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Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory works that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow prob-
lems, stochastic optimization, optimal control, discrete optimization, multi-
objective programming, description of software packages, approximation
techniques and heuristic approaches.
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Preface

The main purpose of this book is to present some recent results concerning
the development of in a sense optimal algorithms for the solution of large
bound and/or equality constrained quadratic programming (QP) problems.
The unique feature of these algorithms is the rate of convergence in terms
of the bounds on the spectrum of the Hessian matrix of the cost function. If
applied to the class of QP problems with the cost functions whose Hessian
has the spectrum confined to a given positive interval, the algorithms can find
approximate solutions in a uniformly bounded number of simple iterations,
such as the matrix–vector multiplications. Moreover, if the class of problems
admits a sparse representation of the Hessian, it simply follows that the cost
of the solution is proportional to the number of unknowns.

Notice also that the cost of duplicating the solution is proportional to the
number of variables. The only difference is a constant coefficient. But the
constants are important; people are interested in their salaries, as Professor
Babuška nicely points out. We therefore tried hard to present a quantitative
theory of convergence of our algorithms wherever possible. In particular, we
tried to give realistic bounds on the rate of convergence, usually in terms of
the extreme nonzero eigenvalues of the matrices involved in the definition of
the problem. The theory covers also the problems with dependent constraints.

The presentation of each new algorithm is complete in the sense that it
starts from its classical predecessors, describes their drawbacks, introduces
modifications that improve their performance, and documents the improve-
ments by numerical experiments. Since the exposition is self-contained, the
book can serve as an introductory text for anybody interested in QP. More-
over, since the solution of a number of more general nonlinear problems can be
reduced to the solution of a sequence of QP problems, the book can also serve
as a convenient introduction to nonlinear programming. Such presentation
has also a considerable methodological appeal as it enables us to separate the
simple geometrical ideas, which are behind many theoretical results and algo-
rithms, from the technical difficulties arising in the analysis of more general
nonlinear optimization problems.
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Our algorithms are based on modifications of the active set strategy that
is optionally combined with variants of the augmented Lagrangian method.
Small observations and careful analysis resulted in their qualitatively improved
performance. Surprisingly, these methods can solve some large QP problems
with less effort than a single step of the popular interior point methods. The
reason is that the standard implementation of the interior point methods can
hardly use a favorable distribution of the spectrum of the Hessian due to the
barrier function. On the other hand, the standard implementations of interior
point methods do not rely on the conditioning of the Hessian and can exploit
efficiently its sparsity pattern to simplify LU decomposition. Hence there are
also many problems that can be solved more efficiently by the interior point
methods, and our approach may be considered as complementary to them.

Contact Problems and Scalable Algorithms

The development of the algorithms presented in this book was motivated by
an effort to solve the large sparse problems arising from the discretization
of elliptic variational inequalities, such as those describing the equilibrium of
elastic bodies in mutual contact. A simple academic example is the contact
problem of elasticity to describe the deformation and contact pressure due to
volume forces of the cantilever cube over the obstacle in Fig. 0.1.

Fig. 0.1. Cantilever cube over the obstacle

The class of problems arising from various discretizations of a given vari-
ational inequality by the finite element or boundary element method can be
reduced to the class of QP problems with a uniformly bounded spectrum
by an application of the FETI/BETI (Finite/Boundary Element Tearing and
Interconnecting)-based domain decomposition methods. Let us recall that the
basic idea of these methods is to decompose the domain into subdomains as
in Fig. 0.2 and then “glue” them by the Lagrange multipliers that are found
by an iterative procedure.
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Combination of the results on scalability of variants of the FETI methods
for unconstrained problems with the algorithms presented in this book re-
sulted in development of scalable algorithms for elliptic boundary variational
inequalities. Let us recall that an algorithm is numerically scalable if the cost
of the solution is nearly proportional to the number of unknowns, and it en-
joys the parallel scalability if the time required for the solution can be reduced
nearly proportionally to the number of available processors. For example, the
solution of our toy problem required from 111 to 133 sparse matrix multipli-
cations for varying discretizations with the number of nodes on the surface
ranging from 417 to 163275.

Fig. 0.2. Decomposed cube
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Fig. 0.3. Solution

As a more realistic example, let us consider the problem to describe the
deformation and contact pressure in the ball bearings in Fig. 0.4. We can
easily recognize that it comprises several bodies – balls, rings, and cages. The
balls are not fixed in their cages, so that their stiffness matrices are necessar-
ily singular and the discretized nonpenetration conditions can be described
naturally by dependent constraints. Though the displacements and forces are
typically given on parts of the surfaces of some bodies, exact places where the
deformed balls come into contact with the cages or the rings are known only
after the problem is solved.

Fig. 0.4. Ball bearings
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It should not be surprising that the duality-based methods can be more
successful for the solution of variational inequalities than for the linear prob-
lems. The duality turns the general inequality constraints into bound con-
straints for free; the aspect not exploited in the solution of linear problems.
The first fully scalable algorithm for numerical solution of linear problems,
FETI, was introduced only in the early 1990s. It was quite challenging to get
similar results for variational inequalities. Since the cost of the solution of a
linear problem is proportional to the number of variables, a scalable algorithm
must identify the active constraits in a sense for free!

Synopsis of the Book

The book is arranged into three parts. We start the introductory part by
reviewing some well-known facts on linear algebra in the form that is useful
in the following analysis, including less standard estimates, matrix decompo-
sitions of semidefinite matrices with known kernel, and spectral theory. The
results are then used in the review of standard results on convex and quadratic
programming. Though many results concerning the existence and uniqueness
of QP problems are special cases of more general theory of nonlinear program-
ming, it is often possible to develop more straightforward proofs that exploit
specific structure of the QP problems, in particular the three-term Taylor’s
expansion, and sometimes to get stronger results. We paid special attention
to the results for dependent constraints and/or positive semidefinite Hessian,
including the sensitivity analysis and the duality theory in Sect. 2.6.5.

The second part is the core of the book and comprises four sections on the
algorithms for specific types of constraints. It starts with Chap. 3 which sum-
marizes the basic facts on the application of the conjugate gradient method to
unconstrained QP problems. The material included is rather standard, possi-
bly except Sect. 3.7 on the preconditioning by a conjugate projector.

Chapter 4 reviews in detail the Uzawa-type algorithms. A special attention
is paid to the quantitative analysis of the penalty method and of an inexact
solution of auxiliary unconstrained problems. The standard results on exact
algorithms are also included. A kind of optimality is proved for a variant of
the inexact penalty method and for the semimonotonic augmented Lagrangian
algorithm SMALE. A bound on the penalty parameter which guarantees the
linear convergence is also presented.

Chapter 5 describes the adaptations of the conjugate gradient algorithm
to the solution of bound constrained problems. The algorithms include the
variants of Polyak’s algorithm with the inexact solution of auxiliary problems
and the precision control which preserves the finite termination property. The
main result of this chapter is the MPRGP algorithm with the linear rate of
convergence which depends on the extreme eigenvalues of the Hessian of the
cost function. We show that the rate of convergence can be improved by the
preconditioning exploiting the conjugate projectors.
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The last chapter of the second part combines Chaps. 4 and 5 to obtain
optimal convergence results for the SMALBE algorithm for the solution of
bound and equality constrained QP problems.

The performance of the representative algorithms of the second part is
illustrated in each chapter by numerical experiments. We chose the bench-
marks arising from the discretization of the energy functions associated with
the Laplace operator to mimic typical applications. The benchmarks involve in
each chapter one ill-conditioned problem to illustrate the typical performance
of our algorithms in such situation and the class of well-conditioned prob-
lems to demonstrate the optimality of the best algorithms. Using the same
cost functions in all benchmarks of the second part in combination with the
boundary inequalities and multipoint constraints enables additional compari-
son. For convenience of the reader, Chaps. 3–5 are introduced by an overview
of the algorithms presented there.

The concept of optimality is fully exploited in the last part of our book,
where the algorithms of Chaps. 5 and 6 are combined with the FETI–DP
(Dual–Primal FETI) and TFETI (Total FETI) methods to develop theoret-
ically supported scalable algorithms for numerical solution of the classes of
problems arising from the discretization of elliptic boundary variational in-
equalities. The numerical and parallel scalability is demonstrated on the so-
lution of a coercive boundary variational inequality and on the solution of
a semicoercive multidomain problem with more then two million nodal vari-
ables. The application of the algorithms presented in the last part of our book
to the solution of contact problems of elasticity in two and three dimensions,
including the contact problems with friction, is straightforward. The same
is true for the applications of the algorithms to the development of scalable
BETI-based algorithms for the solution of contact problems discretized by the
direct boundary element methods. An interested reader can find the references
at the end of the last two chapters.
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also participated with Jǐŕı Bouchala in development of scalable algorithms for
the problems discretized by boundary elements. Marta Domorádová, Marie
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Background



1

Linear Algebra

The purpose of this chapter is to briefly review definitions, notations, and
results of linear algebra that are used in the rest of our book. A few results
especially developed for analysis of our algorithms are also included. There is
no claim of completeness as the reader is assumed to be familiar with basic
concepts of the college linear algebra such as vector spaces, linear mappings,
matrix decompositions, etc. More systematic exposition and additional ma-
terial can be found in the books by Strang [171], Hager [112], Demmel [31],
Golub and Van Loan [103], Saad [163], and Axelsson [4]. We use without any
reference basic concepts and standard results of analysis as they are reviewed
in the books by Bertsekas [12] or Conn, Gould, and Toint [28].

1.1 Vectors

In this book we work with n-dimensional arithmetic vectors v ∈ R
n, where

R denotes the set of real numbers. The only exception is Sect. 1.8, where
vectors with complex entries are considered. We denote the ith component
of an arithmetic vector v ∈ R

n by [v]i. Thus [v]i = vi if v = [vi] is defined
by its components vi. All the arithmetic vectors are considered by default
to be column vectors. The relations between vectors u,v ∈ R

n are defined
componentwise. Thus u = v is equivalent to [u]i = [v]i, i = 1, . . . , n, and
u ≤ v is equivalent to [u]i ≤ [v]i, i = 1, . . . , n. We sometimes call the
elements of R

n points to indicate that the concepts of length and direction
are not important.

Having arithmetic vectors u,v ∈ R
n and a scalar α ∈ R, we define the

addition and multiplication by scalar componentwise by

[u + v]i = [u]i + [v]i and [αv]i = α[v]i, i = 1, . . . , n.

The rules that govern these operations, such as associativity, may be easily
deduced from the related rules for computations with real numbers.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 1,
c© Springer Science+Business Media, LLC 2009
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The vector analog of 0 ∈ R is the zero vector on ∈ R
n with all the entries

equal to zero. When the dimension can be deduced from the context, possibly
using the assumption that all the expressions in our book are well defined, we
often drop the subscript and write simply o.

A nonempty set V ⊆ R
n with the operations defined above is a vector

space if α ∈ R and u,v ∈ V imply u + v ∈ V and αu ∈ V . In particular, both
R

n and {o} are vector spaces. Given vectors v1, . . . ,vk ∈ R
n, the set

Span{v1, . . . ,vk} = {v ∈ R
n : v = α1v1 + · · · + αkvk, αi ∈ R}

is a vector space called the linear span of v1, . . . ,vk. If U and V are vector
spaces, then the sets U ∩ V and

U + V = {x + y : x ∈ U and y ∈ V}

are also vector spaces. If W = U + V and U ∩ V = {o}, then W is said to be
the direct sum of U and V . We denote it by

W = U ⊕ V .

If U ,V ⊆ R
n are vector spaces and U ⊆ V , then U is a subspace of V .

A vector space V ⊆ R
n can be spanned by different sets of vectors. A finite

set of vectors E ⊂ R
n that spans a given vector space V �= {o} is called a basis

of V if no proper subset of E spans V . For example, the set of vectors

S = {s1, . . . , sn}, [si]j = δij , i, j = 1, . . . , n,

where δij denotes the Kronecker symbol defined by δij = 1 for i = j and
δij = 0 for i �= j, is the standard basis of R

n. If E = {e1, . . . , ed} is a basis of
a vector space V , then E is independent , that is,

α1e1 + · · · + αded = o

implies
α1 = · · · = αd = 0.

Any two bases of a vector space V have the same number of vectors. We
call it the dimension of V and denote it dimV . Obviously dimR

n = n and
dimV ≤ n for any subspace V ⊆ R

n. For convenience, we define dim{o} = 0.
We sometimes use the componentwise extensions of scalar functions to

vectors. Thus if v ∈ R
n, then v+ and v− are the vectors whose ith compo-

nents are max{[v]i, 0} and min{[v]i, 0}, respectively. Similarly, if u, v ∈ R
n,

then max{u,v} and min{u,v} denote the vectors whose ith components are
max{[u]i, [v]i} and min{[u]i, [v]i}, respectively.

If I is a nonempty subset of {1, . . . , n} and v ∈ R
n, then we denote by

[v]I or simply vI the subvector of v with components [v]i, i ∈ I. Thus if I
has m elements, then vI ∈ R

m, so that we can refer to the components of
vI either by the global indices i ∈ I or by the local indices j ∈ {1, . . . , m}.
We usually rely on the reader’s judgment to recognize the appropriate type
of indexing.
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1.2 Matrices and Matrix Operations

Throughout the whole book, all the matrices are assumed to be real except
Sect. 1.8, where also complex matrices are considered. Similarly to the related
convention for vectors, the (i, j)th component of a matrix A ∈ R

m×n is
denoted by [A]ij , so that [A]ij = aij for A = [aij ] which is defined by its entries
aij . A matrix A ∈ R

m×n is called an (m, n)-matrix ; a matrix A ∈ R
n×n is

called a square matrix of the order n.
Having (m, n)-matrices A, B and a scalar α ∈ R, we define addition and

multiplication by a scalar by

[A + B]ij = [A]ij + [B]ij and [αA]ij = α[A]ij .

The rules that govern the addition of matrices and their multiplication by
scalars are the same as those for corresponding vector operations.

The matrix analog of 0 is the zero matrix Omn ∈ R
m×n with all the entries

equal to zero. When the dimension is clear from the context, we often drop
the subscripts and write simply O.

Having matrices A ∈ R
m×k and B ∈ R

k×n, we define their product
AB ∈ R

m×n by

[AB]ij =
k∑

l=1

[A]il[B]lj .

Matrix multiplication is associative, therefore we do not need to use brackets
to specify the order of multiplication. In particular, given a positive integer k
and a square matrix A, we can define the kth power of a square matrix A by

Ak = AA . . . A︸ ︷︷ ︸ .

k-times

Matrix multiplication is not commutative.
The matrix counterpart of 1 ∈ R in R

n×n is the identity matrix In = [δij ]
of the order n. When the dimension may be deduced from the context, we
often drop the subscripts and write simply I. Thus we can write

A = IA = AI

for any matrix A, having in mind that the order of I on the left may be different
from that on the right.

Given A ∈ R
m×n, we define the transposed matrix AT ∈ R

n×m to A by
[AT ]ij = [A]ji. Having matrices A ∈ R

m×k and B ∈ R
k×n, it may be checked

that
(AB)T = BT AT . (1.1)

A square matrix A is symmetric if A = AT .
A matrix A is positive definite if xT Ax > 0 for any x �= o, positive semidef-

inite if xT Ax ≥ 0 for any x, and indefinite if neither A nor −A is positive
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definite or semidefinite. We are especially interested in symmetric positive
definite (SPD) matrices.

If A ∈ R
m×n, I ⊆ {1, . . . , m}, and J ⊆ {1, . . . , n}, I and J nonempty, we

denote by AIJ the submatrix of A with the components [A]ij , i ∈ I, j ∈ J .
The local indexing of the entries of AIJ is used whenever it is convenient
in a similar way as the local indexing of subvectors which was introduced in
Sect. 1.1. The full set of indices may be replaced by * so that A = A∗∗ and
AI∗ denotes the submatrix of A with the row indices belonging to I.

Sometimes it is useful to rearrange the matrix operations into manip-
ulations with submatrices of given matrices called blocks. A block matrix
A ∈ R

m×n is defined by its blocks Aij = AIiJj , where Ii and Jj denote
nonempty contiguous sets of indices decomposing {1, . . . , m} and {1, . . . , n},
respectively. We can use the block structure to implement matrix operations
only when the block structure of the involved matrices matches.

Very large matrices are often sparse in the sense that they have a small
number of nonzero entries distributed in a pattern which can be exploited to
the efficient implementation of matrix operations, to the reduction of storage
requirements, or to the effective solution of standard problems of linear alge-
bra. Such matrices arise, e.g., from the discretization of problems described
by differential operators. The matrices with a large number of nonzero entries
are often called full or dense matrices.

1.3 Matrices and Mappings

Each matrix A ∈ R
m×n defines the mapping which assigns to each x ∈ R

n

the vector Ax ∈ R
m. Two important subspaces associated with this mapping

are its range or image space ImA and its kernel or null space KerA; they are
defined by

ImA = {Ax : x ∈ R
n} and KerA = {x ∈ R

n : Ax = o}.

The range of A is the span of its columns.
If f is a mapping defined on D ⊆ R

n and Ω ⊆ D, then f |Ω denotes the
restriction of f to Ω, that is, the mapping defined on Ω which assigns to each
x ∈ Ω the value f(x). If A ∈ R

m×n and V is a subspace of R
n, we define A|V

as a restriction of the mapping associated with A to V . The restriction A|V
is said to be positive definite if xT Ax > 0 for x ∈ V , x �= o, and positive
semidefinite if xT Ax ≥ 0 for x ∈ V .

The mapping associated with A is injective if Ax = Ay implies x = y. It
is easy to check that the mapping associated with A is injective if and only if
KerA = {o}. More generally, it may be proved that

dim ImA + dim KerA = n (1.2)

for any A ∈ R
m×n. If m = n, then A is injective if and only if ImA = R

n.
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The rank or column rank of a matrix A is equal to the dimension of the
range of A. The column rank is known to be equal to the row rank, the number
of linearly independent rows. A matrix is of full row rank or full column rank
when its rank is equal to the number of its rows or columns, respectively. A
matrix A ∈ R

m×n is of full rank when its rank is the smaller of m and n.
A subspace V ⊆ R

n which satisfies

AV = {Ax : x ∈ V} ⊆ V

is an invariant subspace of A. Obviously

A(ImA) ⊆ ImA,

so that ImA is an invariant subspace of A.
A projector is a square matrix P that satisfies

P2 = P.

Such a matrix is also said to be idempotent. A vector x ∈ ImP if and only if
there is y ∈ R

n such that x = Py, so that

Px = P(Py) = Py = x.

If P is a projector, then Q = I − P and PT are also projectors as

(I − P)2 = I − 2P + P2 = I − P and
(
PT

)2
=
(
P2
)T

= PT .

Since for any x ∈ R
n

x = Px + (I − P)x,

it simply follows that ImQ = KerP,

R
n = ImP + KerP, and KerP ∩ ImP = {o}.

We say that P is a projector onto U = ImP along V = KerP and Q is a
complementary projector onto V along U . The above relations may also be
rewritten as

ImP ⊕ KerP = R
n. (1.3)

Let (π(1), . . . , π(n)) be a permutation of numbers 1, . . . , n. Then the map-
ping which assigns to each v = [vi] ∈ R

n a vector [vπ(1), . . . , vπ(n)]T is associ-
ated with the permutation matrix

P = [sπ(1), . . . , sπ(n)],

where si denotes the ith column of the identity matrix In. If P is a permutation
matrix, then

PPT = PT P = I.

Notice that if B is a matrix obtained from a matrix A by reordering of the
rows of A, then there is a permutation matrix P such that B = PA. Similarly,
if B is a matrix obtained from A by reordering of the columns of A, then there
is a permutation matrix P such that B = AP.
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1.4 Inverse and Generalized Inverse Matrices

If A is a square full rank matrix, then there is the unique inverse matrix A−1

such that
AA−1 = A−1A = I. (1.4)

The mapping associated with A−1 is inverse to that associated with A.
If A−1 exists, we say that A is nonsingular. A square matrix is singular if

its inverse matrix does not exist. Any positive definite matrix is nonsingular.
If P is a permutation matrix, then P is nonsingular and

P−1 = PT .

If A is a nonsingular matrix, then A−1b is the unique solution of the system
of linear equations Ax = b.

If A is a nonsingular matrix, then we can transpose (1.4) and use (1.1) to
get

(A−1)T AT = AT (A−1)T = I,

so that
(AT )−1 = (A−1)T . (1.5)

It follows that if A is symmetric, then A−1 is symmetric.
If A ∈ R

n×n is positive definite, then A−1 is also positive definite, as any
vector x �= o can be expressed as x = Ay, y �= o, and

xT A−1x = (Ay)T A−1Ay = yT AT y = yT Ay > 0.

If A and B are nonsingular matrices, then it is easy to check that AB is
also nonsingular and

(AB)−1 = B−1A−1.

If U, V ∈ R
m×n, m < n, and A, A + UT V are nonsingular, then it can be

verified directly that

(A + UT V)−1 = A−1 − A−1UT (I + VA−1UT )−1VA−1. (1.6)

The formula (1.6) is known as Sherman–Morrison–Woodbury’s formula (see
[103, p. 51]). The formula is useful in theory and for evaluation of the inverse
matrix to a low rank perturbation of A provided A−1 is known.

If B ∈ R
m×n denotes a full row rank matrix, A ∈ R

n×n is positive definite,
and y �= o, then z = BTy �= o and

yT BA−1BT y = zT A−1z > 0.

Thus if A is positive definite and B is a full row rank matrix such that BA−1BT

is well defined, then the latter matrix is also positive definite.
A real matrix A = [aij ] ∈ R

n×n is called a (nonsingular) M-matrix if
aij ≤ 0 for i �= j and if all entries of A−1 are nonnegative. If
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aii >

n∑

j �=i

|aij |, i = 1, . . . , n,

then A is an M -matrix (see Fiedler and Pták [88] or Axelsson [4, Chap. 6]).
If A ∈ R

m×n and b ∈ ImA, then we can express a solution of the system
of linear equations Ax = b by means of a left generalized inverse matrix
A+ ∈ R

n×m which satisfies AA+A = A. Indeed, if b ∈ ImA, then there is y
such that b = Ay and x = A+b satisfies

Ax = AA+b = AA+Ay = Ay = b.

Thus A+ acts on the range of A like the inverse matrix. If A is a nonsingular
square matrix, then obviously

A+ = A−1.

Moreover, if S ∈ R
n×p is such that AS = O and N ∈ R

n×p, then (A+) + SNT

is also a left generalized inverse as

A
(
(A+) + SNT

)
A = AA+A + ASNT A = A.

If A is a symmetric singular matrix, then there is a permutation matrix P
such that

A = PT

[
B CT

C CB−1CT

]
P,

where B is a nonsingular matrix whose dimension is equal to the rank of A.
It may be verified directly that the matrix

A# = PT

[
B−1 OT

O O

]
P (1.7)

is a left generalized inverse of A. If A is symmetric positive semidefinite,
then A# is also symmetric positive semidefinite. Notice that if AS = O, then
A+ = A# + SST is also a symmetric positive semidefinite generalized inverse.

1.5 Direct Methods for Solving Linear Equations

The inverse matrix is a useful tool for theoretical developments, but not for
computations, especially when sparse matrices are involved. The reason is that
the inverse matrix is usually full, so that its evaluation results in large storage
requirements and high computational costs. It is often much more efficient to
implement the multiplication of a vector by the inverse matrix by solving the
related system of linear equations. We recall here briefly the direct methods,
which reduce solving of the original system of linear equations to solving of a
system or systems of linear equations with triangular matrices.
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A matrix L = [lij ] is lower triangular if lij = 0 for i < j. It is easy to solve a
system Lx = b with the nonsingular lower triangular matrix L ∈ R

n. As there
is only one unknown in the first equation, we can find it and then substitute
it into the remaining equations to obtain a system with the same structure,
but with only n − 1 remaining unknowns. We can repeat the procedure until
we find all the components of x.

A similar procedure, but starting from the last equation, can be applied to
a system with the nonsingular upper triangular matrix U = [uij ] with uij = 0
for i > j.

The solution costs of a system with triangular matrices is proportional to
the number of its nonzero entries. In particular, the solution of a system of
linear equations with a diagonal matrix D = [dij ], dij = 0 for i �= j, reduces
to the solution of a sequence of linear equations with one unknown.

If we are to solve the system of linear equations with a nonsingular matrix,
we can use systematically equivalent transformations that do not change the
solution in order to modify the original system to that with an upper triangu-
lar matrix. It is well-known that the solutions of a system of linear equations
are the same as the solutions of a system of linear equations obtained from
the original system by interchanging two equations, replacing an equation by
its nonzero multiple, or adding a multiple of one equation to another equa-
tion. The Gauss elimination for the solution of a system of linear equations
with a nonsingular matrix thus consists of two steps: the forward reduction,
which exploits equivalent transformations to reduce the original system to the
system with an upper triangular matrix, and the backward substitution, which
solves the resulting system with the upper triangular matrix.

Alternatively, we can use suitable matrix factorizations. For example, it is
well-known that any positive definite matrix A can be decomposed into the
product

A = LLT , (1.8)

where L is a nonsingular lower triangular matrix with positive diagonal entries.
Having the decomposition, we can evaluate z = A−1x by solving the systems

Ly = x and LT z = y.

The factorization-based solvers may be especially useful when we are to solve
several systems of equations with the same coefficients but different right-hand
sides coming one after another.

The method of evaluation of the factor L is known as the Cholesky fac-
torization. The Cholesky factor L can be computed in a number of equivalent
ways. For example, we may compute it column by column. Suppose that

A =
[

a11 aT
1

a1 A22

]
and L =

[
l11 o
l1 L22

]
.

Substituting for A and L into (1.8) and comparing the corresponding terms
immediately reveals that
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l11 =
√

a11, l1 = l−1
11 a1, L22L

T
22 = A22 − l1lT1 . (1.9)

This gives us the first column of L, and the remaining factor L22 is simply
the Cholesky factor of the Schur complement A22 − l1lT1 which is known to be
positive definite, so we can find its first column by the above procedure. The
algorithm can be implemented to exploit a sparsity pattern of A, e.g., when
A = [aij ] ∈ R

n×n is a band matrix with aij = 0 for |i − j| > b, b � n.
If A ∈ R

n×n is only positive semidefinite, it can happen that a11 = 0.
Then

0 ≤ xT Ax = yT A22y + 2x1aT
1 y

for any vector x =
[
x1,yT

]T . The inequality implies that a1 = o, as otherwise
we could take y = −a1 and large x1 to get

yT A22y + 2x1aT
1 y = aT

1 A22a1 − 2x1‖a1‖2 < 0.

Thus for A symmetric positive semidefinite and a11 = 0, (1.9) reduces to

l11 = 0, l1 = o, L22L
T
22 = A22. (1.10)

Of course, this simple modification assumes exact arithmetics. In the com-
puter arithmetics, the decision whether a11 is to be treated as zero depends
on some small ε > 0.

In some important applications, it is possible to exploit additional infor-
mation. In mechanics, e.g., the basis of the kernel of the stiffness matrix of
a floating body is formed by three (2D) or six (3D) known and independent
rigid body motions. Any basis of the kernel of a matrix can be used to identify
the zero rows (and columns) of a Cholesky factor by means of the following
lemma.

Lemma 1.1. Let A = LLT denote a triangular decomposition of a symmetric
positive semidefinite matrix A, let Ae = o, and let l(e) denote the largest index
of a nonzero entry of e ∈ KerA, so that

[e]l(e) �= 0 and [e]j = 0 for j > l(e).

Then
[L]l(e)l(e) = 0.

Proof. If Ae = o, then

eT Ae = eT LLTe = (LTe)T (LTe) = 0.

Thus LT e = o and in particular

[LT e]l(e) = [L]l(e)l(e)[e]l(e) = 0.

Since [e]l(e) �= 0, we have [L]l(e)l(e) = 0. �
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Let A ∈ R
n×n be positive semidefinite and let R ∈ R

n×d denote a full
column rank matrix such that KerA = ImR. Observing that application of
equivalent transformations to the columns of R preserves the image space and
the rank of R, we can modify the forward reduction to find R which satisfies

l(R∗1) < · · · < l(R∗d).

The procedure can be described by the following transformations of R: trans-
pose R, reverse the order of columns, apply the forward reduction, reverse
the order of columns back, and transpose the resulting matrix back. Then
l(R∗1), . . . , l(R∗d) are by Lemma 1.1 the indices of zero columns of a factor
of the modified Cholesky factorization; the factor cannot have any other zero
columns due to the rank argument. The procedure has been described and
tested in Menš́ık [151]. Denoting by the crosses and dots the nonzero and
undetermined entries, respectively, the relations between the pivots of R and
the zero columns of the Cholesky factor L can be illustrated by

R =

⎡

⎢⎢⎢⎢⎣

. .

. .
× .
0 .
0 ×

⎤

⎥⎥⎥⎥⎦
⇒ L =

⎡

⎢⎢⎢⎢⎣

× 0 0 0 0
. × 0 0 0
. . 0 0 0
. . 0 × 0
. . 0 . 0

⎤

⎥⎥⎥⎥⎦
.

Alternatively, we can combine the basic algorithm with a suitable rank
revealing decomposition, such as the singular value decomposition (SVD) in-
troduced in Sect. 1.9. For example, Frahat and Gérardin [82] proposed to start
with the Cholesky decomposition and to switch to SVD in case of doubts.

1.6 Norms

General concepts of size and distance in a vector space are expressed by norms.
A norm on R

n is a function which assigns to each x ∈ R
n a number IxI ∈ R

in such a way that for any vectors x, y ∈ R
n and any scalar α ∈ R, the

following three conditions are satisfied:

(i) IxI ≥ 0, and IxI = 0 if and only if x = o.
(ii) Ix + yI ≤ IxI + IyI.
(iii) IαxI = |α| IxI.

It is easy to check that the functions

‖x‖1 = |x1| + · · · + |xn| and ‖x‖∞ = max{|x1|, . . . , |xn|}

are norms. They are called �1 and �∞ norms, respectively. We often use the
Euclidean norm defined by

‖x‖2 =
√

x2
1 + · · · + x2

n.
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The norms on R
n introduced above satisfy the inequalities

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2 ≤ n‖x‖∞.

Given a norm defined on the domain and the range of a matrix A, we can
define the induced norm IAI of A by

IAI = sup
IxI=1

IAxI = sup
x �=o

IAxI

IxI
.

If B �= O, then

IABI = sup
x�=o

IABxI

IxI
= sup

Bx �=o

IABxI

IBxI

IBxI

IxI
≤ sup

y∈ImB,
y �=o

IAyI

IyI
sup
x�=o

IBxI

IxI
.

It follows easily that the induced norm is submultiplicative, i.e.,

IABI ≤ IA|ImBI IBI ≤ IAI IBI. (1.11)

If A = [aij ] ∈ R
m×n and x = [xi] ∈ R

n, then

‖Ax‖∞ = max
i=1,...,m

|
n∑

j=1

aijxj | ≤ max
i=1,...,m

n∑

j=1

|aij ||xj | ≤ ‖x‖∞ max
i=1,...,m

n∑

j=1

|aij |,

that is, ‖A‖∞ ≤ maxi=1,...,m

∑n
j=1 |aij |. Since the last inequality turns into

the equality for a vector x with suitably chosen entries xi ∈ {1,−1}, we have

‖A‖∞ = max
i=1,...,m

n∑

j=1

|aij |. (1.12)

Similarly

‖Ax‖1 =
m∑

i=1

|
n∑

j=1

aijxj | ≤
n∑

j=1

|xj |
m∑

i=1

|aij | ≤ ‖x‖1 max
j=1,...,n

m∑

i=1

|aij |,

that is, ‖A‖1 ≤ maxi=1,...,n

∑m
i=1 |aij |. Taking for the vector x a suitably

chosen column of the identity matrix In, we get

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij | = ‖AT ‖∞. (1.13)

The matrix norms induced by �1 and �∞ norms are relatively inexpensive
to compute. If A ∈ R

m×n, they may be used to estimate the typically expensive
Euclidean norm ‖A‖2 by means of the inequalities

‖A‖∞ ≤
√

n‖A‖2 ≤ n‖A‖1 ≤ n
√

m‖A‖2 ≤ nm‖A‖∞.

Another useful inequality is

‖A‖2 ≤
√
‖A‖1‖A‖∞. (1.14)
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1.7 Scalar Products

General concepts of length and angle in a vector space are introduced by means
of a scalar product ; it is the mapping which assigns to each couple x, y ∈ R

n

a number 〈x,y〉 ∈ R in such a way that for any vectors x, y, z ∈ R
n and any

scalar α ∈ R, the following four conditions are satisfied:

(i) 〈x,y + z〉 = 〈x,y〉 + 〈x, z〉.
(ii) 〈αx,y〉 = α〈x,y〉.
(iii) 〈x,y〉 = 〈y,x〉.
(iv) 〈x,x〉 > 0 for x �= o.

We often use the Euclidean scalar product or Euclidean inner product
which assigns to each couple of vectors x, y ∈ R

n a number defined by

(x,y) = xTy.

If A is a symmetric positive definite matrix, then we can define the more
general A-scalar product on R

n by

(x,y)A = xT Ay.

Using a scalar product, we can define the norm IxI of x and the angle α
between x and y by

IxI
2 = 〈x,x〉, cosα =

〈x,y〉
IxIIyI

.

We denote for any x ∈ R
n its Euclidean norm and A-norm by

‖x‖ = (x,x)1/2, ‖x‖A = (x,x)1/2
A .

It is easy to see that any norm induced by a scalar product satisfies the
properties (i) and (iii) of the norm. The property (ii) follows from the Cauchy–
Schwarz inequality

〈x,y〉2 ≤ IxI
2

IyI
2, (1.15)

which is valid for any x, y ∈ R
n and any scalar product. The bound is tight in

the sense that the inequality becomes the equality when x, y are dependent.
The property (ii) of the norm then follows by

Ix + yI
2 = IxI

2 + 2〈x,y〉 + IyI
2 ≤ IxI

2 + 2IxIIyI + IyI
2 = (IxI + IyI)2.

A pair of vectors x and y is orthogonal (with respect to a given scalar
product) if

〈x,y〉 = 0.

If the scalar product is not specified, then we assume by default the Euclidean
scalar product. The vectors x and y that are orthogonal in A-scalar product
are also called A-conjugate or briefly conjugate.
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Two sets of vectors E and F are orthogonal (also stated “E orthogonal to
F”) if every x ∈ E is orthogonal to any y ∈ F . The set E⊥ of all the vectors
of R

n that are orthogonal to E ⊆ R
n is a vector space called the orthogonal

complement of E . If E ⊆ R
n, then

R
n = Span E ⊕ E⊥.

A set of vectors E is orthogonal if its elements are pairwise orthogonal,
i.e., any x ∈ E is orthogonal to any y ∈ E , y �= x. A set of vectors E is
orthonormal if it is orthogonal and 〈x,x〉 = 1 for any x ∈ E .

Any orthogonal set E = {e1, . . . , en} of nonzero vectors ei is independent.
Indeed, if

α1e1 + · · · + αnen = o,

then we can take the scalar product of both sides of the equation with ei and
use the assumption on orthogonality of E to get that

αi〈ei, ei〉 = 0,

so that αi = 0.
If E is an orthonormal basis of a vector space V ⊆ R

n, then the same
procedure as above may be used to get conveniently the coordinates ξi of any
x ∈ V . For example, if E is orthonormal with respect to the Euclidean scalar
product, it is enough to multiply

x = ξ1e1 + · · · + ξnen

on the left by eT
i to get

ξi = eT
i x.

A square matrix U is orthogonal if UT U = I, that is, U−1 = UT . Multipli-
cation by an orthogonal matrix U preserves both the angles between any two
vectors and the Euclidean norm of any vector as

(Ux)T Uy = xT UT Uy = xT y.

A matrix P ∈ R
n×n is an orthogonal projector if P is a projector, i.e.,

P2 = P, and ImP is orthogonal to KerP. The latter condition can be rewritten
equivalently as

PT (I − P) = O.

It simply follows that
PT = PT P = P,

so that orthogonal projectors are symmetric matrices and symmetric projec-
tors are orthogonal projectors. If P is an orthogonal projector, then I − P is
also an orthogonal projector as

(I − P)2 = I − 2P + P2 = I − P and (I − P)T P = (I − P)P = O.
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x

KerP

ImP

P

I − P

Fig. 1.1. Orthogonal projector

See Fig. 1.1 for a geometric interpretation.
If U ⊆ R

n is the subspace spanned by the columns of a full column rank
matrix U ∈ R

m×n, then
P = U(UT U)−1UT

is an orthogonal projector as

P2 = U(UT U)−1UT U(UT U)−1UT = P and PT = P.

Since any vector x ∈ U may be written in the form x = Uy and

Px = U(UT U)−1UT Uy = Uy = x,

it follows that
U = ImP.

Observe that UT U is nonsingular; since UT Ux = o implies

‖Ux‖2 = xT (UT Ux) = 0,

it follows that x = o by the assumption on the full column rank of U.
Let B ∈ R

m×n and x ∈ ImBT , so that there is y such that x = BTy. Then
for any z ∈ KerB

xT z = (BT y)T z = yT (Bz) = 0,

so that KerB is orthogonal to ImBT . An important result of linear algebra is
that

(KerB)⊥ = ImBT , (1.16)

thus
R

n = KerB ⊕ ImBT . (1.17)

The orthogonal projectors and their generalization, the conjugate pro-
jectors that we introduce in Sect. 3.7.1, are useful computational tools for
manipulations with subspaces.
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1.8 Eigenvalues and Eigenvectors

If A ∈ R
n×n is a square matrix, then it may happen that there is a vector

e ∈ R
n such that Ae is just a scalar multiple of e. Such vectors turned out to

be useful for analysis of problems described by matrices. Since the theory has
been developed for complex matrices, we consider in this section the vectors
and matrices with the entries belonging to the set of complex numbers C in
order to simplify our exposition.

Let A ∈ C
n×n denote a square matrix with complex entries. If a vector

e ∈ C
n and a scalar λ ∈ C satisfy

Ae = λe,

then e is said to be an eigenvector of A associated with an eigenvalue λ.
A vector e is an eigenvector of A if and only if Span{e} is an invariant sub-
space of A; the restriction A|Span{e} reduces to the multiplication by λ. If
{e1, . . . , ek} are eigenvectors of a symmetric matrix A, then it is easy to check
that Span{e1, . . . , ek} and Span{e1, . . . , ek}⊥ are invariant subspaces.

The set of all eigenvalues of A is called the spectrum of A; we denote it by
σ(A). Obviously λ ∈ σ(A) if and only if A−λI is singular, and 0 ∈ σ(A) if and
only if A is singular.

If U ⊆ C
n is an invariant subspace of A ∈ C

n×n, then we denote by σ(A|U)
the eigenvalues of A that correspond to the eigenvectors belonging to U .

Fig. 1.2. The spectrum of a matrix

Many important relations in this book are proved by analysis of the spec-
trum of a given matrix. The information about the spectrum is typically
obtained indirectly, in a similar way as information about a ghost in a spirit
session, when the participants are not assumed to see the ghost, but to observe
that the table is moving.

The eigenvalues can be characterized algebraically by means of the deter-
minant which can be defined by induction in two steps:
(i) A matrix [a11] ∈ C

1×1 is assigned the value det[a11] = a11.
(ii) Assuming that the determinant of a matrix A ∈ C

(n−1)×(n−1) is already
defined, the determinant of A = [aij ] ∈ C

n×n is assigned the value
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det(A) =
n∑

j=1

(−1)j+1a1j det(A1j),

where A1j is the square matrix of the order n−1 obtained from A by deleting
its first row and jth column.

Since it is well-known that a matrix is singular if and only if its determinant
is equal to zero, it follows that the eigenvalues of A are the roots of the
characteristic equation

det(A − λI) = 0. (1.18)

The characteristic polynomial pA(λ) = det(A − λI) is of the degree n. Thus
there are at most n distinct eigenvalues and σ(A) is not the empty set.

In what follows, we associate with each matrix A ∈ C
n×n a sequence

λ1, . . . , λn of the eigenvalues of A labeled as the roots of the characteristic
polynomial. Each distinct eigenvalue appears in this sequence as many times
as corresponds to its algebraic multiplicity as a root of the characteristic poly-
nomial. Using the factorization

pA(λ) = (λ1 − λ) · · · (λn − λ),

we get
det(A) = pA(0) = λ1 · · ·λn. (1.19)

Comparing the coefficients in the factorization of pA(λ) with those arising
from evaluation of det(A − λI), we get

trace(A) = λ1 + · · · + λn, (1.20)

where trace(A) denotes the sum of all diagonal entries of A.
The dimension of Ker(A − λI) is called the geometric multiplicity of λ.

If the algebraic multiplicity of an eigenvalue λ is k, then the number of the
independent eigenvectors corresponding to λ is an integer between 1 and k.

Even though it is in general difficult to evaluate the eigenvalues of a given
matrix A, it is still possible to get nontrivial information about σ(A) without
heavy computations. Useful information about the location of eigenvalues can
be obtained by Gershgorin’s theorem, which guarantees that every eigenvalue
of A = [aij ] ∈ C

n×n is located in at least one of the n circular disks in the
complex plane with the centers aii and radii ri =

∑
j �=i |aij |.

The eigenvalues of a real symmetric matrix are real. Since it is easy to
check whether a matrix is symmetric, this gives us useful information about
the location of eigenvalues.

Let A ∈ R
n×n denote a real symmetric matrix, let I = {1, . . . , n− 1}, and

let A1 = AII . Let λ1 ≥ · · · ≥ λn and λ1
1 ≥ · · · ≥ λ1

n−1 denote the eigenvalues
of A and A1, respectively. Then by the Cauchy interlacing theorem

λ1 ≥ λ1
1 ≥ λ2 ≥ λ1

2 ≥ · · · ≥ λ1
n−1 ≥ λn. (1.21)



1.9 Matrix Decompositions 19

1.9 Matrix Decompositions

If A ∈ R
n×n is a symmetric matrix, then it is possible to find n orthonormal

eigenvectors e1, . . . , en that form the basis of R
n. Moreover, the correspond-

ing eigenvalues are real. Denoting by U = [e1, . . . , en] ∈ R
n×n an orthogonal

matrix whose columns are the eigenvectors, we may write the spectral decom-
position of A as

A = UDUT , (1.22)

where D = diag(λ1, . . . , λn) ∈ R
n×n is the diagonal matrix whose diagonal

entries are the eigenvalues corresponding to the eigenvectors e1, . . . , en. Re-
ordering the columns of U, we can achieve that λ1 ≥ · · · ≥ λn.

The spectral decomposition reveals close relations between the properties
of a symmetric matrix and its eigenvalues. Thus a symmetric matrix is pos-
itive definite if and only if all its eigenvalues are positive, and it is positive
semidefinite if and only if they are nonnegative. It is easy to check that the
rank of a symmetric matrix is equal to the number of nonzero entries of D.

If A is symmetric, then we can use the spectral decomposition (1.22) to
check that for any nonzero x

λ1 = λmax ≥ ‖x‖−2xT Ax ≥ λmin = λn. (1.23)

Thus for any symmetric positive definite matrix A

‖A‖ = λmax, ‖A−1‖ = λ−1
min, ‖x‖A ≤ λmax‖x‖, ‖x‖A−1 ≤ λ−1

min‖x‖. (1.24)

The spectral condition number κ(A) = ‖A‖‖A−1‖, which is a measure of
departure from the identity, can be expressed for real symmetric matrix by

κ(A) = λmax/λmin.

Another consequence of the spectral decomposition theorem is the Courant–
Fischer minimax principle, (see, e.g., [103]) which states that if λ1 ≥ · · · ≥ λn

are the eigenvalues of a real symmetric matrix A ∈ R
n×n, then

λk = max
V⊆Rn,

dim V=k

min
x∈V,
‖x‖=1

xT Ax, k = 1, . . . , n. (1.25)

If A is a real symmetric matrix and f is a real function defined on σ(A),
we can use the spectral decomposition to define the scalar function by

f(A) = Uf(D)UT ,

where f(D) = diag (f(λ1), . . . , f(λn)). It is easy to check that if a is the
identity function on R defined by a(x) = x, then

a(A) = A,

and if f and g are real functions defined on σ(A), then
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(f + g)(A) = f(A) + g(A) and (f · g)(A) = f(A)g(A).

Moreover, if f(x) ≥ 0 for x ∈ σ(A), then f(A) is positive semidefinite, and
if f(x) > 0 for x ∈ σ(A), then f(A) is positive definite. For example, if A is
symmetric positive semidefinite, then the square root of A is well defined and

A = A1/2A1/2.

Obviously
σ(f(A)) = f(σ(A)), (1.26)

and if ei is an eigenvector corresponding to λi ∈ σ(A), then it is also an eigen-
vector of f(A) corresponding to f(λi). It follows easily that for any symmetric
positive semidefinite matrix

ImA = ImA1/2 and KerA = KerA1/2. (1.27)

A key to understanding nonsymmetric matrices is the singular value de-
composition (SVD). If B ∈ R

m×n, then SVD of B is given by

B = USVT , (1.28)

where U ∈ R
m×m and V ∈ R

n×n are orthogonal, and S ∈ R
m×n is a diagonal

matrix with nonnegative diagonal entries σ1 ≥ · · · ≥ σmin{m,n} = σmin called
singular values of B. If A �= O, it is often more convenient to use the reduced
singular value decomposition (RSVD)

B = ÛŜV̂T , (1.29)

where Û ∈ R
m×r and V̂ ∈ R

n×r are matrices with orthonormal columns,
Ŝ ∈ R

r×r is a nonsingular diagonal matrix with positive diagonal entries
σ1 ≥ · · · ≥ σr = σmin, and r ≤ min{m, n} is the rank of B. The matrices Û

and V̂ are formed by the first r columns of U and V. If x ∈ R
m, then

Bx = ÛŜV̂
T
x = (ÛŜV̂

T
)(V̂ŜÛ

T
)(ÛŜ

−1
x) = BBTy,

so that
ImB = ImBBT . (1.30)

The singular value decomposition reveals close relations between the prop-
erties of a matrix and its singular values. Thus the rank of B ∈ R

m×n is equal
to the number of its nonzero singular values,

‖B‖ = ‖BT ‖ = σ1, (1.31)

and for any vector x ∈ R
n

σmin‖x‖ ≤ ‖Bx‖ ≤ ‖B‖‖x‖. (1.32)
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Let σmin denote the least nonzero singular value of B ∈ R
m×n, let

x ∈ ImBT , and consider a reduced singular value decomposition B = ÛŜV̂T

with Û ∈ R
m×r, V̂ ∈ R

n×r, and Ŝ ∈ R
r×r. Then there is y ∈ R

r such that
x = V̂y and

‖Bx‖ = ‖ÛŜV̂T V̂y‖ = ‖ÛŜy‖ = ‖Ŝy‖ ≥ σmin‖y‖.

Since
‖x‖ = ‖V̂y‖ = ‖y‖,

we conclude that

σmin‖x‖ ≤ ‖Bx‖ for any x ∈ ImBT , (1.33)

or, equivalently,

σmin‖x‖ ≤ ‖BTx‖ for any x ∈ ImB. (1.34)

The singular value decomposition (1.28) can be used to introduce the
Moore–Penrose generalized inverse of an m × n matrix B by

B† = VS†UT = V̂Ŝ†ÛT ,

where S† is the diagonal matrix with the entries [S†]ii = 0 if σi = 0 and
[S†]ii = σ−1

i otherwise. It is easy to check that

BB†B = ÛŜV̂T V̂Ŝ†ÛT ÛŜV̂T = ÛŜV̂T = B, (1.35)

so that the Moore–Penrose generalized inverse is a generalized inverse. If B is
a full row rank matrix, then it may be checked directly that

B† = BT (BBT )−1.

If B is a singular matrix and c ∈ ImB, then xLS = B†c is a solution of the
system of linear equations Bx = c, i.e.,

BxLS = c.

Notice that xLS ∈ ImBT , so that if x is any other solution, then x = xLS +d,
where d ∈ KerB, xT

LSd = 0 by (1.16), and

‖xLS‖2 ≤ ‖xLS‖2 + ‖d‖2 = ‖x‖2. (1.36)

The vector xLS is called the least square solution of Bx = c.
Obviously

‖B†‖ = σ −1
min, (1.37)

where σmin denotes the least nonzero singular value of B, so that

‖xLS‖ = ‖B†c‖ ≤ σ −1
min‖c‖. (1.38)

It can be verified directly that
(
B†)T

=
(
BT

)†
.
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1.10 Penalized Matrices

We often use the matrices

A� = A + �BT B,

where A ∈ R
n×n is a symmetric matrix, B ∈ R

m×n, and � ≥ 0. The matrix A�

is called the penalized matrix as it is closely related to the penalty method de-
scribed in Sect. 4.2. Let us first give a simple sufficient condition that enforces
A� to be positive definite.

Lemma 1.2. Let A ∈ R
n×n be a symmetric positive semidefinite matrix, let

B ∈ R
m×n, � > 0, and let KerA ∩ KerB = {o}. Then A� is positive definite.

Proof. If x �= o and KerA∩KerB = {o}, then either Ax �= o or Bx �= o. Since
Ax �= o is by (1.27) equivalent to A1/2x �= o, we get for � > 0

xT A�x = xT Ax + �‖Bx‖2 = ‖A1/2x‖2 + �‖Bx‖2 > 0.

Thus A� is positive definite. �

If A is positive definite, then it can be verified either directly or by
Lemma 1.2, using KerA = {o}, that A� is also positive definite. It follows
that we can use the Sherman–Morrison–Woodbury formula (1.6) to get

A−1
� = A−1 − A−1BT (�−1I + BA−1BT )−1BA−1. (1.39)

The following lemma shows that A� can be positive definite even when A
is indefinite.

Lemma 1.3. Let A ∈ R
n×n denote a symmetric matrix, let B ∈ R

m×n, and
let there be μ > 0 such that

xT Ax ≥ μ‖x‖2, x ∈ KerB.

Then A� is positive definite for sufficiently large �.

Proof. Let λmin and σmin denote the least eigenvalue of A and the least pos-
itive singular value of B, respectively, and recall that by (1.17) any x ∈ R

n

can be written in the form

x = y + z, y ∈ KerB, z ∈ ImBT .

Using the definition of A�, the assumptions, and (1.33), we get

xT A�x = yT Ay + 2yT Az + zT Az + �‖Bz‖2

≥ μ‖y‖2 − 2‖A‖‖y‖‖z‖ + (λmin + �σ2
min)‖z‖2 (1.40)

=
[
‖y‖, ‖z‖

] [ μ, −‖A‖
−‖A‖, λmin + �σ2

min

] [
‖y‖
‖z‖

]
.
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We shall complete the proof by showing that the matrix

H� =
[

μ, −‖A‖
−‖A‖, λmin + �σ2

min

]

is positive definite for sufficiently large values of �. To this end, it is enough
to show that the eigenvalues λ1, λ2 of H� are positive for sufficiently large �.

First observe that H� is symmetric, so that λ1, λ2 are real. Moreover, both
the determinant and the trace of H� are obviously positive for a sufficiently
large �, so that by (1.19) and (1.20) both λ1λ2 > 0 and λ1 + λ2 > 0 for
sufficiently large values of �. Since the latter implies that at least one of the
eigenvalues of H� is positive for sufficiently large �, it follows from λ1λ2 > 0
that λ1 > 0 and λ2 > 0 provided � is sufficiently large. Thus H� is posi-
tive definite for sufficiently large � and the statement of our lemma follows
by(1.40). �

We often use bounds on the spectrum of some matrix expressions with
penalized matrices that are based on the following lemma.

Lemma 1.4. Let m < n be given positive integers, let A ∈ R
n×n denote a

symmetric positive definite matrix, and let B ∈ R
m×n.

Then
BA−1

� = (I + �BA−1BT )−1BA−1 (1.41)

and the eigenvalues μi of BA−1
� BT are related to the eigenvalues βi of BA−1BT

by
μi = βi/(1 + �βi), i = 1, . . . , n. (1.42)

Proof. Following [56], we can use a special form (1.39) of the Sherman–
Morrison–Woodbury formula to get

B(A + �BT B)−1 = BA−1 − BA−1BT (�−1I + BA−1BT )−1BA−1

=
(
I − �BA−1BT (I + �BA−1BT )−1

)
BA−1

=
(
I −

(
(I + �BA−1BT ) − I

)
(I + �BA−1BT )−1

)
BA−1

=
(
I + �BA−1BT

)−1
BA−1.

To prove (1.42), notice that by (1.41)

BA−1
� BT = (I + �BA−1BT )−1BA−1BT

and apply (1.26) with f(x) = x/(1 + �x). �

The eigenvalues of the restriction of BA−1BT to its invariant subspace ImB
are given by the following lemma.
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Lemma 1.5. Let m < n be positive integers, let A ∈ R
n×n denote a symmet-

ric positive definite matrix, let B ∈ R
m×n, and let r denote the rank of the

matrix B.
Then

ImB = ImBA−1 = ImBA−1BT (1.43)

and the eigenvalues βi of BA−1
� BT |ImB of the restriction of BA−1

� BT to ImB

are related to the positive eigenvalues β1 ≥ β2 ≥ · · · ≥ βr of BA−1BT by

βi = βi/(1 + �βi), i = 1, . . . , r. (1.44)

Proof. First observe that if C ∈ R
n×n is nonsingular and B ∈ R

m×n, then
Bx = BC(C−1x), so that

ImB = ImBC.

It follows that if A ∈ R
n×n is positive definite, so that A1/2 is a well-defined

nonsingular matrix, then we can use (1.27) and (1.30) to get

ImB = ImBA−1 = ImBA−1/2 = ImBA−1/2(BA−1/2)T = ImBA−1BT .

We have thus proved (1.43).
To prove (1.44), notice that we can use (1.43) with A = A� to get ImB =

ImBA−1
� BT . Since ImBA−1

� BT is spanned by the eigenvectors of BA−1
� BT which

correspond to the positive eigenvalues of BA−1
� BT , we can use (1.42) to finish

the proof. �

The following lemma gives the estimates that are useful in the analysis of
the Uzawa-type algorithms.

Lemma 1.6. Let m < n be given positive integers, let A ∈ R
n×n denote a

symmetric positive definite matrix, and let B ∈ R
m×n. Let βmin > 0 and

βmax ≥ βmin denote the least nonzero eigenvalue and the largest eigenvalue of
the matrix BA−1BT , respectively.

Then for any � > 0

‖BA−1
� ‖ ≤ ‖BA−1‖/

(
1 + �βmin

)
, (1.45)

‖(I + �BA−1BT )−1|ImB‖ = 1/
(
1 + �βmin

)
, (1.46)

and
‖BA−1

� BT ‖ = βmax/ (1 + �βmax) < �−1. (1.47)

Moreover
lim

�→∞
κ(BA−1

� BT |ImB) = 1. (1.48)
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Proof. Applying submultiplicativity of the matrix norms (1.11) to (1.41), we
get that

‖BA−1
� ‖ ≤ ‖(I + �BA−1BT )−1|ImBA−1‖‖BA−1‖.

To evaluate the first factor, notice that by (1.43) ImB = ImBA−1 = ImBA−1BT ,
so that our task reduces to the evaluation of

‖(I + �BA−1BT )−1|ImBA−1BT ‖.

Since ImBA−1BT is spanned by the eigenvectors of BA−1BT which correspond
to the positive eigenvalues, and the eigenvectors of I + �BA−1BT are just the
eigenvectors of BA−1BT , it follows by (1.26) with f(x) = 1/(1 + �x) that

‖(I + �BA−1BT )−1|ImBA−1BT ‖ = max
i=1,...,m

βi>0

1/ (1 + �βi) = 1/
(
1 + �βmin

)
.

This completes the proof of (1.45) and (1.46).
To prove (1.47), recall that the eigenvalues μi of BA−1

� BT are related to
the eigenvalues βi of BA−1BT by (1.42), so that

‖BA−1
� BT ‖ = max

i=1,...,m
μi = max

i=1,...,m
βi (1 + �βi) = βmax/ (1 + �βmax) . (1.49)

Finally, using Lemma 1.5, we get that

min
‖x‖=1
x∈ImB

‖BA−1BT x‖ = min
i=1,...,m

βi>0

βi/ (1 + �βi) = βmin/
(
1 + �βmin

)
,

so that

lim
�→∞

κ(BA−1
� BT |ImB) = lim

�→∞

βmax

1 + �βmax

1 + �βmin

βmin

= 1.

�

The last result to be presented here concerns the distribution of the eigen-
values of the penalized matrices. To simplify its formulation, let us denote for
each symmetric matrix M of the order n by λi(M) the ith eigenvalue of M in
the decreasing order, so that

λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M).

Lemma 1.7. Let A ∈ R
n×n denote a symmetric matrix, let B ∈ R

m×n denote
a matrix of the rank r, 0 < r ≤ m < n, and � > 0.

Then λr(BT B) > 0 and

λr(A�) ≥ λn(A) + �λr(BT B), (1.50)
λr+1(A�) ≤ λ1(A). (1.51)
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Proof. Using the spectral decomposition (1.22), we can find an orthogonal
matrix U such that

UT BT BU = diag(γ1, . . . , γn)

with
γi = λi(BT B) and γ1 ≥ · · · ≥ γr > γr+1 = γn = 0.

Thus

UT (A + �BT B)U = UT AU + �UT BT BU =
[

E + �G F
FT H

]

with

G = diag(γ1, . . . , γr) and UT AU =
[

E F
FT H

]
,

where H is a square matrix of the order n − r. The eigenvalues of UT AU and
A are identical.

To prove (1.50), notice that the elementary properties of the spectrum of
symmetric matrices and the Cauchy interlacing property of bordering matrices
(1.21) imply that

λr(A�) ≥ λr(E + �G) ≥ λr(λn(A)I + �G) = λn(A) + �λr(G)
= λn(A) + �γr = λn(A) + �λr(BT B).

To prove (1.51), observe that by the Courant–Fischer min-max principle
(1.25)

λr+1(A�) = max
V⊆Rn

dimV=r+1

min
x∈V

‖x‖=1

xT (A + �BT B)x

≤ max
V⊆Rn

dimV=r+1

min
x∈V∩KerB

‖x‖=1

xT (A + �BT B)x

= max
V⊆Rn

dimV=r+1

min
x∈V∩KerB

‖x‖=1

xT Ax ≤ λ1(A), (1.52)

so that the inequality (1.51) is proved. We used the fact that dimV = r + 1
implies

V ∩ KerB �= {o}.

�
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Optimization

In this chapter we briefly review the results of optimization to the extent
that is sufficient for understanding of the rest of our book. Since we are
interested mainly in quadratic programming, we present most results with
specialized arguments, typically algebraic, that exploit the specific structure
of these problems. Such approach not only simplifies the analysis, but some-
times enables us to obtain stronger results. Since the results of this section
are useful also in the analysis of more general optimization problems that are
locally approximated by quadratic problems, this chapter may also serve as
a simple introduction to nonlinear optimization. Systematic exposition of the
optimization theory in the framework of nonlinear optimization may be found
in the books by Bertsekas [12], Nocedal and Wright [155], Conn, Gould, and
Toint [28], or Bazaraa, Sherali, and Shetty [8].

2.1 Optimization Problems and Solutions

Optimization problems considered in this book are described by a cost (objec-
tive) function f defined on a subset D ⊆ R

n and by a constraint set Ω ⊆ D.
The elements of the constraint set Ω are called feasible vectors. The main
topic of this book is development of efficient algorithms for the solution of
quadratic programming (QP) problems with a quadratic cost function f and
a constraint set Ω ⊆ R

n described by linear equalities and inequalities.
We look either for a solution x ∈ R

n of the unconstrained minimization
problem which satisfies

f(x) ≤ f(x), x ∈ R
n, (2.1)

or for a solution x ∈ Ω of the constrained minimization problem

f(x) ≤ f(x), x ∈ Ω. (2.2)

A solution of the minimization problem is called its minimizer or global min-
imizer. The value of f corresponding to a minimizer is the minimum.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 2,
c© Springer Science+Business Media, LLC 2009
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As a characterization of global minimizers of the inequality constrained
problems may be a too ambitious goal, we consider also local minimizers that
satisfy for some δ > 0

f(x) ≤ f(x), x ∈ Ω, ‖x− x‖ ≤ δ. (2.3)

Obviously each global minimizer is a local minimizer.
A nonzero vector d ∈ R

n is a feasible direction of Ω at a feasible point x
if x + εd ∈ Ω for all sufficiently small ε > 0. Feasible directions are useful in
analysis of local minimizers.

A nonzero vector d ∈ R
n is a recession direction, or simply a direction, of

Ω if for each x ∈ Ω, x + αd ∈ Ω for all α > 0.

2.2 Unconstrained Quadratic Programming

Let us first recall some simple results which concern unconstrained quadratic
programming.

2.2.1 Quadratic Cost Functions

We consider the cost functions in the form

f(x) =
1
2
xT Ax − bTx, (2.4)

where A ∈ R
n×n denotes a given symmetric matrix of order n and b ∈ R

n.
If x, d ∈ R

n, then using elementary computations and A = AT , we get

f(x + d) = f(x) + (Ax − b)T d +
1
2
dT Ad. (2.5)

The formula (2.5) is Taylor’s expansion of f at x, so that the gradient of f
at x is given by

∇f(x) = Ax − b, (2.6)

and the Hessian of f at x is given by

∇2f(x) = A.

Taylor’s expansion will be our simple but powerful tool in what follows.
A vector d is a decrease direction of f at x if

f(x + εd) < f(x)

for all sufficiently small values of ε > 0. Using Taylor’s expansion (2.5) in the
form

f(x + εd) = f(x) + ε(Ax − b)Td +
ε2

2
dT Ad,

we get that d is a decrease direction if and only if

(Ax − b)Td < 0.



2.2 Unconstrained Quadratic Programming 29

2.2.2 Unconstrained Minimization of Quadratic Functions

The following proposition gives algebraic conditions that are satisfied by the
solutions of the unconstrained QP problem to find

min
x∈Rn

f(x), (2.7)

where f is a quadratic function defined by (2.4).

Proposition 2.1. Let the quadratic function f be defined by a symmetric
matrix A ∈ R

n×n and b ∈ R
n. Then the following statements hold:

(i) A vector x is a solution of the unconstrained minimization problem (2.1)
if and only if A is positive semidefinite and

∇f(x) = Ax − b = o. (2.8)

(ii) The unconstrained minimization problem (2.1) has a unique solution if
and only if A is positive definite.

Proof. (i) If x and d denote arbitrary n-vectors and α ∈ R, then we can use
Taylor’s expansion (2.5) to get

f(x + αd) − f(x) = α(Ax − b)T d +
α2

2
dT Ad.

Let us first assume that x is a solution of (2.1), so that the right-hand side of
the above equation is nonnegative for any α and d. For α sufficiently large and
d ∈ R

n arbitrary but fixed, the nonnegativity of the right-hand side implies
that dT Ad ≥ 0; thus A is positive semidefinite. On the other hand, for α
sufficiently small, the sign of the right-hand side is determined by the linear
term, so the nonnegativity of the right-hand side implies that (Ax−b)Td = 0
for any d ∈ R

n. Thus Ax − b = o.
If A is positive semidefinite and x satisfies (2.8), then for any d ∈ R

n

f(x + d) − f(x) =
1
2
dT Ad ≥ 0;

therefore x is a solution of (2.1).
(ii) If x̂ is the unique solution of the unconstrained minimization problem

(2.1), then by (i) A is positive semidefinite and x̂ is the only vector which
satisfies Ax̂ = b. Thus A is nonsingular and positive semidefinite, i.e., positive
definite. On the other hand, if A is positive definite, then it is nonsingular and
the gradient condition (2.8) has the unique solution. �

Examining the gradient condition (2.8), we get that problem (2.1) has a
solution if and only if A is positive semidefinite and
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b ∈ ImA. (2.9)

Denoting by R a matrix whose columns span the kernel of A, we can rewrite
the latter condition as

bT R = o.

This condition has a simple mechanical interpretation: if a mechanical system
is in equilibrium, the external forces must be orthogonal to the rigid body
motions.

If b ∈ ImA, a solution of (2.7) is given by

x = A+b,

where A+ is a left generalized inverse introduced in Sect. 1.4. After substitut-
ing into f and simple manipulations, we get

min
x∈Rn

f(x) = −1
2
bT A+b. (2.10)

In particular, if A is positive definite, then

min
x∈Rn

f(x) = −1
2
bT A−1b. (2.11)

The formulae for the minimum of the unconstrained minimization prob-
lems can be used to develop useful estimates. Indeed, if (2.9) holds and x ∈ R

n,
we can use (2.10), properties of generalized inverses, and (1.37) to get

f(x) ≥ −1
2
bT A+b = −1

2
bT A†b ≥ −1

2
‖A†‖‖b‖2 = −‖b‖2/(2λmin),

where A† denotes the Moore–Penrose generalized inverse and λmin denotes
the least nonzero eigenvalue of A. In particular, it follows that if A is positive
definite and λmin denotes the least eigenvalue of A, then for any x ∈ R

n

f(x) ≥ −1
2
bT A−1b ≥ −1

2
‖A−1‖‖b‖2 = −‖b‖2/(2λmin). (2.12)

If the dimension n of the unconstrained minimization problem (2.7) is
large, then it can be too ambitious to look for a solution which satisfies the
gradient condition (2.8) exactly. A natural idea is to consider the weaker
condition

‖∇f(x)‖ ≤ ε (2.13)

with a small epsilon. If x satisfies the latter condition with ε sufficiently small
and A nonsingular, then x is near the unique solution x̂ as

‖x− x̂‖ = ‖A−1A (x − x̂) ‖ = ‖A−1(Ax − b)‖ ≤ ‖A−1‖‖∇f(x)‖. (2.14)

The typical “solution” returned by an iterative solver is just x that satisfies
the condition (2.13). Using the Taylor expansion (2.5), we can obtain
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f(x) − f(x̂) = f(x̂ + (x − x̂)) − f(x̂)

= f(x̂) + g(x̂)T (x − x̂) +
1
2
‖x− x̂‖2

A − f(x̂)

=
1
2
‖x − x̂‖2

A.

