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Preface

Over the past years meshfree methods for the solution of partial differential
equations have significantly matured and are used in various fields of applica-
tions. One of the reasons for this development is the fact that meshfree dis-
cretizations and particle models are often better suited to cope with geometric
changes of the domain of interest than mesh-based discretization techniques
such as finite differences, finite elements or finite volumes. Furthermore, the
computational costs associated with mesh generation are eliminated in mesh-
free approaches, since they are based only on a set of independent points.
From the modelling point of view, meshfree methods gained much interest in
recent years since they may provide an efficient and reliable approach to the
coupling of contiuum models to particle models.

In light of these developments the Sonderforschungsbereich 611 and the
Gesellschaft für Mathematik und Mechanik sponsored the second interna-
tional workshop on Meshfree Methods for Partial Differential Equations. It was
hosted by the Institut für Numerische Simulation at the Rheinische Friedrich–
Wilhelms Universität Bonn from September 15 to September 17, 2003. The
organizers Ivo Babuška, Ted Belytschko, Michael Griebel, Wing Kam Liu,
Helmut Neunzert, and Harry Yserentant invited scientist from twelve coun-
tries to Bonn with the aim to bring together European, American and Asian
researchers working in this exciting area of interdisciplinary research. The
objective of the workshop was not only to strengthen the mathematical un-
derstanding and analysis of meshfree discretizations but also to promote the
exchange of ideas on their implementation and application.

This volume of LNCSE now comprises selected contributions of attendees
of the workshop. Their content ranges from applied mathematics to physics
and engineering.

Bonn, Michael Griebel
September, 2004 Marc Alexander Schweitzer
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A Particle Strategy for Solving the
Fokker-Planck Equation Modelling the Fiber

Orientation Distribution in Steady
Recirculating Flows Involving Short Fiber

Suspensions

Amine Ammar1� and Francisco Chinesta2��

1 Laboratoire de Rhéologie, Univesité Joseph Fourier, 1301 Rue de la Piscine, BP
53 Domaine Universitaire, F-38041 Grenoble cedex 9, France.

2 Laboratoire de Mécanique des Systèmes et des Procédés, 151 Boulevard de
l’Hôpital, F-75013 Paris, France.

Abstract In this work we have analyzed the application of a deterministic approx-
imation of the diffusion term in the Fokker-Planck equation using smooth particles
for computing its steady solution in a steady recirculating flow. The main idea of this
approach lies in the introduction of the Fokker-Planck diffusion term into the ad-
vection one, which allows to proceed in a Lagrangian deterministic manner without
a mesh support requirement.

1 Introduction

As indicated by Chaubal et al. [CHA97], ”complex fluid” is the term commonly
used to describe a wide class of liquid-like materials, in which the relaxation
time towards the equilibrium state occurs sufficiently slowly that significant
changes in the microstructural configuration, and thus in the macroscopic
properties, can be induced by the flow. Viscoelastic fluids or short fiber sus-
pensions may be considered as examples of complex fluids. The Fokker-Planck
formalism is a commonly used description of kinetic theory problems, for de-
scribing the evolution of the configuration distribution function. This function
represents the probability of finding the microstructural element in a partic-
ular configuration.

In the case of a short fiber suspension, the configuration distribution func-
tion (also known as orientation distribution function) gives the probability of
finding the fiber in a given direction. Obviously, this function depends on the

�
Amine.Ammar@ujf-grenoble.fr

��
francisco.chinesta@paris.ensam.fr



2 A. Ammar, F. Chinesta

physical coordinates (space and time) as well as on the configuration coordi-
nates, that taking into account the rigid character of the fibers, are defined on
the surface of the unit sphere. Thus, we can write Ψ(x, t, p), where x defines
the position of the fiber center of mass, t the time and p the unit vector defin-
ing the fiber orientation. The evolution of the distribution function is given
by the Fokker-Planck equation

dΨ

dt
= − ∂

∂p
(Ψṗ) +

∂

∂p

(
Dr

∂Ψ

∂p

)
(1.1)

where d/dt represents the material derivative, Dr is a diffusion coefficient
and ṗ is the fiber rotation velocity. When the fibers are assumed with an
ellipsoidal shape and the suspension is dilute enough, the rotation velocity
can be obtained from the Jeffery’s equation

ṗ = Ω p + k D p − k(pT D p) p (1.2)

where Ω and D are the vorticity and the strain rate tensors respectively,
associated with the fluid flow undisturbed by the presence of the fiber, and k
is a scalar which depends on the fiber aspect ratio λ (ratio between the fiber
length and the fiber diameter)

k =
λ2 − 1

λ2 + 1
(1.3)

Although this work focuses in the flow of short fiber suspensions, the nu-
merical procedures here developed could be applied successfully to other fluids
whose microstructure is described by similar kinetic theory models. This is the
case for example of some viscoelastic fluids. In the FENE model [BIR87], the
probability distribution function depends on the physical coordinates and on
the conformation coordinates that in this case are defined by the end-to-end
molecule vector q. The equation governing its evolution results:

dΨ

dt
= − ∂

∂q
(Ψq̇) +

1

2

∂

∂q

(
∂Ψ

∂q

)
(1.4)

where the evolution of q can be evaluated from

q̇ = Gradv q − 1

2
F (q) (1.5)

with the spring force F given by

F =
1

1 − ‖q‖2

b2

q

‖q‖ (1.6)

being b the maximum molecule length. The FENE-P model is obtained by
averaging the square norm of the molecule length in the expression of the
spring force [BIR80].
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In these cases the Fokker-Planck equations remain linear, even if the ad-
vection fields depend in a non-linear manner on the configuration coordinates
(see for instance Eqs. (1.2) and (1.5)).

Another more complex example consists in the model describing the be-
havior of Liquid Crystals Polymers (LCP) due to Doi. This model has been
treated using a particle technique in [CHA97]. In this case the microstructural
element is a rigid axis-symmetric rod of infinite aspect ratio. Under some sim-
plifying assumptions the orientation distribution (also defined on the surface
of the unit sphere) evolves according to

dΨ

dt
= − ∂

∂q
(Ψṗ) +

∂

∂p

(
Dr

{
∂Ψ

∂p
+ Ψ

∂U

∂p

})
(1.7)

where the advection field ṗ is given by

ṗ = Gradv p − (pT D p) p (1.8)

As the potential U depends on the second moment of the distribution
function 〈p ⊗ p〉 defined by

〈p ⊗ p〉 =

∮
p ⊗ p Ψ(p) dp (1.9)

and the Fokker-Planck equation results in this case non-linear.
Many of the experimental and industrial flows show recirculating areas or

recirculate themselves. For example, many rheometric devices involve this type
of flows, whose steady and recirculating character introduce some additional
difficulties in their numerical simulation. Actually, the Fokker-Planck equation
which defines an advection problem in physical coordinates, is supposed to
have a steady solution in these steady recirculating flows but neither boundary
conditions nor initial conditions are known in such flows.

In a former paper [CHI03] the discretisation of the advection dominated
Fokker-Planck equation, governing the fiber orientation in short fiber suspen-
sion flows, was carried out using a particle technique, where the diffusion term
was modelled from random motions. It was pointed out that the number of
fibers required in this stochastic simulation to describe the fiber distribution
increases significantly with the diffusion coefficient Dr. Thus, it was argued
that for practical applications the use of the particle method in the frame-
work of a stochastic simulation, is restricted to very slight diffusion effects.
When the diffusion becomes dominant, continuous approximations using a
fixed mesh seem to be suitable, but in this case accurate stabilizations are re-
quired for dealing with small diffusion effects, and a lack of accuracy is noticed
in the treatment of the advection dominated case.

Chaubal et al. [CHA97] propose the use of the SPH (Smooth Particle
Hydrodynamics) to solve the dynamics of a liquid crystalline polymer (LCP)
using the Doi’s model. Thus, the diffusion term is treated in a determinist
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manner, and high accurate results were obtained due to the meshless and
Lagrangian character of the SPH technique considered by the authors.

In this work we examine the application of this kind of techniques for
solving the steady Fokker-Planck equation in steady recirculating flows, but
we will limit our attention to the 2D linear Fokker-Planck equations.

2 A Particle Discretisation

In this section we will consider the simplest linear form of the Fokker-Planck
equation (1.1), that in the 2D case results

dΨ

dt
= − ∂

∂ϕ
(Ψϕ̇) +

∂

∂ϕ

(
Dr

∂Ψ

∂ϕ

)
(2.1)

where Ψ(x, t, ϕ), ϕ̇ = ϕ̇(x, t, ϕ) and Dr is assumed constant. Due to the steady
character of the flow kinematics we can remove the temporal variable in the
expression of ϕ̇. A general approximation of the steady probability distribution
function at point x0 can be written as

Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) Fi(ϕ) (2.2)

Due to the linearity and homogeneity of Eq. (2.1) we can compute its solu-
tion for each function Fi(ϕ) along the pathline related to the point x0. These
solutions are denoted by Ψi(x(x0, t0; t), ϕ), where the notation x(x0, t0; t)
refers to the position at time t of a particle located at point x0 at time t0.
The trajectory is defined by the equation

x(x0, t0; t) = x0 +

∫ t

t0

v(x(x0, t0; t
′)) dt′ (2.3)

Thus, the general solution of Eq. (2.1) results

Ψ(x(x0, t0; t), ϕ) ≈
i=N∑
i=1

αi(x0) Ψi(x(x0, t0; t), ϕ) (2.4)

The particle method lies in taking the Dirac masses in Eq. (2.2). Thus, if
we consider the N directions defined by ϕi = (i − 1) hϕ, i ∈ [1, · · · , N ], with
hϕ = 2π/N , Eq. (2.2) becomes

Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) δ(ϕ − ϕi) (2.5)

where αi(x0) represents the ”mass” of the particle aligned in the ϕi direction.
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2.1 The Advection Equation

In the case of neglecting all the diffusion effects, the solution Ψi(x(x0, t0; t), ϕ)
results

Ψi(x(x0, t0; t), ϕ) = δ(ϕ − ϕ(x0, t0, ϕi; t)) (2.6)

where ϕ(x0, t0, ϕi; t) denotes the orientation at time t of a fiber located at
time t0 in x0 and whose orientation was defined by ϕi. Obviously, the spatial
location of a fiber refers to the position of its center of mass, that at time t is
given by Eq. (2.3).

In the pure advection case ϕ(x0, t0, ϕi; t) becomes

ϕ(x0, t0, ϕi; t) = ϕi +

∫ t

t0

ϕ̇(x(x0, t0; t
′), ϕ(x0, t0, ϕi; t

′)) dt′ (2.7)

Thus, Eqs. (2.3) and (2.7) describe the position and orientation of each
fiber along the flow trajectory. Several discretisations of these equations ex-
ist, being the simplest one the backward Newton method, that consider the
time interval [t0, t] divided into M intervals [tm, tm+1] of length Δt such that
MΔt = t − t0, and the fibers updating given by

⎧⎨
⎩

x(x0, t0; tm+1) = x(x0, t0; tm) + v(x(x0, t0; tm)) Δt
ϕ(x0, t0, ϕi; tm+1) = ϕ(x0, t0, ϕi; tm) +

+ ϕ̇(x(x0, t0; tm), ϕ(x0, t0, ϕi; tm)) Δt, ∀i ∈ [1, · · · , N ]
(2.8)

where {
x(x0, t0; t0) = x0

ϕ(x0, t0, ϕi; t0) = ϕi, ∀i ∈ [1, · · · , N ]
(2.9)

2.2 Steady Recirculating Flows

In the case of a steady recirculating flow the particles come back to the depar-
ture position after a time T , that corresponds with the period of the considered
trajectory. Thus, we can write

x(x0, t0; T ) = x(x0, t0; t0) = x0 (2.10)

However, the final orientation will be, in general, different to the initial
one, i.e.

ϕ(x0, t0, ϕi; T ) 	= ϕi, ∀i (2.11)

On the other hand, the steady solution of the probability distribution at
point x0, Ψ(x0, ϕ), requires its periodicity along the closed streamline
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i=N∑
i=1

αi(x0) δ(ϕ − ϕ(x0, t0, ϕi; T )) =

i=N∑
i=1

αi(x0) δ(ϕ − ϕi) (2.12)

but this expression, (Eq. (2.12)), cannot be used in its present form because
the Dirac masses are concentrated in different angles at t0 and T .

To use this expression we need to transfer the masses concentrated in the
directions ϕ(x0, t0, ϕi; T ) to the initial ones ϕi. In [CHI03] this transfer is per-
formed from each angle ϕ(x0, t0, ϕi; T ) towards the neighbor directions, being
the mass transferred to each neighbor direction proportional to the distance
between them. Thus, we can finally write (see [CHI03] for more details)

i=N∑
i=1

αi(x0) δ(ϕ − ϕ(x0, t0, ϕi; T )) =

i=N∑
i=1

j=N∑
j=1

βijαj(x0) δ(ϕ − ϕi) (2.13)

where βij depends in the considered probability transfer from ϕ(x0, t0, ϕi; T )
to ϕj . If a linear transfer is used, then it results

βij =

{
1−|ϕ(x0,t0,ϕi;T )−ϕj |

hϕ
if |ϕ(x0, t0, ϕi; T ) − ϕj | ≤ hϕ

0 if |ϕ(x0, t0, ϕi; T ) − ϕj | > hϕ

The periodicity condition becomes in this case

i=N∑
i=1

j=N∑
j=1

βijαj(x0) δ(ϕ − ϕi) =

=

i=N∑
i=1

αi(x0) δ(ϕ − ϕi) =

i=N∑
i=1

j=N∑
j=1

δijαj(x0) δ(ϕ − ϕi) (2.14)

where δij is the unit tensor. The previous equation implies

j=N∑
j=1

(βij − δij)αj(x0) = 0, ∀i ∈ [1, · · · , N ] (2.15)

that with the normality condition

1 =

∫ 2π

0

Ψ(x0, ϕ) dϕ =

i=N∑
i=1

αi(x0) (2.16)

allows to compute the N coefficients αi(x0), and then, the steady solution of
the probability distribution at point x0

Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) δ(ϕ − ϕi) (2.17)
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2.3 Introducing Diffusion Effects Using a Deterministic
Approximation

When diffusion effects are retained in the kinetic model the application of a
particle technique becomes delicate as we will describe in this section. The
first possibility for introducing of the diffusion effects lies in the use of a
stochastic technique [CHI03]. Thus, a great amount of particles are considered
at point x0 aligned in each direction ϕi. Then, each fiber is subjected to three
actions during its movement along its closed trajectory: (i) the advection of
its center of mass, (ii) the rotation induced by the term ṗ and (iii) the rotation
associated with the diffusion that is modelled from a random motion. In spite
of the simplicity of its computational implementation and the very accurate
results obtained for slight diffusion coefficients, the great number of particles
required when the diffusion coefficient increases makes this strategy useless
for treating the problems encountered in practical applications.

To circumvent these computational drawbacks, we transform the linear
Fokker-Planck advection-diffusion equation in a pure advection problem. For
this purpose we define the new advection field ṗ∗

ṗ∗ = ṗ − Dr

∂Ψ
∂p

Ψ
(2.18)

that introduced in the pure advection Fokker-Planck equation

dΨ

dt
= − ∂

∂p
(Ψṗ∗) (2.19)

leads to the standard linear advection-diffusion Fokker-Planck equation (1.1).
In the 2D case developed in the previous section, both equations result in

the following purely-advection problem

ϕ̇∗ = ϕ̇ − Dr

∂Ψ
∂ϕ

Ψ
(2.20)

dΨ

dt
= − ∂

∂ϕ
(Ψϕ̇∗) (2.21)

Now, Eq. (2.21) could be used for computing the different solutions asso-
ciated with the Dirac’s distributions δ(ϕ−ϕi), ∀i, but two difficulties appear:
(i) the derivative and the ratio of linear combinations of Dirac masses cannot
be defined in a proper way, and (ii) due to the distribution function derivative
required to compute the modified advection field ϕ̇∗ in Eq. (2.20), a coupling
between the different fibers takes place, and consequently, in this case, the
evolution of each fiber cannot be computed independently of the other ones.

In order to circumvent the first difficulty we introduce a smoothed approx-
imation of the Dirac mass given by
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ζ(x) =
e−x

2

√
π

(2.22)

which verifies the normality condition∫ ∞

−∞

ζ(x) dx = 1 (2.23)

To adapt its sharpness we modify this function in the following manner

ζε(x) =
ζ
(
x
ε

)
ε

(2.24)

which verifies also the normality condition. Fig. 2.1 depicts this function for
three values of the ε parameter.

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

ε = 0.2 

ε = 1 

ε =2 

ζε

ϕ

Figure 2.1. Representation of the cut-off function for different values of the ε
parameter

In this form, the gradients and ratios can be computed in a proper way. On
the other hand to avoid the second limitation two simple possibilities exist: (i)
a direct procedure that compute N times, the evolution history of N particles
along the closed trajectory, and (ii) an iteration algorithm that computes
the evolution of each particle along the closed trajectory independently of
the other ones due to the fact that the coupling term is evaluated from the
solution at the previous iteration. In the following sections we describe both
procedures.

A Direct Procedure.
We write the searched solution at point x0 in a matrix form
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Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) ζε(ϕ − ϕi) = α(x0) · ζε(ϕ) (2.25)

where the unknown coefficients αi(x0), contained in the vector α(x0), must
be determined in order to satisfy the periodicity condition imposed by both
the steady character of the searched solution and the steady and recirculating
character of the flow.

We define the following N alpha-vectors:

αk(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αk1(x0)
...

αkk−1(x0)
αkk(x0)

αkk+1(x0)
...

αkN (x0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν
...
ν
μ
ν
...
ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∀k ∈ [1, · · · , N ] (2.26)

where ν and μ can be chosen arbitrarily with the only restriction of verifying
the normality condition, i.e. (N−1)ν+μ = 1. We can notice that the uncoupled
procedure, applied when diffusion effects are neglected, uses ν = 0 and μ = 1.

Introducing this notation, Eq. (2.25) can be rewritten as

Ψ(x0, ϕ) ≈
k=N∑
k=1

βk αk(x0) · ζ =

k=N∑
k=1

βk Ψk(x0, ϕ) (2.27)

Now, we can compute the evolution along a closed trajectory of each so-
lution

Ψk(x0, ϕ) = αk(x0) · ζε(ϕ) (2.28)

which in fact requires the tracking of N particles. For this purpose, we need
to integrate the evolution of the orientation for each fiber (represented by the
subscript i) in each problem (noted by the superscript k). If we consider, for
a sake of simplicity, the backward Newton method again, it results

ϕ(x0, t0, ϕ
k
i ; tm+1) = ϕ(x0, t0, ϕ

k
i ; tm)+ ϕ̇(x(x0, t0; tm), ϕ(x0, t0, ϕ

k
i ; tm)) Δt−

− Dr

∂
∂ϕ

(∑j=N
j=1 αkj (x0)ζε(ϕ − ϕ(x0, t0, ϕ

k
j ; tm))

)
ϕ=ϕ(x0,t0,ϕ

k
i ;tm)∑j=N

j=1 αkj (x0)ζε(ϕ(x0, t0, ϕ
k
i ; tm) − ϕ(x0, t0, ϕ

k
j ; tm))

Δt (2.29)

∀k ∈ [1, · · · , N ], ∀i ∈ [1, · · · , N ], ∀m ∈ [0, · · · , M − 1]

After a complete turn of period T we obtain
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ϕ(x0, t0, ϕ
k
i ; T ) ∀i ∈ [1, · · · , N ], ∀k ∈ [1, · · · , N ] (2.30)

Now the weights associated to each orientation ϕ(x0, t0, ϕ
k
i ; T ), βkαki (x0),

must be transferred to the angles ϕi to enforce the periodicity. This operation
can be accurately carried out by using the algorithm proposed in [CHI03] as
previously described.

This algorithm offers the steady solution of the problem from the resolu-
tion of the N problems, requiring each one of them, the integration of the
orientation evolution of N fibers along the closed trajectory. In this form the
algorithm results of order N 2.

A Fixed Point Iteration Algorithm. In this case we start from the
solution obtained assuming Dr = 0. This solution can be written as

Ψ0(x(x0, t0; t), ϕ) ≈
i=N∑
i=1

α0
i (x0) ζε(ϕ − ϕ(x0, t0, ϕi; t)), ∀t ∈ [t0, T ] (2.31)

Now, the iteration k results

ϕk(x0, t0, ϕi; tm+1)=ϕk(x0, t0, ϕi; tm)+ϕ̇(x(x0, t0; tm), ϕk(x0, t0, ϕi; tm))Δt

−Dr

∂
∂ϕ

(
Ψk−1(x(x0, t0; t), ϕ)

)
ϕ=ϕk(x0,t0,ϕi;tm)

Ψk−1(x(x0, t0; t), ϕ
k(x0, t0, ϕi; tm))

Δt

(2.32)
for all i ∈ [1, · · · , N ], and all m ∈ [0, · · · , M − 1], where in this case the
superscript k ≥ 1 refers to the iteration.

This algorithm results of order N but the convergence is not ensured.
Some improvements can be introduced, as for example the introduction of the
diffusion coefficient step by step.

3 Numerical Examples

In this section two numerical examples involving steady recirculating flows
will be considered. The first one is defined by the following kinematics:

v =

(
u
v

)
=

(−y
√

x2 + y2

x
√

x2 + y2

)
(3.1)

The steady solution of the probability distribution is searched at point
(0, 1). For this problem the exact solution can be computed due to the solution
symmetry as described in [CHI03]. Thus, for a diffusion coefficient Dr = 0.2
and fibers with an aspect ratio related to k = 0.6, the fixed point algorithm
proposed in the section 2.3 with ε = 0.5 and N = 72 converges in around 10
iterations to the reference solution as depicted in Fig. 3.2.

Now, the direct method described in the section 2.3 is applied. Obviously,
the numerical solution accuracy will depends on the μ coefficient (for μ ∈ [3, 5]
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Figure 3.2. Numerical solution com-
puted at point (0, 1) using the fixed point
algorithm
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Figure 3.3. Numerical solution com-
puted at point (0, 1) using the direct pro-
cedure with μ = 1.2/N
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Figure 3.4. Numerical solution com-
puted at point (0, 1) using the direct pro-
cedure with μ = 10/N
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Figure 3.5. Numerical solution com-
puted at point (0, 1) using the direct pro-
cedure with μ = 0

the extact and the computed solutions are in very good agreement). Figs. 3.3
and 3.4 depicts the fiber distribution related to μ = 1.2/N and μ = 10/N
respectively as well as the exact solution (dashed line). The case of μ = 0
(where N − 1 fibers with equal weights are considered) is depicted in Fig. 3.5.
The solution accuracy can be improved by increasing the number of particles
N involved in the simulation. A first order convergence is noticed when the
number of particles N is increased. In these examples we don’t take μ in the
interval [3, 5] because in that case the numerical and reference solutions are
completely superposed.

Fig. 3.6 depicts the fiber distribution in some points on the closed stream-
line related to point (0, 1) computed using the following model parameters:
k = 0.8, ε = 0.5, Dr = 0.2 and N = 72. The fiber orientation is then defined
on the unit circle, where the orientation of each fiber is depicted by a small
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circle. Thus, for each one of the eight points considered, the orientation of the
72 fibers involved in the simulation are depicted.
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Figure 3.6. Fiber orientation distribution along the streamline related to the point
(0, 1)

The second example concerns the flow kinematics induced by two-eccentric
rotating cylinders. The velocity field was computed assuming a Newtonian
fluid behavior and using the well known lubrification hypothesis (justified by
the fact that the flow gap is much more lower than the cylinder radius). The
inner cylinder is rotating with a velocity of 0.1 rad/s. The cylinder radius are
0.01 m. and 0.015 m., being the distance between the both cylinder axes of
0.0031 m. The model parameters are k = 0.8, Dr = 0.2, ε = 0.5 and N = 0.72.
Figs. 3.7 and 3.8 depict the fiber orientation distribution along a streamline
located in the secondary vortex and the main recirculation respectively.
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Figure 3.7. Fiber orientation distribution on a streamline located in the secondary
vortex of a two-eccentric rotating cylinders device
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Figure 3.8. Fiber orientation distribution on a streamline located in the main
recirculation of a two-eccentric rotating cylinders device

4 Conclusions

In this work we have analyzed the application of a deterministic approximation
of the diffusion term in the Fokker-Planck equation using smooth particles for
computing its steady solution in a steady recirculating flow. The main idea
of this approach lies in the introduction of the Fokker-Planck diffusion term
into the advection one, which allows to proceed in a Lagrangian deterministic
manner without a mesh support requirement. In spite of its simplicity, and
from the first numerical results here shown, this technique seems to be very
accurate.
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Abstract In this paper, an extended meshfree method [9] for solving elastic bound-
ary value problems is summarized, and its extension to the elasto-plasticity problem
is presented. In extended meshfree method, the solution is decomposed into partic-
ular solution and homogeneous solution. The particular solution without satisfying
boundary conditions is obtained analytically, while a homogeneous problem with
auxiliary boundary conditions is then solved under a Galerkin framework with mov-
ing least-squares reproducing kernel approximation. The proposed method for lin-
ear differential operator in Poisson, elasticity, and Mindlin-Reissner problems is first
summarized. The extension to differential equations with nonlinear self-adjoint dif-
ferential operator is then introduced, and the application to elasto-plasticity problem
is presented. Numerical results of an elasto-plasticity problem demonstrate a signif-
icant accuracy gain in the solution of extended meshfree method compared to that
of the conventional Galerkin meshfree approach.

1 Introduction

The naturally conforming properties of Galerkin meshfree methods offer
tremendous flexibility for approximation of solution with arbitrary locality
and smoothness [1, 4, 6, 11, 18, 19]. For example, extended finite element
method with enriched local basis functions was used to model crack tip char-
acteristics [3, 10]. Hierarchical enrichment [16, 17, 22], coupling between FEM
and meshfree methods [13, 15, 17], and interface enrichment [14, 24] were also
developed for enhancement of local solutions. Partition of unity and general-
ized finite element method [1, 2, 11, 12, 19, 20, 21] provide a general frame-
work for enrichment of solution with special basis functions to simultaneously
achieve local and global solution accuracy.

Alternative to the aforementioned methods where the degrees of freedom
associated with the global and enriched solutions are obtained concurrently,

�
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an extended meshfree method [9] has been proposed in which the solution
is solved in 2 sequential steps. In this approach, the solution is decomposed
into particular solution and homogeneous solution. The particular solution is
solved by satisfying the differential equation containing the source term in an
infinite domain without the imposition of boundary conditions. This particu-
lar solution can often be obtained analytically. When such particular solution
in an infinite domain is available, the original problem can be reduced to a
homogeneous problem with auxiliary boundary conditions (corrected by the
particular solution) that is then solved numerically. It has been shown that if
a linearly complete approximation function in conjunction with a stabilized
conforming nodal integration for domain integration of the weak form are em-
ployed in the Galerkin approximation of PDE’s, linear exactness and bending
exactness [7, 8, 23] can be achieved in the numerical solution of potential
and plate problems, respectively. These properties are particularly useful for
solving homogeneous solution in solid and structural problems, where substan-
tially higher solution accuracy can be obtained compared to the conventional
Galerkin meshfree formulation.

In this paper, we first review the basic concept and solution procedures
of extended meshfree method in Section 2. In this section, a general and
straightforward approach is presented for constructing the particular solution
by employing a fundamental solution of the differential operator without sat-
isfying the boundary conditions. Consequently, only a homogeneous governing
equation with auxiliary boundary conditions is solved by a Galerkin meshfree
method with stabilized conforming nodal integration. The specific extended
meshfree formulations for problems with linear differential operator such as
Poisson, elasticity, and Mindlin-Reissner problems are discussed in Section 3.
In section 4, we first discuss extended meshfree method for PDE’s with nonlin-
ear self-adjoint differential operator. The application to elasto-plasticity prob-
lem and some comments on numerical procedures are then presented. Several
numerical examples are demonstrated in Sections 3 and 4. Concluding remarks
are given in Section 5.

2 Review of Extended Meshfree Method

2.1 Moving Least-Square Reproducing Kernel (MLS/RK)
Approximation

The MLS/RK approximation [18] has been widely used in the meshfree ap-
proximation of the unknown variables in differential equations. The problem
domain Ω is first discretized into a set of poins {x1,x2, · · ·,xNP }, where xI
is the location of node I and NP denotes the total number of points. The
unknown variable u(x) of a differential equation is approximated by:

uh(x) =
NP∑
I=1

ΨI(x)dI (2.1)
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where uh(x) is the approximation of u(x), ΨI and dI are the shape functions
and their associated coefficients, respectively. In MLS/RK approximation [18],
a shape function ΨI(x) takes the form:

ΨI(x) =

⎛
⎝ n∑
i+j=0

(x1 − x1I)
i(x2 − x2I)

j b̄ij(x)

⎞
⎠φa(x − xI) (2.2)

where φa(x−xI) is a kernel function that defines the smoothness and locality
of the approximation with a compact support ωI = supp(φa(x−xI)), where a
is the radius of ωI , and ∪NPI=1ωI ⊃ Ω̄. The coefficient vector b̄(x) in Eq. (2.2)
is obtained by satisfying the following n-th order reproducing conditions:

NP∑
I=1

ΨI(x)xαI1x
β
I2 = xα1 xβ2 , α + β = 0, 1, 2, . . . , n (2.3)

Upon solving b̄ij(x) from Eq. (2.3), the MLS/RK shape functions is obtained:

ΨI(x) = {H}T (0){M}−1
(x){H}(x − xI)φa(x − xI) (2.4)

where

{H}T (x − xI) =
{

1, x1 − xI1, x2 − xI2, (x1 − xI1)
2, ... ..., (x2 − xI2)

n
}

(2.5)

{M}(x) =

NP∑
I=1

{H} (x − xI){H}T (x − xI)φaI
(x − xI) (2.6)

The reproducing kernel particle method (RKPM) is formulated by introduc-
ing the above approximation of unknown into the weak form of the differential
equation L (u) + b = 0 where L is the differential operator and b is the source
term. The order of the solution is mainly dependent upon the form of source
term and the differential operator. The following problem introduced in [9]
is solved to illustrate the property of the RKPM using a stabilized conform-
ing nodal integration for domain integration [7], denoted as SC-RKPM, in
representing the behavior of a localized high-gradient source term.

u,xx + b(x) = 0 in (0, 1)

b(x) =

{(
2
α2 − 4[ (x−0.5)

α ]2
)

exp
(
−[ (x−0.5)

α ]2
)

for 0.42 ≤ x ≤ 0.58

0 otherwise
u(0) = 0, u(1) = 1

(2.7)

A comparison of the SC-RKPM solution using linear basis function with a
20-node discretization and exact solutions in Fig. 1 shows large differences in
the vicinity of the localized source term. Figures 2 (a) and (b) demonstrate
the effects of discretization with nodal distance (h= 0.0625, 0.0313, 0.0156 )
and the source term localization (α = 0.5, 0.3, 0.1 ) on the error of solution
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Figure 2.1. Solution comparison for problem (7)

accuracy using SC-RKPM. The results show that the L2 error norm of u in-
creases as the source term becomes more localized in all three discretizations.
It is also shown that the level of localization α in the source term affects the
constant of error in the numerical solution.
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Figure 2.2. Effects of discretization and source term localization on L2 error norm
of u in problem (2.7) using SC-RKPM

2.2 Extended Meshfree Method for Boundary Value Problems
with Linear Differential Operator

Consider the following multi-dimensional boundary value problem (BVP):

L (u(x)) + b(x) = 0 in Ω
Bu (u(x)) = 0 on ∂uΩ
Bh (u(x)) = 0 on ∂hΩ

(2.8)

where L is the linear differential tensor operator, b(x) is the source term
tensor, Bu and Bh are the tensor operators of essential and natural boundary
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conditions, respectively. Let g(x, x̄) be the fundamental solution tensor that
satisfies the PDE in an infinite domain (i.e., without considering boundary
conditions):

L (g(x, x̄)) + δ(x − x̄) = 0 in R
3 (2.9)

or in a matrix form

[L]

⎧⎨
⎩

g11

g21

g31

⎫⎬
⎭+

⎧⎨
⎩

δ
0
0

⎫⎬
⎭ = 0, [L]

⎧⎨
⎩

g12

g22

g32

⎫⎬
⎭+

⎧⎨
⎩

0
δ
0

⎫⎬
⎭ = 0, [L]

⎧⎨
⎩

g13

g23

g33

⎫⎬
⎭+

⎧⎨
⎩

0
0
δ

⎫⎬
⎭ = 0

(2.10)
where δ = δ(x− x̄), [L] is the 3×3 matrix corresponding to matrix expression
of L (g(x, x̄)), and δ(x − x̄) is the delta function. Then a particular solution
is obtained by the integral:

up(x) =

∫
Ω

g(x,y) · b(y)dy (2.11)

where “·” is a inner product. From Eqns. (2.9) and (2.11), it can be easily
shown that the particular solution up satisfies

L (up(x)) + b(x) = 0 in Ω (2.12)

Note that in general up(x) does not satisfy boundary conditions, i.e.,
Bu(u

p(x)) 	= 0, Bh(u
p(x)) 	= 0. The expressions of fundamental solutions

and particular solutions for Poisson equation, elasticity, and Mindlin-Reissner
plate problems are listed in Table 1. Next, the solution of the given problem
is decomposed into

u(x) = up(x) + u0(x) (2.13)

If L is the linear differential operator, we have the following condition:

L (u(x)) + b(x) = L (up(x)) + L (u0(x)
)

+ b(x) = L (u0(x)
)

= 0 (2.14)

This leads to the following BVP for the homogeneous solution u0(x) (assuming
Bu and Bh are linear operators):

L (u0(x)
)

= 0 in Ω
Bu

(
u0(x)

)
= −Bu (up(x) ) on ∂uΩ

Bh

(
u0(x)

)
= −Bh (up(x) ) on ∂hΩ

(2.15)

Here the homogeneous solution u0(x) is obtained from the above homoge-
neous equation with boundary conditions modified by up(x). A few examples
of fundamental solutions [5, 25] for linear differential operator are given in
Table 1.
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Table 2.1. Particular Solutions of Several Boundary Value Problems

Poisson Equation Elasticity Mindlin-Reissner Plate

Tensor
Form
L (u) + b
= 0

∇2u + b = 0

∇ · (C : ∇su) + b = 0

(∇su) =
(∇⊗ u + u ⊗∇) /2

P1 (∇ · ∇) θ + P2∇ (∇ · θ)
+Q(∇w − θ) = 0

Q(∇ · ∇w −∇ · θ) + q = 0

Matrix
Form
[L] {u}+
{b} = 0

[L] = ∇2

{u} = u

{b} = b

[L] =
h
∇̂

iT

[D]
h
∇̂

i
{u} =

˘
u1, u2, u3

¯T

{b} =
˘

b1, b2, b3

¯T

[L]=

(ˆ
∇̄

˜T
[G] + [Ds] [N]ˆ

∇̄
˜T

[Ds] [N]

)

{u} =
˘

θ1, θ2, w
¯T

{b} =
˘

0, 0, q
¯T

Fund.
Sol.
g(x, x̄)

g(x, x̄) = − 1
2π

ln r

r =s
nP

i=1

(xi − x̄i)2

gij(x, x̄)
= 1

16πμ(1−ν)r
×

[(3 − 4ν)δij + r,ir,j ]

r,j = ∂r
∂xj

g13(x, x̄)
= 1

8πD
r(2 ln r + 1) cos (r, x1)

g23(x, x̄)
= 1

8πD
r(2 ln r + 1) sin (r, x1)

g33(x, x̄) = 1
8πD

r2 ln r
− 1

2πQ
ln r

gij = 0 for j �= 3

Part.Sol.
up(x)

up(x) =R
Ω

g(x,y)b(y)dy
up

i (x) =R
Ω

gij(x,y)bj(y)dy

up
i (x) =R
Ω

gij(x,y)bj(y)dy

Note: P1, P2, Q, D,
h
∇̂

i
,

ˆ
∇̄

˜
, [Ds], [G], [N] in Table 1 are defined in Appendix.

2.3 A Stabilized Conforming Nodal Integration for Homogeneous
Solution

The variable u0(x) satisfying Eq. (2.15) without a source term involves a lower
order behavior compared with the original problem and can be effectively
solved numerically. It has been studied by Chen et al. [7, 8] that the neces-
sary conditions for achieving linear exactness in the Galerkin approximation
of second order differential equations are: (1) shape functions ΨI for approxi-

mation of the unknown uhi (x) =
∑NP

I=1 ΨI(x)diI are linearly complete, and (2)
integration of the weak form meets the following integration constraint:

Int
Ω

(∇ΨI) =

∫
∂hΩ

ΨIn dΓ for {I : supp(ΨI) ∩ ∂uΩ = ∅} (2.16)

where Int
Ω

(·) denotes numerical integration over domain Ω and n is the surface

normal on ∂hΩ. A stabilized conforming nodal integration (SCNI) has been
proposed to stabilize the nodal integration of the weak form and fulfill linear
exactness in the Galerkin approximation of second order differential equation
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[7]. In this approach, a smoothed nodal gradient of u at point xL is computed
as:

∇̃uh(xL) =
1

AL

∫
ΩL

∇uhdA =
1

AL

∫
ΓL

nuhdΓ =
∑
I

∇̃ΨI(xL)dI (2.17)

where

∇̃ΨI(xL) =
1

AL

∫
ΓL

ΨI(x)n(x)dΓ (2.18)

Here ΩL and ΓL are the representative domain and boundary associated with
the node L as shown in Fig. 3, and AL is the area (or volume) of ΩL. It can
be easily shown that this smoothed gradient meets the integration constraints
for nodal integration:

Int
Ω

(∇̃ΨI) =

NP∑
L=1

∇̃ΨI(xL)AL =

∫
∂hΩ

ΨIn dΓ for {I : supp(ΨI) ∩ ∂uΩ = ∅}

(2.19)
This SCNI method will be employed in the integration of weak form of the
homogeneous solution for Poisson, elasticity, and Mindlin-Reissner problems
in the next Section.

Γ
Ω

XL
L

L

n

Figure 2.3. Nodal representative domain obtained by Voronoi diagram

3 Extended Meshfree Method for Elastic Boundary
Value Problems

In this section we discuss the extended meshfree solution procedure when the
particular solutions are obtained in Section 2. The construction of discrete
equations for the homogeneous solution of Poisson, elasticity, and Mindlin-
Reissner plate problems is also summarized. To distinguish from the tensor
notation, matrix and vector are denoted by “[·]” and “{·}” symbols, respec-
tively, in the following discussion.
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3.1 Poisson Problem

Consider a Poisson problem in Table 1 with boundary conditions u = g on
∂uΩ and ∂u/∂n = h on ∂hΩ. The weak form of the homogeneous solution of
Poisson problem is:∫

Ω

∇δu0 · ∇u0dΩ =
∫

∂hΩ

δu0
(
h − ∂up

∂n

)
dΓ

u0 = g − up on ∂uΩ

(3.1)

Introducing a nodal integration of weak form with assumed gradient field
(2.17) into Eq. (3.1) yields:

NP∑
L=1

∇̃δu0(xL) · ∇̃u0(xL)AL =

NBint∑
K=1

δu0(x̄K)

(
h(x̄K) − ∂up

∂n
(x̄K)

)
�K

(3.2)
where NP and NBint are the numbers of nodal points and boundary in-
tegration points, respectively, and x̄L and �K are the integration points
and weights for boundary integration, respectively, which are consistent
with the boundary integration for gradient smoothing term

∫
ΓL

ΨI(x)n(x)dΓ

in Eq. (2.18). By substituting the meshfree approximation for u0h

(x) =∑NP
I=1 ΨI(x)d0

I into Eq. (3.2), we obtain the following discrete equation for
homogeneous solution:

[K]
{
d0
}

=
{
f0
}

(3.3)

KIJ =

NP∑
L=1

{
b̃I(xL)

}T {
b̃J(xL)

}
AL (3.4)

{
b̃I(xL)

}
=

{
b̃1I(xL)

b̃2I(xL)

}
(3.5)

b̃iI(xL) =
1

AL

∫
ΓL

ΨI(x)ni(x)dΓ (3.6)

f0
I

=
NBint∑
K=1

ΨI(x̄K)

(
h(x̄K) − ∂up

∂n
(x̄K)

)
�K (3.7)

Problem (2.7) is revisited using the aforementioned Extended-RKPM. The
particular solution of this problem in Table 1 is computed using three integra-
tion zones with 6-point quadrature rule in the small domain where b(x) 	= 0,
and the homogeneous solution is obtained by RKPM with SCNI. The com-
parison of the results in Fig. 4 shows a significant improvement in solution
accuracy using the Extended-RKPM compared to SC-RKPM in Fig. 3. Note
that since the particular solution is obtained analytically, the solution error is
independent to the source term localization parameter α.
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Figure 3.4. Effects of discretization and source term localization on L2 error norm
of u in problem (2.7) using Extend-RKPM

3.2 Elasticity

Consider an elasticity problem in Table 1 with boundary conditions ui = gi
on ∂uΩ and (C : (∇su)) · n = h on ∂hΩ. The weak form of the homogeneous
solution of elasticity problem is:∫

Ω

(∇sδu0
)

: C :
(∇su0

)
dΩ =

∫
∂hΩ

δu0 · (h− (C : (∇sup)) · n) dΓ

u0
i = gi − upi on ∂uΩ

(3.8)

Similar to the smoothing of ∇u0 in Poisson problem, the strain corre-
sponding to u0 is smoothed in elasticity. Let

ε0
ij =

(∇su0
)
ij

=
1

2

(
u0
i,j + u0

j,i

)
(3.9)

The smoothed strain of u0 at point xL is obtained by

ε̃0
ij(xL) = 1

AL

∫
ΩL

ε0
ijdA = 1

2AL

∫
ΩL

(
u0
i,j + u0

j,i

)
dA

= 1
2AL

∫
ΓL

(
u0
inj + u0

jni
)
dΓ

(3.10)

Defining a smoothed strain vector
{
ε̃0
}

=
{

ε̃0
11, ε̃0

22, 2ε̃0
12

}T
and intro-

ducing MLS/RK approximation for u0h

i (x) =
∑NP

I=1 ΨI(x)d0
iI in Eq. (3.10),

we have {
ε̃0h

(xL)
}

=
NP∑
I=1

[
B̃I(xL)

] {
d0
I

}
(3.11)

where

[
B̃I(xL)

]
=

⎡
⎢⎢⎣

b̃I1(xL) 0

0 b̃I2(xL)

b̃I2(xL) b̃I2(xL)

⎤
⎥⎥⎦ ,

{
d0
I

}
=

{
d0
1I

d0
2I

}
(3.12)
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and b̃iI(xL) is defined in Eq. (3.6). Introducing a nodal integration to the
weak form of elasticity in Eq. (3.8) with smoothed strain field defined in Eq.
(3.10) yields the following stiffness matrix and force vector for solving the
homogeneous solution [K]

{
d0
}

=
{
f0
}
:

[KIJ ] =
NP∑
L=1

[
B̃I(xL)

]T
[D]

[
B̃J (xL)

]
AL (3.13)

{
f0

I

}
=

NBint∑
K=1

ΨI(x̄K)

{
h1(x̄K) − σp1j(x̄K)nj(x̄K)

h2(x̄K) − σp2j(x̄K)nj(x̄K)

}
�K (3.14)

where σp = C : ∇sup, and [D] is the matrix form of the elasticity tensor C.
A cantilever beam subjected to a tip shear force shown in Fig. 5(a) is ana-

lyzed using SC-RKPM (RKPM with stabilized conforming nodal integration),
G-RKPM (RKPM with Gauss integration) and Extended-RKPM. The geom-
etry and material properties are; L=10, D=2, E=21MPa, ν=0.3. The total
shear load is 1, which is distributed in a parabolic function over the depth
of the free end. Three discretizations as shown in Fig. 5(b) are employed to
compute error in the numerical solution. The SCNI is employed for the total
solution in SC-RKPM and the homogeneous solution of Extended-RKMP as
discussed above. In Extended-RKPM, the shear force is treated as a source
term with distributed load, and the fundamental solution in Table 1 is used to
calculate the particular solution. Figure 5(c) shows that the Extended-RKPM
greatly reduces the L2 error norm of u compared to those of SC-RKPM and
G-RKPM.

3.3 Mindlin-Reissner Plate Problem

Consider a Mindlin-Reissner plate problem in Table 1 with boundary condi-
tions θα = θ̄α (α = 1, 2), w = w̄ on ∂uΩ and

(
Cb : (∇sθ)

) · n = m̄ on ∂hΩ.
The weak form of the homogeneous part of Mindlin-Reissner problem given
in Table 1 can be expressed as∫

Ω
∇sδθ0 : Cb : ∇sθ0dΩ +

∫
Ω

(∇δw0 − δθ0
)

: Cs :
(∇w0 − θ0

)
dΩ

+
∫
∂hΩ

δθ0 · (m̄ − (
Cb : (∇sθp)

) · n) dΓ = 0

θα = θ̄α, w = w̄, on ∂uΩ

(3.15)

where Cb and Cs are the elasticity moduli for bending and shear, respectively.
To meet integration constraint and provide stability to the nodally integrated
weak form of Eq. (3.15), a curvature smoothing at the nodal point is intro-
duced [24]. Let curvature of the homogeneous solution be denoted as

k0
αβ =

(∇sθ0
)
αβ

=
1

2

(
θ0
α,β + θ0

β,α

)
(3.16)
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Figure 3.5. Beam problem solved by various methods: (a) problem description; (b)
discretizations; (c) L2 error norm of u

The smoothed curvature at point xL is obtained by

κ̃0
αβ(xL) = 1

AL

∫
ΩL

κ0
αβ(x)dA = 1

2AL

∫
ΩL

(θ0
α,β + θ0

β,α)dA

= 1
2AL

∫
ΓL

(θ0
αnβ + θ0

βnα)dΓ
(3.17)

Introducing MLS/RK to the approximation of θ0h

α (x) =
∑NP
I=1 ΨI(x)θ0

αI

and w0h

(x) =
∑NP
I=1 ΨI(x)w0

I in smoothed curvature
{
κ̃0
}

=
{
κ̃0

11, κ̃
0
22, 2κ̃0

12

}T
and shear strain

{
γ0
}

=
{

w0
,1 − θ0

1, w0
,2 − θ0

2

}T
, we have

{
κ̃0h

}
=

NP∑
I=1

[
B̃b
I

] {
d0
I

}
,

{
γ0h

}
=

NP∑
I=1

[Bs
I ]
{
d0
I

}
(3.18)

[
B̃b
I

]
=

⎡
⎢⎢⎣

0 b̃I1 0

0 0 b̃I2

0 b̃I2 b̃I1

⎤
⎥⎥⎦ , [Bs

I ] =

[
ΨI,x −ΨI 0

ΨI,y 0 −ΨI

]
,
{
d0
I

}
=

⎧⎪⎨
⎪⎩

w0
I

θ0
1I

θ0
2I

⎫⎪⎬
⎪⎭ (3.19)

Introducing a nodal integration to weak form in Eq. (3.15) with smoothed
curvature in Eq. (3.18) yields the following stiffness matrix and force vector
for solving the homogeneous solution [K]

{
d0
}

=
{
f0
}
:
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[K] =
[
Kb
]
+ [Ks] (3.20)

[
Kb
IJ

]
=

NP∑
L=1

[
B̃b
I(xL)

]T [
Db
] [

B̃b
J(xL)

]
AL

[Ks
IJ ] =

NP∑
L=1

[Bs
I(xL)]

T
[Ds] [Bs

J(xL)]AL

(3.21)

{
f0

I

}
=

NBint∑
K=1

ΨI(x̄K)

⎧⎪⎨
⎪⎩

0

mp
1α(x̄K)nα(x̄K) − m̄1(x̄K)

mp
2α(x̄K)nα(x̄K) − m̄2(x̄K)

⎫⎪⎬
⎪⎭�K (3.22)

where mp = Cb : ∇sθp,
[
Db
]

and [Ds] are the matrix forms of Cb and Cs

tensors, respectively.
A clamped circular plate subjected to a unit concentrated load P at the

plate centroid shown in Fig. 6(a) is analyzed. Since the source term is due to
a point load, the particular solution is the fundamental solution. RKPM with
SCNI (SC-RKPM), RKPM with Gauss integration (G-RKPM) and Extended-
RKPM discussed above using three discretizations shown in Fig. 6(b) are
compared in Fig. 6 (c). A substantial improvement of the solution accuracy
in Extended-RKPM over G-RKPM and SC-RKPM is achieved.

4 Extended Meshfree Method for Inelastic Boundary
Value Problems

4.1 Self-Adjoint Operator

Here we consider BVP in Eq. (2.8), with L the differential operator for inelastic
media which, in general, is a nonlinear operator, i.e., L (u0 + up

) 	= L (u0
)
+

L (up). To start, express the weak form of BVP as∫
Ω

v · L (u)dΩ +

∫
Ω

v · b dΩ = 0 (4.1)

where v is the weight function and v = 0 on essential boundary ∂uΩ. If L is
self-adjoint, then we have∫

Ω

v · L (u)dΩ =

∫
Ω

u · L (v) dΩ +

∫
Ω

∑
i

Bi (u,v)dΓ (4.2)

where the 2nd term on the right hand side of Eq. (4.2) is a boundary term
resulting from integration by parts, and Bi are the corresponding boundary
operators. Thus Eq. (4.1) can be expressed as
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Figure 3.6. Mindlin-Reissner plate solved by various methods:(a) problem descrip-
tion; (b) discretizations; (c) L2 error norm of u

∫
Ω

u · L (v)dΩ +

∫
Ω

v · bdΩ +

∫
∂Ω

∑
i

Bi (u,v)dΓ = 0 (4.3)

By deposition of unknown u = up + u0, we have∫
Ω

u0 · L (v)dΩ+

∫
Ω

up · L (v)dΩ+

∫
Ω

v · b dΩ+

∫
∂Ω

∑
i

Bi (u,v)dΓ = 0 (4.4)

Since L is a self-adjoint differential operator, the first 2 terms on the left hand
side of Eq. (4.4) can be transformed according to Eq. (4.2) to yield∫

Ω

v · L (u0
)
dΩ +

∫
Ω

v · L (up)dΩ +
∫
Ω

v · bdΩ

+
∫
∂Ω

∑
i

(Bi(v,u0) + Bi(v,up) + Bi(u,v))dΓ = 0
(4.5)

If a particular solution for L (up) + b = 0 exists, Eq. (4.5) is reduced to
the following problem:



30 J.-S. Chen, D. Wang∫
Ω

v · L(u0)dΩ +

∫
∂Ω

∑
i

(Bi(u,v) + Bi(v,u0) + Bi(v,up))dΓ = 0 (4.6)

Equation (4.6) leads to the following strong form:

L(u0) = 0 (4.7)

with natural boundary conditions:∑
i

(Bi(u0 + up,v) + Bi(v,u0) + Bi(v,up)) = 0

for arbitrary v with v = 0 on ∂uΩ
(4.8)

For a given up, Eq. (4.8) gives the natural boundary conditions for the ho-
mogeneous solution u0. Further, Eq. (4.5) provides the weak form for solving
u0.

4.2 Elasto-plasticity Problem

Consider the following elasto-plasticity problem:

∇ · σ̇ + ḃ = 0 in Ωx

σ̇ = Ce : ε̇e = C∗ : ε̇

ε̇ = ∇su̇ = ε̇e + ε̇∗

u = û on ∂uΩx,

σ̇ · n = ḣ on ∂hΩx

(4.9)

where Ωx is the deformed configuration, Ce and C∗ are elastic and elasto-
plastic moduli, respectively, ε̇e and ε̇∗ are elastic and plastic strain rates,
respectively, ∇s is the symmetric gradient operator, i.e., (∇su̇)ij = u̇(i,j) =
(u̇i,j + u̇j,i) /2, σ̇ is the Cauchy stress rate, n is the normal unit vector of

traction surface, and ḣ is the surface traction rate. For elasto-plastic materials
that obey associative flow rule, we have:

ε̇∗ = γ̇
∂f

∂σ
(4.10)

where f is the yield function and γ̇ denotes the plastic consistency parameter.
To employ the extended meshfree method discussed earlier, Eq. (4.9) is

recast into the following form:

∇ · (Ce : ∇su̇)︸ ︷︷ ︸
L(u̇)

+ (ḃ−∇ · (Ce : ε̇∗)︸ ︷︷ ︸
source

= 0 (4.11)

Here the nonlinearity is included in the source term. The solution is solved as
follows:
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1. Particular solution

u̇pi (x) =

∫
Ωx

gij(x,y)

(
ḃj(y) − ∂(Ce

jmkl ε̇
∗
kl(y))

∂ym

)
dy (4.12)

where gij is the fundamental solution associated with the differential op-
erator L (u̇) = ∇ · (Ce : ∇su̇), and the particular solution u̇pi is computed
at every time step. The integration of Eq. (4.12) is performed over the
deformed configuration Ωx.

2. Homogeneous problem:

∇ · (Ce : ∇su̇0) = 0 in Ω

u0 = û− up on ∂uΩ,

σ̇0 · n = ḣ− (C∗ : ∇su̇p) · n on ∂hΩ

(4.13)

where σ̇0 = (C∗ : ∇su̇0) · n is the Cauchy stress rate associated with the
homogeneous solution u̇0.

Note that the homogeneous solution in Eq. (4.13) is almost identical to the
homogeneous solution of elasticity, except for the corrected natural boundary
condition involving elasto-plastic moduli. Thus the meshfree approximation
and SCNI for domain integration used in elasticity are directly applicable to
this case.

