−1)
is free, and

0 → ker(ϕn−1) → Fn−1 → · · · → F0 → M → 0

is a graded resolution of M .

Proof. We begin by showing how to simplify a given graded resolution
· · · → F0 → M → 0. Suppose that for some � ≥ 1, ϕ� : F� → F�−1 is
not minimal, i.e., the matrix A� of ϕ� has a nonzero entry of degree zero.
If we order the standard bases {e1, . . . , em} of F� and {u1, . . . , ut} of F�−1
appropriately, we can assume that

(3.16) ϕ�(e1) = c1u1 + c2u2 + · · · + ctut

where c1 is a nonzero constant (note that (c1, . . . , ct)T is the first column
of A�). Then let G� ⊂ F� and G�−1 ⊂ F�−1 be the submodules generated
by {e2, . . . , em} and {u2, . . . , ut} respectively, and define the maps

F�+1
ψ�+1→ G�

ψ�→ G�−1
ψ�−1→ F�−2

as follows:
• ψ�+1 is the projection F� → G� (which sends a1e1 + a2e2 + · · · + amem

to a2e2 + · · · + amem) composed with ϕ�+1.
• If the first row of A� is (c1, d2, . . . , dm), then ψ� is defined by ψ�(ei) =

ϕ�(ei − di

c1
e1) for i = 2, . . . , m. Since ϕ�(ei) = diu1 + · · · for i ≥ 2, it

follows easily from (3.16) that ψ�(ei) ∈ G�−1.
• ψ�−1 is the restriction of ϕ�−1 to the submodule G�−1 ⊂ F�−1.
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We claim that

· · · → F�+2
ϕ�+1→ F�+1

ψ�+1→ G�
ψ�→ G�−1

ψ�−1→ F�−2
ϕ�−2→ F�−3 → · · ·

is still a resolution of M . To prove this, we need to check exactness at F�+1,
G�, G�−1 and F�−2. (If we set M = F−1 and Fk = 0 for k < −1, then the
above sequence makes sense for all � ≥ 1.)

We begin with F�−2. Here, note that applying ϕ�−1 to (3.16) gives

0 = c1ϕ�−1(u1) + c2ϕ�−1(u2) + · · · + c2ϕ�−1(um).

Since c1 is a nonzero constant, ϕ�−1(u1) is an R-linear combination of
ϕ�−1(ui) for i = 2, . . . , m, and then im(ϕ�−1) = im(ψ�−1) follows from the
definition of ψ�−1. The desired exactness im(ψ�−1) = ker(ϕ�−2) is now an
easy consequence of the exactness of the original resolution.

Next consider G�−1. First note that for i ≥ 2, ψ�−1 ◦ ψ�(ei) = ψ�−1 ◦
ϕ�(ei − di

c1
e1) = 0 since ψ�−1 is just the restriction of ϕ�−1. This shows

that im(ψ�) ⊂ ker(ψ�−1). To prove the opposite inclusion, suppose that
ψ�−1(v) = 0 for some v ∈ G�−1. Since ψ�−1 is the restriction of ϕ�−1,
exactness of the original resolution implies that v = ϕ�(a1e1 + · · ·+amem).
However, since u1 does not appear in v ∈ G�−1 and ϕ�(ei) = diu1 + · · ·,
one easily obtains

(3.17) a1c1 + a2d2 + · · · + amdm = 0

by looking at the coefficients of u1. Then

ψ�(a2e2 + · · · + amem) = a2ψ�(e2) + · · · + amψ�(em)

= a2ϕ�(e2 − d2
c1

e1) + · · · + amϕ�(em − dm

c1
e1)

= ϕ�(a1e1 + · · · + amem) = v,

where the last equality follows by (3.17). This completes the proof of
exactness at G�−1.

The remaining proofs of exactness are straightforward and will be covered
in Exercise 13 at the end of the section.

Since the theorem we’re trying to prove is concerned with ker(ϕn−1), we
need to understand how the kernels of the various maps change under the
above simplification process. If e1 ∈ F� has degree d, then we claim that:

(3.18)

ker(ϕ�−1) ∼= R(−d) ⊕ ker(ψ�−1)

ker(ϕ�) ∼= ker(ψ�)

ker(ϕ�+1) = ker(ψ�+1)

We will prove the first and leave the others for the reader (see Exer-
cise 13). Since ψ�−1 is the restriction of ϕ�−1, we certainly have ker(ψ�−1) ⊂
ker(ϕ�−1). Also, ϕ�(e1) ∈ ker(ϕ�−1) gives the submodule Rϕ�(e1) ⊂
ker(ϕ�−1), and the map sending ϕ�(e1) �→ 1 induces an isomorphism
Rϕ�(e1) ∼= R(−d). To prove that we have a direct sum, note that (3.16)
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implies Rϕ�(e1)∩G�−1 = {0} since G�−1 is generated by u2, . . . , um and c1
is a nonzero constant. From this, we conclude Rϕ�(e1) ∩ ker(ψ�−1) = {0},
which implies

Rϕ�(e1) + ker(ψ�−1) = Rϕ�(e1) ⊕ ker(ψ�−1).

To show that this equals all of ker(ϕ�−1), let w ∈ ker(ϕ�−1) be arbitrary. If
w = a1u1 + · · ·+atut, then set w̃ = w− a1

c1
ϕ�(e1). By (3.16), we have w̃ ∈

G�−1, and then w̃ ∈ ker(ψ�−1) follows easily. Thus w = a1
c1

ϕ�(e1) + w̃ ∈
Rϕ�(e1) ⊕ ker(ψ�−1), which gives the desired direct sum decomposition.

Hence, we have proved that whenever we have a ϕ� with a nonzero matrix
entry of degree zero, we create a resolution with smaller matrices whose
kernels satisfy (3.18). It follows that if the theorem holds for the smaller
resolution, then it automatically holds for the original resolution.

Now the theorem is easy to prove. By repeatedly applying the above pro-
cess whenever we find a nonzero matrix entry of degree zero in some ψ�, we
can reduce to a minimal resolution. But minimal resolutions are isomorphic
by Theorem (3.13), and hence, by Exercise 5, the minimal resolution we get
has length ≤ n. Then Proposition (1.12) shows that ker(ϕn−1) is free for
the minimal resolution, which, as observed above, implies that ker(ϕn−1)
is free for the original resolution as well.

The final assertion of the theorem, that

0 → ker(ϕn−1) → Fn−1 → · · · → F0 → M → 0

is a free resolution, now follows immediately from Proposition (1.12).

The simplification process used in the proof of Theorem (3.15) can be
used to show that, in a suitable sense, every graded resolution of M is the
direct sum of a minimal resolution and a trivial resolution. This gives a
structure theorem which describes all graded resolutions of a given finitely
generated module over k[x1, . . . , xn]. Details can be found in Theorem 20.2
of [Eis].

Exercise 6. Show that the simplification process from the proof of Theo-
rem (3.15) transforms the homogenization of (1.11) into the homogenization
of (1.10) (see Exercise 4).

There is also a version of the theorem just proved which applies to partial
resolutions.

(3.19) Corollary. If

Fn−1
ϕn−1→ Fn−2 → · · · → F0 → M → 0

is a partial graded resolution over k[x1, . . . , xn], then ker(ϕn−1) is free, and

0 → ker(ϕn−1) → Fn−1 → · · · → F0 → M → 0

is a graded resolution of M .
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Proof. Since any partial resolution can be extended to a resolution, this
follows immediately from Theorem (3.15).

One way to think about Corollary (3.19) is that over k[x1, . . . , xn], the
process of taking repeated syzygies leads to a free syzygy module after at
most n−1 steps. This is essentially how Hilbert stated the Syzygy Theorem
in his classic paper [Hil], and sometimes Theorem (3.15) or Corollary (3.19)
are called the Syzygy Theorem. Modern treatments, however, focus on
the existence of a resolution of length ≤ n, since Hilbert’s version follows
from existence (our Theorem (3.8)) together with the properties of minimal
resolutions.

As an application of these results, let’s study the syzygies of a
homogeneous ideal in two variables.

(3.20) Proposition. Suppose that f1, . . . , fs ∈ k[x, y] are homogeneous
polynomials. Then the syzygy module Syz (f1, . . . , fs) is a twisted free
module over k[x, y].

Proof. Let I = 〈f1, . . . , fs〉 ⊂ k[x, y]. Then we get an exact sequence

0 → I → R → R/I → 0

by Proposition (1.2). Also, the definition of the syzygy module gives an
exact sequence

0 → Syz (f1, . . . , fs) → R(−d1) ⊕ · · · ⊕ R(−ds) → I → 0

where di = deg fi. Splicing these two sequences together as in Exercise 7
of §1, we get the exact sequence

0 → Syz (f1, . . . , fs) → R(−d1) ⊕ · · · ⊕ R(−ds)
ϕ1→ R → R/I → 0.

Since n = 2, Corollary (3.19) implies that ker(ϕ1) = Syz (f1, . . . , fs) is
free, and the proposition is proved.

In §4, we will use the Hilbert polynomial to describe the degrees of the
generators of Syz (f1, . . . , fs) in the special case when all of the fi have the
same degree.

ADDITIONAL EXERCISES FOR §3

Exercise 7. Assume that f1, . . . , fs ∈ k[x, y] are homogeneous and not
all zero. We know that Syz (f1, . . . , fs) is free by Proposition (3.20), so
that if we ignore gradings, Syz (f1, . . . , fs) ∼= Rm for some m. This gives
an exact sequence

0 → Rm → Rs → I → 0.
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Prove that m = s − 1 and conclude that we are in the situation of
the Hilbert-Burch Theorem from §2. Hint: As in Exercise 11 of §2, let
K = k(x1, . . . , xn) be the field of rational functions coming from R =
k[x1, . . . , xn]. Explain why the above sequence gives a sequence

0 → Km → Ks → K → 0

and show that this new sequence is also exact. The result will then follow
from the dimension theorem of linear algebra (see Exercise 8 of §1). The
ideas used in Exercise 11 of §2 may be useful.

Exercise 8. Prove Proposition (3.3). Hint: Show a ⇒ c ⇒ b ⇒ a.

Exercise 9. Prove Proposition (3.4).

Exercise 10. Complete the proof of Proposition (3.10).

Exercise 11. Suppose that M is a module over k[x1, . . . , xn] generated
by f1, . . . , fm. As in the proof of Theorem (3.13), let 〈x1, . . . , xn〉M be the
submodule generated by xifj for all i, j. Also assume that ψ : M → M is a
graded homomorphism of degree zero such that v − ψ(v) ∈ 〈x1, . . . , xn〉M
for all v ∈ M . Then prove that ψ is an isomorphism. Hint: By part b of
Exercise 3, it suffices to show that ψ : Mt → Mt is onto. Prove this by
induction on t, using part a of Exercise 3 to start the induction.

Exercise 12. Suppose that we have a diagram of R-modules and
homomorphisms

A
ϕ−→ B

α ↓ ↓ β

C
ψ−→ D

which commutes in the sense of Definition (3.11). If in addition ϕ, ψ are
onto and α, β are isomorphisms, then prove that α restricted to ker(ϕ)
induces an isomorphism ᾱ : ker(ϕ) → ker(ψ).

Exercise 13. This exercise is concerned with the proof of Theorem (3.15).
We will use the same notation as in that proof, including the sequence of
mappings

· · · → F�+1
ψ�+1→ G�

ψ�→ G�−1
ψ�−1→ F�−2 → · · · .

a. Prove that ϕ�(
∑m

i=1 aiei) = 0 if and only if ψ�(
∑m

i=2 aiei) = 0 and
a1c1 +

∑m
i=2 aidi = 0.

b. Use part a to prove that the above sequence is exact at G�.
c. Prove that the above sequence is exact at F�+1. Hint: Do you see why

it suffices to show that ker(ϕ�+1) = ker(ψ�+1)?



§3. Graded Resolutions 279

d. Prove the second line of (3.18), i.e., that ker(ϕ�) ∼= ker(ψ�). Hint: Use
part a.

e. Prove the third line of (3.18), i.e., that ker(ϕ�+1) = ker(ψ�+1). Hint:
You did this in part c!

Exercise 14. In the proof of Theorem (3.15), we constructed a certain
homomorphism ψ : G� → G�−1. Suppose that A� is the matrix of ϕ� :
F� → F�−1 with respect to the bases e1, . . . , em of F� and u1, . . . , ut of
F�−1. Write A� in the form

A� =
(

A00 A01
A10 A11

)
where A00 = c1 and A01 = (c2, . . . , ct) as in (3.16), and A10 =
(d2, . . . , dm)T , where the di are from the definition of ψ�. If we let B� be
the matrix of ψ� with respect to the bases e2, . . . , em of G� and u2, . . . , ut

of G�−1, then prove that

B� = A00 − A01A
−1
00 A10.

What’s remarkable is that this formula is identical to equation (6.5) in
Chapter 3. As happens often in mathematics, the same idea can appear in
very different contexts.

Exercise 15. In k[x0, . . . , xn], n ≥ 2, consider the homogeneous ideal In

defined by the determinants of the
(
n
2

)
2×2 submatrices of the 2×n matrix

M =
(

x0 x1 · · · xn−1
x1 x2 · · · xn

)
.

For instance, I2 = 〈x0x2−x2
1〉 is the ideal of a conic section in P

2. We have
already seen I3 in different notation (where?).
a. Show that In is the ideal of the rational normal curve of degree n in

P
n—the image of the mapping given in homogeneous coordinates by

ϕ : P
1 → P

n

(s, t) �→ (sn, sn−1t, . . . , stn−1, tn).

b. Do explicit calculations to find the graded resolutions of the ideals I4, I5.
c. Show that the first syzygy module of the generators for In is generated

by the three-term syzygies obtained by appending a copy of the first
(resp. second) row of M to M , to make a 3 × n matrix M ′ (resp. M ′′),
then expanding the determinants of all 3 × 3 submatrices of M ′ (resp.
M ′′) along the new row.

d. Conjecture the general form of a graded resolution of In. (Proving this
conjecture requires advanced techniques like the Eagon-Northcott com-
plex . This and other interesting topics are discussed in Appendix A2.6
of [Eis].)
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§4 Hilbert Polynomials and Geometric Applications

In this section, we will study Hilbert functions and Hilbert polynomials.
These are computed using the graded resolutions introduced in §3 and con-
tain some interesting geometric information. We will then give applications
to the ideal of three points in P

2, parametric equations in the plane, and
invariants of finite group actions.

Hilbert Functions and Hilbert Polynomials
We begin by defining the Hilbert function of a graded module. Because we
will be dealing with projective space P

n, it is convenient to work over the
polynomial ring R = k[x0, . . . , xn] in n + 1 variables.

If M is a finitely generated graded R-module, recall from Exercise 3 of
§3 that for each t, the degree t homogeneous part Mt is a finite dimensional
vector space over k. This leads naturally to the definition of the Hilbert
function.

(4.1) Definition. If M is a finitely generated graded module over R =
k[x0, . . . , xn], then the Hilbert function HM (t) is defined by

HM (t) = dimk Mt,

where as usual, dimk means dimension as a vector space over k.

The most basic example of a graded module is R = k[x0, . . . , xn] itself.
Since Rt is the vector space of homogeneous polynomials of degree t in
n + 1 variables, Exercise 19 of Chapter 3, §4 implies that for t ≥ 0, we
have

HR(t) = dimk Rt =
(

t + n

n

)
,

If we adopt the convention that
(
a
b

)
= 0 if a < b, then the above formula

holds for all t. Similarly, the reader should check that the Hilbert function
of the twisted module R(d) is given by

(4.2) HR(d)(t) =
(

t + d + n

n

)
, t ∈ Z.

An important observation is that for t ≥ 0 and n fixed, the binomial
coefficient

(
t+n
n

)
is a polynomial of degree n in t. This is because

(4.3)
(

t + n

n

)
=

(t + n)!
t!n!

=
(t + n)(t + n − 1) · · · (t + 1)

n!
.
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It follows that HR(t) is given by a polynomial for t sufficiently large (t ≥ 0
in this case). This will be important below when we define the Hilbert
polynomial.

Here are some exercises which give some simple properties of Hilbert
functions.

Exercise 1. If M is a finitely generated graded R-module and M(d) is
the twist defined in Proposition (3.4), then show that

HM(d)(t) = HM (t + d)

for all t. Note how this generalizes (4.2).

Exercise 2. Suppose that M , N and P are finitely generated graded R-
modules.
a. The direct sum M ⊕ N was discussed in Exercise 1 of §3. Prove that

HM⊕N = HM + HN .
b. More generally, if we have an exact sequence

0 → M
α→ P

β→ N → 0

where α and β are graded homomorphisms of degree zero, then show
that HP = HM + HN .

c. Explain how part b generalizes part a. Hint: What exact sequence do
we get from M ⊕ N?

It follows from these exercises that we can compute the Hilbert func-
tion of any twisted free module. However, for more complicated modules,
computing the Hilbert function can be rather nontrivial. There are several
ways to study this problem. For example, if I ⊂ R = k[x0, . . . , xn] is a
homogeneous ideal, then the quotient ring R/I is a graded R-module, and
in Chapter 9, §3 of [CLO], it is shown than if 〈LT(I)〉 is the ideal of initial
terms for a monomial order on R, then the Hilbert functions HR/I and
HR/〈LT(I)〉 are equal. Using the techniques of Chapter 9, §2 of [CLO], it is
relatively easy to compute the Hilbert function of a monomial ideal. Thus,
once we compute a Gröbner basis of I, we can find the Hilbert function of
R/I. (Note: The Hilbert function HR/I is denoted HFI in [CLO].)

A second way to compute Hilbert functions is by means of graded
resolutions. Here is the basic result.

(4.4) Theorem. Let R = k[x0, . . . , xn] and let M be a graded R-module.
Then, for any graded resolution of M

0 → Fk → Fk−1 → · · · → F0 → M → 0,
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we have

HM (t) = dimk Mt =
k∑

j=0

(−1)j dimk(Fj)t =
k∑

j=0

(−1)jHFj (t).

Proof. In a graded resolution, all the homomorphisms are homogeneous
of degree zero, hence for each t, restricting all the homomorphisms to the
degree t homogeneous parts of the graded modules, we also have an exact
sequence of finite dimensional k-vector spaces

0 → (Fk)t → (Fk−1)t → · · · → (F0)t → Mt → 0.

The alternating sum of the dimensions in such an exact sequence is 0, by
Exercise 8 of §1. Hence

dimk Mt =
k∑

j=0

(−1)j dimk(Fj)t,

and the theorem follows by the definition of Hilbert function.

Since we know the Hilbert function of any twisted free module (by (4.2)
and Exercise 2), it follows that the Hilbert function of a graded module
M can be calculated easily from a graded resolution. For example, let’s
compute the Hilbert function of the homogeneous ideal I of the twisted
cubic in P

3, namely

(4.5) I = 〈xz − y2, xw − yz, yw − z2〉 ⊂ R = k[x, y, z, w].

In Exercise 2 of §2 of this chapter, we found that I has a graded resolution
of the form

0 → R(−3)2 → R(−2)3 → I → 0.

As in the proof of Theorem (4.4), this resolution implies

dimk It = dimk R(−2)3t − dimk R(−3)2t

for all t. Applying Exercise 2 and (4.2), this can be rewritten as

HI(t) = 3
(

t − 2 + 3
3

)
− 2

(
t − 3 + 3

3

)
= 3

(
t + 1

3

)
− 2

(
t

3

)
.

Using the exact sequence 0 → I → R → R/I → 0, Exercise 2 implies that

HR/I(t) = HR(t) − HI(t) =
(

t + 3
3

)
− 3

(
t + 1

3

)
+ 2

(
t

3

)
for all t. For t = 0, 1, 2, one (or both) of the binomial coefficients from HI

is zero. However, computing HR/I(t) separately for t ≤ 2 and doing some
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algebra, one can show that

(4.6) HR/I(t) = 3t + 1

for all t ≥ 0.
In this example, the Hilbert function is a polynomial once t is sufficiently

large (t ≥ 0 in this case). This is a special case of the following general
result.

(4.7) Proposition. If M is a finitely generated R-module, then there is
a unique polynomial HPM such that

HM (t) = HPM (t)

for all t sufficiently large.

Proof. The key point is that for a twisted free module of the form

F = R(−d1) ⊕ · · · ⊕ R(−dm),

Exercise 2 and (4.2) imply that

HF (t) =
m∑

i=1

(
t − di + n

n

)
.

Furthermore, (4.3) shows that this is a polynomial in t provided t ≥
max(d1, . . . , dm).

Now suppose that M is a finitely generated R-module. We can find a
finite graded resolution

0 → F� → · · · → F0 → M → 0,

and Theorem (4.4) tells us that

HM (t) =
�∑

j=0

(−1)jHFj (t).

The above computation implies that HFj (t) is a polynomial in t for t
sufficiently large, so that the same is true for HM (t).

The polynomial HPM given in Proposition (4.7) is called the Hilbert
polynomial of M . For example, if I is the ideal given by (4.5), then (4.6)
implies that

(4.8) HPR/I(t) = 3t + 1

in this case.
The Hilbert polynomial contains some interesting geometric information.

For example, a homogeneous ideal I ⊂ k[x0, . . . , xn] determines the pro-
jective variety V = V(I) ⊂ P

n, and the Hilbert polynomial tells us the
following facts about V :
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• The degree of the Hilbert polynomial HPR/I is the dimension of the
variety V . For example, in Chapter 9 of [CLO], this is the definition of
the dimension of a projective variety.
• If the Hilbert polynomial HPR/I has degree d = dim V , then one can

show that its leading term is (D/d!) td for some positive integer D. The
integer D is defined to be the degree of the variety V . One can also
prove that D equals the number of points where V meets a generic (n−
d)-dimensional linear subspace of P

n.

For example, the Hilbert polynomial HPR/I(t) = 3t+1 from (4.8) shows
that the twisted cubic has dimension 1 and degree 3. In the exercises at
the end of the section, you will compute additional examples of Hilbert
functions and Hilbert polynomials.

The Ideal of Three Points
Given a homogeneous ideal I ⊂ k[x0, . . . , xn], we get the projective variety
V = V(I). We’ve seen that a graded resolution enables us to compute the
Hilbert polynomial, which in turn determines geometric invariants of V
such as the dimension and degree. However, the actual terms appearing in
a graded resolution of the ideal I encode additional geometric information
about the variety V . We will illustrate this by considering the form of the
resolution of the ideal of a collection of points in P

2. For example, consider
varieties consisting of three distinct points, namely V = {p1, p2, p3} ⊂ P

2.
There are two cases here, depending on whether the pi are collinear or not.

We begin with a specific example.

Exercise 3. Suppose that V = {p1, p2, p3} = {(0, 0, 1), (1, 0, 1), (0, 1, 1)}.
a. Show that I = I(V ) is the ideal 〈x2 − xz, xy, y2 − yz〉 ⊂ R = k[x, y, z].
b. Show that we have a graded resolution

0 → R(−3)2 → R(−2)3 → I → 0

and explain how this relates to (1.10).
c. Compute that the Hilbert function of R/I is

HR/I(t) =
(

t + 2
2

)
− 3

(
t

2

)
+ 2

(
t − 1

2

)
=
{

1 if t = 0,
3 if t ≥ 1.

The Hilbert polynomial in Exercise 3 is the constant polynomial 3, so
the dimension is 0 and the degree is 3, as expected. There is also some nice
intuition lying behind the graded resolution

(4.9) 0 → R(−3)2 → R(−2)3 → I → 0
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found in part b of the exercise. First, note that I0 = {0} since 0 is the
only constant vanishing on the points, and I1 = {0} since the points of
V = {(0, 0, 1), (1, 0, 1), (0, 1, 1)} are noncollinear. On the other hand, there
are quadratics which vanish on V . One way to see this is to let �ij be the
equation of the line vanishing on points pi and pj . Then f1 = �12�13, f2 =
�12�23, f3 = �13�23 are three quadratics vanishing precisely on V . Hence
it makes sense that I is generated by three quadratics, which is what the
R(−2)3 in (4.9) says. Also, notice that f1, f2, f3 have obvious syzygies of
degree 1, for example, �23f1 − �13f2 = 0. It is less obvious that two of
these syzygies are free generators of the syzygy module, but this is what
the R(−3)2 in (4.9) means.

From a more sophisticated point of view, the resolution (4.9) is fairly
obvious. This is because of the converse of the Hilbert-Burch Theorem
discussed at the end of §2, which applies here since V ⊂ P

2 is a finite set
of points and hence is Cohen-Macaulay of dimension 2 − 2 = 0.

The example presented in Exercise 3 is more general than one might sus-
pect. This is because for three noncollinear points p1, p2, p3, there is a linear
change of coordinates on P

2 taking p1, p2, p3 to (0, 0, 1), (1, 0, 1), (0, 1, 1).
Using this, we see that if I is the ideal of any set of three noncollinear
points, then I has a free resolution of the form (4.9), so that the Hilbert
function of I is given by part c of Exercise 3.

The next two exercises will study what happens when the three points
are collinear.

Exercise 4. Suppose that V = {(0, 1, 0), (0, 0, 1), (0, λ, 1)}, where λ �= 0.
These points lie on the line x = 0, so that V is a collinear triple of points.
a. Show that I = I(V ) has a graded resolution of the form

0 → R(−4) → R(−3) ⊕ R(−1) → I → 0.

Hint: Show that I = 〈x, yz(y − λz)〉.
b. Show that the Hilbert function of R/I is

HR/I(t) =

⎧⎨⎩ 1 if t = 0,
2 if t = 1,
3 if t ≥ 2.

Exercise 5. Suppose now that V = {p1, p2, p3} is any triple of collinear
points in P

2. Show that I = I(V ) has a graded resolution of the form

(4.10) 0 → R(−4) → R(−3) ⊕ R(−1) → I → 0,

and conclude that the Hilbert function of R/I is as in part b of Exercise 4.
Hint: Use a linear change of coordinates in P

2.

The intuition behind (4.10) is that in the collinear case, V is the intersec-
tion of a line and a cubic, and the only syzygy between these is the obvious
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one. In geometric terms, we say that V is a complete intersection in this
case since its dimension (= 0) is the dimension of the ambient space (=
2) minus the number of defining equations (= 2). Note that a noncollinear
triple isn’t a complete intersection since there are three defining equations.

This sequence of exercises shows that for triples of points in P
2, their

corresponding ideals I all give the same Hilbert polynomial HPR/I = 3.
But depending on whether the points are collinear or not, we get different
resolutions (4.10) and (4.9) and different Hilbert functions, as in part c of
Exercise 3 and part b of Exercise 4. This is quite typical of what happens.

Here is a similar but more challenging example.

Exercise 6. Now consider varieties V = {p1, p2, p3, p4} in P
2, and write

I = I(V ) ⊂ R = k[x, y, z] as above.
a. First assume the points of V are in general position in the sense that no

three are collinear. Show that I2 is 2-dimensional over k, and that I is
generated by any two linearly independent elements of I2. Deduce that
a graded resolution of I has the form

0 → R(−4) → R(−2)2 → I → 0,

and use this to compute HR/I(t) for all t. Do you see how the R(−2)2

is consistent with Bézout’s Theorem?
b. Now assume that three of the points of V lie on a line L ⊂ P

2 but the
fourth does not. Show that every element of I2 is reducible, containing
as a factor a linear polynomial vanishing on L. Show that I2 does not
generate I in this case, and deduce that a graded resolution of I has the
form

0 → R(−3) ⊕ R(−4) → R(−2)2 ⊕ R(−3) → I → 0.

Use this to compute HR/I(t) for all t.
c. Finally, consider the case where all four of the points are collinear. Show

that in this case, the graded resolution has the form

0 → R(−5) → R(−1) ⊕ R(−4) → I → 0,

and compute the Hilbert function of R/I for all t.
d. In which cases is V a complete intersection?

Understanding the geometric significance of the shape of the graded res-
olution of I = I(V ) in more involved examples is an area of active research
in contemporary algebraic geometry. A conjecture of Mark Green concern-
ing the graded resolutions of the ideals of canonical curves has stimulated
many of the developments here. See [Schre2] and [EH] for some earlier work
on Green’s conjecture. Recent articles of Montserrat Teixidor ([Tei]) and
Claire Voisin ([Voi]) have proved Green’s conjecture for a large class of
curves. [EH] contains articles on other topics concerning resolutions. Sec-
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tion 15.12 of [Eis] has some interesting projects dealing with resolutions,
and some of the exercises in Section 15.11 are also relevant.

Parametric Plane Curves
Here, we will begin with a curve in k2 parametrized by rational functions

(4.11) x =
a(t)
c(t)

, y =
b(t)
c(t)

,

where a, b, c ∈ k[t] are polynomials such that c �= 0 and GCD(a, b, c) = 1.
We also set n = max(deg a, deg b, deg c). Parametrizations of this form
play an important role in computer-aided geometric design, and a ques-
tion of particular interest is the implicitization problem, which asks how
the equation f(x, y) = 0 of the underlying curve is obtained from the
parametrization (4.11). An introduction to implicitization can be found in
Chapter 3 of [CLO].

A basic object in this theory is the ideal

(4.12) I = 〈c(t)x − a(t), c(t)y − b(t)〉 ⊂ k[x, y, t].

This ideal has the following interpretation. Let W ⊂ k be the roots of c(t),
i.e., the solutions of c(t) = 0. Then we can regard (4.11) as the function
F : k −W → k2 defined by

F (t) =
(

a(t)
c(t)

,
b(t)
c(t)

)
.

In Exercise 14 at the end of the section, you will show that the graph of
F , regarded as a subset of k3, is precisely the variety V(I). From here,
one can prove that the intersection I1 = I ∩ k[x, y] is an ideal in k[x, y]
such that V(I1) ⊂ k2 is the smallest variety containing the image of the
parametrization (4.11) (see Exercise 14). In the terminology of Chapter 2,
I1 = I ∩ k[x, y] is an elimination ideal, which we can compute using a
Gröbner basis with respect to a suitable monomial order.

It follows that the ideal I contains a lot of information about the curve
parametrized by (4.11). Recently, it was discovered (see [SSQK] and [SC])
that I provides other parametrizations of the curve, different from (4.11).
To see how this works, let I(1) denote the subset of I consisting of all
elements of I of total degee at most 1 in x and y. Thus

(4.13) I(1) = {f ∈ I : f = A(t)x + B(t)y + C(t)}.
An element in A(t)x + B(t)y + C(t) ∈ I(1) is called a moving line since
for t fixed, the equation A(t)x + B(t)y + C(t) = 0 describes a line in the
plane, and as t moves, so does the line.



288 Chapter 6. Free Resolutions

Exercise 7. Given a moving line A(t)x + B(t)y + C(t) ∈ I(1), suppose
that t ∈ k satisfies c(t) �= 0. Then show that the point given by (4.11) lies
on the line A(t)x + B(t)y + C(t) = 0. Hint: Use I(1) ⊂ I.

Now suppose that we have moving lines f, g ∈ I(1). Then, for a fixed t,
we get a pair of lines, which typically intersect in a point. By Exercise 7,
each of these lines contains (a(t)/c(t), b(t)/c(t)), so this must be the point
of intersection. Hence, as we vary t, the intersection of the moving lines
will trace out our curve.

Notice that our original parametrization (4.11) is given by moving lines,
since we have the vertical line x = a(t)/c(t) and the horizontal line y =
b(t)/c(t). However, by allowing more general moving lines, one can get
polynomials of smaller degree in t. The following exercise gives an example
of how this can happen.

Exercise 8. Consider the parametrization

x =
2t2 + 4t + 5
t2 + 2t + 3

, y =
3t2 + t + 4
t2 + 2t + 3

.

a. Prove that p = (5t + 5)x− y − (10t + 7) and q = (5t− 5)x− (t + 2)y +
(−7t + 11) are moving lines, i.e., p, q ∈ I, where I is as in (4.12).

b. Prove that p and q generate I, i.e., I = 〈p, q〉.

In Exercise 8, the original parametrization had maximum degree 2 in t,
while the moving lines p and q have maximum degree 1. This is typical
of what happens, for we will show below that in general, if n is the max-
imum degree of a, b, c, then there are moving lines p, q ∈ I such that p
has maximum degree µ ≤ �n/2� in t and q has maximum degree n − µ.
Furthermore, p and q are actually a basis of the ideal I. In the terminology
of [CSC], this is the moving line basis or µ-basis of the ideal.

Our goal here is to prove this result—the existence of a µ-basis—and to
explain what this has to do with graded resolutions and Hilbert functions.
We begin by studying the subset I(1) ⊂ I defined in (4.13). It is closed
under addition, and more importantly, I(1) is closed under multiplication
by elements of k[t] (be sure you understand why). Hence I(1) has a natural
structure as a k[t]-module. In fact, I(1) is a syzygy module, which we will
now show.

(4.14) Lemma. Let a, b, c ∈ k[t] satisfy c �= 0 and GCD(a, b, c) = 1, and
set I = 〈cx − a, cy − b〉. Then, for A, B, C ∈ k[t],

A(t)x + B(t)y + C(t) ∈ I ⇐⇒ A(t)a(t) + B(t)b(t) + C(t)c(t) = 0.

Thus the map A(t)x + B(t)y + C(t) �→ (A, B, C) defines an isomorphism
of k[t]-modules I(1) ∼= Syz (a, b, c).
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Proof. To prove ⇒, consider the ring homomorphism k[x, y, t] → k(t)
which sends x, y, t to a(t)

c(t) , b(t)
c(t) , t. Since the generators of I map to zero,

so does A(t)x + B(t)y + C(t) ∈ I. Thus A(t) a(t)
c(t) + B(t) b(t)

c(t) + C(t) = 0
in k(t), and multiplying by c(t) gives the desired equation.

For the other implication, let S = k[t] and consider the sequence

(4.15) S3 α→ S3 β→ S

where α(h1, h2, h3) = (ch1 + bh3, ch2−ah3,−ah1− bh2) and β(A, B, C) =
Aa+ Bb+ Cc. One easily checks that β ◦α = 0, so that im(α) ⊂ ker(β). It
is less obvious that (4.15) is exact at the middle term, i.e., im(α) = ker(β).
This will be proved in Exercise 15 below. The sequence (4.15) is the Koszul
complex determined by a, b, c (see Exercise 10 of §2 for another example of
a Koszul complex). A Koszul complex is not always exact, but Exercise 15
will show that (4.15) is exact in our case because GCD(a, b, c) = 1.

Now suppose that Aa + Bb + Cc = 0. We need to show that Ax +
By + C ∈ I. This is now easy, since our assumption on A, B, C implies
(A, B, C) ∈ ker(β). By the exactness of (4.15), (A, B, C) ∈ im(α), which
means we can find h1, h2, h3 ∈ k[t] such that

A = ch1 + bh3, B = ch2 − ah3, C = −ah1 − bh2.

Hence

Ax + By + C = (ch1 + bh3)x + (ch2 − ah3)y − ah1 − bh2

= (h1 + yh3)(cx − a) + (h2 − xh3)(cy − b) ∈ I,

as desired. The final assertion of the lemma now follows immediately.

(4.16) Definition. Given a parametrization (4.11), we get the ideal I =
〈cx− a, cy − b〉 and the syzygy module I(1) from (4.13). Then we define µ
to the minimal degree in t of a nonzero element in I(1).

The following theorem shows the existence of a µ-basis of the ideal I.

(4.17) Theorem. Given (4.11) where c �= 0 and GCD(a, b, c) = 1, set
n = max(deg a, deg b, deg c) and I = 〈cx − a, cy − b〉 as usual. If µ is as
in Definition (4.16), then

µ ≤ �n/2�,
and we can find p, q ∈ I such that p has degree µ in t, q has degree n − µ
in t, and I = 〈p, q〉.
Proof. We will study the syzygy module Syz (a, b, c) using the methods of
§3. For this purpose, we need to homogenize a, b, c. Let t, u be homogeneous
variables and consider the ring R = k[t, u]. Then ã(t, u) will denote the
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degree n homogenization of a(t), i.e.,

ã(t, u) = un a( t
u ) ∈ R

In this way, we get degree n homogeneous polynomials ã, b̃, c̃ ∈ R, and the
reader should check that GCD(a, b, c) = 1 and n = max(deg a, deg b, deg c)
imply that ã, b̃, c̃ have no common zeros in P

1. In other words, the only
solution of ã = b̃ = c̃ = 0 is t = u = 0.

Now let J = 〈ã, b̃, c̃〉 ⊂ R = k[t, u]. We first compute the Hilbert poly-
nomial HPJ of J . The key point is that since ã = b̃ = c̃ = 0 have only
one solution, no matter what the field is, the Finiteness Theorem from §2
of Chapter 2 implies that the quotient ring R/J = k[t, u]/J is a finite di-
mensional vector space over k. But J is a homogeneous ideal, which means
that R/J is a graded ring. In order for S/J to have finite dimension, we
must have dimk(R/J)s = 0 for all s sufficiently large (we use s instead of
t since t is now one of our variables). It follows that HPR/J is the zero
polynomial. Then the exact sequence

0 → J → R → R/J → 0

and Exercise 2 imply that

(4.18) HPJ (s) = HPR(s) =
(

s + 1
1

)
= s + 1

since R = k[t, u]. For future reference, note also that by (4.2),

HPR(−d)(s) =
(

s − d + 1
1

)
= s − d + 1.

Now consider the exact sequence

0 → Syz (ã, b̃, c̃) → R(−n)3 α→ J → 0,

where α(A, B, C) = Aã + Bb̃ + Cc̃. By Proposition (3.20), the syzygy
module Syz (ã, b̃, c̃) is free, which means that we get a graded resolution

(4.19) 0 → R(−d1) ⊕ · · · ⊕ R(−dm)
β→ R(−n)3 α→ J → 0

for some d1, . . . , dm. By Exercise 2, the Hilbert polynomial of the middle
term is the sum of the other two Hilbert polynomials. Since we know HPJ

from (4.18), we obtain

3(s − n + 1) = (s − d1 + 1) + · · · + (s − dm + 1) + (s + 1)

= (m + 1)s + m + 1 − d1 − · · · − dm.

It follows that m = 2 and 3n = d1 + d2. Thus (4.19) becomes

(4.20) 0 → R(−d1) ⊕ R(−d2)
β→ R(−n)3 α→ J → 0.

The matrix L representing β is a 3 × 2 matrix
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(4.21) L =

⎛⎝ p1 q1
p2 q2
p3 q3

⎞⎠,

and since β has degree zero, the first column of L consists of homogeneous
polynomials of degree µ1 = d1 − n and the second column has degree
µ2 = d2 − n. Then µ1 + µ2 = n follows from 3n = d1 + d2.

We may assume that µ1 ≤ µ2. Since the first column (p1, p2, p3) of (4.21)
satisfies p1ã + p2b̃ + p3c̃ = 0, setting u = 1 gives

p1(t, 1)a(t) + p2(t, 1)b(t) + p3(t, 1)c(t) = 0.

Thus p = p1(t, 1)x+p2(t, 1)y +p3(t, 1) ∈ I(1) by Lemma (4.14). Similarly,
the second column of (4.21) gives q = q1(t, 1)x + q2(t, 1)y + q3(t, 1) ∈ I(1).
We will show that p and q satisfy the conditions of the theorem.

First observe that the columns of L generate Syz (ã, b̃, c̃) by exactness.
In Exercise 16, you will show this implies that p and q generate I(1). Since
cx− a and cy − b are in I(1), we obtain I = 〈cx − a, cy − b〉 ⊂ 〈p, q〉. The
other inclusion is immediate from p, q ∈ I(1) ⊂ I, and I = 〈p, q〉 follows.

The next step is to prove µ1 = µ. We begin by showing that p has degree
µ1 in t. This follows because p1(t, u), p2(t, u), p3(t, u) are homogeneous of
degree µ1. If the degree of all three were to drop when we set u = 1, then
each pi would be divisible by u. However, since p1, p2, p3 give a syzygy
on ã, b̃, c̃, so would p1/u, p2/u, p3/u. Hence we would have a syzygy of
degree < µ1. But the columns of L generate the syzygy module, so this is
impossible since µ1 ≤ µ2. Hence p has degree µ1 in t, and then µ ≤ µ1
follows from the definition of µ. However, if µ < µ1, then we would have
Ax + By + C ∈ I(1) of degree < µ1. This gives a syzygy of a, b, c, and
homogenizing, we would get a syzygy of degree < µ1 among ã, b̃, c̃. As we
saw earlier in the paragraph, this is impossible.

We conclude that p has degree µ in t, and then µ1 + µ2 = n implies that
q has degree µ2 = n−µ in t. Finally, µ ≤ �n/2� follows from µ = µ1 ≤ µ2,
and the proof of the theorem is complete.

As already mentioned, the basis p, q constructed in Theorem (4.17) is
called a µ-basis of I. One property of the µ-basis is that it can be used to
find the implicit equation of the parametrization (4.11). Here is an example
of how this works.

Exercise 9. The parametrization studied in Exercise 8 gives the ideal

I =
〈
(t2 + 2t + 3)x − (2t2 + 4t + 5), (t2 + 2t + 3)y − (3t2 + t + 4)

〉
.

a. Use Gröbner basis methods to find the intersection I ∩k[x, y]. This gives
the implicit equation of the curve.

b. Show that the resultant of the generators of I with respect to t gives
the implicit equation.
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c. Verify that the polynomials p = (5t + 5)x − y − (10t + 7) and q =
(5t− 5)x− (t + 2)y + (−7t + 11) are a µ-basis for I. Thus µ = 1, which
is the biggest possible value of µ (since n = 2).

d. Show that the resultant of p and q also gives the implicit equation.

Parts b and d of Exercise 9 express the implicit equation as a resultant.
However, if we use the Sylvester determinant, then part b uses a 4 × 4
determinant, while part d uses a 2 × 2 determinant. So the µ-basis gives a
smaller expression for the resultant. In general, one can show (see [CSC])
that for the µ-basis, the resultant can be expressed as an (n− µ)× (n− µ)
determinant. Unfortunately, it can also happen that this method gives a
power of the actual implicit equation (see Section 4 of [CSC]).

Earlier in this section, we considered the ideal of three points in P
2.

We found that although all such ideals have the same Hilbert polynomial,
we can distinguish the collinear and noncollinear cases using the Hilbert
function. The situation is similar when dealing with µ-bases. Here, we have
the ideal J = 〈ã, b̃, c̃〉 ⊂ R = k[t, u] from the proof of Theorem (4.17). In
the following exercise you will compute the Hilbert function of R/J .

Exercise 10. Let J = 〈ã, b̃, c̃〉 be as in the proof of Theorem (4.17). In
the course of the proof, we showed that the Hilbert polynomial of R/J is
the zero polynomial. But what about the Hilbert function?
a. Prove that the Hilbert function HR/J is given by

HR/J(s) =

⎧⎪⎪⎨⎪⎪⎩
s + 1 if 0 ≤ s ≤ n − 1
3n − 2s − 2 if n ≤ s ≤ n + µ − 1
2n − s − µ − 1 if n + µ ≤ s ≤ 2n − µ − 1
0 if 2n − µ ≤ s.

b. Show that the largest value of s such that HR/J(s) �= 0 is s = 2n −
µ− 2, and conclude that knowing µ is equivalent to knowing the Hilbert
function of the quotient ring R/J .

c. Compute the dimension of R/J as a vector space over k.

In the case of the ideal of three points, note that the noncollinear case
is generic. This is true in the naive sense that one expects three randomly
chosen points to be noncollinear, and this can be made more precise using
the notion of generic given in Definition (5.6) of Chapter 3. Similarly, for
µ-bases, there is a generic case. One can show (see [CSC]) that among
parametrizations (4.11) with n = max(deg a, deg b, deg c), the “generic”
parametrization has µ = �n/2�, the biggest possible value. More generally,
one can compute the dimension of the set of all parametrizations with a
given µ. This dimension decreases as µ decreases, so that the smaller the
µ, the more special the parametrization.

We should also mention that the Hilbert-Burch Theorem discussed in §2
has the following nice application to µ-bases.
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(4.22) Proposition. The µ-basis coming from the columns of (4.21) can
be chosen such that

ã = p2q3 − p3q2, b̃ = −(p1q3 − p3q1), c̃ = p1q2 − p1q2.

Dehomogenizing, this means that a, b, c can be computed from the coeffi-
cients of the µ-basis

(4.23)
p = p1(t, 1)x + p2(t, 1)y + p3(t, 1)

q = q1(t, 1)x + q2(t, 1)y + q3(t, 1).

Proof. To see why this is true, first note that the exact sequence (4.20)
has the form required by Proposition (2.6) of §2. Then the proposition
implies that if f̃1, f̃2, f̃3 are the 2 × 2 minors of (4.21) (this is the notation
of Proposition (2.6)), then there is a polynomial g ∈ k[t, u] such that
ã = gf̃1, b̃ = gf̃2, c̃ = gf̃3. However, since ã, b̃, c̃ have no common roots,
g must be a nonzero constant. If we replace pi with gpi, we get a µ-basis
with the desired properties.

Exercise 11. Verify that the µ-basis studied in Exercises 8 and 9 satisfies
Proposition (4.22) after changing p by a suitable constant.

It is also possible to generalize Theorem (4.17) by considering curves in
m-dimensional space km given parametrically by

(4.24) x1 =
a1(t)
c(t)

, . . . , xm =
am(t)
c(t)

,

where c �= 0 and GCD(a1, . . . , am) = 1. In this situation, the syzygy
module Syz (a1, . . . , am, c) and its homogenization play an important role,
and the analog of the µ-basis (4.13) consists of m polynomials

(4.25) pj = p1j(t, 1)x1 + · · · + pmj(t, 1)xm + pm+1j(t, 1), 1 ≤ j ≤ m,

which form a basis for the ideal I = 〈cx1− a1, . . . , cxm− am〉. If we fix t in
(4.25), then the equation pj = 0 is a hyperplane in km, so that as t varies,
we get a moving hyperplane. One can prove that the common intersection
of the m hyperplanes pj = 0 sweeps out the given curve and that if pj has
degree µj in t, then µ1 + · · · + µm = n. Thus we have an m-dimensional
version of Theorem (4.17). See Exercise 17 for the proof.

We can use the Hilbert-Burch Theorem to generalize Proposition (4.22)
to the more general situation of (4.24). The result is that up to sign, the
polynomials a1, . . . , am, c are the m × m minors of the matrix (pij(t, 1))
coming from (4.25). Note that since pj has degree µj in t, the m×m minors
(pij(t, 1)) have degree at most µ1 + · · ·+ µm = n in t. So the degrees work
out nicely. The details will be covered in Exercise 17 below.

The proof given of Theorem (4.17) makes nice use of the results of §3,
especially Proposition (3.20), and the generalization (4.24) to curves in
km shows just how powerful these methods are. The heart of what we did
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in Theorem (4.17) was to understand the structure of the syzygy module
Syz (ã, b̃, c̃) as a free module, and for the m-dimensional case, one needs
to understand Syz (ã1, . . . , ãm, c̃) for ã1, . . . , ãm, c̃ ∈ k[t, u]. Actually, in
the special case of Theorem (4.17), one can give a proof using elementary
methods which don’t require the Hilbert Syzygy Theorem. One such proof
can be found in [CSC], and another was given by Franz Meyer, all the way
back in 1887 [Mey].

Meyer’s article is interesting, for it starts with a problem completely
different from plane curves, but just as happened to us, he ended up with
a syzygy problem. He also considered the more general syzygy module
Syz (ã1, . . . , ãm, c̃), and he conjectured that this was a free module with
generators of degrees µ1, . . . , µm satisfying µ1 + · · ·+µm = n. But in spite
of many examples in support of this conjecture, his attempts at a proof
“ran into difficulties which I have at this time not been able to overcome”
[Mey, p. 73]. However, three years later, Hilbert proved everything in his
groundbreaking paper [Hil] on syzygies. For us, it is interesting to note
that after proving his Syzygy Theorem, Hilbert’s first application is to
prove Meyer’s conjecture. He does this by computing a Hilbert polynomial
(which he calls the characteristic function) in a manner remarkably similar
to what we did in Theorem (4.17)—see [Hil, p. 516]. Hilbert then concludes
with the Hilbert-Burch Theorem in the special case of k[t, u].

One can also consider surfaces in k3 parametrized by rational functions

x =
a(s, t)
d(s, t)

, y =
b(s, t)
d(s, t)

, z =
c(s, t)
d(s, t)

,

where a, b, c, d ∈ k[s, t] are polynomials such that d �= 0 and

GCD(a, b, c, d) = 1.

As above, the goal is to find the implicit equation of the surface. Surface
implicitization is an important problem in geometric modeling.

This case is more complicated because of the possible presence of base
points, which are points (s, t) at which a, b, c, d all vanish simultaneously.
As in the curve case, it is best to work homogeneously, though the commu-
tative algebra is also more complicated—for example, the syzygy module
is rarely free. However, there are still many situations where the im-
plicit equation can be computed using syzygies. See [Cox2] and [Cox3]
for introductions to this area of research and references to the literature.

Rings of Invariants
The final topic we will explore is the invariant theory of finite groups.
In contrast to the previous discussions, our presentation will not be self-
contained. Instead, we will assume that the reader is familiar with the



§4. Hilbert Polynomials and Geometric Applications 295

material presented in Chapter 7 of [CLO]. Our goal is to explain how graded
resolutions can be used when working with polynomials invariant under a
finite matrix group.

For simplicity, we will work over the polynomial ring S = C[x1, . . . , xm].
Suppose that G ⊂ GL(m, C) is a finite group. If we regard g ∈ G as giving
a change of coordinates on C

m, then substituting this coordinate change
into f ∈ S = C[x1, . . . , xm] gives another polynomial g · f ∈ S. Then
define

SG = {f ∈ C[x1, . . . , xm] : g · f = f for all g ∈ G}.
Intuitively, SG consists of all polynomials f ∈ S which are unchanged (i.e.,
invariant) under all of the coordinate changes coming from elements g ∈ G.
The set SG has the following structure:

• (Graded Subring) The set of invariants SG ⊂ S is a subring of S, meaning
that S is closed under addition and multiplication by elements of SG.
Also, if f ∈ SG, then every homogeneous component of f also lies in SG.

(See Propositions 9 and 10 of Chapter 7, §2 of [CLO].) We say that SG is
a graded subring of S. Hence the degree t homogeneous part SG

t consists
of all invariants which are homogeneous polynomials of degree t. Note that
SG is not an ideal of S.

In this situation, we define the Molien series of SG to be the formal
power series

(4.26) FG(u) =
∞∑

t=0

dimC(SG
t ) ut.

Molien series are important objects in the invariant theory of finite groups.
We will see that they have a nice relation to Hilbert functions and graded
resolutions.

A basic result proved in Chapter 7, §3 of [CLO] is:

• (Finite Generation of Invariants) For a finite group G ⊂ GL(m, C), there
are f1, . . . , fs ∈ SG such that every f ∈ SG is a polynomial in f1, . . . , fs.
Furthermore, we can assume that f1, . . . , fs are homogeneous.

This enables us to regard SG as a module over a polynomial ring as follows.
Let f1, . . . , fs be homogeneous generators of the ring of invariants SG, and
set di = deg fi. Then introduce variables y1, . . . , ys and consider the ring
R = C[y1, . . . , ys]. The ring R is useful because the map sending yi to fi

defines a ring homomorphism

ϕ : R = C[y1, . . . , ys] −→ SG

which is onto since every invariant is a polynomial in f1, . . . , fs. An impor-
tant observation is that ϕ becomes a graded homomorphism of degree zero
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provided we regard the variable yi as having degree di = deg fi. Previously,
the variables in a polynomial ring always had degree 1, but here we will
see that having deg yi = di is useful.

The kernel I = ker ϕ ⊂ R consists of all polynomial relations among
the fi. Since ϕ is onto, we get an isomorphism R/I ∼= SG. Regarding
SG as an R-module via yi · f = fif for f ∈ SG, R/I ∼= SG is an
isomorphism of R-modules. Elements of I are called syzygies among the
invariants f1, . . . , fs. (Historically, syzygies were first defined in invariant
theory, and only later was this term used in module theory, where the
meaning is slightly different).

For going any further, let’s pause for an example. Consider the group
G = {e, g, g2, g3} ⊂ GL(2, C), where

(4.27) g =
(

0 −1
1 0

)
.

The group G acts on f ∈ S = C[x1, x2] via g · f(x1, x2) = f(−x2, x1).
Then, as shown in Example 4 of Chapter 7, §3 of [CLO], the ring of
invariants SG is generated by the three polynomials

(4.28) f1 = x2
1 + x2

2, f2 = x2
1x

2
2, f3 = x3

1x2 − x1x
3
2.

This gives ϕ : R = C[y1, y2, y3] → SG where ϕ(yi) = fi. Note that y1 has
degree 2 and y2, y3 both have degree 4. One can also show that the kernel
of ϕ is I = 〈y2

3 − y2
1y2 + 4y2

2〉. This means that all syzygies are generated
by the single relation f2

3 − f2
1 f2 + 4f2

2 = 0 among the invariants (4.28).
Returning to our general discussion, the R-module structure on SG shows

that the Molien series (4.26) is built from the Hilbert function of the R-
module SG. This is immediate because

dimC(SG
t ) = HSG(t).

In Exercises 24 and 25, we will see more generally that any finitely
generated R-module has a Hilbert series

∞∑
t=−∞

HM (t) ut.

The basic idea is that one can compute any Hilbert series using a graded
resolution of M . In the case when all of the variables have degree 1, this is
explained in Exercise 24.

However, we are in a situation where the variables have degree deg yi =
di (sometimes called the weight of yi). Formula (4.2) no longer applies, so
instead we use the key fact (to be proved in Exercise 25) that the Hilbert
series of the weighted polynomial ring R = C[y1, . . . , ys] is

(4.29)
∞∑

t=0

HR(t) ut =
∞∑

t=0

dimC(Rt) ut =
1

(1 − ud1) · · · (1 − uds)
.
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Furthermore, if we define the twisted free module R(−d) in the usual way,
then one easily obtains

(4.30)
∞∑

t=0

HR(−d)(t) ut =
ud

(1 − ud1) · · · (1 − uds)

(see Exercise 25 for the details).
Let us see how this works in the example begun earlier.

Exercise 12. Consider the group G ⊂ GL(2, C) given in (4.27) with
invariants (4.28) and syzygy f2

3 + f2
1 f2 + 4f2

2 = 0.
a. Show that a minimal free resolution of SG as a graded R-module is given

by

0 −→ R(−8)
ψ−→ R

ϕ−→ RG −→ 0

where ψ is the map represented by the 1 × 1 matrix (y2
3 + y2

1y2 + 4y2
2).

b. Use part a together with (4.29) and (4.30) to show that the Molien series
of G is given by

FG(u) =
1 − u8

(1 − u2)(1 − u4)2
=

1 + u4

(1 − u2)(1 − u4)

= 1 + u2 + 3u4 + 3u6 + 5u8 + 5u10 + · · ·
c. The coefficient 1 of u2 tells us that we have a unique (up to constant)

invariant of degree 2, namely f1. Furthermore, the coefficient 3 of u4

tells us that besides the obvious degree 4 invariant f2
1 , we must have two

others, namely f2 and f3. Give similar explanations for the coefficients
of u6 and u8 and in particular explain how the coefficient of u8 proves
that we must have a nontrivial syzygy of degree 8.

In general, one can show that if the invariant ring of a finite group G is
generated by homogeneous invariants f1, . . . , fs of degree d1, . . . , ds, then
the Molien series of G has the form

FG(u) =
P (u)

(1 − ud1) · · · (1 − uds)

for some polynomial P (u). See Exercise 25 for the proof. As explained in
[Sta2], P (u) has the following intuitive meaning. If there are no nontrivial
syzygies between the fi, then the Molien series would have been

1
(1 − ud1) · · · (1 − uds)

.

Had RG been generated by homogeneous elements f1, . . . , fs of degrees
d1, . . . , ds, with homogeneous syzygies S1, . . . , Sw of degrees β1, . . . , βw

and no second syzygies, then the Molien series would be corrected to
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1 −∑
ju

βj∏
i(1 − udi)

.

In general, by the Syzygy Theorem, we get

FG(u) = (1 −∑
ju

βj +
∑

kuγk − · · ·︸ ︷︷ ︸
at most s sums

)/
∏

i(1 − udi).

One important result not mentioned so far is Molien’s Theorem, which
states that the Molien series (4.26) of a finite group G ⊂ GL(m, C) is given
by the formula

FG(u) =
1
|G|

∑
g∈G

1
det(I − ug)

where |G| is the number of elements in G and I ∈ GL(m, C) is the identity
matrix. This theorem is why (4.26) is called a Molien series. The importance
of Molien’s theorem is that it allows one to compute the Molien series in
advance. As shown by part c of Exercise 12, the Molien series can predict
the existence of certain invariants and syzygies, which is useful from a
computational point of view (see Section 2.2 of [Stu1]). A proof of Molien’s
Theorem will be given in Exercise 28.

A second crucial aspect we’ve omitted is that the ring of invariants SG

is Cohen-Macaulay. This has some far-reaching consequences for the in-
variant theory. For example, being Cohen-Macaulay predicts that there are
algebraically independent invariants θ1, . . . , θr such that the invariant ring
SG is a free module over the polynomial ring C[θ1, . . . , θr]. For example,
in the invariant ring SG = C[f1, f2, f3] considered in Exercise 12, one can
show that as a module over C[f1, f2],

SG = C[f1, f2] ⊕ f3C[f1, f2].

(Do you see how the syzygy f2
3 − f1f

2
2 + 4f2

2 = 0 enables us to get rid
of terms involving f2

3 , f3
3 , etc?) This has some strong implications for the

Molien series, as explained in [Sta2] or [Stu1].
Hence, to really understand the invariant theory of finite groups, one

needs to combine the free resolutions discussed here with a variety of
other tools, some of which are more sophisticated (such as Cohen-Macaulay
rings). Fortunately, some excellent expositions are available in the litera-
ture, and we especially recommend [Sta2] and [Stu1]. Additional references
are mentioned at the end of Chapter 7, §3 of [CLO].

This brings us to the end of our discussion of resolutions. The exam-
ples presented in this section—ideals of three points, µ-bases, and Molien
series—are merely the beginning of a wonderful collection of topics related
to the geometry of free resolutions. When combined with the elegance of
the algebra involved, it becomes clear why the study of free resolutions is
one of the richer areas of contemporary algebraic geometry.
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To learn more about free resolutions, we suggest the references [Eis],
[Schre2] and [EH] mentioned earlier in the section. The reader may also
wish to consult [BH, Chapter 4] for a careful study of Hilbert functions.

ADDITIONAL EXERCISES FOR §4

Exercise 13. The Hilbert polynomial has the property that HM (t) =
HPM (t) for all t sufficiently large. In this exercise, you will derive an explicit
bound on how large t has to be in terms of a graded resolution of M .
a. Equation (4.3) shows that the binomial coefficient

(
t+n
n

)
is given by a

polynomial of degree n in t. Show that this identity holds for all t ≥ −n
and also explain why it fails to hold when t = −n − 1.

b. For a twisted free module M = R(−d1) ⊕ · · · ⊕ R(−dm), show that
HM (t) = HPM (t) holds for t ≥ maxi(di − n).

c. Now suppose we have a graded resolution · · · → F0 → M where
Fj = ⊕iR(−dij). Then show that HM (t) = HPM (t) holds for all
t ≥ maxij(dij − n).

d. For the ideal I ⊂ k[x, y, z, w] from (4.5), we found the graded resolution

0 → R(−3)2 → R(−2)3 → R → R/I → 0.

Use this and part c to show that HR/I(t) = HPR/I(t) for all t ≥ 0.
How does this relate to (4.6)?

Exercise 14. Given a parametrization as in (4.11), we get the ideal I =
〈c(t)x − a(t), c(t)y − b(t)〉 ⊂ k[x, y, t]. We will assume GCD(a, b, c) = 1.
a. Show that V(I) ⊂ k3 is the graph of the function F : k − W → k2

defined by F (t) = (a(t)/c(t), b(t)/c(t)), where W = {t ∈ k : c(t) = 0}.
b. If I1 = I ∩ k[x, y], prove that V(I1) ⊂ k2 is the smallest variety con-

taining the parametrization (4.11). Hint: This follows by adapting the
proof of Theorem 1 of Chapter 3, §3 of [CLO].

Exercise 15. This exercise concerns the Koszul complex used in the proof
of Proposition (4.14).
a. Assuming GCD(a, b, c) = 1 in S = k[t], prove that the sequence (4.15)

is exact at its middle term. Hint: Our hypothesis implies that there
are polynomials p, q, r ∈ k[t] such that pa + qb + rc = 1. Then if
(A, B, C) ∈ ker(β), note that

A = paA + qbA + rcA

= p(−bB − cC) + qbA + rcA

= c(−pC + rA) + b(−pB + qA).

b. Using Exercise 10 of §2 as a model, show how to extend (4.15) to the
full Koszul complex
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0 → S → S3 α→ S3 β→ S → 0

of a, b, c. Also, when GCD(a, b, c) = 1, prove that the entire sequence
is exact.

c. More generally, show that a1, . . . , am ∈ k[t] give a Koszul complex and
prove that it is exact when GCD(a1, . . . , am) = 1. (This is a challenging
exercise.)

Exercise 16. In the proof of Theorem (4.17), we noted that the columns
of the matrix (4.20) generate the syzygy module Syz (ã, b̃, c̃). If we define
p, q using (4.23), then prove that p, q generate I(1).

Exercise 17. In this exercise, you will study the m-dimensional version
of Theorem (4.17). Thus we assume that we have a parametrization (4.24)
of a curve in km such that c �= 0 and GCD(a1, . . . , am) = 1. Also let

I = 〈cx1 − a1, . . . , cxm − am〉 ⊂ k[x1, . . . , xm, t]

and define

I(1) = {f ∈ I : f = A1(t)x1 + · · · + Am(t)xm + C(t)}.
a. Prove the analog of Lemma (4.14), i.e., show that there is a natural

isomorphism I(1) ∼= Syz (a1, . . . , am, c). Hint: You will use part c of
Exercise 15.

b. If n = max(deg a1, . . . , deg am, c) and ãi, c̃ ∈ R = k[t, u] are the degree
n homogenizations of ai, c, then explain why there is an injective map

β : R(−d1) ⊕ · · · ⊕ R(−ds) → R(−n)m+1

whose image is Syz (ã1, . . . , ãm, c̃).
c. Use Hilbert polynomials to show that s = m and that d1 + · · · + dm =

(m + 1)n.
d. If L is the matrix representing β, show that the jth column of L consists

of homogeneous polynomials of degree µj = dj − n. Also explain why
µ1 + · · · + µs = n.

e. Finally, by dehomogenizing the entries of the jth column of L, show that
we get the polynomial pj as in (4.25), and prove that I = 〈p1, . . . , pm〉.

f. Use the Hilbert-Burch Theorem to show that if p1 is modified by a
suitable constant, then up to a constant, a1, . . . , am, c are the m × m
minors of the matrix (pij(t, 1)) coming from (4.25).

Exercise 18. Compute the Hilbert function and Hilbert polynomial of the
ideal of the rational quartic curve in P

3 whose graded resolution is given in
(3.6). What does the Hilbert polynomial tell you about the dimension and
the degree?
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Exercise 19. In k[x0, . . . , xn], n ≥ 2, consider the homogeneous ideal In

defined by the determinants of the
(
n
2

)
2×2 submatrices of the 2×n matrix

M =
(

x0 x1 · · · xn−1
x1 x2 · · · xn

)
.

(We studied this ideal in Exercise 15 of §3.) Compute the Hilbert functions
and Hilbert polynomials of I4 and I5. Also determine the degrees of the
curves V(I4) and V(I5) and verify that they have dimension 1. Hint: In
part b of Exercise 15 of §3, you computed graded resolutions of these two
ideals.

Exercise 20. In this exercise, we will show how the construction of the
rational normal curves from the previous exercise and Exercise 15 of §3
relates to the moving lines considered in this section.
a. Show that for each (t, u) ∈ P

1, the intersection of the lines V(tx0 +ux1)
and V(tx1 + ux2) lies on the conic section V(x0x2 − x2

1) in P
2. Express

the equation of the conic as a 2 × 2 determinant.
b. Generalizing part a, show that for all n ≥ 2, if we construct n moving

hyperplanes Hi(t, u) = V(txi−1 + uxi) for i = 1, . . . , n, then for each
(t, u) in P

1, the intersection H1(t, u) ∩ · · · ∩ Hn(t, u) is a point on the
standard rational normal curve in P

n given as in Exercise 15 of §3, and
show how the determinantal equations follow from this observation.

Exercise 21. In k[x0, . . . , xn], n ≥ 3, consider the homogeneous ideal Jn

defined by the determinants of the
(
n−1

2

)
2×2 submatrices of the 2×(n−1)

matrix

N =
(

x0 x2 · · · xn−1
x1 x3 · · · xn

)
.

The varieties V(Jn) are surfaces called rational normal scrolls in P
n. For

instance, J3 = 〈x0x3 − x1x2〉 is the ideal of a smooth quadric surface in
P

3.
a. Find a graded resolution of J4 and compute its Hilbert function and

Hilbert polynomial. Check that the dimension is 2 and compute the
degree of the surface.

b. Do the same for J5.

Exercise 22. The (degree 2) Veronese surface V ⊂ P
5 is the image of the

mapping given in homogeneous coordinates by

ϕ : P
2 → P

5

(x0, x1, x2) �→ (x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2).

a. Compute the homogeneous ideal I = I(V ) ⊂ k[x0, . . . , x5].
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b. Find a graded resolution of I and compute its Hilbert function and
Hilbert polynomial. Also check that the dimension is equal to 2 and the
degree is equal to 4.

Exercise 23. Let p1 = (0, 0, 1), p2 = (1, 0, 1), p3 = (0, 1, 1), p4 = (1, 1, 1)
in P

2, and let I = I({p1, p2, p3, p4}) be the homogeneous ideal of the variety
{p1, p2, p3, p4} in R = k[x0, x1, x2].
a. Show that I3 (the degree 3 graded piece of I) has dimension exactly 6.
b. Let f0, . . . , f5 be any vector space basis for I3, and consider the rational

mapping ϕ : P
2 – – → P

5 given in homogeneous coordinates by

ϕ(x0, x1, x2) = (y0, . . . , y5) = (f0(x0, x1, x2), . . . , f5(x0, x1, x2)).

Find the homogeneous ideal J of the image variety of ϕ.
c. Show that J has a graded resolution as an S = k[y0, . . . , y5]-module of

the form

0 → S(−5) → S(−3)5 A→ S(−2)5 → J → 0.

d. Use the resolution above to compute the Hilbert function of J .

The variety V = V(J) = ϕ(P2) is called a quintic del Pezzo surface, and
the resolution given in part d has some other interesting properties. For
instance, if the ideal basis for J is ordered in the right way and signs are
adjusted appropriately, then A is skew-symmetric, and the determinants of
the 4×4 submatrices obtained by deleting row i and column i (i = 1, . . . , 5)
are the squares of the generators of J . This is a reflection of a remarkable
structure on the resolutions of Gorenstein codimension 3 ideals proved by
Buchsbaum and Eisenbud. See [BE].

Exercise 24. One convenient way to “package” the Hilbert function HM

for a graded module M is to consider its generating function, the formal
power series

H(M, u) =
∞∑

t=−∞
HM (t)ut.

We will call H(M, u) the Hilbert series for M .
a. Show that for M = R = k[x0, . . . , xn], we have

H(R, u) =
∞∑

t=0

(
n + t

n

)
ut

= 1/(1 − u)n+1,

where the second equality comes from the formal geometric series
identity 1/(1 − u) =

∑∞
t=0 ut and induction on n.

b. Show that if R = k[x0, . . . , xn] and

M = R(−d1) ⊕ · · · ⊕ R(−dm)
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is one of the twisted graded free modules over R, then

H(M, u) = (ud1 + · · · + udm)/(1 − u)n+1.

c. Let I be the ideal of the twisted cubic in P
3 studied in Exercise 2 of §2,

and let R = k[x, y, z, w]. Find the Hilbert series H(R/I, u).
d. Using part b and Theorem (4.4) deduce that the Hilbert series of any

graded k[x0, . . . , xn]-module M can be written in the form

H(M, u) = P (u)/(1 − u)n+1

where P is a polynomial in u with coefficients in Z.

Exercise 25. Consider the polynomial ring R = k[y1, . . . , ys], where yi

has weight or degree deg yi = di > 0. Then a monomial ya1 · · · yas
s has

(weighted) degree t = d1a1 + · · · + dsas. This gives a grading on R such
that Rt is the set of k-linear combinations of monomials of degree t.
a. Prove that the Hilbert series of R is given by

∞∑
t=0

dimk(Rt) ut =
1

(1 − ud1) · · · (1 − uds)
.

Hint: 1/(1 − udi) =
∑∞

ai=0 udiai . When these series are multiplied to-
gether for i = 1, . . . , s, do you see how each monomial of weighted
degree t contributes to the coefficient of ut?

b. Explain how part a relates to part a of Exercise 24.
c. If R(−d) is defined by R(−d)t = Rt−d, then prove (4.30).
d. Generalize parts b, c and d of Exercise 24 to R = k[y1, . . . , ys].

Exercise 26. Suppose that a, b, c ∈ k[t] have maximum degree 6. As
usual, we will assume c �= 0 and GCD(a, b, c) = 1.
a. If a = t6 + t3 + t2, b = t6 − t4 − t2 and c = t6 + t5 + t4 − t − 1, show

that µ = 2 and find a µ-basis.
b. Find an example where µ = 3 and compute a µ-basis for your example.

Hint: This is the generic case.

Exercise 27. Compute the Molien series for the following finite matrix
groups in GL(2, C). In each case, the ring of invariants C[x1, x2]G can be
computed by the methods of Chapter 7, §3 of [CLO].

a. The Klein four-group generated by
(

1 0
0 −1

)
and

(−1 0
0 1

)
.

b. The two-element group generated by g =
(−1 0

0 −1

)
.

c. The four-element group generated by g = 1√
2

(
1 −1
1 1

)
.

Exercise 28. Let G ⊂ GL(m, C) be a finite group and let S =
C[x1, . . . , xm]. The goal of this exercise is to prove Molien’s Theorem, which
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asserts that
∞∑

t=0

dimC(SG
t )ut =

1
|G|

∑
g∈G

1
det(I − ug)

.

a. By Chapter 7, §3 of [CLO], the Reynolds operator RG(f)(x) =
1

|G|
∑

g∈G f(g · x) defines a projection operator RG : St → SG
t . Use

this to prove that

dimC(SG
t ) =

1
|G|

∑
g∈G

trace(gt),

where gt : St → St is defined by f(x) �→ f(g · x). Hint: First explain
why the trace of a projection operator is the dimension of its image.

b. Fix g ∈ G and a basis y1, . . . , ym of S1 ∼= C
m such that g1 is upper

triangular on S1 with eigenvalues λ1, . . . , λm. Prove that yα for |α| = t
give a basis of St such that gt is upper triangular on St with eigenvalues
λα. Conclude that trace(gt) =

∑
|α|=t λα.

c. Explain why ∑
α

λαu|α| =
m∏

i=1

1
1 − λiu

=
1

det(I − ug)

and use this to complete the proof of Molien’s Theorem.



Chapter 7

Polytopes, Resultants, and
Equations

In this chapter we will examine some interesting recently-discovered con-
nections between polynomials, resultants, and the geometry of the convex
polytopes determined by the exponent vectors of the monomials appearing
in polynomials.

§1 Geometry of Polytopes

A set C in R
n is said to be convex if it contains the line segment connecting

any two points in C. If a set is not itself convex, its convex hull is the
smallest convex set containing it. We will use the notation Conv(S) to
denote the convex hull of S ⊂ R

n.
More explicitly, all the points in Conv(S) may be obtained by forming

a particular set of linear combinations of the elements in S. In Exercise 1
below, you will prove the following proposition.

(1.1) Proposition. Let S be a subset of R
n. Then

Conv(S) = {λ1s1 + · · · + λmsm : si ∈ S, λi ≥ 0,
∑m

i=1λi = 1}.

Linear combinations of the form λ1s1 + · · · + λmsm, where si ∈ S,
λi ≥ 0, and

∑m
i=1 λi = 1 are called convex combinations.

Exercise 1.
a. Show that if S = {s1, s2} then the set of convex combinations is the

straight line segment from s1 to s2 in R
n. Deduce that Proposition (1.1)

holds in this case.
b. Using part a, show that the set of all convex combinations

{λ1s1 + · · · + λmsm : si ∈ S, λi ≥ 0,
∑m

i=1λi = 1}.
is a convex subset of R

n for every S. Also show that this set contains S.

305
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c. Show that if C is any convex set containing S, then C also contains the
set of part b. Hint: One way is to use induction on the number of terms
in the sum.

d. Deduce Proposition (1.1) from parts b and c.

By definition, a polytope is the convex hull of a finite set in R
n. If the

finite set is A = {m1, . . . , ml} ⊂ R
n, then the corresponding polytope can

be expressed as

Conv(A) = {λ1m1 + · · · + λlml : λi ≥ 0,
∑l

i=1λi = 1}.
In low dimensions, polytopes are familiar figures from geometry:

• A polytope in R is a line segment.
• A polytope in R

2 is a line segment or a convex polygon.
• A polytope in R

3 is a line segment, a convex polygon lying in a plane,
or a three-dimensional polyhedron.

As these examples suggest, every polytope Q has a well-defined dimension.
A careful definition of dim Q will be given in the exercises at the end of
the section. For more background on convex sets and polytopes, the reader
should consult [Zie]. Fig. 7.1 below shows a three-dimensional polytope.

For another example, let A = {(0, 0), (2, 0), (0, 5), (1, 1)} ⊂ R
2. Here,

Conv(A) is the triangle with vertices (0, 0), (2, 0), and (0, 5) since

(1.2) (1, 1) = 3
10 (0, 0) + 1

2 (2, 0) + 1
5 (0, 5)

is a convex combination of the other three points in A.
For us, the most important polytopes will be convex hulls of sets of points

with integer coordinates. These are sometimes called lattice polytopes. Thus
a lattice polytope is a set of the form Conv(A), where A ⊂ Z

n is finite. An
example of special interest to us is when A consists of all exponent vectors

Figure 7.1. A three-dimensional polytope
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appearing in a collection of monomials. The polytope Q = Conv(A) will
play a very important role in this chapter.

Exercise 2. Let Ad = {m ∈ Z
n
≥0 : |m| ≤ d} be the set of exponent

vectors of all monomials of total degree at most d.
a. Show that the convex hull of Ad is the polytope

Qd = {(a1, . . . , an) ∈ R
n : ai ≥ 0,

∑n
i=1ai ≤ d}.

Draw a picture of Ad and Qd when n = 1, 2, 3 and d = 1, 2, 3.
b. A simplex is defined to be the convex hull of n + 1 points m1, . . . , mn+1

such that m2 − m1, . . . , mn+1 − m1 are a basis of R
n. Show that the

polytope Qd of part a is a simplex.

A polytope Q ⊂ R
n has an n-dimensional volume, which is denoted

Voln(Q). For example, a polygon Q in R
2 has Vol2(Q) > 0, but if we

regard Q as lying in the xy-plane in R
3, then Vol3(Q) = 0.

From multivariable calculus, we have

Voln(Q) =
∫
· · ·

∫
Q

1 dx1 · · · dxn,

where x1, . . . , xn are coordinates on R
n. Note that Q has positive volume

if and only if it is n-dimensional. A simple example is the unit cube in R
n,

which is defined by 0 ≤ xi ≤ 1 for all i and clearly has volume 1.

Exercise 3. Let’s compute the volume of the simplex Qd from Exercise 2.
a. Prove that the map φ : R

n → R
n defined by

φ(x1, . . . , xn)=(1−x1, x1(1−x2), x1x2(1−x3), . . . , x1· · ·xn−1(1−xn))

maps the unit cube C ⊂ R
n defined by 0 ≤ xi ≤ 1 to the simplex Q1.

Hint: Use a telescoping sum to show φ(C) ⊂ Q1. Be sure to prove the
opposite inclusion.

b. Use part a and the change of variables formula for n-dimensional
integrals to show that

Voln(Q1) =
∫
· · ·

∫
C

xn−1
1 xn−2

2 · · · xn−1 dx1 · · · dxn =
1
n!

.

c. Conclude that Voln(Qd) = dn/n!.

Polytopes have special subsets called its faces. For example, a 3-
dimensional polytope in R

3 has:

• faces, which are polygons lying in planes,
• edges, which are line segments connecting certain pairs of vertices, and
• vertices, which are points.

In the general theory, all of these will be called faces. To define a face
of an arbitrary polytope Q ⊂ R

n, let ν be a nonzero vector in R
n. An
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affine hyperplane is defined by an equation of the form m · ν = −a (the
minus sign simplifies certain formulas in §3 and §4—see Exercise 3 of §3
and Proposition (4.6)). If

(1.3) aQ(ν) = − min
m∈Q

(m · ν),

then we call the equation

m · ν = −aQ(ν)

a supporting hyperplane of Q, and we call ν an inward pointing normal .
Fig. 7.2 below shows a polytope Q ⊂ R

2 with two supporting hyperplanes
(lines in this case) and their inward pointing normals.

In Exercise 13 at the end of the section, you will show that a supporting
hyperplane has the property that

Qν = Q ∩ {m ∈ R
n : m · ν = −aQ(ν)} �= ∅,

and, furthermore, Q lies in the half-space

Q ⊂ {m ∈ R
n : m · ν ≥ −aQ(ν)}.

We call Qν = Q ∩ {m ∈ R
n : m · ν = −aQ(ν)} the face of Q determined

by ν. Fig. 7.2 illustrates two faces, one a vertex and the other an edge.

Exercise 4. Draw a picture of a cube in R
3 with three supporting hyper-

planes which define faces of dimensions 0, 1, and 2 respectively. Be sure to
include the inward pointing normals in each case.

Every face of Q is a polytope of dimension less than dim Q. Vertices are
faces of dimension 0 (i.e., points) and edges are faces of dimension 1. If
Q has dimension n, then facets are faces of dimension n − 1. Assuming

Q

← Qν is an edge

← supporting
hyperplane

→Qν is a vertex

← supporting hyperplane

2

1

ν

ν inward normals

Figure 7.2. Supporting hyperplanes, inward normals, and faces
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Q ⊂ R
n, a facet lies on a unique supporting hyperplane and hence has

a unique inward pointing normal (up to a positive multiple). In contrast,
faces of lower dimension lie in infinitely many supporting hyperplanes. For
example, the vertex at the origin in Fig 7.2 is cut out by infinitely many
lines through the origin.

We can characterize an n-dimensional polytope Q ⊂ R
n in terms of

its facets as follows. If F ⊂ Q is a facet, we just noted that the inward
normal is determined up to a positive constant. Suppose that Q has facets
F1, . . . ,FN with inward pointing normals ν1, . . . , νN respectively. Each
facet Fj has a supporting hyperplane defined by an equation m · νj = −aj

for some aj . Then one can show that the polytope Q is given by

(1.4) Q = {m ∈ R
n : m · νj ≥ −aj for all j = 1, . . . , N}.

In the notation of (1.3), note that aj = aQ(νj).

Exercise 5. How does (1.4) change if we use an outward normal for each
facet?

When Q is a lattice polytope, we can rescale the inward normal νF of a
facet F so that νF has integer coordinates. We can also assume that the
coordinates are relatively prime. In this case, we say the νF is primitive.
It follows that F has a unique primitive inward pointing normal νF ∈ Z

n.
For lattice polytopes, we will always assume that the inward normals have
this property.

Exercise 6. For the lattice polygon Q of Fig. 7.2, find the inward pointing
normals. Also, if e1, e2 are the standard basis vectors for R

2, then show that
the representation (1.4) of Q is given by the inequalities

m · e1 ≥ 0, m · e2 ≥ 0, m · (−e2) ≥ −1, m · (−e1 − e2) ≥ −2.

Exercise 7. Let e1, . . . , en be the standard basis of R
n.

a. Show that the simplex Qd ⊂ R
n of Exercise 2 is given by the inequalities

m · ν0 ≥ −d, and m · νj ≥ 0, j = 1, . . . , n,

where ν0 = −e1 − · · · − en and νj = ej for j = 1, . . . , n.
b. Show that the square Q = Conv({(0, 0), (1, 0), (0, 1), (1, 1)}) ⊂ R

2 is
given by the inequalities

m · ν1 ≥ 0, m · ν2 ≥ −1, m · ν3 ≥ 0, and m · ν4 ≥ −1,

where e1 = ν1 = −ν2 and e2 = ν3 = −ν4. A picture of this appears in
Fig. 7.3 on the next page (with shortened inward normals for legibility).

One of the themes of this chapter is that there is very deep connection
between lattice polytopes and polynomials. To describe the connection, we
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Q

1

1

ν1 ν2

ν4

ν3

Figure 7.3. The unit square

will use the following notation. Let f ∈ C[x1, . . . , xn] (or, more generally,
in k[x1, . . . , xn] for any field of coefficients), and write

f =
∑

α∈Zn
≥0

cαxα.

The Newton polytope of f , denoted NP(f), is the lattice polytope

NP(f) = Conv({α ∈ Z
n
≥0 : cα �= 0}).

In other words, the Newton polytope records the “shape” or “sparsity struc-
ture” of a polynomial—it tells us which monomials appear with nonzero
coefficients. The actual values of the coefficients do not matter, however,
in the definition of NP(f).

For example, any polynomial of the form

f = axy + bx2 + cy5 + d

with a, b, c, d �= 0 has Newton polytope equal to the triangle

Q = Conv({(1, 1), (2, 0), (0, 5), (0, 0)}).
In fact, (1.2) shows that polynomials of this form with a = 0 would have
the same Newton polytope.

Exercise 8. What is the Newton polytope of a 1-variable polynomial f =∑m
i=0 cix

i, assuming that cm �= 0, so that the degree of f is exactly m?
Are there special cases depending on the other coefficients?

Exercise 9. Write down a polynomial whose Newton polytope equals the
polytope Qd from Exercise 2. Which coefficients must be non-zero to obtain
NP(f) = Qd? Which can be zero?
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We can also go the other way, from exponents to polynomials. Suppose
we have a finite set of exponents A = {α1, . . . , αl} ⊂ Z

n
≥0. Then let L(A)

be the set of all polynomials whose terms all have exponents in A. Thus

L(A) = {c1x
α1 + · · · + clx

αl : ci ∈ C}.
Note that L(A) is a vector space over C of dimension l (= the number of
elements in A).

Exercise 10.
a. If f ∈ L(A), show that NP(f) ⊂ Conv(A). Give an example to show

that equality need not occur.
b. Show that there is a union of proper subspaces W ⊂ L(A) such that

NP(f) = Conv(A) for all f ∈ L(A) \ W . This means that NP(f) =
Conv(A) holds for a generic f ∈ L(A).