2.3 Convexity

Many strong results can be proved when the problem obeys convexity assump-
tions. Intuitively, convexity is a property of the sets that contain with any two
points the joining segment as in Fig. 2.1. More formally, a subset Ω of R

n is
convex if for any x and y in Ω and α ∈ (0, 1), the vector s = αx + (1 − α)y
is also in Ω.

Fig. 2.1. Convex set Fig. 2.2. Nonconvex set

Let x1, . . . ,xk be vectors of R
n. If α1, . . . , αk are scalars such that

αi ≥ 0, i = 1, . . . , k,
k∑

i=1

αi = 1,

then the vector v =
∑k

i=1 αixi is said to be a convex combination of vectors
x1, . . . ,xk. The convex hull of x1, . . . ,xk, denoted Conv{x1, . . . ,xk}, is the
set of all convex combinations of x1, . . . ,xk. The convex hull of x1, . . . ,xk is
the smallest convex set to which x1, . . . ,xk belong. Caratheodory’s theorem
guarantees that Conv{x1, . . . ,xk} can be represented as a convex combina-
tion of no more than n + 1 elements of {x1, . . . ,xk}. The convex boundary
of a convex set Ω is a set of vectors that cannot be expressed as a convex
combination of any other vectors of Ω. Thus the convex boundary of a square
is formed by its four corners, while the convex boundary of a circle is formed
by its boundary. The intersection of two or more convex sets is also convex. In
this book, we consider minimization over the convex sets defined by a finite
set of linear equations like bTx = c or inequalities like bT x ≤ c.
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2.3.1 Convex Quadratic Functions

Given a convex set Ω ∈ R
n, a mapping h : Ω → R is said to be a convex

function if its epigraph is convex, that is, if

h (αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y)

for all x,y ∈ Ω and α ∈ (0, 1), and it is strictly convex if

h (αx + (1 − α)y) < αh(x) + (1 − α)h(y)

for all x,y ∈ Ω, x �= y, and α ∈ (0, 1). The concept of convex function is
illustrated in Fig. 2.3.

Fig. 2.3. Convex function

The following proposition offers an algebraic characterization of convex
functions.

Proposition 2.2. Let V be a subspace of R
n. The restriction f |V of a

quadratic function f with the Hessian matrix A to V is convex if and only
if A|V is positive semidefinite, and f |V is strictly convex if and only if A|V is
positive definite.

Proof. Let V be a subspace, let x,y ∈ V , α ∈ (0, 1), and s = αx + (1− α)y.
Then by Taylor’s expansion (2.5) of f at s

f(s) + ∇f(s)T (x − s) +
1
2
(x − s)T A(x − s) = f(x),

f(s) + ∇f(s)T (y − s) +
1
2
(y − s)T A(y − s) = f(y).

Multiplying the first equation by α, the second equation by 1−α, and summing
up, we get

f(s) +
α

2
(x − s)T A(x − s) +

1 − α

2
(y − s)T A(y − s)

= αf(x) + (1 − α)f(y).
(2.15)
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It follows that if A|V is positive semidefinite, then f |V is convex. Moreover,
since x = y is equivalent to x = s and y = s, it follows that if A|V is positive
definite, then f |V is strictly convex.

Let us now assume that f |V is convex, let z ∈ V , set α = 1
2 , and denote

x = 2z, y = o. Then s = z, x − s = z, y − s = −z, and substituting into
(2.15) results in

f(s) +
1
2
zT Az = αf(x) + (1 − α)f(y).

Since z ∈ V is arbitrary and f |V is assumed to be convex, it follows that

1
2
zT Az = αf(x) + (1 − α)f(y) − f (αx + (1 − α)y) ≥ 0.

Thus A|V is positive semidefinite. Moreover, if f |V is strictly convex, then A|V
is positive definite. �

The following simple corollary is useful in the analysis of equality con-
strained problems.

Corollary 2.3. Let f denote a quadratic function with the Hessian A ∈ R
n×n,

let B ∈ R
m×n, c ∈ R

m, and Ω = {x ∈ R
n : Bx = c}. Then f |Ω is convex if

and only if f |KerB is convex, and f |Ω is strictly convex if and only if f |KerB
is strictly convex.

Proof. First observe that Ω is convex. If x ∈ Ω, then Ω = {x+d : d ∈ KerB}.
It follows that the restriction of f(x) to Ω has the same graph as the restriction
of f(x + d) to KerB. The statement then follows by Proposition 2.2 and

∇2f(x) = ∇2
ddf(x + d) = A.

�

The strictly convex functions have a nice property that f(x) → ∞ when
‖x‖ → ∞. The functions with this property are called coercive functions.
More generally, a function f : R

n �→ R is said to be coercive on Ω ⊆ R
n if

f(x) → ∞ for ‖x‖ → ∞, x ∈ Ω.

A quadratic function need not be strictly convex to be coercive on a given
set, as in the case of f(x, y) = x2 − y, which is coercive on Ω = R × (−∞, 1].
More generally, a quadratic function f with a semidefinite Hessian A is coer-
cive on a convex set Ω if dTb < 0 for any recession direction d of Ω which
belongs to KerA. The coercive quadratic function with a semidefinite Hes-
sian matrix is also called a semicoercive function. For example, the function
f(x, y) = x2 − y is semicoercive on Ω = R × (−∞, 1].
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2.3.2 Local and Global Minimizers of Convex Function

Under the convexity assumptions, each local minimizer is a global minimizer.
We shall formulate this result together with some observations concerning the
set of solutions.

Proposition 2.4. Let f and Ω ⊆ R
n be a quadratic function defined by (2.4)

and a closed convex set, respectively. Then the following statements hold:
(i) If f is convex, then each local minimizer of f subject to x ∈ Ω is a global
minimizer of f subject to x ∈ Ω.
(ii) If f is convex on a subspace V ⊇ Ω and x, y are two minimizers of f
subject to x ∈ Ω, then

x − y ∈ KerA.

(iii) If f is strictly convex on Ω and x, y are two minimizers of f subject to
x ∈ Ω, then x = y.

Proof. (i) Let x ∈ Ω and y ∈ Ω be local minimizers of f subject to x ∈ Ω,
f(x) < f(y). Denoting yα = αx+(1−α)y and using that f is convex, we get

f(yα) = f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) < f(y)

for every α ∈ (0, 1). Since

‖y − yα‖ = α‖y − x‖,
the inequality contradicts the assumption that y is a local minimizer.
(ii) Let x and y be global minimizers of f on Ω. Then for any α ∈ [0, 1]

x + α(y − x) = (1 − α)x + αy ∈ Ω, y + α(x − y) = (1 − α)y + αx ∈ Ω.

Moreover, using Taylor’s formula, we get

0 ≤ f
(
x + α(y − x)

)
− f(x) = α(Ax − b)T (y − x) +

α2

2
(y − x)T A(y − x),

0 ≤ f
(
y + α(x − y)

)
− f(y) = α(Ay − b)T (x − y) +

α2

2
(x − y)T A(x − y).

Since the latter inequalities hold for arbitrarily small α, it follows that

(Ax − b)T (y − x) ≥ 0 and (Ay − b)T (x − y) ≥ 0.

After summing up the latter inequalities and simple manipulations, we have

−(x − y)T A(x − y) ≥ 0.

Since the convexity of f |V implies by Proposition 2.2 that A|V is positive
semidefinite, it follows that x − y ∈ KerA.
(iii) Let f be strictly convex and let x ∈ Ω and y ∈ Ω be different global
minimizers of f on Ω, so that f(x) = f(y). Then KerA = {o} and by (ii)
x − y = o. Alternatively, taking α ∈ (0, 1), we get

f(αx + (1 − α)y) < αf(x) + (1 − α)f(y) = f(x),

which contradicts the assumption that x is a global minimizer of f on Ω. �



2.3 Convexity 35

2.3.3 Existence of Minimizers

Since quadratic functions are continuous, existence of at least one minimizer is
guaranteed by the Weierstrass theorem provided Ω is compact, that is, closed
and bounded. We can also use the following standard results which do not
assume that Ω is bounded.

Proposition 2.5. Let f be a quadratic function defined on a nonempty closed
convex set Ω ⊆ R

n. Then the following statements hold:
(i) If f is strictly convex, then a global minimizer of f subject to x ∈ Ω exists
and is necessarily unique.
(ii) If f is coercive on Ω, then a global minimizer of f subject to x ∈ Ω exists.
(iii) A global minimizer of f subject to x ∈ Ω exists if and only if f is bounded
from below on Ω.

Proof. (i) If f is strictly convex, it follows by Proposition 2.2 that its Hessian
A is positive definite, and z = A−1b is by Proposition 2.1 the unique minimizer
of f on R

n. Thus for any x ∈ R
n

f(x) ≥ f(z).

It follows that the infimum of f(x) subject to x ∈ Ω exists, and there is a
sequence of vectors xk ∈ Ω such that

lim
k→∞

f(xk) = inf
x∈Ω

f(x).

The sequence {xk} is bounded as

f(xk) − f(z) =
1
2
(xk − z)T A(xk − z) ≥ λmin

2
‖xk − z‖2,

where λmin denotes the least eigenvalue of A. It follows that {xk} has at least
one cluster point x ∈ Ω. Since f is continuous, we get

f(x) = inf
x∈Ω

f(x).

The uniqueness follows by Proposition 2.4.
(ii) The proof is similar to that of (i). See, e.g., Bertsekas [12, Proposition A.8].
(iii) The statement is the well-known Frank–Wolfe theorem [93]. See also Eaves
[79] or Blum and Oettli [15]. �

Using a special structure of the feasible set, it is possible to get stronger
existence results. For example, it is known that the quadratic function with a
positive semidefinite Hessian attains its minimum on a polyhedral cone if and
only if its linear term satisfies bTd ≤ 0 for any recession direction d ∈ KerA
(see Zeidler [184, pp. 553–556]). See also Sect. 2.5.4.
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2.3.4 Projections to Convex Sets

Having the results of the previous subsection, we can naturally define the pro-
jection PΩ to the (closed) convex set Ω ⊂ R

n as a mapping which assigns to
each x ∈ R

n its nearest vector x̂ ∈ Ω as in Fig. 2.4. The distance can be mea-
sured by the norm induced by any scalar product. The following proposition
concerns the projection induced by the Euclidean scalar product.

y

Ω

x̂
x

Fig. 2.4. Projection to the convex set

Proposition 2.6. Let Ω ⊆ R
n be a nonempty closed convex set and x ∈ R

n.
Then there is a unique point x̂ ∈ Ω with the minimum Euclidean distance
from x, and for any y ∈ Ω

(x − x̂)T (y − x̂) ≤ 0. (2.16)

Proof. Since the proof is trivial for x ∈ Ω, let us assume that x /∈ Ω is
arbitrary but fixed and observe that the function f defined on R

n by

f(y) = ‖x − y‖2 = yTy − 2yT x + ‖x‖2

has the Hessian
∇2f(y) = 2I.

The identity matrix being positive definite, it follows by Proposition 2.2 that
f is strictly convex, so that the unique minimizer x̂ ∈ Ω of f(y) with respect
to y ∈ Ω exists by Proposition 2.5(i).

If y ∈ Ω and α ∈ (0, 1), then by convexity of Ω

(1 − α)x̂ + αy = x̂ + α(y − x̂) ∈ Ω,

so that for any x ∈ R
n

‖x − x̂‖2 ≤ ‖x− x̂ − α(y − x̂)‖2.

Using simple manipulations and the latter inequality, we get
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‖x − x̂− α(y − x̂)‖2 = ‖x̂ − x‖2 + α2‖y − x̂‖2 − 2α(x − x̂)T (y − x̂)
≤ ‖x − x̂ − α(y − x̂)‖2

+α2‖y − x̂‖2 − 2α(x − x̂)T (y − x̂).

Thus
2α(x − x̂)T (y − x̂) ≤ α2‖y − x̂‖2

for any α ∈ (0, 1). To obtain (2.16), just divide the last inequality by α > 0
and observe that α may be arbitrarily small. �

Using Proposition 2.6, it is not difficult to show that the mapping PΩ which
assigns to each x ∈ R

n its projection to Ω is nonexpansive as in Fig. 2.5.

ŷ Ω

x̂

x

y

Fig. 2.5. Projection PΩ is nonexpansive

Corollary 2.7. Let Ω ⊆ R
n be a nonempty closed convex set, and for any

x ∈ R
n, let x̂ ∈ Ω denote the projection of x to Ω. Then for any x, y ∈ Ω

‖x̂ − ŷ‖ ≤ ‖x− y‖. (2.17)

Proof. If x, y ∈ R, then by Proposition 2.6 their projections x̂, ŷ to Ω satisfy

(x − x̂)T (z − x̂) ≤ 0 and (y − ŷ)T (z − ŷ) ≤ 0

for any z ∈ Ω. Substituting z = ŷ into the first inequality, z = x̂ into the
second inequality, and summing up, we get

(x − x̂− y + ŷ)T (ŷ − x̂) ≤ 0.

After rearranging the entries and using the Schwarz inequality, we get

‖x̂− ŷ‖2 ≤ (x − y)T (x̂ − ŷ) ≤ ‖x− y‖‖x̂− ŷ‖,

showing that the projection to the convex set is nonexpansive and prov-
ing (2.17). �
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2.4 Equality Constrained Problems

We shall now consider the problems with the constraint set described by a set
of linear equations. More formally, we shall look for

min
x∈ΩE

f(x), (2.18)

where f is a quadratic function defined by (2.4), ΩE = {x ∈ R
n : Bx = c},

B ∈ R
m×n, and c ∈ ImB. We assume that B �= O is not a full column rank

matrix, so that KerB �= {o}, but we admit dependent rows of B. It is easy to
check that ΩE is a nonempty closed convex set.

A feasible set ΩE is a linear manifold of the form

ΩE = x + KerB,

where x is any vector which satisfies

Bx = c.

Thus a nonzero vector d ∈ R
n is a feasible direction of ΩE at any x ∈ ΩE

if and only if d ∈ KerB, and d is a recession direction of ΩE if and only if
d ∈ KerB.

Substituting x = x+z, z ∈ KerB, we can reduce (2.18) to the minimization
of

fx(z) =
1
2
zT Az − (b − Ax)T z (2.19)

over the subspace KerB. Thus we can assume, without loss of generality, that
c = o in the definition of ΩE . We shall occasionally use this assumption to
simplify our exposition.

A useful tool for the analysis of equality constrained problems is the La-
grangian function L0 : R

n+m → R defined by

L0(x, λ) = f(x) + λT (Bx − c) =
1
2
xT Ax − bTx + (Bx − c)T λ. (2.20)

Obviously

∇2
xxL0(x, λ) = ∇2f(x) = A, (2.21)
∇xL0(x, λ) = ∇f(x) + BT λ = Ax − b + BT λ, (2.22)

L0(x + d, λ) = L0(x, λ) + (Ax − b + BT λ)T d +
1
2
dT Ad. (2.23)

The Lagrangian function is defined in such a way that if considered as a
function of x, then its Hessian and its restriction to ΩE are exactly those of
f , but its gradient ∇xL0(x, λ) varies depending on the choice of λ. It simply
follows that if f is convex, then L0 is convex for any fixed λ, and the global
minimizer of L0 with respect to x also varies with λ. We shall see that it is
possible to give conditions on A, B, and b such that with a suitable choice
λ = λ̂, the solution of the constrained minimization problem (2.18) reduces
to the unconstrained minimization of L0 as in Fig. 2.6.
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x̂

ΩE

L0(x, λ̂) = L0(x̂, λ̂) + c

x0

f(x) = f(x0) + c

Fig. 2.6. Geometric illustration of the Lagrangian function

2.4.1 Optimality Conditions

The main questions concerning the optimality and solvability conditions of
(2.18) are answered by the next proposition.

Proposition 2.8. Let the equality constrained problem (2.18) be defined by a
symmetric matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n whose column

rank is less than n, and vectors b ∈ R
n, c ∈ ImB. Then the following state-

ments hold:
(i) A vector x ∈ ΩE is a solution of (2.18) if and only if A|KerB is positive
semidefinite and

(Ax − b)T d = 0 (2.24)

for any d ∈ KerB.
(ii) A vector x ∈ ΩE is a solution of (2.18) if and only if A|KerB is positive
semidefinite and there is a vector λ ∈ R

m such that

Ax − b + BT λ = o. (2.25)

Proof. (i) Let x be a solution of the equality constrained minimization prob-
lem (2.18), so that for any d ∈ KerB and α ∈ R

0 ≤ f(x + αd) − f(x) = α(Ax − b)T d +
α2

2
dT Ad. (2.26)

Fixing d ∈ KerB and taking α sufficiently large, we get that the nonnegativity
of the right-hand side of (2.26) implies dT Ad ≥ 0. Thus A|KerB must be
positive semidefinite. On the other hand, for sufficiently small values of α and
(Ax − b)T d �= 0, the sign of the right-hand side of (2.26) is determined by
the sign of α(Ax − b)Td. Since we can choose the sign of α arbitrarily and
the right-hand side of (2.26) is nonnegative, we conclude that (2.24) holds for
any d ∈ KerB.

Let us now assume that (2.24) holds for a vector x ∈ ΩE and A|KerB is
positive semidefinite. Then
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f(x + d) − f(x) =
1
2
dT Ad ≥ 0

for any d ∈ KerB, so that x is a solution of (2.18).
(ii) Let x be a solution of (2.18), so that by (i) A|KerB is positive semidefinite
and x satisfies (2.24) for any d ∈ KerB. The latter condition is by (1.16)
equivalent to Ax−b ∈ ImBT, so that there is λ ∈ R

m such that (2.25) holds.
Let A|KerB be positive semidefinite. If there are λ and x ∈ ΩE such that

(2.25) holds, then by Taylor’s expansion (2.23)

f(x + d) − f(x) = L0(x + d, λ) − L0(x, λ) =
1
2
dT Ad ≥ 0

for any d ∈ KerB, so that x is a solution of the equality constrained problem
(2.18). �

Proposition 2.8(i) may be easily modified to characterize the solutions of
the minimization problem whose feasible set is a manifold defined by a vector
and a subspace; this modification is often useful in what follows.

Corollary 2.9. Let f be a convex quadratic function on R
n, let S be a sub-

space of R
n, and let x0 ∈ R

n. Then x is a solution of

min
x∈ΩS

f(x), ΩS = x0 + S (2.27)

if and only if
∇f(x)T d = 0 for any d ∈ S.

Proof. Let S be a subspace of R
n, S = ImS, where S ∈ R

n×m is a full column
rank matrix, x0 ∈ R

n, and let B = I − S(ST S)−1ST , so that

S = KerB and ΩS = {x ∈ R
n : Bx = Bx0}.

Using Proposition 2.8, we get that x ∈ ΩS is the minimizer of a convex
quadratic function f on ΩS if and only if ∇f(x) is orthogonal to S. �

The conditions (ii) of Proposition 2.8 are known as the Karush–Kuhn–
Tucker (KKT) conditions for the solution of the equality constrained problem
(2.18). If x ∈ ΩE and λ ∈ R

m satisfy (2.25), then (x, λ) is called a KKT pair
of problem (2.18). Its second component λ is called a vector of Lagrange
multipliers or simply a multiplier. We shall often use the notation x̂ or λ̂ to
denote the components of a KKT pair that are uniquely determined.

Proposition 2.8 has a simple geometrical interpretation. The condition
(2.24) requires that the gradient of f at a solution x is orthogonal to KerB, the
set of feasible directions of ΩE , so that there is no feasible decrease direction
as illustrated in Fig. 2.7. Since d is by (1.16) orthogonal to KerB if and only
if d ∈ ImBT , it follows that (2.24) is equivalent to the possibility to choose λ
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Fig. 2.7. Solvability condition (i) Fig. 2.8. Solvability condition (ii)

d

d

x̂

∇f

∇f

ΩE

f(x) = d

BT λ

BT λ

x̂

∇f

∇f

ΩEf(x) = d

so that ∇xL0(x, λ) = o. If f is convex, then the latter condition is equivalent
to the condition for the unconstrained minimizer of L0 with respect to x as
illustrated in Fig. 2.8.

Notice that if f is convex, then the vector of Lagrange multipliers which is
the component of a KKT pair modifies the linear term of the original problem
in such a way that the solution of the unconstrained modified problem is
exactly the same as the solution of the original constrained problem. In terms
of mechanics, if the original problem describes the equilibrium of a constrained
elastic body subject to traction, then the modified problem is unconstrained
with the constraints replaced by the reaction forces.

2.4.2 Existence and Uniqueness

Using the optimality conditions of Sect. 2.4.1, we can formulate the conditions
that guarantee the existence or uniqueness of a solution of (2.18).

Proposition 2.10. Let the equality constrained problem (2.18) be defined by
a symmetric matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n whose column

rank is less than n, and vectors b ∈ R
n, c ∈ ImB. Let R denote a matrix

whose columns span KerA and let A|KerB be positive semidefinite. Then the
following statements hold:
(i) Problem (2.18) has a solution if and only if

RTb ∈ Im(RT BT ). (2.28)

(ii) If A|KerB is positive definite, then problem (2.18) has a unique solution.
(iii) If (x, λ) and (y, μ) are KKT couples for problem (2.18), then

x − y ∈ KerA and λ − μ ∈ KerBT .

In particular, if problem (2.18) has a solution and

KerBT = {o},

then there is a unique Lagrange multiplier λ̂.
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Proof. (i) Using Proposition 2.8(ii), we have that problem (2.18) has a solution
if and only if there is λ such that b−BT λ ∈ ImA, or, equivalently, that b−BT λ
is orthogonal to KerA. The latter condition reads RTb−RT BT λ = o and can
be rewritten as (2.28).
(ii) First observe that if A|KerB is positive definite, then f |KerB is strictly
convex by Proposition 2.2 and f |ΩE is strictly convex by Corollary 2.3. Since
ΩE is closed, convex, and nonempty, it follows by Proposition 2.5(i) that the
equality constrained problem (2.18) has a unique solution.
(iii) First observe that KerB = {x − y : x,y ∈ ΩE} and that f is convex
on KerB by the assumption and Proposition 2.2. Thus if x and y are any
solutions of (2.18), then by Proposition 2.4(ii) Ax = Ay. The rest follows by
a simple analysis of the KKT conditions (2.25). �

If B is not a full row rank matrix and λ is a Lagrange multiplier for (2.18),
then by Proposition 2.10(iii) any Lagrange multiplier λ can be expressed in
the form

λ = λ + δ, δ ∈ KerBT . (2.29)

The Lagrange multiplier λLS which minimizes the Euclidean norm is called
the least square Lagrange multiplier ; it is a unique multiplier which belongs
to ImB. If λ is a vector of Lagrange multipliers, then λLS can be evaluated
by

λLS =
(
B†)T

BT λ (2.30)

and
λ = λLS + δ, δ ∈ KerBT .

2.4.3 KKT Systems

If A is positive definite, then the unique solution x̂ of (2.18) is by Proposi-
tion 2.8 fully determined by the matrix equation

[
A BT

B O

] [
x
λ

]
=
[
b
c

]
, (2.31)

which is known as the Karush–Kuhn–Tucker system, briefly KKT system or
KKT conditions for the equality constrained problem (2.18). Proposition 2.8
does not require that the related KKT system is nonsingular, in agreement
with observation that the solution of the equality constrained problem should
not depend on the description of ΩE .

An alternative proof of the uniqueness of the component x̂ of the solution
of the KKT system (2.31) for A positive definite and B with dependent rows
can be obtained by analysis of the solutions of the homogeneous system

[
A BT

B O

] [
d
μ

]
=
[
o
o

]
. (2.32)
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Indeed, after multiplying the first block row of (2.32) by dT on the left,
d ∈ KerB, we get

dT Ad + dT BT μ = 0.

Since Bd = o, it follows that dT BT μ = (Bd)T μ = 0, so that dT Ad = 0 and,
due to the positive definiteness of A, also d = o. The same argument is valid
for A positive semidefinite provided

KerA ∩ KerB = {o}.

If A and B are respectively positive definite and full row rank matrices,
then we can directly evaluate the inverse of the matrix of the KKT system
(2.31) to get

[
A BT

B O

]−1

=
[

A−1 − A−1BT S−1BA−1, A−1BT S−1

S−1BA−1, −S−1

]
, (2.33)

where S = BA−1BT denotes the Schur complement matrix.
Even though not very useful computationally, the inverse matrix is use-

ful in analysis. In the following lemma, we use it to get information on the
distribution of the eigenvalues of the spectrum of a matrix of the KKT system.

Lemma 2.11. Let A ∈ R
(n+m)×(n+m) denote the matrix of the KKT system

(2.31) with a positive definite matrix A and a full rank matrix B. Then A is
nonsingular and its eigenvalues α1 ≥ · · · ≥ αn+m satisfy

α1 ≥ · · · ≥ αn ≥ λmin(A) > 0 > αn+1 ≥ · · · ≥ αn+m,

where
λmin(A) = ‖A−1‖−1

denotes the smallest eigenvalue of A.

Proof. Using repeatedly the Cauchy interlacing inequalities (1.21) to A, we
get

α1 ≥ λ1(A), α2 ≥ λ2(A), . . . , αn ≥ λn(A) = λmin(A),

where
λ1(A) ≥ · · · ≥ λn(A)

denote the eigenvalues of A.
Now observe that if σ1 ≥ · · · ≥ σm > 0 denote the eigenvalues of the Schur

complement S = BA−1BT , then by (1.26) 0 > −σ−1
1 ≥ · · · ≥ −σ−1

m are the
eigenvalues of −S−1. Thus we can apply the Cauchy interlacing inequalities
(1.21) to the formula (2.33) for A−1 to get the inequalities

−σ−1
1 ≥ μn+1, −σ−1

2 ≥ μn+2, . . . , −σ−1
m ≥ μn+m

for the m smallest eigenvalues μn+1 ≥ · · · ≥ μn+m of A−1. We have thus
proved that A−1 has at least m negative eigenvalues. Since μ−1

n+1, . . . , μ
−1
n+m
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are the eigenvalues of A, it follows that A has at least m negative eigenvalues.
As A has altogether n + m eigenvalues counting multiplicity and includes at
least n positive ones, we conclude that 0 > αn+1. �

Using the extreme singular values of B, Rusten and Winther [162] estab-
lished stronger bounds on the eigenvalues of A including

1
2

(
λ1(A) −

√
λ1(A)2 + 4σmin(B)2

)
≥ αn+1,

where σmin(B) denotes the smallest singular value of B. More results con-
cerning the spectrum of A may be found also in Benzi, Golub, and Liesen
[10].

2.4.4 Min-max, Dual, and Saddle Point Problems

To simplify our exposition, we shall assume in this subsection that A and
B are positive definite and full row rank matrices, respectively, postponing
the analysis of more general convex problems to Sects. 2.6.4 and 2.6.5. The
assumptions imply that the related KKT system

∇xL0(x, λ) = Ax − b + BT λ = o, (2.34)
∇λL0(x, λ) = Bx − c = o (2.35)

has a unique solution (x̂, λ̂), which can be found by first solving (2.34) with
respect to x, and then substituting for x into (2.35) to get an equation for λ̂.
We shall now associate these two steps with optimization problems.

First observe that by the gradient argument of Proposition 2.1, equation
(2.34) is just the condition for x to be the unconstrained minimizer of L0

with respect to x. Thus for a given λ ∈ R
m, the first step is equivalent to

evaluating the minimizer

x = x(λ) = A−1(b − BT λ)

of L0(x, λ) with respect to x. We can use this observation to express explicitly
the dual function

Θ(λ) = inf
x∈Rn

L0(x, λ) = min
x∈Rn

L0(x, λ) = L0(x(λ), λ) (2.36)

= −1
2
λT BA−1BT λ + (BA−1b− c)T λ − 1

2
bT A−1b

and its gradient

∇Θ(λ) = −BA−1BT λ + (BA−1b − c). (2.37)

We can also substitute for x into (2.35) to get
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−BA−1BT λ + (BA−1b − c) = o.

Comparing the left-hand side of the last equation with the explicit expression
(2.37) for ∇Θ(λ), we get that the last equation can be written in the form

∇Θ(λ) = o.

As BA−1BT , the Hessian of −Θ, is positive definite, we conclude that the latter
is equivalent to the condition (2.8) for the minimizer of −Θ or, equivalently,
for the maximizer of Θ. Therefore the KKT couple (x̂, λ̂) for the equality
constrained problem (2.18) solves the min-max problem

L0(x̂, λ̂) = max
λ∈Rm

min
x∈Rn

L0(x, λ), (2.38)

λ̂ solves the dual problem

Θ(λ̂) = max
λ∈Rm

Θ(λ), (2.39)

and, since x̂ is feasible, we get

f(x̂) = L0(x̂, λ) = L0(x̂, λ̂) = Θ(λ̂). (2.40)

Moreover, it follows that

f(x̂) = L0(x̂, λ̂) = min
x∈Rn

L0(x, λ̂) ≤ L0(x, λ̂), x ∈ R
n. (2.41)

There is yet another equivalent problem which is related to the penalty
method. Since

sup
λ∈Rm

L0(x, λ) = ∞ for x /∈ ΩE and sup
λ∈Rm

L0(x, λ) = f(x) for x ∈ ΩE ,

it follows that the solution x̂ of the KKT system (2.32) satisfies

f(x̂) = min
x∈Rn

sup
λ∈Rm

L0(x, λ). (2.42)

Comparing (2.42) with (2.38) and (2.40), we get the well-known duality rela-
tion

max
λ∈Rm

min
x∈Rn

L0(x, λ) = min
x∈Rn

sup
λ∈Rm

L0(x, λ). (2.43)

Using (2.40) and (2.41), we get that (x̂, λ̂) solves the saddle point problem to
find (x̂, λ̂) so that for any x ∈ R

n and λ ∈ R
m

L0(x̂, λ) ≤ L0(x̂, λ̂) ≤ L0(x, λ̂). (2.44)

We have thus obtained two unconstrained problems which are equivalent
to the original equality constrained problem (2.18). The saddle point formu-
lation enhances explicitly the Lagrange multipliers and is unconstrained at
the cost of two sets of variables, while the dual formulation may enjoy a small
dimension at the cost of dealing with more complex matrices. The dual prob-
lem may be also better conditioned. Notice that the left inequality in (2.44)
can be replaced by the equality.
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2.4.5 Sensitivity

The Lagrange multipliers emerged in Proposition 2.8 as auxiliary variables
which nobody had asked for, but which turned out to be useful in alterna-
tive formulations of the optimality conditions. However, it turns out that the
Lagrange multipliers frequently have an interesting interpretation in specific
practical contexts, as we have mentioned at the end of Sect. 2.4.1, where we
briefly described their mechanical interpretation. Here we show that if they
are uniquely determined by the KKT conditions (2.31), then they are related
to the rates of change of the optimal cost due to the violation of constraints.

x̂

∇f(x̂)
ΩE

f(x) = d
Bx = c

BT λ̂

Bx = c + u

x(u) = x̂ + d(u)

Fig. 2.9. Minimization with perturbed constraints

Let us assume that A and B are positive definite and full rank matri-
ces, respectively, so that there is a unique KKT couple (x̂, λ̂) of the equality
constrained problem (2.18). For u ∈ R

m, let us consider also the perturbed
problem

min
Bx=c+u

f(x)

as in Fig. 2.9. Its solution x(u) and the corresponding vector of Lagrange
multipliers λ(u) are fully determined by the KKT conditions

[
A BT

B O

] [
x(u)
λ(u)

]
=
[

b
c + u

]
,

so that
[
x(u)
λ(u)

]
=
[

A BT

B O

]−1 [ b
c + u

]
=
[

A BT

B O

]−1 [b
c

]
+
[

A BT

B O

]−1 [ o
u

]
.

First observe that d(u) = x(u) − x̂ satisfies

Bd(u) = Bx(u) − Bx̂ = u,

so that we can use ∇f(x̂) = −BT λ̂ to approximate the change of optimal cost
by
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∇f(x̂)Td(u) = −(BT λ̂)Td(u) = −λ̂T Bd(u) = −λ̂T u.

It follows that −[λ̂]i can be used to approximate the change of the optimal
cost due to the violation of the ith constraint by [u]i.

To give more detailed analysis of the sensitivity of the optimal cost with
respect to the violation of constraints, let us define for each u ∈ R

m the primal
function

p(u) = f (x(u)) .

Observing that x̂ = x(o) and using the explicit formula (2.33) to evaluate the
inverse of the KKT system, we get

x(u) = x̂ + A−1BT S−1u,

where S = BA−1BT denotes the Schur complement matrix. Thus

x(u) − x̂ = A−1BT S−1u,

so that

p(u) − p(o) = f (x(u)) − f(x̂)

= ∇f(x̂)T
(
x(u) − x̂

)
+

1
2
(
x(u) − x̂

)T
A
(
x(u) − x̂

)

= ∇f(x̂)T A−1BT S−1u +
1
2
uT S−1BA−1BT S−1u.

It follows that the gradient of the primal function p at o is given by

∇p(o) =
(
∇f(x̂)T A−1BT S−1

)T
= S−1BA−1∇f(x̂).

Recalling that ∇f(x̂) = −BT λ̂, we get

∇p(o) = −S−1BA−1BT λ̂ = −λ̂. (2.45)

Our analysis shows that if the total differential of f at x̂ decreases outside
ΩE , then this decrease is compensated by the increase of λ̂T (Bx−c). See also
Fig. 2.6. The components of λ̂ are also called the shadow prices after their
meaning in the applications in economics.

For the sensitivity analysis of the solution of more general equality con-
strained problems, we refer to the book by Bertsekas [12].

2.4.6 Error Analysis

We shall now give the bounds on the error of the solution of the KKT system
(2.31) in terms of perturbation of the right-hand side. As we do not assume
here that the constraints are necessarily defined by a full rank matrix B, we
shall use bounds on the nonzero singular values of the constraint matrix.
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Proposition 2.12. Let matrices A, B and vectors b, c be those from the def-
inition of problem (2.18) with A SPD and B ∈ R

m×n not necessarily a full
rank matrix of the column rank less than n. Let λmin(A) denote the least
eigenvalue of A, let σmin(B) denote the least nonzero singular value of B,
let (x̂, λ) denote any KKT pair for the equality constrained problem (2.18),
let g ∈ R

n, e ∈ R
m, and let (x, λ) denote an approximate KKT pair which

satisfies
Ax + BT λ = b + g,
Bx = c + e.

(2.46)

Then

‖BT (λ − λ)‖ ≤ κ(A)‖g‖ +
‖A‖

σmin(B)
‖e‖ (2.47)

and
‖x− x̂‖ ≤ κ(A) + 1

λmin(A)
‖g‖ +

κ(A)
σmin(B)

‖e‖. (2.48)

Moreover, if λLS denotes the least square Lagrange multiplier for (2.18)
and λ ∈ ImB, then

‖λ − λLS‖ ≤ 1
σmin(B)

(
κ(A)‖g‖ +

‖A‖
σmin(B)

‖e‖
)

. (2.49)

Proof. Let us recall that we assume c ∈ ImB, so that also e ∈ ImB. If B†

denotes the Moore–Penrose pseudoinverse of B, it follows that δ = B†e satisfies
Bδ = e and ‖δ‖ ≤ σmin(B)−1‖e‖ (see (1.38)). Moreover, y = x − δ satisfies

A(y − x̂) + BT (λ − λ) = g + Aδ,
B(y − x̂) = o.

After eliminating y − x̂ from the first equation, we get

BA−1BT (λ − λ) = B(A−1g + δ),

so that, after multiplication on the left by (λ−λ)T and taking norms, we get

‖A‖−1‖BT (λ − λ)‖2 ≤ ‖BT (λ − λ)‖‖A−1g + δ‖.
Thus

‖BT (λ − λ)‖ ≤ κ(A)‖g‖ + ‖A‖‖δ‖ ≤ κ(A)‖g‖ +
‖A‖

σmin(B)
‖e‖.

After subtracting Ax̂+BT λ = b from the first equation of (2.46), multiplying
the result on the left by A−1, and taking the norms, we get

‖x− x̂‖ = ‖A−1
(
g − BT (λ − λ)

)
‖ ≤ κ(A) + 1

λmin(A)
‖g‖ +

κ(A)
σmin(B)

‖e‖.

If λ ∈ ImB, then λ − λLS ∈ ImB and

λ − λLS =
(
B†)T

BT (λ − λLS).

The last inequality then follows by (1.37) and (2.47). �
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2.5 Inequality Constrained Problems

Let us now consider the problems whose feasible sets are described by linear
inequalities. Such sets are also called the polyhedral sets. More formally, we
look for

min
x∈ΩI

f(x), (2.50)

where f is a quadratic function defined by (2.4), ΩI = {x ∈ R
n : Bx ≤ c},

B = [b1, . . . ,bm]T ∈ R
m×n, and c = [ci] ∈ R

m. We assume that ΩI �= ∅.
At any feasible point x, we define the active set

A(x) = {i ∈ {1, . . . , m} : bT
i x = ci}.

In particular, if x is a local solution of (2.50), then each feasible direction
of ΩE = {x ∈ R

n : [Bx]A(x) = cA(x)} at x is a feasible direction of ΩI at x.
Using the arguments of Sect. 2.4.1, we get that x is also a local solution of
the equality constrained problem

min
x∈ΩE

f(x), ΩE = {x ∈ R
n : [Bx]A(x) = cA(x)}. (2.51)

Thus (2.50) is a more difficult problem than the equality constrained problem
(2.18) as its solution necessarily enhances the identification of A(x).

2.5.1 Polyhedral Sets

To understand the conditions of solvability of the inequality constrained prob-
lem (2.50), it is useful to get some insight into the geometry of polyhedral sets.
We shall need a few new concepts.

A set C ⊆ R
n is a (convex) cone (with its vertex at the origin) if x+y ∈ C

and αx ∈ C for all α ≥ 0, x ∈ C, and y ∈ C. We are interested in polyhedral
cones which are defined by

C = {x ∈ R
n : Bx ≤ o},

where B ∈ R
m×n is a given matrix. The Minkowski–Weyl Theorem (see, e.g.,

[12]) says that polyhedral cones are finitely generated, i.e., there is a matrix
C such that

C = {x ∈ R
n : x = Cy, y ≥ o}.

A polyhedral cone is a closed convex set.
A polyhedral set Ω can be represented as the sum of the convex hull of

a finite set of points and a polyhedral cone whose elements are the recession
directions of Ω. Let us formulate this nontrivial statement more formally.

Proposition 2.13. A set Ω ⊆ R
n is polyhedral if and only if there is a

nonempty set of n-vectors {x1, . . . ,xk} and a polyhedral cone C ⊆ R
n such

that
Ω = C + Conv{x1, . . . ,xk}.

Proof. See, e.g., [12, Proposition B.17]. �
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2.5.2 Farkas’s Lemma

The main tool for the transformation of the geometrical conditions of opti-
mality for the inequality constrained problems to their algebraic form with
Lagrange multipliers is the following lemma by Farkas.

Lemma 2.14. Let B ∈ R
m×n and h ∈ R

n. Then exactly one of the following
problems has a solution:

(I) Find d ∈ R
n such that Bd ≤ o and hTd > 0.

(II) Find y ∈ R
m such that BT y = h and y ≥ o.

Proof. Suppose first that (II) has a solution, so that there is y ≥ o such that
BT y = h. Let d ∈ R

n be such that Bd ≤ o. Then

hTd =
(
BT y

)T
d = yT Bd ≤ 0,

so that the problem (I) has no solution.
Now suppose that the problem (II) has no solution and denote

Ω = {x ∈ R
n : x = BT y, y ≥ o},

so that our assumption amounts to h /∈ Ω. Denoting by ĥ ∈ Ω the projection
of h to Ω and d = h− ĥ, we get by (2.16) that for any x ∈ Ω

dT (x − ĥ) = (h − ĥ)T (x − ĥ) ≤ 0,

or alternatively
dTx ≤ dT ĥ = α.

Observing that o ∈ Ω, we get α ≥ 0. Moreover, substituting x = BTy, we get
for any y ≥ o

yT Bd = dT BTy ≤ α.

Since the components of y can be arbitrarily large, Bd ≤ o. Thus d satis-
fies the first inequality of (I). To check the second one, recall that by our
assumption h /∈ Ω. It follows that d �= o, so that dT (h− ĥ) = ‖d‖2 > 0 and

dT h > dT ĥ = α ≥ 0.

Thus d is a solution of (I). �

Farkas’s lemma is used in the proof of the KKT conditions for inequality
constrained QP problems in a similar way as the statement that ImBT is
the orthogonal complement of KerB in the analysis of equality constrained
problems. A geometric illustration of Farkas’s lemma is in Fig. 2.10.
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b1
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h

Fig. 2.10. Farkas’s lemma: solution of (I) (left) and (II) (right)

2.5.3 Necessary Optimality Conditions for Local Solutions

The structure of inequality constrained QP problems (2.50) is more compli-
cated than that of the equality constrained ones (2.18). We shall start our
exposition with the following necessary optimality conditions.

Proposition 2.15. Let the inequality constrained problem (2.50) be defined
by a symmetric matrix A ∈ R

n×n, the constraint matrix B ∈ R
m×n whose

column rank is less than n, and the vectors b, c. Let C denote the cone of
directions of the feasible set ΩI . Then the following statements hold:
(i) If x ∈ ΩI is a local solution of (2.50), then

(Ax − b)T d ≥ 0 (2.52)

for any feasible direction d of ΩI at x.
(ii) If x ∈ ΩI is a local solution of (2.50), then there is λ ∈ R

m such that

λ ≥ o, Ax − b + BT λ = o, and λT (Bx − c) = 0. (2.53)

Proof. (i) Let x be a local solution of the inequality constrained problem
(2.50) and let d denote a feasible direction of ΩI at x, so that the right-hand
side of

f(x + αd) − f(x) = α(Ax − b)Td +
α2

2
dT Ad (2.54)

is nonnegative for all sufficiently small α > 0. To prove (2.52), it is enough
to take α > 0 so small that the nonnegativity of the right-hand side of (2.54)
implies that

α(Ax − b)T d ≥ 0.

(ii) First observe that if x is a local solution of (2.50), then d is a feasible
direction of ΩI at x if and only if d is a feasible direction of

ΩI = {x ∈ R
n : BA∗x ≤ cA}



52 2 Optimization

at x, where A = A(x) is the active set of x. Thus by (i) x is also a local
solution of

min
x∈ΩI

f(x), ΩI = {x ∈ R
n : BA∗x ≤ cA}.

Denoting h = −(Ax − b), it follows by (i) that the problem to find d ∈ R
n

such that
BA∗d ≤ o and hTd > 0

has no solution. Thus we can apply Farkas’s lemma 2.14 to get y ∈ R
m such

that
(BA∗)

T y = hA and y ≥ o.

Denoting by λ ∈ R
m the vector obtained by padding y with zeros, so that

[λ]i = 0 for i /∈ A and λA = y, it is easy to check that λ satisfies (2.53). �

The conditions (2.53) are called the KKT conditions for inequality con-
straints. The last of these conditions, the equation λT (Bx − c) = 0, is called
the condition of complementarity. Notice that (ii) can be proved without any
reference to Farkas’s lemma as any solution x of (2.50) solves (2.51), so that
by Proposition 2.8(ii) there is y such that

Ax − b + BT
A(x)y = cA(x),

and y ≥ o by the arguments based on the discussion of sensitivity of the
minimum in Sect. 2.4.5.

2.5.4 Existence and Uniqueness

In our discussion of the existence and uniqueness results for the inequality
constrained QP problem (2.50), we restrict our attention to the following
results that are useful in our applications.

Proposition 2.16. Let the inequality constrained problem (2.50) be defined
by a symmetric matrix A ∈ R

n×n, a constraint matrix B ∈ R
m×n, and vectors

b, c. Let C denote the cone of recession directions of the nonempty feasible set
ΩI . Then the following statements hold:
(i) If problem (2.50) has a solution, then dT Ad ≥ 0 for d ∈ C and

dTb ≤ 0 for d ∈ C ∩ KerA. (2.55)

(ii) If (2.55) holds and f is convex, then problem (2.50) has a solution.
(iii) If f is convex and (x, λ) and (y, μ) are KKT couples for (2.50), then

x − y ∈ KerA and λ − μ ∈ KerBT . (2.56)

(iv) If A is positive definite, then the inequality constrained minimization prob-
lem (2.50) has the unique solution.
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Proof. (i) Let x be a global solution of the inequality constrained minimization
problem (2.50), and recall that

f(x + αd) − f(x) = α(Ax − b)Td +
α2

2
dT Ad (2.57)

for any d ∈ R
n and α ∈ R. Taking d ∈ C arbitrary but fixed and α sufficiently

large, we get that the nonnegativity of the right-hand side requires dT Ad ≥ 0.
Moreover, if d ∈ C ∩ KerA, then (2.57) reduces to

f(x + αd) − f(x) = −αbTd,

which is nonnegative for any α ≥ 0 if and only if bT d ≤ 0.
(ii) Let us now assume that (2.55) is satisfied and observe that if c = o, then
ΩI is a cone, so that a solution is known to exist even in infinite dimension
(see Zeidler [184, pp. 553–556]).

If c is arbitrary, then by Proposition 2.13 there are x1, . . . ,xk ∈ ΩI such
that

ΩI = C + conv{x1, . . . ,xk}, C = {x : Bx ≤ o}.

Observing that d ∈ C if and only if 2d ∈ C, we get that x ∈ ΩI if and only if

x = 2d + y, d ∈ C, y ∈ Conv{x1, . . . ,xk}.

Thus

f(x) = f(2d + y) = dT Ad − 2bT d + dT Ad + 2dT Ay +
1
2
yT Ay − bTy

≥ 2f(d) + (dT Ad + 2dT Ay) − bT y. (2.58)

We have already seen that f is bounded from below on C. Moreover, using
the Euclidean norm, we get

−bTy ≥ −‖b‖max{‖x1‖, . . . , ‖xk‖}

and by (2.10)

dT Ad + 2dT Ay ≥ −(Ay)T A†Ay = −yT Ay ≥ −‖A‖max{‖x1‖2, . . . , ‖xk‖2},

where A† denotes the Moore–Penrose generalized inverse to A. Thus f is
bounded from below on ΩI and we can use the Frank–Wolfe theorem (see
Proposition 2.5(iii)) to finish the proof of (ii).
(iii) The first inclusion of (2.56) holds by Proposition 2.4(ii) for solutions of
any convex problem. The inclusion for multipliers then follows by the KKT
condition (2.53).
(iv) If A is positive definite, then f is strictly convex by Proposition 2.2, so
that by Proposition 2.5 there is a unique minimizer of f subject to x ∈ ΩI . �
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2.5.5 Optimality Conditions for Convex Problems

When the cost function is convex, then the necessary conditions of Sect. 2.5.3
are also sufficient.

Proposition 2.17. Let f be a convex quadratic function defined by (2.4) with
a positive semidefinite Hessian matrix A. Then the following statements hold:
(i) A vector x ∈ ΩI is a solution of (2.50) if and only if

(Ax − b)T d ≥ 0 (2.59)

for any feasible direction d of ΩI at x.
(ii) A vector x ∈ ΩI is a solution of (2.50) if and only if there is λ ∈ R

m

such that

λ ≥ o, Ax − b + BT λ = o, and λT (Bx − c) = 0. (2.60)

Proof. Since f is convex, it follows by Proposition 2.4(i) that each local min-
imizer is a global minimizer. Moreover, by Proposition 2.15, each minimizer
satisfies (2.59) and (2.60). Thus it is enough to prove that the convexity of f ,
the feasibility condition, and (2.59) or (2.60) are sufficient for x to be a solu-
tion of the inequality constrained minimization problem (2.50).
(i) Let us assume that x ∈ ΩI satisfies (2.59) and x ∈ ΩI . Since ΩI is convex,
it follows that d = x − x is a feasible direction of ΩI at x, so that, using
Taylor’s expansion and the assumptions, we have

f(x) − f(x) = (Ax − b)T d +
1
2
dT Ad ≥ 0.

(ii) Let us assume that x ∈ ΩI satisfies (2.60) and Bx − c ≤ o. Then

L0(x, λ) = f(x) + λT (Bx − c) = f(x),
L0(x, λ) = f(x) + λT (Bx − c) ≤ f(x),

and

f(x) − f(x) ≥ L0(x, λ) − L0(x, λ)

= ∇xL0(x, λ)T (x − x) +
1
2
(x − x)T A(x − x)

= (Ax − b + BT λ)T (x − x) +
1
2
(x − x)T A(x − x)

=
1
2
(x − x)T A(x − x) ≥ 0.

�
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2.5.6 Optimality Conditions for Bound Constrained Problems

A special case of problem (2.50) is the bound constrained problem

min
x∈ΩB

f(x), ΩB = {x ∈ R
n : x ≥ �}, (2.61)

where f is a quadratic function defined by (2.4) and � ∈ R
n. The optimality

conditions for convex bound constrained problems can be written in the form
which is more convenient in some applications.

Proposition 2.18. Let f be a convex quadratic function defined by (2.4) with
a positive semidefinite Hessian A. Then x ∈ ΩB solves (2.61) if and only if

Ax − b ≥ o and (Ax − b)T (x − �) = 0. (2.62)

Proof. First observe that denoting B = −In, c = −�, and

ΩI = {x ∈ R
n : Bx ≤ c},

the bound constrained problem (2.61) becomes the standard inequality con-
strained problem(2.50) with ΩI = ΩB. Using Proposition 2.17, it follows that
x ∈ ΩB is the solution of (2.61) if and only if there is λ ∈ R

n such that

λ ≥ o, Ax − b− Iλ = o, and λT (x − �) = 0. (2.63)

We complete the proof by observing that (2.62) can be obtained from (2.63)
and vice versa by substituting λ = Ax − b. �

In the proof, we have shown that λ = ∇f(x) is a vector of Lagrange
multipliers for the constraints −x ≤ −�, or, equivalently, for x ≥ �. Notice
that the conditions (2.62) require that none of the vectors si is a feasible
decrease direction of ΩB at x, where si denotes a vector of the standard basis
of R

n formed by the columns of In, i ∈ A(x).

2.5.7 Min-max, Dual, and Saddle Point Problems

As in Sect. 2.4.4, we shall assume that A and B are positive definite and full
rank matrices, respectively, postponing the analysis of more general problems
to Sects. 2.6.4 and 2.6.5. The assumptions imply that the related KKT system

λ ≥ o, (2.64)
∇xL0(x, λ) = Ax − b + BT λ = o, (2.65)
∇λL0(x, λ) = Bx − c ≤ o, (2.66)
λT (Bx − c) = 0 (2.67)

has a unique solution (x̂, λ̂). We shall now associate the KKT system (2.64)–
(2.67) with some other extremal problems.
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First observe that given λ ∈ R
m, we can evaluate x from (2.65) to get the

minimizer
x = x(λ) = A−1b − A−1BT λ

of L0(x, λ) with respect to x. We can use this observation to express explicitly
the dual function

Θ(λ) = inf
x∈Rn

L0(x, λ) = min
x∈Rn

L0(x, λ) = L0(x(λ), λ) (2.68)

= −1
2
λT BA−1BT λ + (BA−1b− c)T λ − 1

2
bT A−1b

and its gradient

∇Θ(λ) = −BA−1BT λ + (BA−1b − c). (2.69)

Moreover,

Bx(λ) − c = −BA−1BT λ + (BA−1b− c) = ∇Θ(λ),

so that (2.66) and (2.67) are equivalent to

∇Θ(λ) ≤ o and λT∇Θ(λ) = 0,

which can be rewritten as

−∇Θ(λ) ≥ o and − λT∇Θ(λ) = 0. (2.70)

As the Hessian BA−1BT of −Θ is SPD, we conclude that (2.70) is equiv-
alent to the condition (2.62) for the minimizer of −Θ subject to λ ≥ o, or,
equivalently, for the maximizer of Θ subject to λ ≥ o. Therefore the KKT
couple (x̂, λ̂) for the inequality constrained problem (2.50) solves the min-max
problem

L0(x̂, λ̂) = max
λ≥o

min
x∈Rn

L0(x, λ), (2.71)

λ̂ solves the dual problem

Θ(λ̂) = max
λ≥o

Θ(λ), (2.72)

and
f(x̂) = L0(x̂, λ̂) = Θ(λ̂). (2.73)

As in Sect. 2.4.4, there is yet another equivalent problem which is related
to the penalty method. Since

sup
λ≥o

L0(x, λ) = ∞ for x /∈ ΩI and sup
λ≥o

L0(x, λ) = f(x) for x ∈ ΩI ,

it follows that the solution x̂ of the KKT system (2.64)–(2.67) satisfies
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f(x̂) = min
x∈Rn

sup
λ≥o

L0(x, λ).

Comparing the latter equality with (2.71) and (2.73), we get the well-known
duality relation

max
λ≥o

min
x∈Rn

L0(x, λ) = min
x∈Rn

sup
λ≥o

L0(x, λ). (2.74)

Using the feasibility of x̂, equations (2.73), and definition (2.68) of the
dual function Θ, we also get that (x̂, λ̂) solves the saddle point problem to
find (x̂, λ̂) so that for any x ∈ R

n and λ ≥ o

L0(x̂, λ) ≤ L0(x̂, λ̂) ≤ L0(x, λ̂). (2.75)

We have obtained again two bound constrained problems which are equiv-
alent to the original equality constrained problem (2.50). The mixed formu-
lation enhances explicitly the Lagrange multipliers and is only bound con-
strained at the cost of two sets of variables, while the dual formulation enjoys
both the bound constraints and typically a small dimension at the cost of
dealing with more complex matrices. The dual problem may be also better
conditioned.

2.6 Equality and Inequality Constrained Problems

In the previous sections, we have obtained the results concerning optimization
problems with either equality or inequality constraints. Here we extend these
results to the optimization problems whose variables are subjected to both
equality and inequality constraints. More formally, we look for

min
x∈ΩIE

f(x), ΩIE = {x ∈ R
n : [Bx]I ≤ cI , [Bx]E = cE}, (2.76)

where f is a quadratic function with the symmetric Hessian A ∈ R
n×n and

the linear term defined by b ∈ R
n, B = [b1, . . . ,bm]T ∈ R

m×n is a matrix
with possibly dependent rows, c = [ci] ∈ R

m, and I, E are disjoint sets of
indices which decompose {1, . . . , m}. We assume that ΩIE is not empty.

If we describe the conditions that define the feasible set ΩIE in detail, we
get

ΩIE = {x ∈ R
n : bT

i x ≤ ci, i ∈ I, bT
i x = ci, i ∈ E},

which makes sense even for I = ∅ or E = ∅; we consider the conditions which
involve the empty set as always satisfied. For example, E = ∅ gives

ΩIE = {x ∈ R
n : bT

i x ≤ ci, i ∈ I},

and the kernel of an “empty” matrix is defined by

KerBE∗ = {x ∈ R
n : bT

i x = 0, i ∈ E} = R
n.
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2.6.1 Optimality Conditions

First observe that ΩIE is a polyhedral set as any equality constraint bT
i x = ci

can be replaced by the couple of inequalities bT
i x ≤ ci and −bT

i x ≤ −ci.
We can thus use our results obtained by the analysis of the inequality con-
strained problems in Sect. 2.5 to get similar results for general bound and
equality constrained QP problem (2.76).

Proposition 2.19. Let the quadratic function f and the feasible set ΩIE be
defined by the matrices A, B, the vectors b, c, and the index sets I, E from the
definition of problem (2.76). We assume that A is symmetric and that B is
not necessarily a full row rank matrix. Let C denote the cone of directions of
the feasible set ΩIE. Then the following statements hold:
(i) If x ∈ ΩIE is a local solution of (2.76), then

∇f(x) = (Ax − b)T d ≥ 0 (2.77)

for any feasible direction d of ΩIE at x.
(ii) If x ∈ ΩIE is a local solution of (2.76), then there is a vector λ ∈ R

m

such that

λI ≥ o, Ax − b + BT λ = o, and λT
I [Bx − c]I = 0. (2.78)

(iii) If A is positive semidefinite, then x ∈ ΩIE is a solution of (2.76) if and
only if x satisfies (2.77) or (2.78).

Proof. First observe that if E = ∅, then the statements of the above proposi-
tion reduce to Propositions 2.15 and 2.17, and if I = ∅, then they reduce to
Proposition 2.8. Thus we can assume in the rest of the proof that I �= ∅ and
E �= ∅.

As mentioned above, (2.76) may be rewritten also as

min
x∈ΩI

f(x), ΩI = {x ∈ R
n : [Bx]I ≤ cI , [Bx]E ≤ cE ,−[Bx]E ≤ −cE},

(2.79)
where ΩI = ΩIE . Thus the statement (i) is a special case of Proposition 2.15.

If x ∈ ΩIE is a local solution of (2.76), then, using (ii) of Proposition 2.15,
we get that there are nonnegative vectors u,v, and w such that

Ax − b + BT
I∗u + BT

E∗v − BT
E∗w = o and λT

I [Bx − c]I = 0.

Defining λ ∈ R
m by

λI = u, λE = v − w,

we get that λ and x satisfy (2.78), which proves (ii).
In the same way as above, we can use Proposition 2.17 to prove the state-

ment (iii). �
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2.6.2 Existence and Uniqueness

As recalled in Sect. 2.6.1, problem (2.76) can be considered as a special
case of the inequality constrained problem, so that we can use the results
of Sect. 2.5.4. We add here one simple proposition for the case that A|KerBE∗
is positive definite.

Proposition 2.20. Let the quadratic function f and the feasible set ΩIE be
defined by the matrices A, B, the vectors b, c, and the index sets I, E from
the definition of problem (2.76). Let A|KerBE∗ be positive definite. Then the
equality and inequality constrained minimization problem (2.76) has a unique
solution x̂.

Proof. Let us consider the penalized function

f2(x) = f(x) + (BE∗x− cE)T (BE∗x − cE).

Using the assumption that A|KerBE∗ is positive definite and Lemma 1.2, we
get that the Hessian A2 = A + 2BT

E∗BE∗ of the function f2 is also positive
definite, so that f2 is strictly convex by Proposition 2.2. Since

ΩIE ⊆ ΩE , ΩE = {x ∈ R
n : BE∗x = cE},

it follows that f |ΩE = f2|ΩE . Thus f |ΩIE is strictly convex and the statement
then follows by Proposition 2.5(i). �

2.6.3 Partially Bound and Equality Constrained Problems

Here we consider the partially bound and equality constrained problem

min
x∈ΩBE

f(x), ΩBE = {x ∈ R
n : xI ≥ �I , BEx = cE}, (2.80)

where f is a convex quadratic function with a symmetric positive semidefinite
Hessian A ∈ R

n×n, BE ∈ R
q×n is a matrix with possibly dependent rows,

cE ∈ R
q, and �I ∈ R

p is a vector of bounds on the first p components of x
which form variables xI . Though the partial constraints can be easily imple-
mented by admitting �i = −∞, here we consider them explicitly to simplify
the reference in our applications. To unify the references to the correspond-
ing vectors, we denote by I = {1, . . . , p} and R = {p + 1, . . . , n} the sets of
indices of the bound constrained and remaining entries of x, respectively, so
that xI = xI . With

BI = [−Ip, Opr], r = n − p, B =
[

BI

BE

]
, c =

[
−�I

cE

]
,

and E = {p + 1, . . . , m}, the bound and equality constrained problem (2.80)
becomes the standard equality and inequality constrained problem (2.76).
Introducing the Lagrange multipliers λ ∈ R

m and denoting
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g = ∇xL0(x, λE) = Ax − b + BT
EλE ,

we get

∇xL0(x, λ) = Ax − b + BT
EλE + BT

I λI = g + BT
I λI = g −

[
I
O

]
λI ,

so that by Proposition 2.19 the KKT conditions for problem (2.80) read

gI ≥ o, gR = o, and gT
I (xI − �I) = 0. (2.81)

Thus the KKT conditions for bound and equality constrained problems can
be conveniently expressed by means of the Lagrangian function for equality
constrained problems. The Lagrange multipliers for the inequality constraints
may be recovered by λI = gI . If x ∈ ΩBE and g = ∇xL0(x, λE) satisfy
(2.81), then (x, λE) is called the KKT pair for bound and equality constraints .

Application of the duality typically results in problem

max
x∈ΩBE

f(x) (2.82)

with −f convex. Since

max
x∈ΩBE

f(x) = − min
x∈ΩBE

−f(x),

we get easily that the KKT conditions for (2.82) read

gI ≤ o, gR = o, and gT
I (xI − �I) = 0. (2.83)

The analysis presented above covers also the partially bound constrained
problem to find

min
x∈ΩB

f(x), ΩB = {x ∈ R
n : xI ≥ �I}. (2.84)

Skipping the terms concerning the equality constraints and denoting

g = ∇f(x) = Ax − b,

we get the KKT conditions for the bound constrained problem (2.84) in the
form

gI ≥ o, gR = o, and gT
I (xI − �I) = 0. (2.85)

As above, we get that the KKT conditions for partially bound constrained
problem

max
x∈ΩB

f(x), ΩB = {x ∈ R
n : xI ≥ �I} (2.86)

with f convex read

gI ≤ o, gR = o, and gT
I (xI − �I) = 0. (2.87)
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2.6.4 Duality for Dependent Constraints

Combining the arguments of the previous subsections, in particular Sects. 2.4.4
and 2.5.7, it is possible to get the dual and mixed formulations of equality
and inequality constrained problems under the conditions that A and B are
positive definite and full rank matrices, respectively. Since there are important
applications where such assumptions are too restrictive, it is useful to extend
the duality theory without these assumptions. We first relax the assumptions
on the constraints, postponing the discussion of more general cases to the next
section.

Duality Relations

Let us consider problem (2.76) with A positive definite and B with dependent
rows. Let us recall that by Proposition 2.2 our assumptions imply that f is
strictly convex; therefore we can apply Proposition 2.5 to get that there is a
unique solution x̂ of (2.76).

Let (x̂, λ) be a solution of the bound and equality problem (2.76). Then

λT (Bx̂ − c) = λT
E [Bx̂ − c]E + λT

I [Bx̂ − c]I = 0,

so that
f(x̂) = L0(x̂, λ). (2.88)

Next observe that if λ is a vector of the Lagrange multipliers of the so-
lution, then x̂ is fully determined by the second condition of (2.78) which
reads

∇xL0(x, λ) = o.

Since L0 is strictly convex, the latter is the gradient condition for the uncon-
strained minimizer of L0 with respect to x; therefore

L0(x̂, λ) = min
x∈Rn

L0(x, λ). (2.89)

Recalling the definition of the dual function

Θ(λ) = min
x∈Rn

L0(x, λ)

and using (2.88) and (2.89), we get

f(x̂) = L0(x̂, λ) = Θ(λ). (2.90)

Dual and Saddle Point Problems

Let us first present the analysis which enhances our earlier results and admits
the constraint matrices with possibly dependent rows.
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Proposition 2.21. Let the quadratic function f and the feasible set ΩIE �= ∅
be defined by the matrices A, B, the vectors b, c, and the index sets I, E from
the definition of problem (2.76). We assume that A is SPD, but we admit that
B is not necessarily a full row rank matrix, I = ∅, or E = ∅. Let

Θ(λ) = −1
2
λT BA−1BT λ + λT (BA−1b− c) − 1

2
bT A−1b (2.91)

denote the dual function. Then the following statements are equivalent:
(i) (x̂, λ) is a KKT pair for problem (2.76).

(ii) x̂ is a unique solution of the primal problem (2.76) and λ is a solution of
the dual problem

max
λ∈ΩB

Θ(λ), ΩB = {λ ∈ R
m : λI ≥ o}. (2.92)

(iii) (x̂, λ) ∈ R
n × R

m with λI ≥ o is a saddle point of L0 in the sense that
for any x ∈ R

n and λ ∈ R
m such that λI ≥ o,

L0(x̂, λ) ≤ L0(x̂, λ) ≤ L0(x, λ). (2.93)

Proof. (i) ⇒ (ii). Let (x̂, λ) be a KKT pair for (2.76), so that x̂ is a unique
solution of (2.76), f(x̂) = Θ(λ) by (2.90), and (x̂, λ) is by Proposition 2.19 a
solution of

λI ≥ o, (2.94)
∇xL0(x, λ) = Ax − b + BT λ = o, (2.95)

[∇λL0(x, λ)]I = [Bx − c]I ≤ o, (2.96)
[∇λL0(x, λ)]E = [Bx − c]E = o, (2.97)

λT
I [Bx − c]I = 0. (2.98)

In particular, since A is positive definite, it follows that we can use (2.95) to
get

x̂ = A−1(b − BT λ).

After substituting into (2.96)–(2.98), we get

[ −BA−1BT λ + (BA−1b − c)]I ≤ o, (2.99)
[ −BA−1BT λ + (BA−1b − c)]E = o, (2.100)

λT
I [ −BA−1BT λ + (BA−1b − c)]I = 0. (2.101)

Denoting g = ∇Θ(λ), we can rewrite the relations (2.99)–(2.101) as

gI ≤ o, gE = o, and λT
I gI = 0. (2.102)

Comparing (2.102) with the KKT conditions (2.87) for the partially bound
constrained problem (2.86), we conclude that (2.102) are the KKT conditions
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for (2.92). Since λI ≥ o by (2.94), we have thus proved that λ is a feasible
vector for problem (2.92) which satisfies the related KKT conditions. Recalling
that A is positive definite, so that BA−1BT is positive semidefinite, we conclude
that λ solves (2.92).
(ii) ⇒ (iii). Let x̂ be a unique solution of the primal problem (2.76) and let
λ be a solution of the dual problem (2.92), so that f(x̂) = Θ(λ) by (2.90).
Then x̂ is feasible, i.e.,

[Bx̂ − c]E = o, [Bx̂ − c]I ≤ o,

and
sup

λI≥o
L0(x̂, λ) = f(x̂) + sup

λI≥o
λT (Bx̂ − c) = f(x̂).

Thus
Θ(λ) = min

x∈Rn
L0(x, λ) ≤ L0(x̂, λ) ≤ sup

λI≥o
L0(x̂, λ) = f(x̂).