Remark 4.1. An alternative approach for solving problem (4.9) is to consider
the following strong form:

∇ · (C∗ : ∇su̇)︸ ︷︷ ︸
L(u̇)

+ḃ = 0 (4.14)

Here, the elasto-plastic moduli C∗ reside in the differential operator. We
consider the weak form of Eq. (4.14)∫

Ω

v · (∇ · (C∗ : ∇su̇)) dΩ +

∫
Ω

v · ḃ dΩ = 0 (4.15)

where the weight function v = 0 on ∂Ωu. Via integration by parts and diver-
gence theorem, we have∫

∂hΩ

v · ḣdΓ − ∫
∂hΩ

u̇ · (∇sv : C∗ · n)dΓ +
∫
Ω

u̇ · (∇ · (C∗ : ∇sv))dΩ

+
∫
Ω

v · ḃdΩ = 0
(4.16)

Note that we have used the properties C∗
ijkl = C∗

klij = C∗
jikl = C∗

ijlk. Next, by

the decomposition of u̇ = u̇p + u̇0, we have
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Ω

u̇ · (∇ · (C∗ : ∇sv))dΩ

=
∫
Ω

u̇p · (∇ · (C∗ : ∇sv))dΩ +
∫
Ω

u̇0 · (∇ · (C∗ : ∇sv))dΩ
(4.17)

Further applying integration by parts, the following equation can be obtained∫
Ω

v · (∇ · (C∗ : ∇su̇p))dΩ +
∫
Ω

v · (∇ · (C∗ : ∇su̇0))dΩ +
∫

∂hΩ

v · ḣdΩ

− ∫
∂hΩ

v · ((C∗ : ∇su̇p) · n)dΓ +
∫
Ω

v · ḃdΩ = 0
(4.18)

In the typical incremental solution procedure, C∗ is formed with solution of the
previous time step. Thus if the fundamental solution of differential operator
in Eq. (4.14) with an explicit C∗ exists, Eq. (4.18) can be reduced to∫

∂hΩ

v · (ḣ − (C∗ : ∇su̇p) · n)dΓ +

∫
Ω

v · (∇ · (C∗ : ∇su̇0))dΩ = 0 (4.19)

This leads to the following strong form and natural boundary conditions for
the homogeneous solution:

∇ · (C∗ : ∇su̇0) = 0 in Ω

(C∗ : ∇su̇0) · n = ḣ− (C∗ : ∇su̇p) · n on ∂hΩ
(4.20)

The corresponding weak form of Eq. (4.20) is∫
Ω

∇sv : C∗ : ∇su̇0dΩ =

∫
∂hΩ

v · (ḣ − (C∗ : ∇su̇p) · n)dΓ (4.21)

4.3 Some Remarks on Consideration of Large Deformation

In the case where the materials undergo large deformation, the undeformed
configuration ΩX and deformed configuration Ωx of the material domain need
to be distinguished. Considering a material point X ∈ ΩX under deformation
is moved to x ∈ Ωx, where ΩX is the undeformed configuration and Ωx is the
corresponding deformed configuration, and x = X + u, where u is the dis-
placement. For a general nonlinear problem, incremental solution procedures
are required, and the incremental equation of Eq. (4.11) is solved:

∇ · (Ce : ∇sΔu)︸ ︷︷ ︸
L(Δu)

+ (Δb −∇ · (Ce : Δε∗)︸ ︷︷ ︸
source

= Δr (4.22)

where ”Δ” denote a finite increment quantity, and Δr is the residual. The
increment of particular solution Δupi is obtained by
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Δupi (x) =

∫
Ωx

gij(x,y)
(
Δbj −

(
Ce
jmklΔε∗kl

)
,m

− Δrj

)
(y)dy (4.23)

where gij(x,y) denotes the fundamental solution of the differential operator
L (Δu) = ∇ · (Ce : ∇sΔu). With the consideration of large deformation, the
Galerkin weak form of the homogeneous problem of Eq. (4.22) is transformed
to the undeformed configuration ΩX , and a Lagrangian kernel [6] is used to
approximate the homogeneous solution following 6:

Δu0
i (X) =

NP∑
I=1

ΨI(X)Δd0
iI (4.24)

where ΨI(X) is the MLS/RK shape function using Lagrangian kernel. Note
that the solution of homogeneous solution in Eq. (4.22) requires the particular
solution in Eq. (4.23). Since the transformation of weak form of the homo-
geneous solution in Eq. (4.22) to the undeformed configuration requires the
particular solution to be evaluated in the unformed configuration, a mapping
from x to X is needed. A stabilized conforming nodal integration (SCNI)
that satisfies integration constraints in the Lagrangian Galerkin approxima-
tion of the homogeneous solution is employed in the domain integration of
weak form in the undeformed configuration [8]. In SCNI, to meet integration
constraints using nodal integration in Lagrangian Gakerkin formulation, the
displacement spatial gradient Δui,j = ∂ui/∂xj at a nodal point XL in the
undeformed configuration is smoothed as:

Δũ0
i,j(XL) = ΔF̃ 0

ik(XL)F̃−1
kj (XL) (4.25)

where

ΔF̃ 0
ij(XL) =

1

AX
L

∫
ΩX

L

ΔF 0
ijdΓ =

1

AX
L

∫
ΩX

L

∂Δu0
i

∂Xj
dΓ =

1

AX
L

∫
ΓX

L

(Δu0
iNj)dΓ

(4.26)

F̃ij(XL) =
1

AX
L

∫
ΩX

L

FijdΓ =
1

AX
L

∫
ΩX

L

∂ui
∂Xj

dΓ + δij =
1

AX
L

∫
ΓX

L

(uiNj)dΓ + δij

(4.27)
Here Ni is the surface normal in the undeformed configuration, ΩX

L and
ΓX
L are the nodal representative domain and boundary of the Voronoi cell

associatd with node L in the undeformed configuration, respectively, and AX
L

is the area (volume) of ΩX
L . The other details of Lagrangian meshfree method

using SCNI for nonlinear problems can be found in [8]. Due to the absence of
source term in the homogeneous problem, the Lagrangian meshfree formula-
tion for solving the homogeneous solution can achieve much greater solution
accuracy.
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Figure 4.7. One dimensional rod subjected body force

4.4 Numerical Example

A one dimensional elasto-plastic bar subjected to a body force as shown in
Fig. 7 is analyzed. In this example, the following isotropic hardening elasto-
plasticity model is employed, where the yield function is expressed as:

f = |σ| − (σy + Kε̄p) (4.28)

Here, σy is the initial yield stress and K is hardening parameter. The material
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properties are: Young’s modulus E = 2.0×107, K = 0.2E and σy = 8.0×104.
The body force function given in Eq. (2.7) is used, and the rod is fixed at the
left end. Both SC-RKPM and the proposed Extended-RKPM are employed.
The rod is discretized by only 8 nodes using both methods. For comparison
purpose, a refined model with 51-node discretization is used to compute a
reference solution. The numerical results for total strain, plastic strain and
stress distributions are shown in Figs. 8, 9, and 10, respectively. A much
enhanced solution is observed in the proposed new approach.

5 Conclusions

An extended meshfree method for elastic and inelastic media has been pre-
sented. In this approach, the total solution has been expressed by a combina-
tion of particular and homogeneous solutions. The particular solution is any
analytical (or numerical) expression satisfying the governing differential equa-
tion containing the source term but not necessarily the boundary conditions.
Thus, the problem is reduced to a homogeneous equation where the original
boundary conditions are modified by the particular solution. In this paper, a
general method has been presented for constructing the particular solution.
The homogeneous solution has been solved numerically using Galerkin approx-
imation. By employing moving least-square reproducing kernel (MLS/RK)
approximation with linear completeness, as well as a stabilized conforming
nodal integration (SCNI) for domain integration of the weak form, a linear
exactness in solid continuum and a bending exactness in plate bending can be
achieved in the homogeneous counterpart of these problems. Compared to the
conventional Galerkin meshfree method, this new approach significantly re-
duces the constant in the error norms, and examples have been demonstrated
in Poisson, elasticity, and Mindlin-Reissner plate problems.

The proposed method for differential equations with nonlinear differential
operators has also been presented. It has been shown that if the differential
operator is self-adjoint, a homogeneous problem can be obtained with stan-
dard integration by parts procedures. A Lagrangian MLS/RK approximation
and the corresponding SCNI for Lagrangian weak form of large deformation
problems have also been discussed. Using elasto-plasticity as a model problem,
a simplified approach to obtain particular solution and to construct homoge-
neous problem has been presented. In this approach, the nonlinearity resides
in the source term, and the differential operator takes the form of linear elas-
ticity. Thus the fundamental solution is identical to that of linear elasticity,
and the particular solution is obtained by integration of fundamental solution
and the nonlinear source term at every incremental step in nonlinear calcu-
lation. The corresponding homogeneous problem has been constructed with
boundary conditions corrected by the particular solution in every incremental
step, and it has been solved using MLS/RK approximation with SCNI domain
integration of the incremental weak form. The numerical results demonstrate a
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substantially higher solution accuracy in extended meshfree method compared
to that of the conventional Galerkin meshfree method.

6 Appendix

The parameters and matrices used Table 1 are defined as follows:

P1 =
Et3

24(1 + ν)
, P1 =

Et3

24(1 − ν)
, Q =

5Et

12 (1 + ν)
, D =

Et3

12(1 − ν2)
(6.1)

[
∇̂
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
[∇̄] =

⎡
⎢⎢⎣

∂
∂x1

0

0 ∂
∂x2

∂
∂x2

∂
∂x1

⎤
⎥⎥⎦ , ∇ =

{
∂
∂x1

∂
∂x2

}
(6.2)

[N] =

⎡
⎣−1 0 ∂

∂x1

0 −1 ∂
∂x2

⎤
⎦ , [G] =

[−Db
[∇̄] {0} ] (6.3)

[
Db
]

=
Et3

12(1 − ν2)

⎡
⎢⎢⎣

1 ν 0

ν 1 0

0 0 (1−ν)
2

⎤
⎥⎥⎦ , [Ds] =

5

6
tμ

[
1 0

0 1

]
(6.4)
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Meshfree Petrov-Galerkin Methods for the
Incompressible Navier-Stokes Equations
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Institute of Scientific Computing, Technical University of Braunschweig, D–38092
Braunschweig, Germany.

Abstract Meshfree stabilised methods are employed and compared for the solution
of the incompressible Navier-Stokes equations in Eulerian formulation. These Petrov-
Galerkin methods are standard tools in the FEM context, and can be used for
meshfree methods as well. However, the choice of the stabilisation parameter has to
be reconsidered. We find that reliable and successful approximation with standard
formulas for the stabilisation parameter can only be expected for shape functions
with small supports or dilatation parameters.

1 Introduction

Meshfree methods (MMs) for the incompressible Navier-Stokes equations are
frequently used in Lagrangian formulations, i.e. as classical particle methods
—with meshfree methods we refer here to methods based on the well-known
Moving Least Squares (MLS) concept or the Reproducing Kernel Particle
Method (RKPM) [6, 18, 19]. Here the particles (nodes) move with certain ve-
locities through the domain. In this paper however, meshfree methods for fluid
problems are analysed in an Eulerian formulation, where the particles are fixed
throughout the calculation. This formulation has a number of advantages.

Eulerian meshfree methods do not have problems with boundary condi-
tions in general, and particularly not with outflow boundary conditions, which
are difficult to handle in Lagrangian approaches as particles leave the domain.
Lagrangian methods also have problems with particle clustering, jeopardising
the stability of meshfree methods, and adaptive refinement is difficult due to
the large movement of the particles. Eulerian methods, in contrast, do not
show these problems. However, the advantages of Eulerian methods come at a
price: they require stabilisation in convection-dominated regimes, a frequently
occuring situation in fluid mechanics [1, 10, 16].
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In order for the implementation to be particularly convenient, we wish to
employ equal-order interpolations for velocities and pressure. For the incom-
pressible Navier-Stokes equations, this makes another stabilisation necessary
to circumvent the Babuška-Brezzi condition [14, 23].

We review standard stabilisation schemes that are frequently used in the
finite element (FEM) context [3]. We find that the structure of the stabilising
terms can be used for MMs as well, leading to Petrov-Galerkin methods —in
contrast to Bubnov-Galerkin methods the test functions are chosen differently
from the shape functions. However, the stabilisation parameter τ which weighs
the stabilisation terms requires special attention. Using the same formulas for
τ as in the FEM context is not justified in general. We show that the standard
formulas can only be expected to give satisfactory results for small dilatation
parameters of the meshfree shape functions. For a more detailed discussion
of stabilisation —particularly with regard to MMs— the interested reader is
referred to [7].

The proposed standard stabilisations are applicable to the weak form of
partial differential equations. It therefore appears natural that the employed
MMs also solve the weak form rather than strong form, i.e. Galerkin conditions
are used here rather than collocation.

The plan of the paper is as follows: In section 2 we review the standard
stabilisation schemes, first for a scalar partial differential equation, and sub-
sequently for the incompressible Navier-Stokes equation. In section 3 the
stabilisation parameter is determined, by first recalling the situation of a
one-dimensional advection-diffusion equation with linear finite elements, and
subsequently proposing a new method first in one dimension, investigating
the connection with the dilatation parameter, and proposing also a multi-
dimensional variant. Numerical examples which show that the proposed sta-
bilisation works are presented in section 4, ending with conclusions.

2 Stabilisation Schemes

The Streamline-Upwind Petrov-Galerkin (SUPG), the Pressure-Stabilising
Petrov-Galerkin (PSPG), and the Galerkin Least-Squares (GLS) stabilisa-
tion methods are briefly recalled. The SUPG method stabilises oscillations
in convection-dominated regimes, arising from the non-self-adjointness of the
convective operator of a differential equation [1, 13]. PSPG stabilisation al-
lows convenient equal-order interpolations in variational formulations with
constraints, as is the case for the incompressible Navier-Stokes equations
[15, 23]. This is accomplished by circumventing the Babuška-Brezzi condition,
the relevant stability criterion of this class of problems. GLS methods stabilise
oscillations in convection-dominated regimes as well as allowing equal-order
interpolations [14, 16].

All these stabilisation methods are consistent Petrov-Galerkin methods re-
sulting from a modification of the Bubnov-Galerkin test functions with suit-
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able perturbations. The fundamental idea is to stabilise through a product of
a perturbation and residual, weighted with a stabilisation parameter τ . The
determination of a suitable τ will be the subject of the next section.

The stabilisation schemes are described first for general scalar partial dif-
ferential equations, and subsequently for the incompressible Navier-Stokes
equations.

2.1 Scalar Differential Equation

A general scalar differential equation may be written in strong form as

Lu (x) = f(x) , x ∈ Ω ⊂ R
n

with suitable boundary conditions, where L is some differential operator, u the
solution, and f the loading or excitation. Following the method of weighted
residuals, the problem is discretised with an ansatz of ũ (x) = NT (x) u =∑

NI (x) uI —where N are either meshfree or mesh-based shape functions,
and the resulting residual error is required to be orthogonal to the test func-
tions;

∀w� :

∫
Ω

w� (Lũ − f) dΩ = 0.

Choosing w� = N leads to a Bubnov-Galerkin weighted residual method,
whereas if any w� 	= N —this holds for all stabilisation methods considered
in this paper— the procedure is denoted as a Petrov-Galerkin method. SUPG
and GLS stabilisation are defined as follows:

SUPG : w� = w + τLadvw
GLS : w� = w + τLw,

where w is the Bubnov-Galerkin weighting function, Ladv is the advection
part of the whole operator L, and τ is the stabilisation parameter. As there
is no pressure as Lagrange multiplier, PSPG stabilisation is obviously not
possible for this scalar problem.

2.2 Incompressible Navier-Stokes Equations

The incompressible Navier-Stokes equations for a Newtonian fluid are in
strong form

�

(
∂u

∂t
+ u · ∇u − f

)
−∇ · σ = 0

∇ · u = 0,

with σ = −pI + μ
(
∇u + (∇u)

T
)

,
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where u = (u, v) is the velocity vector, p the pressure, I the identity tensor, μ
the dynamic viscosity and � the density. Assume that suitable boundary con-
ditions are given. With an ansatz of ũ (x) = NT (x)u and p̃ (x) = MT (x)p,
the discretised stationary weak problem is∫

Ω

w� · [� (ũ · ∇ũ − f) −∇ · σ (ũ, p̃)] dΩ +

∫
Ω

q [∇ · ũ] = 0.

The Bubnov-Galerkin choice for the weighting functions w� and q leads to
oscillations in convection-dominated regimes, and equal-order interpolations
M = N violate the Babuška-Brezzi condition [14, 23]. Both situations require
stabilisation:

SUPG : w� = w + τ ũ · ∇w,
PSPG : w� = w + τ

�∇q,

SUPG/PSPG : w� = w + τ ũ · ∇w + τ
�∇q,

GLS : w� = w + τ
� [� (ũ · ∇w) −∇ · σ (w, q)] ,

where w and q are the usual Bubnov-Galerkin weighting functions.
One may choose individual τ for each stabilisation, however, in practice,

we have τSUPG = τPSPG = τGLS, which can be justified with numerical exper-
iments and mathematical analysis. SUPG stabilises oscillations in convection-
dominated regimes [1], and PSPG enables equal-order interpolations [23],
whereas GLS stabilises both aspects [14, 16]. In the following SUPG/PSPG
and GLS stabilisation are used respectively. The difference between these two
formulations is in the modification of the test functions

SUPG/PSPG : 1
�∇q

GLS : − 1
�∇ · σ(w, q) = 1

�∇q − 1
�∇ ·

[
μ
(
∇w + (∇w)T

)]
;

i.e. there are additional terms in the modification of the test functions in the
GLS stabilisation, which result from the diffusion part.

3 The Stabilisation Parameter

Each of the stabilisation methods described in the previous section consists
of two ingredients: The structure of the perturbation and the stabilisation
parameter τ . It can easily be shown that the same arguments for the structure
of the stabilisation schemes hold both for meshfree and mesh-based methods
[10]. However, this is in general not true for the stabilisation parameter τ
itself.

In the finite element context, there are several suggestions for the deter-
mination of τ in the literature, i.e. with the help of element matrix and vector
norms [24], the Green’s function of the element [12], mathematical error anal-
ysis [4, 5, 16], or model equations [2, 9, 17].
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From mathematical analysis in the finite element context, one can find
the following design criteria for the stabilisation parameter: τ > 0 in general,
τ = O

(
h2/μ

)
for low Peclet numbers Pe = |c|h/(2K), and τ = O (h/ |c|) for

high Peclet numbers, where h is a measure of the node distribution, and μ
and |c| are measures of the diffusion and convection respectively. A number
of formulas that fulfil these basic requirements for the stabilisation parameter
are available in the finite element context, see e.g. [11, 20].

The question of an ’optimal’ stabilisation parameter τ requires an opti-
mality criterion of the resulting approximation. Often the one-dimensional
advection-diffusion equation is taken as a model equation. There, the exact
solution is known, and enables one to calculate stabilisation parameters that
fulfil any desired optimality criterion. An optimality criterion that has proven
to be particularly useful is the one that obtains the nodally exact solution of
the model equation. It can be shown that for linear FEM and a regular node
distribution, the ’coth-formula’

τ =
Δx

2c

(
coth (Pe) − 1

Pe

)
, P e =

cΔx

2K
, Δx = xi − xi−1 = const

fulfils this criterion and leads to nodally exact approximations. This formula
has been generalised straightforward to multi-dimensions and is —together
with similar versions— frequently used in practice for the successful stabili-
sation of arbitrary problems with linear FEM; and this although it is derived
only from the special case of the one-dimensional advection-diffusion equa-
tion. It has been shown in [4, 5], that straightforward use of this formula for
higher-order FEM is not justified in general, and requires some modifications.
It may thus be presumed that using these standard formulas derived in the
mesh-based context of the linear FEM is also not suitable for MMs in general.

The standard way to obtain the coth-formula is to analytically solve the
resulting difference equations in the system of equations emanating from the
weak form of the model equation, discretised with linear FEM. Then, this
solution is equated with the analytical solution of the differential equation [2,
9, 17]. In the following, we present a new approach which does not require the
analytical solution of difference equations. We find this approach particularly
useful to determine nodally exact solutions of the one-dimensional advection-
diffusion equation with arbitrary (not only linear) finite element interpolations
and also with MMs.

3.1 One-Dimensional Advection-Diffusion Equation

The strong form of the one-dimensional advection-diffusion equation is

c
∂u

∂x
− K

∂2u

∂x2
= 0, (3.1)

with suitable boundary conditions. A scalar quantity u (x) is advected with
the velocity c and thereby experiences diffusion dependent on K. The exact
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solution of this problem is known as u(ex) (x) = C1e
γ·x + C2, with γ = c/K.

Particles (nodes) are introduced at the positions x1, x2, . . . , xn inside the do-
main. Discretisation of the SUPG stabilised weak form with ũ (x) = NT (x) u
gives ∫

Ω

(w + τc · ∂xw)
(
c · ∂xũ − K ∂2

xũ
)

dΩ = 0,

where ∂x = ∂/∂x.
Let us extract one equation —say equation no. I— of this system of equa-

tions, [∫
Ω

(wI + τIc · ∂xwI)
(
c · ∂xNT − K ∂2

xN
T
)

dΩ

]
u = 0. (3.2)

This equation corresponds to node I at xI with the test function wI . There is
one τI for each equation/node. Consequently, one may call this stabilisation
nodal stabilisation, in contrast to element stabilisation —where stabilisation
parameters τe for each element are used— which is standard in the FEM.

The τI -values of each equation are computed such that the nodally exact
solution is obtained. This can be done by introducing the exact solution into

the vector u. We have u(ex)(xj) = u
(ex)
j = C1e

γ·xj + C2, and according to the
ansatz ũ(xj) = ũj =

∑
Ni(xj)ui. Nodal exactness means

ũj = u
(ex)
j ,∑

Ni(xj)ui = C1e
γ·xj + C2,

Du = u(ex),

where D = Dij = Ni (xj) is a n×n matrix of the n shape functions evaluated
at the n nodal positions. D is a sparse matrix if the shape functions are non-
zero only in small parts of the domain Ω. In the FEM the shape functions
are non-zero only on local supports, specified indirectly with help of the mesh,
whereas the supports of MMs are defined with help of the dilatation parameter
ρ [6]. For shape functions with Kronecker-δ property, Ni(xj) = δij and thus
D = I.

Rearranging Eq.(3.2) for τI and replacing u with D−1u(ex) results in

τI = −
[∫
Ω (wI)

(
c · ∂xNT − K ∂2

xN
T
)

dΩ
]
D−1u(ex)[∫

Ω (c · ∂xwI∂x)
(
c · ∂xNT − K ∂2

xN
T
)

dΩ
]
D−1u(ex)

= −
[∫
Ω

(wI)
(
c · ∂xNTD−1 − K ∂2

xN
TD−1

)
dΩ

]
u(ex)[∫

Ω
(c · ∂xwI)

(
c · ∂xNTD−1 − K ∂2

xN
TD−1

)
dΩ

]
u(ex)

. (3.3)

In what follows, this result will be interpreted.

3.2 Linear FEM

In the case of linear finite element shape functions, a number of simplifications
for Eq.(3.3) is possible. Due to the Kronecker-δ property of the nodal finite
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element shape functions, we have D = D−1 = I. Partial integration is applied
to the diffusion term in the nominator, whereas this term cancels out in the
denominator. It remains for τI (for constant c and K):

τI = −
[
c
∫
Ω wI ∂xN

TdΩ + K
∫
Ω ∂xwI ∂xN

TdΩ
]
u(ex)[

c2
∫
Ω ∂xwI ∂xN

T dΩ
]
u(ex)

= −
[∫
Ω

wI ∂xN
TdΩ

]
u(ex)[

c
∫
Ω

∂xwI ∂xN
T dΩ

]
u(ex)

− K

c2
.

The integral expressions can be evaluated explicitely for the case of linear
shape and test functions and a regular node distribution as∫

Ω

wI ∂xN
T dΩ = 1

2

[−1, 0, 1
]
;∫

Ω

∂xwI∂xN
T dΩ = 1

Δx

[−1, 2, −1
]
.

The scalar product of these expressions with u(ex) = C1e
γ·x + C2 gives

τI =
Δx

2c

(EI+1 − EI−1)

(EI−1 − 2EI + EI+1)
− K

c2

=
Δx

2c

sinh (γΔx)

cosh (γΔx) − 1
− K

c2
=

Δx

2c

(
coth (Pe) − 1

Pe

)
, (3.4)

with EJ = C1e
γ·xJ +C2 and Pe = γ ·Δx/2 = c·Δx/(2K). With this definition

of the stabilisation parameter one obtains the nodally exact solution for the
one-dimensional advection-diffusion equation, approximated with linear FEM
and a regular node distribution. Using standard element stabilisation instead
of nodal stabilisation with τe = τI leads to the same result. This formula for
τ has often be called ’optimal’ in the literature [1, 2, 9, 17]. It has a local
character as it is independent of the boundary conditions and only relies on
the relative positions of the neighbouring nodes xI−1 and xI+1.

3.3 Meshfree Methods

For meshfree methods, Eq.(3.3), can not be simplified in general. This result
is interpreted as follows. Let us rewrite the expression for τI as

τI = −
[∫
Ω f1(wI)g

(
NTD−1

)
dΩ

]
u(ex)[∫

Ω f2(wI)g
(
NTD−1

)
dΩ

]
u(ex)

,

where f1, f2 and g are linear functions of the test and shape functions respec-
tively. The meshfree test and shape functions w and N have local supports.
However, the term NTD−1 can be interpreted as the ’globalised’ meshfree
shape functions having Kronecker-δ property. This may be gleaned from Fig-
ure 3.1, where local shape functions NT without and transformed global shape
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Figure 3.1. Local shape functions without and with Kronecker-δ property.

functions NTD−1 with Kronecker-δ property are depicted. It is well known
[18], that locally defined meshfree shape functions with Kronecker-δ property
require singular test functions in the MLS procedure. This however has a
number of severe numerical disadvantages and is only rarely used in practice.

Consequently, the vector
∫
Ω fi(wI)g

(
NTD−1

)
dΩ is a full vector, which is

in contrast to shape functions having Kronecker-δ property. In the latter case,
g

(
NTD−1

)
= g

(
NT

)
, and the vector is sparse. Evaluating the scalar product

with u(ex) shows the important difference: Shape functions without Kronecker-
δ property have non-zero entries in the scalar-product for all components
of the vector u(ex), whereas, in contrast, shape functions with Kronecker-δ
property only have non-zero entries for the neighbouring nodes. This may be
seen symbolically from Figure 3.2, where it is clear that the nodally exact τI
for shape functions without Kronecker-δ property can only be obtained with
a global criterion, because all entries of u(ex) have an influence on the result.

D
−1

NT( )g

u
ex

Ni(xj ) δij=shape functions with Ni(xj ) δij=shape functions with 

u
ex

zero entries of

u
ex

D
−1

NT( )g

/

zero entry
non−zero entry
influencing non−

Figure 3.2. Evaluating the scalar products for τ .

Keeping in mind that u(ex) is an exponential function, the scalar product
will depend more and more on the last entry of this vector as the convection-
diffusion ratio γ = c/K grows, because then

u(ex)(xn) = u(ex)
n � u

(ex)
i = u(ex)(xi) ∀i �= n
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The last component of u(ex) is u
(ex)
n , and belongs to node n with the largest

x-value, i.e. the global downstream node. We conclude that the stabilisation
parameter τI , leading to nodally exact solutions has a global character, as
it depends on all particle positions and for convection-dominated cases most
importantly on the global downstream node. This is in contrast to shape
functions with Kronecker-δ property, whose stabilisation relies on the neigh-
bouring nodes only. Therefore, it can not be expected, that using the simple
coth-formula —or other alternative similar versions derived as a local stabili-
sation criterion for linear FEM— is successful also for MMs.

3.4 Small Dilatation Parameters

Meshfree shape functions are constructed with help of the node distribution
and the definition of supports [6]. The support size is defined by the dilata-
tion parameter ρ. It is a well known fact, that MLS shape functions in one
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Figure 3.3. Meshfree shape function with varying dilatation parameters ρ.

dimension with first order consistency become more and more equal to the
standard nodal linear shape functions of the FEM as the dilatation parameter
ρ approaches Δx. This is also shown in Figure 3.3. Hence it may be concluded
that when ρ −→ Δx, the coth-formula becomes more and more suited also for
MMs. Hence

ρ −→ Δx ⇒ τ
(MM)
I −→ τ

(lin. FEM)
I =

Δx

2c

(
coth (Pe) − 1

Pe

)
A stability criterion of the MLS requires ρ > Δx [6]. Thus, one can never
reach the limit ρ = Δx, where the coth-formula gives the nodally exact solu-
tion. We propose however, that for reasonable advection-diffusion ratios and
’small’ dilatation parameters a successful stabilisation with standard formulas
—derived for mesh-based methods— can be obtained. We suggest dilatation
parameters of 1.3Δx ≤ ρ ≤ 1.7Δx. For smaller ρ, the condition number of the
MLS system of equations which has to be solved at every integration point



48 T.-P. Fries, H. G. Matthies

may be too large to allow a sufficiently accurate solution, and for larger ρ the
stabilisation may not be reliable. The numerical results in section 4 confirm
this assumption.

3.5 Stabilisation Parameter in Multi-Dimensions

In the FEM, i.e. in the mesh-based context, the generalisation of the τ -
formulas derived from the one-dimensional advection-diffusion equation to
multi-dimensions is straightforward [1]. The one-dimensional parameters Δx
and c are replaced with the element length he and the advection |c|. Assuming
small dilatation parameters, the same generalisation is proposed for meshfree
methods. Hence τI in multi-dimensions may be computed with

τI =
hρ

2 |c|
(

coth (Peρ) − 1

Peρ

)
with Peρ =

|c|hρ
2K

,

or any other of the alternative version for τ . Here hρ is the ’support length’,
analogously to the ’element length’ he in the mesh-based context. Figure 3.4
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Figure 3.4. Different versions to compute the support length.

shows several possibilities to interpret hρ in case of rectangular supports. The
support lengths for circular and ellipsoid supports can be directly read of from
these formulas.

In case of the incompressible Navier-Stokes equations, the advection co-
efficients cx and cy are replaced by the velocities u and v. In the numerical
experiments, we find that particularly the min-version works very successful
also for large aspect ratios (ρx/ρy � 1, or ρy/ρx � 1). See Mittal [21] for an
interesting parallel for high aspect elements : He also finds that the minimal
edge length works better than other versions for he.

The inner-ellipsoid-version and the real-length-version are dependent on
the streamline direction of the flow inside the support. In case of the in-
compressible Navier-Stokes equations, this introduces some disadvantages: A
representative streamline-direction has to be found for the whole support, the
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streamline direction changes with each iteration step, and the non-linearity
introduced by τ = f(u, v, hρ) is more complex as compared with the min and
max version.

4 Numerical Results

All results are computed with standard MLS shape functions with first order
consistency.

4.1 1D Advection-Diffusion Equation

The one-dimensional advection-diffusion Eq.(3.1) is solved with 21 particles.
The advection-diffusion ratio is γ = c/K = 100. Figure 4.5a) shows the unsta-
bilised results for two different dilatation parameters ρ = 1.3Δx (’small’) and
ρ = 3.3Δx (’large’). It may be seen that higher dilatation parameters lead to
more oscillations, simply due to their higher Peclet number, Peρ = cρ/(2K).
Clearly, for both cases, stabilisation is required. Figure 4.5b) shows the nodally
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Figure 4.5. Results for the 1D advection-diffusion equation; a) without any sta-
bilisation, b) with global stabilisation Eq.(3.3), c) with local coth-formula Eq.(3.4).

exact result, which can be obtained with the global stabilisation criterion for
τI derived in subsection 3.1. In figure 4.5c) it can be seen, that standard for-
mulas for τI , like the coth-formula, only lead to successful stabilisation when
the dilatation parameter is small, which confirms our conjecture in section
3.4.

Comparing figure 4.5b) and c) shows that for small dilatation parameters,
the result of the complicated global criterion and the coth-criterion gives al-
most the same result. This, however, is not the case for the large dilatation
parameter of ρ = 3.3Δx, where pronounced oscillations remain in the solu-
tion. These oscillations are clearly not a problem of the high gradient itself
that could not be captured by shape functions with such a large dilatation
parameter, but result from the use of unsuited stabilisation parameters.
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4.2 Incompressible Navier-Stokes Equations

As a first numerical test case we consider the driven cavity. This is a standard
test case with benchmark solutions given in [8] for a variety of Reynolds num-
bers. Here the problem is solved with Re = 1000. For a problem statement see
Figure 4.6, showing also streamlines and pressure distribution for Re = 1000.
Figure 4.7a) and b) show velocity profiles for u and v at y = 0.95, i.e. near the

Figure 4.6. a) Data of the driven cavity test case with irregular particle distribution.
Velocity b) and pressure c) fields for Re = 1000. See Color Plate 1 on page 293.

tangential flow boundary, where most of the oscillations occur. 21 × 21 regu-
larly distributed particles are used. The dilatation parameter of all supports
is ρ = 1.3Δx. Solutions for dilatation parameters ρ > 2.7Δx converged either
not at all or only very badly, underlining the need for small dilatation param-
eters, when standard formulas for τI are used. One can clearly see that the
oscillations apparent in the unstabilised result are smoothed out successfully.
This leads to a superior overall solution, even in those parts of the domain
where no oscillations are apparent in the unstabilised case. The next results
are computed with 101 × 101 particles and ρ = 1.3Δx. With such a large
number of particles, stabilisation is not needed at all, i.e. the unstabilised
solution is already free of oscillations. The centre velocity profiles in Figure
4.7c) and d) show that stabilisation does not degrade the accuracy when it is
not needed. It is interesting that unstabilised and SUPG stabilised results are
indistinguishable, whereas GLS stabilised results are slightly more diffusive.
This could be confirmed with a number of additional computations.

Figure 4.7e) and f) show a comparison of the benchmark solution with
the meshfree solution (with ρ = 1.3Δx), and the solution from the P1/P1
triangular element with the same number of unknowns. For both methods,
SUPG/PSPG stabilisation and an irregular node distribution as shown in
Figure 4.6a) has been used. The supports of the nodes are anisotropic with
respect to the distance to the neighbouring nodes —ρx,i = c · min(|xj − xi|)
and ρy,i = c · min(|yj − yi|)— with c = 1.6. The min-version for a support
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Figure 4.7. Velocity profiles of the driven cavity with different particle distribu-
tions.

length hρ performs best compared to the other hρ-versions. The convergence
towards the benchmark solution may clearly be seen, indeed the meshfree
solution is more accurate than the P1/P1 element. Comparing the results for
the regular 101 × 101 mesh with the irregular 96 × 96 mesh, one can see an
improvement in the solution for the anisotropic supports. Hence, similar to the
use of high-aspect ratio elements in mesh-based methods in order to resolve
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boundary layers successfully, high-aspect anisotropic supports should be used
in the meshfree context analogously.

The next test case is the ’steady-state’ solution for flow past a cylinder at
Re = 100, as presented in [22]. Instationary computations at this Reynolds
number lead to periodic flow patterns known as the Kármán vortex street,
but this is not considered here. A problem statement is given in Figure 4.8a).
Slip boundary conditions are applied at the upper and lower boundary, no-slip
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Figure 4.8. a) Problem statement of flow past a cylinder with irregular particle
distribution, b) velocity profile for v along the marked line.

boundary conditions are applied at the cylinder surface. The supports of the
meshfree shape functions are anisotropic as defined above for the irregular
driven cavity test case. Figure 4.8b) depicts the oscillatory unstabilised veloc-
ity profile for v along the marked line in Figure 4.8a). Both SUPG/PSPG and
GLS stabilisation suppress the oscillations successfully.

5 Conclusion

We employ SUPG/PSPG and GLS stabilisation for the incompressible Navier-
Stokes equations in Eulerian formulation and propose a stabilisation parame-
ter τ in MMs. We find that only small dilatation parameters of the meshfree
shape functions enable the successful use of standard formulas for τ . Gener-
alisation of the stabilisation parameter to multi-dimensions is as straightfor-
ward as it is for mesh-based methods. This holds also for irregular particle
distributions and anisotropic supports. It is observed that the stabilisation
methods smooth out oscillations successfully and maintain higher-order accu-
racy. The GLS stabilisation introduces slightly more artificial diffusion than
SUPG/PSPG stabilisation.
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Abstract The Natural Element method (also known as Natural Neighbour Galer-
kin method) is a Galerkin method based on the use of Natural Neighbour interpola-
tion to construct the trial and test functions. Unlike many other meshless methods, it
has some important characteristics, such as interpolant shape functions, easy impo-
sition of essential boundary conditions and linear precision along convex boundaries.

The natural neighbour interpolation scheme is based on the construction of a
Delaunay triangulation of the given set of points. This geometrical link provides the
NEM some other interesting properties. One of them is the ability of constructing
models without any explicit (CAD) boundary description. Instead, by invoking the
concept of α-shape of the cloud of points, the method is able to accurately extract
the geometry described by the nodes as it evolves, thus avoiding complex geometri-
cal checks in the formation of holes or waves in the domain, without any loss in mass
conservation requirements. It has been also proved how the use of α-shapes ensures
the strictly interpolant character of the shape functions along any type of boundary.
In this work we review the main characteristics of the method in its application to
Solid and Fluid Mechanics, including the study of mixed natural neighbour approxi-
mation, simulation of nearly incompressible media and some industrial applications.

1 Introduction

In this work we analyse the main features of one member of the wide fam-
ily of meshless methods. Natural Neighbour Galerkin methods (also known
as Natural Element methods, NEM) are based on the use of any natural
neighbour-based interpolation scheme. The most extended of these schemes
is often referred to as Sibson interpolation [18]. Among the most remarkable
properties of the resulting methods is the strictly interpolant character of the
resulting approximation, leading to an easy imposition of essential (Dirich-
let) boundary conditions. Also, the fact that the computation of the shape
functions is made —alt least, formally— upon the Delaunay triangulation of



56 D. González, I. Alfaro, E. Cueto, M. Doblaré, and F. Chinesta

the cloud of points, confers the method with a sound geometrical basis. This
allows, form instance, to couple the method with some geometrical methods,
such as α-shapes [12]. This will allow to build a method in which the geometry
of the domain is extracted as it evolves, without any geometrical description
of the boundary. Thus, boundary evolution, with holes or waves formation, is
naturally handled by the method in a very efficient way.

The resulting method appears to be specially well suited to be used in an
updated Lagrangian framework, since it has been proved that the shape of
Delaunay triangles does not affect the quality of the results [19]. In this work,
we review the main characteristics of the method when applied to Fluid and
Solid Mechanics with large strains. In section 2 we revisit the basics of natural
neighbour interpolation. In section 3 we review the governing equations for
incompressible media, together with the conditions that ensure stable approxi-
mations (LBB condition) and suitable enriched NE approximations. In section
4 we review the α-shape based Natural Element Method, firstly proposed in
[9] and its potential applications in free surface flows. Finally, in section 5 two
examples corresponding to Solid and Fluid Mechanics are presented.

2 Natural Neighbour Galerkin Methods

2.1 Natural Neighbour Interpolation

Natural neighbour interpolation is a method to interpolate multivariate data
first established by Sibson [18]. Recently, it has been generalised in [5] and
[15]. It relies in the concepts of Voronoi diagram [22] of the given cloud of
points and its dual structure, the Delaunay triangulation [11]. The Delaunay
triangulation (tetrahedrisation) of a cloud of points N = {n1, ..., nN} ∈ R

2

(R3) is the decomposition of the convex hull of the points into k-simplexes
(where k represents the dimension of the simplex, that is, k = 2 for a triangle
and k = 3 for a tetrahedron) such that the empty circumcircle criterion holds.
That is, the circumcircle (circumsphere) of each simplex contains no other
point of the cloud N . Fig. 2.1 represents the Delaunay triangulation of a
cloud of points.

For a given node nI , the associated Voronoi cell is composed by all of the
points which are closer to the node nI than to any other node. Formally,

TI = {x ∈ R
n : d(x, xI) < d(x, xJ) ∀ J �= I} (2.1)

where TI is the Voronoi cell and d(·, ·) represents the Euclidean distance. In
the problems considered in this paper, n = 2, 3.

For the definition of Sibson interpolation it is necessary to previously in-
troduce the concept of second order Voronoi cell. It is defined as the locus of
the points that have the node nI as the closest node and the node nJ as the
second closest node:
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Figure 2.1. Delaunay triangulation and Voronoi diagram of a cloud of points. On
the right, an example of a degenerate distribution of nodes, with the two possible
triangulations depicted. In this last case, four points lie in the same circumcircle and
thus no single triangulation exists.

TIJ = {x ∈ R
n : d(x, xI) < d(x, xJ) < d(x, xK) ∀ J �= I �= K} (2.2)

If a new node is added to a given cloud of points, the Voronoi cells will
be modified by the presence of the new point. Sibson [18] defined the natural
neighbour coordinates of a point x with respect to one of its neighbours I
as the ratio of the cell TI that is transferred to Tx, when adding x to the
initial cloud of points, to the total area of Tx. In other words, being κ(x) and
κI(x) the Lebesgue measures of Tx and TxI respectively, the natural neighbour
coordinates of x with respect to the node I is defined as

φsibI (x) =
κI(x)

κ(x)
. (2.3)

The resultant shape function depends obviously of the relative position of the
nodes. An example for a node surrounded by other eight on a regular lattice
is depicted in Fig. 2.3.
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Figure 2.2. Definition of the Natural Neighbour coordinates of a point x.
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Figure 2.3. Natural Element shape function (courtesy N. Sukumar).

The resultant shape function has some remarkable properties (see [19] or
[10] for more in-deep explanations and rigorous proofs of this behaviour).
Firstly, it is smooth (C1 at least) everywhere except at the nodes, as can
be seen in Fig. 2.3. Natural neighbour (Sibson) shape functions posses linear
completeness [19] and form a partition of unity. Therefore, it is possible to
enrich natural neighbour interpolants in order to increase the order of the
polinomial of the interpolation, as proposed in [3].

3 Natural Element Methods for Incompressible Media

The governing equations for incompressible Solid or Fluid Mechanics are:

1. Equilibrium equations (balance of linear momentum in the absence of
inertial and body forces):

∇ · σ = 0 in Ω. (3.1)

2. Incompressibility of the medium:

∇ · u = 0 in Ω, (3.2)

where σ represents the Cauchy stress tensor and u the displacement vector if
we deal with Solid Mechanics and usually the velocity vector if it is the case
with Fluid Mechanics. Boundary conditions are of the type

σ · n = t on Γt (3.3)

u = u on Γu. (3.4)
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in which n is the outward normal on the boundary Γ =Γu∪Γt, with Γu∩Γt=∅.
If we assume small displacements and strains, the constitutive equations

can be expressed, both for an isotropic elastic solid and a newtonian fluid, as

σ = −pI + 2μ∇su (3.5)

0 = ∇ · u − p

λ
(3.6)

where p represents the hydrostatic pressure and ∇s the symmetric part of
the gradient operator, thus leading to the Cauchy small strains tensor or to
the strain rate tensor in Solid or Fluid Mechanics, respectively. The Lamé
parameters λ and μ are expressed in terms of the Young’s modulus E and the
Poisson’s ratio ν as

μ =
E

2(1 + ν)
, λ =

2μν

1 − 2ν
(3.7)

As ν approaches 0.5, it is clear that λ becomes unbounded, so that the equation
(3.6) represents the incompressibility restraint ∇ · u = 0.

The variational (weak) formulation is usually stated as:
Find u ∈ U such that∫

Ω(t)

σ(u) : ε∗dΩ =

∫
Γt

t̄ · u∗dΓ ∀u∗ ∈ V (3.8)∫
Ω(t)

(−∇u +
1

λ
p)p∗dΩ = 0 ∀p∗ ∈ L2(Ω(t)), (3.9)

where U = {u|u ∈ (
H1(Ω)

)2
, u|Γu

= ū}, V = {u∗|u∗ ∈ (
H1(Ω)

)2
, u|Γu

=
0}, and Γu and Γt are the portions of the boundary of the domain Ω with
prescribed displacements (velocities) and tractions, respectively. t and u rep-
resent such tractions and displacements. As usual, H1 and L2 are the Sobolev
and Lebesgue functional spaces, respectively.

If we approximate the displacement (velocities) and pressures by employing
a finite-dimensional set of basis functions, we arrive to a discrete form of the
previous equations (Bubnov-Galerkin method)

uh(x) =

n∑
I=1

φI(x)uI (3.10)

ph(x) =

n∑
I=1

ψI(x)pI . (3.11)

The functions ψI(x) and φI(x) in this work represent some form of natu-
ral neighbour interpolation, as presented before. This leads to the following
system of algebraic equations:(

K G

GT M

) (
u
p

)
=

(
f
0

)
(3.12)
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where

KIJ =

∫
Ω

BT
I CBJdΩ (3.13)

GIJ = −
∫
Ω

B̃
T

I ψJdΩ (3.14)

M IJ = − 1

λ

∫
Ω

ψIψJdΩ (3.15)

fI =

∫
Γt

φItdΓ (3.16)

and

B̃I =
[
φI,1(x) φI,2(x)

]
(3.17)

BI =

⎛
⎝φI,1(x) 0

0 φI,2(x)
φI,2(x) φI,1(x)

⎞
⎠ (3.18)

CIJKL = μ(δIKδJL + δILδJK) (3.19)

It must be noted that, if we consider totally incompressible situations, M = 0.
As it is well known, not all of the displacement-pressure approximations

constructed in this way lead to stable and convergent results [4]. The con-
ditions to be fulfilled by the chosen approximation are determined by the
inf–sup or Ladyzhenskaya-Babuška-Brezzi (LBB) condition [2] [7], together
with the elipticity condition of the resultant formulation. The LBB condition
may be written as:

inf
ph∈Ph

sup
uh∈Uh

∫
Ω phdivuhdΩ

||ph||0||uh||1 = γh ≥ γ > 0 (3.20)

where γ is a positive constant independent of the mesh size, h. Ph and Uh
represent the pressure and displacement approximation spaces.

This condition is rarely proved analytically. Instead, its fulfillment is usu-
ally checked numerically. In [14], the authors have tested some mixed formu-
lations arising from the Partition of Unity enrichment [3] of the displacement
(or velocity) field. If the resultant approximation is able to reproduce the xy
monomial, together with the usual NE linear consistency, it seems to verify
the LBB condition. The resultant shape functions are depicted in Fig. 3.4.

In order to verify the fulfilment of the LBB condition, Bathe [4] proposed
a numerical test based on the use of a finite, small, set of meshes. To evaluate
expression (3.20), an equivalent discrete form is developed:

inf
W h

sup
Uh

W T
hGhUh√

W T
hGhW h ·

√
UT
hShUh

= γh ≥ γ > 0 (3.21)
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(a) (b) (c)

Figure 3.4. Plot of the shape functions φx (a), φy (b) and φxy (c).

where W h and Uh are vectors of nodal values corresponding to pressures and
displacements, respectively. Gh and Sh are the matrices associated with the
norms

||ph||20 = W T
hGhW h and ||uh||21 = UT

hShUh (3.22)

Gh and Sh are positive semidefinite and positive definite [8], respectively. It
is then demonstrated that the first non-zero eigenvalue, λk, of the problem

Ghφh = λShφh (3.23)

is related to the searched value γh through the expression

γh =
√

λk. (3.24)

If the constructed approximation for a given problem consists of np pres-
sure degrees of freedom and nu displacement degrees of freedom, the number
of spurious pressure modes is given by

kpm = k − (nu − np − 1) (3.25)

Bathe [4] proposed the use of sequences composed of three or more meshes in
order to test a given approximation. If the γh value is not bounded away from
0, one can say that the LBB condition is not satisfied. The test is only valid
for the given geometry and problem considered, but it can be assured that if
the test is not passed, the approximation will not verify the LBB condition.

In order to test the ability of the proposed formulations to pass the inf-sup
condition, we have checked a sequence of three meshes, composed by 3 × 3,
4 × 4 and 5 × 5 nodes, regularly and irregularly distributed over a square of
side unity (see Fig. 3.5).

Results for these discretisations are shown in Fig. 3.6. Results for the test
applied over the 3/1 triangular Finite Element are also shown. It can be seen
how the Sibson approximation, enriched with {1, x, y, xy}, for the displace-
ments gives good results, both using Thiessen (C−1) and Sibson interpolations
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Figure 3.5. Geometry of the
problem used to evaluate the nu-
merical inf-sup test.
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Figure 3.6. Inf-sup test for the proposed ap-
proximations.

for the pressure. However, the enrichment with the monomials {1, x2, y2}, ini-
tially proposed in order to avoid rank deficiency in the resultant stiffness
matrix, gives rise to spurious pressure modes. These same spurious modes
can be obtained for certain configurations in the Sibson-Thiessen element,
in a way similar to the bilinear displacement–constant pressure quadrilateral
Finite Element [4].

Although results for a unique problem are not extrapolable, the proposed
formulation for the {1, x, y, xy} enrichment seems to be stable and adequate
for a wide variety of problems. Also, enrichment with the set {1, xy} seems to
give stable approximations. In this case, the resulting approximation closely
resembles the MINI element [1] (linear triangular finite element with bubble
and discontinuous approximation for pressure).

The most usual Sibson-Thiessen mixed approximation closely resembles
the bilinear displacement-constant pressure finite element, which presents spu-
rious modes under certain boundary conditions. However, for most practical
applications, it has shown a good behaviour and has never presented locking.
An example is presented in section 5.2 in which this approximation is used.

4 The α-shape based Natural Element Method

In most Lagrangian Fluid Mechanics simulations the tracking of the free sur-
faces requires a special treatment, since the possibility of development of
holes, waves, etc. exists. Traditionally, this task has been accomplished by
discretising the boundary and performing complex geometrical checks. This
may include the checking for new free surface boundary segments, if holes are
developing, or boundary segments deletion, if the free surface disappears.

In this work we have chosen a different approach, based on the geomet-
rical concept of α-shapes [13]. In addition, the authors have shown that the
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construction of natural neighbour-based interpolants over an α-shape of the
domain leads to linearly interpolant approximations along the whole bound-
ary, thus solving one of the biggest problems of meshless methods. The prob-
lem can be formulated briefly as follows: can the cloud of points itself contain
enough information about the geometry of the domain over which it is defined?
If the density of the cloud is enough, the answer is affirmative.

An α-shape is a polytope that is not necessarily convex nor connected,
being triangulated by a subset of the Delaunay triangulation of the points.
Thus, the empty circumcircle criterion holds. Let N be a finite set of points
in R

3 and α a real number, with 0 ≤ α < ∞. A k-simplex σT with 0 ≤ k ≤ 3
is defined as the convex hull of a subset T ⊆ N of size | T |= k + 1. Let b
be an α-ball, that is, an open ball of radius α. A k-simplex σT is said to be
α-exposed if there exist an empty α-ball b with T = ∂b

⋂
N where ∂ means

the boundary of the ball. In other words, a k-simplex is said to be α-exposed
if an α-ball that passes through its defining points contains no other point of
the set N .

Following this, we can define the family of sets Fk,α as the sets of α-exposed
k-simplexes for the given set N . This allows us to define an α-shape of the set
N as the polytope whose boundary consists on the triangles in F2,α, the edges
in F1,α and the vertices or nodes in F0,α. As remarked before, an α-shape is a
polytope that can be triangulated by a subset of the Delaunay triangulation
or tetrahedrization, that is, by an α-complex.

In the case of non-uniform nodal distributions, the possibility of using
density-scaled α-shapes [20] has also been studied in [9]. The resultant ge-
ometry of the domain ranges from the cloud of points itself for α = 0 to the
convex hull of the cloud for α = ∞. The parameter α can be seen as a measure
of the level of detail up to which the domain is represented. If there exists a
sufficiently dense nodal sampling it would be easy to find an α value that
gives an accurate geometry definition. See [9, 17] for a deeper discussion on
how the value of α can affect the results.

In this approach, the geometry of the domain is extracted at each time
step, with no need of complex geometrical checks. See example 5.2 for an
application of the method in an extrusion flow.

5 Numerical Examples

5.1 Cantilever Beam under Bending

In this section we study the problem of a two-dimensional beam subjected to
a parabolically distributed load at its end and fixed at the other side, as shown
in Fig. 5.7. We consider a discretisation composed of 85 nodes, as shown in
Fig. 5.8.

Material characteristics are: Young’s modulus 1.0 and variable Poisson’s
ratio, ranging from 0.4 to 0.4999999. To test the performance of the proposed
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Figure 5.7. Geometry of the cantilever beam under bending.

Figure 5.8. Cloud of points for the simulation of a beam under bending.

formulations, we have compared the tip displacement to the theoretical one
[21]. In this case, L = 4.0 and D = 1.0.

In table 5.1, normalised end displacements (uy(L, 0)) are presented. These
results include those of the FEM, obtained by using the same Delaunay
triangles for the construction of the approximation. It can be seen how
the displacement-based NEM presents severe locking as the Poisson’s ratio
increases, as expected. However, all the other constructed approximations
present good agreement with the analytical result. In particular, we would
like to highlight the good behaviour of the Sibson-Thiessen approximation,
previously used by the authors in Fluid Mechanics simulations in [17]. Al-
though it is possible to impose certain boundary conditions so as to generate
a spurious pressure mode (in a similar way than to the 4/1 Finite Element [4]),
no spurious pressure modes have been observed throughout our computations.

Poisson’s Ratio 0.4 0.4999 0.4999999

FEM-displacement-based 93.74 18.73 17.75

FEM-3/3 96.38 94.45 94.45

FEM-3/1 100.61 101.52 101.52

NEM-displacement-based 94.36 19.09 19.58

NEM-Sibson-Sibson 96.78 94.93 94.94

NEM-Sibson-Thiessen 99.28 99.07 99.07

NEM Sibson × {1, x2, y2}-Thiessen 100.38 100.33 99.34

NEM Sibson × {1, x, y, xy}-Sibson 99.32 100.52 100.52

NEM Sibson × {1, x, y, xy}-Thiessen 99.4 100.7 100.7

Table 5.1. Results for the beam under bending problem, expressed as % of the
theoretical result at the beam end.
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Results are even better for the enriched Sibson approximation. None of
the implemented enrichments showed spurious pressure modes for this prob-
lem and the obtained accuracy is remarkable. However, the use of enriched
approximations is not so intuitive, since the nodal parameters in the discrete
system of equations do not represent the nodal displacements.

5.2 Simulation of Extrusion Processes

In this section we deal with the simulation of extrusion processes. We consider
a benchmark example of an extrusion die whose geometry is shown in Fig.
5.9. For the simulation, only the region of the metal nearest to the die was
considered by enforcing appropriate displacements. The cloud of points is
composed by 2989 nodes and remained unchanged throughout the simulation.
The extruded metal was simulated as viscoplastic, with constitutive equations
as follows:

σ = −pI + 2μ(D)D (5.1)

If we assume a Norton-Hoff plasticity model (viscoplastic flow with null yield
stress), viscosity is a function of the second invariant of the strain rate tensor,
namely

μ(D) = μ0

(√
2D : D

)n−1

(5.2)

being μ0 the so-called consistency coefficient and n the pseudo-plasticity co-
efficient. In this example, the consistency coefficient was μ0 = 1.0MPa · s
and the pseudo-plasticity n = 0.3. Note the highly non-linear character of the
resultant behaviour. Similar material behaviour was employed in [6] in the
simulation of metal forging processes with Corrected Smooth Particle Hydro-
dynamics methods (CSPH).

3
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Figure 5.9. Geometry of the extrusion die and detail of the simulated region.