Exercise 11. If Ad is as in Exercise 2, what is L(Ad)?

Finally, we conclude this section with a slight generalization of the notion
of monomial and polynomial. Since the vertices of a lattice polytope can
have negative entries, it will be useful to have the corresponding algebraic
objects. This leads to the notion of a polynomial whose terms can have
negative exponents.

Let α = (a1, . . . , an) ∈ Z
n be an integer vector. The corresponding

Laurent monomial in variables x1, . . . , xn is

xα = xa1
1 · · · xan

n .

For example, x2y−3 and x−2y3 are Laurent monomials in x and y whose
product is 1. More generally, we have

xα · xβ = xα+β and xα · x−α = 1

for all α, β ∈ Z
n. Finite linear combinations

f =
∑

α∈Zn

cαxα

of Laurent monomials are called Laurent polynomials, and the collection
of all Laurent polynomials forms a commutative ring under the obvious
sum and product operations. We denote the ring of Laurent polynomials
with coefficients in a field k by k[x±1

1 , . . . , x±1
n ]. See Exercise 15 below for

another way to understand this ring.
The definition of the Newton polytope goes over unchanged to Laurent

polynomials; we simply allow vertices with negative components. Thus any
Laurent polynomial f ∈ k[x±1

1 , . . . , x±1
n ] has a Newton polytope NP(f),

which again is a lattice polytope. Similarly, given a finite set A ⊂ Z
n,

we get the vector space L(A) of Laurent polynomials with exponents in A.
Although the introduction of Laurent polynomials might seem unmotivated



312 Chapter 7. Polytopes, Resultants, and Equations

at this point, they will prove to be very useful in the theory developed in
this chapter.

ADDITIONAL EXERCISES FOR §1

Exercise 12. This exercise will develop the theory of affine subspaces. An
affine subspace A ⊂ R

n is a subset with the property that

s1, . . . , sm ∈ A =⇒ ∑m
i=1λisi ∈ A whenever

∑m
i=1λi = 1.

Note that we do not require that λi ≥ 0. We also need the following
definition: given a subset S ⊂ R

n and a vector v ∈ R
n, the translate of S

by v is the set v + S = {v + s : s ∈ S}.
a. If A ⊂ R

n is an affine subspace and v ∈ A, prove that the translate
−v + A is a subspace of R

n. Also show that A = v + (−v + A), so that
A is a translate of a subspace.

b. If v, w ∈ A, prove that −v + A = −w + A. Conclude that an affine
subspace is a translate of a unique subspace of R

n.
c. Conversely, if W ⊂ R

n is a subspace and v ∈ R
n, then show that the

translate v + W is an affine subspace.
d. Explain how to define the dimension of an affine subspace.

Exercise 13. This exercise will define the dimension of a polytope Q ⊂
R

n. The basic idea is that the dim Q is the dimension of the smallest affine
subspace containing Q.
a. Given any subset S ⊂ R

n, show that

Aff(S) = {λ1s1 + · · · + λmsm : si ∈ S,
∑m

i=1λi = 1}
is the smallest affine subspace containing S. Hint: Use the strategy
outlined in parts b, c and d of Exercise 1.

b. Using the previous exercise, explain how to define the dimension of a
polytope Q ⊂ R

n.
c. If A = {m1, . . . , ml} and Q = Conv(A), prove that dim Q = dim W ,

where W ⊂ R
n is the subspace spanned by m2 − m1, . . . , ml − m1.

d. Prove that a simplex in R
n (as defined in Exercise 2) has dimension n.

Exercise 14. Let Q ⊂ R
n be a polytope and ν ∈ R

n be a nonzero vector.
a. Show that m · ν = 0 defines a subspace of R

n of dimension n − 1 and
that the affine hyperplane m · ν = −a is a translate of this subspace.
Hint: Use the linear map R

n → R given by dot product with ν.
b. Explain why minm∈Q(m · ν) exists. Hint: Q is closed and bounded, and

m �→ m · ν is continuous.
c. If aQ(ν) is defined as in (1.3), then prove that the intersection

Qν = Q ∩ {m ∈ R
n : m · ν = −aQ(ν)}
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is nonempty and that

Q ⊂ {m ∈ R
n : m · ν ≥ −aQ(ν)}.

Exercise 15. There are several ways to represent the ring of Laurent
polynomials in x1, . . . , xn as a quotient of a polynomial ring. Prove that

k[x±1
1 , . . . , x±1

n ] ∼= k[x1, . . . , xn, t1, . . . , tn]/〈x1t1 − 1, . . . , xntn − 1〉
∼= k[x1, . . . , xn, t]/〈x1 · · · xnt − 1〉.

Exercise 16. This exercise will study the translates of a polytope. The
translate of a set in R

n is defined in Exercise 12.
a. If A ⊂ R

n is a finite set and v ∈ R
n, prove that Conv(v + A) =

v + Conv(A).
b. Prove that a translate of a polytope is a polytope.
c. If a polytope Q is represented by the inequalites (1.4), what are the

inequalities defining v + Q?

Exercise 17. If f ∈ k[x±1
1 , . . . , x±1

n ] is a Laurent polynomial and α ∈ Z
n,

how is NP(xα f) related to NP(f)? Hint: See the previous exercise.

§2 Sparse Resultants

The multipolynomial resultant Resd1,...,dn(F1, . . . , Fn) discussed in Chap-
ter 3 is a very large polynomial, partly due to the size of the input
polynomials F1, . . . , Fn. They have lots of coefficients, especially as their
total degree increases. In practice, when people deal with polynomials of
large total degree, they rarely use all of the coefficients. It’s much more com-
mon to encounter sparse polynomials, which involve only exponents lying
in a finite set A ⊂ Z

n. This suggests that there should be a corresponding
notion of sparse resultant .

To begin our discussion of sparse resultants, we return to the implic-
itization problem introduced in §2 of Chapter 3. Consider the surface
parametrized by the equations

(2.1)

x = f(s, t) = a0 + a1s + a2t + a3st

y = g(s, t) = b0 + b1s + b2t + b3st

z = h(s, t) = c0 + c1s + c2t + c3st,

where a0, . . . , c3 are constants. This is sometimes called a bilinear surface
parametrization. We will assume

(2.2) det

⎛⎝ a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞⎠ �= 0
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In Exercise 7 at the end of the section, you will show that this condition
rules out the trivial case when (2.1) parametrizes a plane.

Our goal is to find the implicit equation of (2.1). This means finding a
polynomial p(x, y, z) such that p(x, y, z) = 0 if and only if x, y, z are given
by (2.1) for some choice of s, t. In Proposition (2.6) of Chapter 3, we used
the resultant

(2.3) p(x, y, z) = Res2,2,2(F − xu2, G − yu2, H − zu2)

to find the implicit equation, where F, G, H are the homogenization of
f, g, h with respect to u. Unfortunately, this method fails for the case at
hand.

Exercise 1. Show that the resultant (2.3) vanishes identically when
F, G, H come from homogenizing the polynomials in (2.1). Hint: You
already did a special case of this in Exercise 2 of Chapter 3, §2.

The remarkable fact is that although the multipolynomial resultant from
Chapter 3 fails, a sparse resultant still exists in this case. In Exercise 2
below, you will show that the implicit equation for (2.1) is given by the
determinant

(2.4) p(x, y, z) = det

⎛⎜⎜⎜⎜⎜⎜⎝
a0 − x a1 a2 a3 0 0
b0 − y b1 b2 b3 0 0
c0 − z c1 c2 c3 0 0

0 a0 − x 0 a2 a1 a3
0 b0 − y 0 b2 b1 b3
0 c0 − x 0 c2 c1 c3

⎞⎟⎟⎟⎟⎟⎟⎠ .

Expanding this 6× 6 determinant, we see that p(x, y, z) is a polynomial of
total degree 2 in x, y and z.

Exercise 2.
a. If x, y, z are as in (2.1), show that the determinant (2.4) vanishes.

Hint: Consider the system of equations obtained by multiplying each
equation of (2.1) by 1 and s. You should get 6 equations in the 6 “un-
knowns” 1, s, t, st, s2, st2. Notice the similarity with Proposition (2.10)
of Chapter 3.

b. Next assume (2.4) vanishes. We want to prove the existence of s, t such
that (2.1) holds. As a first step, let A be the matrix of (2.4) and explain
why we can find a nonzero column vector v = (α1, α2, α3, α4, α5, α6)T

(T denotes transpose) such that Av = 0. Then use (2.2) to prove that
α1 �= 0. Hint: Write out Av = 0 explicitly and use the first three
equations. Then use the final three.

c. If we take the vector v of part b and multiply by 1/α1, we can write v
in the form v = (1, s, t, α, β, γ). Explain why it suffices to prove that
α = st.
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d. Use (2.2) to prove α = st, β = s2 and γ = sα. This will complete the
proof that the implicit equation of (2.1) is given by (2.4). Hint: In the
equations Av = 0, eliminate a0 − x, b0 − y, c0 − z.

e. Explain why the above proof gives a linear algebra method to find s, t for
a given point (x, y, z) on the surface. This solves the inversion problem
for the parametrized surface. Hint: In the notation of part b, you will
show that s = α2/α1 and t = α3/α1.

A goal of this section is to explain why a resultant like (2.4) can exist even
though the standard multipolynomial resultant (2.3) vanishes identically.
The basic reason is that although the equations (2.1) are quadratic in s, t,
they do not use all monomials of total degree ≤ 2 in s, t. The sparse
resultant works like the multipolynomial resultant of §2, except that we
restrict the exponents occurring in the equations.

For simplicity, we will only treat the special case when all of the equa-
tions have exponents lying in the same set, leaving the general case
for §6. We will also work exclusively over the field C of complex num-
bers. Thus, suppose that the variables are t1, . . . , tn, and fix a finite set
A = {m1, . . . , ml} ⊂ Z

n of exponents. Since negative exponents can occur,
we will use the Laurent polynomials

f = a1t
m1 + · · · + alt

ml ∈ L(A),

as defined in §1. Given f0, . . . , fn ∈ L(A), we get n + 1 equations in n
unknowns t1, . . . , tn:

(2.5)

f0 = a01t
m1 + · · · + a0lt

ml = 0

...

fn = an1t
m1 + · · · + anlt

ml = 0.

In seeking solutions of these equations, the presence of negative exponents
means that we should consider only nonzero solutions of (2.5). We will use
the notation

C
∗ = C \ {0}

for the set of nonzero complex numbers.
The sparse resultant will be a polynomial in the coefficents aij which

vanishes precisely when we can find a “solution” of (2.5). We put “so-
lution” in quotes because although the previous paragraph suggests that
solutions should lie in (C∗)n, the situation is actually more complicated.
For instance, the multipolynomial resultants from Chapter 3 use homo-
geneous polynomials, which means that the “solutions” lie in projective
space. The situation for sparse resultants is similar, though with a twist:
a “solution” of (2.5) need not lie in (C∗)n, but the space where it does lie
need not be P

n. For example, we will see in §3 that for equations like (2.1),
the “solutions” lie in P

1 × P
1 rather than P

2.



316 Chapter 7. Polytopes, Resultants, and Equations

To avoid the problem of where the solutions lie, we will take a conser-
vative approach and initially restrict the solutions to lie in (C∗)n. Then,
in (2.5), the coefficients give a point (aij) ∈ C

(n+1)×l, and we consider the
subset

Z0(A) = {(aij) ∈ C
(n+1)×l : (2.5) has a solution in (C∗)n}.

Since Z0(A) might not be a variety in C
(n+1)l, we use the following fact:

• (Zariski Closure) Given a subset S ⊂ C
m, there is a smallest affine

variety S ⊂ C
m containing S. We call S the Zariski closure of S.

(See, for example, [CLO], §4 of Chapter 4.) Then let Z(A) = Z0(A) be the
Zariski closure of Z0(A).

The sparse resultant will be the equation defining Z(A) ⊂ C
(n+1)l. To

state our result precisely, we introduce a variable uij for each coefficient aij.
Then, for a polynomial P ∈ C[uij], we let P (f0, . . . , fn) denote the number
obtained by replacing each variable uij with the corresponding coefficient
aij from (2.5). We can now state the basic existence result for the sparse
resultant.

(2.6) Theorem. Let A ⊂ Z
n be a finite set, and assume that Conv(A) is

an n-dimensional polytope. Then there is an irreducible polynomial ResA ∈
Z[uij] such that for (aij) ∈ C

(n+1)l, we have

(aij) ∈ Z(A) ⇐⇒ ResA(aij) = 0.

In particular, if (2.5) has a solution with t1, . . . , tn ∈ C
∗, then

ResA(f0, . . . , fn) = 0.

Proof. See [GKZ], Chapter 8.

The sparse resultant or A-resultant is the polynomial ResA. Notice that
ResA is determined uniquely up to ± since it is irreducible in Z[uij]. The
condition that the convex hull of A has dimension n is needed to ensure
that we have the right number of equations in (2.5). Here is an example of
what can happen when the convex hull has strictly lower dimension.

Exercise 3. Let A = {(1, 0), (0, 1)} ⊂ Z
2, so that fi = ai1t1 + ai2t2 for

i = 0, 1, 2. Show that rather than one condition for f1 = f2 = f3 = 0
to have a solution, there are three. Hint: See part b of Exercise 1 from
Chapter 3, §2.

We next show that the multipolynomial resultant from Chapter 3 is a
special case of the sparse resultant. For d > 0, let

Ad = {m ∈ Z
n
≥0 : |m| ≤ d}.

Also consider variables x0, . . . , xn, which will be related to t1, . . . , tn by
ti = xi/x0 for 1 ≤ i ≤ n. Then we homogenize the fi from (2.5) in the



§2. Sparse Resultants 317

usual way, defining

(2.7) Fi(x0, . . . , xn) = xd
0fi(t1, . . . , tn) = xd

0fi(x1/x0, . . . , xn/x0)

for 0 ≤ i ≤ n. This gives n + 1 homogeneous polynomials Fi in the n + 1
variables x0, . . . , xn. Note that the Fi all have total degree d.

(2.8) Proposition. For Ad = {m ∈ Z
n
≥0 : |m| ≤ d}, we have

ResAd
(f0, . . . , fn) = ±Resd,...,d(F0, . . . , Fn),

where Resd,...,d is the multipolynomial resultant from Chapter 3.

Proof. If (2.5) has a solution (t1, . . . , tn) ∈ (C∗)n, then (x0, . . . , xn) =
(1, t1, . . . , tn) is a nontrivial solution of F0 = · · · = Fn = 0. This shows
that Resd,...,d vanishes on Z0(Ad). By the definition of Zariski closure, it
must vanish on Z(Ad). Since Z(Ad) is defined by the irreducible equation
ResAd

= 0, the argument of Proposition (2.10) of Chapter 3 shows that
Resd,...,d is a multiple of ResAd

. But Resd,...,d is an irreducible polynomial
by Theorem (2.3) of Chapter 3, and the desired equality follows.

Because Ad = {m ∈ Z
n
≥0 : |m| ≤ d} gives all exponents of total degree

at most d, the multipolynomial resultant Resd,...,d is sometimes called the
dense resultant, in contrast to the sparse resultant ResA.

We next discuss the structure of the polynomial ResA in more detail.
Our first question concerns its total degree, which is determined by the
convex hull Q = Conv(A). The intuition is that as Q gets larger, so does
the sparse resultant. As in §1, we measure the size of Q using its volume
Voln(Q). This affects the degree of ResA as follows.

(2.9) Theorem. Let A = {m1, . . . , ml}, and assume that every element
of Z

n is an integer linear combination of m2 −m1, . . . , ml −m1. Then, if
we fix i between 0 and n, ResA is homogeneous in the coefficients of each
fi of degree n! Voln(Q), where Q = Conv(A). This means that

ResA(f0, . . . , λfi, . . . , fn) = λn! Voln(Q)ResA(f0, . . . , fn).

Furthermore, the total degree of ResA is (n + 1)! Voln(Q).

Proof. The first assertion is proved in [GKZ], Chapter 8. As we observed
in Exercise 1 of Chapter 3, §3, the final assertion follows by considering
ResA(λf0, . . . , λfn).

For an example of Theorem (2.9), note that Ad = {m ∈ Z
n
≥0 : |m| ≤ d}

satisfies the hypothesis of the theorem, and its convex hull has volume dn/n!
by Exercise 3 of §1. Using Proposition (2.8), we conclude that Resd,...,d

has degree dn in Fi. This agrees with the prediction of Theorem (3.1) of
Chapter 3.
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We can also explain how the hypothesis of Theorem (2.9) relates to
Theorem (2.6). If the mi −m1 span over Z, they also span over R, so that
the convex hull Q = Conv(A) has dimension n by Exercise 13 of §1. Thus
Theorem (2.9) places a stronger condition on A ⊂ Z

n than Theorem (2.6).
The following example shows what can go wrong if the mi−m1 don’t span
over Z.

Exercise 4. Let A = {0, 2} ⊂ Z, so that Vol1(Conv(A)) = 2.
a. Let f0 = a01 + a02t

2 and f1 = a11 + a12t
2. If the equations f0 = f1 = 0

have a solution in (C∗)2, show that a01a12 − a02a11 = 0.
b. Use part a to prove ResA(f0, f1) = a01a12 − a02a11.
c. Explain why the formula of part b does not contradict Theorem (2.9).

Using Theorem (2.9), we can now determine some sparse resultants
using the methods of earlier sections. For example, suppose A =
{(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z

2, and consider the equations

(2.10)

f(s, t) = a0 + a1s + a2t + a3st = 0

g(s, t) = b0 + b1s + b2t + b3st = 0

h(s, t) = c0 + c1s + c2t + c3st = 0.

The exercise below will show that that in this case, the sparse resultant is
given by a determinant:

(2.11) ResA(f, g, h) = ± det

⎛⎜⎜⎜⎜⎜⎜⎝
a0 a1 a2 a3 0 0
b0 b1 b2 b3 0 0
c0 c1 c2 c3 0 0
0 a0 0 a2 a1 a3
0 b0 0 b2 b1 b3
0 c0 0 c2 c1 c3

⎞⎟⎟⎟⎟⎟⎟⎠
Exercise 5. As above, let A = {(0, 0), (1, 0), (0, 1), (1, 1)}.
a. Adapt the argument of Exercise 2 to show that if (2.10) has a solution

in (C∗)2, then the determinant in (2.11) vanishes.
b. Adapt the argument of Proposition (2.10) of Chapter 3 to show that

ResA divides the determinant in (2.11).
c. By comparing degrees and using Theorem (2.9), show that the

determinant is an integer multiple of ResA.
d. Show that the integer is ±1 by computing the determinant when f =

1 + st, g = s and h = t.

It follows that the implicitization problem (2.1) can be solved by setting

(2.12) p(x, y, z) = ResA(f − x, g − y, h − z),

where A is as above. Comparing this to (2.3), we see from Proposition (2.8)
that Res2,2,2 corresponds to A2 = A ∪ {(2, 0), (0, 2)}. The convex hull of
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A2 is strictly larger than the convex hull of A. This explains why our earlier
attempt failed—the convex hull was too big!

We also have the following sparse analog of Theorem (3.5) discussed in
Chapter 3.

(2.13) Theorem. When A satisfies the hypothesis of Theorem (2.9), the
resultant ResA has the following properties:
a. If gi =

∑n
i=0 bijfj, where (bij) is an invertible matrix, then

ResA(g0, . . . , gn) = det(bij)n! Vol(Q)ResA(f0, . . . , fn).

b. Given indices 1 ≤ k0 ≤ · · · ≤ kn ≤ l, the bracket [k0 . . . kn] is defined
to be the determinant

[k0 . . . kn] = det(ui,kj ) ∈ Z[uij].

Then ResA is a polynomial in the brackets [k0 . . . kn].

Proof. See [GKZ], Chapter 8. As explained in the proof of Theorem (3.5)
of Chapter 3, the second part follows from the first. In §4, we will prove
that n! Vol(Q) is an integer since Q is a lattice polytope.

Exercise 6. As in Exercise 5, let A = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then
prove that

(2.14) ResA(f, g, h) = [013][023] − [012][123].

Hint: Expand the determinant (2.11) three times along certain well-chosen
rows and columns.

The answer to Exercise 6 is more interesting than first meets the eye. La-
bel the points inA = {(0, 0), (1, 0), (0, 1), (1, 1)} as 0, 1, 2, 3, corresponding
to the subscripts of the coefficients in (2.10). Then the brackets appearing
in (2.14) correspond to the two ways of dividing the square Q = Conv(A)
into triangles. This is illustrated in Fig. 7.4 on the next page, where the
figure on the left corresponds to [013][023], and the one on the right to
[012][123].

The amazing fact is that this is no accident! In general, when we express
ResA as a polynomial in the brackets [k0 . . . kn], there is a very deep re-
lationship between certain terms in this polynomial and triangulations of
the polytope Q = Conv(A). The details can be found in [KSZ]. See also
[Stu4] for some nice examples.

Many of the other properties of multipolynomial resultants mentioned
in §3 and §4 have sparse analogs. We refer the reader to [GKZ, Chapter 8]
and [PS2] for further details.
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Figure 7.4. Triangulations of the unit square

Our account of sparse resultants is by no means complete, and in
particular, we have the following questions:

• When ResA(f0, . . . , fn) vanishes, the equations (2.5) should have a solu-
tion, but where? In §3, we will see that toric varieties provide a natural
answer to this question.
• What happens when the polynomials in (2.5) have exponents not lying

in the same set A? We will explore what happens in §6.
• How do we compute ResA(f0, . . . , fn)? We will (very briefly) sketch one

method in §6 and give references to other methods in the literature.
• What are sparse resultants good for? We’ve used them for implicitization

in (2.12), and applications to solving equations will be covered in §6. A
brief discussion of applications to geometric modeling, computational
geometry, vision and molecular structure can be found in [Emi2].

We should also mention that besides sparse resultants, some other types
of resultants have been studied in recent years. For example:

• The paper [BEM1] defines a notion of resultant which works for any uni-
rational variety. (A projective variety is unirational if there is a surjective
rational map from P

n to the variety.)
• When a unirational variety is a blow-up of P

n, the resultant of [BEM1] is
called a residual resultant . This is studied in [BEM2] when the center of
the blow-up is a complete intersection, and [Bus] considers what happens
when the center is a local complete intersection in P

2.
• In a different direction, consider polynomials whose Newton polytopes

are rectangles with smaller rectangles cut out of each corner. Because
we cut out rectangles, we are not using all lattice points in the convex
hull. Some interesting formulas for these resultants are given in [ZG] and
[Chi].
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ADDITIONAL EXERCISES FOR §2

Exercise 7. Let B be the 3 × 3 matrix in (2.2). In this exercise, we will
show that the parametrization (2.1) lies in a plane αx + βy + γz = δ if
and only if det(B) = 0.
a. First, if the parametrization lies in the plane αx+βy+γz = δ, then show

that Bv = 0, where v = (α, β, γ)t. Hint: If a polynomial in s, t equals
zero for all values of s and t, then the coefficients of the polynomial must
be zero.

b. Conversely, if det(B) = 0, then we can find a nonzero column vector
v = (α, β, γ)t such that Bv = 0. Show that αx + βy + γz = δ for an
appropriately chosen δ.

Exercise 8. Given A = {m1, . . . , ml} ⊂ Z
n and v ∈ Z

n, let v + A =
{v + m1, . . . , v + ml}. Explain why ResA = Resv+A. Hint: Remember that
in defining the resultant, we only use solutions of the equations (2.5) with
t1, . . . , tn ∈ C

∗.

Exercise 9. For A = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0)}, compute ResA
using the methods of Exercise 5. Hint: Let the variables be s, t, and let the
equations be f = g = h = 0 with coefficients a0, . . . , c4. Multiply each of
the three equations by 1, s, t. This will give you a 9 × 9 determinant. The
tricky part is finding polynomials f, g, h such that the determinant is ±1.
See part d of Exercise 5.

Exercise 10. This exercise will explore the Dixon resultant introduced by
Dixon in 1908. See Section 2.4 of [Stu4] for some nice examples. Let

Al,m = {(a, b) ∈ Z
2 : 0 ≤ a ≤ l, 0 ≤ b ≤ m}.

Note that Al,m has (l + 1)(m + 1) elements. Let the variables be s, t. Our
goal is to find a determinant formula for ResAl,m

.
a. Given f, g, h ∈ L(Al,m), we get equations f = g = h = 0. Mul-

tiplying these equations by satb for (a, b) ∈ A2l−1,m−1, show that
you get a system of 6lm equations in the 6lm “unknowns” satb for
(a, b) ∈ A3l−1,2m−1. Hint: For l = m = 1, this is exactly what you did
in Exercise 1.

b. If A is the matrix of part a, conclude that det(A) = 0 whenever f =
g = h = 0 has a solution (s, t) ∈ (C∗)2. Also show that det(A) has
total degree 2lm in the coefficients of f , and similarly for g and h.

c. What is the volume of the convex hull of Al,m?
d. Using Theorems (2.6) and (2.9), show that det(A) is a constant multiple

of ResAl,m
.

e. Show that the constant is ±1 by considering f = 1 + sltm, g = sl and
h = tm. Hint: In this case, A has 4lm rows with only one nonzero entry.
Use this to reduce to a 2lm × 2lm matrix.
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§3 Toric Varieties

Let A = {m1, . . . , ml} ⊂ Z
n, and suppose that

fi = ai1t
m1 + · · · + ailt

ml , i = 0, . . . , n

are n + 1 Laurent polynomials in L(A). The basic question we want to
answer in this section is: If ResA(f0, . . . , fn) = 0, where do the equations

(3.1) f0 = · · · = fn = 0

have a solution? In other words, what does it mean for the resultant to
vanish?

For Ad = {m ∈ Z
n
≥0 : |M | ≤ d}, we know the answer. Here, we

homogenize f0, . . . , fn as in (2.7) to get F0, . . . , Fn. Proposition (2.8)
implies

ResAd
(f0, . . . , fn) = Resd,...,d(F0, . . . , Fn),

and then Theorem (2.3) of Chapter 3 tells us

(3.2) Resd,...,d(F0, . . . , Fn) = 0 ⇐⇒
{

F0 = · · · = Fn = 0
has a nontrivial solution.

Recall that a nontrivial solution means (x0, . . . , xn) �= (0, . . . , 0), i.e., a
solution in P

n. Thus, by going from (C∗)n to P
n and changing to homo-

geneous coordinates in (3.1), we get a space where the vanishing of the
resultant means that our equations have a solution.

To understand what happens in the general case, suppose that A =
{m1, . . . , ml} ⊂ Z

n
≥0, and assume that Q = Conv(A) has dimension n.

Then consider the map

φA : (C∗)n −→ P
l−1

defined by

(3.3) φA(t1, . . . , tn) = (tm1 , . . . , tml).

Note that (tm1 , . . . , tml) is never the zero vector since ti ∈ C
∗ for all i.

Thus φA is defined on all of (C∗)n, though the image of φA need not be a
subvariety of P

l−1. Then the toric variety XA is the Zariski closure of the
image of φA, i.e.,

XA = φA
(
(C∗)n

) ⊂ P
l−1.

Toric varieties are an important area of research in algebraic geometry
and feature in many applications. The reader should consult [GKZ] or
[Stu2] for an introduction to toric varieties. There is also a more abstract
theory of toric varieties, as described in [Ful]. See [Cox4] for an elementary
introduction.

For us, the key fact is that the equations fi = ai1t
m1 + · · · + ailt

ml = 0
from (3.1) extend naturally to XA. To see how this works, let u1, . . . , ul
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be homogeneous coordinates on P
l−1. Then consider the linear function

Li = ai1u1 + · · · + ailul, and notice that fi = Li ◦ φA. However, Li is not
a function on P

l−1 since u1, . . . , ul are homogeneous coordinates. But the
equation Li = 0 still makes sense on P

l−1 (be sure you understand why),
so in particular, Li = 0 makes sense on XA. Since Li and fi have the same
coefficients, we can write ResA(L0, . . . , Ln) instead of ResA(f0, . . . , fn).
Then we can characterize the vanishing of the resultant as follows.

(3.4) Theorem.

ResA(L0, . . . , Ln) = 0 ⇐⇒
{

L0 = · · · = Ln = 0
has a solution in XA.

Proof. See Proposition 2.1 of Chapter 8 of [GKZ]. This result is also
discussed in [KSZ].

This theorem tells us that the resultant vanishes if and only if (3.1) has a
solution in the toric variety XA. From a more sophisticated point of view,
Theorem (3.4) says that ResA is closely related to the Chow form of XA.

To get a better idea of what Theorem (3.4) means, we will work out two
examples. First, if Ad = {m ∈ Z

n
≥0 : |m| ≤ d}, let’s show that XAd

= P
n.

Let x0, . . . , xn be homogeneous coordinates on P
n, so that by Exercise 19

of Chapter 3, §4, there are N =
(
d+n

n

)
monomials of total degree d in

x0, . . . , xn. These monomials give a map

Φd : P
n −→ P

N−1

defined by Φd(x0, . . . , xn) = (. . . , xα, . . .), where we use all monomials xα

of total degree d. In Exercise 6 at the end of the section, you will show
that Φd is well-defined and one-to-one. We call Φd the Veronese map. The
image of Φd is a variety by the following basic fact.

• (Projective Images) Let Ψ : P
n → P

N−1 be defined by Ψ(x0, . . . , xn) =
(h1, . . . , hN ), where the hi are homogeneous of the same degree and
don’t vanish simultaneously on P

n. Then the image Ψ(Pn) ⊂ P
N−1 is a

variety.

(See §5 of Chapter 8 of [CLO].) For t1, . . . , tn ∈ C
∗, observe that

(3.5) Φd(1, t1, . . . , tn) = φAd
(t1, . . . , tn),

where φAd
is from (3.3) (see Exercise 6). Thus Φd(Pn) is a variety containing

φAd

(
(C∗)n

)
, so that XAd

⊂ Φd(Pn). Exercise 6 will show that equality
occurs, so that XAd

= Φd(Pn). Finally, since Φd is one-to-one, P
n can be

identified with its image under Φd (we are omitting some details here),
and we conclude that XAd

= P
n. It follows from Theorem (3.4) that for

homogeneous polynomials F0, . . . , Fn of degree d,

Resd,...,d(F0, . . . , Fn) = 0 ⇐⇒
{

F0 = · · · = Fn = 0
has a solution in P

n.
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Thus we recover the characterization of Resd,...,d given in (3.2).
For a second example, you will show in the next exercise that P

1 × P
1

is the toric variety where the equations (2.10) have a solution when the
resultant vanishes.

Exercise 1. Let A = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then φA(s, t) =
(1, s, t, st) ∈ P

3 and XA is the Zariski closure of the image of φA. A
formula for ResA is given in (2.11).
a. Let the coordinates on P

1 × P
1 be (u, s, v, t), so that (u, s) are homoge-

neous coordinates on the first P
1 and (v, t) are homogeneous coordinates

on the second. Show that the Segre map Φ : P
1 × P

1 → P
3 defined by

Φ(u, s, v, t) = (uv, sv, ut, st) is well-defined and one-to-one.
b. Show that the image of Φ is XA and explain why this allows us to

identify P
1 × P

1 with XA.
c. Explain why the “homogenizations” of f, g, h from (2.10) are

(3.6)

F (u, s, v, t) = a0uv + a1sv + a2ut + a3st = 0

G(u, s, v, t) = b0uv + b1sv + b2ut + b3st = 0

H(u, s, v, t) = c0uv + c1sv + c2ut + c3st = 0,

and then prove that ResA(F, G, H) = 0 if and only if F = G = H = 0
has a solution in P

1 × P
1. In Exercises 7 and 8 at the end of the section,

you will give an elementary proof of this assertion.

Exercise 1 can be restated as saying that ResA(F, G, H) = 0 if and only
if F = G = H = 0 has a nontrivial solution (u, s, v, t), where nontrivial
now means (u, s) �= (0, 0) and (v, t) �= (0, 0). This is similar to (3.2),
except that we “homogenized” (3.1) in a different way, and “nontrivial”
has a different meaning.

Our next task is to show that there is a systematic procedure for homog-
enizing the equations (3.1). The key ingredient will again be the polytope
Q = Conv(A). In particular, we will use the facets and inward normals
of Q, as defined in §1. If Q has facets F1, . . . ,FN with inward pointing
normals ν1, . . . , νN respectively, each facet Fj lies in the supporting hy-
perplane defined by m · νj = −aj , and according to (1.4), the polytope Q
is given by

(3.7) Q = {m ∈ R
n : m · νj ≥ −aj for all j = 1, . . . , N}.

As usual, we assume that νj ∈ Z
n is the unique primitive inward pointing

normal of the facet Fj .
We now explain how to homogenize the equations (3.1) in the general

case. Given the representation of Q as in (3.7), we introduce new vari-
ables x1, . . . , xN . These “facet variables” are related to t1, . . . , tn by the
substitution

(3.8) ti = xν1i
1 xν2i

2 · · · xνNi

N , i = 1, . . . , n
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where νji is the ith coordinate of νj . Then the “homogenization” of
f(t1, . . . , tn) is

(3.9) F (x1, . . . , xn) =
(∏N

j=1 x
aj

j

)
f(t1, . . . , tn),

where each ti is replaced with (3.8). Note the similarity with (2.7). The
homogenization of the monomial tm will be denoted xα(m). An explicit
formula for xα(m) will be given below.

Since the inward normals νj can have negative coordinates, negative
exponents can appear in (3.8). Nevertheless, the following lemma shows
that xα(m) has no negative exponents in the case we are interested in.

(3.10) Lemma. If m ∈ Q, then xα(m) is a monomial in x1, . . . , xN with
nonnegative exponents.

Proof. Write m ∈ Z
n as m =

∑n
i=1 aiei. Since νji = νj · ei, (3.8) implies

(3.11) tm = xm·ν1
1 xm·ν2

2 · · · xm·νN

N ,

from which it follows that

xα(m) =
(∏N

j=1 x
aj

j

)
xm·ν1

1 xm·ν2
2 · · · xm·νN

N

= xm·ν1+a1
1 xm·ν2+a2

2 · · · xm·νN+aN

N .

Since m ∈ Q, (3.7) implies that the exponents of the xj are ≥ 0.

Exercise 2. Give a careful proof of (3.11).

Exercise 3. If we used +aj rather than −aj in the description of Q =
Conv(A) in (3.7), what effect would this have on (3.9)? This explains the
minus signs in (3.7): they give a nicer homogenization formula.

From the equations (3.1), we get the homogenized equations

F0 = a01x
α(m1) + · · · + a0lx

α(ml) = 0

...

Fn = an1x
α(m1) + · · · + anlx

α(ml) = 0,

where Fi is the homogenization of fi. Notice that Lemma (3.10) applies
to these equations since mi ∈ A ⊂ Q for all i. Also note that F0, . . . , Fn

and f0, . . . , fn have the same coefficients, so we can write the resultant as
ResA(F0, . . . , Fn).

Exercise 4.
a. For Ad = {m ∈ Z

n
≥0 : |m| ≤ d}, let the facet variables be x0, . . . , xn,

where we use the labelling of Exercise 3. Show that ti = xi/x0 and that
the homogenization of f(t1, . . . , tn) is given precisely by (2.7).
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b. For A = {(0, 0), (1, 0), (0, 1), (1, 1)}, the convex hull Q = Conv(A) in
R

2 is given by the inequalities

m · νs ≥ 0, m · νu ≥ −1, m · νt ≥ 0, and m · νv ≥ −1,

where e1 = νs = −νu and e2 = νt = −νv. As indicated by the labelling
of the facets, the facet variables are u, s, v, t. This is illustrated in Fig. 7.5
on the next page. Show that the homogenization of (2.10) is precisely
the system of equations (3.6).

Our final task is to explain what it means for the equations F0 = · · · =
Fn = 0 to have a “nontrivial” solution. We use the vertices of polytope
Q for this purpose. Since Q is the convex hull of the finite set A ⊂ Z

n, it
follows that every vertex of Q lies in A, i.e., the vertices are a special subset
of A. This in turn gives a special collection of homogenized monomials
which will tell us what “nontrivial” means. The precise definitions are as
follows.

(3.12) Definition. Let x1, . . . , xN be facet variables for Q = conv(A).
a. If m ∈ A is a vertex of Q, then we say that xα(m) is a vertex monomial .
b. A point (x1, . . . , xN ) ∈ C

N is nontrivial if xα(m) �= 0 for at least one
vertex monomial.

Exercise 5.
a. Let Ad and x0, . . . , xn be as in Exercise 4. Show that the vertex mono-

mials are xd
0, . . . , x

d
n, and conclude that (x0, . . . , xn) is nontrivial if and

only if (x0, . . . , xn) �= (0, . . . , 0).
b. Let A and u, s, v, t be as in Exercise 4. Show that the vertex monomials

are uv, ut, sv, st, and conclude that (u, s, v, t) is nontrivial if and only
if (u, s) �= (0, 0) and (v, t) �= (0, 0).

Q

1

1

νs νu

νv

νt

Figure 7.5. Facet normals of the unit square
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Exercises 4 and 5 show that the homogenizations used in (2.7) and (3.6)
are special cases of a theory that works for any set A of exponents. Once
we have the description (3.7) of the convex hull of A, we can read off
everything we need, including the facet variables, how to homogenize, and
what nontrivial means.

We now come to the main result of this section, which uses the facet
variables to give necessary and sufficient conditions for the vanishing of the
resultant.

(3.13) Theorem. Let A = {m1, . . . , ml} ⊂ Z
n
≥0 be finite, and assume

that Q = Conv(A) is n-dimensional. If x1, . . . , xN are the facet variables,
then the homogenized system of equations

F0 = a01x
α(m1) + · · · + a0lx

α(ml) = 0

...

Fn = an1x
α(m1) + · · · + anlx

α(ml) = 0

has a nontrivial solution in C
N if and only if ResA(F0, . . . , Fn) = 0.

Proof. Let U ⊂ C
N consist of all nontrivial points, and notice that

(C∗)N ⊂ U . Then consider the map Φ defined by

Φ(x1, . . . , xN ) = (xα(m1), . . . , xα(ml)).

Since the vertex monomials appear among the xα(mi), we see that
Φ(x1, . . . , xN ) �= (0, . . . , 0) when (x1, . . . , xN ) ∈ U . Thus Φ can be re-
garded as a map Φ : U → P

l−1. By Theorem (3.4), it suffices to prove
that the image of Φ is the toric variety XA. To prove this, we will use the
following properties of the map Φ:

(i) Φ(U) is a variety in P
l−1.

(ii) Φ
(
(C∗)N

)
is precisely φA

(
(C∗)n

)
.

Assuming (i) and (ii), we see that φA
(
(C∗)n

) ⊂ Φ(U), and since Φ(U) is
a variety, we have XA ⊂ Φ(U). Then the argument of part d of Exercise 6
shows that XA = Φ(U), as desired.

The proofs of (i) and (ii) are rather technical and use results from
[BC] and [Cox1]. Since Theorem (3.13) has not previously appeared in
the literature, we will include the details. What follows is for experts only!

For (i), note that [Cox1] implies that Φ factors

U → XQ → P
l−1,

where XQ is the abstract toric variety determined by Q (see [Ful], §1.5).
By Theorem 2.1 of [Cox1], U → XQ is a categorical quotient, and in
fact, the proof shows that it is a universal categorical quotient (because
C has characteristic 0—see Theorem 1.1 of [FM]). A universal categorical
quotient is surjective by §0.2 of [FM], so that U → XQ is surjective. This



328 Chapter 7. Polytopes, Resultants, and Equations

shows that Φ(U) is the image of XQ → P
l−1. Since XQ is a projective

variety, a generalization of the Projective Images principle used earlier in
this section implies that the image of XQ → P

l−1 is a variety. We conclude
that Φ(U) is a variety in P

l−1.
For (ii), first observe that the restriction of Φ to (C∗)N factors

(C∗)N ψ−→ (C∗)n φA−→ P
l−1

where ψ is given by (3.8) and φA is given by (3.3). To prove this, note that
by the proof of Lemma (3.11), we can write

xα(m) =
(∏N

j=1 x
aj

j

)
tm,

provided we use ψ to write tm in terms of x0, . . . , xN . It follows that

Φ(x0, . . . , xN ) =
(∏N

j=1 x
aj

j

)
φA

(
ψ(x0, . . . , xN )

)
.

Since we are working in projective space, we conclude that Φ = φA ◦ ψ.
Using Remark 8.8 of [BC], we can identify ψ with the restriction of U →

XQ to (C∗)N . It follows from [Cox1] (especially the discussion following
Theorem 2.1) that ψ is onto, and it follows that

Φ
(
(C∗)N

)
= φA

(
ψ
(
(C∗)N

))
= φA

(
(C∗)n

)
,

which completes the proof of the theorem.

The proof of Theorem (3.13) shows that the map Φ : U → XA is sur-
jective, which allows us to think of the facet variables as “homogeneous
coordinates” on XA. However, for this to be useful, we need to understand
when two points P, Q ∈ U correspond to the same point in XA. In nice
cases, there is a simple description of when this happens (see Theorem
2.1 of [Cox1]), but in general, things can be complicated. We should also
mention that facet variables and toric varieties have proved to be useful in
geometric modeling. See, for example, [CoxKM], [Kra], and [Zub].

There is a lot more that one can say about sparse resultants and toric
varieties. In Chapter 8, we will discover a different use for toric varieties
when we study combinatorial problems arising from magic squares. Toric
varieties are also useful in studying solutions of sparse equations, which we
will discuss in §5, and the more general sparse resultants defined in §6 also
have relations to toric varieties. But before we can get to these topics, we
first need to learn more about polytopes.

ADDITIONAL EXERCISES FOR §3

Exercise 6. Consider the Veronese map Φd : P
n → P

N−1, N =
(
n+d

d

)
,

as in the text.
a. Show that Φd is well-defined. This has two parts: first, you must show

that Φd(x0, . . . , xn) doesn’t depend on which homogeneous coordinates
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you use, and second, you must show that Φd(x0, . . . , xn) never equals
the zero vector.

b. Show that Φd is one-to-one. Hint: If Φd(x0, . . . , xn) = Φd(y0, . . . , yn),
then for some µ, µxα = yα for all |α| = d. Pick i such that xi �= 0 and
let λ = yi/xi. Then show that µ = λd and yj = λxj for all j.

c. Prove (3.5).
d. Prove that Φd(Pn) is the Zariski closure of φAd

(
(C∗)n

)
in P

N−1. In con-
crete terms, this means the following. Let the homogeneous coordinates
on P

N−1 be u1, . . . , uN . If a homogeneous polynomial H(u1, . . . , uN )
vanishes on φAd

(
(C∗)n

)
, then prove that H vanishes on Φd(Pn). Hint:

Use (3.5) to show that x0 . . . xnH ◦Φd vanishes identically on P
n. Then

argue that H ◦ Φd must vanish on P
n.

Exercise 7. Let A and F, G, H be as in Exercise 1. In this exercise and
the next, you will give an elementary proof that ResA(F, G, H) = 0 if and
only if F = G = H = 0 has a nontrivial solution (u, s, v, t), meaning
(u, s) �= (0, 0) and (v, t) �= (0, 0).
a. If F = G = H = 0 has a nontrivial solution (u, s, v, t), show that the

determinant in (2.11) vanishes. Hint: Multiply the equations by u and s
to get 6 equations in the 6 “unknowns” u2v, usv, u2t, ust, s2v, s2t. Show
that the “unknowns” can’t all vanish simultaneously.

b. For the remaining parts of the exercise, assume that the determinant
(2.11) vanishes. We will find a nontrivial solution of the equations F =
G = H = 0 by considering 3 × 3 submatrices (there are four of them)
of the matrix ⎛⎝ a0 a1 a2 a3

b0 b1 b2 b3
c0 c1 c2 c3

⎞⎠ .

One of the 3 × 3 submatrices appears in (2.2), and if its determinant
doesn’t vanish, show that we can find a solution of the form (1, s, 1, t).
Hint: Adapt the argument of Exercise 2 of §2.

c. Now suppose instead that

det

⎛⎝ a0 a2 a3
b0 b2 b3
c0 c2 c3

⎞⎠ �= 0.

Show that we can find a solution of the form (u, 1, 1, t).
d. The matrix of part b has two other 3× 3 submatrices. Show that we can

find a nontrivial solution if either of these has nonvanishing determinant.
e. Conclude that we can find a nontrivial solution whenever the matrix of

part b has rank 3.
f. If the matrix has rank less than three, explain why it suffices to show

that the equations F = G = 0 have a nontrivial solution. Hence we
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are reduced to the case where H is the zero polynomial, which will be
considered in the next exercise.

Exercise 8. Continuing the notation of the previous exercise, we will show
that the equations F = G = 0 always have a nontrivial solution. Write the
equations in the form

(a0u + a1s)v + (a2u + a3s)t = 0

(b0u + b1s)v + (b2u + b3s)t = 0,

which is a system of two equations in the unknowns v, t.
a. Explain why we can find (u0, s0) �= (0, 0) such that

det
(

a0u0 + a1s0 a2u0 + a3s0
b0u0 + b1s0 b2u0 + b3s0

)
= 0.

b. Given (u0, s0) from part a, explain why we can find (v0, t0) �= (0, 0)
such that (u0, s0, v0, t0) is a nontrivial solution of F = G = 0.

Exercise 9. In Exercise 8 of §2, you showed that ResA is unchanged if we
translate A by a vector v ∈ Z

n. You also know that if Q is the convex hull
of A, then v + Q is the convex hull of v + A by Exercise 16 of §1.
a. If Q is represented as in (3.7), show that v + Q is respresented by the

inequalities m · νj ≥ −aj + v · νj.
b. Explain why A and v + A have the same facet variables.
c. Consider m ∈ Q. Show that the homogenization of tm with respect to
A is equal to the homogenization of tv+m with respect to v + A. This
says that the homogenized equations in Theorem (3.13) are unchanged
if we replace A with v + A.

Exercise 10. Let x1, . . . , xN be facet variables for Q = Conv(A). We say
that two monomials xα and xβ have the same A-degree if there is m ∈ Z

n

such that

βj = αj + m · νj

for j = 1, . . . , N .
a. Show that the monomials xα(m), m ∈ Q, have the same A-degree. Thus

the polynomials in Theorem (3.13) are A-homogeneous, which means
that all terms have the same A-degree.

b. If Ad and x0, . . . , xn are as in part a of Exercise 4, show that two
monomials xα and xβ have the same Ad-degree if and only if they have
the same total degree.

c. If A and u, s, v, t are as in part b of Exercise 4, show that two monomials
ua1sa2va3ta4 and ub1sb2vb3tb4 have the same A-degree if and only if
a1 + a2 = b1 + b2 and a3 + a4 = b3 + b4.
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Exercise 11. This exercise will explore the notion of “nontrivial” given
in Definition (3.12). Let m ∈ Q = Conv(A), and let x1, . . . , xN be the
facet variables. We define the reduced monomial x

α(m)
red to be the monomial

obtained from xα(m) by replacing all nonzero exponents by 1.
a. Prove that

x
α(m)
red =

∏
m/∈Fj

xj .

Thus x
α(m)
red is the product of those facet variables corresponding to the

facets not containing m. Hint: Look at the proof of Lemma (3.10) and
remember that m ∈ Fj if and only if m · νj = −aj .

b. Prove that (x1, . . . , xN ) is nontrivial if and only if x
α(m)
red �= 0 for at

least one vertex m ∈ Q.
c. Prove that if m ∈ Q ∩ Z

n is arbitrary, then xα(m) is divisible by some
reduced vertex monomial. Hint: The face of Q of smallest dimension
containing m is the intersection of those facets Fj for which m·νj = −aj .
Then let m′ be a vertex of Q lying in this face.

d. As in the proof of Theorem (3.13), let U ⊂ C
N be the set of non-

trivial points. If (x1, . . . , xn) /∈ U , then use parts b and c to show
that (x1, . . . , xn) is a solution of the homogenized equations F0 =
· · · = Fn = 0 in the statement of Theorem (3.13). Thus the points
in C

N − U are “trivial” solutions of our equations, which explains the
name “nontrivial” for the points of U .

Exercise 12. Let A = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0)}. In Exercise 9 of
§2, you showed that ResA(f, g, h) was given by a certain 9×9 determinant.
The convex hull of A is pictured in Fig. 7.2, and you computed the inward
normals to be e1, e2,−e2,−e1−e2 in Exercise 6 of §1. Let the corresponding
facet variables be x1, x2, x3, x4.
a. What does it mean for (x1, x2, x3, x4) to be nontrivial? Try to make

your answer as nice as possible. Hint: See part b of Exercise 5.
b. Write down explicitly the homogenizations F, G, H of the polynomials

f, g, h from Exercise 9 of §2.
c. By combining parts a and b, what is the condition for ResA(F, G, H)

to vanish?

Exercise 13. In Exercise 10 of §2, you studied the Dixon resultant
ResAl,m

, where Al,m = {(a, b) ∈ Z
2 : 0 ≤ a ≤ l, 0 ≤ b ≤ m}.

a. Draw a picture of Conv(Al,m) and label the facets using the variables
u, s, v, t (this is similar to what you did in part b of Exercise 4).

b. What is the homogenization of f ∈ L(Al,m)?
c. What does it mean for (u, s, v, t) to be nontrivial?
d. What is the toric variety XAl,m

? Hint: It’s one you’ve seen before!
e. Explain how the Dixon resultant can be formulated in terms of bihomo-

geneous polynomials. A polynomial f ∈ k[u, s, v, t] is bihomogeneous of
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degree (l, m) if it is homogeneous of degree l as a polynomial in u, s and
homogeneous of degree m as a polynomial in v, t.

§4 Minkowski Sums and Mixed Volumes

In this section, we will introduce some important constructions in the
theory of convex polytopes. Good general references for this material are
[BoF], [BZ], [Ewa] and [Lei]. [Ful] and [GKZ] also contain brief expositions.
Throughout, we will illustrate the main ideas using the Newton polytopes
(see §1) of the following polynomials:

(4.1)
f1(x, y) = ax3y2 + bx + cy2 + d

f2(x, y) = exy4 + fx3 + gy.

We will assume that the coefficients a, . . . , g are all non-zero in C.
There are two operations induced by the vector space structure in R

n

that form new polytopes from old ones.

(4.2) Definition. Let P, Q be polytopes in R
n and let λ ≥ 0 be a real

number.
a. The Minkowski sum of P and Q, denoted P + Q, is

P + Q = {p + q : p ∈ P and q ∈ Q},
where p + q denotes the usual vector sum in R

n.
b. The polytope λ P is defined by

λ P = {λ p : p ∈ P},
where λ p is the usual scalar multiplication on R

n.

For example, the Minkowski sum of the Newton polytopes P1 =
NP(f1) and P2 = NP(f2) from (4.1) is a convex heptagon with vertices
(0, 1), (3, 0), (4, 0), (6, 2), (4, 6), (1, 6), and (0, 3). In Fig. 7.6, P1 is indicated
by dashed lines, P2 by bold lines, and the Minkowski sum P1 +P2 is shaded.

Exercise 1. In Fig. 7.6, show that the Minkowski sum P1 + P2 can be
obtained by placing a copy of P1 at every point of P2. Illustrate your answer
with a picture. This works because P1 contains the origin.

Exercise 2. Let
f1 = a20x

2 + a11xy + a02y
2 + a10x + a01y + a00

f2 = b30x
3 + b21x

2y + b12xy2 + b03y
3 + b20x

2 + · · · + b00

be general (“dense”) polynomials of total degrees 2 and 3 respectively.
Construct the Newton polytopes Pi = NP(fi) for i = 1, 2 and find the
Minkowski sum P1 + P2.
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P1 + P2

P1

P2

1 2 3 4 5 6

1

2

3

4

5

6

Figure 7.6. Minkowski sum of polytopes

Exercise 3.
a. Show that if f1, f2 ∈ C[x1, . . . , xn] and Pi = NP(fi), then P1 + P2 =

NP(f1 · f2).
b. Show in general that if P1 and P2 are polytopes, then their Minkowski

sum P1 + P2 is also convex. Hint: If Pi = Conv(Ai), where Ai is finite,
what finite set will give P1 + P2?

c. Show that a Minkowski sum of lattice polytopes is again a lattice
polytope.

d. Show that P + P = 2 P for any polytope P . How does this generalize?

Given finitely many polytopes P1, . . . , Pl ⊂ R
n, we can form their

Minkowski sum P1 + · · · + Pl, which is again a polytope in R
n. In §1,

we learned about the faces of a polytope. A useful fact is that faces of the
Minkowski sum P1 + · · · + Pl are themselves Minkowski sums. Here is a
precise statement.

(4.3) Proposition. Let P1, . . . , Pr ⊂ R
n be polytopes in R

n, and let P =
P1 + · · · + Pr be their Minkowski sum. Then every face P ′ of P can be
expressed as a Minkowski sum

P ′ = P ′
1 + · · · + P ′

r,

where each P ′
i is a face of Pi.
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Proof. By §1, there is a nonzero vector ν ∈ R
n such that

P ′ = Pν = P ∩ {m ∈ R
n : m · ν = −aP (ν)}.

In Exercise 12 at the end of the section, you will show that

Pν = (P1 + · · · + Pr)ν = (P1)ν + · · · + (Pr)ν ,

which will prove the proposition.

Exercise 4. Verify that Proposition (4.3) holds for each facet of the
Minkowski sum P1 + P2 in Fig. 7.6.

We next show how to compute the volume of an n-dimensional lattice
polytope P using its facets. As in §1, each facet F of P has a unique
primitive inward pointing normal νF ∈ Z

n. If the supporting hyperplane
of F is m · νF = −aF , then the formula (1.4) for P can be stated as

(4.4) P =
⋂
F
{m ∈ R

n : m · νF ≥ −aF},

where the intersection is over all facets F of P . Recall also that in the
notation of (1.3), aF = aP (νF ).

Let ν⊥
F denote the (n − 1)-dimensional subspace defined by m · νF = 0.

Then ν⊥
F ∩Z

n is closed under addition and scalar multiplication by integers.
One can prove that ν⊥

F ∩Z
n is a lattice of rank n−1, which means there are

n− 1 vectors w1, . . . , wn−1 ∈ ν⊥
F ∩ Z

n such that every element of ν⊥
F ∩ Z

n

is a unique linear combination of w1, . . . , wn−1 with integer coefficients.
We call w1, . . . , wn−1 a basis of ν⊥

F ∩ Z
n. The existence of w1, . . . , wn−1

follows from the fundamental theorem on discrete subgroups of Euclidean
spaces. Using w1, . . . , wn−1, we get the set

P = {λ1w1 + · · · + λn−1wn−1 : 0 ≤ λi ≤ 1},
which is the called a fundamental lattice parallelotope of the lattice ν⊥

F ∩Z
n.

If S is subset of R
n lying in any affine hyperplane, we can define

the Euclidean volume Voln−1(S). In particular, we can define Voln−1(F).
However, we also need to take the volume of the fundamental lattice
parallelotope P into account. This leads to the following definition.

(4.5) Definition. The normalized volume of the facet F of the lattice
polytope P is given by

Vol′n−1(F) =
Voln−1(F)
Voln−1(P)

,

where P is a fundamental lattice parallelotope for ν⊥
F ∩ Z

n.

This definition says that the normalized volume is the usual volume
scaled so that the fundamental lattice parallelotope has volume 1. In
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Exercise 13, you will show that this definition is independent of which fun-
damental lattice parallelotope we use. We should also mention the following
nice formula:

Voln−1(P) = ||νF ||,
where ||νF || is the Euclidean length of the vector νF . We omit the proof
since we will not use this result.

For example, let P2 = NP(f2) = Conv({(1, 4), (3, 0), (0, 1)}) be the
Newton polytope of the polynomial f2 from (4.1). For the facet

F = Conv({(3, 0), (0, 1)}),
we have νF = (1, 3), and the line containing F is x + 3y = 3. It is easy
to check that (3, 0) and (0, 1) are as close together as any pair of integer
points in the line x + 3y = 3, so the line segment from (3, 0) to (0, 1) is a
translate of the fundamental lattice parallelotope. It follows that

Vol′1(F) = 1.

Notice that the usual Euclidean length of F is
√

10. In general, the
normalized volume differs from the Euclidean volume.

Exercise 5. Let P2 = NP(f2) be as above.
a. Show that for the facet G = Conv({(3, 0), (1, 4)}), we have νG =

(−2,−1) and Vol′1(G) = 2.
b. Finally, for the facetH = Conv({(0, 1), (1, 4)}), show that νH = (3,−1)

and Vol′1(H) = 1.

Our main reason for introducing the normalized volume of a facet is the
following lovely connection between the n-dimensional volume of a polytope
and the (n − 1)-dimensional normalized volumes of its facets.

(4.6) Proposition. Let P be a lattice polytope in R
n, and assume that P

is represented as in (4.4). Then

Voln(P ) =
1
n

∑
F

aF Vol′n−1(F),

where the sum is taken over all facets of P .

Proof. See [BoF], [Lei] or [Ewa], Section IV.3. The formula given in these
sources is not specifically adapted to lattice polytopes, but with minor
modifications, one gets the desired result. Note also that this proposition
explains the minus sign used in the equation m · νF ≥ −aF of a supporting
hyperplane.

For an example of Proposition (4.6), we will compute the area of the
polytope P2 = NP(f2) of Exercise 5. First note that if we label the facet
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normals νF = (1, 3), νG = (−2,−1) and νH = (3,−1) as above, then P2
is defined by

m · νF ≥ 3, m · νG ≥ −6, and m · νH ≥ −1.

It follows that aF = −3, aG = 6 and aH = 1. Applying Proposition (4.6),
the area of P2 is given by

(4.7) Vol2(P2) = (1/2)(−3 · 1 + 6 · 2 + 1 · 1) = 5.

You should check that this agrees with the result obtained from the
elementary area formula for triangles.

Exercise 6. Show that the area of the polytope P1 = NP(f1) for f1 from
(4.1) is equal to 4, by first applying Proposition (4.6), and then checking
with an elementary area formula.

Proposition (4.6) enables us to prove results about volumes of lattice
polytopes using induction on dimension. Here is a nice example which is
relevant to Theorem (2.13).

(4.8) Proposition. If P ⊂ R
n is a lattice polytope, then n! Voln(P ) is an

integer.

Proof. The proof is by induction on n. Then case n = 1 is obvious, so
we may assume inductively that the result is true for lattice polytopes in
R

n−1. By Proposition (4.6), we get

n! Voln(P ) =
∑
F

aF · (n − 1)! Vol′n−1(F).

Note that aF is an integer. If we can show that (n − 1)! Vol′n−1(F) is an
integer, the proposition will follow.

A basis w1, . . . , wn−1 of the lattice ν⊥
F ∩ Z

n gives φ : ν⊥
F ∼= R

n−1 which
carries ν⊥

F ∩ Z
n ⊂ ν⊥

F to the usual lattice Z
n−1 ⊂ R

n−1. Since the funda-
mental lattice polytope P maps to {(a1, . . . , an−1) : 0 ≤ ai ≤ 1} under φ,
it follows easily that

Vol′n−1(S) = Voln−1(φ(S)),

where Voln−1 is the usual Euclidean volume in R
n−1. By translating F ,

we get a lattice polytope F ′ ⊂ ν⊥
F , and then φ(F ′) ⊂ R

n−1 is a lattice
polytope in R

n−1. Since

(n − 1)! Vol′n−1(F) = (n − 1)! Vol′n−1(F ′) = (n − 1)! Voln−1(φ(F ′)),

we are done by our inductive assumption.

Our next result concerns the volumes of linear combinations of polytopes
formed according to Definition (4.2).
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(4.9) Proposition. Consider any collection P1, . . . , Pr of polytopes in
R

n, and let λ1, . . . , λr ∈ R be nonnegative. Then

Voln(λ1P1 + · · · + λrPr)

is a homogeneous polynomial function of degree n in the λi.

Proof. The proof is by induction on n. For n = 1, the Pi = [�i, ri]
are all line segments in R (possibly of length 0 if some �i = ri). The linear
combination λ1P1 + · · ·+λrPr is the line segment [

∑
i λi�i,

∑
i λiri], whose

length is clearly a homogeneous linear function of the λi.
Now assume the proposition has been proved for all combinations of

polytopes in R
n−1, and consider polytopes Pi in R

n and λi ≥ 0. The
polytope Q = λ1P1 + · · · + λrPr depends on λ1, . . . , λr, but as long as
λi > 0 for all i, the Q’s all have the same set of inward pointing facet
normals (see Exercise 14 at the end of the section). Then, using the notation
of (1.3), we can write the formula of Proposition (4.6) as

(4.10) Voln(Q) =
∑

ν

aQ(ν)Vol′n−1(Qν),

where the sum is over the set of common inward pointing facet normals ν.
In this situation, the proof of Proposition (4.3) tells us that

Qν = λ1(P1)ν + · · · + λr(Pr)ν .

By the induction hypothesis, for each ν, the volume Vol′n−1(Qν) in (4.10)
is a homogeneous polynomial of degree n − 1 in λ1, . . . , λr (the details of
this argument are similar to what we did in Proposition (4.8)).

Turning to aQ(ν), we note that by Exercise 12 at the end of the section,

aQ(ν) = aλ1P1+···+λrPr (ν) = λ1aP1(ν) + · · · + λraPr (ν).

Since ν is independent of the λi, it follows that aQ(ν) is a homogeneous
linear function of λ1, . . . , λr. Multiplying aQ(ν) and Vol′n−1(Qν), we see
that each term on the right hand side of (4.10) is a homogeneous polynomial
function of degree n, and the proposition follows.

When r = n, we can single out one particular term in the polynomial
Voln(λ1P1 + · · ·+ λnPn) that has special meaning for the whole collection
of polytopes.

(4.11) Definition. The n-dimensional mixed volume of a collection of
polytopes P1, . . . , Pn, denoted

MVn(P1, . . . , Pn),

is the coefficient of the monomial λ1 ·λ2 · · · λn in Voln(λ1P1 + · · ·+ λnPn).
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Exercise 7.
a. If P1 is the unit square Conv({(0, 0), (1, 0), (0, 1), (1, 1)}) and P2 is the

triangle Conv({(0, 0), (1, 0), (1, 1)}), show that

Vol2(λ1P1 + λ2P2) = λ2
1 + 2λ1λ2 + 1

2 λ2
2,

and conclude that MV2(P1, P2) = 2.
b. Show that if Pi = P for all i, then the mixed volume is given by

MVn(P, P, . . . , P ) = n! Voln(P ).

Hint: First generalize part d of Exercise 3 to prove λ1P + · · · + λnP =
(λ1 + · · · + λn) P , and then determine the coefficient of λ1λ2 · · · λn in
(λ1 + · · · + λn)n.

The basic properties of the n-dimensional mixed volume are given by the
following theorem.

(4.12) Theorem.
a. The mixed volume MVn(P1, . . . , Pn) is invariant if the Pi are replaced

by their images under a volume-preserving transformation of R
n (for

example, a translation).
b. MVn(P1, . . . , Pn) is symmetric and linear in each variable.
c. MVn(P1, . . . , Pn) ≥ 0. Furthermore, MVn(P1, . . . , Pn) = 0 if one of

the Pi has dimension zero (i.e., if Pi consists of a single point), and
MVn(P1, . . . , Pn) > 0 if every Pi has dimension n.

d. The mixed volume of any collection of polytopes can be computed as

MVn(P1, . . . , Pn) =
n∑

k=1

(−1)n−k
∑

I⊂{1,...,n}
|I|=k

Voln
(∑

i∈I

Pi

)
,

where
∑

i∈I Pi is the Minkowski sum of polytopes.
e. For all collections of lattice polytopes P1, . . . , Pn,

MVn(P1, . . . , Pn) =
∑

ν

aP1(ν)MV ′
n−1((P2)ν , . . . , (Pn)ν),

where aP1(ν) is defined in (1.3) and the sum is over all primitive vectors
ν ∈ Z

n such that (Pi)ν has dimension ≥ 1 for i = 2, . . . , n. The no-
tation MV ′

n−1((P2)ν , . . . , (Pn)ν) on the right stands for the normalized
mixed volume analogous to the normalized volume in Definition (4.5):

MV ′
n−1((P2)ν , . . . , (Pn)ν) =

MVn−1((P2)ν , . . . , (Pn)ν)
Voln−1(P)

,

where P is a fundamental lattice parallelotope in the hyperplane ν⊥

orthogonal to ν.

Proof. Part a follows directly from the definition of mixed volumes, as
does part b. We leave the details to the reader as Exercise 15 below.
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The nonnegativity assertion of part c is quite deep, and a proof can be
found in [Ful], Section 5.4. This reference also proves positivity when the
Pi all have dimension n. If Pi has dimension zero, then adding the term
λiPi merely translates the sum of the other terms in λ1P1 + · · ·+ λnPn by
a vector whose length depends on λi. The volume of the resulting polytope
does not change, so that Voln(λ1P1 + · · · + λnPn) is independent of λi.
Hence the coefficient of λ1 · λ2 · · · λn in the expression for the volume must
be zero.

For part d, see [Ful], Section 5.4. Part e is a generalization of the volume
formula given in Proposition (4.6) and can be deduced from that result.
See Exercises 16 and 17 below. Proofs may also be found in [BoF], [Lei]
or [Ewa], Section IV.4. Note that by part b of the theorem, only ν with
dim (Pi)ν > 0 can yield non-zero values for MV ′

n−1((P2)ν , . . . , (Pn)ν).

For instance, let’s use Theorem (4.12) to compute the mixed volume
MV2(P1, P2) for the Newton polytopes of the polynomials from (4.1). In
the case of two polytopes in R

2, the formula of part d reduces to:

MV2(P1, P2) = −Vol2(P1) − Vol2(P2) + Vol2(P1 + P2).

Using (4.7) and Exercise 5, we have Vol2(P1) = 4 and Vol2(P2) = 5. The
Minkowski sum P1 + P2 is the heptagon pictured in Fig. 7.6 above. Its
area may be found, for example, by subdividing the heptagon into four
trapezoids bounded by the horizontal lines y = 0, 1, 2, 3, 6. Using that
subdivision, we find

Vol2(P1 + P2) = 3 + 11/2 + 23/4 + 51/4 = 27.

The mixed volume is therefore

(4.13) MV2(P1, P2) = −4 − 5 + 27 = 18.

Exercise 8. Check the result of this computation using the formula of
part e of Theorem (4.12). Hint: You will need to compute aP1(νF ), aP1(νG)
and aP1(νH), where νF , νG , νH are the inward normals to the facets F , G,H
of P2.

In practice, computing the mixed volume MVn(P1, . . . , Pn) using the
formulas given by parts d and e of Theorem (4.12) can be very time con-
suming. A better method, due to Sturmfels and Huber [HuS1] and Canny
and Emiris [EC], is given by the use of a mixed subdivision of the Minkowski
sum P1 + · · · + Pn. A brief description of mixed subdivisions will be given
in §6, where we will also give further references and explain how to obtain
software for computing mixed volumes.

Exercise 9. Let P1, . . . , Pn be lattice polytopes in R
n.

a. Prove that the mixed volume MVn(P1, . . . , Pn) is an integer.
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b. Explain how the result of part a generalizes Proposition (4.8). Hint: Use
Exercise 7.

We should remark that there are several different conventions in the
literature concerning volumes and mixed volumes. Some authors include
an extra factor of 1/n! in the definition of the mixed volume, so that
MVn(P, . . . , P ) will be exactly equal to Voln(P ). When this is done, the
right side of the formula from part d of Theorem (4.12) acquires an extra
1/n!. Other authors include the extra factor of n! in the definition of Voln
itself (so that the “volume” of the n-dimensional simplex is 1). In other
words, care should be taken in comparing the formulas given here with
those found elsewhere!

ADDITIONAL EXERCISES FOR §4

Exercise 10. Let P1, . . . , Pr be polytopes in R
n. This exercise will show

that the dimension of λ1P1 + · · · + λrPr is independent of the the λi,
provided all λi > 0.
a. If λ > 0 and p0 ∈ P , show that (1−λ)p0 + Aff(λP + Q) = Aff(P + Q).

This uses the affine subspaces discussed in Exercises 12 and 13 of §1.
Hint: (1 − λ)p0 + λp + q = λ(p + q) − λ(p0 + q) + p0 + q.

b. Conclude that dim(λP + Q) = dim(P + Q).
c. Prove that dim(λ1P1 + · · ·+λrPr) is independent of the the λi, provided

all λi > 0.

Exercise 11. Let m · ν = −aP (ν) be a supporting hyperplane of P =
Conv(A), where A ⊂ R

n is finite. Prove that

Pν = Conv({m ∈ A : m · ν = −aP (ν)}).

Exercise 12. Let aP (ν) = −minm∈P (m · ν) be as in (1.3).
a. Show that (λP )ν = λPν and aλP (ν) = λaP (ν).
b. Show that (P + Q)ν = Pν + Qν and aP+Q(ν) = aP (ν) + aQ(ν).
c. Conclude that (λ1P1 + · · · + λrPr)ν = λ1(P1)ν + · · · + λr(Pr)ν and

aλ1P1+···+λrPr (ν) = λ1aP1(ν) + · · · + λraPr (ν).

Exercise 13. Let ν⊥ be the hyperplane orthogonal to a nonzero vector
ν ∈ Z

n, and let {w1, . . . , wn−1} and {w′
1, . . . , w

′
n−1} be any two bases for

the lattice ν⊥ ∩ Z
n.

a. By expanding the w′
i in terms of the wj , show that there is an (n− 1)×

(n − 1) integer matrix A = (aij) such that w′
i =

∑n−1
i=1 aijwj for all

i = 1, . . . , n − 1.
b. Reversing the roles of the two lattice bases, deduce that A is invertible,

and A−1 is also an integer matrix.
c. Deduce from part b that det(A) = ±1.
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d. Show that in the coordinate system defined by w1, . . . , wn−1, A defines
a volume preserving transformation from ν⊥ to itself. Explain why this
shows that any two fundamental lattice parallelotopes in ν⊥ have the
same (n − 1)-dimensional volume.

Exercise 14. Fix polytopes P1, . . . , Pr in R
n such that P1 + · · ·+ Pr has

dimension n. Prove that for any positive reals λ1, . . . , λr, the polytopes
λ1P1+· · ·+λrPr all have the same inward pointing facet normals. Illustrate
your answer with a picture. Hint: If ν is an inward pointing facet normal
for P1 + · · ·+ Pr, then (P1 + · · ·+ Pr)ν has dimension n− 1. This implies
that (P1)ν + · · · + (Pr)ν has dimension n − 1 by Exercise 12. Now use
Exercise 10.

Exercise 15.
a. Using Definition (4.11), show that the mixed volume MVn(P1, . . . , Pn)

is invariant under all permutations of the Pi.
b. Show that the mixed volume is linear in each variable:

MVn(P1, . . . , λ Pi + µ P ′
i , . . . , Pn)

= λ MVn(P1, . . . , Pi, . . . , Pn) + µ MVn(P1, . . . , P
′
i , . . . , Pn)

for all i = 1, . . . , n, and all λ, µ ≥ 0 in R. Hint: When i = 1, consider
the polynomial representing Voln(λ P1 + λ′ P ′

1 + λ2P2 + · · · + λnPn)
and look at the coefficients of λλ2 · · · λn and λ′λ2 · · · λn.

Exercise 16. In this exercise, we will consider several additional proper-
ties of mixed volumes. Let P, Q be polytopes in R

n.
a. If λ, µ ≥ 0 are in R, show that Voln(λ P + µ Q) can be expressed in

terms of mixed volumes as follows:

1
n!

n∑
k=0

(
n

k

)
λkµn−kMVn(P, . . . , P, Q, . . . , Q),

where in the term corresponding to k, P is repeated k times and Q
is repeated n − k times in the mixed volume. Hint: By Exercise 7,
n! Voln(λ P + µ Q) = MVn(λ P + µ Q, . . . , λ P + µ Q).

b. Using part a, show that MVn(P, . . . , P, Q) (which appears in the term
containing λn−1µ in the formula of part a) can also be expressed as

(n − 1)! lim
µ→0+

Voln(P + µQ) − Voln(P )
µ

.

Exercise 17. In this exercise, we will use part b of Exercise 16 to prove
part e of Theorem (4.12). Replacing Q by a translate, we may assume that
the origin is one of the vertices of Q.
a. Show that the Minkowski sum P + µQ can be decomposed into: a sub-

polytope congruent to P , prisms over each facet F of P with height equal
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to µ ·aQ(ν) ≥ 0, where ν = νF , and other polyhedra with n-dimensional
volume bounded above by a constant times µ2.

b. From part a, deduce that

Voln(P + µQ) = Voln(P ) + µ
∑

ν

aQ(ν)Vol′n−1(Pν) + O(µ2).

c. Using part b of Exercise 16, show that

MVn(P, . . . , P, Q) = (n − 1)!
∑

ν

aQ(ν)Vol′n−1(Pν),

where the sum is over the primitive inward normals ν to the facets of P .
d. Now, to prove part e of Theorem (4.12), substitute

P = λ2P2 + · · · + λnPn

and Q = P1 into the formula of part c and use Exercises 7 and 15.

Exercise 18. Given polytopes P1, . . . , Pr in R
n, this exercise will show

that every coefficient of the polynomial representing

Voln(λ1P1 + · · · + λrPr)

is given by an appropriate mixed volume (up to a constant). We will use
the following notation. If α = (i1, . . . , ir) ∈ Z

r
≥0 satisfies |α| = n, then λα

is the usual monomial in λ1, . . . , λr, and let α! = i1!i2! · · · ir!. Also define

MVn(P ; α) = MVn(P1, . . . , P1, P2, . . . , P2, . . . , Pr, . . . , Pr),

where P1 appears i1 times, P2 appears i2 times, . . . , Pr appears ir times.
Then prove that

Voln(λ1P1 + · · · + λrPr) =
∑

|α|=n

1
α!

MVn(P ; α)λα.

Hint: Generalize what you did in part a of Exercise 16.

§5 Bernstein’s Theorem

In this section, we will study how the geometry of polytopes can be used
to predict the number of solutions of a general system of n polynomial (or
Laurent polynomial) equations fi(x1, . . . , xn) = 0. We will also indicate
how these results are related to a particular class of numerical root-finding
methods called homotopy continuation methods.

Throughout the section, we will use the following system of equations to
illustrate the main ideas:

(5.1)
0 = f1(x, y) = ax3y2 + bx + cy2 + d

0 = f2(x, y) = exy4 + fx3 + gy,



§5. Bernstein’s Theorem 343

where the coefficients a, . . . , g are in C. These are the same polynomials
used in §4. We want to know how many solutions these equations have.
We will begin by studying this question using the methods of Chapters 2
and 3, and then we will see that the mixed volume discussed in §4 has an
important role to play. This will lead naturally to Bernstein’s Theorem,
which is the main result of the section.

Let’s first proceed as in §1 of Chapter 2 to find the solutions of (5.1).
Since different choices of a, . . . , g could potentially lead to different num-
bers of solutions, we will initially treat the coefficients a, . . . , g in (5.1)
as symbolic parameters. This means working over the field C(a, . . . , g) of
rational functions in a, . . . , g. Using a lex Gröbner basis to eliminate y, it
is easy to check that the reduced Gröbner basis for the ideal 〈f1, f2〉 in the
ring C(a, . . . , g)[x, y] has the form

(5.2)
0 = y + p17(x)

0 = p18(x),

where p17(x) and p18(x) are polynomials in x alone, of degrees 17 and
18 respectively. The coefficients in p17 and p18 are rational functions in
a, . . . , g. Gröbner basis theory tells us that we can transform (5.2) back
into our original equations (5.1), and vice versa. These transformations will
also have coefficients in C(a, . . . , g).

Now assign numerical values in C to a, . . . , g. We claim that for “most”
choices of a, . . . , g ∈ C, (5.1) is still equivalent (5.2). This is because trans-
forming (5.1) into (5.2) and back involves a finite number of elements of
C(a, . . . , g). If we pick a, . . . , g ∈ C so that none of the denominators ap-
pearing in these elements vanish, then our transformations will still work
for the chosen numerical values of a, . . . , g. In fact, for most choices, (5.2)
remains a Gröbner basis for (5.1)—this is related to the idea of special-
ization of a Gröbner basis, which is discussed in Chapter 6, §3 of [CLO],
especially Exercises 7–9.

The equivalence of (5.1) and (5.2) for most choices of a, . . . , g ∈ C can
be stated more geometrically as follows. Let C

7 denote the affine space
consisting of all possible ways of choosing a, . . . , g ∈ C, and let P be
the product of all of the denominators appearing in the transformation of
(5.1) to (5.2) and back. Note that P (a, . . . , g) �= 0 implies that all of the
denominators are nonvanishing. Thus, (5.1) is equivalent to (5.2) for all
coefficients (a, . . . , g) ∈ C

7 such that P (a, . . . , g) �= 0. As defined in §5
of Chapter 3, this means that the two systems of equations are equivalent
generically . We will make frequent use of the term “generic” in this section.

Exercise 1. Consider the equations (5.1) with symbolic coefficients.
a. Using Maple or another computer algebra system, compute the exact

form of the Gröbner basis (5.2) and identify explicitly a polynomial P
such that if P (a, . . . , g) �= 0, then (5.1) is equivalent to a system of the
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form (5.2). Hint: One can transform (5.1) into (5.2) using the division
algorithm. Going the other way is more difficult. The Maple package
described in the section on Maple in Appendix D of [CLO] can be used
for this purpose.

b. Show that there is another polynomial P ′ such that if P ′(a, . . . , g) �= 0,
then the solutions lie in (C∗)2, where as usual C

∗ = C \ {0}.

Since (5.2) clearly has at most 18 distinct solutions in C
2, the same is true

generically for (5.1). Exercise 8 will show that for generic (a, . . . , g), p18
has distinct solutions, so that (5.1) has precisely 18 solutions in the generic
case. Then, using part b of Exercise 1, we conclude that generically, (5.1)
has 18 solutions, all of which lie in (C∗)2. This will be useful below.

We next turn to §5 of Chapter 3, where we learned about Bézout’s The-
orem and solving equations via resultants. Since the polynomials f1 and f2
have total degree 5, Bézout’s Theorem predicts that (5.1) should have at
most 5 · 5 = 25 solutions in P

2. If we homogenize these equations using a
third variable z, we get

0 = F1(x, y) = ax3y2 + bxz4 + cy2z3 + dz5

0 = f2(x, y) = exy4 + fx3z2 + gyz4.

Here, solutions come in two flavors: affine solutions, which are the solutions
of (5.1), and solutions “at∞”, which have z = 0. Assuming ae �= 0 (which
holds generically), it is easy to see that the solutions at ∞ are (0, 1, 0) and
(1, 0, 0). This, combined with Bézout’s Theorem, tells us that (5.1) has at
most 23 solutions in C

2.
Why do we get 23 instead of 18, which is the actual number? One way to

resolve this discrepancy is to realize that the solutions (0, 1, 0) and (1, 0, 0)
at ∞ have multiplicities (in the sense of Chapter 4) bigger than 1. By
computing these multiplicities, one can prove that there are 18 solutions.
However, it is more important to realize that by Bézout’s Theorem, generic
equations f1 = f2 = 0 of total degree 5 in x, y have 25 solutions in C

2.
The key point is that the equations in (5.1) are not generic in this sense—a
typical polynomial f(x, y) of total degree 5 has 21 terms, while those in
(5.1) have far fewer. In the terminology of §2, we have sparse polynomials—
those with fixed Newton polytopes—and what we’re looking for is a sparse
Bézout’s Theorem. As we will see below, this is precisely what Bernstein’s
Theorem does for us.

At this point, the reader might be confused about our use of the word
“generic”. We just finished saying that the equations (5.1) aren’t generic,
yet in our discussion of Gröbner bases, we showed that generically, (5.1)
has 18 solutions. This awkwardness is resolved by observing that generic is
always relative to a particular set of Newton polytopes. To state this more
precisely, suppose we fix finite sets A1, . . . ,Al ⊂ Z

n. Each Ai gives the set
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L(Ai) of Laurent polynomials

fi =
∑

α∈Ai

ci,αxα.

Note that we can regard each L(Ai) as an affine space with the coefficients
ci,α as coordinates. Then we can define generic as follows.

(5.3) Definition. A property is said to hold generically for Laurent poly-
nomials (f1, . . . , fl) ∈ L(A1)×· · ·×L(Al) if there is a nonzero polynomial
in the coefficients of the fi such that the property holds for all f1, . . . , fl

for which the polynomial is nonvanishing.

This definition generalizes Definition (5.6) from Chapter 3. Also ob-
serve that by Exercise 10 of §1, the Newton polytope NP (fi) of a generic
fi ∈ L(Ai) satisfies NP (fi) = Conv(Ai). Thus we can speak of generic
polynomials with fixed Newton polytopes. In particular, for polynomials of
total degree 5, Bézout’s Theorem deals with generic relative to the Newton
polytope determined by all monomials xiyj with i + j ≤ 5, while for (5.1),
generic means relative to the Newton polytopes of f1 and f2. The difference
in Newton polytopes explains why there is no conflict between our various
uses of the term “generic”.

One also could ask if resultants can help solve (5.1). This was discussed
in §5 of Chapter 3, where we usually assumed our equations had no so-
lutions at ∞. Since (5.1) does have solutions at ∞, standard procedure
suggests making a random change of coordinates in (5.1). With high prob-
ability, this would make all of the solutions affine, but it would destroy
the sparseness of the equations. In fact, it should be clear that rather than
the classical multipolynomial resultants of Chapter 3, we want to use the
sparse resultants of §2 of this chapter. Actually, we need something slightly
more general, since §2 assumes that the Newton polytopes are all equal,
which is not the case for (5.1). In §6 we will learn about more general sparse
resultants which can be used to study (5.1).

The above discussion leads to the first main question of the section.
Suppose we have Laurent polynomials f1, . . . , fn ∈ C[x±1

1 , . . . , x±1
n ] such

that f1 = · · · = fn = 0 have finitely many solutions in (C∗)n. Then we
want to know if there is a way to predict an upper bound on the number
of solutions of f1 = · · · = fn = 0 in (C∗)n that is more refined than the
Bézout Theorem bound deg(f1) · deg(f2) · · · deg(fn). Ideally, we want a
bound that uses only information about the forms of the polynomials fi

themselves. In particular, we want to avoid computing Gröbner bases
and studying the ring A = C[x1, . . . , xn]/〈f1, . . . , fn〉 as in Chapter 2,
if possible.

To see how mixed volumes enter the picture, let P1 and P2 denote the
Newton polytopes of the polynomials f1, f2 in (5.1). Referring back to
equation (4.13) from the previous section, note that the mixed volume of
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these polytopes satisfies

MV2(P1, P2) = 18,

which agrees with the number of solutions of the system (5.1) for generic
choices of the coefficients. Surely this is no coincidence! As a further test,
consider instead two generic polynomials of total degree 5. Here, the New-
ton polytopes are both the simplex Q5 ⊂ R

2 described in Exercise 2 of §1,
which has volume Vol2(Q5) = 25/2 by Exercise 3 of that section. Using
Exercise 7 of §4, we conclude that

MV2(Q5, Q5) = 2 Vol2(Q5) = 25,

so that again, the mixed volume predicts the number of solutions.