Since f(x̂) = Θ(λ), it follows that

sup
λI≥o

L0(x̂, λ) = L0(x̂, λ) = min
x∈Rn

L0(x, λ)

and (x̂, λ) is the solution of the saddle point problem (2.93).
(iii) ⇒ (i). Let us now assume that there is (x̂, λ), λI ≥ o, such that (2.93)
holds for any x ∈ R

n and λ ∈ R
m, λI ≥ o. To show that (x̂, λ) is a KKT

pair for (2.76), notice that for any x ∈ R
n

sup
λI≥o

L0(x, λ) = ∞ for x /∈ ΩIE and sup
λI≥o

L0(x, λ) = f(x) for x ∈ ΩIE .

Since by the assumptions

L0(x̂, λ) ≤ L0(x̂, λ)

for any λ ∈ R
m, λI ≥ o, it follows that x̂ ∈ ΩIE and f(x̂) = L0(x̂, λ). The

feasibility of x̂ and the latter equation imply the complementarity condition

λT
I [Bx̂ − c]I = 0.

Taking into account the right saddle point inequality in (2.93), we get that

L0(x̂, λ) = min
x∈Rn

L0(x, λ).

Thus x̂ is the unconstrained minimizer of L0(x, λ) with respect to x. Since
L0 is a convex function of x, we conclude that ∇xL0(x̂, λ) = o and (x̂, λ) is
a KKT pair for problem (2.76). �
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2.6.5 Duality for Semicoercive Problems

Now let us examine what happens when the matrices A and B in the defini-
tion of the bound and equality constrained QP problem (2.76) are positive
semidefinite and rank deficient, respectively. A special case of (2.76) is a linear
programming problem with A = O.

Constrained Dual Problem

First observe that if A is only positive semidefinite and b �= o, then the cost
function f need not be bounded from below. Thus −∞ can be in the range
of the dual function Θ. We resolve this problem by keeping Θ quadratic at
the cost of introducing equality constraints. An alternative development of
duality for special semicoercive QP problems can be found in the papers by
Dorn [37, 38].

Proposition 2.22. Let matrices A, B, vectors b, c, and index sets I, E be
those from the definition of problem (2.76) with A positive semidefinite and
ΩIE �= ∅. Let R ∈ R

n×d be a full rank matrix such that

ImR = KerA,

let A+ denote a symmetric positive semidefinite generalized inverse of A, and
let

Θ(λ) = −1
2
λT BA+BT λ + λT (BA+b− c) − 1

2
bT A+b. (2.103)

Then the following statements hold:
(i) If (x, λ) is a KKT pair for (2.76), then λ is a solution of

max
λ∈ΩBE

Θ(λ), ΩBE = {λ ∈ R
m : λI ≥ o, RT BT λ = RTb}. (2.104)

Moreover, there is α ∈ R
d such that (λ, α) is a KKT pair for problem (2.104)

and
x = A+(b − BT λ) + Rα. (2.105)

(ii) If (λ, α) is a KKT pair for problem (2.104), then x defined by (2.105) is
a solution of the equality and inequality constrained problem (2.76).
(iii) If (x, λ) is a KKT pair for problem (2.76), then

f(x) = Θ(λ). (2.106)

Proof. (i) Assume that (x, λ) is a KKT pair for (2.76), so that (x, λ) is by
Proposition 2.19 a solution of

λI ≥ o, (2.107)
∇xL0(x, λ) = Ax − b + BT λ = o, (2.108)

[∇λL0(x, λ)]I = [Bx − c]I ≤ o, (2.109)
[∇λL0(x, λ)]E = [Bx − c]E = o, (2.110)

λT
I [Bx − c]I = 0. (2.111)
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Notice that given a vector λ ∈ R
m, we can express the condition

b − BT λ ∈ ImA,

which guarantees solvability of (2.108) with respect to x, conveniently as

RT (BT λ − b) = o. (2.112)

If the latter condition is satisfied, then we can use any symmetric left gener-
alized inverse A+ to find all the solutions of (2.108) with respect to x in the
form

x(λ, α) = A+(b − BT λ) + Rα, α ∈ R
d,

where d is the dimension of KerA. After substituting for x into (2.109)–(2.111),
we get

[ −BA+BT λ + (BA+b− c) + BRα]I ≤ o, (2.113)
[ −BA+BT λ + (BA+b− c) + BRα]E = o, (2.114)

λT
I [ −BA+BT λ + (BA+b− c) + BRα]I = 0. (2.115)

The formulae in (2.113)–(2.115) look like something that we have already
seen. Indeed, introducing the vector of Lagrange multipliers α for (2.112) and
denoting

Λ(λ, α) = Θ(λ) + αT (RT BT λ − RTb)

= −1
2
λT BA+BT λ + λT (BA+b− c) − 1

2
bT A+b

+αT (RT BT λ − RTb),

g = ∇λΛ(λ, α) = −BA+BT λ + (BA+b− c) + BRα,

we can rewrite the relations (2.113)–(2.115) as

gI ≤ o, gE = o, and λT
I gI = 0. (2.116)

Comparing (2.116) with the KKT conditions (2.83) for the bound and equality
constrained problem (2.82), we conclude that (2.116) are the KKT conditions
for

max Θ(λ) subject to RT BT λ − RTb = o and λI ≥ o. (2.117)

We have thus proved that if (x, λ) solves (2.107)–(2.111), then λ is a
feasible vector for problem (2.117) which satisfies the related KKT conditions.
Recalling that A+ is by the assumption symmetric positive semidefinite, so
that BA+BT is also positive semidefinite, we conclude that λ solves (2.104).
Moreover, we have shown that any solution x can be obtained in the form
(2.105) with a KKT pair (λ, α), where α is a vector of the Lagrange multipliers
for (2.104).
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(ii) Let (λ, α) be a KKT pair for problem (2.104), so that (λ, α) satisfies
(2.112)–(2.115) and λI ≥ o. If we denote

x = A+(b − BT λ) + Rα,

we can use (2.113)–((2.115) to verify directly that x is feasible and that (x, λ)
satisfies the complementarity conditions, respectively. Finally, using (2.112),
we get that there is y ∈ R

n such that

b− BT λ = Ay.

Thus

Ax − b + BT λ = A
(
A+(b− BT λ) + Rα

)
− b + BT λ

= AA+Ay − b + BT λ = b− BT λ − b + BT λ = o,

which proves that (x, λ) is a KKT pair for (2.76).
(iii) Let (x, λ) be a KKT pair for (2.76). Using the feasibility condition (2.109)
and the complementarity condition (2.111), we get

λT (Bx − c) = λT
E [Bx − c]E + λT

I [Bx − c]I = 0.

Hence
f(x) = f(x) + λT (Bx − c) = L0(x, λ).

Next recall that if (x, λ) is a KKT pair, then

∇xL0(x, λ) = o.

Since L0 is convex, the latter is the gradient condition for the unconstrained
minimizer of L0 with respect to x; therefore

L0(x, λ) = min
x∈Rn

L0(x, λ) = Θ(λ).

Thus
f(x) = L0(x, λ) = Θ(λ).

�

The result which we have just proved is useful for reformulation of the
convex quadratic problems with general inequality constraints to the problems
with bound and equality constraints. See Chaps. 7 and 8 for examples.

Since the constant term is not essential in our applications and we formu-
late our algorithms for minimization problems, we shall consider the function

θ(λ) = −Θ(λ) − 1
2
bT A+b =

1
2
λT BA+BT λ − λT (BA+b− c), (2.118)

so that
arg min

λ∈ΩBE

θ(λ) = arg max
λ∈ΩBE

Θ(λ).
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Uniqueness of a KKT Pair

We shall complete our exposition of duality by formulating the results con-
cerning the uniqueness of the solution for the constrained dual problem

min
λ∈ΩBE

θ(λ), ΩBE = {λ ∈ R
m : λI ≥ o, RT BT λ = RTb}, (2.119)

where θ is defined by (2.118).

Proposition 2.23. Let the matrices A, B, the vectors b, c, and the index sets
I, E be those from the definition of problem (2.76) with A positive semidefinite,
ΩIE �= ∅, and ΩBE �= ∅. Let R ∈ R

n×d be a full rank matrix such that

ImR = KerA.

Then the following statements hold:
(i) If BT and BR are full column rank matrices, then there is a unique solution
λ̂ of problem (2.119).
(ii) If λ̂ is a unique solution of the constrained dual problem (2.119),

A = {i : [λ]i > 0} ∪ E ,

and BA∗R is a full column rank matrix, then there is a unique triple (x̂, λ̂, α̂)
such that (x̂, λ̂) solves the primal problem (2.76) and (λ̂, α̂) solves the con-
strained dual problem (2.119). If λ̂ is known, then

α̂ = (RT BT
A∗BA∗R)−1RT BT

A∗

(
BA∗A

+BT λ̂ − (BA∗A
+b − cA)

)
(2.120)

and
x̂ = A+(b − BT λ̂) + Rα̂. (2.121)

(iii) If BT and BE∗R are full column rank matrices, then there is a unique
triple (x̂, λ̂, α̂) such that (x̂, λ̂) solves the primal problem (2.76) and (λ̂, α̂)
solves the constrained dual problem (2.119).

Proof. (i) Let BT and BR be full column rank matrices. To show that there
is a unique solution of (2.119), we examine the Hessian BA+BT of θ. Let
RT BT λ = o and BA+BT λ = o. Using the definition of R, it follows that
BT λ ∈ ImA. Hence there is μ ∈ R

n such that

BT λ = Aμ

and
μT Aμ = μT AA+Aμ = λT BA+BT λ = 0.

Thus μ ∈ KerA and
BT λ = Aμ = o.
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Since we assume that BT has independent columns, we conclude that λ = o.
We have thus proved that the restriction of BA+BT to Ker(RT BT ) is positive
definite, so that θ|KerRT BT is by Proposition 2.5 strictly convex, and by
Corollary 2.3 it is strictly convex on

U = {λ ∈ R
m : RT BT λ = RTb}.

Since ΩBE �= ∅ and ΩBE ⊆ U , we have that θ is strictly convex on ΩBE , and
it follows by Proposition 2.4 that there is a unique solution λ̂ of (2.119).
(ii) Let λ̂ be a unique solution of problem (2.119). Since the solution satisfies
the related KKT conditions, it follows that there is α̂ such that

BA∗A
+BT λ̂ − (BA∗A

+b − cA) − BA∗Rα̂ = o.

After multiplying on the left by RT BT
A∗ and simple manipulations, we get

(2.120). The inverse exists and the solution α̂ is unique due to the uniqueness
of λ̂ and the assumption on the full column rank of BA∗R.
(iii) If BT and BE∗R are full column rank matrices, then BR is also a full
column rank matrix. Hence there is a unique solution λ̂ of problem (2.119)
by (i). Since E ⊆ A and BE∗R has independent columns, it follows that BA∗R
has also independent columns. Thus we can use (ii) to finish the proof. �

The reconstruction formula (2.120) can be modified in order to work when-
ever the dual problem has a solution λ. The resulting formula obtained by
analysis of the related KKT conditions then reads

α = (RT BT
A∗BA∗R)+RT BT

A∗
(
BA∗A

+BT λ − (BA∗A
+b− cA)

)
. (2.122)

The duality theory can be illustrated on a problem to find the displacement
x of an elastic body under traction b. After the finite element discretization,
we get a convex QP problem. We assume that the body is fixed on a part of
the boundary in normal direction, so that the vector of nodal displacements
satisfies BE∗x = cE as in Fig. 2.12. Moreover, the body may not be allowed
to penetrate an obstacle, so that BI∗x ≤ cI as in Fig. 2.11.

The displacement x of the body in equilibrium is a minimizer of the convex
energy function f . The Hessian A of f is positive semidefinite if the constraints
admit rigid body motions. The Lagrange multipliers solve the dual problem.
The condition RTb = RT BT λ̂ requires that the resulting forces are balanced
in the directions of the rigid body motions and λ̂I ≥ o guarantees that the
body is not glued to the obstacle. If the reaction forces BT λ̂ determine the
components of λ̂, then λ̂ is uniquely determined by the conditions of equi-
librium. Notice that BT λ̂ is always uniquely determined by the conditions of
equilibrium. If no rigid body motion is possible due to the active constraints
BA∗x = cA as in Fig. 2.11, then the displacement x is uniquely determined.
If this is not the case, then the displacement is determined up to some rigid
body motion as in Fig. 2.12.
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Fig. 2.11. Unique displacement Fig. 2.12. Nonunique displacement
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2.7 Linear Programming

We shall finish our review of optimization theory by recalling some results on
minimization of linear functions subject to linear constraints. More formally,
we shall look for the solution of linear programming problem to find

min
x∈ΩIE

�(x), ΩIE = {x ∈ R
n : [Cx]I ≥ dI , [Cx]E = dE}, (2.123)

where �(x) = fT x is a linear function defined by f ∈ R
n, C ∈ R

m×n is a
matrix with possibly dependent rows, d ∈ R

m, and I, E are disjoint sets of
indices which decompose {1, . . . , m}. As in the definition of (2.76), we admit
I = ∅ or E = ∅ and assume that ΩIE is not empty. Let us mention that (2.123)
may be easily reduced to the standard form (2.80) with CI∗ = In and dI = o.
Here we restrict our attention to the very basic results on linear programming
that we shall use in what follows. More information on linear programming
may be found, e.g., in the books by Gass [98], Chvátal [22], Bertsekas and
Tsitsiklis [13], Nocedal and Wright [155], or Vanderbei [177].

2.7.1 Solvability and Localization of Solutions

Let us recall that by Proposition 2.13 there exists a nonempty finite set of
n-vectors {x1, . . . ,xk} and a polyhedral cone C ⊂ R

n such that

ΩBI = C + Conv{x1, . . . ,xk};

hence any x ∈ ΩEI can be written in the form

x = αw +
k∑

i=1

αixi, w ∈ C, α ≥ 0,

k∑

i=1

αi = 1, 0 ≤ αi ≤ 1, i = 1, . . . , k.

The vectors {x1, . . . ,xk} can be chosen in such a way that none of the vectors
xi can be expressed as a convex combination of the remaining ones; the vectors



70 2 Optimization

{x1, . . . ,xk} are then called the vertices of the polyhedral set ΩBI . It follows
that

�(x) = α�(w) +
k∑

i=1

αi�(xi) ≥ α�(w) + αm�(xm),

where m is defined by

�(xm) ≤ �(xi), i = 1, . . . , k;

therefore (2.123) has a solution if and only if �(w) ≥ 0 for any w ∈ C, i.e., if �
is bounded from below on C. Moreover, if a solution exists, then it is achieved
in at least one vertex xi.

2.7.2 Duality in Linear Programming

Noticing that problem (2.123) can be considered as a special case of the bound
and equality constrained problem (2.76) with A = O, b = −f , B = −C, and
c = −d, we can get the following proposition on duality in linear programming
as a special case of Proposition 2.22.

Proposition 2.24. Let the matrix C, vectors f , d, and index sets I, E be those
of the definition of problem (2.123) with ΩIE �= ∅. Let let

ζ(λ) = λT d. (2.124)

Then the following statements hold:
(i) Problem (2.123) has a solution if and only if ΩIE �= ∅ and � is bounded
from below.
(ii) The dual problem

max
λ∈ΩBE

ζ(λ), ΩBE = {λ ∈ R
m : λI ≥ o, CT λ = f} (2.125)

has a solution if and only if ΩBE �= ∅ and ζ is bounded from above.
(iii) Problem (2.123) has a solution if and only if the dual problem (2.125)
has a solution.
(iv) A vector x is a solution of (2.123) if and only if λ is a solution of (2.125).
Moreover,

�(x) = ζ(λ). (2.126)

Proof. The statements (i) and (ii) can be considered as special cases of Frank–
Wolfe theorem [93]. See also Eaves [79] or Blum and Oettli [15]. To finish the
proof, consider problem (2.123) as a special case of (2.76) with A = O, b = −f ,
B = −C, and c = −d. Choose R = In and O+

nn = Onn. The statements (iii)
and (iv) then become special cases of Proposition 2.22. �



Part II

Algorithms



3

Conjugate Gradients for Unconstrained

Minimization

We shall begin our development of scalable algorithms by description of the
conjugate gradient method for the solution of

min
x∈Rn

f(x), (3.1)

where f(x) = 1
2x

T Ax− xTb, b is a given column n-vector, and A is an n× n
symmetric positive definite or positive semidefinite matrix. We are interested
especially in problems with n large and A sparse and reasonably conditioned.
We have already seen in Sect. 2.2.2 that (3.1) is equivalent to the solution of
a system of linear equations Ax = b, but our main goal here is not to solve
large systems of linear equations, but rather to describe our basic tool for
dealing with the auxiliary linear systems that are generated by algorithms for
the solution of constrained quadratic programming problems.

We shall use the conjugate gradient (CG) method as an iterative method
which generates improving approximations to the solution at each step. The
cost of one step of the CG method is typically dominated by the cost of the
multiplication of a vector by the matrix A, which is proportional to the number
of nonzero entries of A. The memory requirements are also proportional to the
number of nonzero entries of A.

To develop optimal algorithms for more general quadratic programming
problems, it is important that the rate of convergence of the conjugate gradi-
ent method depends on the distribution of the spectrum of A. In particular,
given a positive interval [amin, amax] with the spectrum of A, it is possible to
give a bound in terms of amax/amin on a number of the conjugate gradient
iterations that are necessary to solve problem (3.1) to a given relative pre-
cision. It is also important that the number of steps that are necessary to
obtain an approximate solution of a given problem is typically proportional
to the logarithm of prescribed precision, so that the algorithm can return a
low-precision solution at a reduced time.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 3,
c© Springer Science+Business Media, LLC 2009
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Overview of Algorithms

The first algorithm of this chapter is the method of conjugate directions defined
by the two simple formulae (3.6). The algorithm assumes that we are given
an A-orthogonal basis of R

n, leaving open the problem how to get it.
The conjugate gradient algorithm, Algorithm 3.1, the main hero of this

chapter, combines the conjugate gradient direction method with a clever con-
struction of conjugate directions. It is the best method as it exploits effectively
all the information gathered during the solution in order to maximize the de-
crease of the cost function. The CG method can be considered both as a direct
method and an iterative method.

A step of the restarted conjugate gradient method described in Sect. 3.4
comprises a fixed number of the conjugate gradient steps. Such algorithm is
more robust, but usually less efficient. If the chain of the CG iterations reduces
to just one iteration, we get the gradient method, known also as the method
of the steepest descent. It is the most robust and most simple variant of the
restarted CG method. See Algorithm 3.2 for a more formal description.

If we are able to find an easily invertible approximation of the Hessian,
we can use it to improve the performance of the CG method in the precon-
ditioned conjugate gradient method described in Sect. 3.6 as Algorithm 3.3.
The construction of preconditioners is problem dependent. The precondition-
ing by a conjugate projector described in Sect. 3.7 as Algorithm 3.4 is useful
in the minimization problems arising from the discretization of elliptic partial
differential equations and variational inequalities.

3.1 Conjugate Directions and Minimization

The conjugate gradient method, an ingenious and powerful engine of our al-
gorithms, is based on simple observations. In this section we examine the first
one, namely, that it is possible to reduce the solution of (3.1) to the solution
of a sequence of one-dimensional problems.

Let A ∈ R
n×n be an SPD matrix and let us assume that there are nonzero

n-vectors p1, . . . ,pn such that

(pi,pj)A = (pi)T Apj = 0 for i �= j.

We call such vectors A-conjugate or briefly conjugate. Specializing the argu-
ments of Sect. 1.7, we get that p1, . . . ,pn are independent. Thus p1, . . . ,pn

form the basis of R
n and any x ∈ R

n can be written in the form

x = ξ1p1 + · · · + ξnpn.

Substituting into f and using the conjugacy results in

f(x) =
(

1
2
ξ2
1(p1)T Ap1 − ξ1bTp1

)
+ · · · +

(
1
2
ξ2
n(pn)T Apn − ξnbTpn

)

= f(ξ1p1) + · · · + f(ξnpn).
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Thus
f(x̂) = min

x∈Rn
f(x) = min

ξ1∈R

f(ξ1p1) + · · · + min
ξn∈R

f(ξnpn).

We have thus managed to decompose the original problem (3.1) into n
one-dimensional problems. Since

df
(
ξpi

)

dξ

∣∣∣∣
ξi

= ξi(pi)T Api − bTpi = 0,

the solution x̂ of (3.1) is given by

x̂ = ξ1p1 + · · · + ξnpn, ξi = bTpi/(pi)T Api, i = 1, . . . , n. (3.2)

If the dimension of problem (3.1) is large, the task to evaluate x̂ may be
too ambitious. In this case it may be useful to modify the procedure that
we have just described so that it can be used to find an approximation x̃ to
the solution x̂ for (3.1) by means of some initial guess x0 and a few vectors
p1, . . . ,pk, k � n. A natural choice for the approximation x̃ is the minimizer
xk of f in Sk = x0 +Span{p1, . . . ,pk}. To find it, notice that any x ∈ Sk can
be written in the form

x = x0 + ξ1p1 + · · · + ξkpk,

so, after substituting into f and using that p1, . . . ,pk are conjugate, we get

f(x) = f(x0) +
(

1
2
ξ2
1(p1)T Ap1 + ξ1

(
Ax0 − b

)T
p1

)
+ . . .

+
(

1
2
ξ2
k(pk)T Apk + ξk

(
Ax0 − b

)T
pk

)
.

Denoting g0 = g(x0) = ∇f(x0) = Ax0 − b and

f0(x) =
1
2
xT Ax + xTg0,

we have
f(x) = f(x0) + f0(ξ1p1) + · · · + f0(ξkpk)

and

f(xk) = min
x∈Sk

f(x) = f(x0) + min
ξ1∈R

f0(ξ1p1) + · · · + min
ξk∈R

f0(ξkpk). (3.3)

We have thus again reduced our problem to the solution of a sequence of
simple one-dimensional problems. The approximation xk is given by

xk = x0 + ξ1p1 + · · ·+ ξkpk, ξi = −(g0)Tpi/(pi)T Api, i = 1, . . . , k, (3.4)
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as
df

(
ξpi

)

dξ

∣∣∣∣
ξi

= ξi(pi)T Api + (g0)Tpi = 0.

Since by (3.3) for k ≥ 1

f(xk) = min
x∈Sk

f(x) = f(xk−1) + min
ξ∈R

f0(ξpk), (3.5)

we can generate the approximations xk iteratively. The conjugate direction
method starts from an arbitrary initial guess x0. If xk−1 is given, then xk is
generated by the formula

xk = xk−1 − αkpk, αk = (g0)T pi/(pi)T Api. (3.6)

Thus f(xk−1 + ξpk) achieves its minimum at ξ = −αk and the procedure
guarantees that the successive iterates xk minimize f over a progressively
expanding manifold Sk that eventually includes the global minimum of f .

The coefficients αk can be evaluated by alternative formulae. For example,
using Corollary 2.9 and the definition of Sk, we get

(gk)T pi = 0, i = 1, . . . , k. (3.7)

Since for i ≥ 1

gi = Axi − b = A
(
xi−1 − αipi

)
− b =

(
Axi−1 − b

)
− αiApi

= gi−1 − αiApi,

we get for k ≥ 1 and i = 1, . . . , k − 1, by using the conjugacy, that

(gi)T pk = (gi−1)T pk − αi(pi)T Apk = (gi−1)T pk.

Thus
(g0)T pk = (g1)Tpk = · · · = (gk−1)Tpk

and

αk =
(g0)Tpk

(pk)T Apk
= · · · =

(gk−1)T pk

(pk)T Apk
. (3.8)

Combining the latter formula with the Taylor expansion, we get

f
(
xk
)

= f
(
xk−1

)
− 1

2

((
gk−1

)T
pk
)2

(pk)T
Apk

. (3.9)

So far, we have not discussed how to get the vectors p1, . . . ,pn. Are we
able to generate them efficiently? Positive answer in the next section is a key
to the success of the conjugate gradient method.
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3.2 Generating Conjugate Directions and Krylov Spaces

Let us now recall how to generate conjugate directions with the Gramm–
Schmidt procedure. Let us first suppose that p1, . . . ,pk are nonzero conjugate
directions, 1 ≤ k < n, and let us examine how to use hk /∈ Span{p1, . . . ,pk}
to generate a new member pk+1 in the form

pk+1 = hk + βk1p1 + · · · + βkkpk. (3.10)

Since pk+1 should be conjugate to p1, . . . ,pk, we get

0 = (pi)T Apk+1 = (pi)T Ahk + βk1(pi)T Ap1 + · · · + βkk(pi)T Apk

= (pi)T Ahk + βki(pi)T Api, i = 1, . . . , k.

Thus

βki = − (pi)T Ahk

(pi)T Api
, i = 1, . . . , k. (3.11)

Obviously
Span{p1, . . . ,pk+1} = Span{p1, . . . ,pk,hk}.

Therefore, given any independent vectors h0, . . . ,hk−1, we can start from
p1 = h0 and use (3.10) and (3.11) to construct a set of mutually A-conjugate
directions p1, . . . ,pk such that

Span{h0, . . . ,hi−1} = Span{p1, . . . ,pi}, i = 1, . . . , k.

For h0, . . . ,hk−1 arbitrary, the construction is increasingly expensive as
it requires both the storage for the vectors p1, . . . ,pk and heavy calculations
including evaluation of k(k +1)/2 scalar products. However, it turns out that
we can adapt the procedure so that it generates very efficiently the conjugate
basis of the Krylov spaces

Kk = Kk(A,g0) = Span{g0, Ag0, . . . , Ak−1g0}, k = 1, . . . , n,

with g0 = Ax0 − b defined by a suitable initial vector x0 and K0 = {o}. The
powerful method is again based on a few simple observations.

First assume that p1, . . . ,pi form a conjugate basis of Ki, i = 1, . . . , k, and
observe that if xk denotes the minimizer of f on x0+Kk, then by Corollary 2.9
the gradient gk = ∇f(xk) is orthogonal to the Krylov space Kk, that is,

(gk)T x = 0 for any x ∈ Kk.

In particular, if gk �= o, then
gk /∈ Kk.

Since gk ∈ Kk+1, we can use (3.10) with hk = gk to expand any conjugate
basis of Kk to the conjugate basis of Kk+1. Obviously
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Kk(A,g0) = Span{g0, . . . ,gk−1}.

Next observe that for any x ∈ Kk−1 and k ≥ 1

Ax ∈ Kk,

or briefly AKk−1 ⊆ Kk. Since pi ∈ Ki ⊆ Kk−1, i = 1, . . . , k − 1, we have

(Api)T gk = (pi)T Agk = 0, i = 1, . . . , k − 1.

It follows that

βki = − (pi)T Agk

(pi)T Api
= 0, i = 1, . . . , k − 1.

Summing up, if we have a set of such conjugate vectors p1, . . . ,pk that

Span{p1, . . . ,pi} = Ki, i = 1, . . . k,

then the formula (3.10) applied to p1, . . . ,pk and hk = gk simplifies to

pk+1 = gk + βkpk (3.12)

with

βk = βkk = − (pk)T Agk

(pk)T Apk
. (3.13)

Finally, observe that the orthogonality of gk to Span{p1, . . . ,pk} and
(3.12) imply that

‖pk+1‖ ≥ ‖gk‖. (3.14)

In particular, if gk−1 �= o, then pk �= o, so the formula (3.13) is well defined
provided gk−1 �= o.

3.3 Conjugate Gradient Method

In the previous two sections, we have found that the conjugate directions can
be used to reduce the minimization of any convex quadratic function to the
solution of a sequence of one-dimensional problems, and that the conjugate
directions can be generated very efficiently. The famous conjugate gradient
(CG) method just puts these two observations together.

The algorithm starts from an initial guess x0, g0 = Ax0 −b, and p1 = g0.
If xk−1 and gk−1 are given, k ≥ 1, it first checks if xk−1 is the solution. If
not, then the algorithm generates

xk = xk−1 − αkpk with αk = (gk−1)Tpk/(pk)T Apk

and
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gk = Axk − b = A
(
xk−1 − αkpk

)
− b =

(
Axk−1 − b

)
− αkApk

= gk−1 − αkApk.
(3.15)

Finally the new conjugate direction pk+1 is generated by (3.12) and (3.13).
The decision if xk−1 is an acceptable solution is typically based on the

value of ‖gk−1‖, so the norm of the gradient must be evaluated at each step.
It turns out that the norm can also be used to replace the scalar products
involving the gradient in the definition of αk and βk. To find the formulae, let
us replace k in (3.12) by k−1 and multiply the resulting identity by (gk−1)T .
Using the orthogonality, we get

(gk−1)T pk = ‖gk−1‖2 + βk−1(gk−1)T pk−1 = ‖gk−1‖2, (3.16)

so by (3.8)

αk =
‖gk−1‖2

(pk)T Apk
. (3.17)

To find an alternative formula for βk, notice that αk > 0 for gk−1 �= o and
that by (3.15)

Apk =
1
αk

(gk−1 − gk),

so that
αk(gk)T Apk = (gk)T (gk−1 − gk) = −‖gk‖2

and

βk = − (pk)T Agk

(pk)T Apk
=

‖gk‖2

αk(pk)T Apk
=

‖gk‖2

‖gk−1‖2
. (3.18)

The complete CG method is presented as Algorithm 3.1.

Algorithm 3.1. Conjugate gradient method (CG).

Given a symmetric positive definite matrix A ∈ R
n×n and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, p1 = g0, k = 1

Step 1. {Conjugate gradient loop. }
while ‖gk−1‖ > 0

αk = ‖gk−1‖2/(pk)T Apk

xk = xk−1 − αkp
k

gk = gk−1 − αkApk

βk = ‖gk‖2/‖gk−1‖2 = −(Apk)T gk/
(
(pk)T Apk

)

pk+1 = gk + βkp
k

k = k + 1
end while

Step 2. {Return the solution.}
x̂ = xk
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Each step of the CG method can be implemented with just one matrix–
vector multiplication. This multiplication by the Hessian matrix A typically
dominates the cost of the step. Only one generation of vectors xk,pk, and gk

is typically stored, so the memory requirements are modest.
Let us recall that the algorithm finds at each step the minimizer xk of f

on x0 + Kk = x0 + Kk(A,g0) and expands the conjugate basis of Kk to that
of Kk+1 provided gk �= o. Since the dimension of Kk is less than or equal to
k, it follows that for some k ≤ n

Kk = Kk+1.

Since gk ∈ Kk+1 and gk is orthogonal to Kk, Algorithm 3.1 implemented in
the exact arithmetics finds the solution x̂ of (3.1) in at most n steps. We can
sum up the most important properties of Algorithm 3.1 into the following
theorem.

Theorem 3.1. Let {xk} be generated by Algorithm 3.1 to find the solution
x̂ of (3.1) starting from x0 ∈ R

n. Then the algorithm is well defined and
there is k ≤ n such that xk = x̂. Moreover, the following statements hold for
i = 1, . . . , k:

(i) f(xi) = min{f(x) : x ∈ x0 + Ki(A,g0)}.
(ii) ‖pi+1‖ ≥ ‖gi‖.
(iii) (gi)T gj = 0 for i �= j.
(iv) (pi)T Apj = 0 for i �= j.
(v) Ki(A,g0) = Span{g0, . . . ,gi−1} = Span{p1, . . . ,pi}.

It is usually sufficient to find xk such that ‖gk‖ is small. For example,
given a small ε > 0, we can consider gk small if

‖gk‖ ≤ ε‖b‖.

Then x̃ = xk is an approximate solution which satisfies

‖A(x̃ − x̂)‖ ≤ ε‖b‖, ‖x̃ − x̂‖ ≤ ελmin(A)−1,

where λmin(A) denotes the least eigenvalue of A. It is easy to check that the
approximate solution x̃ solves the perturbed problem

min
x∈Rn

f̃(x) =
1
2
xT Ax − b̃T x, b̃ = b + gk.

What is “small” depends on the problem solved. To keep our exposition gen-
eral, we shall often not specify the test in what follows. Of course gk = o is
always considered small.
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3.4 Restarted CG and the Gradient Method

Given an approximation x0 of the solution x̂, we can use k conjugate gradient
iterations to find an improved approximation xk. Repeating the procedure
with x0 = xk, we get the restarted conjugate gradient method.

A special case with k = 1 and p1 = ∇f(x0) is of independent interest.
Given xk, the gradient method (also called the steepest descent method) gen-
erates xk+1 by

xk+1 = arg min
α∈R

f(xk − αgk), gk = ∇f(xk).

The name “steepest descent” is derived from observation that the linear model
of f at x achieves its minimum on the set of all unit vectors

U = {d ∈ R
n, ‖d‖ = 1}

at d̂ = −‖∇f(x)‖−1∇f(x). Indeed, for any d ∈ U

∇f(x)T d ≥ −‖∇f(x)‖‖d‖ = −‖∇f(x)‖ = ∇f(x)T d̂.

The complete steepest descent method reads as follows:

Algorithm 3.2. Gradient (steepest descent) method.

Given a symmetric positive definite matrix A ∈ R
n×n and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, k = 0

Step 1. {Steepest descent loop. }
while ‖gk‖ is not small

αk = ‖gk‖2/(gk)T Agk

xk+1 = xk − αkg
k

gk+1 = gk − αkAgk

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk

The gradient method is known to converge, but its convergence is for ill-
conditioned problems considerably slower than that of the conjugate gradient
method, as we shall see in the next section. The slow convergence is illustrated
in Fig. 3.1.

In spite of its slow convergence, the gradient method is useful as it is easy
to implement and uses a robust decrease direction. It is illustrated in Fig. 3.2
that even if ∂g is a relatively large perturbation of the gradient g, the vector
−g− ∂g is still a decrease direction, while a small perturbation ∂p of the CG
direction p can cause that −p− ∂p is not a decrease direction.
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f(x) = c

x̂

Fig. 3.1. Slow convergence of the steepest descent method

f(x) = c
x̂

−g − ∂g−p − ∂p

−p

−g

Fig. 3.2. Robustness of the gradient and CG decrease directions g and p

3.5 Rate of Convergence and Optimality

Although the conjugate gradient method finds by Theorem 3.1 the exact so-
lution x̂ of (3.1) in a number of steps which does not exceed the dimension of
the problem, it turns out that it can often produce a sufficiently accurate ap-
proximation x̃ of x̂ in a much smaller number of steps than required for exact
termination. This observation suggests that the conjugate gradient method
may also be considered as an iterative method. In this section we present the
results which substantiate this claim and help us to identify the favorable
cases.

3.5.1 Min-max Estimate

Let us denote the solution error as

e = e(x) = x − x̂

and observe that
g(x̂) = Ax̂ − b = o.

It follows that

gk = Axk − b = Axk − Ax̂ = A(xk − x̂) = Aek,

so in particular

Kk(A,g0) = Span{g0, Ag0, . . . , Ak−1g0} = Span{Ae0, . . . , Ake0}.
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We start our analysis of the solution error by using the Taylor expansion
(2.5) to obtain the identity

f(x) − f(x̂) = f(x̂ + (x − x̂)) − f(x̂)

= f(x̂) + g(x̂)T (x − x̂) +
1
2
‖x− x̂‖2

A − f(x̂)

=
1
2
‖x − x̂‖2

A =
1
2
‖e‖2

A.

Combining the latter identity with Theorem 3.1, we get

‖ek‖2
A = 2

(
f(xk) − f(x̂)

)
= min

x∈x0+Kk(A,g0)
2 (f(x) − f(x̂))

= min
x∈x0+Kk(A,g0)

‖x− x̂‖2
A = min

x∈x0+Kk(A,g0)
‖e(x)‖2

A.

Since any x ∈ x0 + Kk(A,g0) may be written in the form

x = x0 + ξ1g0 + ξ2Ag0 + · · · + ξkAk−1g0 = x0 + ξ1Ae0 + · · · + ξkAke0,

it follows that

x − x̂ = e0 + ξ1Ae0 + · · · + ξkAke0 = p(A)e0,

where p denotes the polynomial defined for any x ∈ R by

p(x) = 1 + ξ1x + ξ2x
2 + · · · + ξkxk.

Thus denoting by Pk the set of all kth degree polynomials p which satisfy
p(0) = 1, we have

‖ek‖2
A = min

x∈x0+Kk(A,g0)
‖e(x)‖2

A = min
p∈Pk

‖p(A)e0‖2
A. (3.19)

We shall now derive a bound on the expression on the right-hand side of
(3.19) that depends on the spectrum of A, but is independent of the direc-
tion of the initial error e0. Let a spectral decomposition of A be written as
A = UDUT , where U is an orthogonal matrix and D =diag(λ1, . . . , λn) is
a diagonal matrix defined by the eigenvalues of A. Since A is assumed to be
positive definite, the square root of A is well defined by

A
1
2 = UD

1
2 UT .

Using p(A) = Up(D)UT , it is also easy to check that

A
1
2 p(A) = p(A)A

1
2 .

Moreover, for any vector v ∈ R
n

‖v‖2
A = vT Av = vT A

1
2 A

1
2 v = (A

1
2 v)T A

1
2 v = ‖A 1

2 v‖2.
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Using the latter identities, (3.19), and the properties of norms, we get

‖ek‖2
A = min

p∈Pk
‖p(A)e0‖2

A = min
p∈Pk

‖A 1
2 p(A)e0‖2 = min

p∈Pk
‖p(A)A

1
2 e0‖2

≤ min
p∈Pk

‖p(A)‖2‖A 1
2 e0‖2 = min

p∈Pk
‖p(D)‖2‖e0‖2

A.

Since
‖p(D)‖ = max

i∈{1,...,n}
|p(λi)|,

we can write
‖ek‖A ≤ min

p∈Pk
max

i∈{1,...,n}
|p(λi)| ‖e0‖A. (3.20)

3.5.2 Estimate in the Condition Number

The estimate (3.20) reduces the analysis of convergence of the CG method to
the analysis of approximation of the zero function on the spectrum of A by
a kth degree polynomial with the value one at origin. This result helps us to
identify the favorable cases when the conjugate gradient method is effective.
For example, if the spectrum of A is clustered around a single point ξ, then
the minimization by the CG should be very effective because |(1 − x/ξ)k| is
small near ξ. We shall use (3.20) to get a “global” estimate of the rate of
convergence of the CG method in terms of the condition number of A.

Theorem 3.2. Let {xk} be generated by Algorithm 3.1 to find the solution x̂
of (3.1) starting from x0 ∈ R

n. Then the error

ek = xk − x̂

satisfies

‖ek‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

‖e0‖A, (3.21)

where κ(A) denotes the spectral condition number of A.

Proof. First notice that if Pk is the set of all kth degree polynomials p such
that p(0) = 1, then for any t ∈ Pk

min
p∈Pk

max
λ∈[λmin,λmax]

|p(λ)| ≤ max
λ∈[λmin,λmax]

|t(λ)|. (3.22)

A natural choice for t is the kth (weighted and shifted) Chebyshev polynomial
on the interval [λmin, λmax]

tk(λ) = Tk

(
2λ − λmax − λmin

λmax − λmin

)
/Tk

(
−λmax + λmin

λmax − λmin

)
,
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where Tk(x) is the Chebyshev polynomial of the first kind on the interval
[−1, 1] given by

Tk(x) =
1
2

(
x +

√
x2 − 1

)k

+
1
2

(
x −

√
x2 − 1

)k

.

This tk is known to minimize the right-hand side of (3.22) (see, e.g., [172]).
Obviously tk ∈ Pk, so that we can use its well-known properties to get

max
λ∈[λmin,λmax]

|tk(λ)| = 1/Tk

(
λmax + λmin

λmax − λmin

)
.

Simple manipulations then show that

Tk

(
λmax + λmin

λmax − λmin

)
=

1
2

(√
κ(A) + 1√
κ(A) − 1

)k

+
1
2

(√
κ(A) − 1√
κ(A) + 1

)k

.

Thus for any λ ∈ [λmin, λmax]

|pk(λ)| ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

.

Substituting this bound into (3.20) then gives the required result. �

The estimate (3.21) can be improved for some special distributions of
the eigenvalues. For example, if the spectrum of A is in a positive interval
[amin, amax] except for m isolated eigenvalues λ1, . . . , λm, then we can use
special polynomials p ∈ Pk+m of the form

p(λ) =
(

1 − λ

λ1

)
. . .

(
1 − λ

λm

)
q(λ), q ∈ Pk

to get the estimate

‖ek+m‖A ≤ 2

(√
κ̃ − 1√
κ̃ + 1

)k

‖e0‖A, (3.23)

where κ̃ = amax/amin.
If the spectrum of A is distributed in two positive intervals [amin, amax]

and [amin + d, amax + d], d > 0, then

‖ek‖A ≤ 2
(√

κ − 1√
κ + 1

)k

‖e0‖A, (3.24)

where κ = 4amax/amin approximates the effective condition number of a ma-
trix A with the spectrum in [amin, amax]∪ [amin + d, amax + d]. An interesting
feature of the estimates (3.23) and (3.24) is that the upper bound is inde-
pendent of the values of some eigenvalues or d. The proofs of the above and
some other interesting estimates can be found in papers by Axelsson [3] and
Axelsson and Lindskøg [5].
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3.5.3 Convergence Rate of the Gradient Method

Observing that the step of the gradient method defined by Algorithm 3.2 is
just the first step of the CG algorithm, we can use the results of Sect. 3.5.1
to find the rate of convergence of the gradient method. The estimate is for-
mulated in the following proposition.

Proposition 3.3. Let {xk} be generated by Algorithm 3.2 to find the solution
x̂ of (3.1) starting from x0 ∈ R

n. Then the error

ek = xk − x̂

satisfies

‖ek‖A ≤
(

κ(A) − 1
κ(A) + 1

)k

‖e0‖A, (3.25)

where κ(A) denotes the spectral condition number of A.

1

0

−1

p

λmin + λmax

λmin λmax

Fig. 3.3. The best approximation of zero on σ(A) by linear polynomial with p(0) = 1

Proof. Let xk+1 be generated by the gradient method from xk ∈ R
n and let

P1 denote the set of all linear polynomials p such that p(0) = 1. Then the
energy norm ‖ek‖A of the error

ek = xk − x̂

is by (3.20) reduced by a factor which can be estimated from

‖ek+1‖A ≤ min
p∈P1

max
i∈{1,...,n}

|p(λi)| ‖ek‖A = min
ξ1∈R

max
i={1,...,n}

|ξ1λi + 1| ‖ek‖A.

Using elementary properties of linear functions or Fig. 3.3, we get that the
minimizer ξ1 satisfies
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ξ1λmin + 1 = −(ξ1λmax + 1).

It follows that
ξ1 = −2/(λmin + λmax)

and

‖ek+1‖A ≤
(

−2λmin

λmin + λmax
+ 1

)
‖ek‖A =

λmax − λmin

λmax + λmin
‖ek‖A. (3.26)

The estimate (3.25) can be obtained from (3.26) by simple manipulations. �

Notice that the estimate (3.21) for the first step of the conjugate gradi-
ent method may give worse bound than the estimate (3.25) for the gradient
method, but for large k, the estimate (3.21) for the kth step of the conjugate
gradient method is much better than the estimate (3.25) for the kth step of the
gradient method. The reason is that (3.21) captures the global performance of
the CG method, in particular its capability to exploit the information from the
previous steps, while (3.25) is based on analysis of just one step, in agreement
with the one-step information used by the gradient method.

3.5.4 Optimality

Theorem 3.2 implies an easy optimality result concerning the number of iter-
ations of the CG algorithm. To formulate it, let T denote any set of indices
and assume that for any t ∈ T there is defined the problem

minimize ft(x)

with ft(x) = 1
2x

T Atx − bT
t x, At ∈ R

nt×nt symmetric positive definite, and
bt,x ∈ R

nt . Moreover, assume that the eigenvalues of any At are in the interval
[amin, amax], 0 < amin ≤ amax. Then the number of the CG iterations that
are necessary to reduce the error by a given factor ε is uniformly bounded. It
easily follows that the CG algorithm starting from x0

t = o finds xk
t such that

‖Atxk
t − bt‖ ≤ ε‖bt‖

at O(1) iterations. It follows that if the matrices At have O(nt) elements, then
we can get approximate solutions at the optimal O(nt) arithmetic operations.

3.6 Preconditioned Conjugate Gradients

The analysis of the previous section shows that the rate of convergence of the
conjugate gradient algorithm depends on the distribution of the eigenvalues of
the Hessian A of f . In particular, we argued that CG converges very rapidly
if the eigenvalues of A are clustered around one point, i.e., if the condition
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number κ(A) is close to one. We shall now show that we can reduce our
minimization problem to this favorable case if we have a symmetric positive
definite matrix M such that M−1x can be easily evaluated for any x and M
approximates A in the sense that M−1A is close to the identity.

First assume that M is available in the form

M = L̃L̃T ,

so that M−1A is similar to L̃−1AL̃−T and the latter matrix is close to the
identity. Then

f(x) =
1
2
(L̃T x)T (L̃−1AL̃−T )(L̃T x) − (L̃−1b)T (L̃Tx)

and we can replace our original problem (3.1) by the preconditioned problem
to find

min
y∈Rn

f̄(y), (3.27)

where we substituted y = L̃T x and set

f̄(y) =
1
2
yT (L̃−1AL̃−T )y − (L̃−1b)T y.

The solution ŷ of the preconditioned problem (3.27) is related to the solution
x̂ of the original problem by

x̂ = L̃−T ŷ.

If the CG algorithm is applied directly to the preconditioned problem
(3.27) with a given y0, then the algorithm is initialized by

y0 = L̃T x0, ḡ0 = L̃−1AL̃−T y0 − L̃−1b = L̃−1g0, and p̄1 = ḡ0;

the iterates are defined by

ᾱk = ‖ḡk−1‖2/(p̄k)T L̃−1AL̃−T p̄k,

yk = yk−1 − ᾱkp̄k,

ḡk = ḡk−1 − ᾱkL̃−1AL̃−T p̄k,

β̄k = ‖ḡk‖2/‖ḡk−1‖2,

p̄k+1 = ḡk + β̄kp̄k.

Substituting

yk = L̃Txk, ḡk = L̃−1gk, and p̄k = L̃Tpk,

and denoting
zk = L̃−T L̃−1gk = M−1gk,

we obtain the preconditioned conjugate gradient algorithm (PCG) in the orig-
inal variables.
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Algorithm 3.3. Preconditioned conjugate gradient method (PCG).

Given a symmetric positive definite matrix A ∈ R
n×n, its symmetric positive

definite approximation M ∈ R
n×n, and b ∈ R

n.

Step 0. {Initialization.}
Choose x0 ∈ R

n, set g0 = Ax0 − b, z0 = M−1g0, p1 = z0, k = 1

Step 1. {Conjugate gradient loop.}
while ‖gk−1‖ is not small

αk = (zk−1)T gk−1/(pk)T Apk

xk = xk−1 − αkp
k

gk = gk−1 − αkApk

zk = M−1gk

βk = (zk)T gk/(zk−1)T gk−1

pk+1 = zk + βkp
k

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk

Notice that the PCG algorithm does not exploit explicitly the Cholesky
factorization of the preconditioner M. The pseudoresiduals zk are typically ob-
tained by solving Mzk = gk. If M is a good approximation of A, then zk is close
to the error vector ek. The rate of convergence of the PCG algorithm depends
on the condition number of the Hessian of the transformed function f̄ , i.e., on
κ(M−1A) = κ(L̃−1AL̃−T ). Thus the efficiency of the preconditioned conjugate
gradient method depends critically on the choice of a preconditioner, which
should balance the cost of its application with the preconditioning effect. We
refer interested readers to specialized books like Saad [163] or Axelsson [4]
for more information. Since the choice of the preconditioner is problem de-
pendent, we limit our attention here to the brief discussion of a few general
strategies.

The most simple preconditioners may be defined by means of the decom-
position

A = D + E + ET ,

where D is the diagonal of A and E is its strict lower part with the entries
[E]ij = [A]ij for i > j and [E]ij = 0 otherwise.

The Jacobi preconditioner MJ = D is the easiest one to implement, but
its efficiency is very limited. Better approximation of A can be achieved by
choosing the block diagonal Jacobi preconditioner

MBJ =

⎡

⎢⎢⎣

A11 O . . . O
O A22 . . . O
. . . . . .
O O . . . Akk

⎤

⎥⎥⎦ , (3.28)
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where Aii are diagonal blocks of A (see, e.g., Greenbaum [106, Sect. 10.5]).
The pseudoresiduals zk are typically obtained by solving Aiizk

i = gk
i .

Good results may be often achieved with the symmetric Gauss-Seidel pre-
conditioner

MSGS = (D + E)D−1(D + ET ).

Notice that
L̃ = (D + E)D− 1

2

is a regular lower triangular matrix, so we have the triangular factorization

MSGS = L̃L̃T

for free.
More generally, the factorized preconditioners can be produced by incom-

plete Cholesky (IC) which neglects some fill-in elements in the factor L. When
the elements of L are neglected because they are smaller than a certain thresh-
old, the factorization is called “IC-by-value”, and when they are omitted
because they do not belong to a certain sparsity pattern, we have “IC-by-
position”. See for example Axelsson [4] or Saad [163]. The drawback of this
method is that it can fail on the generation of diagonal entries.

3.7 Preconditioning by Conjugate Projector

So far we have assumed that the preconditioners to a symmetric positive
definite matrix A are nonsingular matrices that approximate A. In this section
we describe an alternative strategy which is useful when we are able to find
the minimizer x0 of f over a subspace U of R

n. We shall show that in this
case we can get the preconditioning effect by reducing the conjugate gradient
iterations to the conjugate complement of U .

3.7.1 Conjugate Projectors

Our main tools will be the projectors with conjugate range and kernel. We
shall use the basic relations introduced in Sect. 1.3 and some observations
that we review in this subsection.

Let A ∈ R
n×n be a symmetric positive definite matrix. A projector P is an

A-conjugate projector or briefly a conjugate projector if ImP is A-conjugate
to KerP, or equivalently

PT A(I − P) = PT A − PT AP = O.

It follows that Q = I − P is also a conjugate projector,

PT A = AP = PT AP, and QT A = AQ = QT AQ. (3.29)
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Let us denote V = ImQ. If x ∈ AV , then y = Qx satisfies y ∈ V and

QT AQx = AQx = Ay,

so that
QT AQ(AV) ⊆ AV . (3.30)

Thus AV is an invariant subspace of QT AQ.
The following lemma shows that the mapping which assigns to each x ∈ AV

the vector Qx ∈ V is expansive as in Fig. 3.4.

AV
V

U

Q

P

Fig. 3.4. Geometric illustration of Lemma 3.4

Lemma 3.4. Let Q denote a conjugate projector on V and x ∈ AV. Then

‖Qx‖ ≥ ‖x‖.

Proof. For any x ∈ AV , there is y ∈ R
n such that x = AQy. It follows that

QTx = QT AQy = AQy = x.

Since xT Qx = xT QT x = ‖x‖2, we have

‖Qx‖2 = xT QT Qx = xT
(
(QT − I) + I

)
((Q − I) + I)x = ‖(Q − I)x‖2 + ‖x‖2.

�

3.7.2 Minimization in Subspace

Let us assume that U is the subspace spanned by the columns of a full column
rank matrix U ∈ R

n×n and notice that UT AU is regular. Indeed, if UT AUx = o,
then
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‖Ux‖2
A = xT (UT AUx) = 0,

so x = o by the assumptions that U is the full column rank matrix and A is
SPD. Thus we can define

P = U(UT AU)−1UT A.

It is easy to check directly that P is a conjugate projector onto U as

P2 = U(UT AU)−1UT AU(UT AU)−1UT A = P

and
PT A(I − P) = AU(UT AU)−1UT A(I − U(UT AU)−1UT A) = O.

Since any vector x ∈ U can be written in the form x = Uy, y ∈ R
m, and

Px = U(UT AU)−1UT AUy = Uy = x,

it follows that
U = ImP.

The conjugate projector P onto U can be used for the solution of

min
x∈U

f(x) = min
y∈Rm

f(Uy) = min
y∈Rm

1
2
yT UT AUy − bT Uy.

Using the gradient argument of Proposition 2.1, we get that the minimizer y0

of the latter problem satisfies

UT AUy0 = UTb, (3.31)

so that the minimizer x0 of f over U satisfies

x0 = Uy0 = U(UT AU)−1UTb = PA−1b. (3.32)

Our assumption concerning the ability to find the minimum of f over U
effectively amounts to the assumption that we are able to solve (3.31). Notice
that we can evaluate the product PA−1b without solving any system of linear
equations with the matrix A.

3.7.3 Conjugate Gradients in Conjugate Complement

In the next step we shall use the conjugate projectors P and Q = I − P to
decompose our minimization problem (3.1) into the minimization on U and
the minimization on V = ImQ. We shall use the conjugate gradient method
to solve the latter problem.

Two observations are needed to exploit the special structure of our prob-
lem. First, using Lemma 3.4, dimV = dimAV , and (1.2), we get that the
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mapping which assigns to each x ∈ AV a vector Qx ∈ V is an isomorphism,
so that

Q(AV) = V .

Second, using (3.29) and (3.32), we get

g0 = Ax0 − b = APA−1b − b = PTb − b = −QTb. (3.33)

Using both observations, we get

min
x∈Rn

f(x) = min
y∈U ,z∈V

f(y + z) = min
y∈U

f(y) + min
z∈V

f(z)

= f(x0) + min
z∈V

f(z) = f(x0) + min
x∈AV

1
2
xT QT AQx − bT Qx

= f(x0) + min
x∈AV

1
2
xT QT AQx +

(
g0
)T

x, (3.34)

where x0 is determined by (3.32).
It remains to solve the minimization problem (3.34). First observe that

using Lemma 3.4, we get that QT AQ|AV is positive definite. Since by (3.33)
g0 ∈ ImQT ,

ImQT = Im(QT A) = Im(AQ) = AV , (3.35)

and AV is an invariant subspace of QT AQ, we can use the procedure described
in Sect. 3.2 to generate QT AQ-conjugate vectors p1, . . . ,pk of

Kk = Kk(QT AQ,g0) = Span{g0, QT AQg0, . . . , (QT AQ)k−1g0}.

It simply follows that

q1 = Qp1,q2 = Qp2, . . .

are A-conjugate vectors of V . Using (3.14), pi ∈ AV , and Lemma 3.4, it is
easy to see that

‖qk‖ ≥ ‖pk‖ ≥ ‖gk−1‖,
so that we can generate a new conjugate direction qk whenever gk−1 �= o.
We can sum up the most important properties of the CG algorithm with the
preconditioning by the conjugate projector into the following theorem.

Theorem 3.5. Let xk be generated by Algorithm 3.4 to find the solution x̂ of
(3.1) with a full column rank matrix U ∈ R

n×m. Then the algorithm is well
defined and there is k ≤ n − m such that xk = x̂. Moreover, the following
statements hold for i = 1, . . . , k:

(i) f(xi) = min{f(x) : x ∈ U + QKi(QT AQ,g0)}.
(ii) ‖qi‖ ≥ ‖gi−1‖.
(iii) (qi)T Aqj = 0 for i > j.
(iv) (qi)T Ax = 0 for x ∈ U .

The complete conjugate gradient algorithm with the preconditioning by
the conjugate projector reads as follows:
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Algorithm 3.4. Conjugate gradients with projector preconditioning
(CGPP).

Given a symmetric positive definite matrix A ∈ R
n×n, a full column rank matrix

U ∈ R
n×m, and b ∈ R

n.

Step 0. {Initialization.}
P = U(UT AU)−1UT A, Q = I − P
x0 = PA−1b = U(UT AU)−1UT b
k = 1, g0 = Ax0 − b, q1 = Qg0

Step 1. {Conjugate gradient loop. }
while ‖gk−1‖ > 0

αk = (gk−1)T qk/(qk)T Aqk

xk = xk−1 − αkq
k

gk = gk−1 − αkAqk

βk = (gk)T Aqk/(qk)T Aqk

qk+1 = Qgk + βkq
k

k = k + 1
end while

Step 2. {Return a (possibly approximate) solution.}
x̃ = xk

3.7.4 Preconditioning Effect

As we have seen in the previous section, the iterations of Algorithm 3.4 may
be considered as the conjugate gradient iterations for the minimization of

f0,Q(x) =
1
2
xT QT AQx + (g0)Tx

that generate the iterations

xk ∈ Kk(QT AQ,g0) ⊆ AV .

Thus only the positive definite restriction QT AQ|AV of QT AQ to AV takes
part in the process of solution, and the rate of convergence may be estimated
by the spectral condition number κ(QT AQ|AV) of QT AQ|AV .

It is rather easy to see that

κ(QT AQ|AV) ≤ κ(A).

Indeed, denoting by λ1 ≥ · · · ≥ λn the eigenvalues of A, we can observe that
if x ∈ AV and ‖x‖ = 1, then by Lemma 3.4

xT QT AQx ≥ (Qx)T A(Qx)/‖Qx‖2 ≥ λn

and
xT QT AQx ≤ xT QT AQx + xT PT APx = xT Ax ≤ λ1. (3.36)
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To see the preconditioning effect of the algorithm in more detail, let us
denote by E the m-dimensional subspace spanned by the eigenvectors corre-
sponding to the m smallest eigenvalues λn−m+1 ≥ · · · ≥ λn of A, and let RAU
and RE denote the orthogonal projectors on AU and E , respectively. Let

γ = ‖RAU − RE‖

denote the gap between AU and E . It can be evaluated provided we have
matrices U and E whose columns form the orthonormal bases of AU and E ,
respectively. It is known [170] that if σ is the least singular value of UT E, then

γ =
√

1 − σ2 ≤ 1.

Theorem 3.6. Let U ,V , Q be those of Algorithm 3.4, let λ1 ≥ · · · ≥ λn de-
note the eigenvalues of A, and let λmin denote the least nonzero eigenvalue of
QT AQ. Then

λn ≤
√

(1 − γ2)λ2
n−m + γ2λ2

n ≤ λmin (3.37)

and
κ(QT AQ|AV) ≤ λ1√

(1 − γ2)λ2
n−m + γ2λ2

n

.

Proof. Let x ∈ AV , ‖x‖ = 1, so that ‖Qx‖ ≥ 1 by Lemma 3.4. Observing that
ImRE and Im(I − RE) are orthogonal invariant subspaces of A, we get that

‖AQx‖2 = ‖A(I − RE)Qx‖2 + ‖AREQx‖2

≥ λ2
n−m‖(I − RE)Qx‖2 + λ2

n‖REQx‖2

≥
(
λ2

n−m‖(I − RE)Qx‖2 + λ2
n‖REQx‖2

)
/‖Qx‖2

≥ λ2
n−m(1 − ξ2) + λ2

nξ2,

(3.38)

where ξ = ‖Qx‖−1‖REQx‖. We have used that

‖(I − RE)Qx‖2 + ‖REQx‖2 = ‖Qx‖2.

Since ImQ = V , it follows by the definition of RAU that RAUQ = O and

ξ = ‖Qx‖−1‖(RE − RAU )Qx‖ ≤ γ.

As the last expression in (3.38) is a decreasing function of ξ for ξ ≥ 0, it
follows that

‖QT AQx‖2 = ‖AQx‖2 ≥ λ2
n−m(1 − γ2) + λ2

nγ2.

The rest is an easy consequence of (3.36). �

The above theorem suggests that the preconditioning by the conjugate pro-
jector is efficient when U approximates the subspace spanned by the eigenvec-
tors which correspond to the smallest eigenvalues of A. If UT E is nonsingular
and λn < λn−m, then γ < 1 and
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κ(QT AQ|AV) < κ(A).

If the minimization problem arises from the discretization of elliptic partial
differential equations, than U can be obtained by aggregation. It turns out that
even the subspace with a very small dimension can considerably improve the
rate of convergence. See Sect. 3.10.1 for a numerical example.

3.8 Conjugate Gradients for More General Problems

Let A be only positive semidefinite, so that the cost function f is convex but
not strictly convex, and let the unconstrained minimization problem (3.1) be
well posed, i.e., b ∈ ImA by Proposition 2.1.

If we start the conjugate gradient algorithm from arbitrary x0 ∈ R
n, then

the gradient g0 and the Krylov space Kn(A,g0) satisfy

g0 ∈ ImA and Kn(A,g0) ⊆ ImA.

Since the CG method picks the conjugate directions from Kn(A,g0), it follows
that the method works only on the range of A. Thus the algorithm generates
the iterates xk which converge to a solution x with the rate of convergence
which can be described by the distribution of the spectrum of the restriction
A|Kn(A,g0). Observing that the least eigenvalue of A|Kn(A,g0) is bounded
from below by the least nonzero eigenvalue λmin of A, we get the error estimate

‖ek‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

‖e0‖A, (3.39)

where κ(A) denotes the regular spectral condition number of A defined by

κ(A) = κ(A|ImA) = λmax/λmin.

Let P and Q = I − P denote the orthogonal projectors on ImA and KerA,
respectively, so that

x = Px + Qx.

Since the reduction A|ImA is nonsingular, it follows that there is a unique
solution xLS ∈ ImA of (3.1), and by Proposition 2.1 any solution x satisfies

x = x̂LS + d, d ∈ KerA.

Thus if x is a solution of (3.1), then Px = xLS and

Qx = Qx0.

It follows that xLS is the least square solution of Ax = b, and to get it by the
conjugate gradient algorithm, it is enough to take x0 ∈ ImA.
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If A is indefinite, then, using the arguments of Sect. 3.2, it is easy to check
that the conjugate gradient method still generates conjugate directions, but
it fails when (pk)T Apk = 0. The latter case may happen with pk /∈ KerA, as
in

[1, 1]
[

1 0
0 −1

] [
1
1

]
= 0.

It follows that there is no guarantee that the CG Algorithm 3.1 is able, at
least without modifications, to find a stationary point of f .

3.9 Convergence in Presence of Rounding Errors

The elegant mathematical theory presented above assumes implementation
of the conjugate gradient algorithm in exact arithmetic and captures well the
performance of only a limited number of conjugate gradient iterations in com-
puter arithmetics. Since we are going to use the conjugate gradient method
mainly for a low-precision approximation of well-conditioned auxiliary prob-
lems, we shall base our exposition on this theory in what follows. However, it
is still useful to be aware of possible effects of rounding errors that accompany
any computer implementation of the conjugate gradient algorithm.

It has been known since the introduction of the CG method and the Lanc-
zos method [140], which generates the same iterates, that, when used in finite
precision arithmetic, the vectors generated by these algorithms can seriously
violate their theoretical properties. In particular, it has been observed that
the evaluated gradients can lose their orthogonality after as small a number
of iterations as twenty, and that nearly dependent conjugate directions can
be generated. In spite of these effects, it has been observed that the conjugate
gradient method still converges in finite precision arithmetic, but that the
convergence is delayed [105, 107].

Undesirable effects of the rounding errors can be reduced by reorthogo-
nalization. A simple analysis reveals that the full reorthogonalization of the
gradients is costly and requires large memory. A key to an efficient implemen-
tation of the reorthogonalization is based on observation that accumulation of
the rounding errors has a regular pattern, namely, that large perturbations of
the generated vectors belong to the space generated by the eigenvectors of A
which can be approximated well by the vectors from the current Krylov space.
This has led to the efficient implementation of the conjugate gradient method
based on the selective orthogonalization proposed by Parlett and Scott [158].
More details and information about the effects of rounding errors and imple-
mentation of the conjugate gradient method in finite arithmetic can be found
in the comprehensive review paper by Meurant and Strakoš [152].
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3.10 Numerical Experiments

Here we illustrate the performance of the CG algorithm and the effect of pre-
conditioning on the solution of an ill-conditioned benchmark and a class of
well-conditioned problems. The latter was proposed to resemble the class of
problems arising from application of the multigrid or domain decomposition
methods to the elliptic partial differential equations. The cost functions fL,h

and fLW,h introduced here are used in Sects. 4.8, 5.11, and 6.12 as bench-
marks for the solution of constrained problems, so that we can assess ad-
ditional complexity arising from implementation of various constraints and
better understand our algorithms. Moreover, using the same cost functions in
our benchmarks considerably simplifies their implementation.

3.10.1 Basic CG and Preconditioning

Let Ω = (0, 1) × (0, 1) denote an open domain with the boundary Γ and its
part Γu = {0} × [0, 1]. Let H1(Ω) denote the Sobolev space of the first order
in the space L2(Ω) of functions on Ω whose squares are integrable in the
Lebesgue sense, let

V = {u ∈ H1(Ω) : u = 0 on Γu},
and let us define for any u ∈ H1(Ω)

fL(u) =
1
2

∫

Ω

‖∇u(x)‖2dΩ +
∫

Ω

udΩ.

Thus we can define the continuous problem to find

min
u∈V

fL(u). (3.40)

Our ill-conditioned benchmark was obtained from (3.40) by the finite ele-
ment discretization using a regular grid defined by the discretization param-
eter h and linear elements. The Dirichlet conditions were enhanced into the
Hessian AL,h of the discretized cost function fL,h, so that AL,h ∈ R

n×n is pos-
itive definite, n = p(p − 1), and p = 1/h + 1. Moreover, AL,h is known to be
ill-conditioned with the condition number κ(AL,h) ≈ h−2. The computations
were carried out with h = 1/32, which corresponds to n = 1056 unknowns.

We used the benchmark to compare the performance of CG, CG with
SSOR preconditioning, and CG with preconditioning by the conjugate pro-
jector. To define the conjugate projector, we decomposed the domain into 4×4
squares with typically 8× 8 variables which were aggregated by means of the
matrix U with 16 columns.

The graph of the norm of the gradient (vertical axis) against the number
of iterations for the basic CG algorithm (CG), the CG algorithm with SSOR
preconditioning (CG–SSOR), and the CG algorithm with preconditioning by
the conjugate projector (CG–CP) is in Fig. 3.5. We can see that though the
performance of the CG algorithm is poor if the Hessian of the cost function
is ill-conditioned, it can be considerably improved by preconditioning.
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Fig. 3.5. Convergence of CG, CG–SSOR, and CG–CP algorithms

3.10.2 Numerical Demonstration of Optimality

To illustrate the concept of optimality, let us consider the class of problems
to minimize

fLW,h(x) =
1
2
xT ALW,hx − bT

LW,hx,

where

ALW,h = AL,h + 2I, [bLW,h]i = −1, i = 1, . . . , n, n = 1/h + 1.

The class of problems can be given a mechanical interpretation associated
to the expanding spring systems on Winkler’s foundation. Using Gershgorin’s
theorem, it can be proved that the spectrum of the Hessian ALW,h of fLW,h is
located in the interval [2, 10], so that κ(ALW,h) ≤ 5.