The mould is considered as perfectly rigid and slipping contact between
metal and die was assumed. Of course, this model is a first attempt to validate
the ability of natural neighbour Galerkin methods to handle such type of
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processes. The springback of the extruded metal can not be predicted, for
instance, by assuming a Norton-Hoff plasticity model like the one exposed in
Eq. (5.1).

Equivalent plastic strain (or, equivalently, second invariant of the strain
rate tensor,

√
2D : D) for time steps 1, 100 and 200 is depicted in Fig. 5.10.

It can be noticed the accuracy obtained in the volume prediction (see Fig.
5.11). In this case, total volume error is under 0.25%, much lower than those
predicted in references like [16] by using ALE techniques and a similar number
of nodes. This is in spite of the high distortion of the Delaunay triangles
achieved throughout the simulation (see the α-shape of the cloud of points in
an intermediate time step in Fig. 5.12).

Figure 5.10. Equivalent plastic strain for time steps 1, 100 and 200. See Color
Plate 2 on page 293.

In this example it can be seen how natural neighbour Galerkin methods
constitute an appealing choice among numerical methods to simulate forming
processes in general, and among meshless methods in particular.
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Figure 5.11. Volume of the computed α-shape of the extruded metal (a) and
associated relative error (b).

Figure 5.12. α-shape of the cloud of points at the 200th time step.

6 Closing Remarks

In this paper we have briefly reviewed the characteristics of Natural Neigh-
bour Galerkin methods. In particular, we have focused on the simulation of
incompressible media and the development of stable mixed approximations
through the use of Partition of Unity enrichment of Sibson interpolants.

Natural Neighbour Galerkin methods offer a sound geometrical basis for
the treatment of free boundaries through the use of α-shapes. It has been
shown how the use of an appropriate α-shape of the cloud of points allows us
to accurately track the free surface of the domains through the simulated time
interval. At the same time, the employ of α-shapes ensures linear interpolation
along the boundary of the domain.
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In summary, we believe that the α-shape based Natural element Method
(α-NEM) is an attractive choice when large distortion of the domain appears,
both in Solid and Fluid Mechanics.
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14. D. González, E. Cueto, and M. Doblaré. Volumetric locking in Natural Neigh-
bour Galerkin methods. International Journal for Numerical Methods in Engi-
neering, submitted for publication, 2003.

15. H Hiyoshi and K. Sugihara. Voronoi-based interpolation with higher continuity.
In Proceedings of the 16th Annual ACM Symposium on Computational Geome-
try, pages 242–250, 2000.

16. R. W. Lewis, S. E. Navti, and C. Taylor. A mixed lagrangian-eulerian approach
to modelling fluid flow during mould filling. International Journal for Numerical
Methods in Engineering, 25:931–952, 1997.



The α-NEM in Solid and Fluid Mechanics 69

17. M. A. Mart́ınez, E. Cueto, M. Doblaré, and F. Chinesta. Natural Element mesh-
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Part VI: A p-robust Multilevel Solver
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Abstract In this paper we focus on the efficient multilevel solution of linear systems
arising from a higher order discretization of a second order partial differential equa-
tion using a partition of unity method. We present a multilevel solver which employs
a tree-based spatial multilevel sequence in conjunction with a domain decomposition
type smoothing scheme. The smoother is based on an overlapping subspace splitting,
where the subspaces contain all interacting local polynomials. The resulting local
subspace problems are solved exactly. This leads to a computational complexity of
the order O(Np3d) per iteration. The results of our numerical experiments indicate
that the convergence rate of this multilevel solver is independent of the number of
points N and the approximation order p. Hence, the overall complexity of the solver
is of the order O(log(1/ε)Np3d) to reduce the initial error by a prescribed factor ε.

1 Introduction

The particle–partition of unity method (PUM) [7, 8, 9, 10, 11, 18] is a meshfree
Galerkin method for the numerical treatment of partial differential equations
(PDE). In essence, it is a generalized finite element method (GFEM) which
employs piecewise rational shape functions rather than piecewise polynomial
functions. The shape functions ϕiψ

n
i of a PUM are products of a partition

of unity (PU) {ϕi} and local approximation functions ψni which are usually
chosen as polynomials. In contrast to other GFEM approaches [19, 20], these
shape functions are linearly independent and make up a basis of the discrete
function space. This allows us to construct fast multilevel solvers in a similar
fashion as in the finite element method (FEM) [12, 21].

In most meshfree discretizations the two most time-consuming tasks are
the assembly of the stiffness matrix and the load vector, i.e. numerical inte-
gration, and the solution of the resulting linear system. With respect to the
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asymptotic complexity of these steps the assembly of the stiffness matrix is
usually directly proportional to the number of nonzeros nnz of the matrix.
The solution of the linear system, however, may only be achieved with similar
complexity if an optimal iterative solver is employed. For example, the com-
plexity of a direct solver such as LU- or Cholesky-decomposition is in general
much larger. In the case of dense matrices a direct solver requires O(dof

3)
operations and O(dof

2) storage. With more advanced sparse direct solvers
these complexities can be reduced to some extent only. In the special case
of regular meshes in two dimensions for instance a nested dissection solver
requires O(dof

3/2) operations and O(dof ln(dof)) storage [5] whereas the op-
timal computational complexity is of the order O(dof) = O(nnz). Hence, this
optimal storage and operation complexity will be lost when a direct solver is
employed.

For a PUM discretization in d dimensions, the number of degrees of free-
dom is of the order dof = O(Npd) where N denotes the number of points or
particles and p is the approximation order. Here, the number of nonzeros nnz

is of the order O(Np2d). Thus, the optimal complexity for the assembly of
the stiffness matrix is O(Np2d). To allow for an efficient and scalable mesh-
free simulation the employed linear solver should have a similar complexity.
Since there is no such optimal solver based on general algebraic methods,
non-optimal (sparse) direct solvers are often employed in meshfree methods
or generalized finite element methods [20]. Our goal is the development of
an iterative solver with optimal complexity for the PUM; i.e., the number of
iterations required to solve the linear system should be independent of the
number of points N and the approximation order p, and the computational
cost associated with a single iteration should be close to O(Np2d).

In this paper we present a multilevel solver for partition of unity dis-
cretizations which employs a tree-based spatial multilevel construction and a
domain decomposition type smoothing scheme. The respective subspace split-
ting is based on overlapping subspaces which contain all shape functions ϕjψ

m
j

interacting on a given patch ωi := supp(ϕi). The computational complexity
of a single iteration of this solver is O(Np3d). Furthermore, the results of our
numerical experiments indicate that the convergence rate is independent of N
and p; i.e., the number of iterations required to solve the linear system within
a given relative accuracy ε is independent of N and p. Therefore, the overall
complexity of the solver is of the order O(log(1/ε)Np3d) for any polynomial
degree p which is optimal up to a factor of O(pd).

The remainder of this paper is organized as follows: In section 2 we shortly
review the construction of PUM spaces and the Galerkin discretization of
a linear elliptic PDE using our PUM. In section 3 we shortly review our
tree-based multilevel cover construction and introduce a p-robust smoothing
scheme based on domain decomposition ideas. Then, we present the results of
our numerical experiments in section 4 which indicate that the convergence
rate of our multilevel solver is independent of N and p. We consider scalar
Poisson-type problems in two and three space dimensions and the system of
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the Navier–Lamé equations in two dimensions with up to 393216 degrees of
freedom. Finally, we conclude with some remarks in section 5.

2 Partition of Unity Method

In the following, we shortly review the construction of partition of unity spaces
and the meshfree Galerkin discretization of an elliptic PDE, see [7, 8, 18] for
details.

2.1 Construction of Partition of Unity Spaces

In a PUM, we define a global approximation uPU as a weighted sum of local
approximations ui,

uPU(x) :=

N∑
i=1

ϕi(x)ui(x). (2.1)

These local approximations ui are completely independent of each other, i.e.,
the local supports ωi := supp(ui), the local basis {ψni } and the order of
approximation pi for every single ui :=

∑
n uni ψ

n
i ∈ V pi

i can be chosen in-
dependently of all other uj . Here, the functions ϕi form a partition of unity
(PU). They are used to splice the local approximations ui together in such
a way that the global approximation uPU benefits from the local approxima-
tion orders pi yet it still fulfills global regularity conditions. Hence, the global
approximation space on Ω is defined as

V PU :=
∑
i

ϕiV
pi

i =
∑
i

ϕi span〈{ψni }〉 = span〈{ϕiψni }〉. (2.2)

The starting point for any meshfree method is a collection of N independent
points P := {xi ∈ R

d |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need to
construct a partition of unity {ϕi} on the domain of interest Ω to define an ap-
proximate solution (2.1) where the union of the supports supp(ϕi) = ωi covers

the domain Ω ⊂ ⋃N
i=1 ωi and ui ∈ V pi

i (ωi) is some locally defined approxima-
tion of order pi to u on ωi. Thus, the first (and most crucial) step in a PUM
is the efficient construction of an appropriate cover CΩ := {ωi}. Throughout
this paper we use a tree-based construction algorithm for d-rectangular covers
CΩ presented in [8, 18]. Here, the cover patches ωi are products of intervals
(xli − hli, x

l
i + hli) for l = 1, . . . , d. With the help of weight functions Wk de-

fined on these cover patches ωk we can easily generate a partition of unity by
Shepard’s method, i.e., we define

ϕi(x) =
Wi(x)∑

ωk∈Ci
Ω

Wk(x)
, (2.3)
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where Ci := {ωj ∈ CΩ |ωi ∩ ωj �= ∅} is the set of all geometric neighbors
of a cover patch ωi. Due to the use of d-rectangular patches ωi, the most
natural choice for a weight function Wi is a product of one-dimensional func-

tions, i.e., Wi (x) =
∏d
l=1 W l

i (xl) =
∏d
l=1 W (

x−xl
i+h

l
i

2hl
i

) with supp(W) = [0, 1]

such that supp(Wi) = ωi. It is sufficient for this construction to choose a
one-dimensional weight function W with the desired regularity which is non-
negative. The partition of unity functions ϕi inherit the regularity of the
generating weight function W.

In general, a partition of unity {ϕi} can only recover the constant function
on the domain Ω. Hence, we need to improve the approximation quality to
use the method for the discretization of a PDE. To this end, we multiply the
partition of unity functions ϕi locally with polynomials ψni . Since we use d-
rectangular patches ωi only, a local tensor product space is the most natural
choice. Here, we use products of univariate Legendre polynomials as local
approximation spaces V pi

i , i.e., we choose

V pi

i = span〈{ψni |ψni =

d∏
l=1

Ln̂l

i , ‖n̂‖1 =

d∑
l=1

n̂l ≤ pi}〉,

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate
Legendre polynomials Ln̂l

i : [xli−hli, x
l
i+hli] → R, and n is the index associated

with the product function ψni =
∏d
l=1 Ln̂l

i .
In summary, we can view the construction given above as follows⎛
⎝{xi}

W
{pi}

⎞
⎠ →

⎛
⎝ {ωi}

{Wi}
{V pi

i = span〈ψni 〉}

⎞
⎠ →

( {ϕi}
{V pi

i }
)

→ V PU =
∑

ϕiV
pi

i ,

where the set of points P = {xi}, the generating weight function W and the
local approximation orders pi are assumed to be given. For the approximation
of vector fields we employ vector-valued shape functions; i.e., we change the
definition of our local approximation spaces V pi

i = span〈ψn,li 〉 = span〈ψni el〉
where el denotes an appropriate unit vector but leave the scalar partition of
unity functions ϕi unchanged. Throughout this paper we use a fixed polyno-
mial degree p on all patches ωi, i.e, pi = p for all i = 1, . . . , N .

2.2 Variational Formulation and Galerkin Discretization

The imposition of essential boundary conditions within meshfree methods is
more involved than in the FEM for a number of reasons and many differ-
ent approaches have been proposed [18]. We use Nitsche’s method [14] to
enforce Dirichlet boundary conditions which leads to a non-standard weak
formulation. The main advantages of this approach are that it does not re-
quire a second function (or multiplier) space and that it leads to a positive
definite linear system, see [11, 18] for a more detailed discussion of Nitsche’s
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method in the PUM context. Here, we only state the resulting weak formula-
tion a(u, v) = l(v) of the Poisson problem

−Δu = f in Ω ⊂ R
d,

u = gD on ΓD ⊂ ∂Ω,
un = gN on ΓN = ∂Ω \ ΓD,

(2.4)

and for the system of the Navier–Lamé equations

−μΔu − (λ + μ)∇(∇ · u) = f in Ω ⊂ R
d, d = 2, 3 (2.5)

with suitable boundary conditions uD = gD on ΓD ⊂ ∂Ω and σ(u) · n = gN
on ΓN = ∂Ω \ΓD. The parameters λ and μ are the so-called Lamé parameters
of the material and are related to the Poisson ratio ν and the Young modulus
E via λ = Eν

(1+ν)(1−2ν) and μ = E
2(1+ν) .

The bilinear form a(u, v) associated with (2.4) using Nitsche’s method is
given by

a(u, v) =

∫
Ω

∇u∇v +

∫
ΓD

u(βv − vn) − unv

and the respective right-hand side is given by

l(v) =

∫
Ω

fv +

∫
ΓD

gD(βv − vn) +

∫
ΓN

gNv.

The subscript n denotes the normal derivative and β is the Nitsche regular-
ization parameter. For (2.5) we obtain the bilinear form

a(u, v)=

∫
Ω

σ(u) :ε(v)+

∫
ΓD

2μβεu·v+λβdiv(u·n)(v·n)−(
(σ(u)·n)·v+u·(σ(v)·n)

)
where βε and βdiv denote the two Nitsche regularization parameters involved,
σ(u) := λ∇·uI +2μ ε(u) is the symmetric stress tensor and ε(u) := 1

2 (∂iuj +
∂jui) denotes the strain tensor associated with the displacement field u = (ui),
i = 1, . . . , d. The respective linear form l(v) on the right-hand side is given by

l(v) =

∫
Ω

f ·v+

∫
ΓN

gN ·v+

∫
ΓD

2μβεgD ·v+λβdiv(gD ·n)(v ·n)−gD ·(σ(v) ·n).

Note that Nitsche’s method introduces regularization parameters which
depend on the employed discretization space. Hence, as we refine the dis-
cretization space, the regularization parameters and therefore the bilinear
form a(·, ·) and the linear form on the right-hand side l(·) change. Note also
that the regularization parameters can be computed automatically during a
simulation without much computational cost for a specific discretization space,
see [11, 18] for details.

Finally, for the Galerkin discretization of (2.4) or (2.5) we have to compute
the stiffness matrix
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A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψ
m
j , ϕiψ

n
i ) ,

and the right-hand side vector

f̂ = (f(i,n)) , with f(i,n) = l(ϕiψ
n
i ) .

The stable approximation of the respective integrals is somewhat more in-
volved in the PUM than in the FEM. Due to the meshfree construction given
above the shape functions ϕiψ

n
i are piecewise rational functions only, so that

the respective integrands have a number of jumps within the integration do-
main which need to be resolved.

To estimate the computational cost associated with the Galerkin dis-
cretization, let us first assume that the shape functions are (piecewise) poly-
nomials like in the GFEM. Then each integral associated with a particular
entry A(i,n),(j,m) of the stiffness matrix can be computed as the sum of in-
tegrals over the elements within supp(ϕi) ∩ supp(ϕj). Now, all integrands3

are polynomial functions as well and the integrals can be evaluated exactly. If
the shape functions are polynomials of degree p the integrals are polynomials
of degree (p + 1)2 and can be evaluated with O(dp2) operations. Therefore,
we can assemble the stiffness matrix with O(N(dp2 + p2d)) operations, if we
evaluate all polynomials simultaneously.

In the PUM, however, the analytical integration of the integrals is in gen-
eral not possible. Hence, we need to employ a numerical integration scheme.
The cost CNI associated with the numerical integration of a single entry of the
stiffness matrix is given by

CNI = O(nIC nIN CEI)

where nIC denotes the number of integration cells, nIN the number of inte-
gration nodes per cell, and CEI the cost associated with the evaluation of the
integrand.4 In our implementation we use a subdivision sparse grid integra-
tion scheme [8, 18] where nIC is essentially determined by the jumps of the
derivatives of ϕi; i.e., nIC = O(3d(l + 1)d) is given by the order l of the em-
ployed spline weight function W. In the following we restrict ourselves to the
case of l = 1. Within each of these integration cells the integrands are smooth
functions and the integrals can be approximated efficiently by a higher order
quadrature formula. To this end, we use a sparse grid quadrature scheme [6]
based on univariate Gauss–Patterson [16] rules. The number of quadrature
points of such a sparse grid formula is given nIN = O(2qqd−1) where q de-
notes the refinement level of the employed univariate quadrature rule; i.e., the

3 In fact, only the integrals associated with the stiffness matrix and the mass matrix
are polynomials. The exact integration of the load vector is usually not possible.

4 Note that this bound on the computational complexity does not directly involve
the required quality of the numerical integration scheme. The parameters, how-
ever, must be chosen such that the numerical integration is accurate enough.
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number of quadrature points of the univariate rule is of the order O(2q). The
polynomial exactness of the Gauss–Patterson rule on level q is 3 · 2q−1 − 1.

Let us assume that the integrands on the integration cells can be approxi-
mated accurately by a polynomial of degree (p+1)2.5 Hence, we can estimate
the cost CA,NI associated with the assembly of the stiffness matrix in our
implementation by

CA,NI = O(Np(ln p)d−1(dp + pd + p2d)).

Hence, our implementation is optimal up a factor of O(p(ln p)d−1), under the
assumptions stated above. The results of our numerical experiments indicate
that our numerical integration scheme gives an accurate and stable approxi-
mation of the stiffness matrix.6

3 Multilevel Solution of Resulting Linear System

In the following we focus on the solution of the large sparse linear system
Aũ = f̂ where ũ denotes a coefficient vector and f̂ denotes a moment vector.
This solution step is a very time consuming part of any numerical simulation.
The use of an inappropriate solver can drive up the compute time as well as
the storage demand dramatically.

Classical direct solvers for dense matrices like Gaussian elimination or
LU-decomposition have a storage requirement of O(dof

2) and the number of
operations even scales with O(dof

3), where dof denotes the number of degrees
of freedom. More advanced sparse direct solvers can reduce these complexities
to some extent only. In the special case of regular meshes in two dimen-
sions for instance a nested dissection solver requires O(dof

3/2) operations and
O(dof ln(dof)) storage [5]. For our PUM space we have dof = O(Npd) where
N = card(CΩ) denotes the number of patches ωi and p the order of approx-
imation. The number of nonzeros entries of a PUM stiffness matrix is of the
order O(Np2d). Hence, this optimal storage and operation complexity will be
lost when a direct solver is employed.

Alternatively, an iterative scheme like the Jacobi- or Gauss–Seidel method
can be used. Here, we do not have a significant increase in the storage re-
quirements, but the number of operations necessary to obtain the solution of

5 This assumption can be justified by the structure of ϕi and our choice of α and W.
6 In fact, we use an adaptive version of the quadrature scheme with a dynamic stop-

ping criterion to ensure the quality of the numerical integration also for problems
with non-constant coefficients, see [8, 18]. Note that it is essential to analyze the
interplay of the numerical integration error and the approximation error to be
able to develop an assembly scheme for the stiffness matrix with optimal com-
plexity and optimal approximation properties. Such an analysis would allow to
determine the required tolerance of the numerical quadrature automatically and
can help to minimize the computational costs associated with the assembly of the
stiffness matrix.
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Figure 3.1. Hierarchical cover construction in two dimensions. The cell decompo-
sition induced by the initial point set (upper left) and its corresponding tree rep-
resentation (upper right, white: INNER tree nodes, gray shaded: LEAF tree nodes).
Here, the leaves of the tree correspond to the given initial points xi. The final cell
decomposition with all generated points xL (lower left) and its tree representation
(lower right) after the completion of the cover construction. Now, the leaves of the
tree correspond to the points xL ∈ PJ .

the linear system up to a prescribed accuracy does not scale with the optimal
complexity. A sophisticated class of iterative methods which not only show
an optimal scaling in the storage demand but also in the operation count
are so-called multilevel iterative solvers or multigrid methods [12, 21]. These
solvers, however, are not general algebraic methods but involve a substantial
amount of information about the discretization and possibly the PDE. We
have developed a first multilevel solver for PUM discretizations in [9, 18]. The
convergence rate of this solver is independent of the number of patches N ,
but not of the approximation order p. Now we present an extension of this
multilevel solver which gives a convergence rate that is also independent of p.
To this end, let us shortly review the multilevel construction from [9, 18].

The first step toward the design of an efficient multilevel solver is the
construction of an appropriate sequence of function spaces. To this end, we
have developed a hierarchical multilevel cover construction algorithm [8, 9, 18]
which gives a sequence of point sets Pk = {xi,k} and covers Ck

Ω = {ωi,k}. The
algorithm is based on so-called d-binary trees (quadtrees, octrees) and ensures
the covering property on all levels k = 0, . . . , J , i.e.,

⋃
ωi,k∈Ck

Ω
ωi,k ⊃ Ω, see

Figures 3.1 and 3.2. We define the cover patches ωi,k = α Ci,k via a scaling of
the cells Ci,k of the tree decomposition by a scalar factor α ∈ (1, 2), see Figure
3.3. The overlap parameter α must be larger than 1 to obtain (at least) a C0



A p-robust Multilevel Solver for Partition of Unity Methods 79

Figure 3.2. Multilevel cover sequence in two dimensions. The cell decompositions
and its respective tree representation (upper right, white: INNER tree nodes, gray
shaded: LEAF tree nodes) for the fine level point set PJ = P4 (upper row), and
two coarser level point sets P3 (center row) and P2 (lower row). The leaves of the
respective tree correspond to the points xL ∈ Pk.

PU (independent of the employed weight function W) and should be smaller
than 2 to ensure the linear independence of the resulting shape functions.

Note that the underlying tree data structure also allows for an efficient
neighbor search for general point sets PJ and it reduces the computational
effort associated with numerical integration, see [8, 9, 18] for details. Fur-
thermore, it can be used for the approximation of the domain Ω, see Figure
3.4. Via the general PUM construction given in section 2 we then obtain the
sequence of PUM function spaces V PU

k associated with the sequence of cov-
ers Ck

Ω . Note that these spaces are nonnested, i.e., V PU
k−1 �⊂ V PU

k , and that
the shape functions ϕi,kψ

n
i,k are non-interpolatory. Thus, the natural injection

and a direct interpolation between two successive PUM spaces V PU
k−1 and V PU

k

are not available. Therefore, we need to construct appropriate prolongation
operators Ikk−1 : V PU

k−1 → V PU
k and restriction operators Ik−1

k : V PU
k → V PU

k−1

to transfer information between the PUM spaces.
To this end, we can use an L2-projection as prolongation between two

spaces V PU
k−1 and V PU

k . However, a global L2-projection is prohibitively expen-
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Figure 3.3. Point sets Pk (upper row) and covers Ck
Ω (lower row) for k = 10, . . . , 8

for a graded initial point set.

sive. Yet, within the PUM context we can construct a very cheap prolonga-
tion operator using a localized L2-projection approach. Based on the error
estimates for the PUM [1, 2] and the geometric hierarchy of our tree construc-
tion, we have developed this cheap but qualitatively good projection. Here,
we only give a short review over the construction principles, see [9, 18] for
details.

The localization of the L2-projection within our PUM consists of two steps.
At first consider the basic PUM error estimate

‖v − vPU‖2
L2 (Ω) ≤ C

∑
i

‖v − vi‖2
L2 (ωi∩Ω), (3.1)

where vPU :=
∑

i ϕi
∑

n uni ψ
n
i and vi :=

∑
n uni ψ

n
i . From (3.1) we know that

it is sufficient to control the local errors ‖v − vi‖L2 (ωi∩Ω) on each cover patch
ωi. Now choose v = uPU

k−1 =
∑

j ϕj,k−1uj,k−1 =
∑

j ϕj,k−1

∑
m umj,k−1ψ

m
j,k−1

and vPU = Ikk−1u
PU
k−1 =

∑
i ϕi,kui,k =

∑
i ϕi,k

∑
n uni,kψ

n
i,k so that (3.1) reads

‖uPU
k−1 − Ikk−1u

PU
k−1‖2

L2 (Ω) ≤ C
∑
i

‖uPU
k−1 − ui,k‖2

L2 (ωi,k∩Ω). (3.2)

Hence, we observe that we can approximate the global coarse function uPU
k−1

locally on the fine cover patches ωi,k using the local basis functions ψni,k, rather

than approximating uPU
k−1 by the global shape functions ϕi,kψ

n
i,k on the finer

level k. Now in a second step we establish an upper bound for each of the
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Figure 3.4. Tree-based approximation of a spherical domain (left), a smooth non-
convex domain (center), and a quarter of a spherical domain with a spherical hole
(right) on level k = 5 (upper row) and level k = 7 (lower row).

terms on the right-hand side of (3.2) utilizing the geometric hierarchy of our
tree. Due to our tree-based cover construction we can find exactly one coarse
patch ωĩ,k−1 for every fine patch ωi,k such that ωi,k ⊂ ωĩ,k−1 holds. Hence, we
can introduce the respective coarse local function uĩ,k−1 associated with the

unique coarse patch ωĩ,k−1 into each term ‖uPU
k−1 − ui,k‖L2 (ωi,k∩Ω) of (3.2).

Finally, we obtain the estimate

‖uPU
k−1 − ui,k‖L2 (ωi,k∩Ω) ≤ ‖uPU

k−1 − uĩ,k−1‖L2 (ωi,k∩Ω)+

‖uĩ,k−1 − ui,k‖L2 (ωi,k∩Ω)
(3.3)

by the triangle inequality. This estimate allows us to approximate each coarse
local function uĩ,k−1, independent of all other local components uj,k−1 of uPU

k−1,
on the respective fine cover patch ωi,k with ωi,k ⊂ ωĩ,k−1 since the first term

of (3.3) is small by definition of uPU
k−1. Hence, we can set up our prolongation

operators via the so-called local-to-local L2-projection. To this end, we project
each local approximation ui,k−1 on level k − 1 independently to the finer
level k using the hierarchical condition ωi,k ⊆ ωĩ,k−1 instead of the geometric
neighbor relation ωi,k ∩ωj,k−1 �= ∅ only. The respective matrix representation
of this prolongation is given by
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Ikk−1 := Π̃k
k−1 := (M̃k

k )−1(M̃k
k−1) with

(M̃k
k )(i,n),(i,m) := 〈ψmi,k, ψni,k〉L2 (ωi,k∩Ω) and

(M̃k
k−1)(i,n),(̃i,m) := 〈ψm

ĩ,k−1
, ψni,k〉L2 (ωi,k∩Ω).

The storage requirement of this local-to-local projection is minimal. We need
to store only a single block-entry (M̃k

k )−1
i,i (M̃k

k−1)i,̃i for each patch ωi,k on level
k. Moreover, the respective integrals involve only the local basis functions
ψm
ĩ,k−1

and ψni,k and can be computed very efficiently. Overall, the local-to-

local projection operator can be computed with O(Np3d) operations in general
(and with O(Npd) if we use orthogonal polynomials locally). Furthermore, it
is exact for polynomials of degree p and therefore suitable also for higher order
approximations.

In summary, we now have a sequence of stiffness matrices Ak coming from
the direct Galerkin approximation of the respective bilinear form ak(·, ·) on
each level k and a sequence of high-quality transfer operators Ikk−1, Ik−1

k based
on localized L2-projections. As the final ingredient for our multilevel solver, see
Algorithm 3.1, we now need to construct a sequence of appropriate smoothing
operators Sk.

Algorithm 3.1 (Multilevel Algorithm M ν1,ν2
γ (k, xk, bk))

1. If k > 0:
a) For l = 1, . . . , ν1: Set xk = Spre

k (xk, bk).

b) Set dk−1 := Ik−1
k (bk − Akxk).

c) Set ek−1 := 0.
d) For i = 1, . . . , γ: ek−1 = Mν1,ν2

γ (k − 1, ek−1, dk−1).

e) Set xk = Ck (xk, ek−1) := xk + Ikk−1 ek−1.

f) For l = 1, . . . , ν2: Set xk = Spost
k (xk, bk).

2. Else:
a) Set xk = A−1

k bk.

Many iterative solvers such as the classical Jacobi- and Gauss–Seidel it-
erations, the overlapping domain decomposition methods and even multigrid
methods can be interpreted in the framework of subspace correction methods
(SCM) [3, 4, 13, 15, 21, 22]. Hence, let us shortly review the abstract setting
of an SCM.

The general idea is as follows: First, we write the discretization space
V =

∑N
j=1 Vj as the sum7 of subspaces Vj with maps Pj : Vj → V .8 Then,

we choose symmetric positive definite bilinear forms bj(·, ·) on each Vj repre-
sented by operators Bj such that solutions to the systems of linear equations
Bjuj = fj on Vj are easily computable, and B−1

j can be considered as an ap-
proximate inverse to the restriction of A to Vj . Finally, we combine these local

7 Note that we do not assume that the splitting is a direct sum.
8 Actually, it is sufficient to require V =

P
j PjVj , i.e., the condition Vj ⊂ V is not

necessary.
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approximate inverses B−1
j appropriately to define a global approximate inverse

to A on the discretization space V . There are essentially two approaches to the
definition of an approximate inverse of A by the B−1

j , the additive approach
and the multiplicative approach.

In the so-called parallel subspace correction (PSC) or additive Schwarz
method we set up an iterative solution process via the operator

MPSC := I−ω

N∑
j=1

PjTj = I−ω
( N∑
j=1

PjB
−1
j Rj

)
A, (3.4)

where ω is a relaxation parameter and the involved operators are defined by

a(u, v) = 〈Au, v〉V , bj(uj , vj) = 〈Bjuj , vj〉Vj
,

〈Rju, vj〉V = 〈u, Pjvj〉V , bj(Tju, vj) = a(u, Pjvj).

The iteration operator of the successive subspace correction (SSC) or multi-
plicative Schwarz method is given by

MSSC :=

N∏
j=1

(
I−PjTj

)
=

N∏
j=1

(
I−PjB

−1
j RjA

)
. (3.5)

Note that the PSC operator (3.4) can also be interpreted as a preconditioned
Richardson iteration where the preconditioner is given by

CPSC :=
N∑
j=1

PjB
−1
j Rj . (3.6)

Let us now restrict ourselves to the case of Bj := A|Vj
which means that we

consider exact subspace solvers only. Then, we have essentially two degrees of
freedom in the design of our smoothing scheme: The splitting of the discretiza-
tion space and the type of the iteration, namely the additive scheme (3.4) or
the multiplicative scheme (3.5). To define an appropriate splitting of our PUM
space V PU (we omit the level index k in the following), let us consider the spe-
cific structure of the PUM shape functions. The product structure of the shape
functions ϕiψ

n
i implies two natural subspace definitions. For instance, we can

define the subspaces Vn := spani〈ϕiψni 〉 := {v ∈ V PU | v =
∑

i ϕiv
n
i ψni }.

These subspaces, however, contain functions with global support on the do-
main Ω, see Figure 3.5 (left), and the dimension of each subspace is of the
order O(N). Therefore, a direct solution of A|Vn

is not feasible. We would
need to resort to fast iterative solution techniques for these subspace prob-
lems. Furthermore, we are interested in smoothing schemes Sk for Algorithm
3.1 based on our spatial multilevel construction. Hence, there is no additional
benefit from the fact that the solutions to A|Vn

contain global information and
the computational cost associated with the solution of the subspace problems
make this splitting unsuitable for our construction.
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Figure 3.5. Subdomains (light gray shaded) associated with the subspaces Vn

(left), Vi (center), and eVl (right) and the support of the a single shape function
ϕiψ

n
i (dark gray shaded) based on a cover with α = 1.5.

A more appropriate subspace definition is given by Vi := ϕiV
p
i =

spann〈ϕiψni 〉 := {v ∈ V PU | v =
∑

n ϕiv
n
i ψni }. These spaces contain functions

with local supports only, see Figure 3.5 (center). Furthermore, the dimension
of the subspace Vi is given by the dimension O(pd) of the local approximation
spaces V p

i . Hence, we can compute the inverse (A|Vi
)−1 of each of the sub-

space problems with acceptable complexity of O(p3d); i.e., one iteration of a
PSC or SSC iteration based on this splitting is of the order O(Np3d).

Note that both subspace definitions lead to a direct splitting of our PUM
function space V PU =

∑
i Vi =

∑
n Vn; i.e., every basis function ϕiψ

n
i is con-

tained in exactly one subspace. In terms of the index pairs (i, n) we have
a disjoint decomposition of the index set {(i, n)} which induces a specific
partitioning of the PUM stiffness matrix A = (A(i,n),(j,m)). Using the sub-
spaces Vi we obtain the so-called polynomial block-form. Here, a single block
Ai,j = (A(i,n),(j,m)) corresponds to a local discretization of the PDE on the
domain ωi ∩ ωj ∩ Ω.

Note that a PSC iteration (3.4) based on the direct splitting V PU =
∑

i Vi
corresponds to the classical block-Jacobi iteration and the SSC iteration (3.5)
corresponds to the block-Gauss–Seidel iteration (BGS) where we have only a
small overlap between the supports of functions from different subspaces, see
Figure 3.5 (center). Even though we consider a direct splitting and employ
an exact solver (A|Vi

)−1 within a specific subspace Vi there are still couplings
between the subspaces due to the overlap of the supports via the global prob-
lem A. The quality of the PSC and SSC iterations is obviously determined by
the strength of these couplings. The two parameters within our PUM which
can influence the strength of the couplings between two different subspaces
Vi and Vj , and hence the quality of the iterations, are the overlap parameter
α used in our cover construction and the polynomial degree p. Since we are
interested in a smoothing scheme that is truly robust, i.e., that works with
the same quality at least for a large range of parameters α and p, this direct
splitting approach cannot be pursued.



A p-robust Multilevel Solver for Partition of Unity Methods 85

One approach to overcome this problem is to consider subspace splittings
V PU =

∑
l Ṽl which are no longer direct splittings, i.e., a basis function ϕiψ

n
i

may now belong to several subspaces Ṽl. Consider the subspace definition

Ṽl :=
∑

ωi∩ωl �=∅

Vi = span(i,n),i∈Cl
〈ϕiψni 〉 (3.7)

where Cl := {i |ωi ∩ ωl �= ∅} denotes the neighborhood of the cover patch

ωl, see Figure 3.5 (right). The subspace Ṽl contains all functions ϕiψ
n
i whose

support ωi has a non-vanishing intersection with the patch ωl. Hence, when
we solve the subspace problem A|eVl

we resolve all couplings involving the

basis functions ϕlψ
q
l . Thus, for each patch ωl there is one subspace problem

A|eVl
which resolves all couplings involving the associated basis functions ϕlψ

q
l

independent of the overlap parameter α and the polynomial degree p. Note
that this splitting is similar to the one employed in [17].

Since the subspace splitting into the Ṽl is not a direct splitting it does
not correspond to a simple partitioning scheme of the stiffness matrix A.
Here, we rather have to assemble the (discrete) local subproblems Al,l from
the global linear system via the so-called Galerkin products Al,l := P T

l APl
where Pl denotes the discrete extension operator which embeds the subspace
Ṽl in the global PUM space V PU. In our case Pl is just a mask matrix, i.e.,
a reduced identity matrix. With the matrices A and Pl the application of the
SSC iteration operator (3.5) to a linear system Aũ = f̂ can be realized by
Algorithm 3.2. In the following we refer to this iteration as a multiplicative
overlapping Schwarz (MOS) smoother.

Algorithm 3.2 (Successive subspace correction method)

1. For all l = 1, . . . , N :
a) Compute local residual f̂l := P T

l (f̂ − Aũ).

b) Solve subspace problem (P T
l A Pl)ũl = Al,lũl = f̂l.

c) Update global iterate ũ = ũ + Plũl.

In Figure 3.6 we give the smoothing results obtained after one iteration of
the BGS and the MOS smoother for p = 1 and p = 5. From these surface plots
we can clearly observe that the MOS smoother gives much smoother iterates
than the BGS smoother. More notably, the quality of the BGS smoother
deteriorates for higher order approximations. The results for p = 5 are not as
smooth as for p = 1. For the MOS smoother we find a completely different
behavior. There is no deterioration in the quality for larger p. In fact it even
seems that the results for p = 5 are better than for p = 1.

Note that Algorithm 3.1 corresponds to an SSC iteration based on a mul-
tilevel subspace splitting. Similarly, we can define a PSC type multilevel iter-
ation and the associated preconditioner (3.6). For instance if apply (3.4) not
only the sum of all local subspaces (3.7) on a particular level k but rather to

the sum of all local subspaces Ṽl,k on all levels k, i.e.,
∑

k

∑
l Ṽl,k, together
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Figure 3.6. Random valued initial guess (left) and smoothing results using a block-
Gauss–Seidel (center) and a multiplicative overlapping Schwarz smoother (right).
Depicted are the current iterates after a single application of the smoother. The
discretization was based on a uniform node arrangement on level 5 and employed
polynomials of degree p = 1 (upper row) and p = 5 (lower row).

with the mask matrices Pl,k, the prolongations Ikk−1 and the restrictions Ik−1
k ,

we obtain a multilevel PSC iteration. The application of the associated mul-
tilevel additive Schwarz (MAOS) preconditioner (3.6) can be realized with
Algorithm 3.3.

Algorithm 3.3 (Multilevel parallel subspace correction preconditioner)

1. Set initial value ũJ = 0.
2. For all levels k = J, . . . , 1:

a) Set right-hand side f̂k−1 = Ik−1
k f̂k.

b) Set initial value ũk−1 = 0.
3. For all levels k = 0, . . . , J :

a) For all l = 1, . . . , Nk:

i. Set local right-hand side f̂k,l := P T
k,l(f̂k).

ii. Solve subspace problem (P T
l,kAkPl,k)ũl,k = (Ak)l,lũk,l = f̂k,l.

iii. Update global iterate ũk = ũk + Pl,kũl,k.
4. For all levels k = 1, . . . , J :

a) Update global iterate ũk = ũk + Ikk−1ũk−1.

In many cases the convergence behavior of the PSC schemes and the respective
SSC schemes are similar. Yet, the PSC methods have certain advantages with
respect to parallelization.
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4 Numerical Results

In all our experiments with our multilevel solver (see Algorithm 3.1) and the
multilevel preconditioner (see Algorithm 3.3) we solve a linear system of the
form

Aũ = f̂ = 0.

We choose a vanishing right-hand side vector f̂ = 0 and a random initial guess
uPU

0 with ‖uPU
0 ‖L2 ≈ 1. Here, we approximate the L2-norm of the function

uPU
0 by

‖uPU
0 ‖2

L2 ≈ ũT0 Mũ0 =: ‖ũ0‖L2 = 1,

where ũ0 denotes the random valued coefficient vector associated with the
function uPU

0 and M := 〈ϕjψmj , ϕiψ
n
i 〉L2 is the mass matrix. The stopping

criterion for the iteration is ‖ũr‖L2 < 10−13 (or r = 50 for Algorithm 3.1 and
r = 250 for Algorithm 3.3) where r denotes the number of iterations. Hence,
the average convergence or error reduction rate of our multilevel iteration with
respect to the L2-norm9 of the error is given by

ρL2 :=

(
ũTr Mũr

ũT0 Mũ0

) 1
r

=

(‖ũr‖L2

‖ũ0‖L2

) 1
r

= ‖ũr‖
1
r

L2 .

Furthermore, we also compute the more common convergence rates

ρl2 :=

(‖ũr‖l2
‖ũ0‖l2

) 1
r

and ρR :=

(‖Aũr‖l2
‖Aũ0‖l2

) 1
r

which are based on the l2-norm of the current coefficient vector ũr and the
respective residual vector Aũr. These convergence rates are given for multi-
level iterations M 1,1

1 , the so-called V (1, 1)-cycle, based on the local-to-local
L2-projection using the non-overlapping BGS smoother and the overlapping
MOS smoother. The quality of both these SSC smoothers is dependent on
the ordering of the respective subspaces, i.e., of the cover patches. In all our
experiments we use a space filling curve ordering scheme based on the Hilbert
curve for the cover patches, see [9, 18] for details. Besides the convergence
rates ρBGS and ρMOS we also give the finest discretization level J , the poly-
nomial degree p of the local approximation spaces V p

i , the respective number
of degrees of freedom dof, and the number of nonzeros entries nnz of the stiff-
ness matrix AJ on the finest level. In all experiments, we used a linear B-spline
as the generating weight function W, a uniform node arrangement as initial
point set, and Legendre polynomials up to degree 9 as local approximation
spaces in our PUM discretization.

9 Note that even for uniform covers CΩ we have no uniform correspondence (with
respect to the number of degrees of freedom) between the L2-norm of a function
uPU and the l2-norm of its corresponding coefficient vector ũ due to the use of
local polynomials, just like in the p-version of the finite element method.
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Figure 4.7. Convergence history for a preconditioned conjugate gradient solver with
the MAOS preconditioner (left), the V (1, 1)-cycle using the BGS smoother (center)
and the MOS smoother (right), for the Poisson problem (4.1) in two dimensions.
Depicted are the results for p = 1 on levels 2, . . . , 8 (top row), p = 3 on levels 2, . . . , 7
(center row), and p = 5 on levels 2, . . . , 6 (bottom row).

In our first experiment, we considered the Poisson problem

−Δu = f in Ω = [0, 1]d ⊂ R
d,

u = g on ∂Ω,
(4.1)

in two and three dimensions with f = 0 and Dirichlet boundary conditions
g = 0. The results of this experiment are summarized in Figure 4.7 and in
Tables 4.1 and 4.2. From the plots depicted in Figure 4.7 we clearly observe
that the convergence behavior of a conjugate gradient method preconditioned
with the MAOS scheme (Algorithm 3.3, Figure 4.7 (left)) is dependent on
the number of points N as well as the polynomial degree p. The multilevel
iteration M1,1

1 (Algorithm 3.1), i.e., the V (1, 1)-cycle, converges independent
of the number of points N for the BGS smoother (Figure 4.7 (center)) but
not independent of the polynomial degree p. Only the V (1, 1)-cycle with the
MOS smoother (Figure 4.7 (right)) shows a convergence behavior that is
independent of the number of points N and the polynomial degree p. Hence, in
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Table 4.1. Convergence rates ρBGS obtained for a V (1, 1)-cycle using the BGS
smoother, and the rates ρMOS using the overlapping MOS smoother for the Poisson
problem (4.1) in two dimensions.

J p dof nnz ρBGS
L2 ρBGS

l2 ρBGS
R ρMOS

L2 ρMOS
l2 ρMOS

R

8 1 196608 5280804 0.261 0.256 0.220 0.039 0.037 0.020
8 2 393216 21123216 0.166 0.160 0.150 0.002 0.001 0.001
7 3 163840 14592400 0.324 0.337 0.322 0.001 0.001 0.001
6 4 61440 8122500 0.580 0.607 0.581 0.002 0.001 0.001
6 5 86016 15920100 0.692 0.736 0.695 0.001 0.001 0.001
5 6 28672 6927424 0.791 0.868 0.754 0.002 0.004 0.001
5 7 36864 11451456 0.811 0.892 0.781 0.001 0.003 0.001
5 8 46080 17892900 0.829 0.910 0.813 0.002 0.002 0.001
4 9 14080 6400900 0.850 0.926 0.830 0.001 0.002 0.001

Table 4.2. Convergence rates ρBGS obtained for a V (1, 1)-cycle using the BGS
smoother, and the rates ρMOS using the overlapping MOS smoother for the Poisson
problem (4.1) in three dimensions.

J p dof nnz ρBGS
L2 ρBGS

l2 ρBGS
R ρMOS

L2 ρMOS
l2 ρMOS

R

5 1 131072 13289344 0.319 0.312 0.266 0.034 0.032 0.020
4 2 40960 9733600 0.192 0.182 0.163 0.002 0.002 0.001
3 3 10240 4259200 0.443 0.460 0.430 < 0.001 < 0.001 < 0.001
3 4 17920 13043800 0.657 0.689 0.637 < 0.001 < 0.001 < 0.001

contrast to FEM the additive Schwarz or PSC preconditioner (Algorithm 3.3)
does not yield a similar convergence behavior as the multiplicative Schwarz
or SSC iteration (Algorithm 3.1).

The rates ρBGS , see Tables 4.1 and 4.2, measured for the V (1, 1)-cycle with
the BGS smoother are clearly p-dependent and deteriorate with increasing p.
We measure ρBGSL2 = 0.261 for p = 1 and ρBGSL2 = 0.850 for p = 9. The rates
ρMOS obtained with the MOS smoother, however, are almost constant for
all polynomial degrees p. Furthermore, these rates are very small. We find
ρMOS
L2 to be no worse than 0.002 for p ≥ 2; i.e., our solver converges up to

machine accuracy in less than 6 iterations. Note that due to storage limitations
not all experiments with increasing p could be carried out up to the same
discretization level J . Here, we were limited by the number of nonzeros nnz of
the stiffness matrix AJ on the finest level J . From the numbers given in Tables
4.1 and 4.2 we see that nnz on the finest level J is similar for all experiments
and ranges from 5 million to 21 million entries.

In our second experiment we considered the Navier–Lamé equations

−μΔu − (λ + μ)∇(∇ · u) = f in Ω = [0, 1]2 ⊂ R
2,

u = g on ∂Ω,
(4.2)

in two dimensions with f = 0 and Dirichlet boundary conditions g = 0.
The measured convergence rates ρ for our multilevel solver with the BGS
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Table 4.3. Convergence rates ρBGS obtained for a V (1, 1)-cycle using the BGS
smoother, and the rates ρMOS using the overlapping MOS smoother for the elas-
ticity problem (4.2) in two dimensions.

J p dof nnz ρBGS
L2 ρBGS

l2 ρBGS
R ρMOS

L2 ρMOS
l2 ρMOS

R

8 1 393216 21123216 0.664 0.658 0.552 0.128 0.124 0.074
7 2 196608 21013056 0.347 0.336 0.277 0.008 0.007 0.003
6 3 81920 14440000 0.671 0.689 0.655 0.010 0.011 0.009
5 4 30720 7952400 0.786 0.813 0.764 0.002 0.001 < 0.001
5 5 43008 15586704 0.791 0.831 0.778 0.002 0.002 < 0.001
4 6 14336 6635776 0.827 0.882 0.805 0.002 0.003 0.001
4 7 18432 10969344 0.857 0.908 0.831 0.002 0.002 0.001
3 8 5760 3920400 0.871 0.927 0.836 0.001 0.001 < 0.001

smoother and the MOS smoother are given in Table 4.3. Again we observe
that the rates ρBGS for the BGS smoother deteriorate for larger p. The rates
ρMOS obtained for the MOS smoother on the other hand are very small and
stay constant e.g. ρMOS

L2 ≈ 0.002 for increasing p ≥ 2.
In summary, the results of our numerical experiments indicate that only

the multilevel solver (Algorithm 3.1) with the overlapping MOS smoother
(Algorithm 3.2) converges independent of N and p. Furthermore, the measured
convergence rates ρMOS are very small. It took no more than 6 iterations for
the solver to converge up to machine accuracy for p ≥ 2.

Note, however, that the computational costs associated with the overlap-
ping smoothing scheme involve a rather large and d-dependent constant. Due
to the overlap of the subspace splitting, the local problems are of dimen-
sion O(3dpd) whereas the dimension of the local problems without overlap
is O(pd), see Figure 3.5 (center) and (right). Since these local problems lead
to dense matrices in both cases, the storage requirement of the overlapping
MOS smoother is larger by a factor of 32d than the storage demand of the
non-overlapping BGS smoother. Similarly, the number of operations required
by the MOS smoother is larger by a factor of 33d due to the direct solution of
the larger local problems. Hence, the overall compute time of the multilevel
solver with the non-optimal BGS smoother may be significantly smaller in the
practical range of N and p. Furthermore, the multilevel solver with the BGS
smoother is applicable to larger problems due to its smaller storage demand.

5 Concluding Remarks

We presented a multilevel solver for PUM discretizations which employs a
tree-based spatial multilevel sequence in conjunction with an overlapping do-
main decomposition type smoothing scheme. The results of our numerical
experiments indicate that the convergence rate ρ of this multilevel solver is
independent of the number of points N and the approximation order p; i.e.,
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the solver is robust with respect to p. The overall computational complexity
of our solver is of the order O(Np3d) to reduce the initial error by a pre-
scribed factor which is optimal up to a factor of O(pd). Note, however, that
the constants involved are rather large.

These results hold also for irregular point distributions and different cycle
types. For instance, also the V (1, 0)-cycle with the MOS smoother based on a
graded point set converges independent of N and p. Furthermore, the rate of
the multilevel solver with the MOS smoother seems to robust also for general
domains, i.e., when the domain is not resolved on the coarsest level.
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Abstract In this paper we propose a new approximation technique within the con-
text of meshless methods able to reproduce functions with discontinuous derivatives.
This approach involves some concepts of the reproducing kernel particle method
(RKPM), which have been extended in order to reproduce functions with discon-
tinuous derivatives. This strategy will be referred as Enriched Reproducing Kernel
Particle Approximation (E-RKPA). The accuracy of the proposed technique will be
compared with standard RKP approximations (which only reproduces polynomials).

1 Introduction

Meshless methods are an appealing choice to develop functional approxima-
tions (with different degrees of consistency and continuity) without a mesh
support. Thus, this kind of techniques seem to be specially appropriated for
treating 3D problems involving large displacements, due to the fact that the
approximation is constructed only from the cloud of nodes whose position
evolve during the material deformation. In this manner neither remeshing nor
fields projections are a priori required.

In order to adapt the approximation for introducing some known informa-
tion associated to the searched solution different possibilities exist. The first
one lies in the enrichment of standard approximations in the framework of
the partition of unity (PU), originally proposed by Babuška and Melenk [3],
and which is at the origin of the partition of unity finite elements (PUFEM)
[12]. Generalized finite elements (G-FEM) [15] or extended finite elements (X-
FEM) [13, 16, 17, 9] are two members of this family. In the extended finite
elements the approximation is locally enhanced by introducing appropriate
functions describing the known behavior of the problem solution.
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The second possibility lies in the introduction of some information related
to the problem solution within the approximation functional basis. For this
purpose, different reproduction conditions are enforced in the construction
of the approximation functions. This approach has been widely used in the
context of the moving least squares approximations used in the diffuse mesh-
less techniques [2] as well as in the element free Galerkin method [4]. Thus,
all the known information related to the problem solution can be introduced
in the functional approximation. Very accurate results were obtained for ex-
ample in fracture mechanics by introducing the crack tip behavior into the
approximation basis [6].

In this work we propose a numerical strategy, based on the reproducing
kernel particle techniques, able to construct approximation functions with
discontinuous derivatives on fixed or moving interfaces. This problem was
treated in the context of the partition of unity by Kronggauz et al. [10]. In
our approach the size of the discrete system of equations remains unchanged
because no additional degrees of freedom are introduced related to the en-
richment. However, the fact of enriching the approximation implies, as shown
later, a bigger moment matrix, with worse properties, but in some cases this
enrichment is only local, and in any case, the moment matrix has a low di-
mension.

The starting point of our development is the reproducing kernel particle
approximation (RKPA). The RKP approximation was introduced by Liu et
al. [11] for enforcing some degree of consistency to standard smooth particle
approximations, i.e. they proved that starting from a SPH (smooth particle
hydrodynamics) approximation [7] it is possible to enhance the kernel function
for reproducing a certain degree of polynomials. We have extended or gener-
alized this procedure in order to reproduce any function, and more concretely,
functions involving discontinuous derivatives.

Moreover, the strategy here described, can be easily coupled with a level set
description of the interface location [14] (recently introduced in the framework
of the extended finite elements [17]), which allows to capture its position when
it evolves in time. Thus, both the enrichment and the interface tracking are
made in a transparent way for the user.

This paper consists of 6 sections, in which we summarize the reproducing
kernel approximation (section 2) which allows to treat in section 3 the repro-
duction of a function with discontinuous derivatives. In sections 4 and 5 we
describe and illustrate the properties of the resulting approximation. Finally,
in section 6 we focus on a test problem which allows to conclude about the
accuracy and potentiality of the proposed strategy.
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2 Enriched Reproducing Kernel Particle Approximation

Let Ω be the domain where the problem is defined. The points within this
domain will be noted by x or s. For the sake of simplicity, from now on, we will
focus in the 1D case, but all the results have a direct 2D or 3D counterpart.

2.1 Reproduction Conditions

The approximation fa(x) of f(x) is built from the integral convolution integral

fa(x) =

∫
Ω

Φ(x − s, h)f(s)dΩ, (2.1)

where Φ(x − s, h) is the kernel function and h a parameter defining the size
of the approximation support.
The main aim of this work is to enforce the reproduction of a general function
that we can write in the form of a polynomial plus another function noted by
fe(x):

fa(x) = a0 + a1x + . . . + anx
n + fe(x). (2.2)

In the following paragraphs we analyze the required properties of the kernel
function Φ(x − s, h) for reproducing a function expressed by (2.2).
From Eq. (2.1), the reproduction of a constant function a0 is given by∫

Ω

Φ(x − s, h)a0dΩ = a0, (2.3)

which implies ∫
Ω

Φ(x − s, h)dΩ = 1, (2.4)

which constitutes the partition of unity property.
Now, the required condition to reproduce a linear function f a(x) = a0 + a1x
is ∫

Ω

Φ(x − s, h)(a0 + a1s)dΩ = a0 + a1x. (2.5)

By using the partition of unity (2.4), Eq. (2.5) can be rewritten as{ ∫
Ω

Φ(x − s, h)dΩ = 1∫
Ω Φ(x − s, h)sdΩ = x

, (2.6)

which implies the linear consistency of the approximation. Repeating this
reasoning, we can write the n-order consistency as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
Ω Φ(x − s, h)dΩ = 1∫
Ω

Φ(x − s, h)sdΩ = x
...∫

Ω Φ(x − s, h)sndΩ = xn

(2.7)

and consequently, the reproduction of the function given by (2.2) implies∫
Ω

Φ(x − s, h)(a0 + a1s + . . . + ans
n + fe(s))dΩ =
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= a0 + a1x + . . . + anx
n + fe(x), (2.8)

from which it results⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω Φ(x − s, h)dΩ = 1∫
Ω Φ(x − s, h)sdΩ = x

...∫
Ω

Φ(x − s, h)sndΩ = xn∫
Ω Φ(x − s, h)f e(s)dΩ = f e(x)

. (2.9)

Chen et al. [5] applied the procedure proposed by Liu et al. [11] for en-
forcing n-order consistency, however their procedure does not allow to enforce
directly the reproduction condition associated with f e(x).