Exercise 2. More generally, polynomials of total degrees d1, . . . , dn in
x1, . . . , xn have Newton polytopes given by the simplices Qd1 , . . . , Qdn

respectively. Use the properties of mixed volume from §4 to prove that

MVn(Qd1 , . . . , Qdn) = d1 · · · dn,

so that the general Bézout bound is the mixed volume of the appropriate
Newton polytopes.

The main result of this section is a theorem of Bernstein relating the
number of solutions to the mixed volume of the Newton polytopes of the
equations. A slightly unexpected fact is that the theorem predicts the num-
bers of solutions in (C∗)n rather than in C

n. We will explain why at the
end of the section.

(5.4) Theorem (Bernstein’s Theorem). Given Laurent polynomials
f1, . . . , fn over C with finitely many common zeroes in (C∗)n, let Pi =
NP(fi) be the Newton polytope of fi in R

n. Then the number of com-
mon zeroes of the fi in (C∗)n is bounded above by the mixed volume
MVn(P1, . . . , Pn). Moreover, for generic choices of the coefficients in the
fi, the number of common solutions is exactly MVn(P1, . . . , Pn).

Proof. We will sketch the main ideas in Bernstein’s proof, and indicate
how MVn(P1, . . . , Pn) solutions of a generic system can be found. However,
proving that this construction finds all the solutions of a generic system
in (C∗)n requires some additional machinery. Bernstein uses the theory
of Puiseux expansions of algebraic functions for this; a more geometric
understanding is obtained via the theory of projective toric varieties. We
will state the relevant facts here without proof. For this and other details
of the proof, we will refer the reader to [Ber] (references to other proofs
will be given below).

The proof is by induction on n. For n = 1, we have a single Laurent poly-
nomial f(x) = 0 in one variable. After multiplying by a suitable Laurent
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monomial xa, we obtain a polynomial equation

(5.5) 0 = f̂(x) = xaf(x) = cmxm + cm−1x
m−1 + · · · + c0,

where m ≥ 0. Multiplying by xa does not affect the solutions of f(x) = 0
in C

∗. By the Fundamental Theorem of Algebra, we see that both (5.5)
and the original equation f = 0 have m roots (counting multiplicity) in C

∗

provided cmc0 �= 0. Furthermore, as explained in Exercise 8 at the end of
the section, f̂ has distinct roots when c0, . . . , cm are generic. Thus, gener-
ically, f = 0 has m distinct roots in C

∗. However, the Newton polytope
P = NP(f) is a translate of NP(f̂), which is the interval [0, m] in R. By
Exercise 7 of §4, the mixed volume MV1(P ) equals the length of P , which
is m. This establishes the base case of the induction.

The induction step will use the geometry of the Minkowski sum P =
P1 + · · · + Pn. The basic idea is that for each primitive inward pointing
facet normal ν ∈ Z

n of P , we will deform the equations f1 = · · · = fn = 0
by varying the coefficients until some of them are zero. Using the induction
hypothesis, we will show that in the limit, the number of solutions of the
deformed equations is given by

(5.6) aP1(ν) MV ′
n−1((P2)ν , . . . , (Pn)ν),

where aP1(ν) is defined in (1.3) and MV ′
n−1((P2)ν , . . . , (Pn)ν) is the nor-

malized (n − 1)-dimensional mixed volume defined in Theorem (4.12). We
will also explain how each of these solutions contributes a solution to our
original system. Adding up these solutions over all facet normals ν of P
gives the sum

(5.7)
∑

ν

aP1(ν) MV ′
n−1((P2)ν , . . . , (Pn)ν) = MVn(P1, . . . , Pn),

where the equality follows from Theorem (4.12). To complete the induction
step, we would need to show that the total number of solutions of the
original system in (C∗)n is generically equal to, and in any case no larger
than, the sum given by (5.7). The proof is beyond the scope of this book,
so we will not do this. Instead, we will content ourselves with showing
explicitly how each facet normal ν of P gives a deformation of the equations
f1 = · · · = fn = 0 which in the limit has (5.6) as its generic number of
solutions.

To carry out this strategy, let ν ∈ Z
n be the primitive inward pointing

normal to a facet of P . As usual, the facet is denoted Pν , and we know
from §4 that

Pν = (P1)ν + · · · + (Pn)ν ,

where (Pi)ν is the face (not necessarily a facet) of the Newton polytope
Pi = NP(fi) determined by ν. By §1, (Pi)ν is the convex hull of those α
minimizing ν · α among the monomials xα from fi. In other words, if the
face (Pi)ν lies in the hyperplane m · ν = −aPi(ν), then for all exponents α
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of fi, we have

α · ν ≥ −aPi(ν),

with equality holding if and only if α ∈ (Pi)ν . This means that fi can be
written

(5.8) fi =
∑

ν·α=−aPi
(ν)

ci,αxα +
∑

ν·α>−aPi
(ν)

ci,αxα.

Before we can deform our equations, we first need to change f1 slightly.
If we multiply f1 by x−α for some α ∈ P1, then we may assume that there
is a nonzero constant term c1 in f1. This means 0 ∈ P1, so that aP1(ν) ≥ 0
by the above inequality. As noted in the base case, changing f1 in this way
affects neither the solutions of the system in (C∗)n nor the mixed volume
of the Newton polytopes.

We also need to introduce some new coordinates. In Exercise 9 below,
you will show that since ν is primitive, there is an invertible n × n integer
matrix B such that ν is its first row and its inverse is also an integer matrix.
If we write B = (bij), then consider the coordinate change

(5.9) xj �→
n∏

i=1

y
−bij

i .

This maps xj to the Laurent monomial in the new variables y1, . . . , yn

whose exponents are the integers appearing in the jth column of the matrix
−B. (The minus sign is needed because ν is an inward pointing normal.)
Under this change of coordinates, it is easy to check that the Laurent
monomial xα maps to the Laurent monomial y−Bα, where Bα is the usual
matrix multiplication, regarding α as a column vector. See Exercise 10
below.

If we apply this coordinate change to fi, note that a monomial xα

appearing in the first sum of (5.8) becomes

y−Bα = y
aPi

(ν)
1 yβ2

2 · · · yβn
n

(for some integers β2, . . . , βn) since ν · α = −aPi(ν) and ν is the first row
of B. Similarly, a monomial xα in the second sum of (5.8) becomes

y−Bα = yβ1
1 yβ2

2 · · · yβn
n , β1 < aPi(ν).

It follows from (5.8) that fi transforms into a polynomial of the form

giν(y2, . . . , yn)yaPi
(ν)

1 +
∑

j<aPi
(ν)

gijν(y2, . . . , yn)yj
1.

Note also that the Newton polytope of giν(y2, . . . , yn) is equal to the image
under the linear mapping defined by the matrix B of the face (Pi)ν .
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Thus the equations f1 = · · · = fn = 0 map to the new system

(5.10)

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 +

∑
j<aP1 (ν)

g1jν(y2, . . . , yn)yj
1

0 = g2ν(y2, . . . , yn)yaP2 (ν)
1 +

∑
j<aP2 (ν)

g2jν(y2, . . . , yn)yj
1

...

0 = gnν(y2, . . . , yn)yaPn (ν)
1 +

∑
j<aPn (ν)

gnjν(y2, . . . , yn)yj
1

under the coordinate change xα �→ y−Bα. As above, the constant term of
f1 is denoted c1, and we now deform these equations by substituting

c1 �→ c1

taP1 (ν) , y1 �→ y1

t

in (5.10), where t is a new variable, and then multiplying the ith equation
by taPi

(ν). To see what this looks like, first suppose that aP1(ν) > 0. This
means that in the first equation of (5.10), c1 is the j = 0 term in the sum.
Then you can check that the deformation has the effect of leaving c1 and
the giν unchanged, and multiplying all other terms by positive powers of t.
It follows that the deformed equations can be written in the form

(5.11)

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 + c1 + O(t)

0 = g2ν(y2, . . . , yn)yaP2 (ν)
1 + O(t)

...

0 = gnν(y2, . . . , yn)yaPn (ν)
1 + O(t),

where the notation O(t) means a sum of terms each divisible by t.
When t = 1, the equations (5.11) coincide with (5.10). Also, from the

point of view of our original equations fi = 0, note that (5.11) corresponds
to multiplying each term in the second sum of (5.8) by a positive power of
t, with the exception of the constant term c1 of f1, which is unchanged.

Now, in (5.11), let t → 0 along a general path in C. This gives the
equations

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 + c1

0 = g2ν(y2, . . . , yn)yaP2 (ν)
1

...

0 = gnν(y2, . . . , yn)yaPn (ν)
1 ,
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which, in terms of solutions in (C∗)n, are equivalent to

(5.12)

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 + c1

0 = g2ν(y2, . . . , yn)

...

0 = gnν(y2, . . . , yn).

It can be shown that for a sufficiently generic original system of equations,
the equations g2ν = · · · = gnν = 0 in (5.12) are generic with respect to
B · (P2)ν , . . . , B · (Pn)ν . Hence, applying the induction hypothesis to the
last n − 1 equations in (5.12), we see that there are

MVn−1(B · (P2)ν , . . . , B · (Pn)ν)

possible solutions (y2, . . . , yn) ∈ (C∗)n−1 of these n − 1 equations. In
Exercise 11 below, you will show that

MVn−1(B · (P2)ν , . . . , B · (Pn)ν) = MV ′
n−1((P2)ν , . . . , (Pn)ν),

where MV ′
n−1 is the normalized mixed volume from Theorem (4.12).

For each (y2, . . . , yn) solving the last n − 1 equations in (5.12), there
are aP1(ν) possible values for y1 ∈ C

∗ provided g1ν(y2, . . . , yn) �= 0 and
c1 �= 0. This is true generically (we omit the proof), so that the total
number of solutions of (5.12) is

aP1(ν) MV ′
n−1((P2)ν , . . . , (Pn)ν),

which agrees with (5.6).
The next step is to prove that for each solution (y1, . . . , yn) of (5.12), one

can find parametrized solutions (y1(t), . . . , yn(t)) of the deformed equations
(5.11) satisfying (y1(0), . . . , yn(0)) = (y1, . . . , yn). This step involves some
concepts we haven’t discussed (the functions yi(t) are not polynomials in
t), so we will not go into the details here, though the discussion following
the proof will shed some light on what is involved.

Once we have the parametrized solutions (y1(t), . . . , yn(t)), we can follow
them back to t = 1 to get solutions (y1(1), . . . , yn(1)) of (5.10). Since
the inverse of the matrix B has integer entries, each of these solutions
(y1(1), . . . , yn(1)) can be converted back to a unique (x1, . . . , xn) using
the inverse of (5.9) (see Exercise 10 below). It follows that the equations
(5.12) give rise to (5.6) many solutions of our original equations.

This takes care of the case when aP1(ν) > 0. Since we arranged f1 so
that aP1(ν) ≥ 0, we still need to consider what happens when aP1(ν) = 0.
Here, c1 lies in the first sum of (5.8) for f1, so that under our coordinate
change, it becomes the constant term of g1ν . This means that instead of
(5.11), the first deformed equation can be written as

0 = g1ν(y2, . . . , yn) + O(t)
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since aP1(ν) = 0 and c1 appears in g1ν . Combined with the deformed
equations from (5.11) for 2 ≤ i ≤ n, the limit as t → 0 gives the equations

0 = giν(y2, . . . , yn)yaPi
(ν)

1 , 1 ≤ i ≤ n.

As before, the (C∗)n solutions are the same as the solutions of the equations

0 = giν(y2, . . . , yn), 1 ≤ i ≤ n.

However, one can show that g1ν is generic and hence doesn’t vanish at the
solutions of g2ν = · · · = gnν = 0. This means that generically, the t → 0
limit of the deformed system has no solutions, which agrees with (5.6).

We conclude that each facet contributes (5.6) many solutions to our
original equations, and adding these up as in (5.7), we get the mixed volume
MVn(P1, . . . , Pn). This completes our sketch of the proof.

In addition to Bernstein’s original paper [Ber], there are closely related
papers by Kushnirenko [Kus] and Khovanskii [Kho]. For this reason, the
mixed volume bound MVn(P1, . . . , Pn) on the number of solutions given in
Theorem (5.4) is sometimes called the BKK bound . A geometric interpre-
tation of the BKK bound in the context of toric varieties is given in [Ful]
and [GKZ], and a more refined version can be found in [Roj3]. Also, [HuS1]
and [Roj1] study the genericity conditions needed to ensure that exactly
MVn(P1, . . . , Pn) different solutions exist in (C∗)n. These papers use a
variety of methods, including sparse elimination theory and toric varieties.

The proof we sketched for the BKK bound uses the formula∑
ν

aP1(ν) ·MV ′
n−1((P2)ν , . . . , (Pn)ν) = MVn(P1, . . . , Pn)

from Theorem (4.12). If you look back at the statement of this theorem in
§4, you’ll see that the sum is actually taken over all facet normals ν such
that (P2)ν , . . . , (Pn)ν all have dimension at least one. This restriction on
ν relates nicely to the proof of the BKK bound as follows.

Exercise 3. In the proof of Theorem (5.4), we obtained the system (5.10)
of transformed equations. Suppose that for some i between 2 and n, (Pi)ν

has dimension zero. Then show that in (5.10), the corresponding giν consists
of a single term, and conclude that in the limit (5.12) of the deformed
equations, the last n − 1 equations have no solutions generically.

Exercise 4. Consider the equations f1 = f2 = 0 from (5.1). In this
exercise, you will explicitly construct the coordinate changes used in the
proof of Bernstein’s theorem.
a. Use the previous exercise to show that in this case, the vectors ν that

must be considered are all among the facet normals of the polytope
P2 = NP (f2). These normals, denoted νF , νG and νH, were computed
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in Exercise 5 of §4 and in the discussion preceeding that exercise. Also,
the mixed volume MV2(P1, P2) = 18 was computed in (4.13).

b. Show that aP1(νF ) = 0. Hence the term from (5.7) with ν = νF is zero.
c. For ν = νG , show that

B =
(−2 −1

1 0

)
has ν as first row. Also show that B−1 has integer entries.

d. Apply the corresponding change of variables

x �→ z2w−1, y �→ z

to (5.1). Note that we are calling the “old” variables x, y and the “new”
ones z, w rather than using subscripts. In particular, z plays the role of
the variable y1 used in the proof.

e. After substituting d �→ d/t and z �→ z/t, multiply by the appropriate
powers of t to obtain

0 = aw−3z8 + d + t6 · bw−1z2 + t6 · cz2

0 = (ew−1 + fw−3)z6 + t5 · gz.

f. Let t → 0 and count the number of solutions of the deformed system.
Show that this number equals aP1(νG )MV ′

1(G).
g. Finally, carry out steps c–f for the facet H of P2, and show we obtain

18 solutions.

Exercise 5. Use Bernstein’s theorem to deduce a statement about the
number of solutions in (C∗)n of a generic system of Laurent polynomial
equations f1 = · · · = fn = 0 when the Newton polytopes of the fi are all
equal . (This was the case considered by Khovanskii in [Kho].)

Exercise 6. Use Bernstein’s Theorem and Exercise 2 to obtain a version
of the usual Bézout theorem. Your version will be slightly different from
those discussed in §5 of Chapter 3 because of the (C∗)n restriction.

While the BKK bound tells us about the number of solutions in (C∗)n,
one could also ask about the number of solutions in C

n. For exam-
ple, for (5.1), we checked earlier that generically, these equations have
MV2(P1, P2) = 18 solutions in either C

2 or (C∗)2. However, some surprising
things happen if we change the equations slightly.

Exercise 7. Suppose that the equations of (5.1) are f1 = f2 = 0.
a. Show that generically, the equations f1 = x f2 = 0 have 18 solutions in

(C∗)2 and 20 solutions in C
2. Also show that

MV2(NP(f1), NP(x f2)) = 18.

Hint: Mixed volume is unaffected by translation.
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b. Show that generically, the equations y f1 = x f2 = 0 have 18 solutions
in (C∗)2 and 21 solutions in C

2. Also show that

MV2(NP(y f1), NP(x f2)) = 18.

This exercise illustrates that multiplying f1 and f2 by monomials changes
neither the solutions in (C∗)2 nor the mixed volume, while the number
of solutions in C

2 can change. There are also examples, not obtained by
multiplying by monomials, which have more solutions in C

n than in (C∗)n

(see Exercise 13 below). The consequence is that the mixed volume is really
tied to the solutions in (C∗)n. In general, finding the generic number of
solutions in C

n is a more subtle problem. For some recent progress in this
area, see [HuS2], [LW], [Roj1], [Roj3], and [RW]. An analysis of genericity
conditions for solutions in C

n appears in [Roj3] and an expository account
of recent work in this area (including proofs) can be found in [Roj5].

We will conclude this section with some remarks on how the BKK bound
can be combined with numerical methods to actually find the solutions of
equations like (5.1). First, recall that for (5.1), Bézout’s Theorem gives the
upper bound of 25 for the number of solutions, while the BKK bound of 18 is
smaller (and gives the exact number generically). For the task of computing
numerically all complex solutions of (5.1), the better upper bound 18 is
useful information to have, since once we have found 18 solutions, there
are no others, and whatever method we are using can terminate.

But what sort of numerical method should we use? Earlier, we discussed
methods based on Gröbner bases and resultants. Now we will say a few
words about numerical homotopy continuation methods, which give another
approach to practical polynomial equation solving. The method we will
sketch is especially useful for systems whose coefficients are known only in
some finite precision approximations, or whose coefficients vary widely in
size. Our presentation follows [VVC].

We begin with a point we did not address in the proof of Theorem (5.4):
exactly how do we extend a solution (y1, . . . , yn) of (5.12) to a parametric
solution (y1(t), . . . , yn(t)) of the deformed equations (5.11)? In general, the
problem is to “track” solutions of systems of equations such as (5.11) where
the coefficients depend on a parameter t, and the solutions are thought of
as functions of t. General methods for doing this were developed by numer-
ical analysts independently, at about the same time as the BKK bound.
See [AG] and [Dre] for general discussion of these homotopy continuation
methods. The idea is the following. For brevity, we will write a system of
equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

more compactly as f(x) = 0. To solve f(x) = 0, we start with a second
system g(x) = 0 whose solutions are known in advance. In some versions
of this approach, g(x) might have a simpler form than f(x). In others, as
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we will do below, one takes a known system which we expect has the same
number of solutions as f(x) = 0.

Then we consider the continuous family of systems

(5.13) 0 = h(x, t) = c(1 − t)g(x) + tf(x),

depending on a parameter t, where c ∈ C is some constant which is chosen
generically to avoid possible bad special behavior.

When t = 0, we get the known system g(x) = 0 (up to a constant).
Indeed, g(x) = 0 is often called the start system and (5.13) is called a
homotopy or continuation system. As t changes continuously from 0 to 1
along the real line (or more generally along a path in the complex plane),
suppose the rank of the Jacobian matrix of h(x, t) with respect to x:

J(x, t) =
( ∂hi

∂xj
(x, t)

)
is n for all values of t. Then, by the Implicit Function Theorem, if x0 is a
solution of g(x) = 0, we obtain a solution curve x(t) with x(0) = x0 that
is parametrized by algebraic functions of t. The goal is to determine the
values of x(t) at t = 1, since these will yield the solutions of the system
f(x) = 0 we are interested in.

To find these parametrized solutions, we proceed as follows. Since we
want h(x(t), t) to be identically zero as a function of t, its derivative
d
dt h(x(t), t) should also vanish identically. By the multivariable chain rule,
we see that the solution functions x(t) satisfy

0 =
d

dt
h(x(t), t) = J(x(t), t)

dx(t)
dt

+
∂h

∂t
(x(t), t),

which gives a system of ordinary differential equations (ODEs):

J(x(t), t)
dx(t)

dt
= − ∂h

∂t
(x(t), t)

for the solution functions x(t). Since we also know the initial value x(0) =
x0, one possible approach is to use the well-developed theory of numerical
methods for ODE initial value problems to construct approximate solu-
tions, continuing this process until approximations to the solution x(1) are
obtained.

Alternatively, we could apply an iterative numerical root-finding method
(such as the Newton-Raphson method) to solve (5.13). The idea is to take
a known solution of (5.13) for t = 0 and propagate it in steps of size ∆t
until t = 1. Thus, if we start with a solution x0 = x(0) for t = 0, we can
use it as the initial guess for solving

h(x(∆t), ∆t) = 0
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using our given numerical method. Then, once we have x(∆t), we use it as
the initial guess for solving

h(x(2∆t), 2∆t) = 0

by our chosen method. We continue in this way until we have solved
h(x(1), 1) = 0, which will give the desired solution. This method works
because x(t) is a continuous function of t, so that at the step with
t = (k + 1)∆t, we will generally have fairly good estimates for initial
points from the results of the previous step (i.e., for t = k∆t), provided ∆t
is sufficiently small.

When homotopy continuation methods were first developed, the best
commonly known bound on the number of expected solutions was the
Bézout theorem bound. A common choice for g(x) was a random dense
system with equations of the same total degrees as f(x). But many poly-
nomial systems (for instance (5.1)) have fewer solutions than general dense
systems of the same total degrees! When this is true, some of the numer-
ically generated approximate solution paths diverge to infinity as t → 1.
This is because the start equations g(x) = 0 would typically have many
more solutions than the sparse system f(x) = 0. Much computational effort
can be wasted trying to track them accurately.

As a result, the more refined BKK bound is an important tool in ap-
plying homotopy continuation methods. Instead of a random dense start
system g(x) = 0, a much better choice in many cases is a randomly cho-
sen start system for which the gi have the same Newton polytopes as the
corresponding fi:

NP(gi) = NP(fi).

Of course, the solutions of g(x) = 0 must be determined as well. Unless
solutions of some specific system with precisely these Newton polytopes
is known, some work must be done to solve the start system before
the homotopy continuation method can be applied. For this, the au-
thors of [VVC] propose adapting the deformations used in the proof of
Bernstein’s theorem, and applying a continuation method again to de-
termine the solutions of g(x) = 0. A closely related method, described
in [HuS1] and [VGC], uses the mixed subdivisions to be defined in §6.
Also, some interesting numerical issues are addressed in [HV]. Some other
recent papers on this subject include [DKK], [Li], and [Ver2]. The soft-
ware PHCpack described in [Ver1] solves systems of equations using the
polynomial homotopy continuation method described here. This package is
available at http://www2.math.uic.edu/~jan/PHCpack/phcpack.html.
Other software for polynomial homotopies is described in [Li].

The geometry of polytopes provides powerful tools for understanding
sparse systems of polynomial equations. The mixed volume is an efficient
bound for the number of solutions, and homotopy continuation methods
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give practical methods for finding the solutions. This is an active area of
research, and further progress is likely in the future.

ADDITIONAL EXERCISES FOR §5

Exercise 8. If f ∈ C[x] is a polynomial of degree n, its discriminant
Disc(f) is defined to be the resultant

Disc(f) = Resn,n−1(f, f ′),

where f ′ is the derivative of f . One can show that Disc(f) �= 0 if and only
if f has no multiple roots (see Exercises 7 and 8 of Chapter 3, §5 of [CLO]).
a. Show that the generic polynomial f ∈ C[x] has no multiple roots. Hint:

It suffices to show that the discriminant is a nonzero polynomial in the
coefficients of f . Prove this by writing down an explicit polynomial of
degree n which has distinct roots.

b. Now let p18 ∈ C(a, . . . , g)[x] be the polynomial from (5.2). To show that
p18 has no multiple roots generically, we need to show that Disc(p18) is
nonzero as a rational function of a, . . . , g. Computing this discriminant
would be unpleasant since the coefficients of p18 are so complicated. So
instead, take p18 and make a random choice of a, . . . , g. This will give a
polynomial in C[x]. Show that the discriminant is nonzero and conclude
that p18 has no multiple roots for generic a, . . . , g.

Exercise 9. Let ν ∈ Z
n be a primitive vector (thus ν �= 0 and the entries

of ν have no common factor > 1). Our goal is to find an integer n×n matrix
with integer inverse and ν as its first row. For the rest of the exercise, we
will regard ν as a column vector. Hence it suffices to find an integer n × n
matrix with integer inverse and ν as its first column.
a. Explain why it suffices to find an integer matrix A with integer inverse

such that Aν = �e1, where �e1 = (1, 0, . . . , 0)T is the usual standard
basis vector. Hint: Multiply by A−1.

b. An integer row operation consists of a row operation of the following
three types: switching two rows, adding an integer multiple of a row to
another row, and multiplying a row by ±1. Show that the elementary
matrices corresponding to integer row operations are integer matrices
with integer inverses.

c. Using parts a and b, explain why it suffices to reduce ν to �e1 using
integer row operations.

d. Using integer row operations, show that ν can be transformed to a vector
(b1, . . . , bn)T where b1 > 0 and b1 ≤ bi for all i with bi �= 0.

e. With (b1, . . . , bn)T as in the previous step, use integer row operations
to subtract multiples of b1 from one of the nonzero entries bi, i > 1,
until you get either 0 or something positive and smaller than b1.
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f. By repeatedly applying steps d and e, conclude that we can integer row
reduce ν to a positive multiple of �e1.

g. Finally, show that ν being primitive implies that the previous step gives
�e1 exactly. Hint: Using earlier parts of the exercise, show that we have
Aν = d�e1, where A has an integer inverse. Then use A−1 to conclude
that d divides every entry of ν.

Exercise 10.
a. Under the coordinate change (5.9), show that the Laurent monomial xα,

α ∈ Z
n, maps to the Laurent monomial y−Bα, where Bα is the matrix

product.
b. Show that (5.9) actually induces a one-to-one correspondence between

Laurent monomials in x and Laurent monomials in y.
c. Show that (5.9) defines a one-to-one, onto mapping from (C∗)n to itself.

Also explain how −B−1 gives the inverse mapping.

Exercise 11. Show that

MVn−1(B · (P2)ν , . . . , B · (Pn)ν) = MV ′
n−1((P2)ν , . . . , (Pn)ν),

where the notation is as in the proof of Bernstein’s Theorem.

Exercise 12. Consider the following system of three equations in three
unknowns:

0 = a1xy2z + b1x
4 + c1y + d1z + e1

0 = a2xyz2 + b2y
3 + c2

0 = a3x
3 + b3y

2 + c3z.

What is the BKK bound for the generic number of solutions in (C∗)3?

Exercise 13. Show that generically, the equations (taken from [RW])

0 = ax2y + bxy2 + cx + dy

0 = ex2y + fxy2 + gx + hy

have 4 solutions in (C∗)2 and 5 solutions in C
2.

§6 Computing Resultants and Solving Equations

The sparse resultant ResA(f1, . . . , fn) introduced in §2 requires that the
Laurent polynomials f1, . . . , fn be built from monomials using the same
set A of exponents. In this section, we will discuss what happens when we
allow each fi to involve different monomials. This will lead to the mixed
sparse resultant . We also have some unfinished business from §2, namely the
problem of computing sparse resultants. For this purpose, we will introduce
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the notion of a mixed subdivision. These will enable us not only to compute
sparse resultants but also to find mixed volumes and to solve equations
using the methods of Chapter 3.

We begin with a discussion of the mixed sparse resultant. Fix n+1 finite
sets A0, . . . ,An ⊂ Z

n and consider n + 1 Laurent polynomials fi ∈ L(Ai).
The rough idea is that the resultant

ResA0,...,An(f0, . . . , fn)

will measure whether or not the n + 1 equations in n variables

(6.1) f0(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

have a solution. To make this precise, we proceed as in §2 and let

Z(A0, . . . ,An) ⊂ L(A0) × · · · × L(An)

be the Zariski closure of the set of all (f0, . . . , fn) for which (6.1) has a
solution in (C∗)n.

(6.2) Theorem. Assume that Qi = Conv(Ai) is an n-dimensional poly-
tope for i = 0, . . . , n. Then there is an irreducible polynomial ResA0,...,An

in the coefficients of the fi such that

(f0, . . . , fn) ∈ Z(A0, . . . ,An) ⇐⇒ ResA0,...,An(f0, . . . , fn) = 0.

In particular, if (6.1) has a solution (t1, . . . , tn) ∈ (C∗)n, then

ResA0,...,An(f0, . . . , fn) = 0.

This theorem is proved in Chapter 8 of [GKZ]. Note that the mixed sparse
resultant includes all of the resultants considered so far. More precisely, the
(unmixed) sparse resultant from §2 is

ResA(f0, . . . , fn) = ResA,...,A(f0, . . . , fn),

and the multipolynomial resultant studied in Chapter 3 is

Resd0,...,dn(F0, . . . , Fn) = ResA0,...,An(f0, . . . , fn),

where Ai = {m ∈ Z
n
≥0 : |m| ≤ di} and Fi is the homogenization of fi.

We can also determine the degree of the mixed sparse resultant. In §2, we
saw that the degree of ResA involves the volume of the Newton polytope
Conv(A). For the mixed resultant, this role is played by the mixed volume
from §4.

(6.3) Theorem. Assume that Qi = Conv(Ai) is n-dimensional for each
i = 0, . . . , n and that Z

n is generated by the differences of elements in
A0∪· · ·∪An. Then, if we fix i between 0 and n, ResA0,...,An is homogeneous
in the coefficients of fi of degree MVn(Q0, . . . , Qi−1, Qi+1, . . . , Qn). Thus

ResA0,...,An(f0, . . . , λfi, . . . , fn) =

λMVn(Q0,...,Qi−1,Qi+1,...,Qn)ResA0,...,An(f0, . . . , fn).
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A proof can be found in Chapter 8 of [GKZ]. Observe that this result
generalizes both Theorem (3.1) of Chapter 3 and Theorem (2.9) of this
chapter. There are also more general versions of Theorems (6.2) and (6.3)
which don’t require that the Qi be n-dimensional. See, for instance, [Stu3].
Exercise 9 at the end of the section gives a simple example of a sparse
resultant where all of the Qi have dimension < n.

We next discuss how to compute sparse resultants. Looking back at
Chapter 3, recall that there were wonderful formulas for the multipoly-
nomial case, but it general, computing these resultants was not easy.
The known formulas for multipolynomial resultants fall into three main
classes:

• Special cases where the resultant is given as a determinant. This includes
the resultants Resl,m and Res2,2,2 from §1 and §2 of Chapter 3.
• The general case where the resultant is given as the GCD of n + 1

determinants. This is Proposition (4.7) of Chapter 3.
• The general case where the resultant is given as the quotient of two

determinants. This is Theorem (4.9) of Chapter 3.

Do sparse resultants behave similarly? In §2 of this chapter, we gave
formulas for the Dixon resultant (see (2.12) and Exercise 10 of §2). Other
determinantal formulas for sparse resultants can be found in [CK1], [DE],
[Khe], [SZ], and [WZ], so that the first bullet definitely has sparse analogs.
We will see below that the second and third bullets also have sparse analogs.

We now introduce our main tool for computing sparse resultants. The
idea is to subdivide the Minkowski sum Q = Q0 + · · · + Qn in a special
way. We begin with what it means to subdivide a polytope.

(6.4) Definition. Let Q ⊂ R
n be a polytope of dimension n. Then a poly-

hedral subdivision of Q consists of finitely many n-dimensional polytopes
R1, . . . , Rs (the cells of the subdivision) such that Q = R1 ∪ · · · ∪ Rs and
for i �= j, the intersection Ri ∩ Rj is a face of both Ri and Rj .

For example, Fig. 7.7 below shows three ways of dividing a square into
smaller pieces. The first two are polyedral subdivisions, but the third isn’t
since R1 ∩ R2 is not a face of R1 (and R1 ∩ R3 has a similar problem).

We next define what it means for a polyhedral subdivision to be com-
patible with a Minkowski sum. Suppose that Q1, . . . , Qm are arbitrary
polytopes in R

n.

(6.5) Definition. Let Q = Q1 + · · · + Qm ⊂ R
n be a Minkowski sum

of polytopes, and assume that Q has dimension n. Then a subdivision
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R1

R2

R1

R2

R1

R2 R3

Figure 7.7. Subdividing the square

R1, . . . , Rs of Q is a mixed subdivision if each cell Ri can be written as a
Minkowski sum

Ri = F1 + · · · + Fm

where each Fi is a face of Qi and n = dim(F1) + · · · + dim(Fm). Fur-
thermore, if Rj = F ′

1 + · · · + F ′
m is another cell in the subdivision, then

Ri ∩ Rj = (F1 ∩ F ′
1) + · · · + (Fm ∩ F ′

m).

Exercise 1. Consider the polytopes

P1 = Conv((0, 0), (1, 0), (3, 2), (0, 2))

P2 = Conv((0, 1), (3, 0), (1, 4)).

The Minkowski sum P = P1 + P2 was illustrated in Fig. 7.6 of §4.
a. Prove that Fig. 7.8 on the next page gives a mixed subdivision of P .
b. Find a different mixed subdivision of P .

When we have a mixed subdivision, some of the cells making up the
subdivision are especially important.

(6.6) Definition. Suppose that R = F1+ · · ·+Fm is a cell in a mixed sub-
division of Q = Q1 + · · ·+Qm. Then R is called a mixed cell if dim(Fi) ≤ 1
for all i.

Exercise 2. Show that the mixed subdivision illustrated in Fig. 7.8 has
three mixed cells.

As an application of mixed subdivisions, we will give a surprisingly easy
formula for mixed volume. Given n polytopes Q1, . . . , Qn ⊂ R

n, we want
to compute the mixed volume MVn(Q1, . . . , Qn). We begin with a mixed
subdivision of Q = Q1 + · · · + Qn. In this situation, observe that every
mixed cell R is a sum of edges (because the faces Fi ⊂ Qi summing to R
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P = P1 + P2

1 2 3 4 5 6

1

2

3

4

5

6

R1

R2

R3

R4

R5

Figure 7.8. Mixed subdivision of a Minkowski sum

satisfy n = dim(F1) + · · · + dim(Fn) and dim(Fi) ≤ 1). Then the mixed
cells determine the mixed volume in the following simple manner.

(6.7) Theorem. Given polytopes Q1, . . . , Qn ⊂ R
n and a mixed subdi-

vision of Q = Q1 + · · · + Qn, the mixed volume MVn(Q1, . . . , Qn) is
computed by the formula

MVn(Q1, . . . , Qn) =
∑
R

Voln(R),

where the sum is over all mixed cells R of the mixed subdivision.

Proof. We will give the main idea of the proof and refer to [HuS1] for
the details. The key observation is that mixed subdivisions behave well
under scaling. More precisely, let R1, . . . , Rs be a mixed subdivision of
Q1+ · · ·+Qn, where each Ri is a Minkowski sum of faces Ri = F1+ · · ·+Fn

as in Definition (6.5). If λi > 0 for i = 1, . . . , n, then one can show that
λ1Q1 + · · · + λnQn has a mixed subdivision R′

1, . . . , R
′
s such that

R′
i = λ1F1 + · · · + λnFn.

It follows that

Voln(R′
i) = λ

dim(F1)
1 · · · λdim(Fn)

n Voln(Ri)

since n = dim(F1) + · · · + dim(Fn). Adding these up, we see that
Voln(λ1Q1 + · · · + λnQn) is a polynomial in the λi and the coefficient
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of λ1 · · · λn is the sum of the volumes of the cells Ri where each Fi has
dimension 1, that is, the mixed cells. By the definition of mixed volume,
MVn(Q1, . . . , Qn) is the sum of the volumes of the mixed cells.

Although Theorem (6.7) was known in the polytope community for some
time, it was first written up in [Bet] and discovered independently in [HuS1].
The latter includes formulas for computing the mixed volumes MVn(P, α)
from Exercise 18 of §4 in terms of certain nonmixed cells in the mixed
subdivision.

One feature which makes Theorem (6.7) useful is that the volume of a
mixed cell R is easy to compute. Namely, if we write R = F1 + · · · + Fn

as a sum of edges Fi and let �vi be the vector connecting the two vertices
of Fi, then one can show that the volume of the cell is

Voln(R) = | det(A)|,
where A is the n×n matrix whose columns are the edge vectors �v1, . . . , �vn.

Exercise 3. Use Theorem (6.7) and the above observation to compute the
mixed volume MV2(P1, P2), where P1 and P2 are as in Exercise 1.

Theorem (6.7) has some nice consequences. First, it shows that the mixed
volume is nonnegative, which is not obvious from the definition given in §4.
Second, since all mixed cells lie inside the Minkowski sum, we can relate
mixed volume to the volume of the Minkowski sum as follows:

MVn(Q1, . . . , Qn) ≤ Voln(Q1 + · · · + Qn).

By [Emi1], we have a lower bound for mixed volume as well:

MVn(Q1, . . . , Qn) ≥ n! n
√

Voln(Q1) · · ·Voln(Qn).

Mixed volume also satisfies the Alexandrov-Fenchel inequality , which is
discussed in [Ewa] and [Ful].

Exercise 4. Work out the inequalities displayed above for the polytopes
P1 and P2 from Exercise 1.

All of this is very nice, except for one small detail: how do we find mixed
subdivisions? Fortunately, they are fairly easy to compute in practice. We
will describe briefly how this is done. The first step is to “lift” the polytopes
Q1, . . . , Qn ⊂ R

n to R
n+1 by picking random vectors l1, . . . , ln ∈ Z

n and
considering the polytopes

Q̂i = {(v, li · v) : v ∈ Qi} ⊂ R
n × R = R

n+1.

If we regard li as the linear map R
n → R defined by v �→ li · v, then Q̂i is

the portion of the graph of li lying over Qi.
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Now consider the polytope Q̂ = Q̂1 + · · · + Q̂n ⊂ R
n+1. We say that a

facet F of Q̂ is a lower facet if its outward-pointing normal has a negative
tn+1-coordinate, where tn+1 is the last coordinate of R

n+1 = R
n×R. If the

li are sufficiently generic, one can show that the projection R
n+1 → R

n onto
the first n coordinates carries the lower facets F ⊂ Q̂ onto n-dimensional
polytopes R ⊂ Q = Q1 + · · ·+ Qn, and these polytopes form the cells of a
mixed subdivision of Q. The theoretical background for this construction is
given in [BS] and some nice pictures appear in [CE2] (see also [HuS1], [CE1]
and [EC]). Mixed subdivisions arising in this way are said to be coherent .

Exercise 5. Let Q1 = Conv((0, 0), (1, 0), (0, 1)) be the unit simplex in the
plane, and consider the vectors l1 = (0, 4) and l2 = (2, 1). This exercise
will apply the above strategy to create a coherent mixed subdivision of
Q = Q1 + Q2, where Q2 = Q1.
a. Write Q̂1 and Q̂2 as convex hulls of sets of three points, and then express

Q̂ = Q̂1 + Q̂2 as the convex hull of 9 points in R
3.

b. In R
3, plot the points of Q̂ found in part a. Note that such each point

lies over a point of Q.
c. Find the lower facets of Q̂ (there are 3 of them) and use this to determine

the corresponding coherent mixed subdivision of Q. Hint: When one
point lies above another, the higher point can’t lie in a lower facet.

d. Show that choosing l1 = (1, 1) and l2 = (2, 3) leads to a different
coherent mixed subdivision of Q.

It is known that computing mixed volume is #P-complete (see [Ped]).
Being #P-complete is similar to being NP-complete—the difference is
that NP-complete refers to a class of hard decision problems, while #P-
complete refers to certain hard enumerative problems. The complexity of
computing mixed volume is discussed carefully in [DGH], with some recent
developments appearing in [GuS].

There are several known algorithms for computing mixed volumes and
mixed subdivisions, some of which have been implemented in publicly
available software. In particular, software for computing mixed volumes
is available at:

• http://www-sop.inria.fr/galaad/logiciels/emiris/
soft geo.html, based on [EC] and described in [Emi3];
• http://www2.math.uic.edu/~jan/PHCpack/phcpack.html, described

in [Ver1]; and
• http://www.mth.msu.edu/~li/, based on [GL2] and [LL].

Further references for mixed volume are [GL1], [GLW], [VGC], and the
references mentioned in Section 6 of [EC].

We now return to our original question of computing the mixed sparse
resultant ResA0,...,An(f0, . . . , fn). In this situation, we have n+1 polytopes
Qi = Conv(Ai). Our goal is to show that a coherent mixed subdivision of
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the Minkowski sum Q = Q0 + · · ·+ Qn gives a systematic way to compute
the sparse resultant.

To see how this works, first recall what we did in Chapter 3. If we think
of the multipolynomial resultant Resd0,...,dn(F0, . . . , Fn) in homogeneous
terms, then the method presented in §4 of Chapter 3 goes as follows: we
fixed the set of monomials of total degree d0 + · · ·+ dn − n and wrote this
set as a disjoint union S0 ∪ · · · ∪ Sn. Then, for each monomial xα ∈ Si, we
multiplied Fi by xα/xdi

i . This led to the equations (4.1) of Chapter 3:

(xα/xdi
i )Fi = 0, xα ∈ Si, i = 1, . . . , n.

Expressing these polynomials in terms of the monomials in our set gave a
system of equations, and the determinant of the coefficient matrix was the
polynomial Dn in Definition (4.2) of Chapter 3.

By varying this construction slightly, we got determinants D0, . . . , Dn

with the following two properties:

• Each Di is a nonzero multiple of the resultant.
• For i fixed, the degree of Di as a polynomial in the coefficients of fi is

the same as the degree of the resultant in these coefficients.

(See §4 of Chapter 3, especially Exercise 7 and Proposition (4.6)). From
here, we easily proved

Resd0,...,dn = ±GCD(D0, . . . , Dn),

which is Proposition (4.7) of Chapter 3.
We will show that this entire framework goes through with little change

in the sparse case. Suppose we have exponent sets A0, . . . ,An, and as
above set Qi = Conv(Ai). Also assume that we have a coherent mixed
subdivision of Q = Q0 + · · · + Qn. The first step in computing the sparse
resultant is to fix a set of monomials or, equivalently, a set of exponents.
We will call this set E , and we define E to be

E = Z
n ∩ (Q + δ),

where δ ∈ R
n is a small vector chosen so that for every α ∈ E , there is a

cell R of the mixed subdivision such that α lies in the interior of R + δ.
Intuitively, we displace the subdivision slightly so that the lattice points lie
in the interiors of the cells.

The following exercise illustrates what this looks like in a particularly
simple case. We will refer to this exercise several times as we explain how
to compute ResA0,...,An .

Exercise 6. Consider the equations

0 = f0 = a1x + a2y + a3

0 = f1 = b1x + b2y + b3

0 = f2 = c1x
2 + c2y

2 + c3 + c4xy + c5x + c6y
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obtained by setting z = 1 in equations (2.9) from Chapter 3. If Ai is the
set of exponents appearing in fi, then ResA0,A1,A2 is the resultant Res1,1,2
considered in Proposition (2.10) of Chapter 3.
a. If we let l0 = (0, 4), l1 = (2, 1) and l2 = (5, 7), then show that we get the

coherent mixed subdivision of Q pictured in Fig. 7.9. This calculation
is not easy to do by hand—you should use a program such as qhull
(available from the Geometry Center at the University of Minnesota) to
compute convex hulls.

b. If δ = (ε, ε) for small ε > 0, show that E contains the six exponent
vectors indicated by dots in Fig. 7.9. We will think of E as consisting of
the monomials

x3y, x2y2, x2y, xy3, xy2, xy.

The reason for listing the monomials this way will soon become clear.
c. If δ = (−ε,−ε) for small ε > 0, show that E consists of 10 exponent

vectors. So different δ’s can give very different E ’s!

Now that we have E , our next task is to break it up into a disjoint union
S0 ∪ · · · ∪Sn. This is where the coherent mixed subdivision comes in. Each
cell R of the subdivision is a Minkowski sum

R = F0 + · · · + Fn,

where the Fi ⊂ Qi are faces such that n = dim(F0) + · · ·+ dim(Fn). Note
that at least one Fi must have dim(Fi) = 0, i.e., at least one Fi is a vertex.
Sometimes R can be written in the above form in several ways (we will
see an example below), but using the coherence of our mixed subdivision,
we get a canonical way of doing this. Namely, R is the projection of a

Q = Q0 + Q1 + Q2

1 2 3 4

1

2

3

4

R1

R2

R4

R5R6

R3

Q + δ

1 2 3 4

1

2

3

4

Figure 7.9. A coherent mixed subdivision and its shift
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lower facet F ⊂ Q̂, and one can show that F can be uniquely written as a
Minkowski sum

F = F̂0 + · · · + F̂n,

where F̂i is a face of Q̂i. If Fi ⊂ Qi is the projection of F̂i, then the
induced Minkowski sum R = F0 + · · · + Fn is called coherent . Now, for
each i between 0 and n, we define the subset Si ⊂ E as follows:

(6.8)
Si = {α ∈ E : if α ∈ R + δ and R = F0 + · · · + Fn is coherent,

then i is the smallest index such that Fi is a vertex}.
This gives a disjoint union E = S0∪· · ·∪Sn. Furthermore, if α ∈ Si, we let
v(α) denote the vertex Fi in (6.8), i.e., Fi = {v(α)}. Since Qi = Conv(Ai),
it follows that v(α) ∈ Ai.

Exercise 7. For the coherent subdivision of Exercise 6, show that

S0 = {x3y, x2y2, x2y}, S1 = {xy3, xy2}, S2 = {xy},
and that

xv(α) =

⎧⎨⎩ x for xα ∈ S0
y for xα ∈ S1
1 for xα ∈ S2.

(Here, we regard E and the Si as consisting of monomials rather than
exponent vectors.) Hint: The exponent vector α = (1, 3) of xy3 lies in
R2 + δ, where we are using the labelling of Fig. 7.9. If F is the lower facet
lying over R2, one computes (using a program such as qhull) that

F = edge of Q̂0 + (0, 1, 1) + edge of Q̂2

which implies that R2 = edge of Q0 +(0, 1)+ edge of Q2 is coherent. Thus
xy3 ∈ S1 and xv(α) = y, and the other monomials are handled similarly.

The following lemma will allow us to create the determinants used in
computing the sparse resultant.

(6.9) Lemma. If α ∈ Si, then (xα/xv(α))fi ∈ L(E).
Proof. If α ∈ R + δ = F0 + · · · + Fn + δ, then α = β0 + · · · + βn + δ,
where βj ∈ Fj ⊂ Qj for 0 ≤ j ≤ n. Since α ∈ Si, we know that Fi is the
vertex v(α), which implies βi = v(α). Thus

α = β0 + · · · + βi−1 + v(α) + βi+1 + · · · + βn + δ.

It follows that if β ∈ Ai, then the exponent vector of (xα/xv(α))xβ is

α − v(α) + β = β0 + · · · + βi−1 + β + βi+1 + · · · + βn + δ ⊂ Q + δ.

This vector is integral and hence lies in E = Z
n ∩ (Q + δ). Since fi is a

linear combination of the xβ for β ∈ Ai, the lemma follows.



§6. Computing Resultants and Solving Equations 367

Now consider the equations

(6.10) (xα/xv(α))fi = 0, α ∈ Si.

We get one equation for each α, which means that we have |E| equations,
where |E| denotes the number of elements in E . By Lemma (6.9), each
(xα/xv(α))fi can be written as a linear combination of the monomials xβ

for β ∈ E . If we regard these monomials as “unknowns”, then (6.10) is a
system of |E| equations in |E| unknowns.

(6.11) Definition. Dn is the determinant of the coefficient matrix of the
|E| × |E| system of linear equations given by (6.10).

Notice the similarity with Definition (4.2) of Chapter 3. Here is a specific
example of what this determinant looks like.

Exercise 8. Consider the polynomials f0, f1, f2 from Exercise 6 and the
decomposition E = S0 ∪ S1 ∪ S2 from Exercise 7.
a. Show that the equations (6.10) are precisely the equations obtained

from (2.11) in Chapter 3 by setting z = 1 and multiplying each equa-
tion by xy. This explains why we wrote the elements of E in the order
x3y, x2y2, x2y, xy3, xy2, xy.

b. Use Proposition (2.10) of Chapter 3 to conclude that the determinant
D2 satisfies

D2 = ±a1Res1,1,2(f0, f1, f2).

This exercise suggests a close relation between Dn and ResA0,...,An . In
general, we have the following result.

(6.12) Theorem. The determinant Dn is a nonzero multiple of the mixed
sparse resultant ResA0,...,An . Furthermore, the degree of Dn as a polynomial
in the coefficients of fn is the mixed volume MVn(Q0, . . . , Qn−1).

Proof. If the equations f0 = · · · = fn = 0 have a solution in (C∗)n,
then the equations (6.10) have a nontrivial solution, and hence the coeffi-
cient matrix has zero determinant. It follows that Dn vanishes on the set
Z(A0, . . . ,An) from Theorem (6.2). Since the resultant is the irreducible
defining equation of this set, it must divide Dn. (This argument is similar
to one used frequently in Chapter 3.)

To show that Dn is nonzero, we must find f0, . . . , fn for which Dn �= 0.
For this purpose, introduce a new variable t and let

(6.13) fi =
∑

α∈Ai

tli·αxα,

where the li ∈ Z
n are the vectors used in the construction of the coherent

mixed subdivision of Q = Q0 + · · · + Qn. Section 4 of [CE1] shows that
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Dn �= 0 for this choice of the fi. We should also mention that without
coherence, it can happen that Dn is identically zero. See Exercise 10 at the
end of the section for an example.

Finally, we compute the degree of Dn as a polynomial in the coefficients
of fn. In (6.10), the coefficients of fn appear in the equations coming from
Sn, so that Dn has degree |Sn| in these coefficients. So we need only prove

(6.14) |Sn| = MVn(Q0, . . . , Qn−1).

If α ∈ Sn, the word smallest in (6.8) means that α ∈ R + δ, where R =
F0 + · · · + Fn and dim(Fi) > 0 for i = 0, . . . , n − 1. Since the dimensions
of the Fi sum to n, we must have dim(F0) = · · · = dim(Fn−1) = 1. Thus
R is a mixed cell with Fn as the unique vertex in the sum. Conversely, any
mixed cell of the subdivision must have exactly one Fi which is a vertex
(since the dim(Fi) ≤ 1 add up to n). Thus, if R is a mixed cell where Fn is
a vertex, then Z

n ∩ (R + δ) ⊂ Sn follows from (6.8). This gives the formula

|Sn| =
∑

Fn is a vertex

|Zn ∩ (R + δ)|,

where the sum is over all mixed cells R = F0 + · · ·+ Fn of the subdivision
of Q for which Fn is a vertex.

We now use two nice facts. First, the mixed cells R where Fn is a vertex
are translates of the mixed cells in a mixed subdivision of Q0 + · · ·+ Qn−1.
Furthermore, Lemma 5.3 of [Emi1] implies that all mixed cells in this
subdivision of Q0 + · · ·+Qn−1 appear in this way. Since translation doesn’t
affect volume, Theorem (6.7) then implies

MVn(Q0, . . . , Qn−1) =
∑

Fn is a vertex

Voln(R),

where we sum over the same mixed cells as before. The second nice fact is
that each of these cells R is a Minkowski sum of edges (up to translation
by the vertex Fn), so that by Section 5 of [CE1], the volume of R is the
number of lattice points in a generic small translation. This means

Voln(R) = |Zn ∩ (R + δ)|,
and (6.14) now follows immediately.

This shows that Dn has the desired properties. Furthermore, we get
other determinants D0, . . . , Dn−1 by changing how we choose the subsets
Si ⊂ E . For instance, if we replace smallest by largest in (6.8), then we get a
determinant D0 whose degree in the coefficients of f0 is MVn(Q1, . . . , Qn).
More generally, for each j between 0 and n, we can find a determinant
Dj which is a nonzero multiple of the resultant and whose degree in the
coefficients of fj is the mixed volume

MVn(Q1, . . . , Qj−1, Qj+1, . . . , Qn)
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(see Exercise 11 below). Using Theorem (6.3) of this section and the
argument of Proposition (4.7) of Chapter 3, we conclude that

ResA0,...,An(f0, . . . , fn) = ±GCD(D0, . . . , Dn).

As in Chapter 3, the GCD computation needs to be done for f0, . . . , fn

with symbolic coefficients.
Recently, D’Andrea showed that there is also a direct formula for the

resultant which doesn’t involve a GCD computation. Theorem (6.12) tells
us that Dn is the product of the resultant times an extraneous factor.
The main result of [D’An] states that the extraneous factor is the deter-
minant D′

n of a recursively computable submatrix of the matrix used to
compute Dn. This gives the formula

ResA0,...,An =
Dn

D′
n

,

which generalizes Macaulay’s formula for the dense resultant (Theorem
(4.9) of Chapter 3).

In practice, this method for computing the sparse resultant is not very
useful, mainly because the Dj tend to be enormous polynomials when the
fi have symbolic coefficients. But if we use numerical coefficients for the
fi, the GCD computation doesn’t make sense. Two methods for avoiding
this difficulty are explained in Section 5 of [CE1]. Fortunately, for many
purposes, it suffices to work with just one of the Dj (we will give an example
below), and Dj can be computed by the methods discussed at the end of
§4 of Chapter 3.

The matrices Dj are sometimes called Sylvester matrices since each en-
try is either 0 or a coefficient, just like Sylvester’s formula for the resultant
of two univariate polynomials (see (1.2) of Chapter 3). Methods for com-
puting these matrices and their variants are described in [EC], [CE1], and
[CE2], and software implementing the resulting algorithms for computing
resultants is available from:

• http://www.cs.unc.edu/~geom/MARS, described in [WEM];
• http://www-sop.inria.fr/galaad/logiciels/emiris/
soft alg.html, described in [Emi3]; and
• http://www-sop.inria.fr/galaad/logiciels/multires.html,

described in [Mou2].

In all of these methods, problems arise when the extraneous factor (i.e.,
the denominator in the resultant formula) vanishes. Methods for avoiding
these problems are discussed in [CE2], [D’AE], [Mou1], [Roj2], and [Roj4].

Sparse resultants can be also formulated using Bézout or Dixon matri-
ces. Here, the entries are more complicated combinations of the coefficients,
though the resulting matrices may be smaller. A survey of such matrices ap-
pears in [EmM], which includes many references. The paper [BU] has more
on Bézout matrices and the multires package mentioned above computes
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Bézout matrices (this package also computes the matrix M̃ of Theorem
(6.21)—see [Mou2] for examples). The Dixon formulation has been stud-
ied extensively, starting with [KSY], [KS1], and [KS2] and more recently
in [CK1] and [CK2]. Software packages related to the Dixon resultant
formulation are available at:

• http://www.cs.albany.edu/~artas/dixon/, related to [CK1] and
[CK2]; and
• http://www.bway.net/~lewis/home.html, based on the Fermat com-

puter algebra system.

It is also possible to mix Sylvester and Bézout matrices. See [CDS] for some
interesting resultant formulas of this type.

We will end this section with a brief discussion (omitting most proofs)
of how sparse resultants can be used to solve equations. The basic idea is
that given Laurent polynomials fi ∈ L(Ai), we want to solve the equations

(6.15) f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0.

If we assume that the fi are generic, then by Bernstein’s Theorem from §5,
the number of solutions in (C∗)n is the mixed volume MVn(Q1, . . . , Qn),
where Qi = Conv(Ai).

To solve (6.15), we can use sparse resultants in a variety of ways, similar
to what we did in the multipolynomial case studied in Chapter 3. We begin
with a sparse version of the u-resultant from §5 of Chapter 3. Let

f0 = u0 + u1x1 + · · · + unxn,

where u0, . . . , un are variables. The Newton polytope of f0 is Q0 =
Conv(A0), where A0 = {0,�e1, . . . ,�en} and �e1, . . . ,�en are the usual stan-
dard basis vectors. Then the u-resultant of f1, . . . , fn is the resultant
ResA0,...,An(f0, . . . , fn), which written out more fully is

ResA0,A1,...,An(u0 + u1x1 + · · · + unxn, f1, . . . , fn).

For f1, . . . , fn generic, one can show that there is a nonzero constant C
such that

(6.16) ResA0,...,An(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)∩(C∗)n

f0(p).

This generalizes Theorem (5.8) of Chapter 3 and is proved using a sparse
analog (due to Pedersen and Sturmfels [PS2]) of Theorem (3.4) from
Chapter 3. If p = (a1, . . . , an) is a solution of (6.15) in (C∗)n, then

f0(p) = u0 + u1a1 + · · · + unan,

so that factoring the u-resultant gives the solutions of (6.15) in (C∗)n.
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In (6.16), generic means that the solutions all have multiplicity 1. If some
of the multiplicities are > 1, the methods of Chapter 4 can be adapted to
show that

ResA0,...,An(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)∩(C∗)n

f0(p)m(p),

where m(p) is the multiplicity of p as defined in §2 of Chapter 4.
Many of the comments about the u-resultant from §5 of Chapter 3 carry

over without change to the sparse case. In particular, we saw in Chapter 3
that for many purposes, we can replace the sparse resultant with the deter-
minant D0. This is true in the sparse case, provided we use D0 as defined
in this section. Thus, (6.16) holds using D0 in place of the sparse resultant,
i.e., there is a constant C ′ such that

D0 = C ′ ∏
p∈V(f1,...,fn)∩(C∗)n

f0(p).

This formula is reasonable since D0, when regarded as a polynomial in the
coefficients u0, . . . , un of f0, has degree MVn(Q1, . . . , Qn), which is the
number of solutions of (6.15) in (C∗)n. There is a similar formula when
some of the solutions have multiplicities > 1.

We can also find solutions of (6.15) using the eigenvalue and eigenvector
techniques discussed in §6 of Chapter 3. To see how this works, we start
with the ring C[x±1

1 , . . . , x±1
n ] of all Laurent polynomials. The Laurent

polynomials in our equations (6.15) give the ideal

〈f1, . . . , fn〉 ⊂ C[x±1
1 , . . . , x±1

n ].

We want to find a basis for the quotient ring C[x±1
1 , . . . , x±1

n ]/〈f1, . . . , fn〉.
For this purpose, consider a coherent mixed subdivision of the Minkowski

sum Q1 + · · · + Qn. If we combine Theorem (6.7) and the proof of
Theorem (6.12), we see that if δ is generic, then

MVn(Q1, . . . , Qn) =
∑
R

|Zn ∩ (R + δ)|,

where the sum is over all mixed cells in the mixed subdivision. Thus the
set of exponents

Ê = {β ∈ Z
n : β ∈ R + δ for some mixed cell R}

has MVn(Q1, . . . , Qn) elements. This set gives the desired basis of our
quotient ring.

(6.17) Theorem. For the set Ê described above, the cosets [xβ ] for β ∈ Ê
form a basis of the quotient ring C[x±1

1 , . . . , x±1
n ]/〈f1, . . . , fn〉.

Proof. This was proved independently in [ER] and [PS1]. In the termi-
nology of [PS1], the cosets [xβ ] for β ∈ Ê form a mixed monomial basis
since they come from the mixed cells of a mixed subdivision.
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We will prove this in the following special case. Consider f0 = u0 +
u1x1 + · · · + unxn, and let A0 and Q0 be as above. Then pick a coherent
mixed subdivision of Q = Q0 + Q1 + · · · + Qn and let E = Z

n ∩ (Q + δ).
Also define Si ⊂ E using (6.8) with smallest replaced by largest . Using the
first “nice fact” used in the proof of Theorem (6.12), one can show that the
coherent mixed subdivision of Q induces a coherent mixed subdivision of
Q1 + · · · + Qn. We will show that the theorem holds for the set Ê coming
from this subdivision.

The first step in the proof is to show that

(6.18) α ∈ S0 ⇐⇒ α = v(α) + β for some v(α) ∈ A0 and β ∈ Ê .
This follows from the arguments used in the proof of Theorem (6.12). Now
let M0 be the coefficient matrix of the equations (6.10). These equations
begin with

(xα/xv(α))f0 = 0, α ∈ S0,

which, using (6.18), can be rewritten as

(6.19) xβf0 = 0, β ∈ Ê .
From here, we will follow the proof of Theorem (6.2) of Chapter 3. We

partition M0 so that the rows and columns of M0 corresponding to elements
of S0 lie in the upper left hand corner, so that

M0 =
(

M00 M01
M10 M11

)
.

By Lemma 4.4 of [Emi1], M11 is invertible for generic f1, . . . , fn since we
are working with a coherent mixed subdivision—the argument is similar to
showing D0 �= 0 in the proof of Theorem (6.12).

Now let Ê = {β1, . . . , βµ}, where µ = MVn(Q1, . . . , Qn). Then, for
generic f1, . . . , fn, we define the µ × µ matrix

(6.20) M̃ = M00 −M01M
−1
11 M10.

Also, for p ∈ V(f1, . . . , fn) ∩ (C∗)n, let pβ denote the column vector

pβ =

⎛⎜⎝ pβ1

...
pβµ

⎞⎟⎠ .

Similar to (6.6) in Chapter 3, one can prove

M̃ pβ = f0(p) pβ

because (6.19) gives the rows of M0 coming from S0.
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The final step is to show that the cosets [xβ1 ], . . . , [xβµ ] are linearly
independent. The argument is identical to what we did in Theorem (6.2)
of Chapter 2.

Using the mixed monomial basis, the next step is to find the matrix of
the multiplication map mf0 : A → A, where

A = C[x±1
1 , . . . , x±1

n ]/〈f1, . . . , fn〉
and mf0([g]) = [f0g] for [g] ∈ A. As in Chapter 3, this follows immediately
from the previous result.

(6.21) Theorem. Let fi ∈ L(Ai) be generic Laurent polynomials, and
let f0 = u0 + u1x1 + · · · + unxn. Using the basis from Theorem (6.17),
the matrix of the multiplication map mf0 : A → A defined above is the
transpose of the matrix

M̃ = M00 −M01M
−1
11 M10

from (6.20).

If we write M̃ in the form

M̃ = u0 I + u1 M̃1 + · · · + un M̃n,

where each M̃i has constant entries, then Theorem (6.21) implies that for
all i, (M̃i)T is the matrix of multiplication by xi. Thus, as in Chapter 3,
M̃ simultaneously computes the matrices of the multiplication maps by all
of the variables x1, . . . , xn.

Now that we have these multiplication maps, the methods mentioned
in Chapters 2 and 3 apply with little change. More detailed discussions
of how to solve equations using matrix methods and resultants, including
examples, can be found in [Emi1], [Emi2], [Emi3], [EmM], [ER], [Man1],
[Mou1], [Mou2], and [Roj4]. It is also possible to apply these methods to
study varieties of positive dimension. Here, a typical goal would be to find a
point in every irreducible component of the variety. Some references (which
employ a variety of approaches) are [ElM3], [KM], [Roj2], and [SVW].

We should mention that other techniques introduced in Chapter 3 can be
adapted to the sparse case. For example, the generalized characteristic poly-
nomial (GCP) from §6 of Chapter 3 can be generalized to the toric GCP
defined in [Roj4]. This is useful for dealing with the types of degeneracies
discussed in Chapter 3.

ADDITIONAL EXERCISES FOR §6

Exercise 9. Consider the following system of equations taken from [Stu3]:
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0 = f0 = ax + by

0 = f1 = cx + dy

0 = f2 = ex + fy + g.

a. Explain why the hypothesis of Theorem (6.2) is not satisfied. Hint: Look
at the Newton polytopes.

b. Show that the sparse resultant exists and is given by Res(f0, f1, f2) =
ad − bc.

Exercise 10. In Exercise 7, we defined the decomposition E = S0∪S1∪S2
using coherent Minkowski sums R = F0+F1+F2. This exercise will explore
what can go wrong if we don’t use coherent sums.
a. Exercise 7 gave the coherent Minkowski sum R2 = edge of Q0 +(0, 1)+

edge of Q2. Show that R2 = (0, 1)+edge of Q1 +edge of Q2 also holds.
b. If we use coherent Minkowski sums for Ri when i �= 2 and the non-

coherent one from part a when i = 2, show that (6.8) gives S0 =
{x3y, x2y2, x2y, xy3, xy2}, S1 = ∅ and S2 = {xy}.

c. If we compute the determinant D2 using S0, S1, S2 as in part b, show
that D2 does not involve the coefficients of f1 and conclude that D2 is
identically zero in this case. Hint: You don’t need explicit computations.
Argue instead that D2 is divisible by Res1,1,2.

Exercise 11. This exercise will discuss the determinant Dj for j < n.
The index j will be fixed throughout the exercise. Given E as usual, define
the subset Si ⊂ E to consist of all α ∈ E such that if α ∈ R + δ, where
R = F0 + · · · + Fn is coherent, then

i =
{

j if dim(Fk) > 0 ∀k �= j
min(k �= j : Fk is a vertex) otherwise.

By adapting the proof of Theorem (6.12), explain why this gives a de-
terminant Dj which is a nonzero multiple of the resultant and whose
degree as a polynomial in the coefficients of fj is the mixed volume
MVn(Q1, . . . , Qj−1, Qj+1, . . . , Qn).

Exercise 12. Prove that as polynomials with integer coefficients, we have

ResA0,...,An(f0, . . . , fn) = ±GCD(D0, . . . , Dn).

Hint: Since Dj and ResA0,...,An have the same degrees when regarded as
polynomials in the coefficients of fj , it is relatively easy to prove this over Q.
To prove that it is true over Z, it suffices to show that the coefficients of each
Dj are relatively prime. To prove this for j = n, consider the polynomials
fi defined in (6.13) and use the argument of Section 4 of [CE1] (or, for a
more detailed account, Section 5 of [CE2]) to show that Dn has a leading
coefficient 1 as a polynomial in t.
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Exercise 13. Compute the mixed sparse resultant of the polynomials

f0 = a1 + a2xy + a3x
2y + a4x

f1 = b1y + b2x
2y2 + b3x

2y + b4x

f2 = c1 + c2y + c3xy + c4x.

Hint: To obtain a coherent mixed subdivision, let l0 = (L, L2), l1 =
−(L2, 1) and l2 = (1,−L), where L is a sufficiently large positive inte-
ger. Also let δ = −(3/8, 1/8). The full details of this example, including
the explicit matrix giving D0, can be found in [CE1].

Exercise 14. In Definition (6.5), we require that a mixed subdivision of
Q1 + · · · + Qm satisfy the compatibility condition

Ri ∩ Rj = (F1 ∩ F ′
1) + · · · + (Fm ∩ F ′

m),

where Ri = F1 + · · · + Fm and Rj = F ′
1 + · · · + F ′

m are two cells in the
subdivision and Fi, F

′
i are faces of Qi. This condition is essential for the

scaling used in the proof of Theorem (6.7). To see why, consider the unit
square Q in the plane with vertices labeled v1, v2, v3, v4.
a. Show that Ri = vi + Q, 1 ≤ i ≤ 4, gives a polyhedral subdivision

of Q + Q which satisfies Definition (6.5) except for the compatibility
condition. Also show that if Theorem (6.7) applied to this subdivision,
then the mixed volume MV2(Q, Q) would be 0.

b. Show that the subdivision of part a does not scale. Hint: Consider
Q + λQ and R′

i = vi + λQ.
c. Find a mixed subdivision of Q + Q that satisfies all parts of Definition

(6.5) and draw a picture of Q + λQ to illustrate how the subdivision
scales.

This example is due to Lyle Ramshaw.



Chapter 8

Polyhedral Regions and
Polynomials

In this chapter we will consider a series of interrelated topics concerning
polyhedral regions P in R

n and polynomials. In the first three sections
we will see how some of the algebraic methods from earlier chapters give
conceptual and computational tools for several classes of problems of in-
trinsic interest and practical importance. We will begin by considering
Gröbner basis methods for integer optimization and combinatorial enumer-
ation problems. We will also use module Gröbner bases to study piecewise
polynomial, or spline, functions on polyhedral complexes.

The final two sections apply the same polyhedral geometry to furnish
some further insight into the foundations of Gröbner basis theory. We will
study the Gröbner fan of an ideal, a collection of polyhedral cones classi-
fying the ideal’s different reduced Gröbner bases, and use the Gröbner fan
to develop a general basis conversion algorithm called the Gröbner Walk .
The walk is applicable even when the ideal is not zero-dimensional, hence
is more general than the FGLM algorithm from Chapter 2, §3.

Many of the topics in this chapter are also closely related to the material
on polytopes and toric varieties from Chapter 7, but we have tried to make
this chapter as independent as possible from Chapter 7 so that it can be
read separately.

§1 Integer Programming

This section applies the theory of Gröbner bases to problems in integer
programming. Most of the results depend only on the basic algebra of poly-
nomial rings and facts about Gröbner bases for ideals. From Proposition
(1.12) on, we will also need to use the language of Laurent polynomials,
but the idea should be reasonably clear even if that concept is not familiar.
The original reference for this topic is an article by Conti and Traverso,
[CT], and another treatment may be found in [AL], Section 2.8. Further
developments may be found in the articles [Tho1], [Tho2], [HT], and the

376
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book [Stu2]. For a general introduction to linear and integer programming,
we recommend [Schri].

To begin, we will consider a very small, but in other ways typical, applied
integer programming problem, and we will use this example to illustrate the
key features of this class of problems. Suppose that a small local trucking
firm has two customers, A and B, that generate shipments to the same
location. Each shipment from A is a pallet weighing exactly 400 kilos and
taking up 2 cubic meters of volume. Each pallet from B weighs 500 kilos and
takes up 3 cubic meters. The shipping firm uses small trucks that can carry
any load up to 3700 kilos, and up to 20 cubic meters. B’s product is more
perishable, though, and they are willing to pay a higher price for on-time
delivery: $ 15 per pallet versus $ 11 per pallet from A. The question facing
the manager of the trucking company is: How many pallets from each of
the two companies should be included in each truckload to maximize the
revenues generated?

Using A to represent the number of pallets from company A, and simi-
larly B to represent the number of pallets from company B in a truckload,
we want to maximize the revenue function 11A + 15B subject to the
following constraints:

(1.1)

4A + 5B ≤ 37 (the weight limit, in 100’s)

2A + 3B ≤ 20 (the volume limit)

A, B ∈ Z≥0.

Note that both A, B must be integers. This is, as we will see, an important
restriction, and the characteristic feature of integer programming problems.

Integer programming problems are generalizations of the mathemati-
cal translation of the question above. Namely, in an integer programming
problem we seek the maximum or minimum value of some linear function

�(A1, . . . , An) = c1A1 + c2A2 + · · · + cnAn

on the set of (A1, . . . , An) ∈ Z
n
≥0 with Aj ≥ 0 for all 1 ≤ j ≤ n satisfying

a set of linear inequalities:

a11A1 + a12A2 + · · · + a1nAn ≤ (or ≥) b1

a21A1 + a22A2 + · · · + a2nAn ≤ (or ≥) b2

...

am1A1 + am2A2 + · · · + amnAn ≤ (or ≥) bm.

We assume in addition that the aij , and the bi are all integers. Some of the
coefficients cj , aij , bi may be negative, but we will always assume Aj ≥ 0
for all j.

Integer programming problems occur in many contexts in engineering,
computer science, operations research, and pure mathematics. With large
numbers of variables and constraints, they can be difficult to solve. It is



378 Chapter 8. Polyhedral Regions and Polynomials

perhaps instructive to consider our small shipping problem (1.1) in detail.
In geometric terms we are seeking a maximum for the function 11A + 15B
on the integer points in the closed convex polygon P in R

2 bounded above
by portions of the lines 4A + 5B = 37 (slope −4/5), 2A + 3B = 20 (slope
−2/3), and by the coordinate axes A = 0, and B = 0. See Fig. 8.1. The
set of all points in R

2 satisfying the inequalities from (1.1) is known as the
feasible region.

(1.2) Definition. The feasible region of an integer programming problem
is the set P of all (A1, . . . , An) ∈ R

n satisfying the inequalities in the
statement of the problem.

The set of all points in R
n satisfying a single linear inequality of the

form considered here is called a closed half-space. A polyhedral region or
polyhedron in R

n is defined as the intersection of a finite number of closed
half-spaces. Equation (1.4) in Chapter 7 shows that polytopes are bounded
polyhedral regions. In fact, a polyhedral region is a polytope if and only if it
is bounded in R

n (the other implication is shown for instance in [Ewa], The-
orem 1.5). In this chapter we will consider both bounded and unbounded
polyhedral regions.

It is possible for the feasible region of an integer programming problem to
contain no integer points at all. There are no solutions of the optimization

0
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2

3

4

5

6

7

B

0 2 4 6 8 10

A

Figure 8.1. The feasible region P for (1.1)
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problem in that case. For instance in R
2 consider the region defined by

(1.3)

A + B ≤ 1

3A − B ≥ 1

2A − B ≤ 1,

and A, B ≥ 0.

Exercise 1. Verify directly (for example with a picture) that there are no
integer points in the region defined by (1.3).

When n is small, it is often possible to analyze the feasible set of an inte-
ger programming problem geometrically and determine the integer points
in it. However, even this can be complicated since any polyhedral region
formed by intersecting half-spaces bounded by affine hyperplanes with
equations defined over Z can occur. For example, consider the set P in
R

3 defined by inequalities:

2A1 + 2A2 + 2A3 ≤ 5 −2A1 + 2A2 + 2A3 ≤ 5
2A1 + 2A2 − 2A3 ≤ 5 −2A1 + 2A2 − 2A3 ≤ 5
2A1 − 2A2 + 2A3 ≤ 5 −2A1 − 2A2 + 2A3 ≤ 5
2A1 − 2A2 − 2A3 ≤ 5 −2A1 − 2A2 − 2A3 ≤ 5.

In Exercise 11, you will show that P is a solid regular octahedron, with 8
triangular faces, 12 edges, and 6 vertices.

Returning to the problem from (1.1), if we did not have the additional
constraints A, B ∈ Z, (if we were trying to solve a linear programming
problem rather than an integer programming problem), the situation would
be somewhat easier to analyze. For instance, to solve (1.1), we could apply
the following simple geometric reasoning. The level curves of the revenue
function �(A, B) = 11A + 15B are lines of slope −11/15. The values of
� increase as we move out into the first quadrant. Since the slopes satisfy
−4/5 < −11/15 < −2/3, it is clear that the revenue function attains its
overall maximum on P at the vertex q in the interior of the first quadrant.
Readers of Chapter 7 will recognize q as the face of P in the support line
with normal vector ν = (−11,−15). See Fig. 8.2.

That point has rational, but not integer coordinates: q = (11/2, 3).
Hence q is not the solution of the integer programming problem! Instead,
we need to consider only the integer points (A, B) in P . One ad hoc method
that works here is to fix A, compute the largest B such that (A, B) lies in
P , then compute the revenue function at those points and compare values
for all possible A values. For instance, with A = 4, the largest B giving a
point in P is B = 4, and we obtain �(4, 4) = 104. Similarly, with A = 8, the
largest feasible B is B = 1, and we obtain �(8, 1) = 103. Note incidentally
that both of these values are larger than the value of � at the integer point
closest to q in P—(A, B) = (5, 3), where �(5, 3) = 100. This shows some
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q
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Figure 8.2. The linear programming maximum for (1.1)

of the potential subtlety of integer programming problems. Continuing in
this way it can be shown that the maximum of � occurs at (A, B) = (4, 4).

Exercise 2. Verify directly (that is, by enumerating integer points as sug-
gested above) that the solution of the shipping problem (1.1) is the point
(A, B) = (4, 4).

This sort of approach would be quite impractical for larger problems.
Indeed, the general integer programming problem is known to be NP-
complete, and so as Conti and Traverso remark, “even algorithms with
theoretically bad worst case and average complexity can be useful ... ,
hence deserve investigation.”

To discuss integer programming problems in general it will be helpful
to standardize their statement to some extent. This can be done using the
following observations.

1. We need only consider the problem of minimizing the linear function
�(A1, . . . , An) = c1A1 + c2A2 + · · ·+ cnAn, since maximizing a function
� on a set of integer n-tuples is the same as minimizing the function −�.
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2. Similarly, by replacing an inequality

ai1A1 + ai2A2 + · · · + ainAn ≥ bi

by the equivalent form

−ai1A1 − ai2A2 − · · · − ainAn ≤ −bi,

we may consider only inequalities involving ≤.
3. Finally, by introducing additional variables, we can rewrite the linear

constraint inequalities as equalities. The new variables are called “slack
variables.”

For example, using the idea in point 3 here the inequality

3A1 − A2 + 2A3 ≤ 9

can be replaced by

3A1 − A2 + 2A3 + A4 = 9

if A4 = 9− (3A1 −A2 + 2A3) ≥ 0 is introduced as a new variable to “take
up the slack” in the original inequality. Slack variables will appear with
coefficient zero in the function to be minimized.

Applying 1, 2, and 3 above, any integer programming problem can be
put into the standard form:

(1.4)

Minimize: c1A1 + · · · + cnAn, subject to:

a11A1 + a12A2 + · · · + a1nAn = b1

a21A1 + a22A2 + · · · + a2nAn = b2

...

am1A1 + am2A2 + · · · + amnAn = bm

Aj ∈ Z≥0, j = 1, . . . n,

where now n is the total number of variables (including slack variables).
As before, we will call the set of all real n-tuples satisfying the constraint
equations the feasible region. Note that this is a polyhedral region in R

n

because the set of all (A1, . . . , An) ∈ R
n satisfying a linear equation

aj1A1 + · · ·+ ajnAn = bj is the intersection of the two half-spaces defined
by aj1A1 + · · · + ajnAn ≥ bj and aj1A1 + · · · + ajnAn ≤ bj .

For the rest of this section we will explore an alternative approach to
integer programming problems, in which we translate such a problem into
a question about polynomials. We will use the standard form (1.4) and first
consider the case where all the coefficients are nonnegative: aij ≥ 0, bi ≥ 0.
The translation proceeds as follows. We introduce an indeterminate zi for
each of the equations in (1.4), and exponentiate to obtain an equality

zai1A1+ai2A2+···+ainAn
i = zbi

i
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for each i = 1, . . . , m. Multiplying the left and right hand sides of these
equations, and rearranging the exponents, we get another equality:

(1.5)
n∏

j=1

( m∏
i=1

z
aij

i

)Aj =
m∏

i=1

zbi
i .

From (1.5) we get the following direct algebraic characterization of the
integer n-tuples in the feasible region of the problem (1.4).

(1.6) Proposition. Let k be a field, and define ϕ : k[w1, . . . , wn] →
k[z1, . . . , zm] by setting

ϕ(wj) =
m∏

i=1

z
aij

i

for each j = 1, . . . , n, and ϕ(g(w1, . . . , wn)) = g(ϕ(w1), . . . , ϕ(wn)) for
a general polynomial g ∈ k[w1, . . . , wn]. Then (A1, . . . , An) is an in-
teger point in the feasible region if and only if ϕ maps the monomial
wA1

1 wA2
2 · · ·wAn

n to the monomial zb1
1 · · · zbm

m .

Exercise 3. Prove Proposition (1.6).

For example, consider the standard form of our shipping problem (1.1),
with slack variables C in the first equation and D in the second.

(1.7)

ϕ : k[w1, w2, w3, w4] → k[z1, z2]

w1 �→ z4
1z2

2

w2 �→ z5
1z3

2

w3 �→ z1

w4 �→ z2.

The integer points in the feasible region of this restatement of the problem
are the (A, B, C, D) such that

ϕ(wA
1 wB

2 wC
3 wD

4 ) = z37
1 z20

2 .

Exercise 4. Show that in this case every monomial in k[z1, . . . , zm] is the
image of some monomial in k[w1, . . . , wn].

In other cases, ϕ may not be surjective, and the following test for mem-
bership in the image of a mapping is an important part of the translation
of integer programming problems.

Since the image of ϕ in Proposition (1.6) is precisely the set of poly-
nomials in k[z1, . . . , zm] that can be expressed as polynomials in the
fj =

∏m
i=1 z

aij

i , we can also write the image as k[f1, . . . , fn], the sub-
ring of k[z1, . . . , zm] generated by the fj . The subring membership test
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given by parts a and b of the following Proposition is also used in studying
rings of invariants for finite matrix groups (see [CLO], Chapter 7, §3).

(1.8) Proposition. Suppose that f1, . . . , fn ∈ k[z1, . . . , zm] are given.
Fix a monomial order in k[z1, . . . , zm, w1, . . . , wn] with the elimination
property: any monomial containing one of the zi is greater than any
monomial containing only the wj. Let G be a Gröbner basis for the ideal

I = 〈f1 − w1, . . . , fn − wn〉 ⊂ k[z1, . . . , zm, w1, . . . , wn]

and for each f ∈ k[z1, . . . , zm], let f
G

be the remainder on division of f
by G. Then
a. A polynomial f satisfies f ∈ k[f1, . . . , fn] if and only if g = f

G ∈
k[w1, . . . , wn].

b. If f ∈ k[f1, . . . , fn] and g = f
G ∈ k[w1, . . . , wn] as in part a, then

f = g(f1, . . . , fn), giving an expression for f as a polynomial in the fj .
c. If each fj and f are monomials and f ∈ k[f1, . . . , fn], then g is also a

monomial.

In other words, part c says that in the situation of Proposition (1.6), if
zb1
1 · · · zbm

m is in the image of ϕ, then it is automatically the image of some
monomial wA1

1 · · ·wAn
n .

Proof. Parts a and b are proved in Proposition 7 of Chapter 7, §3 in
[CLO], so we will not repeat them here.

To prove c, we note that each generator of I is a difference of two
monomials. It follows that in the application of Buchberger’s algorithm to
compute G, each S-polynomial considered and each nonzero S-polynomial
remainder that goes into the Gröbner basis will be a difference of two
monomials. This is true since in computing the S-polynomial, we are sub-
tracting one difference of two monomials from another, and the leading
terms cancel. Similarly, in the remainder calculation, at each step we sub-
tract one difference of two monomials from another and cancellation occurs.
It follows that every element of G will also be a difference of two mono-
mials. When we divide a monomial by a Gröbner basis of this form, the
remainder must be a monomial, since at each step we subtract a differ-
ence of two monomials from a single monomial and a cancellation occurs.
Hence, if we are in the situation of parts a and b and the remainder is
g(w1, . . . , wn) ∈ k[w1, . . . , wn], then g must be a monomial.

In the restatement of our example problem in (1.7), we would consider
the ideal

I = 〈z4
1z2

2 − w1, z
5
1z3

2 − w2, z1 − w3, z2 − w4〉.
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Using the lex order with the variables ordered

z1 > z2 > w4 > w3 > w2 > w1

(chosen to eliminate terms involving slack variables if possible), we obtain
a Gröbner basis G:

(1.9)

g1 = z1 − w3,

g2 = z2 − w4,

g3 = w2
4w

4
3 − w1

g4 = w4w
3
3w2 − w2

1

g5 = w4w3w1 − w2

g6 = w4w
4
1 − w3w

3
2

g7 = w2
3w

2
2 − w3

1.