10
2

10
3

10
4

10
5

10
60

5

10

15

dimension

ite
ra

tio
ns

Fig. 3.6. Optimality of CG for a class of well-conditioned problems
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In Fig. 3.6, we can see the numbers of CG iterations kn (vertical axis) that
were necessary to reduce the norm of the gradient by 10−6 for the problems
with the dimension n ranging from 100 to 1000000. The dimension n on the
horizontal axis is in the logarithmic scale. We can see that kn varies mildly
with varying n, in agreement with the theory developed in Sect. 3.5. Moreover,
since the cost of the matrix–vector multiplications is in our case proportional
to the dimension n of the matrix ALW,h, it follows that the cost of the solution
is also proportional to n.

3.11 Comments and Conclusions

The development of the conjugate gradient method was preceded by the
method of conjugate directions [92]. If the conjugate directions are generated
by means of a suitable matrix decomposition, the method can be considered
as a variant of the direct methods of Sect. 1.5 (see, e.g., [169]).

Since its introduction in the early 1950s by Hestenes and Stiefel [117], a
lot of research related to the development of the CG method has been carried
out, so that there are many references concerning this subject. We refer an
interested reader to the textbooks and research monographs by Saad [163], van
der Vorst [178], Greenbaum [106], Hackbusch [110], Chen [21], and Axelsson
[4] for more information. A comprehensive account of development of the
CG method up to 1989 may be found in the paper by Golub and O’Leary
[102]. Most of the research is concentrated on the development and analysis
of preconditioners.

Preconditioning by conjugate projector presented in Sect. 3.7 was intro-
duced by Dostál [39]. The same preconditioning with different analysis was
presented independently by Marchuk and Kuznetsov [150] as the conjugate
gradients in subspace or the generalized conjugate gradient method and by
Nicolaides [154] as the deflation method.

Finding at each step the minimum over the subspace generated by all the
previous search directions, the conjugate gradient method exploits all the in-
formation gathered during the previous iterations. To use this feature in the
algorithms for the solution of constrained problems, it is important to generate
long uninterrupted sequences of the conjugate gradient iterations. This strat-
egy also supports exploitation of yet another unique feature of the conjugate
gradient method, namely, its self-preconditioning capabilities that were de-
scribed by van der Sluis and van der Vorst [168]. The latter property can also
be described in terms of the preconditioning by the conjugate projector. In-
deed, if Qk denotes the conjugate projector onto the conjugate complement V
of U = Span{p1, . . . ,pk}, then it is possible to give the bound on the rate
of convergence of the conjugate gradient method starting from xk+1 in terms
of the regular condition number κk = κ(QT

k AQk|V) of QT
k AQk|V and observe

that κk decreases with the increasing k.
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For the solution of large problems, the basic CG algorithm is most suc-
cessful when it is combined with the preconditioning which exploits additional
information about A, often obtained by tracing its generation. Thus the multi-
grid (see, e.g., Hackbusch [109] or Trottenberg et al. [176]) or FETI (see, e.g.,
Farhat, Mandel, and Roux [85], or Toselli and Widlund [175])-based precon-
ditioners for the solution of problems arising from the discretization of elliptic
partial differential equations exploit the information about the original con-
tinuous problems so efficiently that the discretized problems can be solved at
a cost proportional to the number of unknowns. It follows that the conjugate
gradient method should outperform direct solvers at least for some large prob-
lems. Special preconditioners for singular or nearly singular systems arising
in optimization were proposed, e.g., by Hager [114].



4

Equality Constrained Minimization

We shall now be interested in the development of efficient algorithms for

min
x∈ΩE

f(x), (4.1)

where f(x) = 1
2x

T Ax − xT b, b is a given column n-vector, A is an n × n
symmetric positive definite matrix, ΩE = {x ∈ R

n : Bx = c}, B ∈ R
m×n, and

c ∈ ImB. We assume that B �= O is not a full column rank matrix, so that
KerB �= {o}, but we allow dependent rows of B. Using a simple observation
of Sect. 4.6.7, we can extend our results to the solution of problems with A
positive definite on KerB.

There are several reasons why we consider the constraint matrix B with
dependent rows. First, for large problems, it may be expensive to identify
the dependent rows, as this can often be done only by an expensive rank
revealing decomposition. Second, the removal of the dependent constraints
may complicate the precision control of the removed equations when we accept
approximate solutions. For example, if we carry out the minimization subject
to x1 = x2 = x3, but control only that |x1 − x2| ≤ ε and |x2 − x3| ≤ ε,
then it can easily happen that |x1 − x3| > ε. Finally, the whole concept
of the dependence assumes that all computations are carried out in exact
arithmetics, so that it is better to avoid such assumption whenever we assume
our algorithms to be implemented in computer arithmetics.

Here we are interested in large sparse problems with a well-conditioned A,
and in algorithms that can be used also for the solution of equality and in-
equality constrained problems. Our choice is the class of inexact augmented
Lagrangian algorithms which enforce the feasibility condition by the Lagrange
multipliers generated in the outer loop, while unconstrained minimization is
carried out by the conjugate gradient algorithm in the inner loop. A new
feature of our approach is that the algorithm is viewed as a repeated imple-
mentation of the penalty method. We combine this approach with an adaptive
precision control of the inner loop to get the convergence results which are
independent of the representation of ΩE .

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 4,
c© Springer Science+Business Media, LLC 2009
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Overview of Algorithms

If we add the penalization function, which is zero on the feasible domain and
which achieves large values outside the feasible region, to the original cost
function, we can approximate a solution of the original equality constrained
problem by the solution of the unconstrained minimization problem with the
modified (penalized) cost function. The resulting penalty method presented in
Sect. 4.2 is probably the most simple way to reduce the equality constrained
problem to the unconstrained one. If the penalized problem is solved by an
iterative method, the Hessian of the penalized problem can be preconditioned
by a special preconditioner of Sect. 4.2.6 which preserves the gap in the spec-
trum.

A prototype of the method studied in this chapter is the exact augmented
Lagrangian method and its specialization called the Uzawa algorithm. See
Algorithm 4.2 for their formal description. These methods reduce the original
bound constrained problem to a sequence of the unconstrained, optionally
moderately penalized problems that are solved exactly, typically by the direct
methods of Sect. 1.5.

The auxiliary problems of the augmented Lagrangian method need not
be solved exactly. An extreme case is Algorithm 4.1, known as the Arrows–
Hurwitz algorithm, which carries out only one gradient iteration with the fixed
steplength to approximate the solution of the auxiliary problem.

The asymptotically exact augmented Lagrangian method, which is de-
scribed in Sect. 4.4 as Algorithm 4.3, controls the precision of the solution
of the auxiliary unconstrained problems by a forcing sequence decreasing to
zero. The forcing sequence should be defined by the user.

The precision of the solution of the auxiliary unconstrained problems can
also be controlled by the current feasibility error. To achieve convergence, the
adaptive augmented Lagrangian method modifies also the regularization pa-
rameter by means of the forcing sequence generated in the process of solution.
The method is described in Sect. 4.5 as Algorithm 4.4.

The most sophisticated method presented in this chapter is the semimono-
tonic augmented Lagrangian method for equality constraints referred to as
SMALE. The algorithm is described in Sect. 4.6 as Algorithm 4.5. Similarly
to the adaptive augmented Lagrangian method, SMALE controls the preci-
sion of the solution of the auxiliary unconstrained problems by the feasibility
error, but the penalty parameter is adapted in order to guarantee a suffi-
cient increase of the augmented Lagrangians. The unique theoretical results
concerning SMALE include a small explicit bound on the penalty parameter
which guarantees that the number of iterations that are necessary to find an
approximate solution can be bounded by a number independent of the con-
straints. The preconditioning preserving the bound on the rate of convergence
of Sect. 4.2.6 can be applied also to SMALE.
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4.1 Review of Alternative Methods

Before we embark on the study of inexact augmented Lagrangians, let us
briefly review alternative methods for the solution of the equality constrained
problem (4.1).

Using Proposition 2.8, it follows that (4.1) is equivalent to the solution of
the saddle point system of linear equations

[
A BT

B O

] [
x
λ

]
=
[
b
c

]
. (4.2)

If B is a full row rank matrix, we can solve (4.2) effectively by the Gauss
elimination with a suitable pivoting strategy, or by a symmetric factorization
which takes into account that (4.2) is indefinite. Alternatively, we can also
use MINRES, a Krylov space method which generates the iterates minimizing
the Euclidean norm of the residual in the Krylov space. The performance of
MINRES depends on the distribution of the spectrum of the KKT system
(4.2) similarly as the performance of the CG method. A recent comprehensive
review of the methods for the solution of saddle point systems with many
references is in Benzi, Golub, and Liesen [10]; see also Elman, Sylvester, and
Wathen [81].

We can also reduce (4.2) to a symmetric positive definite case. If B is a full
row rank matrix, and if we are able to evaluate the action of A−1 effectively,
we can multiply the first block row in (4.2) by BA−1, subtract the second row
from the result, and change the signs to obtain the symmetric positive definite
Schur complement system

BA−1BT λ = BA−1b− c, (4.3)

which can be solved by the methods described in Chap. 3. The method is also
known as the range-space method. Let us point out that if we solve (4.3) by
the CG method, then it is not necessary to evaluate BA−1BT explicitly. Using
the CG method and the left generalized inverse of Sect. 1.4, the method can
be extended to A positive semidefinite and B with dependent rows. We shall
see that the range-space method is closely related to the Uzawa-type methods
that we shall study later in this chapter.

Alternatively, we can use the null-space method, provided we have a basis
Z of KerB and a feasible x0,

Bx0 = c.

Observing that ΩE = {x0 + Zy : y ∈ R
d}, we can substitute into (4.1) to get

min
x∈ΩE

f(x) = min
y∈Rd

f(x0 + Zy) =
1
2
yT ZT AZy − (b − Ax0)T Zy +

1
2
xT

0 Ax0,

so that we can evaluate y by solving the gradient equation

ZT AZy = ZT (b− Ax0).
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If the resulting system is solved by the CG method, then the method can
be directly applied to the problems with A positive semidefinite and B with
dependent rows.

Results concerning application of domain decomposition methods can be
found in the monograph by Toselli and Widlund [175].

A class of algorithms which is important for our exposition is based on the
mixed formulation

L0(x̂, λ̂) = max
λ∈Rm

min
x∈Rn

L0(x, λ)

for the problems with full row rank B. As an example let us recall the Arrow–
Hurwitz algorithm 4.1, which exploits the first-order approximation of L0

given by

L0(x + αd, λ + rδ) ≈ L0(x, λ) + α∇xL0(x, λ)d + r∇λL0(x, λ)δ

to improve the approximations of the solution x̂ by taking small steps in the
direction opposite to the gradient

∇xL0(x, λ) = Ax − b + BT λ,

and to improve the approximations of the Lagrange multipliers λ̂ by taking
small steps in the direction

∇λL0(x, λ) = Bx − c.

Algorithm 4.1. Arrow–Hurwitz algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, a matrix B ∈ R

m×n with
the nonempty kernel, b ∈ R

n, and c ∈ ImB.

Step 0. {Initialization.}
Choose λ0 ∈ R

m, x−1 ∈ R
n, α > 0, r > 0

for k=0,1,2,. . .
Step 1. {Reducing the value of L0 in x direction.}

xk = xk−1 − α∇xL0(x
k−1, λk) = xk−1 − α(Ax − b + BT λ)

Step 2. {Increasing the value of L0 in λ direction.}
λk+1 = λk + r∇λL0(x

k, λk) = λk + r(Bxk − c)
end for

The Arrow–Hurwitz algorithm is known to converge for sufficiently small
steplengths α and r. Even though its convergence is known to be slow, the
algorithm has found its applications due to the low cost of the iterations and
minimal memory requirements. It can be considered as an extreme case of the
inexact Uzawa-type algorithms, the main topic of this chapter.



4.2 Penalty Method 107

4.2 Penalty Method

Probably the most simple way to reduce the equality constrained quadratic
programming problem (4.1) to the unconstrained one is to enhance the con-
straints into the objective function by adding a suitable term which penal-
izes the violation of the constraints. In this section we consider the quadratic
penalty method which approximates the solution x̂ of (4.1) by the solution x̂�

of
min
x∈Rn

f�(x), f�(x) = f(x) +
�

2
‖Bx− c‖2, (4.4)

where � ≥ 0 is the penalty parameter and ‖Bx − c‖2 is the penalty function.
Intuitively, if the penalty parameter � is large, then the solution x̂� of

(4.4) can hardly be far from the solution of (4.1). Indeed, if � were infinite,
then the minimizer of f� would solve the equality constrained problem (4.1).
Thus it is natural to expect that if � is sufficiently large, then the penalty
approximation x̂� is a suitable approximation to the solution x̂ of (4.1). The
effect of the penalty term is illustrated in Fig. 4.1. Notice that the penalty
approximation is typically near the feasible set, but does not belong to it.
That is why our penalty method is also called the exterior penalty method.

ΩE

∇f

f�(x) = c

f(x) = c

x̂�

x̂0
x̂

Fig. 4.1. The effect of the quadratic penalty

In the following sections, we shall often use the more general augmented
Lagrangian penalty function L : R

n+m+1 → R which is defined by

L(x, λ, �) = f(x)+(Bx−c)T λ+
�

2
‖Bx−c‖2 = L0(x, λ)+

�

2
‖Bx−c‖2, (4.5)

where λ ∈ R
m is arbitrary and L0(x, λ) = L(x, λ, 0) is the Lagrangian func-

tion (2.20). Notice that f�(x) = L(x,o, �). Since �‖Bx− c‖2 and (Bx− c)T λ
vanish when Bx = c, it follows that

f(x) = f�(x) = L(x, λ, �)

for any x ∈ ΩE , λ ∈ R
m, and � ≥ 0.
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4.2.1 Minimization of Augmented Lagrangian

Let us start with the modified problem

min
x∈ΩE

L(x, λ, �). (4.6)

Since the gradient of the augmented Lagrangian is given by

∇xL(x, λ, �) = Ax − b + BT
(
λ + �(Bx − c)

)
, (4.7)

it follows that the KKT system for (4.6) reads
[

A� BT

B O

] [
x
λ

]
=
[
b + �BT c

c

]
, (4.8)

where A� = A + �BT B. Eliminating x, we get that any multiplier λ satisfies

BA−1
� BT λ = BA−1

� (b + �BT c) − c. (4.9)

Moreover, if we substitute Bx = c into the first block equation, we get that
(4.8) is equivalent to the KKT system (2.31), so the saddle points of L0 are
exactly the saddle points of L. This result is not surprising as

L(x, λ, �) = f�(x) + (Bx − c)T λ

is the Lagrangian for the penalized equality constrained problem

min
x∈ΩE

f�(x).

To see how the penalty method enforces the feasibility, let us assume that
λ ∈ R

m is fixed, and let us denote by x̂0 and x̂� the minimizers of L0(x, λ)
and L(x, λ, �), respectively. Then the solution x̂ satisfies

L0(x̂�, λ) +
�

2
‖Bx̂� − c‖2 = L(x̂�, λ, �) ≤ L(x̂, λ, �) = f(x̂),

so that, using L0(x̂0, λ) ≤ L0(x̂�, λ), we get

‖Bx̂� − c‖2 ≤ 2
�

(
f(x̂) − L0(x̂�, λ)

)
≤ 2

�

(
f(x̂) − L0(x̂0, λ)

)
.

It follows that the feasibility error ‖Bx̂�−c‖, which corresponds to the second
block equation of the KKT system (2.31), can be made arbitrarily small. We
shall give stronger or easier computable bounds later in this section.

To see how x̂� satisfies the first block equation of the KKT conditions
(4.2), let us recall that the gradient of the augmented Lagrangian is given by
(4.7) and denote

λ̃ = λ + �(Bx̂� − c). (4.10)
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Then
Ax̂� − b + BT λ̃ = ∇xL0(x̂�, λ̃) = ∇xL(x̂�, λ, �) = o,

so that (x̂�, λ̃) satisfies the first block equation of the KKT conditions exactly.
Moreover, if λ is considered as an approximation of a vector of Lagrange
multipliers of the solution of (4.1), then our observations indicate that λ̃ is a
better approximation. Using Proposition 2.12, we conclude that (x̂�, λ̃) can
approximate the KKT pair of (4.1) with arbitrarily small error.

4.2.2 An Optimal Feasibility Error Estimate for Homogeneous
Constraints

Let us first examine the feasibility error of an approximate solution x of the
problem

min
x∈Rn

f�(x), f�(x) = f(x) +
�

2
‖Bx‖2, (4.11)

where f and B are from the definition of problem (4.1) and � > 0. We assume
that x satisfies

‖∇f�(x)‖ ≤ ε‖b‖, (4.12)

where ε > 0 is a small number.
Notice that our x can be considered as an approximation to the solution x̂

of the equality constrained problem (4.1) in case that the equality constraints
are homogeneous, i.e., c = o. To check that x satisfies approximately the first
part of the KKT conditions (4.2), observe that

∇f�(x) = (A + �BT B)x − b.

After denoting λ = �Bx and g = ∇f�(x), we get

Ax − b + BT λ = g, (4.13)

which can be considered as an approximation of the first block equation of
the KKT conditions (4.2).

The feasibility error is considered in the next theorem.

Theorem 4.1. Let A, B, and b be those of the definition of problem (4.1)
with B not necessarily a full rank matrix, let λmin = λmin(A) > 0 denote the
smallest eigenvalue of A, and let ε ≥ 0 and � > 0.

If x is an approximate solution of (4.11) such that

‖∇f�(x)‖ ≤ ε‖b‖,

then
‖Bx‖ ≤ 1 + ε√

λmin�
‖b‖. (4.14)
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Proof. Let us denote
A� = A + �BT B

and notice that for any x,d ∈ R
n

f�(x + d) = f�(x) + gT d +
1
2
dT A�d ≥ f�(x) − ‖g‖‖d‖ +

1
2
λmin‖d‖2

≥ min
ξ∈R

(
f�(x) − ‖g‖ξ +

1
2
λminξ

2

)
≥ f�(x) − 1

2λmin
‖g‖2,

where g = ∇f�(x). Recalling that by (2.11)

min
d∈Rn

f�(x + d) = min
y∈Rn

f�(y) = −1
2
bT A−1

� b,

we get

0 ≥ −1
2
bT A−1

� b ≥ f(x) +
�

2
‖Bx‖2 − 1

2λmin
‖g‖2.

Let us now assume that x satisfies ‖g‖ ≤ ε‖b‖. After substituting into the
last inequality and using (2.11), (1.24), and the properties of the Euclidean
norm, we get

0 ≥ f(x) +
�

2
‖Bx‖2 − 1

2λmin
‖g‖2 ≥ min

y∈Rn
f(y) +

�

2
‖Bx‖2 − ε2

2λmin
‖b‖2

= −1
2
bT A−1b +

�

2
‖Bx‖2 − ε2

2λmin
‖b‖2

≥ − 1
2λmin

‖b‖2 +
�

2
‖Bx‖2 − ε2

2λmin
‖b‖2 ≥ �

2
‖Bx‖2 − 1 + ε2

2λmin
‖b‖2.

Equation (4.14) can be obtained by simple manipulations with application of
1 + ε2 ≤ (1 + ε)2. �

An interesting feature of Theorem 4.1 is that the estimate is independent
of the constraint matrix B. In particular, the estimate (4.14) is valid even if
B has dependent rows. The assumption that the constraints are homogeneous
was used to get that the unconstrained minimum of f� is not positive.

Theorem 4.1 implies a simple optimality result concerning the approxima-
tion by the penalty method. To formulate it, let T denote any set of indices
and assume that for any t ∈ T , there is defined a problem

min
x∈Ωt

E

ft(x), (4.15)

where ft(x) = 1
2x

T Atx − bT
t x, At ∈ R

nt×nt is SPD with the eigenvalues in
the interval [amin, amax], 0 < amin < amax , bt,x ∈ R

nt , Bt ∈ R
mt×nt , and

Ωt
E = {x ∈ R

nt : Btx = o}.
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Corollary 4.2. For each ε > 0, there is � > 0 such that if approximate
solutions xt,� of (4.15) satisfy

∇ft,�(xt,�) ≤ ε‖bt‖, t ∈ T ,

then
‖Btxt,�‖ ≤ ε‖bt‖, t ∈ T .

Proof. Notice that by Theorem 4.1

‖Btx̂t,�‖ ≤ 1
√

amin�
‖bt‖

for any � > 0. It is enough to set � = 1/(aminε
2). �

We conclude that the prescribed bound on the relative feasibility error for
all problems (4.15) can be achieved with one value of the penalty parameter
�t = �. Numerical experiments which illustrate the optimal feasibility esti-
mates in the framework of FETI methods can be found in Dostál and Horák
[65, 66].

4.2.3 Approximation Error and Convergence

Using the feasibility estimate (4.14) of the previous subsection and an error
bound on the violation of the first block equation of the KKT conditions
(2.46), we can bound the approximation error of the penalty method for ho-
mogeneous constraints.

Theorem 4.3. Let problem (4.1) be defined by A, B,b, and c = o, with B �= O
not necessarily a full rank matrix, let (x̂, λLS) denote the least square KKT
pair for (4.1) with c = o, let λmin denote the least eigenvalue of A, let σmin

denote the least nonzero singular value of B, let ε > 0, � > 0, and let

λ = �Bx. (4.16)

If x is such that
‖∇f�(x)‖ ≤ ε‖b‖,

then

‖x − x̂‖ ≤ ε
κ(A) + 1

λmin
‖b‖ +

1 + ε
√

�

κ(A)
σmin

√
λmin

‖b‖ (4.17)

and
‖λ − λLS‖ ≤ 1

σmin

(
εκ(A)‖b‖ +

1 + ε
√

�

‖A‖
σmin

√
λmin

‖b‖
)
. (4.18)
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Proof. Let us denote g = ∇f�(x) and e = Bx, so that

Ax + BT λ = b + g and Bx = e, (4.19)

and notice that by the assumptions λ ∈ ImB. Assuming that

‖g‖ = ‖∇f�(x)‖ ≤ ε‖b‖,

it follows by Theorem 4.1 that

‖Bx‖ ≤ 1 + ε√
λmin�

‖b‖.

Substituting into the estimates (2.48) and (2.49) of Proposition 2.12, we get
(4.17) and (4.18). �

Notice that the error bounds (4.17) and (4.18) depend on the representa-
tion of ΩE , namely, on the constraint matrix B.

The performance of the penalty method can also be described in terms
of convergence. Let εk > 0 denote a sequence converging to zero, let �k > 0
denote an increasing unbounded sequence, let gk = ∇f�k

(xk), and let xk

satisfy
‖gk‖ = ‖∇f�k

(xk)‖ ≤ εk‖b‖.
Let us denote

λk = �kBxk.

Then by (4.17) there is a constant C1 dependent on A and C2 dependent on
A, B such that

‖xk − x̂‖ ≤ εkC1‖b‖ +
1 + εk√

�k
C2‖b‖,

and by (4.18) there are constants C3 and C4 dependent on A, B such that

‖λk − λLS‖ ≤ εkC3‖b‖ +
1 + εk√

�k
C4‖b‖. (4.20)

It follows that λk converges to λLS and xk converges to x̂.

4.2.4 Improved Feasibility Error Estimate

We shall now give a feasibility error estimate for the penalty approximation
of (4.1) which is valid for nonhomogeneous constraints with c �= o. Our new
bound on the error is proportional to �−1, but dependent on B and c.

Theorem 4.4. Let A, B,b, and c be those of the definition of problem (4.1)
with B �= O not necessarily a full rank matrix, let βmin > 0 denote the smallest
nonzero eigenvalue of BT A−1B, let ε denote a given positive number, and let
� > 0.
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If x is such that
‖∇f�(x)‖ ≤ ε‖b‖,

then the feasibility error satisfies

‖Bx − c‖ ≤
(
1 + βmin�

)−1 (
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)
. (4.21)

Proof. Let us recall that for any vector x

∇f�(x) = (A + �BT B)x − b − �BT c,

so that, after denoting g = ∇f�(x) and A� = A + �BT B,

x = A−1
� (g + b + �BT c).

It follows that
Bx = BA−1

� (g + b) + �BA−1
� BT c.

Using equation (1.41) of Lemma 1.4 and simple manipulations, we get

Bx − c = BA−1
� (g + b) + �(I + �BA−1BT )−1BA−1BT c − c

= BA−1
� (g + b) + (I + �BA−1BT )−1

(
(I + �BA−1BT ) − I

)
c − c

= BA−1
� (g + b) − (I + �BA−1BT )−1c.

To finish the proof, use the assumptions that c ∈ ImB and ‖g‖ ≤ ε‖b‖,
Lemma 1.6, and the properties of norms. �

Numerical experiments which illustrate (4.21) can be found in Dostál and
Horák [65, 66].

4.2.5 Improved Approximation Error Estimate

Using the improved feasibility estimate (4.21) of the previous section, we can
improve the bounds on the approximation error of the penalty method given
in Sect. 4.2.3.

Theorem 4.5. Let A, B,b, and c be those of the definition of problem (4.1)
with B not necessarily a full rank matrix, let λmin denote the least eigenvalue
of A, let σmin denote the least nonzero singular value of B, let (x̂, λLS) denote
the least square KKT pair for (4.1), let βmin > 0 denote the least nonzero
eigenvalue of the matrix BA−1BT , let ε > 0, � > 0, and

λ = �(Bx − c). (4.22)

If x is such that
‖∇f�(x)‖ ≤ ε‖b‖,

then
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‖λ − λLS‖ ≤ ε
κ(A)‖b‖

σmin
+

‖A‖
(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)

σ2
min(1 + �βmin)

(4.23)

and

‖x− x̂‖ ≤ ε
κ(A) + 1

λmin
‖b‖ +

κ(A)
(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)

σmin(1 + �βmin)
. (4.24)

Proof. Let us denote g = ∇f�(x) and e = Bx − c, so that

Ax + BT λ = b + g and Bx = c + e.

If
‖g‖ = ‖∇f�(x)‖ ≤ ε‖b‖,

then by Theorem 4.4

‖Bx − c‖ ≤ 1
1 + �βmin

(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)
.

Substituting into the estimates (2.47) and (2.48) of Proposition 2.12, we get

‖BT (λ − λLS)‖ ≤ εκ(A)‖b‖ +
‖A‖

(
(1 + ε)‖BA−1‖‖b‖ + ‖c‖

)

σmin(1 + �βmin)
(4.25)

and (4.24). To finish the proof, notice that λ − λLS ∈ ImB, so that by (1.34)

σmin‖λ − λLS‖ ≤ ‖BT (λ − λLS)‖,

apply the latter estimate to the left-hand side of (4.25), and divide the result-
ing chain of inequalities by σmin. �

We can also get the improved rates of convergence compared with those of
Sect. 4.2.3. Let εk ≥ 0 denote again a sequence converging to zero, let �k > 0
denote an increasing unbounded sequence, let xk satisfy

‖gk‖ = ‖∇f�k
(xk)‖ ≤ εk‖b‖,

and let us denote
λk = �k(Bxk − c).

Then by (4.23) there are constants C1, C2, and C3 dependent on A, B such
that

‖λk − λLS‖ ≤ εkC1‖b‖ +
1 + εk

�k
C2‖b‖ +

C3

�k
‖c‖,

and by (4.24) there is a constant C4 dependent on A and constants C5, C6

dependent on A, B such that

‖xk − x̂‖ ≤ εkC4‖b‖ +
1 + εk

�k
C5‖b‖ +

C6

�k
‖c‖.

Thus λk converges to λLS and xk converges to x̂.
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4.2.6 Preconditioning Preserving Gap in the Spectrum

We have seen that the penalty method reduces the solution of the equality
constrained minimization problem (4.1) to the unconstrained penalized prob-
lem (4.4). The resulting problem may be solved either by a suitable direct
method such as the Cholesky decomposition, or by an iterative method such
as the conjugate gradient method. If the penalty parameter � is large, then
the Hessian matrix

A� = A + �BT B

of the cost function f� of the penalized problem (4.4) is obviously ill-
conditioned. Thus the estimates based on the condition number do not guar-
antee fast convergence of the conjugate gradient method, and a natural idea
is to reduce the condition number of A� by a suitable preconditioning. This
is indeed possible as has been shown, e.g., by Hager [111, 113].

Here we consider an alternative approach which exploits the fast conver-
gence of the conjugate gradient method for the problems with a gap in the
spectrum. The method is based on two results: the bounds on the rate of
convergence independent of � given by (3.23) and (3.24) and Lemma 1.7 on
the distribution of the spectrum of A�. The method presented here is applica-
ble for large � provided we have an effective preconditioner M for A that can
be used by the preconditioned conjugate gradient algorithm of Sect. 3.6. To
simplify our exposition, we assume that M = LLT , where L is a sparse lower
triangular matrix.

To express briefly the effects of the preconditioning strategies presented in
this section, let k(W, ε) denote the number of the conjugate gradient iterations
that are necessary to reduce the residual of any system with the symmetric
positive definite matrix W by ε, and let

k(W, ε) = int(
1
2

√
κ(W)ln(2/ε) + 1) (4.26)

denote the upper bound on k(W, ε) which may be easily obtained from (3.23).
Let us first assume that the rank m of the constraint matrix B ∈ R

p×n in
the original problem (4.1) is small. Then it is possible to use L to redistribute
the spectrum of the penalized matrix A� directly. In this case (1.51) and the
estimate (3.23) of the rate of the conjugate gradient method for the case that
the Hessian of the cost function has m isolated eigenvalues give the bound

k(L−1A�L
−T , ε) ≤ k(L−1AL−T , ε) + m. (4.27)

Such preconditioning can be implemented even without the factorization of the
preconditioner M = LLT as in Algorithm 3.3, provided we can solve efficiently
the linear systems with the matrix M.

If m dominates in the expression on the right-hand side of (4.27), then
the bound (4.27) can be improved at the cost of increased computational



116 4 Equality Constrained Minimization

complexity. In particular, this may be useful when we have several problems
(4.4) with the same matrix B. Noticing that for any nonsingular matrix Q

ΩE = {x ∈ R
n : QBx = Qc},

choosing the matrix Q in such a way that the rows of QBL−T are orthonormal,
and denoting B = QB, we can observe that minimizer of the penalized function
with the Hessian

A� = A + �B
T
B

also approximates the solution of (4.1), but the spectrum σ(L−1A�L
−T ) of the

preconditioned Hessian L−1A�L
−T satisfies by (1.50) and (1.51)

σ(L−1A�L
−T ) ⊆ [amin, amax] ∪ [amin + �, amax + �],

where amin = λ1(L−1AL−T ) and amax = λn(L−1AL−T ). Since the spectrum is
located in two intervals of the same length, we can use (3.24) to get the bound

k(L−1A�L
−T , ε) ≤ min{k(L−1AL−T , ε) + m, 2k(L−1AL−T , ε)}, (4.28)

which is optimal with respect to both � and m. Results of some numerical
experiments with this strategy can be found in [44].

Observe that QT Q represents a scalar product on R
m. The method

can be efficient also in the case that the rows of QBL−T are orthonormal
only approximately [144]. If A = LLT and QBL−T are orthonormal, then
σ(L−1A�L

−T ) = {1, �} and the CG algorithm finds the solution in just two
steps.

4.3 Exact Augmented Lagrangian Method

Because of its simplicity and intuitive appeal, the penalty method is often
used in computations. However, a good approximation of the solution may
require a very large penalty parameter, which can cause serious problems in
computer implementation. The remedy can be based on the observation that
having a solution x� of the penalized problem (4.4), we can modify the linear
term of f in such a way that the unconstrained minimum of the modified cost
function f without the penalization term is achieved again at x�. Then we
can hopefully find a better approximation by adding the penalization term
to the modified cost function f , possibly with the same value of the penalty
parameter, and look for the minimizer of f� as in Fig. 4.2. The result is the
well-known classical augmented Lagrangian algorithm, also named the method
of multipliers, which was proposed by Hestenes [116] and Powell [160].

In this section, we present as the augmented Lagrangian algorithm a little
more general algorithm; its special cases are the classical Uzawa algorithm [1]
and the original algorithm by Hestenes and Powell. We review and slightly
extend the well-known arguments presented, e.g., in the classical monographs
by Bertsekas [11] and Glowinski and Le Tallec [100].
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ΩE

L(x, λk+1, �) = L(xk+1, λk+1, �) + c

L(x, λk, �) = L(xk, λk, �) + c

xk+1

xk

Fig. 4.2. Augmented Lagrangian iteration

4.3.1 Algorithm

The augmented Lagrangian algorithm is based, similarly as the Arrow–
Hurwitz algorithm 4.1, on the mixed formulation (2.38) of the equality con-
strained problem (4.1). However, the augmented Lagrangian algorithm differs
from the Arrow–Hurwitz algorithm applied to the penalized problem (4.4) in
Step 1, where the former algorithm assigns xk the minimizer of L(x, λk, �k)
with respect to x ∈ R

n. Both algorithms use the same update rule for the
Lagrange multipliers in Step 2. Here we present a variant of the augmented
Lagrangian algorithm whose special cases are the original Uzawa algorithm
[1], which corresponds to �k = 0, k = 0, 1, . . . , and the original method of
multipliers, which corresponds to rk = �k. Our augmented Lagrangian algo-
rithm reads as follows.

Algorithm 4.2. Exact augmented Lagrangian algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose λ0 ∈ R

m, r > 0, rk ≥ r, �k ≥ 0

for k=0,1,2,. . .
Step 1. {Minimization with respect to x.}

xk = arg min{L(x, λk, �k) : x ∈ R
n}

Step 2. {Updating the Lagrange multipliers.}
λk+1 = λk + rk(Bxk − c)

end for

Since xk is the unconstrained minimizer of the Lagrangian L with respect
to its first variable, it follows that
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∇xL(xk, λk, �k) = (A + �kBT B)xk − b− �kBT c + BT λk = o,

so that Step 1 of Algorithm 4.2 can be implemented by solving the system

(A + �kBT B)xk = b + �kBT c − BT λk. (4.29)

To understand better the algorithm, we shall examine its alternative for-
mulation which we obtain after eliminating xk or λk from Algorithm 4.2. Thus
denoting for any � ∈ R

A� = A + �BT B,

we can use (4.29) to get

xk = A−1
�k

(b + �kBT c − BT λk).

After substituting for xk into Step 2 of Algorithm 4.2 and simple manipula-
tions, we can rewrite our augmented Lagrangian algorithm as

Choose λ0 ∈ R
m, (4.30)

λk+1 = λk − rk

(
BA−1

�k
BT λk − BA−1

�k
(b + �kBT c) + c

)
. (4.31)

To understand the formula (4.31), notice that

f�(x) =
1
2
xT A�x − (b + �BT c)Tx +

�

2
‖c‖2.

Using the formula (2.36) for the dual function Θ for problem (4.1), we can
check that the explicit expression for the dual function Θ� for the minimum
of f�(x) subject to x ∈ ΩE reads

Θ�(λ) = −1
2
λT BA−1

� BT λ +
(
BA−1

� (b + �BT c) − c
)
λ

−1
2
(b + �BT c)T A−1(b + �BT ) +

�

2
‖c‖2.

It follows that

∇Θ�k
(λk) = −BA−1

�k
BT λk + BA−1

�k
(b + �kBT c) − c. (4.32)

Comparing the latter formula with (4.31), we conclude that

λk+1 = λk + rk∇Θ�k
(λk).

Thus the augmented Lagrangian algorithm may be interpreted as the gra-
dient method for maximization of the dual function Θ� for the penalized
problem (4.4) with the steplength rk.

Alternatively, we can eliminate λk from Algorithm 4.2 to get

x0 = A−1
�0

(b + �kBT c − BT λ0), (4.33)

xk+1 = xk − rkA−1
�k

BT (Bxk − c). (4.34)
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4.3.2 Convergence of Lagrange Multipliers

Let us first recall that, by Proposition 2.10(iii) and the discussion at the end
of Sect. 2.4.2, any Lagrange multiplier λ of the equality constrained problem
(4.1) can be expressed as

λ = λLS + δ, λLS ∈ ImB, δ ∈ KerBT ,

where λLS is the Lagrange multiplier with the minimal Euclidean norm. If
we denote by P and Q = I− P the orthogonal projectors on ImB and KerBT ,
respectively, then the components of λ are given by

λLS = Pλ, ν = Qλ.

To simplify the notations, we shall assume that �k = � and rk = r.
To study the convergence of λk generated by Algorithm 4.2, let λ0 ∈ R

m,
let us denote

λ = λLS + Qλ0,

and observe that

λ0 − λ = Pλ0 + Qλ0 − λLS − Qλ0 = P(λ0 − λLS) ∈ ImB,

λk+1 − λ = (λk − λ) − r(BA−1
� BT λk − BA−1

� (b + �BT c) + c)

= (λk − λ) − rBA−1
� BT (λk − λ),

where we used PλLS = λLS and (4.9). It follows that

λk+1 − λ = (I − rBA−1
� BT )(λk − λ) (4.35)

and
λk+1 − λ ∈ ImB, k = 0, 1, . . . .

Therefore the analysis of convergence of λk reduces to the analysis of the
spectrum of the restriction of the iteration matrix I−rBA−1

� BT to its invariant
subspace ImB.

Using (1.26) and Lemma 1.5, we get that the eigenvalues μi of the iteration
matrix are related to the eigenvalues βi of BA−1BT |ImB by

μi = 1 − rβi

1 + �βi

=
1 + (� − r)βi

1 + �βi

,

so that
‖(I − rBA−1

� BT )|ImB‖ = max
i∈{1,...,m}

βi>0

|1 + (� − r)βi|
1 + �βi

.

Denoting

R(�, r) = max
i∈{1,...,m}

βi>0

|1 + (� − r)βi|
1 + �βi

(4.36)
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and using that the norm is submultiplicative, we get for R(�, r) < 1 the linear
rate of convergence

‖λk+1 − λ‖ ≤ R(�, r)‖λk − λ‖. (4.37)

We have thus reduced the study of convergence of Algorithm 4.2 to the
analysis of R(�, r). We shall formulate the result on the convergence of the
Lagrange multipliers in the following theorem.

Theorem 4.6. Let λk, k = 0, 1, . . . , denote the sequence of vectors generated
by Algorithm 4.2 for problem (4.1) with a given �k and rk starting from a given
vector λ0 ∈ R

m. Let λLS denote the least square Lagrange multiplier, let P
denote the orthogonal projector on ImB, let βmax denote the largest eigenvalue
of BA−1BT , and denote

λ = λLS + (I − P)λ0.

If there are ε > 0 and M > 0 such that

ε ≤ rk ≤ 2
βmax

+ 2�k − ε ≤ M, (4.38)

then λk converge to λ and the rate of convergence is at least linear, i.e., there
is R < 1 such that

‖λk+1 − λ‖ ≤ R‖λk − λ‖.

Proof. Elementary, but a bit laborious analysis of R(�k, rk), where R is defined
by (4.36), reveals that if �k, rk satisfy (4.38), then

sup
k=0,1,...

R(�k, rk) = R < 1.

To finish the proof, it is enough to substitute this result into (4.37). �

Using different arguments, it is possible to prove convergence of Algo-
rithm 4.2 under more relaxed conditions. For example, Glowinski and Le Tal-
lec [100] give the condition

0 < ε ≤ rk ≤ 2�k.

4.3.3 Effect of the Steplength

Let us now examine possible options of the steplength r = r(�) as a function
of �, including their effect on R(�, r). We shall denote by βmin the smallest
nonzero eigenvalues of BA−1BT , i.e., the smallest eigenvalue of BA−1BT |ImB.
Our examples are from Glowinski and Le Tallec [100].
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Optimal choice of r with � = 0.

In this case, which corresponds to the original Uzawa algorithm,

R(�, r) = R(0, r) = max
i∈{1,...,m}

βi>0

|1 − rβi|, (4.39)

so that the best choice of r is given by

R(0, ropt) = min
r

max
i∈{1,...,m}

βi>0

|1 − rβi| = min
r

max
i∈{1,...,m}

βi>0

{1 − rβi, rβi − 1}

= min
r

max{1 − rβmin, rβmax − 1}.

A simple analysis reveals that ropt satisfies

1 − rβmin = rβmax − 1.

Solving the last equation with respect to r, we get

ropt =
2

βmin + βmax

and

R(0, ropt) = 1 − roptβmin =
βmax − βmin

βmax + βmin

=
βmax/βmin − 1
βmax/βmin + 1

.

This is of course the optimal rate of convergence of the gradient method
of Sect. 3.4 applied to the dual function. Inspection of (4.39) reveals that
R(0, r) < 1 requires that 1 − rβmax > −1, i.e.,

r < 2/βmax,

so that ropt is typically near the bound which guarantees the convergence.

Choice r = �.

In this case, which is natural from the point of view of our analysis of the
penalty method,

R(�, �) = max
i∈{1,...,m}

βi>0

1
1 + �βi

=
1

1 + �βmin
. (4.40)

An interesting feature of this choice is that

lim
�→∞

R(�, �) = 0,

so that by increasing �, it is possible to achieve arbitrary preconditioning
effect.
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Choice r = (1 + δ)�.

Let us now consider the choice r = (1 + δ)� with δ > −1. In this case

R
(
�, (1 + δ)�

)
= max

i∈{1,...,m}
βi>0

|1 − δ�βi|
1 + �βi

,

so that r > 0 and R
(
�, (1 + δ)�

)
< 1 if and only if −1 < δ < 1 + 2/(�βmax).

Moreover
lim

�→∞
R(�, (1 + δ)�) = |δ|.

It follows that the preconditioning effect which can be achieved by increasing
the penalty parameter is limited when δ �= 0.

Optimal steplength for a given �.

If � is given, then the optimal steplength ropt(�) is given by

ropt = argmin
r≥0

(
max

i∈{1,...,m}
βi>0

|1 + (� − r)βi|
1 + �βi

)
.

To find it, let us denote

ϕi(r) =
1 + (� − r)βi

1 + �βi
=

(1 + �βi) − rβi

1 + �βi
,

and observe that if βi > 0, then ϕi(r) is decreasing. Since ϕi(0) = 1, it follows
that for r ≥ 0

max
i∈{1,...,m}

βi>0

ϕi(r) = max
i∈{1,...,m}

βi>0

1 + (� − r)βi

1 + �βi
=

1 + (� − r)βmin

1 + �βmin

.

Similarly −ϕi(0) = −1, and if βi > 0, then −ϕi(r) is increasing. Therefore

max
i∈{1,...,m}

βi>0

−ϕi(r) = max
i∈{1,...,m}

βi>0

−1 + (� − r)βi

1 + �βi
= −1 + (� − r)βmax

1 + �βmax

for nonnegative r. Since the both maxima are nonnegative on the positive
interval [� + 1/βmax, � + 1/βmin], it follows that the optimal choice ropt(�) is
a nonnegative solution of

1 + (� − r)βmin

1 + �βmin

= −1 + (� − r)βmax

1 + �βmax
.

Carrying out the computations, we get that

ropt(�) = � +
2 + �(βmin + βmax)

2�βminβmax + βmin + βmax

.
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We conclude that the optimal steplength ropt(�) based on the estimate
(4.37) is longer than the penalization parameter �, but ropt(�) approaches �
for large values of � as

lim
�→∞

ropt(�)/� = 1.

This is in agreement with the above discussion and our analysis of the penalty
method in Sect. 4.2.1, which suggests that a suitable steplength for large � is
given by r = �.

Given xk which minimizes L(x, λk, �) with respect to x ∈ R
n, then xk

satisfies
Axk + BT

(
λk + �(Bxk − c)

)
− b = o.

Thus the choice r = � results in

∇L0(xk, λk+1) = o,

so that it is optimal also in the sense that

� = argmin
r≥0

‖Axk + BT
(
λk + r(Bxk − c)

)
− b‖.

Maximizing the Gradient Ascent.

In Sect. 4.3.1, we have shown that Algorithm 4.2 may be interpreted as a
gradient algorithm applied to the maximization of the dual function Θ�. Thus
it seems natural to define rk by maximizing the quadratic function

φ(r) = Θ�k
(λk + rgk),

where gk = ∇Θ�k
(λk), with respect to r. Denoting A�k

= A + �kBT B,

F�k
= BA−1

�k
BT , and d = d�k

= BA−1
�k

(b + �kBT c) − c,

we can write

φ(r) = −1
2
(λk + rgk)T F�k

(λk + rgk) + (λk + rgk)T d,

so that the maximizer satisfies

d

dr
φ(r) = −r(gk)T F�k

gk−(gk)T (F�k
λk−d) = −r(gk)T F�k

gk +(gk)Tgk = 0.

Thus we can use the steepest ascent formula

rk =
‖gk‖2

(gk)T F�k
gk

, (4.41)

which may be applied to obtain the largest increase of Θ�k
in step k. For

large �k, we get by (1.47) and (1.48) that rk is close to �k in agreement with
the optimal choice of the steplength based on the estimate (4.37). Notice that
the steplength based on (4.41) depends on the current iteration.
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4.3.4 Convergence of the Feasibility Error

To estimate the feasibility error ‖Bxk − c‖, let us multiply equation (4.34) by
B and then subtract c from both sides of the result to get

Bxk+1 − c = Bxk − c − rkBA−1
�k

BT (Bxk − c),

where A�k
= A + �kBT B. It follows that

‖Bxk+1 − c‖ ≤ ‖(I − rkBA−1
�k

BT )|ImB‖‖Bxk − c‖, (4.42)

so that, under the assumptions of Theorem 4.6, we can use the same arguments
to prove the linear convergence of the feasibility error. We can thus state the
following theorem.

Theorem 4.7. Let xk, k = 0, 1, . . . , be generated by Algorithm 4.2 for prob-
lem (4.1) with given �k, rk, and λ0 ∈ R

m. Let βmax denote the largest eigen-
value of BA−1BT .

If there are ε > 0 and M > 0 such that

ε ≤ rk ≤ 2
βmax

+ 2�k − ε ≤ M, (4.43)

then the feasibility error ‖Bxk − c‖ converges to zero and the rate of conver-
gence is at least linear, i.e., there is R < 1 such that

‖Bxk+1 − c‖ ≤ R‖Bxk − c‖. (4.44)

We have thus obtained exactly the same rate of convergence of the feasibility
error as that for the Lagrange multipliers.

4.3.5 Convergence of Primal Variables

Having the proofs of convergence of the Lagrange multipliers and of the fea-
sibility error, we may use Proposition 2.12 to prove the convergence of the
primal variables.

Theorem 4.8. Let xk, k = 0, 1, . . . , be generated by Algorithm 4.2 for prob-
lem (4.1) with given �k, rk, and λ0 ∈ R

m, let x̂ denote the unique solution
of (4.1), let σmin denote the least nonzero singular value of B, and let βmax

denote the largest eigenvalue of BA−1BT .
If there are ε > 0 and M > 0 such that

ε ≤ rk ≤ 2
βmax

+ 2�k − ε ≤ M, (4.45)

then ‖xk−x̂‖ converges to zero and the rate of convergence is at least R-linear,
i.e., there is R < 1 such that

‖xk − x̂‖ ≤ Rk κ(A)‖B‖
σmin

‖x0 − x̂‖. (4.46)
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Proof. First recall that by the assumptions and (4.44),

‖Bxk − c‖ ≤ Rk‖Bx0 − c‖ = Rk‖B(x0 − x̂)‖ ≤ Rk‖B‖‖x0 − x̂‖,

where R < 1. Using (2.48), we get that

‖xk − x̂‖ ≤ κ(A)
σmin

‖Bxk − c‖ ≤ Rk κ(A)‖B‖
σmin

‖x0 − x̂‖.

We have used the fact that ∇xL(xk, λk, �) = o. �

4.3.6 Implementation

Since it is possible to approximate the solution of (4.1) with a single step of
the penalty method, the above discussion suggests to take rk = �k = � as
large as possible.

The auxiliary problems in Step 1 can be effectively solved by the Cholesky
factorization

LLT = A�,

which should be carried out after each update of �, and the multiplication of
a vector λ by BA−1

� BT should be carried out as

BA−1
� BT λ = B

(
L−T

(
L−1(BT λ)

))
.

The multiplication by the inverse factors should be implemented as the solu-
tion of the related triangular systems. Since the sensitivity to round-off errors
is greater when � is large, the algorithm should be implemented in double
precision.

Application of iterative solvers can hardly be efficient for implementation
of Step 1 of Algorithm 4.2, where an exact solution is required, but it can
be very efficient for the implementation of inexact augmented Lagrangian
algorithms discussed in the rest of this chapter.

On Application of the Conjugate Gradient Method

Since the augmented Lagrangian algorithm maximizes the dual function, we
can alternatively forget it and apply the CG algorithm of Sect. 3.3 to max-
imize the dual function Θ. This strategy may be very efficient as indicated
by the success of the FETI methods introduced by Farhat and Roux [86, 87].
The large penalty parameters result in efficient preconditioning of the Hessian
of Θ (1.48), so that, due to the optimal properties of the conjugate gradi-
ent method, the latter is a natural choice provided we can solve exactly the
auxiliary linear problems. The picture changes when inexact solutions of the
auxiliary problems are considered, as a perturbed conjugate gradient need not
be even a decrease direction as indicated in Fig. 3.2. Thus it is mainly the ca-
pability to accept the inexact solutions and treat separately the constraints and
minimization that makes the augmented Lagrangian algorithm an attractive
alternative for the solution of equality constrained QP problems.
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4.4 Asymptotically Exact Augmented Lagrangian
Method

The augmented Lagrangian method considered in the previous section as-
sumed that the minimization in Step 1 is carried out exactly. Since such
iterations are expensive, there is a good chance to reduce the cost of the outer
iterates without a large increase of the number of iterations due to the approx-
imate minimization, especially when we recall that the gradient is a robust
ascent direction.

In this section we carry out the analysis of convergence of the augmented
Lagrangian algorithm when the precisions of the solutions of the auxiliary
problems in Step 1 are determined by the bounds on the norm of the gradient.
We assume that the bounds are prescribed by the forcing sequence {εk},
where εk > 0 and limk→∞ εk = 0. The latter condition implies that the
stopping criterion becomes more stringent with the increasing index of the
outer iterations so that the minimization is asymptotically exact. Taking into
account the discussion of Sect. 4.3.3, we consider the steplength rk = �k.

4.4.1 Algorithm

The augmented Lagrangian algorithm with asymptotically exact solution of
auxiliary unconstrained problems differs from the exact algorithm only in
Step 1. We restrict our attention to the inexact version of the original aug-
mented Lagrangian method which reads as follows.

Algorithm 4.3. Asymptotically Exact Augmented Lagrangians.

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose εi > 0 so that limi→∞ εi = 0, λ0 ∈ R

m, �i ≥ � > 0

for k=0,1,2,. . .
Step 1. {Minimization with respect to x.}

Choose xk ∈ R
n so that ‖∇xL(xk, λk, �k)‖ ≤ εk

Step 2. {Updating the Lagrange multipliers.}
λk+1 = λk + �k(Bxk − c)

end for

We assume that the inexact solution of the auxiliary problems in Step 1
of Algorithm 4.3 is implemented by a suitable iterative method such as the
conjugate gradient method introduced in Chap. 3. Thus the algorithm solves
approximately the auxiliary unconstrained problems in the inner loop while it
generates the approximations of the Lagrange multipliers in the outer loop. Let
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us recall that effective application of the conjugate gradient method assumes
that the iterations are carried out with the matrix which has a favorable
distribution of the spectrum. This can be achieved by a problem-dependent
preconditioning discussed in Sect. 3.6 in combination with the gap-preserving
strategy of Sect. 4.7.

4.4.2 Auxiliary Estimates

Our analysis of the augmented Lagrangian algorithm is based on the following
lemma.

Lemma 4.9. Let A, B,b, and c be those of the definition of problem (4.1)
with B �= O not necessarily a full rank matrix. For any vectors x ∈ R

n and
λ ∈ R

m, let us denote

λ̃ = λ + �(Bx − c),
g = ∇xL(x, λ, �) = A�x − b + BT λ − �BT c.

Let λLS denote the vector of the least square Lagrange multipliers for prob-
lem (4.1), and let βmin denote the least nonzero eigenvalue of BA−1B.

Then for any λ ∈ ImB

‖λ̃ − λLS‖ ≤ ‖BA−1‖
βmin + �−1

‖g‖ +
�−1

βmin + �−1
‖λ − λLS‖. (4.47)

Proof. The definitions of λ̃ and g imply that

Ax + BT λ̃ = b + g,

Bx − �−1λ̃ = −�−1(λ − λLS) − �−1λLS + c,
(4.48)

and the solution x̂ and λLS satisfy by the assumptions

Ax̂ + BT λLS = b,
Bx̂ − �−1λLS = −�−1λLS + c. (4.49)

Subtracting (4.49) from (4.48) and switching to the matrix notation, we get
[

A BT

B −�−1I

] [
x− x̂
λ̃ − λLS

]
=
[

g
−�−1(λ − λLS)

]
. (4.50)

After multiplying the first block row of (4.50) by −BA−1, adding the result
to the second block row, and simple manipulations, we get

λ̃ − λLS = S−1
� BA−1g + �−1S−1

� (λ − λLS), (4.51)

where S� = BA−1BT + �−1I.
Noticing that λLS − λ ∈ ImB and taking norms, we get
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‖λ̃ − λ‖ ≤ ‖S−1
� |ImB‖

(
‖BA−1‖‖g‖ + �−1‖λLS − λ‖

)
. (4.52)

To estimate the first factor on the right-hand side, notice that by (1.43)
our task reduces to finding an upper bound for

‖(�−1I + BA−1BT )−1|ImBA−1BT‖.

Since ImBTA−1B is an invariant subspace of any matrix function of BT A−1B,
and the eigenvectors of BA−1BT |ImBA−1BT are just the eigenvectors of
BA−1BT which correspond to the nonzero eigenvalues, it follows by (1.24)
and (1.26) that

‖S−1
� |ImB‖ = ‖(�−1I + BA−1BT)−1|ImB‖ = 1/(�−1 + βmin).

After substituting into (4.52), we get (4.47). �

To simplify applications of Lemma 4.9 for λ0 /∈ ImB, let us formulate the
following easy lemma.

Lemma 4.10. Let λ0 ∈ R
m, let

λk+1 = λk + uk, uk ∈ ImB, k = 0, 1, . . . ,

let λLS denote the vector of the least square Lagrange multipliers for prob-
lem (4.1), so that λLS ∈ ImB, let P denote the orthogonal projector onto
ImB, and let

λ = λLS + (I − P)λ0. (4.53)

Then
λk − λ = Pλk − λLS, k = 0, 1, . . . . (4.54)

Proof. Since for k = 0, 1, . . .

(I − P)λk+1 = (I − P)(λk + uk) = (I − P)λk = · · · = (I − P)λ0,

we have

λk − λ = Pλk + (I − P)λk − λLS − (I − P)λ0 = Pλk − λLS.

�

4.4.3 Convergence Analysis

Now we are ready to use Lemma 4.9 in the proof of convergence of Algo-
rithm 4.3.



4.4 Asymptotically Exact Augmented Lagrangian Method 129

Theorem 4.11. Let xk, λk, k = 0, 1, . . . , be generated by Algorithm 4.3 for
the solution of (4.1) with given λ0 ∈ R

m, � > 0, �k ≥ �, and εk > 0 such that
limk→∞ εk = 0. Let (x̂, λLS) denote the least square KKT pair for (4.1). Let
P denote the orthogonal projector on ImB, let βmin denote the least nonzero
eigenvalue of BA−1BT , let λmin denote the least eigenvalue of A, and denote

λ = PλLS + (I − P)λ0 = λLS + (I − P)λ0.

Then
lim

i→∞
xk = x̂, lim

i→∞
λk = λ,

and for any positive integers k, s, k + s = i,

‖λk+s − λ‖ ≤ Cεk
1

1 − ν
+ νsCε0

1
1 − ν

+ νk+s‖λ0 − λ‖, (4.55)

‖xi − x̂‖ ≤ λ−1
min‖B‖

(
‖λi − λ‖ + εi

)
, (4.56)

where εk = max{εk, εk+1, . . . },

C =
‖BA−1‖

βmin + �−1
, and ν =

�−1

βmin + �−1
< 1. (4.57)

Proof. First notice that by the assumptions

(A + �kBT B)xk = b + �kBT c − BT λk + gk, ‖gk‖ ≤ εk, (4.58)

where gk = ∇xL(xk, λk, �k), and observe that the update rule in Step 2 of
Algorithm 4.3 and Lemma 4.10 with uk = �k(Bxk − c) imply that

λk − λ = Pλk − λLS, k = 0, 1, . . . .

Since
Pλk+1 = Pλk + �k(Bxk − c)

and Pλk ∈ ImB, we can apply Lemma 4.9 with

λ = Pλk and λ̃ = Pλk + �k(Bxk − c) = Pλk+1

and use the assumptions to get

‖λk+1 − λ‖ = ‖Pλk+1 − λLS‖ ≤ ‖BA−1‖
βmin + �−1

k

‖gk‖ +
�−1

k

βmin + �−1
k

‖Pλk − λLS‖

≤ Cεk + ν‖λk − λ‖,

where C and ν are defined by (4.57).
It follows that for any positive integer s and k = 0, 1, . . . , we have
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‖λk+s − λ‖ ≤ Cεk+s−1 + ν‖λk+s−1 − λ‖
≤ C(εk+s−1 + νεk+s−2 + · · · + νs−1εk) + νs‖λk − λ‖
≤ Cεk(1 + ν + ν2 + · · · + νs−1) + νs‖λk − λ‖

≤ Cεk
1

1 − ν
+ νs‖λk − λ‖.

To prove (4.55), it is enough to use the above inequalities to bound the last
term by

‖λk − λ‖ = ‖λ0+k − λ‖ ≤ Cε0
1

1 − ν
+ νk‖λ0 − λ‖.

Observing that any large integer may be expressed as a sum of two large
integers, and that εk converges to zero, we conclude that λk converges to λ.

To prove the convergence of the primal variables, denote A�k
= A+�kBT B

and observe that
A�k

x̂ = b + �kBT c − BT λ.

After subtracting the last equation from (4.58) and simple manipulations, we
get

xk − x̂ = A−1
�k

BT
(
λ − λk + gk

)
.

Taking norms, using the properties of norms, the assumptions, and

‖A−1
�k

‖ ≤ λ−1
min,

we get (4.56). It follows by assumptions that xk converges to x̂. �

The analysis of the asymptotically exact augmented Lagrangian algorithm
for more general equality constrained problems may be found in Chap. 2 of
Bertsekas [11].

4.5 Adaptive Augmented Lagrangian Method

The analysis of the previous section reveals that it is possible to use an inexact
solution of the auxiliary problems in Step 1 of the augmented Lagrangian
algorithm. However, the terms related to the precision in the inequalities (4.55)
and (4.56) indicate that the convergence can be considerably slowed down if
the precision control is relaxed. The price paid for the inexact minimization
is an additional term in the estimate of the rate of convergence.

Here we present a different approach which arises from the intuitive argu-
ment that the precision of the solution xk of the auxiliary problems should
be related to the feasibility of xk, i.e., ‖Bxk − c‖, since it does not seem rea-
sonable to solve the auxiliary problems to high precision at the early stage of
computations with λk far from the Lagrange multiplier of the solution. Our
approach is based on the observation of Sect. 4.3 that the rate of convergence
of the augmented Lagrangian algorithm with the steplength rk = �k can be
controlled by the penalty parameter (4.40).
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4.5.1 Algorithm

The new features of the algorithm that we present here are the precision
control in Step 1 and the update rule for the penalty parameter.

Algorithm 4.4. Augmented Lagrangians with Adaptive Precision Control.

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose η0 > 0, 0 < α < 1, β > 1, M > 0, �0 > 0, λ0 ∈ R

m

for k=0,1,2,. . .
Step 1. {Approximate minimization with respect to x.}

Choose xk ∈ R
n so that

‖∇xL(xk, λk, �k)‖ ≤ M‖Bxk − c‖ (4.59)

Step 2. {Updating the Lagrange multipliers.}
λk+1 = λk + �k(Bxk − c)

Step 3. {Updating �k, ηk.}
if ‖Bxk − c‖ ≤ ηk

�k+1 = �k, ηk+1 = αηk (4.60)

else
�k+1 = β�k, ηk+1 = ηk (4.61)

end if
end for

The next lemma shows that Algorithm 4.4 is well defined, that is, any
convergent algorithm for the solution of the auxiliary problems required in
Step 1 generates either xk that satisfies (4.59) in a finite number of steps, or a
sequence of approximations that converge to the solution of (4.1). Thus there
is no hidden enforcement of exact solution in (4.59) and consequently typi-
cally inexact solutions of the auxiliary unconstrained problems are obtained
in Step 1.

Lemma 4.12. Let M > 0, λ ∈ R
m, and � ≥ 0 be given and let {yk} denote

any sequence that converges to the unique solution ŷ of the problem

min
y∈Rn

L(y, λ, �). (4.62)

Then {yk} either converges to the solution x̂ of problem (4.1), or there is
an index k such that

‖∇L(yk, λ, �)‖ ≤ M‖Byk − c‖. (4.63)
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Proof. First observe that ∇L(yk, λ, �) converges to zero by the assumptions.
Thus if (4.63) does not hold for any k, then we must have Bŷ = c. In this
case, since ŷ is the solution of (4.62), it follows that

Aŷ − b + BT λ + �BT (Bŷ − c) = o. (4.64)

After substituting Bŷ = c into (4.64), we get

Bŷ − b + BT λ = o. (4.65)

However, since (4.65) and Bŷ = c are sufficient conditions for ŷ to be the
unique solution of (4.1), we have ŷ = x̂. �

4.5.2 Convergence of Lagrange Multipliers for Large �

The convergence analysis of Algorithm 4.4 is based on the following lemma.

Lemma 4.13. Let A, B,b, and c be those of the definition of problem (4.1)
with B �= O not necessarily a full rank matrix, let M > 0, and let

� = ‖BA−1‖M/βmin, (4.66)

where βmin denotes the least nonzero eigenvalue of BA−1BT . Let λLS denote
the vector of the least square Lagrange multipliers for problem (4.1), let P
denote the orthogonal projector onto ImB, and let for any λ ∈ R

m

λ = λLS + (I − P)λ and λ̃ = λ + �(Bx − c). (4.67)

If � ≥ 2�, x ∈ R
n, λ ∈ R

m, and

‖∇xL(x, λ, �)‖ ≤ M‖Bx− c‖, (4.68)

then
‖λ̃ − λ‖ ≤ 2

�
(� + β

−1

min)‖λ − λ‖. (4.69)

Proof. Let us first denote μ = Pλ and μ̃ = Pλ̃, so that μ ∈ ImB and μ̃ ∈ ImB,
and observe that by the definition of λ

λ − λ = λ − (λLS + (I − P)λ) = μ − λLS, (4.70)

λ̃ − λ = λ + �(Bx − c) −
(
λLS + (I − P)λ

)
= μ̃ − λLS. (4.71)

Since PB = B, we have

BT λ = (PB)T λ = BT Pλ = BT μ,

∇xL(x, λ, �) = A�x − b + BT λ − �BT c = A�x − b + BT μ − �BT c,
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where A� = A + �BT B. Thus the assumption (4.68) is equivalent to

‖∇xL(x, μ, �)‖ = ‖∇xL(x, λ, �)‖ ≤ M‖Bx − c‖. (4.72)

Finally, notice that by the definition of λ̃ in (4.67), we have

Bx − c = �−1(λ̃ − λ). (4.73)

Let us now denote
g = ∇xL(x, μ, �)

and assume that x, λ, and � satisfy the assumptions including (4.68), so that
by (4.72)

‖g‖ ≤ M‖Bx− c‖. (4.74)

Using (4.71), Lemma 4.9, (4.70), (4.74), (4.73), and notation (4.66), we get

‖λ̃ − λ‖ = ‖μ̃ − λLS‖

≤ ‖BA−1‖
βmin + �−1

‖g‖ +
�−1

βmin + �−1
‖μ− λLS‖

≤ ‖BA−1‖
βmin + �−1

M‖Bx− c‖ +
�−1

βmin + �−1
‖λ − λ‖

=
‖BA−1‖

βmin + �−1

M

�
‖λ̃ − λ‖ +

�−1

βmin + �−1
‖λ − λ‖

≤ �

�

(
‖λ̃ − λ‖ + ‖λ − λ‖

)
+

1
βmin�

‖λ − λ‖.

Thus, since � ≥ 2�, it follows that

‖λ̃ − λ‖ ≤
(

�

�
+

1
βmin�

)
‖λ − λ‖/

(
1 − �

�

)
≤ 2

�
(� + β

−1

min)‖λ − λ‖.

�

Lemma 4.13 suggests that the Lagrange multipliers generated by Algo-
rithm 4.4 converge to the solution λ linearly when the penalty parameter is
sufficiently large. We shall formulate this result explicitly.

Corollary 4.14. Let {λk},{xk}, and {�k} be generated by Algorithm 4.4 for
problem (4.1) with the initialization defined in Step 0. Using the notation of
Lemma 4.13, let for any index k ≥ 0

�k ≥ 2α−1
0 (� + β

−1

min), (4.75)

where α0 < 1 is a positive constant.
Then

‖λk+1 − λ‖ ≤ α0‖λk − λ‖. (4.76)
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Proof. Let k satisfy (4.75). Comparing (4.59) with (4.68), we can check that
all the assumptions of Lemma 4.13 are satisfied for x = xk, λ = λk, and
� = �k. Substituting into (4.69) and using λk+1 = λ̃, we get

‖λk+1 − λ‖ ≤ 2�k
−1(� + β

−1

min)‖λk − λ‖ ≤ α0‖λk − λ‖.

�

Notice that in (4.76), there is no term which accounts for inexact solutions
of auxiliary problems. This compares favorably with (4.55).

4.5.3 R-Linear Convergence for Any Initialization of �

The following lemma gives us a simple key to the proof of R-Linear conver-
gence of Algorithm 4.4 for any initial regularization parameter �0 ≥ 0.

Lemma 4.15. Let {λk}, {xk}, and {�k} be generated by Algorithm 4.4 for
problem (4.1) with the assumptions of Lemma 4.13 and the initialization de-
fined in Step 0.

Then �k is bounded and there is a constant C such that

‖Bxk − c‖ ≤ Cαk, (4.77)

where α < 1 is a positive constant defined in Step 0 of Algorithm 4.4.