2.2 The Moment Matrix

We will note by f r(x) the approximation function verifying the conditions
(2.9). Usually a cubic spline is considered as kernel function, and consequently
the conditions given by Eq. (2.9) are not satisfied. Liu et al. [11] propose the
introduction of a correction function C(x, x−s) for satisfying the reproduction
conditions. In our case we consider the more general form C(x, s, x−s) whose
pertinence will be discussed later. Thus f r(x) will be expressed by

f r(x) =

∫
Ω

C(x, s, x − s)Φ(x − s, h)f(s)dΩ, (2.10)

where C(x, s, x − s) is assumed to have the following form
C(x, s, x − s) = HT (x, s, x − s)b(x), (2.11)

where HT (x, s, x−s) represents the vector containing the functions considered
in the approximation basis, and b(x) is a vector containing unknown functions
that will be determined for satisfying the reproduction conditions. Thus, Eq.
(2.9) can be rewritten as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
Ω

HT (x, s, x − s)b(x)Φ(x − s, h)dΩ = 1∫
Ω

HT (x, s, x − s)b(x)Φ(x − s, h)sdΩ = x
...∫

Ω
HT (x, s, x − s)b(x)Φ(x − s, h)sndΩ = xn∫

Ω
HT (x, s, x − s)b(x)Φ(x − s, h)f e(s)dΩ = f e(x)

. (2.12)

Remark: Usual RKP approximations consider HT (x − s), but we retain the
more general form HT (x, s, x−s) in order to reproduce more general functions.

In fact, the reproduction conditions must be enforced in a discrete form.
For this purpose we consider NP points (also refereed as nodes) which allow
to compute the discrete form of Eq. (2.12), i.e.
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⎪⎪⎪⎪⎪⎪⎩

∑NP
I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)ΔxI = 1∑NP

I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)xIΔxI = x
...∑NP

I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)xnIΔxI = xn∑NP
I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)fe(xI)ΔxI = fe(x)

, (2.13)

that in a matrix form results[
NP∑
I=1

R(xI)H
T (x, xI , x − xI)Φ(x − xI , h)ΔxI

]
b(x) = R(x), (2.14)

where R(x) is the reproduction vector
RT (x) = [1, x, . . . , xn, fe(x)] . (2.15)

Eq. (2.14) allows the computation of vector b(x),
b(x) = M(x)−1R(x), (2.16)

where the moment matrix M(x) is defined by

M (x) =

NP∑
I=1

R(xI)H
T (x, xI , x − xI)Φ(x − xI , h)ΔxI . (2.17)

This moment matrix differs of the usual moment matrix proposed in [11],
and in fact it becomes non symmetric.

2.3 Discrete Form of the Approximation Function

The discrete form f r(x) of fa(x) derives from Eqs. (2.10), (2.11) and (2.16)

f r(x) ∼=∑NP
I=1 HT (x, xI , x − xI)M (x)−1R(x)Φ(x − xI , h)f(xI)ΔxI

=

NP∑
I=1

ψI(x)fI ,
(2.18)

where ψI is the enriched RKP approximation shape function
ψI(x) = HT (x, xI , x − xI)M(x)−1R(x)Φ(x − xI , h)ΔxI . (2.19)

As in the classical RKPM we take ΔxI = 1. Different quadrature rules
exist and they have been tested in [1] without a significant incidence on the
reproducing condition accuracy.

3 The Case of a Function with Discontinuous Derivatives

Let Ω be the domain where the problem is defined and Γd a point, curve or
surface (in 1D, 2D and 3D respectively) where the normal function derivative
becomes discontinuous. We assume that this discontinuity curve splits the
domain in two subdomains Ω0 and Ω1 (see Figure 3.1)
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Ω0

Ω1

Γd

Figure 3.1. Problem domain containing an interface with a discontinuous normal
derivative.

Ω0 ∪ Ω1 ∪ Γd = Ω,
Ω0 ∩ Ω1 = ∅,

where Γd represents the curve along which the normal derivative of some
approximation functions become discontinuous.

The enrichment function f e(x) which will be introduced in the reproduc-
tion vector R(x) must satisfy the following conditions

fe(x) ∈ C0(x ∈ Ω),
fe(x) ∈ C1(x ∈ Ω0),
fe(x) ∈ C1(x ∈ Ω1),

Grad f e(x) · n ∈ C−1(x ∈ Γd),

(3.1)

where n denotes the unit outward vector defined on the curve Γd.
To locate the discontinuity curve Γd we have use of a level set function

Θ(x) defined as the signed distance from x to the interface Γd. Thus

Θ(x) =

⎧⎨
⎩

Θ(x) < 0 if x ∈ Ω0

Θ(x) > 0 if x ∈ Ω1

Θ(x) = 0 if x ∈ Γd

. (3.2)

Thus, for satisfying the conditions (3.1) the enrichment function f e(x) could
be assumed in the form

fe(x) = H0(Θ(x))Θ(x), (3.3)

where H0(x) represents the usual Heaviside function{
H0(Θ(x)) = 1 if Θ(x) ≥ 0
H0(Θ(x)) = 0 if Θ(x) < 0

. (3.4)

4 Properties of the Moment Matrix

If the moment matrix is computed as described in section 2 everywhere, it
can become singular, as we will prove later. We can define two boundaries in
the discontinuity curve neighborhood Γ0 and Γ1 (as illustrated in figure 4.2)
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Ωc0

Ωc1

Γd

Γ0

Γ1

Ωe0

Ωe1

Figure 4.2. Enriched and non-enriched domains.

such that now the domain Ω consists of four subdomains Ωc0, Ωe0, Ωc1 and
Ωe1, where classical and enriched reproducing kernel approximation will be
defined with continuity along Γ0 and Γ1 as proved later. Thus, we start from
the relations

Ω0 = Ωc0 ∪ Ωe0 ∪ Γ0,

Ω1 = Ωc1 ∪ Ωe1 ∪ Γ1.

Obviously, Γ0 and Γ1 define the points, curves or surfaces (1D, 2D and 3D
respectively) in Ω0 and Ω1 respectively, through which the determinant of the
moment matrix changes from zero to a non-null value.

We define RT
c (x) = [1, x, . . . , xn], RT (x) =

[
RT
c (x), H0(Θ(x))Θ(x)

]
, and

in a similar manner HT
c (x−xI) = [1, x − xI , . . . , (x − xI)

n
], and HT (x, xI , x−

xI) =
[
HT

c (x − xI), H0(Θ(xI))Θ(xI )
]
.

The following properties of the moment matrix can be deduced:

Property 1: The inverse of the moment matrix exists in the domains Ωe0 and
Ωe1, i.e. in the subdomains whose boundary involves the discontinuity curve
Γd. Then, the moment matrix results

M(x) =
NP∑
I=1

[
Rc(xI)HT

c (x−xI) Rc(xI)H0(Θ(xI))Θ(xI)

H0(Θ(xI))Θ(xI)HT
c (x−xI) H0(Θ(xI ))2Θ(xI)2

]
Φ(x−xI ,h)ΔxI .

Property 2: In the domain Ωc0, H0(Θ(xI )) = 0, ∀I. Thus, the moment matrix
becomes singular

M (x) =

NP∑
I=1

[
Rc(xI)H

T
c (x − xI) 0
0 0

]
Φ(x − xI , h)ΔxI .

In this case we propose to replace this moment matrix for the one derived
from a standard (non-enriched) approximation
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M c(x) =
NP∑
I=1

Rc(x)HT
c (x − xI)Φ(x − xI , h)ΔxI . (4.1)

Property 3: Within the domain Ωc1, H0(Θ(xI )) = 1, ∀I. Thus, M (x) results

M(x) =

NP∑
I=1

[
Rc(xI)H

T
c (x − xI) Rc(xI)Θ(xI)

Θ(xI )H
T
c (x − xI) Θ(xI)

2

]
Φ(x − xI , h)ΔxI .

The moment matrix is singular in 1D (as will be illustrated in section 5.1) as
well as in some 2D and 3D cases. In this case we replace again the enriched
moment matrix for the non-enriched one. Effectively, if the enriched moment
matrix is not singular everywhere in Ωc1, then Γ1 does not exist, i.e. Ωc1 = ∅
et Ωe1 = Ω1.

Property 4: When we approach the curve Γ0 the shape functions computed
from both the enriched and the non-enriched approximations are connected
with continuity, i.e.

lim
x∈Ωc0→Γ0

ψI(x) = lim
x∈Ωe0→Γ0

ψI(x), ∀I.

And in a similar way when we approach the curve Γ1 (when it exists)

lim
x∈Ωc1→Γ1

ψI(x) = lim
x∈Ωe1→Γ1

ψI(x), ∀I.

This property has important consequences because due to the continuity
of the shape functions within the whole domain, the numerical integration of
variational formulations does not require a specific treatment.

Property 5: Let ζI be the boundary of the support related to the node xI .
The following results can be stated:

The curves Γ0 and Γ1 belong to the union of the support boundary ζI of
some nodes. In the 1D case Γ0 and Γ1 reduce to two points (as illustrated in
section 5). In higher dimensions, both boundaries are composed by a series
of arcs of circle (sphere in 3D) (when the support of the kernel function is
assumed circular -spherical in 3D-).

Property 6: The boundary ζI associated with the node xI ∈ Ω1 (respectively
xI ∈ Ω0) closest to the discontinuity interface Γd defines the boundary Γ0

(respectively Γ1).

5 About the Resulting Shape Function and its
Derivatives

In this section we focus in a one-dimensional problem in order to illustrate
some of the previous properties. The signed distance is used for defining the
level set function
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Θ(x) = x − xd, (5.1)

where xd represents the coordinate of the point where the discontinuity in the
function derivative takes place.

5.1 Moment Matrix

For the sake of clarity, from now on, we restrict the consistency requirement
to a first order. Thus, the moment matrix results

M(x) =

NP∑
I=1

M̃ I(x)Φ(x − xI , h)

with

M̃ I(x) =

⎡
⎣ 1 x−xI H0(xI−xd)(xI−xd)

xI xI(x−xI) xIH0(xI−xd)(xI−xd)

H0(xI−xd)(xI−xd) H0(xI−xd)(xI−xd)(x−xI) (H0(xI−xd)(xI−xd))2

⎤
⎦ .

For illustrating the third property, we consider x ∈ Ωc1, which leads to the
following expression of the moment matrix

M(x) =

NP∑
I=1

⎡
⎣ 1 x−xI (xI−xd)

xI xI(x−xI) xI(xI−xd)

(xI−xd) (xI−xd)(x−xI) (xI−xd)2

⎤
⎦ Φ(x−xI ,h).

We can notice that the third row is a linear combination of the two first.
Thus, the determinant vanishes and the moment matrix becomes singular.
This result does not depend on the degree of consistency assumed.

Now we are going to illustrate the position of the boundaries Γ0 and Γ1

through which the approximation changes from enriched to non-enriched.
In Figure 5.3 the vertical line indicates the position where the function

derivative is expected to be discontinuous, and the horizontal one represents
the enrichment domain Ωe1∪Ωe0. The distance between two consecutive nodes
(assumed regularly spaced) is h = 1 and the support radius is taken in the
form R = a × h (where the value of a is indicated in each subfigure).

It is well known that for a standard RKP approximation (without any
enrichment), the linear consistency implies that each point must be contained
by more than one nodal support (in other case the moment matrix becomes
singular) [8]. In our case we need to add to this constraint the properties listed
in the previous section.

From Figure 5.3(b) we can notice:

• Point A is in the domain Ωc0, i.e. A ∈ Ωc0 because any node whose support
contains the point A is not in Ω1 (Property 2 ).

• D ∈ Ωc1 because any node whose support contains the point D is not in
Ω0 (Property 3 ).
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a = 1.40

(a) Node not located at the discon-
tinuity: discontinuous Ωe0 ∪ Ωe1.

a = 1.60

−0.95 1.25

A B C D

(b) Node not located at the discon-
tinuity: continuous Ωe0 ∪ Ωe1.

a = 1.20

−0.20 0.20

(c) Node located at the discontinu-
ity.

Figure 5.3. Enriched and non-enriched domains in a one-dimensional test problem.

• B ∈ Ωe0 and C ∈ Ωe1 (Property 1 ).
• The position of Γ1 (respectively Γ0) is defined by the support of the node

within Ω0 (respectively Ω1) closest to the discontinuity interface Γd (Prop-
erties 5–6 ).

If a < 1.5 there are points, candidates to belong to Ωe0 ∪Ωe1, such that they
belong only to the support of two nodes. In this way the approximation is
only defined if a > 1.5 (Figure 5.3(a)).

When there is a node located at the discontinuity point this problem is
avoided as depicted in Figure 5.3(c). Thus, the approximation is defined only
if a > 1, like in the standard (non-enriched) RKP approximation.

5.2 Related Shape Functions

Figure 5.4 depicts the shape functions related to each node considered in the
interval Ω = [−1, 1] with xd = 0 and NP = 10 (h = 2/9). The support
radius a×h is defined by the value of the parameter a, that has been fixed to
a = 2. Thus, the boundaries defining the transition between the enriched and
non-enriched domain are located at x0 = −1.5 × h = − 1

3 and x1 = 1.5 × h =
1
3 . Figure 5.5 shows the associated derivatives, whereas Figure 5.6 depicts
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Figure 5.4. Shape functions for a discontinuous derivative located at xd = 0.
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Figure 5.5. Shape function derivatives for a discontinuous derivative located at
xd =0.

similar results when NP = 9 and consequently a node is placed just at the
discontinuity point.

Remarks:

• We have noticed that the shape functions are perfectly continuous through
the interfaces between the enriched and non-enriched domains (Property
4 ). Moreover the shape function derivatives become discontinuous only
along the interface xd = 0.

• The shape functions are quite different when a node is or not located at
the discontinuity point. In the first case (node located at xd) the shape
functions are very close to those obtained by Krongauz et al. [10] using a
PU enrichment.
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Figure 5.6. Shape functions for a discontinuous derivative located at xd = 0 when
a node is placed just at the discontinuity point.

6 Numerical Example

In this section we consider a simple numerical test: the steady heat conduction
problem (with a constant source term g = 2) defined in the interval ]−1, 1[
which involves two homogeneous materials with different thermal conductivi-
ties

d

dx

(
k(x)

dT

dx

)
= g, (6.1)

where T is the temperature field and k the thermal conductivity defined as
follows

k(x) = k0 = 1 if x ∈ Ω0 = ]−1, 0[ ,
k(x) = k1 = 10 if x ∈ Ω1 = ]0, 1[ .

(6.2)

The boundary conditions are defined by{
T (x = −1) = 0
T (x = 1) = 1

. (6.3)

The problem is solved using the weak-form of Eq. (6.1), where the integrals
were computed using a background mesh. Four integration cells are placed
between two consecutive nodes, with 5 gauss integration points in each cell.

Computed temperatures with and without approximation enrichment as
well as the exact temperature field are depicted in figure 6.7. In both cases
(enriched and non-enriched) a first order consistency has been enforced, been
the support radius R = 2×h. The related derivatives are shown in Figure 6.8.
From both figures we can conclude about the better accuracy of the solution
computed by using an enriched approximation, mainly in the temperature
derivative in the discontinuity neighbourhood.
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Figure 6.7. Exact and numerical temperature fields computed with and without
approximation enrichment.
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Figure 6.8. Exact and computed temperature derivatives.

6.1 Convergence Analysis

In this section we compare the convergence of both enriched and non-enriched
approximations, in the test problem just described. Two norms are considered,
the L2 and the H1 norms. Moreover, the analysis has been performed for three
different conductivity ratios k01 = k1

k0
= 10, 100, 1000. Figure 6.9 illustrates

these results.
In the case of non-enriched approximations (standard RKPA) we can no-

tice from figure 6.9 that the order of the method is 1 and 0.5 (using the L2

and H1 norms respectively). Moreover, the error increases as the conductivity
ratio increases.



106 P. Joyot, J. Trunzler, F. Chinesta

On the contrary, when an enriched approximation is considered the method
results of order 2.4 and 1.5 (using the L2 and H1 norms respectively). More-
over, the error is independent of the conductivity ratio.

In conclusion, both the order of convergence and the solution error ob-
tained by using an enriched approximation are significantly better that the
ones obtained by using the standard non-enriched formulation.
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Figure 6.9. Convergence analysis using the L2 and the H1 norms.

7 Conclusion

In this work we have proposed a new strategy to enrich reproducing kernel
particle approximations in order to reproduce functions involving discontin-
uous derivatives through some interfaces. The computed results seems to be
very accurate (from the point of view of the order of convergence as well as
from the associated level of error) and it is very easy to implement.

In some cases the moment matrix becomes singular far from the discontinu-
ity location (in the order of the support size), and consequently the enrichment
becomes local in space. In any case, the size of the global discrete system is
not affected by the enrichment process, in contrast with the vast majority of
enrichment methods making use of the partition of unity.

The case of moving interfaces involving field discontinuities can be easily
treated coupling the technique described in this work with a level set descrip-
tion of the interface movement.

The extension to higher dimension problems involving complex disconti-
nuity geometries is a work in progress.
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Abstract In this work, arbitrarily smooth, globally compatible, Im/Cn/P k inter-
polation hierarchies are constructed in the framework of reproducing kernel element
method (RKEM) for multi-dimensional domains. This is the first interpolation hier-
archical structure that has been ever constructed with both minimal degrees of free-
dom and higher order continuity and reproducing conditions over multi-dimensional
domains. The proposed hierarchical structure possesses the generalized Kronecker
property, i.e., ∂αΨ

(β)
I /∂xα(xJ) = δIJδαβ , |α|, |β| ≤ m. The newly constructed glob-

ally conforming interpolant is a hybrid of global partition polynomials (C∞) and a
smooth (Cn) compactly supported meshfree partition of unity. Examples of com-
patible RKEM hierarchical interpolations are illustrated, and they are used in a
Galerkin procedure to solve differential equations.

1 Introduction

In this paper, the term, Im interpolation field, denotes the interpolant that
can interpolate the derivatives of an unknown function up to the m-th or-
der, whereas the term, Cn interpolation field, denotes the interpolant having
globally continuous derivatives up to n-th order, and the term, P k interpola-
tion field, denotes for the interpolant that can reproduce complete k-th order
polynomials.

Constructing a globally conforming Im/Cn/P k, (m, n, k ≥ 1) interpolation
field in multiple dimension was the challenge in the early development of
finite element methods. It attracted a group of very creative engineers and
mathematicians working on the subject. Some of them were intellectual heavy
weight of the time, e.g. Clough and Tocher [1965], Bazeley, Cheung, Irons,
and Zienkiewicz [1965], Fraeijs de Veubeke [1965], Argyris et al [1968], Irons
[1969], Felippa and Clough [1970], Bramble and Zlámal [1970], Birkhoff [1971],
Birkhoff and Mansfield [1974], among others.
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During the past half century, it has been an outstanding problem to con-
struct compatible higher order continuous finite element interpolants in mul-
tiple dimensions. Although there were a few compatible C1 elements con-
structed in two dimensional (2D) case, e.g. Argyris element [Argyris68] or
Bell’s element [Bell69], they usually require adding extra degrees of freedom
on either nodal points or along the boundary or in the interior of the element
to make it work, or eventually do not work well because of their complexity.

As a matter of fact, in many engineering applications, the incompatible ele-
ment is the only viable choice in numerical computations. During the past fifty
years, a main theme of finite element method research is to develop suitable
finite element shape functions that can be used in various mixed formulations,
or can be used with incompatible modes. Nevertheless, no general solution has
been found. Even though engineers invented the so-called patch test to exam-
ine applicability of various incompatible elements [Irons72], serious-minded
mathematicians view it as a “variational crime”. It is fair to say that this
predicament in FEM has more or less hinged the advancement of finite ele-
ment technology.

Recently, it has been found that by combining a meshfree interpolant with
finite element interpolant one can generate a class of hybrid interpolation
functions that may achieve higher order continuous interpolation in multi-
ple dimensions, which is unattainable by traditional finite element technique.
This new technology is now termed as Reproducing Kernel Element Method
(RKEM) ([LHLL, LLHLD]), which is in parallel and in contrast to the mesh-
free Reproducing Kernel Particle Method (RKPM) (Liu et al [LJZ, LJLAB]).
In this work, complete Im/Cn/P k RKEM interpolation hierarchies are devel-
oped.

2 Reproducing Kernel Element Method

2.1 Global partition polynomial

Let Zd denote the set of all ordered d-tuples of non-negative integers. A
multi-index is an ordered collection (d-tuple) of d nonnegative integers, α =
(α1, · · · , αd), and its length is defined as

|α| =

d∑
i=1

αi (2.1)

We write α! = α1!α2! · · ·αd! and xα = xα1
1 xα2

2 · · ·xαd

d , ∀x ∈ IRd. For a differ-
entiable function f(x) and any α with |α| ≤ k,

Dαf(x) =
∂αf(x)

∂xα1
1 · · · ∂xαd

d

(2.2)

is the αth order partial derivative. As usual, D0f(x) = f(x).
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Assume that finite element shape functions, φe,i, e ∈ ΛE := {1, 2, · · · , nel},
and i ∈ Λe = {1, · · · , nne}, are compactly supported, i.e. supp{φe,i} = Ωe,
where nel is the total number of elements, Λe is the local index set for all the
nodal points in an element, and the total number nodal points in a typical
element, e, is nne. When x 
∈ Ωe, φe,i(x) = 0. For a large class of FEM shape
functions, this condition is enforced by multiplying Heaviside function with
the so-called global partition polynomial functions, or more precisely,

φe,i(x) = ψe,i(x)χe(x) (2.3)

where function, χe(x), is the characteristic function of element e, i.e.

χe(x) :=

{
1, x ∈ Ωe

0, x 
∈ Ωe
(2.4)

The characteristic function in (2.4) truncates the analytical polynomial
functions so that FEM shape functions are localized in compact supports.
Because of the presence of the characteristic function, χe(x), most of FEM
shape functions, φe,i(x), are C0(Ω) functions in multiple dimensions.

We call the set of polynomial functions, ψe,i(x) as the global partition
polynomials. The so-called global partition polynomial may be viewed as the
continuous extension of regular FEM polynomial shape function3, and it is
defined in IRd. Denote such globally continuous extension of a FEM shape
functions, φe,i(x), as ψe,i(x) where e ∈ ΛE , and i ∈ Λe.

Consider a smooth continuous function that has up to the m-th order
continuous derivatives. We approximate the function by using the following
general Hermite FEM interpolation,

fh(x) =
∑
e∈ΛE

∑
|β|≤m

∑
i∈Λe

φ
(β)
e,i (x)f

(β)
i , (2.5)

where φ
(β)
e,i (x) is the β-th order interpolant that interpolates the β-th order

derivative, and f
(β)
i = Dβf(xi).

The global partition polynomials have two special properties. First, if a
FEM shape function has the following Kronecker delta properties

Dαφ
(β)
e,i

∣∣∣
x=xj

= δijδαβ , xi, xj ∈ Ω̄, |α|, |β| ≤ m, (2.6)

then the corresponding global partition polynomial function has the proper-
ties,

Dαψ
(β)
e,i

∣∣∣
x=xj

= δijδαβ , xi, xj ∈ Ω̄e, |α|, |β| ≤ m . (2.7)

In fact, in most cases, (2.6) is a consequence or built in property of (2.7).

3 In this paper, we only consider polynomial type of FEM shape functions
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(a) (b)

Figure 2.1. Global partition polynomials in 1-D and 2-D: (a) 1-D linear global
partition polynomials; (b) 2-D bilinear global partition polynomials.

As a partition of unity, traditional finite element interpolants satisfy the
condition, ∑

I∈ΛP

φI(x) = 1, ∀ x ∈ Ω̄ . (2.8)

However, since global partition polynomials are not compactly supported, they
do not form a partition of unity for the global index set, ΛP , i.e.∑

I∈ΛP

ψI(x) 
= 1, ∀ x ∈ Ω̄ . (2.9)

Nevertheless, the global partition polynomial has the following amiable
properties: the global partition polynomial forms a partition of unity in every
local index set Λe, i.e.∑

i∈Λe

ψe,i(x) = 1, ∀ x ∈ IRd and ∀ e ∈ ΛE (2.10)

where Λe := {I
∣∣∣ 1, 2, · · · , nen}.

Examples of one dimensional (1D) partition polynomials are the following
linear polynomials defined in IR,

ψe,1(x) =
xe+1 − x

xe+1 − xe
, (2.11)

ψe,2(x) =
x − xe

xe+1 − xe
, (2.12)

where −∞ < x < ∞ and e ∈ ΛE .
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A two-dimensional example of global partition shape function set is:

ψe,1(ξ(x), η(x)) = 1
4 (1 − ξ)(1 − η) , ψe,2(ξ(x), η(x)) = 1

4 (1 + ξ)(1 − η) ,

ψe,3(ξ(x), η(x)) = 1
4 (1 + ξ)(1 + η) , ψe,4(ξ(x), η(x)) = 1

4 (1 − ξ)(1 + η) ,

with −∞ < ξ, η < ∞ and functions ξ(x) and η(x) can be found by its inverse
relationship,

x =

4∑
i=1

ψe,i(ξ)xe,i (2.13)

In Fig. 2.1, the global partition polynomials defined in (2.11)–(2.12) and (2.1)
are displayed.

2.2 RKEM Interpolant

Now we describe how to construct a valid RKEM interpolant. We define the
reproducing kernel element interpolation as

If(x) =
∑
e∈ΛE

[∫
Ωe

Kρ(x − y; x)dy

(∑
i∈Λe

ψe,i(x)f(xe,i)

)]
(2.14)

To obtain a valid interpolation scheme, the integral in expression (2.14) is
replaced by nodal integration,

Ihf(x) = A
e∈ΛE

[(∑
j∈Λe

Kρ(x − xe,j ; x)ΔVe,j

)(∑
i∈Λe

ψe,i(x)f(xe,i)

)]

(2.15)
where ΔVe,j is the nodal integration weight, which can be easily assigned for

each nodal point by Lobatto quadrature weight. The symbol, A
e∈ΛE

, denotes

the summation over all elements of the mesh.
The reproducing kernel function, K�e,j(x) := K�(x−xe,j ; x) is a compact

supported function and the radius of its support, supp{K�
e,j(x)}, is �e,j . A

smooth window function, w(x) ∈ Cn(Ω), is chosen to serve as the core of the
kernel. Note that the RKEM nodal integration is consistent with the nodal
integration employed in previous reproducing kernel particle method (RKPM)
(e.g. in [LLB]) that ensures all the reproducing properties in discrete sense
and guarantees that discrete summation is a partition of unity.

To ensure the consistency, the RKEM kernel function has to satisfy the
following partition of unity condition,

A
e∈ΛE

⎧⎪⎨
⎪⎩
(∑

j∈Λe

1

ρde,j
w

(
x − xe,j

ρe,j

)
b(x)ΔVe,j

)(∑
i∈Λe

ψe,i(x)

)⎫⎪⎬
⎪⎭ = 1, ∀ x ∈ Ω .

(2.16)
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One can then solve (2.16) to obtain the unknown b(x),

b(x) =

⎧⎪⎨
⎪⎩ A
e∈ΛE

⎡
⎢⎣
(∑

j∈Λe

1

ρde,j
w

(
x − xe,j

ρe,j

)
ΔVe,j

)(∑
i∈Λe

ψe,i(x)

)⎤⎥⎦
⎫⎪⎬
⎪⎭

−1

.

(2.17)
An interpolation error estimate for the interpolation defined in (2.14) has been
given in [LHLL].

Proposition 2.1. Consider the reproducing kernel element interpolant (2.15).
Assume the discretization mesh having the following surjective connectivity
map ΛE × Λe → ΛP ,

(e1, i1), (e2, i2), · · · , (ek, ik), · · · , (e, i) → I. (2.18)

Define

ΩI =

⋃
k=1

Ωek
(2.19)

Let (e, i) → I. The meshfree kernel at nodal point (e, i) may be denoted as,

Kρe,i(x) := Kρ(x − xe,i; x) =: KρI (x), ∀ x ∈ Ωe (2.20)

Suppose that

1. ∑
i∈Λe

ψe,i(x)xλi = xλ, ∀ x ∈ Ω, λ ≤ � (2.21)

2. Discretization mesh Tnel
is quasi-uniform;

3. Meshfree interpolant is a signed partition of unity,

A
e∈ΛE

(∑
i∈Λe

Kρe,i(x)
)

= 1, ∀x ∈ Ω (2.22)

4. For e ∈ ΛE and (e, i) → I,

supp{Kρe,i(x)} ⊂ ΩI (2.23)

The reproducing kernel element interpolation field

If =
∑
I∈ΛP

ΨI(x)fI , ΨI(x) =
∑

k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek,j

)
ψek,ik(x), (2.24)

has the following properties,

1.
Ihxλ = xλ, λ = 0, · · · , k. (2.25)

In particular Ih1 = 1.
2.

ΨI(xJ) = δIJ (2.26)
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3 Globally Conforming Im/Cn/P k Hierarchy I

3.1 Construction

In this section, we construct the first globally conforming Im/Cn hierarchy.
Consider the nodal point i of the element e ∈ ΛE . Assume that one can find

a global partition polynomial basis, ψ
(0)
e,i (x), such that

Dαψ
(0)
e,i

∣∣∣
x=xj

= δα0δij , |α| ≤ q . (3.1)

We can then construct a hybrid meshfree/FEM interpolant basis as

Ψ
(0)
I (x) = A

e∈ΛE

⎛
⎝∑
j∈Λe

Kρe,j(x)Δxe,j

⎞
⎠ψ

(0)
e.i (x) (3.2)

where connectivity (e, i) → I is implied. The meshfree kernel functions satisfy
the following condition,

A
e∈ΛE

⎛
⎝∑
j∈Λe

Kρe,j(x)Δxe,j

⎞
⎠∑
i∈Λe

ψ
(0)
e.i (x) = 1 . (3.3)

Note that it is not necessary to require the global partition polynomials,

{ψ(0)
e,i }i∈Λe

, to form a partition of unity.
We construct higher order RKEM bases by multiplying the zero-th order

basis with some polynomials, i.e. I ∈ ΛP ,

Ψ
(1)
I (x) = (x − xI)Ψ

(0)
I (x) (3.4)

Ψ
(2)
I (x) =

1

2
(x − xI)

2Ψ
(0)
I (x) (3.5)

· · ·
Ψ

()
I (x) =

1

�!
(x − xI)

Ψ
(0)
I (x) . (3.6)

The proposed RKEM Im/Cn interpolation hierarchy can be written as

Imf =
∑
I∈ΛP

(
Ψ

(0)
I (x)fI + Ψ

(1)
I (x)DfI + · · · + Ψ

(m)
I (x)DmfI

)
(3.7)

In this construction, m = k, which means that the globally conforming inter-
polants are only capable of reproducing a complete mth order polynomials.

The main result of this interpolation is summarized in the following propo-
sition:

Proposition 3.1. Assume that ∃ψ
(0)
e,i (x), ∀e ∈ ΛE , i ∈ Λe, such that
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Figure 3.2. Two dimensional quadrilateral RKEM hierarchical interpolation field:
(a) I0 element, (b) I1 element, and (c) I2 element.

Dαψ
(0)
e,i

∣∣∣
x=xj

= δα0δij , |α| ≤ �, i, j ∈ Λe (3.8)

and define,

Ψ
(0)
I (x) = A

e∈ΛE

(∑
j∈Λe

Kρe,j(x)Δxe,j

)
ψ

(0)
e.i (x) (3.9)

Ψ
(1)
I = (x − xI)Ψ

(0)
I (x) (3.10)

Ψ
(2)
I =

1

2!
(x − xI)

2Ψ
(0)
I (x) (3.11)

· · · · · ·
Ψ

()
I =

1

�!
(x − xI)

Ψ
(0)
I (x) (3.12)

where (e, i) → I and

∑
I∈ΛP

Ψ
(0)
I (x) := A

e∈ΛE

(∑
j∈Λe

Kρe,j(x)Δxe,j

)(∑
i∈Λe

ψ
(0)
e.i (x)

)
= 1 . (3.13)

The interpolation scheme (3.7) has the following properties:

1. DαΨ
(β)
I

∣∣∣
x=xJ

= δαβδIJ , I, J ∈ ΛP , |α|, |β| ≤ m;

2. Imxλ = xλ, ∀x ∈ Ω, |λ| ≤ m.

The proof of this proposition can be found in [LLHLD].

3.2 Globally Compatible Quadrilateral Element Q12P1I1 Element

This is a multi-dimensional compatible interpolant. It only has a minimal
twelve degrees of freedom over four nodes. It is an I1 interpolation, i.e. the



Globally Conforming Im/Cn/P k Hierarchies 117

(a) (b)

(c)

Figure 3.3. Smooth quadrilateral I1/C4 RKEM interpolant: (a) the 1st shape

function, Ψ
(00)
I (x), (b) the 2nd shape function Ψ

(10)
I (x), (c) the 3rd shape function

Ψ
(01)
I (x). See Color Plate 3 on page 294.

primary variable and its first order derivatives are sampled. If the fifth order
spline is chosen as the meshfree window function, its smoothness is C4.

Consider a four-nodes quadrilateral element. Use 1D zero-th order Hermite
interpolant to construct global partition polynomials,

ψ
(0)
e,1(x) = H

(0)
c1 (ξ)H

(0)
c1 (η) , ψ

(0)
e,2(x) = H

(0)
c2 (ξ)H

(0)
c1 (η) ,

ψ
(0)
e,3(x) = H

(0)
c2 (ξ)H

(0)
c2 (η) , ψ

(0)
e,4(x) = H

(0)
c1 (ξ)H

(0)
c2 (η) ,

where H
(0)
c1 (ζ) = 1 − 3ζ2 + 2ζ3, H

(0)
c2 (ζ) = 3ζ2 − 2ζ3, and ζ = ξ and η.

The coordinate transformation between (x, y) and (ξ, η) is bilinear,
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x(ξ, η) = α0 + α1ξ + α2η + α3ξη (3.14)

y(ξ, η) = β0 + β1ξ + β2η + β3ξη (3.15)

Or in terms of nodal coordinates, polynomials,

x =
4∑
j=1

Ne,j(ξ, η)xe,j , y =
4∑
j=1

Ne,j(ξ, η)ye,j , (3.16)

where Ne,1(ξ, η) = 1−ξ−η+ξη, Ne,2(ξ, η) = ξ(1−η), Ne,3(ξ, η) = ξη, and
Ne,4(ξ, η) = η(1 − ξ).

Three I1/C4 quadrilateral RKEM shape functions are plotted in Fig. 3.3.
The zero-th order shape functions in an element are

Ψ
(00)
e,i (x) =

( 4∑
j=1

K�e,j(x)ΔVe,j

)
ψ

(0)
e,i (ξ, η), i = 1, 2, 3, 4 (3.17)

The higher order basis functions are

Ψ
(10)
e,i (x) = (x − xe,i)Ψ

(00)
e,i (x), i = 1, 2, 3, 4 (3.18)

Ψ
(01)
e,i (x) = (y − ye,i)Ψ

(00)
e,i (x), i = 1, 2, 3, 4 (3.19)

The zero-th order global shape function can be written as

Ψ
(00)
I (x) =

∑
k∈ΛI

( ∑
j∈Λek

K�ek,j(x)ΔVek,j

)
ψ

(0)
ek,ik

(x) =
∑
k∈ΛI

Ψ
(00)
ek,ik

(x)

where ΛI = {1, 2, · · · , �}. The global higher order basis functions have simple
form

Ψ
(10)
I (x) = (x − xI)Ψ

(00)
I (x) (3.20)

Ψ
(01)
I (x) = (y − yI)Ψ

(00)
I (x) (3.21)

One can easily write down 16 degrees of freedom bilinear RKEM quadri-
lateral interpolant function by adding four additional higher order partition
polynomials,

Ψ
(11)
e,i (x) = (x − xe,i)(y − ye,i)Ψ

(00)
e,i (x), i = 1, 2, 3, 4 (3.22)

or by adding one global shape function,

Ψ
(11)
I (x) = (x − xI)(y − yI)Ψ

(00)
I (x). (3.23)

It can be shown that the above compatible RKEM Interpolants can reproduce
polynomials, 1, x, y, and xy.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4. Compatible quadrilateral I2/C4/P 2 RKPM interpolants: (a) the 1st

shape function, Ψ
(00)
I (x), (b) the 2nd shape function Ψ

(10)
I (x), (c) the 3rd shape

function Ψ
(01)
I (x) (d) the 4th shape function, Ψ

(20)
I (x), (e) the 5th shape function

Ψ
(02)
I (x), (f) the 6th shape function Ψ

(11)
I (x). See Color Plate 4 on page 295.
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3.3 Globally Compatible Q16P2I2 Quadrilateral Element

Choosing the global partition polynomials as

ψ
(0)
e,1(x) = H

(0)
f1 (ξ)H

(0)
f1 (η) , ψ

(0)
e,2(x) = H

(0)
f2 (ξ)H

(0)
f1 (η) ,

ψ
(0)
e,3(x) = H

(0)
f2 (ξ)H

(0)
f2 (η) , ψ

(0)
e,4(x) = H

(0)
f2 (ξ)H

(0)
f1 (η) ,

where H
(0)
f1 (ζ) = 1 − 10ζ3 + 15ζ4 − 6ζ5, and H

(0)
f2 (ζ) = 10ζ3 − 15ζ4 + 6ζ5.

The coordinate transformation are bilinear, which is exactly the same as Eq.
(3.14)–(3.16).

We can construct a compatible I2/Cn RKEM interpolant with a minimal
24 degrees of freedom. The first four zero-order basis functions are

Ψ
(00)
e,i (x) =

( 4∑
j=1

K�e,j(x)
)
ψ

(0)
e,i (x), i = 1, 2, 3, 4 (3.24)

and higher order basis functions

Ψ
(10)
e,i (x) = (x − xe,i)Ψ

(00)
e,i (x), i = 1, 2, 3, 4

Ψ
(01)
e,i (x) = (y − ye,i)Ψ

(00)
e,i (x), i = 1, 2, 3, 4

and
Ψ

(20)
e,i (x) = 1

2 (x − xe,i)
2Ψ

(00)
e,i (x), i = 1, 2, 3, 4

Ψ
(11)
e,i (x) = (x − xe,i)(y − ye,i)Ψ

(00)
e,i (x), i = 1, 2, 3, 4

Ψ
(02)
e,i (x) = 1

2 (y − ye,i)
2Ψ

(00)
e,i (x), i = 1, 2, 3, 4

The six I2/C4 quadrilateral RKEM shape functions are plotted in Fig. 3.4.
The zero-th order global shape function has the form,

Ψ
(00)
I (x) =

∑
k=1 Ψ

(00)
ek,ik

(x) , Ψ
(10)
I (x) = (x − xI)Ψ

(00)
I (x) ,

Ψ
(01)
I (x) = (y − yI)Ψ

(00)
I (x) , Ψ

(20)
I (x) = 1

2! (x − xI)
2Ψ

(00)
I (x) ,

Ψ
(11)
I (x) = (x − xI)(y − yI)Ψ

(00)
I (x) , Ψ

(02)
I (y) = 1

2! (y − yI)
2Ψ

(00)
I (x).

4 Globally Conforming Im/Cn/P k Hierarchy II

The globally conforming Im/Cn/P k hierarchy constructed in the previous
section has its limitations. The globally conforming hierarchy is in fact
Im/Cn/Pm, i.e. k = m. This means that the reproducing property of the
interpolant is limited by the interpolation index order m, or the enrich-
ment order. It can only reproduce complete m-th order polynomials. In order
to achieve higher order accuracy, another (the second) globally conforming
Im/Cn/P k(k ≥ m) hierarchy is proposed. This interpolation hierarchy can
reproduce a complete kth order polynomials with k ≥ m.
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4.1 Construction

Assume that there exists a set {ψ(0)
e,i , ψ

(1)
e,i , · · · , ψ

(m)
e,i } of Hermite type global

polynomials such that within the element e, they can reproduce λ-th order
polynomials, i.e.

∑
i∈Λe

{
ψ

(0)
e,i (x)xλi + λψ

(1)
e,i (x)xλ−1

i + · · · + λ!

(λ − m)!
ψ

(m)
e,i (x)xλ−mi

}
= xλ

(4.1)
with |λ| ≤ k. Assume that the mesh topology has a surjective connectivity
map such that

ΛE × Λe → ΛP : (e1, i1), · · · , (e, i) → I . (4.2)

The global RKEM basis functions are constructed as follows,

Ψ
(0)
I (x) =

∑
k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek ,j

)
ψ

(0)
ek,ik

(x)

Ψ
(1)
I (x) =

∑
k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek ,j

)
ψ

(1)
ek,ik

(x)

· · · · · · (4.3)

Ψ
(m)
I (x) =

∑
k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek ,j

)
ψ

(m)
ek,ik

(x) (4.4)

where I ∈ ΛP and

A
e∈ΛE

∑
j∈Λe

(
Kρe,j(x)ΔVe,j

)
= 1. (4.5)

Again, the proposed RKEM Im/Cn interpolation scheme can be written as

Imf =
∑
I∈ΛP

(
Ψ

(0)
I (x)fI + Ψ

(0)
I (x)Df

∣∣∣
I

+ · · · + Ψ
(m)
I (x)Dmf

∣∣∣
I

)
(4.6)

The main properties of this globally conforming Im/Cn hierarchy are sum-
marized in the following proposition.

Proposition 4.1. Assume that ∃ {ψ(0)
e,i , ψ

(1)
e,i , · · ·ψ(m)

e,i }, ∀e ∈ ΛE, i ∈ Λe, such
that

1.
Dαψ

(β)
e,i

∣∣∣
x=xj

= δαβδij , |α|, |β| ≤ m, and i, j ∈ Λe; (4.7)
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2. ∑
i∈Λe

{
ψ

(0)
e,i (x)xλi + λψ

(1)
e,i (x)xλ−1

i + · · · + λ!

(λ − m)!
ψ

(m)
e,i (x)xλ−mi

}
= xλ .

(4.8)

Consider the local-global connectivity map for a given mesh,

ΛE × Λe → ΛP : (e1, i1) · · · (ek, ik) · · · (e, i) → I . (4.9)

We construct the following hybrid meshfree/FEM shape functions,

Ψ
(0)
I (x) =

∑
k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek ,j

)
ψ

(0)
ek,ik

(x)

Ψ
(1)
I (x) =

∑
k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek ,j

)
ψ

(1)
ek,ik

(x)

· · · · · · (4.10)

Ψ
(m)
I (x) =

∑
k=1

( ∑
j∈Λek

Kρek,j
(x)ΔVek ,j

)
ψ

(m)
ek,ik

(x) (4.11)

where I ∈ ΛP .
Then the interpolation scheme (4.6) has the following properties,

1. DαΨ
(β)
I

∣∣∣
x=xJ

= δαβδIJ , I, J ∈ ΛP , |α|, |β| ≤ m;

2. Imxλ = xλ, ∀x ∈ Ω, |λ| ≤ k.

The proof of the proposition can be found in [LLHLD].

4.2 2D Example I: T12P3I(4/3) Triangle Element

We first propose a two-dimensional globally conforming, bilinear, 12 degrees
of freedom triangle element. It is illustrated in Fig. 4.5. The notation I4/3

means that at each nodal point we interpolate the unknown function, say

f(x, y), its two first order derivatives,
∂f

∂x
and

∂f

∂y
and its mixed derivative,

∂2f

∂x∂y
, which is one-third of the second derivatives. We denote the one-third

of second derivative as a cross in Fig. 4.5. Since we interpolant one third of the
second derivatives, the interpolation scheme is neither I1 nor I2. We denote
it as I(1+1/3) = I(4/3).

The global partition polynomials in an element can form a local interpo-
lation,
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Figure 4.5. An bilinear triangle (T12P3I4/3) element.

Ielef =

3∑
i=1

(
ψ

(00)
e,i fe,i + ψ

(10)
e,i

∂f

∂x

∣∣∣
(e,i)

+ψ
(01)
e,i

∂f

∂y

∣∣∣
(e,i)

+ψ
(11)
e,i

∂2f

∂x∂y

∣∣∣
(e,i)

)
= c1 + c2x + c3y + c4x

2 + c5xy + c6y
2 + c7x

3 + c8x
2y + c9xy2

+c10y
3 + c11x

2(x2 + xy + y2) + c12y
2(x2 + xy + y2) (4.12)

To link the nodal data with constants, c′s, we define vectors, ψ, f , p, and
c:

ψT
e (x) := {ψ(00)

e,1 , ψ
(10)
e,1 , ψ

(01)
e,1 , ψ

(11)
e,1 , ψ

(00)
e,2 , ψ

(10)
e,2 , ψ

(01)
e,2 , ψ

(11)
e,2 ,

ψ
(00)
e,3 , ψ

(10)
e,3 , ψ

(01)
e,3 , ψ

(11)
e,3 } ,

fTe := {f1, f1x, f1y, f1xy, f2, f2x, f2y, f2xy, f3, f3x, f3y, f3xy}e ,

pT (x) := {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x2(x2 + xy + y2),

y2(x2 + xy + y2)} ,

cTe := {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12}e .

We can write
Ilocf = ψT

e fe = pTce. (4.13)

The nodal values are related with coefficients c’s by a set of 12 simultaneous
linear algebraic equations,

fe = Cece, (4.14)

where matrix Ce is defined as

CT
e =
[
p(x1),

∂p

∂x
(x1),

∂p

∂y
(x1),

∂2p

∂x∂y
(x1), · · · ,

p(x3),
∂p

∂x
(x3),

∂p

∂y
(x3),

∂2p

∂x∂y
(x3)
]

. (4.15)
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(a) (b)

(c) (d)

Figure 4.6. The four global shape functions of T12P3I(4/3) element: (a) Ψ
(00)
I (x);

(b) Ψ
(10)
I (x); (c) Ψ

(01)
I (x); (d) Ψ

(11)
I (x).

One can then find vector ce by solving the linear algebraic equation,

ce = C−1
e f . (4.16)

Then, the global partition polynomials can be found as

ψe(x) = C−T
e p(x) . (4.17)

Assume that the mesh connectivity map is as usual

ΛE × Λe → ΛP : (e1, i1) · · · (e, i) → I . (4.18)

The RKEM global shape functions of the triangle have the same formula,

Ψ
(α)
I (x) =

∑
k=1

∑
j∈Λek

(
Kρek,j

(x)ΔVek ,j

)
ψ

(α)
ek,ik

(x) . (4.19)



Globally Conforming Im/Cn/P k Hierarchies 125

Figure 4.7. Illustration of Q12P3I1 quadrilateral element.

4.3 2D Example III: Q12P3I1 Quadrilateral Element

One can construct quadrilateral elements by using the same technique. To
illustrate an example, we outline the procedure to construct a twelve degrees
of freedom quadrilateral elemet, Q12P3I1. The element interpolation provided
by the global partition polynomials in an element is

Ielef =

4∑
i=1

(
ψ

(0)
e,i fe,i + ψ

(10)
e,i

∂f

∂x

∣∣∣
(e,i)

+ψ
(01)
e,i

∂f

∂y

∣∣∣
(e,i)

)
= c1 + c2x + c3y + c4x

2 + c5xy + c6y
2 + c7x

3 + c8x
2y + c9xy2 + c10y

3

+c11x
3(x + y) + c12y

3(x + y) . (4.20)

To link the nodal data with constants,c′s, vectors, ψ, f , p, and c are defined

ψT
e (x) := {ψ(00)

e,1 , ψ
(10)
e,1 , ψ

(01)
e,1 , ψ

(00)
e,2 , ψ

(10)
e,2 , ψ

(01)
e,2 , ψ

(00)
e,3 , ψ

(10)
e,3 , ψ

(01)
e,3 ,

ψ
(00)
e,4 , ψ

(10)
e,4 , ψ

(01)
e,4 } (4.21)

fTe := {f1, f1x, f1y, f2, f2x, f2y, f3, f3x, f3y, f4, f4x, f4y}e , (4.22)

pT (x) := {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3(x + y), y3(x + y)} , (4.23)

cTe := {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12}e . (4.24)

We can write that
Ilocf = ψT

e fe = pTce. (4.25)

Again, the nodal values are related with coefficients c’s by a system of 12
linear algebraic equations,

fe = Cece, (4.26)

where matrix Ce is defined as,
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(a) (b)

(c)

Figure 4.8. The shape functions of Q12P3I1 element.

CT
e =
[
p(x1),

∂p

∂x
(x1),

∂p

∂y
(x1), · · · · · · , p(x4),

∂p

∂x
(x4),

∂p

∂y
(x4)
]

. (4.27)

By solving the linear algebraic equations, one can then find vector ce

ce = C−1
e f , (4.28)

and then the global partition polynomials

ψe(x) = C−T
e p(x) . (4.29)

5 Numerical Examples

To validate the method, the proposed RKEM interpolants are tested in
Galerkin procedures to solve various Kirchhoff plate problems, because the
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(a) Triangle plate (b) Square plate

Figure 5.9. Problem description for plate.

Galerkin weak formulation of a Kirchhoff plate involves second derivatives
and a global C1(Ω) interpolation field is the minimum requirement. More-
over, the boundary conditions of Kirchhoff plate problems involve interpolat-
ing boundary data of both the first order derivative (slopes) and the second
order derivative (curvatures), it provides a severe test to the newly proposed
RKEM triangle interpolants. For more information on how to impose bound-
ary conditions for finite element computation of thin plates, readers are re-
ferred to Hughes’ finite element book [Hughes87] pages 324–327.

We consider three problems: (1) a simply supported triangle plate sub-
jected uniform load, (2) a simply supported square plate subjected uniform
load, and (3) a clamped circular plate under uniform load.

5.1 Equilateral Triangular Plate

To validate the method, an equilateral triangular thin plate under uniform
load is solved first by using the proposed method. The coordinate axes are
taken as shown in Fig. 5.9(a). In the case of a uniformly loaded plate with
simply supported ends, the deflection of surface is given as [TW]:

w =
p

64aD

[
x3 − 3y2x − a(x2 + y2) +

4

27
a3

](
4

9
a2 − x2 − y2

)
(5.1)

where a=1 is the height of the triangular plate.
The triangle element used in the computation is T12P3I4/3: (T12) 12

degrees of freedoms of a triangle – (P3) reproducing complete cubic (3)
polynomials – (I3) interpolating 4/3 order derivatives (f, fx, fx, and fxy).
Three discretizations with 9, 36, and 144 elements shown in Fig. 5.10 are
used for the convergence study. Due to the generalized Kronecker delta prop-
erty of globally conforming interpolation, it is easy to exactly impose the
simply supported boundary conditions at boundary nodes. The maximum
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(a) 10 nodes (b) 28 nodes (c) 91 nodes

Figure 5.10. The model discretization for triangle thin plate.

(a) (b)

(c)

Figure 5.11. Deflection for triangle plate: (a) 9 elements, (b) 36 elements (c) 144
elements.

deflection at the center for the three cases are, 1.08428070 · 10−3pa4/D,
1.03376896 · 10−3pa4/D, and 1.02974603 · 10−3pa4/D, respectively; and the
exactsolution is 1.02880658 · 10−3pa4/D. The deflection surfaces correspond-
ing to the three models are shown in Fig. 5.11. The L2 error norms in the
primary variable, and its first and second derivatives are shown in Fig. 5.12
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(a) (b)

Figure 5.12. Convergence rates of interpolation and Galerkin solutions: (a) L2

error norms for a Galerkin solution; (b) L2 error norms for interpolation solution.

(a) (b)

Figure 5.13. Example 3: problem domain and triangle mesh.

for interpolation and Galerkin solutions, respectively. The convergence rates
in terms of error norms L2, H1 and H2 are 3.2, 2.8, and 1.7 for the Galerkin
solution, respectively. They match well with the convergence rates for the in-
terpolation solution, which are 3.4, 2.4, and 1.4 in terms of error norms L2,
H1 and H2, respectively.

5.2 Clamped Circular Plate

We now solve a clamped unit diameter circular Kirchhoff plate, as depicted
in Fig. 5.13. The exact solution is given in [Ugural] for a plate of radius a as

w(x, y) =
p

64D

(
a2 − x2 − y2

)2
The deformed shape of the circular plate is juxtaposed with the conver-

gence results depicted in Fig. 5.14. The L2, H1 and H2 errors were computed
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Table 5.1. Rates Of Convergence for Clamped Circular Plate.

L2 H1 H2

2.6812 2.6495 1.4606

(a) (b)

Figure 5.14. Computation results for example 3: (a) deflection profile, and (b)
convergence results.

and are plotted in Fig. 5.14. The slopes of the lines as determined by regression
are presented in Table 5.1.

6 Closure

In conclusion, unlike most of FEM shape functions, RKEM interpolants can
be used directly in numerical computations involved with the Galerkin weak
formulation that contains high order derivatives of an unknown function; and
unlike most meshfree interpolants, RKEM interpolant can satisfy Dirichlet
boundary conditions. The basic strategy or philosophy of RKEM method is
to build the interpolation field on a special partition of unity, the so-called
global partition polynomials. In order to recover the Kronecker delta property,
we use the RKPM meshfree interpolant to localize the global partition poly-
nomials such that the global RKEM basis function is truly a interpolant that
satisfies the general higher order Kronecker delta properties. By doing so, the
smoothness of an interpolant only depends on the smoothness of the window
function inside the meshfree kernel function, which can be easily controlled
by a user in a desired manner.
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Radii in EFGM
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Abstract In this study, two Element Free Galerkin analyses using two influence
radii are presented. One is implemented for one nodal points layout and provides
p-like adaptivity, and the other is implemented for different nodal points layouts
and multi-scale analysis. The solution of the analyses can be divided into global and
local parts and they are caught simultaneously. In this research, analysis using shape
function based on large influence radius provides global solutions, while solutions
based on small influence radius can be regarded as local solutions or errors when
the number of nodes is sufficient. Some numerical examples for the proposed p-like
adaptivity show comparable or better convergence of results compared with other
methods. Numerical examples for the proposed multi-scale method show that local
solutions can catch local fluctuation separated from global solutions.

1 Introduction

With numerical methods such as finite element method, mesh free method,
etc., several adaptive methods are proposed in order to achieve the required
accuracy or to capture local behavior. One such method is p-adaptivity which
does not need more nodal points but changes the order of basis into higher
order. With the moving least square approximation which is applied in the
element free Galerkin method, even if the order of basis function and nodal
points layout are same, different influence radiuses yield different approxima-
tion orders. Thus, the order of approximation varies by the size of the influence
radius used in the analysis. From this point of view, p-like adaptivity analy-
sis is proposed by using two influence radii for the same nodal points layout.
With this method, no new nodal point layout but new additional degree of
freedom is required. As increase in the degree of freedom increases the order
of basis, this method is termed as p-like adaptivity. In the formulation of this

�
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method, the concept of multiple-field RKPM [Liu97] is directly applied. That
is, the overlapping of two-scale solutions obtained by different influence radii
is eliminated by the projection of local solutions using the shape function of
global parts.