(Note: An efficient implementation of Buchberger’s algorithm is neces-
sary for working out relatively large explicit examples using this approach,
because of the large number of variables involved. We used Singular and
Macaulay 2 to compute the examples in this chapter.) So for instance, using
g1 and g2 the monomial f = z37

1 z20
2 reduces to w37

3 w20
4 . Hence f is in the

image of ϕ from (1.7). But then further reductions are also possible, and
the remainder on division is

f
G

= w4
2w

4
1w3.

This monomial corresponds to the solution of the integer programming
problem (A = 4, B = 4, and slack C = 1) that you verified in Exercise
2. In a sense, this is an accident, since the lex order that we used for
the Gröbner basis and remainder computations did not take the revenue
function � explicitly into account.

To find the solution of an integer programming problem minimizing a
given linear function �(A1, . . . , An) we will usually need to use a monomial
order specifically tailored to the problem at hand.

(1.10) Definition. A monomial order on k[z1, . . . , zm, w1, . . . , wn] is said
to be adapted to an integer programming problem (1.4) if it has the
following two properties:
a. (Elimination) Any monomial containing one of the zi is greater than

any monomial containing only the wj.
b. (Compatibility with �) Let A = (A1, . . . , An) and A′ = (A′

1, . . . , A
′
n).

If the monomials wA, wA′
satisfy ϕ(wA) = ϕ(wA′

) and �(A1, . . . , An) >
�(A′

1, . . . , A
′
n), then wA > wA′

.

(1.11) Theorem. Consider an integer programming problem in standard
form (1.4). Assume all aij, bi ≥ 0 and let fj =

∏m
i=1 z

aij

i as before. Let G
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be a Gröbner basis for

I = 〈f1 − w1, . . . , fn − wn〉 ⊂ k[z1, . . . , zm, w1, . . . , wn]

with respect to any adapted monomial order. Then if f = zb1
1 · · · zbm

m is
in k[f1, . . . , fn], the remainder f

G ∈ k[w1, . . . , wn] will give a solution of
(1.4) minimizing �. (There are cases where the minimum is not unique and,
if so, this method will only find one minimum.)

Proof. Let G be a Gröbner basis for I with respect to an adapted
monomial order. Suppose that wA = f

G
so ϕ(wA) = f , but that

A = (A1, . . . , An) is not a minimum of �. That is, assume that there is
some A′ = (A′

1, . . . , A
′
n) �= A such that ϕ(wA′

) = f and �(A′
1, . . . , A

′
n) <

�(A1, . . . , An). Consider the difference h = wA − wA′
. We have ϕ(h) =

f − f = 0. In Exercise 5 below, you will show that this implies h ∈ I.
But then h must reduce to zero under the Gröbner basis G for I. However,
because > is an adapted order, the leading term of h must be wA, and
that monomial is reduced with respect to G since it is a remainder. This
contradiction shows that A must give a minimum of �.

Exercise 5. Let fi ∈ k[z1, . . . , zm], i = 1, . . . , n, as above and define a
mapping

ϕ : k[w1, . . . , wn] → k[z1, . . . , zm]

wi �→ fi

as in (1.6). Let I = 〈f1 − w1, . . . , fn − wn〉 ⊂ k[z1, . . . , zm, w1, . . . , wn].
Show that if h ∈ k[w1, . . . , wn] satisfies ϕ(h) = 0, then h ∈ I ∩
k[w1, . . . , wn]. Hint: See the proof of Proposition 3 from Chapter 7, §4
of [CLO].

Exercise 6. Why did the lex order used to compute the Gröbner basis in
(1.9) correctly find the maximum value of 11A + 15B in our example prob-
lem (1.1)? Explain, using Theorem (1.11). (Recall, w4 and w3 corresponding
to the slack variables were taken greater than w2, w1.)

Theorem (1.11) yields a Gröbner basis algorithm for solving integer
programming problems with all aij , bi ≥ 0:

Input: A, b from (1.4), an adapted monomial order >

Output: a solution of (1.4), if one exists

fj :=
m∏

i=1

z
aij

i

I := 〈f1 − w1, . . . , fn − wn〉
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G := Gröbner basis of I with respect to >

f :=
m∏

i=1

zbi
i

g := f
G

IF g ∈ k[w1, . . . , wn] THEN

its exponent vector gives a solution

ELSE

there is no solution

Monomial orders satisfying both the elimination and compatibility
properties from (1.10) can be specified in the following ways.

First, assume that all cj ≥ 0. Then it is possible to define a weight order
>� on the w-variables using the linear function � (see [CLO], Chapter 2,
§4, Exercise 12). Namely order monomials in the w-variables alone first by
�-values:

wA1
1 · · ·wAn

n >� w
A′

1
1 · · ·wA′

n
n

if �(A1, . . . , An) > �(A′
1, . . . , A

′
n) and break ties using any other fixed

monomial order on k[w1, . . . , wn]. Then incorporate this order into a prod-
uct order on k[z1, . . . , zm, w1, . . . , wn] with the z-variables greater than all
the w-variables, to ensure that the elimination property from (1.10) holds.

If some cj < 0, then the recipe above produces a total ordering on
monomials in k[z1, . . . , zm, w1, . . . , wn] that is compatible with multipli-
cation and that satisfies the elimination property. But it will not be a
well-ordering. So in order to apply the theory of Gröbner bases with re-
spect to monomial orders, we will need to be more clever in this case. We
begin with the following observation.

In k[z1, . . . , zm, w1, . . . , wn], define a (non-standard) degree for each
variable by setting deg(zi) = 1 for all i = 1, . . . , m, and deg(wj) =
dj =

∑m
i=1 aij for all j = 1, . . . , n. Each dj must be strictly positive,

since otherwise the constraint equations would not depend on Aj . We say
a polynomial f ∈ k[z1, . . . , zm, w1, . . . , wn] is homogeneous with respect
to these degrees if all the monomials zαwβ appearing in f have the same
(non-standard) total degree |α| + ∑

j djβj .

(1.12) Lemma. With respect to the degrees dj on wj, the following
statements hold.
a. The ideal I = 〈f1 − w1, . . . , fn − wn〉 is homogeneous.
b. Every reduced Gröbner basis for the ideal I consists of homogeneous

polynomials.
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Proof. Part a follows since the given generators are homogeneous for
these degrees—since fj =

∏m
i=1 z

aij

i , the two terms in fj − wj have the
same degree.

Part b follows in the same way as for ideals that are homogeneous in the
usual sense. The proof of Theorem 2 of Chapter 8, §3 of [CLO] goes over
to non-standard assignments of degrees as well.

For instance, in the lex Gröbner basis given in (1.9) above, it is easy to
check that all the polynomials are homogeneous with respect to the degrees
deg(zi) = 1, deg(w1) = 6, deg(w2) = 8, and deg(w3) = deg(w4) = 1.

Since dj > 0 for all j, given the cj from � and µ > 0 sufficiently large,
all the entries of the vector

(c1, . . . , cn) + µ(d1, . . . , dn)

will be positive. Let µ be any fixed number for which this is true. Consider
the (m + n)-component weight vectors u1, u2:

u1 = (1, . . . , 1, 0, . . . , 0)

u2 = (0, . . . , 0, c1, . . . , cn) + µ(0, . . . , 0, d1, . . . , dn).

Then all entries of u2 are nonnegative, and hence we can define a weight
order >u1,u2,σ by comparing u1-weights first, then comparing u2-weights if
the u1-weights are equal, and finally breaking ties with any other monomial
order >σ.

Exercise 7. Consider an integer programming problem (1.4) in which
aij, bi ≥ 0 for all i, j.
a. Show that the order >u1,u2,σ defined above satisfies the elimination

condition from Definition (1.10).
b. Show that if ϕ(wA) = ϕ(wA′

), then wA − wA′
is homogeneous with

respect to the degrees dj = deg(wj).
c. Deduce that >u1,u2,σ is an adapted order.

For example, our shipping problem (in standard form) can be solved
using the second method here. We take u1 = (1, 1, 0, 0, 0, 0), and letting
µ = 2, we see that

u2 = (0, 0,−11,−15, 0, 0) + 2(0, 0, 6, 8, 1, 1) = (0, 0, 1, 1, 2, 2)

has all nonnegative entries. Finally, break ties with >σ = graded reverse
lex on all the variables ordered z1 > z2 > w1 > w2 > w3 > w4. Here is a
Singular session performing the Gröbner basis and remainder calculations.
Note the definition of the monomial order >u1,u2,σ by means of weight
vectors.

> ring R = 0,(z(1..2),w(1..4)),(a(1,1,0,0,0,0),
a(0,0,1,1,2,2),dp);
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> ideal I = z(1)^4*z(2)^2-w(1), z(1)^5*z(2)^3-w(2), z(1)-w(3),
z(2)-w(4);

> ideal J = std(I);
> J;
J[1]=w(1)*w(3)*w(4)-1*w(2)
J[2]=w(2)^2*w(3)^2-1*w(1)^3
J[3]=w(1)^4*w(4)-1*w(2)^3*w(3)
J[4]=w(2)*w(3)^3*w(4)-1*w(1)^2
J[5]=w(3)^4*w(4)^2-1*w(1)
J[6]=z(2)-1*w(4)
J[7]=z(1)-1*w(3)
> poly f = z(1)^37*z(2)^20;
> reduce(f,J);
w(1)^4*w(2)^4*w(3)

We find

z37
1 z20

2
G

= w4
1w

4
2w3

as expected, giving the solution A = 4, B = 4, and C = 1, D = 0.
This computation could also be done using the Maple Groebner

package or Mathematica, since the weight order >u1,u1,grevlex can be de-
fined as one of the matrix orders >M explained in Chapter 1, §2. For
example, we could use the 6 × 6 matrix with first row u1, second row
u2, and next four rows coming from the matrix defining the grevlex or-
der on k[z1, z1, w1, w2, w3, w4] following the patterns from parts b and e of
Exercise 6 in Chapter 1, §2:

M =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 0 0
0 0 1 1 2 2
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The other rows from the matrix defining the grevlex order are discarded
because of linear dependences with previous rows in M .

Finally, we want to discuss general integer programming problems where
some of the aij and bi may be negative. There is no real conceptual differ-
ence in that case; the geometric interpretation of the integer programming
problem is exactly the same, only the positions of the affine linear spaces
bounding the feasible region change. But there is a difference in the alge-
braic translation. Namely, we cannot view the negative aij and bi directly
as exponents—that is not legal in an ordinary polynomial. One way to fix
this problem is to consider what are called Laurent polynomials in the vari-
ables zi instead—polynomial expressions in the zi and z−1

i , as defined in
Chapter 7, §1 of this text. To deal with these more general objects without
introducing a whole new set of m variables, we will use the second repre-
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sentation of the ring of Laurent polynomials, as presented in Exercise 15
of Chapter 7, §1:

k[z±1
1 , . . . , z±1

m ] ∼= k[z1, . . . , zm, t]/〈tz1 · · · zm − 1〉.
In intuitive terms, this isomorphism works by introducing a single new
variable t satisfying tz1 · · · zm − 1 = 0, so that formally t is the product of
the inverses of the zi: t = z−1

1 · · · z−1
m . Then each of the

∏m
i=1 z

aij

i involved
in the algebraic translation of the integer programming problem can be
rewritten in the form tej

∏m
i=1 z

a′
ij

i , where now all a′
ij ≥ 0—we can just

take ej ≥ 0 to be the negative of the smallest (most negative) aij that
appears, and a′

ij = ej + aij for each i. Similarly,
∏m

i=1 zbi
i can be rewritten

in the form te
∏m

i=1 z
b′

i
i with e ≥ 0, and bi ≥ 0 for all i. It follows that

the equation (1.5) becomes an equation between polynomial expressions in
t, z1, . . . , zn:

n∏
j=1

(
tej

m∏
i=1

z
a′

ij

i

)Aj = te
m∏

i=1

z
b′

i
i ,

modulo the relation tz1 · · · zm − 1 = 0. We have a direct analogue of
Proposition (1.6).

(1.13) Proposition. Define a mapping

ϕ : k[w1, . . . , wn] → k[z±1
1 , . . . , z±1

m ]

by setting

ϕ(wj) = tej

m∏
i=1

z
a′

ij

i mod 〈tz1 · · · zm − 1〉

for each j = 1, . . . , n, and extending to general g(w1, . . . , wn) ∈
k[w1, . . . , wn] as before. Then (A1, . . . , An) is an integer point in the fea-
sible region if and only if ϕ(wA1

1 wA2
2 · · ·wAn

n ) and tez
b′
1

1 · · · zb′
m

m represent
the same element in k[z±1

1 , . . . , z±1
m ] (that is, their difference is divisible by

tz1 · · · zm − 1).

Similarly, Proposition (1.8) goes over to this more general situation.
We will write S for the image of ϕ in k[z±1

1 , . . . , z±1
m ]. Then we have the

following version of the subring membership test.

(1.14) Proposition. Suppose that f1, . . . , fn ∈ k[z1, . . . , zm, t] are given.
Fix a monomial order in k[z1, . . . , zm, t, w1, . . . , wn] with the elimination
property: any monomial containing one of the zi or t is greater than any
monomial containing only the wj. Finally, let G be a Gröbner basis for the
ideal

J = 〈tz1 · · · zm − 1, f1 − w1, . . . , fn − wn〉
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in k[z1, . . . , zm, t, w1, . . . , wn] and for each f ∈ k[z1, . . . , zm, t], let f
G

be
the remainder on division of f by G. Then
a. f represents an element in S if and only if g = f

G ∈ k[w1, . . . , wn].
b. If f represents an element in S and g = f

G ∈ k[w1, . . . , wn] as in part
a, then f = g(f1, . . . , fn), giving an expression for f as a polynomial
in the fj.

c. If each fj and f are monomials and f represents an element in S, then
g is also a monomial.

The proof is essentially the same as the proof for Proposition (1.8) so we
omit it.

We should also mention that there is a direct parallel of Theorem (1.11)
saying that using monomial orders which have the elimination and com-
patibility properties will yield minimum solutions for integer programming
problems and give an algorithm for their solution. For � with only nonneg-
ative coefficients, adapted orders may be constructed using product orders
as above, making t and the zi greater than any wj . For a more general
discussion of constructing monomial orders compatible with a given �, we
refer the reader to [CT].

We will conclude this section with an example illustrating the general
case described in the previous paragraph. Consider the following problem
in standard form:

(1.15)

Minimize:

A + 1000B + C + 100D,

Subject to the constraints:

3A − 2B + C = −1

4A + B − C − D = 5

A, B, C, D ∈ Z≥0.

With the relation tz1z2 − 1 = 0, our ideal J in this case is

J = 〈tz1z2 − 1, z3
1z4

2 − w1, t
2z3

2 − w2, tz
2
1 − w3, tz1 − w4〉.

If we use an elimination order placing t, z1, z2 before the w-variables, and
then the use a weight order compatible with � on the wj (breaking ties with
graded reverse lex), then we obtain a Gröbner basis G for J consisting of
the following polynomials:

g1 = w2w
2
3 − w4

g2 = w1w
7
4 − w3

3

g3 = w1w2w
6
4 − w3

g4 = w1w
2
2w3w

5
4 − 1
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g5 = z2 − w1w
2
2w3w

4
4

g6 = z1 − w1w2w
5
4

g7 = t − w2w3w4.

From the right-hand sides of the equations, we consider f = tz6
2 . A

remainder computation yields

f
G

= w1w
2
2w4.

Since this is still a very small problem, it is easy to check by hand that the
corresponding solution (A = 1, B = 2, C = 0, D = 1) really does minimize
�(A, B, C, D) = A + 1000B + C + 100D subject to the constraints.

Exercise 8. Verify directly that the solution (A, B, C, D) = (1, 2, 0, 1) of
the integer programming problem (1.15) is correct. Hint: Show first that
B ≥ 2 in any solution of the constraint equations.

We should also remark that because of the special binomial form of the
generators of the ideals in (1.11) and (1.13) and the simple polynomial re-
mainder calculations involved here, there are a number of optimizations one
could make in special-purpose Gröbner basis integer programming software.
See [CT] for some preliminary results and [BLR] for additional develop-
ments. Algorithms described in the latter paper have been implemented
in the intprog package distributed with the current version of CoCoA.
The current version of Singular also contains an intprog library with
procedures for integer programming.

ADDITIONAL EXERCISES FOR §1

Exercise 9. What happens if you apply the Gröbner basis algorithm to
any optimization problem on the polyhedral region in (1.3)?

Note: For the computational portions of the following problems, you will
need to have access to a Gröbner basis package that allows you to specify
mixed elimination-weight monomial orders as in the discussion following
Theorem (1.11). One way to specify these orders is via suitable weight
matrices as explained in Chapter 1, §2. See the example following Exercise 7
above.

Exercise 10. Apply the methods of the text to solve the following integer
programming problems:
a.

Minimize: 2A + 3B + C + 5D, subject to:
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3A + 2B + C + D = 10

4A + B + C = 5

A, B, C, D ∈ Z≥0.

Verify that your solution is correct.
b. Same as a, but with the right-hand sides of the constraint equations

changed to 20, 14 respectively. How much of the computation needs to
be redone?

c.

Maximize: 3A + 4B + 2C, subject to:

3A + 2B + C ≤ 45

A + 2B + 3C ≤ 21

2A + B + C ≤ 18

A, B, C ∈ Z≥0.

Also, describe the feasible region for this problem geometrically, and use
that information to verify your solution.

Exercise 11. Consider the set P in R
3 defined by inequalities:

2A1 + 2A2 + 2A3 ≤ 5 −2A1 + 2A2 + 2A3 ≤ 5
2A1 + 2A2 − 2A3 ≤ 5 −2A1 + 2A2 − 2A3 ≤ 5
2A1 − 2A2 + 2A3 ≤ 5 −2A1 − 2A2 + 2A3 ≤ 5
2A1 − 2A2 − 2A3 ≤ 5 −2A1 − 2A2 − 2A3 ≤ 5.

Verify that P is a solid (regular) octahedron. (What are the vertices?)

Exercise 12.
a. Suppose we want to consider all the integer points in a polyhedral region

P ⊂ R
n as feasible, not just those with non-negative coordinates. How

could the methods developed in the text be adapted to this more general
situation?

b. Apply your method from part a to find the minimum of 2A1 −A2 + A3
on the integer points in the solid octahedron from Exercise 11.

§2 Integer Programming and Combinatorics

In this section we will study a beautiful application of commutative algebra
and the ideas developed in §1 to combinatorial enumeration problems. For
those interested in exploring this rich subject farther, we recommend the
marvelous book [Sta1] by Stanley. Our main example is discussed there and
far-reaching generalizations are developed using more advanced algebraic
tools. There are also connections between the techniques we will develop
here, invariant theory (see especially [Stu1]), the theory of toric varieties
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([Ful]), and the geometry of polyhedra (see [Stu2]). The prerequisites for
this section are the theory of Gröbner bases for polynomial ideals, famil-
iarity with quotient rings, and basic facts about Hilbert functions (see, e.g.
Chapter 6, §4 of this book or Chapter 9, §3 of [CLO]).

Most of this section will be devoted to the consideration of the following
classical counting problem. Recall that a magic square is an n × n integer
matrix M = (mij) with the property that the sum of the entries in each
row and each column is the same. A famous 4× 4 magic square appears in
the well-known engraving Melancholia by Albrecht Dürer:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

The row and column sums in this array all equal 34. Although the extra
condition that the mij are the distinct integers 1, 2, . . . , n2 (as in Dürer’s
magic square) is often included, we will not make that part of the definition.
Also, many familiar examples of magic squares have diagonal sums equal
to the row and column sum and other interesting properties; we will not
require that either. Our problem is this:

(2.1) Problem. Given positive integers s, n, how many different n × n
magic squares with mij ≥ 0 for all i, j and row and column sum s are
there?

There are related questions from statistics and the design of experiments
of practical as well as purely mathematical interest. In some small cases,
the answer to (2.1) is easily derived.

Exercise 1. Show that the number of 2 × 2 nonnegative integer magic
squares with row and column sum s is precisely s + 1, for each s ≥ 0. How
are the squares with sum s > 1 related to those with s = 1?

Exercise 2. Show that there are exactly six 3 × 3 magic squares with
nonnegative integer entries and s = 1, twenty-one with s = 2, and fifty-
five with s = 3. How many are there in each case if we require that the
two diagonal sums also equal s?

Our main goal in this section will be to develop a general way to attack
this and similar counting problems where the objects to be counted can be
identified with the integer points in a polyhedral region in R

N for some N ,
so that we are in the same setting as in the integer programming problems
from §1. We will take a somewhat ad hoc approach though, and use only as
much general machinery as we need to answer our question (2.1) for small
values of n.
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To see how (2.1) fits into this context, note that the entire set of n × n
nonnegative integer magic squares M is the set of solutions in Z

n×n
≥0 of

a system of linear equations with integer coefficients. For instance, in the
3 × 3 case, the conditions that all row and column sums are equal can be
expressed as 5 independent equations on the entries of the matrix. Writing

�m = (m11, m12, m13, m21, m22, m23, m31, m32, m33)T ,

the matrix M = (mij) is a magic square if and only if

(2.2) A3 �m = 0,

where A3 is the 5 × 9 integer matrix

(2.3) A3 =

⎛⎜⎜⎜⎜⎝
1 1 1 −1 −1 −1 0 0 0
1 1 1 0 0 0 −1 −1 −1
0 1 1 −1 0 0 −1 0 0
1 −1 0 1 −1 0 1 −1 0
1 0 −1 1 0 −1 1 0 −1

⎞⎟⎟⎟⎟⎠
and mij ≥ 0 for all i, j. Similarly, the n × n magic squares can be viewed
as the solutions of a similar system An �m = 0 for an integer matrix An

with n2 columns.

Exercise 3.
a. Show that the 3 × 3 nonnegative integer magic squares are exactly the

solutions of the system of linear equations (2.2) with matrix A3 given
in (2.3).

b. What is the minimal number of linear equations needed to define the
corresponding space of n × n magic squares? Describe an explicit way
to produce a matrix An as above.

As in the discussion following (1.4) of this chapter, the set {�m : A3 �m
= 0} is a polyhedral region in R

3×3. However, there are three important
differences between our situation here and the optimization problems con-
sidered in §1. First, there is no linear function to be optimized. Instead,
we are mainly interested in understanding the structure of the entire set of
integer points in a polyhedral region. Second, unlike the regions considered
in the examples in §1, the region in this case is unbounded , and there are
infinitely many integer points. Finally, we have a homogeneous system of
equations rather than an inhomogeneous system, so the points of interest
are elements of the kernel of the matrix An. In the following, we will write

Kn = ker(An) ∩ Z
n×n
≥0

for the set of all nonnegative integer n × n magic squares. We begin with
a few simple observations.
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(2.4) Proposition. For each n,
a. Kn is closed under vector sums in Z

n×n, and contains the zero vector.
b. The set Cn of solutions of An �m = 0 satisfying �m ∈ R

n×n
≥0 forms a

convex polyhedral cone in R
n×n, with vertex at the origin.

Proof. Part a follows by linearity. For part b, recall that a convex poly-
hedral cone with vertex at the origin is the intersection of finitely many
half-spaces containing the origin. Then Cn is polyhedral since the defining
equations are the linear equations An �m = 0 and the linear inequalities
mij ≥ 0 ∈ R. It is a cone since any positive real multiple of a point in Cn
is also in Cn. Finally, it is convex since if �m and �m′ are two points in Cn,
any linear combination x = r�m + (1 − r)�m′ with r ∈ [0, 1] also satisfies
the equations Anx = 0 and has nonnegative entries, hence lies in Cn.

A set M with a binary operation is said to be a monoid if the operation
is associative and possesses an identity element in M . For example Z

n×n
≥0 is

a monoid under vector addition. In this language, part a of the proposition
says that Kn is a submonoid of Z

n×n
≥0 .

To understand the structure of the submonoid Kn, we will seek to find
a minimal set of additive generators to serve as building blocks for all the
elements of Kn. The appropriate notion is given by the following definition.

(2.5) Definition. Let K be any submonoid of the additive monoid Z
N
≥0.

A finite subset H ⊂ K is said to be a Hilbert basis for K if it satisfies the
following two conditions.
a. For every k ∈ K there exist hi ∈ H and nonnegative integers ci such

that k =
∑q

i=1 cihi, and
b. H is minimal with respect to inclusion.

It is a general fact that Hilbert bases exist and are unique for all sub-
monoids K ⊂ Z

N
≥0. Instead of giving an existence proof, however, we will

present a Gröbner basis algorithm for finding the Hilbert basis for the sub-
monoid K = ker(A) in Z

N
≥0 for any integer matrix with N columns. (This

comes from [Stu1], §1.4.) As in §1, we translate our problem from the
context of integer points to Laurent polynomials. Given an integer matrix
A = (aij) with N columns and m rows say, we introduce an indeterminate
zi for each row, i = 1, . . . , m, and consider the ring of Laurent polynomials:

k[z±1
1 , . . . , z±1

m ] ∼= k[z1, . . . , zm, t]/〈tz1 · · · zm − 1〉.
(See §1 of this chapter and Exercise 15 of Chapter 7, §1.) Define a mapping

(2.6) ψ : k[v1, . . . , vN , w1, . . . , wN ] → k[z±1
1 , . . . , z±1

m ][w1, . . . , wN ]

as follows. First take

(2.7) ψ(vj) = wj ·
m∏

i=1

z
aij

i
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and ψ(wj) = wj for each j = 1, . . . , N , then extend to polynomials in
k[v1, . . . , vN , w1, . . . , wN ] so as to make ψ a ring homomorphism.

The purpose of ψ is to detect elements of the kernel of A.

(2.8) Proposition. A vector αT ∈ ker(A) if and only if ψ(vα −wα) = 0,
that is if and only if vα − wα is in the kernel of the homomorphism ψ.

Exercise 4. Prove Proposition (2.8).

As in Exercise 5 of §1, we can write J = ker(ψ) as

J = I ∩ k[v1, . . . , vN , w1, . . . , wN ],

where

I = 〈wj ·
m∏

i=1

z
aij

i − vj : j = 1, . . . N〉

in the ring k[z±1
1 , . . . , z±1

m ][v1, . . . , vN , w1, . . . , wN ]. The following theorem
of Sturmfels (Algorithm 1.4.5 of [Stu1]) gives a way to find Hilbert bases.

(2.9) Theorem. Let G be a Gröbner basis for I with respect to any elim-
ination order > for which all zi, t > vj, and all vj > wk. Let S be the
subset of G consisting of elements of the form vα − wα for some α ∈ Z

N
≥0.

Then

H = {α : vα − wα ∈ S}
is the Hilbert basis for K.

Proof. The idea of this proof is similar to that of Theorem (1.11) of this
chapter. See [Stu1] for a complete exposition.

Here is a first example to illustrate Theorem (2.9). Consider the
submonoid of Z

4
≥0 given as K = ker(A) ∩ Z

4
≥0, for

A =
(

1 2 −1 0
1 1 −1 −2

)
.

To find a Hilbert basis for K, we consider the ideal I generated by

w1z1z2 − v1, w2z
2
1z2 − v2, w3t − v3, w4z

2
1t2 − v4

and z1z2t− 1. Computing a Gröbner basis G with respect to an elimination
order as in (2.9), we find only one is of the desired form:

v1v3 − w1w3

It follows that the Hilbert basis for K consists of a single element: H =
{(1, 0, 1, 0)}. It is not difficult to verify from the form of the matrix A that
every element in K is an integer multiple of this vector. Note that the
size of the Hilbert basis is not the same as the dimension of the kernel of
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the matrix A as a linear mapping on R
4. In general, there is no connection

between the size of the Hilbert basis for K = ker(A)∩Z
N
≥0 and dim ker(A);

the number of elements in the Hilbert basis can be either larger than, equal
to, or smaller than the dimension of the kernel, depending on A.

We will now use Theorem (2.9) to continue our work on the magic square
enumeration problem. If we apply the method of the theorem to find the
Hilbert basis for ker(A3) ∩ Z

3×3
≥0 (see equation (2.3) above) then we need

to compute a Gröbner basis for the ideal I generated by

v1 − w1z1z2z4z5 v2 − w2z
2
1z2

2z2
3z5t

v3 − w3z
2
1z2

2z2
3z4t v4 − w4z2z

2
4z2

5t

v5 − w5z2z3z5t v6 − w6z2z3z4t

v7 − w7z1z
2
4z2

5t v8 − w8z1z3z5t

v9 − w9z1z3z4t

and z1 · · · z5t − 1 in the ring

k[z1, . . . , z5, t, v1, . . . , v9, w1, . . . , w9].

Using an elimination order as described in Theorem (2.9) with the com-
puter algebra system Macaulay 2, one obtains a very large Gröbner basis.
(Because of the simple binomial form of the generators, however, the com-
putation goes extremely quickly.) However, if we identify the subset S as in
the theorem, there are only six polynomials corresponding to the Hilbert
basis elements:

(2.10)

v3v5v7 − w3w5w7 v3v4v8 − w3w4w8

v2v6v7 − w2w6w7 v2v4v9 − w2w4w9

v1v6v8 − w1w6w8 v1v5v9 − w1w5w9.

Expressing the corresponding 6-element Hilbert basis in matrix form, we
see something quite interesting. The matrices we obtain are precisely the six
3×3 permutation matrices—the matrix representations of the permutations
of the components of vectors in R

3. (This should also agree with your results
in the first part of Exercise 2.) For instance, the Hilbert basis element
(0, 0, 1, 0, 1, 0, 1, 0, 0) from the first polynomial in (2.10) corresponds to
the matrix

T13 =

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠ ,

which interchanges x1, x3, leaving x2 fixed. Similarly, the other elements of
the Gröbner basis give (in the order listed above)
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S =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ , S2 =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠
T12 =

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ , T23 =

⎛⎝ 1 0 0
0 0 1
0 1 0

⎞⎠ , I =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ .

Here S and S2 are the cyclic permutations, Tij interchanges xi and xj , and
I is the identity.

Indeed, it is a well-known combinatorial theorem that the n × n permu-
tation matrices form the Hilbert basis for the monoid Kn for all n ≥ 2. See
Exercise 9 below for a general proof.

This gives us some extremely valuable information to work with. By the
definition of a Hilbert basis we have, for instance, that in the 3 × 3 case
every element M of K3 can be written as a linear combination

M = aI + bS + cS2 + dT12 + eT13 + fT23,

where a, b, c, d, e, f are nonnegative integers. This is what we meant before
by saying that we were looking for “building blocks” for the elements of
our additive monoid of magic squares. The row and column sum of M is
then given by

s = a + b + c + d + e + f.

It might appear at first glance that our problem is solved for 3 × 3
matrices. Namely for a given sum value s, it might seem that we just
need to count the ways to write s as a sum of at most 6 nonnegative
integers a, b, c, d, e, f . However, there is an added wrinkle here that makes
the problem even more interesting: The 6 permutation matrices are not
linearly independent. In fact, there is an obvious relation

(2.11) I + S + S2 =

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ = T12 + T13 + T23.

This means that for all s ≥ 3 there are different combinations of coeffi-
cients that produce the same matrix sum. How can we take this (and other
possible relations) into account and eliminate multiple counting?

First, we claim that in fact every equality

(2.12)
aI + bS + cS2 + dT12 + eT13 + fT23

= a′I + b′S + c′S2 + d′T12 + e′T13 + f ′T23,

where a, . . . , f, a′, . . . , f ′ are nonnegative integers, is a consequence of the
relation in (2.11), in the sense that if (2.12) is true, then the difference
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vector

(a, b, c, d, e, f) − (a′, b′, c′, d′, e′, f ′)

is an integer multiple of the vector of coefficients (1, 1, 1,−1,−1,−1) in the
linear dependence relation

I + S + S2 − T12 − T13 − T23 = 0,

which follows from (2.11).
This can be verified directly as follows.

Exercise 5.
a. Show that the six 3 × 3 permutation matrices span a 5-dimensional

subspace of the vector space of 3 × 3 real matrices over R.
b. Using part a, show that in every relation (2.12) with a, . . . , f ′ ∈ Z≥0,

(a, b, c, d, e, f) − (a′, b′, c′, d′, e′, f ′) is an integer multiple of the vector
(1, 1, 1,−1,−1,−1).

Given this, we can solve our problem in the 3 × 3 case by “retranslat-
ing” it into algebra. Namely we can identify the 6-tuples of coefficients
(a, b, c, d, e, f) ∈ Z

6
≥0 with monomials in 6 new indeterminates denoted

x1, . . . , x6:

α = (a, b, c, d, e, f) ↔ xa
1x

b
2x

c
3x

d
4x

e
5x

f
6 .

By (2.11), though, we see that we want to think of x1x2x3 and x4x5x6 as
being the same. This observation indicates that, in counting, we want to
consider the element of the quotient ring

R = k[x1, . . . , x6]/〈x1x2x3 − x4x5x6〉
represented by the monomial xα. Let MS3(s) be the number of distinct
3× 3 integer magic squares with nonnegative entries, and row and column
sum equal to s. Our next goal is to show that MS3(s) can be reinterpreted
as the Hilbert function of the above ring R.

We recall from §4 of Chapter 6 that a homogeneous ideal I ⊂
k[x1, . . . , xn] gives a quotient ring R = k[x1, . . . , xn]/I, and the Hilbert
function HR(s) is defined by

(2.13) HR(s) = dimk k[x1, . . . , xn]s/Is = dimk k[x1, . . . , xn]s − dimk Is,

where k[x1, . . . , xn]s is the vector space of homogeneous polynomials of
total degree s, and Is is the vector space of homogeneous polynomials of
total degree s in I. In the notation of Chapter 9, §3 of [CLO], the Hilbert
function of R = k[x1, . . . , xn]/I is written HFI(s). Since our focus here is
on the ideal I, in what follows, we will call both HR(s) and HFI(s) the
Hilbert function of I. It is a basic result that the Hilbert functions of I
and 〈LT(I)〉 (for any monomial order) are equal. Hence we can compute
the Hilbert function by counting the number of standard monomials with
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respect to I for each total degree s—that is, monomials of total degree s in
the complement of 〈LT(I)〉. For this and other information about Hilbert
functions, the reader should consult [CLO], Chapter 9, §3 or Chapter 6, §4
of this book.

(2.14) Proposition. The function MS3(s) equals the Hilbert function
HR(s) = HFI(s) of the homogeneous ideal I = 〈x1x2x3 − x4x5x6〉.

Proof. The single element set {x1x2x3 − x4x5x6} is a Gröbner basis for
the ideal it generates with respect to any monomial order. Fix any order
such that the leading term of the generator is x1x2x3. Then the standard
monomials of total degree s in k[x1, . . . , x6] are the monomials of total
degree s that are not divisible by x1x2x3.

Given any monomial xα = xa
1xb

2x
c
3x

d
4x

e
5x

f
6 , let A = min(a, b, c), and

construct

α′ = (a − A, b − A, c − A, d + A, e + A, f + A).

Since xα′
is not divisible by x1x2x3, it is a standard monomial, and you

will show in Exercise 6 below that it is the remainder on division of xα by
x1x2x3 − x4x5x6.

We need to show that the 3× 3 magic squares with row and column sum
s are in one-to-one correspondence with the standard monomials of degree
s. Let M be a magic square, and consider any expression

(2.15) M = aI + bS + cS2 + dT12 + eT13 + fT23

with α = (a, . . . , f) ∈ Z
6
≥0. We associate to M the standard form in R

of the monomial xα, namely xα′
as above. In Exercise 7 you will show

that this gives a well-defined mapping from the set of magic squares to
the collection of standard monomials with respect to I, since by Exercise
5 any two expressions (2.15) for M yield the same standard monomial xα′

.
Moreover the row and column sum of M is the same as the total degree of
the image monomial.

This mapping is clearly onto, since the exponent vector α′ of any standard
monomial can be used to give the coefficients in an expression (2.15). It is
also one-to-one, since if M in (2.15) and

M1 = a1I + b1S + c1S
2 + d1T12 + e1T13 + f1T23

map to the same standard monomial α′, then writing A = min(a, b, c),
A1 = min(a1, b1, c1), we have

(a − A, b − A, c − A, d + A, e + A, f + A)

= (a1 − A1, b1 − A1, c1 − A1, d1 + A1, e1 + A1, f1 + A1).
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It follows that (a, . . . , f) and (a1, . . . , f1) differ by the vector

(A − A1)(1, 1, 1,−1,−1,−1).

Hence by (2.11), the magic squares M and M1 are equal.

For readers of Chapter 7, we would like to mention that there is also
a much more conceptual way to understand the relationship between the
monoid K3 from our original problem and the ring R and the corresponding
variety V(x1x2x3 − x4x5x6), using the theory of toric varieties. In partic-
ular, if A = {�m1, . . . , �m6} ⊂ Z

9 is the set of integer vectors corresponding
to the 3× 3 permutation matrices as above (the Hilbert basis for K3), and
we define φA : (C∗)9 → P

5 by

φA(t) = (tm1 , . . . , tm6)

as in §3 of Chapter 7, then it follows that the toric variety XA (the Zariski
closure of the image of φA) is the projective variety V(x1x2x3 − x4x5x6).
The ideal IA = 〈x1x2x3 − x4x5x6〉 is called the toric ideal corresponding
to A. The defining homogeneous ideal of a toric variety is always generated
by differences of monomials, as in this example. See the book [Stu2] for
more details.

To conclude, Proposition (2.14) solves the 3 × 3 magic square counting
problem as follows. By the proposition and (2.13), to find MS3(s), we
simply subtract the number of nonstandard monomials of total degree s
in 6 variables from the total number of monomials of total degree s in
6 variables. The nonstandard monomials are those divisible by x1x2x3;
removing that factor, we obtain an arbitrary monomial of total degree
s − 3. Hence one expression is the following:

(2.16)
MS3(s) =

(
s + 5

5

)
−
(

(s − 3) + 5
5

)
=
(

s + 5
5

)
−
(

s + 2
5

)
.

(Also see Exercise 8 below.) For example, MS3(1) = 6 (binomial coeffi-
cients

(
m
�

)
with m < � are zero), MS3(2) = 21, and MS3(3) = 56−1 = 55.

This is the first time the relation (2.11) comes into play.
For readers who have studied Chapter 6 of this book, we should also

mention how free resolutions can be used to obtain (2.16). The key point
is that the ideal I = 〈x1x2x3 − x4x5x6〉 is generated by a polynomial of
degree 3, so that I ∼= k[x1, . . . , x6](−3) as k[x1, . . . , x6]-modules. Hence
R = k[x1, . . . , x6]/I gives the exact sequence

0 → k[x1, . . . , x6](−3) → k[x1, . . . , x6] → R → 0.

Since HR(s) = HFI(s) = MS3(s) by Proposition (2.14), the formula (2.16)
follows immediately by the methods of Chapter 6, §4.
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These techniques and more sophisticated ideas from commutative alge-
bra, including the theory of toric varieties, have also been applied to the
n×n magic square problem and other related questions from statistics and
the design of experiments. We will consider one aspect of the connection
with statistics in Exercises 12 and 13 below. We refer the reader to [Sta1]
and [Stu2] for a more complete discussion of this interesting connection
between algebra and various other areas of the mathematical sciences.

ADDITIONAL EXERCISES FOR §2

Exercise 6. Let R, α and α′ be as in the proof of Proposition (2.14). Show
that

xα = q(x1, . . . , x6)(x1x2x3 − x4x5x6) + xα′
,

where

q =
(
(x1x2x3)A−1 + (x1x2x3)A−2(x4x5x6) + · · · + (x4x5x6)A−1

)
·

· xa−A
1 xb−A

2 xc−A
3 xd

4x
e
5x

f
6 .

Deduce that xα′
is the standard form of xα in R.

Exercise 7. Use Exercise 5 to show that if we have any two expressions
as in (2.15) for a given M with coefficient vectors α = (a, . . . , f) and
α1 = (a1, . . . , f1), then the corresponding monomials xα and xα1 have the
same standard form xα′

in R = k[x1, . . . , x6]/〈x1x2x3 − x4x5x6〉.

Exercise 8. There is another formula, due to MacMahon, for the number
of nonnegative integer magic squares of size 3 with a given sum s:

MS3(s) =
(

s + 4
4

)
+
(

s + 3
4

)
+
(

s + 2
4

)
.

Show that this formula and (2.16) are equivalent. Hint: This can be proved
in several different ways by applying different binomial coefficient identities.

Exercise 9. Verifying that the Hilbert basis for K4 = ker(A4) ∩ Z
4×4
≥0

consists of exactly 24 elements corresponding to the 4× 4 permutation ma-
trices is already a large calculation if you apply the Gröbner basis method
of Theorem (2.9). For larger n, this approach quickly becomes infeasible
because of the large number of variables needed to make the polynomial
translation. Fortunately, there is also a non-computational proof that every
n×n matrix M with nonnegative integer entries and row and column sums
all equal to s is a linear combination of n × n permutation matrices with
nonnegative integer coefficients. The proof is by induction on the number
of nonzero entries in the matrix.
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a. The base case of the induction is the case where exactly n of the entries
are nonzero (why?). Show in this case that M is equal to sP for some
permutation matrix P .

b. Now assume that the theorem has been proved for all M with k or fewer
nonzero entries and consider an M with equal row and column sums and
k + 1 nonzero entries. Using the transversal form of Hall’s “marriage”
theorem (see, for instance, [Bry]), show that there is some collection of
n nonzero entries in M , one from each row and one from each column.

c. Continuing from b, let d > 0 be the smallest element in the collection
of nonzero entries found in that part, let P be the permutation matrix
corresponding to the locations of those nonzero entries, and apply the
induction hypothesis to M − dP . Deduce the desired result on M .

d. A doubly stochastic matrix is an n × n matrix with nonnegative real
entries, all of whose row and column sums equal 1. Adapt the proof
sketched in parts a-c to show that the collection of doubly stochastic
matrices is the convex hull of the set of n × n permutation matrices.
(See Chapter 7, §1 for more details about convex hulls.)

Exercise 10.
a. How many 3×3 nonnegative integer magic squares with sum s are there

if we add the condition that the two diagonal sums should also equal s?
b. What about the corresponding question for 4 × 4 matrices?

Exercise 11. Study the collections of symmetric 3× 3 and 4× 4 nonneg-
ative integer magic squares. What are the Hilbert bases for the monoids of
solutions of the corresponding equations? What relations are there? Find
the number of squares with a given row and column sum s in each case.

Exercise 12. In this exercise, we will start to develop some ideas concern-
ing contingency tables in statistics and see how they relate to the topics
discussed in this section. A “two-way” contingency table is an m × n ma-
trix C with rows labeled according to the m different possible values of
some one characteristic of individuals in a population (e.g., political party
affiliation, number of TV sets owned, etc. in a human population) and
the columns are similarly labeled according to the n possible values of an-
other different characteristic (e.g., response to an item on a questionnaire,
age, etc.). The entries are nonnegative integers recording the numbers of
individuals in a sample with each combination of values of the two char-
acteristics. The marginal distribution of such a table is the collection of
row and column sums, giving the total numbers of individuals having each
characteristic. For example, if m = n = 3 and

C =

(
34 21 17
23 21 32
12 13 50

)
we have row sums 72, 76, 75, and column sums 69, 55, 99.
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a. By following what we did for magic squares in the text, show that the
collection of all m × n contingency tables with a given, fixed marginal
distribution is the set of nonnegative integer solutions of a system of
m + n linear equations in mn variables. Give an explicit form for the
matrix of your system.

b. Are your equations from part a independent? Why or why not?
c. Is the set of solutions of your system from part a a monoid in Z

mn
≥0 in

this case? Why or why not?

Exercise 13. This application comes originally from the article [DS] by
Diaconis and Sturmfels. A typical question that statisticians seek to answer
is: can we say two characteristics are correlated on the basis of data from
a sample of the population? One way that has been proposed to study
this sort of problem is to compare values of some statistical measure of
correlation from a given sample contingency table and from the other tables
with the same marginal distribution. In realistic situations it will usually
be too difficult to list all the tables having the given marginal distribution
(the number can be huge). So a sort of Monte Carlo approach will usually
have to suffice. Some number of randomly generated tables having the same
marginal distribution can be used instead of the whole set. The problem is
then to find some efficient way to generate other elements of the collections
of tables studied in Exercise 12, given any one element of that collection.
Gröbner bases can be used here as follows.
a. Show that C and C ′ have the same marginal distribution if and only if

the difference T = C ′ − C is an element of the kernel of the matrix of
the system of linear equations you found in Exercise 12, part a.

b. To find appropriate matrices T to generate random walks on the set of
tables with a fixed marginal distribution, an idea similar to what we did
in Theorem (1.11), Proposition (2.8), and Theorem (2.9) of this chapter
can be used. Consider a set of “table entry variables” xij , 1 ≤ i ≤ m,
1 ≤ j ≤ n (one for each entry in our tables), “row variables” yi, 1 ≤
i ≤ m, and “column variables” zj , 1 ≤ j ≤ n. Let I be the elimination
ideal

I = 〈xij−yizj : 1 ≤ i ≤ m, 1 ≤ j ≤ n〉∩k[xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n].

Show that any difference of monomials xα − xβ contained in I gives a
matrix T as in part a. Hint: Use the exponents from α as entries with
positive signs, and the exponents from β as entries with negative signs.

c. Compute a Gröbner basis for I in the case m = n = 3 using a suitable
lexicographic order. Interpret the matrices T you get this way.
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§3 Multivariate Polynomial Splines

In this section we will discuss a recent application of the theory of Gröbner
bases to the problem of constructing and analyzing the piecewise polynomial
or spline functions with a specified degree of smoothness on polyhedral sub-
divisions of regions in R

n. Two-variable functions of this sort are frequently
used in computer-aided design to specify the shapes of curved surfaces, and
the degree of smoothness attainable in some specified class of piecewise
polynomial functions is an important design consideration. For an intro-
ductory treatment, see [Far]. Uni- and multivariate splines are also used
to interpolate values or approximate other functions in numerical analysis,
most notably in the finite element method for deriving approximate solu-
tions to partial differential equations. The application of Gröbner bases to
this subject appeared first in papers of L. Billera and L. Rose ([BR1], [BR2],
[BR3], [Ros]). For more recent results, we refer the reader to [SS]. We will
need to use the results on Gröbner bases for modules over polynomial rings
from Chapter 5.

To introduce some of the key ideas, we will begin by considering the
simplest case of one-variable spline functions. On the real line, consider the
subdivision of an interval [a, b] into two subintervals [a, c] ∪ [c, b] given by
any c satisfying a < c < b. In rough terms, a piecewise polynomial function
on this subdivided interval is any function of the form

(3.1) f(x) =
{

f1(x) if x ∈ [a, c]
f2(x) if x ∈ [c, b],

where f1 and f2 are polynomials in R[x]. Note that we can always make
“trivial” spline functions using the same polynomial f1 = f2 on both subin-
tervals, but those are less interesting because we do not have independent
control over the shape of the graph of each piece. Hence we will usually be
more interested in finding splines with f1 �= f2. Of course, as stated, (3.1)
gives us a well-defined function on [a, b] if and only if f1(c) = f2(c), and
if this is true, then f is continuous as a function on [a, b]. For instance,
taking a = 0, c = 1, b = 2, and

f(x) =
{

x + 1 if x ∈ [0, 1]
x2 − x + 2 if x ∈ [1, 2],

we get a continuous polynomial spline function. See Fig. 8.3.
Since the polynomial functions f1, f2 are C∞ functions (that is, they

have derivatives of all orders) and their derivatives are also polynomials,
we can consider the piecewise polynomial derivative functions{

f
(r)
1 (x) if x ∈ [a, c]

f
(r)
2 (x) if x ∈ [c, b]
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1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Figure 8.3. A continuous spline function

for any r ≥ 0. As above, we see that f is a Cr function on [a, b] (that is,
f is r-times differentiable and its rth derivative, f (r), is continuous) if and
only if f

(s)
1 (c) = f

(s)
2 (c) for each s, 0 ≤ s ≤ r. The following result gives a

more algebraic version of this criterion.

(3.2) Proposition. The piecewise polynomial function f in (3.1) defines
a Cr function on [a, b] if and only if the polynomial f1 − f2 is divisible by
(x − c)r+1 (that is, f1 − f2 ∈ 〈(x − c)r+1〉 in R[x]).

For example, the spline function pictured in Fig. 8.3 is actually a C1

function since (x2 − x + 2)− (x + 1) = (x− 1)2. We leave the proof of this
proposition to the reader.

Exercise 1. Prove Proposition (3.2).

In practice, it is most common to consider classes of spline functions
where the fi are restricted to be polynomial functions of degree bounded
by some fixed integer k. With k = 2 we get quadratic splines, with k = 3
we get cubic splines, and so forth.

We will work with two-component splines on a subdivided interval
[a, b] = [a, c]∪ [c, b] here. More general subdivisions are considered in Exer-
cise 2 below. We can represent a spline function as in (3.1) by the ordered
pair (f1, f2) ∈ R[x]2. From Proposition (3.2) it follows that the Cr splines
form a vector subspace of R[x]2 under the usual componentwise addition
and scalar multiplication. (Also see Proposition (3.10) below, which gives
a stronger statement and which includes this one-variable situation as a
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special case.) Restricting the degree of each component as above, we get
elements of the finite-dimensional vector subspace Vk of R[x]2 spanned by

(1, 0), (x, 0), . . . , (xk, 0), (0, 1), (0, x), . . . , (0, xk).

The Cr splines in Vk form a vector subspace V r
k ⊂ Vk. We will focus on

the following two questions concerning the V r
k .

(3.3) Questions.
a. What is the dimension of V r

k ?
b. Given k, what is the biggest r for which there exist Cr spline functions

f in V r
k for which f1 �= f2?

We can answer both of these questions easily in this simple setting. First
note that any piecewise polynomial in Vk can be uniquely decomposed as
the sum of a spline of the form (f, f), and a spline of the form (0, g):

(f1, f2) = (f1, f1) + (0, f2 − f1).

Moreover, both terms on the right are again in Vk. Any spline function of
the form (f, f) is automatically Cr for every r ≥ 0. On the other hand,
by Proposition (3.2), a spline of the form (0, g) defines a Cr function if
and only if (x − c)r+1 divides g, and this is possible only if r + 1 ≤ k. If
r + 1 ≤ k, any linear combination of (0, (x− c)r+1), . . . , (0, (x− c)k) gives
an element of V r

k , and these k− r piecewise polynomial functions, together
with the (1, 1), (x, x), . . . , (xk, xk) give a basis for V r

k . These observations
yield the following answers to (3.3).

(3.4) Proposition. For one-variable spline functions on a subdivided
interval [a, b] = [a, c] ∪ [c, b], The dimension of the space V r

k is

dim(V r
k ) =

{
k + 1 if r + 1 > k
2k − r + 1 if r + 1 ≤ k.

The space V r
k contains spline functions not of the form (f, f) if and only

if r + 1 ≤ k.

For instance, there are C1 quadratic splines for which f1 �= f2, but no
C2 quadratic splines except the ones of the form (f, f). Similarly there are
C2 cubic splines for which f1 �= f2, but no C3 cubic splines of this form.
The vector space V 2

3 of C2 cubic spline functions is 5-dimensional by (3.4).
This means, for example, that there is a 2-dimensional space of C2 cubic
splines with any given values f(a) = A, f(c) = C, f(b) = B at x = a, b, c.
Because this freedom gives additional control over the shape of the graph
of the spline function, one-variable cubic splines are used extensively as
interpolating functions in numerical analysis.

The reader should have no difficulty extending all of the above to spline
functions on any subdivided interval [a, b], where the subdivision is specified
by an arbitrary partition.
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Exercise 2. Consider a partition

a = x0 < x1 < x2 < · · · < xm−1 < xm = b

of the interval [a, b] into m smaller intervals.
a. Let (f1, . . . , fm) ∈ R[x]m be an m-tuple of polynomials. Define f on

[a, b] by setting f |[xi−1,xi] = fi, Show that f is a Cr function on [a, b] if
and only if for each i, 1 ≤ i ≤ m − 1, fi+1 − fi ∈ 〈(x − xi)r+1〉.

b. What is the dimension of the space of Cr splines with deg fi ≤ k for all
i? Find a basis. Hint: There exists a nice “triangular” basis generalizing
what we did in the text for the case of two subintervals.

c. Show that there is a 2-dimensional space of C2 cubic spline functions
interpolating any specified values at the xi, i = 0, . . . , n.

We now turn to multivariate splines. Corresponding to subdivisions of
intervals in R, we will consider certain subdivisions of polyhedral regions
in R

n. As in Chapter 7, a polytope is the convex hull of a finite set in R
n,

and by (1.4) of that chapter, a polytope can be written as the intersection
of a collection of affine half-spaces. In constructing partitions of intervals
in R, we allowed the subintervals to intersect only at common endpoints.
Similarly, in R

n we will consider subdivisions of polyhedral regions into
polytopes that intersect only along common faces.

The major new feature in R
n, n ≥ 2 is the much greater geometric free-

dom possible in constructing such subdivisions. We will use the following
language to describe them.

(3.5) Definition.
a. A polyhedral complex ∆ ⊂ R

n is a finite collection of polytopes such that
the faces of each element of ∆ are elements of ∆, and the intersection
of any two elements of ∆ is an element of ∆. We will sometimes refer
to the k-dimensional elements of a complex ∆ as k-cells.

b. A polyhedral complex ∆ ⊂ R
n is said to be pure n-dimensional if every

maximal element of ∆ (with respect to inclusion) is an n-dimensional
polyhedron.

c. Two n-dimensional polytopes in a complex ∆ are said to be adjacent if
they intersect along a common face of dimension n − 1.

d. ∆ is said to be a hereditary complex if for every τ ∈ ∆ (including the
empty set), any two n-dimensional polytopes σ, σ′ of ∆ that contain τ
can be connected by a sequence σ = σ1, σ2, . . . , σm = σ′ in ∆ such
that each σi is n-dimensional, each σi contains τ , and σi and σi+1 are
adjacent for each i.

The cells of a complex give a particularly well-structured subdivision of
the polyhedral region R = ∪σ∈∆σ ⊂ R

n.
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σ
1

σ
2

σ
3

(-1,1)

(0,0) (2,0)

(2,2)(0,2)

(1,-1)

Figure 8.4. A polyhedral complex in R
2

Here are some examples to illustrate the meaning of these conditions.
For example, Fig. 8.4 is a picture of a polyhedral complex in R

2 consisting
of 18 polytopes in all—the three 2-dimensional polygons σ1, σ2, σ3, eight
1-cells (the edges), six 0-cells (the vertices at the endpoints of edges), and
the empty set, ∅.

The condition on intersections in the definition of a complex rules out
collections of polyhedra such as the ones in Fig. 8.5. In the collection on

Figure 8.5. Collections of polygons that are not complexes
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σ τ

Figure 8.6. A non-pure complex

the left (which consists of two triangles, their six edges, their six vertices
and the empty set), the intersection of the two 2-cells is not a cell of the
complex. Similarly, in the collection on the right (which consists of two
triangles and a rectangle, together with their edges and vertices, and the
empty set) the 2-cells meet along subsets of their edges, but not along entire
edges.

A complex such as the one in Fig. 8.6 is not pure, since τ is maximal
and only 1-dimensional.

A complex is not hereditary if it is not connected, or if it has maximal
elements meeting only along faces of codimension 2 or greater, with no
other connection via n-cells, as is the case for the complex in Fig. 8.7.
(Here, the cells are the two triangles, their edges and vertices, and finally
the empty set.)

Let ∆ be any pure n-dimensional polyhedral complex in R
n, let

σ1, . . . , σm be a given, fixed, ordering of the n-cells in ∆, and let
R = ∪m

i=1σi. Generalizing our discussion of univariate splines above, we
introduce the following collections of piecewise polynomial functions on R.

σ1 σ2

Figure 8.7. A non-hereditary complex
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(3.6) Definition.
a. For each r ≥ 0 we will denote by Cr(∆) the collection of Cr functions

f on R (that is, functions such that all rth order partial derivatives
exist and are continuous on R) such that for every δ ∈ ∆ including
those of dimension < n, the restriction f |δ is a polynomial function
fδ ∈ R[x1, . . . , xn].

b. Cr
k(∆) is the subset of f ∈ Cr(∆) such that the restriction of f to each

cell in ∆ is a polynomial function of degree k or less.

Our goal is to study the analogues of Questions (3.3) for the Cr
k(∆).

Namely, we wish to compute the dimensions of these spaces over R, and to
determine when they contain nontrivial splines.

We will restrict our attention in the remainder of this section to com-
plexes ∆ that are both pure and hereditary. If σi, σj are adjacent n-cells of
∆, then they intersect along an interior (n − 1)-cell σij ∈ ∆, a polyhedral
subset of an affine hyperplane V(�ij), where �ij ∈ R[x1, . . . , xn] is a poly-
nomial of total degree 1. Generalizing Proposition (3.2) above, we have the
following algebraic characterization of the elements of Cr(∆) in the case of
a pure, hereditary complex.

(3.7) Proposition. Let ∆ be a pure, hereditary complex with m n-cells σi.
Let f ∈ Cr(∆), and for each i, 1 ≤ i ≤ m, let fi = f |σi ∈ R[x1, . . . , xn].
Then for each adjacent pair σi, σj in ∆, fi − fj ∈ 〈�r+1

ij 〉. Conversely, any
m-tuple of polynomials (f1, . . . , fm) satisfying fi − fj ∈ 〈�r+1

ij 〉 for each
adjacent pair σi, σj of n-cells in ∆ defines an element f ∈ Cr(∆) when we
set f |σi = fi.

The meaning of Proposition (3.7) is that for pure n-dimensional com-
plexes ∆ ⊂ R

n, piecewise polynomial functions are determined by their
restrictions to the n-cells σ1, . . . , σm in ∆. In addition, for hereditary
complexes, the Cr property for piecewise polynomial functions f may be
checked by comparing only the restrictions fi = f |σi and fj = f |σj for
adjacent pairs of n-cells.

Proof. If f is an element of Cr(∆), then for each adjacent pair σi, σj

of n-cells in ∆, fi − fj and all its partial derivatives of order up to and
including r must vanish on σi ∩ σj . In Exercise 3 below you will show that
this implies fi − fj is an element of 〈�r+1

ij 〉.
Conversely, suppose we have f1, . . . , fm ∈ R[x1, . . . , xn] such that fi−fj

is an element of 〈�r+1
ij 〉 for each adjacent pair of n-cells in ∆. In Exercise 3

below, you will show that this implies that fi and its partial derivatives of
order up to and including r agree with fj and its corresponding derivatives
at each point of σi ∩ σj . But the f1, . . . , fm define a Cr function on R if
and only if for every δ ∈ ∆ and every pair of n-cells σp, σq containing δ
(not only adjacent ones) fp and its partial derivatives of order up to and
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including r agree with fq and its corresponding derivatives at each point
of δ. So let p, q be any pair of indices for which δ ⊂ σp ∩ σq. Since ∆ is
hereditary, there is a sequence of n-cells

σp = σi1 , σi2 , . . . , σik
= σq,

each containing δ, such that σij and σij+1 are adjacent. By assumption,
this implies that for each j, fij − fij+1 and all its partial derivatives of
orders up to and including r vanish on σij ∩ σij+1 ⊃ δ. But

fp − fq = (fi1 − fi2) + (fi2 − fi3) + · · · + (fik−1 − fik
)

and each term on the right and its partials up to and including order r
vanish on δ. Hence f1, . . . , fm define an element of Cr(∆).

Exercise 3. Let σ, σ′ be two adjacent n-cells in a polyhedral complex ∆,
and let σ ∩ σ′ ⊂ V(�) for a linear polynomial � ∈ R[x1, . . . , xn].
a. Show that if f, f ′ ∈ R[x1, . . . , xn] satisfy f − f ′ ∈ 〈�r+1〉, then the

partial derivatives of all orders ≤ r of f and f ′ agree at every point in
σ ∩ σ′.

b. Conversely if the partial derivatives of all orders ≤ r of f and f ′ agree
at every point in σ ∩ σ′, show that f − f ′ ∈ 〈�r+1〉.

Fixing any one ordering on the n-cells σi in ∆, we will represent elements
f of Cr(∆) by ordered m-tuples (f1, . . . , fm) ∈ R[x1, . . . , xn]m, where
fi = f |σi .

Consider the polyhedral complex ∆ in R
2 from Fig. 8.4, with the num-

bering of the 2-cells given there. It is easy to check that ∆ is hereditary.
The interior edges are given by σ1∩σ2 ⊂ V(x) and σ2∩σ3 ⊂ V(y). By the
preceding proposition, an element (f1, f2, f3) ∈ R[x, y]3 gives an element
of Cr(∆) if and only if

f1 − f2 ∈ 〈xr+1〉, and

f2 − f3 ∈ 〈yr+1〉.
To prepare for our next result, note that these inclusions can be rewritten
in the form

f1 − f2 + xr+1f4 = 0

f2 − f3 + yr+1f5 = 0

for some f4, f5 ∈ R[x, y]. These equations can be rewritten again in vector-
matrix form as

(
1 −1 0 xr+1 0
0 1 −1 0 yr+1

)⎛⎜⎜⎜⎜⎝
f1
f2
f3
f4
f5

⎞⎟⎟⎟⎟⎠ =
(

0
0

)
.
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Thus, elements of Cr(∆) are projections onto the first three components
of elements of the kernel of the map R[x, y]5 → R[x, y]2 defined by

(3.8) M(∆, r) =
(

1 −1 0 xr+1 0
0 1 −1 0 yr+1

)
.

By Proposition (1.10) and Exercise 9 of §3 of Chapter 5, it follows that
Cr(∆) has the structure of a module over the ring R[x, y]. This observation
allows us to apply the theory of Gröbner bases to study splines.

Our next result gives a corresponding statement for Cr(∆) in general. We
begin with some necessary notation. Let ∆ be a pure, hereditary polyhedral
complex in R

n. Let m be the number of n-cells in ∆, and let e be the
number of interior (n − 1)-cells (the intersections σi ∩ σj for adjacent n-
cells). Fix some ordering τ1, . . . , τe for the interior (n−1)-cells and let �s be
a linear polynomial defining the affine hyperplane containing τs. Consider
the e × (m + e) matrix M(∆, r) with the following block decomposition:

(3.9) M(∆, r) = (∂(∆) | D).

(Note: the orderings of the rows and columns are determined by the or-
derings of the indices of the n-cells and the interior (n − 1)-cells, but any
ordering can be used.) In (3.9), ∂(∆) is the e × m matrix defined by this
rule: In the sth row, if τs = σi ∩ σj with i < j, then

∂(∆)sk =

⎧⎨⎩+1 if k = i
−1 if k = j
0 otherwise.

In addition, D is the e × e diagonal matrix

D =

⎛⎜⎜⎜⎝
�r+1
1 0 · · · 0
0 �r+1

2 · · · 0
...

...
. . .

...
0 0 · · · �r+1

e

⎞⎟⎟⎟⎠ .

Then as in the example above we have the following statement.

(3.10) Proposition. Let ∆ be a pure, hereditary polyhedral complex in
R

n, and let M(∆, r) be the matrix defined in (3.9) above.
a. An m-tuple (f1, . . . , fm) is in Cr(∆) if and only if there exist

(fm+1, . . . , fm+e) such that f = (f1, . . . , fm, fm+1, . . . , fm+e)T is an
element of the kernel of the map R[x1, . . . , xn]m+e → R[x1, . . . , xn]e

defined by the matrix M(∆, r).
b. Cr(∆) has the structure of a module over the ring R[x1, . . . , xn]. In the

language of Chapter 5, it is the image of the projection homomorphism
from R[x1, . . . , xn]m+e onto R[x1, . . . , xn]m (in the first m components)
of the module of syzygies on the columns of M(∆, r).

c. Cr
k(∆) is a finite-dimensional vector subspace of Cr(∆).
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Proof. Part a is essentially just a restatement of Proposition (3.7). For
each interior (n − 1)-cell τs = σi ∩ σj , (i < j) we have an equation

fi − fj = −�r+1
s fm+s

for some fm+s ∈ R[x1, . . . , xn]. This is the equation obtained by setting
the sth component of the product M(∆, r)f equal to zero.

Part b follows immediately from part a as in Chapter 5, Proposition
(1.10) and Exercise 9 of Chapter 5, §3.

Part c follows by a direct proof, or more succinctly from part b, since
Cr

k(∆) is closed under sums and products by constant polynomials.

The Gröbner basis algorithm based on Schreyer’s Theorem (Chapter 5,
Theorem (3.3)) may be applied to compute a Gröbner basis for the kernel
of M(∆, r) for each r, and from that information the dimensions of, and
bases for, the Cr

k(∆) may be determined.
As a first example, let us compute the Cr(∆) for the complex ∆ ⊂ R

2

from (3.8). We consider the matrix as in (3.8) with r = 1 first. Using any
monomial order in R[x, y]5 with e5 > · · · > e1, we compute a Gröbner
basis for ker(M(∆, 1) (that is, the module of syzygies of the columns of
M(∆, 1)) and we find three basis elements, the transposes of

g1 = (1, 1, 1, 0, 0)

g2 = (−x2, 0, 0, 1, 0)

g3 = (−y2,−y2, 0, 0, 1).

(In this simple case, it is easy to write down these syzygies by inspection.
They must generate the module of syzygies because of the form of the
matrix M(∆, r)—the last three components of the vector f are arbitary,
and these determine the first two.) The elements of C1(∆) are given by
projection on the first three components, so we see that the general element
of C1(∆) will have the form

(3.11)
f(1, 1, 1) + g(−x2, 0, 0) + h(−y2,−y2, 0)

= (f − gx2 − hy2, f − hy2, f),

where f, g, h ∈ R[x, y]2 are arbitrary polynomials. Note that the triples
with g = h = 0 are the “trivial” splines where we take the same polynomial
on each σi, while the other generators contribute terms supported on only
one or two of the 2-cells. The algebraic structure of C1(∆) as a module
over R[x, y] is very simple—C1(∆) is a free module and the given generators
form a module basis. (Billera and Rose show in Lemma 3.3 and Theorem 3.5
of [BR3] that the same is true for Cr(∆) for any hereditary complex ∆ ⊂
R

2 and all r ≥ 1.) Using the decomposition it is also easy to count the
dimension of C1

k(∆) for each k. For k = 0, 1, we have only the “trivial”



§3. Multivariate Polynomial Splines 415

splines, so dim C1
0 (∆) = 1, and dim C1

1 (∆) = 3 (a vector space basis
is {(1, 1, 1), (x, x, x), (y, y, y)}). For k ≥ 2, there are nontrivial splines as
well, and we see by counting monomials of the appropriate degrees in f, g, h
that

dim C1
k(∆) =

(
k + 2

2

)
+ 2

(
(k − 2) + 2

2

)
=
(

k + 2
2

)
+ 2

(
k

2

)
.

Also see Exercise 9 below for a more succinct way to package the
information from the function dim C1

k(∆).
For larger r, the situation is entirely analogous in this example. A

Gröbner basis for the kernel of M(∆, r) is given by

g1 = (1, 1, 1, 0, 0)T

g2 = (−xr+1, 0, 0, 1, 0)T

g3 = (−yr+1,−yr+1, 0, 0, 1)T ,

and we have that Cr(∆) is a free module over R[x, y] for all r ≥ 0. Thus

dim Cr
k(∆) =

⎧⎪⎨⎪⎩
(
k+2
2

)
if k < r + 1(

k+2
2

)
+ 2

(
k−r+1

2

)
if k ≥ r + 1.

Our next examples, presented as exercises for the reader, indicate some of
the subtleties that can occur for more complicated complexes. (Additional
examples can be found in the exercises at the end of the section.)

Exercise 4. In R
2, consider the convex quadrilateral

R = Conv({(2, 0), (0, 1), (−1, 1), (−1,−2)})

(notation as in §1 of Chapter 7), and subdivide R into triangles by con-
necting each vertex to the origin by line segments. We obtain in this way
a pure, hereditary polyhedral complex ∆ containing four 2-cells, eight 1-
cells (four interior ones), five 0-cells, and ∅. Number the 2-cells σ1, . . . , σ4
proceeding counter-clockwise around the origin starting from the triangle
σ1 = Conv({(2, 0), (0, 0), (0, 1)}). The interior 1-cells of ∆ are then

σ1 ∩ σ2 ⊂ V(x)

σ2 ∩ σ3 ⊂ V(x + y)

σ3 ∩ σ4 ⊂ V(2x − y)

σ1 ∩ σ4 ⊂ V(y).
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a. Using this ordering on the interior 1-cells, show that we obtain⎛⎜⎜⎝
1 −1 0 0 xr+1 0 0 0
0 1 −1 0 0 (x + y)r+1 0 0
0 0 1 −1 0 0 (2x − y)r+1 0
1 0 0 −1 0 0 0 yr+1

⎞⎟⎟⎠
for the matrix M(∆, r).

b. With r = 1, for instance, show that a Gröbner basis for the R[x, y]-
module of syzygies on the columns of M(∆, 1) is given by the transposes
of the following vectors

g1 = (1, 1, 1, 1, 0, 0, 0, 0)

g2 = (1/4)(3y2, 6x2 + 3y2, 4x2 − 4xy + y2, 0, 6,−2,−1,−3)

g3 = (2xy2 + y3, 0, 0, y,−y, 0,−2x − y)

g4 = (−3xy2 − 2y3, x3 − 3xy2 − 2y3, 0, 0, x,−x + 2y, 0, 3x + 2y)

g5 = (x2y2, 0, 0, 0,−y2, 0, 0,−x2).

c. As before, the elements of C1(∆) are obtained by projection onto the
first four components. From this, show that there are only “trivial”
splines in C1

0 (∆) and C1
1 (∆), but g2 and its multiples give nontrivial

splines in all degrees k ≥ 2, while g3 and g4 also contribute terms in
degrees k ≥ 3.

d. Show that the gi form a basis for C1(∆), so it is a free module. Thus

dim C1
k(∆) =

⎧⎪⎪⎨⎪⎪⎩
1 if k = 0
3 if k = 1
7 if k = 2(
k+2
2

)
+
(
k
2

)
+ 2

(
k−1
2

)
if k ≥ 3.

We will next consider a second polyhedral complex ∆′ in R
2 which has

the same combinatorial data as ∆ in Exercise 4 (that is, the numbers of
k-cells are the same for all k, the containment relations are the same, and
so forth), but which is in special position.

Exercise 5. In R
2, consider the convex quadrilateral

R = Conv({(2, 0), (0, 1), (−1, 0), (0,−2)}).

Subdivide R into triangles by connecting each vertex to the origin by line
segments. This gives a pure, hereditary polyhedral complex ∆′ with four
2-cells, eight 1-cells (four interior ones), five 0-cells, and ∅. Number the
2-cells σ1, . . . , σ4 proceeding counter-clockwise around the origin starting
from the triangle σ1 with vertices (2, 0), (0, 0), (0, 1). The interior 1-cells of
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∆ are then

σ1 ∩ σ2 ⊂ V(x)

σ2 ∩ σ3 ⊂ V(y)

σ3 ∩ σ4 ⊂ V(x)

σ1 ∩ σ4 ⊂ V(y).

This is what we meant before by saying that ∆′ is in special position—the
interior edges lie on only two distinct lines, rather than four of them.
a. Using this ordering on the interior 1-cells, show that we obtain

M(∆′, r) =

⎛⎜⎜⎝
1 −1 0 0 xr+1 0 0 0
0 1 −1 0 0 yr+1 0 0
0 0 1 −1 0 0 xr+1 0
1 0 0 −1 0 0 0 yr+1

⎞⎟⎟⎠ .

b. With r = 1, for instance, show that a Gröbner basis for the R[x, y]-
module of syzygies on the columns of M(∆′, 1) is given by the transposes
of

g′
1 = (1, 1, 1, 1, 0, 0, 0, 0)

g′
2 = (0, x2, x2, 0, 1, 0,−1, 0)

g′
3 = (y2, y2, 0, 0, 0,−1, 0,−1)

g′
4 = (x2y2, 0, 0, 0,−y2, 0, 0,−x2).

Note that these generators have a different form (in particular, the com-
ponents have different total degrees) than the generators for the syzygies
on the columns of M(∆, 1).

c. Check that the g′
i form a basis of C1(∆′), and that

dim C1
k(∆′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k = 0
3 if k = 1
8 if k = 2
16 if k = 3(
k+2
2

)
+ 2

(
k
2

)
+
(
k−2
2

)
if k ≥ 3.

Comparing Exercises 4 and 5, we see that the dimensions of Cr
k(∆) can

depend on more than just the combinatorial data of the polyhedral complex
∆—they can vary depending on the positions of the interior (n − 1)-cells.

The recent paper [Ros] of Lauren Rose sheds some light on examples like
these. To describe her results, it will be convenient to use the following
notion.

(3.12) Definition. The dual graph G∆ of a pure n-dimensional complex
∆ is the graph with vertices corresponding to the n-cells in ∆, and edges
corresponding to adjacent pairs of n-cells.
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σ3

σ2 σ1

σ4

Figure 8.8. The dual graph

For instance, the dual graphs for the complexes in Exercises 4 and 5 are
both equal to the graph in Fig. 8.8. By an easy translation of the definition
in (3.5), the dual graph of a hereditary complex is connected .

As before, we will denote by e the number of interior (n− 1)-cells and let
δ1, . . . , δe denote some ordering of them. Choose an ordering on the ver-
tices of G∆ (or equivalently on the n-cells of ∆), and consider the induced
orientations of the edges. If δ = jk is the oriented edge from vertex j to
vertex k in G∆, corresponding to the interior (n − 1)-cell δ = σj ∩ σk, let
�δ be the equation of the affine hyperplane containing δ. By convention, we
take the negative, −�δ, as the defining equation for the affine hyperplane
containing the edge kj with reversed orientation. For simplicity, we will
also write �i for the linear polynomial �δi . Finally, let C denote the set of
cycles in G∆. Then, following Rose, we consider a module Br(∆) built out
of syzygies on the �r+1

i .

(3.13) Definition. Br(∆) ⊂ R[x1, . . . , xn]e is the submodule defined by

Br(∆) = {(g1, . . . , ge) ∈ R[x1, . . . , xn]e : for all c ∈ C,
∑
δ∈c

gδ�
r+1
δ = 0}.

The following observation is originally due to Schumaker for the case of
bivariate splines (see [Schu]). Our treatment follows Theorem 2.2 of [Ros].

(3.14) Theorem. If ∆ is hereditary, then Cr(∆) is isomorphic to
Br(∆) ⊕ R[x1, . . . , xn] as an R[x1, . . . , xn]-module.
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Proof. Consider the mapping

ϕ : Cr(∆) → Br(∆) ⊕ R[x1, . . . , xn]

defined in the following way. By (3.7), for each f = (f1, . . . , fm) in Cr(∆)
and each interior (n − 1)-cell δi = σj ∩ σk, we have fj − fk = gi�

r+1
i for

some gi ∈ R[x1, . . . , xn]. Let

ϕ(f) =
(
(g1, . . . , ge), f1

)
(the f1 is the component in the R[x1, . . . , xn] summand). For each cycle c
in the dual graph,

∑
δ∈c gδ�

r+1
δ equals a sum of the form

∑
(fj − fk), which

cancels completely to 0 since c is a cycle. Hence, the e-tuple (g1, . . . , ge)
is an element of Br(∆). It is easy to see that ϕ is a homomorphism of
R[x1, . . . , xn]-modules.

To show that ϕ is an isomorphism, consider any(
(g1, . . . , ge), f

) ∈ Br(∆) ⊕ R[x1, . . . , xn].

Let f1 = f . For each i, 2 ≤ i ≤ m, since G∆ is connected, there is
some path from vertex σ1 to σi in G∆, using the edges in some set E.
Let fi = f +

∑
δ∈E gδ�

r+1
δ , where as above the gδ are defined by fj −

fk = gδ�
r+1
δ if δ is the oriented edge jk. Any two paths between these two

vertices differ by a combination of cycles, so since (g1, . . . , ge) ∈ Br(∆), fi

is a well-defined polynomial function on σi, and the m-tuple (f1, . . . , fm)
gives a well-defined element of Cr(∆) (why?). We obtain in this way a
homomorphism

ψ : Br(∆) ⊕ R[x1, . . . , xn] → Cr(∆),

and it is easy to check that ψ and ϕ are inverses.

The algebraic reason for the special form of the generators of the module
C1(∆) in Exercise 5 as compared to those in Exercise 4 can be read off
easily from the alternate description of C1(∆) given by Theorem (3.14).
For the dual graph shown in Fig. 8.8 on the previous page, there is exactly
one cycle. In Exercise 4, numbering the edges counterclockwise, we have

�21 = x2, �22 = (x + y)2, �23 = (2x − y)2, �24 = y2.

It is easy to check that the dimension over R of the subspace of B(∆) with
gi constant for all i is 1, so that applying the mapping ψ from the proof
of Theorem (3.14), the quotient of the space C1

2 (∆) of quadratic splines
modulo the trivial quadratic splines is 1-dimensional. (The spline g2 from
part b of the exercise gives a basis.) On the other hand, in Exercise 5,

�21 = x2, �22 = y2, �23 = x2, �24 = y2,

so B1(∆) contains both (1, 0,−1, 0) and (0, 1, 0,−1). Under ψ, we obtain
that the quotient of C1

2 (∆) modulo the trivial quadratic splines is two-
dimensional.
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As an immediate corollary of Theorem (3.14), we note the following
general sufficient condition for Cr(∆) to be a free module.

(3.15) Corollary. If ∆ is hereditary and G∆ is a tree (i.e., a connected
graph with no cycles), then Cr(∆) is free for all r ≥ 0.

Proof. If there are no cycles, then Br(∆) is equal to the free module
R[x1, . . . , xn]e, and the corollary follows from Theorem (3.14). This result
is Theorem 3.1 of [Ros].

Returning to bivariate splines, for generic pure 2-dimensional hereditary
simplicial complexes ∆ in R

2 (that is, complexes where all 2-cells are trian-
gles whose edges are in sufficiently general position) giving triangulations of
2-manifolds with boundary in the plane, there is a simple combinatorial for-
mula for dim C1

k(∆) first conjectured by Strang, and proved by Billera (see
[Bil1]). The form of this dimension formula given in [BR1] is the following:

(3.16) dim C1
k(∆) =

(
k + 2

2

)
+ (h1 − h2)

(
k

2

)
+ 2h2

(
k − 1

2

)
.

Here h1 and h2 are determined by purely combinatorial data from ∆:

(3.17) h1 = V − 3 and h2 = 3 − 2V + E,

where V is the number of 0-cells, and E is the number of 1-cells in ∆.
(Also see Exercise 12 below for Strang’s original dimension formula, and
its connection to (3.16).)

For example, the simplicial complex ∆ in Exercise 4, in which the interior
edges lie on four distinct lines (the generic situation) has V = 5 and E = 8,
so h1 = 2 and h2 = 1. Hence (3.16) agrees with the formula from part d
of the exercise. On the other hand, the complex ∆′ from Exercise 5 is not
generic as noted above, and (3.16) is not valid for ∆′.

Interestingly enough, there is no corresponding statement for n ≥ 3.
Moreover, the modules Cr(∆) can fail to be free modules even in very
simple cases (see part c of Exercise 10 below for instance). The paper
[Sche] gives necessary and sufficient conditions for freeness of Cr(∆) and
shows that the first three terms of its Hilbert polynomial can be determined
from the combinatorics and local geometry of ∆. The case n = 3, r = 1 is
also studied in [ASW]. Nevertheless, this is still an area with many open
questions.

ADDITIONAL EXERCISES FOR §3

Exercise 6. Investigate the modules Cr(∆) and Cr(∆′), r ≥ 2, for the
complexes from Exercises 4 and 5. What are dim Cr

k(∆) and dim Cr
k(∆′)?
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Figure 8.9. Figure for Exercise 7

Exercise 7. Let ∆ be the simplicial complex in R
2 given in Fig. 8.9. The

three interior vertices are at (1/3, 1/6), (1/2, 1/3), and (1/6, 1/2).
a. Find the matrix M(∆, r) for each r ≥ 0.
b. Show that

dim C1
k(∆) =

(
k + 2

2

)
+ 6

(
k − 1

2

)
(where if k < 3, by convention, the second term is taken to be zero).

c. Verify that formula (3.16) is valid for this ∆.

Exercise 8. In the examples we presented in the text, the components of
our Gröbner basis elements were all homogeneous polynomials. This will
not be true in general. In particular, this may fail if some of the interior
(n− 1)-cells of our complex ∆ lie on hyperplanes which do not contain the
origin in R

n. Nevertheless, there is a variant of homogeneous coordinates
used to specify points in projective spaces—see [CLO] Chapter 8—that
we can use if we want to work with homogeneous polynomials exclusively.
Namely, think of a given pure, hereditary complex ∆ as a subset of the
hyperplane xn+1 = 1, a copy of R

n in R
n+1. By considering the cone σ
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over each k-cell σ ∈ ∆ with vertex at (0, . . . , 0, 0) in R
n+1, we get a new

polyhedral complex ∆ in R
n+1.

a. Show that n-cells σ, σ′ from ∆ are adjacent if and only the corresponding
σ, σ′ are adjacent (n + 1)-cells in ∆. Show that ∆ is hereditary.

b. What are the equations of the interior n-cells in ∆?
c. Given f = (f1 . . . , fm) ∈ Cr

k(∆), show that the component-wise ho-
mogenization with respect to xn+1, fh = (fh

1 . . . , fh
m), gives an element

of Cr
k(∆).

d. How are the matrices M(∆, r) and M(∆′, r) related?
e. Describe the relation between dim Cr

k(∆) and dim Cr
k(∆).

Exercise 9. In this exercise we will assume that the construction of
Exercise 8 has been applied, so that Cr(∆) is a graded module over
R[x0, . . . , xn]. Then the formal power series

H(Cr(∆), u) =
∞∑

k=0

dim Cr
k(∆)uk

is the Hilbert series of the graded module Cr(∆). This is the terminology
of Exercise 24 of Chapter 6, §4, and that exercise showed that the Hilbert
series can be written in the form

(3.18) H(Cr(∆), u) = P (u)/(1 − u)n+1,

where P (u) is a polynomial in u with coefficients in Z. We obtain the series
from (3.18) by using the formal geometric series expansion

1/(1 − u) =
∞∑

k=0

uk.

a. Show that the Hilbert series for the module C1(∆) from (3.8) with r = 1
is given by

(1 + 2u2)/(1 − u)3.

b. Show that the Hilbert series for the module C1(∆) from Exercise 4 is

(1 + u2 + 2u3)/(1 − u)3.

c. Show that the Hilbert series for the module C1(∆′) from Exercise 5 is

(1 + 2u2 + u4)/(1 − u)3.

d. What is the Hilbert series for the module C1(∆) from Exercise 7 above?