Proof. Using the notation of Lemma 4.13, let us first assume that for any
index k, �k < 2(� + β

−1

min)/α, so that there is k0 such that for k ≥ k0 the
values of �k and ηk are updated by the rule (4.60) in Step 3 of Algorithm 4.4.
It follows that for any k ≥ k0,

‖Bxk − c‖ ≤ ηk = αk−k0ηk0 = Cαk,

where α < 1 is defined in Step 0 of Algorithm 4.4.
If there is k0 such that �k0 ≥ 2(� + β

−1

min)/α, then, since {�k} is nonde-
creasing, we can use Corollary 4.14 to get that for k > k0

‖λk − λ‖ ≤ αk−k0‖λk0 − λ‖. (4.78)

Using the update rule of Step 2 of Algorithm 4.4, we get

‖Bxk − c‖ = �−1
k ‖λk+1 − λk‖ ≤ �−1

k (‖λk+1 − λ‖ + ‖λk − λ‖).

Combining the last inequality with (4.78), we get

‖Bxk − c‖ ≤ �−1
k (αk−k0+1 + αk−k0 )‖λk0 −λ‖ ≤ 2αk−k0�−1

k0
‖λk0 −λ‖ = Cαk.

This proves (4.77).
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To prove that {�k} is bounded, notice that we can express each k ≥ 0 as a
sum k = k1 + k2, where ηk = αk1η0 and �k = βk2�0. Hence given k, k1 and k2

denote the numbers of preceding steps that invoked the updates (4.60) and
(4.61), respectively. Moreover, �k+1 = β�k > �k if and only if ‖Bxk−c‖ > ηk,
and for such k

αk1η0 = ηk < ‖Bxk − c‖ ≤ Cαk = Cαk1+k2 .

Since α < 1, it follows that k2 is finite and �k is bounded. �

Using that �k is uniformly bounded, it is now easy to show that {λk} and
{xk} converge R-linearly.

Corollary 4.16. Let {λk},{xk}, and {�k} be generated by Algorithm 4.4 for
problem (4.1) with the initialization defined in Step 0. Then there are constants
C1 and C2 such that

‖xk − x̂‖ ≤ C1α
k and ‖λk − λ‖ ≤ C2α

k, (4.79)

where λ is defined by (4.67), x̂ is a unique solution of (4.1), and α < 1 is a
parameter of Algorithm 4.4.

Proof. Observe that Lemma 4.15 and the condition (4.59) in the definition of
Step 1 imply that there is a constant C such that

‖Bxk − c‖ ≤ Cαk and ‖gk‖ ≤ Cαk.

To finish the proof, it is enough to use Proposition 2.12 and simple manipu-
lations. �

4.6 Semimonotonic Augmented Lagrangians (SMALE)

In the previous section, we have shown that Algorithm 4.4 always achieves
the R-linear rate of convergence given by the constant α which controls the
decrease of the feasibility error. This looks like not a bad result, its only draw-
back being that such a rate of convergence is achieved only with the penalty
parameter �k which exceeds a threshold which depends on the constraint ma-
trix B. Is it possible to propose an inexact algorithm with any reasonable kind
of convergence independent of the constraint matrix B? A key to getting a pos-
itive answer is to return to the augmented Lagrangian algorithm viewed as an
alternative implementation of the penalty method with the adaptive precision
control used by Algorithm 4.4. We shall also see that the convergence can be
achieved with a rather small threshold on the penalty parameter independent
of the singular values of the constraint matrix B.
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4.6.1 SMALE Algorithm

The algorithm presented here is based on the observation that, having for a
sufficiently large � an approximate minimizer x� of the augmented Lagrangian
L(x, λ, �) with respect to x, we can modify λ in such a way that x� is also
an approximate unconstrained minimizer of L(x, λ̃, 0). Thus we can hopefully
find a better approximation by minimizing L(x, λ̃, �). Since the better penalty
approximation results in an increased value of the Lagrangian, it is natural to
increase the penalty parameter until increasing values of the Lagrangian are
generated. We shall show that the threshold value for the penalty parameter
is rather small and independent of the constraint matrix B. The algorithm
that we consider here reads as follows.

Algorithm 4.5. Semimonotonic augmented Lagrangians (SMALE).

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, b ∈ R
n, and

c ∈ ImB.

Step 0. {Initialization.}
Choose η > 0, β > 1, M > 0, �0 > 0, λ0 ∈ R

m

for k=0,1,2,. . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk such that

‖g(xk, λk, �k)‖ ≤ min{M‖Bxk − c‖, η}. (4.80)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + �k(Bxk − c) (4.81)

Step 3. {Update � provided the increase of the Lagrangian is not sufficient.}
if k > 0 and

L(xk, λk, �k) < L(xk−1, λk−1, �k−1) +
�k

2
‖Bxk − c‖2 (4.82)

�k+1 = β�k

else
�k+1 = �k.

end if
end for

In Step 1 we can use any convergent algorithm for the minimization of
the strictly convex quadratic function such as the preconditioned conjugate
gradient method of Sect. 3.3. Let us point out that Algorithm 4.5 differs
from Algorithm 4.4 by the condition (4.82) on the update of the penalization
parameter in Step 3.
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To see that Algorithm 4.5 is well defined, let {yk} be a sequence generated
by any convergent algorithm for the solution of the auxiliary problem

minimize {L(y, λ, �) : y ∈ R
n}.

Then there is an integer k0 such that for k ≥ k0

‖g(yk, λ, �)‖ ≤ η

and we can use Lemma 4.12 to show that either {yk} converges to the solu-
tion x̂ of (4.1) or there is k such that (4.80) holds. Thus there is no hidden
enforcement of the exact solution in (4.80) and consequently typically inexact
solutions of the auxiliary unconstrained problems are obtained in Step 1.

4.6.2 Relations for Augmented Lagrangians

In this section we establish the basic inequalities that relate the bound on the
norm of the gradient g of the augmented Lagrangian L to the values of the
augmented Lagrangian L. These inequalities are the key ingredients in the
proof of convergence of Algorithm 4.5.

Lemma 4.17. Let A, B, b, and c be those of problem (4.1), x ∈ R
n, λ ∈ R

m,
� > 0, η > 0, and M > 0. Let λmin denote the least eigenvalue of A and
λ̃ = λ + �(Bx − c).
(i) If

‖g(x, λ, �)‖ ≤ M‖Bx − c‖, (4.83)

then for any y ∈ R
n

L(y, λ̃, �) ≥ L(x, λ, �) +
1
2

(
� − M2

λmin

)
‖Bx − c‖2 +

�

2
‖By − c‖2. (4.84)

(ii) If
‖g(x, λ, �)‖ ≤ η, (4.85)

then for any y ∈ R
n

L(y, λ̃, �) ≥ L(x, λ, �) +
�

2
‖Bx − c‖2 +

�

2
‖By − c‖2 − η2

2λmin
. (4.86)

(iii) If (4.85) holds and z0 is any vector such that Bz0 = c, then

L(x, λ, �) ≤ f(z0) +
η2

2λmin
. (4.87)

Proof. Let us denote δ = y − x, A� = A + �BT B, g = g(x, λ, �), and
g̃ = g(x, λ̃, �). Using

L(x, λ̃, �) = L(x, λ, �)+�‖Bx−c‖2 and g(x, λ̃, �) = g(x, λ, �)+�BT (Bx−c),
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we get

L(y, λ̃, �) = L(x, λ̃, �) + δT g̃ +
1
2
δT A�δ

= L(x, λ, �) + δTg +
1
2
δT A�δ + �δT BT (Bx − c) + �‖Bx − c‖2

≥ L(x, λ, �) + δTg +
λmin

2
‖δ‖2 + �δT BT (Bx − c) +

�

2
‖Bδ‖2

+�‖Bx− c‖2.

Noticing that

�

2
‖By− c‖2 =

�

2
‖Bδ +(Bx− c)‖2 = �δT BT (Bx− c)+

�

2
‖Bδ‖2 +

�

2
‖Bx− c‖2,

we get

L(y, λ̃, �) ≥ L(x, λ, �)+δTg+
λmin

2
‖δ‖2 +

�

2
‖Bx−c‖2 +

�

2
‖By−c‖2. (4.88)

Assuming (4.83) and using simple manipulations, we get

L(y, λ̃, �) ≥ L(x, λ, �) − M‖δ‖‖Bx− c‖ +
λmin

2
‖δ‖2

+
�

2
‖Bx − c‖2 +

�

2
‖By − c‖2

= L(x, λ, �) +
(

λmin

2
‖δ‖2 − M‖δ‖‖Bx − c‖ +

M2‖Bx − c‖2

2λmin

)

−M2‖Bx − c‖2

2λmin
+

�

2
‖Bx − c‖2 +

�

2
‖By − c‖2

≥ L(x, λ, �) +
1
2

(
� − M2

λmin

)
‖Bx − c‖2 +

�

2
‖By − c‖2,

which proves (i).
If we assume that (4.85) holds, then by (4.88) and similar manipulations

as above

L(y, λ̃, �) ≥ L(x, λ, �) − ‖δ‖η +
λmin

2
‖δ‖2 +

�

2
‖Bx − c‖2 +

�

2
‖By − c‖2

≥ L(x, λ, �) +
�

2
‖Bx − c‖2 +

�

2
‖By − c‖2 − η2

2λmin
,

which proves (ii).
Finally, let ŷ denote the solution of the auxiliary problem

minimize L(y, λ, �) s.t. y ∈ R
n, (4.89)

Bz0 = c, and δ̂ = ŷ − x. If (4.85) holds, then
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0 ≥ L(ŷ, λ, �)−L(x, λ, �) = δ̂Tg+
1
2
δ̂T A�δ̂ ≥ −‖δ̂‖η+

1
2
λmin‖δ̂‖2 ≥ − η2

2λmin
.

Since L(ŷ, λ, �) ≤ L(z0, λ, �) = f(z0), we conclude that

L(x, λ, �) ≤ L(x, λ, �) − L(ŷ, λ, �) + f(z0) ≤ f(z0) +
η2

2λmin
.

�

4.6.3 Convergence and Monotonicity

The analysis of SMALE is based on the following lemma.

Lemma 4.18. Let {xk}, {λk}, and {�k} be generated by Algorithm 4.5 for
the solution of problem (4.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m.
Let λmin denote the least eigenvalue of the Hessian A of f .
(i) If k ≥ 0 and

�k ≥ M2/λmin, (4.90)

then

L(xk+1, λk+1, �k+1) ≥ L(xk, λk, �k) +
�k+1

2
‖Bxk+1 − c‖2. (4.91)

(ii) For any k ≥ 0

L(xk+1, λk+1, �k+1) ≥ L(xk, λk, �k) +
�k

2
‖Bxk − c‖2

+
�k+1

2
‖Bxk+1 − c‖2 − η2

2λmin
.

(4.92)

(iii) For any k ≥ 0 and z0 such that Bz0 = c

L(xk, λk, �k) ≤ f(z0) +
η2

2λmin
. (4.93)

Proof. In Lemma 4.17, let us substitute x = xk, λ = λk, � = �k, and
y = xk+1, so that inequality (4.83) holds by (4.80), and by (4.81) λ̃ = λk+1.

If (4.90) holds, we get by (4.84)

L(xk+1, λk+1, �k) ≥ L(xk, λk, �k) +
�k

2
‖Bxk+1 − c‖2. (4.94)

To prove (4.91), it is enough to add

�k+1 − �k

2
‖Bxk+1 − c‖2 (4.95)

to both sides of (4.94) and to notice that
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L(xk+1, λk+1, �k+1) = L(xk+1, λk+1, �k) +
�k+1 − �k

2
‖Bxk+1 − c‖2. (4.96)

If we notice that by the definition of Step 1 of Algorithm 4.5

‖g(xk, λk, �k)‖ ≤ η,

we can apply the same substitution as above to Lemma 4.17(ii) to get

L(xk+1, λk+1, �k) ≥ L(xk, λk, �k)

+
�k

2
‖Bxk − c‖2 +

�k

2
‖Bxk+1 − c‖2 − η2

2λmin
. (4.97)

After adding the nonnegative expression (4.95) to both sides of (4.97) and
using (4.96), we get (4.92). Similarly, inequality (4.93) results from application
of the substitution to Lemma 4.17(iii). �

Theorem 4.19. Let {xk}, {λk}, and {�k} be generated by Algorithm 4.5
for the solution of problem (4.1) with η > 0, β > 1, M > 0, �0 > 0, and
λ0 ∈ R

m. Let λmin denote the least eigenvalue of the Hessian A of f and let
s ≥ 0 denote the smallest integer such that

βs�0 ≥ M2/λmin.

(i) The sequence {�k} is bounded and

�k ≤ βs�0. (4.98)

(ii) If z0 denotes any vector such that Bz0 = c, then

∞∑

k=1

�k

2
‖Bxk − c‖2 ≤ f(z0) − L(x0, λ0, �0) + (1 + s)

η2

2λmin
. (4.99)

(iii) The sequence {xk} converges to the solution x̂ of (4.1).
(iv) The sequence {λk} converges to the vector

λ = λLS + (I − P)λ0,

where P is the orthogonal projector onto ImB, and λLS is the least square
Lagrange multiplier of (4.1).

Proof. Let s ≥ 0 denote the smallest integer such that βs�0 ≥ M2/λmin and
let I denote the set of all indices ki such that {�ki > �ki−1}. Using Lemma
4.18(i), �ki = β�ki−1 = βi�0 for ki ∈ I, and βs�0 ≥ M2/λmin, we conclude
that there is no k such that �k > βs�0. Thus I has at most s elements and
(4.98) holds.

By the definition of Step 3, for k > 0 either k + 1 �∈ I and
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�k

2
‖Bxk − c‖2 ≤ L(xk, λk, �k) − L(xk−1, λk−1, �k−1),

or k + 1 ∈ I and by (4.92)

�k

2
‖Bxk − c‖2 ≤ �k−1

2
‖Bxk−1 − c‖2 +

�k

2
‖Bxk − c‖2

≤ L(xk, λk, �k) − L(xk−1, λk−1, �k−1) +
η2

2λmin
.

Summing up the appropriate cases of the last two inequalities for k = 1, . . . , n
and taking into account that I has at most s elements, we get

n∑

k=1

�k

2
‖Bxk − c‖2 ≤ L(xn, λn, �n) − L(x0, λ0, �0) + s

η2

2λmin
. (4.100)

To get (4.99), it is enough to replace L(xn, λn, �n) by the upper bound (4.93).
To prove (iii) and (iv), let us denote

gk = g(xk, λk, �k) = A�k
xk + BT λk − b − �kBT c, A�k

= A + �kBT B,

and let us assume that B is a full row rank matrix. Since the unique KKT
pair (x̂, λ̂) is fully determined by

Ax̂ + BT λ̂ = b,
Bx̂ = c,

we can rewrite gk as

gk = A�k
(xk − x̂) + BT (λk − λ̂). (4.101)

The last equation together with

B(xk − x̂) = Bxk − c (4.102)

may be written in the matrix form as
(

A�k
BT

B 0

)(
xk − x̂
λk − λ̂

)
=
(

gk

Bxk − c

)
. (4.103)

Since ‖Bxk −c‖ converges to zero due to (4.99), ‖gk‖ ≤ M‖Bxk −c‖, and the
matrix of the system (4.103) is regular, we conclude, using Proposition 2.12,
that xk converges to x̂ and λk converges to λ̂. Since B is a full rank matrix,
it follows that λ̂ = λLS = λ.

If B is not a full rank matrix, then the augmented matrix on the left-hand
side of (4.103) is singular, but the solution x̂ is still uniquely determined, as
KerA ∩ KerB ⊆ KerA = {o} by the assumptions. Since any KKT pair (x̂, λ)
satisfies
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(
A�k

BT

B 0

)(
xk − x̂
λk − λ

)
=
(

gk

Bxk − c

)
, (4.104)

we can use the same arguments as above and Proposition 2.12 to find out
again that xk converges to x̂, but now we shall get only that BT λk converges
to BT λ. However, using Lemma 4.10, we get

λk − λ = Pλk − λLS,

so that in particular λk − λ ∈ ImB. It follows by (1.34) that

‖BT (λk − λ)‖ ≥ σmin‖λk − λ‖.

Since the right-hand side converges to zero, we conclude that λk converges to
λ, which completes the proof of (iii) and (iv). �

4.6.4 Linear Convergence for Large �0

Using the estimates of the previous section, we can prove that Algorithm 4.5
converges to the solution λ linearly provided �0 is sufficiently large. We shall
formulate this result explicitly.

Proposition 4.20. Let {λk},{xk}, and {�k} be generated by Algorithm 4.5
for problem (4.1) with the initialization defined in Step 0 and

�0 ≥ 2α−1(� + β
−1

min), (4.105)

where we use the notation of Lemma 4.13 and α is an arbitrary constant such
that 0 < α < 1.

(i) For any index k ≥ 0

‖λk+1 − λ‖ ≤ α‖λk − λ‖. (4.106)

(ii) There is a constant C1 such that for any index k ≥ 0

‖Bxk − c‖ ≤ C1α
k. (4.107)

(iii) There is a constant C2 such that for any index k ≥ 0

‖xk − x̂‖ ≤ C2α
k. (4.108)

Proof. (i) Let �0 satisfy (4.105). Comparing (4.80) with (4.68) and taking into
account that �k ≥ �0, we can check that all the assumptions of Lemma 4.13
are satisfied for x = xk, λ = λk, and � = �k. Substituting into (4.69) and
using λk+1 = λ̃, we get
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‖λk+1 − λ‖ ≤ 2�k
−1(� + β

−1

min)‖λk − λ‖ ≤ α‖λk − λ‖.

This proves (4.106).
(ii) Using the update rule of Step 2 of Algorithm 4.5, we get

‖Bxk − c‖ = �−1
k ‖λk+1 − λk‖ ≤ �−1

k (‖λk+1 − λ‖ + ‖λk − λ‖),

and by (4.106), we get

‖Bxk − c‖ ≤ �−1
k (αk+1 + αk)‖λ0 − λ‖ ≤ 2αk�−1

0 ‖λ0 − λ‖ = C1α
k.

This proves (4.107).
(iii) Observe that (4.107) and the condition (4.80) in the definition of Step 1
of Algorithm 4.5 imply that there is a constant C1 such that

‖Bxk − c‖ ≤ C1α
k and ‖gk‖ ≤ C1α

k.

To finish the proof, it is enough to use Proposition 2.12 and simple manipu-
lations. �

4.6.5 Optimality of the Outer Loop

Theorem 4.19 suggests that for homogeneous constraints, it is possible to
give a rate of convergence of the feasibility error that does not depend on
the constraint matrix B. To present explicitly this qualitatively new feature
of Algorithm 4.5, at least as compared to the related Algorithm 4.4, let T
denote any set of indices and assume that for any t ∈ T there is defined a
problem

minimize ft(x) s.t. x ∈ Ωt (4.109)

with Ωt = {x ∈ R
nt : Btx = o}, ft(x) = 1

2x
T Atx − bT

t x, At ∈ R
nt×nt sym-

metric positive definite, Bt ∈ R
mt×nt , and bt,x ∈ R

nt . Our optimality result
then reads as follows.

Theorem 4.21. Let {xk
t }, {λk

t }, and {�t,k} be generated by Algorithm 4.5
for (4.109) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, �t,0 = �0 > 0, λ0

t = o. Let
0 < amin be a given constant. Finally, let the class of problems (4.109) satisfy

amin ≤ λmin(At),

where λmin(At) denotes the smallest eigenvalue of At, and denote

a = (2 + s)/(amin�0),

where s ≥ 0 is the smallest integer such that βs�0 ≥ M2/amin. Then for each
ε > 0 there are the indices kt, t ∈ T , such that
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kt ≤ a/ε2 + 1

and xkt
t is an approximate solution of (4.109) satisfying

‖gt(xkt
t , λkt

t , �t,kt)‖ ≤ Mε‖bt‖ and ‖Btxkt
t ‖ ≤ ε‖bt‖. (4.110)

Proof. First notice that for any index j

j�0

2
min

i∈{1,...,j}
‖Btxi

t‖2 ≤
j∑

i=1

�t,i

2
‖Btxi

t‖2 ≤
∞∑

i=1

�t,i

2
‖Btxi

t‖2. (4.111)

Denoting by Lt(x, λ, �) the Lagrangian for problem (4.109), we get for any
x ∈ R

nt and � ≥ 0

Lt(x,o, �) =
1
2
xT (At + �BT

t Bt)x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

If we substitute this inequality and z = zt
0 = o into (4.99) and use ‖bt‖ ≥ ηt,

we get for any t ∈ T
∞∑

i=1

�t,i

2
‖Btxi

t‖2 ≤ ‖bt‖2

2amin
+

(1 + s)η2
t

2amin
≤ 2 + s

2amin
‖bt‖2 =

a�0

2
‖bt‖2. (4.112)

Combining the latter inequality with (4.111), we get

min{‖Btxi
t‖2 : i = 1, . . . , k} ≤ a‖bt‖2/j. (4.113)

Taking for j the smallest integer that satisfies a/j ≤ ε2, so that

a/ε2 ≤ j ≤ a/ε2 + 1,

and denoting for any t ∈ T by kt ∈ {1, . . . , j} the index which minimizes
{‖Btxi

t‖ : i = 1, . . . , j}, we can use (4.113) to obtain

‖Btxkt
t ‖2 = min{‖Btxi

t‖2 : i = 1, . . . , j} ≤ a‖bt‖2/j ≤ ε2‖bt‖2.

Thus
‖Btxkt

t ‖2 ≤ ε2‖bt‖2,

and, using the definition of Step 1 of Algorithm 4.5, we get also the inequality

‖gt(xkt
t , λkt

t , �t,kt)‖ ≤ M‖Btxkt
t ‖ ≤ Mε‖bt‖.

�

Let us recall that

‖gt(xkt
t , λkt+1

t , 0)‖ = ‖gt(xkt
t , λkt

t , �t,kt)‖,

so that (xkt
t , λkt+1

t ) is an approximate KKT pair of problem (4.109). The
assumption on homogeneity of the constraints was used to find zt

0 such that
f(zt

0) is uniformly bounded, in this case by zero.
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4.6.6 Optimality of SMALE with Conjugate Gradients

We shall need the following simple lemma to prove optimality of the inner
loop.

Lemma 4.22. Let {xk}, {λk}, and {�k} be generated by Algorithm 4.5 for
problem (4.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Let λmin

denote the least eigenvalue of A.
Then for any k ≥ 0

L(xk, μk+1, �k+1)−L(xk+1, μk+1, �k+1) ≤
η2

2λmin
+

β�k

2
‖Bxk − c‖2. (4.114)

Proof. Notice that by definition of the Lagrangian function and by the update
rule (4.81)

L(xk, λk+1, �k+1) = L(xk, λk, �k) + �k‖Bxk − c‖2 +
�k+1 − �k

2
‖Bxk − c‖2

= L(xk, λk, �k) +
�k+1 + �k

2
‖Bxk − c‖2.

After subtracting L(xk+1, λk+1, �k+1) from both sides and observing that by
(4.92)

L(xk, λk, �k) − L(xk+1, λk+1, �k+1) ≤
η2

2λmin
− �k

2
‖Bxk − c‖2,

we get

L(xk, λk+1, �k+1) − L(xk+1, λk+1, �k+1) ≤
η2

2λmin
+

β�k

2
‖Bxk − c‖2.

�

Now we are ready to prove our main result concerning the inner loop.

Theorem 4.23. Let {xk
t }, {λk

t }, and {�t,k} be generated by Algorithm 4.5
for (4.109) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, �t,0 = �0 > 0, λ0

t = o.
Let 0 < amin < amax and 0 < Bmax be given constants. Let Step 1 be
implemented by the conjugate gradient method which generates the iterates
xk,0

t ,xk,1
t , . . . ,xk,l

t = xk
t starting from xk,0

t = xk−1
t with x−1

t = o, where
l = l(k, t) is the first index satisfying either

‖g(xk,l
t , λk

t , �k)‖ ≤ M‖Btx
k,l
t ‖ (4.115)

or
‖g(xk,l

t , λk
t , �k)‖ ≤ εM‖bt‖. (4.116)

Finally, let the class of problems (4.109) satisfy
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amin ≤ λmin(At) ≤ λmax(At) = ‖At‖ ≤ amax and ‖Bt‖ ≤ Bmax. (4.117)

Then Algorithm 4.5 generates an approximate solution xkt
t of any problem

(4.109) which satisfies (4.110) at O(1) matrix–vector multiplications by the
Hessian of the augmented Lagrangian Lt for (4.109).

Proof. Let t ∈ T be fixed and let us denote by Lt(x, λ, �) the augmented
Lagrangian for problem (4.109), so that for any x ∈ R

p and � ≥ 0

Lt(x,o, �) =
1
2
xT (At + �BT

t Bt)x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

Applying the latter inequality to (4.99) with z0 = o and λ0
t = o, we get, using

the assumption ‖bt‖ ≥ ηt, that for any k ≥ 0

�t,k

2
‖Btxk

t ‖2 ≤
∞∑

i=1

�t,i

2
‖Btxi

t‖2 ≤ f(z0) − L(x0
t , λ

0
t , �t,0) + (1 + s)

η2
t

2amin

≤ (2 + s)‖bt‖2/(2amin),

where s ≥ 0 denotes the smallest integer such that βs�0 ≥ M2/amin. Thus by
(4.114)

Lt(xk−1
t , λk

t , �t,k) − Lt(xk
t , λk

t , �t,k) ≤ η2
t

2amin
+

β�t,k−1

2
‖Btxk−1

t ‖2

≤ (3 + s)β‖bt‖2/(2amin), (4.118)

and, since the minimizer xk
t of Lt( . , λk

t , �t,k) satisfies (4.115) and is a possible
choice for xk

t , also

Lt(xk−1
t , λk

t , �t,k) − Lt(xk
t , λk

t , �t,k) ≤ (3 + s)β‖bt‖2/(2amin). (4.119)

Denoting
a1 = (3 + s)β/amin,

we can estimate the energy norm of the gradient by

‖gt(x
k,0
t , λk

t , �t,k)‖2
A−1

t,k

= 2
(
Lt(xk−1

t , λk
t , �t,k) − Lt(xk

t , λk
t , �t,k)

)
≤ a1‖bt‖2,

where
At,k = At +

�t,k

2
BT

t Bt.

Since

amin ≤ λmin(At,k) ≤ ‖At,k‖ ≤ ‖At‖ + �t,k‖Bt‖2 ≤ amax + βs�0B
2
max,

we can also bound the spectral condition number κ(At,k) of At,k by

K =
(
amax + βs�0B

2
max

)
/amin.
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Combining this bound with the estimate (3.21) which reads in our case

‖gt(x
k,l
t , λk

t , �t,k)‖2
A−1

t,k

≤ 4

(√
κ(At,k) − 1√
κ(At,k) + 1

)2l

‖gt(x
k,0
t , λk

t , �t,k)‖2
A−1

t,k

,

we get

‖gt(x
k,l
t , λk

t , �t,k)‖2 ≤ 1
amin

‖gt(x
k,l
t , λk

t , �t,k)‖2
A−1

t,k

≤ 4σ2l

amin
‖gt(x

k,0
t , λk

t , �t,k)‖2
A−1

t,k

≤ 4a1

amin
σ2l‖bt‖2,

where

σ =
√

K − 1√
K + 1

< 1.

It simply follows by the inner stop rule (4.116) that the number of the inner
iterations is uniformly bounded by any index l = lmax which satisfies

4a1

amin
σ2l‖bt‖2 ≤ ε2‖bt‖2M2.

To finish the proof, it is enough to combine this result with Theorem 4.21. �

We can observe optimality in the solution of more general classes of prob-
lems than those considered in Theorem 4.23 provided we can bound the num-
ber of iterations in the inner loop. For an example of optimality when ‖Bt‖ is
not bounded see Sect. 4.8.2.

4.6.7 Solution of More General Problems

If A is positive definite only on the kernel of B, then we can use a suitable
penalization to reduce such problem to the convex one. Using Lemma 1.3, it
follows that there is � > 0 such that A + �BT B is positive definite, so that we
can apply our SMALE algorithm to the equivalent penalized problem

min
x∈ΩE

f�(x), (4.120)

where
f�(x) = xT (A + �BT B)x − bTx.

Alternatively, we can modify the inner loop of SMALE so that it leaves
the inner loop and increases the penalty parameter whenever the negative
curvature is recognized. Let us point out that such modification does not
guarantee optimality of the modified algorithm.
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4.7 Implementation of Inexact Augmented Lagrangians

We shall complete the discussion of inexact augmented Lagrangian algorithms
by a few hints concerning their implementation.

4.7.1 Stopping, Modification of Constraints,
and Preconditioning

While implementing the inexact augmented Lagrangian algorithms of Sects. 4.4
and 4.6, a stopping criterion should be added not only after Step 1, but also
into the procedure which generates xk in Step 1. We use in our experiments
the stopping criterion

‖∇L(xk, λk, �k)‖ ≤ εg‖b‖ and ‖Bxk − c‖ ≤ εf‖b‖.

The relative precisions εf and εg should be judiciously determined. Our stop-
ping criterion in the inner conjugate gradient loop of SMALE reads

‖g(yi, λi, �i)‖ ≤ min{M‖Byi−c‖, η} or ‖g(yi, λi, �i)‖ ≤ min{εg, Mεf}‖b‖,

so that the inner loop is interrupted when either the solution or a new iterate
xk = yi is found.

Before applying the algorithms presented to problems with a well-conditioned
Hessian A, we strongly recommend to rescale the equality constraints so that
‖A‖ ≈ ‖B‖. Taking into account the estimate of the rate of convergence like
(4.69), it is also useful to orthonormalize or at least normalize the constraints.
This approach has been successfully applied, e.g., in the FETI-DP-based solver
for analysis of layered composites [137].

If the Hessian A is ill-conditioned and there is an approximation M of A
that can be used as preconditioner, then we can use the preconditioning strate-
gies introduced in the discussion on implementation of the penalty method in
Sect. 4.2.6. The construction of the matrix M is typically problem dependent.
We refer interested readers to the books by Axelsson [4], Saad [163], van der
Vorst [178], or Chen [21].

Sometimes it is possible to exploit the structure of the problem for very
efficient implementation of preconditioning. For example, it has been shown
that it is possible to find multigrid preconditioners to the discretized Stokes
problem so that the latter can be solved by SMALE with asymptotically linear
complexity [144].

4.7.2 Initialization of Constants

Though all the inexact algorithms converge with 0 < α < 1, β > 1, η > 0,
η0 > 0, �0 > 0, M > 0, and λ0 ∈ R

m, their choice affects the performance of
the algorithms and should exploit available information. Here we give a few
hints and heuristics that can be useful for their efficient implementation.
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The parameter α is used only in the adaptive augmented Lagrangian algo-
rithm 4.4. This parameter determines the final rate of convergence of approxi-
mations of the Lagrange multipliers in the outer loop; however, its small value
can slow down the convergence in the inner loop via increasing the penalty
parameter. We use α = 0.1.

The parameter β is used by SMALE algorithm 4.5 and the adaptive aug-
mented Lagrangian algorithm 4.4 to increase the penalty parameter. Our ex-
perience indicates that β = 10 is a reasonable choice.

The parameter η is used only by SMALE algorithm 4.5. It helps to avoid
outer iterations that do not invoke the inner CG iterations; we use η = 0.1‖b‖.

The parameter η0 is used by Algorithm 4.4 to define the initial bound
on the feasibility error which is used to control the update of the penalty
parameter. The algorithm does not seem to be sensitive with respect to η0;
we use η0 = 0.1‖b‖.

The estimate (4.99) shows that a large value of the initial penalty pa-
rameter �0 guarantees fast convergence of the outer loop. By analysis of the
penalty method in Sect. 4.2, it is even possible to find the solution in one
outer iteration. At the same time, the large value of the penalty parameter
slows down the rate of convergence of the conjugate gradient method in the
inner loop, but the analysis of the conjugate gradient method in Sect. 4.2.6
based on the effective condition number of A� = A + �BT B indicates that
the slowdown need not be severe when the number of constraints is small, or
when the constraints are close to orthogonal. If neither is the case and at least
crude estimates of ‖A‖ and ‖B‖ are available, a simple strategy can be based
on the observation that

λmin(A) ≤ λmin(A�) and ‖A�‖ ≤ ‖A‖ + �‖B‖2,

so that
�‖B‖2 ≤ C‖A‖ ⇒ κ(A + �BT B) ≤ (C + 1)κ(A).

For example, choosing �0 = 8×‖A‖/‖B‖2 seems to be a reasonable guess which
results in κ(A�) ≤ 9κ(A). Let us stress that the update of the penalty param-
eter should be considered as a safeguard that guarantees the convergence; we
should always try to avoid invoking increase of the penalty parameter as the
iterates with too small penalty parameters are inefficient.

The parameter M balances the weight of the cost function and the con-
straints. In our implementations we use

M = εg/εf .

Notice that by Lemma 4.18 small M can prevent the penalty parameter from
increasing. We can even replace the update of the penalty parameter in Step 3
by the reduction of the parameter M using Mk+1 = Mk/β and obvious mod-
ifications of the rest of Algorithm 4.5. See also Sect. 6.11.

If there is no better guess of the initial approximation of λ0, we use λ0 = o.
Recall that using λ0 ∈ ImB results in λk converging to the least square
Lagrange multiplier λLS.
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4.8 Numerical Experiments

Here we illustrate the performance of the exact Uzawa algorithm, the exact
augmented Lagrangian algorithm, and SMALE Algorithm 4.5 on minimiza-
tion of the cost functions fL,h and fLW,h introduced in Sect. 3.10 subject
to ill-conditioned multipoint constraints. Let us recall that we refer to Al-
gorithm 4.2 as the Uzawa algorithm when � = 0, and as the augmented
Lagrangian algorithm when � > 0.

4.8.1 Uzawa, Exact Augmented Lagrangians, and SMALE

Let us start with minimization of the quadratic function fL,h defined by the
discretization parameter h (see page 98) subject to the multipoint constraints
which join the displacements of the node with the coordinates (0, 1/3) with
all the other nodes in the square [h, 1/3] × [1/3, 2/3]. Let us recall that the
Hessian AL,h of fL,h is ill-conditioned with the spectral condition number
κ(AL,h) ≈ h−2.
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Fig. 4.3. Outer iterations of exact AL and SMALE algorithms

The graph of the relative feasibility error (vertical axis) against the num-
bers of outer iterations (horizontal axis) for exact augmented Lagrangians
(exact AL) with rk = �k = 10 and SMALE algorithm with �0 = 10 is in
Fig. 4.3. The results were obtained with h = 1/33, which corresponds to
n = 1156 unknowns and 131 multipliers. The inexact solution of auxiliary
problems by SMALE has a small effect on the number of outer iterations.
The SMALE algorithm required 964 CG iterations to reach the final preci-
sion. The same result was achieved by the original Uzawa algorithm with the
optimal steplength after 3840 (!!!) iterations, each of them comprising direct
solves of auxiliary linear problems. We conclude that even moderate regular-
ization improves the convergence of the outer loop and the rate of convergence
need not be slowed down by the inexact solution of auxiliary problems.
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4.8.2 Numerical Demonstration of Optimality

To illustrate the optimality of SMALE for the solution of (4.1), let us consider
the class of problems to minimize the quadratic function fLW,h (see page 99)
subject to the multipoint constraints defined above. The class of problems can
be given a mechanical interpretation associated to the expanding and partly
stiff spring systems on Winkler’s foundation. The spectrum of the Hessian
ALW,h of fLW,h is located in the interval [2, 10]. Thus the assumptions of
Theorem 4.21 are satisfied and the number of outer iterations is bounded.
Moreover, the rows of B ∈ R

m×n have a simple pattern given by

Bi∗ = [0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0], i = 1, . . . , m.

It can be checked that BT B can be expressed as the sum of a matrix with
the norm not exceeding four and a matrix of rank two. Using the reasoning
of Sect. 4.2.6, we get that also the number of inner iterations is bounded.
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Fig. 4.4. Optimality of SMALE

In Fig. 4.4, on the vertical axis, we can see the numbers of the CG iterations
kn required to reduce the norm of the gradient and of the feasibility error to
10−6‖∇fLW,h(o)‖ for the problems with the dimension n ranging from n = 49
to n = 2362369. The dimension n on the horizontal axis is in the logarithmic
scale. We can see that kn varies mildly with varying n, in agreement with
Theorem 4.23 and the optimal property of CG. Moreover, since the cost of the
matrix–vector multiplications is in our case proportional to the dimension n
of the matrix ALW,h, it follows that the cost of the solution is also proportional
to n. The number of outer iterations ranged from seven to ten.

The purpose of the above numerical experiment was just to illustrate the
concept of optimality. For practical applications, it is necessary to combine
SMALE with a suitable preconditioning. Application of SMALE with the
multigrid preconditioning to development of in a sense optimal algorithm for
the solution of the discretized Stokes problem is in Lukáš and Dostál [144].
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4.9 Comments and References

The penalty method was exploited by a number of researchers to the solu-
tion of contact problems of elasticity [9, 108, 123, 125]. Theoretical results
concerning the penalty method (e.g., Dostál [40], or Sect. 3.5 of Kikuchi and
Oden [127]) yield that the norm of the approximation error depends on the
condition number of the Hessian of the cost function. The analysis presented
here generalizes the results of Dostál and Horák [65, 66]. The optimal fea-
sibility estimate for the penalty methods (4.14) was used in development of
a scalable algorithm for variational inequalities [65, 66]. The preconditioning
preserving the gap in the spectrum was proposed in Dostál [44]. Reducing the
spectrum of the penalized term to the one point, this preconditioning seems
to be related to the constraint preconditioning for the saddle point systems
introduced in nonlinear programming by Lukšan and Vlček [145]; see also
Keller, Gould, and Wathen [126].

Augmented Lagrangian method was proposed independently by Powell
[160] and Hestenes [116] for problems with a general cost function subject
to general equality constraints. Comprehensive analysis of the augmented
Lagrangian method (called the Lagrange multiplier method) including the
asymptotically exact minimization of auxiliary problems was presented in the
monograph by Bertsekas [11]. Applications to the solution of boundary value
problems are discussed in Glowinski and Fortin [91] and Glowinski and Le
Tallec [100]. Hager in [111, 113] obtained global convergence results for an al-
gorithm of this type using inexact minimization in the solution of the auxiliary
problems. In both papers the size of the optimality error was compared with
the size of the feasibility error of the solution of the auxiliary problems trying
to balance these quantities throughout the whole process. In [111] this com-
parison was used to decide whether the penalty parameter will be increased
or not. In [113] it was used as a stopping criterion for the minimization of
the auxiliary problems. The rate of convergence was free of any term due to
inexact minimization when the least squares estimate of the Lagrange multi-
pliers is used. Similar results for the linear update combined with the update
of the penalty parameter that enforces a priori prescribed reduction of feasi-
bility error were obtained by Dostál, Friedlander, and Santos [56] and Dostál,
Friedlander, Santos, and Alesawi [58]. The same strategy was used by Conn,
Gould, and Toint [26] for the solution of more general bound and equality
constrained problems.

The SMALE algorithm was proposed by Dostál [46, 50]. The most attrac-
tive feature of this algorithm is a bound on the number of iterations which is
independent of the constraint data. The bound has been obtained by a kind of
global analysis; the result can hardly be obtained by analysis of one step of the
algorithm. The algorithm has been combined with a multigrid precondition-
ing to develop in a sense optimal solver for the solution of a class of equality
constrained problems arising from discretization of the Stokes problem; see
Lukáš and Dostál [144].
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Let us point out that our optimality results for the SMALE algorithm refer
to the type of convergence which is known from the classical analysis of infinite
series, but which is seldom exploited in numerical analysis. We shall call it
the sum bounding convergence of the second order as it exploits the bound
on the sum of the squares of errors. Though our sum bounding convergence
does not guarantee even the linear rate of convergence, it is in our opinion
rather a different characteristic of convergence than only a weaker one. For
example, it does guarantee that the error bound for the following iterations is
essentially reduced after any “bad” (here far from feasible) iteration, which is
the property not guaranteed by more standard types of convergence. In our
case, since we can control the upper bound by the penalty parameter, the
sum bounding convergence offers an explanation to the fast convergence of
the outer loop of SMALE which was observed in our numerical experiments
[144].
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Bound Constrained Minimization

We shall now be concerned with the bound constrained problem to find

min
x∈ΩB

f(x) (5.1)

with ΩB = {x ∈ R
n : x ≥ �}, f(x) = 1

2x
T Ax − xT b, � and b given column

n-vectors, and A an n × n symmetric positive definite matrix. To include
the possibility that not all the components of x are constrained, we admit
�i = −∞. Here we are again interested in large, sparse problems with a well-
conditioned A, and in algorithms that can be used also for the solution of
equality and inequality constrained problems. Such algorithms should be able
to return an approximate solution at a cost proportional to the precision and
to recognize an acceptable solution when it is found.

Our choice is the active set strategy with auxiliary problems solved ap-
proximately by the conjugate gradient method introduced in Sect. 3.5. It turns
out that this type of algorithm can exploit effectively the specific structure
of ΩB, including the possibility to evaluate the projections in the Euclidean
norm. We shall show that the resulting algorithm has an R-linear rate of con-
vergence. If its parameters are chosen properly, the algorithm enjoys the finite
termination property, even in the dual degenerate case with some active con-
straints corresponding to zero multipliers. We consider the finite termination
property important, as it indicates that the algorithm does not suffer from
undesirable oscillations and can exploit the superconvergence properties of
the conjugate gradient method for linear problems.

As in the previous chapter, we first briefly review alternative algorithms for
the solution of bound constrained problems. Then we introduce a basic active
set algorithm and its modifications that are motivated by our effort to get the
results on the rate of convergence in terms of bounds on the spectrum of the
Hessian matrix A and on the finite termination. We restricted our attention
to bound constrained problems because of their special structure which we
exploit in the development of our algorithms. Let us recall that the problems
with more general inequality constraints can be reduced to (5.1) by duality.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 5,
c© Springer Science+Business Media, LLC 2009
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Overview of algorithms

The exact working (active) set method of Sect. 5.3 reduces the solution of
(5.1) to a sequence of unconstrained problems that are defined by the bounds
which are assumed to be active at the solution. See also Algorithm 5.1. The
performance of the algorithm is explained by the combinatorial arguments.

The Polyak algorithm is a variant of the working set method which solves
the auxiliary linear problems by the conjugate gradient method. The active
set is expanded whenever the unfeasible iterate is generated, typically by
one index, but it is reduced only after the exact solution of an auxiliary
unconstrained problem is found. The algorithm is described in Sect. 5.4. See
Algorithm 5.2 for the formal description.

The looking ahead Polyak algorithm is based on observation that it is pos-
sible to recognize the incorrect active set before reaching the solution of the
auxiliary unconstrained problem. The algorithm accepts inexact solutions of
auxiliary unconstrained problems and preserves the finite termination prop-
erty of the original Polyak algorithm. The algorithm is described in Sect. 5.5.2.
See also Algorithm 5.3.

Even more relaxed solutions of the auxiliary unconstrained problems are
accepted by the easy re-release Polyak algorithm of Sect 5.5.3. The algorithm
preserves the finite termination property of the Polyak-type algorithms.

Unlike the Polyak-type algorithms, the gradient projection with a fixed
steplength can typically add several indices to the active set in each step and
it has established linear convergence in the bounds on the spectrum of the
Hessian matrix. The algorithm is described in Sect. 5.6.3.

The MPGP (modified proportioning with gradient projections) algorithm
of Sect. 5.7 uses the conjugate gradients to solve the auxiliary unconstrained
problems with the precision controlled by the norm of violation of the Karush–
Kuhn–Tucker conditions. The fixed steplength gradient projections are used
to expand the active set. The basic scheme of MPGP is presented as Algo-
rithm 5.6. The algorithm is proved to have an R-linear rate of convergence
bounded in terms of the extreme eigenvalues of the Hessian matrix.

The MPRGP (modified proportioning with reduced gradient projections)
algorithm of Sect. 5.8 is closely related to the MPGP algorithm, only the
gradient projection step is replaced by the projection of the free gradient.
The basic MPRGP scheme is presented as Algorithm 5.7. The R-linear rate
of convergence is proved not only for the decrease of the cost function, but
also for the norm of the projected gradient. The finite termination property
is proved even for the problems with a dual degenerate solution.

The performance of MPGP and MPRGP can be improved by the precon-
ditioning described in Sect. 5.10. The preconditioning in face improves the
solution of the auxiliary unconstrained problems, while the preconditioning
by the conjugate projector improves the convergence of the whole staff, includ-
ing the nonlinear steps. The monotonic MPRGP and semimonotonic MPRGP
algorithms which accept unfeasible iterations are described in Sect. 5.9.3.
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5.1 Review of Alternative Methods

Before describing in detail the active set-based methods, let us briefly review
alternative methods for the solution of the bound constrained problem (5.1).

Closely related to the active set strategy, various finite algorithms try
to find x ∈ R

n which solves the symmetric positive definite LCP (Linear
Complementarity Problems)

g = Ax − b, x ≥ o, g ≥ o, xTg = 0.

The LCP is equivalent to the minimization problem (5.1) with � = o. The
algorithms are called finite as they find the solution in a finite number of steps;
their analysis is based on the arguments of combinatorial nature. The most
popular LCP solvers are probably Lemke’s algorithm and principal pivoting
algorithm, which reduce the LCP to the solution of a sequence of systems of
linear equations in a way which is similar to the simplex method in linear
programming. The solution of the auxiliary systems is typically implemented
by LU-decompositions that are usually implemented by a rank one update.
The result of the trial solve is used to improve a current approximation in
order to reduce some characteristics of violation of the LCP conditions. These
algorithms typically do not refer to the background minimization problems.
The algorithms can be useful especially for more general LCP problems not
considered here; see Cottle, Pang, and Stone [29].

Apart from the feasible active set methods presented in this chapter, it
is possible to consider their unfeasible variants. For example, Kunisch and
Rendl [139] proposed an iterative primal–dual algorithm which maintains the
first-order optimality and complementarity conditions associated with (5.1)
only; the feasibility is enforced by the update of the active set. The unfeasible
methods are closely related to the semismooth Newton method applied to

Φ(x) = o, Φ(x) = α−1
(
x − PΩB

(
x− α∇f(x)

))
, α > 0.

Hintermüller, Ito, and Kunisch [118] and Hintermüller, Kovtumenko, and Ku-
nisch [119] describe the primal–dual semismooth Newton methods.

The bound constraints can be treated efficiently by the interior point
method , which approximately minimizes the cost function modified by the
parameterized barrier functions using Newton’s method. The strong feature
of the interior point methods is their capability to take into account all con-
straints, not only the active ones, at the cost of dealing with ill-conditioned
problems. The performance of the interior point methods can exploit the spar-
sity pattern of the Hessian matrix A in the solution of auxiliary problems.
There is a vast literature on this subject, see, e.g., the book by Wright [182]
or the review paper by Forsgren, Gill, and Wright [90].

It is also possible to use the trust region-type methods that were developed
to stabilize convergence of the Newton-type methods. We refer to Coleman
and Lin [24, 25] for more details.
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5.2 KKT Conditions and Related Inequalities

Since ΩB is closed and convex and f is assumed to be strictly convex, the solu-
tion x̂ of problem (5.1) exists and is necessarily unique by Proposition 2.5(i).
Here we introduce some definitions and notations that enable us to exploit
the special form of the KKT conditions in development of our algorithms. The
KKT conditions fully determine the unique solution of (5.1).

By Proposition 2.18, the KKT conditions read

Ax̂ − b ≥ o and (Ax̂ − b)T (x̂ − �) = 0,

or componentwise

x̂i = �i ⇒ ĝi ≥ 0 and x̂i > �i ⇒ ĝi = 0, i = 1, . . . , n, (5.2)

where ĝi = [Ax̂ − b]i. It may be observed that ĝi are the components of the
vector of Lagrange multipliers for the bound constraints.

The KKT conditions (5.2) determine three important subsets of the set
N = {1, 2, . . . , n} of all indices. The set of all indices for which xi = �i is
called an active set of x. We denote it by A(x), so

A(x) = {i ∈ N : xi = �i}.

Its complement
F(x) = {i ∈ N : xi �= �i}

and subsets

B(x) = {i ∈ N : xi = �i and gi > 0}, B0(x) = {i ∈ N : xi = �i and gi ≥ 0}

are called a free set, a binding set , and a weakly binding set , respectively. Thus
we can rewrite the KKT conditions in the form

gA(x̂) ≥ oA and gF (x̂) = oF .

Using the subsets of N , we can decompose the part of the gradient
g(x) = Ax − b which violates the KKT conditions into the free gradient ϕ
and the chopped gradient β that are defined by

ϕi(x) = gi(x) for i ∈ F(x), ϕi(x) = 0 for i ∈ A(x),
βi(x) = 0 for i ∈ F(x), βi(x) = g−i (x) for i ∈ A(x),

where we have used the notation g−i = min{gi, 0}. Introducing the projected
gradient

gP (x) = ϕ(x) + β(x),

we can write the Karush–Kuhn–Tucker conditions (5.2) conveniently as

gP (x) = o. (5.3)
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ΩB g = gP = ϕ

gP = ϕ

g = gP

g g = gP = ϕg

β

ϕ

Fig. 5.1. Gradient splitting

Obviously β(x) and ϕ(x) are orthogonal and −β(x) and −ϕ(x) are feasible
decrease directions of f at x. See also Fig. 5.1.

If the dimension n of the bound constrained minimization problem (5.1) is
large, it can be too ambitious to look for a solution which satisfies the gradient
condition (5.3) exactly. A natural idea is to consider the weaker condition

‖gP (x)‖ ≤ ε, (5.4)

but to require that the feasibility condition x ∈ ΩB is satisfied exactly. Notice
that we are not able to check directly that we are near the solution as we
do not know it, but we can easily evaluate (5.4). Thus the typical “solution”
returned by iterative solvers is just x that satisfies the condition (5.4) with
a small ε. The following lemma guarantees that any feasible vector x which
satisfies (5.4) is near the solution.

Lemma 5.1. Let x̂ be the solution of (5.1) with a positive definite A and let
gP = gP (x) denote the projected gradient at x ∈ ΩB . Then

‖x− x̂‖2
A ≤ 2

(
f(x) − f(x̂)

)
≤ ‖gP ‖A−1 ≤ λ−1

min‖gP ‖, (5.5)

where λmin denotes the smallest eigenvalue of A.

Proof. Let Â, F̂ , and ĝ denote the active set, free set, and the gradient in
the solution, respectively. Since [x − x̂]Â ≥ oÂ, ĝF̂ = oF̂ , and ĝ ≥ o, we get

f(x) − f(x̂) = ĝT (x − x̂) +
1
2
(x − x̂)T A(x − x̂)

= ĝT
Â[x − x̂]Â +

1
2
‖x− x̂‖2

A ≥ 1
2
‖x− x̂‖2

A.

This proves the left inequality of (5.5).
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To prove the middle inequality, let A = A(x) and F = F(x) denote the
active set and the free set of x ∈ ΩB , respectively. Since

gP
F = gF , [x̂ − x]A ≥ oA, g = (g − gP ) + gP , and g − gP ≥ o,

we get

0 ≥ 2
(
f(x̂) − f(x)

)
= ‖x̂ − x‖2

A + 2gT (x̂ − x)

= ‖x̂ − x‖2
A + 2

(
g − gP

)T
(x̂ − x) + 2

(
gP

)T
(x̂ − x)

= ‖x̂ − x‖2
A + 2

[
g − gP

]T
A [x̂ − x]A + 2

(
gP

)T
(x̂ − x)

≥ ‖x̂ − x‖2
A + 2

(
gP

)T
(x̂ − x)

≥ 2
(

min
y∈Rn

1
2
yT Ay +

(
gP

)T
y
)

= −(gP )T A−1gP .

We used (2.11) in the last step. The middle inequality and the right inequality
of (5.5) now follow by simple manipulations and (1.24), respectively. �

5.3 The Working Set Method with Exact Solutions

The basic idea of the working set method, or, as it is often called less correctly,
the active set method, is to reduce the solution of an inequality constrained
problem to the solution of a sequence of auxiliary equality constrained prob-
lems which are defined by a subset of the set N = {1, . . . , n} of all indices of
the constraints. This task would be very simple if we knew in advance which
inequality constraints are active in the solution, as we could just replace the
relevant inequalities by equalities, ignore the other inequalities, and solve the
resulting equality constrained problem. As this is usually not the case, the
working set method starts by making a guess which inequality constraints
will be active in the solution, and if this guess turns out to be incorrect, it
exploits the gradient and Lagrange multiplier information obtained by the
trial minimization to define the next prediction.

5.3.1 Auxiliary Problems

If the working set method is applied to (5.1), it exploits the auxiliary equality
constrained problems

min
y∈WI

f(y), (5.6)

where I ⊆ N denotes the set of indices of bounds �i that are predicted to be
active in the solution, and

WI = {y : yi = �i, i ∈ I}.
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The predicted set I of active bounds and WI are known as the working set
and the working face, respectively. Since f is assumed to be strictly convex
and WI is closed and convex, it follows by Proposition 2.5 that the auxiliary
problem (5.6) has a unique solution ŷ.

Now observe that the equality constrained problem (5.6) can be reduced
to an unconstrained problem in yj , j /∈ I. To see its explicit form in the
nontrivial cases WI �= {�} and WI �= R

n, assume that ∅ � J � N , and
denote J = N \ I, so that, after possibly rearranging the indices, we can
write

y =
[

yI
yJ

]
, b =

[
bI
bJ

]
, and A =

[
AII AIJ
AJI AJJ

]
. (5.7)

Thus for any y ∈ R
n

f(y) =
1
2
yT
J AJJ yJ + yT

J AJIyI +
1
2
yT
I AIIyI − yT

J bJ − yT
I bI .

Since y ∈ WI if and only if yI = �I , we have for any y ∈ WI

f(y) = fJ (yJ ) =
1
2
yT
J AJJ yJ − yT

J (bJ − AJI�I) +
1
2
�T
I AII�I − bT

I �I .

Thus the solution ŷ of (5.6) has the components ŷI = �I and

ŷJ = arg min
yJ∈Rm

fJ (yJ ). (5.8)

Since
∇fJ (yJ ) = AJJyJ − (bJ − AJI�I)

and ∇fJ (ŷJ ) = o, we get that ŷJ satisfies

AJJ ŷJ = bJ − AJI�I . (5.9)

We can check easily that (5.9) has a unique solution. Indeed, since AJJ
is a submatrix of a positive definite matrix A, we get by Cauchy’s interlacing
inequalities (1.21) that AJJ is also positive definite. Alternatively, we can
verify directly that AJJ is positive definite by observing that if y has the
components yI = o and yJ �= o, then y �= o and

yT
J AJJyJ = yT Ay > 0.

5.3.2 Algorithm

The working set method with exact solutions of auxiliary problems starts from
an arbitrary x0 ∈ ΩB and I0 = B0(x0). Assuming that xk is known, we first
check if xk is the solution of (5.1) by evaluating the KKT conditions

gP (xk) = β(xk) + ϕ(xk) = o.
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If this is not the case, we find the solution ŷ of the auxiliary problem (5.6) by
solving (5.9). There are two possibilities.

If ŷ ∈ ΩB, then we define the next iteration by the feasible step

xk+1 = ŷ

and set Ik+1 = B0(xk+1). Notice that f(xk+1) < f(xk) as −gP (xk) is a
feasible decrease direction of f at xk with respect to WI .

In the other case, we define xk+1 by an expansion step so that

f(xk+1) ≤ f(xk) and A(xk+1) � Ik, (5.10)

and then set Ik+1 = A(xk+1). The basic working set algorithm in the form
that is convenient for analysis reads as follows.

Algorithm 5.1. The working set method with exact solutions.

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, set I0 = B0(x

0), k = 0

while ‖gP (xk)‖ > 0
Step 1. {Minimization in face WIk . }

ŷ = arg miny∈WIk f(y)

if ŷ ∈ ΩB

Step 2. {Feasible step.}
xk+1 = ŷ

Ik+1 = B0(x
k+1)

else
Step 3. {Expansion step.}

Set xk+1 so that f(xk+1) ≤ f(xk) and A(xk+1) � Ik

Ik+1 = A(xk+1)
end if
k = k + 1

end while
Step 4. {Return solution.}

x̂ = xk

To implement the algorithm, we should specify the expansion step in more
detail. For example, if xk ∈ ΩB and

d = xk − ŷ,

we can observe that −d is a feasible decrease direction and that f(xk − αd)
is a decreasing function of α for α ∈ [0, 1]. Thus we can look for xk+1 in the
form xk+1 = xk − αd, α ∈ (0, 1]. A possible choice of α is given by

αf = arg min
α∈(0,1]

{f(xk − αd) : xk − αd ∈ ΩB}, (5.11)
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which can be evaluated by using

αf = min{αm, 1}, αm = min{(xk
i − �i)/di : di > 0, i ∈ N}. (5.12)

See also Fig. 5.2. Notice that if ŷ /∈ ΩB, then the steplength αf necessarily
results in the expansion of the working set, typically by one index.

xk

xk − αfd

ŷ

ΩB

Fig. 5.2. Feasible steplength

This limitation may be overcome if we set y = xk − αfd and define

xk+1 = PΩB (y − αpg), αp = argmin
α≥0

f (PΩB (y − αg)) , g = ∇f(y),

where PΩB is the Euclidean projection of Sect. 2.3.4. We prefer to use the
gradient path, as the gradient defines a better local model of f than d, though
−d is the best global direction for minimization in the current working set.
Figure 5.3 shows that αf may be the best steplength for d!

xk

PΩB (xk − αd)

xk − αd

ŷ

ΩB

Fig. 5.3. Projected best unconstrained decrease path
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To approximate αp effectively, it is useful to notice that f (PΩB (y − αg))
is a piecewise quadratic function because PΩB (y − αg) is a linear mapping
on any interval on which the active set of PΩB (y − αg) is unchanged. We
refer interested readers to Moré and Toraldo [153], Nocedal and Wright [155,
Sect. 16.4], or to the discussion of the projected-gradient path in Conn, Gould,
and Toint [28, Sect. 12.1.3]. We can also apply the fixed steplength reduced
gradient projection which is described in Sect. 5.6.

The algorithm assumes by default that Step 1 is carried out by a direct
method such as a matrix factorization, in which economies are possible by
updating rather than recomputing the factorizations to account for gradual
changes in the working set.

5.3.3 Finite Termination

The analysis of the working set method can be based on the following finite
termination property.

Theorem 5.2. Let Algorithm 5.1 be applied to find the solution x̂ of (5.1)
starting from x0 ∈ ΩB. Then there is k such that xk = x̂.

Proof. Since each expansion step adds at least one index into the working set,
and the number of indices in the working set cannot exceed n, it follows that
there are at most n consecutive expansion steps. Thus after each consecutive
series of expansion steps, the algorithm either finds the solution of (5.1) and we
are finished, or generates the next iterate, a feasible minimizer on the current
face, by a feasible step. However, since f(xk) is a nonincreasing sequence such
that

f(xk+1) < f(xk)

whenever xk+1 is generated by a feasible step, it follows that no working set
corresponding to an iterate generated by the feasible step can reappear. The
number of different working sets being finite, we conclude that the working set
method exploiting the exact solutions of auxiliary problems finds the solution
of (5.1) in a finite number of steps. �

Since the number of different working sets is 2n and there can be at most
n expanding steps for each feasible step, the proof of Theorem 5.2 gives that
the number N of iterations of the working set method with exact solution is
bounded by

N = n2n. (5.13)

This bound is very pessimistic and gives a poor theoretical support for prac-
tical computations, especially if we take into account the high cost of the
iterations. The bound can be essentially improved for special problems. For
example, if x0 = � = o and the Hessian A of f is an M -matrix, then it is
possible to show that Algorithm 5.1 generates only feasible steps and finds
the solution in a number of iterations that does not exceed n − p, where p is
the number of positive entries in b. For more details see Diamond [32].
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5.4 Polyak’s Algorithm

If the auxiliary problems (5.6) are solved by the conjugate gradient method,
it seems reasonable not to wait with the test of feasibility until their solution
is found, but to modify the working set whenever unfeasible CG iteration is
generated. This observation was enhanced in the Polyak algorithm [159], the
starting point of our development of in a sense optimal algorithms.

5.4.1 Basic Algorithm

The new ingredient of the Polyak algorithm is that the minimization in face
is replaced by a sequence of the conjugate gradient steps defined by

xk = xk−1 − αcgpk, (5.14)

where pk denotes the recurrently constructed conjugate direction introduced
in Sect. 3.2, and αcg is the minimizer of f(xk−1 − ξpk). The recurrence starts
(or restarts) from ps+1 = ϕ(xs) whenever xs is generated by the expansion
step or s = 0. If pk is known, then pk+1 is given by the formulae

pk+1 = ϕ(xk) − βpk and β = ϕ(xk)T Apk/(pk)T Apk, (5.15)

obtained by specialization of those introduced in Sect. 3.2. Let us recall that
the conjugate directions ps+1, . . . ,pk that are generated by the recurrence
(5.15) from the restart xs are A-orthogonal, i.e., (pi)T Apj = 0 for any
i, j ∈ {s + 1, . . . , k}, i �= j. Using the arguments of Sect. 3.1, it follows that

f(xk) = min
{
f(xs + y) : y ∈ Span{ps+1, . . . ,pk}

}
. (5.16)

The Polyak algorithm starts from an arbitrary feasible x0 by assigning
I0 = B0(x0) and initializing of the conjugate gradient loop (for details see
Algorithm 5.2 or Sect. 3.2) for the minimization in WI0 . Assuming that xk is
known, we first check if xk solves either (5.1) or the auxiliary problem (5.6)
by testing gP (xk) = o and ϕ(xk) = o, respectively. If gP (xk) = o, we are
finished; if ϕ(xk) = o, we reduce the working set to Ik = B0(xk) and initialize
the conjugate gradient loop.

If the tests fail, we use the conjugate gradient step to define the trial
iteration y = xk − αcgpk+1. There are two possibilities. If y is feasible, then
we set xk+1 = y. Otherwise we evaluate the feasible steplength by

αf = arg min
α∈(0,αcg ]

{f(xk − αpk+1) : xk − αpk+1 ∈ ΩB}, (5.17)

set xk+1 = xk − αfpk+1, expand the working set by Ik+1 = A(xk+1), and
finally initialize the new conjugate gradient loop.

The basic Polyak algorithm for the solution of strictly convex bound con-
strained quadratic programming problems takes the form shown by the fol-
lowing algorithm, where we omitted the indices of the vectors that are not
referred to in what follows.
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Algorithm 5.2. Polyak’s algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, set g = Ax0 − b, p = gP (x0), k = 0
while ‖gP (xk)‖ > 0

if ‖ϕ(xk)‖ > 0
Step 1. {Trial conjugate gradient step.}

αcg = gT p/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,

β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp
else

Step 3. {Expansion step.}
xk+1 = xk − αfp, g = g − αfAp, p = ϕ(xk+1)

end if
else

Step 4. {Leaving the face after finding the minimizer.}
d = β(xk), αcg = gT d/dT Ad,
xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)

end if
k = k + 1

end while
Step 5. {Return solution.}

x̂ = xk

Our description of Algorithm 5.2 does not use explicitly the working sets;
the information about the current working set is enhanced in the iterates
xk and the conjugate directions pk. Let us recall that the properties of the
unconstrained conjugate gradient method are summarized in Theorem 3.1.

5.4.2 Finite Termination

Theorem 5.3. Let Polyak’s Algorithm 5.2 be applied to find the solution x̂ of
(5.1) starting from x0 ∈ ΩB. Then there is k such that xk = x̂.

Proof. First notice that by Theorem 3.1, there can be at most n consecutive
conjugate gradient iterations before the minimizer in a face is found. If we
remove all the iterates that are generated by Step 2 except the minimizers in
the faces examined by the algorithm, which are used in Step 4 to generate the
next iteration in the expanded face, we are left with the iterates that can be
generated also by an implementation of Algorithm 5.1. The statement then
follows by Theorem 5.2. �
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The arguments of Sect. 5.3.3 can be used to show that the number of
iterations of Polyak’s algorithm is bounded by

N = n22n. (5.18)

Let us emphasize here that this bound is very pessimistic and can be improved,
at least for special problems.

5.4.3 Characteristics of Polyak’s Algorithm

The Polyak algorithm suffers from several drawbacks. The first one is related
to an unpleasant consequence of application of the reduced conjugate gradi-
ent step with the steplength αf defined by (5.17). Since the working set is
typically expanded by one index only, there is a little chance that the number
of iterations will be small when many indices of the binding set of the solu-
tion do not belong to B(x0). Another drawback concerns the basic approach
combining the conjugate gradient method, which is now understood as an effi-
cient iterative method for approximate solution of linear systems [4, 106, 163],
and the finite termination strategy, which is based on combinatorial reason-
ing that requires exact solution of the auxiliary problems. Finally, as we have
seen above, the combinatorial arguments give extremely poor bound on the
number of iterations that are necessary to find the solution of (5.1). Though
the bound (5.18) does not depend on the conditioning of A, it is rather poor
and does not indicate why the algorithm should be efficient for the solution
of well-conditioned problems.

5.5 Inexact Polyak’s Algorithm

In this section we consider the variants of Polyak’s algorithm which accept
inexact solutions of auxiliary problems, but preserve the finite termination
property.

5.5.1 Looking Ahead and Estimate

Let us first show that it is not necessary to solve the auxiliary problems (5.6)
exactly in order to preserve the finite termination property of the Polyak
algorithm. The key observation is that if xk+1 ∈ ΩB satisfies

f(xk+1) < min{f(x) : x ∈ WI}, (5.19)

then the working set I cannot appear again as long as {f(xk)} is nonincreas-
ing. We shall use this simple observation to define both the precision control
test and reduction of the active set.
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xk

ŷ

ΩB

βg

Fig. 5.4. Release directions at xk

Given xk ∈ WI , we can try to find xk+1 which satisfies (5.19) in the form
xk+1 = xk − αd with a given d; if we are successful, we call d the release di-
rection of WI at xk. The following lemma gives the conditions for d, typically
obtained from ∇f(xk) by reducing its components, to be a release direction.
Such situation is depicted in Fig. 5.4 with d = g(xk) and d = β(xk).