Another adaptive method is h-adaptivity which increases nodal points.
Finer nodal points layout is used where detailed analysis is required, other-
wise coarse nodal points layout is used. In the analysis, different nodal densi-
ties provide different scale solutions. With mesh-free methods, it is relatively
easy to increase nodal because the method is free from generating mesh. On
the other hand, it is difficult to choose the adequate influence radius when
the nodal density is changing. With the proposed multi-scale analysis, coarse
nodal points layout is overlapped with fine nodal points layout and the ade-
quate influence radius is selected in each domain. In the formulation, the same
concept adopted in the proposed p-like adaptivity is applied and it is shown
that local solutions can be separated from global solutions. Throughout this
study, the element free Galerkin method is applied [Bel94].

1.1 Moving Least Square Approximation

With the Element Free Galerkin Method (EFGM) [Bel94], the component of
the displacement vector u(x) is approximated by a polynomial function as
follows, where m is the number of terms in the polynomial function. In eq.
(1.1), a linear basis vector p and its coefficient vector a in a two-dimensional
domain is exemplified(m=3).

uh (x) =

m∑
j=1

pj (x) aj (x) ≡ pT (x) a (x) (1.1)

pT (x) =
(
1, x, y

)
, aT (x) =

(
a1, a2, a3

)
(1.2)

The coefficients in a(x) are determined by minimizing the following weighted
functional.

J =

NP∑
i=1

w (ri) {u (xi) − ui}2 , ri = |x − xi| (1.3)

whre ui is the unknown nodal value of displacement u at node xi, ri is the
distance between two points x and xi and NP is the number of nodes in the
domain of influence whose radius is ρ. In this paper, the following fourth order
polynomial is adopted for a weight function, w(ρ), which satisfies w(ρ) =0,
dw/dr(ρ) = 0 and d2w/dr2(ρ) = 0.

w (ri) =

{
1 − 6

(
ri

ρ

)2
+ 8
(
ri

ρ

)3
− 3
(
ri

ρ

)4
(0 ≤ ri ≤ ρ)

0 (ρ < ri)
(1.4)

Finally, the approximation displacement uh(x) can be represented by the
nodal value ui, as
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uh (x) =
NP∑
i=1

pT (x)
(
AT (x)B (x)

)
i
ui ≡

NP∑
i=1

φi (x) ui (1.5)

A (x) =

NP∑
i=1

w (ri)p (xi)p
T (xi) (1.6)

B (x) = [w (r1)p (x1) , w (r2)p (x2) , · · · , w (rNP )p (xNP )] (1.7)

where φi(x) corresponds to the shape function used in the finite element
method.

1.2 MLSA with Discontinuous Derivatives Basis Function

With comventional moving least squars approximation(MLSA), not only the
displacement field but its partial derivatives are approximated continuously.
For this reason, some special treatment is needed where the derivative of
displacement is discontinuous, such as strain jumps at material interfaces.
In this study, for modeling of discontinuous derivative, discontinuous basis
function approach [Nog03] is introduced in MLSA. When a material interface
is located at x = xd in 1D problem, a bi-limear basis function is simply adopted
for the discontinuous basis function insterd of the comventional linear basis
function as follows; {

uh (x) = a + b (x − xd) (x ≤ xd)
uh (x) = a + c (x − xd) (x > xd)

(1.8)

This basis function is continuous at the interface but the slope is different
at both sides of the interface. In this case, the functional to be minimized is
rewritten as follows;

J =

NPd1∑
i=1

W (ri) (a + b (xi − xd) − ui)
2
+

NPd1+NPd2∑
i=NPd1+1

w (ri) (a + c (xi − xd) − ui)
2
.

Where NPd1 is the mumber of poins in the left side of the interface (x ≤ xd),
and NPd2 that in the right (x > xd). Therefore, the total number of sam-
pling points in the domain of influence is NPd1 + NPd2. This discontinuous
basis function can completely represent bi-liner function and maintain linear
reproducibility for obtained approximate function.

2 P-like Adaptivity Analysis

2.1 Displacement Approximation and Shape Functions

From eq. (1.5), approximated displacement fields calculated by large and small
influence radii can be written as;
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uLh (x) =

NP∑
i=1

φLi (x)ui (2.1)

uSh (x) =
NP∑
i=1

φSi (x)wi (2.2)

where NP is the total number of nodes in the domain, ui and wi are cor-
responding nodal values respectively, φi is the shape function of point i, L
denotes the value related to the large influence domain, and S is the small
influence domain. To evaluate displacement correctly by both uLh and uSh,
overlap between the fields must be eliminated from the sum of uLh and uSh.
Following [Liu97], the overlap can be calculated by multiplying one field by
the shape function of another field as;

uh (x) =

NP∑
i=1

φLi (x)ui +

NP∑
i=1

φSi (x) wi −
NP∑
i=1

φLi (x)

⎧⎨
⎩
NP∑
j=1

φSj (xi)wj

⎫⎬
⎭ (2.3)

The last term in eq. (2.3) shows the subtracted overlap displacement. Finally
displacement can be divided into two scales defined by the different influence
radii.

uh (x) =

NP∑
i=1

φLi (x) ui +

NP∑
i=1

⎧⎨
⎩φSi (x) −

NP∑
j=1

φLj (x)φSi (xj)

⎫⎬
⎭wi

=

NP∑
i=1

φLi (x) ui +

NP∑
i=1

ψi (x)wi (2.4)

where φLi (x) is the shape function for ui which satisfies the partition of
unity condition ψi (x) for wi which satisfies the partition of nullity condition.
Figure 2.1 shows shape functions of node 1, 2, 11, 20,21 and nodal configura-
tion.

2.2 Numerical Example

As a numerical example, the Helmholtz equation under Dirichlet conditions at
both sides is analyzed by the proposed method and the conventional EFGM.
The following is the considered problem.

∂2u

∂x2
+ k2u = 0, u (0) = ū, u (L) = 0 (2.5)

The theoretical solution of eq. (2.5) is;

u (x) = ū
sin (k (L − x))

sin kL
. (2.6)
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Figure 2.1. Shape functions of node 1, 2, 22, 20, 21 for p-like aduptivity analysis

The larger k is, the larger is the frequency. 2.2 shows the numerical results
when k = 32. In all examples, the total number of nodal points are 11. The fig-
ures in (a) and (b) are analyzed by the conventional EFGM using the influence
radius ρ = 4.4c and ρ = 2.2c, respectively where c is the minimum distance
between nodal points. Accuracy of the results is poor for both analyses. The
proposed method shown in (c) provides reasonabe accurate.

Figure 2.3 is a convergence plot when k = 8 for the proposed method com-
pared with the other methods. Linear basis are adopted in all of these methods.
The reproducing kernel hierarchical partition of unity method [Li99] [Li99-2]
is also p-like adoptivity method. It utilizes two shape functions, one which
satisfies the partition of unity condition and the other satisfies the partition
of nullity condition. Compared with other methods, a slight increase in con-
vergence rate is observed for the proposed method. These numerical results
show that the proposed method can improve the accuracy of the numerical
solution of Helmholtz equations and that p-like adaptivity is achieved.

3 Multi-Scale Analysis Using Two Nodal Points Layouts

3.1 Displacement Approximation and Shape Functions

Similar to the previous section, the approximated displacement fields calcu-
lated by coarse nodal and fine nodal points layouts can be written as;

uLh (x) =

NPL∑
i=1

φLi (x)ui (3.1)

uSh (x) =

NPS∑
i=1

φSi (x)wi (3.2)

where NPL and NPS are the total numbers of nodes in the domain of coarse
and fine nodal points layout, ui and wi are corresponding nodal values respec-
tively. The large influence radius is adopted for the coarse nodal points layout
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Figure 2.2. Analysis of Helmholtz equation by conventional EFGM and proposed
method (c: minimum distance between nodal points)
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Figure 2.3. Convergence plot for proposed method (k = 8)

while the small influence radius is adopted for the fine nodal points layout.
The overlap between the fields is calculated in more or less the same manner
as described in section 2.

uh (x) =

NPL∑
i=1

φLi (x)ui+

NPS∑
i=1

φSi (x)wi−
NPL′∑
i=1

φL
′

i (x)

⎧⎨
⎩
NPS∑
j=1

φSj (xi)wj

⎫⎬
⎭ (3.3)

It must be noted that the multiplying shape function φL
′

i (x) is not same
as calculated in eq.(3.1), φLi (x). For this shape function, the selected nodal
points in the coarse layout, where the multi-scale analysis is conducted, are
considered so that the corresponding shape function satisfies the partition of
nullity cindition (Fig. 3.5). Equation (3.3) can be divided into two terms.

uh (x) =

NPL∑
i=1

φLi (x)ui +

NPS∑
i=1

⎧⎨
⎩φSi (x) −

NPL′∑
j=1

φL
′

j (x)φSi (xj)

⎫⎬
⎭wi

=

NPL∑
i=1

φLi (x)ui +

NPS∑
i=1

ψi (x)wi (3.4)

where φLi (x) is the shape function for ui which satisfies the partition of
unity condition and ψi (x) is for wi which satisfies the partition of nullity
condition. The first term of eq. (3.4) on the right hand can be regarded as
global solution, and the last term as local solution. Figure 3.5 shows the shape
functions for multi-scale analysis.
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Figure 3.4. Nodal points layout for calculating shape functions

Figure 3.5. Shape functions for multi-scale analysis

3.2 Numerical Example

Poisson’s equation. Poisson’s equation in eq. (3.5) under the Dirichlet con-
ditions at both sides of the domain is analyzed by the proposed method for
dual-scale analysis and the conventional EFGM for single scale analysis.

d

dx

(
λ

du

dx

)
= −q (x) (3.5)

The following two cases are analyzed. In the first case, q(x) is the following
constant;
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q (x) = 1 (3.6)

In the second case, in order to check if the present method can capture the
local fluctuation, the following q is adopted, where sinusoidal function is locally
inserted incidentally.

q (x) =

{
1
1 + 40π2 cos [20π (x − 0.55)] + x

10

(x ≤ 0.5, 0.6 ≤ x)
(0.5 ≤ x ≤ 0.6)

(3.7)

In both cases, material property and boundary conditions are followings;

λ = 1
u (0) = u (1) = 0

(3.8)

In the analysis by the proposed method, 21 nodal points are distributed for the
global solution and 11 nodal points are distributed between [0.5, 0.6] for the
local solution. The adopted influence radii are 2.2cS and 2.2cL respectively,
where c is minimum distance between nodal points.

Figure 3.6 shows the results in which the source term is constant. In dual
scale analysis, the sum of global and local solutions become a solution of the
governing equation. The results obtained from both single scale and dual-
scale analysis are accurate. In dual-scale analysis, only the global solution is
obtained and the local solution is 0.

Figure 3.7 shows the results of analyses for local fluctuation. In the single
scale analysis shown in (a) using different nodal points density according to
the existence of local fluctuation and one uniform influence radius in the whole
area, oscillation is obtained around the area with local fluctuation. In the other
single scale analysis shown in (b) using fine uniform nodal points layout and
uniform size of influence radius, accurate results are obtained In the proposed
method shown in (c), accurate results are obtained using relatively few points
compared with (b). The figure (c) shows that local solution is completely
separated from global solution.

Poisson’s equation with derivative discontinuity . In some cases,
more detail analysis is required around the surface of discontinuity in such
analysis of composite structures. The proposed multi-scale method is applied
for evaluation around the surface of derivative discontinuity. As noted before,
special treatment is necessary in EFGM for discontinuous displacement deriva-
tives. In the proposed method, DBF described in section 1.2 is adopted. As
a numerical example, Poisson’s equation under Dirichlet boundary conditions
is analyzed by the proposed method and the conventional EFGM. Material
property changes at x = 0.5. In this study, two cases were analyzed. One has
no source term and the other has source term only around material interface
similar to the previous example;

q (x) =

⎧⎨
⎩

40π2 cos [20π (x − 0.45)] + x
10 (0.4 ≤ x ≤ 0.5)

40π2 cos [20π (x − 0.55)] + x
10 (0.5 ≤ x ≤ 0.6)

0 (x ≤ 0.4, 0.6 ≤ x)
(3.9)
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Figure 3.6. Analysis of Poisson’s equation with constant source term

In both cases, material properties and boundary conditions are as follows.

λ =

{
1 (0 ≤ x ≤ 0.5)
2 (0.5 ≤ x ≤ 1)

u (0) = 0, u (1) = 0.75
(3.10)

In analysis without local fluctuation, bi-liner solution is obtained and the
derivative has discontinuity at material interface x = 0.5. In analysis with
local fluctuation, there is derivative discontinuity and local fluctuation around
x = 0.5.

Figure 3.8 shows the results of analysis without local fluctuation using
discontinuous basis function as special treatment for discontinuous derivative.
In the both analyses by the conventional EFGM and the proposed method,
perfect solutions are obtained and error does not occur. In the analysis by the
proposed method (c), only global solution is obtained and local solution is 0.
If the special treatment for derivative discontinuity is not utilized, oscillations
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Figure 3.7. Analysis of Poisson’s equation with local fluctuation and constant
source term
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Figure 3.8. Analysis of Poisson’s equation with derivative discontinuity (discontin-
uous basis function is adopted)

are observed in the conventional EFGM analysis as shown in Fig.3.9. By
using proposed method (c), local solution functions to catch the discontinuous
derivative and the solution is improved but not perfect.

Figure 3.10 shows results of analyses with local fluctuation around mate-
rial interface using DBF. In all of these analyses, discontinuous derivative is
obtained by using DBF. In conventional EFGM, oscillations occur due to local
fluctuation when coarse nodal points layout is used (a). On the other hand,
accurate results can be obtained with relatively few points (c) by the pro-
posed method, although finer nodal points are necessary to obtain the same
accuracy in conventional EFGM (b).
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Figure 3.9. Analysis of Poisson’s equation with derivative discontinuity (no special
treatment for discontinuous derivative is adopted)
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Figure 3.10. Analysis of Poisson’s equation with derivative discontinuity and local
fluctuation (discontinuous basis function is adopted)
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4 Conclusion

By using two influence radii in EFGM, p-like adaptivity is achieved for same
nodal points layout, and dual-scale analysis is achieved for different nodal
points layouts with adequate sizes of influence radii. This method simplifies
the choice of size of influence radius. Even for the discontinuous derivative
field, the proposed method always provides accurate results together with the
discontinuouos basis function.
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Solution of a Dynamic Main Crack Interaction
with a System of Micro-Cracks by the Element

Free Galerkin Method
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Abstract Damage and failures in high-pressure equipment and in high-energy pip-
ing have increased significantly during the second part of the twentieth century, in
spite of improved construction procedures and the high quality of materials used.
The result has been a grave expansion in the number of fatal disasters and ecologi-
cal catastrophes, and their harmful social and economic consequences. This trend is
apparent from a brief analysis of extensively developing industrial activities in differ-
ent countries of the world, such as chemical, refinery and gas-treatment enterprises,
power and the nuclear power industry. The statistics of failures in these industries
show that most of the damage was caused by systems of interacting flaws.

To numerically tackle these problems a previously developed code by the authors,
based on the Element Free Galerkin (EFG) solution of systems of strongly interacting
static cracks, was modified and adapted for dynamic problems in fracture mechanics.
Several numerical examples of single crack propagation under impulse loading are
solved. Accuracy of the results is verified comparing several analytical and numerical
methods. The developed method is then applied to the physical model of dynamic
crack propagation in the field of interacting flaws.

1 Introduction

Dynamic fracture and crack arrest criteria have only begun to appear in the
literature. The models of the interaction of flaws under dynamic load, the
interaction of a main crack with a system of flaws, and the dynamic growth
of a crack in a field of interacting cracks are not well developed. There are no
general, reliable, efficient and accurate methods for the numerical solution of
these problems.

As result of the lack of reliable experimental methods and procedures for
evaluation of stress and strain fields, stress intensity factors and energy release

�
bm@margan.com
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rates , unexpected and rarely predictable failures caused by individual flaws
and systems of interacting flaws continue to occur in high-pressure equipment
operating under dynamic loading, especially in enclosed spaces (nuclear reac-
tors, submarines, shuttles). These failures jeopardize operational safety, and
can lead to fatal disasters, catastrophes, and social and economical losses.

The problem of single crack behavior under dynamic pulse load was inves-
tigated numerically by different authors. Parton and Boriskovsky (1985, [1]),
Nakamura, Shih and Freund (1985, [2]) were the first who solved it by the
Finite Element method. Later, the problem was analyzed by other numerical
methods. Lu, Belytschko and Tabbara in 1995 [3] and Organ in 1996 [4] have
applied the Element Free Galerkin method and Chen, Gerlach, and Belytschko
(2001, [5]) used the Extended Finite Elements method for the solution of the
problem. Techniques of these works and the results of our investigations de-
voted to the solution of static interacting cracks problems are used here with
certain adaptation for the solution of dynamic multi-crack problems. These
will be considered below in detail.

2 The EFG Method for Dynamic Linear Elastic Fracture
Mechanics

For numerical solution of dynamic linear elastic fracture mechanics problems
by the EFG method, the discrete equation is derived from the variational form
of the governing equation of motion.

Consider the analytical equation of motion

σij,j + b = ρüi, in domain Ω bounded by Γ , (2.1)

where σij is the stress tensor, b is the body force and ρ is the material density.
Equation (2.1) has the following boundary conditions (b.c.) and initial

conditions (i.c.):
Essential b.c.: ui = ūi on Γu, (2.2)

Natural b.c.: σijnj = t̄i on Γt, (2.3)

Displacement i.c.: u (x, 0) = u0 (x) , (2.4)

Velocity i.c.: u̇ (x, 0) = v0 (x) , (2.5)

where ū, t̄ are prescribed boundary displacements and tractions respectively,
and n is the unit normal vector to Γ .

The variational form of the equation (1) is∫
Ω

ρδu · üdΩ+

∫
Ω

σT δεdΩ =

∫
Ω

δu · bdΩ −
∫
Γt

δu · tdΓ , (2.6)
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where δ is the variation operator.
The discrete form of equation (2.6) is

Mü + f int = fext, (2.7)

M is the mass matrix diagonalized by the row-sum method, f ext and f int are
the vectors of external and internal forces respectively.

MII =
∑
J

∫
Ω

ρφIφJdΩ, (2.8)

fextI =

∫
Γt

φI t̄dΓ +

∫
Ω

φIbdΩ, (2.9)

f intI =

∫
Ω

BT
I σdΩ, (2.10)

where φI are the EFG shape functions, BI is a matrix of shape function
derivatives:

BI =

⎡
⎣φI,x

0
φI,y

0
φI,y
φI,x

⎤
⎦ . (2.11)

For the time evolution approximation we use the following three schemes:
a regular second-order accurate central difference scheme, a fourth-order ac-
curate difference scheme and the Newmark method.

The time evolution approximation by a regular central difference scheme
is given by:

ut+Δt = 2ut − ut−Δt + Δt2M
−1

t

(
f

ext

t − f
int

t

)
. (2.12)

We derive the time evolution approximation by a fourth-order accurate scheme
from the Taylor series:

ut+Δt = ut + Δtu̇t +
Δt2

2
üt +

Δt3

6
u···
t +

Δt4

24
u····
t + ... (2.13)

ut−Δt = ut − Δtu̇t +
Δt2

2
üt − Δt3

6
u···
t +

Δt4

24
u····
t + ... (2.14)

Summarizing (2.13) and (2.14) and truncating the series we obtain:

ut+Δt + ut−Δt = 2ut + Δt2üt +
Δt4

12
u····
t + O

(
Δt6

)
. (2.15)

Then

üt =
ut+Δt − 2ut + ut−Δt

Δt2
− Δt2

12
u····
t + O

(
Δt4

)
. (2.16)
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The second-order accurate backward difference is used to approximate the
fourth-order material derivative ut, which results in fourth-order convergence
for the difference equation.

u····
t =

2üt − 5üt−Δt + 4üt−2Δt − üt−3Δt

Δt2
+ O

(
Δt2

)
. (2.17)

Finally we get the following time evolution rule:

ut+Δt = 2ut − ut−Δt + Δt2At +
Δt2

12
(2At − 5At−Δt + 4At−2Δt − At−3Δt) ,

(2.18)
where

At = M
−1

t

(
f

ext

t − f
int

t

)
. (2.19)

Another technique that can be used for numerical integration is the two
parameter Newmark family of methods. These methods truncate the Taylor
series:

ut = ut−Δt + Δtu̇t−Δt +
Δt2

2
üt−Δt +

Δt3

6
u···
t−Δt + . . . , (2.20)

u̇t = u̇t−Δt + Δtüt−Δt +
Δt2

2
u···
t−Δt + . . . . (2.21)

The parameters β and γ of the Newmark method are defined in following
expressions using (2.20) and (2.21):

ut = ut−Δt + Δtu̇t−Δt +
Δt2

2
üt−Δt + βΔt3u···

t−Δt, (2.22)

u̇t = u̇t−Δt + Δtüt−Δt + γΔt2u···
t−Δt. (2.23)

If the acceleration is assumed to be linear then:

u···
t =

üt − üt−Δt
Δt

, (2.24)

ut = ut−Δt + Δtu̇t−Δt +

(
1

2
− β

)
Δt2üt−Δt + βΔt2üt, (2.25)

u̇t = u̇t−Δt + (1 − γ)Δtüt−Δt + γΔtüt. (2.26)

Finally,

(b1M + K)ut = fextt + M (b1ut−Δt − b2u̇t−Δt − b3üt−Δt) , (2.27)

üt = b1 (ut − ut−Δt) + b2u̇t−Δt + b3üt−Δt, (2.28)
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u̇t = b4 (ut − ut−Δt) + b5u̇t−Δt + b6üt−Δt, (2.29)

where

b1 =
1

βΔt2
, b2 = − 1

βΔt
, b3 = −

(
1

2β
− 1

)
,

b4 = γΔtb1, b5 = 1 + γΔtb2, b6 = Δt (1 + γb3 − γ) . (2.30)

The method is unconditionally stable if

2β ≥ γ ≥ 1

2
, (2.31)

and there is energy damping if

γ >
1

2
. (2.32)

It should be noted that in the dynamic problems the weight functions
and their domains of influence are time dependent. That leads to the time
dependence of the shape functions. Since the time dependence of the shape
functions and their derivatives can not be analytically expressed for the case
of arbitrary dynamic fracture, these functions should be updated with every
time step, based on the new crack geometry and the updated weight function.
Next we will use previously described methods for the numerical solution of
the dynamic problems of our interest.

3 Solution of Multi-Crack Problems by the EFG Method

Currently, the solution of problems with many cracks by a finite element
method requires enormous mesh refinement near each crack tip, including the
embedding of many singular elements. When using meshless methods and the
EFG method in particular, many additional nodes should be added around
and between the cracks and the nodal domain of influence should be lowered
significantly. As a result a huge computational effort is needed for the solution.

To overcome the problem, we developed an algorithm for the construction
of weight functions to handle strongly interacting multi-crack, where the dis-
tance between cracks can be smaller then the domain of influence of the nodes
[6]. This algorithm modifies the diffraction method [7] so that it can charac-
terize simultaneously all crack tips located in the nodal domain of influence.
The same algorithm can be used to modify other methods for construction
of weight functions. Among these are methods based on the modification of
the weight function shape near crack tips, such as transparency [7] and visi-
bility methods [8]. The algorithm was presented for example of the diffraction
method in [6]. We call this method the multiple crack weight (MCW) method.

This section presents the reliability and accuracy of the EFG method to-
gether with the MCW method for the solution of multiple cracks problems.
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Numerical examples of interacting and intersecting cracks are calculated in
terms of the stress intensity factors and compared to available reference so-
lutions provided by other numerical methods. Problems about star-shaped
cracks under bi-axial static load are chosen to illustrate the main aspects of
solution of multiple crack problems. The convergence of the stress intensity
factors as a function of number of nodes is analyzed and discussed.

In all the calculations the nodal distribution was regular with additional
nodes along the cracks surfaces, star-shaped array of nodes around of the free
tips of the cracks and an additional node at the free tips of the cracks. The
radius of the outer ring of star-shaped additional nodes was equal to 0.75 of the
distance between regular nodes. The regular nodal distribution was used as a
mesh for the numerical integration by the Gauss quadrature rule with 12×12
Gauss quadrature points in each cell. The fully enriched basis [9] was coupled
with a linear basis. The outer radius of the enrichment was smaller than the
outer radius of the star-shaped additional nodes. A plane strain condition was
assumed.

Six intersecting cracks were used to model a star-shaped crack (Fig. 1a).
The normalized stress intensity factors FA

I = KA
I /σ

√
πa, FB

I = KB
I /σ

√
πa

and FB
II = KB

II/σ
√

πa were calculated using the domain form of the interac-
tion integral for a/W=0.5 and several ratios of a/h, where W is the half width
of the specimen, a is the crack length and h is the average nodal spacing. The
results presented in Fig. 2 show the convergence of the solution as the mesh
is refined. The stress intensity factors are oscillating while they converge to
their limiting values. The amplitude of the oscillations vanishes as the ratio
a/h increases. The relative differences between the stress intensity factors,
FA
I , FB

I , FB
II calculated with a/h=5 mesh and those calculated with a/h=10

mesh were 0.23%, 0.2%, 0.75% respectively.
Comparing these results with the reference solutions [10,11], one sees that

the accuracy of the solution is acceptable even for the relatively small ratio of
a/h= 5 (mesh with 21×21 regular nodes) and that the results agree satisfac-
torily with the references in [10,11] (Table 1, case a/W=0.5). This is despite
the fact that the small regular nodal distribution can not match inclined crack
lines properly, several cells of the integration mesh are crossed by cracks and
two crack tips are in the nodal domain of influence of many nodes. This
demonstrates that the modified EFG method combined with MCW method
is able to solve accurately multiple crack problems with relatively small nodal
distributions.

The same mesh distributions that were used for the cross-shaped crack
problem were used to solve the star-shaped crack problem for different a/W
ratios. The calculated normalized stress intensity factors (Table 1) were com-
pared with those calculated by X-FEM in [10] for two different meshes distri-
butions (Table 1 ref 1 and ref 2) and by Cheung et al in [11] (Table 1 ref 3).
Our results show good agreement with the reference results and are closer to
those provided by X-FEM than to results of Cheung et al.
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Figure 3.1. Finite-size plate with star-shaped crack under bi-axial loading (a).
Mesh distribution for a/W=0.5 (b). Von Mises stress distribution for a/W=0.5 (c).

Table 3.1. Normalized stress intensity factors for the problem in Fig. 1.

FI FI ref 1 FI ref 2 FI ref 3 E1, % E2, % E3, %

a/W = 0.2 F B
I 0.7690 0.7683 - 0.7578 0.09 - 1.48

a/W = 0.2 F B
II 0.0007 0.0005 - 0.0004 * - *

a/W = 0.2 F A
I 0.7691 0.7670 0.7746 0.7570 0.27 0.71 1.60

a/W = 0.3 F B
I 0.7994 0.7983 0.7973 0.7884 0.14 0.26 1.40

a/W = 0.3 F B
II 0.0020 0.0021 0.0021 0.0022 * * *

a/W = 0.3 F A
I 0.7970 0.7931 0.7942 0.7846 0.49 0.35 1.58

a/W = 0.4 F B
I 0.8527 0.8466 0.8466 0.8365 0.72 0.72 1.94

a/W = 0.4 F B
II 0.0077 0.0080 0.0064 0.0070 * * *

a/W = 0.4 F A
I 0.8352 0.8287 0.8332 0.8255 0.78 0.24 1.18

a/W = 0.5 F B
I 0.9232 0.9255 0.9208 0.9087 0.25 0.26 1.60

a/W = 0.5 F B
II 0.0201 0.0184 0.0168 0.0168 * * *

a/W = 0.5 F A
I 0.8921 0.8864 0.8928 0.8815 0.64 0.08 1.20

a/W = 0.6 F B
I 1.0405 1.0445 1.0401 1.0182 0.38 0.04 2.19

a/W = 0.6 F B
II 0.0451 0.0364 0.0350 0.0388 * * *

a/W = 0.6 F A
I 0.9749 0.9673 0.9760 0.9758 0.79 0.11 0.09

a/W = 0.7 F B
I 1.2384 1.2367 1.2369 1.1936 0.14 0.12 3.75

a/W = 0.7 F B
II 0.0622 0.0593 0.0614 0.0529 * * *

a/W = 0.7 F A
I 1.1022 1.0971 1.1120 1.1142 0.46 0.88 1.08

a/W = 0.8 F B
I 1.5577 1.5624 1.5593 - 0.30 0.10 -

a/W = 0.8 F B
II 0.0804 0.0864 0.0826 - * * -

a/W = 0.8 F A
I 1.3454 1.3423 1.3581 - 0.23 0.94 -

a/W = 0.9 F B
I 2.1605 2.1927 2.1659 - 1.47 0.25 -

a/W = 0.9 F B
II 0.0906 0.0868 0.088 - * * -

a/W = 0.9 F A
I 1.9146 1.9037 1.9578 - 0.57 2.21 -

E1,2,3 represent the percent difference of normalized stress intensity fac-
tors F A

I , F B
I with reference solutions ref 1,2,3.

* The percent difference is not representative in this case since the calcu-
lated and reference values of F B

II are small or close to zero. We note that
in this case there is even a significant percent difference between the three
reference solutions.
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Figure 3.2. Convergence of the normalized stress intensity factors (a) F A
I , (b) F B

I ,
(c) F B

II as a function of the average nodal spacing. The results of ref 2 and ref 3 are
identical in (c).

The results show that the MCW method allows the solution of strongly in-
teracting cracks without enormous mesh refinement and reduces significantly
the computational efforts. Thus in different numerical examples the compu-
tational time was two to four time shorter when using the EFG method with
MCW method because smaller nodal distributions were required compared
with the standard EFG method for obtaining accurate results.
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4 Individual Crack Subjected to Pulse Loading

4.1 Introduction

In this section we consider the physical model of Cherepanov [12] which de-
scribes crack behavior under dynamic pulse load and discuss the accuracy
of the numerical solution by the EFG method. This model considers semi-
infinite crack development in an infinite body subjected to dynamic impulse
and includes several stages:

• The concentration of the stress around the crack tip and the increasing of
stress intensity factor.

• Initiation of a crack’s propagation and subsequent crack elongation with
increasing speed.

• Decelerating and arresting of a crack after removal of applied forces.

Cherepanov solved analytically the stress intensity factor for the stationary
crack under the pulse of a rectangular pulse of finite duration σy(t) applied
normally to the crack plane:

σy (t) = σ0 [H (t) − H (t − T )] , (4.1)

where σ0 is the pulse amplitude; T is the pulse duration; H is the Heaviside
function.

According to his solution, the stress intensity factor, Kst of static crack
subjected to impulse loading is:

Kst (t) =
4σ0c2

c1
√

πc1

√
c1 − c2

[√
tH (t) −√

t − TH (t − T )
]
, (4.2)

where c1 and c2 are dilatation and shear wave speeds, respectively.
The corresponding to Kst energy release rate Gst in condition of opening

mode of fracture is:

Gst =
K2
st

E′
, (4.3)

where E′ = E for plane stress and E′ = E/(1− ν)2 for plane strain problems,
where E is the elastic modulus and ν is the Poisson ratio.

The energy release rate G of propagating crack with velocity l̇, can be
obtain from the expression provided by Freund [13]:

G
(
t, l̇

)
= g

(
l̇
)

Gst (t) , (4.4)

where
g

(
l̇
)

= 1 − l̇/cR, (4.5)

and cR is the Rayleigh wave speed. The velocity of the crack propagation is
obtained from:
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l̇ = cR (1 − Gcritical/Gst (t)) . (4.6)

For numerical solution of the energy release rate, we use a domain form of
path-independent integral proposed by Moran and Shih [14]:

G = −
∫
A

((W + L) δ1j − σijui,1mj) q,jdA−
∫
A

(ρu̇iu̇i,1 − ρüiui,1) qdA, (4.7)

where q is a weight function that equals one on the inner boundary of the
integral domain, zero on the outer boundary and is arbitrary elsewhere.

We assume that Cherepanov’s model satisfies the real conditions of frac-
ture in high energy equipment. Nevertheless, the further research of the phe-
nomenology of dynamic fracture under pulse loading especially for the case
of interacting cracks requires the analysis of the cracks characteristics such
energy release rates, calculation of the direction of the crack propagation and
the dynamic stress and strain fields.

4.2 Analysis of Accuracy

In this section we discuss the accuracy of the EFG method for the solution
of static and propagating individual cracks under impulse load. For this we
solve the numerical example of a finite plate with width 10m and height 4m
and an edge crack with length of 5m subjected to impulse load as illustrated
in Fig. 3. The time of the problem is limited to the time that it takes for the
stress wave to pass down to the bottom boundary, reflect from its surface and
then arrive back to the crack line, t=3H/c1, where H is the half of specimen’s
height. For longer times the comparison of the numerical solution with the
existing analytical solutions [12,13] is not valid.

The dynamic loading was created by an incident tensile pulse with ampli-
tude σ0=1000 N/m2 suddenly applied at the top boundary of the stress free
specimen with the following material properties: E = 211 · 109 N/m2, ρ=7800
kg/m3, ν=0.3. A plane strain condition was assumed.

The selected EFG scheme includes a regular nodal distribution, a 4×4
Gauss quadrature rule, and linear basis functions. The time step used for nu-
merical integration was calculated according to the Courant condition, where
the critical time step is dt c = h/c1, and h is the minimum nodal spacing. The
time evolution approximation was done using the central difference scheme.

For the analysis of the numerical scheme we started with two examples of
the crack behavior under impulse loading:

• Crack remains stationary for the entire calculation.
• Crack remains stationary until t1 = 1.5H/c1 and then starts to propagate

with constant velocity V = 0.4c2. We note that the analytical value of the
energy release rate at t1 = 1.5H/c1 is equal to 0.475G∗ = 4.5 · 10−6Pa ·m,
where G∗ = Hσ2

0/E. We will assume later in numerical examples that the
critical energy release rate G1c is equal 0.475G∗.
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Figure 4.3. Edge crack in the specimen modeling infinite plate subjected to pulse
loading.

In both cases the energy release rates were calculated and compared to the
analytical values which were obtained from the solution of Cherepanov [12]
and Freund [13]. It should be noted that the energy release rate is a linear
function of time in this example. Later this characteristic will be used in the
accuracy analysis.

Several nodal distribution were used (120×48, 180×72, 240×96, 300×120
for the first case of stationary crack and 120×48, 240×96 for the second case
of a stationary and then propagating crack) to show the convergence of the
solution as a function of nodal density. To satisfy the Courant condition for
all nodal densities we selected the time step equal to 0.5 · 10−6 sec.

The analysis of the results concerning the first case showed that the energy
release rate is growing smoothly but oscillating along the analytical line (Fig.
4a, b, c, d) from the moment when the stress wave arrives at the crack line
(t = H/c1). For the higher nodal densities the amplitude of the oscillation is
decreases. To assess the accuracy of the solution quantitatively, we propose to
use several statistical tools. Thus, we calculate the average, E and the standard
deviation, S of the relative errors in the energy release rates calculated for
every time step, and the coefficient of correlation, R between the energy release
rates and time.

Since the analytical energy release rate is a linear function of time, the
coefficient of correlation was used as a tool to assess the linear dependence of
the numerically calculated energy release rate on time. The standard devia-
tion is calculated to characterize the dispersion of relative errors between the
calculated energy release rates and the analytical values. Thus, one can see
in Table 2 that the coefficient of correlation, R converges to 1 as the nodal
density increased and the linear character of the energy release rate in time
improves. At the same time, the standard deviation and the average error of
the numerical results decrease.

In the second case, after the time t = 1.5H/c1 when the crack starts
to propagate at a constant velocity one can see that the solution oscillates
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with higher amplitudes compared to the case of a static crack, see Fig. 4e,
f. The drop in the energy release rate predicted by the analytical solution of
Freund [13] at t = 1.5H/c1 is clearly seen in our results. For the higher nodal
discretization this drop was sharper.

Table 4.2. Average, E, standard deviation, S, and coefficient of correlation, R, of
the relative error in the energy release rate.

Nodal distribution E S R

120×48 0.07046 0.14017 0.99899

180×72 0.05530 0.12307 0.99947

240×96 0.04768 0.11322 0.99963

300×120 0.04008 0.04008 0.99977

To analyze the solution’s oscillations we conducted several investigations.
It was established, that the solution with a higher order Gauss quadrature for
numerical integrations of the mass matrix and f ext, f int, and energy release
rate did not yield significant improvement, leaving the same character of os-
cillations. Different sizes of energy release rate domain also did not change
the results, proving that the dynamic energy release rate calculated by (4.7)
is independent of the domain size. Decreasing the time step, application of
enrichment techniques and a fourth-order accurate scheme did not show any
obvious differences in the results. We therefore concluded that the accuracy is
more sensitive to the nodal density than to other parameters of the appropri-
ate numerical scheme selected before. In our opinion one of the possible ways
to reduce the oscillations for dynamic crack is to add the moving star-shaped
arrays of nodes around the tip of the developing crack.

In addition, the Newmark family of methods was used for numerical inte-
gration. Solving the energy release rate for static cracks with different values
of β and γ parameters, it was established that for β = 1/4 and γ = 3/4 the
solution is more accurate and smoother, Fig. 5a,b. Thus, for 120×48 nodal dis-
tribution, E equals 0.06682, S = 0.13845 and R = 0.99956, and for a 180×72
nodal distribution, E = 0.04838, S = 0.11549 and R = 0.99978.

This Newmark scheme induces small energy damping, which improves the
solution of this particular problem. However, it should be used with care in
other problems. So far there is no well established proof that the procedure
can provide an accurate solution for multiple crack problems, where small
solution oscillations could be the result of crack interactions and not due to
numerical error.

We note that the level of the oscillations of the energy release rate calcu-
lated by (4.7) in Fig. 4e,f are lower than found in other works [15], [16]. In
[15] it was noted that ”the oscillations for the moving cracks coincide with the
number of nodes passed during propagation; the peaks occur just before the
crack tip passes a node”. Therefore it is important to take into consideration
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Figure 4.4. Energy release rates for the static crack and static and then dynamic
crack propagating at constant velocity, normalized by Hσ2

0/E.

the character of the oscillations when analyzing different physical phenomena
of propagating cracks to prevent misleading results. Next we shall apply the
considered EFG scheme with the central difference scheme to the numerical
calculation of Cherepanov’s model.

5 Main Crack Propagation in a Field of Interacting
Flaws under Dynamic Pulse Loading

Below we shall consider the typical case of failure which occurs in high-pressure
equipment - main crack propagation in a field of interacting flaws under in-
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Figure 4.5. Energy release rates normalized by Hσ2
0/E for a static crack subject

to pulse loading calculated by Newmark method with β = 1/4 and γ = 3/4.

fluence of pulse load of finite duration. We use the same specimen for the
modeling of the problem as in the previous section. The applied impulse has
a finite duration equal H/c1. The geometry of the main crack and the system
of micro-cracks is shown in Fig. 6. In addition we solve the problem of the sin-
gle main crack propagation without micro-cracks for the same specimen and
pulse load. Three stages of Cherepanov’s model were analyzed and compared
to the case of a single crack problem to establish the effect of a system of
micro-cracks on the energetic characteristics of the main crack.

Figure 5.6. Main crack interacting with system of micro-cracks in the plate mod-
eling infinite plate subjected to tensile pulse loading.

The calculation established that initially a pulse load creates a uniformly
distributed stress field that moves toward the main crack (Fig. 7a). Later,
when the stress wave arrives at time H/c1 to the main crack line, the tip
of the main crack starts to accumulate and concentrate energy (Fig. 7b). As
a result the energy release rate grows linearly (Fig. 7f). There is no clear
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indication of interaction between the main crack and the system of micro-
cracks. The energy release rate of the main crack is not different from the case
of the single crack. However, as the stress intensity continues to rise around
the tip of the main crack and system of micro-cracks, the interaction effect
begins at approximately t =1.3H/c1. The energy release rate increases relative
to the case of the single main crack, indicating that an amplification effect is
taking place.

In the zone where the system of cracks is located there are clear signs
of a non-uniform stress concentration (Fig. 7b). Some of the cracks concen-
trate the energy intensively, while others, shielded by external cracks from
the pulse stress wave, which is moving in their direction, and do not accu-
mulate stresses. The combined stress field around the system of the cracks is
extremely anisotropic.

The main crack starts to propagate when the energy release rate of the
main crack exceeds its critical value (Fig. 7f). The initiation of crack growth
occurs earlier than in the case of a single crack due to the stress amplifica-
tion effect. From the beginning, the crack propagated with higher velocity
and elongates faster relative to the case of a single crack without the sys-
tem of micro-cracks (Fig. 7g, h). As the distance between the main crack
and the system of micro-cracks decrease, the amplifying effect increases and
the redistribution of the stress field becomes obvious (Fig. 7c, d). The maxi-
mum velocity that the main crack interacting with the system of micro-cracks
reaches is 1050m/s, while for the single crack it is 700m/s. The stress field
around the tip of the main crack starts to interact with the stress field of sys-
tem of micro-cracks and the redistribution of the stress field becomes obvious
(Fig. 7c, d), indicating dynamic interaction.

The main crack decelerates as the impulse interrupts at time t = 2H/c1.
Its velocity and the rate of its elongation decrease (Fig. 7g, h). However, the
energy accumulated in the specimen supports fracture development and the
main crack continues its motion toward the micro-crack system. It increases
the interaction effect and as a result an interesting phenomenon occurs: the
main crack continues to propagate for a longer distance compared with the
case of a single crack despite the absence of load on the specimen’s bound-
aries (Fig. 7h). The deceleration of a main crack (Fig. 7g) continues until
approximately t=3H/c1 relative to t=2.14H/c1 in the case of a single crack.

One can observe oscillations in the numerical results of the velocity in
Fig. 7g after t=2H/c1. As in the case of a single crack propagating with
constant velocity considered previously, the peaks occur just before a crack tip
passes a node. However, the amplitude of the velocity oscillations attenuates
indicating further crack arrest. It should be noted, that the character of the
oscillation does not adversely affect the main physical phenomena observed in
this example - the main crack elongates for larger lengths if interacting with
other cracks. We wish to stress that the same level of oscillations appears in
the velocity of a moving single crack in [15].

After all these, the results of the analysis showed us that:
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• The energy release rate varies and depends strongly on the position of the
applied dynamic load, the direction of the stress wave propagation and on
the mutual position of the tip of the main crack and the system of cracks
and their sizes.

• The crack may start to propagate earlier if interacting with other flaws.
• The interaction of the main crack with the system of micro-cracks changes

the velocity of the main crack propagation.
• The process of crack development under pulse loading and crack deceler-

ation can take longer due to the stress amplification effect.
• The main crack may elongate for larger lengths if interacting with other

cracks. This may lower the component’s life time subjected to impulse
loading.

In the above, we forced the main crack to propagate linearly and the system
of micro-cracks was assumed to be static. This was done in order to:

• Compare the behavior of a single main crack undergoing pulse load and
when a main crack interacting with a system of micro-cracks.

• Investigate how a system of micro-cracks located at different distances
from the tip of the main crack changes the energy release rate, velocity,
energy flow density distribution around the main crack.

We will consider below the problem where the main crack and micro-cracks
inside of the system of flaws start to propagate at a constant velocity equal to
0.4c2when their energy release rates exceed the critical value G1c, under the
influence of a pulse load. We postulate that cracks propagate according to the
maximum principal stress criterion.
The results of the calculations show that:

• When the accumulated energy at the cracks tips becomes critical and
cracks start to propagate, the interaction effect is taking place. This result
in the local redistribution of stresses at the tips of the cracks. This changes
the direction of propagation of the main crack and of individual cracks of
the system of micro-cracks.

• Cracks initially located perpendicular to the applied forces do not propa-
gate linearly. The trajectory of the growing cracks is presented in Fig. 8.

• Some micro- cracks that accumulate more energy start to propagate early
and pass through longer distances than others do.

• Micro-cracks that are shielded by other cracks from the pulse stress wave
do not propagate.

• Cracks that are located parallel to each other tend to increase the distance
between themselves to reduce the shielding effect and then propagate par-
allel to each other.

• Propagating cracks which are collinear or shifted relative to each other,
including the main crack tend to coalescence similar to what was observed
in of metallurgical investigations.
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Figure 5.7. (a)-(e) Von-Mises stress distribution for the main crack interacting with
the system of micro-crack and (f) energy release rate, (g) velocity and (h) elongation
of the propagating main crack interacting with a system of micro-cracks compared
with a single main crack. See Color Plate 5 on page 296.

Figure 5.8. Main crack and micro-cracks interacting and propagating with changing
direction.
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• As a result of the main crack’s propagation and interaction with the system
of developing micro-cracks, they tend to coalescence with each other to
create one macro-flaw.

6 Conclusions

The physical models and numerical methods for investigating individual and
interacting randomly dispersed cracks were elaborated and developed. We
evaluated their danger level, and the velocity and the direction of a main
propagating in a system of interacting cracks. Phenomena of dynamic crack
interactions were investigated. These in particular included:

A special, the multiple crack weight (MCW), method for constructing
weight functions for multi-crack problems was created. This defines the weight
functions around cracks in such a way that they can simultaneously charac-
terize all the crack tips present in the nodal domain of influence. Thus it
allows the solution of strongly interacting static and dynamic cracks without
enormous mesh refinement and reduces significantly the computational efforts.

The results of the calculated numerical examples show that the new
method enables an accurate and reliable solution for static and dynamic
strongly interacting cracks problems with relatively small nodal densities.
There was less than 0.5% difference between the calculated and at least one of
the three corresponding reference values of normalized stress intensity factors
FA
I and FB

I in all cases, except one for FA
I and one for FB

I .
A number of numerical examples of individual interacting cracks undergo-

ing pulse load were solved by the EFG method using different time evolution
approximation techniques. The results of the calculations were analyzed. Sat-
isfying accuracy of the solution of numerical examples was achieved compared
with analytical solution and the results of other numerical methods.

The problem of main crack propagation in a field of interacting micro-
cracks was solved. The analysis has shown that the character of the interac-
tion depends strongly on the position of the applied pulse load, the direction
of the stress wave propagation and on the position of the cracks, and their
orientation and distance from each other within the system. The interaction
of cracks can result in an increase of energy release rate for some of them and
lead to their future propagation. Main crack may start to propagate earlier
if interacting with other flaws. The interaction of main crack with a system
of micro-cracks changes the velocity of its propagation. The process of crack
development under pulse loading and crack deceleration can take longer due
to the stress amplification effect. Main crack may elongate for longer lengths,
when it interacts with other cracks.
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1 Introduction

The generalization or extention of the standard finite element methods (FEM)
has been receiving increasing attention in the field of computational me-
chanics. The start of this trend is probably made by Babuška and Melenk
[MB96, BM97] (for PU-FEM), and Durate and Oden [DO96a, DO96b] (for
hp cloud method), in which the implication of the partition of unity (PU) is
manifest in the framework of meshless methods. It is then recognized that the
PU is the most fundamental theoretical basis for generalizing the FEM. In this
context, the overwhelming success has been achieved in the extended FEM
(X-FEM) by Belytschko and his co-workers [MDB99, DMB00], which enables
us to deal with arbitrary discontinuities in FE analyses by the introduction
of discontinuous enrichment functions associated with nodes. Another impor-
tant development is the generalized FEM (GFEM) introduced by Babuška and
his co-workers [SBC00, SCB01], which provides a solid mathematical basis in
generalizing the p-adaptive FEM.

With all similar developments, the earliest work that realizes the gen-
eralization of the FEM based on the PU property was done by G.H. Shi to
propose the manifold method (MM) [Shi91]. The MM, which combines the PU
property with differentiable manifolds, was originally developed as an analy-
sis method that integrates the method of discontinuous deformation analysis
(DDA) [SG89] into the standard FE technologies, and has recently been intro-
duced in the area of computational mechanics; see, e.g., Chen et al. [COIB98].
To be more adequate, the name change of the MM was made by Ohtsubo et
al. [OSTN97] and Terada et al. [TAY03] as the finite cover method (FCM)
and by Lin [Lin03] as the mesh-based partition of unity method. It is noted
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that the meshfree nature is rather emphasized in these developments than the
distinction with the DDA in the MM.

In this study, we introduce the FCM as one of generalized analysis methods
or a sort of mesh-free methods, and try to enhance its functional capability to
analyze physically and geometrically nonlinear problems. Since the approxi-
mation concept and techniques of the FCM are almost the same as those of
the FEM, the material nonlinearities and the large deformation kinematics
are easily incorporated into the FCM. In this study, we focus our attention
to the problem of evolving discontinuities with small strains for the former
nonlinearity. On the other hand, for the latter, the standard weak formula-
tion is simply provided in the Lagrangian frame for introducing finite defor-
mation kinematics to the finite cover approximation. Here, a representative
numerical example for a hyperelastic body demonstrates the limitation by the
Lagrangian approach. Thus, we finally propose a new computational method
that enables us to analyze the quasi-static equilibrium problem of a finitely de-
forming body with a spatially fixed mathematical mesh — we have coined the
pseudo-Eulerian FCM for it. It is to be noted that no studies have ever tried
so far to extend the generalized versions of the FEM for finite deformation
problems.

2 Finite Cover Method

The formulation of the finite cover method (FCM) is presented with reference
to the original development of the manifold method (MM) by Shi[Shi91] and
ours[TAY03]. After introducing the definitions of the components of the FCM,
we explain the device to approximate the solution of boundary value problems
(BVP) in comparison with the standard FEM.

Mathematical cover M1

Mathematical cover M2 

(b) Mathematical domain(a) Physical domain

(c) Mathematical covers (d) Physical covers

Ω
[ ]1

Ω
[ ]2

Physical cover P1

1[ ]
Physical cover P2

1[ ]

Physical cover P1

2[ ] Physical cover P2

2[ ]

Ω Ω Ω= ∪
[ ] [ ]1 2

M

Figure 2.1. Definition of mathematical and physical covers.
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2.1 FCM Components

Let us suppose that the physical domain Ω composed of subdmains Ω [1] and
Ω [2] as shown in Fig. 2.1(a), each of which has its own physical quantities.
On the other hand, mathematical properties such as differentiability are in-
troduced to the mathematical domain denoted by M, which is independent
of the physical domain. We assume that this mathematical domain can be
constructed as a union of a finite number of patches MI , which can overlap
either partially or totally, as

M =

NM⋃
I=1

MI , (2.1)

where NM is the number of patches. We call these patches mathematical cov-
ers and assume they have their own mathematical properties. For instance, in
Fig. 2.1(b), the mathematical domain composed of two mathematical covers,
M1 and M2, covers the physical domain Ω . As can be illustrated here, the
mathematical domain M, or equivalently the union of mathematical covers,
needs not coincide with the physical domain even in the description of the
BVP, provided that the former domain completely covers the latter; see Fig.
2.1(c). Also, the common region of mathematical cover MI and physical do-

main Ω [α] is called physical cover, which is denoted by P
[α]
I as in Fig. 2.1(d),

and accommodates the functions representing physical quantities.
Although these definitions of finite covers may be enough to explain the

differentiable manifolds in the framework of differential geometry, appropriate
mathematical properties must be introduced to approximate the solution of
the BVP. If we consider the approximation of physical quantities such as dis-
placement fields in the context of structural or continuum mechanics, certain
conditions have to be enforced upon the covers. In this respect, we introduce a
weight function to each mathematical cover and spatially arrange all of them
so that the union of the weight functions provides a partition of unity (PU)
for approximation. The weight function is generally defined as follow:{

wI(x) ≥ 0 for x ∈ MI

wI(x) = 0 for x /∈ MI ,
(2.2)

along with the PU
NM∑
I=1

wI(x) = 1 on M, (2.3)

where NM is the number of mathematical covers used. Then, we call the
common part of mathematical covers the mathematical element. Besides, a
union of all the mathematical elements is called mathematical mesh. Figure
2.2 would help one to understand the covering concept of approximation in
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the two-dimensional setting, in which the mathematical element is expressed
as

Ωe =
⋃

α=I,J,K,L

Mα, (2.4)

and the physical element is defined as the common part of physical covers.
In this particular example, the set of weight functions can be bilnear and is
illustrated in Fig. 2.3.

Mathematical Element

(= common part

     of mathematical covers)

Mathematical covers

ML MK 

MI MJ 

I J

KL

Mathematical domain 

for approximation

covering

physical domain

material interface

Ω
[1]

Ω
[2]

Ω Ω Ω= ∪
[ ] [ ]1 2

M

Figure 2.2. Basic components in 2D FCM.
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I

Mathematical
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J
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Ω
e

Figure 2.3. Example of bilinear weight functions.

Given the physical problem and the mathematical mesh in Fig. 2.2, we
can take any way of covering. Let us consider two typical covering patterns
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FEM components
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= ∩Ω

[ ]2

covering pattern IIcovering pattern I

mathematical
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FCM components

Ω
e
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Figure 2.4. Covering patterns and generalized elements.

illustrated in Fig. 2.4; Pattern I and II. Covering Pattern I is performed so
that (a part of) the mathematical mesh coincides with the physical domain,
or equivalently, so that the mathematical elements and the physical elements
are identical. This leads to the discretization of the standard FEM. On the
other hand, in Pattern II, the mesh covers the physical domain, but the math-
ematical elements need not be compatible with the physical domain. In fact,
the second type of covering, i.e., Pattern II, characterizes the FCM as a gen-
eralized version of the FEM or a kind of meshfree methods.

Keeping in mind the definition of physical covers, we recognize the math-
ematical element that covers a physical domain in part and is highlighted in
Fig. 2.4 for Pattern II. We call this mathematical element the generalized el-
ement in this paper. It is noteworthy that a physical element is defined as an
overlapped region of physical covers, each of which is the common part of a
mathematical cover and a physical domain. Therefore, a physical element in-
herits the mathematical properties from the FCM mesh, so does a generalized
element in the light of the fictitious domain concept [GPP94] or the idea of
immersed interface[Li98].

The generalized elements are important components of the FCM to repre-
sent arbitrary discontinuities in numerical analyses. When we are in the mesh-
free framework in one hand, a spatially fixed mesh is used for arbitrary phys-
ical boundaries including external boundaries and material interfaces. On the
other hand, when concerned with the localization phenomena due to material
softening or cracking, we are able to represent weak or strong discontinuities
within elements. The generalized elements encountered in such situations can
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inclusion

crack

discontinuities

hole

external boundaries material interfaces

Figure 2.5. Variety of generalized elements in FCM meshes.

be schematized as in Fig. 2.5. The performance of these non-standard elements
has recently been examined in Terada and Kurumatani[TK03].