Exercise 10. Consider the polyhedral complex ∆ in R
3 formed by sub-

dividing the octahedron with vertices ±ei, i = 1, 2, 3 into 8 tetrahedra by
adding an interior vertex at the origin.
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a. Find the matrix M(∆, r).
b. Find formulas for the dimensions of C1

k(∆) and C2
k(∆).

c. What happens if we move the vertex of the octahedron at e3 to (1, 1, 1)
to form a new, combinatorially equivalent, subdivided octahedron ∆′?
Using Macaulay 2 ’s hilbertSeries command, compute the Hilbert se-
ries of the graded module ker M(∆′, 1) and from the result deduce that
C1(∆′) cannot be a free module. Hint: In the expression (3.19) for the
dimension series of a free module, the coefficients in the numerator P (t)
must all be positive; do you see why?

Exercise 11. This exercise uses the language of exact sequences and some
facts about graded modules from Chapter 6. The method used in the text
to compute dimensions of Cr

k(∆) requires the computation of a Gröbner
basis for the module of syzygies on the columns of M(∆, r), and it yields
information leading to explicit bases of the spline spaces Cr

k(∆). If bases for
these spline spaces are not required, there is another method which can be
used to compute the Hilbert series directly from M(∆, r) without comput-
ing the syzygy module. We will assume that the construction of Exercise 8
has been applied, so that the last e columns of the matrix M(∆, r) consist
of homogeneous polynomials of degree r + 1. Write R = R[x1, . . . , xn] and
consider the exact sequence of graded R-modules

0 → ker M(∆, r) → Rm ⊕ R(−r − 1)e → im M(∆, r) → 0.

a. Show that the Hilbert series of Rm ⊕ R(−r − 1)e is given by

(m + eur+1)/(1 − u)n+1.

b. Show that the Hilbert series of the graded module ker M(∆, r) is the
difference of the Hilbert series from part a and the Hilbert series of the
image of M(∆, r).

The Hilbert series of the image can be computed by applying Buchberger’s
algorithm to the module M generated by the columns of M(∆, r), then
applying the fact that M and 〈LT(M)〉 have the same Hilbert function.

Exercise 12. Strang’s original conjectured formula for the dimension of
C1

k(∆) for a simplicial complex in the plane with F triangles, E0 interior
edges, and V0 interior vertices was

(3.19) dim C1
k(∆) =

(
k + 2

2

)
F − (2k + 1)E0 + 3V0,

and this is the form proved in [Bil1]. In this exercise, you will show that
this form is equivalent to (3.16), under the assumption that ∆ gives a
triangulation of a topological disk in the plane. Let E and V be the total
numbers of edges and vertices respectively.
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a. Show that V −E +F = 1 and V0−E0 +F = 1 for such a triangulation.
Hint: One approach is to use induction on the number of triangles. In
topological terms, the first equation gives the usual Euler characteristic,
and the second gives the Euler characteristic relative to the boundary.

b. Use part a and the edge-counting relation 3F = E + E0 to show that
E = 3 + 2E0 − 3V0 and V = 3 + E0 − 2V0.

c. Show that if F is eliminated using part a, and the expressions for V
and E from part b are substituted into (3.16), then (3.19) is obtained.
Conversely, show that (3.19) implies (3.16).

Exercise 13. The methods introduced in this section work for some alge-
braic, but non-polyhedral, decompositions of regions in R

n as well. We will
not essay a general development. Instead we will indicate the idea with a
simple example. In R

2 suppose we wanted to construct Cr piecewise poly-
nomial functions on the union R of the regions σ1, σ2, σ3 as in Fig. 8.10.
The outer boundary is the circle of radius 1 centered at the origin, and
the three interior edges are portions of the curves y = x2, x = −y2, and
y = x3, respectively.

We can think of this as a non-linear embedding of an abstract
2-dimensional polyhedral complex.

σ1

σ2

σ3

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 8.10. Figure for Exercise 13
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a. Show that a triple (f1, f2, f3) ∈ R[x, y]3 defines a Cr spline function on
R if and only if

f1 − f2 ∈ 〈(y − x2)r+1〉
f2 − f3 ∈ 〈(x + y2)r+1〉
f1 − f3 ∈ 〈(y − x3)r+1〉.

b. Express the C1 splines on this subdivided region as the kernel of an ap-
propriate matrix with polynomial entries, and find the Hilbert function
for the kernel.

Exercise 14. (The Courant functions and the face ring of a complex,
see [Sta1]) Let ∆ be a pure n-dimensional, hereditary complex in R

n. Let
v1, . . . , vq be the vertices of ∆ (the 0-cells).
a. For each i, 1 ≤ i ≤ q, show that there is a unique function Xi ∈ C0

1 (∆)
(that is, Xi is continuous, and restricts to a linear function on each
n-cell) such that

Xi(vj) =
{

1 if i = j
0 if i �= j.

The Xi are called the Courant functions of ∆.
b. Show that

X1 + · · · + Xq = 1,

the constant function 1 on ∆.
c. Show that if {vi1 , . . . , vip} is any collection of vertices which do not

form the vertices of any k-cell in ∆, then

Xi1 · Xi2 · · ·Xip = 0,

the constant function 0 on ∆.
d. For a complex ∆ with vertices v1, . . . , vq, following Stanley and Reisner,

we can define the face ring of ∆, denoted R[∆], as the quotient ring

R[∆] = R[x1, . . . , xq]/I∆,

where I∆ is the ideal generated by the monomials xi1xi2 · · · xip corre-
sponding to collections of vertices which are not the vertex set of any
cell in ∆. Show using part c that there is a ring homomorphism from
R[∆] to R[X1, . . . , Xq] (the subalgebra of C0(∆) generated over R by
the Courant functions) obtained by mapping xi to Xi for each i.

Billera has shown that in fact C0(∆) equals the algebra generated by the
Courant functions over R, and that the induced mapping

ϕ : R[∆]/〈x1 + · · · + xq − 1〉 → C0(∆)

(see part b) is an isomorphism of R-algebras. See [Bil2].
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§4 The Gröbner Fan of an Ideal

Gröbner bases for the same ideal but with respect to different monomial
orders have different properties and can look very different. For example,
the ideal

I = 〈z2 − x + y − 1, x2 − yz + x, y3 − xz + 2〉 ⊂ Q[x, y, z]

has the following three Gröbner bases.

1. Consider the grevlex order with x > y > z. Since the leading terms of
the generators of I are pairwise relatively prime,

{z2 − x + y − 1, x2 − yz + x, y3 − xz + 2}
is a monic (reduced) Gröbner basis for I with respect to this monomial
order. Note that the basis has three elements.

2. Consider the weight order >w,grevlex on Q[x, y, z] with w = (2, 1, 5).
This order compares monomials first according to the weight vector w
and breaks ties with the grevlex order. The monic Gröbner basis for I
with respect to this monomial order has the form:

{xy3 + y2 − xy − y + 2x + y3 + 2, yz − x2 − x,

y6 + 4y3 + yx2 + 4 − y4 − 2y, x2y2 + 2z + xy − x2 − x + xy2,

x3 − y4 − 2y + x2, xz − y3 − 2, z2 + y − x − 1}.
This has seven instead of three elements.

3. Consider the lex order with x > y > z. The monic Gröbner basis for
this ideal is:

{z12 − 3z10 − 2z8 + 4z7 + 6z6 + 14z5 − 15z4 − 17z3 + z2 + 9z + 6,

y + 1
38977 (1055z11 + 515z10 + 42z9 − 3674z8 − 12955z7 + 5285z6

− 1250z5 + 36881z4 + 7905z3 + 42265z2 − 63841z − 37186),

x + 1
38977 (1055z11 + 515z10 + 42z9 − 3674z8 − 12955z7 + 5285z6

− 1250z5 + 36881z4 + 7905z3 + 3288z2 − 63841z + 1791)}
This basis of three elements has the triangular form described by the
Shape Lemma (Exercise 16 of Chapter 2, §4).
Many of the applications discussed in this book make crucial use of the

different properties of different Gröbner bases. At this point, it is natural
to ask the following questions about the collection of all Gröbner bases of
a fixed ideal I.

• Is the collection of possible Gröbner bases of I finite or infinite?
• When do two different monomial orders yield the same monic (reduced)

Gröbner basis for I?
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• Is there some geometric structure underlying the collection of Gröbner
bases of I that can help to elucidate properties of I?

Answers to these questions are given by the construction of the Gröbner
fan of an ideal I. A fan consists of finitely many closed convex polyhe-
dral cones with vertex at the origin (as defined in §2) with the following
properties.

a. Any face of a cone in the fan is also in the fan. (A face of a cone σ is
σ ∩ {� = 0}, where � = 0 is a nontrivial linear equation such that � ≥ 0
on σ. This is analogous to the definition of a face of a polytope.)

b. The intersection of two cones in the fan is a face of each.

These conditions are similar to the definition of the polyhedral complex
given in Definition (3.5). The Gröbner fan encodes information about the
different Gröbner bases of I and was first introduced in the paper [MR] of
Mora and Robbiano. Our presentation is based on theirs.

The first step in this construction is to show that for each fixed ideal I,
as > ranges over all possible monomial orders, the collection of monomial
ideals 〈LT>(I)〉 is finite. We use the notation

Mon(I) = {〈LT>(I)〉 : > a monomial order}.

(4.1) Theorem. For an ideal I ⊂ k[x1, . . . , xn], the set Mon(I) is finite.

Proof. Aiming for a contradiction, suppose that Mon(I) is an infinite
set. For each monomial ideal N in Mon(I), let >N be any one particular
monomial order such that N = 〈LT>N (I)〉. Let Σ be the collection of
monomial orders {>N : N ∈ Mon(I)}. Our assumption implies that Σ is
infinite.

By the Hilbert Basis Theorem we have I = 〈f1, . . . , fs〉 for polynomials
fi ∈ k[x1, . . . , xn]. Since each fi contains only a finite number of terms, by
a pigeonhole principle argument, there exists an infinite subset Σ1 ⊂ Σ such
that the leading terms LT>(fi) agree for all > in Σ1 and all i, 1 ≤ i ≤ s.
We write N1 for the monomial ideal 〈LT>(f1), . . . , LT>(fs)〉 (taking any
monomial order > in Σ1).

If F = {f1, . . . , fs} were a Gröbner basis for I with respect to some >1
in Σ1, then we claim that F would be a Gröbner basis for I with respect
to every > in Σ1. To see this, let > be any element of Σ1 other than >1,
and let f ∈ I be arbitrary. Dividing f by F using >, we obtain

(4.2) f = a1f1 + · · · + asfs + r,

where no term in r is divisible by any of the LT>(fi). However, both >
and >1 are in Σ1, so LT>(fi) = LT>1(fi) for all i. Since r = f − a1f1 −
· · · − asfs ∈ I, and F is assumed to be a Gröbner basis for I with respect
to >1, this implies that r = 0. Since (4.2) was obtained using the division
algorithm, LT>(f) = LT>(aifi) for some i, so LT>(f) is divisible by LT>(fi).
This shows that F is also a Gröbner basis for I with respect to >.
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However, this cannot be the case since the original set of monomial orders
Σ ⊃ Σ1 was chosen so that the monomial ideals 〈LT>(I)〉 for > in Σ were
all distinct. Hence, given any >1 in Σ1, there must be some fs+1 ∈ I such
that LT>1(fs+1) /∈ 〈LT>1(f1), . . . , LT>1(fs)〉 = N1. Replacing fs+1 by its
remainder on division by f1, . . . , fs, we may assume in fact that no term
in fs+1 is divisible by any of the monomial generators for N1.

Now we apply the pigeonhole principle again to find an infinite subset
Σ2 ⊂ Σ1 such that the leading terms of f1, . . . , fs+1 are the same for all
> in Σ2. Let N2 = 〈LT>(f1), . . . , LT>(fs+1)〉 for all > in Σ2, and note
that N1 ⊂ N2. The argument given in the preceding paragraph shows
that {f1, . . . , fs+1} cannot be a Gröbner basis with respect to any of the
monomial orders in Σ2, so fixing >2 ∈ Σ2, we find an fs+2 ∈ I such
that no term in fs+2 is divisible by any of the monomial generators for
N2 = 〈LT>2(f1), . . . , LT>2(fs+1)〉.

Continuing in the same way, we produce a descending chain of infinite
subsets Σ ⊃ Σ1 ⊃ Σ2 ⊃ Σ3 ⊃ · · ·, and an infinite strictly ascending chain
of monomial ideals N1 ⊂ N2 ⊂ N3 ⊂ · · ·. This contradicts the ascending
chain condition in k[x1, . . . , xn], so the proof is complete.

We can now answer the first question posed at the start of this section.
To obtain a precise result, we introduce some new terminology. It is possible
for two monic Gröbner bases of I with respect to different monomial orders
to be equal as sets, while the leading terms of some of the basis polynomials
are different depending on which order we consider. Examples where I is
principal are easy to construct; also see (4.9) below. A marked Gröbner basis
for I is a set G of polynomials in I, together with an identified leading term
in each g ∈ G such that G is a monic Gröbner basis with respect to some
monomial order selecting those leading terms. (More formally, we could
define a marked Gröbner basis as a set GM of ordered pairs (g, m) where
{g : (g, m) ∈ GM} is a monic Gröbner basis with respect to some order >,
and m = LT>(g) for each (g, m) in GM .) The idea here is that we do not
want to build a specific monomial order into the definition of G. It follows
from Theorem (4.1) that each ideal in k[x1, . . . , xn] has only finitely many
marked Gröbner bases.

(4.3) Corollary. The set of marked Gröbner bases of I is in one-to-one
correspondence with the set Mon(I).

Proof. The key point is that if the leading terms of two marked Gröbner
bases generate the same monomial ideal, then the Gröbner bases must be
equal. The details of the proof are left to the reader as Exercise 4.

Corollary (4.3) also has the following interesting consequence.
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Exercise 1. Show that for any ideal I ⊂ k[x1, . . . , xn], there exists a finite
U ⊂ I such that U is a Gröbner basis simultaneously for all monomial
orders on k[x1, . . . , xn].

A set U as in Exercise 1 is called a universal Gröbner basis for I. These
were first studied by Weispfenning in [Wei], and that article gives an algo-
rithm for constructing universal Gröbner bases. This topic is also discussed
in detail in [Stu2].

To answer our other questions we will represent monomial orders using
the matrix orders >M described in Chapter 1, §2. Recall that if M has
rows wi, then xα >M xβ if there is an � such that α · wi = β · wi for
i = 1, . . . , � − 1, but α · w� > β · w�.

When >M is a matrix order, the first row of M plays a special role and
will be denoted w in what follows. We may assume that w �= 0.

Exercise 2.
a. Let >M be a matrix order with first row w. Show that

w ∈ (Rn)+ = {(a1, . . . , an) : ai ≥ 0, all i}.
We call (Rn)+ the positive orthant in R

n. Hint: xi >M 1 for all i since
>M is a monomial order.

b. Prove that every nonzero w ∈ (Rn)+ is the first row of some matrix M
such that >M is a monomial order.

c. Let M and M ′ be matrices such that the matrix orders >M and >M ′

are equal. Prove that their first rows satisfy w = λw′ for some λ > 0.

Exercise 2 implies that each monomial order determines a well-defined
ray in the positive orthant (Rn)+, though different monomial orders may
give the same ray. (For example, all graded orders give the ray consisting
of positive multiples of (1, . . . , 1).) Hence it should not be surprising that
our questions lead naturally to cones in the positive orthant.

Now we focus on a single ideal I. Let G = {g1, . . . , gt} be one of the
finitely many marked Gröbner bases of I, with LT(gi) = xα(i), and N =
〈xα(1), . . . , xα(t)〉 the corresponding element of Mon(I). Our next goal is
to understand the set of monomial orders for which G is the corresponding
marked Gröbner basis of I. This will answer the second question posed at
the start of this section. We write

gi = xα(i) +
∑

β

ci,βxβ ,

where xα(i) > xβ whenever ci,β �= 0. By the above discussion, each such
order > comes from a matrix M , so in particular, to find the leading terms
we compare monomials first according to the first row w of the matrix.
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If α(i) · w > β · w for all β with ci,β �= 0, the single weight vector w
selects the correct leading term in gi as the term of highest weight. As we
know, however, we may have a tie in the first comparison, in which case we
would have to make further comparisons using the other rows of M . This
suggests that we should consider the following set of vectors:

(4.4)
CG = {w ∈ (Rn)+ : α(i) · w ≥ β · w whenever ci,β �= 0}

= {w ∈ (Rn)+ : (α(i) − β) · w ≥ 0 whenever ci,β �= 0}.
It is easy to see that CG is an intersection of closed half-spaces in R

n, hence
is a closed convex polyhedral cone contained in the positive orthant. There
are many close connections between this discussion and other topics we
have considered. For example, we can view the process of finding elements
of CG as finding points in the feasible region of a linear programming
problem as in §1 of this chapter. Moreover, given a polynomial, the process
of finding its term(s) of maximum weight with respect to a given vector w is
equivalent to an integer programming maximization problem on a feasible
region given by the Newton polytope NP (f).

The cone CG has the property that if >M is a matrix order such that G
is the marked Gröbner basis of I with respect to >M , then the first row w
of M lies in CG. However, you will see below that the converse can fail, so
that the relation between CG and monomial orders for which G is a marked
Gröbner basis is more subtle than meets the eye.

In the following example we determine the cone corresponding to a given
marked Gröbner basis for an ideal.

(4.5) Example. Consider the ideal

(4.6) I = 〈x2 − y, xz − y2 + yz〉 ⊂ Q[x, y, z].

The marked Gröbner basis with respect to the grevlex order with x > y > z
is

G(1) = {x2 − y, y2 − xz − yz},
where the leading terms are underlined. Let w = (a, b, c) be a vector in
the positive orthant of R

3. Then w is in CG(1) if and only if the following
inequalities are satisfied:

(2, 0, 0) · (a, b, c) ≥ (0, 1, 0) · (a, b, c) or 2a ≥ b

(0, 2, 0) · (a, b, c) ≥ (1, 0, 1) · (a, b, c) or 2b ≥ a + c

(0, 2, 0) · (a, b, c) ≥ (0, 1, 1) · (a, b, c) or 2b ≥ b + c.

To visualize CG(1) , slice the positive orthant by the plane a + b + c = 1
(every nonzero weight vector in the positive orthant can be scaled to make
this true). The above inequalities are pictured in Figure 8.11, where the
a-axis, b-axis, and c-axis are indicated by dashed lines and you are looking
toward the origin from a point on the ray through (1, 1, 1).
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Figure 8.11. A slice of the cone CG(1)

In this figure, the inequality 2a ≥ b gives the region in the slice to the
left (as indicated by the arrow), the line segment connecting (0, 0, 1) at the
top of the triangle to ( 1

3 , 2
3 , 0) on the base. The other two inequalities are

represented similarly, and their intersection in the first orthant gives the
shaded quadrilateral in the slice. Then CG(1) consists of all rays emanating
from the origin that go through points of the quadrilateral.

Any weight w corresponding to a point in the interior of CG(1) (where the
inequalities above are strict) will select the leading terms of elements of G(1)

exactly; a weight vector on one of the boundary planes in the interior of the
positive orthant will yield a “tie” between terms in one or more Gröbner
basis elements. For instance, (a, b, c) = (1, 1, 1) satisfies 2b = a + c and
2b = b + c, so it is on the boundary of the cone. This weight vector is not
sufficient to determine the leading terms of the polynomials.

Now consider a different monomial order, say the grevlex order with
z > y > x. For this order, the monic Gröbner basis for I is

G(2) = {x2 − y, yz + xz − y2},
where again the leading terms are underlined. Proceeding as above, the slice
of CG(2) in the plane a + b + c = 1 is a triangle defined by the inequalities

2a ≥ b, b ≥ a, c ≥ b.

You should draw this triangle carefully and verify that CG(1) ∩ CG(2) is a
common face of both cones (see also Figure 8.12 below).
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Exercise 3. Consider the grlex order with x > y > z. This order comes
from a matrix with (1, 1, 1) as the first row. Let I be the ideal from (4.6).
a. Find the marked Gröbner basis G of I with respect to this order.
b. Identify the corresponding cone CG and its intersections with the two

cones CG(1) and CG(2) . Hint: The Gröbner basis polynomials contain
more terms than in the example above, but some work can be saved by
the observation that if xβ′

divides xβ and w ∈ (Rn)+, then α ·w ≥ β ·w
implies α · w ≥ β′ · w.

Example (4.5) used the grevlex order with z > y > x, whose matrix
has the same first row (1, 1, 1) as the grlex order of Exercise 3. Yet they
have very different marked Gröbner bases. As we will see in Theorem (4.7)
below, this is allowed to happen because the weight vector (1, 1, 1) is on
the boundary of the cones in question.

Here are some properties of CG in the general situation.

(4.7) Theorem. Let I be an ideal in k[x1, . . . , xn], and let G be a marked
Gröbner basis of I.
a. The interior Int(CG) of the cone CG is a nonempty open subset of R

n.
b. Let >M be any matrix order such that the first row of M lies in Int(CG).

Then G is the marked Gröbner basis of I with respect to >M .
c. Let G′ be a marked Gröbner basis of I different from G. Then the in-

tersection CG ∩ CG′ is contained in a boundary hyperplane of CG, and
similarly for CG′ .

d. The union of all the cones CG, as G ranges over all marked Gröbner
bases of I, is the positive orthant (Rn)+.

Proof. To prove part a, fix a matrix order >M such that G is a marked
Gröbner basis of I with respect to >M and let w1, . . . , wm be the rows of
M . We will show that Int(CG) is nonempty by proving that

(4.8) w = w1 + εw2 + · · · + εm−1wm ∈ Int(CG)

provided ε > 0 is sufficiently small. In Exercise 5, you will show that given
exponent vectors α and β, we have

xα >M xβ ⇒ α · w > β · w provided ε > 0 is sufficiently small,

where “sufficiently small” depends on α, β, and M . It follows that we can
arrange this for any finite set of pairs of exponent vectors. In particular,
since xα(i) = LT>M (xα(i) +

∑
i,β ci,βxβ), we can pick ε so that

α(i) · w > β · w whenever ci,β �= 0

in the notation of (4.4). Furthermore, using xi >M 1 for all i, we can also
pick ε so that ei ·w > 0 (where ei is the ith standard basis vector). It follows
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that w is in the interior of the positive orthant. From here, w ∈ Int(CG)
follows immediately.

For part b, let >M be a matrix order such that the first row of M lies in
Int(CG). This easily implies that for every g ∈ G, LT>M (g) is the marked
term of g. From here, it is straightforward to show that G is the marked
Gröbner basis of I with respect to >M . See Exercise 6 for the details.

We now prove part c. In Exercise 7, you will show that if CG ∩ CG′

contains interior points of either cone, then by part a it contains interior
points of both cones. If w is such a point, we take any monomial order >M

defined by a matrix with first row w. Then by part b, G and G′ are both
the marked Gröbner bases of I with respect to >M . This contradicts our
assumption that G �= G′.

Part d follows immediately from part b of Exercise 2.

With more work, one can strengthen part c of Theorem (4.7) to show
that CG ∩ CG′ is a face of each (see [MR] or [Stu2] for a proof). It follows
that as G ranges over all marked Gröbner bases of I, the collection formed
by the cones CG and their faces is a fan, as defined earlier in the section.
This is the Gröbner fan of the ideal I.

For example, using the start made in Example (4.5) and Exercise 3, we
can determine the Gröbner fan of the ideal I from (4.6). In small examples
like this one, a reasonable strategy for producing the Gröbner fan is to
find the monic (reduced) Gröbner bases for I with respect to “standard”
orders (e.g., grevlex and lex orders with different permutations of the set of
variables) first and determine the corresponding cones. Then if the union
of the known cones is not all of the positive orthant, select some w in
the complement, compute the monic Gröbner basis for >w,grevlex, find the
corresponding cone, and repeat this process until the known cones fill the
positive orthant.

For the ideal of (4.6), there are seven cones in all, corresponding to the
marked Gröbner bases:

(4.9)

G(1) = {x2 − y, y2 − xz − yz}
G(2) = {x2 − y, yz + xz − y2}
G(3) = {x4 − x2z − xz, y − x2}
G(4) = {x2 − y, xz − y2 + yz, y2z + xy2 − y3 − yz}
G(5) = {y4 − 2y3z + y2z2 − yz2, xz − y2 + yz,

xy2 − y3 + y2z − yz, x2 − y}
G(6) = {y2z2 − 2y3z + y4 − yz2, xz − y2 + yz,

xy2 − y3 + y2z − yz, x2 − y}
G(7) = {y − x2, x2z − x4 + xz}.
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(Note that G(5) is the Gröbner basis from Exercise 3.)
Figure 8.12 below shows a picture of the slice of the Gröbner fan in the

plane a+ b+ c = 1, following the discussion from Example (4.5). The cones
are labeled as in (4.9).

For instance, if the Gröbner bases G(1), . . . , G(6) in this example are
known, the “missing” region of the positive orthant contains (for instance)
the vector w = (1/10, 2/5, 1/2) (see Figure 4.2). Using this weight vector,
we find G(7), and the corresponding cone completes the Gröbner fan.

When the number of variables is larger and/or the ideal generators have
more terms, this method becomes much less tractable. Mora and Robbiano
propose a “parallel Buchberger algorithm” in [MR] which produces the
Gröbner fan by considering all potential identifications of leading terms
in the computation and reduction of S-polynomials. But their method is
certainly not practical on larger examples either. Gröbner fans can be
extremely complicated! Fortunately, Gröbner fans are used primarily as
conceptual tools—it is rarely necessary to compute large examples.

If we relax our requirement that w lie in the first orthant and only ask
that w pick out the correct leading terms of a marked Gröbner basis of
I, then we can allow weight vectors with negative entries. This leads to a
larger “Gröbner fan” denoted GF (I) in [Stu2]. Then the Gröbner fan of
Theorem (4.7) (sometimes called the restricted Gröbner fan) is obtained
by intersecting the cones of GF (I) with the positive orthant. See [MR] and
[Stu2] for more about what happens outside the positive orthant.

We close this section with a comment about a closely related topic. In
the article [BaM] which appeared at the same time as [MR], Bayer and
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c

← w = (1/10, 2/5, 1/2)

Figure 8.12. A slice of the Gröbner fan
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Morrison introduced the state polytope of a homogeneous ideal. In a sense,
this is the dual of the Gröbner fan GF (I) (more precisely, the vertices of
the state polytope are in one-to-one correspondence with the elements of
Mon(I), and GF (I) is the normal fan of the state polytope). The state
polytope may also be seen as a generalization of the Newton polytope of a
single homogeneous polynomial. See [BaM] and [Stu2] for more details.

In the next section, we will see how the Gröbner fan can be used to de-
velop a general Gröbner basis conversion algorithm that, unlike the FGLM
algorithm from Chapter 2, does not depend on zero-dimensionality of I.

ADDITIONAL EXERCISES FOR §4

Exercise 4. Using the proof of Proposition (4.1), prove Corollary (4.3).

Exercise 5. Assume that xα >M xβ , where M is an m× n matrix giving
the matrix order >M . Also define w as in (4.8). Prove that α · w > β · w
provided that ε > 0 is sufficiently small.

Exercise 6. Fix a marked Gröbner basis G of an ideal I and let > be a
monomial order such that for each g ∈ G, LT>(g) is the marked term of the
polynomial g. Prove that G is the marked Gröbner basis of I with respect
to >. Hint: Divide f ∈ I by G using the monomial order >.

Exercise 7. Show that if the intersection of two closed, n-dimensional
convex polyhedral cones C, C ′ in R

n contains interior points of C, then the
intersection also contains interior points of C ′.

Exercise 8. Verify the computation of the Gröbner fan of the ideal
from (4.6) by finding monomial orders corresponding to each of the seven
Gröbner bases given in (4.9) and determining the cones CG(k) .

Exercise 9. Determine the Gröbner fan of the ideal of the affine twisted
cubic curve: I = 〈y − x2, z − x3〉. Explain why all of the cones have a
common one-dimensional edge in this example.

Exercise 10. This exercise will determine which terms in a polynomial
f =

∑k
i=1 cix

α(i) can be LT(f) with respect to some monomial order.
a. Show that xα(1) is LT(f) for some monomial order if and only if there

is some vector w in the positive orthant such (α(1) − α(j)) · w > 0 for
all j = 2, . . . , k.

b. Show that such a w exists if and only if the origin is not in the convex
hull of the set of all (α(1) − α(j)) for j = 2, . . . , k, together with the
standard basis vectors ei, i = 1, . . . , n in R

n.
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c. Use the result of part b to determine which terms in f = x2yz + 2xyw2

+ x2w − xw + yzw + y3 can be LT(f) for some monomial order. Deter-
mine an order that selects each of the possible leading terms.

Exercise 11. Determine the Gröbner fan of the following ideals:
a. I = 〈x3yz2 − 2xy3 − yz3 + y2z2 + xyz〉.
b. I = 〈x − t4, y − t2 − t〉.

§5 The Gröbner Walk

One interesting application of the Gröbner fan is a general Gröbner basis
conversion algorithm known as the Gröbner Walk. As we saw in the dis-
cussion of the FGLM algorithm in Chapter 2, to find a Gröbner basis with
respect to an “expensive” monomial order such as a lex order or another
elimination order, it is often simpler to find some other Gröbner basis first,
then convert it to a basis with respect to the desired order. The algorithm
described in Chapter 2 does this using linear algebra in the quotient algebra
k[x1, . . . , xn]/I, so it applies only to zero-dimensional ideals.

In this section, we will present the Gröbner Walk introduced by Collart,
Kalkbrener, and Mall in [ColKM]. This method converts a Gröbner basis
for any ideal I ⊂ k[x1, . . . , xn] with respect to any one monomial order
into a Gröbner basis with respect to any other monomial order. We will
also give examples showing how the walk applies to elimination problems
encountered in implicitization.

The basic idea of the Gröbner Walk is pleasingly simple. Namely, we
assume that we have a marked Gröbner basis G for I, say the marked
Gröbner basis with respect to some monomial order >s. We call >s the
starting order for the walk, and we will assume that we have some matrix
Ms with first row ws representing >s. By the results of the previous section,
G corresponds to a cone CG in the Gröbner fan of I.

The goal is to compute a Gröbner basis for I with respect to some other
given target order >t. This monomial order can be represented by some
matrix Mt with first row wt. Consider a “nice” (e.g., piecewise linear) path
from ws to wt lying completely in the positive orthant in R

n. For instance,
since the positive orthant is convex, we could use the straight line segment
between the two points, (1 − u)ws + uwt for u ∈ [0, 1], though this is not
always the best choice. The Gröbner Walk consists of two basic steps:

• Crossing from one cone to the next;
• Computing the Gröbner basis of I corresponding to the new cone.

These steps are done repeatedly until the end of the path is reached, at
which point we have the Gröbner basis with respect to the target order.
We will discuss each step separately.
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Crossing Cones
Assume we have the marked Gröbner basis Gold corresponding to the cone
Cold, and a matrix Mold with first row wold representing >old. As we con-
tinue along the path from wold, let wnew be the last point on the path that
lies in the cone Cold.

The new weight vector wnew may be computed as follows. Let Gold =
{xα(i) +

∑
i,β ci,βxβ : 1 ≤ i ≤ t}, where xα(i) is the leading term with

respect to >Mold
. To simplify notation, let v1, . . . , vm denote the vectors

α(i) − β where 1 ≤ i ≤ t and ci,β �= 0. By (4.4), Cold consists of those
points in the positive orthant (Rn)+ for which

w · vj ≥ 0, 1 ≤ j ≤ m.

For simplicity say that the remaining portion of the path to be traversed
consists of the straight line segment from wold to wt. Parametrizing this
line as (1 − u)wold + uwt for u ∈ [0, 1], we see that the point for the
parameter value u lies in Cold if and only if

(5.1) (1 − u)(wold · vj) + u(wt · vj) ≥ 0, 1 ≤ j ≤ m.

Then wnew = (1 − ulast)wold + ulastwt, where ulast is computed by the
following algorithm.

(5.2)

Input: wold, wt, v1, . . . , vm

Output: ulast

ulast = 1

FOR j = 1, . . . , m DO

IF wt · vj < 0 THEN uj :=
wold · vj

wold · vj − wt · vj

IF uj < ulast THEN ulast := uj

The idea behind (5.2) is that if wt · vj ≥ 0, then (5.1) holds for all
u ∈ [0, 1] since wold · vj ≥ 0. On the other hand, if wt · vj < 0, then the
formula for uj gives the largest value of u such that (5.1) holds for this
particular j. Note that 0 ≤ uj < 1 in this case.

Exercise 1. Prove carefully that wnew = (1− ulast)wold + ulastwt is the
last point on the path from wold to wt that lies in Cold.

Once we have wnew, we need to choose the next cone in the Gröbner fan.
Let >new be the weight order where we first compare wnew-weights and
break ties using the target order. Since >t is represented by Mt, it follows
that >new is represented by

(wnew

Mt

)
. This gives the new cone Cnew.

Furthermore, if we are in the situation where Mt is the bottom of the
matrix representing >old (which is what happens in the Gröbner Walk),
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the following lemma shows that whenever wold �= wt, the above process is
guaranteed to move us closer to wt.

(5.3) Lemma. Let ulast be as in (5.2) and assume that >old is represented
by

(wold

Mt

)
. Then ulast > 0.

Proof. By (5.2), ulast = 0 implies that wold · vj = 0 and wt · vj < 0 for
some j. But recall that vj = α(i)−β for some g = xα(i) +

∑
i,β ci,βxβ ∈ G,

where xα(i) is the leading term for >old and ci,β �= 0. It follows that

(5.4) wold · α(i) = wold · β and wt · α(i) < wt · β.

Since >old is represented by
(wold

Mt

)
, the equality in (5.4) tells us that xα(i)

and xβ have the same wold-weight, so that we break the tie using Mt. But
wt is the first row of Mt, so that the inequality in (5.4) implies that xα(i)

is not the leading term for >old. This contradiction proves the lemma.

Converting Gröbner Bases
Once we have crossed from Cold into Cnew, we need to convert the marked
Gröbner basis Gold into a Gröbner basis for I with respect to the monomial
order >new represented by

(wnew

Mt

)
. This is done as follows.

The key feature of wnew is that it lies on the boundary of Cold, so that
some of the inequalities defining Cold become equalities. This means that
the leading term of some g ∈ Gold has the same wnew-weight as some other
term in g. In general, given a weight vector w is the positive orthant (Rn)+

and a polynomial f ∈ k[x1, . . . , xn], the initial form of f for w, denoted
inw(f), is the sum of all terms in f of maximum w-weight. Also, given a
set S of polynomials, we let inw(S) = {inw(f) : f ∈ S}.

Using this notation, we can form the ideal

〈inwnew(Gold)〉
of wnew-initial forms of elements of Gold. Note that wnew ∈ Cold guarantees
that the marked term of g ∈ Gold appears in inwnew(g). The important
thing to realize here is that in nice cases, inwnew(Gold) consists mostly of
monomials, together with a small number of polynomials (in the best case,
only one binomial together with a collection of monomials).

It follows that finding a monic Gröbner basis

H = {h1, . . . , hs}
of 〈inwnew(Gold)〉 with respect to >new may usually be done very quickly.
The surprise is that once we have H, it is relatively easy to convert Gold

into the desired Gröbner basis.

(5.5) Proposition. Let Gold be the marked Gröbner basis for an ideal I
with respect to >old. Also let >new be represented by

(wnew

Mt

)
, where wnew



§5. The Gröbner Walk 439

is any weight vector in Cold, and let H be the monic Gröbner basis of
〈inwnew(Gold)〉 with respect to >new as above. Express each hj ∈ H as

(5.6) hj =
∑

g∈Gold

pj,g inwnew(g).

Then replacing the initial forms by the g themselves, the polynomials

(5.7) hj =
∑

g∈Gold

pj,g g, 1 ≤ j ≤ s,

form a Gröbner basis of I with respect to >new.

Before giving the proof, we need some preliminary observations about
weight vectors and monomial orders. A polynomial f is w-homogeneous if
f = inw(f). In other words, all terms of f have the same w-weight. Further-
more, every polynomial can be written uniquely as a sum of w-homogeneous
polynomials that are its w-homogeneous components (see Exercise 5).

We say that a weight vector w is compatible with a monomial order > if
LT>(f) appears in inw(f) for all nonzero polynomials f . Then we have the
following result.

(5.8) Lemma. Fix w ∈ (Rn)+ \ {0} and let G be the marked Gröbner
basis of an ideal I for a monomial order >.
a. If w is compatible with >, then LT>(I) = LT>(inw(I)) = LT>(〈inw(I)〉).
b. If w ∈ CG, then inw(G) is a Gröbner basis of 〈inw(I)〉 for >. In

particular,
〈inw(I)〉 = 〈inw(G)〉.

Proof. For part a, the first equality LT>(I) = LT>(inw(I)) is obvious
since the leading term of any f ∈ k[x1, . . . , xn] appears in inw(f). For
the second equality, it suffices to show LT>(f) ∈ LT>(inw(I)) whenever
f ∈ 〈inw(I)〉. Given such an f , write it as

f =
t∑

i=1

pi inw(fi), pi ∈ k[x1, . . . , xn], fi ∈ I.

Each side is a sum of w-homogeneous components. Since inw(fi) is already
w-homogeneous, this implies that

inw(f) =
t∑

i=1

qi inw(fi),

where we can assume that qi is w-homogeneous and f and qifi have the
same w-weight for all i. It follows that inw(f) = inw(

∑t
i=1 qi fi) ∈ inw(I).

Then compatibility implies LT>(f) = LT>(inw(f)) ∈ LT>(inw(I)).
Turning to part b, first assume that w is compatible with >. Then

〈LT>(I)〉 = 〈LT>(G)〉 = 〈LT>(inw(G))〉,
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where the first equality follows since G is a Gröbner basis for > and the
second follows since w is compatible with >. Combining this with part a,
we see that 〈LT>(〈inw(I)〉)〉 = 〈LT>(inw(G))〉. Hence inw(G) is a Gröbner
basis of 〈inw(I)〉 for >, and the final assertion of the lemma follows.

It remains to consider what happens when w ∈ CG, which does not nec-
essarily imply that w is compatible with > (see Exercise 6 for an example).
Consider the weight order >′ which first compares w-weights and breaks
ties using >. Note that w is compatible with >′.

The key observation is that since w ∈ CG, the leading term of each g ∈ G
with respect to >′ is the marked term. By Exercise 6 of §4, it follows that
G is the marked Gröbner basis of I for >′. Since w is compatible with >′,
the earlier part of the argument implies that inw(G) is a Gröbner basis
of 〈inw(I)〉 for >′. However, for each g ∈ G, inw(g) has the same leading
term with respect to > and >′. Using Exercise 6 of §4 again, we conclude
that inw(G) is a Gröbner basis of 〈inw(I)〉 for >.

We can now prove the proposition.

Proof of Proposition (5.5). We will give the proof in three steps.
Since >new is represented by

(wnew

Mt

)
, wnew is compatible with >new. By

part a of Lemma (5.8), we obtain

LT>new(I) = LT>new (〈inwnew(I)〉).
The second step is to observe that since wnew ∈ Cold, the final assertion
of part b of Lemma (5.8) implies

〈inwnew(I)〉 = 〈inwnew(Gold)〉.
For the third step, we show that

〈inwnew(Gold)〉 = 〈LT>new(H)〉 = 〈LT>new(H)〉,
where H = {h1, . . . , ht} is the given Gröbner basis of 〈inwnew(Gold)〉 and
H = {h1, . . . , ht} is the set of polynomials described in the statement of
the proposition. The first equality is obvious, and for the second, it suffices
to show that for each j, LT>new (hj) = LT>new(hj). Since the inwnew(g) are
wnew-homogeneous, Exercise 7 below shows that the same is true of the hj

and the qj,g. Hence for each g, all terms in qj,g(g − inwnew(g)) have smaller
wnew-weight than those in the initial form. Lifting as in (5.7) to get hj adds
only terms with smaller wnew-weight. Since >new is compatible with wnew,
the added terms are also smaller in the new order, so the >new-leading term
of hj is the same as the leading term of hj .

Combining the three steps, we obtain

〈LT>new(I)〉 = 〈LT>new(H)〉.
Since hj ∈ I for all j, we conclude that H is a Gröbner basis for I with
respect to >new, as claimed.
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The Gröbner basis H from Proposition (5.5) is minimal, but not nec-
essarily reduced. Hence a complete interreduction is usually necessary to
obtain the marked Gröbner basis Gnew corresponding to the next cone. In
practice, this is a relatively quick process.

In order to use Proposition (5.5), we need to find the polynomials pj,g

in (5.6) expressing the Gröbner basis elements hj in terms of the ideal
generators of inwnew(Gold). This can be done in two ways:

• First, the pj,g can be computed along with H by an extended Buchberger
algorithm (see for instance [BW], Chapter 5, Section 6);
• Second, since inwnew(Gold) is a Gröbner basis of 〈inwnew(Gold)〉 with

respect to >old by part b of Lemma (5.8), the pj,g can be obtained by
dividing hj by inwnew(Gold) using >old.

In practice, the second is often more convenient to implement. The process
of replacing the wnew-initial forms of the g by the g themselves to go from
(5.6) to (5.7) is called lifting the initial forms to the new Gröbner basis.

The Algorithm
The following algorithm is a basic Gröbner Walk, following the straight
line segment from ws to wt.

(5.9) Theorem. Let

1. NextCone be a procedure that computes ulast from (5.2). Recall that
wnew = (1−ulast)wold +ulastwt is the last weight vector along the path
that lies in the cone Cold of the previous Gröbner basis Gold;

2. Lift be a procedure that lifts a Gröbner basis for the wnew-initial forms
of the previous Gröbner basis Gold with respect to >new to the Gröbner
basis Gnew following Proposition (5.5); and

3. Interreduce be a procedure that takes a given set of polynomials and
interreduces them with respect to a given monomial order.

Then the following algorithm correctly computes a Gröbner basis for I with
respect to >t and terminates in finitely many steps on all inputs:

Input: Ms and Mt representing start and target orders with first

rows ws and wt, Gs = Gröbner basis with respect to >Ms

Output: last value of Gnew = Gröbner basis with respect to >Mt

Mold := Ms

Gold := Gs

wnew := ws
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Mnew :=
(
wnew

Mt

)
done := false

WHILE done = false DO

In := inwnew (Gold)

InG := gbasis(In, >Mnew)

Gnew := Lift(InG, Gold, In, Mnew, Mold)

Gnew := Interreduce(Gnew, Mnew)

u := NextCone(Gnew, wnew, wt)

IF wnew = wt THEN

done := true

ELSE

Mold := Mnew

Gold := Gnew

wnew := (1 − u)wnew + uwt

Mnew :=
(
wnew

Mt

)
RETURN(Gnew)

Proof. We traverse the line segment from ws to wt. To prove termina-
tion, observe that by Corollary (4.3), the Gröbner fan of I = 〈Gs〉 has
only finitely many cones, each of which has only finitely many bounding
hyperplanes as in (4.4). Discarding those hyperplanes that contain the line
segment from ws to wt, the remaining hyperplanes determine a finite set
of distinguished points on our line segment.

Now consider ulast = NextCone(Gnew, wnew, wt) as in the algorithm.
This uses (5.2) with wold replaced by the current value of wnew. Further-
more, notice that the monomial order always comes from a matrix of the
form

(ws

Mt

)
. It follows that the hypothesis of Lemma (5.3) is always satis-

fied. If ulast = 1, then the next value of wnew is wt, so that the algorithm
terminates after one more pass through the main loop. On the other hand,
if ulast = uj < 1, then the next value of wnew lies on the hyperplane
w · vj = 0, which is one of our finitely many hyperplanes. However, (5.2)
implies that wt · vj < 0 and wnew · vj ≥ 0, so that the hyperplane meets
the line segment in a single point. Hence the next value of wnew is one of
our distinguished points. Furthermore, Lemma (5.3) implies that ulast > 0,
so that if the current wnew differs from wt, then we must move to a dis-
tinguished point farther along the line segment. Hence we must eventually
reach wt, at which point the algorithm terminates.
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To prove correctness, observe that in each pass through the main loop,
the hypotheses of Proposition (5.5) are satisfied. Furthermore, once the
value of wnew reaches wt, the next pass through the loop computes a
Gröbner basis of I for the monomial order represented by

(wt

Mt

)
. Using

Exercise 6 of §4, it follows that the final value of Gnew is the marked
Gröbner basis for >t.

The complexity of the Gröbner Walk depends most strongly on the num-
ber of cones that are visited along the path through the Gröbner fan, and
the number of different cones that contain the point wnew at each step. We
will say more about this in the examples below.

Examples
We begin with a simple example of the Gröbner Walk in action. Consider
the ideal I = 〈x2 − y, xz − y2 + yz〉 ⊂ Q[x, y, z] from (4.6). We computed
the full Gröbner fan for I in §4 (see Figure 8.12). Say we know

Gs = G(1) = {x2 − y, y2 − xz − yz}
from (4.9). This is the Gröbner basis of I with respect to >(5,4,1),grevlex
(among many others!). Suppose we want to determine the Gröbner basis
with respect to >(6,1,3),lex (which is G(6)). We could proceed as follows. Let

Ms =

⎛⎝ 5 4 1
1 1 1
1 1 0

⎞⎠
so ws = (5, 4, 1). Following Exercise 6 from Chapter 1, §2, we have used
a square matrix defining the same order instead of the 4 × 3 matrix with
first row (5, 4, 1) and the next three rows from a 3 × 3 matrix defining the
grevlex order (as in part b of Exercise 6 of Chapter 1, §2). Similarly,

Mt =

⎛⎝ 6 1 3
1 0 0
0 1 0

⎞⎠
and wt = (6, 1, 3). We will choose square matrices defining the appro-
priate monomial orders in all of the following computations by deleting
appropriate linearly dependent rows.

We begin by considering the order defined by

Mnew =

⎛⎝ 5 4 1
6 1 3
1 0 0

⎞⎠
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(using the weight vector wnew = (5, 4, 1) first, then refining by the tar-
get order). The wnew-initial forms of the Gröbner basis polynomials with
respect to this order are the same as those for Gs, so the basis does not
change in the first pass through the main loop.

We then call the NextCone procedure (5.2) with wnew in place of wold.
The cone of >Mnew is defined by the three inequalities obtained by com-
paring x2 vs. y and y2 vs. xz and yz. By (5.2), ulast is the largest u such
that (1− u)(5, 4, 1) + u(6, 1, 3) lies in this cone and is computed as follows:

x2 vs. y :

v1 = (2,−1, 0), wt · v1 = 6 ≥ 0 ⇒ u1 = 1

y2 vs. xz :

v2 = (−1, 2,−1), wt · v2 = −7 < 0 ⇒ u2 = wnew·v2
wnew·v2−(−7) = 2

9

y2 vs. yz :

v2 = (0,−,−1), wt · v3 = −2 < 0 ⇒ u3 = wnew·v3
wnew·v3−(−2) = 3

5 .

The smallest u value here is ulast = 2
9 . Hence the new weight vector is

wnew = (1 − 2
9 )(5, 4, 1) + 2

9 (6, 1, 3) = (47/9, 10/3, 13/9), and Mold and

Mnew =

⎛⎝ 47/9 10/3 13/9
6 1 3
1 0 0

⎞⎠
are updated for the next pass through the main loop.

In the second pass, In = {y2 − xz, x2}. We compute the Gröbner basis
for 〈In〉 with respect to >new (with respect to this order, the leading term
of the first element is xz), and find

H = {−y2 + xz, x2, xy2, y4}.
In terms of the generators for 〈In〉, we have

−y2 + xz = −1 · (y2 − xz) + 0 · (x2)

x2 = 0 · (y2 − xz) + 1 · (x2)

xy2 = x · (y2 − xz) + z · (x2)

y4 = (y2 + xz) · (y2 − xz) + z2 · (x2).

So by Proposition (5.5), to get the next Gröbner basis, we lift to

−1 · (y2 − xz − yz) + 0 · (x2 − y) = xz + yz − y2

0 · (y2 − xz − yz) + 1 · (x2 − y) = x2 − y

x · (y2 − xz − yz) + z · (x2 − y) = xy2 − xyz − yz

(y2 + xz) · (y2 − xz − yz) + z2 · (x2 − y) = y4 − y3z − xyz2 − yz2.

Interreducing with respect to >new, we obtain the marked Gröbner basis
Gnew given by
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{xz + yz − y2, x2 − y, xy2 − y3 + y2z − yz, y4 − 2y3z + y2z2 − yz2}.
(This is G(5) in (4.9).) For the call to NextCone in this pass, we use the
parametrization (1−u)(47/9, 10/3, 13/9)+u(6, 1, 3). Using (5.2) as above,
we obtain ulast = 17/35, for which wnew = (28/5, 11/5, 11/5).

In the third pass through the main loop, the Gröbner basis does not
change as a set. However, the leading term of the initial form of the last
polynomial y4− 2y3z + y2z2− yz2 with respect to >Mnew is now y2z2 since

Mnew =

⎛⎝ 28/5 11/5 11/5
6 1 3
1 0 0

⎞⎠ .

Using Proposition (5.5) as usual to compute the new Gröbner basis Gnew,
we obtain

(5.10) {xz + yz− y2, x2− y, xy2− y3 + y2z− yz, y2z2− 2y3z + y4− yz2},
which is G(6) in (4.9). The call to NextCone returns ulast = 1, since
there are no pairs of terms that attain equal weight for any point on the
line segment parametrized by (1 − u)(28/5, 11/5, 11/5) + u(6, 1, 3). Thus
wnew = wt. After one more pass through the main loop, during which
Gnew doesn’t change, the algorithm terminates. Hence the final output is
(5.10), which is the marked Gröbner basis of I with respect to the target
order.

We note that it is possible to modify the algorithm of Theorem (5.9) so
that the final pass in the above example doesn’t occur. See Exercise 8.

Exercise 2. Verify the computation of ulast in the steps of the above
example after the first.

Exercise 3. Apply the Gröbner Walk to convert the basis G(3) for the
above ideal to the basis G(4) (see (4.9) and Figure (4.2)). Take >s =
>(2,7,1),grevlex and >t = >(3,1,6),grevlex .

Many advantages of the walk are lost if there are many terms in the
wnew-initial forms. This tends to happen if a portion of the path lies in a
face of some cone, or if the path passes through points where many cones
intersect. Hence in [AGK], Amrhein, Gloor, and Küchlin make systematic
use of perturbations of weight vectors to keep the path in as general a
position as possible with respect to the faces of the cones. For example, one
possible variant of the basic algorithm above would be to use (4.8) to obtain
a perturbed weight vector in the interior of the corresponding cone each
time a new marked Gröbner basis is obtained, and resume the walk to the
target monomial order from there. Another variant designed for elimination
problems is to take a “sudden-death” approach. If we want a Gröbner basis
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with respect to a monomial order eliminating the variables x1, . . . , xn,
leaving y1, . . . , ym, and we expect a single generator for the elimination
ideal, then we could terminate the walk as soon as some polynomial in
k[y1, . . . , ym] appears in the current Gnew. This is only guaranteed to be
a multiple of the generator of the elimination ideal, but even a polynomial
satisfying that condition can be useful in some circumstances. We refer the
interested reader to [AGK] for a discussion of other implementation issues.

In [Tran], degree bounds on elements of Gröbner bases are used to pro-
duce weight vectors in the interior of each cone of the Gröbner fan, which
gives a deterministic way to find good path perturbations. A theoretical
study of the complexity of the Gröbner Walk and other basis conversion
algorithms has been made by Kalkbrener in [Kal].

Our next example is an application of the Gröbner Walk algorithm to
an implicitization problem inspired by examples studied in robotics and
computer-aided design. Let C1 and C2 be two curves in R

3. The bisector
surface of C1 and C2 is the locus of points P equidistant from C1 and
C2 (that is, P is on the bisector if the closest point(s) to P on C1 and
C2 are the same distance from P ). See, for instance, [EK]. Bisectors are
used, for example, in motion planning to find paths avoiding obstacles in an
environment. We will consider only the case where C1 and C2 are smooth
complete intersection algebraic curves C1 = V(f1, g1) and C2 = V(f2, g2).
(This includes most of the cases of interest in solid modeling, such as lines,
circles, and other conics, etc.) P = (x, y, z) is on the bisector of C1 and C2
if there exist Q1 = (x1, y1, z1) ∈ C1 and Q2 = (x2, y2, z2) ∈ C2 such that
the distance from P to Ci is a minimum at Qi, i = 1, 2 and the distance
from P to Q1 equals the distance from P to Q2. Rather than insisting on an
absolute minimum of the distance function from P to Ci at Qi, it is simpler
to insist that the distance function simply have a critical point there. It is
easy to see that this condition is equivalent to saying that the line segment
from P to Qi is orthogonal to the tangent line to Ci at Qi.

Exercise 4. Show that the distance from Ci to P has a critical point at
Qi if and only if the line segment from P to Qi is orthogonal to the tangent
line to Ci at Qi, and show that this is equivalent to saying that

(∇fi(Qi) × ∇gi(Qi)) · (P − Qi) = 0,

where ∇fi(Qi) denotes the gradient vector of fi at Qi, and × is the cross
product in R

3.

By Exercise 4, we can find the bisector as follows. Let (xi, yi, zi) be a
general point Qi on Ci, and P = (x, y, z). Consider the system of equations

0 = f1(x1, y1, z1)

0 = g1(x1, y1, z1)

0 = f2(x2, y2, z2)
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(5.11)

0 = g2(x2, y2, z2)

0 = (∇f1(x1, y1, z1) × ∇g1(x1, y1, z1)) · (x − x1, y − y1, z − z1)

0 = (∇f2(x2, y2, z2) × ∇g2(x2, y2, z2)) · (x − x2, y − y2, z − z2)

0 = (x − x1)2 + (y − y1)2 + (z − z1)2

− (x − x2)2 − (y − y2)2 − (z − z2)2.

Let J ⊂ R[x1, y1, z1, x2, y2, z2, x, y, z] be the ideal generated by these seven
polynomials. We claim the bisector will be contained in V(I), where I
is the elimination ideal I = J ∩ R[x, y, z]. A proof proceeds as follows.
P = (x, y, z) is on the bisector of C1 and C2 if and only if there exist
Qi = (xi, yi, zi) such that Qi ∈ Ci, Qi is a minimum of the distance
function to P , restricted to Ci, and PQ1 = PQ2. Thus P is in the bisector
if and only if the equations in (5.11) are satisfied for some (xi, yi, zi) ∈ Ci.
Therefore, P is the projection of some point in V(J), hence in V(I). Note
that (5.11) contains seven equations in nine unknowns, so we expect that
V(J) and its projection V(I) have dimension 2 in general.

For instance, if C1 is the twisted cubic V(y − x2, z − x3) and C2 is the
line V(x, y − 1), then our ideal J is

(5.12)

J = 〈y1 − x2
1, z1 − x3

1, x2, y2 − 1,

x − x1 + 2x1(y − y1) + 3x2
1(z − z1), z − z2,

(x − x1)2 + (y − y1)2 + (z − z1)2

− (x − x2)2 − (y − y2)2 − (z − z2)2〉.

We apply the Gröbner Walk with >s the grevlex order with x1 > y1 >
z1 > x2 > y2 > z2 > x > y > z, and >t the >w,grevlex order, where
w = (1, 1, 1, 1, 1, 1, 0, 0, 0), which has the desired elimination property to
compute J ∩ R[x, y, z].

Using our own (somewhat naive) implementation of the Gröbner Walk
based on the Groebner package in Maple, we computed the >w,grevlex basis
for J as in (5.12). As we expect, the elimination ideal is generated by a
single polynomial: J ∩ R[x, y, z] =

〈5832z6y3 − 729z8 − 34992x2y − 14496yxz − 14328x2z2

+ 24500x4y2 − 23300x4y + 3125x6 − 5464z2 − 36356z4y

+ 1640xz3 + 4408z4 + 63456y3xz3 + 28752y3x2z2

− 201984y3 − 16524z6y2 − 175072y2z2 + 42240y4xz − 92672y3zx

+ 99956z4y2 + 50016yz2 + 90368y2 + 4712x2 + 3200y3x3z

+ 6912y4xz3 + 13824y5zx + 19440z5xy2 + 15660z3x3y + 972z4x2y2

+ 6750z2x4y − 61696y2z3x + 4644yxz5 − 37260yz4x2

− 85992y2x2z2 + 5552x4 − 7134xz5 + 64464yz2x2
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− 5384zyx3 + 2960zy2x3 − 151z6 + 1936

+ 29696y6 + 7074z6y + 18381z4x2 − 2175z2x4 + 4374xz7

+ 1120zx − 7844x3z3 − 139264y5 − 2048y7 − 1024y6z2

− 512y5x2 − 119104y3x2 − 210432y4z2 + 48896y5z2

− 104224y3z4 + 28944y4z4 + 54912y4x2 − 20768y + 5832z5x3

− 8748z6x2 + 97024y2x2 + 58560y2zx + 240128y4 + 286912y3z2

+ 10840xyz3 + 1552x3z − 3750zx5〉.
The computation of the full Gröbner basis (including the initial compu-

tation of the grevlex Gröbner basis of J) took 43 seconds on a 866 MHz
Pentium III using the Gröbner Walk algorithm described in Theorem (5.9).
Apparently the cones corresponding to the two monomial orders >s, >t

are very close together in the Gröbner fan for J , a happy accident. The
wnew-initial forms in the second step of the walk contained a large num-
ber of distinct terms, though. With the “sudden-death” strategy discussed
above, the time was reduced to 23 seconds and produced the same poly-
nomial (not a multiple). By way of contrast, a direct computation of the
>w,grevlex Gröbner basis using the gbasis command of the Groebner pack-
age was terminated after using 20 minutes of CPU time and over 200 Mb of
memory. In our experience, in addition to gains in speed, the Gröbner Walk
tends also to use much less memory for storing intermediate polynomials
than Buchberger’s algorithm with an elimination order. This means that
even if the walk takes a long time to complete, it will often execute suc-
cessfully on complicated examples that are not feasible using the Gröbner
basis packages of standard computer algebra systems. Similarly encourag-
ing results have been reported from several experimental implementations
of the Gröbner Walk.

As of this writing, the Gröbner Walk has not been included in the
Gröbner basis packages distributed with general-purpose computer algebra
systems such as Maple or Mathematica. An implementation is available
in Magma, however. The CASA Maple package developed at RISC-Linz
(see http://www.risc.uni-linz.ac.at/software/casa/) also contains
a Gröbner Walk procedure.

ADDITIONAL EXERCISES FOR §5

Exercise 5. Fix a nonzero weight vector w ∈ (Rn)+. Show that every
f ∈ k[x1, . . . , xn] can be written uniquely as a sum of w-homogeneous
polynomials.

Exercise 6. Fix a monomial order > and a nonzero weight vector w ∈
(Rn)+. Also, given an ideal I ⊂ k[x1, . . . , xn], let C> be the cone in the
Gröbner fan of I corresponding to 〈LT>(I)〉 ∈ Mon(I).
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a. Prove that w is compatible with > if and only if w · α > w · β always
implies xα > xβ .

b. Prove that if w is compatible with >, then w ∈ C>.
c. Use the example of >lex for x > y, I = 〈x+ y〉 ⊂ k[x, y] and w = (1, 1)

to show that the naive converse to part b is false. (See part d for the
real converse.)

d. Prove that w ∈ C> if and only if there is a monomial order >′ such
that C>′ = C> and w is compatible with >′. Hint: See the proof of part
b of Lemma (5.8).

Exercise 7. Suppose that J is an ideal generated by w-homogeneous
polynomials. Show that every reduced Gröbner basis of I consists of w-
homogeneous polynomials. Hint: This generalizes the corresponding fact
for homogeneous ideals. See [CLO], Theorem 2 of Chapter 8, §3.

Exercise 8. It is possible to get a slightly more efficient version of the
algorithm described in Theorem (5.9). The idea is to modify (5.2) so that
ulast is allowed to be greater than 1 if the ray from wold to wt leaves the
cone at a point beyond wt.
a. Modify (5.2) so that it behaves as described above and prove that your

modification behaves as claimed.
b. Modify the algorithm described in Theorem (5.9) in two ways: first,

wnew is defined using min{1, ulast} and second, the IF statement tests
whether ulast > 1 or wnew = wt. Prove that this modified algorithm
correctly converts Gs to Gt.

c. Show that the modified algorithm, when applied to the ideal I = 〈x2 −
y, y2 − xz− yz〉 discussed in the text, requires one less pass through the
main loop than without the modificiation.

Exercise 9. In a typical polynomial implicitization problem, we are
given fi ∈ k[t1, . . . , tm], i = 1, . . . , n (the coordinate functions of a
parametrization) and we want to eliminate t1, . . . , tm from the equations
xi = f1(t1, . . . , tm), i = 1, . . . , n. To do this, consider the ideal

J = 〈x1 − f1(t1, . . . , tm), . . . , xn − fn(t1, . . . , tm)〉
and compute I = J ∩ k[x1, . . . , xn] to find the implicit equations of the
image of the parametrization. Explain how the Gröbner Walk could be
applied to the generators of J directly to find I without any preliminary
Gröbner basis computation. Hint: They are already a Gröbner basis with
respect to a suitable monomial order.

Exercise 10. Apply the Gröbner Walk method suggested in Exercise 9 to
compute the implicit equation of the parametric curve
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x = t4

y = t2 + t.

(If you do not have access to an implementation of the walk, you will need
to perform the steps “manually” as in the example given in the text.) Also
see part b of Exercise 11 in the previous section.



Chapter 9

Algebraic Coding Theory

In this chapter we will discuss some applications of techniques from compu-
tational algebra and algebraic geometry to problems in coding theory. After
a preliminary section on the arithmetic of finite fields, we will introduce
some basic terminology for describing error-correcting codes. We will study
two important classes of examples—linear codes and cyclic codes—where
the set of codewords possesses additional algebraic structure, and we will
use this structure to develop good encoding and decoding algorithms.

§1 Finite Fields

To make our presentation as self-contained as possible, in this section we
will develop some of the basic facts about the arithmetic of finite fields. We
will do this almost “from scratch,” without using the general theory of field
extensions. However, we will need to use some elementary facts about finite
groups and quotient rings. Readers who have seen this material before may
wish to proceed directly to §2. More complete treatments of this classical
subject can be found in many texts on abstract algebra or Galois theory.

The most basic examples of finite fields are the prime fields Fp = Z/〈p〉,
where p is any prime number, but there are other examples as well. To
construct them, we will need to use the following elementary fact.

Exercise 1. Let k be any field, and let g ∈ k[x] be an irreducible poly-
nomial (that is, a non-constant polynomial which is not the product of
two nonconstant polynomials in k[x]). Show that the ideal 〈g〉 ⊂ k[x] is a
maximal ideal. Deduce that k[x]/〈g〉 is a field if g is irreducible.

For example, let p = 3 and consider the polynomial g = x2 + x + 2 ∈
F3[x]. Since g is a quadratic polynomial with no roots in F3, g is irreducible
in F3[x]. By Exercise 1, the ideal 〈g〉 is maximal, hence F = F3[x]/〈g〉 is a
field. As we discussed in Chapter 2, the elements of a quotient ring such as
F are in one-to-one correspondence with the possible remainders on division

451
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by g. Hence the elements of F are the cosets of the polynomials ax + b,
where a, b are arbitrary in F3. As a result, F is a field of 32 = 9 elements.

To distinguish more clearly between polynomials and the elements of our
field, we will write α for the element of F represented by the polynomial x.
Thus every element of F has the form aα + b for a, b ∈ F3. Also, note that
α satisfies the equation g(α) = α2 + α + 2 = 0.

The addition operation in F is the obvious one: (aα + b) + (a′α + b′) =
(a + a′)α + (b + b′). As in Chapter 2 §2, we can compute products in F by
multiplication of polynomials in α, subject to the relation g(α) = 0. For
instance, you should verify that in F

(α + 1) · (2α + 1) = 2α2 + 1 = α

(recall that the coefficients of these polynomials are elements of the field
F3, so that 1 + 2 = 0). Using this method, we may compute all the powers
of α in F, and we find

(1.1)
α2 = 2α + 1 α3 = 2α + 2
α4 = 2 α5 = 2α
α6 = α + 2 α7 = α + 1,

and α8 = 1. For future reference, we note that this computation also shows
that the multiplicative group of nonzero elements of F is a cyclic group of
order 8, generated by α.

The construction of F in this example may be generalized in the fol-
lowing way. Consider the polynomial ring Fp[x], and let g ∈ Fp[x] be an
irreducible polynomial of degree n. The ideal 〈g〉 is maximal by Exercise
1, so the quotient ring F = Fp[x]/〈g〉 is a field. The elements of F may be
represented by the cosets modulo 〈g〉 of the polynomials of degree n− 1 or
less: an−1x

n−1 + · · · + a1x + a0, ai ∈ Fp. Since the ai are arbitrary, this
implies that F contains pn distinct elements.

Exercise 2.
a. Show that g = x4 + x + 1 is irreducible in F2[x]. How many elements

are there in the field F = F2[x]/〈g〉?
b. Writing α for the element of F represented by x as above, compute all

the distinct powers of α.
c. Show that K = {0, 1, α5, α10} is a field with four elements contained in

F.
d. Is there a field with exactly eight elements contained in F? Are there

any other subfields? (For the general pattern, see Exercise 10 below.)

In general we may ask what the possible sizes (numbers of elements) of
finite fields are. The following proposition gives a necessary condition.

(1.2) Proposition. Let F be a finite field. Then |F| = pn where p is some
prime number and n ≥ 1.
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Proof. Since F is a field, it contains a multiplicative identity, which we
will denote by 1 as usual. Since F is finite, 1 must have finite additive order:
say p is the smallest positive integer such that p · 1 = 1 + · · · + 1 = 0
(p summands). The integer p must be prime. (Otherwise, if p = mn with
m, n > 1, then we would have p · 1 = (m · 1)(n · 1) = 0 in F. But since F is
a field, this would imply m · 1 = 0, or n · 1 = 0, which is not possible by the
minimality of p.) We leave it to the reader to check that the set of elements
of the form m · 1, m = 0, 1, . . . , p − 1 in F is a subfield K isomorphic to
Fp. See Exercise 9 below.

The axioms for fields imply that if we consider the addition operation
on F together with scalar multiplication of elements of F by elements from
K ⊂ F, then F has the structure of a vector space over K. Since F is a finite
set, it must be finite-dimensional as a vector space over K. Let n be its
dimension (the number of elements in any basis), and let {a1, . . . , an} ⊂ F

be any basis. Every element of F can be expressed in exactly one way as a
linear combination c1a1 + · · · + cnan, where c1, . . . , cn ∈ K. There are pn

such linear combinations, which concludes the proof.

To construct finite fields, we will always consider quotient rings Fp[x]/〈g〉
where g is an irreducible polynomial in Fp[x]. There is no loss of generality
in doing this—every finite field can be obtained this way. See Exercise 11
below.

We will show next that for each prime p and each n ≥ 1, there exist
finite fields of every size pn by counting the irreducible polynomials of fixed
degree in Fp[x]. First note that it is enough to consider monic polynomials,
since we can always multiply by a constant in Fp to make the leading
coefficient of a polynomial equal 1. There are exactly pn distinct monic
polynomials xn + an−1x

n−1 + · · ·+ a1x + a0 of degree n in Fp[x]. Consider
the generating function for this enumeration by degree: the power series in
u in which the coefficient of un equals the number of monic polynomials
of degree n, namely pn. This is the left hand side in (1.3) below. We treat
this as a purely formal series and disregard questions of convergence. The
formal geometric series summation formula yields

(1.3)
∞∑

n=0

pnun =
1

1 − pu
.

Each monic polynomial factors uniquely in Fp[x] into a product of monic
irreducibles. For each n, let Nn be the number of monic irreducibles of
degree n in Fp[x]. In factorizations of the form g = g1 · g2 · · · gm where the
gi are irreducible (but not necessarily distinct) of degrees ni, we have Nni

choices for the factor gi for each i. The total degree of g is the sum of the
degrees of the factors.
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Exercise 3. By counting factorizations as above, show that the number
of monic polynomials of degree n (i.e. pn) can also be expressed as the
coefficient of un in the formal infinite product

(1 + u + u2 + · · · )N1 · (1 + u2 + u4 + · · · )N2 · · · =
∞∏

k=1

1
(1 − uk)Nk

,

where the equality between the left- and right-hand sides comes from the
formal geometric series summation formula. Hint: The term in the product
with index k accounts for factors of degree k in polynomials.

Hence combining (1.3) with the result of Exercise 3, we obtain the
generating function identity

(1.4)
∞∏

k=1

1
(1 − uk)Nk

=
1

1 − pu
.

(1.5) Proposition. We have pn =
∑

k|n kNk, where the sum extends
over all positive divisors k of the integer n.

Proof. Formally taking logarithmic derivatives and multiplying the re-
sults by u, from (1.4) we arrive at the identity

∑∞
k=1 kNkuk/(1 − uk) =

pu/(1 − pu). Using formal geometric series again, this equality can be
rewritten as

∞∑
k=1

kNk(uk + u2k + · · · ) = pu + p2u2 + · · · .

The proposition follows by comparing the coefficients of un on both sides
of this last equation.

Exercise 4. (For readers with some background in elementary number
theory.) Use Proposition (1.5) and the Möbius inversion formula to derive
a general formula for Nn.

We will show that Nn > 0 for all n ≥ 1. For n = 1, we have N1 = p
since all x− β, β ∈ Fp are irreducible. Then Proposition (1.5) implies that
N2 = (p2 − p)/2 > 0, N3 = (p3 − p)/3 > 0, and N4 = (p4 − p2)/4 > 0.

Arguing by contradiction, suppose that Nn = 0 for some n. We may
assume n ≥ 5 by the above. Then from Proposition (1.5),

(1.6) pn =
∑

k|n,0<k<n

kNk.

We can estimate the size of the right-hand side and derive a contradiction
from (1.6) as follows. We write �A� for the greatest integer less than or
equal to A. Since Nk ≤ pk for all k (the irreducibles are a subset of the
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whole collection monic polynomials), and any positive proper divisor k of
n is at most �n/2�, we have

pn ≤ �n/2�
�n/2�∑
k=0

pk.

Applying the finite geometric sum formula, the right-hand side equals

�n/2�(p�n/2�+1 − 1)/(p − 1) ≤ �n/2�p�n/2�+1.

Hence

pn ≤ �n/2�p�n/2�+1.

Dividing each side by p�n/2�, we obtain

pn−�n/2� ≤ �n/2�p.
But this is clearly false for all p and all n ≥ 5. Hence Nn > 0 for all n, and
as a result we have the following fact.

(1.7) Theorem. For all primes p and all n ≥ 1, there exist finite fields
F with |F| = pn.

From the examples we have seen and from the proof of Theorem (1.7),
it might appear that there are several different finite fields of a given size,
since there will usually be more than one irreducible polynomial g of a given
degree in Fp[x] to use in constructing quotients Fp[x]/〈g〉. But consider the
following example.

Exercise 5. By Proposition (1.5), there are (23 − 2)/3 = 2 monic ir-
reducible polynomials of degree 3 in F2[x], namely g1 = x3 + x + 1, and
g2 = x3+x2+1. Hence K1 = F2[x]/〈g1〉 and K2 = F2[x]/〈g2〉 are two finite
fields with 8 elements. We claim, however, that these fields are isomorphic.
a. Writing α for the coset of x in K1 (so g1(α) = 0 in K1), show that

g2(α + 1) = 0 in K1.
b. Use this observation to derive an isomorphism between K1 and K2 (that

is, a one-to-one, onto mapping that preserves sums and products).

The general pattern is the same.

(1.8) Theorem. Let K1 and K2 be two fields with |K1| = |K2| = pn.
Then K1 and K2 are isomorphic.

See Exercise 12 below for one way to prove this. Because of (1.8), it
makes sense to adopt the uniform notation Fpn for any field of order pn,
and we will use this convention for the remainder of the chapter. When
we do computations in Fpn , however, we will always use an explicit monic
irreducible polynomial g(x) of degree n as in the examples above.
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The next general fact we will consider is also visible in (1.1) and in the
other examples we have encountered.

(1.9) Theorem. Let F = Fpn be a finite field. The multiplicative group of
nonzero elements of F is cyclic of order pn − 1.

Proof. The statement about the order of the multiplicative group is clear
since we are omitting the single element 0. Write m = pn−1. By Lagrange’s
Theorem for finite groups ([Her]), every element β ∈ F \ {0} is a root of
the polynomial equation xm = 1, and the multiplicative order of each is
a divisor of m. We must show there is some element of order exactly m
to conclude the proof. Consider the prime factorization of m, say m =
qe1
1 · · · qek

k . Let mi = m/qi. Since the polynomial xmi − 1 has at most mi

roots in the field F, there is some βi ∈ F such that βmi
i �= 1. In Exercise 6

below, you will show that γi = β
m/q

ei
i

i has multiplicative order exactly qei
i

in F. It follows that the product γ1γ2 · · · γk has order m, since the qei
i are

relatively prime.

Exercise 6. In this exercise you will supply details for the final two claims
in the proof of Theorem (1.9).

a. Using the notation from the proof, show that γi = β
m/q

ei
i

i has multi-

plicative order exactly qei
i in F. (That is, show that γ

q
ei
i

i = 1, but that
γk

i �= 1 for all k = 1, . . . , qei
i − 1.)

b. Let γ1, γ2 be elements of a finite abelian group. Suppose that the orders
of γ1 and γ2 (n1 and n2 respectively) are relatively prime. Show that
the order of the product γ1γ2 is equal to n1n2.

A generator for the multiplicative group of Fpn is called a primitive el-
ement . In the fields studied in (1.1) and in Exercise 2, the polynomials g
were chosen so that their roots were primitive elements of the correspond-
ing finite field. This will not be true for all choices of irreducible g of a
given degree n in Fp[x].

Exercise 7. For instance, consider the polynomial g = x2 + 1 in F3[x].
Check that g is irreducible, so that K = F3[x]/〈g〉 is a field with 9 elements.
However the coset of x in K is not a primitive element. (Why not? what is
its multiplicative order?)

For future reference, we also include the following fact about finite fields.

Exercise 8. Suppose that β ∈ Fpn is neither 0 nor 1. Then show that∑pn−2
j=0 βj = 0. Hint: What is (xpn−1 − 1)/(x − 1)?

To conclude this section, we indicate one direct method for performing
finite field arithmetic in Maple. Maple provides a built-in facility (via the
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mod operator) by which polynomial division, row operations on matrices,
resultant computations, etc. can be done using coefficients in finite fields.
When we construct a quotient ring Fp[x]/〈g〉 the coset of x becomes a root
of the equation g = 0 in the quotient. In Maple, the elements of a finite field
can be represented as (cosets of) polynomials in RootOf expressions (see
Chapter 2, §1). For example, to declare the field F8 = F2[x]/〈x3 + x + 1〉,
we could use

alias(alpha = RootOf(x^3 + x + 1));

Then polynomials in alpha represent elements of the field F8 as before.
Arithmetic in the finite field can be performed as follows. For instance,
suppose we want to compute b3 + b, where b = α + 1. Entering

b := alpha + 1;
Normal(b^3 + b) mod 2;

yields

alpha2 + alpha + 1.

The Normal function computes the normal form for the element of the
finite field by expanding out b3 + b as a polynomial in α, then finding the
remainder on division by α3 + α + 1, using coefficients in F2.

A technical point: You may have noticed that the Normal function name
here is capitalized . There is also an uncapitalized normal function in Maple
which can be used for algebraic simplification of expressions. We do not
want that function here, however, because we want the function call to be
passed unevaluated to mod, and all the arithmetic to be performed within
the mod environment. Maple uses capitalized names consistently for un-
evaluated function calls in this situation. Using the command normal(b^3
+ b) mod 2 would instruct Maple to simplify b3 + b, then reduce mod 2,
which does not yield the correct result in this case. Try it!

ADDITIONAL EXERCISES FOR §1

Exercise 9. Verify the claim made in the proof of Proposition (1.2) that
if F is a field with pn elements, then F has a subfield

K = {0, 1, 2 · 1, . . . , (p − 1) · 1}
isomorphic to Fp.

Exercise 10. Using Theorem (1.9), show that Fpn contains a subfield Fpm

if and only if m is a divisor of n. Hint: By (1.9), the multiplicative group
of the subfield is a subgroup of the multiplicative cyclic group Fpm \ {0}.
What are the orders of subgroups of a cyclic group of order pm − 1?



458 Chapter 9. Algebraic Coding Theory

Exercise 11. In this exercise, you will show that every finite field F can
be obtained (up to isomorphism) as a quotient F ∼= Fp[x]/〈g〉 for some irre-
ducible g ∈ Fp[x]. For this exercise, we will need the fundamental theorem
of ring homomorphisms (see e.g., [CLO] Chapter 5, §2, Exercise 16). Let F

be a finite field, and say |F| = pn (see Proposition (1.2)). Let α be a prim-
itive element for F (see (1.9)). Consider the ring homomorphism defined
by

ϕ : Fp[x] → F

x �→ α.

a. Explain why ϕ must be onto.
b. Deduce that the kernel of ϕ must have the form ker(ϕ) = 〈g〉 for some

irreducible monic polynomial g ∈ k[x]. (The monic generator is called
the minimal polynomial of α over Fp.)

c. Apply the fundamental theorem to show that

F ∼= Fp[x]/〈g〉.

Exercise 12. In this exercise, you will develop one proof of Theorem (1.8),
using Theorem (1.9) and the previous exercise. Let K and L be two fields
with pn elements. Let β be a primitive element for L, and let g ∈ Fp[x] be
the minimal polynomial of β over Fp, so that L ∼= Fp[x]/〈g〉 (Exercise 11).
a. Show that g must divide the polynomial xpn − x in Fp[x]. (Use (1.9).)
b. Show that xpn − x splits completely into linear factors in K[x]:

xpn − x =
∏
α∈K

(x − α).

c. Deduce that there is some α ∈ K which is a root of g = 0.
d. From part c, deduce that K is also isomorphic to Fp[x]/〈g〉. Hence,

K ∼= L.

Exercise 13. Find irreducible polynomials g in the appropriate Fp[x],
such that Fp[x]/〈g〉 ∼= Fpn , and such that α = [x] is a primitive element in
Fpn for each pn ≤ 64. (Note: The cases pn = 8, 9, 16 are considered in the
text. Extensive tables of such polynomials have been constructed for use
in coding theory. See for instance [PH].)

Exercise 14. (The Frobenius Automorphism) Let Fq be a finite field. By
Exercise 10, Fq ⊂ Fqm for each m ≥ 1. Consider the mapping F : Fqm →
Fqm defined by F (x) = xq.
a. Show that F is one-to-one and onto, and that F (x + y) = F (x) + F (y)

and F (xy) = F (x)F (y) for all x, y ∈ Fqm . (In other words, F is an
automorphism of the field Fqm .)

b. Show that F (x) = x if and only if x ∈ Fq ⊂ Fqm .
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For readers familiar with Galois theory, we mention that the Frobenius
automorphism F generates the Galois group of Fqm over Fq—a cyclic group
of order m.

§2 Error-Correcting Codes

In this section, we will introduce some of the basic standard notions from
algebraic coding theory. For more complete treatments of the subject, we
refer the reader to [vLi], [Bla], or [MS].

Communication of information often takes place over “noisy” channels
which can introduce errors in the transmitted message. This is the case
for instance in satellite transmissions, in the transfer of information within
computer systems, and in the process of storing information (numeric data,
music, images, etc.) on tape, on compact disks or other media, and retriev-
ing it for use at a later time. In these situations, it is desirable to encode
the information in such a way that errors can be detected and/or corrected
when they occur. The design of coding schemes, together with efficient
techniques for encoding and decoding (i.e. recovering the original message
from its encoded form) is one of the main goals of coding theory.

In some situations, it might also be desirable to encode information in
such a way that unauthorized readers of the received message will not be
able to decode it. The construction of codes for secrecy is the domain of
cryptography , a related but distinct field that will not be considered here.
Interestingly enough, ideas from number theory and algebraic geometry
have assumed a major role there as well. The book [Kob] includes some
applications of computational algebraic geometry in modern cryptography.

In this chapter, we will study one specific type of code, in which all in-
formation to be encoded consists of strings or words of some fixed length k
using symbols from a fixed alphabet, and all encoded messages are divided
into strings called codewords of a fixed block length n, using symbols from
the same alphabet. In order to detect and/or correct errors, some redun-
dancy must be introduced in the encoding process, hence we will always
have n > k.

Because of the design of most electronic circuitry, it is natural to consider
a binary alphabet consisting of the two symbols {0, 1}, and to identify the
alphabet with the finite field F2. As in §1, strings of r bits (thought of as
the coefficients in a polynomial of degree r− 1) can also represent elements
of a field F2r , and it will be advantageous in some cases to think of F2r

as the alphabet. But the constructions we will present are valid with an
arbitrary finite field Fq as the alphabet.

In mathematical terms, the encoding process for a string from the mes-
sage will be a one-to-one function E : F

k
q → F

n
q . The image C =

E(F k
q ) ⊂ F

n
q is referred to as the set of codewords, or more succinctly

as the code. Mathematically, the decoding operation can be viewed as a
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function D : F
n
q → F

k
q such that D ◦ E is the identity on F

k
q . (This is ac-

tually an over-simplification—most real-world decoding functions will also
return something like an “error” value in certain situations.)

In principle, the set of codewords can be an arbitrary subset of F
n
q .

However, we will almost always restrict our attention to a class of codes
with additional structure that is very convenient for encoding and decoding.
This is the class of linear codes. By definition, a linear code is one where
the set of codewords C forms a vector subspace of F

n
q of dimension k.

In this case, as encoding function E : F
k
q → F

n
q we may use a linear

mapping whose image is the subspace C. The matrix of E with respect to
the standard bases in the domain and target is often called the generator
matrix G corresponding to E.

It is customary in coding theory to write generator matrices for linear
codes as k × n matrices and to view the strings in F

k
q as row vectors w.

Then the encoding operation can be viewed as matrix multiplication of a
row vector on the right by the generator matrix, and the rows of G form
a basis for C. As always in linear algebra, the subspace C may also be
described as the set of solutions of a system of n − k independent linear
equations in n variables. The matrix of coefficients of such a system is
often called a parity check matrix for C. This name comes from the fact
that one simple error-detection scheme for binary codes is to require that
all codewords have an even (or odd) number of nonzero digits. If one bit
error (in fact, any odd number of errors) is introduced in transmission, that
fact can be recognized by multiplication of the received word by the parity
check matrix H = ( 1 1 · · · 1 )T . The parity check matrix for a linear
code can be seen as an extension of this idea, in which more sophisticated
tests for the validity of the received word are performed by multiplication
by the parity check matrix.