1ϕ

ΩB

Γ

d = β

xk

g

Fig. 5.5. The gradient and d = β(x) that satisfy the release condition (5.20)

Lemma 5.4. Let I = A(x) and Γ ≥ κ(A)1/2, where κ(A)1/2 denotes the spec-
tral condition number of A. Denote g = ∇f(x) and suppose that d satisfies

gTd ≥ ‖d‖2 and ‖d‖ > Γ‖ϕ(x)‖. (5.20)

Then the vector y = x − ‖A‖−1d satisfies

f(y) < min{f(x) : x ∈ WI}. (5.21)
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Proof. Let x, Γ , and d satisfy the assumptions of Lemma 5.4 and notice that
gTd ≥ ‖d‖2 implies

f(y) − f(x) =
1
2
‖A‖−2dT Ad − ‖A‖−1dT g ≤ −1

2
‖A‖−1‖d‖2. (5.22)

Denoting J = F(x), we have that ‖gJ ‖ = ‖ϕ(x)‖ and by the assumptions

‖d‖2 > κ(A)‖gJ ‖2. (5.23)

Substituting (5.23) into (5.22) then yields

f(y) − f(x) < −1
2
‖A−1‖‖gJ ‖2. (5.24)

Now denote by x̄ and ḡ the minimizer of f(x) on WI and the corresponding
gradient vector, respectively. Direct computations yield

f(x) − f(x̄) =
1
2
(x − x̄)T A(x − x̄) + ḡT (x − x̄). (5.25)

If we now rearrange the indices and take into account that

ḡJ = o and xI = x̄I ,

we can further simplify the right-hand side of (5.25) to get

f(x) − f(x̄) =
1
2
(xJ − x̄J )T AJJ (xJ − x̄J ). (5.26)

To express xJ − x̄J in terms of gJ , we can use the rearrangement (5.7)
to get [

gI − ḡI
gJ

]
=
[

AII AIJ
AJI AJJ

] [
o

xJ − x̄J

]
. (5.27)

In particular, since AJJ is also positive definite, it follows that

xJ − x̄J = A−1
JJ gJ

and by (5.26)

f(x) − f(x̄) =
1
2
gT
J A−1

JJ gJ . (5.28)

Taking into account the interlacing properties of the spectra of principal sub-
matrices of symmetric matrices (1.21), we get

1
2
gT
J A−1

JJ gJ ≤ 1
2
‖A−1

JJ ‖‖gJ ‖2 ≤ 1
2
‖A−1‖‖gJ ‖2, (5.29)

so that by (5.24) and (5.29)

f(y) − f(x̄) =
(
f(y) − f(x)

)
+
(
f(x) − f(x̄)

)

< −1
2
‖A−1‖‖gJ ‖2 +

1
2
‖A−1‖‖gJ ‖2 = 0. (5.30)

�
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5.5.2 Looking Ahead Polyak’s Algorithm

Using Lemma 5.4, we can now modify Polyak’s algorithm so that it accepts
approximate solution of the auxiliary problems and preserves its finite ter-
mination property. We only need to change the precision control of auxiliary
problems. The looking ahead Polyak algorithm reads as follows.

Algorithm 5.3. Looking ahead Polyak’s algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, Γ ≥ κ(A)1/2, set g = Ax0 − b, p = gP (x0), k = 0

while ‖gP (xk)‖ > 0
if Γ‖ϕ(xk)‖ ≥ ‖β(xk)‖

Step 1. {Trial conjugate gradient step.}
αcg = gT p/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,

β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp
else

Step 3. {Expansion step.}
xk+1 = xk − αfp, g = g − αfAp, p = ϕ(xk+1)

end if
else

Step 4. {Leaving the face in the release direction.}
d = β(xk), αcg = gT d/dT Ad,
xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)

end if
k = k + 1

end while
Step 5. {Return solution.}

x̂ = xk

To see that Algorithm 5.3 deserves its name, denote d = β(xk) and assume
that

xk ∈ ΩB, ‖β(xk)‖ > Γ‖ϕ(xk)‖, and Γ ≥ κ(A)1/2, (5.31)

so that d and Γ satisfy the assumptions of Lemma 5.4. Observing that αcg

minimizes f(xk − αd) with respect to α, we get for xk+1 = xk − αcgd that

f(xk+1) ≤ f(xk − ‖A‖−1d) < min{f(x) : x ∈ WA(xk)}.

Moreover, since xk − αd ∈ ΩB for any α ≥ 0, we have xk+1 ∈ ΩB. Thus
the algorithm is able to recognize the face without the global solution before
having a solution of the auxiliary problem, i.e., it “looks ahead”.
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The same reasoning as above can be carried out with d = g−(xk) or with
some other nonzero vector d which satisfies the assumptions of Lemma 5.4.
However, we found no significant evidence that there is a better choice than
d = β(xk).

5.5.3 Easy Re-release Polyak’s Algorithm

We can consider the relations like

Γ‖ϕ(xk)‖ ≥ ‖β(xk)‖

for any Γ > 0. A reasonable choice is Γ = 1, as it seems natural to leave
the current face when the norm of the chopped gradient starts to dominate
the violation of the KKT conditions. The following easy re-release Polyak’s
algorithm enhances this observation by means of Lemma 5.4.

Algorithm 5.4. Easy re-release Polyak’s algorithm.

Given a symmetric positive definite matrix A ∈ R
n×n, n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, ΓM ≥ κ(A)1/2, 0 ≤ Γm ≤ ΓM , set Γ = ΓM , k = 0
g = Ax0 − b, p = gP (x0)

while ‖gP (xk)‖ > 0
if Γ‖ϕ(xk)‖ ≥ ‖β(xk)‖

Step 1. {Trial conjugate gradient step.}
αcg = gT p/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

xk+1 = xk − αfp, g = g − αfAp, p = ϕ(xk+1), Γ = ΓM

end if
else

Step 4. {Leaving the face in the release direction.}
d = β(xk), αcg = gT d/dT Ad,

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1), Γ = Γm

end if
k = k + 1

end while
Step 5. {Return solution.}

x̂ = xk
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Algorithm 5.4 uses the observations that we need not release the indices
from the index set in one step and that the release coefficient Γ can change
from iteration to iteration. The easy re-release Polyak algorithm starts with
Γ = ΓM , switches to Γ = Γm when any index is released from the active set,
and restores Γ = ΓM when the working set is expanded. Our experience [41]
shows that Algorithm 5.4 is not very sensitive to the choice of Γm and works
well with Γm ≈ 1.

In what follows, we often use Step 4 of Algorithm 5.4 to release indices
from the current active set. For any given Γ > 0, the iterates which satisfy
‖β(xk)‖ ≤ Γ‖ϕ(xk)‖ are called proportional. The proportioning step sets
xk+1 = xk − αcgβ(xk) in hope that the new iterate xk+1 is proportional.

5.5.4 Properties of Modified Polyak’s Algorithms

Theorem 5.5. Let the looking ahead Polyak Algorithm 5.3 or the easy re-
release Polyak Algorithm 5.4 be applied to find the solution x̂ of (5.1) starting
from x0 ∈ ΩB . Then there is k such that xk = x̂.

Proof. First notice that the looking ahead Polyak Algorithm 5.3 generates the
same iterates as the easy re-release Polyak Algorithm 5.4 provided Γm = ΓM ,
so that it is enough to prove the statement for the latter algorithm. Since by
Theorem 3.1 there can be at most n consecutive conjugate gradient iterations
before the unconstrained minimizer is found, it follows that there can be
at most n consecutive proportional conjugate gradient iterations. Moreover,
since each proportioning step releases at least one index from the working set,
which has at most n elements, we have that there can be at most n2 iterations
without an expansion step.

Now observe that the iterations start with Γ = ΓM , that this value is reset
by any expansion step, and that {f(xk)} is nonincreasing. Since the chain of
iterations with Γ = ΓM can be interrupted only after finding the iteration
xk which either solves (5.1), i.e., β(xk) = ϕ(xk) = o, or is not proportional,
i.e., satisfies ‖β(xk)‖ > Γ‖ϕ(xk)‖ with Γ ≥ κ(A)1/2, it follows by Lemma 5.4
that the associated active set A(xk) cannot be generated again in the following
iterations. Since the number of all subsets of N = {1, . . . , n} is bounded, and
by Lemma 5.4 every iteration in the face with the solution is proportional
when Γ ≥ κ(A)1/2, we conclude that the algorithm must generate xk = x̂ in
a finite number of steps. �

Our experience [41] indicates that our modifications of the Polyak algo-
rithm outperform the original Polyak algorithm, but a little analysis shows
that they suffer from many drawbacks described in Sect. 5.4.3. Moreover,
their implementation requires an estimate of the condition number of A. The
easy re-release Polyak algorithm with Γm ≈ 1 usually outperforms the looking
ahead Polyak algorithm as it can better avoid an “oversolve” of the auxiliary
problems defined by the faces which do not contain the solution.
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5.6 Gradient Projection Method

We shall now turn our attention to the iterative algorithms whose performance
is substantiated by the convergence arguments. Instead of trying to find the
exact solution of (5.1), these algorithms generate the iterates that steadily
approach the solution until the KKT conditions are approximately satisfied.
We start with a modification of the gradient method of Sect. 3.4 that uses the
Euclidean projection PΩB onto ΩB to generate feasible iterates. The action
of PΩB is easy to calculate. As illustrated by Fig. 5.6, the components of the
projection PΩB (x) of x onto ΩB are given by

[PΩB (x)]i = max{�i, xi}, i = 1, . . . , n.

x

PΩB (x)

ΩB

li

xi

Fig. 5.6. Euclidean projection onto ΩB

A typical step of the gradient projection method is in Fig. 5.7.

−g

ΩB

xk − αg

xk+1

xk

Fig. 5.7. Gradient projection step
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5.6.1 Conjugate Gradient Versus Gradient Projections

Since the conjugate gradient is by Theorem 3.1 the best decrease direction
which can be used to find the minimizer in the current Krylov space, probably
the first idea how to plug the projection into the Polyak-type algorithms is to
replace the reduced conjugate gradient step with the steplength αf of (5.11)
by the projected conjugate gradient step

xk+1 = PΩB (xk − αcgpk).

However, if we examine Fig. 5.8, which depicts the 2D situation after the first
conjugate gradient step, we can see that though the second conjugate gradient
step finds the unconstrained minimizer xk −αcgpk, it can easily happen that

f(xk) < f(PΩB (xk − αcgpk)).

Figure 5.8 even suggests that it can happen for any α > αf that

f(PΩB (xk − αpk)) > f
(
PΩB (xk − αfpk)

)
.

Though Fig. 5.8 need not capture the typical situation when a small num-
ber of components of xk − αfpk is affected by PΩB , we conclude that the
nice properties of the conjugate directions are guaranteed only in the feasible
region. These observations comply with our discussion at the end of Sect. 3.5.

ΩB

x1
PΩB (x1 − αcgp

1)

x1 − αcgp
1

Fig. 5.8. Poor performance of the projected conjugate gradient step

On the other hand, since the gradient defines the direction of the steepest
descent, it is natural to assume that for a small steplength the gradient per-
turbed by the projection PΩB defines a decrease direction as in Fig. 5.9. We
shall give a quantitative proof to this conjecture. In what follows, we restrict
our attention to the analysis of the fixed steplength gradient iteration

xk+1 = PΩB (xk − αgk), (5.32)

where gk = ∇f(xk).
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g
ΩB

x

x − αg

Fig. 5.9. Fixed steplength gradient step

5.6.2 Contraction in the Euclidean Norm

Which values of α guarantee that the iterates defined by the fixed gradient
projection step (5.32) approach the solution x̂ in the Euclidean norm?

Proposition 5.6. Let x ∈ ΩB and g = ∇f(x). Then for any α > 0

‖PΩB (x − αg) − x̂‖ ≤ ηE‖x − x̂‖, (5.33)

where λmin, λmax are the extreme eigenvalues of A and

ηE = max{|1 − αλmin|, |1 − αλmax|}. (5.34)

Proof. Since x̂ ∈ ΩB and the projected gradient at the solution satisfies
ĝP = o, it follows that

PΩB (x̂ − αĝ) = x̂.

Using that the projection PΩ is nonexpansive by Corollary 2.7, the formula
g(x) = Ax−b, the relations between the norm of a symmetric matrix and its
spectrum (1.23), and the observation that if λi are the eigenvalues of A, then
1 − αλi are the eigenvalues of I − αA (see also (1.26)), we get

‖PΩB (x − αg) − x̂‖ = ‖PΩB (x − αg) − PΩB (x̂ − αĝ)‖
≤ ‖(x− αg) − (x̂ − αĝ)‖
= ‖ (x − x̂) − α(g − ĝ)‖ = ‖ (x − x̂) − αA(x − x̂)‖
= ‖(I − αA)(x − x̂)‖
≤ max{|1 − αλmin|, |1 − αλmax|}‖x− x̂‖.

�

We call ηE the coefficient of Euclidean contraction. If α ∈ (0, 2‖A‖−1),
then ηE < 1.
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Using elementary arguments of Sect. 3.5.3, we get that the coefficient ηE

of Euclidean contraction (5.34) is minimized by

αopt
E =

2
λmin + λmax

(5.35)

and
ηopt

E =
λmax − λmin

λmax + λmin
=

κ − 1
κ + 1

, (5.36)

where
κ = λmax/λmin

denotes the spectral condition number of A.
If we compare our new estimate (5.36) of the contraction of the projected

gradient step with the optimal steplength α in the A-norm with the estimate
(3.26) of the unconstrained gradient step with the optimal steplength αcg in
the A-norm norm, we find, a bit surprisingly, that they are the same. This
might suggest to use the A-norm optimal steplength αcg also in the projected
gradient step.

Unfortunately, this strategy does not work. The counterexample of Fig. 5.10
shows that if g = g(x) is the eigenvector corresponding to the smallest eigen-
value λmin, then the gradient projection step with the optimal conjugate gra-
dient steplength

αcg = ‖g‖2/gT Ag = 1/λmin

generates the iterate which is worse than x.

ΩB

x1

g

PΩB (x1 − αcgg)

x1 − αcgg

Fig. 5.10. Optimal unconstrained steplength may not be useful

Notice that the estimate (5.33) does not guarantee any bound on the
decrease of the cost function. We study this topic in Sect. 5.6.5.
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5.6.3 The Fixed Steplength Gradient Projection Method

Proposition 5.6 suggests that we can use the gradient projection with the
fixed steplength to define an iterative algorithm with the rate of convergence
in terms of bounds on the spectrum. To guarantee the convergence, the algo-
rithm requires a computable upper bound on ‖A‖. Since A is assumed to be
symmetric, it follows that ‖A‖1 = ‖A‖∞ and, using (1.14), that ‖A‖ ≤ ‖A‖∞.
Thus we can use ‖A‖∞ as the upper bound. The latter inequality can be ob-
tained also from (1.24). More hints concerning effective evaluation of an upper
bound on ‖A‖ can be found in Sect. 5.9.4. The gradient projection algorithm
with the fixed steplength takes the following form.

Algorithm 5.5. Gradient projection method with the fixed steplength.

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Step 0. {Initialization.}
Choose x0 ∈ ΩB, α ∈ (0, 2‖A‖−1), set k = 0

while ‖gP (xk)‖ is not small
Step 1. {The gradient projection step.}

xk+1 = PΩB

(
xk − αg(xk)

)

k = k + 1
end while

Step 2. {Return (possibly inexact) solution.}
x̃ = xk

We can use recurrently the estimate (5.33) of Proposition 5.6 to get for
k ≥ 1 that

‖xk − x̂‖ ≤ ηE‖xk−1 − x̂‖ ≤ · · · ≤ ηk
E‖x0 − x̂‖, (5.37)

where ηE < 1 is the coefficient of Euclidean contraction defined by (5.34).
It follows that Algorithm 5.5 generates the iterates xk that converge to the
solution x̂ of (5.1) in the Euclidean norm linearly with the coefficient of
contraction ηE . The iterates xk converge in the A-norm only R-linearly with

‖xk − x̂‖A ≤ ηk
E‖A‖‖x0 − x̂‖. (5.38)

Though the cost of a step of Algorithm 5.5 is comparable to that of the
Polyak-type algorithms, the performance of these algorithms essentially dif-
fers. A nice feature of the gradient projection algorithm is the rate of con-
vergence in terms of bounds on the spectrum. This can hardly be proved for
the Polyak algorithm; when a component of the current iterate is near the
bound and the corresponding component of the conjugate direction is large,
then the feasible steplength αf and the relative decrease of the cost function
can be arbitrarily small. On the other hand, unlike the Polyak algorithm, Al-
gorithm 5.5 is not able to exploit information from the previous steps in one
face.
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5.6.4 Quadratic Functions with Identity Hessian

Which values of α guarantee that the cost function f decreases in each iterate
defined by the fixed gradient projection step (5.32)? How much does f decrease
when the answer is positive? To answer these questions, it is useful to carry
out some analysis of a special quadratic function

F (x) =
1
2
xT x − cTx, x ∈ R

n, (5.39)

which is defined by a fixed c ∈ R
n, c = [ci]. We shall also use

F (x) =
n∑

i=1

Fi(xi), Fi(xi) =
1
2
x2

i − cixi, x = [xi]. (5.40)

ΩB g

x
PΩB (x− g)

x − g

Fig. 5.11. Minimizer of F in ΩB

The Hessian and the gradient of F are expressed, respectively, by

∇2F (x) = I and g = ∇F (x) = x − c, g = [gi]. (5.41)

Thus c = x− g and for any z ∈ R
n

‖z− c‖2 = ‖z‖2 − 2cT z + ‖c‖2 = 2F (z) + ‖c‖2.

Since by Proposition 2.6 for any z ∈ ΩB

‖z − c‖ ≥ ‖PΩB (c) − c‖,

we get that for any z ∈ ΩB

2F (z) = ‖z− c‖2 − ‖c‖2 ≥ ‖PΩB (c) − c‖2 − ‖c‖2

= 2F (PΩB (c)) = 2F (PΩB (x − g)) .
(5.42)

We have thus proved that if y ∈ ΩB , then, as illustrated in Fig. 5.11,

F
(
PΩB (x − g)

)
≤ F (y). (5.43)
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We are especially interested in the analysis of F along the projected-
gradient path

p(x, α) = PΩB

(
x− α∇F (x)

)
= max{x− αg, �},

where the maximum is assumed to be carried out componentwise, α ≥ 0, and
x ∈ ΩB is fixed. We shall often use that the projected-gradient path can be
described by

p(x, α) = PΩB (x − αg) = x− αg̃(α), (5.44)

where g̃(α) denotes the reduced gradient whose components are defined by

g̃i(0) = 0 and g̃i(α) = min{(xi − �i)/α, gi} for α > 0.

A geometric illustration of the projected-gradient path is in Fig. 5.12.

ΩB x

PΩB (x − αg)

x − αg

Fig. 5.12. Projected-gradient path

Due to the separability of F , the following analysis of a special case with
F defined on R is important also in the general case.

Lemma 5.7. Let x, �, c ∈ R, x ≥ �. Let F and g be defined by

F (x) =
1
2
x2 − cx and g = x − c.

Then for any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)g)

)
≤ F

(
PΩB (x − δg)

)
. (5.45)

Proof. First assume that x ≥ l is fixed and denote

g = F ′(x) = x − c, g̃(0) = 0, g̃(α) = min{(x − �)/α, g}, α �= 0.

For convenience, let us define

F
(
PΩB (x − αg)

)
= F (x) + Φ(α), Φ(α) = −αg̃(α)g +

α2

2
(g̃(α))2 , α ≥ 0.
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Moreover, using these definitions, it can be checked directly that Φ is defined
explicitly by

Φ(α) =
{

ΦF (α) for α ∈ (−∞, ξ] ∩ [0,∞) or g ≤ 0,

ΦA(α) for α ∈ [ ξ ,∞) ∩ [0,∞) and g > 0,

where ξ = ∞ if g = 0, ξ = (x − �)/g if g �= 0,

ΦF (α) =
(
−α +

α2

2

)
g2, and ΦA(α) = −g(x − �) +

1
2
(x − �)2.

See also Fig. 5.13.

     

ΦF

Φ = ΦA

Φ = ΦF

ξ 10 2
     

ΦF

Φ = ΦA

Φ = ΦF

ξ10 2

Fig. 5.13. Graphs of Φ for ξ < 1 (left) and ξ > 1 (right) when g > 0

It follows that for any α

ΦF (2 − α) =
(
−(2 − α) +

(2 − α)2

2

)
g2 = ΦF (α), (5.46)

and if g ≤ 0, then

Φ(α) = ΦF (α) = ΦF (2 − α) = Φ(2 − α).

Let us now assume that g > 0 and denote ξ = (x − �)/g. Simple analysis
shows that if ξ ∈ [0, 1], then Φ is nonincreasing on [0, 2] and (5.45) is satisfied
for α ∈ [0, 1]. To finish the proof of (5.45), notice that if 1 < ξ, then

Φ(α) = ΦF (α), α ∈ [0, 1], Φ(α) ≤ ΦF (α), α ∈ [1, 2],

so that we can use (5.46) to get that for α ∈ [0, 1]

Φ(2 − α) ≤ ΦF (2 − α) = ΦF (α) = Φ(α).

�

The following property of F is essential in the analysis of the decrease of f
along the projected-gradient path in the next subsection.
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Corollary 5.8. Let x, �, c ∈ R
n, x ≥ �. Let F be defined by (5.39). Then for

any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)g)

)
≤ F

(
PΩB (x − δg)

)
. (5.47)

Proof. If n = 1, then the statement reduces to Lemma 5.7.
To prove the statement for n > 1, first observe that for any y ∈ R

[PΩB (y)]i = max{yi, �i}, i = 1, . . . , n.

It follows that PΩB is separable and can be defined componentwise by the real
functions

Pi(y) = max{y, �i}, i = 1, . . . , n.

Using the separable representation of F given by (5.40) and Lemma 5.7, we
get

F
(
PΩB (x − (2 − δ)g)

)
=

n∑

i=1

Fi

(
[PΩB (x − (2 − δ)g)]i

)

=
n∑

i=1

Fi

(
Pi(xi − (2 − δ)gi)

)

≤
n∑

i=1

Fi

(
Pi(xi − δgi)

)

= F
(
PΩB (x − δg)

)
.

�

5.6.5 Dominating Function and Decrease of the Cost Function

Now we are ready to give an estimate of the decrease of the cost function f
in the iterates defined by the gradient projection step (5.32). The idea of the
proof is to replace f by a suitable quadratic function F which dominates f
and whose Hessian is the identity matrix.

Let us assume that 0 < δ‖A‖ ≤ 1 and let x ∈ ΩB be arbitrary but fixed,
so that we can define a quadratic function

Fδ(y) = δf(y) +
1
2
(y − x)T (I − δA)(y − x), y ∈ R

n.

It is defined so that

Fδ(x) = δf(x), ∇Fδ(x) = δ∇f(x) = δg, and ∇2Fδ(y) = I. (5.48)

Moreover, for any y ∈ R
n
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δf(y) ≤ Fδ(y). (5.49)

It follows that

δf (PΩB (x − δg)) − δf(x̂) ≤ Fδ (PΩB (x − δg)) − δf(x̂) (5.50)

and
∇Fδ(y) = δ∇f(y) + (I − δA)(y − x) = y − (x − δg). (5.51)

Using (5.43) and (5.48), we get that for any z ∈ ΩB

Fδ (PΩB (x − δg)) ≤ Fδ(z). (5.52)

The following lemma is due to Schöberl [165, 74].

Lemma 5.9. Let x̂ denote the unique solution of (5.1), let λmin denote the
smallest eigenvalue of A, g = ∇f(x), x ∈ ΩB, and δ ∈ (0, ‖A‖−1]. Then

Fδ (PΩB (x − δg)) − δf(x̂) ≤ δ(1 − δλmin) (f(x) − f(x̂)) . (5.53)

Proof. Let us denote

[x̂,x] = Conv{x̂,x} and d = x̂ − x.

Using (5.52),
[x̂,x] = {x + td : t ∈ [0, 1]} ⊆ ΩB,

0 < λminδ ≤ ‖A‖δ ≤ 1, and λmin‖d‖2 ≤ dT Ad, we get

Fδ (PΩB (x − δg)) − δf(x̂) = min{Fδ(y) − δf(x̂) : y ∈ ΩB}

≤ min{Fδ(y) − δf(x̂) : y ∈ [x̂,x]}

= min{Fδ(x + td) − δf(x + d) : t ∈ [0, 1]}

= min{δtdT g +
t2

2
‖d‖2 − δdT g − δ

2
dT Ad : t ∈ [0, 1]}

≤ δ2λmindT g +
1
2
δ2λ2

min‖d‖2 − δdT g − δ

2
dT Ad

≤ δ2λmindT g +
1
2
δ2λmindT Ad − δdTg − δ

2
dT Ad

= δ(δλmin − 1)(dTg +
1
2
dT Ad)

= δ(δλmin − 1) (f(x + d) − f(x))

= δ(1 − δλmin) (f(x) − f(x̂)) .

This proves (5.53). �
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Proposition 5.10. Let x̂ denote the unique solution of (5.1), g = ∇f(x),
x ∈ ΩB, and let λmin denote the smallest eigenvalue of A.

If α ∈ (0, 2‖A‖−1], then

f (PΩB (x − αg)) − f(x̂) ≤ ηf (f(x) − f(x̂)) , (5.54)

where
ηf = 1 − α̂λmin (5.55)

is the cost function reduction coefficient and α̂ = min{α, 2‖A‖−1 − α}.

Proof. Let us first assume that 0 < α‖A‖ ≤ 1 and let x ∈ ΩB be arbitrary
but fixed, so that we can use Lemma 5.9 with δ = α to get

Fα (PΩB (x − αg)) − αf(x̂) ≤ α(1 − αλmin) (f(x) − f(x̂)) . (5.56)

In combination with (5.50), this proves (5.54) for 0 < α ≤ ‖A‖−1.
To prove the statement for α ∈ (‖A‖−1, 2‖A‖−1], let us first assume that

‖A‖ = 1 and let α = 2 − δ, δ ∈ (0, 1). Then F1 dominates f and

δF1(y) ≤ δF1(y) +
1 − δ

2
‖y − x‖2 = Fδ(y). (5.57)

Thus we can apply (5.49), Corollary 5.8, and the latter inequality to get

δf
(
PΩ (x − αg)

)
≤ δF1

(
PΩ (x − αg)

)
≤ δF1

(
PΩ (x − δg)

)

≤ Fδ

(
PΩ (x − δg)

)
.

Combining the latter inequalities with (5.56) for α = δ, we get

δf
(
PΩ (x− αg)

)
− δf(x̂) ≤ δ(1 − δλmin)

(
(f(x) − f(x̂)

)
.

This proves the statement for α ∈ (‖A‖−1, 2‖A‖−1) and ‖A‖ = 1. To finish
the proof, apply the last inequality divided by η to the function ‖A‖−1f and
recall that f and PΩ are continuous. �

The estimate (5.54) gives the best value

ηopt
f = 1 − κ(A)−1

for α = ‖A‖−1 with κ(A) = ‖A‖‖A−1‖. If α ∈ (0, 2‖A‖−1) and the iterates
{xi} are generated by Algorithm 5.5, we can use (5.54) to get for k ≥ 1

f(xk) − f(x̂) ≤ ηf

(
f(xk−1) − f(x̂)

)
≤ · · · ≤ ηk

f

(
f(x0) − f(x̂)

)
, (5.58)

where ηf < 1 is given by (5.55). It follows by Lemma 5.1 that

‖xk − x̂‖2
A ≤ 2

(
f(xk) − f(x̂)

)
≤ 2ηk

f

(
f(x0) − f(x̂)

)
≤ 2λ−1

minη
k
f‖gP ‖, (5.59)

where gP = gP (x0). The latter bound on the R-linear convergence in the
energy norm is asymptotically worse than (5.38), but its right-hand side does
not enhance the solution and can be effectively evaluated.
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5.7 Modified Proportioning with Gradient Projections

In the previous sections, we learned that the solution of auxiliary problems
in the active set algorithm for solving (5.1) can be implemented by the con-
jugate gradient method and we got the estimate (5.54) for the decrease of
the cost function f in the gradient projection step with the fixed steplength
α ∈

(
0, 2‖A‖−1

)
. Now we are ready to combine these observations in order

to develop an effective algorithm with the R-linear rate of convergence of f
that can be expressed in terms of bounds on the spectrum of the Hessian
of f . The only difficulty which we must overcome is to ensure that the free
gradient is always sufficiently large in the conjugate gradient iterations, since
the conjugate gradient method reduces efficiently only the free gradient and is
inefficient when the norm of the chopped gradient dominates the error of the
KKT conditions. Using the methods of the next section, it is possible to prove
for our new algorithm the finite termination for regular solution and the con-
vergence, but not the R-linear convergence, of the projected gradient to zero
in the general case. Here we restrict our attention to the R-linear convergence
of the iterates in the energy norm.

5.7.1 MPGP Schema

The algorithm that we propose here exploits a user-defined constant Γ > 0,
a test which is used to decide when to leave the face, and three types of steps.

The conjugate gradient step, defined as in Polyak’s algorithm on page 165
by

xk+1 = xk − αcgpk+1, (5.60)

is used to carry out efficiently the minimization in the face WI given by
I = A(xs). We shall use in our proofs that by Theorem 3.1

f(xk+1) = min{f(xs + y) : y ∈ Span{ϕ(xs), . . . , ϕ(xk)}}. (5.61)

The gradient projection step is defined by the gradient projection

xk+1 = PΩB

(
xk − αg(xk)

)
= max{�,xk − αg(xk)} (5.62)

with the fixed steplength. This step can both add and remove indices from
the current working set. To describe the gradient projection step in the form
suitable for our analysis, let us introduce, for any x ∈ ΩB and α > 0, the
reduced free gradient ϕ̃α(x) with the entries

ϕ̃i = ϕ̃i(x, α) = min{(xi − �i)/α, ϕi}, i ∈ N = {1, . . . , n}. (5.63)

Thus
PΩB

(
x − αg(x)

)
= x − α

(
ϕ̃α(x) + β(x)

)
. (5.64)
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If the steplength is equal to α and the inequality

||β(xk)||2 ≤ Γ 2ϕ̃α(xk)T ϕ(xk) (5.65)

holds, then we call the iterate xk strictly proportional. The test (5.65) is used
to decide which components of the projected gradient gP (xk) should be re-
duced in the next step. Notice that the right-hand side of (5.65) blends the
information about the free gradient and its part that can be used in the gra-
dient projection step.

The proportioning step is defined by

xk+1 = xk − αcgβ(xk) (5.66)

with the steplength αcg that minimizes f
(
xk − αβ(xk)

)
. It has been shown

in Sect. 3.1 that the CG steplength αcg that minimizes f(x−αd) for a given
d and x can be evaluated using the gradient g = g(x) = ∇f(x) at x by

αcg = αcg(d) =
dTg
dT Ad

. (5.67)

The purpose of the proportioning step is to remove the indices of the com-
ponents of the gradient g that violate the KKT conditions from the working
set. Note that if xk ∈ ΩB, then

xk+1 = xk − αcgβ(xk) ∈ ΩB.

Now we are ready to define the algorithm in the form that is convenient
for analysis. For its implementation, see Sect. 5.9.

Algorithm 5.6. Modified proportioning with gradient projections
(MPGP schema).

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Choose x0 ∈ ΩB, α ∈ (0, 2‖A‖−1), and Γ > 0. Set k = 0. For k ≥ 0 and
xk known, choose xk+1 by the following rules:

(i) If gP (xk) = o, set xk+1 = xk.

(ii) If xk is strictly proportional and gP (xk) �= o, try to generate xk+1 by the
conjugate gradient step. If xk+1 ∈ ΩB, then accept it, else generate xk+1 by
the gradient projection step.

(iii) If xk is not strictly proportional, define xk+1 by proportioning.

We call our algorithm modified proportioning to distinguish it from earlier
algorithms introduced independently by Friedlander and Mart́ınez with their
collaborators [94, 95, 96, 14, 33] and Dostál [41, 42]. These earlier algorithms
applied the proportioning step when

‖β(xk)‖ ≤ Γ 2‖ϕ
(
xk
)
‖.
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5.7.2 Rate of Convergence

Now we are ready to prove the R-linear rate of convergence of MPGP in terms
of bounds on the spectrum of the Hessian A for α ∈ (0, 2‖A‖−1).

Theorem 5.11. Let {xk} be generated by Algorithm 5.6 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Then

f(xk+1) − f(x̂) ≤ ηΓ

(
f(xk) − f(x̂)

)
, (5.68)

where x̂ denotes the unique solution of (5.1),

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ−1}, (5.69)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.70)

and λmin denotes the smallest eigenvalue of A.
The error in the A-norm is bounded by

‖xk − x̂‖2
A ≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. (5.71)

Proof. Since we have the estimate (5.54) for the gradient projection step with
ηf ≤ ηΓ , it is enough to estimate the decrease of the cost function for the
other two steps. Our main tools are (5.54) and the inequality

f
(
PΩB

(
xk − αg(xk)

))
≥ f(xk) − α

(
ϕ̃α(xk)T ϕ(xk) + ‖β(xk)‖2

)
, (5.72)

which is valid for any α ≥ 0 and can be obtained from the Taylor expansion

f(x + d) = f(x) + dTg(x) +
1
2
dT Ad ≥ f(x) + dT g(x) (5.73)

by substituting

x = xk, d = −α
(
ϕ̃α(xk) + β(xk)

)
, and g = ϕ(x) + β(x).

If xk+1 is generated by the conjugate gradient step (5.60), then by (5.61)
and (5.67)

f(xk+1) ≤ f
(
xk − αcgϕ(xk)

)
= f(xk) − 1

2
‖ϕ(xk)‖4

ϕ(xk)T Aϕ(xk)

≤ f(xk) − 1
2
‖A‖−1‖ϕ(xk)‖2.

Taking into account α̂ ≤ ‖A‖−1 and ϕ̃iϕi ≤ ϕ2
i , i = 1, . . . , n, we get

f(xk+1) ≤ f(xk) − 1
2
‖A‖−1‖ϕ(xk)‖2 ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk). (5.74)
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Now observe that the conjugate gradient step is used only when xk is
strictly proportional, i.e.,

‖β(xk)‖2 ≤ Γ 2ϕ̃α(xk)T ϕ(xk).

Since α̂ ≤ α implies

ϕ̃α(xk)T ϕ(xk) ≤ ϕ̃α̂(xk)T ϕ(xk),

it follows that
‖β(xk)‖2 ≤ Γ 2ϕ̃α̂(xk)T ϕ(xk). (5.75)

After substituting (5.75) into (5.72) with α = α̂, we get

f
(
PΩB

(
xk − α̂g(xk)

))
≥ f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk). (5.76)

Thus for xk+1 generated by the conjugate gradient step, we get by elementary
algebra and application of (5.76) that

f(xk+1) ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk)

=
1

2 + 2Γ 2

(
f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk) + (1 + 2Γ 2)f(xk)

)

≤ 1
2 + 2Γ 2

(
f
(
PΩB

(
xk − α̂g(xk)

))
+ (1 + 2Γ 2)f(xk)

)
.

After inserting −f(x̂) + f(x̂) into the last term and using (5.54) with simple
manipulations, we get

f(xk+1) ≤ ηf + 1 + 2Γ 2

2 + 2Γ 2
f(xk) +

1 − ηf

2 + 2Γ 2
f(x̂)

=
ηf + 1 + 2Γ 2

2 + 2Γ 2

(
f(xk) − f(x̂)

)
+ f(x̂). (5.77)

Let us finally assume that xk+1 is generated by the proportioning step
(5.66), so that

‖β(xk)‖2 > Γ 2ϕ̃α(xk)T ϕ(xk) (5.78)

and

f(xk+1) = f
(
xk − αcgβ(xk)

)
= f(xk) − 1

2
‖β(xk)‖4

β(xk)T Aβ(xk)

≤ f(xk) − 1
2
‖A‖−1‖β(xk)‖2.

Taking into account the definition of α and ϑ, we get

α/ϑ ≤ ‖A‖−1/2
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and
f(xk+1) ≤ f(xk) − α

ϑ
‖β(xk)‖2, (5.79)

where the right-hand side may be rewritten in the form

f(xk) − α

ϑ
‖β(xk)‖2 =

1
ϑ(1 + Γ−2)

(
f(xk) − α(1 + Γ−2)‖β(xk)‖2

)

+
ϑ + ϑΓ−2 − 1
ϑ(1 + Γ−2)

f(xk). (5.80)

We can also substitute (5.78) into (5.72) to get

f
(
PΩB

(
xk − αg(xk)

))
> f(xk) − α(1 + Γ−2)‖β(xk)‖2. (5.81)

After substituting (5.81) into (5.80), using (5.79), (5.54) with x = xk, and
simple manipulations, we get

f(xk+1) <
1

ϑ + ϑΓ−2
f
(
PΩB

(
xk − αg(xk)

))
+

ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

f(xk)

=
1

ϑ + ϑΓ−2

(
f
(
PΩB

(
xk − αg(xk)

))
− f(x̂)

)

+
1

ϑ + ϑΓ−2
f(x̂) +

ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

f(xk)

≤ ηf

ϑ + ϑΓ−2

(
f(xk) − f(x̂)

)
+

1
ϑ + ϑΓ−2

f(x̂) +
ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2
f(xk)

=
ηf + ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2

(
f(xk) − f(x̂)

)
+ f(x̂).

Comparing the last inequality with (5.77) and taking into account that by
the definition Γ ≤ Γ̂ , Γ−1 ≤ Γ̂ , and ϑ ≥ 2, we obtain that the estimate

f(xk+1) − f(x̂) ≤ ηf + ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

(
f(xk) − f(x̂)

)

is valid for both the CG step and the proportioning step. The proof of (5.68)
is completed by

ηΓ =
ηf + ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2
= 1 − 1 − ηf

ϑ + ϑΓ−2
= 1 − α̂λmin

ϑ + ϑΓ̂ 2
.

To get the error bound (5.71), notice that by Lemma 5.1

‖xk − x̂‖2
A ≤ 2

(
f(xk) − f(x̂)

)
≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. � (5.82)

Theorem 5.11 gives the best bound on the rate of convergence for Γ = Γ̂ = 1
in agreement with the heuristics that we should leave the face when the
chopped gradient dominates the violation of the Karush–Kuhn–Tucker condi-
tions. The formula for the best bound ηopt

Γ which corresponds to Γ = 1 and
α = ‖A‖−1 reads

ηopt
Γ = 1 − κ(A)−1/4, (5.83)

where κ(A) denotes the spectral condition number of A.
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5.8 Modified Proportioning with Reduced Gradient
Projections

Even though the MPGP algorithm of the previous section combines the conju-
gate gradient method with the gradient projections in a way which enables to
prove its linear rate of convergence that can be expressed in terms of bounds
on the spectrum of the Hessian of f , there is still room for improvements.
The reason is that the gradient projection at the same time adds and removes
the indices from the active set, so the algorithm releases the indices from
the active set rather randomly. The result is that MPGP may not exploit
fully the self-preconditioning effect of the conjugate gradient method [168]
and can suffer from the oscillations often attributed to the iterative active
set methods. In this section we show that these drawbacks can be relieved if
we replace the gradient projection step by the free gradient projection with a
fixed steplength α. We show that the modified algorithm not only preserves
the linear rate of convergence of the cost function, but it has the finite ter-
mination property even for dual degenerate QP problems with zero Lagrange
multipliers corresponding to the active constraints and the R-linear rate of
convergence in the norm of projected gradient.

5.8.1 MPRGP Schema

The algorithm that we propose here exploits a constant Γ > 0 defined by a
user, a test to decide when to leave the face, and three types of steps. The test
and two of the three steps, the conjugate gradient step and the proportioning
step, are exactly those introduced in Sect. 5.7.1.

The gradient projection step is replaced by the expansion step defined by
the free gradient projection

xk+1 = PΩB

(
xk − αϕ(xk)

)
= max{�,xk − αϕ(xk)} (5.84)

with the fixed steplength. This step expands the current working set. To de-
scribe it in the form suitable for analysis, let us recall, for any x ∈ ΩB and
α > 0, that the reduced free gradient ϕ̃α(x) is defined by the entries

ϕ̃i = ϕ̃i(x, α) = min{(xi − �i)/α, ϕi}, i ∈ N = {1, . . . , n}, (5.85)

so that
PΩB

(
x − αϕ(x)

)
= x − αϕ̃α(x). (5.86)

Using the new notation, we can write also

PΩB

(
x − αg(x)

)
= x − α

(
ϕ̃α(x) + β(x)

)
. (5.87)

Now we are ready to define the algorithm in the form that is convenient for
analysis, postponing the discussion about implementation to the next section.
Notice that we admit the fixed steplength α = 2‖A‖−1 which guarantees
neither the contraction of the distance from the solution nor the decrease of
the cost function in the expansion steps.
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Algorithm 5.7. Modified proportioning with reduced gradient projections
(MPRGP schema).

Given a symmetric positive definite matrix A ∈ R
n×n and n-vectors b, �.

Choose x0 ∈ ΩB, α ∈ (0, 2‖A‖−1], and Γ > 0. Set k = 0. For k ≥ 0 and
xk known, choose xk+1 by the following rules:

(i) If gP (xk) = o, set xk+1 = xk.

(ii) If xk is strictly proportional and gP (xk) �= o, try to generate xk+1 by the
conjugate gradient step. If xk+1 ∈ ΩB, then accept it, else generate xk+1 by
the expansion step.

(iii) If xk is not strictly proportional, define xk+1 by proportioning.

Proposition 5.12. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Then {xk} converges to the solution {x̂} and
{gP (xk)} converges to zero.

Proof. MPRGP is a variant of the proportioning algorithm studied in [42]; it
converges when each iterate xk+1 generated by the expansion step satisfies

f(xk+1) − f(xk) ≤ 0.

This condition is satisfied by Proposition 5.10 for α ∈ (0, 2‖A‖−1]; the conver-
gence is driven by the proportioning step, which is a spacer iteration (see, e.g.,
Bertsekas [12]). The second statement is an easy corollary of the identification
lemma 5.17 and of the continuity of g(x). �

5.8.2 Rate of Convergence

The main tool of our analysis is the quadratic function

F (x) =
1
2
xTx − cT x + d, x, c ∈ R

n, c = [ci], d ∈ R, (5.88)

and its properties similar to those developed in Sect. 5.6.5. In particular,

F (x) =
n∑

i=1

Fi(xi) + d, Fi(xi) =
1
2
x2

i − cixi, x = [xi]. (5.89)

If x ∈ R
n is arbitrary but fixed, we associate with f and δ ∈ (0, ‖A‖−1] the

quadratic function of the form (5.88)

Fδ(y) = δf(y) +
1
2
(y − x)T (I − δA)(y − x) ≥ δf(y). (5.90)

It is defined so that

Fδ(x) = δf(x), ∇Fδ(x) = δ∇f(x) = δg, and ∇2Fδ(y) = I. (5.91)

We need the following lemma which is analogous to Corollary 5.8.
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Lemma 5.13. Let x, �, c ∈ R
n, x ≥ �. Let F be defined by (5.88). Then for

any δ ∈ [0, 1]

F
(
PΩB (x − (2 − δ)ϕ(x))

)
≤ F

(
PΩB (x − δϕ(x))

)
. (5.92)

Proof. First recall that PΩB is separable and can be defined componentwise
by Pi(y) = max{y, �i}, i = 1, . . . , n, y ∈ R. Denoting F , A, and gi the free set
of x, the active set of x, and the components of the gradient g(x), respectively,
we can use the representation of F given by (5.89) and Lemma 5.7 to get

F
(
PΩB (x − (2 − δ)ϕ(x))

)
=

n∑

i=1

Fi

(
[PΩB (x − (2 − δ)ϕ(x))]i

)
+ d

=
∑

i∈F
Fi

(
Pi(xi − (2 − δ)gi)

)
+
∑

i∈A
Fi

(
Pi(xi)

)
+ d

≤
∑

i∈F
Fi

(
Pi(xi − δgi)

)
+
∑

i∈A
Fi

(
Pi(xi)

)
+ d

= F
(
PΩB (x − δϕ(x))

)
. �

Now we are ready to prove the R-linear rate of convergence of MPRGP.

Theorem 5.14. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Then

f(xk+1) − f(x̂) ≤ ηΓ

(
f(xk) − f(x̂)

)
, (5.93)

where x̂ denotes a unique solution of (5.1),

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ−1}, (5.94)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.95)

and λmin denotes the smallest eigenvalue of A. The error in the A-norm is
bounded by

‖xk − x̂‖2
A ≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. (5.96)

Proof. First observe that the only new type of iteration, as compared with
MPGP of Sect. 5.7, is the expansion step. Moreover, the estimate (5.68) with
ηΓ defined by (5.69) of Theorem 5.11 is the same as our estimate (5.93) with
ηΓ defined by (5.94). Thus we can reduce our analysis to the expansion step.
Our main tools are again (5.54) and the inequality

f
(
PΩB

(
xk − α̂g(xk)

))
≥ f(xk) − α̂

(
ϕ̃α̂(xk)T ϕ(xk) + ‖β(xk)‖2

)
, (5.97)

which can be obtained by the Taylor expansion and (5.87).
Let us first assume that ‖A‖ = 1 and let xk+1 be generated by the

expansion step (5.84). Using in sequence the definition of the dominat-
ing function (5.90) associated with x = xk, Lemma 5.13, the assumption,
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‖A‖ = 1 and α̂ ≤ 1 with (5.57), the Taylor expansion with (5.86), (5.91),
‖ϕ̃α̂(xk)‖2 ≤ ϕ̃α̂(xk)T ϕ(xk), and simple manipulations, we get

α̂f(xk+1) ≤ α̂F1(xk+1) = α̂F1

(
PΩB

(
xk − αϕ(xk)

))

≤ α̂F1

(
PΩB

(
xk − α̂ϕ(xk)

))
≤ Fα̂

(
PΩB

(
xk − α̂ϕ(xk)

))

= Fα̂

(
xk
)
− α̂2ϕ̃α̂(xk)T ϕ(xk) +

α̂2

2
‖ϕ̃α̂(xk)‖2

≤ Fα̂

(
xk
)
− α̂2

2
ϕ̃α̂(xk)T ϕ(xk) = α̂f(xk) − α̂2

2
ϕ̃α̂(xk)T ϕ(xk).

Thus
f(xk+1) ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk). (5.98)

The expansion step is used only when xk is strictly proportional, i.e.,

‖β(xk)‖2 ≤ Γ 2ϕ̃α(xk)T ϕ(xk).

Since α̂ ≤ α by the definition, it follows that

ϕ̃α(xk)T ϕ(xk) ≤ ϕ̃α̂(xk)T ϕ(xk)

and
‖β(xk)‖2 ≤ Γ 2ϕ̃α̂(xk)T ϕ(xk). (5.99)

After substituting (5.99) into (5.97), we get

f
(
PΩB

(
xk − α̂g(xk)

))
≥ f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk). (5.100)

Thus for xk+1 generated by the expansion step, we get by elementary algebra
and application of (5.100) that

f(xk+1) ≤ f(xk) − α̂

2
ϕ̃α̂(xk)T ϕ(xk)

=
1

2 + 2Γ 2

(
f(xk) − α̂(1 + Γ 2)ϕ̃α̂(xk)T ϕ(xk) + (1 + 2Γ 2)f(xk)

)

≤ 1
2 + 2Γ 2

(
f
(
PΩB

(
xk − α̂g(xk)

))
+ (1 + 2Γ 2)f(xk)

)
.

Inserting −f(x̂)+f(x̂) into the last term and substituting (5.54) with x = xk

and α = α̂ into the last expression, we get

f(xk+1) ≤ ηf + 1 + 2Γ 2

2 + 2Γ 2
f(xk) +

1 − ηf

2 + 2Γ 2
f(x̂)

=
ηf + 1 + 2Γ 2

2 + 2Γ 2

(
f(xk) − f(x̂)

)
+ f(x̂). (5.101)

The proof of (5.93) for ‖A‖ = 1 is completed by
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ηf + 1 + 2Γ 2

2 + 2Γ 2
=

ηf − 1 + 2 + 2Γ 2

2 + 2Γ 2
= 1 − 1 − ηf

2 + 2Γ 2
= 1 − α̂λmin

2 + 2Γ 2
≤ ηΓ .

To prove the general case, it is enough to apply the theorem to h = ‖A‖−1f .
To get the error bound (5.96), notice that by Lemma 5.1

‖xk − x̂‖2
A ≤ 2

(
f(xk) − f(x̂)

)
≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
. (5.102)

�

The formula for the best bound ηopt
Γ is given by (5.83). Notice that the

coefficient of the Euclidean contraction ηE defined by (5.34) is smaller than ηΓ

and by (5.38) guarantees faster convergence in the energy norm. Does it follow
that the gradient projection method is faster than MPRGP? The answer is
no. We have got both estimates by the worst case analysis of just one step
of each method. Such analysis at least partly enhances the improvement due
to the long sequence of the same type of iterations of the projected gradient
method, while this is not true in the case of MPRGP; the worst case assumes
that the algorithm switches the types of iterations. The error in energy norm
need not even decrease in one step of the gradient projection method.

5.8.3 Rate of Convergence of Projected Gradient

To use the MPRGP algorithm in the inner loops of other algorithms, we must
be able to recognize when we are near the solution. There is a catch – though
by Lemma 5.1 the latter can be tested by a norm of the projected gradient,
Theorem 5.14 does not guarantee that such test is positive near the solution.
The projected gradient is not a continuous function of the iterates! A large
projected gradient near the solution is in Fig. 5.14. The R-linear convergence
of the projected gradient is treated by the following theorem.

ΩB

x̂

xk

gP (xk)ĝ

Fig. 5.14. Large projected gradient near the solution
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Theorem 5.15. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Let x̂ denote the unique solution of (5.1) and let
Γ̂ , ηΓ , α̂, and ϑ be those of Theorem 5.14.

Then for any k ≥ 1

‖gP (xk+1)‖2 ≤ a1η
k
Γ

(
f(x0) − f(x̂)

)
(5.103)

with

a1 =
38

α̂(1 − ηΓ )
=

38ϑ(1 + Γ̂ 2)
α̂2λmin

. (5.104)

Proof. First notice that it is enough to estimate separately β(xk) and ϕ(xk)
as

‖gP (xk)‖2 = ‖β(xk)‖2 + ‖ϕ(xk)‖2.

In particular, since α̂ ≤ ‖A−1‖, we have for any vector d which satisfies
dTg(x) ≥ ‖d‖2

f(x) − f(x − α̂d) = α̂dTg(x) − 1
2
α̂2dT Ad ≥ α̂

2
‖d‖2. (5.105)

It follows that we can combine (5.105) with

xk − α̂β(xk) ≥ �

to estimate ‖β(xk)‖ by

f(xk) − f(x̂) =
(
f(xk) − f

(
xk − α̂β(xk)

))
+
(
f
(
xk − α̂β(xk)

)
− f(x̂)

)

≥ f(xk) − f
(
xk − α̂β(xk)

)
≥ α̂

2
‖β(xk)‖2. (5.106)

Applying (5.93), we get

‖β(xk)‖2 ≤ 2
α̂

(
f(xk) − f(x̂)

)
≤ 2ηk

Γ

α̂

(
f(x0) − f(x̂)

)
. (5.107)

To estimate ‖ϕ(xk)‖, notice that the algorithm “does not know” about
the components of the constraint vector � when it generates xk+1 unless their
indices belong to A(xk) or A(xk+1). It follows that xk+1 may be considered
also as an iterate generated by Algorithm 5.7 from xk for the problem

minimize f(x) subject to xi ≥ �i for i ∈ A(xk) ∪ A(xk+1). (5.108)

If we denote

f
k

= min{f(x) : xi ≥ �i for i ∈ A(xk) ∪ A(xk+1)} ≤ f(x̂)

and δk = f(x̂) − f
k ≥ 0, we can use (5.93) to get
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δk = f(x̂) − f
k ≤ f(xk+1) − f

k ≤ ηΓ

(
f(xk) − f

k
)

= ηΓ

(
f(xk) − f(x̂)

)
+ ηΓ δk,

so that

δk ≤ ηΓ

1 − ηΓ

(
f(xk) − f(x̂)

)
≤ ηk+1

Γ

1 − ηΓ

(
f(x0) − f(x̂)

)
. (5.109)

Now observe that the indices of the unconstrained components of the min-
imization problem (5.108) are those belonging to Ik = F(xk) ∩ F(xk+1) as

Ik = F(xk) ∩ F(xk+1) =
(
N \ A(xk)

)
∩
(
N \ A(xk+1)

)

= N \
(
A(xk) ∪ A(xk+1)

)
.

It follows that if Ik is nonempty, then by the definition of δk and (5.105)

δk ≥ f(x̂) − f
(
x̂ − α̂gIk(x̂)

)
≥ α̂

2
‖gIk(x̂)‖2. (5.110)

For convenience, let us define gI(x) = o for any x ∈ R
n and empty set I = ∅.

Then (5.110) remains valid for Ik = ∅, so that we can combine it with (5.109)
to get

‖gIk(x̂)‖2 ≤ 2
α̂

δk ≤ 2ηk+1
Γ

α̂(1 − ηΓ )
(
f(x0) − f(x̂)

)
. (5.111)

Since our algorithm is defined so that either Ik = F(xk) ⊆ F(xk+1) or
Ik = F(xk+1) ⊆ F(xk), it follows that either

‖gF(xk)(x̂)‖2 = ‖gIk(x̂)‖2 ≤ 2ηk+1
Γ

α̂(1 − ηΓ )
(f(x0) − f(x̂))

≤ 2ηk
Γ

α̂(1 − ηΓ )
(f(x0) − f(x̂)) (5.112)

or

‖gF(xk+1)(x̂)‖2 = ‖gIk(x̂)‖2 ≤ 2ηk+1
Γ

α̂(1 − ηΓ )
(f(x0) − f(x̂)).

Using the same reasoning for xk−1 and xk, we conclude that the estimate
(5.112) is valid for any xk such that

F(xk−1) ⊇ F(xk) or F(xk) ⊆ F(xk+1). (5.113)

Let us now recall that by Lemma 5.1 and (5.96)

‖g(xk) − g(x̂)‖2 = ‖A(xk − x̂)‖2 ≤ ‖A‖‖xk − x̂‖2
A ≤ 2‖A‖

(
f(xk) − f(x̂)

)

≤ 2
α̂

ηk
Γ

(
f(x0) − f(x̂)

)
, (5.114)
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so that for any k satisfying the relations (5.113), we get

‖ϕ(xk)‖ = ‖gF(xk)(x
k)‖ ≤ ‖gF(xk)(x

k) − gF(xk)(x̂)‖ + ‖gF(xk)(x̂)‖

≤
√

2
α̂

ηk
Γ

(
f(x0) − f(x̂)

)
+

√
2

α̂(1 − ηΓ )
ηk

Γ

(
f(x0) − f(x̂)

)

≤ 2

√
2

α̂(1 − ηΓ )
ηk

Γ

(
f(x0) − f(x̂)

)
.

Combining the last inequality with (5.107), we get for any k satisfying the
relations (5.113) that

‖gP (xk)‖2 = ‖β(xk)‖2 + ‖ϕ(xk)‖2 ≤ 10
α̂(1 − ηΓ )

ηk
Γ

(
f(x0) − f(x̂)

)
. (5.115)

Now notice that the estimate (5.115) is valid for any iterate xk which sat-
isfies F(xk−1) ⊇ F(xk), i.e., when xk is generated by the conjugate gradient
step or the expansion step. Thus it remains to estimate the projected gradient
of the iterate xk generated by the proportioning step. In this case

F(xk−1) ⊆ F(xk),

so that we can use the estimate (5.115) to get

‖gP (xk−1)‖ ≤
√

10
α̂(1 − ηΓ )

ηk−1
Γ

(
f(x0) − f(x̂)

)
. (5.116)

Since the proportioning step is defined by xk = xk−1 −αcgβ(xk−1), it follows
that

‖gF(xk)(x
k−1)‖ = ‖gP (xk−1)‖.

Moreover, using the basic properties of the norm, we get

‖ϕ(xk)‖ = ‖gF(xk)(x
k)‖ ≤ ‖gF(xk)(x

k) − gF(xk)(x
k−1)‖ + ‖gF(xk)(x

k−1)‖
≤ ‖g(xk) − g(x̂)‖ + ‖g(x̂) − g(xk−1)‖ + ‖gP (xk−1)‖,

and by (5.114) and (5.116)

‖ϕ(xk)‖ ≤
√

2
α̂

ηk
Γ

(
f(x0) − f(x̂)

)
+

√
2
α̂

ηk−1
Γ

(
f(x0) − f(x̂)

)

+

√
10

α̂(1 − ηΓ )
ηk−1

Γ

(
f(x0) − f(x̂)

)

≤ (
√

5 + 2)

√
2

α̂(1 − ηΓ )
ηk−1

Γ

(
f(x0) − f(x̂)

)
.
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Combining the last inequality with (5.107), we get by simple computation
that

‖gP (xk)‖2 = ‖ϕ(xk)‖2 + ‖β(xk)‖2 ≤ 38
α̂(1 − ηΓ )

ηk−1
Γ

(
f(x0) − f(x̂)

)
.

Since the last estimate is obviously weaker than (5.115), it follows that (5.103)
is valid for all indices k. �

The bound on the rate of convergence as given by (5.103) is rather poor.
The reason is that it has been obtained by the worst case analysis of a general
couple of consecutive iterations and does not reflect the structure of a longer
chain of the same type of iterations. Recall that Fig. 5.14 shows that no bound
can be obtained by the analysis of a single iteration!

5.8.4 Optimality

Theorems 5.14 and 5.15 give the bounds on the rates of convergence of the it-
erates and corresponding projected gradients that depend only on the bounds
on the spectrum, but do not depend on the constraint vector �. It simply fol-
lows that if we have a class of bound constrained problems with the spectrum
of the Hessian of the cost function in an a priori fixed interval, then the rate
of convergence of the MPRGP algorithm can be bounded uniformly for the
whole class. To present explicitly this feature of Algorithm 5.7, let T denote
any set of indices and assume that for any t ∈ T there is defined a problem

minimize ft(x) s.t. x ∈ ΩBt (5.117)

with ΩBt = {x ∈ R
nt : x ≥ �t}, ft(x) = 1

2x
T Atx − bT

t x, At ∈ R
nt×nt

symmetric positive definite, and �t ∈ R
nt . Our optimality result then reads

as follows.

Theorem 5.16. Let amax > amin > 0 denote given constants and let {xk
t } be

generated by Algorithm 5.7 for the solution of the bound constrained problem
(5.117) with 0 < α ≤ 2a−1

max and Γ > 0 starting from x0
t = max{o, �t}. Let

the class of problems (5.117) satisfy

amin ≤ λmin(At) ≤ λmax(At) ≤ amax,

where λmin(At) and λmax(At) denote respectively the smallest and the largest
eigenvalues of At.

Then there are integers k and � such that for any t ∈ T and ε > 0

‖gP
t (xk

t )‖ ≤ ε‖gP
t (x0

t )‖

and
ft(x


t) − ft(x̂t) ≤ ε
(
ft(x0

t ) − f(x̂t)
)
.
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Proof. First denote

ηt
Γ = 1 − α̂λt

min

ϑ + ϑΓ̂ 2
, ηΓ = 1 − α̂amin

ϑ + ϑΓ̂ 2
,

at
1 =

38ϑ(1 + Γ̂ 2)
α̂2λt

min

, a1 =
38ϑ(1 + Γ̂ 2)

α̂2amin
,

where Γ̂ = max{Γ, Γ−1}, so that

ηt
Γ ≤ ηΓ < 1 and at

1 ≤ a1.

Combining these estimates with Theorem 5.15 and inequality (5.5), we get for
any k ≥ 1

‖gP
t (xk+1)‖2 ≤ a1η

k
Γ

(
ft(x0

t ) − ft(x̂t)
)
≤ a1

amin
ηk

Γ ‖gP
t (x0

t )‖2.

Similarly, using Theorem 5.14, we get

ft(xk
t ) − ft(x̂t) ≤ ηk

Γ

(
ft(x0

t ) − f(x̂t)
)
.

To finish the proof, it is enough to take k and � so that

a1

amin
ηk−1

Γ ≤ ε and η

Γ ≤ ε. �

5.8.5 Identification Lemma and Finite Termination

Let us consider the conditions which guarantee that the MPRGP algorithm
finds the solution x̂ of (5.1) in a finite number of steps. There are at least
two reasons to consider such results important. First the algorithm with the
finite termination property is less likely to suffer from the oscillations that
are often attributed to the working set-based algorithms as it is less likely
to reexamine the working sets; if any working set reappears, it can happen
“only” finitely many times. The second reason is that such algorithm is more
likely to generate longer sequences of the conjugate gradient iterations. Thus
the reduction of the cost function value is bounded by the “global” estimate
(3.21), and finally switches to the conjugate gradient method, so that it can
exploit its nice self-acceleration property [168]. It is difficult to enhance these
characteristics of the algorithm into the rate of convergence as they cannot
be obtained by the analysis of just one step of the method.

We first examine the finite termination of Algorithm 5.7 in a simpler case
when the solution x̂ of (5.1) is regular, i.e., the vector of Lagrange multipliers
λ̂ of the solution satisfies the strict complementarity condition λ̂i > 0 for
i ∈ A(x̂). The proof is based on simple geometrical observations. For example,
examining Fig. 5.15, it is easy to see that the free sets of the iterates xk soon
contain the free set of the solution x̂. The formal analysis of such observations
is a subject of the following identification lemma.
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}

}

ΩB

xk
i

x̂i

li

ε

ε

Fig. 5.15. Identification of the free set of the solution

Lemma 5.17. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB, Γ > 0,
and α ∈ (0, 2‖A‖−1]. Then there is k0 such that for k ≥ k0

F(x̂) ⊆ F(xk), F(x̂) ⊆ F(xk − αϕ̃(xk)), and B(x̂) ⊆ B(xk), (5.118)

where ϕ̃(xk) = ϕ̃α(xk) is defined by (5.85).

Proof. Since (5.118) is trivially satisfied when there is k = k0 such that
xk = x̂, we shall assume in what follows that xk �= x̂ for any k ≥ 0. Let
us denote xk

i = [xk]i and x̂i = [x̂]i, i = 1, . . . , n.
Let us first assume that F(x̂) �= ∅ and B(x̂) �= ∅, so that we can define

ε = min{x̂i − �i : i ∈ F(x̂)} > 0 and δ = min{gi(x̂) : i ∈ B(x̂)} > 0.

Since by Proposition 5.12 {xk} converges to x̂, there is k0 such that for any
k ≥ k0

gi(xk) ≤ ε

4α
for i ∈ F(x̂) (5.119)

xk
i ≥ �i +

ε

2
for i ∈ F(x̂) (5.120)

xk
i ≤ �i +

αδ

8
for i ∈ B(x̂) (5.121)

gi(xk) ≥ δ

2
for i ∈ B(x̂). (5.122)

In particular, for k ≥ k0, the first inclusion of (5.118) follows from (5.120),
while the second inclusion follows from (5.119) and (5.120), as for i ∈ F(x̂)

xk
i − αϕi(xk) = xk

i − αgi(xk) ≥ �i +
ε

2
− αε

4α
> �i.

Let k ≥ k0 and observe that, by (5.121) and (5.122), for any i ∈ B(x̂)
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xk
i − αgi(xk) ≤ �i +

αδ

8
− αδ

2
< �i,

so that if some xk+1 is generated by the expansion step (5.84), k ≥ k0, and
i ∈ B(x̂), then

xk+1
i = max{�i, x

k
i − αgi(xk)} = �i.

It follows that if k ≥ k0 and xk+1 is generated by the expansion step, then
B(xk+1) ⊇ B(x̂). Moreover, using (5.122) and definition of Algorithm 5.7, we
can directly verify that if B(xk) ⊇ B(x̂) and k ≥ k0, then also B(xk+1) ⊇ B(x̂).
Thus it remains to prove that there is s ≥ k0 such that xs is generated by the
expansion step.

Let us examine what can happen for k ≥ k0. First observe that we can
never take the full CG step in the direction pk = ϕ(xk). The reason is that

αcg(pk) =
ϕ(xk)Tg(xk)

ϕ(xk)T Aϕ(xk)
=

‖ϕ(xk)‖2

ϕ(xk)T Aϕ(xk)
≥ ‖A‖−1 ≥ α

2
,

so that for i ∈ F(xk) ∩ B(x̂), by (5.121) and (5.122),

xk
i − αcgp

k
i = xk

i − αcggi(xk) ≤ xk
i − α

2
gi(xk) ≤ �i +

αδ

8
− αδ

4
< �i. (5.123)

It follows by definition of Algorithm 5.7 that if xk, k ≥ k0, is generated by
the proportioning step, then the following trial conjugate gradient step is not
feasible, and xk+1 is necessarily generated by the expansion step.

To complete the proof, observe that Algorithm 5.7 can generate only a
finite sequence of consecutive conjugate gradient iterates. Indeed, if there is
neither proportioning step nor the expansion step for k ≥ k0, then it follows
by the finite termination property of the conjugate gradient method that there
is l ≤ n such that ϕ(xk0+l) = o. Thus either xk0+l = x̂ and B(xk) = B(x̂) for
k ≥ k0+l by rule (i), or xk0+l is not strictly proportional, xk0+l+1 is generated
by the proportioning step, and xk0+l+2 is generated by the expansion step.
This completes the proof, as the cases F(x̂) = ∅ and B(x̂) = ∅ can be proved
by a direct analysis of the above arguments. �

Proposition 5.18. Let {xk} be generated by Algorithm 5.7 with x0 ∈ ΩB,
Γ > 0, and α ∈ (0, 2‖A‖−1]. Let the solution x̂ satisfy the condition of strict
complementarity, i.e., x̂i = �i implies gi(x̂) > 0. Then there is k ≥ 0 such
that xk = x̂.