2.2 Finite Cover Approximation

In the original formulation of the MM by Shi [Shi91], the displacement function
is approximated by cover functions, which are defined on physical covers,
multiplied by weight functions defined on mathematical covers. That is, we
employ the following approximation:

u(x) ≈ uh(x) =

NM∑
I=1

wI(x)f
[α]
I (x) on Ω [α], (2.5)

where NM is the number of mathematical covers, wI(x) is the weight function

on the mathematical cover I, and f
[α]
I (x) is the cover function defined only

on physical cover P
[α]
I . Here, each cover function can be chosen arbitrarily and

is formally given as

f
[α]
I (x) =

m∑
i=0

pi(x)a
[α]
iI on P

[α]
I . (2.6)

Here, pi(x) are monomials to form a polynomial basis with p0 = 1, and a
[α]
iI

are constant coefficient vectors. The complete set of polynomials is a possible
choice of pi(x), but is not eligible unless the monomials that are dependent
on the weight functions are excluded; see, e.g., Durate and Oden[DO96b].

Substituting (2.6) into (2.5) along with d
[α]
I = a

[α]
0I , we arrive at the following

expression:

u(x) ≈ uh(x) =
NM∑
I=1

wI(x)

(
d

[α]
I +

m∑
i=1

pi(x)a
[α]
iI

)
on Ω [α], (2.7)
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in which, of course, cover functions pi(x) can be chosen as analytical or hand-
book functions as in the GFEM and as jump or singular functions as in the
X-FEM. In this study, we employ the lowest order of weight functions of C0

partition of unity for the sake of simplicity; that is, we neglect the higher-order
cover functions pi(x) (i ≥ 1).

What has to be noticed is the way to represent the discontinuities in the
FCM, which is somewhat different from the other generalized versions of the
standard FEM. In fact, as was seen in the definitions of the FCM compo-
nents, we distinguish separate physical domains by defining separate physical
covers in approximating functions. In other words, a mathematical cover can
accommodate multiple physical covers, over which distinct cover functions are
defined. That is why we have specified the physical domain Ω [α] in the above
expression for approximation. The representation of discontinuities by means
of multiple covers affords the scope of this paper and can also be found in
Terada et al. [TAY03].

3 Application to Evolution Problems of Failure Surfaces

The FCM enables us to locate any type of discontinuities in arbitrarily gen-
erated mathematical mesh. To demonstrate such a capability of the FCM, we
here perform the analysis of an evolving failure surface employing the classical
failure condition. Since the use of local values of stress will cause the so-called
mesh-dependence, we employ the non-local strain/strain to judge the failure.

3.1 Governing Equations

Let us consider the quasi-static equilibrium problem of the physical domain
Ω . which might be composed of two separate physical subdomains, Ω [1] and
Ω [2]. The variational formulation of the displacement method for the problem
provides the following weak form of the governing equations to be solved for
the displacement field u ∈ U :∫

Ω

(∇δu) : σ dv =

∫
Ω

δu · b̄ dv +

∫
Γσ

δu · t̄ ds ∀δu ∈ V , (3.1)

along with an appropriate constitutive equation that relates the Cauchy stress
σ and the infinitesimal strain ε, and the strain-displacement relationship,
ε = ∇(S)u. Here, ∇ is the gradient operator, ∇(S) is that makes its symmetric
part, t̄ is the prescribed traction vector on Γσ and b̄ is the body force. Also,
the spaces of trial and test functions are respectively given as

U =
{
u

∣∣ ui ∈ H1(Ω), u = ū on Γu
}

, (3.2)

V =
{
δu

∣∣ δui ∈ H1(Ω), δu = 0 on Γu
}

, (3.3)
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where H1(Ω) is the Sobolev space of first order. Note here that weak form (3.1)
implicitly involves the interface compatibility condition u[1] = u[2] on Γ [1−2],
where u[α] is the displacement, and superscript [α] indicates the association
with physical domain Ω [α].

As was seen in the previous section, the constraints on physical bound-
aries are not necessarily imposed on the “nodal” degrees of freedom (DOF) in
the FCM. Therefore, the compatibility of the displacement on the essential
boundary Γu and internal boundaries Γ [1−2] must be satisfied in a weak sense
by means of the method of Lagrange multipliers. In this context, the hybrid
variational forms for the set of solutions (u, λ) ∈ H× L are given as∫

Ω

∇δu : σ dv +

∫
Γ [1−2]

δu[1] · λ ds −
∫
Γ [1−2]

δu[2] · λ ds +

∫
Γu

δu · λ ds

=

∫
Ω

δu · b̄ dv +

∫
Γσ

δu · t̄ ds ∀δu ∈ H, (3.4)

∫
Γ [1−2]

δλ ·
(
u[1] − u[2]

)
ds +

∫
Γu

δλ · (u − ū) ds = 0 ∀δλ ∈ L, (3.5)

where we assume H = {H1(Ω)}ndim and L = {L2(Γu or Γ [1−2])}ndim−1.
The formulation is completed by the introduction of the specific constitu-

tive laws for the material. In this section, we consider only a linearly elastic
material governed by the constitutive law σ = C : ε where C is the symmetric
elasticity moduli tensor. The material is assumed to be isotropic, but might
be subject to failure in this particular modeling.

The formulation in the above is the most general. However, we do not con-
sider the problems that necessitate the Lagrange multipliers in the numerical
examples. The illustrative examples that extensively utilize the multipliers
to impose the essential boundary and material compatibility conditions are
found in Terada et al.[TAY03].

3.2 Failure Conditions with Nonlocal Strain/Stress

Failure Condition. Various types of failure conditions have been proposed
based on different hypothesis depending on the kinds of materials. For in-
stance, the values of path-independent integrals such as J-integral are used to
identify the crack initiation in the framework of classical fracture mechanics.
This approach seem to be very effective for determining the state of initiation
and the evolving length and direction for existing cracks. In contrast, most of
the conventional ways to deal with the successive process of crack generation
and evolution seem to place their theoretical basis on the theories of material
instabilities [Ric76, deB01].

Since, in this study, our intention is to demonstrate the capability the
FCM, we simply employ the latter condition; in particular, we utilize the
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Rankine type failure condition based on the values of positive principal stress.
Then, we set the following condition for the generation of discontinuities by

F = σmax − σcr = 0, (3.6)

where σmax is the positive maximum principle stress that can be evaluated
from the Cauchy stress σ and σcr is the critical value of stress for generating
a discontinuity. Also, the orientation of the discontinuity, θcr, is determined
by the direction perpendicular to the major principal direction θmax as θcr =
θmax + π/2.

Introduction of Nonlocal Strain/Stress. As was mentioned in the pre-
vious section, the approximation properties of the FCM are almost the same
as those of the FEM. Inevitably therefore, the use of the failure criterion based
on the local values of stress causes the mesh-dependence problem because of
its non-smooth distribution. Within the framework of finite element methods
along with softening constitutive models, the nonlocal strain/stress is often
employed as a localization limiter; see, e.g., [BP88, BL89]. In this study, the
effect of nonlocality is expected only on the judgment of failure, but not really
on the material softening, since the discontinuities are explicitly represented
in the FCM.

In this study, integral averaging is adopted to achieve the nonlocal effect.
The theory states that the material behavior can be evaluated by the nonlocal
physical quantities that are obtained by performing weighted averaging of the
corresponding local ones distributed around the evaluation point. For example,
the nonlocal stress σ(x) can be evaluated by means of the local one σ(x) as

σ(x) :=

∫
ΩR

α (x, ξ)σ (ξ) dξ, (3.7)

where ΩR is the nonlocal domain of integration and α (x, ξ) is the nonlocal
weighting function given by

α (x, ξ) =
α0 (|x − ξ|)∫

ΩR
α0 (|x − ζ|) dζ

. (3.8)

In this study, we assume the following bell-shaped function for α0(r) with the
r-coordinate defined by r = |x − ξ|:

α0(r) =

⎧⎪⎨
⎪⎩

(
1 − r2

R2

)2

if 0 ≤ r ≤ R,

0 if R ≤ r,

(3.9)

where R is the radius of nonlocal domain ΩR for weighted integration.
To incorporate the nonlocal variable with the numerical analyses by the

FCM, we simply replace the local Cauchy stress in (3.6) by the nonlocal one
as
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F = σmax − σcr = 0, (3.10)

where σmax is the positive maximum principle stress that can be computed
from the nonlocal stress σ. It is to be noted that the weighted averaging
plays only a role of regularization of the non-smooth distribution of stress. In
other words, the nonlocal stress is used only in the failure criterion to judge
the generation and evolution of discontinuities, but not for the equation of
equilibrium.

(a) Initial configuration

(c) Generation and evolution of a discontinuity

: center of mathematical covers

 : center of mathematical covers

(b) Single mathematical cover

(d) Discontinuous deformation by multiple covers

Figure 3.6. Schematic of representing a discontinuity in the FCM.

3.3 Numerical Algorithm for the Evolution of Discontinuities

When an evolving discontinuity intersects a mathematical cover, the asso-
ciated physical cover that is endowed with cover functions is divided into
two covers. This implies that the number of degrees of freedom, which is de-
termined by the cover functions, is increased when the discontinuity evolves.
Below, we explain the rule to add such new degrees of freedom by using the ex-
ample schematized in Fig. 3.6, in which we use the mathematical cover shown
in Fig. 3.6(b). Here, the external boundary of the mathematical mesh coin-
cides with the external physical boundary in this particular example, though
it is not mandatory in general.
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Suppose that the state of a discontinuity is obtained as shown in Fig.
3.6(c) at a certain loading step. As can be seen, some of the mathematical
covers cover two separate physical domains. Here, the central point of each
mathematical cover, which is marked by ◦ in this figure, is often identified
with node when constant cover functions are used for approximation. Then, we
simply add new cover functions or, equivalently, physical covers according to
the definition of finite covers. Also, Fig. 3.6(d) schematizes the representation
of the discontinuous motion or deformation with multiple covers. In the actual
computer implementation, two sets of cover layers are prepared beforehand,
each of which is expected to be associated with the separate physical domain.
Only the single cover layer is used to analyze the linearly elastic deformation.
Then, once the aforementioned failure condition is satisfied, we make the other
active to represent the discontinuity.

3.4 Representative Numerical Example

F

0.13F

200 400 6565 200400

300

AB

C D

[cm]

Figure 3.7. Analysis model of four point shear tests and crack path reported in
experiments.

We perform the numerical analyses for the evolution of a discontinuity in
the four point shear problem by the FCM with the nonlocal failure criterion.
The structure under consideration is a beam-like plane solid with a notch at
the center of its bottom surface; see Fig. 3.7. This model problem is often
utilized to validate specific numerical schemes for this kind of discontinuous
deformation [JZ98].

The loading is applied by controlling the vertical displacements at Points
A and B in Fig. 3.7 so that the resultant forces at these points keep the same
proportion. The experimental facts for concrete beams may be found in Arrera
et al. [Arr81], in which the crack initiate at the tip of the notch, and is bended
up to the right portion of Point A, which is depicted by a dotted line in Fig.
3.7; see also [JZ98] for the results of numerical analyses.

We prepared three models, Mesh-a, Mesh-b and Mesh-c, of different num-
bers of mathematical or physical elements, which are actually constant strain
triangle finite elements of linear weight functions. The representative element
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zooming

Figure 3.8. Deformed configurations in the nonlocal case in the ultimate state.

(b) Enlarged illustration of the discontinuity(a) Deformed configurations with stress distribution

zooming

Figure 3.9. Deformed configurations in the local case in the ultimate state.

sizes of the three models are 10, 5, 2.5 cm and the numbers of elements are
9046, 36580, 146738, respectively. Also, we consider the failure condition with
local stress in comparison — we call it the local case for convenience, while
the case using the failure condition with nonlocal stress is simply called the
nonlocal case. The material parameters used in the numerical analyses are
given as follows: Young’s modulus E = 20(GPa), Poisson’s ratio ν = 0.3, the
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critical value of the failure condition σcr = 2(MPa). Also, the radius R in (3.9)
of nonlocal domain is set by 12.0 cm for all the models, which is comparable
to the representative element size of Mesh-a. In general, the size of the radius
is chosen so that the local effect in elements is most effectively eliminated,
and thus is relevant to neither actual physics nor computational robustness.

Figure 3.8 shows the deformed configurations obtained in the nonlocal
cases in the ultimate state. This figure also presents the enlarged illustration
of the discontinuity with Mesh-a. As can be seen from the figures, the evolving
discontinuities are very similar to that reported in experiments. Also, all the
models exhibit almost the same configuration – this means that the numerical
solutions are independent of the mesh size. On the other hand, the results
obtained in the local case are presented in Fig. 3.9, which shows very different
deformed configurations from the experimental one and have great depen-
dence on the mesh size. Thus, the evolution of discontinuities is successfully
simulated by the FCM with the simple failure condition by means of nonlocal
stress, but not by local stress.

The same observation can be made by depicting the load versus displace-
ment curve, which is shown in Fig. 3.10. Here, the level of loading is the
vertical component of the resultant force at Point A and the displacement is a
relative one between those of Points C and D in Fig. 3.7, which is often called
the crack mouth sliding displacement (CMSD) in the literature.

In conclusion, the FCM enables us to simulate arbitrary discontinuities
which evolve independently of the mathematical mesh. It is, however, noted
that the incorporation of their mechanical models into boundary value prob-
lems is not relevant to their geometrical representation associated with specific
analysis methods. In fact, the X-FEM[MDB99] employs almost the same way
of geometrical representation for the discontinuities as that of the FCM, but
utilizes the analytical functions that represent the crack tip displacements in
the mathematical modeling.
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Figure 3.10. Load versus displacement curves obtained by the FCM analyses.
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4 Application to Finite Deformation Problems

The FCM is applied to finite deformation problems with the Lagrangian math-
ematical mesh and extended to that for the Eulerian mesh. First, the limita-
tion of the Lagrangian approach is demonstrated by a representative numerical
example, and then propose a new computational method that enables us to
analyze the quasi-static equilibrium problem of a finitely deforming body with
a spatially fixed, or Eulerian, mathematical mesh.

4.1 Boundary Value Problem and its Linearization

Let B0 ⊂ Rndim (ndim =1,2, or 3) be the reference configuration of a continuum
body with smooth boundary ∂B0 and closure B̄0 := B0 ∪ ∂B0. We identify
a particle in the body labeled by its position vector X ∈ B̄0 relative to the
standard basis in Rndim . On the other hand, position x ∈ Rndim in the current
configuration B of the body is obtained through the mapping ϕ : B̄0 → B ⊂
Rndim , defined as x = ϕ (X) for all X ∈ B0, with J (X) := det (F (X)) where
we have defined the deformation gradient as

F (X) := ∇Xϕ(X) =
∂ϕ(X)

∂X
. (4.1)

It is assumed that the elastic body is subjected to dead loading with body
force per unit mass defined by B : B0 → Rndim . We also assume that the
deformation is prescribed as u = ū on Γu ⊂ ∂B0, and that the nominal
traction vector is also prescribed as T̄ : ∂B0 → Rndim on Γσ. The potential
energy function of the external loading takes the form

Gext(u) :=

∫
B0

ρ0B.u dV +

∫
Γσ

T̄ .u dΓ , (4.2)

where ρ0 is the density in the reference configuration.
In order to have the weak form of the equilibrium equation, we introduce

the function space UB0 of the solution u, and VB0 for its variations η. They
are respectively defined as

UB0 :=
{
u : B0 → Rndim

∣∣ ui ∈ W 1,p(B0), u = ū on Γu
}

, (4.3)

VB0 :=
{
η : B0 → Rndim

∣∣ ηi ∈ W 1,p(B0), η = 0 on Γu
}

, (4.4)

where W 1,p(B0) is the Sobolev space of functions whose first derivatives belong
to the space of p-th Lebesgue integrable functions, Lp(B0) (p ≥ 2). Then, the
equilibrium equation in the weak form for solution u ∈ UB0 is given as follows:

GB0 (P ; η) :=

∫
B0

P : ∇Xη dV − Gext (η) = 0, ∀η ∈ VB0 , (4.5)

along with the local equations in B0 as
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F (X) = ∇Xu (X) + 1, P (X) = F .S =
∂W (

X , F TF
)

∂F
. (4.6)

Here, we assume the hyperelastic material behavior and W is the associated
energy function. We also define the second Piola-Kirchhoff stress as S :=
2∂W/∂C where C = F TF is the right Cauchy-Green strain tensor.

The above nonlinear governing equation is usually solved by the Newton-
Raphson method for the incremental displacement Δu, or the corrector more
strictly speaking. In this context, the equilibrium equation is linearized to the
direction of Δu as

GB0 (P ; η, Δu) := DGB0 (P ; η) [Δu] + GB0 (P ; η) = 0, ∀η ∈ VB0 . (4.7)

Here, DGB0 (P ; η) [Δu] denotes the directional derivative of GB0 (P ; η) in the
direction of Δu and is defined by

DGB0 (P ; η) [Δu] =

∫
B0

∇Xη :
∂W

∂F∂F
: ∇X (Δu) dV, (4.8)

which yields the tangent stiffness matrix multiplied by the displacement cor-
rector vector. Thus the Newton-Raphson iterative procedure can be con-
structed.

In the numerical examples presented in the next subsections, we consider
the regularized logarithmic law for the compressible hyperelastic material be-
havior, which is derived by the following stored energy function of Hencky’s
type[Sim98]:

W(λ1, λ2) =
1

2
λ (ln λ1 + lnλ2) + μ

[
(ln λ1)

2
+ (lnλ2)

2
]
, (4.9)

where λ and μ are the Lamé’s constants. Here, λ1 and λ2 denote the principal
stretches, namely, the square roots of the eigenvalues of C.

4.2 Lagrangian Approach

First, we present the standard Lagrangian approach for solving the boundary
value problem given in the above to motivate ourselves to incorporate the
Eulerian scheme with the FCM, whose basic ideas will be provided in the
next subsection. Nonetheless, to the best of our knowledge, the generalized
versions of the FEM, such as GFEM, X-FEM and FCM, have not been applied
to the finite deformation problems even in the Lagrangian framework.

Let us consider the plane structure shown in Fig. 4.11, which may be
subject to the so-called snap-through phenomenon, and cover it with the
mathematical mesh of square covers of the same size. Since the finite cover
approximation can be set in almost the same way as the standard FEM in
the Lagrangian framework, we can easily perform the numerical analyses to
obtain the load-displacement curve in Fig. 4.12. Here, we have used the follow-
ing material parameters: Young’s modulus E=10 GPa, Poisson’s ratio ν=0.3
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(λ = 3/0.52 GPa, μ = 10/2.6 GPa as Lamé’s constants in (4.9)). For compari-
son, the results by the standard FEM is provided in the same figure. As can be
seen, the numerical analysis by the FCM successfully conducted, but cannot
be completed, though the standard FEM provides the relevant solution. The
reason for this is provided below.

Figures 4.13(a) and (b) respectively show the deformed configuration along
with the von-Mises stress distribution and the deformed mathematical mesh
at the loading level marked by the arrow in Fig. 4.12. In particular, the math-
ematical element indicated by the arrow in Fig. 4.13(b) has a collapse, so
the approximation by the cover functions multiplied by the weight functions
cannot be achieved. This situation is also found in the FE analyses especially
for finite deformation problems. However, the mathematical elements that ac-
commodate a very small physical domain sustain severer deformation than
the regular elements in the FEM. This brings element collapse and makes the
FCM less robust than the FEM.

Therefore, the FCM must evolve so that the mathematical mesh does
not deform even when a body moves. This motivate us to develop a new
computational strategy that realizes the Eulerian mesh in the next subsection.

5 [m]

10 [m]

25 [m] 5 [m]

A

loading

Figure 4.11. Plane structure subject to
snap-through deformation.
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Figure 4.12. Load-displacement curve
at Point A.

4.3 Pseudo Eulerian Approach

Introductory Remarks. We shall propose a new analysis method that en-
ables us to follow large deformation with a spatially fixed mathematical mesh.
As is well-known, a class of numerical schemes with a spatially fixed mesh is
commonly called the Eulerian approach and is usually utilized in the numer-
ical analyses for the motion of fluids. Thus, we here intend to deal with the
motion or deformation of solids like that of fluids. This is the first trial in the
literature within the framework of generalized finite element methods.

It is noteworthy that there have been several numerical methods, in which
a solid body is immersed in a spatially fixed mathematical mesh as if it would
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(b) Deformed mathematical mesh

(a) Deformed configuration with von-Mises stress distribution
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Figure 4.13. Numerical results by the
Lagrangian FCM.
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Figure 4.14. Flow chart for the PE-
FCM.

be a fluid whose motion is measured by a fixed frame; see, for example, Glowin-
ski et al. [GPP94] and Li [Li98]. On the other hand, the Eulerian FEM by the
Benson[Ben92] can deal with large deformation with a spatially fixed mesh,
but is classified into the hydrocodes, which do not has the mathematical struc-
ture of the generalized finite element techniques.

The messy task to obtain the quasi-static equilibrium of a finitely deform-
ing body with a spatially fixed mathematical mesh is to trace the motion of
each material point by the fixed approximation space. This task intrinsically
involves two difficulties. One is the treatment of the convected physical quan-
tities at each material point of a solid body when the Eulerian description
is employed, and the other is the representation of moving boundaries of the
body within a fixed mesh. To avoid the former difficulty, we simply employ
the Lagrangian description for the mathematical modeling for a continuum
body, but deal with the convective effects with the mathematical mesh that
is first attached to the current configuration and then pulled back to the fixed
or initial configuration. The latter difficulty is easily overcome in the present
context, since the FCM allows the mesh to be located arbitrarily or inde-
pendently of the actually moving physical domain. In other words, the FCM
enables us to immerse a body in a spatially fixed mathematical mesh once the
generalized elements that partially have physical domains (especially near the
moving physical boundaries) is generated automatically during the analysis.

The methodology with these features is not a pure Eulerian approach, but
can be a “pseudo”Eulerian one in the sense that the numerical algorithm pre-
sented in Fig. 4.14 realizes the algorithmic treatment of convection and moving
boundaries. In this respect, we name this technique the pseudo-Eulerian finite
cover method (PE-FCM).



186 K. Terada, M. Asai

Undeformed configuration Deformed configuration Remeshing by Eulerian mesh

Control point defining original physical elements

Control point defining new (or updated)  physical elements

Re-constructed model

Deformed elements before re-construction

Mathematical elements that is not used

Mathematical elements used for analysis

Figure 4.15. Schematic of the updating process for mathematical and physical
elements.

Numerical Algorithm. In the numerical algorithm given in Fig. 4.14 for
the PE-FCM, Process (i) is exactly the same as the that of the Lagrangian
FCM — we solve the linearized equation to obtain the incremental displace-
ment and then update the coordinates of the current positions of nodes, which
are the central points of spatially fixed mathematical covers. In process (ii),
the new physical elements are generated by means of the spatially fixed mathe-
matical mesh and the updated geometry. Then, we evaluate the total displace-
ments at the central points of the fixed mesh by the interpolation in terms of
the values of the total displacements obtained in (i). Process (iii) requires us
to evaluate the stress and strain, and check the equilibrium of the body. Here,
the stress and strain are computed in terms of the total displacements that
are interpolated in process (ii), since the integration of the weak form to have
the residual force is performed on the fixed mesh.

The numerical algorithm just explained is almost the same as the stan-
dard implicit solution scheme for the quasi-static equilibrium of a solid body
subject to large deformation. Nonetheless, the interpolation of the total dis-
placements on the fixed Eulerian mesh by those on the deformed Lagrangian
mesh corresponds to the physical process of convection. Thus, the PE-FCM
can realize the Eulerian approach for finite deformation problems in the algo-
rithmic sense.

Figure 4.16. Deformation process obtained by the PE-FCM applied to the uniform
tension problem.
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Representative Numerical Examples.

(1) Uniform tension of a bar-like solid structure

The first example to demonstrate the idea of the PE-FCM is the problem of
uniform tension of a bar-like solid structure. The material parameters used
here are the same as in the previous subsection. The numerical simulation ex-
actly reproduces the analytical solution that satisfies the following relationship
between two stretches λ1 and λ2:

λ

λ2
(ln λ1 + lnλ2) + 2

μ

λ2
ln λ2 = 0 (4.10)

The deformation process is presented in Fig. 4.16, which well illustrates the
motion of the body whose boundaries intersects the fixed grid of the math-
ematical mesh. In this case, the field variables such as stress and strain are
constant everywhere in the body, but the displacement field is linear with re-
spect to x1-direction. Note here that the convection of all the field variables
is evaluated based on the total displacement field on the fixed mesh, which is
interpolated in terms of those on the deformed mesh. This fact confirms that
the algorithm works well.

(2) Bending of a beam-like solid structure

Another numerical example is the problem of bending of a beam-like solid
structure as shown in Fig. 4.17(a). The figure also depicts the spatially fixed
mathematical mesh and support/loading conditions. The material parameters
are the same as before. The numerical analysis by the PE-FCM provides the
load-displacement curve shown in Fig. 4.17(b) and the deformation process
with the von-Mises stress distribution as shown in Fig. 4.18. Although the
transient deformation process is well demonstrated, the verification of the
numerical solution is not conducted enough. Actually, we have confirmed in
the context of the linear FCM that the numerical solution by the coarse mesh
in the FCM is less accurate than that of the FEM, but in some cases the FCM
will provides more fast convergence than the FEM[TK03]. Nonetheless, the
contribution of this study is manifest in the idea of incorporating the FCM
with the pseudo Eulerian approach presented here.

5 Conclusion

The FCM has been introduced as one of generalized analysis methods and
extended for physically and geometrically nonlinear problems. For the physical
nonlinearity, we were concerned with the evolution of discontinuities in an
arbitrarily generated mathematical mesh. We also have tried to extend the
FCM to deal with finite deformation problems. After recognizing that the
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Figure 4.17. Analysis model and load-displacement curve obtained by the PE-
FCM.

Figure 4.18. Deformed configuration and stress distribution along with the spa-
tially fixed mathematical mesh. See Color Plate 6 on page 297.

Lagrangian approach in the FCM is not appropriate for large deformation
problems, we have proposed the new computational method, which we call
the pseudo-Eulerian FCM (PE-FCM).

The FCM has almost the same mathematical basis as other generalized ver-
sions of the FEM such as the GFEM and the X-FEM in the sense that they are
based on the PU with FE mesh. However, the FCM was originally developed
as a unified analysis method that comprehends the DDA and its functional ca-
pability has been enhanced by the present authors independently of the other
PU-based generalizations. In particular, the FCM enjoys the feature that the
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physical domain is placed arbitrarily in spatially fixed mathematical mesh.
This has been first utilized in this study to combine the Eulerian approach to
accommodate finite deformation kinematics in the generalized versions of the
FEM.
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[BM97] Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer.
Meth. Engrg., 40, 727–758 (1997)

[DO96a] Durate, C.A.M. Oden, J.T: An h-p adaptive method using clouds. Comput.
Meth. Appl. Mech. Engrg., 139, 237–262 (1996)

[DO96b] Durate, C.A.M., J.T. Oden, J.T.: Hp clouds — an hp meshless method.
Numer. Meth. Partial Diff. Eqs., 12, 673–705 (1996)
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A Numerical Scheme for Solving
Incompressible and Low Mach Number Flows

by the Finite Pointset Method
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Abstract A meshfree projection method for compressible as well as incompressible
flows and the coupling of two phase flows with high density and viscosity ratios is
presented. The Navier-Stokes equations are considered as the basic mathematical
model and are solved by the implicit projection method. The implicit projection
method yields the linear second order partial differential equations. These equations
are solved by the weighted least squares method and are compared with the exact
solutions. A one dimensional shock tube problem is exhibited for compressible flows.
Finally, two phase incompressible and quasi compressible flows are used to simulate
a two phase cavity filling problem.

1 Introduction

The Finite Pointset Method (FPM) is a meshfree method to solve partial dif-
ferential equations. The computational domain is represented by a finite num-
ber of particles (pointset), also referred to as numerical points. These points
can be arbitrarily distributed, however they have to provide a neighborhood
relationship governed by the smoothing length, i.e. each point needs to find
sufficiently many neighbor points within a ball of certain radius. Considering
the equation of fluid dynamics, the numerical points move with fluid velocity
and carry all information which completely describes the flow problem con-
cerned. Of course, this is a fully Lagrangian method being appropriate for flow
simulations with complicated as well as rapidly changing geometry [KTU00],
involving free surfaces [TK202, TK03] or phase boundaries [HJKT03].

The classical meshfree Lagrangian method to handle problems in fluid dy-
namics is the Smoothed Particle Hydrodynamics (SPH). SPH was initially
developed to study phenomena in astrophysics [GM97, 15]. Later, it was ex-
tended to flow cases even on earth [CR99, 16, Mor00, MFZ97]. Unfortunately,

�
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SPH has poor approximation properties, especially of the second order deriva-
tives, required to model the Navier-Stokes equations. Moreover, it is difficult
to incorporate boundary conditions of certain types. In SPH, incompressible
flows are approximated by using the compressible approach together with a
very stiff equation of state.

The FPM is based on least squares approximations, where the higher order
derivatives can be approximated very accurately and the boundary conditions
can be treated in a classical sense [Ku99]. Several computations of flow prob-
lems using the method of least squares or moving least squares are reported
by different authors, see [Dil96, Ku99, Ku02, TK01, TK102, TK202, TK03,
TM03, Tiw00] and other references therein.

The numerical scheme for incompressible and slightly compressible flow
phenomena, presented in this article, is based on the classical projection idea
of Chorin [Cho68, TK102]. Due to that, the solutions of Poisson as well as
Helmholtz differential equations, in particular, form a central task of FPM.
These equations can be solved directly in the given meshfree structure with
Dirichlet, Neumann or Cauchy boundary conditions in a very accurate way
[TK01]. Also, see section 3.1 and 3.2. Moreover, free surfaces can be incorpo-
rated very efficiently [TK202].

For some industrial applications, such as simulations of car tank refueling,
several fluid phases like fuel, air and foam might be involved. Not all phases
can be assumed to be incompressible, as for instance the air inside of the tank
might be compressed during the filling process. This is a rather slow compres-
sion, with the Mach number tending to zero. However, the compression plays a
big role as it partially governs the filling process. Thus, we would like to incor-
porate compressibility effects into the classical re-projection idea and finally
come up with an implicit scheme for compressible as well as incompressible
flows.

Therefore, we are going to present an idea to simulate low Mach number
and incompressible flows with exactly the same procedure, i.e. the incom-
pressible case turns out to be a special case of the compressible regime. We
consider the Navier-Stokes equations as the mathematical model. We solve
these equations by the projection method implicitly. The implicit scheme re-
sults in linear second order partial differential equations (Poisson, Helmholtz).
We solve them using the constraint least squares method suggested in [TK01],
see also section 4.

Most of the methods for solving multi phase flows are based on meshgrid
techniques [BKZ92, GW01, HW65, HN81, KP97], where additional compu-
tational effort has to be put in order to model the dynamics of interphase
boundaries. The advantage of using the particle method is that phases can
be distinguished by simply assigning flags to the fluid particles which identify
their proper phase. The phase-flags are carried in the same fashion as all other
physical data.

Since the particles move with fluid velocity, they may scatter or accumu-
late together. If they scatter and create holes in the computational domain,



A Finite Pointset Method for Incompressible Flow 193

singularities may arise. Hence, holes have to be detected and new particles
have to be added. Similarly, any two particles being too close to each other,
have to be replaced by a single one.

In this paper we have excluded surface tension effects. The CSF model
[BKZ92] can easily be extended by using the approach proposed in [Mor00].
The work is in progress.

We have obtained results from convergence studies for general second order
linear partial differential equations. If the coefficients are constant, the scheme
has second order convergence. If the coefficients are discontinuous, which occur
for solving multi phase flows, the proposed scheme is of first order convergence.
The implicit projection method is tested for compressible flows by solving a
1D shock tube problem and the results are compared with the exact solutions.
Finally, we present a two phase flow case for cavity filling, where the air is
considered to be compressible.

The paper is organized as follows. In section 2, we introduce the mathe-
matical model and the numerical scheme. In section 3, we present the FPM
for solving general elliptic partial differential equations. The numerical results
are presented in section 4.

2 Governing Equations

We consider two immiscible fluids, for example, liquid and gas. We distin-
guish the liquid and gas particles by assigning appropriate flags on them. We
assume that the viscosity μ and the density ρ jump are discontinuous in the
phase boundary. These discontinuities can cause numerical instabilities around
the interfaces. To avoid them, in every time step we consider the smoothed
densities and viscosities on and around the interface. This means for the dis-
cretization of the momentum equations, we consider the smooth density and
viscosity and then reassign these values to the original (non smoothed) ones.
The interface region can be detected by checking the flags of particles in the
neighborhood. We update the smoothed density ρ̃ and the smoothed viscosity
μ̃ in each time step at each particle position x near the interface by using the
Shepard interpolation

ρ̃(x) =

∑m
i=1 wiρi∑m
i=1 wi

, μ̃(x) =

∑m
i=1 wiμi∑m
i=1 wi

, (2.1)

where m is the total number of neighbor particles related to x (i.e. all numer-
ical points being within a circle of radius h around x, h is called smoothing
length). The neighbor particles in the interface region are taken from the liq-
uid as well as from the gas phases. Far from the interface we have ρ̃ = ρ and
μ̃ = μ. We consider a truncated Gaussian as weight function, in general this
can be any compactly supported smooth function.
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2.1 Navier–Stokes Equations

Let Ω be an open bounded domain in R
d (d = 1, 2, 3) with boundary Γ . Let

v, T and p be the velocity, temperature and pressure fields representing the
state variables. The compressible Navier-Stokes equations in the Lagrangian
form can be written as

Dρ

Dt
= −ρ∇ · v (2.2)

ρ
Dv

Dt
= −∇p + ∇ · σ(v) + ρg (2.3)

ρcv
DT

Dt
= −p∇ · v + (σ · ∇) · v + ∇ · (κ∇T ). (2.4)

Here, κ denotes the heat conduction coefficient, g the body force, cv the
specific heat capacity. By D/Dt we denote the Lagrangian derivative. The
stress tensor is

σij(v) = μ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
∇ · vδij

)
,

where δij = 0 is the Kronecker delta. We close the system (2.2-2.4) by the
equation of state

ρ = ρ(p, T ). (2.5)

Then, from the continuity equation (2.2) we obtain

∇ · v = −1

ρ

Dρ

Dt
= −1

ρ
(
∂ρ

∂p

Dp

Dt
+

∂ρ

∂T

DT

Dt
). (2.6)

Equation (2.6) is a very important relation which later allows us to derive a
projection idea for compressible flow phenomena.

Since the density and the viscosity are smoothed according to (2.1) near
the interface, we can rewrite the momentum equations (2.3) whose spatial
components are given by

Dv

Dt
=g− 1

ρ̃

[
∇p +(∇μ̃ · ∇)v + μ̃Δv + ∇v · ∇μ̃ − 2

3
∇μ̃(∇ · v) +

1

3
μ̃∇(∇ · v)

]

The above presented equations are to be solved with appropriate initial
and boundary conditions which are specified in the section where numerical
tests are performed.

3 Numerical Scheme

We consider Chorin’s projection method [Cho68] implicitly for both compress-
ible as well as incompressible flows. It consists of two fractional steps. We first
compute the new particle positions at time level tn+1 by
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xn+1 = xn + Δtvn. (3.1)

Then, for each particle, we compute the smoothed density ρ̃n+1 and viscosity
μ̃n+1 according to (2.1) and then compute the intermediate velocity v∗ by

v∗ +
Δt

ρ̃
[(∇μ̃ · ∇)v∗ + μ̃Δv∗] =

vn − Δt

ρ̃

[
∇vn · ∇μ̃ − 2

3
∇μ̃(∇ · vn) +

1

3
μ̃∇(∇ · vn)

]
+ Δtg. (3.2)

Here, Δt represents the time step, Δv is the Laplacian of v, ρ̃ = ρ̃n+1 and
μ̃ = μ̃n+1.

The second step consists in establishing the new velocity vn+1 by correct-
ing the intermediate velocity v∗. For this, we need to solve the equation

vn+1 = v∗ − Δt

ρ̃
∇pn+1 (3.3)

with the constraints

∇ · vn+1 = −1

ρ̃

Dρ̃

Dt
(3.4)

with respect to pn+1. By applying the divergence operator to equation (3.3),
and using the relation (2.6), we obtain

−1

ρ̃
(
∂ρ̃

∂p

Dp

Dt
+

∂ρ̃

∂T

DT

Dt
) = ∇ · v∗ − Δt∇ ·

(∇pn+1

ρ̃

)
. (3.5)

Now, using Dp
Dt = pn+1−pn

Δt , equation (3.5) can be expressed in the form

−1

ρ̃Δt2
∂ρ̃

∂p
pn+1 + ∇ ·

(∇pn+1

ρ̃

)
=

1

Δt

(−1

ρ̃

∂ρ̃

∂p
pn +

∂ρ̃n

∂T n
DT n

Dt
+ ∇ · v∗

)
.

(3.6)
Using the quotient rule for the second term on the left hand side of (3.6), we
obtain

−1

Δt2
∂ρ̃

∂p
pn+1 − 1

ρ̃
∇ρ̃ ·∇pn+1 +Δpn+1 =

ρ̃

Δt

(−1

ρ̃

∂ρ̃

∂p
pn +

∂ρ̃n

∂T n
DT

Dt
+ ∇ · v∗

)
.

(3.7)
On the right hand side of (3.7), it is obvious to replace DT

Dt by equation (2.4).
The boundary condition for pn+1 is obtained by projecting the equation

(3.3) on the unit normal vector n to the boundary Γ . Thus, we obtain the
Neumann boundary condition

∂pn+1

∂n
= − 1

Δt
(vn+1
Γ − v∗

Γ ) · n, (3.8)

where vΓ is the value of v on Γ . Assuming that v · n = 0 on Γ , we obtain
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∂pn+1

∂n
= 0 (3.9)

on Γ . If no boundary velocity vΓ is known a priori (i.e. if the velocity at
the boundary is a result of the computations itself, such as for free surfaces
or outflow boundaries), the Dirichlet boundary conditions are appropriate for
pn+1.

In the case of incompressible flow, the first term on the left hand side and
the first and second terms of the right hand side of equations (3.7) vanish,
which results in the classical projection idea of Chorin.

Furthermore, for the temperature we have to solve the following equation

T n+1− Δt

cvρn
∇·(κ∇T n+1

)
= T n+

Δt

cvρn
[−pn∇ · vn + (σ(vn) · ∇)vn] . (3.10)

Finally, we update the density for the compressible flow by

ρn+1 = ρ(pn+1, T n+1). (3.11)

The remaining task is the discretization and solution of the equations (3.2,
3.7, 3.10) on the given (meshfree) point cloud. For this, we establish big linear
systems of equations, where the matrix represents the discrete approximation
of the differential operators involved, and the right hand side reflects the source
terms. In order to establish the mentioned discrete operators with respect to
the point cloud, we employ the weighted least squares method, presented in
section 3.1.

3.1 Least Squares Method for Approximation of Derivatives

Let ψ : Ω −→ R be a scalar function and ψi its discrete values at the particle
positions xi for i = 1, 2, . . . , N . Consider the problem to approximate spatial
derivatives of that particular function ψ(x) at some particle position x based
on the discrete function values of its neighbor points. In order to restrict the
number of points we introduce a weight function w = w(xi−x; h) with small
compact support, where h determines the size of the support.

The weight function can be quite arbitrary, however it makes sense to
choose a Gaussian weight function of the form

w(xi − x; h) =

{
exp(−α‖xi−x‖2

h2 ), if ‖xi−x‖
h ≤ 1

0, else,

where α is a positive constant and is considered to be in the range of 6. So far,
in our implementation, we allow user given h as a function in space and time.
However, no adaptive choice of h is realized yet. Working with user given h
implies that new particles will have to be brought into play as the particle
distribution becomes too sparse or, logically, particles will have to be removed
from the computation as they become too dense.
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Let P (x, h) = {xi : i = 1, 2, . . . , m} be the set of m neighbor points
of x = (x, y, z) in a ball of radius h. We note that the central particle x is
one element of the neighbor set P (x, h). For consistency reasons, some obvious
restrictions are required, for example, in 3D there should be at least 9 particles
in addition to the central point and they should neither be on the same line
nor on the same circle. In the following, we derive the Least Squares Method
for three dimensional problems.

We determine the derivatives of a function by using the Taylor series ex-
pansion and the least squares approximation. Hence, consider m Taylor ex-
pansions of ψ(xi) about x

ψ(xi) = ψ(x)+

m∑
j=1

∂ψ|j|

∂xj1∂yj2∂zj3
1

j!
(xi−x)j1(yi−y)j2(zi−z)j3 +ei, (3.12)

for i = 1, . . . , m, where ei is the error in Taylor’s expansion at the point xi.
Denote the coefficients

a1 = ∂ψ
∂x , a2 = ∂ψ

∂y , a3 = ∂ψ
∂z , a4 = ∂2ψ

∂x2 , a5 = ∂2ψ
∂x∂y ,

a6 = ∂2ψ
∂x∂z , a7 = ∂2ψ

∂y2 , a8 = ∂2ψ
∂y∂z , a9 = ∂2ψ

∂z2 .

Let us assume that ψ(x) = ψ is the known discrete function value at the
particle position x. For m > 9, this system is overdetermined with respect to
the unknowns ai and can be rewritten as

e = Ma − b, (3.13)

where

M =

⎛
⎜⎝ dx1 dy1 dz1

1
2dx2

1 dx1dy1 dx1dz1
1
2dy2

1 dy1dz1
1
2dz2

1
...

...
...

...
...

...
...

...
...

dxm dym dzm
1
2dx2

m dxmdym dxmdzm
1
2dy2

m dymdzm
1
2dz2

m

⎞
⎟⎠ ,

a = (a1, a2, . . . a9)
T

, b = (ψ1 − ψ, . . . , ψm − ψ)
T

, e = (e1, . . . , em)
T

and
dxi = xi − x, dyi = yi − y, dzi = zi − z.

The unknowns ai are computed by minimizing a weighted error over the
neighboring points. Thus, we have to minimize the following quadratic form

J =

m∑
i=1

wie
2
i = (Ma − b)TW (Ma − b) (3.14)

with W = diag (w1, . . . , wm), where wi = w(xi − x; h). The minimization of
J with respect to a formally yields ( if MTWM is nonsingular)

a = (MTWM)−1(MTW )b. (3.15)
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3.2 Least Squares Method for Solving Elliptic Equations

We now consider the following linear second order differential model equation,
which represents all equations in the above presented projection scheme

Aψ + B · ∇ψ + CΔψ = f, (3.16)

where the coefficients A, B, C are given and real and f = f(x) is a given real
valued function. We solve this equation with Dirichlet ψ = φ or Neumann
boundary conditions

∂ψ

∂n
= φ on Γ. (3.17)

In the following, we demonstrate the method to solve (3.16-3.17). To our
knowledge, there are two types of methods of directly solving elliptic equations
in a given meshfree configuration. The first one is presented in [LO80], which
can be directly derived from the equation (3.15). The second one is presented
in [TK01], where equations (3.16) and (3.17) are added as constraints in the
least squares approximation. The comparisons of both methods are presented
in [IT02]. It is found that the method presented in [TK01] is more stable and
the Neumann boundary condition can be easily included in the approximation.
In this paper, we give a short overview about the method presented in [TK01].

We consider x as a central particle and its set of neighbors P (x, h) =
{xi : i = 1, 2, . . . , m}. Furthermore, we consider the above Taylor’s expansions
(3.12). In (3.12) we have assumed that ψ(x) = ψ is a known discrete function
value at x. Now, let us assume that ψ is not known and denote it by a0.

We add equations (3.16) and (3.17) as constraints into the m Taylor’s
expansions (3.12) . These two additional equations is rewritten in the following
forms

Aa0 + B1a1 + B2a2 + B3a3 + C(a4 + a7 + a9) = f (3.18)

n1a1 + n2a2 + n3a3 = φ, (3.19)

where B = (B1, B2, B3), n = (n1, n2, n3). Note that, for the Dirichlet bound-
ary condition, we have only the m + 1 equations, where we directly prescribe
the boundary conditions on the boundary particles. The matrix M and vectors
a, b, e are slightly different from above. They are given by

M̃ =

⎛
⎜⎜⎜⎜⎜⎝

1 dx1 dy1 dz1
1
2dx2

1 dx1dy1 dx1dz1
1
2dy2

1 dy1dz1
1
2dz2

1
...

...
...

...
...

...
...

...
...

...
1 dxm dym dzm

1
2dx2

m dxmdym dxmdzm
1
2dy2

m dymdzm
1
2dz2

m

A B1 B2 B3 C 0 0 C 0 C
0 n1 n2 n3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and by

ã=(a0, a1, a2, . . . , a9)
T

, b̃=(ψ1, . . . , ψm, f, φ)
T

,

and ẽ=(e1, . . . , em, em+1, em+2)
T

.
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Now, we minimize the functional

J̃ =

m+2∑
i=1

wie
2
i , (3.20)

where em+1 = (Aψ + B · ∇ψ + CΔψ − f), em+2 =
(
∂ψ
∂n

− φ
)

and wm+1 =

wm+2 = 1.
Similarly, the minimization of J̃ yields

ã = (M̃T W̃M̃)−1(M̃T W̃ )b̃ (3.21)

with W̃ = diag (w1, . . . , wm, 1, 1).
The vector (M̃T W̃ )b̃ is explicitely given by

(M̃T W̃ )b̃ =

(
m∑
i=1

wiψi + Af,

m∑
i=1

widxiψi + B1f + n1φ,

m∑
i=1

widyiψi + B2f + n2φ,

m∑
i=1

widziψi + B3f + n3φ,

1

2

m∑
i=1

widx2
iψi + Cf,

m∑
i=1

widxidyiψi,

m∑
i=1

widxidziψi,

1

2

m∑
i=1

widy2
i ψi + Cf,

m∑
i=1

widyidziψi,
1

2

m∑
i=1

widz2
i ψi + Cf

)T
.

Let β0, β1, . . . , β9 be the first row of the matrix (M̃T W̃M̃)−1. We are
looking for the function ψ = a0, therefore, equating the first components of
vectors on both sides of (3.21), we obtain

ψ = β0

(
m∑
i=1

wiψi + Af

)
+ β1

(
m∑
i=1

widxiψi + B1f + n1φ

)
+

β2

(
m∑
i=1

widyiψi + B2f + n2φ

)
+ β3

(
m∑
i=1

widziψi + B3f + n3φ

)
+

β4

(
1

2

m∑
i=1

widx2
iψi + Cf

)
+ β5

(
m∑
i=1

widxidyiψi

)
+

β6

(
m∑
i=1

widxidziψi

)
+ β7

(
1

2

m∑
i=1

widy2
i ψi + Cf

)
+

β8

(
m∑
i=1

widyidziψi

)
+ β9

(
1

2

m∑
i=1

widz2
i ψi + Cf

)
.

Rearranging the terms, we have
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ψ −
m∑
i=1

wi

(
β0 + β1dxi + β2dyi + β3dzi + β4

dx2
i

2
+ β5dxidyi+

+β6dxidzi + β7
dy2
i

2
+ β8dyidzi + β9

dz2
i

2

)
ψi =

(β0A + β1B1 + β2B2 + β3B3 + β4C + β7C + β9C) f+
+ (β1n1 + β2n2 + β3n3)φ.

Hence, if we consider xj an arbitrary particle and xji its neighbors of
number m(j), then we have the following sparse system of equations for the
unknowns ψj , j = 1, . . . , N

ψj −
m(j)∑
i=1

wji

(
β0 + β1dxji + β2dyji + β3dzji + β4

dx2
ji

2
+ β5dxjidyji+

β6dxjidzji + β7

dy2
ji

2
+ β8dyjidzji + β9

dz2
ji

2

)
ψji =

[β0A + β1B1 + β2B2 + β3B3 + (β4 + β7 + β9)C] fj +

(β1n1 + β2n2 + β3n3)φj . (3.22)

We can represent the above sparse system in compact matrix-vector-form as

AΨ = b. (3.23)

Hence, (3.23) is a big sparse linear system of equations and can be solved
using iterative methods. In this paper we have used SOR method.

Now back to the projection method for the Navier-Stokes equations, we
have d + 2 such iterative systems, where d is the number of space dimension.
As an initial guess for the iterative solvers at time level n + 1, we assume the
corresponding value at the time level n. This saves a lot of iteration steps.

4 Numerical Tests

4.1 Solutions of Second Order Linear PDEs

Example 1

Consider the second order partial differential equation of the type

ψ + ψx + ψy + ψxx + ψyy = f in [0, 1] × [0, 1]. (4.1)

The exact solution is given by

ψ = (x − 1

2
)(y − 1

2
)(1 − x2

2
− y2

2
). (4.2)

We consider the Dirichlet boundary value problems, where the boundary con-
ditions can be directly obtained from the exact solution.

Table 4.1 shows the maximum error between the exact and the numerical
solutions and shows second order convergence.
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Table 4.1. Convergence results for Example 1.

N Smoothing length Maximum Error

676 0.1 0.00011
2601 0.05 2.7867e-5
10201 0.025 6.9778e-6

Example 2

Consider the following equation with discontinuous coefficient

ψ + ∇ · (k∇ψ) = f in [0, 1] × [0, 1], (4.3)

where

k =

{
1000, if y ≥ 0.5
1, else.

Consider the exact solution

ψ =
1

k
(x − 1

2
)(y − 1

2
)(1 − x2

2
− y2

2
). (4.4)

We again consider the Dirichlet boundary conditions. In this example, the
source is given by

f = −(3x − 1

2
)(y − 1

2
) − (x − 1

2
)(3y − 1

2
) (4.5)

and we have smoothed three times the coefficient k in the vicinity of the
interface y = 0.5. The smooth coefficient k is denoted by k̃. Hence the above
equation (4.3) is given by

ψ + ∇k̃ · ∇ψ + k̃Δψ = f. (4.6)

In Table 4.2 we have presented the maximum error between the exact
and numerical solutions and we see that the numerical solution converges
with of order one. If we use the interface conditions, we get the second order
convergence [IT02].

Table 4.2. Convergence results for Example 2.

N Smoothing length Maximum Error

676 0.1 0.0691
2601 0.05 0.0377
10201 0.025 0.0203
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4.2 Compressible Flows

Consider the 1d compressible flow. We note that, we do not consider smoothed
density ρ̃ here. The viscosity is considered to be a constant number. Suppose
the flow is ideal gas where the equation of state is given by

p = ρRT =
R

cv
ρe,

where R is the gas constant and e the internal energy. Hence, we have

∇ · v =
1

T

dT

dt
− 1

p

dp

dt
. (4.7)

We have further assumed the dynamic viscosity μ and the heat conductivity
coefficient κ to be constant. The scheme is tested by solving the Sod problem
[Sod78], where we let the heat conductivity and viscosity tend to zero such
that the solution of the Navier-Stokes equations converges to those of the
Euler equations.

In this case, equation (3.2) is given by

v∗ − Δt
4

3

μ

ρ

∂2v∗

∂x2
= vn (4.8)

with boundary condition v∗ = 0. Equation (3.7) is given by

− ρn

Δt2pn
pn+1− 1

ρn
∂ρn

∂x

∂pn+1

∂x
+

∂2pn+1

∂x2
= − ρn

Δt2
+ρn

∇ · v∗
Δt

− ρn

TΔt

dT

dt
, (4.9)

where dT
dt is replaced by the energy equation (2.4). Equation (4.9) is solved

together with the Neumann boundary condition (3.9). After obtaining the
pressure, we correct the velocity v∗ according to (3.3).

Equation (3.10) is given by

T n+1 − Δt

cv

κ

ρn
∂2T n+1

∂x2
= T n +

Δt

ρncv

(
−pn

∂vn

∂x
+

4

3
μ(

∂vn

∂x
)2
)

(4.10)

with boundary conditions T = T0 on Γ . Finally, we update the density ac-
cording to (2.5).

Let the domain Ω = (0, 1) with boundary points 0 and 1. We consider the
discretization over [0, 1] with N particles at xi for i = 1, 2, . . . , N and constant
time step Δt.

The initial conditions for Sod’s problem are [Sod78]

ρ0
i = 1, v0

i = 0, e0
i = 2.5 for 0 ≤ xi < 0.5

ρ0
i = 0.125, v0

i = 0, e0
i = 2.0 for 0.5 ≤ xi ≤ 1

completed by the following boundary conditions
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v(t) = 0, e(t) = 2.5 at x = 0 and v(t) = 0, e(t) = 2 at x = 1.

We note that the initial and boundary conditions for the temperature T
is obtained from the relation

T =
1

cv
e.

The initial spacing of the particles is given by dx = 1/N , where N is the
total number of particles considered and the size of the support h is equal to
3 times the initial spacing of the particles.

Since the scheme is of central difference type, there are some oscillations
for small viscosity. Therefore, we choose μ = μ(N), κ = κ(N). For example,
for N = 100, we considered μ = 0.001 and κ = 0.001 . The heat coefficient
does not play big role for the stability of the scheme. It can be set to zero.

Since we solve the conservation equations implicitly, we need the restriction
of time step only for the motion of the particles. The time step is should be
chosen such that the particles cannot move more than a partition of h in each
time step.

The numerical solutions are obtained for 100, 400 and 2000 particles and
are compared with the exact solutions of the compressible Euler equation at
the fixed time t = 0.2. The values for mu and kappa are for 400 and 2000
particles are four and twenty times smaller than thoose for 100 particles. The
time step for 100 particles is chosen 0.002. Similarly, for 400 and 2000 particles
the time smaller step is taken by corresponding factors.

In figures 4.1 we plot the exact and numerical results, like the density,
velocity and the pressure. It is clear that the scheme is stable and the solutions
of the Navier-Stokes equations tend to the Euler solutions when the number of
particles tends to infinity and the viscosity and the heat conduction coefficient
tend to zero.
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Figure 4.1. Density(left), Velocity(center) and Pressure (right) at t = 0.2. Solid
lines represent the exact solutions, dots represent the numerical solutions.