Exercise 1. Consider the linear code C with n = 4, k = 2 given by the
generator matrix

G =
(

1 1 1 1
1 0 1 0

)
.

a. Show that since we have only the two scalars 0, 1 ∈ F2 to use in making
linear combinations, there are exactly four elements of C:

(0, 0)G = (0, 0, 0, 0), (1, 0)G = (1, 1, 1, 1),

(0, 1)G = (1, 0, 1, 0), (1, 1)G = (0, 1, 0, 1).
b. Show that

H =

⎛⎜⎜⎝
1 1
1 0
1 1
1 0

⎞⎟⎟⎠
is a parity check matrix for C by verifying that xH = 0 for all x ∈ C.
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Exercise 2. Let F4 = F2[α]/〈α2 + α + 1〉, and consider the linear code C
in F

5
4 with generator matrix(

α 0 α + 1 1 0
1 1 α 0 1

)
.

How many distinct codewords are there in C? Find them. Also find a parity
check matrix for C. Hint: Recall from linear algebra that there is a general
procedure using matrix operations for finding a system of linear equations
defining a given subspace.

To study the error-correcting capability of codes, we need a measure
of how close elements of F

n
q are, and for this we will use the Hamming

distance. Let x, y ∈ F
n
q . Then the Hamming distance between x and y is

defined to be
d(x, y) = |{i, 1 ≤ i ≤ n : xi �= yi}|.

For instance, if x = (0, 0, 1, 1, 0), and y = (1, 0, 1, 0, 0) in F
5
2 , then

d(x, y) = 2 since only the first and fourth bits in x and y differ.
Let 0 denote the zero vector in F

n
q and let x ∈ F

n
q be arbitrary. Then

d(x, 0), the number of nonzero components in x, is called the weight of x
and denoted wt(x).

Exercise 3. Verify that the Hamming distance has all the properties of a
metric or distance function on F

n
q . (That is, show d(x, y) ≥ 0 for all x, y

and d(x, y) = 0 if and only if x = y, the symmetry property d(x, y) =
d(y, x) holds for all x, y, and the triangle inequality d(x, y) ≤ d(x, z) +
d(z, y) is valid for all x, y, z.)

Given x ∈ F
n
q , we will denote by Br(x) the closed ball of radius r (in

the Hamming distance) centered at x:

Br(x) = {y ∈ F
n
q : d(y, x) ≤ r}.

(In other words, Br(x) is the set of y differing from x in at most r
components.)

The Hamming distance gives a simple but extremely useful way to mea-
sure the error-correcting capability of a code. Namely, suppose that every
pair of distinct codewords x, y in a code C ⊂ F

n
q satisfies d(x, y) ≥ d for

some d ≥ 1. If a codeword x is transmitted and errors are introduced, we
can view the received word as z = x + e for some nonzero error vector e.
If wt(e) = d(x, z) ≤ d − 1, then under our hypothesis z is not another
codeword. Hence any error vector of weight at most d − 1 can be detected.

Moreover if d ≥ 2t + 1 for some t ≥ 1, then for any z ∈ F
n
q , by

the triangle inequality, d(x, z) + d(z, y) ≥ d(x, y) ≥ 2t + 1. It follows
immediately that either d(x, z) > t or d(y, z) > t, so Bt(x) ∩ Bt(y) = ∅.
As a result the only codeword in Bt(x) is x itself. In other words, if an error
vector of weight at most t is introduced in transmission of a codeword, those
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errors can be corrected by the nearest neighbor decoding function

D(x) = E−1(c), where c ∈ C minimizes d(x, c)

(and an “error” value if there is no unique closest element in C).
From this discussion it is clear that the minimum distance

d = min{d(x, y) : x �= y ∈ C}
is an important parameter of codes, and our observations above can be
summarized in the following way.

(2.1) Proposition. Let C be a code with minimum distance d. All error
vectors of weight ≤ d− 1 can be detected. Moreover, if d ≥ 2t + 1, then all
error vectors of weight ≤ t can be corrected by nearest neighbor decoding.

Since the minimum distance of a code contains so much information, it
is convenient that for linear codes we need only examine the codewords
themselves to determine this parameter.

Exercise 4. Show that for any linear code C the minimum distance d is
the same as minx∈C\{0} |{i : xi �= 0}| (the minimum number of nonzero
entries in a nonzero codeword). Hint: Since the set of codewords is closed
under vector sums, x − y ∈ C whenever x and y are.

The Hamming codes form a famous family of examples with interesting
error-correcting capabilities. One code in the family is a code over F2 with
n = 7, k = 4. (The others are considered in Exercise 11 below.) For this
Hamming code, the generator matrix is

(2.2) G =

⎛⎜⎜⎝
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞⎟⎟⎠ .

For example w = (1, 1, 0, 1) ∈ F
4
2 is encoded by multiplication on the right

by G, yielding E(w) = wG = (1, 1, 0, 1, 0, 0, 1). From the form of the first
four columns of G, the first four components of E(w) will always consist of
the four components of w itself.

The reader should check that the 7 × 3 matrix

(2.3) H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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has rank 3 and satisfies GH = 0. Hence H is a parity check matrix for
the Hamming code (why?). It is easy to check directly that each of the
15 nonzero codewords of the Hamming code contains at least 3 nonzero
components. This implies that d(x, y) is at least 3 when x �= y. Hence the
minimum distance of the Hamming code is d = 3, since there are exactly
three nonzero entries in row 1 of G for example. By Proposition (2.1),
any error vector of weight 2 or less can be detected, and any error vector
of weight 1 can be corrected by nearest neighbor decoding. The following
exercise gives another interesting property of the Hamming code.

Exercise 5. Show that the balls of radius 1 centered at each of the words
of the Hamming code are pairwise disjoint, and cover F

7
2 completely. (A

code C with minimum distance d = 2t + 1 is called a perfect code if the
union of the balls of radius t centered at the codewords equals F

n
q .)

Generalizing a property of the generator matrix (2.2) noted above, encod-
ing functions with the property that the symbols of the input word appear
unchanged in some components of the codeword are known as systematic
encoders. It is customary to call those components of the codewords the in-
formation positions. The remaining components of the codewords are called
parity checks. Systematic encoders are sometimes desirable from a practical
point of view because the information positions can be copied directly from
the word to be encoded; only the parity checks need to be computed. There
are corresponding savings in the decoding operation as well. If information
is systematically encoded and no errors occur in transmission, the words
in the message can be obtained directly from the received words by simply
removing the parity checks. (It is perhaps worthwhile to mention again at
this point that the goal of the encoding schemes we are considering here is
reliability of information transmission, not secrecy!)

Exercise 6. Suppose that the generator matrix for a linear code C has
the systematic form G = (Ik | P ), where Ik is a k × k identity matrix, and
P is some k × (n − k) matrix. Show that

H =
( −P

In−k

)
is a parity check matrix for C.

We will refer to a linear code with block length n, dimension k, and
minimum distance d as an [n, k, d] code. For instance, the Hamming code
given by the generator matrix (2.2) is a [7,4,3] code.

Determining which triples of parameters [n, k, d] can be realized by codes
over a given finite field Fq and constructing such codes are two important
problems in coding theory. These questions are directly motivated by the
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decisions an engineer would need to make in selecting a code for a given
application. Since an [n, k, d] code has qk distinct codewords, the choice of
the parameter k will be determined by the size of the collection of words
appearing in the messages to be transmitted. Based on the characteristics
of the channel over which the transmission takes place (in particular the
probability that an error occurs in transmission of a symbol), a value of
d would be chosen to ensure that the probability of receiving a word that
could not be correctly decoded was acceptably small. The remaining ques-
tion would be how big to take n to ensure that a code with the desired
parameters k and d actually exists. It is easy to see that, fixing k, we can
construct codes with d as large as we like by taking n very large. (For
instance, our codewords could consist of many concatenated copies of the
corresponding words in F

k
q .) However, the resulting codes would usually be

too redundant to be practically useful. “Good” codes are ones for which
the information rate R = k/n is not too small, but for which d is relatively
large. There is a famous result known as Shannon’s Theorem (for the pre-
cise statement see, e.g., [vLi]) that ensures the existence of “good” codes in
this sense, but the actual construction of “good” codes is one of the main
problems in coding theory.

Exercise 7. In the following exercises, we explore some theoretical results
giving various bounds on the parameters of codes. One way to try to pro-
duce good codes is to fix a block length n and a minimum distance d, then
attempt to maximize k by choosing the codewords one by one so as to keep
d(x, y) ≥ d for all distinct pairs x �= y.
a. Show that b = |Bd−1(c)| is given by b =

∑d−1
i=0

(
n
i

)
(q − 1)i for each

c ∈ F
n
q .

b. Let d be a given positive integer, and let C be a subset C ⊂ F
n
q (not

necessarily a linear code) such that d(x, y) ≥ d for all pairs x �= y in
C. Assume that for all z ∈ F

n
q \ C, d(z, c) ≤ d − 1 for some c ∈ C.

Then show that b · |C| ≥ qn (b as in part a). This result gives one form
of the Gilbert-Varshamov bound . Hint: An equivalent statement is that
if b · |C| < qn, then there exists some z such that every pair of distinct
elements in C ∪ {z} is still separated by at least d.

c. Show that if k satisfies b < qn−k+1, then an [n, k, d] linear code exists.
Hint: By induction, we may assume that an [n, k − 1, d] linear code C
exists. Using part b, consider the linear code C ′ spanned by C and z,
where the distance from z to any word in C is ≥ d. Show that C ′ still
has minimum distance d.

d. On the other hand, show that for any linear code d ≤ n − k + 1. This
result is known as the Singleton bound . Hint: Consider what happens
when a subset of d−1 components is deleted from each of the codewords.

Many other theoretical results, including both upper and lower bounds
on the n, k, d parameters of codes, are also known. See the coding theory
texts mentioned at the start of this section.
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We now turn to the encoding and decoding operations. Our first obser-
vation is that encoding is much simpler to perform for linear codes than
for arbitrary codes. For a completely arbitrary C of size qk there would
be little alternative to using some form of table look-up to compute the
encoding function. On the other hand, for a linear code all the information
about the code necessary for encoding is contained in the generator matrix
(only k basis vectors for C rather than the whole set of qk codewords),
and all operations necessary for encoding may be performed using linear
algebra.

Decoding a linear code is also correspondingly simpler. A general method,
known as syndrome decoding , is based on the following observation. If c =
wG is a codeword, and some errors e ∈ F

n
q are introduced on transmission

of c, the received word will be x = c + e. Then cH = 0 implies that
xH = (c + e)H = cH + eH = 0 + eH = eH. Hence xH depends only on
the error. The possible values for eH ∈ F

n−k
q are known as syndromes, and

it is easy to see that the syndromes are in one-to-one correspondence with
the cosets of C in F

n
q (or elements of the quotient space F

n
q /C ∼= F

n−k
q ),

so there are exactly qn−k of them. (See Exercise 12 below.)
Syndrome decoding works as follows. First, a preliminary calculation is

performed, before any decoding. We construct a table, indexed by the pos-
sible values of the syndrome s = xH, of the element(s) in the corresponding
coset with the smallest number of nonzero entries. These special elements
of the cosets of C are called the coset leaders.

Exercise 8. Say d = 2t + 1, so we know that any error vector of weight t
or less can be corrected. Show that if there are any elements of a coset of C
which have t or fewer nonzero entries, then there is only one such element,
and as a result the coset leader is unique.

If x ∈ F
n
q is received, we first compute the syndrome s = xH and

look up the coset leader(s) � corresponding to s in our table. If there is
a unique leader, we replace x by x′ = x − �, which is in C (why?). (If
s = 0, then � = 0, and x′ = x is itself a codeword.) Otherwise, we report
an “error” value. By Exercise 8, if no more than t errors occurred in x,
then we have found the unique codeword closest to the received word x
and we return E−1(x′). Note that by this method we have accomplished
nearest neighbor decoding without computing d(x, c) for all qk codewords.
However, a potentially large collection of information must be maintained
to carry out this procedure—the table of coset leader(s) for each of the
qn−k cosets of C. In cases of practical interest, n − k and q can be large,
so qn−k can be huge.

Exercise 9. Compute the table of coset leaders for the [7,4,3] Ham-
ming code from (2.2). Use syndrome decoding to decode the received word
(1, 1, 0, 1, 1, 1, 0).
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Here is another example of a linear code, this time over the field F4 =
F2[α]/〈α2 + α + 1〉. Consider the code C with n = 8, k = 3 over F4 defined
by the generator matrix:

(2.4) G =

⎛⎝ 1 1 1 1 1 1 1 1
0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

⎞⎠ .

Note that G does not have the systematic form we saw above for the
Hamming code’s generator matrix. Though this is not an impediment to
encoding, we can also obtain a systematic generator matrix for C by row-
reduction (Gauss-Jordan elimination). This corresponds to changing basis
in C; the image of the encoding map E : F

3
4 → F

8
4 is not changed. It is

a good exercise in finite field arithmetic to perform this computation by
hand. It can also be done in Maple as follows. For simplicity, we will write
a for α within Maple. To work in F4 we begin by defining a as a root of
the polynomial x2 + x + 1 as above.

alias(a=RootOf(x^2+x+1)):

The generator matrix G is entered as

m :=array(1..3, 1..8, [[1, 1, 1, 1, 1, 1, 1, 1],

[0, 0, 1, 1, a, a, aˆ2, aˆ2], [0, 1, a, aˆ2, a, aˆ2, a, aˆ2]]) :

Then the command

mr := Gaussjord(m) mod 2;

will perform Gauss-Jordan elimination with coefficients treated as elements
of F4. (Recall Maple’s capitalization convention for unevaluated function
calls, discussed in §1.) The result should be⎛⎝ 1 0 0 1 a a + 1 1 0

0 1 0 1 1 0 a + 1 a
0 0 1 1 a a a + 1 a + 1

⎞⎠ .

Note that a2 is replaced by its reduced form a + 1 everywhere here.
In the reduced matrix, the second row has five nonzero entries. Hence

the minimum distance d for this code is ≤ 5. By computing all 43− 1 = 63
nonzero codewords, it can be seen that d = 5. It is often quite difficult
to determine the exact minimum distance of a code (especially when the
number of nonzero codewords, qk − 1, is large).

To conclude this section, we will develop a relationship between the min-
imum distance of a linear code and the form of parity check matrices for
the code.

(2.5) Proposition. Let C be a linear code with parity check matrix H. If
no collection of δ − 1 distinct rows of H is a linearly dependent subset of
F

n−k
q , then the minimum distance d of C satisfies d ≥ δ.
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Proof. We use the result of Exercise 4. Let x ∈ C be a nonzero codeword.
From the equation xH = 0 in F

n−k
q , we see that the components of x are

the coefficients in a linear combination of the rows of H summing to the
zero vector. If no collection of δ − 1 distinct rows is linearly dependent,
then x must have at least δ nonzero entries. Hence d ≥ δ.

ADDITIONAL EXERCISES FOR §2

Exercise 10. Consider the formal inner product on F
n
q defined by

〈x, y〉 =
n∑

i=1

xiyi

(a bilinear mapping from F
n
q × F

n
q to Fq; there is no notion of positive-

definiteness in this context). Given a linear code C, let

C⊥ = {x ∈ F
n
q : 〈x, y〉 = 0 for all y ∈ C},

the subspace of F
n
q orthogonal to C. If C is k-dimensional, then C⊥ is a

linear code of block length n and dimension n − k known as the dual code
of C.
a. Let G = (Ik | P ) be a systematic generator matrix for C. Determine a

generator matrix for C⊥. How is this related to the parity check matrix
for C? (Note on terminology: Many coding theory texts define a parity
check matrix for a linear code to be the transpose of what we are calling
a parity check matrix. This is done so that the rows of a parity check
matrix will form a basis for the dual code.)

b. Find generator matrices and determine the parameters [n, k, d] for the
duals of the Hamming code from (2.2), and the code from (2.4).

Exercise 11. (The Hamming codes) Let q be a prime power, and let
m ≥ 1. We will call a set S of vectors in F

m
q a maximal pairwise linearly

independent subset of F
m
q if S has the property that no two distinct el-

ements of S are scalar multiples of each other, and if S is maximal with
respect to inclusion. For each pair (q, m) we can construct linear codes C
by taking a parity check matrix H ∈ Mn×m(Fq) whose rows form a max-
imal pairwise linearly independent subset of F

m
q , and letting C ⊂ F

n
q be

the set of solutions of the system of linear equations xH = 0. For instance,
with q = 2, we can take the rows of H to be all the nonzero vectors in F

k
2

(in any order)—see (2.3) for the case q = 2, k = 3. The codes with these
parity check matrices are called the Hamming codes.
a. Show that if S is a maximal pairwise linearly independent subset of F

m
q ,

then S has exactly (qm − 1)/(q − 1) elements. (This is the same as the
number of points of the projective space P

m−1 over Fq.)
b. What is the dimension k of a Hamming code defined by an n×m matrix

H?
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c. Write down a parity check matrix for a Hamming code with q = 3,
k = 2.

d. Show that the minimum distance of a Hamming code is always 3,
and discuss the error-detecting and error-correcting capabilities of these
codes.

e. Show that all the Hamming codes are perfect codes (see Exercise 5
above).

Exercise 12. Let C be an [n, k, d] linear code with parity check matrix
H. Show that the possible values for yH ∈ F

n−k
q (the syndromes) are

in one-to-one correspondence with the cosets of C in F
n
q (or elements of

the quotient space F
n
q /C ∼= F

n−k
q ). Deduce that there are qn−k different

syndrome values.

§3 Cyclic Codes

In this section, we will consider several classes of linear codes with even
more structure, and we will see how some of the algorithmic techniques in
symbolic algebra we have developed can be applied to encode them. First
we will consider the class of cyclic codes. Cyclic codes may be defined in
several ways—the most elementary is certainly the following: A cyclic code
is a linear code with the property that the set of codewords is closed under
cyclic permutations of the components of vectors in F

n
q . Here is a simple

example.
In F

4
2 , consider the [4, 2, 2] code C with generator matrix

(3.1) G =
(

1 1 1 1
1 0 1 0

)
from Exercise 1 in §2. As we saw there, C contains 4 distinct codewords.
The codewords (0, 0, 0, 0) and (1, 1, 1, 1) are themselves invariant under all
cyclic permutations. The codeword (1, 0, 1, 0) is not itself invariant: shifting
one place to the left (or right) we obtain (0, 1, 0, 1). But this is another
codeword: (0, 1, 0, 1) = (1, 1)G ∈ C. Similarly, shifting (0, 1, 0, 1) one place
to the left or right, we obtain the codeword (1, 0, 1, 0) again. It follows that
the set C is closed under all cyclic shifts.

The property of invariance under cyclic permutations of the components
has an interesting algebraic interpretation. Using the standard isomorphism
between F

n
q and the vector space of polynomials of degree at most n − 1

with coefficients in Fq:

(a0, a1, . . . , an−1) ↔ a0 + a1x + · · · + an−1x
n−1

we may identify a cyclic code C with the corresponding collection of polyno-
mials of degree n−1. The right cyclic shift which sends (a0, a1, . . . , an−1) to
(an−1, a0, a1, . . . , an−2) is the same as the result of multiplying the poly-
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nomial a0 + a1x + · · · + an−1x
n−1 by x, then taking the remainder on

division by xn − 1.

Exercise 1. Show that multiplying the polynomial p(x) = a0 + a1x +
· · · + an−1x

n−1 by x, then taking the remainder on division by xn − 1
yields a polynomial whose coefficients are the same as those of p(x), but
cyclically shifted one place to the right.

This suggests that when dealing with cyclic codes we should consider the
polynomials of degree at most n − 1 as the elements of the quotient ring
R = Fq[x]/〈xn− 1〉. The reason is that multiplication of f(x) by x followed
by division gives the standard representative for the product xf(x) in R.
Hence, from now on we will consider cyclic codes as a vector subspaces of
the ring R which are closed under multiplication by the coset of x in R.
Now we make a key observation.

Exercise 2. Show that if a vector subspace C ⊂ R is closed under mul-
tiplication by [x], then it is closed under multiplication by every coset
[h(x)] ∈ R.

Exercise 2 shows that cyclic codes have the defining property of ideals
in a ring. We record this fact in the following proposition.

(3.2) Proposition. Let R = Fq[x]/〈xn − 1〉. A vector subspace C ⊂ R is
a cyclic code if and only if C is an ideal in the ring R.

The ring R shares a nice property with its “parent” ring Fq[x].

(3.3) Proposition. Each ideal I ⊂ R is principal, generated by the coset
of a single polynomial g of degree n− 1 or less. Moreover, g is a divisor of
xn − 1 in Fq[x].

Proof. By the standard characterization of ideals in a quotient ring (see
e.g. [CLO] Chapter 5, §2, Proposition 10), the ideals in R are in one-to-one
correspondence with the ideals in Fq[x] containing 〈xn − 1〉. Let J be the
ideal corresponding to I. Since all ideals in Fq[x] are principal, J must be
generated by some g(x). Since xn − 1 is in J , g(x) is a divisor of xn − 1 in
Fq[x]. The ideal I = J/〈xn − 1〉 is generated by the coset of g(x) in R.

Naturally enough, the polynomial g in Proposition (3.3) is called a
generator polynomial for the cyclic code.

Exercise 3. Identifying the 4-tuple (a, b, c, d) ∈ F
4
2 with [a + bx + cx2 +

dx3] ∈ R = F2[x]/〈x4 − 1〉, show that the cyclic code in F
4
2 with generator
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matrix (3.1) can be viewed as the ideal generated by the coset of g = 1+x2

in R. Find the codewords of the cyclic code with generator 1 + x in R.

The Reed-Solomon codes are one particularly interesting class of cyclic
codes used extensively in applications. For example, a clever combination
of two of these codes is used for error control in playback of sound record-
ings in the Compact Disc audio system developed by Philips in the early
1980’s. They are attractive because they have good burst error correcting
capabilities (see Exercise 15 below) and also because efficient decoding al-
gorithms are available for them (see the next section). We will begin with
a description of these codes via generator matrices, then show that they
have the invariance property under cyclic shifts.

Choose a finite field Fq and consider codes of block length n = q − 1
constructed in the following way. Let α be a primitive element for Fq (see
Theorem (1.9) of this chapter), fix k < q, and let Lk−1 = {∑k−1

i=0 ait
i :

ai ∈ Fq} be the vector space of polynomials of degree at most k−1 < q−1
in Fq[t]. We make words in F

q−1
q by evaluating polynomials in Lk−1 at the

q − 1 nonzero elements of Fq. By definition

(3.4) C = {(f(1), f(α), . . . , f(αq−2)) ∈ F
q−1
q : f ∈ Lk−1}

is a Reed-Solomon code, sometimes denoted by RS(k, q). C is a vector
subspace of F

q−1
q since it is the image of the vector space Lk−1 under the

linear evaluation mapping

f �→ (f(1), f(α), . . . , f(αq−2)).

Generator matrices for Reed-Solomon codes can be obtained by taking
any basis of Lk−1 and evaluating to form the corresponding codewords. The
monomial basis {1, t, t2, . . . , tk−1} is the simplest. For example, consider
the Reed-Solomon code over F9 with k = 3. Using the basis {1, t, t2} for
L3, we obtain the generator matrix

(3.5) G =

⎛⎝ 1 1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6 α7

1 α2 α4 α6 1 α2 α4 α6

⎞⎠ ,

where the first row gives the values of f(t) = 1, the second row gives the
values of f(t) = t, and the third gives the values of f(t) = t2 at the nonzero
elements of F9 (recall, α8 = 1 in F9). For all k < q, the first k columns
of the generator matrix corresponding to the monomial basis of Lk−1 give
a submatrix of Vandermonde form with nonzero determinant. It follows
that the evaluation mapping is one-to-one, and the corresponding Reed-
Solomon code is a linear code with block length n = q − 1, and dimension
k = dim Lk−1.

The generator matrix formed using the monomial basis of Lk−1 also
brings the cyclic nature of Reed-Solomon codes into sharp focus. Observe
that each cyclic shift of a row of the matrix G in (3.5) yields a scalar
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multiple of the same row. For example, cyclically shifting the third row one
space to the right, we obtain

(α6, 1, α2, α4, α6, 1, α2, α4) = α6 · (1, α2, α4, α6, 1, α2, α4, α6).

Exercise 4. Show that the other rows of (3.5) also have the property that
a cyclic shift takes the row to a scalar multiple of the same row. Show that
this observation implies this Reed-Solomon code is cyclic. Then generalize
your arguments to all Reed-Solomon codes. Hint: Use the original definition
of cyclic codes—closure under all cyclic shifts. You may wish to begin by
showing that the cyclic shifts are linear mappings on F

n
q .

We will give another proof that Reed-Solomon codes are cyclic below,
and also indicate how to find the generator polynomial. However, we pause
at this point to note one of the other interesting properties of Reed-Solomon
codes. Since no polynomial in Lk−1 can have more than k − 1 zeroes in
Fq, every codeword in C has at least (q − 1) − (k − 1) = q − k nonzero
components (and some have exactly this many). By Exercise 4 of §2, the
minimum distance for a Reed-Solomon code is d = q − k = n − k + 1.
Comparing this with the Singleton bound from part d of Exercise 7 from §2,
we see that Reed-Solomon codes have the maximum possible d for the block
length q − 1 and dimension k. Codes with this property are called MDS
(maximum distance separable) codes in the literature. So Reed-Solomon
codes are good in this sense. However, their fixed, small block length relative
to the size of the alphabet is sometimes a disadvantage. There is a larger
class of cyclic codes known as BCH codes which contain the Reed-Solomon
codes as a special case, but which do not have this limitation. Moreover,
a reasonably simple lower bound on d is known for all BCH codes. See
Exercise 13 below and [MS] or [vLi] for more on BCH codes.

Next, we will see another way to show that Reed-Solomon codes are
cyclic that involves somewhat more machinery, but sheds additional light
on the structure of cyclic codes of block length q− 1 in general. Recall from
Proposition (3.3) that the generator polynomial of a cyclic code of block
length q − 1 is a divisor of xq−1 − 1. By Lagrange’s Theorem, each of the
q − 1 nonzero elements of Fq is a root of xq−1 − 1 = 0, hence

xq−1 − 1 =
∏

β∈F ∗
q

(x − β)

in Fq[x], where F
∗
q is the set of nonzero elements of Fq. Consequently, the

divisors of xq−1 − 1 are precisely the polynomials of the form
∏

β∈S(x− β)
for subsets S ⊂ F

∗
q . This is the basis for another characterization of cyclic

codes.

Exercise 5. Show that a linear code of dimension k in R = Fq[x]/〈xq−1−
1〉 is cyclic if and only if the codewords, viewed as polynomials of degree at
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most q − 2, have some set S of q − k− 1 common zeroes in F
∗
q . Hint: If the

codewords have the elements in S as common zeroes, then each codeword
is divisible by g(x) =

∏
β∈S(x − β).

Using this exercise, we will now determine the generator polynomial of a
Reed-Solomon code. Let f(t) =

∑k−1
j=0 ajt

j be an element of Lk−1. Consider
the values ci = f(αi) for i = 0, . . . , q − 2. Using the ci as the coefficients
of a polynomial as in the discussion leading up to Proposition (3.2), write
the corresponding codeword as c(x) =

∑q−2
i=0 cix

i. But then substituting
for ci and interchanging the order of summation, we obtain

(3.6)

c(α�) =
q−2∑
i=0

ciα
i�

=
k−1∑
j=0

aj

⎛⎝q−2∑
i=0

αi(�+j)

⎞⎠ .

Assume that 1 ≤ � ≤ q − k − 1. Then for all 0 ≤ j ≤ k − 1, we have
1 ≤ �+j ≤ q−2. By the result of Exercise 8 of §1, each of the inner sums on
the right is zero so c(α�) = 0. Using Exercise 5, we have obtained another
proof of the fact that Reed-Solomon codes are cyclic, since the codewords
have the set of common zeroes S = {α, α2, . . . , αq−k−1}. Moreover, we
have the following result.

(3.7) Proposition. Let C be the Reed-Solomon code of dimension k and
minimum distance d = q − k over Fq. Then the generator polynomial of C
has the form

g = (x − α) · · · (x − αq−k−1) = (x − α) · · · (x − αd−1).

For example, the Reed-Solomon codewords corresponding to the three
rows of the matrix G in (3.5) above are c1 = 1 + x + x2 + · · · + x7,
c2 = 1+αx+α2x2+· · ·+α7x7, and c3 = 1+α2x+α4x2+α6x4+· · ·+α6x7.
Using Exercise 8 of §1, it is not difficult to see that the common roots of
c1(x) = c2(x) = c3(x) = 0 in F9 are x = α, α2, . . . , α5, so the generator
polynomial for this code is

g = (x − α)(x − α2)(x − α3)(x − α4)(x − α5).

Also see Exercise 11 below for another point of view on Reed-Solomon and
related codes.

From the result of Proposition (3.2), it is natural to consider the following
generalization of the cyclic codes described above. Let R be a quotient ring
of Fq[x1, . . . , xm] of the form

R = Fq[x1, . . . , xm]/〈xn1
1 − 1, . . . , xnm

m − 1〉
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for some n1, . . . , nm. Any ideal I in R will be a linear code closed under
products by arbitrary h(x1, . . . , xn) in R. We will call any code obtained
in this way an m-dimensional cyclic code.

Note first thatH = {xn1
1 −1, . . . , xnm

m −1} is a Gröbner basis for the ideal
it generates, with respect to all monomial orders. (This follows for instance
from Theorem 3 and Proposition 4 of Chapter 2, §9 of [CLO].) Hence
standard representatives for elements of R can be computed by applying
the division algorithm in Fq[x1, . . . , xm] and computing remainders with
respect to H. We obtain in this way as representatives of elements of R all
polynomials whose degree in xi is ni − 1 or less for each i.

Exercise 6. Show that as a vector space,

R = Fq[x1, . . . , xm]/〈xn1
1 − 1, . . . , xnm

m − 1〉 ∼= F
n1·n2···nm
q .

Multiplication of an element of R by x1, for example, can be viewed as
a sort of cyclic shift in one of the variables. Namely, writing a codeword
c(x1, . . . , xn) ∈ I as a polynomial in x1, whose coefficients are polynomials
in the other variables: c =

∑n1−1
j=0 cj(x2, . . . , xn)xj

1, multiplication by x1,
followed by division by H yields the standard representative x1c = cn1−1 +
c0x1 + c1x

2
1 + · · ·+ cn1−2x

n1−1
1 . Since c ∈ I this shifted polynomial is also

a codeword. The same is true for each of the other variables x2, . . . , xm.
In the case m = 2, for instance, it is customary to think of the codewords

of a 2-dimensional cyclic code either as polynomials in two variables, or as
n1×n2 matrices of coefficients. In the matrix interpretation, multiplication
by x1 then corresponds to the right cyclic shift on each row, while multi-
plication by x2 corresponds to a cyclic shift on each of the columns. Each
of these operations leaves the set of codewords invariant.

Exercise 7. Writing F4 = F2[α]/〈α2 +α+1〉, the ideal I ⊂ F4[x, y]/〈x3−
1, y3 − 1〉 generated by g1(x, y) = x2 + α2xy + αy, g2(x, y) = y + 1 gives
an example of a 2-dimensional cyclic code with n = 32 = 9. As an exercise,
determine k, the vector space dimension of this 2-dimensional cyclic code,
by determining a vector space basis for I over F4. (Answer: k = 7. Also
see the discussion following Theorem (3.9) below.) The minimum distance
of this code is d = 2. Do you see why?

To define an m-dimensional cyclic code, it suffices to give a set of gener-
ators {[f1], . . . , [fs]} ⊂ R for the ideal I ⊂ R. The corresponding ideal J
in Fq[x1, . . . , xm] is

J = 〈f1, . . . , fs〉 + 〈xn1−1
1 − 1, . . . , xnm−1

m − 1〉.
Fix any monomial order on Fq[x1, . . . , xm]. With a Gröbner basis G =
{g1, . . . , gt} for J with respect to this order we have everything necessary to
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determine whether a given element of R is in I using the division algorithm
in Fq[x1, . . . , xm].

(3.8) Proposition. Let R, I, J, G be as above. A polynomial h(x1, . . . , xn)
represents an element of I in R if and only if its remainder on division by
G is zero.

Proof. This follows because I = J/〈xn1−1
1 − 1, . . . , xnm−1

m − 1〉 and
standard isomorphism theorems (see Theorem 2.6 of [Jac]) give a ring
isomorphism

R/I ∼= Fq[x1, . . . , xm]/J.

See Exercise 14 below for the details.

An immediate consequence of Proposition (3.8) is the following system-
atic encoding algorithm for m-dimensional cyclic codes using division with
respect to a Gröbner basis. One of the advantages of m-dimensional cyclic
codes over linear codes in general is that their extra structure allows a very
compact representation of the encoding function. We only need to know
a reduced Gröbner basis for the ideal J corresponding to a cyclic code to
perform systematic encoding. A Gröbner basis will generally have fewer
elements than a vector space basis of I. This frequently means that much
less information needs to be stored. In the following description of a sys-
tematic encoder, the information positions of a codeword will refer to the k
positions in the codeword that duplicate the components of the element of
F

k
q that is being encoded. These will correspond to a certain subset of the

coefficients in a polynomial representative for an element of R. Similarly,
the parity check positions are the complementary collection of coefficients.

(3.9) Theorem. Let I ⊂ R = Fq[x1, . . . , xm]/〈xn1
1 − 1, . . . , xnm

m − 1〉
be an m-dimensional cyclic code, and let G be a Gröbner basis for the
corresponding ideal J ⊂ Fq[x1, . . . , xm] with respect to some monomial
order. Then there is a systematic encoding function for I constructed as
follows.
a. The information positions are the coefficients of the nonstandard mono-

mials for J in which each xi appears to a power at most ni − 1.
(Non-standard monomials are monomials in 〈LT(J)〉.)

b. The parity check positions are the coefficients of the standard monomi-
als. (The standard monomials are those not contained in 〈LT(J)〉.)

c. The following algorithm gives a systematic encoder E for I:

Input: the Gröbner basis G for J ,

w, a linear combination of nonstandard monomials

Output: E(w) ∈ I
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Uses: Division algorithm with respect to given order

w := wG (the remainder on division)

E(w) := w − w

Proof. The dimension of R/I as a vector space over Fq is equal to the
number of standard monomials for J since R/I ∼= Fq[x1, . . . , xm]/J . (See
for instance Proposition 4 from Chapter 5, §3 of [CLO].) The dimension of I
as a vector space over Fq is equal to the difference dim R−dim R/I. But this
is the same as the number of nonstandard monomials for J , in which each
xi appears to a power at most ni− 1. Hence the span of those monomials is
a subspace of R of the same dimension as I. Let w be a linear combination
of only these nonstandard monomials. By the properties of the division
algorithm, w is a linear combination of only standard monomials, so the
symbols from w are not changed in the process of computing E(w) = w−w.
By Proposition (3.8), the difference w − w is an element of the ideal I, so
it represents a codeword. As a result E is a systematic encoding function
for I.

In the case m = 1, the Gröbner basis for J is the generator polynomial
g, and the remainder w is computed by ordinary 1-variable polynomial
division. For example, let F9 = F3[α]/〈α2 + α + 2〉 (α is a primitive ele-
ment by (1.1)) and consider the Reed-Solomon code over F9 with n = 8,
k = 5. By Proposition (3.7), the generator polynomial for this code is
g = (x− α)(x− α2)(x− α3), and {g} is a Gröbner basis for the ideal J in
F9[x] corresponding to the Reed-Solomon code. By Theorem (3.9), as in-
formation positions for a systematic encoder we can take the coefficients of
the nonstandard monomials x7, x6, . . . , x3 in an element of F9[x]/〈x8 − 1〉.
The parity check positions are the coefficients of the standard monomials
x2, x, 1. To encode a word w(x) = x7 + αx5 + (α + 1)x3, for instance, we
divide g into w, obtaining the remainder w. Then E(w) = w − w. Here
is a Maple session performing this computation. We use the method dis-
cussed in §§1,2 for dealing with polynomials with coefficients in a finite
field. First we find the generator polynomial for the Reed-Solomon code as
above, using:

alias(alpha = RootOf(t^2 + t + 2));
g := collect(Expand((x-alpha)*(x-alpha^2)*

(x-alpha^3) mod 3,x);

This produces output

g := x3 + alpha x2 + (1 + alpha)x + 2 alpha + 1.

Then

w := x^7 + alpha*x^5 + (alpha + 1)*x^3:
(w - Rem(w,g,x)) mod 3;
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yields output as follows

x7 + alpha x5 + (1 + alpha)x3 + 2(2 + 2 alpha)x2 + x + 2.

After simplifying the coefficient of x2 to α + 1, this is the Reed-Solomon
codeword.

Next, we consider the 2-dimensional cyclic code in Exercise 7. Recall
I ⊂ R = F4[x, y]/〈x3 − 1, y3 − 1〉 generated by g1(x, y) = x2 + α2xy +
αy, g2(x, y) = y+1. Take F4 = F2[α]/〈α2 +α+1〉 and note that −1 = +1
in this field. Hence x3 − 1 is the same as x3 + 1, and so forth. As above,
we must consider the corresponding ideal

J = 〈x2 + α2xy + αy, y + 1, x3 + 1, y3 + 1〉
in F4[x, y]. Applying Buchberger’s algorithm to compute a reduced lex
Gröbner basis (x > y) for this ideal, we find

G = {x2 + α2x + α, y + 1}.
As an immediate result, the quotient ring F4[x, y]/J ∼= R/I is 2-
dimensional, while R is 9-dimensional over F4. Hence I has dimension
9 − 2 = 7. There are also exactly two points in V(J). According to The-
orem (3.9), the information positions for this code are the coefficients of
x2, y, xy, x2y, y2, xy2, x2y2, and the parity checks are the coefficients of
1, x. To encode w = x2y2 for example, we would compute the remain-
der on division by G, which is x2y2G

= α2x + α then subtract to obtain
E(w) = x2y2 + α2x + α.

Gröbner basis computations in polynomial rings over finite fields may be
done with Maple’s Groebner and Ore algebra packages as follows. For ex-
ample, to compute the example above, we would first load the Ore algebra
and Groebner packages, then define the polynomial ring using

A:= poly algebra(x,y,a,characteristic=2, alg relations={a^2+a+1});
(This defines a ring A which is isomorphic to F4[x, y]. Here a is the primitive
element for F4 and the idea is the same as in our earlier computations with a
variable aliased as a root of a given irreducible polynomial. However, that
method and the mod environment are not compatible with the Gröbner
basis routines.) Then define the lex order as follows.

TL:=termorder(A,plex(x,y,a));

(Note that a is included.) Finally, if we declare

J:=[x^2+a^2*x*y+a*y,y+1,x^3+1,y^3+1];

then the command

gbasis(J,TL);

will do the Gröbner basis computation in the ring A. Other computer
algebra systems such as Singular and Macaulay 2 can handle these
computations.
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ADDITIONAL EXERCISES FOR §3

Exercise 8. Let C be a cyclic code in R = Fq[x]/〈xn − 1〉, with monic
generator polynomial g(x) of degree n − k, so that the dimension of C
is k. Write out a generator matrix for C as a linear code, viewing the
encoding procedure of Theorem (3.9) as a linear map from the span of
{xn−k, xn−k+1, . . . , xn−1} to R. In particular show that every row of the
matrix is determined by the first row, i.e. the image E(xn−k). This gives
another way to understand how the cyclic property reduces the amount of
information necessary to describe a code.

Exercise 9. This exercise will study the dual of a cyclic code of block
length q − 1 or (q − 1)m more generally. See Exercise 10 from §2 for the
definition of the dual of a linear code. Let R = Fq[x]/〈xq−1 − 1〉 as in the
discussion of Reed-Solomon codes.
a. Show that if f(x) =

∑q−2
i=0 aix

i and h(x) =
∑q−2

i=0 bix
i represent

any two elements of R, then the inner product 〈a, b〉 of their vec-
tors of coefficients is the same as the constant term in the product
f(x)h(x−1) = f(x)h(xq−2) in R.

b. Let C be a cyclic code in R. Show that the dual code C⊥ is equal to
the collection of polynomials h(x) such that f(x)h(x−1) = 0 (product
in R) for all f(x) ∈ C.

c. Use part b to describe the generator polynomial for C⊥ in terms of the
generator g(x) for C. Hint: recall from the proof of Proposition (3.3)
that g(x) is a divisor of xq−1 − 1 =

∏
β∈F ∗

q
(x − β). The generator

polynomial for C⊥ will have the same property.
d. Extend these results to m-dimensional cyclic codes in

Fq[x1, . . . , xm]/〈xq−1
i − 1 : i = 1, . . . , m〉.

Exercise 10. This exercise discusses another approach to the study of
cyclic codes of block-length q − 1, which recovers the result of Exercise 5
in a different way. Namely, consider the ring R = Fq[x]/〈xq−1 − 1〉. The
structure of the ring R and its ideals may be studied as follows.
a. Show that

(3.10)
ϕ : R → F

q−1
q

c(x) �→ (c(1), c(α), . . . , c(αq−2))

defines a bijective mapping, which becomes an isomorphism of rings if
we introduce the component-wise product

(c0, . . . , cq−2) · (d0, . . . , dq−2) = (c0d0, . . . , cq−2dq−2)

as multiplication operation in F
q−1
q . (The mapping ϕ is a discrete ana-

logue of the Fourier transform since it takes polynomial products in
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R—convolution on the coefficients—to the component-wise products in
F

q−1
q .)

b. Show that the ideals in the ring F
q−1
q (with the component-wise prod-

uct) are precisely the subsets of the following form. For each collection
of subscripts S ⊂ {0, 1, . . . , q − 2}, let

IS = {(c0, . . . , cq−2) : ci = 0 for all i ∈ S}.
Then each ideal is equal to IS for some S.

c. Using the mapping ϕ, deduce from part b and Proposition (3.2) that
cyclic codes in R are in one-to-one correspondence with subsets S ⊂
{0, 1, . . . , q − 2}, or equivalently subsets of the nonzero elements of the
field, F

∗
q . Given a cyclic code C ⊂ R, the corresponding subset of F

∗
q is

called the set of zeroes of C. For Reed-Solomon codes the set of zeroes
has the form {α, . . . , αq−k−1} (a “consecutive string” of zeroes starting
from α).

Exercise 11.
a. By constructing an appropriate transform ϕ analogous to the map

in (3.10), or otherwise, show that the results of Exercise 10 may be
modified suitably to cover the case of m-dimensional cyclic codes of
block length n = (q − 1)m. In particular, an m-dimensional cyclic
code I in Fq[x1, . . . , xm]/〈xq−1

1 − 1, . . . , xq−1
m − 1〉 is uniquely spec-

ified by giving a set of zeroes—the points of V(J)—in (F ∗
q )m =

V(xq−1
1 − 1, . . . , xq−1

m − 1). (Readers of Chapter 2 should compare with
the discussion of finite-dimensional algebras in §2 of that chapter.)

b. Consider the 2-dimensional cyclic code I in F9[x, y]/〈x8 − 1, y8 − 1〉
generated by g(x, y) = x7y7 + 1. What is the dimension of I (i.e., the
parameter k)? What is the corresponding set of zeroes in (F ∗

9 )2?

Exercise 12. In this exercise, we will explore the relation between the
zeroes of a cyclic code and its minimum distance. Let α be a primitive
element of Fq. Consider a cyclic code C of length q− 1 over Fq and suppose
that there exist � and δ ≥ 2 such that the δ − 1 consecutive powers of α:

α�, α�+1, . . . , α�+δ−2

are distinct roots of the generator polynomial of C.
a. By considering the equations c(α�+j) = 0, j = 0, . . . , δ− 2, satisfied by

the codewords (written as polynomials), show that the vectors

(1, α�+j, α2(�+j), . . . , α(q−2)(�+j)),

can be taken as columns of a parity check matrix H for C.
b. Show that, possibly after removing common factors from the rows, all

the determinants of the (δ− 1)× (δ− 1) submatrices of H formed using
entries in these columns are Vandermonde determinants.
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c. Using Proposition (2.5), show that the minimum distance d of C satisfies
d ≥ δ.

d. Use the result of part c to rederive the minimum distance of a Reed-
Solomon code.

Exercise 13. (The BCH codes) Now consider cyclic codes C of length
qm − 1 over Fq for some m ≥ 1.
a. Show that the result of Exercise 12 extends in the following way. Let α

be a primitive element of Fqm , and suppose that there exist � and δ ≥ 2
such that the δ − 1 consecutive powers of α:

α�, α�+1, . . . , α�+δ−2

are distinct roots of the generator polynomial g(x) ∈ Fq[x] of C. Show
that C has minimum distance d ≥ δ.

b. The “narrow-sense” q-ary BCH code BCHq(m, t) is the cyclic code over
Fq whose generator polynomial is the least common multiple of the
minimal polynomials of α, α2, . . . , α2t ∈ Fqm over Fq. (The minimal
polynomial of β ∈ Fqm over Fq is the nonzero polynomial of minimal
degree in Fq[u] with β as a root.) Show the the minimum distance of
BCHq(m, t) is at least 2t + 1. (The integer 2t + 1 is called the designed
distance of the BCH code.)

c. Construct the generator polynomial for BCH3(2, 2) (a code over F3).
What is the dimension of this code?

d. Is it possible for the actual minimum distance of a BCH code to be
strictly larger than its designed distance? For example, show using
Proposition (2.5) that the actual minimum distance of the binary BCH
code BCH2(5, 4) satisfies d ≥ 11 even though the designed distance
is only 9. Hint: Start by showing that if β ∈ F2m is a root of a poly-
nomial p(u) ∈ F2[u], then so are β2, β4, . . . , β2m−1

. Readers familiar
with Galois theory for finite fields will recognize that we are apply-
ing the Frobenius automorphism of F2m over F2 from Exercise 14 of §1
repeatedly here.

Exercise 14. Prove Proposition (3.8).

Exercise 15. Reed-Solomon codes are now commonly used in situations
such as communication to and from deep-space exploration craft, the CD
digital audio system, and many others where errors tend to occur in
“bursts” rather than randomly. One reason is that Reed-Solomon codes
over an alphabet F2r with r > 1 can correct relatively long bursts of errors
on the bit level, even if the minimum distance d is relatively small. Each
Reed-Solomon codeword may be represented as a string of (2r − 1)r bits,
since each symbol from F2r is represented by r bits. Show that a burst of
r� consecutive bit errors will change at most � + 1 of the entries of the
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codeword, viewed as elements of F2r . So if � + 1 ≤ �(d − 1)/2�, a burst
error of length r� can be corrected. Compare with Proposition (2.1).

§4 Reed-Solomon Decoding Algorithms

The syndrome decoding method that we described in §2 can be applied
to decode any linear code. However, as noted there, for codes with large
codimension n − k, a very large amount of information must be stored to
carry it out. In this section, we will see that there are much better methods
available for the Reed-Solomon codes introduced in §3—methods which ex-
ploit their extra algebraic structure. Several different but related decoding
algorithms for these codes have been considered. One well-known method
is due to Berlekamp and Massey (see [Bla]). With suitable modifications,
it also applies to the larger class of BCH codes mentioned in §3, and it
is commonly used in practice. Other algorithms paralleling the Euclidean
algorithm for the GCD of two polynomials have also been considered. Our
presentation will follow two papers of Fitzpatrick ([Fit1], [Fit2]) which
show how Gröbner bases for modules over polynomial rings (see Chapter 5)
can be used to give a framework for the computations involved. Decoding
algorithms for m-dimensional cyclic codes using similar ideas have been
considered by Sakata ([Sak]), Heegard-Saints ([HeS]) and others.

To begin, we introduce some notation. We fix a field Fq and a primitive
element α, and consider the Reed-Solomon code C ⊂ Fq/〈xq−1 − 1〉 given
by a generator polynomial

g = (x − α) · · · (x − αd−1)

of degree d − 1. By Proposition (3.7), we know that the dimension of C
is k = q − d, and the minimum distance of C is d. For simplicity we will
assume that d is odd: d = 2t + 1. Then by Proposition (2.1), any error
vector of weight t or less should be correctable.

Let c =
∑q−2

j=0 cjx
j be a codeword of C. Since C has generator polyno-

mial g(x), this means that in Fq[x], c is divisible by g. Suppose that c is
transmitted, but some errors are introduced, so that the received word is
y = c + e for some e =

∑
i∈I eix

i. I is called the set of error locations and
the coefficients ei are known as the error values. To decode, we must solve
the following problem.

(4.1) Problem. Given a received word y, determine the set of error lo-
cations I and the error values ei. Then the decoding function will return
E−1(y − e).

The set of values Ej = y(αj), j = 1, . . . , d− 1, serves the same purpose
as the syndrome of the received word for a general linear code. (It is not
the same thing though—the direct analog of the syndrome would be the



§4. Reed-Solomon Decoding Algorithms 481

remainder on division by the generator. See Exercise 7 below.) First, we
can determine whether errors have occurred by computing the values Ej. If
Ej = y(αj) = 0 for all j = 1, . . . , d− 1, then y is divisible by g. Assuming
the error vector has a weight at most t, y must be the codeword we intended
to send. If some Ej �= 0, then there are errors and we can try to use the
information included in the Ej to solve Problem (4.1). Note that the Ej

are the values of the error polynomial for j = 1, . . . , d − 1:

Ej = y(αj) = c(αj) + e(αj) = e(αj),

since c is a multiple of g. (As in Exercise 10 from §3, we could also think
of the Ej as a portion of the transform of the error polynomial.) The
polynomial

S(x) =
d−1∑
j=1

Ejx
j−1

is called the syndrome polynomial for y. Its degree is d − 2 or less. By
extending the definition of Ej = e(αj) to all exponents j we can also
consider the formal power series

(4.2) E(x) =
∞∑

j=1

Ejx
j−1.

(Since αq = α, the coefficients in E are periodic, with period at most q,
and consequently E is actually the series expansion of a rational function
of x; see (4.3) below. One can also solve the decoding problem by finding
the recurrence relation of minimal order on the coefficients in E. For the
basics of this approach see Exercise 6 below.)

Suppose we knew the error polynomial e. Then

Ej =
∑
i∈I

ei(αj)i =
∑
i∈I

ei(αi)j .

By expanding in formal geometric series, E(x) from (4.2) can be written
as

(4.3)

E(x) =
∑
i∈I

eiα
i

(1 − αix)

=
Ω(x)
Λ(x)

,

where

Λ =
∏
i∈I

(1 − αix)
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and

Ω =
∑
i∈I

eiα
i
∏
j �=i
j∈I

(1 − αjx).

The roots of Λ are precisely the α−i for i ∈ I. Since the error locations
can be determined easily from these roots, we call Λ the error locator
polynomial . Turning to the numerator Ω, we see that

deg(Ω) ≤ deg(Λ) − 1.

In addition,

Ω(α−i) = eiα
i

∏
j �=i,j∈I

(1 − αjα−i) �= 0.

Hence Ω has no roots in common with Λ. From this we deduce the im-
portant observation that the polynomials Ω and Λ must be relatively
prime.

Similarly, if we consider the “tail” of the series E,

(4.4)
E(x) − S(x) =

∞∑
j=d

⎛⎝∑
i∈I

ei(αi)j

⎞⎠ xj−1

= xd−1 · Γ(x)
Λ(x)

,

where

Γ =
∑
i∈I

eiα
id

∏
j �=i
j∈I

(1 − αjx).

The degree of Γ is also at most deg(Λ) − 1.
Combining (4.3) and (4.4), and writing d− 1 = 2t we obtain the relation

(4.5) Ω = ΛS + x2tΓ.

For some purposes, it will be more convenient to regard (4.5) as a
congruence. The equation (4.5) implies that

(4.6) Ω ≡ ΛS mod x2t.

Conversely, if (4.6) holds, there is some polynomial Γ such that (4.5) holds.
The congruence (4.6), or sometimes its explicit form (4.5), is called the key
equation for decoding.

The derivation of the key equation (4.6) assumed e was known. But now
consider the situation in an actual decoding problem, assuming an error
vector of weight at most t. Given the received word y, S is computed.
The key equation (4.6) is now viewed as a relation between the known
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polynomials S, x2t, and the unknowns Ω, Λ. Suppose a solution (Ω, Λ) of
the key equation is found, which satisfies the following degree conditions:

(4.7)
{

deg(Λ) ≤ t
deg(Ω) < deg(Λ)

and in which Ω, Λ are relatively prime. We claim that in such a solution Λ
must be a factor of xq−1 − 1, and its roots give the inverses of the error
locations. This is a consequence of the following uniqueness statement.

(4.8) Theorem. Let S be the syndrome polynomial corresponding to a
received word y with an error of weight at most t. Up to a constant mul-
tiple, there exists a unique solution (Ω, Λ) of (4.6) that satisfies the degree
conditions (4.7), and in which Ω and Λ are relatively prime.

Proof. As above, the actual error locator Λ and the corresponding Ω give
one such solution. Let (Ω, Λ) be any other. From the congruences

Ω ≡ ΛS mod x2t

Ω ≡ ΛS mod x2t,

multiplying the second by Λ, the first by Λ and subtracting, we obtain

ΩΛ ≡ ΩΛ mod x2t.

Since the degree conditions (4.7) are satisfied for both solutions, both sides
of this congruence are actually polynomials of degree at most 2t − 1, so it
follows that

ΩΛ = ΩΛ.

Since Λ and Ω are relatively prime, and similarly for Λ and Ω, Λ must
divide Λ and vice versa. Similarly for Ω and Ω. As a result, Λ and Λ differ
at most by a constant multiple. Similarly for Ω and Ω, and the constants
must agree.

Given a solution of (4.6) for which the conditions of Theorem (4.8) are
satisfied, working backwards, we can determine the roots of Λ = 0 in F

∗
q ,

and hence the error locations—if α−i appears as a root, then i ∈ I is an
error location. Finally, the error values can be determined by the following
observation.

Exercise 1. Let (Ω, Λ) be the solution of (4.6) in which the actual error
locator polynomial Λ (with constant term 1) appears. If i ∈ I, show that

Ω(α−i) = αieiχi(α−i),

where χi =
∏

j �=i(1 − αjx). Hence we can solve for ei, knowing the error
locations. The resulting expression is called the Forney formula for the
error value.
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Theorem (4.8) and the preceding discussion show that solving the decod-
ing problem (4.1) can be accomplished by solving the key equation (4.6).
It is here that the theory of module Gröbner bases can be applied to good
effect. Namely, given the integer t and S ∈ Fq[x], consider the set of all
pairs (Ω, Λ) ∈ Fq[x]2 satisfying (4.6):

K = {(Ω, Λ) : Ω ≡ ΛS mod x2t}.

Exercise 2. Show that K is a Fq[x]-submodule of Fq[x]2. Also show that
every element of K can be written as a combination (with polynomial
coefficients) of the two generators

(4.9) g1 = (x2t, 0) and g2 = (S, 1).

Hint: For the last part it may help to consider the related module

K = {(Ω, Λ, Γ) : Ω = ΛS + x2tΓ}
and the elements (Ω, Λ, Γ) = (x2t, 0, 1), (S, 1, 0) in K.

The generators for K given in (4.9) involve only the known polynomials
for the decoding problem with syndrome S. Following Fitzpatrick, we will
now show that (4.9) is a Gröbner basis for K with respect to one monomial
order on Fq[x]2. Moreover, one of the special solutions (Λ, Ω) ∈ K given
by Theorem (4.8) is guaranteed to occur in a Gröbner basis for K with
respect to a second monomial order on Fq[x]2. These results form the basis
for two different decoding methods that we will indicate.

To prepare for this, we need to begin by developing some preliminary
facts about submodules of Fq[x]2 and monomial orders. The situation here
is very simple compared to the general situation studied in Chapter 5. We
will restrict our attention to submodules M ⊂ Fq[x]2 such that the quotient
Fq[x]2/M is finite-dimensional as a vector space over Fq. We will see below
that this is always the case for the module K with generators as in (4.9).
There is a characterization of these submodules that is very similar to the
Finiteness Theorem for quotients k[x1, . . . , xn]/I from Chapter 2, §2.

(4.10) Proposition. Let k be any field, and let M be a submodule of k[x]2.
Let > be any monomial order on k[x]2. Then the following conditions are
equivalent:
a. The k-vector space k[x]2/M is finite-dimensional.
b. 〈LT>(M)〉 contains elements of the form xue1 = (xu, 0) and xve2 =

(0, xv) for some u, v ≥ 0.

Proof. Let G be a Gröbner basis for M with respect to the monomial
order >. As in the ideal case, the elements of k[x]2/M are linear combina-
tions of monomials in the complement of 〈LT>(M)〉. There is a finite number
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of such monomials if and only if 〈LT>(M)〉 contains multiples of both e1
and e2.

Every submodule we consider from now on in this section will satisfy the
equivalent conditions in (4.10), even if no explicit mention is made of that
fact.

The monomial orders that come into play in decoding are special cases
of weight orders on Fq[x]2. They can also be described very simply “from
scratch” as follows.

(4.11) Definition. Let r ∈ Z, and define an order >r by the following
rules. First, xmei >r xnei if m > n and i = 1 or 2. Second, xme2 >r xne1
if and only if m + r ≥ n.

For example, with r = 2, the monomials in k[x]2 are ordered by >2 as
follows:

e1 <2 xe1 <2 x2e1 <2 e2 <2 x3e1 <2 xe2 <2 x4e1 <2 · · · .

Exercise 3.
a. Show that >r defines a monomial order on k[x]2 for each r ∈ Z.
b. How are the monomials in k[x]2 ordered under >−2?
c. Show that the >0 and >−1 orders coincide with TOP (term over posi-

tion) orders as introduced in Chapter 5 (for different orderings of the
standard basis).

d. Are the POT (position over term) orders special cases of the >r orders?
Why or why not?

Gröbner bases for submodules with respect to the >r orders have very
special forms.

(4.12) Proposition. Let M be a submodule of k[x]2, and fix r ∈ Z. As-
sume 〈LT>r(M)〉 is generated by xue1 = (xu, 0) and xve2 = (0, xv) for
some u, v ≥ 0. Then a subset G ⊂ M is a reduced Gröbner basis of M with
respect to >r if and only if G = {g1 = (g11, g12), g2 = (g21, g22)}, where
the gi satisfy the following two properties:
a. LT(g1) = xue1 (in g11), and LT(g2) = xve2 (in g22) for u, v as above.
b. deg(g21) < u and deg(g12) < v.

Proof. Suppose G is a subset of M satisfying conditions a,b. By a, the
leading terms of the elements of G generate 〈LT(M)〉, so by definition G
is a Gröbner basis for M . Condition b implies that no terms in g1 can be
removed by division with respect to g2 and vice versa, so G is reduced.
Conversely, if G is a reduced Gröbner basis for M with respect to >r it
must contain exactly two elements. Numbering the generators g1 and g2 as
above condition a must hold. Finally b must hold if G is reduced. (Note,
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fixing the leading terms in g1 and g2 implies that the other components
satisfy deg(g12) + r < u and deg(g21) ≤ v + r.)

An immediate, but important, consequence of Proposition (4.12) is the
following observation.

(4.13) Corollary. Let G = {(S, 1), (x2t, 0)} be the generators for the
module K of solutions of the key equation in the decoding problem with
syndrome S. Then G is a Gröbner basis for K with respect to the order
>deg(S).

Note LT>deg(S)((S, 1)) = (0, 1) = e2, so the module of solutions of the key
equation always satisfies the finiteness condition from Proposition (4.10).
We leave the proof of Corollary (4.13) as an exercise for the reader.

The final general fact we will need to know is another consequence of the
definition of a Gröbner basis. First we introduce some terminology.

(4.14) Definition. Let M be a nonzero submodule of k[x]2. A minimal
element of M with respect to a monomial order > is a g ∈ M \ {0} such
that LT(g) is minimal with respect to >.

For instance, from (4.13), (S, 1) is minimal with respect to the order
>deg(S) in 〈(S, 1), (x2t, 0)〉 since

e2 = LT((S, 1)) <deg(S) LT((x2t, 0)) = x2te1,

and these leading terms generate 〈LT(K)〉 for the >deg(S) order.

Exercise 4. Show that minimal elements of M ⊂ k[x]2 are unique, up to
a nonzero constant multiple.

As in the example above, once we fix an order >r, a minimal element for
M with respect to that order is guaranteed to appear in a Gröbner basis
for M with respect to >r.

(4.15) Proposition. Fix any >r order on k[x]2, and let M be a sub-
module. Every Gröbner basis for M with respect to >r contains a minimal
element of M with respect to >r.

We leave the easy proof to the reader. Now we come to the main point.
The special solution of the key equation (4.6) guaranteed by Theorem (4.8)
can be characterized as the minimal element of the module K with respect
to a suitable order.

(4.16) Proposition. Let g = (Ω, Λ) be a solution of the key equation
satisfying the degree conditions (4.7) and with components relatively prime
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(which is unique up to constant multiple by Theorem (4.8)). Then g is a
minimal element of K under the >−1 order.

Proof. An element g = (Ω, Λ) ∈ K satisfies deg(Λ) > deg(Ω) if and only
if its leading term with respect to >−1 is a multiple of e2. The elements of
K given by Theorem (4.8) have this property and have minimal possible
deg(Λ), so their leading term is minimal among leading terms which are
multiples of e2.

Aiming for a contradiction now, suppose that g is not minimal, or
equivalently that there is some nonzero h = (A, B) in K such that
LT(h) <−1 LT(g). Then by the remarks above, LT(h) must be a multiple of
e1, that is, it must appear in A, so

(4.17) deg(Λ) > deg(A) ≥ deg(B).

But both h and g are solutions of the key equation:

A ≡ SB mod x2t

Ω ≡ SΛ mod x2t.

Multiplying the second congruence by B, the first by Λ, and subtracting,
we obtain

(4.18) ΛA ≡ BΩ mod x2t.

We claim this contradicts the inequalities on degrees above. Recall that
deg(Λ) ≤ t and deg(Ω) < deg(Λ), hence deg(Ω) ≤ t − 1. But from (4.17),
it follows that deg(A) ≤ t− 1. The product on the left of (4.18) has degree
at most 2t − 1, and the product on the right side has degree strictly less
than the product on the left. But that is absurd.

Combining (4.16) and (4.15), we see that the special solution of the key
equation that we seek can be found in a Gröbner basis for K with respect to
the >−1 order. This gives at least two possible ways to proceed in decoding.

1. We could use the generating set

{(S, 1), (x2t, 0)}
for K, apply Buchberger’s algorithm (or a suitable variant adapted to
the special properties of modules over the one variable polynomial ring
Fq[x]), and compute a Gröbner basis for K with respect to >−1 directly.
Then the minimal element g which solves the decoding problem will
appear in the Gröbner basis.

2. Alternatively, we could make use of the fact recorded in Corollary (4.13).
Since G = {(S, 1), (x2t, 0)} is already a Gröbner basis for K with respect
to another order, and Fq[x]2/M is finite-dimensional over Fq, we can use
an extension of the FGLM Gröbner basis conversion algorithm from §3
of Chapter 2 (see [Fit2]) to convert {(S, 1), (x2t, 0)} into a Gröbner basis
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G′ for the same module, but with respect to the >−1 order. Then as in
approach 1, the minimal element in K will be an element of G′.

Yet another possibility would be to build up to the desired solution of
the key equation inductively, solving the congruences

Ω ≡ ΛS mod x�

for � = 1, 2, . . . , 2t in turn. This approach gives one way to understand the
operations from the Berlekamp-Massey algorithm mentioned above. See
[Fit1] for a Gröbner basis interpretation of this method.

Of the two approaches detailed above, a deeper analysis shows that the
first approach is more efficient for long codes. But both are interesting from
the mathematical standpoint. We will discuss the second approach in the
text to conclude this section, and indicate how the first might proceed in the
exercises. One observation we can make here is that the full analog of the
FGLM algorithm need not be carried out. Instead, we need only consider
the monomials in Fq[x]2 one by one in increasing >−1 order and stop on
the first instance of a linear dependence among the remainders of those
monomials on division by G. Here is the algorithm (see [Fit2], Algorithm
3.5). It uses a subalgorithm called nextmonom which takes a monomial u
and returns the next monomial after u in Fq[x]2 in the >−1 order. (Since
we will stop after one element of the new Gröbner basis is obtained, we do
not need to check whether the next monomial is a multiple of the leading
terms of the other new basis elements as we did in the full FGLM algorithm
in Chapter 2.)

(4.19) Proposition. The following algorithm computes the minimal ele-
ment of the module K of solutions of the key equation with respect to the
>−1 order.

Input: G = {(S, 1), (x2t, 0)}
Output: (Ω, Λ) minimal in K = 〈G〉 with respect to >−1

Uses: Division algorithm with respect to G, using >deg(S) order ,

nextmonom

t1 := (0, 1); R1 := t1
G

done := false

WHILE done = false DO

tj+1 := nextmonom(tj)

Rj+1 := tj+1
G

IF there are ci ∈ Fq with Rj+1 =
∑j

i=1 ciRi THEN
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(Ω, Λ) := tj+1 −
j∑

i=1

citi

done := true

ELSE

j := j + 1

Exercise 5. Prove that this algorithm always terminates and correctly
computes the minimal element of K = 〈G〉 with respect to >−1. Hint: See
the proof of Theorem (3.4) in Chapter 2; this situation is simpler in several
ways, though.

We illustrate the decoding method based on this algorithm with an
example. Let C be the Reed-Solomon code over F9, with

g = (x − α)(x − α2)(x − α3)(x − α4),

and d = 5. We expect to be able to correct any error vector of weight 2 or
less. We claim that

c = x7 + 2x5 + x2 + 2x + 1

is a codeword for C. This follows for instance from a Maple computation
such as this one. After initializing the field (a below is the primitive element
α for F9), setting c equal to the polynomial above, and g equal to the
generator,

Rem(c,g,x) mod 3;

returns 0, showing that g divides c.
Suppose that errors occur in transmission of c, yielding the received word

y = x7 + αx5 + (α + 2)x2 + 2x + 1.

(Do you see where the errors occurred?) We begin by computing the syn-
drome S. Using Maple, we find y(α) = α + 2, y(α2) = y(α3) = 2, and
y(α4) = 0. For example, the calculation of y(α) can be done simply by
initializing the field, defining y as above, then computing

Normal(subs(x=a,y)) mod 3;

So we have

S = 2x2 + 2x + α + 2.

By Theorem (4.8), we need to consider the module K of solutions of the
key equation

Ω ≡ ΛS mod x4.
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By Corollary (4.13), G = {(x4, 0), (2x2 + 2x + α + 2, 1)} is the reduced
Gröbner basis for K with respect to the order >2. Applying Proposition
(4.19), we find

t1 = (0, 1) R1 = (x2 + x + 2α + 1, 0)

t2 = (1, 0) R2 = (1, 0)

t3 = (0, x) R3 = (x3 + x2 + (2α + 1)x, 0)

t4 = (x, 0) R4 = (x, 0)

t5 = (0, x2) R5 = (x3 + (2α + 1)x2, 0).

Here for the first time we obtain a linear dependence:

R5 = −(αR1 + (α + 1)R2 + 2R3 + (α + 1)R4).

Hence,

αt1 + (α + 1)t2 + 2t3 + (α + 1)t4 + t5 = (α + 1 + (α + 1)x, α + 2x + x2)

is the minimal element (Ω, Λ) of K that we are looking for.
The error locations are found by solving

Λ(x) = x2 + 2x + α = 0.

Recall, by definition Λ =
∏

i∈I(1−αix) has constant term 1, so we need to
adjust constants to get the actual error locator polynomial and the correct
Ω to use in the determination of the error values, using the Forney formula
of Exercise 1. Dividing by α, we obtain Λ = (α + 1)x2 + (2α + 2)x + 1.
By factoring, or by an exhaustive search for the roots as in

for j to 8 do
Normal(subs(x = a^j,Lambda) mod 3;

end do;

we find that the roots are x = α3 and x = α6. Taking the exponents of
the inverses gives the error locations: (α3)−1 = α5 and (α6)−1 = α2, so
the errors occurred in the coefficients of x2 and x5. (Check the codeword c
and the received word y above to see that this is correct.) Next, we apply
Exercise 1 to obtain the error values. We have

Ω = (1/α)((α + 1)x + α + 1) = (α + 2)x + α + 2.

For the error location i = 2, for instance, we have χ2(x) = 1 − α5x, and

e2 =
Ω(α−2)

α2χ2(α−2)

= α + 1.

This also checks. The error value e5 = α + 1 is determined similarly; to
decode we subtract e = (α + 1)x5 + (α + 1)x2 from y, and we recover the
correct codeword.
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In the Exercises below, we will consider how (part of) a direct calcu-
lation of the Gröbner basis for K with respect to >−1 can also be used
for decoding. Other applications of computational commutative algebra to
coding theory are discussed in [dBP1] and [dBP2].

ADDITIONAL EXERCISES FOR §4

Exercise 6. Let (Ω, Λ) be any solution of the congruence (4.6), where S
is the syndrome polynomial for some correctable error.
a. Writing Λ =

∑t
i=0 Λix

i and S =
∑2t

j=1 Ejx
j−1 show that (4.6) yields

the following system of t homogeneous linear equations for the t + 1
coefficients in Λ:

(4.20)
t∑

k=0

ΛkEt+�−k = 0

for each � = 1, . . . , t.
b. Assuming no more than t errors occurred, say in the locations given

by a set of indices I, Et+�−k =
∑

i∈I eiα
i(t+�−k) for some polynomial

e(x) with t or fewer nonzero terms. Substitute in (4.20) and rearrange
to obtain

(4.21)
0 =

t∑
k=0

ΛkEt+�−k

=
∑
i∈I

eiΛ(α−i)αi(t+�).

c. Show that the last equation in (4.21) implies that Λ(α−i) = 0 for all
i ∈ I, which gives another proof that Λ divides Λ. Hint: The equations
in (4.21) can be viewed as a system of homogeneous linear equations in
the unknowns eiΛ(α−i). The matrix of coefficients has a notable special
form. Also, ei �= 0 for i ∈ I.

Solving the decoding problem can be rephrased as finding the linear
recurrence relation (4.20) of minimal order for the Ej sequence. The
coefficients Λk then give the error locator polynomial.

Exercise 7. A direct analog of syndrome decoding for Reed-Solomon codes
might begin by computing the remainder on division of a received word y by
the generator, giving an expression y = c + R, where c is a codeword. How
is the remainder R related to the error polynomial e? Is this c necessarily
the nearest codeword to y? (There is another decoding method for Reed-
Solomon codes, due to Welch and Berlekamp, that uses R rather than
the syndrome S. It can also be rephrased as solving a key equation, and
Gröbner bases can be applied to solve that equation also.)
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Exercise 8. Prove Corollary (4.13).

Exercise 9. Prove Proposition (4.15). Hint: Think about the definition of
a Gröbner basis.

Exercise 10. Consider the Reed-Solomon code over F9 with generator
polynomial g = (x− α)(x− α2) (d = 3, so this code is 1 error-correcting).
Perform computations using Proposition (4.19) to decode the received
words

y(x) = x7 + αx5 + (α + 2)x3 + (α + 1)x2 + x + 2,

and

y(x) = x7 + x6 + αx5 + (α + 1)x3 + (α + 1)x2 + x + 2α.

What are the solutions of Λ = 0 in the second case? How should the
decoder handle the situation?

Exercise 11. In this and the following exercise, we will discuss how a
portion of a direct calculation of the Gröbner basis for K with respect to
>−1 starting from the generating set {g1, g2} = {(x2t, 0), (S, 1)} can also
be used for decoding. Consider the first steps of Buchberger’s algorithm.
Recall that S has degree 2t − 1 or less.
a. Show that the first steps of the algorithm amount to applying the 1-

variable division algorithm to divide S into x2t, yielding an equation
x2t = qS + R, with a quotient q of degree 1 or more, and a remainder R
that is either 0 or of degree smaller than deg S. This gives the equation

(x2t, 0) = q(S, 1) + (R,−q).

b. Deduce that g2 and g3 = (R,−q) also generate the module K, so g1 can
actually be discarded for the Gröbner basis computation.

c. Proceed as in the Euclidean algorithm for polynomial GCD’s (see e.g.
[CLO], Chapter 1, §5), working on the first components. For instance,
at the next stage we find a relation of the form

(S, 1) = q1(R,−q) + (R1, q1q + 1).

In the new module element, g4 = (R1, q1q + 1), the degree of the first
component has decreased, and the degree of the second has increased.
Show that after a finite number of steps of this process, we will produce
an element (Ω, Λ) of the module K whose second component has degree
greater than the degree of the first, so that its >−1 leading term is a
multiple of e2.

d. Show that the element obtained in this way is a minimal element K with
respect to >−1. Hint: It is easy to see that a minimal element could be
obtained by removing any factors common to the two components of
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this module element; by examining the triple (Ω, Λ, Γ) obtained as a
solution of the explicit form of the key equation: Ω = ΛS + x2tΓ, show
that in fact Ω and Λ are automatically relatively prime.

Exercise 12. Apply the method from Exercise 11 to the decoding problem
from the end of the text of this section. Compare your results with those of
the other method. Also compare the amount of calculation needed to carry
out each one. Is there a clear “winner”?

Exercise 13. Apply the method from Exercise 11 to the decoding
problems from Exercise 10.



Chapter 10

The Berlekamp-Massey-Sakata
Decoding Algorithm

Algebraic geometry began to be used extensively in coding theory with
the introduction of geometric Goppa codes, named after their discoverer,
V. D. Goppa. Some of these codes have extremely good parameters and
the 1982 paper [TVZ] establishing this fact was a major landmark in the
history of coding theory. The original formulation of the geometric Goppa
codes required many notions from the classical theory of algebraic curves or
function fields of transcendence degree one, as well as topics from number
theory. However, there is a class of codes, including the most important
geometric Goppa codes, for which a more elementary description is avail-
able. We will introduce that treatment here and use it to develop a general
version of the Berlekamp-Massey-Sakata decoding algorithm in §2 and §3.
For readers with the requisite background, connections with the theory of
algebraic curves will be explored in the exercises.

Our presentation follows recent papers of Geil and Pellikaan ([GeP]),
O’Sullivan ([O’Su2]), and the synthesis of the earlier work of many other
coding theorists made by O’Sullivan in [O’Su1] and Høholdt, van Lint, and
Pellikaan in [HvLP].

§1 Codes from Order Domains

We will begin with some motivation for the ideas to be presented in this
section. The construction of codes possessing good parameters and efficient
decoding methods is the basic problem in coding theory. The Reed-Solomon
codes introduced in §3 of Chapter 9 are among the most powerful and
successful codes for certain applications. Hence it is natural to try to gen-
eralize the construction of Reed-Solomon codes given in (3.4) of Chapter 9
to produce other, potentially even better, codes.

In the Reed-Solomon case, given an

f ∈ Lk−1 = {g ∈ Fq[t] : deg(g) ≤ k − 1} ∪ {0}

494
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for some k < q, we evaluated f at the nonzero elements of Fq to form the
entries in a codeword of RS(k, q). The set of nonzero elements of Fq is a
collection of points on the affine line and Lk−1 can be seen as a vector
subspace of the ring R = Fq[t]. A possible extension might proceed as
follows. Let I be an ideal in Fq[x1, . . . , xt], let R = Fq[x1, . . . , xt]/I, and
let S = {P1, . . . , Pn} be a set of points with coordinates in Fq contained
in the variety X = V(I). Such points are called Fq-rational points of X
and the entire set of such points is sometimes denoted by X(Fq), so that
S ⊆ X(Fq). We can then follow (3.4) of Chapter 9 to define an evaluation
mapping by

evS : R → F
n
q

f �→ (f(P1), . . . , f(Pn)).

The mapping evS is clearly linear, so if L is a finite-dimensional vector
subspace of R, the image E = evS(L) will be a linear code in F

n
q , called

an evaluation code. For future reference note that given E, we could also
construct the dual code C = E⊥ as in Exercise 10 from §2 of Chapter 9.

This gives a very general recipe for constructing codes, but as of yet there
is no indication of how the variety X (or the ideal I) and the subspace L
might be chosen to yield codes with good parameters and efficient decoding
methods. In this chapter, we will see that one way to supply that missing
ingredient is based on the notion of an order (or weight) function on a
ring, generalizing the degree function on Fq[t] used in the Reed-Solomon
construction.

We first give the formulation in [GeP]. As in Chapter 8, §2, a commu-
tative monoid is a set Γ together with an associative, commutative binary
operation +. We assume that Γ contains an identity element 0 for + and
that if a + b = a + c for a, b, c ∈ Γ, then b = c (cancellation). We do not
assume that Γ contains additive inverses.

(1.1) Definition. Let R be a finitely generated commutative Fq-algebra
with identity. Let (Γ, +) be a commutative monoid equipped with a total
order relation " that is compatible with + in the sense that a " b implies
a + c " b + c for all a, b, c ∈ Γ. Assume also that Γ is well-ordered under
". A surjective function ρ : R → {−∞}∪ Γ is said to be an order function
on R if it satisfies the following properties for all f, g ∈ R, and λ ∈ Fq.
a. ρ(f) = −∞ if and only if f = 0.
b. ρ(λf) = ρ(f) for all λ �= 0.
c. ρ(f + g) # max{ρ(f), ρ(g)}, with equality if ρ(f) �= ρ(g).
d. If ρ(f) = ρ(g) �= −∞, then there exists λ �= 0 such that ρ(f + λg) ≺

ρ(f).
e. ρ(fg) = ρ(f) + ρ(g).

Note that if we let Γ = Z≥0 with the usual sum operation and ordering,
then ρ(f) = deg(f) for f �= 0 in R = Fq[t] satisfies the axioms for an order
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function. The following exercise develops some first general properties of
rings with order functions.

Exercise 1. Let ρ be an order function on R.
a. Show using the definition that ρ(1) = 0 (the additive identity in Γ), and

hence ρ(f) = 0 if and only if f is a nonzero constant in Fq.
b. Show that every R having an order function is an integral domain.
c. Show using parts a and c of the definition that any set of elements of R

with distinct ρ values must be linearly independent over Fq.
d. Show that there exists an Fq-basis of R consisting of elements with

distinct ρ values.

Because of part b of this exercise, we will say that a pair (R, ρ) is an order
domain if ρ is an order function on R. We will call Γ the value monoid of
(R, ρ) (the term value semigroup is also used). The following order domains
will be used as running examples throughout this chapter.

(1.2) Example. Let R = Fq[x1, . . . , xt], let Γ be the monoid Z
t
≥0 with

the usual vector addition, and let " be any monomial order. Given any
f �= 0 ∈ R, we define ρ(f) = α ∈ Γ if LM�(f) = xα and ρ(f) = −∞ if
f = 0. Then it is easy to see from the properties of monomial orders that
the axioms in Definition (1.1) are satisfied for ρ.

(1.3) Example. Let q = 4, and consider the prime ideal

I = 〈x3
1 + x2

2 + x2〉 ⊂ F4[x1, x2].

Let > be the weight order >(2,3),lex (lex order with x1 > x2). Then
LM>(x3

1 + x2
2 + x2) = x3

1. Since every element of R can be represented
uniquely as the class of a remainder f on division by x3

1 + x2
2 + x2 using

the > order, the classes of the monomials in the complement of 〈x3
1〉, namely

the classes of xi
1x

j
2, 0 ≤ i ≤ 2 and j ≥ 0, form a basis for R = F4[x1, x2]/I

as a vector space over F4. For the basis monomials of R, we define

ρ(xi
1x

j
2) = (2, 3) · (i, j) = 2i + 3j ∈ Z≥0.

It is easy to check that these basis monomials have distinct ρ values since
0 ≤ i ≤ 2. We extend ρ to R by setting ρ(0) = −∞ and ρ(f) = ρ(LM>(f))
if f �= 0 (and f is written as a linear combination of the basis monomials).
We claim that this makes R into an order domain with Γ = 〈2, 3〉 =
{2i + 3j : i, j ∈ Z≥0} ⊂ Z≥0. The easy verification is left to the reader as
an exercise.

Exercise 2. Verify that the five properties in the definition of an order
function are verified for the function ρ defined in Example (1.3). For prop-
erty e, note that G = {x3

1 + x2
2 + x2} is a Gröbner basis for the ideal it

generates with respect to >(2,3),lex (or any other monomial order). In some



§1. Codes from Order Domains 497

cases, you will need to consider the remainder on division of the product
fg by G in order to find ρ(fg).

In both of our examples above, Γ was a submonoid of Z
r
≥0 for some

r ≥ 1. By the reasoning used in the proof of Dickson’s Lemma (see [CLO],
Chapter 2, §4, Theorem 5), any such Γ is finitely generated. We will use
the notation

Γ = 〈m1, . . . , mt〉 = {n1m1 + · · · + ntmt : ni ∈ Z≥0}
for the monoid generated by m1, . . . , mt in Z

r
≥0. Conversely, Corollary 5.7

of [GeP], for instance, shows that if the value monoid Γ of an order domain
(R, ρ) is finitely generated, then Γ is isomorphic to a submonoid of Z

r
≥0

and " is induced by some monomial order. Although there are interesting
examples of order domains whose value monoids are not finitely generated
(see [GeP] and [O’Su3]), we will not consider them here. For the remainder
of this chapter, we will make the standing assumption that Γ is finitely
generated.

It will be useful to have a good general description of the class of rings
R possessing order functions. We show first that all order domains (R, ρ)
with finitely generated Γ are homomorphic images of polynomial rings.

(1.4) Lemma. Let (R, ρ) be an order domain with value monoid Γ =
〈m1, . . . , mt〉 in Z

r
≥0. For each i select some yi ∈ R such that ρ(yi) = mi

and let φ be the ring homomorphism defined by

φ : Fq[x1, . . . , xt] → R

xi �→ yi.

Then φ is surjective. Moreover if I = ker(φ), then R ∼= Fq[x1, . . . , xt]/I.

Proof. Let f ∈ R be any nonzero element and say ρ(f) = m =
∑

nimi,
where ni ∈ Z≥0. By part e of Definition (1.1), the element

yn = yn1
1 yn2

2 · · · ynt
t = φ(xn1

1 xn2
2 · · · xnt

t )

satisfies ρ(yn) = m. Hence by part d of Definition (1.1), we can find some
λ �= 0 in Fq such that ρ(f + λyn) ≺ m. Since f + λyn ∈ R, we can apply
the same argument and reduce the ρ value again. As in the usual division
algorithm, the well-ordering property guarantees that this process termi-
nates after a finite number of steps with f +

∑
k λkyk = 0. It follows that

f = φ(F ) for the corresponding linear combination F = −∑
k λkxk, so φ

is surjective. The last claim follows by the First Isomorphism Theorem.

In the text, we will only consider order domains given explicitly by pre-
sentations of the form in Lemma (1.4), but the order domains arising
from the original construction of geometric Goppa codes and their gen-
eralizations are defined using other standard constructions from the theory
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of algebraic curves—in particular, using certain vector spaces of rational
functions on a curve with bounded pole orders at specified sets of points.
Exercises 12 and 13 below study the original description and one way to
derive presentations as in Lemma (1.4).