Proof. If x̂ satisfies the condition of strict complementarity, then A(x̂) = B(x̂),
and, by Lemma 5.17, there is k0 ≥ 0 such that for k ≥ k0 we have
F(xk) = F(x̂) and B(xk) = B(x̂). Thus, for k ≥ k0, all xk that satisfy
x̂ �= xk−1 are generated by the conjugate gradient steps and, by the finite
termination property of the CG, there is k ≤ k0 + n such that xk = x̂. �
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5.8.6 Finite Termination for Dual Degenerate Solution

Our final goal is to prove the finite termination of Algorithm 5.7 when the
solution of (5.1) does not satisfy the strict complementarity condition as in
Fig. 5.16, where the iterations with different active sets are near the solution.

Fig. 5.16. Projected gradients near dual degenerate solution

Lemma 5.19. Let α ∈ (0, 2‖A‖−1], x ∈ ΩB, and y = x − αϕ̃(x). Then

‖ϕ(y)‖2 ≤ 9ϕ̃(x)T ϕ(x) and ‖β(y)‖ ≥ ‖β(x)‖ − 4‖ϕ̃(x)‖, (5.124)

where the reduced free gradient ϕ̃(x) = ϕ̃α(x) is defined by (5.85).

Proof. First notice that F(y) ⊆ F(x). Since

g(y) = g(x) − αAϕ̃(x) and ϕ̃F(y)(x) = ϕF(y)(x) = gF(y)(x), (5.125)

we get

‖ϕ(y)‖ = ‖gF(y)(y)‖ = ‖gF(y)(x) − α [Aϕ̃(x)]F(y) ‖
≤ ‖ϕ̃F(y)(x)‖ + α ‖ [Aϕ̃(x)]F(y) ‖ ≤ 3‖ϕ̃(x)‖.

Using the latter inequalities and the definition of ϕ̃(x), we get

‖ϕ(y)‖2 ≤ 9‖ϕ̃(x)‖2 ≤ 9ϕ̃(x)T ϕ(x).

To prove the second inequality of (5.124), denote

C = {i ∈ A(x) : gi(x) ≤ 0}

and notice that
A(y) ⊇ A(x) ⊇ C.
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Thus

‖β(y)‖ = ‖gA(y)(y)−‖ ≥ ‖gC(y)−‖ = ‖
(
gC(x) − α [Aϕ̃(x)]C

)−‖

= ‖
(
βC(x) − α [Aϕ̃(x)]C

)−‖. (5.126)

Using in sequence

‖βC(x)‖ = ‖β(x)‖, ‖α [Aϕ̃(x)]C ‖ ≤ 2‖ϕ̃(x)‖,

inequality (5.126), properties of the norm, β(x)− = β(x), and

‖z − z−‖ ≤ ‖z − t‖

for any t with nonpositive entries, we get

‖β(x)‖ − ‖ϕ̃(x)‖ − ‖β(y)‖

≤ ‖βC(x)‖ − 1
2
‖α [Aϕ̃(x)]C ‖ − ‖

(
βC(x) − α [Aϕ̃(x)]C

)−‖

≤ ‖βC(x) − α

2
[Aϕ̃(x)]C ‖ − ‖

(
βC(x) − α [Aϕ̃(x)]C

)−‖

≤ ‖ (βC(x) − α [Aϕ̃(x)]C) −
(
βC(x) − α [Aϕ̃(x)]C

)−‖ +
α

2
‖ [Aϕ̃(x)]C ‖

≤ ‖
(
βC(x) − α [Aϕ̃(x)]C

)
− βC(x)‖ + ‖ϕ̃(x)‖ ≤ 3‖ϕ̃(x)‖.

This proves the second inequality of (5.124). �

Corollary 5.20. Let Γ ≥ 4, α ∈ (0, 2‖A‖−1], x ∈ ΩB, and

Γ 2ϕ̃(x)T ϕ(x) < ‖β(x)‖2, (5.127)

where the reduced free gradient ϕ̃(x) = ϕ̃α(x) is defined by (5.85).
Then the vector y = x − αϕ̃(x) satisfies

Γ − 4
3

‖ϕ(y)‖ < ‖β(y)‖. (5.128)

Proof. Inequality (5.128) holds trivially for Γ = 4. For Γ > 4, using in se-
quence (5.124), ‖ϕ̃(x)‖2 ≤ ϕ̃(x)T ϕ(x), twice (5.127), and (5.124), we get

‖β(y)‖ ≥ ‖β(x)‖ − 4‖ϕ̃(x)‖ ≥ ‖β(x)‖ − 4
√

ϕ̃T (x)ϕ(x) > (1 − 4Γ−1)‖β(x)‖

> (Γ − 4)
√

ϕ̃T (x)ϕ(x) ≥ Γ − 4
3

‖ϕ(y)‖. (5.129)

�
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Theorem 5.21. Let {xk} denote the sequence generated by Algorithm 5.7
with

x0 ∈ ΩB, Γ ≥ 3
(√

κ(A) + 4
)

, and α ∈ (0, 2‖A‖−1]. (5.130)

Then there is k ≥ 0 such that xk = x̂.

Proof. Let xk be generated by Algorithm 5.7 and let Γ satisfy (5.130). Let
k0 be that of Lemma 5.17 and let k ≥ k0 be such that xk is not strictly
proportional, i.e., Γ 2ϕ̃α(xk)T ϕ(xk) < ‖β(xk)‖2. Then by Corollary 5.20 the
vector y = xk − αϕ̃(xk) satisfies

Γ1‖ϕ(y)‖ < ‖β(y)‖ (5.131)

with
Γ1 = (Γ − 4)/3 ≥

√
κ(A).

Moreover, y ∈ ΩB, and by Lemma 5.17 and definition of y

A(x̂) ⊇ A(y) ⊇ A(xk) ⊇ B(xk) ⊇ B(x̂). (5.132)

It follows by Lemma 5.4 that the vector z = y − ‖A‖−1β(y) satisfies

f(z) < min{f(x) : x ∈ WI} (5.133)

with I = A(y). Since I satisfies by (5.132) A(x̂) ⊇ I ⊇ B(x̂), we have also

f(x̂) = min{f(x) : x ∈ ΩB} = min{f(x) : x ∈ WI}. (5.134)

However, z ∈ ΩB, so that (5.134) contradicts (5.133). Thus all xk are strictly
proportional for k ≥ k0, so that

A(xk0) ⊆ A(xk0+1) ⊆ . . . .

Using the finite termination property of the conjugate gradient method, we
conclude that there is k ≥ k0 such that x̂ = xk. �

Let us recall that the finite termination property of the MPRGP algorithm
with a dual degenerate solution and

α ∈ (0, ‖A‖−1]

has been proved for
Γ ≥ 2

(√
κ(A) + 1

)
.

For the details see Dostál [74].
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5.9 Implementation of MPRGP with Optional
Modifications

In this section, we describe Algorithm 5.7 in the form that is convenient for
implementation. We include also some modifications that may be used to
improve its performance. Implementation of Algorithm 5.6 is similar.

5.9.1 Expansion Step with Feasible Half-Step

To improve the efficiency of the expansion step, we can use the trial conjugate
gradient direction pk which is generated before the expansion step is invoked.
We propose to generate first

xk+ 1
2 = xk − αfpk and gk+ 1

2 = gk − αfApk,

where the feasible steplength αf for pk is defined by

αf = max{α : xk − αpk ∈ ΩB} = min
i=1,...,n

{(xk
i − �i)/pk

i , pk
i > 0},

and then define
xk+1 = PΩB

(
xk+ 1

2 − αϕ(xk+ 1
2 )
)

.

The half-step is illustrated in Fig. 5.17. Such modification does not require
any additional matrix–vector multiplication and the estimate (5.93) remains
valid as f(xk+ 1

2 ) − f(xk) ≤ 0 and

f(xk+1) − f(x̂) ≤ ηΓ

(
(f(xk+ 1

2 ) − f(xk)) + f(xk) − f(x̂)
)

≤ ηΓ

(
f(xk) − f(x̂)

)
.

ΩB

xk+1xk+1/2

xk

x̂

−αg(xk)

pk

Fig. 5.17. Feasible half-step
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5.9.2 MPRGP Algorithm

Now we are ready to give the details of the implementation of the MPRGP
algorithm which was briefly described in the form suitable for analysis as
Algorithm 5.7. To preserve readability, we do not distinguish generations of
variables by indices unless it is convenient for further reference.

Algorithm 5.8. Modified proportioning with reduced gradient projections
(MPRGP).

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x : x ≥ �}, x0 ∈ ΩB.
Step 0. {Initialization.}

Choose Γ > 0, α ∈ (0, 2‖A‖−1], set k = 0, g = Ax0 − b, p = ϕ(x0)

while ‖gP (xk)‖ is not small
if ‖β(xk)‖2 ≤ Γ 2ϕ̃(xk)T ϕ(xk)

Step 1. {Proportional xk. Trial conjugate gradient step.}
αcg = gT p/pT Ap, y = xk − αcgp

αf = max{α : xk − αp ∈ ΩB} = min{(xk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

xk+ 1
2 = xk − αfp, g = g − αfAp

xk+1 = PΩB (xk+ 1
2 − αϕ(xk+ 1

2 ))
g = Axk+1 − b, p = ϕ(xk+1)

end if
else

Step 4. {Proportioning step.}
d = β(xk), αcg = gT d/dT Ad

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk

In our description, we denote by ϕ̃(x) = ϕ̃α(x) the reduced free gradi-
ent defined by (5.85). Let us recall that by Proposition 5.12 the algorithm
converges for any α ∈ (0, 2‖A‖−1] and by Theorem 5.14 its R-linear rate of
convergence is guaranteed for α ∈ (0, 2‖A‖−1).



206 5 Bound Constrained Minimization

5.9.3 Unfeasible MPRGP

The “global” bound on the rate of convergence of the CG method guaranteed
by Theorem 3.2 indicates that MPRGP converges fast when it generates long
chains of CG iterations. Thus it may be advantageous to continue the CG
iterations when the trial CG step is unfeasible. The modification of MPRGP
proposed here is based on the observation that the convergence of MPRGP is
preserved when we insert between the last feasible iteration and the expansion
step a finite number of unfeasible iterates as long as {f

(
PΩB (xk

))
} decreases.

Thus if f(PΩB (y)
)
≤ f(PΩB (xk)), we can define xk+1 = y and continue the

CG iterations; otherwise we generate xk+1 by the modified expansion step.
The resulting monotonic MPRGP algorithm reads as follows.

Algorithm 5.9. Monotonic MPRGP.

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x : x ≥ �}, x0 ∈ ΩB.
Step 0. {Initialization.}

Choose Γ > 0, α ∈ (0, 2‖A‖−1], set k = 0, g = Ax0 − b, p = ϕ(x0)

while ‖gP
(
xk
)
‖ is not small

if ‖β
(
xk
)
‖2 ≤ Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)

αcg = gT p/pT Ap, y = xk − αcgp
while f (PΩB (y)) ≤ f(PΩB

(
xk
))

and

‖β
(
xk
)
‖2 ≤ Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)

and ‖gP
(
xk
)
‖ not small

Step 1. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp,
β = ϕ(y)T Ap/pT Ap, p = ϕ(y) − βp, k = k + 1

Step 2. {Trial CG step for the next iteration of the CG loop.}
αcg = gT p/pT Ap, y = xk − αcgp

end while for CG loop
end if
if y /∈ ΩB and ‖gP

(
xk
)
‖ not small

Step 3. {Expansion step.}
y = PΩB

(
xk
)
, xk+1 = PΩB (y − αϕ(y))

g = Axk+1 − b, p = ϕ(xk+1), k = k + 1
else

if ‖β
(
xk
)
‖2 > Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)

and ‖gP
(
xk
)
‖ not small

Step 4. {Proportioning step.}
d = β

(
xk
)
, g = Axk − b, αcg = gT d/dT Ad

xk+1 = xk − αcgd, g = g − αcgAd, p = ϕ(xk+1)
k = k + 1

end if
end if

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = PΩB

(
xk
)



5.9 Implementation of MPRGP with Optional Modifications 207

To see that the algorithm is well defined, namely, that p �= o in Step 1, it
is enough to notice that this step is carried out when

‖gP
(
xk
)
‖ > 0 and ‖β

(
xk
)
‖2 ≤ Γ 2ϕ̃

(
xk
)T

ϕ
(
xk
)
,

where ϕ̃(x) = ϕ̃α(x) denotes the reduced free gradient defined by (5.85).
Thus

‖β
(
xk
)
‖ + ‖ϕ

(
xk
)
‖ > 0 and ‖β

(
xk
)
‖ ≤ Γ‖ϕ

(
xk
)
‖.

It follows easily that ϕ
(
xk
)
�= o. Since

‖p‖ ≥ ‖ϕ
(
xk
)
‖,

we have p �= o. If xk is feasible, we can optionally implement the expansion
step with the feasible half-step of Sect. 5.9.1. Notice that xk is always feasible
at the beginning of the outer loop.

Each unfeasible CG step of our implementation of the monotonic MPRGP
algorithm requires two matrix–vector multiplications; the additional multipli-
cation is necessary for evaluation of the test associated with the inner CG loop.
To carry out the unfeasible CG step in one matrix–vector multiplication, we
can use that for any x,d ∈ R

n

f(x + d) = f(x) + gT d +
1
2
dT Ad ≤ f(x) + gT d +

1
2
‖A‖‖d‖2

and
f(x + d) = f(x) + gT d +

1
2
dT Ad ≥ f(x) + gTd.

For example, if xi, i = k, k + 1, . . . , are generated in the inner CG loop of
the monotonic MPRGP algorithm, xk is feasible, and

di = PΩB (yi) − xi, gi = g(yi), i = k, k + 1, . . . ,

where yi is the trial CG iteration entering into the ith step, then we can use
(3.9) to evaluate f(yi) without additional matrix–vector multiplication,

f(yi) + (gi)Tdi + ‖A‖‖di‖2 ≤ f(xk) (5.135)

implies
f
(
PΩB (yi)

)
≤ f

(
xk
)
,

and the unfeasible iterates xi+1 = yi which satisfy (5.135) can be accepted.
Thus we can use (5.135) to modify the test at the beginning of the CG loop
of Algorithm 5.9 so that the resulting semimonotonic MPRGP algorithm
generates a converging sequence of iterates that are evaluated at one matrix–
vector multiplication.

Using the lower bound on f(xi), it is possible to develop a test applicable
to unfeasible xk. The modifications presented in this section are closely related
to the semismooth Newton methods.
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5.9.4 Choice of Parameters

Our experience indicates that MPRGP is not sensitive to Γ as long as Γ ≈ 1.
Since Γ = 1 minimizes the upper bound on the rate of convergence and
guarantees that the CG steps reduce directly the larger of the two components
of the projected gradient, we can expect good efficiency with this value.

The choice of α requires an estimate of ‖A‖. If the entries of A are available,
we can use ‖A‖ ≤ ‖A‖∞ to define α = 2‖A‖−1

∞ which guarantees convergence.
If this is not the case, or if ‖A‖∞ gives a poor upper bound on ‖A‖, then we
can carry out a few, e.g., five, iterations of the following power method.

Algorithm 5.10. Power method for the estimate of ‖A‖.

Given a symmetric positive definite matrix A ∈ R
n×n, returns A ≈ ‖A‖.

Choose x ∈ R
n such that x �= o, nit ≥ 1

for i = 1, 2, . . . , nit

y = Ax, x = ‖y‖−1y
end for
A = ‖Ax‖

Alternatively, we can use the Lanczos method (see, e.g., Golub and van
Loan [103]). We can conveniently enhance the Lanczos method into the con-
jugate gradient loop of the MPRGP algorithm by defining

qi = ‖ϕ(xs+i)‖−1ϕ(xs+i), i = 0, . . . , p,

where ϕ(xs) and ϕ(xs+i) are the free gradients at respectively the initial and
the ith iterate in one CG loop. Then we can estimate ‖A‖ by evaluation of
the �∞-norm of the tridiagonal matrix

T = QT AQ, Q = [q0, . . . ,qp].

Though these methods typically give only a lower bound A on the norm
of ‖A‖, the choice like α = 1.8A−1 is often sufficient in practice. The decrease
of f can be achieved more reliably by initializing α = 2(bT Ab)−1‖b‖2 and by
inserting the following piece of code into the expansion step:

Algorithm 5.11. Modification of the steplength of the expansion step.

A piece of code to be inserted at the end of the expansion step of Algorithm 5.8.

if f
(
PΩB (xk+1)

)
> f(xk)

α = α/2 and repeat the expansion step
end if
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The modified algorithm can outperform that with α = ‖A‖−1; the longer
steps in an early stage of computations can be effective for identification of
the solution. We observed a good performance with α close to, but not greater
than 2‖A‖−1, near αopt

E which minimizes the coefficient ηE of the Euclidean
contraction (5.36). Notice that Theorem 5.14 guarantees that the inserted
loop of Algorithm 5.11 reduces the steplength in a small number of steps.

5.9.5 Dynamic Release Coefficient

The estimates given by Lemma 5.4 and Theorem 5.21 indicate that the value
of Γ = 1, which gives the best upper bound on the rate of convergence of
the MPRGP algorithm, may be too small to exclude repeated exploitation of
any face. On the other hand, while discussing the original Polyak algorithm
in Sect. 5.4, we have already expressed doubts that it is efficient to carry out
the minimization in face to a high precision, especially in the early stage of
computations, when we are far from the solution.

To accommodate these contradicting requirements, let us return to the
description of the MPRGP algorithm in Sect. 5.8 and replace in its kth step
the release coefficient Γ by Γk, so that it can change from iteration to iteration.
For example, we shall now say that the iterate xk is strictly proportional if

||β(xk)||2 ≤ Γ 2
k ϕ̃(xk)T ϕ(xk). (5.136)

Repeating the arguments of the proof of Theorem 5.14, we can prove its
following modification:

Theorem 5.22. Let Γmax ≥ Γmin denote given positive numbers, let {Γi}
denote a given sequence such that Γmax ≥ Γk ≥ Γmin, let λmin denote the
smallest eigenvalue of A, and let {xk} denote the sequence generated by Algo-
rithm 5.7 with α ∈ (0, 2‖A‖−1] and Γ replaced in the kth step by Γk.

Then the error in the A-norm is bounded by

‖xk − x̂‖2
A ≤ 2ηΓ1 . . . ηΓk

(
f(x0) − f(x̂)

)
≤ 2ηk

Γ

(
f(x0) − f(x̂)

)
, (5.137)

where x̂ denotes the unique solution of (5.1),

ηΓ = 1 − αλmin

ϑ + ϑΓ̂ 2
, ηΓk

= 1 − αλmin

ϑ + ϑΓ̂ 2
k

, (5.138)

ϑ = 2 max{α/2, 1}, Γ̂ = max{Γmax, Γ
−1
min}, Γ̂k = max{Γk, Γ−1

k }.
This definition opens room for implementation of heuristics that can be

useful in some specific cases. Typically, the series of release coefficients {Γk}
is defined by a suitable function of ‖gP (xk)‖. For example, specification

α = ‖A‖−1 and Γk =
{

1 for ‖gP (xk)‖ ≥ 10ε,

2(
√

κ(A) + 1) for ‖gP (xk)‖ < 10ε

guarantees both favorable bound on the rate of convergence in the early stage
of computation and the finite termination property.
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5.10 Preconditioning

A natural way to improve the performance of the conjugate gradient-based
methods is to apply the preconditioning described in Sect. 3.6. However, the
application of preconditioning requires some care, as the preconditioning trans-
forms the variables, turning the bound constraints into more general inequality
constraints. In this section we present two strategies which preserve the bound
constraints.

5.10.1 Preconditioning in Face

Probably the most straightforward preconditioning strategy which preserves
the bound constraints is the preconditioning applied to the diagonal block
AFF of the Hessian matrix A in the conjugate gradient loop which minimizes
the cost function f in the face defined by a free set F . Such preconditioning
requires that we are able to define for each diagonal block AFF a regular ma-
trix M(F) which satisfies the following two conditions. First, we require that
M(F) approximates AFF so that the convergence of the conjugate gradients
method is significantly accelerated. The second condition requires that the
solution of the system

M(F)x = y

can be obtained easily. The preconditioners M(F) can be generated, e.g., by
any of the methods described in Sect. 3.6.

Though the performance of the algorithm can be considerably improved
by the preconditioning, preconditioning in face does not result in the improved
bound on rate of convergence. The reason is that such preconditioning affects
only the feasible conjugate gradient step, leaving the expansion and the pro-
portioning steps without any preconditioning.

In probably the first application of preconditioning to the solution of bound
constrained problems [157], O’Leary considered two simple methods which can
be used to obtain the preconditioner for AFF from the preconditioner M which
approximates A, namely,

M(F) = MFF and M(F) = LFFLT
FF ,

where L denotes the factor of the Cholesky factorization M = LLT . It can be
proved that whichever method of the preconditioning is used, the convergence
bound for the conjugate gradient algorithm applied to the subproblems is at
least as good as that of the conjugate gradient method applied to the original
matrix [157].

To describe the MPRGP algorithm with the preconditioning in face, let us
assume that we are given the preconditioner M(F) for each set of indices F ,
and let us denote Fk = F(xk) and Ak = A(xk) for each vector xk ∈ ΩB .
To simplify the description of the algorithm, let Mk denote the preconditioner
corresponding to the face defined by Fk padded with zeros so that
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[Mk]FF = M(Fk), [Mk]AA = O, [Mk]AF = [Mk]TFA = O,

and recall that M†
k denotes the Moore–Penrose generalized inverse of Mk which

is defined by

[M†
k]FF = M(Fk)−1, [M†

k]AA = O, [M†
k]AF = [M†

k]TFA = O.

In particular, it follows that

M†
kg(xk) = M†

kϕ(xk).

The MPRGP algorithm with preconditioning in face reads as follows.

Algorithm 5.12. MPRGP with preconditioning in face.

Given a symmetric positive definite matrix A of the order n, n-vectors b, �,
ΩB = {x ∈ R

n : x ≥ �}; choose x0 ∈ ΩB, Γ > 0, α ∈ (0, 2‖A‖−1], and the rule
which assigns to each xk ∈ ΩB the preconditioner Mk which is SPD in the face
defined by F(xk).
Step 0. {Initialization.}

Set k = 0, g = Ax0 − b, z = M†
0 g, p = z

while ‖gP (xk)‖ is not small

if ‖β(xk)‖2 ≤ Γ 2ϕ̃(xk)T ϕ(xk)

Step 1. {Proportional xk. Trial conjugate gradient step.}
αcg = zT g/pT Ap, y = xk − αcgp
αf = max{α : xk − αp ∈ ΩB} = min{(xk

i − �i)/pi : pi > 0}
if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, g = g − αcgAp, z = M†

k g

β = zT Ap/pT Ap, p = z − βp
else

Step 3. {Expansion step.}
xk+ 1

2 = xk − αfp, g = g − αfAp

xk+1 = PΩB

(
xk+ 1

2 − αϕ(xk+ 1
2 )
)

g = Axk+1 − b, z = M†
k+1 g, p = z

end if
else

Step 4. {Proportioning step.}
d = β(xk), αcg = gT d/dT Ad

xk+1 = xk − αcgd, g = g − αcgAd, z = M†
k+1g, p = z

end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = xk
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5.10.2 Preconditioning by Conjugate Projector

Let 1 ≤ m < n and let the vector of bounds satisfy

�m+1 = −∞, . . . , �n = −∞,

so that problem (5.1) is only partially constrained and the feasible set can be
described by

ΩB = {x ∈ R
n : xI ≥ �I}, I = {1, . . . , m}. (5.139)

Here we show that such partially constrained problems can be preconditioned
by the conjugate projector of Sect. 3.7 and that it is possible to give an im-
proved bound on the rate of convergence of the preconditioned problem.

Let us assume that U is the subspace spanned by the full column rank
matrix U ∈ R

n×p of the form

U =
[

O
V

]
, V ∈ R

(n−m)×p.

As in Sect. 3.7.2, we decompose our partially constrained problem by means
of the conjugate projectors

P = U(UT AU)−1UT A (5.140)

and Q = I − P onto U and V = ImQ, respectively. Due to our special choice
of U, we get that for any x ∈ R

n

[Qx]I = xI ,

and that for any y ∈ U and z ∈ V , y + z ∈ ΩB if and only if z ∈ ΩB . Using
(3.32), (3.33), and the observations of Sect. 3.7.3, we thus get

min
x∈ΩB

f(x) = min
y∈U, z∈V
y+z∈ΩB

f(y + z) = min
y∈U

f(y) + min
z∈V∩ΩB

f(z)

= f(x0) + min
z∈V∩ΩB

f(z) = f(x0) + min
z∈AV
zI≥�I

1
2
zT QT AQz − bT Qz

= f(x0) + min
z∈AV
zI≥�I

1
2
zT QT AQz +

(
g0
)T

z,

where x0 = PA−1b and g0 = −QTb. We have thus reduced our bound con-
strained problem (5.1) with the feasible set (5.139) to the problem

min
z∈AV
zI≥�I

1
2
zT QT AQz +

(
g0
)T

z. (5.141)

The following lemma shows that the above problem can be solved by the
MPRGP algorithm.



5.10 Preconditioning 213

Lemma 5.23. Let z1, z2, . . . be generated by the MPRGP algorithm for the
problem

min
zI≥�I

1
2
zT QT AQz +

(
g0
)T

z (5.142)

starting from z0 = PΩB

(
g0
)
. Then zk ∈ AV , k = 0, 1, 2, . . . .

Proof. First observe that since AV is orthogonal to U and dimAV = dimV , it
follows that AV is the orthogonal complement of U . Thus AV is not only an
invariant subspace of Q, but it is also an invariant subspace of PΩB . Moreover,
it also follows that AV contains the set V0 ⊆ R

n of all the vectors of R
m padded

with zeros,

V0 = {x ∈ R
n : xJ = o, J = {m + 1, . . . , n}} .

More formally,
PΩB (AV) ⊆ AV and V0 ⊆ AV . (5.143)

Let us now recall that by (3.33) g0 ∈ ImQT and by (3.35) ImQT = AV , so
that g0 ∈ AV . Using the definition of z0 and (5.143), we have z0 ∈ AV .

To finish the proof by induction, let us assume that zk ∈ AV . Since

gk = QT AQzk − QTb = AQzk + g0,

we have gk ∈ AV . We shall use this simple observation to examine separately
the three possible steps of the MPRGP algorithm of Sect. 5.8.1 that can be
used to generate zk+1.

Let us first assume that zk+1 is generated by the proportioning step. Then

zk+1 = zk − αcgβ(zk).

Using the definition of the chopped gradient, it is rather easy to check that
β(zk) ∈ V0. Since V0 ⊆ AV , AV is a subspace of R

n, and zk ∈ AV by the
assumptions, this proves that zk+1 ∈ AV when it is generated by the propor-
tioning step.

Before examining the other two steps, observe that ϕ(zk) − gk ∈ V0, so
that

ϕ(zk) =
(
ϕ(zk) − gk

)
+ gk ∈ AV .

Thus
zk − αϕ(zk) ∈ AV

for any α ∈ R. Using the first inclusion of (5.143), we get that

PΩB

(
zk − αϕ(zk)

)
∈ AV

for any α of Algorithm 5.8. This proves that zk+1 ∈ AV for zk+1 generated by
the expansion step. To finish the proof, observe that the conjugate direction
pk is either equal to ϕ(zk), or it is defined by the recurrence (see (5.15))
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pk+1 = ϕ(zk) − βpk starting from the restart ps+1 = ϕ(zs). In any case,
pk ∈ AV . Since we assume that zk ∈ AV and the iterate zk+1 generated
by the conjugate gradient step is a linear combination of zk and pk, this
completes the proof. �

It follows that we can obtain the correction ẑ which solves the auxiliary
problem by the standard MPRGP algorithm. Since the iterations are reduced
to the subspace, the projector preconditions all three types of steps and we
can give an improved bound on the rate of convergence. The solution x̂ of
the bound constrained problem (5.1) with the feasible set (5.139) can be
expressed by x̂ = x0 + ẑ. For convenience of the reader, we give here the
complete algorithm for the solution of the preconditioned problem (5.142).

Algorithm 5.13. MPRGP projection preconditioning correction.

Given a symmetric positive definite matrix A of the order n and b, � ∈ R
n; choose

a full column rank matrix U ∈ R
m×n, g0 = −QT b, x0 = PA−1b, z0 = PΩB (g0),

Γ > 0, and α ∈ (0, 2‖AQ‖−1], where P is defined by (5.140) and Q = I − P.
Step 0. {Initialization.}

Set k = 0, g = AQz0 + g0, p = ϕ(z0)

while ‖gP (zk)‖ is not small

if ‖β(zk)‖2 ≤ Γ 2ϕ̃(zk)T ϕ(zk)
Step 1. {Proportional zk. Trial conjugate gradient step.}

αcg = gT p/pT AQp, y = zk − αcgp

αf = max{α : zk − αp ∈ ΩB} = min{(zk
i − �i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
zk+1 = y, g = g − αcgAQp
β = ϕ(y)T AQp/pT AQp, p = ϕ(y) − βp

else
Step 3. {Expansion step.}

zk+ 1
2 = zk − αfp, g = g − αfAQp

zk+1 = PΩB (zk+ 1
2 − αϕ(zk+ 1

2 ))

g = AQzk+1 + g0, p = ϕ(zk+1)
end if

else
Step 4. {Proportioning step.}

d = β(zk), αcg = gT d/dT AQd

zk+1 = zk − αcgd, g = g − αcgAQd, p = ϕ(zk+1)
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = zk + x0
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To describe the improved bound on the rate of convergence, let us denote,
as in Sect. 3.7.4, the gap

γ = ‖RAU − RE‖

between AU and the m-dimensional subspace E spanned by the eigenvectors
corresponding to the m smallest eigenvalues

λn−m+1 ≥ · · · ≥ λmin

of A, so that the smallest nonzero eigenvalue λmin of QT AQ satisfies by The-
orem 3.6

λmin ≥
√

(1 − γ2)λ2
n−m + γ2λ2

min ≥ λmin. (5.144)

Recall that by (3.36) and AQ = QT AQ

‖AQ‖ ≤ ‖A‖.

Theorem 5.24. Let {zk} denote the sequence generated by Algorithm 5.7
for problem (5.142) with α ∈ (0, 2‖AQ‖−1] and Γ > 0 starting from z0 =
PΩB (g0). Let us denote

f0,Q(z) =
1
2
zT QT AQz + (g0)T z.

Then
f0,Q(zk+1) − f0,Q(ẑ) ≤ ηΓ

(
f0,Q(zk) − f0,Q(ẑ)

)
, (5.145)

where

ηΓ = 1 − α̂λmin

ϑ + ϑΓ̂ 2
, Γ̂ = max{Γ, Γ−1}, (5.146)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.147)

and λmin denote the least nonzero eigenvalue of QT AQ which satisfies (5.144).

Proof. It is enough to combine Theorem 5.14 with the bounds given by The-
orem 3.6. �

The efficiency of preconditioning by conjugate projector depends on the
choice of the matrix U whose columns span the subspace which should approx-
imate an invariant subspace spanned by the eigenvectors which correspond to
small eigenvalues of A. For the minimization problems arising from the dis-
cretization of variational inequalities, U is typically obtained by aggregation
of variables using geometrical information or from the coarse discretization,
as in the multigrid methods. A numerical example is given in the next section.
For references on related topics see Sect. 5.12.
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5.11 Numerical Experiments

Here we illustrate the performance of some CG-based algorithms for the bound
constrained problem (5.1) on minimization of the cost functions fL,h and fLW,h

introduced in Sect. 3.10 subject to bound constraints. All the computations
are carried out with Γ = 1 and x0 = o.

5.11.1 Polyak, MPRGP, and Preconditioned MPRGP

Let us first compare the performance of the CG-based algorithms presented
in this chapter on minimization of the quadratic function fL,h defined by the
discretization parameter h (see page 98) subject to the boundary obstacle �
defined by the upper part of the circle with the radius R = 1 and the center
S = (1, 0.5,−1.3). The boundary obstacle is placed under Γc = 1× [0, 1]. Our
benchmark is described in more detail in Sect. 7.1; its solution is in Fig. 7.4.
Recall that the Hessian AL,h of fL,h is ill conditioned with κ(AL,h) ≈ h−2.
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Fig. 5.18. Convergence of Polyak, MPRGP, and MPRGP–CP algorithms

The graph of the norm of the projected gradient (vertical axis) against the
numbers of matrix–vector multiplications (horizontal axis) for Algorithm 5.2
(Polyak), Algorithm 5.8 (MPRGP), and MPRGP with preconditioning by the
conjugate projector (MPRGP–CP) is in Fig. 5.18. The results were obtained
with h = 1/32, which corresponds to n = 1056 unknowns. The conjugate
projector was defined by the aggregation of variables in the squares with 8×8
variables as in Sect. 3.10.1, so that the matrix U has 16 columns. We can see
not only that the MPRGP algorithm outperforms Polyak’s algorithm, but also
that the performance of MPRGP can be considerably improved by precondi-
tioning. The difference between the Polyak and basic MPRGP algorithms is
small due to the choice of � which makes identification of the active set easy;
most iterations of both algorithms were CG steps. The picture can completely
change for different � as documented in Dostál and Schöberl [74].
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5.11.2 Numerical Demonstration of Optimality

To illustrate the concept of optimality, let us consider the class of problems
to minimize the quadratic function fLW,h (see page 99) subject to the bound
constraints defined by the obstacle as above. The class of problems can be
given a mechanical interpretation associated to the expanding spring systems
on Winkler’s foundation. The spectrum of the Hessian ALW,h of fLW,h is lo-
cated in the interval [2, 10]. Moreover, � ≤ o, so that the assumptions of
Theorem 5.16 are satisfied.
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Fig. 5.19. Scalability of MPRGP algorithm

In Fig. 5.19, we can see the numbers of the CG iterations kn (vertical
axis) that were necessary to reduce the norm of the projected gradient by
10−6 for the problems with the dimension n ranging from 100 to 1000000.
The dimension n on the horizontal axis is in the logarithmic scale. We can
see that kn varies mildly with varying n, in agreement with Theorem 5.16.
Moreover, since the cost of the matrix–vector multiplications is in our case
proportional to the dimension n of the matrix ALW,h, it follows that the cost
of the solution is also proportional to n.

The purpose of the above numerical experiment was just to illustrate the
concept of optimality. Realistic classes of problems arise from application of
the discretization schemes, such as the finite element method, boundary el-
ement method, finite differences, etc., to the elliptic boundary variational
inequalities, such as those arising in contact problems of elasticity, in combi-
nation with a suitable preconditioning scheme, such as FETI–DP or BETI–
DP. An optimal algorithm for the solution of the class of problems arising
from the finite element discretization of a model variational inequality with
the FETI–DP preconditioning can be found in Chap. 7. More comprehensive
related discussion and references can be found in the next section.
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5.12 Comments and References

Since the conjugate gradient method was introduced in the celebrated pa-
per by Hestenes and Stiefel [117] as a method for the solution of systems of
linear equations, it seems that Polyak [159] was the first researcher who pro-
posed to use the conjugate gradient method to minimize the quadratic cost
function subject to bound constraints. Though Polyak assumed the auxiliary
problems to be solved exactly, O’Leary [157] observed that this assumption
can be replaced by refining the accuracy in the process of solution. In this
way she managed to reduce the number of iterations to about a half as com-
pared with the algorithm using the exact solution. The effective theoretically
supported strategies for adaptive precision control were presented indepen-
dently by Friedlander and Mart́ınez with their collaborators [94, 95, 96, 14],
and Dostál [41, 42]. Our exposition of inexact Polyak algorithms is based on
Dostál [41, 43]. Comprehensive experiments and tests of heuristics can be
found in Diniz-Ehrhardt, Gomes-Ruggiero, and Santos [34]. The research was
not limited to the convex problems, see also Diniz-Ehrhardt et al. [33].

Many authors fought with an unpleasant consequence of the Polyak strat-
egy which yields a lower bound on the number of iterations in terms of the
difference between the numbers of the active constraints in the initial approx-
imation and the solution. Dembo and Tulowitzski [30] proposed the conjugate
gradient projection algorithm which could add and drop many constraints in
an iteration. Later Yang and Tolle [183] further developed this algorithm with
backtracking so that they were able to prove its finite termination property.

An important step forward was development of algorithms with a rigor-
ous convergence theory. On the basis of the results of Calamai and Moré [20],
Moré and Toraldo [153] proposed an algorithm that also exploits the conjugate
gradients and projections, but its convergence is driven by the gradient pro-
jections with the steplength satisfying the sufficient decrease condition. The
steplength is found, as in earlier algorithms, by possibly expensive backtrack-
ing. In spite of iterative basis of their algorithm, the authors proved that their
algorithm preserved the finite termination property of the original algorithm
provided the solution satisfies the strict complementarity condition. Fried-
lander, Mart́ınez, Dostál, and their collaborators combined this result with
inexact solution of auxiliary problems [94, 95, 96, 14, 33, 41, 42]. The concept
of proportioning algorithm as presented here was introduced by Dostál in [42].
The convergence of the proportioning algorithm was driven by the proportion-
ing step, leaving more room for the heuristic implementation of projections as
compared with Moré and Toraldo [153]. The heuristics for implementation of
the proportioning algorithm of Dostál [42] can be applied also to the MPRGP
algorithm of Sect. 5.8.

The common drawbacks of all the above-mentioned strategies were pos-
sible backtracking in search of the gradient projection step and the lack of
results on the rate of convergence. A key to further progress were the results
by Schöberl [165, 166], who found the bound on the rate of convergence of the
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cost function in the energy norm for the gradient projection method with the
fixed steplength α ∈ (0, ‖A‖−1] in terms of the spectral condition number of
the Hessian matrix. It was observed later by Dostál [45] that this nice result
can be plugged into the proportioning algorithm to get a similar result, but
with the algorithm which can carry out more efficiently the unconstrained
steps. The estimates were extended to α ∈ (0, 2‖A‖−1] by Dostál [51] (gra-
dient projection) and Dostál, Domorádová, and Sadowská [52] (MPRGP). In
our exposition of the MPRGP algorithm, we follow Dostál and Schöberl [74],
Dostál [51], and Dostál, Domorádová, and Sadowská [52]. Let us recall that
the linear rate of convergence of the cost function for the gradient projection
method was proved earlier even for more general problems by Luo and Tseng
[146], but they did not make any attempt to specify the constants. Notice
that the bound on the coefficient of contraction of the gradient projections in
the Euclidean norm is a standard result [12]. The gradient projections were
exploited also in the algorithms for more general bound constrained problems,
see, e.g., Hager and Zhang [115]. Kučera [138] later modified the algorithm
to the minimization of quadratic function subject to separated quadratic con-
straints.

The attempts to enhance unfeasible iterations into the active set-based
methods are usually motivated by an effort to expand effectively the active
set, especially in the early stage of computation. Of course, the problem is not
how to expand the active set, but how to expand it properly. Our monotonic
MPRGP algorithm introduced in Sect. 5.9.3 implements a natural heuristics
that any decrease direction is acceptable when we want to expand the active
set provided the decrease of the cost function in the unfeasible direction is
not surpassed by the increase due to the projection to the feasible set. The
algorithm can be considered as a special class of the semismooth Newton
method with a globalization strategy. For the semismooth Newton algorithms,
see, e.g., Hintermüller, Ito, and Kunisch [118] and Hintermüller, Kovtumenko,
and Kunisch [119]. Recent application of Newton-type methods to the contact
problem may be found in Hüeber, Stadler, and Wohlmuth [122].

The preconditioning in face was studied by O’Leary [157]. Kornhuber
[131, 132] presented nice experimental results and convergence theory for the
solution of quadratic programming problems arising from the discretization
of boundary variational inequalities with multigrid preconditioning. See also
Kornhuber and Krause [133] and Iontcheva and Vassilevski [124]. It turned
out that the coarse grid should avoid the constrained variables as in our de-
scription of the preconditioning by a conjugate projector, see Domorádová
and Dostál [36]. The first implementation of the latter idea can be found in
Domorádová [35]. Dostál, Horák, and Stefanica combined the MPRGP algo-
rithm with the FETI–DP domain decomposition method to develop a scalable
algorithm for the solution of a boundary variational inequality [70]. For ap-
plication to contact problems with friction see Dostál and Vondrák [75] and
Dostál, Haslinger, and Kučera [63]. A discussion related to application of
MPRGP in the cascade algorithm can be found in Braess [16].



220 5 Bound Constrained Minimization

Let us finish with a few comments on the bounds on the rates of conver-
gence presented in Sect. 5.6 on the gradient projection method, in Sect. 5.7
on MPGP, and in Sect. 5.8 on MPRGP. Since the coefficient of the Euclidean
contraction ηE and the coefficient ηf of the reduction of the cost function for
the gradient projection step with the fixed steplength are smaller than the
coefficient of reduction of the cost function ηΓ for MPGP and MPRGP, one
can doubt superiority of the latter algorithms. However, such doubts are not
substantiated. The point is that our estimates are based on the analysis of the
worst case for isolated iterations and do not take into account the “global”
performance of the conjugate gradient method, which dominates whenever
a few consecutive conjugate gradient iterations are carried out; this feature
of the CG method is captured by Theorem 3.2. Such global performance is
partly captured by our finite termination results and, in the case of MPRGP,
also by the result on the rate of convergence of the projected gradient.
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Bound and Equality Constrained Minimization

We shall now combine the results of our previous investigation to develop
efficient algorithms for the bound and equality constrained problem

min
x∈ΩBE

f(x), (6.1)

where
ΩBE = {x ∈ R

n : Bx = o and x ≥ �},

f(x) = 1
2x

T Ax − xTb, b and � are given column n-vectors, A is an n ×
n symmetric positive definite matrix, and B ∈ R

m×n. We consider similar
assumptions as in previous chapters. In particular, we assume ΩBE �= ∅ and
admit dependent rows of B and �i = −∞. We assume that B �= O is not
a full column rank matrix, so that KerB �= {o}. Observe that more general
quadratic programming problems can be reduced to (6.1) by duality, a suitable
shift of variables, or modification of f .

If we compare the bound and equality constrained problem (6.1) with the
bound constrained problem (5.1) of the previous chapter, we can see that
the feasible set of (6.1) is more complicated than that of (5.1). For example,
the evaluation of the Euclidean projection to the feasible set, one of the key
ingredients of the algorithms of the previous section, is not tractable any
more. The equality constraints complicate also the implementation of other
ingredients of the algorithms developed in previous chapters.

The main idea of the algorithm that we develop in this chapter is to treat
both sets of constraints, the equalities and the bound constraints, separately.
This approach enables us to use the ingredients of the algorithms developed in
the previous chapters, such as the precision control of the auxiliary problems
and the update rule for the penalty parameter. We restrict our attention to
the SMALBE (SemiMonotonic Augmented Lagrangian algorithm for Bound
and Equality constraints) which will be proved to have similar optimality
properties as SMALE of Sect. 4.6.1.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 6,
c© Springer Science+Business Media, LLC 2009
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6.1 Review of the Methods
for Bound and Equality Constrained Problems

Probably the most simple way to reduce the bound and equality constrained
quadratic programming problem (6.1) to the bound constrained one is to en-
hance the equality constraints into the objective function by adding a suitable
term which penalizes the violation of the equality constraints, i.e., replacing
(6.1) by

min
x≥o

f�(x), f�(x) = f(x) +
1
2�

‖Bx‖2.

The resulting bound constrained problem can then be solved by any algorithm
for bound constrained problems introduced in Chap. 5. The penalty approx-
imation of the equality constraints can be very efficient for well-conditioned
problems; it was used in the development of scalable FETI-based algorithms
for the solution of elliptic boundary variational inequalities (see Dostál and
Horák [66, 65]). As for the equality constrained problems, we can get the
approximation of the Lagrange multipliers

λ̃ = �Bx.

If only a part of variables is bound constrained, then it may be possible
to reduce the bound and equality constrained problem (6.1) to the bound
constrained problem by eliminating some variables. Then most of the methods
reviewed in Sect. 5.1 can be adapted to the solution of problem (6.1).

A special structure of (6.1) can be exploited by a modification of the orig-
inal Polyak algorithm 5.2 provided the dimension of problem (6.1) is not too
large and we are able to find a feasible initial approximation x0. The con-
jugate gradient iterates are forced to stay in the feasible region by means
of orthogonal projectors to the intersection of the current working face and
KerB. The Polyak scheme can be modified for the solution of more general
equality and inequality constrained problems; the details can be found, e.g.,
in Pshenichny and Danilin [161, Chap. III]. Since the modified Polyak algo-
rithm is not compatible with application of nonlinear projectors and effective
adaptive precision control, there are no results on its rate of convergence.

Problem (6.1) can also be reduced to the problem with quadratic equality
constraints by observing that the inequality g(x) ≤ 0 is equivalent to g(x) +
t2 = 0 (see [11]). Though simple and straightforward from the theoretical
point of view, the latter approach does not seem to be able to exploit fully
the specific structure of quadratic programming problems as it transforms
the strictly convex problems with linear constraints to more general problems
with the quadratic constraints.
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6.2 SMALBE Algorithm for Bound and Equality
Constraints

The basic idea of the augmented Lagrangian method for the equality con-
straints as presented in Sect. 4.3 was based on general observations which
remain valid even if the inner auxiliary problems are minimized with respect
to some other constraints. This suggests to modify the augmented Lagrangian
method so that the bound constrained problems are solved in the inner loop.
The idea goes back to Conn, Gould, and Toint [26, 27], who proposed an
algorithm for the solution of more general problems that generates the La-
grange multipliers for the equality constraints in the outer loop while solving
the auxiliary bound constrained problems in the inner loop.

6.2.1 KKT Conditions and Projected Gradient

Since ΩBE is closed and convex and f is assumed to be strictly convex, the
solution of problem (6.1) exists and is necessarily unique by Proposition 2.5.
The special form of the feasible set ΩBE enables us to use a specific form of
the KKT conditions (2.81) which fully determine the unique solution of (6.1).
Enhancing the equality constraints into the Lagrangian

L(x, λ, �) =
1
2
xT Ax − xT b + BT λ +

�

2
‖Bx‖2,

we can easily express the KKT conditions for (6.1) by means of its gradient

g = g(x, λ, �) = ∇L(x, λ, �) = (A + �BT B)x − b + BT λ.

Using (2.81), we get that a feasible vector x ∈ ΩBE is the solution of (6.1) if
and only if

g ≥ o and gT (x − �) = 0,

or equivalently
gP = o. (6.2)

6.2.2 SMALBE Algorithm

The following algorithm is a modification of the SMALE algorithm of Sect. 4.6.1.
The only difference is that the SMALBE algorithm solves the bound con-
strained problems in the inner loop with the precision controlled by the Eu-
clidean norm of the projected gradients. As compared with the original algo-
rithm proposed by Conn, Gould, and Toint [26, 27], the SMALBE algorithm
differs in the adaptive precision control introduced by Dostál, Friedlander,
and Santos [57] and in the control of the regularization parameter � that was
introduced by Dostál [49]. The complete SMALBE algorithm reads as follows.

In Step 1 we can use any algorithm for minimizing the strictly convex
quadratic function subject to bound constraints as long as it guarantees the
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Algorithm 6.1. Semimonotonic augmented Lagrangians (SMALBE).

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, n-vectors b, �.
Step 0. {Initialization.}

Choose η > 0, β > 1, M > 0, �0 > 0, λ0 ∈ R
m

for k = 0, 1, 2, . . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk ≥ � such that

‖gP (xk, λk, �k)‖ ≤ min{M‖Bxk‖, η} (6.3)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + �kBxk (6.4)

Step 3. {Update � provided the increase of the Lagrangian is not sufficient.}
if k > 0 and

L(xk, λk, �k) < L(xk−1, λk−1, �k−1) +
�k

2
‖Bxk‖2 (6.5)

�k+1 = β�k

else
�k+1 = �k

end if
end for

convergence of the projected gradient to zero, such as the MPGP of Sect. 5.7
the MPRGP algorithm of Sect. 5.8. The next lemma shows that Algorithm 6.1
is well defined, that is, any algorithm for the solution of the auxiliary problem
required in Step 1 which guarantees the convergence of the projected gradient
to zero generates either xk which satisfies (6.3) in a finite number of steps or
approximations which converge to the solution of (6.1). It is also clear that
there is no hidden enforcement of exact solution in (6.3), and typically inexact
solutions of the auxiliary unconstrained problems are obtained in Step 1.
Notice that it is not enough to guarantee the convergence of the algorithm in
the inner loop. Since the projected gradient is not a continuous function, it is
necessary to guarantee that also the projected gradient converges to the zero
vector!

Lemma 6.1. Let M > 0, λ ∈ R
m, η > 0, and � ≥ 0 be given. Let {yk}

denote any sequence such that yk ≥ � and gP (yk, λ, �) converges to the zero
vector. Then {yk} either converges to the unique solution x̂ of problem (6.1),
or there is an index k such that

‖gP (yk, λ, �)‖ ≤ min{M‖Byk‖, η}. (6.6)

Proof. First notice that the sequence {yk} converges by Lemma 5.1 to the
solution ŷ of the problem
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min
x≥�

L(yk, λ, �).

If (6.6) does not hold for any k, then ‖gP (yk, λ, �)‖ > M‖Byk‖ for any k.
Since gP (yk, λ, �) converges to the zero vector by the assumption, it follows
that ‖Byk‖ converges to zero. Thus Bŷ = o and

gP (ŷ, λ, �k) = o.

It follows that ŷ satisfies the KKT conditions (6.2) and ŷ = x̂. �

Lemma 6.1 shows that it is necessary to include the stop criterion into the
procedure which implements the inner loop. See Sect. 6.10 for implementation
of the stopping criterion.

6.3 Inequalities Involving the Augmented Lagrangian

In this section we establish basic inequalities that relate the bound on the
norm of the projected gradient gP of the augmented Lagrangian L to the
values of L. These inequalities are similar to those of Sect. 4.6.2 and will be
the key ingredients in the proof of convergence and other analysis concern-
ing Algorithm 6.1. We shall derive them similarly as in Sect. 4.6.2 using the
observation that for any x ≥ � and y ≥ �

(y − x)T g(x, λ, �) ≥ (y − x)TgP (x, λ, �).

Lemma 6.2. Let x, y, � ∈ R
n, x ≥ �, y ≥ �, λ ∈ R

m, � > 0, η > 0, and
M > 0. Let λmin denote the least eigenvalue of A and λ̃ = λ + �Bx.
(i) If

‖gP (x, λ, �)‖ ≤ M‖Bx‖, (6.7)

then

L(y, λ̃, �) ≥ L(x, λ, �) +
1
2

(
� − M2

λmin

)
‖Bx‖2 +

�

2
‖By‖2. (6.8)

(ii) If
‖gP (x, λ, �)‖ ≤ η, (6.9)

then

L(y, λ̃, �) ≥ L(x, λ, �) +
�

2
‖Bx‖2 +

�

2
‖By‖2 − η2

2λmin
. (6.10)

(iii) If (6.9) holds and z0 ∈ ΩBE, then

L(x, λ, �) ≤ f(z0) +
η2

2λmin
. (6.11)
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Proof. Let us denote δ = y − x and A� = A + �BT B. Using

L(x, λ̃, �) = L(x, λ, �) + �‖Bx‖2 and g(x, λ̃, �) = g(x, λ, �) + �BT Bx,

we get

L(y, λ̃, �) = L(x, λ̃, �) + δTg(x, λ̃, �) +
1
2
δT A�δ

= L(x, λ, �) + δTg(x, λ, �) +
1
2
δT A�δ + �δT BT Bx + �‖Bx‖2

≥ L(x, λ, �) + δTgP (x, λ, �) +
1
2
δT A�δ + �δT BT Bx + �‖Bx‖2

≥ L(x, λ, �) + δTgP (x, λ, �) +
λmin

2
‖δ‖2 +

�

2
‖Bδ‖2 + �δT BT Bx

+�‖Bx‖2.

Noticing that

�

2
‖By‖2 =

�

2
‖B(δ + x)‖2 = �δT BT Bx +

�

2
‖Bδ‖2 +

�

2
‖Bx‖2,

we get

L(y, λ̃, �) ≥L(x, λ, �) + δT gP (x, λ, �)

+
λmin

2
‖δ‖2 +

�

2
‖Bx‖2 +

�

2
‖By‖2.

(6.12)

Using (6.7) and simple manipulations then yields

L(y, λ̃, �) ≥ L(x, λ, �) − M‖δ‖‖Bx‖ +
λmin

2
‖δ‖2 +

�

2
‖Bx‖2 +

�

2
‖By‖2

= L(x, λ, �) +
(

λmin

2
‖δ‖2 − M‖δ‖‖Bx‖ +

M2‖Bx‖2

2λmin

)

−M2‖Bx‖2

2λmin
+

�

2
‖Bx‖2 +

�

2
‖By‖2

≥ L(x, λ, �) +
1
2

(
� − M2

λmin

)
‖Bx‖2 +

�

2
‖By‖2.

This proves (i).
If we assume that (6.9) holds, then by (6.12)

L(y, λ̃, �) ≥ L(x, λ, �) − ‖δ‖η +
λmin

2
‖δ‖2 +

�

2
‖Bx‖2 +

�

2
‖By‖2

≥ L(x, λ, �) +
�

2
‖Bx‖2 +

�

2
‖By‖2 − η2

2λmin
.

This proves (ii).
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Finally, let ẑ denote the solution of the auxiliary problem

minimize L(z, λ, �) s.t. z ≥ �, (6.13)

let z0 ∈ ΩBE so that Bz0 = o, and let δ̂ = ẑ − x. If (6.9) holds, then

0 ≥ L(ẑ, λ, �) − L(x, λ, �) = δ̂Tg(x, λ, �) +
1
2
δ̂T A�δ̂

≥ δ̂TgP (x, λ, �) +
1
2
δ̂T A�δ̂ ≥ −‖δ̂‖η +

1
2
λmin‖δ̂‖2 ≥ − η2

2λmin
.

Since L(ẑ, λ, �) ≤ L(z0, λ, �) = f(z0), we conclude that

L(x, λ, �) ≤ L(x, λ, �) − L(ẑ, λ, �) + f(z0) ≤ f(z0) +
η2

2λmin
.

�

6.4 Monotonicity and Feasibility

Now we shall translate the results on the relations that are satisfied by the
augmented Lagrangian into the relations concerning the iterates generated by
Algorithm 6.1 (SMALBE).

Lemma 6.3. Let {xk}, {λk}, and {�k} be generated by Algorithm 6.1 for the
solution of (6.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Let
λmin denote the least eigenvalue of the Hessian A of the quadratic function f .
(i) If k ≥ 0 and

�k ≥ M2/λmin, (6.14)

then

L(xk+1, λk+1, �k+1) ≥ L(xk, λk, �k) +
�k+1

2
‖Bxk+1‖2. (6.15)

(ii) For any k ≥ 0

L(xk+1, λk+1, �k+1) ≥ L(xk, λk, �k) +
�k

2
‖Bxk‖2

+
�k+1

2
‖Bxk+1‖2 − η2

2λmin
.

(6.16)

(iii) For any k ≥ 0 and z0 ∈ ΩBE

L(xk, λk, �k) ≤ f(z0) +
η2

2λmin
. (6.17)
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Proof. In Lemma 6.2, let us substitute x = xk, λ = λk, � = �k, and y = xk+1,
so that inequality (6.7) holds by (6.3), and by (6.4) λ̃ = λk+1.

If (6.14) holds, we get by (6.8) that

L(xk+1, λk+1, �k) ≥ L(xk, λk, �k) +
�k

2
‖Bxk+1‖2. (6.18)

To prove (6.15), it is enough to add

�k+1 − �k

2
‖Bxk+1‖2 (6.19)

to both sides of (6.18) and to notice that

L(xk+1, λk+1, �k+1) = L(xk+1, λk+1, �k) +
�k+1 − �k

2
‖Bxk+1‖2. (6.20)

Since by the definition of Step 1 of Algorithm 6.1

‖gP (xk, λk, �k)‖ ≤ η,

we can apply the same substitution as above to Lemma 6.2(ii) to get

L(xk+1, λk+1, �k) ≥ L(xk, λk, �k)

+
�k

2
‖Bxk‖2 +

�k

2
‖Bxk+1‖2 − η2

2λmin
. (6.21)

After adding the nonnegative expression (6.19) to both sides of (6.21) and
using (6.20), we get (6.16). Similarly, inequality (6.17) results from application
of the substitution to Lemma 6.2(iii). �

Theorem 6.4. Let {xk}, {λk}, and {�k} be generated by Algorithm 6.1 for
the solution of (6.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Let
λmin denote the least eigenvalue of the Hessian A of the cost function f , and
let s ≥ 0 denote the smallest integer such that βs�0 ≥ M2/λmin. Then the
following statements hold.
(i) The sequence {�k} is bounded and

�k ≤ βs�0. (6.22)

(ii) If z0 ∈ ΩBE, then

∞∑

k=1

�k

2
‖Bxk‖2 ≤ f(z0) − L(x0, λ0, �0) + (1 + s)

η2

2λmin
. (6.23)

Proof. Let s ≥ 0 denote the smallest integer such that βs�0 ≥ M2/λmin

and let I ⊆ {1, 2, . . .} denote the possibly empty set of the indices ki such
that �ki > �ki−1. Using Lemma 6.3(i), �ki = β�ki−1 = βi�0 for ki ∈ I, and
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βs�0 ≥ M2/λmin, we conclude that there is no k such that �k > βs�0. Thus
I has at most s elements and (6.22) holds.

By the definition of Step 3, if k > 0, then either k �∈ I and

�k

2
‖Bxk‖2 ≤ L(xk, λk, �k) − L(xk−1, λk−1, �k−1),

or k ∈ I and by (6.16)

�k

2
‖Bxk‖2 ≤ �k−1

2
‖Bxk−1‖2 +

�k

2
‖Bxk‖2

≤ L(xk, λk, �k) − L(xk−1, λk−1, �k−1) +
η2

2λmin
.

Summing up the appropriate cases of the last two inequalities for k = 1, . . . , n
and taking into account that I has at most s elements, we get

n∑

k=1

�k

2
‖Bxk‖2 ≤ L(xn, λn, �n) − L(x0, λ0, �0) + s

η2

2λmin
. (6.24)

To get (6.23), it is enough to replace L(xn, λn, �n) by the upper bound (6.17).
�

6.5 Boundedness

The first step toward the proof of convergence of our SMALBE Algorithm 6.1
is to show that the iterates xk are bounded.

Lemma 6.5. Let {xk}, {λk}, and {�k} be generated by Algorithm 6.1 for the
solution of (6.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Then the
sequence {xk} is bounded.

Proof. Since there is only a finite number of different subsets F of the set of
all indices N = {1, . . . , n}, and {xk} is bounded if and only if {xk

F(xk)} is
bounded, we can restrict our attention to the analysis of infinite subsequences
{xk

F : F(xk) = F} that are defined by the nonempty subsets F of N .
Let F ⊆ N , F �= ∅, let {xk : F(xk) = F} be infinite, and denote A =

N \ F . Using Lemma 6.3(i), we get that there is an integer k0 such that
�k = �k0 for k ≥ k0. Thus, for k ≥ k0, we can denote H = A + �kBT B, so that

gk = g(xk, λk, �k) = Hxk + BT λk − b,

and [
HFF BT

∗F
B∗F O

] [
xk
F

λk

]
=
[
gk
F + bF − HFA�A

B∗Fxk
F

]
. (6.25)
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Since

B∗Fxk
F = Bxk − B∗A�A, ‖gk

F‖ = ‖gF (xk, λk, �k)‖ ≤ ‖gP (xkλk, �k)‖,

and both ‖gP (xk, λk, �k)‖ and ‖Bxk‖ converge to zero by the definition of xk

in Step 1 of Algorithm 6.1 and (6.23), the right-hand side of (6.25) is bounded.
Using Lemma 2.11, we get that the matrix of the system (6.25) is regular when
B∗F is a full row rank matrix. Thus both xk and λk are bounded provided
the matrix of the system (6.25) is regular.

If B∗F ∈ R
m×s is not a full row rank matrix, then its rank r satisfies

r < m, and by the singular value decomposition formula (1.28) there are
orthogonal matrices U = [u1, . . . ,um] ∈ R

m×m, V = [v1, . . . ,vs] ∈ R
s×s,

and the diagonal matrix S = [sij ] ∈ R
m×s with the nonzero diagonal entries

s11 > 0, . . . , srr > 0 such that B∗F = USVT . Thus, taking Û = [u1, . . . ,ur],
D̂ = diag(s11, . . . , srr), and V̂ = [v1, . . . ,vr], we have B∗F = ÛD̂V̂

T
, and we

can define a full row rank matrix

B̂∗F = D̂V̂
T

= ÛT B∗F

that satisfies B̂T
∗F B̂∗F = BT

∗FB∗F and ‖B̂∗FxF‖ = ‖B∗FxF‖ for any vector x.
We shall assign to any λ ∈ R

m the vector

λ̂ = ÛT λ

so that B̂T
F λ̂ = BT

Fλ. Substituting the latter identity into (6.25), we get
[

HFF B̂T
∗F

B∗F O

] [
xk
F

λ̂k

]
=
[
gk
F + bF − HFA�A

B∗Fxk
F

]
.

Since B∗F = ÛD̂V̂
T

= ÛB̂∗F and Û is a full column rank matrix, the latter
system is equivalent to the system

[
HFF B̂T

∗F
B̂∗F O

] [
xk
F

λ̂k

]
=
[
gk
F + bF − HFA�A

B̂∗Fxk
F

]
(6.26)

with a regular matrix. The right-hand side of (6.26) being bounded due to
‖B̂∗Fxk

F‖ = ‖B∗Fxk
F‖, we conclude that the set {xk

F : F(xk) = F} is bounded.
�

The next step is to prove that λk are either bounded or closely related to a
bounded sequence of auxiliary Lagrange multipliers that are not generated by
the algorithm. We split our proof into several steps to cope with the difficulties
that arise from admitting dependent rows of the constraint matrix B.

Lemma 6.6. Let {zk} denote a bounded sequence, let B ∈ R
m×n denote a

full row rank matrix, and let there be a sequence {ζk} such that BT ζk ≥ zk.
Then there is a bounded sequence {ζ̂k} such that BT ζ̂k ≥ zk.
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Proof. Let us denote e = (1, 1, . . . , 1)T and consider for a given integer k a
linear programming problem of the form

min{eT BT ξ : BT ξ ≥ zk} (6.27)

with B and zk of the lemma. Since ζk satisfies BT ζk ≥ zk, it follows that
problem (6.27) is feasible. Moreover, observing that for any feasible ξ

eT BT ξ = eT (BT ξ − zk) + eT zk ≥ eT zk,

we conclude that problem (6.27) is also bounded from below, so that it has
a solution ξk. Using the results of the duality theory of linear programming
presented in Sect. 2.7, it follows that the dual problem

max{ηT zk : η ≥ 0 and Bη = e} (6.28)

is feasible and bounded from above, so that it attains its solution ηk at a
vertex of the convex boundary of the feasible set of dual problem (6.28) and

(ηk)T zk = eT BT ξk.

Since the number of the vertices is finite, it follows that there is only a finite
number of different ηk, so that, as {zk} is bounded, there is a constant c such
that eT BT ξk = (ηk)T zk ≤ c for any integer k. Thus

‖BT ξk‖1 ≤ ‖BT ξk − zk‖1 + ‖zk‖1 = eT (BT ξk − zk) + ‖zk‖1

≤ eT BT ξk + 2‖zk‖1 ≤ c + 2‖zk‖1.

Since {zk} is bounded and BT is a full column rank matrix, also the vectors
ξk are bounded and ζ̂k = ξk satisfies the statement of the lemma. �

Lemma 6.7. Let {xk}, {λk}, and {�k} be generated by Algorithm 6.1 for the
solution of (6.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Then
there is a bounded sequence λ̂k such that

gP (xk, λ̂k, �k) = gP (xk, λk, �k). (6.29)

Proof. Let B ⊂ N , B �= ∅, B �= N be such that {xk : B0(xk, λk, �k) = B} is
infinite, where

B0(xk, λk, �k) = {i ∈ A(xk) : gi(xk, λk, �k) ≥ 0}

denotes the weakly binding set of xk, and denote C = N \B. Using a variant of
the Gramm–Schmidt orthogonalization process, we can find a regular matrix
R such that [

BT
∗C

BT
∗B

]
R =

[
P O O
Q T O

]
,
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where P and T are full column rank matrices. Thus decomposing properly
R−1λk into the blocks R−1λk = (ξk, ζk, νk)T , we get

[
BT
∗C

BT
∗B

]
λk =

[
BT
∗C

BT
∗B

]
RR−1λk =

[
P O O
Q T O

]⎡

⎣
ξk

ζk

νk

⎤

⎦ =
[

P O O
Q T O

]⎡

⎣
ξk

ζk

o

⎤

⎦ . (6.30)

Using Theorem 6.4(i), we get that there is an integer k0 such that �k = �k0

for k ≥ k0. Let us denote H = A+ �k0B
T B and gk = g(xk, λk, �k), so that for

k ≥ k0

BT λk = b + gk − Hxk. (6.31)

Substituting into (6.30) and using (6.31), we get that for k ≥ k0

BT
∗Cλk = Pξk = bC + gk

C − HC∗xk.

Since P is a full column rank matrix, ‖gk
C‖ = ‖gP (xk, λk, �k)‖, and both xk

and gP (xk, λk, �k) are bounded, it follows that ξk is bounded, too. Moreover,
for k ≥ k0 and B = B0(xk, λk, �k), we get

BT
∗Bλk = Qξk + Tζk = bB + gk

B − HB∗xk ≥ bB − HB∗xk,

that is,
Tζk ≥ bB − HB∗xk − Qξk.

Since we have just shown that ξk are bounded, and xk are bounded due to
Lemma 6.5, we can apply Lemma 6.6 to get bounded sequence ζ̂k such that

Tζ̂k ≥ bB − HB∗xk − Qξk. (6.32)

Let us now define for k ≥ k0 a bounded sequence

λ̂k = R

⎡

⎣
ξk

ζ̂k

o

⎤

⎦ ,

so that by (6.30)

BT
∗Cλ̂k = BT

∗CR

⎡

⎣
ξk

ζ̂k

o

⎤

⎦ = Pξk = BT
∗Cλk

and

BT
∗Bλ̂k = BT

∗BR

⎡

⎣
ξk

ζ̂k

o

⎤

⎦ = Qξk + T ζ̂k.