204 S. Tiwari, J. Kuhnert

Figure 4.2. Level of water at t = 0.0, 1.0, 2.0 (top row, left to write) and at t =
3.0, 4.0, 4.4 ( bottom row), star are water particles and dots are gas particles

4.3 Two Phase Flows

In this case we express all quantities in dimensionless form. So, they can be
interpreted as being in SI-units. Consider a cavity of [0, 1] × [0, 2] initially
filled with air. On the center of the lower boundary we place a hole as inflow
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boundary. Similarly, there is an outflow hole in the top boundary. The width
of the inflow and outflow holes is 0.2. The rest of the boundaries are solid
walls with no slip conditions. The inflow velocity is 2. There is gravity acting
downwards with g = 9.81. The densities of air and water are 1 and 1000
respectively. The dynamic viscosity of air is 1.81 ∗ 10−5 and 1.005 ∗ 10−3 for
water. We consider the air as compressible and the equation of state is given
by

ρ = ρ0 +
1

c2
(p − p0) (4.11)

with speed of sound c = 5 and the reference density ρ0 and reference pressure
p0 are initial density and pressure, equal to 1 and 0, respectively. The time
step Δt = 0.002 is considered. The theoretical fill time for this particular
cavity is 5. Since fill time for initially replaced liquid is 0.1, therefore, the fill
time for this case is 4.9.

In Figure 4.2 we have plotted the filling process for different times. At
time 4.4 we stopped the simulation since the liquid particles started to leave
the outflow boundary. The numerical result shows close approximation of the
theoretical fill time.
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1 Introduction

The SPH method (Smooth Particle Hydrodynamics) is our starting point. It
has been “discovered” in 1977 by Lucy ([15]) a British astrophysicist. At this
time his computation only requires 100 particles. The effective development of
the method is due to J. Monaghan, an Australian applied mathematician ([7],
[8], [16]), who also developed most of the extensions of the original techniques
to multifluid equations, MHD, etc.

Until 1985, the SPH method was specialized in Astrophysics applications,
W. Benz (yet an astrophysicist) is among the first which use SPH methods
for complex applications such as high velocity impacts problems with damage
models ([4],[5]). Actually, a lot of research center use SPH methods ([19],
[11]) as an efficient alternative to Finite Element Lagrangian codes in the
field of high velocity impacts. Industrial codes using SPH methods have been
available only recently. This is partly due to some difficulties in the theoretical
and numerical basis for handling with boundary conditions.

In this paper, I first give an overview of classical recipes for designing SPH
methods. I then introduce a weak discrete formulation, which provides an
efficient tool for understanding and solving problems related with the global
conservation property. I show how Renormalization ([12], [20]), a new efficient
tools in the field of SPH methods can be used in this context. I also introduce
new hybrid SPH - Godunov type schemes. Combining this new approach with
renormalization I overcome usual restrictions on the ratio of the smoothing
length to the size of the mesh, which needs to be large enough (or equal to
some specific value depending on the kernel function).

I have originally presented this approach, which really mixes Finite Differ-
ence type Riemann solver and SPH in [24]. At this time I only use standard
SPH (i.e. without renormalization), note that this approach leads to a com-

�
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plete mathematical analysis of the nonlinear scalar case (see [3]); the renormal-
ized case has been studied later on ([2]). J. Monaghan ([18]) also introduced
a Riemann problem related with the interaction of neighboring particles. He
proposed to use it as a guide line for designing of efficient numerical viscosity,
in this sense his approach is different of the one proposed here.

In ([25]) I also introduce a second order version of the method based on
MUSCL type extension of the formalism, it seems that recently a similar
approach ([10]) has been revisited.

In this paper I review all these recent results and also give some typical
numerical experiments enhancing the behavior of these new methodologies.

2 Classical Recipes

The design and analysis of weighted particle methods for transport equations
and Euler inviscid equations is a well documented field. Thus we briefly discuss
the main tools necessary for a comprehensive study of our results. We refer
for example to the book of P. A. Raviart ([21]) for an exhaustive study of the
different points reviewed here.

2.1 Particle Approximation of Functions

The first tool is to obtain a quadrature formula on a set of moving particles.
Let us take such a set (xi(t), wi(t))i∈P , indexed by i ∈ P , where xi(t) is the
position of the particle and wi(t) its weight. Let v a regular vector field in IRd,
we classically move the particles along the characteristic curves of the field v
and also modify the weights in order to take account of deformations due to
the field v:

d

dt
xi = v(xi, t)

d

dt
wi = div (v(xi, t))wi

xi(0) = ξi wi(0) = ωi

(ξi, t) are the Lagrange coordinates of the particle i. We thus have the following
quadrature formula where J(ξ, t) is the Jacobean of (ξ, t) −→ (x, t):∫

IRd

f(x)dx =

∫
IRd

f(x(ξ, t))J(ξ, t)dξ ≈
∑
j∈P

wj(t)f(xj(t)) (2.1)

Weighted particle Approximation

The previous quadrature formula, together with the following tools:

• Smoothing kernel,
• Convolution,

leads in 3 steps to the smoothed (or regularized) particle approximation of a
function:
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Smoothing kernel W (x, h)

W (x, h) =
1

hd
θ(
‖x‖
h

)

We take usually θ as a positive function with compact support ⊂ [0, 2] (d is
the space dimension), for example:

θ(y) = C ×

⎧⎪⎨
⎪⎩

1 − 3

2
y2 +

3

4
y3 if 0 ≤ y ≤ 1,

1

4
(2 − y)3 if 1 ≤ y ≤ 2

C =
2

3
,

10

7π
,

1

π
(d=1,2 or 3). W (x, h) −→ δ when h −→ 0. h is the “smoothing

length”.

Regularization of f

Convolution of f with the kernel W :

< f(x) >= f ∗ W (x) =

∫
f(y)W (x − y, h)dy (2.2)

Quadrature of (2.2)

We provide a quadrature of the integral in (2.2) with the help of (2.1), we
thus define Πh(f) the smoothed (or regularized) particle approximation of a
function f as:

Πh(f)(x) =
∑
j∈P

wjf(xj)W (x − xj(t), h)

We shall use the following notations:

Wij ≡ W (xj − xi, h) ∇Wij ≡ gradx[W (xi − xj , h)]

Particle approximation of derivatives is easily handled by taking direct deriva-
tion of smoothed particle approximations, which gives at the point xi:

∇Πh(f)i =
∑
j∈P

wjf(xj)∇Wij

Remark 2.1. Here we use the standard notations in SPH literature. The
smoothing length is h, the kernel is W and we have chosen Δx as the char-
acteristic size of the mesh. In most of the mathematical papers related to
particle weighted methods, the smoothing length is denoted ε, the kernel or
cut-off function is ζε and h is the characteristic size of the mesh. The reader
has to take account of that in some of the references quoted in this paper.
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In classical discretization methods such as Finite Differences, Finite Vol-
umes or Finite Elements we have a unique discretization parameter which is
Δx the characteristic size of the mesh. Here we get an additional parameter
h, the so-called “smoothing length”, which is the characteristic size of the reg-
ularizing kernel W . The combined effect of these 2 parameters can be studied
accurately. We refer to the book of P.A. Raviart [21] for a detailed analysis of
interpolation errors in various Sobolev norms and semi-norms. We just recall
some results of [21] which will be useful for our analysis. We restrict ourselves
to compactly supported symmetric kernels such that W ∈ Cm+1, m ≥ 2.
Then, there exists a constant C > 0 just depending on the transport field v
(supposed regular enough) such that:

∀u ∈ Wμ,p(IRd), s ≥ 0, μ = max(r + s, m),

r = 1, 2,
d

m
≤ p ≤ ∞, q =

p − 1

p

|u − Πh(u)|s,p,IRd ≤
C

(
hr|u|r+s,p,IRd + (1 +

Δx

h
)

d
q
(Δx)m

hm+s
||u||m,p,IRd

) (2.3)

Note that we need that the ratio (Δx)
h −→ 0, in order that Πh(u) −→ u. In

these formulae Δx is the characteristic scale of the mesh. That means - taking
account that W is compactly supported - that the number of neighbors of any
particles, i.e. the number of particles located at a distance less than a length
of order h, needs to go to infinity when h and Δx go to 0.

2.2 Particle Approximation of a Model Partial Differential
Equation

We consider the following model PDE in conservation form:

Lv(Φ) + div F (x, t, Φ) = S (2.4)

where Lv(Φ) is the transport operator:

Lv(Φ) =
∂Φ

∂t
+
∑
l=1,d

∂

∂xl
(vlΦ)

For the mathematical analysis v is supposed to be known and not depending
on Φ. Such a dependency is possible and classical in applications. We thus
look for an approximation (Φi(t))i∈P of (2.4) defined on the particles moving
along the characteristic curves of v:

Φi := Φ(xi(t), t)

We thus have
1

wi

d

dt
(wiΦi) = Lv(Φ)i
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In order to compute an approximation of div F (x, t, Φ), we naturally
smooth F , which leads to:

Lv(Φ)i + ∇Πh(F )i + Fi∇Πh(1)i = Si (2.5)

or equivalently

d

dt
(wiΦi) + wi

∑
j∈P

wj(Fj + Fi)∇Wij = wiSi (2.6)

We have added ∇Πh(1)i in order to satisfy the global conservation. We first
remark that this term is small ( due to(2.3)), we then use ∇Wij = −∇Wji to
prove easily that:

d

dt

(∑
i∈P

wiΦi

)
=
∑
i∈P

wiSi, (2.7)

discrete version of the continuous conservation of Φ:

d

dt

(∫
IRd

Φdx

)
=

∫
IRd

Sdx

Note that (2.6) is a centered scheme, we thus need some upwinding or
equivalently some artificial viscosity in order to stabilize the method. We
practically introduce Πij , an artificial viscosity term satisfying Πij = Πji -
we need to satisfy conservation- and the scheme is:

d

dt
(wiΦi) + wi

∑
j∈P

wj(Fj + Fi + Πij)∇Wij = wiSi (2.8)

We then perform a suitable time discretization to get an efficient numerical
scheme.

Applying this formalism to Euler equations we recover the standard SPH
equations (see e.g. [25] for details).

2.3 Gap Theoretical Analysis – Practise

In practical computations, the parameters h and Δx are chosen so that the
number of neighbors of any particles, i.e. the number of particles located at
a distance less than a length of order h, is almost constant all other the
computational domain (≈ 25 for 2D computations, and ≈ 50 in 3D). We thus
have h

Δx � O(1), which does not agree with theoretical estimates (2.3), which

require at least that Δx
h −→ 0. The renormalization techniques - see section

3.2 - overcome this difficulty. As a characteristic behavior of the method let
us present the approximation ∇Πh(x) and Πh(1) obtained by using a set of
particles uniformly distributed on a uniform 2D mesh. In such a situation the
result is only function of the ratio h

Δx , we get:
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Figure 2.1. ∇Πh(x) and Πh(1) function of h
Δx

.

The curves in Figure 2.1 represent the value of ∇Πh(x) and Πh(1) (vertical
axis) as a function (horizontal axis) of h

Δx , it really proves that unless we
choose very particular value of the ratio we don’t respect consistency in the
usual sense! Note that errors concerning evaluation of a derivative may be
stronger than 1.5%.

3 Weak Formulation

We now introduce a new formulation of these methods. It is based upon the
weak formulation, and combined with renormalization gives an efficient tool
for solving the difficulties quoted in the previous comments.

3.1 Basic Principle

We look for an approximation of the system (2.4), given by its weak formula-
tion:

∀ϕ ∈ C2
0 (IRd × IR+,∗)∫

IRd×IR+

(ΦL∗
v(ϕ) + F (x, t, Φ)∇(ϕ) + Sϕ) dxdt = 0

(3.1)

where −L∗
v is the adjoin operator of Lv:

L∗
v(ϕ) =

∂ϕ

∂t
+
∑
l=1,d

vl
∂ϕ

∂xl

To get uniqueness we need to introduce the notion of entropy solution,
classical in this field, but it is not essential here since we only want to introduce
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the main concepts (we refer to [3] for a more detailed analysis). In order to
provide a better understanding of particle schemes like those of the previous
sections, let us now introduce a general setup for particle approximations of
(2.4).
We proceed in 3 steps:

• We provide the space with a discrete scalar product:∫
IRd

fg dx −→ (f, g)h :=
∑
j∈P

wjfjgj

which is clearly an approximation of the scalar product in L2(IRd)m thanks
to the quadrature formula.

• We also introduce the linear operator Dh,S , which is supposed to approx-
imate strongly the derivative, i.e. for any ϕ regular enough

sup
i∈P

‖Dh,Sϕi − Dϕi‖ → 0 as h → 0

and let us define −D∗
h,S as the adjoin operator of Dh,S. We thus have

(Dh,Sϕ, Ψ)h = − (ϕ, D∗
h,SΨ

)
h

(3.2)

• A discrete version of (2.4) is provided by just replacing the integration
over IRd by the discrete scalar product (., .)h and the derivative ∇(ϕ) by
its approximation Dh,Sϕ:∫

IR+

[
(Φ, L∗

v(ϕ))h + (F (Φ), Dh,Sϕ)h + (S, ϕ)h
]
dt = 0

We thus get after some discrete and continuous integration by parts

d

dt
(wiΦi) + wiD

∗
h,S(F )i = wiSi (3.3)

The schemes (3.3) satisfy automatically a result similar to Lax-Wendroff ([13])
theorem for Finite Difference schemes:

Theorem 3.1. If Φ
0,h

(x, t) =
∑

j∈P wjΦj(t)χBi(t)(x) −→ Φ a.e. where
(Φj)j∈P is solution of (3.3) and if Dh,Sf −→ ∇f for f regular when h and

Δx go to 0, then Φ is a weak solution of (2.4).

It remains to define the operator Dh,S . With the same computation
as above we easily see that the scheme (3.3) satisfy global conservation

(i.e.
d

dt
(Φ, 1)h = (S, 1)h) if 1(x) is in the null space of Dh,S (i.e.Dh,Sf = ∇f

for f ∈ P0).
We recover the standard scheme by taking Dh,Sf = ∇Πh(f)− f∇Πh(1).

We thus have
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Dh,Sfi =
∑
j∈P

wj(fj − fi)∇Wij

with P0 ⊂ ker(Dh,S) and

D∗
h,Sfi =

∑
j∈P

wj(fj + fi)∇Wij = ∇Πh(f)i + fi∇Πh(1)i

I refer to [25] for a detailed analysis. We now discuss the technical features in
relation with use of Renormalization.

3.2 Renormalization

Renormalization is a technique recently appeared in SPH literature ([12], [20]),
it is supposed to improve accuracy of the method. We prove here that, with
the help of the general setup of section 3.1 it is also conservative in the sense
of (2.7). All the approximation and convergence results can be extended by
using renormalized particle weighted approximation, this is precisely studied
in [2] and [14]. In particular we are able to relax the assumption that the ratio
Δx
h goes to zero, and we just need that Δx

h = O(1). Numerical tests in [23]
and [14] prove that classical SPH scheme converge to a wrong solution unless
we take well chosen value of the ratio Δx

h .
Formally, renormalization is a tool, which provides new formulae for

Dh,Sf(x) with the help of a weight matrix (the renormalization matrix) in
the following way:

Dh,Sf(x) = B(x)∇hΠh
g (f)(x) − f(x)B(x)∇hΠh

g (1)(x)

We aim to increase the accuracy, thus instead of P0 ⊂ ker(Dh,S) we ask for
P1 ⊂ ker(Dh,S). It can be easily proved that

Proposition 3.1. We have P1 ⊂ ker(Dh,S) or equivalently Dh,Sf = ∇f for
any polynomial f of in P1, if and only if B(x) = E(x)−1 with

E(x)αβ =
∑
j∈P

wj(x
β
j − xβ) ∂αW (x, xj)

We then have E(x)αβ = ∂α,hΠh
g (xβ) − xβ∂α,hΠh

g (1).

Approximation results (2.3) easily prove that E(x)αβ � δαβ and conse-

quently that B(x) makes sense, if (Δx)
h −→ 0. More precisely it can be proved

that:

Proposition 3.2. Let us suppose that B is uniformly bounded (with respect
to h0 and Δx) then we have
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‖Dh,Sϕ(x) − Dϕ(x)‖ ≤ Ch0‖B(x)‖‖D2ϕ‖∞
where h0 is the characteristic scale of the smoothing length (i.e. η−h0 ≤ h ≤
η+h0 with η− and η+ two constants > 0 )

The consistency of the method is thus satisfied at the only condition that
the smoothing length goes to zero. Moreover, it can be proved that, if Δx

h
is bounded and if the initial distribution of particles is regular enough the
matrix B(x) is uniformly bounded and that:∣∣(ϕ, Dh,S(ϕ))h

∣∣ = ∣∣∣(ϕ, D∗
h,S(ϕ)

)
h

∣∣∣ ≤ C‖ϕ‖2
h.

This also insures stability and convergence of the method (at least in the
linear case of symmetric first order systems). The discrete operators are de-
fined according to:

Dh,Sfi =
∑
j∈P

wj(fj − fi)Bi.∇Wij

D∗
h,Sfi =

∑
j∈P

wj(fiBi.∇Wij − fjBj .∇Wji)
(3.4)

and the scheme is:

d

dt
(wiΦi) + wi

∑
j∈P

wj(fiBi.∇Wij − fjBj .∇Wji) = wiSi

For operators Dh,S given by

Dh,Sϕi :=
∑
j∈P

wj(ϕj − ϕi)Aij

with

(i)
∑
j∈P

wj‖Aij‖ ≤ C

h0

(ii)‖
∑
j∈P

wjAij‖ ≤ C

(iii)‖Aij + Aji‖ ≤ Ch0(‖Aij‖ + ‖Aji‖)
(iv)Aij = 0 if ‖xi − xj‖ ≤ Ch0

(3.5)

where h0 is the characteristic scale of the mesh, the scheme given by (3.3) is
convergent (case of linear symmetric systems). All these approximation results
remain true if we use a symmetric variant of the method

Dh,Sfi =
∑
j∈P

wj(fj − fi)Bij .∇Wij (3.6)

where
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Bij =
1

2
(Bi + Bj)

In this case Aij = −Aji and the numerical scheme reduces to:

d

dt
(wiΦi) + wi

∑
j∈P

wj(fi + fj)Aij = wiSi

We also prove that conditions (3.5) are true for (3.4) and (3.6 ) at the only
condition that Δx

h = O(1), which insures the convergence of the method.
The method presented here has a lot of connection with RKPM, PU and

other meshless methods. It can be seen as a RKPM or PU method with lo-
cal approximation of order one, and with nodal integration for quadrature.
The formulation proposed here, although less general furnishes a mathemati-
cal framework for both stability and accuracy analysis and takes account for
numerical quadrature (even if the formal accuracy is limited).

Note also that in the case of non dissipative systems the approach of ([6])
based upon least action principle gives a similar framework.

3.3 Hybrid Schemes Finite Volumes–Weighted Particles

Finally, I report how we can use Godunov type schemes – similar to those used
in the field of Finite Volume schemes – inside the methodology of Weighted
Particle schemes. We have:

∇xW (xj − xi) = −Dθijuij uij =
xj − xi
‖xj − xi‖ ,

Dθij =
1

hd+1
ij

Dθ(‖xj − xi‖)

where hij is a local smoothing length. In the symmetric renormalized case we
have

Aij = −DθijBijuij , nij =
Aij

‖Aij‖ ,

Note that in the standard case nij = uij . In order to simplify, let us take
S = 0, the renormalized standard scheme is given by

d

dt
(wiΦi) − wi

∑
j∈P

wj (Fi + Fj)nijDθij = 0

which makes appear conservation law in the direction nij :

∂

∂t
(Φ) +

∂

∂x
(F (xij , t, Φ)nij) = 0 (3.7)
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Therefore it is natural to introduce a 1-dimensional finite difference scheme
in conservation form associated to (3.7), which brings a sufficient numeri-
cal viscosity. Such a scheme consists in replacing the centered approxima-
tion (F (Φi) + F (Φj))nij by the numerical flux of a Finite Difference scheme
2g(nij , Φi, Φj), which is required to satisfy:

(i) g(n, u, u) = F (u)n
(ii) g(n, u, v) = −g(−n, v, u)

The numerical viscosity Q(n, u, v) is classically defined in the scalar case (i.e.
Φ ∈ IR) as:

Q(n, u, v) =
F (u)n − 2g(n, u, v) + F (v)n

v − u

The new system is written

d

dt
(wiΦi) − wi

∑
j∈P

wj2g(nij , Φi, Φj)Dθij = 0, Φi(0) = Φ0(ξi) (3.8)

or equivalently

d

dt
(wiΦi) − wi

∑
j∈P

wj(F (xij , t, Φi) + F (xij , t, Φj))nij

+Q(nij , Φi, Φj)(Φi − Φj)Dθij = 0
Φi(0) = Φ0(ξi)

This form is much closer to the one classically used in SPH literature (2.8),
where Q(nij , Φi, Φj)(Φi−Φj) replace here Πij . We can expect more robustness,
as it is the case in the field of F.V. schemes. Mathematical analysis of the
convergence is possible (cf. [3] , [2], [14]).

This approach is connected with the notion of Arbitrary Lagrange Euler
approximation (A.L.E.), it is also in some sense a generalization of ideas de-
velop by Harten and Hymann ([9]) in their work on self adjusting grid methods
for conservation laws.

In the simpler case of a null transport field, the formula 3.8 makes possible
a clear comparison with the corresponding formula in the context of finite
volume schemes:

d

dt
(miΦi) −

∑
j∈N(i)

mijg(nij , Φi, Φj) = 0

where mi is the volume of the cell i and mij is the surface of the edge con-
necting the neighouring cells i and j. Thus the volume wi acts as mi and
2wiwjDθij acts as mij . One of the main difficulties in the mathematical anal-
ysis of the SPH scheme is that the identity∑

j∈N(i)

mijg(nij , Φi, Φi) = F (Φi)
∑

j∈N(i)

mijnij = 0
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which is true for Finite Volume methods turns only to∑
j∈P

wj2g(nij , Φi, Φj)Dθij = 2F (Φi)
∑

j∈N(i)

wjnijDθij �= 0

More precisely it goes strongly to zero with the ratio Δx
h , or only weakly to

zero in the case of the renormalized version of the method. We refer to ([3],
[2],[14]) for detailed mathematical analyis.

3.4 Higher Order Version of the Method

In the field of Particle methods a classical tool to increase accuracy is to
increase the smoothness of the kernel together with making equal to zero its
momentum. This approach has been used in SPH calculations, for example
by using a “super Gaussian” kernel. To overcome numerical difficulties due
to the use of artificial viscosity - for example the sensitivity of the numerical
results to the value of the coefficients α and β -, we have introduced in the
previous section an alternative to the classical artificial viscosity. The increase
of accuracy by modifying the kernel introduces some instability due to the non
positiveness of the kernel. Thus, we propose a different method based upon
the well known techniques of MUSCL schemes developed by Van Leer [22] for
finite difference schemes in the end of seventies, and extended more recently
to finite volume methods (see e.g. Ref.[1] for a mathematical analysis).

The idea is to take account of information given by ∇Πh(Φ) to compute
a numerical flux, which increases the accuracy of the method: We replace the
flux g(nij , Φi, Φj), which approximates the flux of the conservation law (3.7)
located at xij by g(nij , Φij , Φji). Φij is an approximation of Φ at xij given
by a first order Taylor expansion from the point xi:

Φij = Φi + ∇(Πh(Φ))i.(xij − xi).

It is well known in the field of MUSCL finite difference schemes that such an
approximation leads to unstable schemes unless we introduce a limitation of
the derivative ∇(Πh(Φ))i of the unknown used to compute the values at xij .
We propose to start from the value:

∇h(Φl)i = ∇(Πh(Φl))i =
∑
j∈P

wj
(
Φlj − Φli

)
Aij ,

and then to make a loop over all the neighboring particles such that each com-
ponent of the gradient is reduced in a way that for all neighboring particles j:{

Φlij − Φli = λlij(Φ
l
j − Φli),

with 0 ≤ λlij ≤ 1,

where the interface values at xij have been computed with help of the limited
gradient according to:
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Φlij = Φli + ∇h(Φl)i.(xij − xi).

In the scalar case it can be proven that the method is L∞ stable and convergent
with suitable assumptions on the numerical flux.

4 Application to Euler Equations

4.1 Use of Riemann Solvers

Instead of using artificial viscosity, we can use techniques of section 3.3 based
upon Godunov type schemes and Riemann solvers. Let us give a regular
transport field v0(x, t). We then consider the following conservative form of
Euler equations in 2D (for simplicity)

Lv0(Φ) +
∑
i=1,d

∂

∂xl
(F l
E(Φ) − v0,lΦ) = 0,

where the fluxes F l
E are given by:

(i) F 1
E(Φ) =

⎛
⎜⎜⎝

ρv1

p + ρ(v1)2

ρv1v2

v1(p + E)

⎞
⎟⎟⎠ , (ii) F 2

E(Φ) =

⎛
⎜⎜⎝

ρv2

ρv1v2

p + ρ(v2)2

v2(p + E)

⎞
⎟⎟⎠ .

We thus have to solve between each particle i and j, the Riemann problem:⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
(Φ) +

∂

∂x
((FE(Φ)nij − v0(xij , t)nijΦ)) = 0,

Φ(x, 0) =

{
Φi if x < 0,
Φj if x > 0

,
(4.1)

Let us consider the classical Riemann problem for Euler equations:⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
(Φ) +

∂

∂x
(FE(Φ)nij) = 0,

Φ(x, 0) =

{
Φi if x < 0,
Φj if x > 0

,
(4.2)

and let us denote by ΦE(
x

t
; Φi, Φj) the solution of this problem. An easy

calculation proves that the solution of ( 4.1) is given by:⎧⎪⎨
⎪⎩

Φ = ΦE(
x + X0(t)

t
; Φi, Φj),

X0(t) =

∫ t

0

v0(xij , τ)nijdτ.
(4.3)
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It follows that a reasonable choice for the flux gE(nij , Φi, Φj) of the Godunov
scheme associated with our Smooth Particle approximation is:⎧⎪⎪⎨

⎪⎪⎩
λ0
ij = v0(xij , t)nij ,

Φij(λ
0
ij) = ΦE(λ0

ij ; Φi, Φj),
GE(Φi, Φj) = FE(Φij(λ

0
ij)) − v0(xij , t) ⊗ Φij(λ

0
ij),

gE(nij , Φi, Φj) = GE(Φi, Φj)nij .

The resulting particle approximation is given by:

d

dt
(xi) = v0(xi, t),

d

dt
(wi) = widiv(v0(xi, t)),

d

dt
(wiΦi) + wi

∑
j∈P

wj2GE(Φi, Φj)Aij = 0, Φi(0) = Φ0(ξi).

The detailed equations for mass, momentum and total energy conservation
are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
(wiρi) + wi

∑
j∈P

wj2ρ0
E,ij(v

0
E,ij − v0(xij , t))Aij = 0,

d

dt
(wiρivi) + wi

∑
j∈P

wj2
[
ρ0
E,ijv

0
E,ij ⊗ (v0

E,ij − v0(xij , t)) + p0
E,ij

]
Aij = 0,

d

dt
(wiρiEi) + wi

∑
j∈P

wj2
[
E0
E,ij(v

0
E,ij − v0(xij , t)) + p0

E,ijv
0
E,ij

]
Aij = 0,

where (ρ0
E,ij , ρ

0
E,ijv

0
E,ij , E

0
E,ij)

T = Φij(λ
0
ij). We refer to [25] for an extension

of this methodology to the case of approximate Riemann solvers.

Comments

Even if we take the transport field equal to the velocity of the particles,
the mass conservation does not keep wiρi = mi constant as in the standard
method developed in the previous paragraph. Although we loose this nice
property of the method, we keep global conservation of mass, momentum and
energy. We also expect more robustness since we have convergence results in
the scalar case.

We believe that it is sometimes quite essential to move the particles with
a smoother velocity field than the exact velocity together for theoretical and
computational reasons (the XSPH variant of the method introduced by Mon-
aghan [16] moves the particle with smooth velocity).

5 Applications

5.1 SPH and High Speed Dynamic

We present here some comparison of the standard and renormalized classical
SPH schemes with artificial viscosity on a typical High velocity impact test
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 5.2. Impact of Tungsten projectile. See Color Plate 7 on page 298.

case of a tungsten rod at 1300 km/s against a piece of steel. The aim of
the test case is to evaluate the influence of the scheme parameters on the
observed shape of the crater. (radius and high). The behavior is hypoelastic
with a yield criterion for plastic flow. Mie Gruneisen pressure laws are used
for both tungsten and steal.

p(ρ, u) = (1 − Γ

2

μ

1 + μ
)PH(μ) + Γρ0u

PH(μ) =

{
ρ0c

2
0μ(1 + (2s − 1)μ + (s − 1)(3s − 1)μ2) if μ > 0

ρ0c
2
0μ if μ ≤ 0

ρ0 is the density at rest, c2 is the sound velocity. The behavior is perfectly

elastoplastic with modulus G0 and Yield strength Y0, see Table 5.1. We present
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Table 5.1. Material parameters for tungsten and steel.

Material Tungsten Steel

pressure law

ρ0 = 19300 kg/m3

c0 = 4030 m/s
s = 1.237
Γ = 1.67

ρ0 = 7860 kg/m3

c0 = 4610 m/s
s = 1.73
Γ = 1.67

mech. behavior
G0 = 168.68 109Pa

Y0 = 8.108Pa and Y0 = 30.108Pa
G0 = 81. 109Pa
Y0 = 12.108Pa

in Figure 5.2 results with Standard ( h
Δx=1.2) and renormalized method with

two level of discretization. The computations use axisymetric 2D geometry.
Case 1 and case 2 give the final computed state (the projectile is at rest)

with the renormalized scheme and with 2 level of grid (the finer one is Case 2).
The result is already correct in case 2 with only 10 particles within the radius
of the projectile. Case 3 represents the result with Standard SPH and the finer
mesh, the computation reveals some unexpected rebound of the projectile.
Note that this phenomenon does not occur if we use standard scheme with a
less refined distribution of particles.

This example is characteristic of the robustness of the new algorithms with
respect to mesh sensitivity.

5.2 Free Surface Flow Computation

We present here results concerning simulation of incompressible free surface
flow such as those that can arise in sloshing of satellite tanks or launcher
tanks. All the computations are performed with an artificial compressibility
of the water. Practically we use a linear pressure law, with a sound velocity
chosen such that the effective Mach number of the flow is less than 0.1. This
procedure is the key point to compute such incompressible flow with SPH
explicit in time tools.

A Linear Regime Test Case

We first present a test case in 2D plane geometry in the linear regime. We have
a 2D tank filled with water; the length is L = 1.0m, the high H = 1.0m. At
time t = 0.0s the water is at rest with an hydrostatic pressure. We suddenly
impose a horizontal acceleration g = 0.0981. The characteristic Froude number
of the surface waves is F = 0.001. In the Figure 5.3 we present successively the
computed (full line) and exact position (doted line) of the water free surface
on the two sides of the tank. In Case 1 we use a 40×40 initial distribution
of particles and SPH Renormalized Godunov-Muscl scheme, in Case 2 SPH
Renormalized Standard scheme (numerical viscosity α = 0.5, β = 1.) with
40×40 particles and in Case 3 SPH Renormalized Godunov-Muscl with 80×80
particles.
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(a) RGM 40×40 (b) RS 40×40 (c) RGM 80×40

Figure 5.3. Linear sloshing.

Classical SPH scheme with artificial viscosity are not able to compute
reasonably this solution, due to the sensitivity of the result to small pertur-
bations (in practice the displacement of any particle is less than 1/100 of the
average distance between any particles). It’s almost ill conditioned for SPH
Lagrangian type scheme. Our new method offers the possibility to produce
such a computation.

Effect of Dissipation in a Dam Break Type Problem

This test case study the evolution of water in a 2D tank of width L=0.15m.
The water is initially located in a ”dam” of high 0.15m and width 0.05m.
The inner wall is removed at t = 0.0s. In Figure 5.4 we compare different
simulations

In case 1 and case 2 we use an initial set of 20×60 particles. Case 3 use
40×120 particles. In case 2 and 3 we use our SPH Renormalized Godunov-
Muscl (RGM) scheme while in case 1 we use SPH Renormalized Standard
(RS) scheme (numerical viscosity α = 0.5, β = 1.). Clearly SPH RS scheme
(case 1) suffers of a great dissipation effect. Comparison of case 2 and 3 proves
that even with the thicker mesh the SPH RGM scheme gives accurate results.

Geyser Formation

We finally present simulations corresponding to a set of experiments of E.
Hopfinger (LEGI Grenoble) dedicated to the formation of geyser and sup-
ported by CNES. The experimental set up is made of two cylindrical vessels.
The exterior one is filled with some amount of water. At time t = 0.0s the
inner wall is removed ( practically with a given acceleration). We present
computation with our new SPH RGM scheme in 2D axisymetric configura-
tion. We investigate the influence of the vertical acceleration a of the wall on
the formation of the geyser. In this first sequence of computations the initial
high of the water is H = 0.015m. The Figure 5.5 represent the free surface
configuration at time t = 0.19s ( left column) and at the occurrence of the
maximum wave high (right column)
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(a) Case 1 RS 20×60

(b) Case 2 RGM 20×60

(c) Case 3 RGM 40×120

Figure 5.4. Dam break problem. See Color Plate 8 on page 299.

Note that initially we expected that the velocity of the gate was sufficient
to proceed as in a dam break simulation. This hypothesis leads to an overes-
timated high of the geyser and a wrong shape, the introduction of a moving
boundary in the numerical computation allow us to give a simple explanation
to the mushroom shape formation.
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(a) Case 1 a=3.5 ms−2

(b) Case 2 a=7.0 ms−2

(c) Case 3 a=14.0 ms−2

Figure 5.5. Geyser formation (h = 0.015m). See Color Plate 9 on page 300.

Note that with a lower filling ratio (H = 0.005m) we do not observe this
dependency with respect to the wall acceleration. In this case computation
with a = ∞ (see Figure 5.7) gives results in accordance with experimental
results.
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Figure 5.6. Experimental results (h = 0.015m).

Figure 5.7. Experimental results (h = 0.005m).

Figure 5.8. Experimental setup.

Note that both on the numerical and experimental results we capture a
small precursor prior to the formation of the main wave at the center of
the cylinder. At a first glance, the numerical one (which corresponds at list
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(a) t = 0.08 (b) t = 0.16

(c) t = 0.24 (d) t = 0.32

(e) t = 0.40

Figure 5.9. Geyser formation (h = 0.005m).

to 5 particles) could be seen as a numerical artifact, our experience is that
we always keep it in numerical simulation, and surprisingly we observe it in
real experiments. Anyway such details certainly require a finer small scale
modeling. This last example shows the ability of the method to compute free
surface flow with low dissipation effects.
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Discontinuous Radial Basis Function
Approximations for Meshfree Methods

Jingxiao Xu� and Ted Belytschko��

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, IL 60208-3111, USA.

Abstract Meshfree methods with discontinuous radial basis functions and their
numerical implementation for elastic problems are presented. We study the following
radial basis functions: the multiquadratic (MQ), the Gaussian basis functions and
the thin-plate basis functions. These radial basis functions are combined with step
function enrichments directly or with enriched Shepard functions. The formulation
is coupled with level set methods and requires no explicit representation of the
discontinuity. Numerical results show the robustness of the method, both in accuracy
and convergence.

1 Introduction

Radial basis functions (RBF) have been used for a wide range of applications
[6, 12, 22, 1], but RBF were only recently applied to solve partial differential
equations (PDE): Kansa used RBF to solve the Navier-Stokes equations of
fluid dynamics [12], Wendland applied RBF with Galerkin methods to solve
partial differential equations [30]. One of the advantages of RBF for the mesh-
free methods is that it outperforms other interpolation methods for scattered
data in accuracy, stability, and the simplicity of the implementation. It takes
little time to evaluate the radial basis functions, unlike some other meshless
approximations such as moving least squares [3, 9] which require considerable
time. However, there are still two issues to be solved [27]: First, multiquadratic
RBF and Gaussian RBF are globally supported functions. Globally supported
functions result in a full system matrix which is extremely expensive unless
special techniques such as multipolar methods are used to solve the equations.
Second, their performance for problems with discontinuities in the solution or
its gradient degrades significantly.

Compactly supported radial basis functions are now available [29, 31, 7],
and the choice of shape parameters has been a hot topic in data fitting [13, 5,

�
j-xu1@northwestern.edu

�� t-belytschko@northwestern.edu
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21]. A recently developed meshfree method based on radial basis functions is
the point interpolation meshless method proposed by Wang and Liu [28]. The
point interpolation method (PIM) [15] based on Gaussian and multiquadric
radial basis functions are applied. In this method the system matrix is sparse
and banded.

Several methods for the analysis of discontinuities have been developed
both in the area of the meshless methods [20, 10, 26] and finite element meth-
ods [18, 4]. In the extended finite element method (XFEM) [18, 2], techniques
for approximating discontinuities are based on the local partitions of unity
[17, 8]. The goal of extended finite element methods is to expand the approxi-
mation function space of standard finite element methods so that they contain
features of the solution space that is known. Compared with the standard fi-
nite element methods, XFEM can greatly improve accuracy and convergence.
Recent developments in the XFEM include the incorporation of level set meth-
ods in XFEM [24, 11, 19]. The discontinuity surfaces are defined by implicit
functions, i.e. level sets, approximated by finite element interpolants, so that
the discontinuity surfaces can be described by nodal values. For moving dis-
continuities, the level sets are updated by solution of conservation equations
or by geometric updates (Ventura et al. [26]), which is very appealing in 3-D
problems where the surfaces can be complicated.

Motivated by XFEM, a new meshfree approximation [26] for discontinuous
functions and in particular cracks was introduced recently. In this method,
a jump function that accounts for the displacement discontinuity along the
crack faces is added on nodes whose supports are cut by the discontinuity and a
branch function accounting for the neartip crack fields is added on those nodes
whose supports are partially cut by the discontinuity. These enrichments can
be limited to the nodes surrounding the crack, so the cost is very modest; the
methods are easily coupled to level set methods.

In this paper, we develop and examine such methods for introducing dis-
continuities in radial basis functions. We consider both the enrichment of the
radial basis functions by step functions and asymptotic solutions and the com-
bination of radial basis functions with discontinuous Shepard functions. In the
former, not all radial basis functions need to be enriched for good accuracy;
nevertheless, the treatment of curved discontinuities can be quite awkward.
The combined method avoids some of these drawbacks.

The outline of this paper is as follows. In section 2, several different radial
basis functions and their completeness conditions are reviewed. In section 3, a
method for treating discontinuous functions by radial basis function approxi-
mation is proposed; it is coupled with level set functions. The corresponding
discrete forms for discontinuous radial basis function approximation are given
in section 4. Section 5 reports some elastic solutions to test the accuracy
and convergence of the proposed method and illustrates the accuracy of the
adopted discontinuous enrichment.
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2 Radial Basis Function Approximation

The approximation uh(x) for a function u(x) is constructed by a linear com-
bination of translates of a single radially symmetric function φ(‖ · ‖) plus a
lower-degree polynomial of order m (which is sometimes absent). Let xI be a
set of N scattered nodes (often called particles in meshfree methods) within
the domain Ω with boundary Γ . The radial basis function approximation for
a vector field, such as a displacement field ui(x), can be written as:

uhi (x) = ciαxα +

N∑
I=1

uiIφI(x) (2.1)

where ciα are arbitrary constants and φI(x) are the radial basis functions.
The range of α is 0 to nSD and xα = [1, x, y] for 2-D problems. Details on
the requirements of the polynomial terms for various radial basis functions for
completeness are presented in [6, 16]. Repeated lower case indices are summed
in this paper.

For 2-D problems we can write (2.1) as:

uhx = c10 + c11x + c12y +

N∑
I=1

uxIφI(r) (2.2)

uhy = c20 + c21x + c22y +

N∑
I=1

uyIφI(r) (2.3)

where r = ‖x−xI‖, φI(r) ≡ φ(‖x− xI‖). Some examples of popular choices
of the radial basis functions φI(x) and their names are given below:

φ(‖x − xI‖) = r Linear
φ(‖x − xI‖) = r2 log(r) Thin-plate spline

φ(‖x − xI‖) = e−(r2/l2) Gaussian
φ(‖x − xI‖) = (r2 + R2)q Multiquadratic

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

where R and q are the shape parameters, l is a characteristic dimension of the
domain (the choice of these parameters is presented in [13, 5, 21]).

The partial derivatives for the Gaussian radial basis functions are:

φ,x = −2r

l2
e−(r2/l2)r,x, φ,y = −2r

l2
e−(r2/l2)r,y (2.5)

where commas denote partial derivatives and:

r,x =
(x − xI)

r
, r,y =

(y − yI)

r
(2.6)

When a global polynomial basis is included as in equation (2.2,2.3) the
coefficients should be constrained so that the approximation is unique. The
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Figure 3.1. Schematic of problem definition and representation discontinuity by
two level sets in a two dimensional domain

constraints (the orthogonality conditions) [6] for the radial basis function co-
efficients of (2.1) are:

N∑
I=1

uiI =

N∑
I=1

uiIx0I = 0 i = 1 to nSD (2.7)

N∑
I=1

uiIxjI = 0 i = 1 to nSD, j = 1 to nSD (2.8)

Note that x0I = y0I = 1. As stated, for example in [30] and in [27], these
conditions are necessary for the completeness of the approximation.

3 Approximation for Discontinuous Functions by Radial
Basis Function Interpolation

3.1 Discontinuities in Functions

Consider a two dimensional domain Ω with a boundary Γ , and suppose a dis-
continuity in the function occurs across the surface denoted Γdisc as shown in
Figure 3.1. The discontinuity can be a strong discontinuity (such as a crack)
or a weak discontinuity (a discontinuity in gradients). We also consider strong
discontinuities of vector fields in which only the tangential component is dis-
continuous. The position of such a discontinuity will be represented implicitly
by a level set function whose zero contours represent the discontinuous sur-
faces.

The level set method is a general tool for the description of evolving sur-
faces, and has been used for a wide range of applications. This approach has
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been followed in [23, 24], where the evolution of an elliptic plane crack has
been analyzed, and in [11, 19] for the general case of 3-D crack evolution.
To improve numerical efficiency, these functions are not defined on the whole
domain but only on narrow bands surrounding the discontinuities. The vec-
tor level set method of Ventura et al. [26] is used here. The update of the
nodal values of the vector level set is performed by geometric operations on
the data, and no evolution equation is explicitly introduced. One of the ad-
vantages of using level set functions to represent the surfaces of discontinuity
is that they are described by the nodal values of the level set function and
the nodal arrangement can be completely independent of the geometry of the
discontinuities.

To represent discontinuous solutions, like the ones in fracture mechan-
ics, the visibility criterion has been proposed in the Element Free Galerkin
method [20]. In this approach, the boundaries of the body and any internal
line of discontinuity are considered opaque when constructing the shape func-
tions, so the supports are truncated by the lines of discontinuity. Recently a
new discontinuity approximation for crack growth by EFG was introduced by
Ventura et al. [26]. In this method, the displacement discontinuity along the
crack faces and Westergard’s solution for the crack tip field are introduced by
a local partition of unity. We use a similar method to construct a discontin-
uous approximation for radial basis function in the following sections, even
though radial basis functions are not partitions of unity.

3.2 Modelling of Crack By the Radial Basis Function
Interpolation with Level Set Method

Consider the crack shown in Figure 3.2. We define a crack surface implicitly
by f(x) = 0. To specify the edge of the crack we construct another implicit
function g(x) orthogonal to f(x). The crack edge is given by f(x) = g(x) = 0.
These functions include the sign of the distance.

Figure 3.2. A discontinuity represented by level set functions
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To construct the discontinuous displacement field, it is split into continuous
and discontinuous parts

u(x) = ucont(x) + udisc(x) (3.1)

where ucont is approximated by standard radial basis functions as in (2.1)

uhi (x) = ciαxα +
∑
I

uiIφI(x) (3.2)

Two methods are studied for introducing the discontinuous enrichment:

1. the discontinuous enrichment is added to the radial basis functions, so that
the supports for both the continuous and discontinuous approximations
will be global and many of nodes (but not all) need to be enriched.

2. additional Shepard functions with compact support are added at the same
nodes.

The Shepard functions satisfy zeroth order completeness, and have a simpler
structure than the higher order MLS shape functions. The cubic spline weight
function is used in this paper and the support of the weight function is set to
be 2.5dmin and dmin is the minimum distance between two neighboring nodes
in the scattered node set.

We consider two different enrichments: a step function and a near tip
asymptotic field.

The step function part of the approximation is given by

udisc(x, t) =
∑

I∈Nbis

ψI(x)aI(t)H(f(x))H(g(x)) (3.3)

where aI are enrichment variables at node I, ψI(x) is the RBF or Shepard
function for method 1 or method 2, respectively. For method 2, these enrich-
ments are added only for the nodes whose supports are cut by the discontinu-
ity, Nbis is the set of nodes whose supports are bisected by the discontinuity.
The jump enrichment function is defined by

H(x) =

{
+1 if x ≥ 0
−1 if x < 0

(3.4)

Around the crack tip we approximate the discontinuous displacement field
with a branch function which represents the asymptotic displacement field
near the crack tip.

udisc(x) =
∑
I

ψI(x)(aIiBi(x)) (3.5)

where ψI(x) is the RBF for method 1 and Shepard functions for method 2.
The branch functions for linear fracture mechanics are defined as
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Bi(x) = (
√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ) (3.6)

where r is the distance of x from the crack tip and θ is given by θ =
arctan(f/g). These functions span the Westergaard solution for the neartip
field. Note that the construction of the cracktip enrichment insures that the
discontinuity will coincide with f(x) = 0, i.e. the crack, away from the crack-
tip.

3.3 Discontinuities in Gradient

In this section, we develop a similar methodology for modelling the discon-
tinuity in the gradient of the approximation. These discontinuities occur at
interfaces between materials and different phases of materials. The approxi-
mation is constructed as follows:

uh(x) = cαxα +
∑
I

uIφI(x) +
∑
J

qJΥJ (x) (3.7)

where φ(x) are the standard radial basis functions, qJ are the amplitude
parameters of the jumps and ΥJ (x) are the enrichment functions.

One form of the enrichment functions we will use is introduced in [14].

ΥJ(f) =| f(x) | −
∑
I

φI | fI | (3.8)

This enrichment function introduces two extra degrees of freedom for 2-D
problems, and it does not provide compact supports for the lines of disconti-
nuity other than straight lines.

Sukumar [24] and Belytschko et al. [4] introduced the absolute value of level
set functions for the enrichment for discontinuous gradient. This enrichment
can be written as

ΥJ (x) = φJ (x)|f(x)| (3.9)

Since
[[ΥJ,n(f �= 0)]] = φJ [[|f(x)|]]

= φJH(f(x))
(3.10)

the displacement derivatives are discontinuous across interfaces.

3.4 Tangential Discontinuities

Consider a vector function u(x), such as a displacement, with a tangential
discontinuity on f(x) = 0. The unit normal to the line of discontinuity is
given by

en =
∇f

‖∇f‖ (3.11)
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Although a signed distance function should have a unit gradient, we normalize
it here since this should be done in a computation. The discontinuity in the
tangential component in two dimension is obtained by the displacement field

u(x) =
∑
I

φI(uI + aIet(x)H(f(x))) + cαxα (3.12)

where et = ez × en is a vector in the tangent direction and ez is the unit
vector along the z axis.

4 Discrete Equations for Discontinuous Radial Basis
Function Approximation

Consider a two-dimensional linear elasto-static problem in the domain Ω
bounded by Γ . The equilibrium equation is

∇ · σ + b = 0 in Ω (4.1)

where σ is the stress tensor corresponding to the displacement field u and b
is the body force. The boundary conditions are:

σ · n = t̄ on Γt
u = ū on Γu

(4.2)

where the superposed bar denotes a prescribed boundary value and n is the
unit outward normal to the domain. Γt is the boundary where the traction
boundary conditions are applied and Γu is the boundary where the displace-
ment boundary conditions are applied.

Both the displacement boundary condition and the orthogonality condi-
tions in equations (2.7), (2.8) are imposed by the Lagrange multiplier method.
Then the solution of the equilibrium equation is equivalent to finding the sta-
tionary points of the constrained potential energy:

WL = W +
∫
Γu

λ · (u − ū)dΓ +
∑
I γiαuiIxαI

= W +
∫
Γu

λ · (u − ū)dΓ + γ10

∑
I uxI + γ11

∑
I uxIxI + γ12

∑
I uxIyI

+γ20

∑
I uyI + γ21

∑
I uyIxI + γ22

∑
I uyIyI

(4.3)
where λ = {λI} and γiα are the Lagrange multipliers and the subscript L
indicates the modified potential. The elastic potential is given by

W =
1

2

∫
Ω

ε(u) : C : ε(u)dΩ −
∫
Ω

b · udΩ −
∫
Γt

u · t̄dΓ (4.4)

At the equilibrium points the first variation of WL vanishes, so
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δWL =
∫
Ω

δui,jCijkluk,ldΩ − ∫
Ω

δuibidΩ − ∫
Γt

δuit̄idΓ +
∫
Γu

δλi(ui − ūi)dΓ

+
∫
Γu

δuiλidΓ + δγiα
∑

I uiIxαI +
∑

I δuiIxαIγiα = 0

(4.5)
For simplicity, we define matrices U and Φ by

U =

{ {uI}
{aI}

}
(4.6)

Φ(x) =

{ {φI(x)}
{φI(x)Υ (x)}

}
(4.7)

where a is the vector associated with the unknowns from the enrichment
functions and Υ (x) is the enrichment function, which can be H(f(x)), etc.

The Lagrange multipliers λ and γiα are approximated by:

λi(x) = NI(s)λIi, γiα(x) = γiα(x) (4.8)

where NI(s) are the finite element shape functions, and s is the arc length
along the boundary. The final discrete equations can be obtained by substi-
tuting the approximation of u and equation (4.8) into (4.5). From the arbi-
trariness of the variation, we can obtain the matrix equation:⎡

⎢⎢⎣
KUU KUc GRB GU

KcU Kcc 0 Gc

GT
RB 0 0 0

GT
U GT

c 0 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

U
c
γ
λ

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

fU
fc
0

qU

⎫⎪⎪⎬
⎪⎪⎭ (4.9)

where :

KUU =

∫
Ω

ΦI,jCijklΦJ,ldΩ (4.10)

KUc =

∫
Ω

ΦI,jCijklxβ,ldΩ (4.11)

Kcc =

∫
Ω

xα,jCijklxβ,ldΩ (4.12)

GU =

∫
Γu

ΦINJdΓ (4.13)

Gc =

∫
Γu

xαNJdΓ (4.14)

qU =

∫
Γu

NI ūidΓ (4.15)

fc =

∫
Γt

xα t̄dΓ +

∫
Ω

xαbidΩ (4.16)
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fU =

∫
Ω

ΦIbidΩ +

∫
Γt

ΦI t̄idΓ (4.17)

GT
RB = [X1 X2 X3 . . .] (4.18)

XI =

[
1 0 xI 0 yI 0
0 1 0 xI 0 yI

]
(4.19)

cT = [c10 c20 c11 c21 c12 c22] (4.20)

γT = [γ10 γ20 γ11 γ21 γ12 γ22] (4.21)

λT =
[
λux1 λuy1 λux2 λuy2 . . .

]
(4.22)

For plane stress problems

C =
E

1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ (4.23)

5 Example

We first consider a problem in linear elastostatics without discontinuities using
radial basis function interpolation. This example examines the accuracy of the
radial basis function interpolation. The Gaussian radial basis function (it is
globally supported) is used and the effect of parameter l on the results is
studied.

5.1 Timosheko Beam Problem

Consider a beam of length L subjected to a parabolic traction at the free end
as shown in Figure 5.3. The beam has a unit thickness and plane stress is
assumed. The closed-form solution is given by Timoshenko and Goodier [25]:

ux = Py
6EI

[
(6L − 3x)x + (2 + ν)(y2 − D2

4 )
]

uy = − Py
6EI

[
3νy2(L − x) + (4 + 5ν)D

2x
4 + (3L − x)x2

] (5.1)

where the moment of inertia I of the beam is given by I = D3/12. The
corresponding stresses are

σx =
P (L − x)y

I
, τxy = − p

2I

[
D2

4
− y2

]
, σy = 0 (5.2)

The parameters of the beam are as follows: E = 3.0 × 107 kPa, ν=0.3,
D=12 m , L=48 m and P = 1000 kN . We use regularly distributed nodes and
the background mesh for numerical integration as in [9]. We define a relative
energy error by
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Figure 5.3. Two dimensional cantilever beam example

Figure 5.4. Effect of shape parameter
l on relative error in energy norm for
beam problem

Figure 5.5. Convergence in relative en-
ergy norm for the two-dimensional elas-
tic beam problem

Relative energy error =

∥∥u − uh
∥∥

‖u‖ =
(
∫
Ω(ε − εh)C(ε − εh)dΩ)1/2

(
∫
Ω

εCεdΩ)1/2
(5.3)

where ε is the exact strain and εh is the strain from the numerical results.
The effect of parameter l in Gaussian radial basis function on the accuracy

of the results is quite marked. Figure 5.4 shows the effect of the parameter
l on the relative error in the energy norm for a 16 by 4 background mesh
for the beam problem. Reasonable results are obtained when l/L (L is the
length of specimen) ranges between 0.1 and 10; the best result is obtained
when l/L equals 1. When the value of l/L is too small or close to zero, the
effective domain of shape function is very large (the effective domain will be
the entire domain when l/L = 1); the values of shape function at each node
are close to 1. Results deteriorate for smaller values of l/L. The bigger the
value of l/L, the smaller the effective domain of the shape function; the shape
function tends to the Dirac delta function as l/L increases.



242 J. Xu, T. Belytschko

Figure 5.5 compares of the accuracy of the radial basis functions with EFG
with l/L = 1. The accuracy of radial basis function interpolation exceeds the
accuracy of the EFG interpolation. Radial basis function interpolation con-
verges more quickly than the EFG interpolation for the coarse mesh (theo-
retically the convergence rate for the Gaussian radial basis functions should
be exponential). But for the finer mesh, the Gaussian radial basis function
becomes unstable and does not converge at all.

5.2 Square Block with Sliding Interface

Consider a block subdivided in two by an inclined frictionless sliding inter-
face as shown in Figure 5.6(a), where we introduce a straight line tangential
discontinuity in the two-dimensional displacement field. The straight line is
defined by aβxβ = 0 and n = a

‖a‖ ; a = [a0, a1, a2].