We will next use the structure of Γ to describe the ideals I defining
order domains. Let (R, ρ) be as in Lemma (1.4) and let >τ be a monomial
order on Fq[x1, . . . , xt]. First we define a monomial ordering >(ρ,�),τ on
Fq[x1, . . . , xt] compatible with ρ. We say xn >(ρ,�),τ xm if either ρ(xn) "
ρ(xm) in Γ, or ρ(xn) = ρ(xm) and xn >τ xm. Exercise 3 asks you to verify
that this process does define a monomial order and Exercise 4 gives an
alternate description of >(ρ,�),τ .

Exercise 3. Write > for the relation >(ρ,�),τ . Show that > is a monomial
order on Fq[x1, . . . , xt].

Exercise 4. In this exercise, we develop an alternate description of
>(ρ,�),τ when Γ = 〈m1, . . . , mt〉 ⊂ Z

r
≥0 with ρ(xi) = mi, and " is a

monomial order. Let M be the r × t matrix with columns m1, . . . , mt.
Given xn and xm, consider n and m as t-component column vectors and
let xn >(M,�),τ xm if and only if either Mn " Mm in Z

r
≥0, or Mn = Mm

and xn >τ xm.
a. Show that >(M,�),τ is the same as the >(ρ,�),τ order in this case.
b. Suppose that the " order is given as >N for some r × r matrix N as in

Chapter 1, §2. How would you determine a matrix representing > from
part a?

The standard monomial basis for R = Fq[x1, . . . , xt]/I has a nice de-
scription in this context. Among the set of monomials xn for which ρ(xn)
equals some fixed element of Γ, there will be one that is minimal under the
>τ order. Let ∆ be the set of all these >τ -minimal monomials. That is, ∆
consists of all monomials xm in Fq[x1, . . . , xt] with the property that if xn

and xm have ρ(xn) = ρ(xm) but xn �= xm, then xn >τ xm.
For instance, in Example (1.2) above, no >τ order is needed since " is

already a monomial order. The ideal I is {0} in this case and ∆ is the set
of all monomials in x1, . . . , xt.

In Example (1.3), Γ = 〈2, 3〉 ⊂ Z≥0. There is only one choice for the
" order on Z≥0, namely the usual numerical order. Picking >τ to be the
lex order with x1 > x2, it is easy to see that >(ρ,�),τ coincides with the
>(2,3),lex order used in Example (1.3). Now we consider the set ∆. For in-
stance, x5

1x2, x2
1x

3
2 are the only monomials with (2, 3)-weight equal to 13,

but x5
1x2 >lex x2

1x
3
2, so x2

1x
3
2 ∈ ∆. It is easy to see that ∆ is the set of

monomials ∆ = {xi
1x

j
2 : 0 ≤ i ≤ 2, j ≥ 0}, since among all monomials

with the same (2, 3)-weight, the one in ∆ has the smallest x1 exponent,
hence is lexicographically minimal. (See Example (1.8) below for a gener-



§1. Codes from Order Domains 499

alization of this reasoning.) Note that ∆ is the standard monomial basis
for R = F4[x1, x2]/I from Example (1.3).

The patterns noted in these examples generalize as follows.

(1.5) Proposition. Let (R, ρ) be an order domain with a presentation as
in Lemma (1.4). Let > denote the >(ρ,�),τ order.
a. The set ∆ is the standard monomial basis for R with respect to > (the

set of monomials in the complement of 〈LT>(I)〉).
b. Let σ be the minimal monomial generating set of 〈LT>(I)〉. The monic

Gröbner basis of I with respect to the > order consists of polynomials
of the form xs + cs,uxu +

∑
xm∈∆,ρ(xs)�ρ(xm) cs,mxm, where xs ∈ σ,

xu ∈ ∆ with ρ(xs) = ρ(xu), and cs,u �= 0.

Proof. For part a, note first that by the definition of ∆, the values ρ(xm)
for xm ∈ ∆ are distinct. Hence by Exercise 1, part c, the set ∆ is linearly
independent in R. By the same argument used in the proof of Lemma (1.4),
every f ∈ R is a linear combination of elements in ∆ with ρ values smaller
than or equal to ρ(f). Hence ∆ also spans R and we see that the classes of
the monomials in ∆ form a vector space basis for R.

We will show next that the set of standard monomials is contained in ∆.
Suppose on the contrary that some standard monomial xs is not in ∆. By
the argument used in the proof of Lemma (1.4), in R we have an equality

(1.6) xs = −
∑

xm∈∆

cmxm,

for some cm ∈ Fq, where all the xm that appear in the sum have ρ(xm) #
ρ(xs), and there is precisely one term with ρ(xm) = ρ(xs). The equation
(1.6) implies that F = xs +

∑
xm∈∆ cmxm ∈ I. By the definition of the

> order, LT>(F ) = xs. But this is a contradiction, since xs was supposed
to be in the complement of 〈LT>(I)〉. It follows that the set of standard
monomials is contained in ∆. Since we know the set of standard monomials
is also an Fq-basis for R, they must be equal.

We now turn to part b. We have that σ and ∆ are disjoint by the result
of part a. Hence for each xs ∈ σ, expanding xs in terms of the basis ∆ in
R yields an expression xs = −cs,uxu −∑

xm∈∆,ρ(xs)�ρ(xm) cs,mxm, where
xu ∈ ∆ with ρ(xs) = ρ(xu), and cs,u �= 0. Hence we obtain an element
F ∈ I as claimed. By the definition of the > order, LT>(F ) = xs. By the
definition of σ, it follows that the set of all these F is the monic Gröbner
basis for I with respect to the > order.

In what we have said so far, we have only derived consequences of the
assumption that an order domain (R, ρ) with a given monoid Γ exists; we
have not proved that such order domains do exist for all Γ. However, there
is a converse of Proposition (1.5), due to Miura and Matsumoto in the
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case r = 1, and to Geil and Pellikaan in general (see [GeP]), which implies
existence. In the statement of the following theorem, M is the matrix from
Exercise 4 above, and >(M,�),τ is one of the monomial orders defined in
that exercise.

(1.7) Theorem. Let Γ = 〈m1, . . . , mt〉 ⊆ Z
r
≥0 be a monoid with ordering

", and consider the associated monomial order >(M,�),τ (abbreviated >
below). Let ∆ be the set of >τ -minimal monomials xn as Mn runs over Γ.
Let σ be the minimal set of monomial generators for the monomial ideal
generated by the complement of ∆ in Z

t
≥0. For each xs ∈ σ, let

Fs = xs + cs,uxu +
∑

xm∈∆,Ms�Mm

cs,mxm,

where xu ∈ ∆ satisfies Mu = Ms, and cs,u �= 0 and the cs,n are constants
in Fq. Let I = 〈Fs : xs ∈ σ〉. If G = {Fs : xs ∈ σ} is a Gröbner basis
for I with respect to the > order, then R = Fq[x1, . . . , xt]/I is an order
domain with order function ρ defined by ρ(f) = Mn if LM>(f) = xn.

Proof. The idea of the proof is the same as that of Example (1.3) and
Exercise 2 above. We represent elements of R as linear combinations of the
elements of ∆. The first four conditions in the definition of an order func-
tion follow almost automatically from the construction. The final condition
ρ(fg) = ρ(f) + ρ(g) is checked by showing that the remainder of fg on
division by G has the same ρ value as fg. This is where the hypothesis
cs,u �= 0 is needed.

We note that the hypothesis in Theorem (1.7) that G is a Gröbner
basis can be checked by Buchberger’s Criterion. Exercise 9 below gives
a construction of an order domain with a given finitely generated value
monoid.

(1.8) Example. To illustrate these results, we consider first the case of
order domains (R, ρ) with value monoid Γ = 〈a, b〉 ⊂ Z≥0, where a <
b and GCD(a, b) = 1. We will describe the form of the Gröbner basis
of I given by Theorem (1.7). Since Γ has two generators, we will have
R = Fq[x1, x2]/I for some I, and the order function will be given by
ρ(xi

1x
j
2) = (a, b) · (i, j) = ai + bj. We let > be the >(a,b),lex order as in

Example (1.3). Among all monomials with the same (a, b)-weight, the one
with the smallest x1 exponent will be lexicographically minimal. By integer
division, any � satisfies � = qb + i with 0 ≤ i ≤ b− 1. So x�

1x
j
2 will have the

same (a, b)-weight as xi
1x

aq+j
2 . As a result, the lexicographically minimal

monomial of each (a, b)-weight has the form xi
1x

j
2 with 0 ≤ i ≤ b − 1,

j ≥ 0, and

∆ = {xi
1x

j
2 : 0 ≤ i ≤ b − 1, j ≥ 0}.
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It follows that the monomial ideal generated by the complement of ∆ must
be generated by the single monomial xb

1, and hence that I is the principal
ideal generated by a single polynomial of the form:

(1.9) F = xb
1 + cxa

2 +
∑

n1a+n2b<ab

cn1,n2x
n1
1 xn2

2 ,

with c �= 0. Since any such polynomial is a Gröbner basis of the ideal
it generates with respect to >, Theorem (1.7) implies that every R =
Fq[x1, x2]/〈F 〉 with F of the form (1.9) is an order domain (that is, the
coefficients c �= 0, cn1,n2 can be chosen arbitrarily in this case).

One particularly interesting class of examples comes by specializing this
general construction as follows. Let m be a prime power, let a = m, b =
m + 1, and consider the polynomial

F = xm+1
1 − xm

2 − x2

over the field Fm2 . (For readers with some background in the theory of
algebraic curves, the reason for this will become clearer in Exercise 10
below.) Since F has the form given in (1.9), Theorem (1.7) shows that
R = Fm2 [x1, x2]/〈F 〉 is an order domain with ρ(xi

1x
j
2) = mi + (m + 1)j.

The order domain considered in Example (1.3) was the case m = 2 of this
construction. The varieties V(F ) are called (affine) Hermitian curves.

In the examples we have seen so far, we have used monomial orders of the
form >(ρ,�),lex. There is no need to make this restriction, and in fact other
>τ orders can simplify the analysis in some cases. For instance, consider
order domains R whose value monoid is

(1.10) Γ = 〈4, 5, 6〉 = {0, 4, 5, 6, j : j ≥ 8} ⊂ Z≥0.

As in Example (1.3), there is only one choice for the " order here, so we
omit it from the notation. In Exercise 5 below, you will see what happens
with the >(4,5,6),lex order. If we use the >(4,5,6),grevlex order instead, then it
is easy to check that the grevlex-minimal monomials of each (4, 5, 6)-weight
are the monomials in

∆ = {xj
3, x1x

j
3, x2x

j
3, x

2
1x

j
3, x1x2x

j
3, x

2
1x2x

j
3 : j ≥ 0}.

The simplification here is that the monomial ideal generated by the comple-
ment of ∆ requires only two generators: σ = {x2

2, x
3
1}. Hence by Proposition

(1.5) any such order domain will be isomorphic to a ring of the form
Fq[x1, x2, x3]/〈F, G〉 where

F = x2
2 + ax1x3 + bx1x2 + cx2

1 + dx3 + ex2 + fx1 + g,

and

G = x3
1 + hx2

3 + ix2x3 + jx1x3 + kx1x2 + lx2
1 + mx3 + nx2 + ox1 + p.

Since the >(4,5,6),grevlex leading terms of F and G are relatively prime, any
such polynomials are a Gröbner basis for the ideal they generate. Hence



502 Chapter 10. The Berlekamp-Massey-Sakata Decoding Algorithm

with the order function ρ given in Theorem (1.7) R is an order domain
with value monoid Γ. The other coefficients may be chosen arbitrarily (with
a, h �= 0) in this case too, but that will not always be true.

Exercise 5. In this exercise, you will consider order domains with the
same monoid Γ = 〈4, 5, 6〉 ⊂ Z≥0 as in (1.10), but using the >(4,5,6),lex

order.
a. Show that every integer n ≥ 20 is contained in Γ′ = 〈5, 6〉 ⊂ Γ.
b. Use the result of part a to show that using the >(4,5,6),lex order,

∆ = {xm
2 xn

3 : 0 ≤ m ≤ 5, n ≥ 0} ∪ ∆′,

where ∆′ = {x1, x
2
1, x1x2, x

2
1x2, x1x

2
2, x1x

4
2}.

c. Find the set σ here. Hint: There are five monomials in σ.
d. What presentation for order domains with Γ = 〈4, 5, 6〉 is obtained if

the >(4,5,6),lex order is used? Can the coefficients in the polynomials
be assigned arbitrarily in this case, or are there relations that must be
satisfied?

We will now present the most important examples of evaluation codes
as described at the start of this section. Let X = V(I) where R =
Fq[x1, . . . , xt]/I has an order function ρ. To construct codewords, we will
evaluate functions from some vector subspace L in R at the points in
S ⊆ X(Fq). As in the Reed-Solomon case, the most useful vector sub-
spaces L of R will have the form L = {f ∈ R : ρ(f) # m} for some
m ∈ Γ. For this idea to work in a convenient way, however, we must re-
strict the orderings we use again at this point. In particular we would like
for these L always to be finite-dimensional vector spaces over Fq.

(1.11) Definition. Let (R, ρ) be an order domain with value monoid
Γ. We say (R, ρ) is Archimedean if there is an order-preserving bijective
mapping µ : Γ → Z≥0 (with the usual numerical order).

This terminology is borrowed from the theory of valuations, and is sug-
gested by the following result. Indeed, there is a strong connection between
order functions and valuations; see [O’Su3] and [GeP] for more details.

(1.12) Lemma. Let (R, ρ) be Archimedean. Then for any nonconstant
f ∈ R and any g ∈ R, there exists some n ≥ 1 such that ρ(fn) " ρ(g).

Proof. This follows immediately from the Archimedean property in Z≥0.
First, by part a of Exercise 1 and the compatibility of " and addition in
Γ, 0 ≺ ρ(f) ≺ ρ(f2) ≺ · · · in Γ. Hence, there is some n ≥ 1 such that
µ(ρ(fn)) > µ(ρ(g)). Since µ preserves ordering, we have ρ(fn) " ρ(g).
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Any order domain with Γ ⊂ Z≥0 is Archimedean, since we can construct
the mapping µ in that case simply by listing the elements of Γ in increas-
ing numerical order. Not all order domains constructed from monomial
orders on R = Fq[x1, . . . , xt] are Archimedean, however. For instance, lex-
icographic orders are not Archimedean since xi > xj implies xi > xn

j

for all n ≥ 1, so the conclusion of Lemma (1.12) does not hold. The
graded lexicographic and graded reverse lexicographic orders, on the other
hand, do yield Archimedean order domain structures on R. Since there are
only finitely many monomials of each degree, we can construct an order-
preserving enumeration µ : Γ → Z≥0 as in the case Γ ⊂ Z≥0. There is
a simple characterization of monomial orders that do yield Archimedean
order domain structures on the polynomial ring R = Fq[x1, . . . , xt].

Exercise 6.
a. Let >N be the monomial order on R = Fq[x1, . . . , xt] defined by a

suitable matrix N as in Chapter 1, §2. As in Example (1.2) we have an
order domain (R, ρ) with Γ = Z

t
≥0 and " given as the matrix order >N .

Show that (R, ρ) is Archimedean if and only if all the entries of the first
row of N are strictly positive.

b. Let (R, ρ) be an order domain as in Theorem (1.7). Show that (R, ρ)
is Archimedean if the matrix M formed from the generators of Γ as in
Exercise 4 satisfies the condition given in part a.

From now on in this chapter, we will make the standing assumption that
(R, ρ) is Archimedean, and that µ : Γ → Z≥0 is as in Definition (1.11).
Following O’Sullivan in [O’Su2], we will write o = µ ◦ ρ. The following
proposition identifies our good subspaces La and studies their properties.

(1.13) Proposition. Let (R, ρ) be an order domain as above. For a ∈
Z≥0, let La = {f ∈ R : o(f) ≤ a} and let L−1 = {0}. Then the {La :
a ≥ −1} form a nested sequence of Fq-vector subspaces of R whose union
is R, and satisfy dimFq La/La−1 = 1 for all a ∈ Z≥0. In particular La is
finite-dimensional for all a.

Proof. Closure of each La under sums and scalar multiples follows from
parts b and c of Definition (1.1). The nesting property follows from the
definition of the La, and the claim that the union of the La exhausts R
follows from the standing Archimedean assumption. The claim about the
quotients La/La−1 follows from part d of Definition (1.1).

We now present some examples of evaluation codes constructed using
the La subspaces. We will write Ea = evS(La), where evS is the evaluation
mapping as above.

We continue with the order domain structures induced by monomial
orders on Fq[x1, . . . , xt] introduced in Example (1.2). By Exercise 6 above,
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to obtain an Archimedean order domain structure, we can use monomial
orders such as the graded lexicographic order. The o function in this case
comes from an enumeration of the monomials in R in increasing grlex order.
With t = 2, x1 > x2, for instance, we have o(1) = 0, o(x2) = 1, o(x1) = 2,
o(x2

2) = 3, and so forth. The La space is spanned by the monomials xe
1x

f
2

with o(xe
1x

f
2 ) ≤ a. With a = 5, for instance, we obtain

(1.14) L5 = Span{1, x2, x1, x
2
2, x1x2, x

2
1}.

The ideal I is zero in this case, and the corresponding variety X is the
affine plane. The Fq-rational points in X are the ordered pairs P = (x1, x2)
with xi ∈ Fq. Fixing some particular ordering of these points, to form a
codeword of the E5 code we evaluate a polynomial from L5 at each such
P and use the values as the components of a vector of length n = q2. The
resulting code is an example of a Reed-Muller code. See Exercise 7 below.

We next return to the order domain introduced in Example (1.3). To
construct evaluation codes, we need to know the points in X(F4), where
X = V(x3

1 + x2
2 + x2). There are exactly eight such points, as you will

verify in Exercise 8 below. Writing α for a primitive element of F4 (a root
of α2 + α + 1 = 0), the eight points can be numbered as follows:

(1.15)

P1 = (0, 0) P2 = (0, 1)
P3 = (1, α) P4 = (1, α2)
P5 = (α, α) P6 = (α, α2)
P7 = (α2, α) P8 = (α2, α2).

The Archimedean condition is satisfied since Γ = 〈2, 3〉 ⊂ Z≥0. We use
the >(2,3),lex order as above. The code E2 = ev(V2) is obtained as follows.
The vector space L2 is spanned by {1, x1, x2}, since o(1) = 0, o(x1) = 1,
o(x2) = 2, and all other monomials in ∆ have o value at least 3. The
codewords are obtained by evaluation at the eight points Pi above. This
gives the following generator matrix for a code of block length n = 8 over
F4:

(1.16) G =

⎛⎝ 1 1 1 1 1 1 1 1
0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

⎞⎠ .

This is the same as the code from (2.4) of Chapter 9. The dual code C2 =
E⊥

2 has the transposed matrix Gt as a parity check matrix. These codes are
examples of geometric Goppa codes constructed from the Hermitian curve
X = V(x3

1 + x2
2 + x2).

Determining the minimum distance of the evaluation codes can be quite
delicate, since it involves the subtle question of how many zeroes a poly-
nomial in La can have at the Fq-rational points on X. There are both
geometric and arithmetic issues involved. In the following simple example
the geometry suffices to understand what is going on.
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Consider the E2 code over F4 studied above. Each codeword is a linear
combination of the three rows of the matrix G in (1.16). Hence each code-
word is formed by evaluation of some linear function f = a + bx1 + cx2
at the eight F4-rational points. We can use Bézout’s Theorem to give an
upper bound for the number of zero entries in a codeword, hence a lower
bound for d. Because X is an irreducible cubic curve, it meets each line
V(a + bx1 + cx2) in at most three points, and hence d ≥ 5. Some nonzero
words in E2 have weight exactly 5 since some of these lines intersect X in
exactly three affine F4-rational points. The bound obtained from Bézout’s
Theorem using the defining equations of X is sharp in this case, but that
will not always be true.

We will study the minimum distances of the duals of evaluation codes
in the next section, in conjunction with the Berlekamp-Massey-Sakata
decoding algorithm.

ADDITIONAL EXERCISES FOR §1

Exercise 7. Fix some numbering S = {P1, P2, . . . , Pqt} of the Fq-rational
points of t-dimensional affine space. For each ν ≥ 0, let L(ν) be the vector
subspace of Fq[x1, . . . , xt] consisting of all polynomials of total degree ≤ ν.
Then the Reed-Muller code RMq(t, ν) is, by definition, the image evS(L(ν))
in F

qt

q .
a. Show that the Reed-Muller code RM3(2, 2) has a generator matrix

G =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 1 1 1 1 1
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 1 1 0 1 1 0 1 1
0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the rows are in one-to-one correspondence with the monomials
spanning L(2), listed in the order {1, x2, x1, x

2
2, x1x2, x

2
1} as in (1.14).

In what order are the F3-rational points of the plane listed here?
b. What are the dimension and the minimum distance of the code

RM3(2, 2)?

Exercise 8. Verify that the eight points given in (1.15) are all of the F4-
rational points on the variety V(x3

1 + x2
2 + x2). Hint: How many points are

there on each line x1 = c ∈ F4?

Exercise 9. This exercise gives a construction of an order domain with
given value monoid Γ and points out a connection between order domains
and the toric varieties studied in Chapters 7 and 8. We worked over C there;
here we consider toric varieties over finite fields. Let Γ be a submonoid of
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Z
r
≥0, ordered by a monomial order ". The monoid ring associated with Γ

is the subalgebra Fq[Γ] of Fq[T1, . . . , Tr] generated by the monomials Tm,
m ∈ Γ.
a. Show that R = Fq[Γ] is an order domain with value monoid Γ by con-

structing an order function ρ. Hint: This generalizes Example (1.2),
where Γ = Z

t
≥0.

b. Let Γ = 〈m1, . . . , mt〉 and consider the polynomial mapping φ : F
r
q →

F
t
q given by φ(T1, . . . , Tr) = (Tm1 , . . . , Tmt) as in Chapter 7, §3.

Explain how computing the ideal I of the Zariski closure of the im-
age of φ by elimination yields a presentation of Fq[Γ] of the form
Fq[Γ] ∼= Fq[x1, . . . , xt]/I for some I. The ideal I is called the toric ideal
associated with Γ and is always generated by differences of monomials.
See [Stu2] for more details.

c. Let Γ = 〈4, 5, 6〉 ⊂ Z≥0. Find a presentation for Fq[Γ] as in part b,
using a Gröbner basis calculation to perform the elimination. Show the
presentation has the form given in Theorem (1.7).

The following exercises explore the relation between our evaluation codes
and the original formulation of geometric Goppa codes. They require knowl-
edge of the theory of algebraic curves. Let G be an effective divisor on a
smooth curve X whose support is some collection of Fq-rational points of
X, and let S be a collection of Fq-rational points disjoint from the support
of G. The codewords of an evaluation Goppa code are formed by evalu-
ating the rational functions in the vector space L(G) at the points of S.
Our evaluation codes come from Goppa’s construction in the case where
the projective closure of the variety X = V(I) associated to the order
domain R is a curve (i.e., X has dimension 1), X has only one point Q at
infinity, and G = aQ for some a ∈ Z≥0 so the rational functions in L(G)
are polynomials in the affine coordinates.

Exercise 10. The curve from Example (1.3) is the first of the family
of Hermitian curves. There is a projective Hermitian curve defined over
each field of square order, Fm2 : Hm = V(xm+1

1 − xm
2 x0 − x2x

m
0 ). The

corresponding affine Hermitian curve is Hm = V(xm+1
1 − xm

2 − x2). We
will develop an interesting property of these curves; there are many others
too!
a. Show that the projective Hermitian curve Hm is smooth of genus g =

m(m − 1)/2. Use the genus formula for plane curves to compute the
genus and verify that this agrees with the cardinality of Z≥0 \ Γ for
Γ = 〈m, m + 1〉. This equality is expected by the Weierstrass Gap
theorem (see [Sti]).

b. Find the set P of all 27 F9-rational points on the affine curve H3 and con-
struct the generator matrix for the code E4 where the first five elements
of ∆ are 1, x1, x2, x

2
1, x1x2.

c. How many F16-rational points does the affine curve H4 have? Find them.
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d. Show that for all m, the projective Hermitian curve Hm attains the
Hasse-Weil bound from [Mor], equation (3.1) or [Sti], V.2.3 over Fm2 :

|Hm(Fm2)| = 1 + m2 + m(m − 1)m = 1 + m3

(do not forget the point at infinity).

Exercise 11. (The Klein Quartic curve) Consider the curve

K = V(y3
1y2 + y3

2y0 + y3
0y1)

in the projective plane, defined over the field F8 = F2[α]/〈α3 + α + 1〉.
a. Show that K is smooth of degree 4, hence has genus g = 3.
b. In the next parts of the problem, you will show that K has 24 points

rational over F8. First show that the three points Q0 = (1, 0, 0), Q1 =
(0, 1, 0), and Q2 = (0, 0, 1) are F8-rational points on K.

c. Show that the mappings

ψ(y0, y1, y2) = (α4y0, αy1, α
2y2) τ(y0, y1, y2) = (y1, y2, y0)

take the set K(F8) to itself.
d. Deduce that K(F8) contains 21 points Pij in addition to the Q�: Pij =

τ i(ψj(P00)), where P00 = (1, α2, α2 + α) ∈ K(F8).
e. Deduce that |K(F8)| = 24 exactly. Hint: Use Serre’s improvement of

the Hasse-Weil bound from [Sti], V.3.1.

Exercise 12. This exercise relates the original description of the order do-
mains associated with geometric Goppa codes to the order domains studied
here.
a. Show that if X is a curve and Q ∈ X is a smooth point, then we get an

order function on the ring R = ∪∞
i=0L(iQ) (the ring of rational functions

on X with poles only at Q) by letting ρ(f) be the order of the pole of f
at Q.

b. We will say an affine curve X defined over Fq is in special position if the
following conditions are satisfied.
1. The projective closure X of X is irreducible and smooth.
2. The projective curve X has only one point Q in the hyperplane at

infinity, V(x0), and Q also has coordinates in Fq.
3. The orders of the poles of the rational functions xi/x0 at Q generate

the monoid of pole orders at Q of all rational functions on X having
poles only at Q.

Show that if the projective closure of X = V(F ) for F as in Example
(1.8) is smooth, then it is in special position. Moreover show that the
point Q at infinity on X is a smooth point of X if and only if b = a + 1.

c. Let X = V(I) be a curve in special position. Show that the ring R =
∪∞

i=0L(iQ) is isomorphic to the affine algebra Fq[x1, . . . , xt]/I.
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Exercise 13. We will show how to re-embed the Klein Quartic curve K
from Exercise 11 to put it in special position, and construct evaluation
codes. A similar construction will work for any curve. Consider the point
Q2 = (y0, y1, y2) = (0, 0, 1) on K = V(y3

1y2 + y3
2y0 + y3

0y1) in P
2 over the

field F8.
a. What are the divisors of the rational functions x = y1/y0 and y = y2/y0

on K? (Note x, y are just the usual affine coordinates in the plane.)
b. Show that {1, y, xy, y2, x2y} is a basis for the vector space L(7Q2) of

rational functions on K with poles of order ≤ 7 at Q2 and no other
poles.

c. Show that the rational mapping defined by the linear system |7Q2| is
an embedding of K into P

4. Hint: Show using Riemann-Roch that it
separates points and tangent vectors.

d. By part b, in concrete terms, the mapping from c is defined on the curve
K by ψ : K → P

4, where

ψ(y0, y1, y2) = (x0, x1, x2, x3, x4) = (y3
0 , y2y

2
0 , y1y2y0, y

2
2y0, y

2
1y2).

Show that the image of ψ is the variety K
′
=

V(x0x3 + x2
1, x

2
2 + x1x4, x0x2 + x2

3 + x2x4, x1x2x3 + x2
0x4 + x0x

2
4),

a curve of degree 7 and genus 3 in P
4 isomorphic to K.

e. Show that K
′

is in special position, as defined in Exercise 12. Hint:
What is K

′ ∩ V(x0)?

§2 The Overall Structure of the BMS Algorithm

We now turn to the Berlekamp-Massey-Sakata (BMS) decoding algorithm,
which applies to the duals Ca of the evaluation codes Ea from order domains
as in §1. The development of this algorithm, the Feng-Rao bound on the
minimum distance of the Ca codes, and the associated majority voting
procedure for unknown syndromes form a high point in the recent history
of coding theory. We will discuss these topics following [O’Su2], a simplified
and generalized synthesis of a body of work carried out by a large group
of coding theorists from the mid-1980s through the mid-1990s. The article
[HP] surveys the history of decoding algorithms for geometric Goppa codes
and the contributions of the many people involved.

We continue all the standing assumptions concerning order domains
(R, ρ) from §1. In particular, we will always assume in this section that
(R, ρ) is an order domain with finitely generated value monoid Γ. Thus

R ∼= Fq[x1, . . . , xt]/I,

where Γ is generated by ρ(x1), . . . , ρ(xt). Moreover, we assume (R, ρ) is
Archimedean, with an order-preserving bijection

µ : Γ → Z≥0,
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and write o = µ ◦ ρ : R \ {0} → Z≥0. We also define o(0) = −∞, so that
o is defined on all of R.

The ⊕ Operation and the % Order
We will use the following notions extensively in this section and the next.

(2.1) Definition.
a. Using the monoid operation in Γ and µ : Γ → Z≥0, we define a new

binary operation ⊕ on Z≥0:

a ⊕ b = c ⇔ µ(m + n) = c when a = µ(m), b = µ(n), m, n ∈ Γ.

In other words, (Z≥0,⊕) is a monoid isomorphic to (Γ, +) via µ.
b. We write a = c & b if a ⊕ b = c.
c. Let a, b ∈ Z≥0. We say a % b if there exists c ∈ Z≥0 such that a = b⊕ c

(including the possibility c = 0). In Exercise 1, you will show that % is
a partial order on Z≥0.

Exercise 1.
a. Use ρ(fg) = ρ(f) + ρ(g) to show that

a ⊕ b = c ⇔ o(fg) = c

for all f, g ∈ R with o(f) = a and o(g) = b.
b. Show that ⊕ is cancellative and that c& b is well-defined when it exists.
c. Show that c & b exists if and only if c % b.
d. Show that % is a partial order on Z≥0.

The meaning of the % order is revealed by the following observation.

(2.2) Lemma. Let a = o(f) and b = o(g) for f, g ∈ R \ {0}. Then
b % a if and only if LM>(f) divides LM>(g), where > is any >(ρ,�),τ order
associated with R.

Proof. We have b % a if and only if b = a ⊕ c for some c ≥ 0. By
Exercise 1, this holds if and only if ρ(g) = ρ(fh) for h ∈ R with ρ(h) = c.
By Definition (1.1) this is equivalent to the existence of some λ �= 0 ∈ Fq

such that ρ(g +λfh) ≺ ρ(g) and ρ(g +λfh) ≺ ρ(fh). Such λ and h exist if
and only if LM>(f) divides LM>(g), where > is a >(ρ,�),τ order associated
with R.

This lemma enables us to describe those elements of Z≥0 that are � a
given integer.

(2.3) Corollary. If o(xn) = b ∈ Z≥0, then

Nb = {a ∈ Z≥0 : a � b} = {o(xm) : xm divides xn}.
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In particular, the set Nb is finite.

Proof. Note that if xn ∈ ∆ (the standard monomial basis for R) and xm

divides xn, then xm is in ∆ too. Let g = xn in Lemma (2.2).

In the order domain studied in Example (1.3), we have o(1) = 0, o(x1) =
1, o(x2) = 2, o(x2

1) = 3, o(x1x2) = 4, so 0 ⊕ 1 = 1, 1 ⊕ 1 = 3, 1 ⊕ 2 = 4,
and so forth. Thus 4 % 2, but 2 % 1 is false: there is no a ∈ Z≥0 such
that 1⊕ a = 2, since no multiple x1h has o(x1h) = 2. Finally, o(x1x2) = 4
implies that

(2.4) {a ∈ Z≥0 : a � 4} = {0, 1, 2, 4}
since the divisors of x1x2 are 1, x1, x2, x1x2.

Syndromes and Error Locators
In §1, the evaluation code Ea was defined to be the image of

evS : R → F
n
q

f �→ (f(P1), . . . , f(Pn)),

where S = {P1, . . . , Pn} consists of the Fq-rational points of V(I) and

La = {f ∈ R : o(f) ≤ a}.
In this section, we will consider the dual code Ca = E⊥

a . By the definition
of a dual code, the codewords of Ea furnish parity check equations for the
codewords of Ca. It follows that for a word y ∈ F

n
q ,

(2.5) y ∈ Ca ⇔
n∑

j=1

yjf(Pj) = 0 for all f ∈ La.

We obtain from this an analog of the syndromes used in §2 of Chapter 9 for
decoding linear codes, and in §4 of Chapter 9 for decoding Reed-Solomon
codes. See Exercise 11 below for more on the case of Reed-Solomon codes.

It will be convenient to formulate a syndrome mapping associated with
y ∈ F

n
q as follows:

(2.6)

Sy : Fq[x1, . . . , xt] → Fq

f �→
n∑

j=1

yjf(Pj).

Note that Sy(f) = 0 if f ∈ I, since then f(Pj) = 0 for all j. Hence Sy

descends to a mapping from R to Fq. We will use the same notation for the
syndrome mapping on R, so that we will write

Sy : R → Fq.
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If a codeword x ∈ Ca is sent over the channel and y = x + e is received,
then for the decoding problem, we will use Se(f) to correct the error. The
equation (2.5) implies that Sy(f) = Sx(f) + Se(f) = Se(f) for all f ∈ La.
Hence those error syndrome values, but those only, can be computed from
the received word using (2.6). We will call these the known syndromes.

As in the Reed-Solomon decoding algorithms considered in §4 of Chapter
9, the first step in BMS decoding is to determine where the errors occurred.
Then, in a separate second step, the actual components of the error vector
are determined. We will focus exclusively on the first step, which is accom-
plished by determining the ideal defining the error locations. Recall that
the entries in codewords x ∈ Ca, and hence also in error vectors, are in one-
to-one correspondence with the collection S = {P1, . . . , Pn} of Fq-rational
points on the variety X = V(I) associated with R = Fq[x1, . . . , xt]/I. We
define

Ie = {f ∈ R : f(Pi) = 0 whenever ei �= 0}.
It is easy to see that Ie is an ideal of R, called the error locator ideal Ie

associated with e. The elements of Ie are called error locators.
The following proposition describes the quotient ring R/Ie and the

connection between error locators f ∈ Ie and the syndromes.

(2.7) Proposition. Let e be a vector of weight wt(e) = |{i : ei �= 0}|.
Also let

∆(e) = {s ∈ Z≥0 : s �= o(f) for all f ∈ Ie}.
Then:
a. Let f ∈ R. We have f ∈ Ie if and only if Se(fg) = 0 for all g ∈ R.
b. R/Ie has dimension wt(e) as a vector space over Fq.
c. For s ∈ ∆(e) pick hs ∈ R such that o(hs) = s. Then {hs : s ∈ ∆(e)}

gives a basis of R/Ie. In particular, |∆(e)| = wt(e).

Proof. We have Se(fg) =
∑

k ekf(Pk)g(Pk) using the definition of the
syndrome mapping. If f ∈ Ie, then f(Pk) = 0 whenever ek �= 0. Hence
Se(fg) = 0. Conversely, suppose that Se(fg) = 0 for all g ∈ R. By
Lemma (2.9) of Chapter 2, for each k, we can find a polynomial gk ∈ R
such that gk(Pk) = 1, but gk(Pj) = 0 if j �= k. (The ground field was
assumed to be C in that lemma, but the proof actually works over any
field.) If ek �= 0, then 0 = Se(fgk) = ekf(Pk) implies that f(Pk) = 0. It
follows that f ∈ Ie.

Turning to part b, consider the evaluation map ev : R → F
wt(e)
q defined

by evaluating f ∈ R at the points Pi such that ei �= 0. The kernel of ev is
Ie, and using the polynomials gk of part a, one easily sees that ev is onto.

For part c, first observe that any nontrivial linear combination u =∑
s∈∆(e) λshs has o(u) = s for some s ∈ ∆(e). Then u /∈ Ie by the

definition of ∆(e), so that the hs are linearly independent modulo Ie.



512 Chapter 10. The Berlekamp-Massey-Sakata Decoding Algorithm

To show that they span modulo Ie, suppose that some g ∈ R isn’t in
Span(gs : s ∈ ∆(e)) + Ie. Of all such gs, pick one with o(g) minimal. If
o(g) = o(f) for f ∈ Ie, then o(g − λf) < o(g) for some λ ∈ Fq \ {0}. By
minimality, g − λf ∈ Span(hs : s ∈ ∆(e)) + Ie, which leads to a contra-
diction. But if o(g) �= o(f) for all f ∈ Ie, then o(g) = s ∈ ∆(e). Hence
o(g) = o(hs). This leads to a contradiction as in the previous case.

One of the goals of the BMS algorithm is to compute the set ∆(e).
We can also study error locators and syndromes using Fq[x1, . . . , xt]

instead of R. Let φ : Fq[x1, . . . , xt] → R = Fq[x1, . . . , xt]/I be the natural
mapping. Corresponding to Ie in R we have the ideal Je = φ−1(Ie) in
Fq[x1, . . . , xt] containing I.

Exercise 2. Let T = {Pi ∈ S : ei �= 0}.
a. Show that Je = I(T ), the ideal of the set T ⊂ F

t
q .

b. Prove that there is a natural isomorphism Fq[x1, . . . , xt]/Je ' R/Ie.
c. Let f ∈ Fq[x1, . . . , xt]. Show that f ∈ Je if and only if Se(fg) = 0 for

all g ∈ Fq[x1, . . . , xt].

Recall that the known syndromes consist of the values Se(f) for f ∈
La ⊂ R. Suppose that the cosets of elements of La span R/Ie as a vector
space over Fq. This implies that every g ∈ R can be written

g = f + h,

where f ∈ La and h ∈ Ie. Then

Se(g) = Se(f) + Se(h) = Se(f)

shows that we can compute Se(g) for all g ∈ R. From this, Proposition
(2.7), and Exercise 2, it follows that in principle we have all the information
we need to recover the ideals Ie ⊂ R and Je ⊂ Fq[x1, . . . , xt], which in
turn enables us to find the error positions.

Now suppose that the cosets of the elements of La do not span R/Ie.
(This is a new situation that did not arise in our Reed-Solomon decoding
algorithms from §4 of Chapter 9.) A key idea of the version of the BMS
decoding algorithm we will present is that when the number of error loca-
tions is not too large (this will be made precise using the Feng-Rao bound),
the known syndromes Se(f) for f ∈ La determine the Se(f) for f ∈ Lk,
k > a. As we will see, the BMS algorithm, including a process called Feng-
Rao majority voting for unknown syndromes, simultaneously computes the
syndromes of f ∈ Lk for k > a and polynomials which, together with a
Gröbner basis of I as in Proposition (1.5), form a Gröbner basis of the
ideal Je with respect to a >(ρ,�),τ order associated with R. The structure
of the Lk subspaces and the monoid Γ play a key role in the algorithm.
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Span, Fail, and Normalized Bases
Proposition (2.7) tells us that we can determine whether f ∈ Ie by the
vanishing of the syndromes Se(fg). When f /∈ Ie, we will measure “how
close” f is to being in Ie using two integers called the span and fail of f .

(2.8) Definition. Given f ∈ R, and a vector e, we define the integers
spane(f) and faile(f) as follows. First,

spane(f) = min{o(g) : Se(fg) �= 0 for some g ∈ R}
(minimum in the usual numerical order), or +∞ if Se(fg) = 0 for all g ∈ R.
Then

faile(f) = o(f) ⊕ spane(f),

where ⊕ is the operation from Definition (2.1).

Restating Proposition (2.7), we have f ∈ Ie if and only if spane(f) =
+∞, or equivalently if and only if faile(f) = +∞. If f /∈ Ie, spane(f) gives
the first (smallest) value of o(g) for which Se(fg) = 0 fails for some g,
while faile(f) gives the value of o(fg) for this first failure.

The following exercise will be useful.

Exercise 3.
a. Let spane(f) = c and let g be an arbitrary element of R with o(g) = c.

Show that Se(fg) �= 0. Hint: Use Definition (1.1).
b. Suppose o(f) = s and spane(f) = c. Show that if o(g) = c, then

spane(g) ≤ s and faile(g) ≤ s ⊕ c.
c. Let spane(f) = spane(g) = c. Show that there exists λ ∈ Fq \ {0} such

that spane(f + λg) > c. Hint: Use part a.
d. Show that faile(f) > k if and only if Se(fg) = 0 for all g such that

o(fg) = k.

The set ∆(e) is defined in Proposition (2.7) via the o function. It also
has a useful characterization using spane. First, we claim that if f /∈ Ie

is fixed, the smallest value of o(g) for which Se(fg) �= 0 must be in ∆(e).
Equivalently,

∆(e) ⊇ {spane(f) : f /∈ Ie}.
This follows since if we had f /∈ Ie with spane(f) not in ∆(e), then by the
definition of ∆(e), we would have spane(f) = o(g) for some g ∈ Ie. But
then Proposition (2.7) would say Se(fg) = 0. This contradicts part a of
Exercise 3. In fact, the reverse inclusion is also valid.

(2.9) Proposition. ∆(e) = {spane(f) : f /∈ Ie}.
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The proof will be accomplished using Lemma (2.10) below, which involves
a new idea. For a fixed s ∈ ∆(e), the elements of order s in R do not
necessarily all have the same spane value. The following exercise gives an
example of this.

Exercise 4. Let R be the order domain from Example (1.3), and consider
the ordering of the eight F4-rational points on the variety X associated
with R from (1.15). Let e = (0, 1, 0, 0, 0, 0, 0, 1).
a. Show using (2.6) that Se(1) = 0, Se(x1) = α2, and Se(x2) = α.
b. Show that o(x2) = o(x2 + α2x1) = 2, but spane(x2) = 0, while

spane(x2 + α2x1) ≥ 1.
c. By computing more syndromes as needed, determine spane(x2 + α2x1).

However, because {spane(f) : f /∈ Ie} is contained in the finite set ∆(e),
for each s, there will be a maximum possible spane value for f of order
s. As is often true, it is productive here to consider the maximum value,
denoted

spe(s) = max{spane(f) : o(f) = s}.
By analogy with Definition (2.8), we will also write

fle(s) = s ⊕ spe(s).

The spe mapping has the following interesting properties.

(2.10) Lemma.
a. If s ∈ ∆(e), then spe(s) ∈ ∆(e) also.
b. The mapping spe : ∆(e) → ∆(e) is bijective.

Proof. For part a, we argue by contradiction. Suppose s ∈ ∆(e), but
spe(s) /∈ ∆(e). This says that there are f /∈ Ie with o(f) = s and the
maximal spane(f) = spe(s). Moreover, there is some g ∈ Ie such that
o(g) = spe(s). By Proposition (2.7), Se(fg) = 0. But this contradicts part
a of Exercise 3. Hence spe(s) ∈ ∆(e).

Turning to part b, since ∆(e) is a finite set, it suffices to show that spe is
injective. So consider s > t in ∆(e) and suppose that spe(s) = spe(t) = m.
Let f satisfy o(f) = s and spane(f) = m, and let g satisfy o(g) = t and
spane(g) = m. By part c of Exercise 3, it follows that for some λ ∈ Fq \{0},
spane(f + λg) > m. But we also have o(f + λg) = o(f) = s since we
assumed s > t. This contradicts the choice of f , and we have proved that
spe is injective on ∆(e).

The proof of Proposition (2.9) follows easily now.

Proof of Proposition (2.9). We only need to prove the inclusion
∆(e) ⊆ {spane(f) : f /∈ Ie}. Let s ∈ ∆(e). By Lemma (2.10), s = spe(t)



§2. The Overall Structure of the BMS Algorithm 515

for some t ∈ ∆(e). By the definition, this means s = spane(f) for f with
o(f) = t achieving the maximal spane value.

Another tool we will use is a particularly nice basis of the subspaces Lk.
Recall from Proposition (1.13) that for all k ≥ −1, we have Lk ⊂ Lk+1
and dim(Lk) = k + 1. We also know from §1 that R has a monomial basis
∆, and since (R, ρ) is Archimedean, we can list the elements of ∆ as Mi,
i ∈ Z≥0, where o(Mi) = µ(ρ(Mi)) = i for all i ∈ Z≥0.

Exercise 5. Let i, j ∈ Z≥0.
a. Show that Lk = Span(M0, . . . , Mk) for all k ≥ −1.
b. Show that o(MiMj) = o(Mi⊕j) and conclude that there is λ ∈ Fq such

that o(MiMj − λMi⊕j) < o(Mi⊕j).

Note that the λ in Exercise 5 depends on i and j. The nicest case is when
all of the λs are 1. This leads to the following definition.

(2.11) Definition. We say that {z0, z1, . . .} is a normalized basis of R if
o(zi) = i for all i ∈ Z≥0 and o(zizj − zi⊕j) < o(zi⊕j) for all i, j ∈ Z≥0.

Unfortunately, one needs valuation theory to prove the existence of nor-
malized bases. We refer the reader to [GeP], Proposition 6.4, for a proof.
In what follows, we will assume that we have a normalized basis {zi} of R.

Exercise 6. For the order domain (R, ρ) of Example (1.3), we know that
∆ = {xi

1x
j
2 : 0 ≤ i ≤ 2, j ≥ 0} and ρ(xi

1x
j
2) = 2i + 3j. Show that

{xi
1x

j
2 : 0 ≤ i ≤ 2, j ≥ 0} = {1, x1, x2, x

2
1, x1x2, x

2
2, . . .}

is a normalized basis of R. Hint: x3
1 + x2

2 + x2 = 0 in R and F4 has
characteristic 2.

In fact, for all of the examples we will consider, the needed elements of
the normalized basis will actually be elements of ∆.

The Sets Σk and ∆k

In Proposition (2.7), we defined ∆(e) = {s ∈ Z≥0 : s �= o(f) for all f ∈
Ie}. The complement of ∆(e) consists of the integers o(f) for all f ∈ Ie\{0}
and hence will be important for determining Ie. We call this complement
Σ(e) and hence:

(2.12)
Σ(e) = {o(f) ∈ Z≥0 : f ∈ Ie \ {0}}
∆(e) = Z≥0 \ Σ(e).
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In an intuitive sense, the larger faile(f) is, the closer f is to being in Ie.
The BMS algorithm approximates Σ(e) and ∆(e) using sets Σk and ∆k

defined using this idea, as follows.

(2.13) Definition. For e ∈ F
n
q and k ∈ Z≥0, let

Σk = {o(f) ∈ Z≥0 : f ∈ R \ {0}, faile(f) > k}
∆k = Z≥0 \ Σk.

Exercise 7. Use f ∈ Ie ⇔ faile(f) = +∞ to show that we have inclusions

Σ(e) ⊂ · · · ⊂ Σk ⊂ Σk−1 ⊂ · · · ⊂ Σ0

∆(e) ⊃ · · · ⊃ ∆k ⊃ ∆k−1 ⊃ · · · ⊃ ∆0

so that

Σ(e) =
∞⋂

k=0

Σk and ∆(e) =
∞⋃

k=0

∆k.

In the BMS algorithm, the index k ∈ Z≥0 is a counter in a loop such that
the kth pass through the loop produces Σk and ∆k from Σk−1 and ∆k−1.
Since ∆(e) is finite, Exercise 7 implies that ∆(e) = ∆k for k sufficiently
large. Thus, as the algorithm proceeds, the ∆k increase and converge to
∆(e), and Proposition (2.7) tells us that under the o function, ∆(e) cor-
responds to the set of standard monomials for the zero-dimensional ideal
Je with respect to a >(ρ,�),τ order associated with R. Similarly, the Σk

decrease and converge to Σ(e). Under o, Σ(e) corresponds to the set of
monomials in 〈LT>(Je)〉.

The reasoning used to prove the alternate characterization of ∆(e) in
Proposition (2.9) above gives a similar description of the set ∆k in terms
of the spane function:

(2.14) ∆k = {spane(f) : f ∈ R, faile(f) ≤ k}.
You will prove this fact in Exercise 12 below.

Probably the most important property of ∆(e) and ∆k is that they are
delta-sets, meaning that if they contain s ∈ Z≥0, then they contain all
elements of Z≥0 which are � s. The following exercise makes this precise.

Exercise 8.
a. Prove that faile(f) = k implies that faile(fg) ≥ k for all g ∈ R.
b. Show that if s ∈ ∆(e) and a � s, then a ∈ ∆(e). This shows that ∆(e)

is a delta-set.
c. Use part a to show that ∆k is a delta-set.
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Because ∆k is a delta-set, it is natural to describe ∆k in terms of its set
δk of maximal elements with respect to %. We write this as

δk = max� (∆k),

and then being a delta-set implies that

∆k = {b ∈ Z≥0 : b � d for some d ∈ δk}.
Furthermore, since Σk is the complement of a delta-set, it has the property
that if s ∈ Σk and t % s then t ∈ Σk. To describe Σk, we will use the set
of minimal elements with respect to %. If we set

σk = min� (Σk),

then

Σk = {t ∈ Z≥0 : t % s for some s ∈ σk}.
It is clear that δk is finite. The finiteness of σk is less obvious, but can be
proved using an appropriate formulation of Dickson’s Lemma. See [BW],
Corollary 4.48 for instance. In our case where Σk is the complement of
the finite delta-set ∆k, there is also a simpler direct proof leading to an
algorithm for producing σk from ∆k. See Exercise 13 below.

The sets δk and σk are important because they are part of the data
structures used by the BMS algorithm to represent ∆k and Σk. Notice
that since% is different from the usual numerical order in Z≥0, the sets δk

and σk can each have more than one element.

The Feng-Rao Bound
The Feng-Rao majority voting procedure used in the BMS algorithm is
closely tied to a method for estimating the minimum distances of the Ca

codes. Recall from Corollary (2.3) that

Nb = {c ∈ Z≥0 : c � b}
is a finite set. We will use the notation

nb = |Nb|.
For instance, in our running example started in Example (1.3), N5 =
{0, 1, 2, 3, 5}, since 0 ⊕ 5 = 5, 1 ⊕ 3 = 5, 2 ⊕ 2 = 5, but 5 �% 4. Thus we
have n5 = 5.

The key fact relating the integers nb to the minimum distances of the
Ca = evS(La)⊥ codes is the following observation.

(2.15) Lemma.
a. Suppose v ∈ Ca−1 \ Ca. Then wt(v) ≥ na.
b. The minimum distance of Ca satisfies d(Ca) ≥ min{nb : b > a}.
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Proof. For part a, we consider spanv, failv, and the sets ∆k, ∆(v) where
the vector v takes the role played by e above. (Although the decoding
algorithm focuses on the cases where v = e is an error vector or v = y =
x + e is a received word, note that our definitions and results are valid for
arbitrary vectors.) Since v ∈ Ca−1, Sv(f) =

∑n
j=1 vjf(Pj) = 0 for all f ∈

La−1, but there is some g ∈ La such that Sv(g) �= 0. Hence for h = 1 (the
constant function in R), failv(1) = a, so a ∈ ∆a. Since ∆a is a delta-set, it
follows that Na ⊂ ∆a as well. Hence na = |Na| ≤ |∆a| ≤ |∆(v)| = wt(v),
where the last equality follows from Proposition (2.7).

In Exercise 14 below, you will see that part b follows from part a.

The lower bound on d(Ca) from part b of the lemma is known as the
Feng-Rao bound (or order bound) on d(Ca). We will write

(2.16) dFR(Ca) = min{nb : b > a}.
The Feng-Rao bound is easy to compute in examples where we have explicit
information about the monoid structure of (Z≥0,⊕).

Exercise 9. Let C2 be the code from the order domain of Example (1.3).
a. Show that µ : (〈2, 3〉, +) → (Z≥0,⊕) is given by

µ(m) =
{

0 if m = 0
m − 1 if m ≥ 2 in 〈2, 3〉 ⊂ Z≥0.

b. Using the isomorphism µ, show that na = a for all a ≥ 2.
c. Deduce that dFR(C2) = 3.

Exercise 10. Let R = Fq[x1, x2], for fixed q ≥ 3, with ρ defined as in
Example (1.2) using the graded lex order with x1 > x2. The subspace L5
is spanned by {1, x2, x1, x

2
2, x1x2, x

2
1}. Consider the C5 = E⊥

5 code.
a. Construct a table giving the values of a ⊕ b for 0 ≤ a, b ≤ 4 and use it

to determine Nj and nj , j ≤ 5.
b. Deduce and prove a formula for dFR(Ca) in this case, assuming q is suf-

ficiently large that the basis monomials for La are linearly independent
at the points of F

2
q .

c. Is the Feng-Rao bound for d(C5) sharp with q = 3?

The Overall Structure
Our final goal in this section is to explain the overall structure of the BMS
algorithm. As already mentioned, the algorithm will use the sets δk and σk.
But recall that each s ∈ σk is of the form s = o(f) where faile(f) > k. We
need such elements of R in the data structure, so we will include a function

(2.17) Fk : σk → R \ {0}
such that for each s ∈ σk we have o(Fk(s)) = s and faile(Fk(s)) > k.
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We want similar data for δk. The precise description is a function

Gk : δk → R \ {0}
such that for each c ∈ δk we have spane(Gk(c)) = c, faile(Gk(c)) ≤ k, and
the normalization Se(Gk(c)zc) = 1. Existence of such Gk(c) follows from
(2.14) above.

The data structure we will use in the BMS algorithm consists of two
pieces. The first is

Info(k) = (σk, Fk, δk, Gk)

corresponding to the sets and maps defined above. The second is

Syn(k) = (Se(z0), . . . , Se(zk)),

where {zi} is our chosen normalized basis of R. This enables us to compute
Se(f) for any f ∈ Lk.

In (2.18), we give a rudimentary outline of the BMS algorithm. We ig-
nore issues such as stopping criteria for the loop in step 2 for the moment.
The notation FRMV refers to the Feng-Rao majority voting procedure for
computing previously unknown syndromes mentioned before, and InfoUp-
date refers to the procedure that computes Info(k) in terms of Info(k − 1)
and Syn(k). Both procedures and the stopping criteria will be described in
detail in §3. As above, {zi} is the normalized basis of R.

(2.18) BMS Decoding Algorithm (Overall Structure). Consider the
decoding problem for the Ca code from an order domain R.

Input: R, {zi}, Se computing syndromes of elements of La, the received
word y = x + e.

Output: the decoded word x.

1. Initialize

Info(−1) := (σ−1 = {0}, F−1(0) = 1, δ−1 = ∅, G−1 = ∅)
Syn(−1) := ()

2. FOR k ∈ Z≥0 DO

IF k ≤ a THEN

compute Se(zk) = Sy(zk) from y

ELSE

Se(zk) := FRMV(Info(k − 1), Syn(k − 1))

Syn(k) := append Se(zk) to Syn(k − 1)

Info(k) := InfoUpdate(Info(k − 1), Syn(k)).

We will see that Info(k) converges to Info = (σ, F, δ, G) after a finite
number of steps.
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3. Compute ErrorLocations = {P ∈ S : F (s)(P ) = 0 for all s ∈ σ}.
4. Compute error values, e.g., by generalized Forney formulas as in [Leo]

or [Lit] to get e, and subtract e from y to recover x.

The precise meaning of termination is that there is k such that

Info(k) = Info(k + 1) = Info(k + 2) = · · · .
This gives what we call Info = (σ, F, δ, G). Since ∆k = {c ∈ Z≥0 : c �
d for some d ∈ δk}, termination implies that

∆k = ∆k+1 = ∆k+2 = · · · .
We showed earlier that ∆� = ∆(e) for � sufficiently large. It follows that

∆(e) = {c ∈ Z≥0 : c � d for some d ∈ δ}
Σ(e) = {t ∈ Z≥0 : t % s for some s ∈ σ}.

Furthermore, if s ∈ σ, then σ = σ� and F = F� for � ≥ k imply that
o(F (s)) = s and faile(F (s)) > � for all � ≥ k. Thus faile(F (s)) = +∞, so
that F (s) is an element of the error locator ideal Ie. Moreover, we know
from (2.13) that Σ(e) = {s ∈ Z≥0 : s = o(f) for some f ∈ Ie}.

We can also view the F (s) as polynomials in Fq[x1, . . . , xt] via φ :
Fq[x1, . . . , xt] → R, and we claim that they, together with the elements
of a Gröbner basis for I, form a Gröbner basis for the ideal Je = φ−1(Ie)
with respect to the >(ρ,�),τ order associated with R. This is a consequence
of the following result.

(2.19) Theorem. Let G be a Gröbner basis for I with respect to >(ρ,�),τ
and let F : σ → Je satisfy o(F (s)) = s for all s ∈ σ. Then

G ∪ {F (s) : s ∈ σ}
is a Gröbner basis for Je with respect to >(ρ,�),τ .

Proof. We abbreviate >(ρ,�),τ by > in the following. Let f ∈ Je be
nonzero. It suffices to show that LM>(f) is divisible by either some LM>(g),
g ∈ G, or some LM>(F (s)), s ∈ σ.

If f ∈ I, then LM>(f) is divisible by some LM>(g), g ∈ G, since G is a
Gröbner basis of I with respect to >. On the other hand, if f /∈ I, then
f gives a nonzero element of R = Fq[x1, . . . , xt]/I which lies in Ie. By
definition, this implies o(f) ∈ Σ(e), and since σ = min�(Σ(e)), we have
o(f) % s for some s ∈ σ. Since s = o(F (s)), Lemma (2.2) implies that
LM>(f) is divisible by LM>(F (s)). This completes the proof.

In the next section we will present the details of the FRMV and
InfoUpdate procedures, and derive the following consequence.
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(2.20) Theorem. The BMS algorithm applied to the Ca code correctly
decodes all received words y = x + e for which

wt(e) ≤ �(dFR(Ca) − 1)/2�.

Proposition (2.1) of Chapter 9 implies that if a code C has minimum
distance d, then all error vectors satisfying wt(e) ≤ � d−1

2 � can be corrected
by nearest neighbor decoding. This theorem says that BMS decoding for
the Ca codes will correctly decode errors whose weight is bounded by a
similar expression but with d replaced by the lower bound dFR(Ca) ≤ d.
Even though dFR(Ca) often agrees with d(Ca), dFR(Ca) can be strictly less
than d(Ca). If that is true the theorem gives no guarantee that BMS takes
full advantage of the error-correcting capacity of the code. However, it is
often true that BMS will correct errors of weight larger than the bound in
Theorem (2.20). See Exercise 6 in §3 below. BMS is an efficient method
using the algebraic structure of the Ca codes and it performs very well on
many interesting examples, such as the Ca codes from Hermitian curves.

ADDITIONAL EXERCISES FOR §2

Exercise 11. The Reed-Solomon code RS(k, q) is the same as the evalu-
ation code Ek−1 from the order domain R = Fq[t], where ρ is the degree
function and S = Fq \ {0}. In this exercise, we will study the dual codes
Ck−1 and their syndromes.
a. Exercises 9 and 10 of §3 of Chapter 9 show that Ck−1 is also a cyclic

code of block length n = q − 1. Determine the generator polynomial
and the set of zeroes for the dual Reed-Solomon code Ck−1.

b. Use the components of a word y in F
q−1
q as coefficients of a polynomial

y(t) as in Chapter 9, §3. Show that the values of y(t) at the zeroes of
Ck−1 are the same as certain syndromes defined as in (2.6).

Exercise 12. By adapting the proof of Proposition (2.9), show (2.14)
above:

∆k = {spane(f) : f ∈ R, faile(f) ≤ k}.

Exercise 13. Let a1, . . . , at be the minimal generators of the monoid
(Z≥0,⊕). Show that

σk = min� ({c ⊕ ai : c ∈ ∆k, 1 ≤ i ≤ t} \ ∆k) .

Since ∆k is a finite set, this shows σk is a finite set and provides an
algorithm for computing σk, provided we know ∆k and the minimal gener-
ators ai.
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Exercise 14. Complete the proof of part b of Lemma (2.15). Hint: Use
the nesting properties of these codes: · · · ⊆ Ca+1 ⊆ Ca ⊆ Ca−1 ⊆ · · ·.

§3 The Details of the BMS Algorithm

We continue the development of the BMS decoding algorithm from §2,
keeping all notation and standing assumptions from §1 and §2.

From Σk−1 and ∆k−1 to Σk and ∆k

Our goal in this section is to study the changes that occur in one InfoUpdate
step from the main loop in step 2 of (2.18). By Exercise 7 of §2 and the
definition of the δk and σk, the following are possible.

• Some s ∈ Σk−1 can “switch” into ∆k.
• In the process, the set δk can pick up elements that were not in δk−1

from Σk−1. Elements from δk−1 that are no longer %-maximal may also
not appear in δk.
• Similarly, elements from σk−1 can “switch” into ∆k, and σk can pick up

new %-minimal elements of the remaining set Σk.

A large part of the “action” of the BMS algorithm occurs in connection
with the three sets

Wk = ∆k \ ∆k−1 = ∆k ∩ Σk−1, σk \ σk−1, and σk−1 \ σk.

(Wk is precisely the set of s ∈ Σk−1 that “switch” into ∆k.) Hence it will
be vital to understand them.

We start by pushing the line of reasoning leading to Lemma (2.10) a bit
further.

(3.1) Lemma.
a. spe ◦ spe is the identity mapping on ∆(e).
b. fle(spe(s)) = fle(s) for all s ∈ ∆(e).

Proof. By part b of Exercise 3 of §2, it follows that spe(spe(s)) ≤ s for
all s ∈ ∆(e). This observation and Lemma (2.10) imply that spe ◦ spe is
a bijective and nonincreasing mapping from ∆(e) to itself. Since ∆(e) is a
finite set, it is easy to see that spe ◦ spe must be the identity mapping. See
Exercise 2 below.

For part b, we use the definition of fle and part a to see

fle(spe(s)) = spe(s) ⊕ spe(spe(s)) = spe(s) ⊕ s = fle(s),

which is what we wanted to show.

Next, we derive an important symmetry property of Wk.
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(3.2) Proposition.
a. Wk = {s ∈ ∆k : fle(s) = k}.
b. If s ∈ Wk, then k % s. Moreover, s ∈ Wk if and only if k & s ∈ Wk.
c. max�(Wk) = {k & s : s ∈ σk−1 \ σk}.
Proof. The definitions of ∆k and fle easily imply that

∆k = {s ∈ Z≥0 : fle(s) ≤ k}.
Part a now follows immediately.

We turn to part b. Part a shows k = s ⊕ spe(s), so k % s and k & s
exists. Now, if s ∈ Wk, then fle(s) = s ⊕ spe(s) = k, so k & s = spe(s).
By Lemma (3.1),

fle(k & s) = fle(spe(s)) = fle(s) = k,

which shows k & s ∈ Wk by part a. Since it is easy to see k & (k & s) = s,
the opposite implication here follows as well.

We leave the proof of part c to the reader as Exercise 3.

The following corollary will be used at two points later.

(3.3) Corollary. Let s ∈ σk−1 \ Wk and k & s ∈ Σk−1. Then
faile(Fk−1(s)) > k, where Fk−1(s) comes from the data structure Info(k−1)
in the BMS algorithm. Moreover, if s is as above, then faile(Fk−1(s)za) > k
for all a.

Proof. If the first claim is false, then faile(Fk−1(s)) = k exactly. Hence
spane(Fk−1(s)) = k & s ∈ ∆k by (2.14). Our hypotheses then imply that
k & s ∈ Wk, and Proposition (3.2) shows s ∈ Wk as well. But that is a
contradiction to s ∈ σk−1 \Wk.

For the second claim, we have faile(Fk−1(s)za) > k by part a of Exercise
8 from §2.

Now we turn to the set σk \ σk−1 and study the effect of the mapping
t �→ k & t on this set.

(3.4) Proposition. Let t ∈ σk \σk−1. Then either k �% t or k&t ∈ ∆k−1.

Proof. Since σk ⊂ Σk ⊂ Σk−1, there exists a ≥ 0 and s ∈ σk−1 such that
t = s ⊕ a. Since t % s, but t is %-minimal in Σk, we must have s ∈ ∆k.
On the other hand, s /∈ ∆k−1 (because it is in σk−1). So s ∈ Wk as above.
By Proposition (3.2), k & s ∈ Wk also. Assume k % t, so k = t ⊕ b
for some b ∈ Z≥0. Then substituting for t, k = (s ⊕ a) ⊕ b. We have
k& s = a⊕ b % b = k& t. Since ∆k is a delta-set, this implies k& t ∈ ∆k.
But t /∈ Wk since t ∈ σk ⊂ Σk. By Proposition (3.2) again, k & t /∈ Wk,
which shows k & t ∈ ∆k−1.
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We are now ready to develop the FRMV and InfoUpdate procedures from
(2.18).

The Feng-Rao Majority Voting Procedure
We assume that we are in the situation at the start of a pass through the
main loop in step 2 of (2.18) for some k ≥ a+1. That is, we have Info(k−1)
and Se(z0), . . . , Se(zk−1) are known. By the linearity of Se, this means that
the syndromes Se(f) are known for all f ∈ Lk−1 = Span{zj : j < k}. The
following observation gives the idea for a way to determine Se(zk) from
known information.

(3.5) Lemma. Suppose we know Se(f) for all f ∈ Lk−1, and assume
k % t. Let ft be any element of R with o(ft) = t, so there is λ(t) ∈ Fq \{0}
such that ftzk�t + λ(t)zk ∈ Lk−1 and hence

α(t) = Se(ftzk�t + λ(t)zk)

is known. If in addition

faile(ft) > k,

then

Se(zk) = λ(t)−1α(t).

Proof. We have Se(ftzk�t) = 0 since faile(ft) > k and o(ftzk�t) = k.
Hence

α(t) = Se(ftzk�t) + λ(t)Se(zk) = 0 + λ(t)Se(zk),

which gives the desired formula.

In order to compute the previously unknown syndrome value Se(zk),
then, we must find ft ∈ R with o(ft) = t, k % t, and faile(ft) > k. But
such functions are provided for us in the data structures used in the BMS
algorithm if we know where to look . To see this, consider

Γk = {t ∈ Σk−1 : k % t and k & t ∈ Σk−1}.
By Proposition (3.2), Wk = ∆k \∆k−1 = Σk−1 \Σk is contained in Γk. But
if t ∈ Wk, we saw in part a of Proposition (3.2) that the maximum possible
faile for f with o(f) = t is exactly k. In fact, it is functions whose orders lie
in the complement Vk = Γk\Wk that we need to consider. Indeed, Corollary
(3.3) above shows that if s ∈ Vk ∩ σk−1, then the function fs = Fk−1(s)
from Info(k − 1) satisfies the hypotheses of Lemma (3.6), and similarly for
ft = Fk−1(s)za if t = s ⊕ a, with s ∈ Vk ∩ σk−1.

So our basic idea at this point is that we can use any t of the form
t = s ⊕ a for s ∈ Vk ∩ σk−1, and apply Lemma (3.5) to ft = Fk−1(s)za to
determine Se(zk).
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However, there is one important point we must address here to turn this
line of thought into a procedure for computing Se(zk). Even though it is
easy in principle to compute Γk using Info(k − 1), we will not yet know ∆k

and Σk, hence we will have no way to determine the sets Vk and Wk at the
point in the BMS algorithm when we need to compute the new syndrome
value Se(zk).

This sounds bad, but it is precisely here that the extremely clever ma-
jority voting idea comes in! For each t ∈ Γk, we pick some way of writing
t = s ⊕ a with s ∈ σk−1 as above. Using ft = Fk−1(s)za, the value
λ(t)−1α(t) from Lemma (3.5) can be thought of as a vote for the value of
Se(zk). We have a vote for each t ∈ Γk.

The following observation shows that if we have several choices for writ-
ing t = s ⊕ a with s ∈ σk−1, then any one of them will do, because if
t ∈ Vk, then s will be in Vk.

(3.6) Lemma. If t ∈ Vk and t = s ⊕ a for some s ∈ σk−1, then s ∈ Vk

also.

Proof. The contrapositive is easier to prove here. Let s ∈ Wk ∩ σk−1
and t = s ⊕ a. By Proposition (3.2), k & s ∈ Wk as well. Moreover,
t % s implies k & s % k & t. Since Wk ⊂ ∆k and ∆k is a delta-set, this
shows k & t ∈ ∆k. Now by hypothesis, k & t ∈ Γk also. It follows that
k & t ∈ Σk−1 ∩ ∆k = Wk. But then Proposition (3.2) shows t ∈ Wk.

It follows that all the t ∈ Vk cast votes for the correct value of Se(zk).
You will show in Exercise 4 below that the elements of t ∈ Wk cast votes
for incorrect values. The majority vote will be the correct value if and only
if |Vk| > |Wk|. The following theorem shows that this will be the case if
wt(e) is small enough.

(3.7) Theorem (Feng-Rao). Let e be an error vector satisfying

2wt(e) < nk = |Nk|.
Then |Vk| > |Wk|.
Proof. We have |∆(e)| = wt(e) by Proposition (2.7). Moreover, ∆k−1
and Wk are disjoint subsets of ∆(e). Hence

(3.8) |∆k−1| + |Wk| ≤ wt(e).

Given s in Nk, we either have s ∈ Σk−1 or s ∈ ∆k−1, and in the first
case either k & s ∈ Σk−1 or k & s ∈ ∆k−1. By definition Γk is the set of
s ∈ Σk−1 such that k & s ∈ Σk−1, and we know Γk = Vk ∪Wk. Hence Nk

is contained in the union of the four sets

Vk, Wk, {s ∈ Σk−1 : k & s ∈ ∆k−1}, Nk ∩ ∆k−1.
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Since the last two sets have cardinality at most |∆k−1|,
(3.9) nk ≤ |Vk| + |Wk| + 2|∆k−1|.
From (3.8), |∆k−1| ≤ wt(e) − |Wk|. Substituting into (3.9), we get

nk − 2wt(e) ≤ |Vk| − |Wk|,
which establishes the claim.

Summarizing our discussions here, we have the following plan for the
FRMV procedure. For each t ∈ Γk, write t = s⊕ a for some s ∈ σk−1 and
a ≥ 0. Compute λ(t)−1α(t) as in Lemma (3.5), using ft = Fk−1(s)za. The
correct value of Se(zk) will be the value obtained for the majority of the
t, provided the hypothesis of Theorem (3.7) on the error e is satisfied. In
Exercise 5 below, you will develop a pseudocode algorithm based on this
informal description.

We also have the following result.

(3.10) Corollary. Provided that wt(e) ≤ �(dFR(Ca) − 1)/2�, we have
|Vk| > |Wk| for all k > a.

Proof. Recall that dFR(Ca) = min{nb : b > a}. Under the assump-
tion wt(e) ≤ �(dFR(Ca) − 1)/2�, the hypothesis of Theorem (3.7) will be
satisfied for all k > a.

In intuitive terms, Corollary (3.10) says all syndromes needed for BMS
can be computed by the majority voting process provided that wt(e) ≤
�(dFR(Ca) − 1)/2�. This is part of the proof of Theorem (2.20).

An argument similar to the proof of Theorem (3.7) establishes the same
conclusion with the weaker hypothesis 2|Nk ∩∆(e)| < nk. This shows that
BMS decoding can often succeed even for error vectors of weight larger
than � dFR(Ca)−1

2 �. See Exercise 6 below.

The InfoUpdate Procedure
The following theorem gives the key InfoUpdate procedure of the BMS al-
gorithm, showing how to produce Info(k) from Info(k− 1). The correctness
proof for this algorithm will complete the proof of Theorem (2.20). Note
how many of the same facts used to develop the FRMV procedure also
underlie the different updating steps performed here.

(3.11) Theorem. Assume Info(k − 1) = (σk−1, Fk−1, δk−1, Gk−1) satis-
fies σk−1 = min�(Σk−1), δk−1 = max�(∆k−1), and for each s ∈ σk−1,
o(Fk−1(s)) = s and faile(Fk−1(s)) > k − 1, and for each c ∈ δk−1,
spane(Gk−1(c)) = c, faile(Gk−1(c)) ≤ k − 1, and Se(Gk−1(c)zc) = 1.
Then the output of the InfoUpdate algorithm on the following page is the
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correct Info(k), satisfying the above conditions, with k − 1 replaced by k
everywhere.

Input: Info(k − 1), R, a normalized basis {zi}, Syn(k)

Output: Info(k) = (σk, Fk, δk, Gk)

δ′ := ∅
FOR s ∈ σk−1 DO

IF k % s THEN

β(s) := Se(Fk−1(s)zk�s)

IF β(s) �= 0 and k & s ∈ Σk−1 THEN

δ′ := δ′ ∪ {k & s}
δk := max� (δ′ ∪ δk−1)

σk := min� {t ∈ Z≥0 : there is no c ∈ δk such that c % t}
FOR c ∈ δk DO

IF c ∈ δk−1 THEN

Gk(c) := Gk−1(c)

ELSE

Gk(c) := (β(k & c))−1Fk−1(k & c)

FOR t ∈ σk DO

find s ∈ σk−1, u such that t = s ⊕ u

IF there exist c ∈ δk−1, b ∈ Z≥0 such that k & t = c & b THEN

Fk(t) := Fk−1(s)zu − β(s)Gk−1(c)zb

ELSE

Fk(t) := Fk−1(s)zu

Proof. The first loop over s ∈ σk−1 is designed to find the %-maximal
elements of Wk using Proposition (3.2), part c. We claim that β(s) �= 0
and k & s ∈ Σk−1 if and only if s ∈ σk−1 \ σk. First, if s ∈ σk−1 \ σk,
then s ∈ ∆k \ ∆k−1 = Wk, hence k & s ∈ Wk ⊂ Σk−1 by Proposition
(3.2), part b. Moreover, β(s) �= 0 follows easily since fle(s) = k by part
a of Proposition (3.2). Conversely, if β(s) �= 0 and k & s ∈ Σk−1, then
s ∈ σk−1 \ σk by Corollary (3.3). The value k & s = spane(Fk−1(s)) is
inserted into δ′ for those s. After that first loop is complete, the set δk−1 ∪ δ′

contains the%-maximal elements of ∆k−1 and of Wk = ∆k \∆k−1. Hence
the assignment for δk will yield max�(∆k). The assignment for σk is correct
since δk is the set of%-maximal elements of the delta-set ∆k, so Σk = {t ∈
Z≥0 : there is no c ∈ δk such that c % t}. The idea for an algorithm for
determining σk from ∆k is indicated in Exercise 13 of §2.
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The next loop over c ∈ δk produces Gk(c) satisfying spane(Gk(c)) = c
and faile(Gk(c)) ≤ k. If c ∈ δk−1, then by hypothesis Gk−1(c) has span c
and fail at most k − 1 < k, so no change is necessary. On the other hand,
if c ∈ δk \ δk−1, then c is one of the k & s from δ′ in the first loop and
Fk−1(k & c) = Fk−1(s) has fail exactly k. Multiplying by (β(k & c))−1

normalizes Gk(c) so that Se(Gk(c)zk�c) = 1.
Finally, the loop over t ∈ σk produces Fk(t) satisfying o(Fk(t)) = t and

faile(Fk(t)) > k. For each such t, there exists s ∈ σk−1 and u ≥ 0 such
that t = s ⊕ u since σk ⊂ Σk−1. There are three cases here.

First, assume k �% t. This implies the condition in the if statement cannot
be satisfied, so the else block will be executed. We have o(Fk−1(s)zu) =
s ⊕ u = t. Moreover faile(Fk−1(s)zu) > k − 1 by hypothesis and Exer-
cise 8 of §2. It cannot equal k since k �% t, so there are no g ∈ R with
o(Fk−1(s)zug) = k. Therefore, faile(Fk−1(s)zu) > k.

Second, suppose k % t, but t = s ⊕ u /∈ σk−1. Then Proposition (3.4)
implies k& t ∈ ∆k−1. So k& t = c& b for some c ∈ δk−1 and b ∈ Z≥0, and
the condition in the if statement will be true. Write v = k & t = c & b, so
k = s⊕u⊕v and c = b⊕v. We must show first that o(Fk(t)) = t. We have
o(Fk−1(s)zu) = s ⊕ u = t as in the first case, so to show o(Fk(t)) = t, it
suffices to see that o(Gk−1(c)zb) = o(Gk−1(c))⊕ b < t. But by hypothesis,
faile(Gk−1(c)) = o(Gk−1(c)) ⊕ c ≤ k − 1. Therefore, o(Gk−1(c)) ⊕ c⊕ b <
k ⊕ b = t ⊕ c. It follows that o(Gk−1(c)) ⊕ b < t as desired. Next, we
must show that faile(Fk(t)) > k. If the value of β(s) computed in the first
loop was zero, then faile(Fk−1(s)) > k. But then Fk(t) = Fk−1(s)zu has
faile(Fk(t)) > k by part a of Exercise 8 from §2. Hence to conclude this case,
we can assume β(s) �= 0, so faile(Fk−1(s)) = k. We have k = t⊕ v and t =
s⊕u, so spane(Fk−1(s)zu) = v = k&t = c&b. However, spane(Gk−1(c)) =
c, so spane(Gk−1(c)zb) = c&b also. By part c of Exercise 3 of §2, some linear
combination of Fk−1(s)zu and Gk−1(c)zb will have a larger spane value,
hence faile value > k. The appropriate linear combination uses the β(s)
computed in the first loop. Since k&s = u⊕v, and the zi are assumed to be
a normalized basis, we have o(zuzv−zk�s) < k&s and o(zbzv−zc) < c. So
Se(Fk−1(s)(zuzv − zk�s)) = 0 and Se(Gk−1(c)(zbzv − zc)) = 0. It follows
that Se(Fk−1(s)zuzv) = Se(Fk−1(s)zk�s) = β(s), and Se(Gk(c)zbzv) =
Se(Gk(c)zc) = 1. Hence Se(Fk(t)zv) = 0, which shows faile(Fk(t)) > k.

Third, we must handle the case k % t and t ∈ σk−1. In this case s = t
and u = 0. If k & t ∈ ∆k−1, then the previous paragraph applies. If not,
then k & t ∈ Σk−1. This is precisely the case covered by Corollary (3.3),
and Fk(t) = Fk−1(t) has faile(Fk(t)) > k.

Termination of the Main Loop in BMS
The final ingredient needed to make the BMS algorithm explicit is a crite-
rion showing that the loop in step 2 of Algorithm (2.18) can be terminated
after a finite number of steps because no further changes in the Info(k) can
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occur. At that point, all of the Fk(s) for s ∈ σk will be elements of Ie, as
we saw in §2.

(3.12) Proposition. Let ∆(e) be as above. Let cmax be the largest element
of ∆(e) and smax be the largest element of σ = min� Σ(e).
a. Let K = cmax⊕ cmax. Then for all k ≥ K, ∆k = ∆(e) and Σk = Σ(e).
b. The computation in step 2 of (2.18) will be complete after the iteration

with k = M = cmax ⊕ max{cmax, smax}.
Proof. Since the ∆k are an increasing, nested collection of subsets of
∆(e), it suffices to show that ∆(e) ⊆ ∆K . Take s ∈ ∆(e) and pick any f
such that s = o(f). The definition of ∆(e) implies that f /∈ Ie, and then
spane(f) ∈ ∆(e) by Proposition (2.9). It follows that faile(f) = o(f) ⊕
spane(f) ≤ cmax ⊕ cmax = K. Since this is true for all f with o(f) = s,
we conclude that s ∈ ∆K . This establishes part a.

For part b, if s ∈ σ = min�(Σ(e)) and k > s ⊕ cmax, then
spane(Fk(s)) > k & s > cmax. By Proposition (2.9), and the definition
of cmax, this implies Fk(s) ∈ Ie. Hence once k ≥ M , no changes will occur
in any of the data structures used in the BMS algorithm.

When running the BMS algorithm, we don’t know ∆(e) in advance, yet
the bound on k given in part b of Proposition (3.12) depends on ∆(e).
We can overcome this seeming difficulty as follows. The key point is the
assumption

wt(e) ≤ �(dFR(Ca) − 1)/2�
from Theorem (2.20). This implies that ∆(e) is a delta-set of bounded
cardinality. In Exercise 8, you will show that there are only finitely many
such delta-sets. So by computing the bound given in part b of Proposition
(3.12) for each of these delta-sets, we can get a uniform bound for when
to terminate the algorithm. An example of how this works in practice will
be given in Exercise 9 below. Although this process would be somewhat
cumbersome on a larger code, it would only need to be done once. Some
other examples of the criterion in Proposition (3.12) are given in [O’Su2].

An Example
We illustrate the BMS decoding algorithm and Feng-Rao majority voting
procedure with an extended example.

We will consider the order domain R of Example (1.3). The monomials
in the set ∆ give a normalized basis {zi} for R in this case by Exercise 6
of §2. Consider the C4 code (dual of the E4 code, whose generator matrix
is obtained by evaluating 1, x1, x2, x

2
1, x1x2 at the eight F4-rational points

on the Hermitian curve x3
1 + x2

2 + x2 = 0 (ordered as in (1.15)). C4 has
parameters [8, 3,≥ 5] since dFR(C4) = 5 by Exercise 9 of §2. The error
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vector e = (0, 1, 0, 0, 0, 0, 0, 1) has weight 2, hence satisfies the hypotheses
of Theorem (3.7) and Corollary (3.10). The known syndromes are Se(1) =
0, Se(x1) = α2, Se(x2) = α, Se(x2

1) = α, Se(x1x2) = α.
Following Algorithm (2.18), we initialize σ−1 = {0}, F−1(0) = 1, and

δ−1 = ∅. In the first pass through the loop in step 2 (k = 0), the call
to InfoUpdate from Theorem (3.11) changes nothing since Se(F−1(0)) =
Se(1) = 0. Hence δ0 = δ−1, σ0 = σ−1, and F0(0) = F−1(0) = 1.

In the second pass, we have k = 1. Following InfoUpdate from Theorem
(3.11), with s = 0, we have β(0) = Se(1 · x1) = α2 and k & s = 1 & 0 =
1 ∈ Σ0. Hence δ′ = δ1 is assigned the value {1}, σ1 = min�(Z≥0 \ ∆1) =
{2, 3}, and G1(1) = 1/α2. For both t ∈ σ1, s = 0 and u = t. The
condition in the if statement in this block of the algorithm is false in both
cases, so we take the else branch and F1(2) = x2, F1(3) = x2

1. (Note that
|∆1| = 2 = wt(e) already in this case.)