If we use (6.32) and the latter equation, we get

gB(xk, λ̂k, �k) = HB∗xk − bB + BT
∗Bλ̂k = HB∗xk − bB + Qξk + T ζ̂k ≥ 0.
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Recalling that we assume that B0(xk, λk, �k) = B, the last equation together
with

gk
C = gC(xk, λk, �k) = gP

C (xk, λk, �k)

yields
gP (xk, λk, �k) = gP (xk, λ̂k, �k).

If B = ∅ or B = N are such that {xk : B0(xk, λk, �k) = B} is infinite, we
can find the multipliers λ̂k that satisfy the statement of our lemma by spe-
cializing the above arguments. Since there is only a finite number of different
subsets B of N , we have shown that there are the multipliers λ̂k that satisfy
the statement of our lemma for all k except possibly a finite number of indices
for which we shall define λ̂k = λk. This completes the proof. �

6.6 Convergence

Now we are ready to prove the main convergence result of this chapter. It
turns out that the convergence of the Lagrange multipliers requires additional
assumptions. To describe them effectively, let F = F(x̂) denote the free set
of the unique solution x̂. The solution x̂ is a regular solution of (6.1) if
B∗F is a full row rank matrix, and x̂ is a range regular solution of (6.1) if
ImB = ImB∗F .

Theorem 6.8. Let {xk}, {λk}, and {�k} be generated by Algorithm 6.1 for
the solution of (6.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m. Then
the following statements hold.
(i) The sequence {xk} converges to the solution x̂ of (6.1).
(ii) If the solution x̂ of (6.1) is regular, then {λk} converges to the uniquely
determined vector λ̂ of Lagrange multipliers of (6.1). Moreover, if �0 is suf-
ficiently large, then the convergence of both the Lagrange multipliers and the
feasibility error is linear.
(iii) If the solution x̂ of (6.1) is range regular, then {λk} converges to the
vector

λ = λLS + (I − P)λ0,

where P is the orthogonal projector onto ImB = ImB∗F , and λLS is the least
square Lagrange multiplier of (6.1).

Proof. Let λ̂k denote the sequence of Lemma 6.7 so that it satisfies

gP (xk, λk, �k) = gP (xk, λ̂k, �k).

Since both xk and λ̂k are bounded, it follows that there is a cluster point
(x̄, λ̄) of the sequence (xk, λ̂k). Using Theorem 6.4(i), we get that there is k0

such that �k = �k0 for k ≥ k0. Moreover, by Theorem 6.4(ii) and the definition
of Step 1 of Algorithm 6.1, Bx̄ = o and
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gP (x̄, λ̄, �k0) = gP (x̄, λ̄, 0) = o.

Since x̄ ≥ �, x̄ is the solution of (6.1). The solution x̂ of (6.1) being unique,
it follows that xk converges to x̄ = x̂.

Let k0 be as above, and let us denote F = F(x̂) and H = A + �k0B
T B.

Since we have just proved that {xk} converges to x̂, there is k1 ≥ k0 such that
F ⊆ F{xk} for k ≥ k1 and

gF (xk, λk, �k) = HF∗xk − bF + BT
∗Fλk

converges to zero. It follows that the sequence

BT
∗Fλk = bF − HF∗xk + gF (xk, λk, �k)

is bounded. Moreover, if λ is any vector of Lagrange multipliers, then

b = Hx̂ + BT λ

and
BT
∗F (λk − λ) = −HF∗(xk − x̂) + gF(xk, λk, �k) (6.33)

converges to zero.
If the solution x̂ of (6.1) is regular, then BT

∗F is a full column rank matrix
and there is the unique Lagrange multiplier λ̂ for problem (6.1). Moreover,
since λk − λ̂ ∈ R

m = ImB∗F , it follows by (1.34) that

‖BT
∗F (λk − λ̂)‖ ≥ σF

min‖λk − λ̂‖,

where σF
min denotes the least nonzero singular value of B∗F . The convergence

of the right-hand side of (6.33) to zero thus implies that λk converges to λ̂.
The proof of linear convergence of the Lagrange multipliers and the feasibility
error for large �0 is technical and can be found in Dostál, Friedlander, and
Santos [57, Theorems 5.2 and 5.5].

Let us now assume that the solution x̂ of (6.1) is only range regular, so
that ImB∗F = ImB, and let Q = I − P denote the orthogonal projector onto
KerBT = KerBT

∗F . Using P + Q = I, BT Q = O, and (1.34), we get

‖BT
∗F(λk − λ)‖ = ‖BT

∗F(P + Q)(λk − λ)‖ = ‖BT
∗F(Pλk − Pλ)‖

≥ σF
min‖Pλk − Pλ‖.

Thus Pλk converges to Pλ, where λ is a vector of Lagrange multipliers for
(6.1). Since

λk = λ0 + �0Bx0 + · · · + �kBxk

with Bxk ∈ ImB, we get

λk = (P + Q)λk = Qλ0 + Pλk.



6.7 Optimality of the Outer Loop 235

Observing that λ = λLS + Qλ0 is a Lagrange multiplier for (6.1), and that
Pλ = λLS, we get

‖λk − λ‖ = ‖Qλ0 + Pλk − (λLS + Qλ0)‖ = ‖Pλk − Pλ‖.

Since the right-hand side converges to zero, we conclude that λk converges to
λ, which completes the proof of (iii). �

6.7 Optimality of the Outer Loop

Theorem 6.4 suggests that it is possible to give an independent of B upper
bound on the number of outer iterations of Algorithm 6.1 that are necessary
to achieve a prescribed feasibility error for a class of problems like (6.1). To
present explicitly this qualitatively new feature of Algorithm 6.1, at least as
compared to the related algorithms [57], let T denote any set of indices and
let for any t ∈ T be defined a problem

minimize ft(x) s.t. x ∈ Ωt (6.34)

with Ωt = {x ∈ R
nt : Btx = o and x ≥ �t}, ft(x) = 1

2x
T Atx − bT

t x,
At ∈ R

nt×nt symmetric positive definite, Bt ∈ R
mt×nt , and bt, �t ∈ R

nt . To
simplify our exposition, we assume that the bound constraints �t are not pos-
itive so that o ∈ Ωt. Our optimality result reads as follows.

Theorem 6.9. Let {xk
t }, {λk

t }, and {�t,k} be generated by Algorithm 6.1 for
(6.34) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, �t,0 = �0 > 0, and λ0

t = o. Let
there be an amin > 0 such that the least eigenvalue λmin(At) of the Hessian At

of the quadratic function ft satisfies

λmin(At) ≥ amin,

let s ≥ 0 denote the smallest integer such that βs�0 ≥ M2/amin, and denote

a =
2 + s

amin�0
.

Then for each ε > 0 there are indices kt, t ∈ T , such that

kt ≤ a/ε2 + 1 (6.35)

and xkt
t is an approximate solution of (4.109) satisfying

‖gP (xkt
t , λkt

t , �t,kt)‖ ≤ Mε‖bt‖ and ‖Btxkt
t ‖ ≤ ε‖bt‖. (6.36)
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Proof. First notice that for any index j

�0j

2
min{‖Btxi

t‖2 : i = 1, . . . , j}

≤
j∑

i=1

�t,i

2
‖Btxi

t‖2 ≤
∞∑

i=1

�t,i

2
‖Btxi

t‖2.

(6.37)

Denoting by Lt(x, λ, �) the augmented Lagrangian for problem (6.34), we get
for any x ∈ R

nt and � ≥ 0

Lt(x,o, �) =
1
2
xT (At + �BT

t Bt)x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

If we substitute this inequality and z0 = o into (6.23) and use the assumption
‖bt‖ ≥ ηt, we get

∞∑

i=1

�t,i

2
‖Btxi

t‖2 ≤ ‖bt‖2

2amin
+ (1 + s)

η2

2amin
≤ (2 + s)‖bt‖2

2amin
. (6.38)

Using (6.37) and (6.38), we get

�0j

2
min{‖Btxi

t‖2 : i = 1, . . . , j} ≤ (2 + s)
2aminε2

ε2‖bt‖2.

Taking for j the least integer that satisfies a/j ≤ ε2, so that

a/ε2 ≤ j ≤ a/ε2 + 1,

and denoting for any t ∈ T by kt ∈ {1, . . . , j} the index which minimizes
{‖Btxi

t‖ : i = 1, . . . , j}, we can use the last inequality with simple manipula-
tions to obtain

‖Btxkt
t ‖2 = min{‖Btxi

t‖2 : i = 1, . . . , j} ≤ a

jε2
ε2‖bt‖2 ≤ ε2‖bt‖2.

The inequality

M−1‖gP (xkt
t , λkt

t , �t,kt)‖ ≤ ‖Btxkt
t ‖ ≤ ε‖bt‖

results easily from the definition of Step 1 of Algorithm 6.1. �

Having proved that there is a bound on the number of outer iterations
of SMALBE that is necessary to get an approximate solution, it remains
to bound the number of inner iterations. In the next section, we consider
implementation of the inner loop by the CG algorithm and give sufficient
conditions which guarantee that the number of inner iterations is bounded.
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6.8 Optimality of the Inner Loop

We need the following simple lemma to prove optimality of the inner loop
implemented by the CG algorithm.

Lemma 6.10. Let {xk}, {λk}, and {�k} be generated by Algorithm 6.1 for
the solution of (6.1) with η > 0, β > 1, M > 0, �0 > 0, and λ0 ∈ R

m.
Let 0 < amin ≤ λmin(A), where λmin(A) denotes the least eigenvalue of the
Hessian A of the quadratic function f . Then for any k ≥ 0

L(xk, λk+1, �k+1) − L(xk+1, λk+1, �k+1) ≤
η2

2amin
+

β�k

2
‖Bxk‖2. (6.39)

Proof. Notice that by the definition of the Lagrangian function

L(xk, λk+1, �k+1) = L(xk, λk, �k) + �k‖Bxk‖2 +
�k+1 − �k

2
‖Bxk‖2

= L(xk, λk, �k) +
�k+1 + �k

2
‖Bxk‖2,

so that by (6.16)

L(xk, λk+1, �k+1) − L(xk+1, λk+1, �k+1) = L(xk, λk, �k) − L(xk+1, λk+1, �k+1)

+
�k+1 + �k

2
‖Bxk‖2

≤ η2

2amin
+

β�k

2
‖Bxk‖2.

�

Now we are ready to prove the main result of this chapter, the optimality
of Algorithm 6.1 (SMALBE) in terms of matrix–vector multiplications, pro-
vided Step 1 is implemented by Algorithm 5.8 (MPRGP).

Theorem 6.11. Let

0 < amin < amax and 0 < cmax

be given constants and let the class of problems (6.34) satisfy

amin ≤ λmin(At) ≤ λmax(At) ≤ amax and ‖Bt‖ ≤ cmax. (6.40)

Let {xk
t }, {λk

t }, and {�t,k} be generated by Algorithm 6.1 (SMALBE) for
(6.34) with

‖bt‖ ≥ ηt > 0, β > 1, M > 0, �t,0 = �0 > 0, and λ0
t = o.

Let s ≥ 0 denote the smallest integer such that



238 6 Bound and Equality Constrained Minimization

βs�0 ≥ M2/amin,

and let Step 1 of Algorithm 6.1 be implemented by Algorithm 5.8 (MPRGP)
with the parameters Γ > 0 and α ∈ (0, 2(amax + βs�0c

2
max)−1] to generate

the iterates xk,0
t ,xk,1

t , . . . ,xk,l
t = xk

t for the solution of (6.34) starting from
xk,0

t = xk−1
t with x−1

t = o, where l = lt,k is the first index satisfying

‖gP (xk,l
t , λk

t , �t,k)‖ ≤ M‖Btx
k,l
t ‖ (6.41)

or
‖gP (xk,l

t , λk
t , �t,k)‖ ≤ Mε‖bt‖. (6.42)

Then Algorithm 6.1 generates an approximate solution xkt
t of any problem

(6.34) which satisfies

kt ≤ j, ‖gP (xkt
t , λkt

t , �t,kt)‖ ≤ Mε‖bt‖, and ‖Btxkt
t ‖ ≤ ε‖bt‖ (6.43)

at O(1) matrix–vector multiplications by the Hessian of the augmented La-
grangian Lt for (6.34).

Proof. Let t ∈ T be fixed and let us denote by Lt(x, λ, �) the augmented
Lagrangian for problem (6.34), so that for any x ∈ R

nt and � ≥ 0

Lt(x,o, �) =
1
2
xT (At + �BT

t Bt)x − bT
t x ≥ 1

2
amin‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2amin
.

Applying the latter inequality to (6.23) with z0 = o and using the assumption
ηt ≤ ‖bt‖, we get

�t,k

2
‖Btxk

t ‖2 ≤
∞∑

i=1

�t,i

2
‖Btxi

t‖2

≤ f(z0) − L(x0
t , λ

0
t , �t,0) + (1 + s)

η2
t

2amin

= (2 + s)
‖bt‖2

2amin

for any k ≥ 0. Thus by (6.39)

Lt(xk−1
t , λk

t , �t,k) − Lt(xk
t , λk

t , �t,k) ≤ η2
t

2amin
+

β�t,k−1

2
‖Btxk−1

t ‖2

≤ (3 + s)
β‖bt‖2

2amin

and, since the minimizer xk
t of Lt(x, λk

t , �t,k) subject to x ≥ �t satisfies (6.3)
and is a possible choice for xk

t , also that

Lt(xk−1
t , λk

t , �t,k) − Lt(xk
t , λk

t , �t,k) ≤ (3 + s)
β‖bt‖2

2amin
. (6.44)
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Using Theorem 5.15, we get that the MPRGP algorithm 5.8 used to implement
Step 1 of Algorithm 6.1 (SMALBE) starting from xk,0

t = xk−1
t generates xk,l

t

satisfying

‖gP
t (xk,l

t , λk
t , �t,k)‖2 ≤ a1η

l
Γ

(
Lt(xk−1

t , λk
t , �t,k) − Lt(xk

t , λk
t , �t,k)

)

≤ a1(3 + s)
β‖bt‖2

2amin
ηl

Γ ,

where

a1 =
38

α̂(1 − ηΓ )
, ηΓ = 1 − α̂amin

ϑ + ϑΓ̂ 2
, ϑ = 2 max{α‖A‖, 1},

Γ̂ = max{Γ, Γ−1}, α̂ = min{α, 2‖A‖−1 − α}.

It simply follows by the inner stop rule (6.42) that the number l of the inner
iterations in Step 1 is uniformly bounded by an index lmax which satisfies

a1(3 + s)
β‖bt‖2

2amin
ηlmax

Γ ≤ M2ε2‖bt‖2.

To finish the proof, it is enough to combine this result with Theorem 6.9. �

The assumption that ‖Bt‖ is bounded is essential; it guarantees that it is
possible to choose the steplength α bounded away from zero.

6.9 Solution of More General Problems

If A is positive definite only on the kernel of B, then we can use a suitable
penalization to reduce such problem to the convex one. Using Lemma 1.3, it
follows that there is � > 0 such that A + �BT B is positive definite, so that we
can apply our SMALBE algorithm to the equivalent penalized problem

min
x∈ΩBE

f�(x), (6.45)

where
f�(x) =

1
2
xT (A + �BT B)x − bTx.

If A is a positive semidefinite matrix which is positive definite on the kernel
of B, then we can use by Lemma 1.2 any � > 0.

Alternatively, we can modify the inner loop of SMALBE so that it leaves
the inner loop and increases the penalty parameter whenever the negative
curvature is recognized. Let us point out that such modification does not
guarantee optimality of the modified algorithm.
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6.10 Implementation

Let us give here a few hints that can be helpful for effective implementation
of SMALBE with the inner loop implemented by MPRGP. See also Sect. 4.7.

The purpose and choice of the parameter η are the same as described in
Sect. 4.7.

The basic strategy for initialization of the parameters M , β, and �0 is more
complicated than that described in Sect. 4.7. The reason is that Theorem 5.14
guarantees the R-linear convergence of the inner loop only for the steplength

α ∈ (0, 2/‖A + �kBT B‖],

but fast convergence of the outer loop requires large values of the penalty
parameter �k. Thus it is necessary to find a reasonable compromise between
the two contradicting requirements. See also Sect. 4.7.2.

Since the choice of �0 should not be too large but should satisfy

�0 ≥ M2/λmin, (6.46)

we recommend to use the values of β that do not cause a big “overshoot”,
such as β ≈ 2.

The formula (6.46) shows that the values of �k are related to M . Given
�0, we can achieve that (6.46) is satisfied by choosing

M ≤
√

λmin�0.

Implementation of the inner loop

On entering the inner loop, we recommend to choose

α ∈ (‖A + �kBT B‖−1, 2‖A + �kBT B‖−1)

to guarantee the R-linear convergence of the inner loop and fast expansion of
the active set. Our experience shows the best performance with α slightly less
than 2/‖A + �kBT B‖; see Sect. 5.9.4 for more discussion on the choice of α.
The parameter Γ can be determined by the heuristics described in Sect. 5.9.4.
Recall that Γ ≈ 1 is a good choice.

Lemma 6.1 shows that it is necessary to include the stop criterion not
only after Step 1, but also in the procedure which generates xk in Step 1. For
example, we use in our experiments the stopping criterion

‖gP (xk, λk, �)‖ ≤ εg‖b‖ and ‖Bxk‖ ≤ εf‖b‖, εf = εg/M,

and our stopping criterion of the inner loop of MPRGP reads

‖gP (yi, λi, �i)‖ ≤ min{M‖Byi‖, η} or ‖gP (yi, λi, �i)‖ ≤ min{εg, Mεf}‖b‖.
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6.11 SMALBE–M

To get a better control of the penalty parameter, we can observe that by
Lemma 6.3 small M can prevent the penalty parameter from increasing. It
follows that we can modify the SMALBE algorithm so that it updates M
and keeps the penalty parameter constant as indicated in Sect. 4.7.2. For
convenience of the reader, we present here the complete modified algorithm
which we call SMALBE–M.

Algorithm 6.2. SMALBE with modification of M (SMALBE–M).

Given a symmetric positive definite matrix A ∈ R
n×n, B ∈ R

m×n, n-vectors b, �.
Step 0. {Initialization.}

Choose η > 0, β > 1, M0 > 0, � > 0, λ0 ∈ R
m

for k = 0, 1, 2, . . .
Step 1. {Inner iteration with adaptive precision control.}

Find xk ≥ � such that

‖gP (xk, λk, �)‖ ≤ min{Mk|Bxk‖, η} (6.47)

Step 2. {Updating the Lagrange multipliers.}

λk+1 = λk + �Bxk (6.48)

Step 3. {Update M provided the increase of the Lagrangian is not sufficient.}
if k > 0 and

L(xk, λk, �) < L(xk−1, λk−1, �) +
�

2
‖Bxk‖2 (6.49)

Mk+1 = Mk/β
else

Mk+1 = Mk

end if
end for

The SMALBE–M algorithm has similar properies as the original SMALBE
algorithm. In particular, if we choose �0 and M for the algorithm SMALBE
and � and M0 for the algorithm SMALBE–M such that �0 = �, M = M0, and

�0 ≥ M2/λmin,

then SMALBE and SMALBE–M will generate �k = � and Mk = M , respec-
tively. Thus if the other parameters of both algorithms are initiated by the
same values, the algorithms will generate exactly the same iterates.
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6.12 Numerical Experiments

Here we illustrate the performance of Algorithm 6.1 on minimization of the
functions fL,h and fLW,h introduced in Sect. 3.10 subject to the multipoint
constraints and the bound constraints used in our previous numerical tests.
Numerical experiments were carried out with the values of basic parameters
equal to

M = 1, Γ = 1, and � = 10.

The norm of feasibility error is the norm of violation of the equality con-
straints. The bound constraints are satisfied in each iteration exactly.

6.12.1 Balanced Reduction of Feasibility and Gradient Errors

Let us first show how SMALBE balances the norm of the feasibility error
with the norm of the projected gradient on minimization of the quadratic
function fL,h defined by the discretization parameter h (see page 98) subject
to the multipoint equality constraints introduced in Sect. 4.8.1 and the bound
constraints defined in Sect. 5.11.1. The solution given in Fig. 6.1 illustrates
also the solution of the benchmarks in Sects. 4.8.1 and 5.11.1.
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Fig. 6.1. Development of the norms of the projected gradient and feasibility error

The graph of the norms of the projected gradient and the feasibility error
(vertical axis) in inner iterations for SMALBE is given in Fig. 6.2. The results
were obtained with h = 1/33, which corresponds to n = 1156 unknowns and
131 equality constraints. We can see that the decrease of the norm of the
projected gradient is linear and is balanced with the norm of the feasibility
error. Let us recall that the Hessian AL,h of fL,h is ill-conditioned with the
spectral condition number κ(AL,h) ≈ h−2.
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Fig. 6.2. Development of the norms of the projected gradient and feasibility error

6.12.2 Numerical Demonstration of Optimality

To illustrate optimality of SMALBE, we consider the class of well-conditioned
problems to minimize the quadratic function fLW,h (see page 99) defined by
the discretization parameter h subject to the orthonormal multipoint and
bound constraints which describe the same feasible set as in Sect. 6.12.1.

The orthogonalization was used to comply with the assumptions of The-
orem 6.11. The matrices B of the equality constraints were obtained by the
Gramm–Schmidt process applied to the matrices of the multipoint constraints
of Sect. 4.8.1. The class of problems can be given a mechanical interpretation
associated to the expanding and partly stiff spring systems on Winkler’s foun-
dation and an obstacle. The spectrum of the Hessian ALW,h of fLW,h is located
in the interval [2, 10]. Moreover ‖B‖ ≤ 1 and � ≤ o (see Sect. 5.11.2), so that
the assumptions of Theorem 6.11 are satisfied.

In Fig. 6.3, we can see the numbers of the CG iterations kn (vertical axis)
that were necessary to reduce the norm of the projected gradient and of the
feasibility error to 10−6‖∇fLW,h(o)‖ for the problems with the dimension n
ranging from 49 to 9409. The dimension n is on the horizontal axis. We can
see that kn varies mildly with varying n, in agreement with Theorem 6.11.
The number of outer iterations was decreasing from 11 for n = 49 to 7 for
n = 9409.

The purpose of the above numerical experiment was just to illustrate the
concept of optimality. Similar experiments can be found in Dostál [47, 50]. For
practical applications, it is necessary to combine SMALBE with a suitable pre-
conditioning. Application of SMALBE with the FETI domain decomposition
method to development of in a sense optimal algorithm for the solution of a
semicoercive variational inequality is in Chap. 8.
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Fig. 6.3. Optimality of SMALBE for a class of well-conditioned problems

6.13 Comments and References

This chapter is based on our research whose starting point was the algorithm
introduced by Conn, Gould, and Toint [26]; they adapted the augmented La-
grangian method of Powell [160] and Hestenes [116] to the solution of problems
with a nonlinear cost function subject to nonlinear equality constraints and
bound constraints. Conn, Gould, and Toint proved that the potentially trou-
blesome penalty parameter �k is bounded and the algorithm converges to a
solution also with asymptotically exact solutions of auxiliary problems [26].
Moreover, they used this algorithm to develop the package LANCELOT [27]
for the solution of more general nonlinear optimization problems. More refer-
ences can be found in their comprehensive book on trust region methods [28].
The inexact augmented Lagrangian method for more general QP problems
with the precision control of the auxiliary subproblems by filter were pro-
posed by Friedlander and Leyfer [97].

Our SMALBE algorithm differs from the original algorithm in two points.
The first one is the adaptive precision control introduced for the bound and
equality constrained problems by Dostál, Friedlander, and Santos [57]. These
authors also proved the basic convergence results for the problems with a
regular solution, including linear convergence of both the Lagrange multipliers
and the feasibility error for a large initial penalty parameter �0.

The second modification, the update rule of SMALBE for the penalty pa-
rameter �k which is increased until there is a sufficient monotonic increase
of L(xkμk, �k), was first published by Dostál [49]. The convergence analysis
included the optimality of the outer loop and the bound on the penalty pa-
rameter; however, the first optimality results for the bound and equality con-
strained problems were proved by Dostál and Horák for the penalty method
[66, 67].
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The optimality of SMALBE with the auxiliary problems solved by MPRGP
was proved in Dostál [48]; the generalization of the results achieved earlier for
the penalty method was based on a well-known observation that the basic aug-
mented Lagrangian algorithm can be considered as a variant of the penalty
method (see, e.g., Bertsekas [12, Sect. 4.4)] or Sect. 4.3). Both the optimal
penalty method and SMALBE were used in the development of scalable FETI
or BETI-based algorithms for the solution of boundary variational inequalities
such as those describing the equilibrium of a system of elastic bodies in mutual
contact, see, e.g., Dostál and Horák [66, 65, 64], Dostál [48], Bouchala, Dostál,
and Sadowská [18, 17, 19], Dostál, Horák, and Stefanica [73], and Dostál et
al. [76]. Applications to the contact problems with friction in 2D or 3D can
be found in Dostál, Haslinger, and Kučera [63] and Dostál et al. [69].



Part III

Applications to Variational Inequalities



7

Solution of a Coercive Variational Inequality

by FETI–DP Method

Numerical experiments in Chap. 5 demonstrated the capability of algorithms
with the rate of convergence in bounds on the spectrum to solve special classes
of bound constrained problems with optimal, i.e., asymptotically linear, com-
plexity. There is a natural question whether there are effective methods which
can reduce the solution of some real-world problems to these special classes.

To give an example of such method, we present here the one which can be
used to reduce the coercive variational inequality which describes the equilib-
rium of a system of 2D elastic bodies in mutual contact to the class of bound
constrained QP problems with uniformly bounded spectrum of the Hessian
matrix. Let us recall that a contact problem is called coercive if all the bodies
are fixed along the part of the boundary in a way which excludes their rigid
body motion. To simplify our exposition, we restricted our attention to the
solution of a scalar variational inequality governed by the Laplace operator.

Our main tool is a variant of the finite element tearing and interconnecting
(FETI) method, which was originally proposed by Farhat and Roux [86, 87]
as a parallel solver for the problems described by elliptic partial differential
equations. The basic idea of FETI is to decompose the domain into non-
overlapping subdomains that are “glued” by equality constraints. The variant
that we consider here is the FETI–DP method proposed for linear problems
by Farhat et al. [83]; it assumes that the subdomains are not completely
separated, but remain joined at some nodes that are called corners as in
Fig. 7.2. After eliminating the primal variables from the KKT conditions
for the minimum of the discretized energy function subject to the bound
and equality constraints by solving nonsingular local problems, the original
problem is reduced to a small, relatively well conditioned bound constrained
quadratic programming problem in the Lagrange multipliers.

Though not discovered in this way, the FETI-based methods for linear
elliptic problems can be considered as a successful application of the duality
theory to the convex QP problems. Here we use the standard duality the-
ory for coercive equality and inequality constrained problems as described in
Sect. 2.6.4.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 7,
c© Springer Science+Business Media, LLC 2009
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7.1 Model Coercive Variational Inequality

Let Ω = (0, 1) × (0, 1) denote an open domain with the boundary Γ and
its three parts Γu = {0} × [0, 1], Γf = [0, 1] × {0, 1}, and Γc = {1} × [0, 1].
The parts Γu, Γf , and Γc are called respectively the Dirichlet boundary, the
Neumann boundary, and the contact boundary. On the contact boundary Γc,
let us define the obstacle � by the upper part of the circle with the radius
R = 1 and the center S = (1, 0.5,−1.3).

f

Fig. 7.1. Coercive model problem

Let H1(Ω) denote the Sobolev space of the first order in the space L2(Ω)
of functions on Ω whose squares are integrable in the Lebesgue sense, let

K = {u ∈ H1(Ω) : u = 0 on Γu and � ≤ u on Γc},

and let us define for any u ∈ H1(Ω)

f(u) =
1
2

∫

Ω

‖∇u(x)‖2dΩ +
∫

Ω

udΩ.

Thus we can define the continuous problem to find

min
u∈K

f(u). (7.1)

Since the Dirichlet conditions are prescribed on the part Γu of the bound-
ary with the positive measure, the cost function f is coercive, which guarantees
the existence and uniqueness of the solution by Proposition 2.5.

The solution can be interpreted as the displacement of the membrane
under the traction defined by the unit density. The membrane is fixed on Γu,
not allowed to penetrate the obstacle on Γc, and pulled horizontally in the
direction of the outer normal by the forces with the unit density along Γf .
See also Fig. 7.1. We used the discretized problem (7.1) as a benchmark in
Sect. 5.11.1.
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7.2 FETI–DP Domain Decomposition and Discretization

The first step in our domain decomposition method is to partition the domain
Ω into p square subdomains with the sides H = 1/q, q > 1, p = q2. We call
H the decomposition parameter. The continuity of the global solution in Ω is
enforced by the “gluing” conditions ui(X) = uj(X) that should be satisfied
for any point X on the interface Γ ij of Ωi and Ωj except crosspoints. We call
a common crosspoint either a corner that belongs to four subdomains, or a
corner that belongs to two subdomains and is located on Γ . An important
feature for developing FETI–DP type algorithms is that a single degree of
freedom is considered at each crosspoint, while two degrees of freedom are
introduced at all the other matching nodes across subdomain edges. Thus the
body is decomposed into the subdomains that are joined in the corners as in
Fig. 7.2.

h H

Fig. 7.2. FETI–DP domain decomposition and crosspoints

After modifying appropriately the definition of problem (7.1), introducing
regular grids in the subdomains Ωi with the discretization parameter h that
match across the interfaces Γ ij of Ωi and Ωj , keeping in mind that the cross-
points are global, and using the Lagrangian finite element discretization, we
get the discretized version of problem (7.1) with auxiliary domain decompo-
sition in the form

min
1
2
xT Ax − bTx s.t. BI∗x ≤ cI and BE∗x = o. (7.2)

We assume that the nodes that are not the crosspoints are indexed con-
tiguously in the subdomains, so that Hessian matrix A ∈ R

n×n in (7.2) has
the form

A =

⎡

⎢⎢⎢⎢⎣

Ar1 O . . . O Ac1

O Ar2 . . . O Ac2

. . . . . . .
O O . . . Arp Acp

AT
c1 AT

c2 . . . AT
cp Acc

⎤

⎥⎥⎥⎥⎦
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with the band matrices Ari. Since the diagonal blocks can be interpreted as the
stiffness matrices of the subdomains that are fixed at least in corners, Ari are
positive definite. We refer to the points that are not crosspoints as reminders ;
the subscripts c and r refer to the crosspoints and reminders, respectively.
We assume that the Dirichlet conditions are enhanced in A by deleting the
corresponding rows and columns. The vector b ∈ R

n represents the discrete
analog of the linear term b(u).

The full rank submatrices BI∗ and BE∗ of a matrix B ∈ R
m×n describe

the discretized nonpenetration and gluing conditions, respectively. The rows
of BE∗ are filled with zeros except 1 and −1 in positions that correspond to the
nodes with the same coordinates on the subdomain interfaces. If bi denotes
a row of BE∗, then bi has just two nonzero entries, 1 and −1. The continuity
of the solution across the interface in the nodes with indices i, j (see Fig. 7.3)
is enforced by the equalities

xi = xj .

Denoting
bk = (si − sj)T ,

where si denotes the ith column of the identity matrix In, we can write the
“gluing” equalities conveniently in the form

bkx = 0,

so that bkx denotes the jump across the boundary. The nonpenetration con-
dition xi ≥ �i that should be satisfied for the variables corresponding to the
nodes on Γc, is implemented by bix ≤ −�i with bi = −sT

i . The coordinates
−�i are assembled into the vector cI .

i j

Fig. 7.3. “Gluing” along subdomain interface

Our next step is to reduce the problem to the subdomain interfaces and
Γc by the duality theory. To this end, let us denote the Lagrange multipliers
associated with the inequality and equality constraints of problem (7.2) by
λE and λI , respectively, and assume that the rows of B are ordered in such a
way that

λ =
[

λI
λE

]
, c =

[
cI
oE

]
, and B =

[
BI
BE

]
.
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Since we formed B in such a way that it is a full rank matrix with orthog-
onal rows, we can use Proposition 2.21 to get that the Lagrange multipliers
λ for problem (7.1) solve the dual problem

max Θ(λ) s.t. λI ≥ o,

where Θ(λ) is the dual function. Changing the signs of Θ and discarding
the constant term, we get that the Lagrange multipliers λ solve the bound
constrained problem

min θ(λ) s.t. λI ≥ o, (7.3)

where θ and the standard FETI notation are defined by

θ(λ) =
1
2
λT Fλ − λTd, F = BA−1BT , d = λT BA−1b− c.

Notice that using the block and band structure of A, we can effectively
evaluate A−1y for any y ∈ R

n in two steps. Indeed, using the Cholesky de-
composition described in Sect. 1.5, we can eliminate the reminders, reducing
the unknowns to the corners. In the next step, we decompose the small Schur
complement matrix which is associated with the crosspoint variables. How-
ever, the implementation of this procedure is a bit tricky and not directly
related to the quadratic programming, the main topic of this book. We refer
interested readers to Dostál, Horák, and Stefanica [70] or to the Ph.D. the-
sis of Horák [121]. If the dimension of the blocks Ari is uniformly bounded,
then the computational cost increases nearly proportionally with p. Moreover,
the time that is necessary for the decomposition A = LLT and evaluation of
(L−1)T L−1y can be reduced nearly proportionally by parallel implementation.

The preconditioning effect of the FETI–DP duality transformation is for-
mulated in the following proposition.

Proposition 7.1. Let FH,h denote the Hessian of the reduced dual function θ
of (7.3) defined by the decomposition parameter H and the discretization pa-
rameter h.

Then there are constants C1 > 0 and C2 > 0 independent of h and H such
that

C1 ≤ λmin(FH,h) and λmax(FH,h) = ‖FH,h‖ ≤ C2

(
H

h

)2

. (7.4)

Proof. See [70]. �

Proposition 7.1 shows that the FETI–DP procedure reduces the condition-
ing of the Hessian of discretized energy from O(h−2) to O(H2/h2).
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7.3 Optimality

To show that Algorithm 5.8 is optimal for the solution of problem (or a class
of problems) (7.3), let us introduce new notation that complies with that used
to define the class of problems (5.117) introduced in Sect. 5.8.4.

We use

T = {(H, h) ∈ R
2 : H ≤ 1, 0 < 2h ≤ H, and H/h ∈ N}

as the set of indices, where N denotes the set of all positive integers. Given a
constant C ≥ 2, we define a subset TC of T by

TC = {(H, h) ∈ T : H/h ≤ C}.

For any t ∈ T , we define

At = F, bt = d, �t,I = oI , and �t,E = −∞

by the vectors and matrices generated with the discretization and decom-
position parameters H and h, respectively, so problem (7.3) with the fixed
discretization and decomposition parameters h and H is equivalent to the
problem

minimize ft(λt) s.t. λt ≥ �t (7.5)

with t = (H, h), ft(λ) = 1
2λTAtλ − bT

t λ. Using these definitions, we obtain

‖�+
t ‖ = 0, (7.6)

where for any vector v = [vi], v+ denotes the vector with the entries
v+

i = max{vi, 0}. Moreover, it follows by Proposition 7.1 that for any C ≥ 2,
there are the constants aC

max > aC
min > 0 such that for any t ∈ TC

aC
min ≤ λmin(At) ≤ λmax(At) ≤ aC

max, (7.7)

where λmin(At) and λmax(At) denote the extreme eigenvalues of At.
Our optimality result for a model coercive boundary variational inequality

then reads as follows.

Theorem 7.2. Let C ≥ 2 and ε > 0 denote given constants, let {λk
t } be

generated by Algorithm 5.8 (MPRGP) for the solution of (7.5) with the pa-
rameters Γ > 0 and α ∈ (0, a−1

max], starting from λ0
t = max{o, �t}.

Then an approximate solution λkt
t of any problem (7.5) which satisfies

‖gP
t (λkt)‖ ≤ ε‖gP

t (λ0
t )‖

and
aC
min‖λkt − λ̂t‖ ≤ ft(λ


t) − ft(λ̂t) ≤ ε
(
ft(λ0

t ) − f(λ̂t)
)

is generated at O(1) matrix–vector multiplications by At for any t ∈ TC .

Proof. The class of problems (7.5) with t ∈ TC satisfies the assumptions of
Theorem 5.16. �
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7.4 Numerical Experiments

In this section we illustrate numerical scalability of MPRGP Algorithm 5.8
on the class of problems arising from application of the FETI–DP method to
our boundary variational inequality (7.1). The domain Ω was partitioned into
identical squares with the side H ∈ {1/2, 1/4, 1/8}. The squares were then
discretized by the regular grid with the stepsize h. The solution for H = 1/4
and h = 1/4 is in Fig. 7.4.
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Fig. 7.4. Solution of the coercive model problem (7.1)

The computations were performed with parameters Γ = 1, α ≈ 1/‖A‖,
and λ0 = o. The stopping criterion in the conjugate gradient iteration was

‖gP (λk)‖/‖gP (λ0)‖ < 10−6.

For each H , we chose h = H/16, so that ratio H/h was fixed to H/h = 16
and the meshes matched across the interface of each couple of neighbor-
ing subdomains. Selected results of the computations for varying values of
H ∈ {1/8, 1/32, 1/64} and h = H/16 are in Fig. 7.5. The primal dimen-
sion n is on the horizontal axis; the computation was carried out for pri-
mal dimension n ∈ {1156, 4624, 18496} with corresponding dual dimensions
m ∈ {93, 425, 1809}. The key point is that the number of the conjugate gradi-
ent iterations for a fixed ratio H/h varies very moderately with the increasing
number of subdomains. This indicates that the unspecified constants in Theo-
rem 7.2 are not very large and we can observe numerical scalability in practical
computations. For more numerical experiments with the solution of coercive
problems see Dostál, Horák, and Stefanica [70].
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Fig. 7.5. Scalability of MPRGP with FETI–DP

7.5 Comments and References

More problems described by variational inequalities can be found in the book
by Lions and Duvaut [143]. Solvability, approximation, and classical numerical
methods for variational inequalities or contact problems are discussed in the
books by Glowinski [99], Kinderlehrer and Stampaccia [128], Glowinski, Lions,
and Trèmoliéres [101], Hlaváček et al. [120], or Eck, Jarušek, and Krbec [80].
The formulation and alternative algorithms for the solution contact problems
of elasticity are in Kikuchi and Oden [127], Laursen [142], or Wriggers [181].

Probably the first theoretical results concerning development of scalable
algorithms for coercive problems were proved by Schöberl [165, 166]. Our first
proof of numerical scalability of an algorithm for the solution of a coercive
variational inequality used optimal penalty in dual FETI problem [66]. The
proof of Proposition 7.1 is due to D. Stefanica [70]. The optimality was proved
also for multidomain coercive problems [70] and for the FETI–DP solution of
coercive problems with nonpenetration mortar conditions on contact interface
[71]. For more details of mortar implementation of constraints we refer to
Wohlmuth [179]. Numerical evidence of scalability of a different approach
combining FETI–DP with a Newton-type algorithm for 3D contact problems
was given in Avery et al. [2]. See also Dostál et al. [76]. The performance of the
method can be further improved by enforcing zero averages of primal variables
on the interfaces of subdomains as used by Klawonn and Rheinbach [129] or
by preconditioning of linear auxiliary problems by standard preconditioners
described, e.g., in Tosseli and Widlund [175]. Preconditioning of linear step
was successfully applied by Avery et al. [2].

It should be noted that the effort to develop scalable solvers for coercive
variational inequalities was not restricted to FETI. For example, using the
ideas related to Mandel [147], Kornhuber [132], Kornhuber and Krause [133],
and Krause and Wohlmuth [135] gave an experimental evidence of numerical
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scalability and the convergence theory for the algorithm based on monotone
multigrid. Badea, Tai, and Wang [6] proved linear rate of convergence in terms
of the decomposition parameter and overlap for the Schwarz domain decompo-
sition method which assumes exact solution of subdomain problems. See also
Zeng and Zhou [185], Tai and Tseng [173], Tarvainen [174], and references
therein.

A readable introduction into the formulation and implementation of the
FETI methods, including FETI–DP, can be found in Kruis [136]. Let us stress
that our goal here is only to illustrate the optimality of MPRGP Algorithm 5.8
on the problem whose structure is the same as that of important real-world
problems.



8

Solution of a Semicoercive Variational

Inequality
by TFETI Method

To give an example of a class of bound and equality constrained problems
with uniformly bounded spectrum arising in important applications, let us
consider the solution of the discretized elliptic semicoercive variational in-
equalities, such as those describing the equilibrium of a system of elastic bod-
ies in mutual unilateral frictionless contact in case that some bodies are not
sufficiently fixed along the boundary. The presence of “floating” bodies is a
considerable complication as the corresponding stiffness matrices are singu-
lar. To simplify our exposition, we again restrict our attention to a model
variational inequality governed by the Laplace operator on 2D domains.

Our main tool is a variant of the classical FETI method called total FETI
(TFETI), which was proposed independently by Dostál, Horák, and Kučera
[68] and Of (all floating FETI) [156] as a parallel solver for the problems de-
scribed by elliptic partial differential equations. The TFETI method differs
from the original FETI method in the way which is used to implement the
Dirichlet boundary conditions. While the FETI method assumes that the sub-
domains inherit the Dirichlet boundary conditions from the original problem,
TFETI uses the Lagrange multipliers to “glue” the subdomains to the bound-
ary whenever the Dirichlet boundary conditions are prescribed. Such approach
simplifies the implementation as all the stiffness matrices of the subdomains
have typically a priori known kernels and can be treated in the same way.
Moreover, the kernels can be used for effective evaluation of the action of a
generalized inverse by means of Lemma 1.1. The procedure can be naturally
combined with the preconditioning by the “natural coarse grid” introduced
by Farhat, Mandel, and Roux [85]. This preconditioning results in the class of
problems with the condition number of the regular part of the Hessian matrix
bounded by CH/h, where C, H , and h are a constant, decomposition, and
discretization parameters, respectively. This compares favorably with the es-
timate CH2/h2 of Proposition 7.1 for non-preconditioned FETI–DP. Here we
use the duality theory of Sect. 2.6.5 and Theorem 6.11 to modify the TFETI
method for the solution of variational inequalities.

Zdeněk Dostál, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications, DOI 10.1007/978-0-387-84806-8 8,
c© Springer Science+Business Media, LLC 2009
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8.1 Model Semicoercive Variational Inequality

Let Ω = Ω1 ∪ Ω2, where Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 2) × (0, 1) denote
open domains with boundaries Γ 1, Γ 2 and their parts Γ i

u, Γ i
f , and Γ i

c formed
by the sides of Ωi, i = 1, 2.

b

b

Fig. 8.1. Semicoercive model problem

Let H1(Ωi), i = 1, 2, denote the Sobolev space of the first order in the
space L2(Ωi) of the functions on Ωi whose squares are integrable in the sense
of Lebesgue. Let

V i =
{
vi ∈ H1(Ωi) : vi = 0 on Γ i

u

}

denote the closed subspaces of H1(Ωi), i = 1, 2, and let

V = V1 × V2 and K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}

denote the closed subspace and the closed convex subset of

H = H1(Ω1) × H1(Ω2),

respectively. The relations on the boundaries are in terms of traces. We shall
define on H the symmetric bilinear form

a(u, v) =
2∑

i=1

∫

Ωi

(
∂ui

∂x

∂vi

∂x
+

∂ui

∂y

∂vi

∂y

)
dΩ

and the linear form

b(v) =
2∑

i=1

∫

Ωi

bividΩ,

where bi ∈ L2(Ωi), i = 1, 2 are the restrictions of

b(x, y) =

⎧
⎨

⎩

−3 for (x, y) ∈ (0, 1)× [0.75, 1),
0 for (x, y) ∈ (0, 1) × [0, 0.75) and (x, y) ∈ (1, 2)× [0.25, 1).

−1 for (x, y) ∈ (1, 2)× [0, 0.25).

Denoting for each u ∈ H
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f(u) =
1
2
a(u, u) − b(u) =

1
2

2∑

i=1

∫

Ωi

‖∇ui‖2dΩ −
2∑

i=1

∫

Ωi

bividΩ,

we can define the continuous problem to find

min
u∈K

f(u). (8.1)

The solution of the model problem can be interpreted as the displacement
of two membranes under the traction b as in Fig. 8.1. The left edge of the
right membrane is not allowed to penetrate below the right edge of the left
membrane. Notice that only the left membrane is fixed on the outer edge and
the right membrane has no prescribed displacement, so that

Γ 1
u = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ 2
u = ∅.

Even though the form a is only semicoercive, the form b is still coercive due
to the choice of b so that it has a unique solution [120, 99].

8.2 TFETI Domain Decomposition and Discretization

In our definition of the problem, we have so far used only the natural de-
composition of the spatial domain Ω into Ω1 and Ω2. To enable efficient
application of the domain decomposition methods, we decompose each Ωi

into subdomains Ωi1, . . . , Ωip, p > 1, as in Fig. 8.2.

h H

Fig. 8.2. Domain decomposition and discretization

The continuity of the global solution in Ω1 and Ω2 is enforced by the
“gluing” conditions uij(X) = uik(X) that should be satisfied for any point X
on the interface Γ ij,ik of Ωij and Ωik.

After modifying appropriately the definition of problem (8.1), introducing
regular grids in the subdomains Ωij that match across the interfaces Γ ij,kl,
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indexing contiguously the nodes and entries of corresponding vectors in the
subdomains, and using the Lagrangian finite element discretization, we get
the discretized version of problem (8.1) with auxiliary domain decomposition
that reads

min
1
2
xT Ax − bTx s.t. BI∗x ≤ o and BE∗x = o. (8.2)

In (8.2), the Hessian matrix

A =

⎡

⎢⎢⎣

A1 O . . . O
O A2 . . . O
. . . . . .
O O . . . A2p

⎤

⎥⎥⎦

is a block diagonal positive semidefinite stiffness matrix. The diagonal blocks
Ai are the local stiffness matrices of the subdomains with the same kernel; for
j = 1, 2 and k = 1, . . . , p, the matrix Ap(j−1)+k corresponds to the subdomain
Ωjk. If the nodes in each subdomain are ordered columnwise, the blocks Ai

are band matrices.

i j

k l

i j i

Fig. 8.3. Three types of constraints

The full rank matrices BI∗ and BE∗ describe the discretized nonpenetration
and gluing conditions, respectively, and b represents the discrete analog of the
linear term b(u). The rows of BE∗ and BI∗ are filled with zeros except 1 and
−1 in the positions that correspond to the nodes with the same coordinates
on the artificial or contact boundaries, respectively. If bi denotes a row of BE∗
or BI∗, then bi does not have more than four nonzero entries. The continuity
of the solution in the “wire basket” comprising the nodes with indices i, j, k, l
(see Fig. 8.3 left) is enforced by the equalities

xi = xj , xk = xl, xi + xj = xk + xl,

which can be expressed by the vectors

bij = (si − sj)T , bkl = (sk − sl)T , bijkl = (si + sj − sk − sl)T ,

where si denotes the ith column of the identity matrix In. The continuity of the
solution across the subdomains interface (see Fig. 8.3 middle) is implemented
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by bijx = 0 as in the FETI–DP method discussed in Sect. 7.2, so that bijx
denotes the jump across the boundary, and the Dirichlet boundary condition
(se Fig. 8.3 right) xi = 0 is implemented by the row bi = sT

i .
Our next step is to simplify the problem, in particular to replace the gen-

eral inequality constraints BIx ≤ o by the nonnegativity constraints using the
duality theory. To this end, let us denote the Lagrange multipliers associated
with the inequality and equality constraints of problem (8.2) by λI and λE ,
respectively, and assume that the rows of B are ordered in such a way that

λ =
[

λI
λE

]
and B =

[
BI
BE

]
.

We formed B in such a way that it is a full rank matrix. Finally, let R denote
the full column rank matrix whose columns span KerA. Then we can use
Proposition 2.22 to get that the Lagrange multipliers λ for problem (8.2)
solve the constrained dual problem

max Θ(λ) s.t. λI ≥ o and RT (b − BT λ) = o,

where Θ(λ) is the dual function. Changing the signs of Θ and discarding the
constant term, we get that the Lagrange multipliers λ solve the bound and
equality constrained problem

min θ(λ) s.t. λI ≥ o and RT (b− BT λ) = o, (8.3)

where
θ(λ) =

1
2
λT BA+BT λ − λT BA+b

and A+ is any symmetric positive semidefinite generalized inverse. In our
computations, we use the generalized inverse A# defined by (1.7).

Notice that using the block diagonal and band structure of A together with

KerAi = [1, . . . , 1]T , i = 1, . . . , 2p,

we can effectively evaluate A#y for any y ∈ R
n. Indeed, using the Cholesky

decomposition described in Sect. 1.5, we get the lower triangular band matri-
ces Li such that Ai = LiL

T
i . Since A#

i = (L#
i )T L#

i and

A# = diag(A#
1 , A#

2 , . . . , A#
2p),

we get

A#y =
2p∑

i=1

Aiyi =
2p∑

i=1

(L#
i )T (L#

i yi),

where we assume that the decomposition yT = [yT
1 ,yT

2 , . . . ,yT
2p] complies

with the block structure of A. If the dimension of the blocks Ai is uniformly
bounded, then the computational cost increases nearly proportionally to p.
Moreover, the time that is necessary for the decomposition A = LLT and
evaluation of (L#)T L#y can be reduced nearly proportionally by parallel im-
plementation.
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8.3 Natural Coarse Grid

Even though problem (8.3) is much more suitable for computations than (8.2),
further improvement may be achieved by adapting some simple observations
and the results of Farhat, Mandel, and Roux [85]. Let us denote

F = BA+BT , d̃ = BATb,

G̃ = RT BT , ẽ = RTb,

and let T denote a regular matrix that defines orthonormalization of the rows
of G̃ so that the matrix

G = TG̃

has orthonormal rows. After denoting

e = Tẽ,

problem (8.3) reads

min
1
2
λT Fλ − λT d̃ s.t. λI ≥ o and Gλ = e. (8.4)

Next we shall transform the problem of minimization on the subset of the
affine space to that on the subset of the vector space by looking for the so-
lution of (8.4) in the form λ = μ + λ̃, where Gλ̃ = e. The following lemma
shows that we can even find λ̃ such that λ̃I = o.

Lemma 8.1. Let B be such that the negative entries of BI are in the columns
that correspond to the nodes in the floating subdomain Ω2. Then there is λ̃I
such that λ̃I ≥ o and Gλ̃ = ẽ.

Proof. See [65]. �

To carry out the transformation, substitute λ = μ + λ̃ to get

1
2
λT Fλ − λT d̃ =

1
2
μT Fμ − μT (d̃ − Fλ̃) +

1
2
λ̃T Fλ̃ − λ̃T d̃.

After returning to the old notation, problem (8.4) is reduced to

min
1
2
λT Fλ − λTd s.t. Gλ = o and λI ≥ −λ̃I (8.5)

with d = d̃− Fλ̃ and λ̃I ≥ o.
Our final step is based on the observation that (8.5) is equivalent to

min
1
2
λT (PFP + �Q)λ − λT Pd s.t. Gλ = o and λI ≥ −λ̃I , (8.6)
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where � is an arbitrary positive constant and

Q = GT G and P = I − Q

denote the orthogonal projectors on the image space of G� and on the kernel
of G, respectively. The regularization term is introduced in order to simplify
the reference to the results of quadratic programming that assume regularity
of the Hessian matrix of the quadratic form. Problem (8.6) turns out to be a
suitable starting point for development of an efficient algorithm for variational
inequalities due to the following classical estimates of the extreme eigenvalues.

Theorem 8.2. There are constants C1 > 0 and C2 > 0 independent of the
discretization parameter h and the decomposition parameter H such that

C1 ≤ λmin(PFP|ImP) and λmax(PFP|ImP) ≤ ||PFP|| ≤ C2
H

h
,

where λmin and λmax denote the corresponding extremal eigenvalues of corre-
sponding matrices.

Proof. See Theorem 3.2 of Farhat, Mandel, and Roux [85]. Let us point out
that the statement of Theorem 3.2 of Farhat, Mandel and Roux [85] gives
only an upper bound on the spectral condition number κ(PFP|ImP), but the
reasoning that precedes and substantiates their estimate proves both bounds
of (8.2). �

8.4 Optimality

To show that Algorithm 6.1 with the inner loop implemented by Algorithm 5.8
is optimal for the solution of problem (or a class of problems) (8.6), let us
introduce new notation that complies with that used to define the class of
problems (6.34) introduced in Sect. 6.7.

As in Chap. 7, we use

T = {(H, h) ∈ R
2 : H ≤ 1, 0 < 2h ≤ H, and H/h ∈ N}

as the set of indices, where N denotes the set of all positive integers. Given a
constant C ≥ 2, we shall define a subset TC of T by

TC = {(H, h) ∈ T : H/h ≤ C}.

For any t ∈ T , we shall define

At = PFP + �Q, bt = Pd
Bt = G, �t,I = −λ̃I and �t,E = −∞
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by the vectors and matrices generated with the discretization and decompo-
sition parameters H and h, respectively, so that problem (8.6) is equivalent
to the problem

minimize ft(λt) s.t. Ctλt = o and λt ≥ �t (8.7)

with ft(λ) = 1
2λT Atλ − bT

t λ. Using these definitions, Lemma 8.1, and
GGT = I, we obtain

‖Bt‖ ≤ 1 and ‖�+
t ‖ = 0, (8.8)

where for any vector v = [vi], v+ denotes the vector with the entries
v+

i = max{vi, 0}. Moreover, it follows by Theorem 8.2 that for any C ≥ 2
there are constants aC

max > aC
min > 0 such that

aC
min ≤ λmin(At) ≤ λmax(At) ≤ aC

max (8.9)

for any t ∈ TC . As above, we denote by λmin(At) and λmax(At) the extreme
eigenvalues of At. Our optimality result for a model semicoercive boundary
variational inequality then reads as follows.

Theorem 8.3. Let C ≥ 2 denote a given constant, let {λk
t }, {μk

t }, and {�t,k}
be generated by Algorithm 6.1 (SMALBE) for (8.7) with ‖bt‖ ≥ ηt > 0, β > 1,
M > 0, �t,0 = �0 > 0, ε > 0, and μ0

t = o. Let s ≥ 0 denote the smallest
integer such that βs�0 ≥ M2/amin and assume that Step 1 of Algorithm 6.1
is implemented by means of Algorithm 5.8 (MPRGP) with parameters Γ > 0
and α ∈ (0, (amax + βs�0)−1], so that it generates the iterates

λk,0
t , λk,1

t , . . . , λk,l
t = λk

t

for the solution of (8.7) starting from λk,0
t = λk−1

t with λ−1
t = o, where

l = lt,k is the first index satisfying

‖gP (λk,l
t , μk

t , �t,k)‖ ≤ M‖Btλ
k,l
t ‖ (8.10)

or
‖gP (λk,l

t , μk
t , �t,k)‖ ≤ εM‖bt‖. (8.11)

Then for any t ∈ TC and problem (8.7), an approximate solution λkt
t which

satisfies

‖gP (λkt
t , μkt

t , �t,kt)‖ ≤ εM‖bt‖ and ‖Btλ
kt
t ‖ ≤ ε‖bt‖ (8.12)

is generated at O(1) matrix–vector multiplications by the Hessian of the aug-
mented Lagrangian Lt for (8.7) and

�t,k ≤ βs�0.
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Proof. Notice that we assume that the constant C is fixed, so all the assump-
tions of Theorem 6.11 (i.e., the inequalities (8.8) and (8.9)) are satisfied for
the set of indices TC . Thus to complete the proof, it is enough to apply The-
orem 6.11. �

Since the cost of a matrix–vector multiplication by the Hessian of the
augmented Lagrangian Lt is proportional to the number of the dual variables,
Theorem 8.3 proves numerical scalability of Algorithm 6.1 (SMALBE) for
(8.7) provided the inner bound constrained minimization is implemented by
means of Algorithm 5.8 (MPRGP). The parallel scalability follows directly
from the discussion at the end of Sect. 8.2. We shall illustrate these features
numerically in the next section.

8.5 Numerical Experiments

In this section we illustrate numerical scalability of SMALBE Algorithm 6.1 on
the class of problems arising from application of the TFETI method described
above to our boundary variational inequality (8.1). The domain Ω was first
partitioned into identical squares with the side

H ∈ {1/2, 1/4, 1/8, 1/16}.

The square subdomains were then discretized by regular grids with the dis-
cretization parameter h = H/64, so that the discretized problems have the
primal dimension

n ∈ {33282, 133128, 532512, 21300048}

and the dual dimension

m ∈ {258, 1545, 7203, 30845}.

The computations were performed with the parameters

M = 1, �0 = 30, Γ = 1, and ε = 10−4.

The stopping criterion was

‖gP
t (λk)‖ ≤ 10−4‖bt‖ and ‖Btλ

k‖ ≤ 10−4‖bt‖.

Algorithm 6.1 with the solution of auxiliary bound constrained problem by
Algorithm 5.8 was implemented in C exploiting PETSc [7]. Using Theorem 8.3,
we get that the number of iterations that are necessary to find the approximate
solution is bounded provided H/h is bounded. The solution for H = 1/4 and
h = 1/4 is in Fig. 8.4.
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Fig. 8.4. Solution of the model semicoercive problem

The results of computations are in Fig. 8.5. We can see that the numbers
of the conjugate gradient iterations (on vertical axis) which correspond to
H/h = 64 vary very moderately with the dimension of the problem in agree-
ment with Theorem 8.3, so that the cost of computations increases nearly
linearly. The algorithm shares its parallel scalability with FETI; see, e.g.,
Dostál and Horák [64]. We conclude that it is possible to observe numerical
scalability and that SMALBE with the inner loop implemented by MPRGP
can be an efficient solver for semicoercive variational inequalities.
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Fig. 8.5. Scalability of SMALBE with TFETI for the semicoercive problem with
H/h = 64

More results of numerical experiments can be found in Dostál [49]. See
also Dostál and Horák [64]. Applications to the contact problems of elasticity
are in Dostál et al. [76].
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8.6 Comments and References

For solvability and approximation theory for semicoercive variational inequal-
ities see the references in Sect. 7.5. See also Proposition 2.16.

The linear augmented Lagrangians were often used in engineering algo-
rithms to implement active constraints as in Simo and Laursen [167]. The first
application of the nonlinear augmented Lagrangians with adaptive precision
control in combination with FETI to the solution of variational inequalities
and contact problems seems to be in Dostál, Friedlander, and Santos [55] and
Dostál, Gomes, and Santos [60, 61]. Applications to 3D frictionless contact
problems with preconditioning of linear step are, e.g., in Dostál et al. [53]
and Dostál, Gomes, and Santos [59, 62]. Experimental evidence of scalabil-
ity of the algorithm with the inner loop implemented by the proportioning
[42] was given in Dostál and Horák [64]. Applications to the contact shape
optimization are, e.g., in Dostál, Vondrák, and Rasmussen [77].

The method presented in this chapter solves both coercive and semicoer-
cive problems. Our first proof of numerical scalability of an algorithm for the
solution of a semicoercive variational inequality used the optimal penalty in
dual FETI problem [65]. Optimality of outer loop was proved in Dostál [67];
the theory was completed in Dostál [48]. In particular, it was proved that
the relative feasibility error of the solution of the FETI problem with a given
penalty parameter can be bounded independently of the discretization param-
eter. The results presented here for a scalar semicoercive variational inequality
can be extended, including the theoretical results, to the solution of 2D or 3D
multibody contact problems of elasticity, including 2D problems with a given
(Tresca) friction [63] and an approximation of 3D ones [69]. The scalability
was proved also for the problems discretized by the BETI (boundary ele-
ment tearing and interconnecting) method of Langer and Steinbach [141]; see
Bouchala, Dostál, and Sadowská [18, 17, 19]. See also Sadowská [164].

There is an interesting corollary of our theory. If we are given a class of con-
tact problems which involves bodies of comparable shape, so that the regular
part of their spectrum is contained in a given positive interval, then Theo-
rem 8.3 implies that there is a bound, independent of a number of the bodies,
on the number of iterations that are necessary to approximate the solution to
a given precision. The linear auxiliary problems can be preconditioned by the
FETI preconditioners. For comprehensive review of domain decomposition
methods with many references see, e.g., Toselli and Widlund [175].

Some methods reported in Sect. 7.5 can be naturally adopted for the so-
lution of semicoercive problems. This concerns especially the active set-based
algorithms with multigrid solvers of linear problems (see, e.g., Krause [134])
and the algorithm proposed by Schöberl. A FETI-based algorithm for co-
ercive and semicoercive contact problems was proposed by Dureisseix and
Farhat [78]. These authors gave experimental evidence of scalability of their
algorithms.



References

1. Arrow, K.J., Hurwitz, L., Uzawa, H.: Studies in Nonlinear Programming.
Stanford University Press, Stanford (1958)

2. Avery, P., Rebel, G., Lesoinne, M., Farhat, C.: A numerically scalable
dual–primal substructuring method for the solution of contact problems
– part I: the frictionless case. Comput. Methods Appl. Mech. Eng. 193,
2403–2426 (2004)

3. Axelsson, O.: A class of iterative methods for finite element equations.
Comput. Methods Appl. Mech. Eng. 9, 127–137 (1976)

4. Axelsson, O.: Iterative Solution Methods. Cambridge University Press,
Cambridge (1994)

5. Axelsson, O., Lindskøg, G.: On the rate of convergence of the precondi-
tioned conjugate gradient method. Numer. Math. 48, 499–523 (1986)

6. Badea, L., Tai, X.-C., Wang, J.: Convergence rate analysis of a multiplica-
tive Schwarz method for variational inequalities. SIAM J. Numer. Anal.
41, 3, 1052–1073 (2003)

7. Balay, S., Gropp, W., McInnes, L.C., Smith, B.: PETSc 2.0 Users Manual.
Argonne National Laboratory, http://www.mcs.anl.gov/petsc/

8. Bazaraa, M.S., Shetty, C.M., Sherali, H.D.: Nonlinear Programming, The-
ory and Algorithms. Second Edition. Wiley, New York (1993)

9. Belytschko, T., Neal, K.O.: Contact–impact by the pinball algorithm with
penalty and Lagrangian methods. Int. J. Num. Methods Eng. 31, 3, 547–
572 (1991)

10. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point
problems. Acta Numer. 1–137 (2005)

11. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier
Methods. Academic Press, London (1982)

12. Bertsekas, D.P.: Nonlinear Optimization. Athena Scientific, Belmont
(1999)

13. Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to Linear Optimization.
Athena Scientific, Belmont (1997)

14. Bielschowski, R.H., Friedlander, A., Gomes, F.A.M., Mart́ınez, J.M., Ray-
dan, M.: An adaptive algorithm for bound constrained quadratic mini-
mization. Invest. Oper. 7, 67–102 (1997)



272 References

15. Blum, E., Oettli, W.: Direct proof of the existence theorem in quadratic
programming. Oper. Res. 20, 165–167 (1971)

16. Blum, H., Braess, D., Suttmeier, F.T.: A cascadic multigrid algorithm for
variational inequalities. Comput. Vis. Sci. 7, 3–4, 153–157 (2004)

17. Bouchala, J., Dostál, Z., Sadowská, M.: Duality based algorithms for the
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Inequalities. In: U. Langer et al. (eds.) Domain Methods in Science and
Engineering XVII. Springer, Lecture Notes in Computational Science and
Engineering (LNCSE) 60, Berlin, 167–174 (2008)

19. Bouchala, J., Dostál, Z., Sadowská, M.: Theoretically Supported Scalable
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63. Dostál, Z., Haslinger, J., Kučera, R.: Implementation of fixed point
method for duality based solution of contact problems with friction. J.
Comput. Appl. Math. 140, 1–2, 245–256 (2002)

64. Dostál, Z., Horák, D.: Scalability and FETI based algorithm for large
discretized variational inequalities. Math. Comput. Simul. 61, 3–6, 347–
357 (2003)

65. Dostál, Z., Horák, D.: Scalable FETI with Optimal Dual Penalty for Semi-
coercive Variational Inequalities. Contemp. Math. 329, 79–88 (2003)

66. Dostál, Z., Horák, D.: Scalable FETI with Optimal Dual Penalty for a
Variational Inequality. Numer. Linear Algebra Appl. 11, 5–6, 455–472
(2004)



References 275

67. Dostál, Z., Horák, D.: Theoretically supported scalable FETI for numeri-
cal solution of variational inequalities. SIAM J. Numer. Anal. 45, 500–513
(2007)

68. Dostál, Z., Horák, D., Kučera, R.: Total FETI - an easier implementable
variant of the FETI method for numerical solution of elliptic PDE. Com-
mun. Numer. Methods Eng. 22, 1155–1162 (2006)
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Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced
Applications–ENUMATH 2005, Springer–Verlag, New York, 61–76 (2006)

73. Dostál, Z., Horák, D., Stefanica, D.: A Scalable FETI–DP Algorithm
for Semi-coercive Variational Inequalities. Comput. Methods Appl. Mech.
Eng. 196, 8, 1369–1379 (2007)
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active set, see working set 160
BETI, 269
conjugate directions, 76
conjugate gradient, 78

preconditioned, 88
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in face, 211
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primal function, 47
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projector, 7
A-conjugate, 90
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orthogonal, 15

proportional iteration, 172
proportioning step, 172
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range regular solution, 233
range-space method, 105
rate of convergence

conjugate gradient method, 84
gradient method, 86
gradient projection in A-norm, 177
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regular solution, 233
regular spectral condition number, 96
release coefficient, 172
release direction, 168
reminder, 252
restriction, 6

saddle point problem
for equalities, 45
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saddle point system, 105
scalar function of a matrix, 19
scalar product, 14
Schur complement, 43, 47
Schur complement system, 105
selective orthogonalization, 97
semicoercive function, 33
set
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binding, 158
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working , 161
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Sherman–Morrison–Woodbury formula,

8
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dual degenerate, 155, 201
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regular, 233
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sum bounding convergence, 153
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Taylor’s expansion, 28
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vector, 3
�1-norm, 12
�∞-norm, 12
A-norm, 14
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Euclidean norm, 14
feasible, 27
multiplication by scalar, 3
norm, 12
zero, 4

vector space, 4
basis, 4
dimension, 4
direct sum, 4
gap, 95
linear span, 4
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working face, 161
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