In the third pass, we have k = 2. With s = 2 ∈ σ1, β(2) = Se(F1(2)) =
Se(x2) = α, but k & s = 0 /∈ Σ1. With s = 3, 2 % 3 is not true so we
do nothing. Hence δ′ is empty in this pass, and δ2 = δ1, σ2 = σ1 do not
change, and G2(1) = G1(1) = 1/α2. The F1(t) are updated as follows. For
t = 2, 2 & 2 = 0 = 1 & 1, so the condition in the if statement is satisfied.
F2(2) = x2 + α/α2x1 = x2 + α2x1. With t = 3, 2 & 3 is not of the form
c & b for c ∈ δ1. Hence F2(3) = F1(3) = x2

1.
In the fourth pass through InfoUpdate from Theorem (3.11), k = 3.

In the loop over s ∈ σ2, 3 �% 2, but β(3) = Se(F2(3)) = α. However,
3 & 3 /∈ Σ2, so δ3 = δ2 and σ3 = σ2 are unchanged again. Hence G3(1) =
G2(1) = 1/α2. In the loop over t ∈ σ3, with t = 2 and u = 0, there are no
c, b such that 3 & 2 = c & b. Hence F3(2) = F2(2) = x2 + α2x1. But with
t = 3 (also u = 0), 3& 3 = 1& 1, so F3(3) = F2(3)−α/α2x1 = x2

1 +α2x1.
In the fifth pass (k = 4), in the first loop over s ∈ σ3, we compute

β(2) = Se(F3(2)x1) = Se(x1x2) + α2Se(x2
1) = α + α2 · α = α2. Similarly

β(3) = Se(F3(3)) = Se(x2
1 + α2x1) = α + α · α2 = α2. We have δ4 = δ3,

σ4 = σ3, and G4(1) = G3(1). In the loop over t ∈ σ4, 4 & 2 = 1 & 0,
and F4(2) = F3(2) − α2/α2 = x2 + α2x1 + 1. There are no c, b such that
4 & 3 = c & b, so F4(3) = F3(3) = x2

1 + α2x1.
By Proposition (3.12), ∆(e) = {0, 1} and Σ(e) = {j ∈ Z≥0 : j ≥ 2}.

We have cmax ⊕ max{cmax, smax} = 1 ⊕ max{1, 3} = 5, so one further
iteration will suffice. The known syndromes are exhausted, though. So we
must begin this iteration by using the Feng-Rao procedure to determine
the first unknown syndrome value Se(x2

2). We have Γ5 = {s ∈ Σ4 : 5& s ∈
Σ4} = {2}, and Se(F4(2)z2−z5) = Se((x2 +α2x1 +1)x2−x2

2) = α2, using
the known syndrome values. This is the correct value of Se(x2

2). However,
in this pass, no further changes are made, and the final output of step
2 of the BMS algorithm is Ie = 〈x2 + α2x1 + 1, x2

1 + α2x1〉. These two
polynomials also give the Gröbner basis of Je in this case. It is easy to
check that V(Je) consists of precisely the two points on X corresponding
to the nonzero positions in e.
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In this example, no changes occurred in our data structures after k = 4.
In the following exercise, you will see a case where further iterations
and computation of initially unknown syndrome values via the FRMV
procedure are actually necessary.

Exercise 1. Carry out the BMS algorithm for C4 with the error pattern
e = (0, 0, α, 1, 0, 0, 0, 0). How is this case different from the example we
worked out above?

Concluding Comments
The theory of order domains that we have presented gives a simplified
treatment of the most important geometric Goppa codes and the BMS
algorithm. It also creates the possibility of exploiting order domains from
varieties of higher dimension for the construction of codes with good param-
eters and efficient decoding algorithms. This is an area where exploration
has just begun as of this writing.

Historically, the BMS algorithm arose from Sakata’s work on m-
dimensional cyclic codes as in Chapter 9, §3. It was then applied to the
geometric Goppa codes from curves mentioned in §1. The original version
of BMS did not incorporate the majority voting procedure and hence other
(far less efficient) methods for determining the needed unknown syndromes
were originally employed. This difficulty was substantially overcome in an
efficient way through the ingenious contribution of Feng, Rao, and Du-
ursma (see [FR] and [HP]). Our presentation of FRMV follows [O’Su2]
and is significantly simpler than the original formulation.

ADDITIONAL EXERCISES FOR §3

Exercise 2. Show that if A is a finite subset of Z≥0 and f : A → A is a
bijective mapping such that f(a) ≤ a for all a ∈ A, then f is the identity
mapping.

Exercise 3. Prove part b of Proposition (3.2). Hint: Use the fact that if
k % t, s, then t % s if and only if k & s % k & t.

Exercise 4. Show that in the situation of the FRMV procedure all t ∈ Wk

cast incorrect votes for the value of the unknown syndrome Se(zk).

Exercise 5. After Theorem (3.7) in the text, we sketched an informal
outline for the FRMV procedure. Develop a pseudocode algorithm from
this outline. Hint: One way to do this is to keep tallies of how many times
each distinct vote occurs.
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Exercise 6. In the situation of Theorem (3.7), assume that 2|Nk∩∆(e)| <
nk. Show that |Vk| > |Wk| and the Feng-Rao majority voting process will
produce the correct syndrome value Se(zk). Hint: Partition Nk into four
subsets by considering whether c ∈ Nk is contained in Σ(e) or ∆(e) and
similarly for k & c.

Exercise 7. Let c be a nonzero maximal element (with respect to %)
of a delta-set ∆ ⊂ Z≥0. Also let a1, . . . , at be the minimal generators of
(Z≥0,⊕).
a. Prove that ∆ \ {c} is a delta-set.
b. Prove that c = s ⊕ ai for some s ∈ ∆ \ {c} and i with 1 ≤ i ≤ t.

Exercise 8. Let N be a positive integer. Prove that the number of delta-
sets of Z≥0 of cardinality N is finite. Hint: Use the previous exercise and
induction on N .

Exercise 9. Consider the C4 code from the order domain R in Example
(1.3), used in our example above and in Exercise 1. We have dFR(C4) = 5,
so all error vectors of weight 2 or less are correctable by BMS decoding.
We will see that it is possible to derive a uniform upper bound on the
maximum number of iterations in the main loop in step 2 of (2.18) from
Proposition (3.12) needed to correct any of these errors.
a. Show that if w(e) = 1, then ∆(e) = {0} and σ = {1, 2}.
b. Show that if w(e) = 2, then either σ = {2, 3} and ∆(e) = {0, 1}, or else

σ = {1, 5} and ∆(e) = {0, 2}. Hint: What are the possible delta-sets
∆(e) with exactly two elements for this monoid (Z≥0,⊕)?

c. Deduce that the main loop in step 2 of (2.18) will be complete after the
iteration with k = 8 for all errors with wt(e) ≤ 2.

d. In the same way, determine all possible delta-sets ∆(e) with |∆(e)| = 3
in this example.
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and V. A. Powers, eds.), Contemporary Mathematics 286, AMS,
Providence, RI, 2001, 1–20.

[Cox3] D. Cox. Curves, Surfaces and Syzygies, in: Algebraic Geometry
and Geometric Modeling (R. Goldman and R. Krasauskas, eds.),
Contemporary Mathematics 334, AMS, Providence, RI, 2003,
131–150.

[Cox4] D. Cox. What is a toric variety? , in: Algebraic Geometry and
Geometric Modeling (R. Goldman and R. Krasauskas, eds.),
Contemporary Mathematics 334, AMS, Providence, RI, 2003,
203–223.

[CoxKM] D. Cox, R. Krasauskas and M. Musţată. Universal rational
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tation of zero-dimensional Gröbner bases by change of ordering ,
J. Symbolic Comput. 16 (1993), 329–344.

[FR] G.-L. Feng and T. Rao. Decoding of algebraic geometric codes up
to the designed minimum distance, IEEE Trans. Inform. Theory
39 (1993), 743–751.

[Fit1] P. Fitzpatrick. On the key equation, IEEE Trans. Inform. Theory
41 (1995), 1290–1302.

[Fit2] P. Fitzpatrick. Solving a multivariable congruence by change of
term order , J. Symbolic Comput. 24 (1997), 575–589.

[FM] J. Fogarty and D. Mumford. Geometric Invariant Theory , Second
Edition, Springer-Verlag, Berlin, 1982

[FIS] S. Friedberg, A. Insel and L. Spence. Linear Algebra, 3rd edition,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

[Ful] W. Fulton. Introduction to Toric Varieties, Princeton U. Press,
Princeton NJ, 1993.

[GL1] T. Gao and T. Y. Li. Mixed volume computation via linear
programming , Taiwanese J. Math. 4 (2000), 599–619.

[GL2] T. Gao and T. Y. Li. Mixed volume computation for semi-mixed
systems, Discrete Comput. Geom. 29 (2003), 257–277.

[GLW] T. Gao, T. Y. Li and X. Wang. Finding all isolated zeros of
polynomial systems in C

n via stable mixed volumes, J. Symbolic
Comput. 28 (1999), 187–211.

[GS] A. Garcia and H. Stichtenoth. A tower of Artin-Schreier ex-
tensions of function fields attaining the Drinfeld-Vladut bound ,
Invent. Math. 121 (1995), 211–222.

[GeP] O. Geil and R. Pellikaan. On the Structure of Order Domains,
Finite Fields Appl. 8 (2002), 369–396.

[GKZ] I. Gelfand, M. Kapranov and A. Zelevinsky. Discriminants, Resul-
tants and Multidimensional Determinants, Birkhäuser, Boston,
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Adapted order, see monomial order,
adapted

A-degree, 320
adjacent cells or polytopes in a

polyhedral complex, 408,
411–413, 417, 422

A-homogeneous, 330
A-resultant, see resultant, sparse
Abel, N., 29
Acton, F., 30, 35, 533
Adams, W., vii, 4, 11, 14, 16, 18, 24,

27, 39, 185, 211, 213, 376, 533
affine

half-space, 408
Hilbert Function, see Hilbert

function, affine
hyperplane, 308, 312, 379, 411,

413, 418
linear space, see affine, subspace
n-dimensional space over C (Cn),

90, 97, 105, 114, 125, 316,
327, 343, 344, 346, 352, 353,
357

n-dimensional space over Fq (Fn
q ),

459ff, 468ff, 505, 510, 511
n-dimensional space over k (kn),

19, 293, 294
n-dimensional space over R (Rn),

69ff, 305ff, 392ff, 426ff, 436ff
subspace, 312, 340, 388
variety, 20, 24, 45, 495, 501

Agacy, R., xi

alex, 159, 161, 162, 171, 175, 177,
183, 187

Alexandrov-Fenchel inequality, 362
Alfeld, P., 420, 533
algebra over a field k, 38, 71, 495

finite-dimensional algebra, 37ff,
56ff, 96, 478

algebraic
coding theory, viii, ix, 451, 459ff,

468ff, 480ff, 494ff, 508ff, 522ff
curve, 494, 498, 501, 506
decomposition, see subdivision,

algebraic (non-polyhedral)
algebraically closed field, 23–25, 27,

42, 96, 148, 150–152, 157,
182, 262

Allgower, E., 353, 533
Alonso, M., 179, 184, 186, 533
alphabet (of a code), 459, 471, 479
Amrhein, B., 445, 446, 533
analytic function, see convergent

power series ring
annihilator of N (ann(N)), 203
anti-graded

lex order, see alex
revlex order, see arevlex
order, see degree-anticompatible

order
Archimedean order domain, see

order domain, Archimedean
Archimedean property (in Z≥0), 502
arevlex, 159, 160, 175

547
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Arnold, V., 187, 533
Artin, M., 244, 533
ascending chain condition, 168, 176,

179, 215, 217, 222, 428
automorphism, see field,

automorphism
Auzinger, W., 65, 135, 533

Bajaj, C., 108, 533
base point (of a parametrization),

294
Basic Question of resultants, 85
basis

monomials, 38, 40, 45, 46, 50, 52,
53, 55, 57, 62, 65, 68–71, 74,
128, 496, 498, 499, 510, 515,
529

of an ideal, 4
of a free module, see module basis

Batyrev, V., 327, 328, 533
Bayer, D., 434, 533
BCH code, 471, 479, 480

designed distance of, 479
Becker, T., vii, 4, 11, 14–16, 18, 27,

39, 49, 55, 69, 75, 185, 441,
517, 533

Berlekamp, E. 480, 491
Berlekamp-Massey algorithm, 480,

488
Berlekamp-Massey-Sakata algorithm

(BMS), xi, 494, 505, 508ff,
522ff

FRMV procedure, 519, 520, 523ff,
530, 531

InfoUpdate procedure, 519, 520,
523, 526–528, 530

termination, 528, 529
see also BMS data structure

Berlekamp-Welch algorithm, 491
Ben-Or, M., 73, 533
Bernstein, D., 346, 351, 370, 533
Bernstein’s Theorem, 343, 344,

346ff
Betke, U., 362, 534
Bézout bound, 346, 355

see also Bézout’s Theorem
Bézout Formula, 100
Bézoutians, 110
Bézout matrix, 369, 370

Bézout’s Theorem, 97, 114–116, 186,
286, 344–346, 352, 505

Bigatti, A., 391, 534
bihomogeneous polynomial, 331, 332
bijective mapping, 477, 501, 514, 522
Bikker, P., 369, 534
bilinear mapping, 467
bilinear surface parametrization, 313
Billera, L., ix, 363, 405, 414, 420,

423, 425, 534
binomial (= difference of two

monomials), 383, 391, 397
see also toric ideal

binomial coefficient, 104, 112, 256,
265, 280, 282, 283, 284, 290,
299, 302, 323, 328, 401, 402,
415–417, 420, 421, 423

binomial theorem, 59, 84, 149
bisector surface, 446, 447
bivariate splines, 405, 420
BKK bound, 351–353, 355, 357

see also Bernstein’s Theorem
Blahut, R., ix, 459, 534
block length (of a code), 459, 463,

464, 470, 471, 477, 479, 504,
521

block matrix, 227, 228
blow-up, 320
BMS data structure

Info(k), 519, 522, 523, 525–528
Syn(k), 519, 527, 528
see also Berlekamp-Massey-Sakata

algorithm (BMS)
Bondyfalat, D., 135, 534
Bonnesen, T., ix, 332, 335, 339, 534
boundary of a cone, 432, 438
bracket ([i0, . . . , in]), 98, 99, 319
Briançon, J., 188
Bruns, W., 299, 534
Bryant, V., 403, 534
Buchsbaum, D., 302, 534
Buchberger, B., 54, 534
Buchberger-Möller algorithm, 54
Buchberger’s Algorithm, 15, 16, 49,

167, 171, 175, 225, 383, 384,
441, 448, 476

in module case, 211, 215–218, 423,
487, 492

parallel (for Gröbner fan), 434
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Buchberger’s Criterion, 16, 167, 175,
176, 180, 223, 236, 500

in module case, 215, 222, 236
Burago, Yu., 332, 534
Burden, R., ix, 30, 35, 534
burst error-correcting, see

error-correcting, burst
Busé, L., 320, 534, 535

C
n, see affine, n-dimensional space

over C

(C∗)n, 315, 316, 318, 321–323,
327–329, 344, 346–348,
350–353, 357, 358, 367, 370,
372

CG (cone corresponding to a marked
Gröbner basis), 430ff, 436,
437, 440

Cr function, 405, 406
Cr spline, 406–408, 411ff, 422–424
C∞ function, 405
CALI, see REDUCE
Canny, J., 111, 112, 120, 121, 126,

339, 363, 367–369, 374, 375,
535, 537

canonical curve, 286
categorical quotient, 327
Cattani, E., 370, 535
Cayley-Hamilton Theorem, 58
cell

of a polyhedral or mixed
subdivision, 359, 360, 363

of a polyhedral complex, 408,
410–413, 415

interior, of a polyhedral complex,
413–419, 421

center of a blow-up, 320
chain rule, 354
chaos, 36
characteristic function, 294

see also Hilbert function
characteristic polynomial, 60, 67,

71–74, 150, 151
Chen, F., 287, 288, 292, 294, 536,

543
Chinese Remainder Theorem, 111
Chionh, E.-W., 320, 535
Chow form, 323
Chtcherba, A., 359, 370, 535

class, see coset ([f ] = f + I)
closed ball, 461, 464
CoCoA, 217, 231, 253
intprog package, 391

code, 459ff, 468ff, 480ff, 503ff
alphabet of, see alphabet (of a

code)
BCH, see BCH code
block length of, see block length

(of a code)
codimension of, see codimension of

a code
cyclic, see cyclic code
dimension of, see dimension, of a

code
dual, see dual code
error-correcting, see

error-correcting code
geometric Goppa, see geometric

Goppa code
Hamming, see Hamming code
linear, see linear code
MDS, see MDS code
minimum distance of, see

minimum distance (of a code)
parameters of, see parameters of a

code ([n, k, d])
perfect, see perfect code
Reed-Muller, see Reed-Muller

code
Reed-Solomon, see Reed-Solomon

code
see also algebraic coding theory

codeword, 459, 463, 464, 467, 468,
471, 472, 474–476, 478, 489,
491, 495, 502, 506, 510

codimension of a code, 480
coding theory, see algebraic coding

theory
Cohen-Macaulay ring, 262, 285, 298
coherent

Minkowski sum, see Minkowski
sum of polytopes (P + Q),
coherent

mixed subdivision, see mixed
subdivision, coherent

subdivision, see mixed
subdivision, coherent

cokernel, 205, 248, 249
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Collart, S., 436, 535
Colley, S., x
collinear points, 285, 286, 292
column operation, 242
column vector f (in a free module),

see vector f (in a free module)
comaximal ideals, 155
combinatorial data, see polyhedral

complex, combinatorial data
of

combinatorial enumeration problem,
376, 392

see also magic squares
combinatorics, viii, ix
Common Factor property of

resultants, 78
commutative algebra, viii, ix, 218,

294, 402
commutative diagram, 124, 150, 156,

273, 278
commutative ring, 2
compact disk, 470, 479
companion matrix, 83
compatibility property (of a

monomial order), 384, 386,
390

complete intersection, 286, 320, 446
local, 320

complex, see polyhedral complex
computational geometry, 320
computer-aided geometric design,

287, 405, 446
computer science, 377
computing determinants

numerically 110, 111
symbolically, 110, 111, 120

cone, 421, 429, 436ff, 448, 449
boundary of, see boundary of a

cone
interior of, see interior of a cone
see also CG (cone corresponding

to a marked Gröbner basis)
congruence, 482, 483, 487–489
conic section, 279, 301
connected graph, see graph,

connected
Conti, P., 376, 380, 390, 391, 535
contingency table, 403

marginal distribution of, 403, 404

continuation system, 354
Contraction Mapping Theorem, 35
convergent power series ring

(k{x1, . . . , xn}), 140–142, 144,
145, 153–155, 160, 167, 174,
177, 179, 180, 234

convex
combinations, 305
hull of a set S (Conv(S)),

305–307, 309–313, 316ff,
324–327, 330–332, 335, 338,
340, 345, 358, 360, 363, 366,
408, 416, 435

polyhedral cone, 395, 427, 430, 435
polytope, see polytope
set, 305, 306

Cools, R., 353, 355, 363, 544
coset ([f ] = f + I), 37, 84, 193, 452,

456, 457, 465, 467, 469, 470,
512

leader, 465
Courant functions, 425
Cox, D., 288, 292, 294, 322, 327, 328,

533, 535, 536; see also Ideals,
Varieties, and Algorithms

Cramer’s Rule, 101
cryptography, 459
cubic

curve, 505
spline, 406–408

curve
algebraic, see algebraic curve
canonical, see canonical curve
cubic, see cubic curve
divisor on, see divisor (on an

algebraic curve)
Hermitian, see Hermitian curve
Klein Quartic, see Klein Quartic

curve
level, see level curve
projective, see projective curve
rational normal, see rational

normal curve
rational quartic, see rational

quartic curve
smooth, see smooth curve

cycles (in a graph), 418, 419
cyclic

code, 451, 468ff, 521



Index 551

m-dimensional code, 473ff, 480,
531

group, 456, 457, 459
permutation, 398, 468
shift, 468, 470, 471, 473

Dai, Y., 355, 536
D’Andrea, C., 110, 125, 369, 536
de Boer, M., 491, 536
decoding, 460, 465, 470, 480ff, 508ff,

522ff
function, 460
nearest neighbor, see nearest

neighbor decoding function
Reed-Solomon, see Reed-Solomon

decoding
syndrome, see syndrome decoding
see also Berlekamp-Massey-Sakata

algorithm (BMS)
degenerate special case, 182
degree

of a polynomial, see total degree
of a variety, 284, 300–302, 508

degree-anticompatible order,
159–162, 175, 176, 179, 180

dehomogenize, 81, 114, 170, 172,
180, 293, 300

delta-set 516–518, 522, 525, 529, 532
∆k, 516–518, 520, 521, 522ff
maximal elements in ∆k (δk),

517–521, 522ff
of an error vector (∆(e)), 511–516,

518, 520, 525, 529, 532
delta-set complement

minimal elements in Σk (σk), 517,
518, 521, 522ff

Σ(e), 515, 520, 529, 532
Σk, 516, 517, 522ff
σk, algorithm for, 521, 527

dense
polynomial, 332
resultant, see resultant, dense
start system, see start system,

dense
system of equations, 355

derogatory linear map, 66
Descartes, R., 1
Descartes Rule of Signs, 72, 73, 75

designed distance, see BCH code,
designed distance of

design of experiments, 393, 402
Devaney, R., 36, 536
Devlin, K., x
Diaconis, P., 404, 536
diagonalizable matrix, 63
Dickenstein, A., x, xi, 110, 125, 359,

370, 535–537
Dickson’s Lemma, 14, 52, 209, 497,

517
difference of varieties (V \ W ), 25
Dimca, A., 187, 537
dimension

of an affine subspace, 312
of a linear code, 460, 463, 464, 467,

470, 471, 473, 476–480, 505
of a polytope, 306, 312, 358, 359,

361, 363
of a polyhedral complex, 408
of a variety, 92–94, 284, 292,

300–302, 447
dimension theorem for a linear

mapping, 257, 278
direct sum of modules (M ⊕ N), 192,

204, 229, 232, 243, 256, 258,
418, 419

of graded modules, 267, 268, 275,
276, 281

discrete Fourier transform, 477, 478,
480

discrete valuation, 142, 143
discriminant of a polynomial

(Disc(f)), 356
distance function, 461
Division Algorithm

in k[x], 4, 11, 22, 48, 75, 451, 469,
481, 491, 492

in k[x1, . . . , xn], 11, 13, 37, 163,
167, 169, 222, 223, 225, 344,
383, 400, 428, 473–476, 496,
500

in a free module, 211–214, 218
in a free module over a local ring,

236
in a local ring, 235, 236, see also

Mora Normal Form Algorithm
divisor (on an algebraic curve), 506,

508
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Dixon, A., 110, 321
Dixon matrices, 110, 369
Dixon resultant, 321, 331, 359, 370

software, 370
doubly stochastic matrix, 403
“downward” order (on standard

basis in Rm), 211, 218–220
dual basis, 46
dual code, 467, 477, 495, 504, 505,

see also dual of evaluation
code

dual graph, see graph, dual
dual of evaluation code (Ca), 508,

510, 511, 517–519, 521, 522,
529, 531, 532

dual space of a vector space V (V ∗),
45, 46

Drexler, F., 353, 537
Dürer, A., 393
Duursma, I., 531
Dyer, M., 363, 537

Eagon-Northcott complex, 279
écart, 165, 172, 173
edge

of a cone, 435
of a graph, 417, 419
of a polyhedral complex, 409, 412
of a polytope, 307, 308, 360, 362
oriented, 418

eigenvalues, 56ff, 72–75, 80, 97,
128ff, 304

dominant, 60, 61
numerical techniques, 60, 61, 65,

133
real, 69ff

eigenspaces
generalized, 157
left, 64, 66
right, 68

eigenvectors, 63
generalized, 67, 151, 157
left, 63–66, 133, 134
right, 63, 66, 68, 133, 134

Eisenbud, D., 218, 262, 265, 276,
279, 286, 287, 299, 302, 534,
537

Elber, G., 446, 537

elementary row operations, see row
operations

elementary symmetric functions, 102
elimination

ideal, 5, 18, 26–28, 79, 184, 287,
291, 404, 446, 447, 506

order, 184, 185, 220, 396, 397, 448
property of a monomial order, 383,

384, 386, 387, 390, 396, 447
property of mixed orders, 162

Elimination property of resultants,
78, 79

Elimination Theorem, 18, 19, 26–28,
40, 184

see also Local Elimination
Theorem

Elkadi, M., 110, 153, 320, 373, 535,
537

Emiris, I., x, 110, 129, 131, 135, 320,
339, 359, 362, 363, 367–369,
371–375, 535–537, 544

encoding, 459, 460, 463, 464, 466,
474–476

function, 460, 466
systematic, see systematic,

encoder
engineering, 377
Equal Ideals have Equal Varieties

principle, 22
equivalent

analytic functions, 145
matrices, 207
modules, 229, 233

errata, x
error 459, 461, 463, 464, 481, 482

locations, 480, 483, 490, 511, 520
locator ideal (Ie), 512–514, 520,

530
locator polynomial, 482, 490, 491,

511, 512
values, 480, 483, 490

error-correcting, 461–463, 465, 468
burst, 470, 479, 480
codes, 451, 459ff

error-detecting, 461–463, 468
Euclidean algorithm, 82, 480, 492
Euclidean geometry, 181
Euler characteristic, 424
Euler’s formula, 113
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evaluation code, 495, 502, 503, 508,
529

Ea, 503–506, 510, 521
relation to Goppa code, 506

evaluation mapping, 470, 495, 510,
511

Ewald, G., 332, 335, 339, 362, 378,
537

exact sequence, 247ff, 256, 257, 264,
275, 277, 278, 281, 289, 299,
300, 401, 423

split, 258
exponent vector of a monomial, see

monomial, exponent vector of
Extension Theorem, 26, 27, 30, 62
extraneous factor, 105–108, 369

F
n
q , see affine, n-dimensional space

over Fq (Fn
q )

face
of a cone, 427, 433
of a polytope, 307, 308, 333, 334,

347, 348, 359, 360, 365, 408
ring, 425

facet
of a polytope, 308, 309, 324, 326,

334, 335, 337, 339, 341, 342,
351

variable, 324–328, 330, 331
fail of f (faile(f)), 513ff, 522ff

see also fle(s)
fan, 427

see also polyhedral complex
Farin, G., 405, 538
Faires, J., ix, 30, 35, 534
Faugère, C., 49, 53, 538; see also

Gröbner conversion, FGLM
algorithm

feasible region, 378, 379, 381, 388,
389, 392

Fenchel, W., ix, 332, 335, 339, 534
Feng, G.-L., 531, 538
Feng-Rao bound, 512, 518
Feng-Rao majority voting (FRMV),

508, 512, 517, 519, 523ff
vote in, 525
see also Berlekamp-Massey-Sakata

algorithm, FRMV procedure
Fermat system, 370

FGLM algorithm, see Gröbner basis
conversion, FGLM algorithm

field
algebraically closed, see

algebraically closed field
automorphism, 458
finite, see finite field
isomorphism of, 455, 458
of rational functions, see rational

function field
prime, see prime field
residue, see residue field

finite-dimensional algebra, see
algebra

finite element method, 405
finite field, 110, 451ff, 459ff, 468ff,

480ff, 494ff, 508ff
finite free resolution, 252–257,

259–262, 265
graded, 279, 283
minimal, see minimal graded

resolution
see also free resolution

Finite Generation of Invariants,
295

finite group, 294ff, 451
abelian, 456

finite matrix group, see finite group
Finiteness Theorem, 39, 44, 65, 290

in module case, 221, 484
finitely generated module, 193, 199,

202, 206, 207, 215, 238–242,
247, 259, 260, 269, 271, 274,
281, 283, 296

finitely generated monoid, 497, 508
see also order domain, standing

assumptions on
First Fundamental Theorem of

Invariant Theory, 98
First Isomorphism Theorem, see

Fundamental Theorem, of
Homomorphisms

first syzygy module, 255
see also syzygy module

Fitting
equivalent matrices, 207
ideal, see Fitting invariant
invariant (Fi(M)), 241, 242, 245
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Fitzpatrick, P., x, 480, 484, 487, 488,
538

fixed point iteration, 35, 36
fle(s), 514, 522ff
Fogarty, J., 327, 538
follow generically, 183

see also generic
Formal Implicit Function Theorem,

143
formal infinite product, 454
formal power series, 295, 302, 422,

453, 481
ring (k[[x1, . . . , xn]]), 140–142,

153, 154, 160, 164, 167, 171,
174, 177, 179, 180, 186, 234,
238, 241

Forney formula, 483, 490
generalized, 520

free module, 190, 196, 197, 202, 236,
237, 243, 245, 246, 249, 250,
257, 261, 264, 267, 274, 276,
277, 294, 298, 414, 415, 420,
484

graded, see graded free module
is isomorphic to Rm, 202
over a local ring, 242
twisted, see graded free module

free resolution, viii, 218, 247ff, 258ff,
266ff, 298, 401

finite, see finite free resolution
graded, see graded, resolution
isomorphism of, see isomorphic

resolutions
partial, 253; see also partial

graded resolution
trivial, see trivial resolution

Friedberg, S., 157, 538
Frobenius automorphism, 458, 459,

479
Fulton, W., 322, 327, 332, 339, 351,

362, 538
function field, see rational function,

field
fundamental lattice polytope, 334,

335, 338, 341
Fundamental Theorem

of Algebra, 23, 347
of Homomorphisms, 57, 58, 148,

203, 458, 497

of Discrete Subgroups of
Euclidean Space, 334

Galois, E., 29
Galois group, 459
Galois theory, 459, 479
Gao, T., 363, 538
Garcia, A., 538
Garrity, T., x, 108, 533
Gatermann, K., 355, 363, 544
Gauss-Jordan elimination, 466
GCD, 36, 41, 75, 107, 209, 287, 289,

290, 293, 294, 299, 300, 303,
364, 369, 374, 480, 492, 500

Geil, O., 494, 495, 497, 500, 502,
515, 538

Gelfand, I., 82, 86, 93, 95, 99, 100,
109, 316–318, 322, 323, 332,
351, 358, 359, 538

generalized characteristic
polynomial, 112, 121

toric, 373
generalized

companion matrix, 134, 135
eigenspace, see eigenspace,

generalized
eigenvector, see eigenvector,

generalized
generating function, 302, 453
generator

matrix (of a linear code), 460–463,
465–470, 477, 504–506

polynomial (of a cyclic code), 469,
471, 472, 475, 477–479, 492,
521

generic, 114–116, 121, 122, 125, 128,
129, 131, 132, 292, 356, 370,
371

linear subspace, 284
number of solutions, 347, 357
polynomial in L(A), 311
system of equations, 343, 344, 346,

347, 350–354
genus, 506, 508
geometric Goppa code, xi, 494, 497,

506–508, 531
geometric modeling, 294, 320, 328
geometric series

finite summation formula, 455
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formal summation formula, 141,
142, 154, 302, 422, 453, 454,
481

Geometry Center at the University
of Minnesota, 365

Georg, K., 353, 533
germ of an analytic function, 145
getform (Maple procedure), see

Maple, getform
getmatrix (Maple procedure), see

Maple, getmatrix
Gianni, P., 49, 53, 538; see also

Gröbner conversion, FGLM
algorithm

Gilbert-Varshamov bound, 464
GL(2, R), 296, 297
GL(m, R), 207, 295, 298
Gloor, O., 445, 446, 533
Goldman, R., 320, 545
Gonzalez-Vega, L., 73, 538
Goppa, V.D., 494
Gorenstein codimension 3 ideal,

302
Gorenstein duality, 153
Gräbe, H., 166, 284, 538
graded

free resolution, see graded,
resolution

homomorphism, 269ff, 281, 295
isomorphism, 272, 275
matrix, 269, 270, 272
minimal resolution, see minimal,

graded resolution
module, 255, 266ff, 280, 282, 283,

297, 302, 303, 422, 423
resolution, 270ff, 280ff, 295, 299,

300, 302
ring, 266, 290, 296, 303
submodule, 267, 268, 271
subring, 295
twisted module, see twist of a

graded module
graded free module, 267, 423

standard structure (Rm), 267
twisted structure

(R(d1) ⊕ · · · ⊕ R(dm)),
268–271, 275, 277, 280, 282,
283, 290, 297, 299, 300, 302,
303, 423

Graded Hilbert Syzygy Theorem, see
Hilbert Syzygy Theorem,
Graded

graded reverse lex order, see grevlex
graph

connected, 418, 419
dual, 417–419
edge of, see edge, of a graph
oriented edge of, see edge,

oriented
vertex of, see vertex, of a graph

Grayson, D., xi, 218, 537
greatest common divisor, see GCD
Green, M., 286
Greuel, G.-M., x, 165, 166, 173, 176,

177, 538
grevlex, 8–13, 38, 41, 44, 45, 49, 51,

61, 74, 216, 218–221, 255,
261–263, 388, 426, 430–433,
443, 447, 448, 501, 503

Gritzmann, P., 363, 537
grlex, 8–10, 219, 432, 433, 503, 504,

518
Gröbner basis, vii–ix, 4, 14, 16–19,

27–30, 33, 37–41, 43, 45, 49ff,
61, 62, 67, 74, 82, 87, 128,
137, 145, 171, 174–177, 180,
181, 184, 189, 208, 223, 226,
232, 237, 251, 253, 255,
261–263, 267, 287, 291, 345,
353, 384, 387, 390, 393, 396,
397, 400, 426ff, 436ff, 473,
475, 476, 496, 500, 501, 512,
520, 530

applied to contingency tables, 404
in integer programming, 376,

383ff
for modules, 207, 211, 214ff, 231,

233, 234, 253, 259, 260, 376,
405, 413, 414, 416, 417, 421,
423, 480, 484–488, 490–492

for modules over local rings, 234ff
marked, 428ff, 436–438, 440, 444,

445
minimal, 441
monic 17, 215, 218, 232, 263, 426,

428, 438, 439; see also
Uniqueness of Monic Gröbner
Bases
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Gröbner basis (cont.)
reduced, 17, 18, 40, 55, 68, 215,

225, 233, 267, 343, 441, 449,
474, 485

specialization of, 343
universal, 429
see also standard basis

Gröbner basis conversion, 49ff, 435,
436ff

applied to Reed-Solomon
decoding, 488–490

FGLM algorithm, 49ff, 61, 376,
435, 436, 487, 488

FGLM Main Loop, 50–53
FGLM Main Loop, Restated, 54
FGLM Next Monomial, 50–53, 55
FGLM Termination Test, 50–52, 55
Gröbner Walk algorithm, xi, 436ff
Gröbner Walk algorithm,

modified, 445, 449
Gröbner Walk Interreduce, 441,

442
Gröbner Walk Lift, 441, 442
Gröbner Walk NextCone, 441,

442, 444, 445
Hilbert function-driven, 53

Gröbner fan, xi, 376, 426ff, 436, 437,
442, 443, 448

restricted, 434
Gröbner Walk algorithm, see

Gröbner basis conversion,
Gröbner Walk algorithm

group
cyclic, see cyclic group
finite, see finite group
finite matrix, see finite group
Galois, see Galois group
invariant theory of, see invariant

theory, of finite groups
multiplicative, see multiplicative

group
Gurvits, L., 363, 538
Gusein-Zade, S., 187, 533

Half-space, see affine, half-space
Hall’s marriage theorem, 403
Hamming

code, 462, 463, 465, 467, 468
distance, 461

Hasse-Weil bound, 507
Serre’s improvement, 507

Heegard, C., 480, 538, 539
hereditary complex, 408, 410, 412,

414, 418, 419, 422
Hermitian curve, 501, 506, 507, 520
Herstein, I., 71, 539
Herzog, J., 299, 534
hidden variables, 121ff, 134, 152
higher syzygies, see free resolution

and syzygy module
Hilbert, D., ix, 258, 277, 294, 539
Hilbert basis, 395–398, 401, 402

Gröbner basis algorithm for, 395,
396, 402

Hilbert Basis Theorem, 4, 14, 174,
179, 427

Hilbert-Burch Theorem, 261, 262,
278, 285, 292–294, 300

Hilbert function viii, ix, 186, 218,
280ff, 292, 295, 296, 299–302,
393, 399, 400, 425

Hilbert polynomial, 277, 280ff, 290,
292, 294, 299–302, 420, 423

Hilbert-Samuel multiplicity, 146
Hilbert series, 296, 297, 302, 422
Hilbert Syzygy Theorem, 258ff, 294,

298
Graded, 271, 272, 274, 277

Hironaka, H., 179, 539
Høholdt, T., 494, 508, 531, 539
hold generically, 345

see also generic
homogeneous coordinates, 94, 96,

279, 301, 322–324, 328, 329,
421

homogeneous element of a graded
module, 266, 267, 269

homogeneous ideal, 253, 266, 267,
281–284, 290, 301, 302, 399

Homogeneous Mora Normal Form
Algorithm, see Mora Normal
Form Algorith, Homogeneous

homogeneous polynomial, 2, 80, 81,
84–88, 91, 93, 95, 113, 114,
127, 166–168, 176, 180,
267–270, 277, 280, 290, 291,
295, 297, 301, 315, 317, 323,
399, 421, 423
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weighted, see weighted
homogeneous polynomial

homogeneous syzygy, 210, 232
homogenize, 81, 166, 167, 170, 180,

289, 290, 293, 300, 314, 316,
344, 358, 422

a resolution, 271, 276
in the sparse or toric context, 324,

325, 327, 330, 331
homomorphism

Fundamental Theorem of, see
Fundamental Theorem, of
Homomorphisms

graded, see graded, homomorphism
localization of, see localization, of

a homomorphism
module, see module

homomorphism
ring, see ring homomorphism

homotopy continuation method, 342,
353–355

PHCpack software, 355, 363
homotopy system, see continuation

system
Hoşten, S., xi, 376, 539
Huber, B., 339, 351, 353, 355,

361–363, 539
Hufnagel, A., 363, 537
Huguet, F., 458, 542
Huneke, C., 286, 299, 537
hyperplane, 338, 340

at infinity, 96, 507
hypersurface, 69

ideal, 2, 192, 469, 473, 478, 495
basis of, see basis, of an ideal
comaximal, see comaximal ideals
elimination, see elimination ideal
error locator, see error, locator

ideal
generated by f1, . . . , fs

(〈f1, . . . , fs〉), 2, 22
Gorenstein codimension 3, see

Gorenstein codimension 3
ideal

homogeneous, see homogeneous
ideal

intersection, see intersection, of
ideals

maximal, see maximal ideal
membership problem, 6, 174, 208
monomial, see monomial ideal
of a set of points, 54, 262, 263,

284ff, 302
of a variety (I(V )), 22, 23, 25
of initial forms (〈inw(I)〉),

439–441
of ith minors (Ii(A)), 241, 242,

245
of leading terms (〈LT(I)〉), 14, 38,

145, 158, 168, 174, 175,
177–179, 281, 399, 400, 427,
428, 439, 440. 448, 499, 516

primary, see primary, ideal
primary decomposition of, see

primary, decomposition
prime, see prime, ideal
principal, see principal ideal
product, see product, of ideals
quotient, see quotient ideal
radical, see radical, ideal
radical of, see radical, of an ideal
sum, see sum, of ideals
variety of, see variety, of an ideal
zero-dimensional, see

zero-dimensional ideal
Ideals, Varieties, and Algorithms

(Cox, Little, O’Shea), vii–ix,
4, 11, 13, 15, 16, 18, 19, 22,
24, 25, 27, 36, 37, 39, 41, 52,
58, 78, 79, 87, 91, 92, 152,
156, 157, 171, 176, 180–183,
185, 187, 209, 210, 213, 223,
232, 266, 267, 281, 283, 287,
295, 296, 298, 299, 304, 316,
343, 344, 356, 383, 385–387,
399, 400, 421, 449, 458, 469,
473, 475, 492, 497, 536

Ideal-Variety Correspondence, 23, 25
image, 148, 190, 195, 203, 247, 248,

250–253, 255–257, 271–275,
289, 322, 324, 382, 423, 506,
508, 510

Implicit Function Theorem, 354
implicitization, 86, 287, 294, 314,

436
via resultants, 82, 87, 291, 320
via Gröbner Walk, 446–450
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information
positions, 463, 474–476
rate, 464

initial form of f (inw(f)), 438ff
initial value problem, 354
injective, 248, 256, 273, 300, 329,

357, 400, 458, 459
inner product, 467, 477
Insel, A., 157, 538
Integer Polynomial property of

resultants, 78, 79
integer programming, viii, ix, 376ff
integer programming problem, 376ff,

393, 430
Gröbner basis algorithm for

solving, 385, 386, 391
Gröbner basis software for, see

CoCoA, intprog package and
Singular, intprog package

standard form of, see standard
form

integer row operation, 356, 357
integral domain, 143, 144, 495
interior cell of a polyhedral complex,

see cell, interior, of a
polyhedral complex

interior of a cone, 432, 433
Intermediate Value Theorem, 33
interpolation, 66, 68, 112, 134

cubic spline, 407
dense, 112
Lagrange interpolation formula,

43, 46
probabilistic, 112
sparse, 112
Vandermonde, 112

intersection
of ideals (I ∩ J), 6, 18, 25, 45, 155,

156, 186, 230, 231, 261
of submodules (M ∩ N), 202, 203,

230, 231, 256
of varieties (V ∩ W ), 20, 21, 24,

25
interval arithmetic, 69
invariant of a group action, 294ff
invariant theory

First Fundamental Theorem of,
see First Fundamental
Theorem of Invariant Theory

of finite groups, 280, 294ff, 383
relation to combinatorics, 392
Second Fundamental Theorem of,

see Second Fundamental
Theorem of Invariant Theory

inversion problem, 315
inward normal, see inward pointing

normal
inward pointing facet normal, see

inward pointing normal
inward pointing normal, 308, 324,

325, 336, 337, 339, 341, 348,
351

primitive, 309, 324, 334, 335, 342,
347

irreducible
component of a variety, 92,

181–183, 373
factor, 106, 151
polynomial, 86, 90, 92, 105, 157,

316, 451–456, 458
variety, 25, 92, 94, 184, 505, 507

isobaric polynomial, 106, 114
isolated singularity, see singularity,

isolated
isolated solution, 146, see also

singularity, isolated
isomorphic resolutions, 272, 273
isomorphism

field, see field, isomorphism of
graded, see graded, isomorphism
module, see module isomorphism
of resolutions, see isomorphic

resolutions
ring, see ring, isomorphism of
see also First, Second, and Third

Isomorphism Theorems

Jacobian matrix or determinant, 88,
113, 157, 354

Jacobson, N., 474, 539
Jouanolou, J., 95, 96, 98, 100, 101,

108, 110, 539
Julia set, 36

kn, see affine, n-dimensional space
over k (kn)

Kalkbrener, M., 436, 446, 535, 539
Kaltofen, E., 111, 535
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Kapranov, M., 82, 86, 93, 95, 99,
100, 109, 316–318, 322,
323, 332, 351, 358, 359,
538, 539

Kapur, D., 110, 359, 370, 535, 539
kbasis (Maple procedure), see

Maple, kbasis
kernel, 54, 148, 149, 190, 195, 197,

198, 203, 204, 246–248, 250,
252, 253, 255–258, 272–279,
289, 394–397, 402, 404, 413,
414, 423, 425, 497, 511

key equation, 482–484, 486–489, 491,
493

Khetan, A., 359, 539
Khovanskii, A.G., 351, 352, 540
Kim, M.-S., 446, 537
Kim, S., 355, 536
Kirwan, F., 152, 540
Klein Quartic curve, 507, 508
Klimaszewski, K., 287, 543
known syndromes, 511, 512, 530
Koblitz, N., 459, 540
Kögl, C., xi
Kojima, M., 355, 536
Koszul

complex, 265, 289, 299, 300
relations, 241

Kozen, D., 73, 533
Krasauskas, R., 328, 536, 540
Kreuzer, M., 217, 540
Krishnan, S., 373, 540
Küchlin, W., 445, 446, 533
Kushnirenko, A.G., 351, 540

L(A), 311, 315, 321, 322, 331, 345,
358, 366

see also Laurent polynomial
La subspace of an order domain,

503, 504, 510–512, 515, 518,
519, 524

Lagrange’s Theorem, 471
LaScala, R., 391, 534
Lakshman, Y., 111, 535
lattice, 334, 340
lattice polytope, 306, 309, 319, 333,

336
Laurent

monomial, 311, 348, 357

polynomial (k[x±1
1 , . . . , x±1

n ]), 311,
313, 315, 345, 346, 352, 357,
370, 371, 373, 376, 388, 389,
395

see also L(A)
Lazard, D., 49, 53, 60, 165, 166, 180,

538, 540; see also Gröbner
conversion, FGLM algorithm

LCM, 15, 209, 210, 222, 223, 259,
479

leading
coefficient (LC(f)), 11, 161, 163,

172, 212
monomial (LM(f)), 11, 161, 163,

172, 212, 259, 496, 500, 509
term (LT(f)), 10, 11, 15, 53, 55,

161, 163, 167–173, 175, 176,
178, 187, 212–216, 218, 219,
223, 224, 259, 264, 427, 428,
435, 436, 439, 440, 486, 487,
494

Leonard, D., 520, 540
least common multiple, see LCM
Leichtweiss, K., 332, 335, 339, 540
length of a finite free resolution, 252,

259–265, 271, 272, 277
level curve, 379
Lewis, R., 110, 370, 540
lex, 8, 9, 11–14, 17, 18, 27, 29, 33,

40, 41, 49–56, 62, 67, 68, 128,
145, 158, 161, 183, 211–214,
225, 232, 251, 259, 343, 384,
387, 426, 443, 449, 476, 496,
498, 500, 501, 503

lexicographic order, see lex
Li, T.Y., 353, 355, 363, 538, 540
Li, X., 363, 540
lift of a polytope Q (Q̂), 362, 363,

366
lifting initial forms (in Gröbner

Walk) 441, 444; see also
Gröbner basis conversion,
Gröbner Walk algorithm

line at infinity, see hyperplane, at
infinity

linear code, 451, 460, 462, 464, 466,
468, 470, 471, 473, 495, 510

linear programming, 376, 379
linear system, 508
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linearly independent set in a module,
191, 195, 196

see also module, basis of
Little, J., 509, 536, 539, 540; see also

Ideals, Varieties, and
Algorithms

Local Division Algorithm, see
Division Algorithm, in a local
ring

Local Elimination Theorem, 184, 185
local intersection multiplicity, 146
local order, 159, 160, 162–167, 171,

172, 174, 176, 177, 179, 180
for a module over a local ring, 235

local ring, viii, 137, 139–141, 143,
146, 153, 155, 156, 158, 184,
234ff, 264

localization, 138–141, 143, 144,
146–148, 152, 154, 160, 162,
164, 167, 171, 174, 177, 178,
180, 182, 184–187, 192, 234,
237, 239, 247

at a point p, 183, 234, 235, 245
of an exact sequence, 264
of a homomorphism, 264
of a module, 234–237, 239, 240,

243, 245, 261, 264
with respect to >

(Loc>(k[x1, . . . , xn])),
161–163, 166, 167, 170–172,
174, 175

Loehr, N., xi
Logar, A., 197, 540
logarithmic derivative, 454
long exact sequence, 256
Loustaunau, P., vii, 4, 11, 14, 16, 18,

24, 27, 39, 185, 211, 213, 376,
533

lower facet, 363, 366

µ-basis, 288, 289, 291–293, 298, 303
µ-constant, 188;

see also Milnor number
µ∗-constant, 188; see also Teissier

µ∗-invariant
Macaulay 2, xi, 41, 217–219, 231,

253, 254, 271, 384, 397, 423,
476

gb, 219

gens, 219
hilbertSeries, 423
ideal, 254
matrix, 219
resolution, 253, 254, 271
syz, 231
web site, 218

Macaulay, F., ix, 106–108, 110, 369,
540

MacMahon, P., 402
MacWilliams, F., 459, 471, 540
Madden, J., xi
magic squares, 328, 393ff

symmetric, 403
Magma, 448
Mall, D., 436, 535
Manocha, D., 110, 112, 120, 121,

126, 135, 369, 373, 535, 540,
541, 544

Maple, xi, 10, 12, 16, 17, 20, 24,
27–34, 39–43, 46–48, 60–63,
69, 74, 75, 79, 118, 120, 126,
176, 217, 221, 343, 344, 388,
447, 448, 456, 457, 466, 475,
476, 489, 490

alias, 456, 466, 475
array, 466
CASA package, 448
charpoly, 74
collect, 221, 475
Digits, 31, 32
eigenvals, 63
expand, 32
Expand, 475
factor, 28, 29, 118, 151
fsolve, 31–34, 120, 126
Gaussjord, 466
gbasis, 17, 27, 29, 62, 221, 448,

476
getform, 74, 75
getmatrix, 69, 74, 80, 98
Groebner package, 10, 12, 16, 27,

41, 221, 388, 447, 448, 476
implicitplot3d, 20, 24
is finite, 47, 48
kbasis, 46–48, 62
lexdeg “bug”, 221
minpoly, 60
mod, 457, 466, 475, 476, 489, 490
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MR package, 110
MulMatrix, 63, 69
normal, 457
Normal, 457, 489, 490
normalf, 12, 39, 74
Ore algebra package, 221, 476
poly algebra, 221, 476
Rem, 475, 489
resultant, 79
RootOf, 29, 30, 118, 457, 466, 475
SetBasis, 46–48, 62, 69
simplify, 43, 48
solve, 29
subs, 28, 31, 32, 489, 490
termorder, 221, 476
univpoly, 41, 47, 48
zdimradical, 48

Marinari, M., 54, 153, 541
marked Gröbner basis, see Gröbner

basis, marked
Massey, J., 480
Mathematica, 61, 176, 217, 388, 448
matrix order (>M ), 9, 10, 12, 13,

160, 161, 173, 176, 388, 429ff,
437ff, 498, 503

Matsumoto, R., 499
maximal ideal, 5, 42, 45, 138–140,

143, 144, 146, 148, 149, 155,
237–239, 244, 264, 452

maximum distance separable code,
471

m-dimensional cyclic code, see
cyclic, m-dimensional code

MDS code, see maximum distance
separable code

Melancholia, 393
Mereb, M., 49
metric, 461
Meyer, F., 294, 541
Milnor, J., 154, 541
Milnor number (µ), 145, 154, 155,

158, 180, 181, 186, 187
Minimair, M., 110
minimal

element (with respect to a
monomial order), 486–488,
490, 492

graded resolution, 271–274, 276,
277, 297

number of generators of a module
(µ(M)), 236ff

polynomial (of a linear map),
58–60, 67

polynomial (of a primitive
element), 458

presentation, 240ff
resolution, see minimal, graded

resolution
set of generators of a module, 191,

198, 203, 236ff, 240, 247, 271,
272

set of generators of a monoid, see
Hilbert basis

set of generators of a monomial
ideal, 499, 500

minimum distance (of a code),
462–468, 471, 473, 479, 480,
504, 505, 508, 517, 518, 520

Feng-Rao (dFR), 518, 520, 525,
529, 532

Minkowski sum of polytopes
(P + Q), 332–334, 337–342,
347, 359–362, 364–368, 371,
372, 374, 375

coherent, 366, 374
minor of a matrix, 241, 242, 245,

261, 262, 265, 293, 300
Mishra, B., 69, 541
Miura, S., 499
mixed cell of a mixed subdivision,

360–362, 368, 371
mixed elimination-weight monomial

order, 391
mixed monomial basis, see monomial

basis, mixed
mixed order, 162, 176, 183
mixed sparse resultant, see

resultant, mixed sparse
mixed subdivision, 339, 358, 360–363

coherent, 363–367, 371, 372, 375
mixed volume, viii, 337, 338, 340, 341,

343, 345, 346, 348, 350–354,
355, 357, 358, 360–362, 367,
368, 370–372, 375

computing, 339, 363
normalized, 338, 339, 347, 350,

352, 357
software, 363
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Möbius inversion formula, 454
module, viii, ix, 189ff, 247ff, 258ff,

266ff, 288, 296, 413ff, 484ff
basis of, 195, 196, 198, 203, 204,

214, 226, 236, 244, 249, 414;
see also free module

direct sum of, see direct sum of
modules

equivalent, see equivalent modules
finitely generated, see finitely

generated module
free, see free module
graded, see graded module
graded free, see graded free

module
Gröbner basis of, see Gröbner

basis, for modules
homomorphism of, see module

homomorphism
isomorphism, see module

isomorphism
localization of, see localization, of

a module
of leading terms (〈LT(M)〉), 214,

221, 423, 484–486
over a local ring, 234ff, 255
presentation of, see presentation

of a module
projective, see projective module
quotient, see quotient module
quotient of, see quotient of

modules
rank of, see rank, of a module
syzygy, see syzygy module
twisted free, see graded free

module, twisted structure
module homomorphism, 193, 194,

197, 201, 202, 205, 207, 247ff,
279, 282, 419

graded, see graded,
homomorphism

hom(M, N), 202
localization of, see localization, of

a homomorphism
module isomorphism, 195, 200,

202–205, 220, 229, 235, 242,
248–250, 275, 278, 288, 300,
419

graded, see graded, isomorphism

molecular structure, 320
Molien series, 295–298, 303
Molien’s Theorem, 298, 303, 304
Möller, H.M., 54, 60, 66, 153, 534,

541
Mon(I) (set of ideals of leading

terms), 427–429, 435, 448
monic polynomial, 453–455, 458
Monico, C., 153, 541
monoid, 295, 398, 401, 404, 495, 505,

506, 532
finitely generated, see finitely

generated monoid
isomorphism of, 509
of pole orders, 507

monoid divisibility order on Z≥0

(�), 509, 510, 516, 517, 522ff
monoid operation on Z≥0 (⊕), 509,

510, 513–515, 517, 518, 522ff
monoid ring (Fq[Γ]), 506
monomial, 1

exponent vector of, 306, 307
Laurent, see Laurent, monomial
relation to integer programming,

382–384, 389
monomial in a free module, 208ff

belongs to f ∈ Rm, 208
contains a basis vector, 208
quotient of monomials, 209

monomial basis, 470
determined by a monomial order,

see basis monomials
for generic polynomials, 128, 132
mixed, 371, 373

monomial ideal, 14, 158, 209, 281,
427, 501

monomial order, xi, 7–10, 17, 61,
160, 162, 163, 167, 173, 176,
224, 225, 306, 399, 426ff, 448,
496, 503–505

adapted, 384, 385, 387, 390
associated to an order domain

(>(ρ,�),τ ), 498–501, 509, 512,
516, 520

in Rm, 207, 211, 484, 485
see also matrix order (>M ),

ordering monomials, product
order, weight order

monomial submodule, 209, 210, 217
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Mora, T., 49, 53, 54, 153, 164–166,
168, 172, 179, 184, 186, 427,
433, 434, 533, 538, 541; see
also Gröbner conversion,
FGLM algorithm

Mora’s algorithm for modules, 236
Mora Normal Form Algorithm, xi,

166, 167, 170, 171, 173–176,
179, 184, 185

Homogeneous, 167, 170, 172, 173
Moreno, C., 507, 541
Morley forms, 110
Morrison, I., 434, 533
Mourrain, B., 66, 110, 135, 153, 320,

369, 370, 373, 534, 535, 537,
541

moving
hyperplane, 293, 301
line, 287, 288, 301
line basis, see µ-basis

multidegree (multideg(f)), 161,
163

multiplication map (mf ), 56ff, 70,
71, 80, 83, 84, 96, 97, 101,
102, 118, 123, 124, 132, 150,
151, 156, 157, 373

multiplicative group, 452, 456, 457
multiplicity, ix, 36, 41, 44, 71, 100,

114–116, 118, 119, 121, 129,
137, 145ff, 180, 181, 186, 262,
344, 347, 356, 371

multipolynomial resultant, see
resultant, multipolynomial

multires package, see resultant,
mixed sparse, software

multivariable factorization, 106, 119,
120

multivariate splines, 405, 408ff
Mumford, D., 327, 538
Musţată, M., 328, 536

Nakayama’s Lemma, 237, 238
National Science Foundation, x
nearest neighbor decoding function,

462, 465
Newton polytope of f (NP(f)), 310,

311, 313, 320, 332, 333, 335,
336, 344–348, 351, 355, 358,
374, 430, 435

Newton-Raphson method, 30, 31, 35,
36, 61, 69, 354

Newton’s method, see
Newton-Raphson method

Noetherian ring, 199, 206, 207
nonderogatory linear map, 66
noncollinear points, 284–286, 292
non-generic equations, 120, 121, 135,

136
(non-standard) degree, see weight of

a variable
nonstandard monomial, 401, 474,

475
see also standard monomial

nontrivial solution, 81, 85–87, 90–93,
95, 97, 105

in sparse context, 322, 324, 326,
327, 329–331

nontrivial splines, 411, 415, 416
normal form, 15; see also

remainder
normal vector, see inward pointing

normal
normalized basis (of an order

domain), 515, 519, 524–529
normalized volume, see volume of a

polytope, normalized
Noro, M., 153, 545
NP-complete decision problem, 363,

380
Nullstellensatz, see Strong

Nullstellensatz
numerical methods, 30, 34, 72,

354
accumulated errors, 32, 62
homotopy continuation, see

homotopy continuation
method

Newton-Raphson, see
Newton-Raphson method

root-finding, 342, 353, 354

octahedron, 392, 422, 423
one-to-one, see injective
one variable splines, see univariate

splines
onto, see surjective
operations research, 377
optimization, 376, 394
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order
of a pole, see pole, order of
of a polynomial (ord(g)), 172

order domain, xi, 496ff, 508ff, 522ff
Archimedean, 502ff, 508ff
La subspace, see La subspace of

an order domain
normalized basis of, see

normalized basis (of an order
domain)

standing assumptions on, 497,
503, 508, 522

value monoid of, see value monoid
of an order domain

order function on a ring, 495ff; see
also order domain

ordering monomials
>r, 485ff
adapted, see monomial order,

adapted
alex, see alex
anti-graded, see

degree-anticompatible order
arevlex, see arevlex
degree-anticompatible, see

degree-anticompatible order
grevlex, see grevlex
grlex, see grlex
in Rm, see monomial order, in Rm

lex, see lex
local, see local order
matrix, see matrix order (>M )
mixed, see mixed order
POT, see POT order
product, see product order
semigroup, see semigroup order
TOP, see TOP order
weight, see weight order
see also monomial order

ordinary differential equations
(ODEs), 354

ordinary double point, see
singularity, ordinary double
point

oriented edge, see edge, oriented
O’Shea, D., 536; see also Ideals,

Varieties, and Algorithms
O’Sullivan, M., xi, 494, 497, 502,

503, 508, 529, 531, 541

Ostebee, A., x
outward normal, 309, 363

see also inward pointing normal

#P-complete enumerative problem,
363

P
n, see projective, n-dimensional

space
Pan, V.Y., 135, 534
parallelogram, 181, 182
parameters of a code ([n, k, d]), 463,

464, 467, 495
parametrization, 82, 86–88, 93, 139,

140, 143, 279, 280, 287ff,
299–301, 313, 315, 321, 437,
445, 448

parametrized solution, 354
parity check

equations, 510
matrix, 460, 461, 463, 466–468,

504
position, 463, 474–476

Park, H., 197, 541
partial differential equations, 405
partial graded resolution, 253, 276,

277
partial ordering, 509
partial solution, 27, 28
partition (of an interval), 407, 408
path perturbation (in Gröbner

Walk), 445, 446 ; see also
Gröbner basis conversion,
Gröbner Walk algorithm

Pedersen, P., x, 69, 70, 72, 73,
129, 319, 363, 370, 371,
542

Peitgen, H.-O., 35, 542
Pellikaan, R., 491, 494, 495, 497,

500, 502, 508, 515, 531, 536,
538, 539

perfect code, 463, 468
permutation matrix, 397–399, 402,

403
Pfister, G., x, 165, 166, 173, 176,

177, 179, 538, 541
PHCpack, see homotopy

continuation method,
PHCpack

PID, 41
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piecewise polynomial function, 376,
405; see also splines

pigeonhole principle, 427, 428
Poisson Formula, 98
Poli, A., 458, 542
polyhedral complex, 408–410, 422,

424, 427
cell of, see cell, of a polyhedral

complex
combinatorial data of, 416, 417,

420, 423
dimension of, see dimension, of a

polyhedral complex
edge of, see edge, of a polyhedral

complex
hereditary, see hereditary complex
pure, see pure complex
pure, hereditary, see pure,

hereditary complex
simplicial, see simplicial complex
vertex of, see vertex, of a

polyhedral complex
polyhedral region, 376, 378, 379,

392–394, 408
unbounded, 378, 394

polyhedral subdivision, 359, 405
see also mixed subdivision and

polyhedral complex
polnomial, 2

relation to polytopes, 305, 309–311
polynomial ring (k[x1, . . . , xn]), 2,

173, 174, 197, 204, 234, 239,
243–247, 258, 280, 295, 298,
382, 452, 495

polynomial splines, see splines
polytope, viii, ix, 305ff, 324, 328,

332ff, 355, 376, 378, 408
convex, see polytope
dimension of, see dimension, of a

polytope
edge of, see edge, of a polytope
face of, see face, of a polytope
facet of, see facet, of a polytope
fundamental lattice, see

fundamental lattice polytope
lattice, see lattice polytope
lift of, see lift of a polytope
Minkowski sum of, see Minkowski

sum of polytopes (P + Q)

Newton, see Newton polytope of f
(NP(f))

relation to homogenizing sparse
equations

relation to integer programming,
376, 378

relation to sparse resultants, 316ff,
358, 359

supporting hyperplane of, see
supporting, hyperplane

vertex of, see vertex, of a polytope
volume of, see volume of a

polytope
“position-over-term”, see POT order
positive orthant ((Rn)+), 429ff, 436,

437, 448
POT order, 211–215, 218, 220, 221,

232, 233, 235, 485
power method, see eigenvalues,

numerical techniques
presentation matrix, 199–201, 204,

206–208, 227, 228, 234, 235,
239–241, 243, 249, 250

of hom(M, N), 202
see also minimal, presentation

presentation of a module, 249–251,
257, 260

primary
decomposition, 54, 151, 153, 156,

157
ideal, 156

prime
field, 451
ideal, 5, 25, 143, 144, 147, 184

primitive
element (of a field extension), 456,

458, 470, 476, 479, 480, 489,
504

inward pointing normal, see
inward pointing normal,
primitive

vector in Z
n, 309, 339, 348, 356

principal axis theorem, 71
principal ideal, 5, 261, 469, 501
Principal Ideal Domain, see PID
prism, 341
product

of ideals, 25, 155
of rings, 46, 148, 149, 156
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product order, 18, 184
projection, 304
projective

closure, 506
dimension of a module, 262
embedding, 508
module, 204, 242ff, 258
n-dimensional space (Pn), 91, 96,

97, 114, 125, 266, 279, 280,
282–286, 290, 292, 300, 301,
303, 315, 320, 322–324,
327–329, 467

plane, 507, 508
Projective

Extension Theorem, 92, 120
Images principle, 323
Varieties in Affine Space principle,

96
projective variety, 20, 91, 266, 283,

284, 327, 328, 401
affine part (Cn ∩ V ), 96
part at infinity (Pn ∩ V ), 96

Puiseux expansion, 346
pure complex, 408, 410, 417
pure, hereditary complex, 411ff

qhull, 366
Qi, D., 287, 543
QR algorithm, 61
quadratic formula, 115
quadratic splines, 406, 407, 419
quadric surface, 301
Quillen, D., 197, 204, 243, 542
Quillen-Suslin Theorem, 197, 204,

244
quintic del Pezzo surface, 302
quotient ideal (I : J). 6, 19, 25, 186,

232
see also stable quotient of I with

respect to f
quotient of modules (M/N), 193,

200, 202, 203, 217, 221,
238–240, 248, 250, 256, 257,
268, 484

quotient of modules (M : N), 203
quotient ring (k[x1, . . . , xn]/I), 37,

38, 115, 123, 128, 137,
144–148, 150, 152, 154, 155,
157, 177–180, 185, 186, 192,

262, 281, 290, 292, 313, 345,
371, 389, 393, 395, 399, 402,
425, 436, 451, 453, 455, 460,
469, 471, 472, 474–477,
495–502, 506, 507, 511, 512,
520

R
n, see affine, n-dimensional space

over R (Rn)
radical

ideal, 4, 24, 25, 42–46, 48, 49, 67,
68, 71, 128, 150

membership test, 182
of an ideal I (

√
I), 4, 23, 25, 41,

44, 45, 48, 64
Radical Ideal Property, 4
Raimondo, M., 179, 184, 186, 533
Ramshaw, L., xi, 375
rank

of a matrix, 71, 94, 239, 244, 245,
329

of a module, 244, 245
of a symmetric bilinear form over

R, 71, 72, 74
Rao, T.R.N., 531, 538
rational function, 2, 265, 287, 288,

294, 481, 498, 506–508
field (k(x1, . . . , xn)), 2, 265, 278,

343, 356
field of transcendence degree one,

494
rational mapping, 302, 508
rational point over Fq (X(Fq)), 495,

502, 504–507, 510, 511
rational

normal curve, 279, 301
normal scroll, 301
quartic curve, 253, 300

received word, 461, 465, 480, 482,
483, 489–491, 511, 518, 520

recurrence relation, 481, 491
REDUCE, 41

CALI package, 176, 217, 231, 236,
253, 255

reduced Gröbner basis, see Gröbner
basis, reduced

reduced monomial, 107, 108
in toric context, 331

reducible variety, 182
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reduction of f by g (Red(f, g)),
163–165, 167, 170, 172, 213

Reed-Muller code, 504, 505
Reed-Solomon

code, 470–472, 475–479, 480ff,
494, 495, 502, 521

decoding, 480ff, 510, 511
Rege, A., 129, 371, 373, 537
Reif, J., 73, 533
Reisner, G., 425
relations among generators, 194,

198, 199, 204; see also syzygy
remainder, 11–13, 15, 16, 18, 37–39,

48, 50, 52, 57, 75, 80, 83, 383,
387, 389, 391, 400, 451, 469,
473–475, 481, 488, 491, 496,
497, 500; see also Division
Algorithm

in local case, 167, 174, 175,
178–180; see also Moral
Normal Form Algorithm

in module case, 212ff, 225, 236
remainder arithmetic, 37, 38
Uniqueness of Remainders, 15

removable singularity, 36
residue classes, 238; see also coset
residue field (k = Q/m), 238
Research Institute in Symbolic

Computation (RISC), at
University of Linz, 448

resolution
finite free, see finite free resolution
free, see free resolution
graded, see graded, resolution
homogenization of, see

homogenize, a resolution
isomorphism of, see isomorphic

resolutions
length of, see length of a finite free

resolution
minimal, see minimal resolution
minimal graded, see minimal,

graded resolution
partial graded, see partial graded

resolution
trivial, see trivial resolution

resultant, viii, ix, 77ff, 313ff, 357ff
A-resultant, see resultant, sparse
and multiplicities, 151, 152

computing, 102ff, 357ff
degree of, 95, 106, 107, 317, 358,

367, 374
dense, 317, 369
geometric meaning, 90ff
mixed Bézout-Sylvester, 370
mixed, see resultant, mixed sparse
mixed sparse, 357ff
mixed sparse, software, 369
multipolynomial, vii, 17, 84ff, 95ff,

102ff, 114ff, 152, 313–319,
322–324, 345, 358, 359, 364,
367

properties of, 78, 95ff
of two polynomials, 77ff
residual, 320
solving equations via, see solving

polynomial equations
sparse, viii, 88, 112, 121, 135,

313ff, 322–325, 327, 329–331,
345, 357, 359, 374

Sylvester determinant for, 77, 292,
369

(unmixed) sparse resultant, 358
u-resultant, see u-resultant

Reynolds operator, 303
Richter, P., 35, 542
Riemann-Roch Theorem, 508
ring

Cohen-Macaulay, see
Cohen-Macaulay ring

commutative, see commutative
ring

convergent power series, see
convergent power series ring

formal power series, see formal
power series, ring

homomorphism of, 57, 148, 289,
295, 382, 395, 425, 458, 497

integral domain, see integral
domain

isomorphism of, 46, 49, 144, 148,
152, 153, 156–158, 313, 389,
395, 474–476, 497, 501, 506,
507

localization of, see localization
Noetherian, see Noetherian ring
of fractions, 139, 144, 162
of invariants (SG), 295ff, 303, 304
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ring (cont.)
polynomial, see polynomial ring
product of, see product, of rings
quotient, see quotient ring
valuation, see valuation ring

Rm, see free module
R-module, see module
Robbiano, L., 10, 217, 391, 427, 433,

434, 534, 540–542
robotics, 446
Rojas, J.M., x, 351, 353, 357, 369,

373, 542
Rose, L., 405, 414, 417, 418, 429,

534, 542
Rouillier, F., 73, 153, 538, 542
row operation, 206

integer, see integer row operation
row reduction, 466
Roy, M.-F., 69, 70, 72, 73, 538, 542
Ruffini, P., 29

Saints, K., 480, 538, 539
Saito, K., 287, 543
Sakata, S., 480, 531, 542
Salmon, G., 89, 109, 542
Samorodnitsky, A., 363, 538
Saxena, T., 110, 370, 539
Schenck, H., xi, 405, 420, 543
Schmale, W., x
Schreyer, F.-O., 223, 286, 289, 543
Schreyer’s Theorem, 224, 236, 251,

253, 255, 259–261, 263, 414
Schrijver, A., 377, 534
Schumaker, L., 418, 420, 533, 543
Second Fundamental Theorem of

Invariant Theory, 99
Second Isomorphism Theorem, 203
second syzygies, 247, 251, 252, 255;

see also syzygy module
Sederberg, T., 234, 287, 288, 292,

294, 536, 543
Segre map, 324
semidefinite programming, 73
semigroup, 496; see also monoid

order, 160–163, 166, 167, 170, 171,
173–176, 180, 184; see also
matrix order (>M )

Serre, J.-P., 197, 204, 243, 507, 543

Serre’s conjecture, see Serre’s
problem

Serre’s problem, 197, 204, 243; see
also Quillen-Suslin Theorem

Shafarevich, I., 92, 94, 96, 97, 100,
543

Shannon’s Theorem, 464
Shape Lemma, 67, 128, 426
shifted module, see twist of a graded

module M

short exact sequence, 256, 257
Shurman, J., x
signature of a symmetric bilinear

form over R, 71, 72, 74
simple root, 36
simplex, 307, 309, 312, 340, 346, 363
simplicial complex, 420, 421, 423
Singer, M., x
Singleton bound, 464, 471
Singular, 41, 165, 176, 177, 182,

183, 187, 188, 217, 219, 220,
231, 232, 253, 255, 263, 384,
387, 388, 476

homepage, 176
ideal, 177, 183, 255, 263, 388
intprog package, 391
milnor package, 187
module, 220
poly, 183, 388
reduce, 183, 388
res, 255
ring, 177, 183, 219, 232, 387
sres, 263
std, 177, 183, 220, 388
syz, 231
vdim, 177
vector, 220

singular point, see singularity
singularity, 137, 154

isolated, 154, 155, 187, 188
ordinary double point, 158

skew-symmetric matrix, 302
slack variable, 381–383
Sloane, N., 459, 471, 540
smooth curve, 507
software

for Dixon resultants, see Dixon
resultant, software
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for mixed volumes, see mixed
volumes, software

for sparse resultants, see resultant,
mixed sparse, software

see also CoCoA, Fermat system,
Macaulay 2, Magma, Maple,
REDUCE, Singular

solutions at ∞, 115, 118, 121, 151,
344, 345

see also projective variety, part at
infinity

solving polynomial equations, viii,
ix, 49, 66, 342

generic number of solutions, see
Bezout’s Theorem,
Bernstein’s Theorem

real solutions, 69ff
via eigenvalues, 56ff, 128ff, 371
via eigenvectors, 63ff, 128ff, 371
via elimination, 26ff, 49, 353
via homotopy continuation, see

homotopy continuation
method

via resultants, 114ff, 320, 344, 345,
353, 358, 370ff

via toric and unirational varieties,
320

see also numerical methods
Sommese, A., 373, 543
span of f (spane(f)), 513ff, 520ff

see also spe(s)
sparse Bézout’s Theorem, see

Bernstein’s Theorem
sparse polynomial, 313, 344

see also L(A)
sparse resultant, see resultant, sparse
special position (curve in), 507, 508
spectral theorem, 71
Speder, J.-P., 188
spe(s), 514, 522ff
Spence, L., 157, 538
splines, viii, ix, 376, 405ff

bivariate, see bivariate splines
Cr, see Cr splines
cubic, see cubic, spline
multivariate, see multivariate

splines
nontrivial, see nontrivial splines
one variable, see univariate splines

quadratic, see quadratic splines
trivial, see trivial splines
univariate, see univariate splines
see also piecewise polynomial

functions
split exact sequence, see exact

sequence, split
S-polynomial, 15, 16, 175, 217, 222,

251, 383, 434
square-free part of p (pred), 41–43,

157
stable quotient of I with respect to f

(I : f∞), 185, 186
standard basis

of an ideal, viii, 174ff, 180ff
of a module over a local ring, 236
of Rm, 194, 196, 200, 217, 230,

233, 259, 260, 264, 268, 269,
271, 274, 279, 485–487, 492

of R
m, 309, 422, 435

standard form
of an integer programming

problem, 381, 382, 384, 387,
390

of a polynomial 402; see also
remainder

standard monomial, 38, 177–180,
399, 400, 474, 475, 499, 510

basis, 179
see also basis monomials

Stanfield, M., x
Stanley, R., 297, 298, 392, 425, 543
starting order (for Gröbner Walk),

436, 443, 447
start system (in homotopy

continuation), 354, 355
dense, 355

state polytope, 435
statistics, 393, 402
Steinwandt, R., xi
Sterk, H., xi
Stetter, H.J., 54, 60, 65, 66, 135,

153, 533, 541, 543
Stichtenoth, H., 506, 507, 538, 543
Stillman, M., xi, 218, 405, 537, 543
Strang, G., 420, 423
Strong Nullstellensatz, 23, 42, 44,

45, 59, 67, 90, 105, 148, 155,
156, 182
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Sturmfels, B., ix–xi, 73, 88, 98, 99,
110, 125, 129, 153, 197, 218,
298, 319, 321–323, 339, 351,
355, 359, 361–363, 370, 371,
373, 377, 392, 395, 396, 401,
404, 429, 433, 434, 506,
534–537, 539, 540, 542–544

Sturm sequence, 76
Sturm’s Theorem, 75, 76
subdivision

algebraic (non-polyhedral), 424,
425

coherent, see mixed subdivision,
coherent

mixed, see mixed subdivision
polyhedral, see polyhedral

complex and polyhedral
subdivision

subfield, 457
submatrix, 470
submodule, 190, 192, 193, 197, 199

generated by a set (〈f1, . . . , fs〉),
190, 192, 193

graded, see graded, submodule
of Rm via ideals, 217, 218

Submodule Membership Problem,
207, 208, 210, 214

submonoid, 395, 396
generated by a set (〈m1, . . . , mt〉),

497, 498, 500
subpolytope, 341
subring

generated by f1, . . . , fn

(k[f1, . . . , fn]), 382, 383, 385,
506

membership test, 382, 383, 389,
390

sudden death approach (in Gröbner
Walk) ; 445, 446, 448; see also
Gröbner basis conversion,
Gröbner Walk algorithm

sum
of ideals (I + J), 6, 24, 25
of squares, 73
of submodules (M + N), 201–203,

256
supporting

hyperplane of a polytope, 308,
309, 324, 340

line, 379

surjective, 248, 249, 258, 271, 278,
295, 327, 328, 357, 382, 400,
458

Suslin, A., 197, 204, 243, 544
S-vector (S(f ,g)), 215, 216, 224, 225

over a local ring, 236
Swanson, I., xi
Sweedler, M., x
Sylvester determinant, see resultant,

Sylvester determinant for
Sylveseter matrices, 369
symbolic

computation, 61, 72
parameter, 343

symmetric
bilinear form, 70, 71, 74
magic square, see magic square,

symmetric
syndrome, 465, 468, 480, 490,

510–512, 521
decoding, 465, 480, 491
known, see known syndromes
mapping, 510–513, 518, 519,

524–528, 530, 532
polynomial, 481, 483, 491

systematic
encoder, 463, 474
generator matrix, 463, 466, 467

syzygy, viii, 186, 199, 206, 208, 210,
218, 222ff, 239, 240, 252, 277,
285

among invariants, 296, 297
homogeneous, see homogeneous

syzygy
over a local ring, 235, 236

syzygy module (Syz(f1, . . . , ft)), 176,
199, 200, 204, 208, 210, 222ff,
234, 236, 240, 243, 245–247,
249, 250, 252, 253, 257, 259,
260, 262, 264, 265, 270, 277,
285, 288–291, 293, 294, 300,
413, 414, 416, 417, 423

Syzygy Problem, 208
Syzygy Theorem, see Hilbert Syzygy

Theorem
Szpirglas, A., 69, 70, 72, 73, 542

Takeshima, T., 153, 545
tangent cone, 181, 187
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target order (for Gröbner Walk),
436, 437, 443, 445, 447

Taylor series, 145
Tenberg, R., 66, 541
term, 2

in a free module, 208, 209
term orders (in local case), 158ff

see also ordering monomials
“term-over-position”, see TOP order
ternary quadric, 88, 89
Teissier µ∗-invariant, 188
Teixidor i Bigas, M., 286, 544
tetrahedron, 422
Third Isomorphism Theorem, 203
third syzygy, 247, 251, 252; see also

syzygy module
Thomas, R., 376, 539, 544
Tjurina number, 145, 155, 180, 181,

186
TOP order, 211, 212, 214, 218, 221,

235, 485
toric

GCP, see generalized
characteristic polynomial,
toric

ideal, 401, 506
variety, viii, 320, 322ff, 346, 351,

376, 392, 401, 402, 505, 506
total degree of a polynomial f

(deg(f)), 2, 80, 172, 317, 505
total ordering, 7, 495
trace of a matrix M (Tr(M)), 70, 71,

304
Tran, Q.-N., 446, 544
transform, see discrete Fourier

transform
translate of a subset of R

n, 312, 313,
330, 338, 341, 347, 364–366,
368

transpose of a matrix M (MT ), 132,
192

Traverso, C., 53, 165, 179, 376, 380,
390, 391, 535, 541, 544

tree, 420
triangulation of a polytope, 319,

320
trivial resolution, 276
trivial solution, 87, 89
trivial splines, 405, 414, 416, 419
Trujillo, G., 73, 538

Tsfasman, M., 494, 544
twist of a graded module M (M(d)),

268, 281, 282
twisted

cubic, 261, 282, 284, 303, 435,
447

free module, see graded free
module

Using Algebraic Geometry web site,
x

unbounded polyhedral region, see
polyhedral region, unbounded

unimodular row, 197, 204, 246
union of varieties (V ∪ W ), 22, 25
Uniqueness of Monic Gröbner Bases,

17
Uniqueness of Remainders, see

remainder
unirational variety, 320
unit cube in R

n, 307
unit in a ring, 138, 139, 144, 149,

162, 163, 165–167, 170, 183,
184, 237

univariate splines, 405–408, 410
univeral categorical quotient, 327
universal polynomials, 91, 101, 107,

108
University of Kaiserslautern, 176
University of Linz, 448
University of Minnesota, 365
unshortenable, 236, 237
“upward” order (on standard basis

in Rm), 218–220, 231
u-resultant, 116, 119–121, 152, 370
Uteshev, A. Yu., 369, 534

valuation, 502, 515; see also discrete
valuation

valuation ring, 142,143
value monoid of an order domain,

496, 497, 499, 500, 502,
505,506, 508, 512

van der Geer, G., 544
van der Waerden, B., 79, 86, 116,

544
Vandermonde determinant, 470, 478
van Lint, J., 459, 464, 471, 494, 539,

544
Varchenko, V., 187, 533
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variety, 20
affine, see affine, variety
degree, see degree, of a variety
dimension of, see dimension, of a

variety
ideal of, see ideal, of a variety
irreducible, see irreducible, variety
irreducible component of, see

irreducible, component of a
variety

of an ideal (V(I)), 22, 23, 25
reducible, see reducible, variety
toric, see toric, variety
unirational, see unirational variety

Vasconcelos, W., 218, 544
vector f (in a free module), 190
Verlinden, P., 353, 355
Veronese

map, 323, 328,329
surface, 301,302

Verschelde, J., 353, 355, 363, 373,
539, 543, 544

vision, 320
Vladut, S., 494, 544
vertex

of a cone, 395, 422, 427
of a graph, 417–419
of a polyhedral complex, 409, 416,

425
of a polytope, 307–309, 326, 365,

435
vertex monomial, 326, 327, 331
Voisin, C., 286, 544
volume of a polytope Q (Voln(Q)),

307, 319, 321, 334ff, 358,
361,362, 368

normalized, 334–338, 342
relation to sparse resultants, 317,

318
relation to mixed volume, 337, 338

Wallack, A., 110, 369, 544
Wampler, C., 373, 543
Wang, X., 353, 357, 363, 538, 540,

542
Warren, J., 108, 533
Weierstrass Gap Theorem, 506
weighted homogeneous components

of a polynomial, 439

weighted homogeneous polynomial,
386, 387, 439, 440, 448, 449

weight
of a monomial, 498, 500, 501
of a variable, 106, 114, 296, 303
of a vector in F

n
q , 461, 511, 517,

520, 525, 526, 530, 532; see
also error-correcting,
error-detecting

order, 10, 18, 386, 426, 433, 437,
443, 485

weight vector, 431–433, 437ff, 448
compatible with a monomial

order, 439, 440, 448
Weispfenning, V., vii, 4, 11, 14–16,

18, 27, 39, 49, 55, 69, 75, 185,
429, 441, 517, 533, 545

Welch, L., 491
well-ordering, 7, 159, 160, 162, 163,

175, 211, 386, 495, 497
Weyman, J., 110, 125, 359, 545
White, J., x
Whiteley, W., 420, 533
Wilkinson, J., 32, 33, 545
Woodburn, C., 197, 541
words, see codewords

Yang, L., 110, 370, 539
Yokoyama, K., 153, 545

Zalgaller, V., 332, 534
Zariski closure, 25, 316, 317, 322,

324, 329, 358, 401, 506
zdimradical, see Maple,

zdimradical
Zelevinsky, A., 82, 86, 93, 95, 99,

100, 109, 110, 125, 316–318,
322, 323, 332, 351, 358, 359,
538, 539, 544, 545

zero-dimensional ideal, 39–44, 47–49,
52–54, 56, 58–60, 64, 67–71,
137, 145, 148, 150, 153, 154,
157, 158, 180, 186, 435, 436

Zero Function, 19, 22
zeroes of a cyclic code, 478, 521
Zhang, M., 320, 545
Ziegler, G., 306, 545
Zink, T., 494, 544
Zubé, S., 328, 545