The unit tangent vector is given by

et =
2√
5
ex +

1√
5
ey (5.4)

(a) (b)

Figure 5.6. a) Straight line tangential discontinuity in a square block; b) The lowest
eigenmode of the square block with a tangential discontinuity

The Gaussian radial basis functions are used in this case and the parameter
l/L = 1 (L is the length of specimen). Figure 5.6(b) shows the lowest eigen-
mode of the system. The upper part of the block moves in a translational rigid
mode in the t direction. The smallest eigenvalue is λ1 = 5.626 × 10−10, i.e.
zero to machine precision.
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Figure 5.7. Model of journal bearing Figure 5.8. Displacement mode corre-
sponding to the lowest eigenvalue for the
journal bearing problem

5.3 Journal Bearing

The model is shown in Figure 5.7. Four sides of the specimen are fixed and
on the circle marked ΓF a discontinuity in the tangential displacement is
introduced by adding enrichment based on the nodal values of tangent. The
enriched displacement approximation is

u(x) =
∑
I

φI(x)(uI + aIH(f(x))v(xI)) + cαxα (5.5)

where
v = −(y − y0)ex + (x − x0)ey (5.6)

where x0, y0 are the co-ordinates of the center of the shaft of radius R and

f(x) = (x − x0)
2 + (y − y0)

2 − R2 (5.7)

We examine how closely the model can capture the lowest eigenvalue and
the eigenvector corresponding to rigid-body rotation of the shaft ΩA inside the
bearing ΩB. The lowest eigenvalue should be zero since the shaft ΩA should
be free to rotate.

In this example, the specimen is 4.8 by 4.8, and the radius of the circular
shaft R = 0.3. Young’s modulus E = 1, Poisson’s ratio ν = 0.3. Gaussian
radial basis functions are used and the parameter l/L = 1. The lowest eigen-
value is 1.333× 10−19, which is zero to machine precision. The corresponding
eigenvector is shown in Figure 5.8; it represents rigid-body rotation of the
shaft very accurately.



244 J. Xu, T. Belytschko

Figure 5.9. Bimaterial bar problem

5.4 Bimaterial Bar

Consider a bimaterial bar (Ω = Ω1 ∪Ω2) as shown in Figure 5.9, with length
L = 12, height h = 48 with material moduli E1 and Poisson’s ratio ν1 in
Ω1 and E2, ν2 in Ω2. The material constants were chosen so that there is no
singularity at the edge of the interface; this condition is E1

ν1
= E2

ν2
for plane

stress. The interface Γ1 is located in the middle of specimen. For the mixed
boundary problem with uy = 0 at y = 0 and σy = σ at y = h and no body
force, the exact displacement solution is:

uy(y) =

{ σ
E1

y 0 ≤ y ≤ h/2
σ
E2

(y − h/2) + σh
E12

h
2 ≤ y ≤ h

(5.8)

Since the exact displacement solution is piecewise linear for the bimaterial
bar and the interface is a straight line, we use the enrichment functions from
equation (3.8) which introduces only two extra degrees of freedom globally.
Let Young’s modulus and Poisson’s ratios in Ω1 and Ω2 to be 20, 0.2 and 30,
0.3 respectively. We use the same radial basis functions as in the last example
and the parameter l/L is set to be 1.

Figure 5.10 shows contour plots of εyy for both the standard radial basis
function solution without enrichment and radial basis function solution with
enrichment. As we can see from the figure, the solution with the standard
radial basis function approximation without enrichment captures the solution
quite well but it exhibits oscillations in the gradient field near the interface.
The enriched radial basis function approximation gives the exact solution
without oscillations. The relative errors in the energy norm for the bimaterial
bar problem are 4.20×10−6(almost zero) for the enriched radial basis functions
and 0.0078 for the radial basis functions without enrichment.
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(a) (b)

Figure 5.10. Plots of strain εyy for the bimaterial bar. (a) Standard RBF approx-
imation without enrichment, (b) Standard RBF approximation with enrichment

5.5 Bimaterial Boundary-value Problem

In this example, an enriched radial basis function approximation for the elasto-
static response of a circular material inhomogeneity under radially symmetric
loading as show in Figure 5.11 is considered. The material properties are
constant in Ω1 and Ω2, but there is a discontinuity in the material constants
across the interface Γ1 (r = a). The Lamé constants for domain Ω1, Ω2 are
λ1 = μ1 = 0.4 and λ2 = 5.7692, μ2 = 3.8461, respectively. These correspond
to E1 = 1, ν1 = 0.25, and E2 = 10, ν2 = 0.3. We impose a linear displacement
field: ux = x, uy = y (ur = r, uθ = 0) on the outside circle. Navier’s equation
in polar coordinates reduces to:

d

dr

[
1

r

d

dr
(rur)

]
= 0 (5.9)

By considering displacement and traction continuity across the interface,
the exact displacement solution can be written as:

ur(r) =

{
[(1 − be

a2 )α + b2

a2 ]r 0 ≤ r ≤ a,

(r − b2

r )α + b2

r a ≤ r ≤ b,
(5.10)

uθ = 0, (5.11)
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Figure 5.11. Bimaterial boundary-value problem

where

α =
(λ1 + μ1 + μ2)b

2

(λ2 + μ2)a2 + (λ1 + μ1)(b2 − a2) + μ2b2
(5.12)

The radial (εrr) and hoop (εθθ) strains are given by:

εrr(r) =

{
(1 − b2

a2 )α + b2

a2 , 0 ≤ r ≤ a,

(1 + b2

r2 )α − b2

r2 , a ≤ r ≤ b,
(5.13)

εθθ(r) =

{
(1 − b2

a2 )α + b2

a2 , 0 ≤ r ≤ a,

(1 − b2

r2 )α + b2

r2 , a ≤ r ≤ b,
(5.14)

The radial and hoop stress are:

σrr(r) = 2μεrr + λ(εrr + εθθ),
σθθ(r) = 2μεθθ + λ(εrr + εθθ),

(5.15)

In the numerical model, we consider a square plate (2× 2) with a circular
inclusion (Ω1) of radius a = 0.4. The exact tractions from equation (5.15)
with b = 2.0 are imposed on the four sides of square plate, and three degrees
of freedoms are fixed on two nodes to remove rigid body motions. In this case,
the enrichment (3.9) is used to capture the strain discontinuity across the

circular interface. The level set function is given by f(x) =
√

x2 + y2 − a2. A
convergence study is conducted by using equally spaced rectangular arrange-
ments of nodes: 2 × 2, 4 × 4, 8 × 8, 16 × 16. We include the coarse models to
show that the radial basis function can provide very good results with very
few unknowns.

We first consider two cases: (a) radial basis functions with enrichment on
all nodes. (b) element free Galerkin method with enrichment. These results are
compared with the results from X-FEM [24] in Figure (5.12). To eliminate the
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Figure 5.12. Rates of convergence
in energy norm for the bimaterial
boundary-value problem

Figure 5.13. Accuracy of solutions for
8x8 nodes for different widths of en-
riched band

effects of the radial basis function shape parameters, we use thin-plate spline
radial basis functions; which have no shape parameters. Both the enriched
radial basis function interpolation and the enriched element free Galerkin
method have similar accuracy and rates of convergence (R = 1.56 for enriched
radial basis function interpolation and R = 1.43 for the enriched element
free Galerkin method). The accuracy and the rates of convergence of both
enriched methods are significantly better than those without enrichment, and
also much better than those from X-FEM with linear 3-node elements with
the same enrichment functions (R = 0.75 in [24]). However, the enriched RBF
method does not achieve the accuracy seen in the previous examples. We do
not know the source of this error.

The enrichment schema for the globally supported radial basis function
approximation is quite expensive. An interesting question arises: how many
nodes need to be enriched with the discontinuity to obtain good accuracy? We
investigated this question by enriching only those nodes that fall in a band
about the interface. Figure 5.13 shows the accuracy versus the width of the
band of enriched nodes for a 8x8 model. We can see that there is a big in-
crease in accuracy with enrichment only on those nodes that are closest to the
interface as compared to no enrichment. Subsequently a small improvement
in accuracy is seen as we increase the width of the enriched band of nodes.

5.6 Static Mode I Crack

A mode I crack problem for which the exact solution is known can be con-
structed by using the well-known near-tip stress field and prescribing the cor-
responding tractions at the boundary. The rigid body motions are suppressed
by constraints at two nodes as illustrated in Figure (5.14). A square patch
with unit sides and a crack of length 0.5 is considered. This problem is used
to compare the performance of the radial basis functions against the element
free Galerkin method. The near-tip stress field for a mode I crack is
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Figure 5.14. Discretization and enriched nodes for crack. Filled circles and squares
are jump and branch enriched nodes, respectively

σx =
KI√
2πr

cos(ϑ/2) [1 − sin(ϑ/2) sin(3ϑ/2)] (5.16)

σy =
KI√
2πr

cos(ϑ/2) [1 + sin(ϑ/2) sin(3ϑ/2)] (5.17)

τxy =
KI√
2πr

sin(ϑ/2) cos(ϑ/2) cos(3ϑ/2) (5.18)

Three approaches are studied here: case 1, radial basis functions in both
continuous and discontinuous approximations; case 2, enrichment with dis-
continuous Shepard functions combined with radial basis functions for the
continuous approximation; case 3, the element free Galerkin method for both
continuous and discontinuous parts. The Shepard functions with the supports
of 2.5dmin (dmin is the minimum distance between two neighboring nodes)
are used for the second case. Gaussian radial basis functions with global sup-
port are used in this example; l/L = 1. For the normal element free Galerkin
method, the sizes of the support domains are 2.5dmin. The traction is pre-
scribed so that the stress intensity factor KI = 1.0 Nm−3/2, and the relative
error in energy is computed according to equation (5.3). The jump function is
introduced on those nodes whose supports are cut by the crack in the second
and third cases, while around the crack tip we enrich the approximation with
a branch function (see equation (3.6)) as shown in Figure (5.14).

All three methods show good accuracy. Figure (5.17) and Figure (5.16)
show the stress contours obtained by the enriched radial basis functions (case
1) and the enriched element free Galerkin method (case 3). As we can see,
the stress contours from the enriched radial basis functions are smoother than
those of the enriched element free Galerkin method. Figure (5.15) shows the
convergence for the three methods. The convergence rates for the three meth-
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ods are: R = 0.83 for method 1; R = 0.8240 for method 2; R = 0.832 for
method 3, so the convergence rates are very similar but the results from the
enriched radial basis functions are more accurate but at more computational
cost than the other two cases.

Figure 5.15. Relative errors in energy for mode I crack for various enrichment
methods

6 Conclusions

Radial basis function methods for discontinuous approximations and their nu-
merical implementation for the elastic problems have been presented. Methods
for both discontinuities in the approximation and the gradient of the approxi-
mation have been studied. The method is coupled with level set methods and
thus requires no explicit representation of the discontinuity surface.

Since the radial basis functions considered here have global support, the
enrichment with discontinuous functions is not as straightforward as for com-
pactly supported approximants such as EFG. Therefore two methods have
been studied to alleviate the computational burden:

1. adding the discontinuous enrichment only to nodes in the vicinity of the
discontinuity.

2. combining continuous radial basis function approximations with discon-
tinuously enriched Shepard functions with local support.
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(a) (b)

Figure 5.16. Stress contours for static crack by the enriched EFG. (a) σxx, (b)
σyy. See Color Plate 10 on page 301.

(a) (b)

Figure 5.17. Stress contours for static crack by the enriched RBF. (a) σxx, (b)
σyy. See Color Plate 11 on page 301.

For straight discontinuities, exceptional accuracy has been obtained. For
curved discontinuities in the gradient, as in the circular inclusion problem, the
accuracy and rates of convergence are quite a bit below the expected potential
of the method. We do not understand the source of the error yet. Difficulties
with gradient enrichment have also been seen in finite element methods and
there some remedies have been developed [8].

One of the advantages for the radial basis functions for meshfree methods
is that they outperform the other interpolation methods for scattered data
sets in accuracy, stability, and the simplicity of the implementation. Also its
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high convergence rate (MQ radial basis functions converge exponentially for
smooth problems) and higher-order continuity make radial basis functions
very promising for meshfree methods.

A drawback for most radial basis functions is that they are not compactly
supported. Globally supported radial basis functions are highly expensive for
large models unless methods such as multipolar methods are used. We are
now studying these applications.

Acknowledgement. The support of the Office of Naval Research and the Army Re-
search Office is gratefully acknowledged.
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Abstract This paper deals with the description of a new numerical simulation tech-
nique based in the constrained natural element method, a novel meshless method,
able to compute multiphase thermal problems with moving interfaces without requir-
ing the frequent mesh updating characteristics of interfaces tracking finite element
techniques. This strategy combines some of the ideas of the natural element method
with a particular treatment of the moving boundaries and interfaces involving dis-
continuities of some fields.

1 Introduction

Phase boundaries represent material interfaces across several fields which may
exhibit sharp gradients, and even discontinuities. A wide range of numeri-
cal methods have been developed for treating these problems according to
the pertinent physics and assumptions about the interface [LER00]. When a
sharp interface is considered, its motion is governed by the jump in the tem-
perature gradient normal to the phase boundary and is accompanied by the
latent heat effects (Stefan condition). In order to satisfy these conditions the
most common approach lies in tracking explicitly the interface motion. Within
the interface tracking approach two main alternatives exist: the moving mesh
methods and the mixed Eulerian-Lagrangian methods. Moving finite element
mesh methods conform element boundaries to the interfaces as it evolves.
Although these methods are very accurate, they are limited by the severe
mesh distortion. Thus, frequent remeshing is needed, with the associated field
projections between successive meshes. Moreover, remeshing is, even today,
a delicate task in the 3D case. To alleviate remeshing efforts a number of
Eulerian-Lagrangian methods have been developed recently that track the in-
terface while solving the equations on a fixed grid [UMS99]. Many of these
methods effectively smear the discontinuity over a few grid cells, and are there-
fore not capable of representing the true discontinuity across the interface.
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A new approach for representing localized behaviours has recently emerged
in the field of the finite element method, known as the partition of unity
method [MBA96]. The main idea is to extend the classical approximation
considering the product of the standard shape functions and local enrichment
functions. The extended finite element method (X-FEM) is a variation on this
framework. Recently, the X-FEM has been coupled to the Level Set Method
[SSO94] to represent interface topologies [SCM01]. In this way, the discon-
tinuity evolution can be properly represented on a fixed background mesh,
just by adding an appropriate enrichment in the functional approximation in
the elements concerned by the moving discontinuity [JCD02]. However, when
the material in which the interface is moving, is subjected to large displace-
ments, an updated Lagrangian description could be a better choice. When the
background mesh evolves, remeshing will be required also to avoid too high
background mesh distortions.

To alleviate dependance to the mesh and to provide smoother shape func-
tions, the use of the meshfree or meshless methods is investigated. The mesh-
less methods discretize a continuum body by a finite number of particles (or
nodes) and the field of interest is interpolated under these nodes without the
aid of an explicit mesh. Many meshless methods have been proposed, includ-
ing the smooth particle hydrodynamics (SPH) [LUC77], the diffuse element
method (DEM) [NTV92], the element free Galerkin (EFG) [BLG94], the re-
producing kernel particle method (RKPM) [LJZ95], the HP clouds DOD96
and the partition of unity method (PUM) [MBA96].

The introduction of moving discontinuities in these meshless methods can
present difficulties for the following reasons: (i) The quality of the approxi-
mation as well as the conditioning of the global system is pathologically de-
pendant from the size of the support of the shape functions; (ii) Imposition
of essential boundary conditions needs particular treatments; (iii) Integration
is not accurately defined, and (iv) The physical discontinuity across the in-
terfaces must be introduced accurately. In order to overcome these different
problems, we propose the use of the constrained natural element method (C-
NEM) [YRa03] [YRb03] for treating thermal models involving moving inter-
faces. This approach is an extension of the natural element method [SMB98] in
which both trial and test functions are constructed on the basis of the Voronoi
based interpolants [SIB80] [HSU02], verifying the Kronecker delta property
and whose support is defined by the union of the Delaunay spheres passing
through the visible nodes. In the C-NEM, the introduction of a visibility cri-
terion and its related constrained Voronoi diagram preserves the appealing
properties of the NEM in any geometry (convex or not) and allows easily
the introduction of material discontinuities. In a former paper the C-NEM
has been sucessfully applied in some problems involving non convex domains,
discontinuities and cracks [YRb03].

The structure of this work is as follow: in section 2, we introduce a sim-
ple mathematical model of a thermal problem involving a moving interface.
Actually, it turns out that it results the standard Stefan problem [VUI93]. In
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section 3, the C-NEM is summarized, and it will be applied in section 4 to
discretize the weak formulation of the non-linear Stefan problem. A numerical
benchmark is presented in section 5, which allows us to conclude about the
accuracy of the proposed technique by comparing the numerical results with
the exact solution of the problem.

2 Problem Formulation

Let Ω ⊂ �2 be a bounded domain and T the temperature field. On the domain
boundary Γ ≡ ∂Ω the temperature or the thermal flux are prescribed. We
will denote by Γ1 the domain boundary where the temperature is known
T (x ∈ Γ1, t) = T (x, t) and by Γ2 the domain boundary where the heat flux q
is imposed. The thermal model is defined in the time interval [0, tmax]. The
initial temperature T (x, t = 0) = T0, where T0 is assumed to be higher than
the material melting temperature Tm. At time, t = 0, a part of the domain
boundary Γ1 is suddenly submitted to a temperature T1 < Tm. A moving
solidification front ΓI is then generated, whose position evolves in time, i.e.
ΓI(t), dividing the domain Ω in two regions Ω1(t) (containing the solid phase
at time t) and Ω2(t) (which contains the liquid phase) as shown in Figure 2.1.
For a sake of simplicity we will consider, from now on, a homogeneous and
isotropic thermal model in both phases.

Ω1
Ω2

Γ1

ΓΓΙ

Figure 2.1. Two phases problem.

The heat transfer model is defined in each phase, neglecting volumetric
source terms, by: {

c1
∂T (x,t)
∂t = ∇ · (k1∇T ) in Ω1(t)

c2
∂T (x,t)
∂t = ∇ · (k2∇T ) in Ω2(t)

(2.1)

where c1 and c2 are the volumetric heat capacities of both phases, being
k1 and k2 their thermal conductivities. The associated initial and boundary
conditions are:
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T (x, t = 0) = T0 ∀x ∈ Ω
T (x, t) = T (x, t) ∀x ∈ Γ1, ∀t ∈ [0, tmax]
−k∇T (x, t) · n = q̄(x, t) ∀x ∈ Γ2, ∀t ∈ [0, tmax]

(2.2)

The evolution of the interface ΓI(t) is described by a Stefan condition:

V(x ∈ ΓI(t)) =
|[q]|
L

nI(x) (2.3)

where V is the interface velocity, L is the volumetric latent heat of fusion,
nI(x) is the normal vector to the interface at point x which is assumed to
point into the liquid phase, and [[q]] the thermal flux jump across the interface
ΓI(t), i.e.

|[q]| =
(
k1∇T |Γ−

I
(t) − k2∇T |Γ+

I
(t)

)
nI (2.4)

The additional constraint prescribed on the interface ΓI(t) is:

T (x, t) = Tm; ∀x ∈ ΓI(t) (2.5)

where Tm is the melting temperature.

3 The Constrained Natural Element Method (C-NEM)

In this section, the utility of the C-NEM to describe moving interfaces and
discontinuities in a fixed cloud of nodes is discussed. After a brief review of
the Voronoi-based interpolants, we introduce the constrained Voronoi diagram
which is used for computing the shape functions in any domain.

3.1 Natural Neighbor Interpolation

We briefly touch upon the foundation of Sibson’s natural neighbor coordinates
(shape functions) that are used in the natural element method. For a more
in-depth discussion on the Sibson interpolant and its application for solving
second-order partial differential equations, the interested reader can refer to
Braun and Sambridge [SBM95], and Sukmar et al. [SMB98]. The NEM in-
terpolant is constructed on the underlying Voronoi diagram. The Delaunay
tesselation is the topological dual of the Voronoi diagram.

Consider a set of nodes S = {n1, n2, . . . , nN} in �2. The Voronoi diagram
is the subdivision of �2 into regions Ti (Voronoi cells) defined by:

Ti = {x ∈ �2 : d(x,xi) < d(x,xj), ∀j �= i}, ∀ i (3.1)

The Sibson coordinates of x with respect to a natural neighbor ni (see
Figure 3.2) is defined as the ratio of the overlap area (volume in 3D) of their
Voronoi cells to the total area (volume in 3D) of the Voronoi cell related to
point x:
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Γ

Figure 3.2. Construction of the Sibson shape functions.

φi(x) =
Area(afghe)

Area(abcde)
(3.2)

If the point x coincides with the node ni, i.e. (x = xi), φi(xi) = 1, and all
other shape functions are zero, i.e. φj(xi) = δij (δij being the Kroenecker’s
delta). The properties of positivity, interpolation, and partition of unity are
then verified [SMB98]: ⎧⎨

⎩
0 ≤ φi(x) ≤ 1
φi(xj) = δij∑n

i=1 φi(x) = 1
(3.3)

The natural neighbor shape functions also satisfy the local coordinate
property [SIB80], namely:

x =

n∑
i=1

φi(x)xi (3.4)

which combined with Eq. (3.3), implies that the natural neighbor inter-
polant spans the space of linear polynomials (linear completeness).

Natural neighbor shape functions are C∞ at any point except at the nodes,
where they are only C0, and on the boundary of the Delaunay circles (spheres
in 3D) where they are only C1, because of the discontinuity in the neighbors
nodes across these boundaries.

Another important property of this interpolant is the ability to reproduce
linear functions over the boundary of convex domains. The proof can be found
in Sukumar et al. [SMB98]. An illustration is depicted in Figure 3.2 (b): as the
areas associated to points on the boundary become infinite, the contribution
of internal points vanish in the limit when the point approaches the convex
boundary, and the shape functions associated with nodes n1 and n2 become
linear on the segment (n1 − n2). This is not true in the case of non convex
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boundaries, and the next section focuses in an approach to circumvert this
difficulty.

Consider an interpolation scheme for a scalar function T (x) : Ω ⊂ �2 →
�2, in the form:

T h(x) =

n∑
i=1

φi(x) Ti (3.5)

where Ti are the nodal temperatures at the n natural neighbor nodes, and
φi(x) are the shape functions associated with each neighbor node. It is noted
that Eq. (3.5) defines a local interpolation scheme. Thus, the trial and test
functions used in the discretization of the variational formulation describing
the thermal problem treated in this paper take the form of Eq. (3.5).

3.2 The Constrained Natural Element Method

Constrained Voronoi Diagram. It was proved in [YRb03] [SMB98] and
[CCC02] that spurious influences between ”non-visible” nodes and lost of lin-
earity in the interpolation along boundaries of non convex domains appear
in the framework of the NEM. In order to avoid this drawback and to re-
cover all properties of the method for any geometry (including non convex
domains containing cracks or involving field discontinuities), a visibility crite-
rion is introduced in order to restrict influent nodes among natural neighbors.
The computation of the shape functions is done on the basis of the so-called
constrained (or extended) Voronoi diagram (CVD), introduced by Seidel in
[SEI88]. The constrained Voronoi cells are defined formally by:

TCi = {x ∈ �n : d(x,xi) < d(x,xj),

∀j �= i, Sx→ni
∩ Γ = ∅, Sx→nj

∩ Γ = ∅} (3.6)

where Γ is the domain boundary, composed with segments li ∈ L, L being
a set of segment in the plane, and Sa→b denotes the segment between the
points a and b.

A generalization of the constrained Delaunay triangulation to 3D doesn’t
exist without adding new nodes, as shown in [SCH28]. Nevertheless, some
techniques for constructing 3D constrained Delaunay tesselations are available
and provided in [SMB98],[SHE00] by addition of Steiner points.

The Constrained Natural Element Approximation. In order to
solve partial differential equations defined in non convex domains, or to repro-
duce some functional discontinuities, we consider the following approximation
of both the trial and the test functions:

T h(x) =

V∑
i=1

φCi (x)Ti (3.7)
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where V is the number of natural neighors visible from point x and φCi is
the constrained natural neighbor shape function related to the i-th node at
point x. The computation of the C-n-n (constrained natural neighbor) shape
functions is similar to the natural neighbor shape function, when one proceed
using the constrained Voronoi diagram introduced previously. It was shown in
[YRa03] and [YRb03] that the use of the constrained Voronoi diagram does
not affect the properties of the NEM interpolation, allowing the extension of
the linearity of the shape functions on the convex domains boundaries, to any
geometry, convex or not.

The ability of the C-NEM for treating problems involving cracks has been
illustrated in [YRb03]. In the present paper, we focus on its application in
the context of a moving interface defining two domains with different thermal
properties. Thus, defining at time t two CVD (constrained Voronoi diagrams)
of Ω1(t) and Ω2(t), both with respect to the interface ΓI(t), it can be proved
that the interpolated temperature field is C1 everywhere, except at the nodes
and on the interface ΓI(t) where it is only C0. Thus, this interpolation seems
to be appropriate to simulate the Stefan problem considered in this paper.

To illustrate this behavior, we consider the situation depicted in Figure
3.3, where the point x moves from Ω1 to Ω2. If x is in Ω1, the interpolated
field is constructed from Eq. (3.7) using the neighbor visible nodes from point
x (ΓI is assumed opaque). If x is on ΓI , according to the previous discussion,
the interpolated field is strictly linear because it only depends on the two
neighbor nodes located on ΓI . Finally, when x is in Ω2, the interpolated field
is defined using the visible neighbor and visible nodes from point x (ΓI being
opaque). The continuity of the interpolated field is then guaranteed, but a
discontinuity appears in the field derivatives, because of a sudden change in the
neighbor nodes across the interface. We can then reproduce the temperature
field continuity, as well as the expected flux discontinuity on the interface.

Ω1 ΓΙ
Ω2

Ω1 ΓΙ
Ω2

Ω1 ΓΙ
Ω2

(a) (b) (c)

Figure 3.3. Reproducing discontinuous derivatives using the constrained Voronoi
diagram.
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4 C-NEM Discretization

Assuming that in our example Γ2 ≡ ΓI , the weak formulation associated with
Eq. (2.1) results:

Find T ∈ H1(Ω) verifying T = T̄ on Γ1 such that:

∫
Ω

c
∂T

∂t
δTdΩ = −

∫
Ω

k∇T · ∇δTdΩ +

∫
ΓI (t)

|[q]|δTdΓ, ∀ δT ∈ H1
0 (Ω)

(4.1)
Where H1(Ω) and H1

0 (Ω) are the usual Sobolev functional spaces. Substi-
tuting the trial and test functions (both approximated in the C-NEM frame-
work) in the above equation and using the arbitrariness of the field δT , the
following system of equations is obtained:

CṪ + KT = F (4.2)

where T is the vector containg the unknown nodal temperatures. For time
discretization, we consider the solution on the time interval [0, tmax], parti-
tioned into steps as [tn, tn+1] and the generalized trapezoidal time stepping
algorithm characterized by the parameter α:

∂T n+1

∂t
=

T n+1 − T n − (1 − α)Δt∂T
n

∂t

αΔt
(4.3)

where ∂T 0

∂t is initialized by setting:∫
Ω

c
∂T 0

∂t
δTdΩ = −

∫
Ω

k∇T 0 · ∇δTdΩ ∀ δT ∈ H1
0 (Ω) (4.4)

which leads, after applying the discretization scheme described in Eq. (3.5),
to:

C
∂T0

∂t
= −KT0 (4.5)

The stabilized conforming nodal integration proposed by Chen et al. in
[CWY01] is employed for the numerical integration of K (see our former
work [YRb03] for more details). This technique, based on the assumed strain
method, has been used to reduce significantly the integration errors, and al-
lows to satisfy the patch test exactly in the context of the natural neighbor
interpolation, which is not the case if a standard Gauss quadrature scheme
is used [CCC02]. In the context of the C-NEM, the representative domains
related to each node used in such techniques to define the assumed gradient,
are the constrained Voronoi cells depicted in figure 3.3, which are accurately
defined everywhere, and especially in the interface neighborhood.

A lumped mass matrix C̃ is computed making use of the constrained
Voronoi cells areas as nodal weights.
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The iteration procedure is defined as:
Knowing Tn and |[q]|n at time tn, the non-linear problem associated with

Eq. (4.1) results in finding Tn+1 and |[q]|n+1 such that Eqs. (2.5) and (4.1)
are satisfied. For this purpose we proceed as follows:

1. Compute the interface velocity Vn(x) using Eq. (2.3) and update the
interface position at time tn+1 using the forward Euler formula:

xn+1
J = xnJ + ΔtVn(xnJ ) (4.6)

where xJ are the nodes defining the interface.
2. Update locally the constrained Voronoi diagram and the shape functions

associated with integration points in the interface neighborhood. Then, we
compute C̃n+1 and Kn+1.

3. Solve Eq. (4.1) using a Newton-Raphson procedure where the tangent
matrix is computed numerically.

4. Repeat while tn+1 < tmax.

An alternative scheme using the Latin method [LAD98] in the extended
finite element framework can be found in Merle and Dolbow [MED02].

5 Numerical Example

In this section, we illustrate the potentiality of the proposed technique simulat-
ing a two-phases Stefan problem. The problem is essentially one-dimensional,
but we solve it here in two dimensions to underline the outstanding features
of the method.

The Stefan problem models the one-dimensional freezing of a semi-infinite
domain (x ≥ 0). The initial temperature T0 is assumed constant in the whole
domain, being higher than the melting temperature Tm. At time t = 0 the
temperature at the left boundary x = 0 is suddenly prescribed to a value T1

lower than the melting point, originating a solidification front that progresses
from the boundary x = 0 in the x direction. The exact flow front position
xf (t) is given by:

xf (t) = 2λ
√

βst (5.1)

where βs = ks/cs is the thermal diffusivity of the solid phase, and the
constant λ satisfies the following relationship:

e−λ
2

erf(λ)
=

kl
√

η(T0 − Tm)e−ηλ
2

ks(Tm − T1)erfc(λ
√

η)
+

λL
√

π

cs(Tm − T1)
(5.2)

with η = βs/βl being the ratio of the thermal diffusivities and where kl
represents the liquid phase conductivity. The temperature field in the solid
phase 0 ≤ x ≤ xf (t) is then:
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T (x, t) = T1 +
Tm − T1

erf(λ)
erf

(
x

2
√

βst

)
(5.3)

and in the liquid phase x ≥ xf (t):

T (x, t) = T0 − T0 − Tm
erfc(λ

√
η)

erfc

(
x

2
√

βlt

)
(5.4)

In the present investigation, we use the water-satured sand thermal prop-
erties provided in [LYO81] and listed in Table I. T1 and T0 were set to -10
and 4.0 0C respectively (λ = 0.3073). We simulate the evolution of the tem-
perature field in Ω = [0, 1] × [0, 0.5] cm. In order to use the inifinite domain
solution as reference solution, the temperature at x = 1 is prescibed to its
expected value according to Eq. (5.4)

Table 5.1. Thermal properties of the water saturated sand.

Properties Solid Liquid

Volumetric heat capacity (cal.0C−1cm−3) 0.49 0.62
Thermal conductivity (cal.cm−1s−1.0C−1) 9.6.10−3 6.9.10−3

Melting temperature ( 0C) 0.0
Volumetric latent heat of fusion (cal.cm−3) 19.2

In a first test, we consider in the domain Ω a 20× 10 uniform grid and Δt
= 2s. Figure 5.4 compares the computed interface position and the exact one.
An excellent accuracy can be noticed, as depicted in figure 5.5, where the error
in the front position is represented. Figure 5.6 shows the temperature profile
at different times. We can point out that the discontinuity in the temperature
gradient is accurately obtained, being in excellent agreement with the exact
solution. The external boundary conditions are given by: T (t) = T1 on (x = 0),
T (t) = Tex given by Eq. (5.4) on (x = 1) and −k∇T · n = 0 on (y=0) and
(y=0.5). The initial condition is given by T (t = 0) = T0 in Ω.

In a second test, we consider the domain Ω containing 200 nodes dis-
tributed at random. The purpose of the present test is to investigate the
meshless feature of the technique, in which due to its meshless character no
geometrical restrictions concerning the relative nodal positions are involved.
Thus, neither the background nodal distribution nor the relatinve position of
the nodes defining the moving interface with respect to the background nodes,
induce a lack of accuracy when high distortions in the Delaunay mesh, used
to compute the Voronoi diagram, takes place. This is the main difference be-
tween the proposed strategy and the standard finite element method whose
accuracy depends significantly on the geometrical quality of the mesh. More-
over, this test approaches the situations encountered when the material is also
moving, inducing highly irregular nodal densities and high background mesh
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Figure 5.4. Computed C-NEM front
position versus the exact solution using
a 20 × 10 regular grid.
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Figure 5.5. Error in the front position.
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Figure 5.6. Temperature profiles along the line y=0.25 using a regular grid.

distortions. Figure 5.7 depicts the cloud of nodes and the interface position as
well as the associated constrained Voronoi cells. Remarkably, despite of the
very irregular nodal distribution and density, we can notice that the interface
is not distorted as it moves through the domain. From Figs. 5.5 and 5.8 we
can conclude that the accuracy is not affected significantly by the resgularity
on the nodal distribution. In Figure 5.9 some temperature profiles along the
line y = 0.25 are depicted, from which an excellent accuracy can be noticed.

6 Conclusion

In this paper, the salient features of the C-NEM meshless method are used
for treating thermal problems involving moving interfaces. The use of the
constrained Voronoi diagram allows to introduce the desired discontinuities
in the gradient of the solution without any enrichment. In the C-NEM frame-
work, essential boundary conditions can be imposed directly, due to the strict
linearity of the shape functions over the boundaries (convex or not) and the
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t = 8 s

t = 20 s

t = 64 s

t = 100 s

Figure 5.7. Computed interface position using an irregular cloud of nodes: (a)
Cloud of nodes and interface position; (b) Constrained Voronoi cells.

respect of the Kronecker delta property. No user-defined parameter is involved
in the shape functions support size, the support being defined like the union of
the Delaunay spheres passing through a node and its neighbor visible nodes.
A stabilized conforming nodal integration is computed over the constrained
Voronoi cells to enhance accuracy. The most outstanding quality of this tech-
nique is the ability for introducing discontinuities located on a line (surface
in 3D) defined by another set of nodes that move through a fixed (or also
moving) cloud of nodes which constitutes a background scattered of nodes.
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Figure 5.9. Temperature profiles along
the line y = 0.25 using an irregular grid.

The meshless character of this technique allows to proceed without remesh-
ing (in a finite element sense), even for highly irregular nodal distributions.
The method is relatively simple and delivers similar level of accuracy than
r-adaptative or the partition of unity finite element schemes. The technique
seems promising for the simulation of arbitrary and moving discontinuities
over an unstructred fixed or also moving set of nodes.
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Abstract We summarize the strengths and limitations of currently available multi-
ple-scale techniques, where the emphasis is made on the latest prospective ap-
proaches, such as the bridging scale method, multiscale boundary conditions, and
multiscale fluidics. Example problems, in which multiple-scale simulation methods
yield equivalent results to full atomistic simulations at fractions of the computa-
tional cost, are shown. We conclude by discussing future research directions and
needs in multiple-scale analysis, and also discuss the ramifications of the integration
of current nanoscale research into education.

1 Introduction

The rapid advances in nanotechnology, nanomaterials and nanomechanics of-
fer huge potentials in national defense, homeland security, and private indus-
try. An emphasis on nanoscale entities will make our manufacturing tech-
nologies and infrastructure more sustainable in terms of reduced energy us-
age and environmental pollution. Recent advances in the research community
on this topic have stimulated ever-broader research activities in science and
engineering devoted to their development and their applications. With the
confluence of interest in nanotechnology, the availability of experimental tools
to synthesize and characterize systems in the nanometer scale, and computa-
tional tools widely accessible to model microscale systems by coupled contin-
uum/molecular/quantum mechanics, we are poised to unravel the traditional
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gap between the atomic and the macroscopic world in mechanics and materi-
als. This in turn opens up new opportunities in education and research. Over
the past three decades, we have acquired new tools and techniques to synthe-
size nanoscale objects and to learn their many incredible properties. Today’s
high resolution electron microscopes can routinely see individual atoms. Scan-
ning probe techniques allow us to manipulate atoms one at a time. Advanced
materials synthesis provides the technology to tailor-design systems from as
small as molecules to structures as large as the fuselage of a plane. We now
have the technology to detect single molecules, bacteria or virus particles. We
can make protective coatings more wear-resistant than diamond and fabricate
alloys and composites stronger than ever before.

In most of these applications, nanoscale materials will be used in conjunc-
tion with other components that are larger and have different response times,
thus operating at different time and length scales. Single scale methods such
as ”ab initio” quantum mechanical methods or molecular dynamics (MD) will
have difficulty in analyzing such hybrid structures due to the limitations in
terms of the time and length scales that each method is confined to. Because
of the availability of accurate interatomic potentials for a range of materi-
als, classical MD simulations have become prominent as a tool for elucidating
complex physical phenomena. However, the length and time scales that can be
probed using MD are still fairly limited. For the study of nanoscale mechanics
and materials, we must model up to a scale of several microns, consisting of
billions of atoms, which is too large for MD simulations to date. Hence, we
need to develop multiscale approaches for this class of problems. One possible
approach that can be applied to many problems is to use MD only in localized
regions in which the atomic scale dynamics are important, and a continuum
simulation method, such as the finite element ([16], [43]) or meshfree method
([5], [6], [13], [14], [23],[27], [28], [24], [25], [26]), everywhere else. This gen-
eral approach has been taken by several different groups using methods that
have had varying degrees of success. In particular, these methods do not sat-
isfactorily address the issue of disparate time scales in the two regions, and
provide a rather simplified treatment of the interface between the atomistic
and continuum regimes. Current research in engineering is just beginning to
impact molecular scale mechanics and materials and would benefit from in-
teraction with basic sciences. For solids, research in the area of plasticity and
damage has experienced some success in advancing microscale component de-
sign. Development of carbon nanotubes ([8], [34], [36], [41], [42]) is also an
area in which nanoscale research has clearly played a major role. Other areas
of opportunities include nanocomposites and nanoalloys. Electrophoresis and
electro-osmotic flows coupled with particulate motion in a liquid have been
important research areas that have had great impact in the homeland security
area. Microfluidic devices often comprise components that couple chemistry,
and even electrochemistry, with fluid motion. Once the physics-based models
are determined for the solids and fluids, computational approaches will need
to be employed or developed to capture the coupled physics phenomena. The
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paper’s outline is given by the following. In Section 2, we will review the hier-
archical and concurrent coupling of the atomistic and continuum simulations,
and multiscale boundary conditions. Section 3 focuses on the bridging scale
method for quasi-static and dynamic problems along with several examples
and applications. Bridging scale computations for localized failure is explained
in Section 4. Section 5 concludes the paper by discussing future research needs
in multiple-scale analysis.

2 Review of Multiscale Simulation Methods

Over the past few decades, continuum methods have dominated materials
modeling research. This approach of predicting material deformation and fail-
ure by implicitly averaging atomic scale dynamics and defect evolution over
time and space, however, is valid only for large enough systems that include
a substantial number of defects. As a result, numerous experimental observa-
tions of material behavior cannot be readily explained within the continuum
mechanics framework: dislocation patterns in fatigue and creep, surface rough-
ening and crack nucleation in fatigue, the inherent inhomogeneity of plastic
deformation, the statistical nature of brittle failure, plastic flow localization in
shear bands, and the effects of size, geometry, and stress state on yield prop-
erties. Thus, there is a considerable effort to find fundamental descriptions
for strength and failure properties of nanoscale materials, taking into account
their atomic structures. The use of MD simulations has provided useful infor-
mation of chemical interactions at the nanoscale. However, MD simulations
have their own limitations, as discussed in the previous section. Typical atom-
istic simulations are still restricted to very small systems consisting of several
million atoms or less and timescales on the order of picoseconds. Thus, even
for nanoscale structures and materials, atomistic modeling would be compu-
tationally prohibitive. The limitations of atomistic simulations and continuum
mechanics, along with practical needs arising from the heterogeneous nature
of engineering materials, have motivated research on multiscale simulations
that bridge atomistic simulations and continuum modeling ([1], [9], [33], [17],
[35], [32], [40], [31]). In order to make the computations tractable, multiscale
models generally make use of a coarse-fine decomposition. An atomistic sim-
ulation method, such as MD, is used in a small subregion of the domain in
which it is crucial to capture the individual atomistic dynamics accurately. A
continuum simulation is used in all other regions of the domain in which the
deformation is considered to be homogeneous and smooth. Since the contin-
uum region is usually chosen to be much larger than the atomistic region, the
overall domain of interest can be considerably large. A purely atomistic solu-
tion is normally not affordable on this domain, though the multiscale solution
would presumably provide the detailed atomistic information only when and
where it is necessary. The key issue is then the coupling between the coarse
and fine scales. Depending on the method of information exchange between
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the coarse and fine regions, multiscale methods can be classified into three
groups: hierarchical, concurrent, and multiscale boundary conditions.

Hierarchical approaches embed the intrinsic atomistic properties of the
solid in the continuum formulation according to the Cauchy-Born rule, so
that small scales depend on large scales in some predictable way. Hierarchical
techniques are based on the assumption of homogeneous lattice deformation;
therefore they are more effective for elastic single-phase problems. Difficul-
ties typically arise from modeling defects in atomic lattices, dislocations, and
failure phenomena.

Within concurrent methods, the behavior at each length scale depends
strongly on the others. An appropriate model is solved at each length scale
simultaneously (continuum mechanics for macro elastic media, molecular dy-
namics for large groups of atoms and quantum mechanics for bond break-
ing), while a smooth coupling is introduced between the different scales. The
inter-scale dependence is complicated, and it is not preassigned. Concurrent
approaches are more relevant for studying complicated problems, involving
inhomogeneous lattice deformation, fracture in multiphase macroscopic ma-
terials, and nano fluidics. However, two arguable issues do typically arise: a)
how to separate the scales, and b) what is the adequate mechanism of coupling
the atomistic and continuum simulations.

Multiscale boundary conditions for molecular dynamic simulations is an
emerging approach not to involve the explicit continuum model, so that the
issues of separating the scales and coupling the simulations do not arise. In
this case, the coarse grain behavior is taken into account on the fine/coarse
grain interface at the atomistic level through the lattice impedance techniques.
These methods, though, may appear to be more effective than the concurrent
methods only for a particular class of problems with linear coarse grains in
solids.

3 Concurrent Bridging Scale Method

To avoid information loss when passing information from one length scale to
another, researchers have expended a great deal of effort in developing concur-
rent methods to achieve a seamless bridging between different length scales.
In a concurrent method, simulations at different length scales are performed
simultaneously and the information interfaces between different length scales
continually transmit information from one simulation to the other.

In overcoming the requirement of grading finite-element mesh down to
lattice size, as in QC and MAAD ([1], [2]) methods, a concurrent coupling
method has been recently developed by Liu and co-workers ([22], [39], [17],
[35], [32], [40], [31]). A unique characteristic of this method is that it is formally
assumed that the FE and MD solutions exist simultaneously in the entire
computational domain and MD calculations are performed only in the regions
that are necessary. The basic idea is to decompose the total displacement field
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u(x) into coarse and fine scales

u(x, t) = ū(x, t) + u′(x, t) (3.1)

where ū(x, t) is the coarse scale solution and u′(x, t) is the fine scale solution,
corresponding to the part that has a vanishing projection onto the coarse
scale basis functions. The coarse scale solution can be interpolated by basic
finite element shape functions as ū = Nd, where d is the FE solution and N
is the shape function evaluated at atomic locations. Wagner and Liu ([40])
demonstrated that u′ = Qq , where q is the MD solution,Q = I − P, P is a
projection operator that depends on both shape functions and the properties
of the atomic lattice, and I is the identity matrix.

Within concurrent methods, the behavior at each length scale depends
strongly on the others. An appropriate model is solved at each length scale
simultaneously (continuum mechanics for macro elastic media, molecular dy-
namics for large groups of atoms and quantum mechanics for bond break-
ing), while a smooth coupling is introduced between the different scales. The
inter-scale dependence is complicated, and it is not preassigned. Concurrent
approaches are more relevant for studying complicated problems, involving
inhomogeneous lattice deformation, fracture in multiphase macroscopic mate-
rials, and nanofluidics. However, two arguable issues do typically arise: a) how
to separate the scales, and b) what is the adequate mechanism of coupling the
atomistic and continuum simulations.

3.1 Quasistatic Problems

Within the bridging scale method, the governing equations are obtained, em-
ploying the principle of virtual work, to give

NTf int(d,q) = NTfext(d,q) (3.2)

QTfext(d,q) = QTfext(d,q) (3.3)

where f int = −∂U(u)/∂u is the internal force, and fext is the external force.
The first equation is solved over the entire domain, while the solution of Eq. 3.3
is equivalent to that from MD simulation, and is hence only solved in localized
region. Note that these two equations are coupled. A Newton’s method can be
used to iteratively solve the coupled equations. Bridging between the coarse
and fine scale is realized by transparently exchanging information between
coarse and fine scale regions.

It remains to be shown how the internal forces are calculated for the coarse
scale simulation. Note that the energy density associated with α is directly
related to the bond vector over an effective domain, ΔVα in the deformed con-
figuration. The total potential energy in the system can be written as a discrete
summation over all the atoms: coarse scale simulation provides boundary con-
ditions for the fine scale simulation, while the fine scale simulation provides
an accurate approximation of the internal force that enriches the coarse scale:
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U =
∑
α

∑
β �=α

w(rα,β)ΔVα (3.4)

where β runs over all the neighbors of atom α within a prescribed cut-off
radius, and w is an energy density function. In the coarse scale, the atomic
bond vector is deformed according to the coarse scale deformation field. Thus
it can be interpolated by the nodal displacement d. By definition, Nf int =
∂w(rαβ)/∂d, one has

Nf int =
∑
α

∑
β̄ �=α

∂w(rαβ)

∂rαβ̄
[N(Xβ̄) − N(Xα)]ΔVα (3.5)

The discrete summation of the right-hand side of the above equation makes
the evaluation computationally intensive. In practice, the strain energy can
be considered as a smooth function. Thus, the discrete summation over the
atoms in equation 3.5 can be replaced by evaluations at quadrature points, as

Nf int =
∑
α

∑
β �=α

λα
∂w(rαβ)

∂rαβ
[N(Xβ) − N(Xα)]ΔVα (3.6)

The advantages of the bridging scale method over other concurrent meth-
ods are the following. First, it does not involve calculation of any high-order
tensor, such as the Piola-Kirchoff stress, which makes it computationally more
efficient. Secondly, no mesh gradation is required. Finally, the bridging scale
method can be extended to the dynamic case ([32], [40]), as outlined in the
following section, while the quasi-continuum method has currently be shown
only for quasi-static processes. All these factors have made the bridging scale
method an increasingly popular approach to simulating nanostructured ma-
terials.

Mechanics of Multi-walled Carbon Nanotubes. The bridging scale
method has been successfully used in modeling buckling of multi-walled carbon
nanotubes ([35]). In these simulations, a 15-walled Carbon nanotube (CNT)
is considered with the outermost shell being a (140, 140) nanotube, and all
inner shells of the (n, n) type; from the outer most shell, n reduces by 5 every
layer. The length of the tube is 90nm and the original MD system contains
about 3 million atoms. This is replaced with a system of 27, 450 particles.
In addition to the particles, two sections along the tube are enriched with
molecular structures of multi-walled nanotubes. The position of the enrich-
ment region is determined by a multi-resolution analysis of the coarse scale
simulation. Therefore, the scheme is adaptive. The length of each enrichment
region is 3.6nm. Each section contains 49, 400 atoms and this adds 296, 400
more atomic degrees of freedom. A bending angle with increment of 0.25
degree/step is imposed on both ends of the tube for a total of 100 steps.
The multiscale configuration is illustrated in Figure 3.1. Figure 3.2 shows the
buckling pattern approximated by meshfree approximation at the final stage
of loading, followed by the energy density contour plot for each layer of CNT.
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Two distinctive buckling patterns can be seen from the meshfree approxima-
tion, while the contour plot shows clearly the strain energy concentration at
the buckling point. A unique advantage of using the multiscale method is that
we are able to reveal the details of the molecular structure at the kinks, which
cannot be resolved by the coarse scale representation alone. The atomic struc-
ture of the buckling region for each layer of multi-walled CNT are plotted on
the right hand side of Figure 3.2.

Figure 3.1. Multiscale analysis of a 15-walled CNT by a bridging scale method.
The multiscale simulation model consists of 10 rings of carbon atoms (with 49, 400
atoms each) and a meshfree continuum approximation of the 15-walled CNT by
27,450 nodes.

Grain and Grain Boundaries. Multiscale simulations of grain and grain
boundaries are studied to observe the mechanical behaviors of the effects and
behaviors in both coarse (homogeneous grain) and fine (grain boundaries)
scales. This method uses the idea of being able to project the detailed (fine)
grain boundary solution, which is assumed to be inhomogeneous, onto a con-
tinuum that consists of homogeneous grains. While maintaining the accuracy
in the total solution, the computational cost is greatly reduced and the al-
gorithm implementation is enhanced. The material properties used in finite
element can be easily extracted from the free energy or the equilibrium state
of the material. The multiscale solution is to be compared with full atomistic
solution for simple numerical mechanical testing examples such as shear or
compression. The mechanical effects are to be captured in both global and lo-
cal areas. The results from both methods are expected to be almost identical,
though the work is still in progress.

3.2 Dynamic Simulations

The dynamic formulation for the bridging scale method is obtained according
to the Lagrangian formalism. Importantly, the decomposition Eq. (3.1) leads



278 W. K. Liu, L. T. Zhang, E. G. Karpov, H. Kadowaki, H. Park

Figure 3.2. The global buckling pattern captured by meshfree method whereas
the detailed local buckling of the ten rings of atoms are captured by a concurrent
bridging scale molecular dynamic simulation. See Color Plate 12 on page 302.

Figure 3.3. Grains are modelled using finite element (coarse scale and grain bound-
aries are modelled using molecular dynamics (fine scale).
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to a Lagrangian of the system in which the kinetic energies of the two scales
are uncoupled ([40]):

L =
1

2
ḋTMḋ +

1

2
q̇TAq̇ − U(u) (3.7)

where A = QTMAQ. This in turn provides a convenient form of force cou-
pling between the coarse and fine scale equations of motion:

Mf
Aq̈f = ff (u)

Md̈ = NT f(u) (3.8)

where M and MA are the FE and MD mass matrices, respectively. This
form of the equations of motion formally implies that the atomistic MD and
continuum FE solutions q and d exist simultaneously and everywhere in the
computational domain; the upper script index ”f” in the first equation stands
for the full MD displacement and force vectors, and the atomic mass matrix.
This concept is illustrated in Figure 3.4.

Figure 3.4. Illustration of the bridging scale approach: the MD and FE solutions
are coupled through the projection technique. The ubiquitous atomistic resolution is
replaced with a reduced MD region by utilizing the impedance boundary conditions.
The dashed red line shows boundary of the domain of interest.

From the practical point of view, the explicit Lagrangian formulation
Eq. (3.8) is of little merit, because it requires solving the MD equations
throughout the continuum; that is in most cases not affordable computa-
tionally. Therefore, it is next assumed that the atomistic processes of interest
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are localized on a small region that features large amplitudes of the relative
atomic motion (the fine scale). The rest of the domain (the coarse scale) dis-
plays nonlinear elastic behavior. The atomistic degrees of freedom within the
coarse scale are then eliminated from the formulation, and their cumulative
effect upon the boundary atoms in the fine scale is taken into account through
the impedance force, f imp, incorporated into the right-hand side of the reduced
system of MD equations of motion:

MAq̈ = ff (u) + f imp

Md̈ = NT f(u) (3.9)

Here, the MD equation, as compared with Eq. (3.8), involves reduced force
and displacement vectors and the mass matrix.

The impedance force f imp is derived by first writing the fine scale equation
of motion in component form as

ü′
l,m =

l+1∑
l′=l−1

m+μ∑
m′=m−μ

M−1
h Kl−l′,m−m′u′

l′,m′(t) + M−1
h fextl,m(t) (3.10)

where fextl,m(t) is the external force acting upon unit cell (l, m), the matrices
K relate the displacements in cell (−l′,−m′) to the forces in cell (l, m), μ is
the largest connectivity number for the index m, i.e. m+μ and m−μ are the
most distant cells interacting with the current cell m, and l′ and m′ represent
the range of the forces in the l and m coordinate directions.

By taking the Laplace and Fourier transforms of (3.10), an expression can
eventually be reached which expresses the force exerted on the remaining fine
scale degrees of freedom by the mathematically eliminated fine scale degrees
of freedom. The structure of this external, or impedance force, resembles the
generalized Langevin equation ([3], [4]),

f impm (t) =
∑
m′

∫ t

0

θm−m′(t − τ)(q0,m′ (τ) − ū0,m′(τ))dτ + R(t) (3.11)

where θ is a memory kernel function that describes renormalization of the
atomic interaction along the boundary of reduced MD domain, and R is a
random function that accounts for thermal atomic motion in the coarse scale.
Importantly, the impedance force for the bridging scale formulation is ob-
tained by utilizing the multiscale boundary conditions for lattice structures;
therefore it involves analytically exact structural response at the atomistic
level. This is a distinctive feature of the present method, as compared with
the ”ghost” atom technique to provide the interface displacements and forces
based on the FE shape function interpolation. According to Eq. (3.11), the
physical nature of the force Eq. (3.11) is due to inertia of the atomic lattice
and thermal effects outside the MD domain. The coupled system of equations
Eqs. (3.9) and (3.11) can be solved using existing FE and MD codes along with
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suitable techniques for exchanging information about the internal forces. The
kernel function θ can also be viewed as a lattice impedance matrix, since it en-
capsulates the impedance of the atomic structure in the coarse grain. The idea
beneath the formulation Eqs. (3.9 - 3.11) is illustrated in Figure 3.4. As can be
seen from this figure, the coarse scale FE model covers the entire model, and
the atomistics are solved explicitly only on a selected region of interest. The
atomic motion outside this domain is represented by the impedance boundary
conditions according to Eqs. (3.9) and (3.11). The reduced MD domain then
evolves in time similarly, as if it was still a part of the full MD domain.

One issue relating to the formulation Eqs. (3.9) and (3.11) is the large size
of matrix θ, which is typically m × m , where m is number of atomistic de-
grees of freedom along the MD domain boundary. Each element of this matrix
has to be calculated for a time large enough to capture the impedance effects
accurately. This also requires a numerical inversion of the Laplace transform
that can itself be computationally expensive. However, recent works by Kar-
pov et al [22] and Wagner et al [39] have shown that exploiting the intrinsic
symmetry and spatial repetitiveness of the atomistic structure in crystalline
solids can drastically simplify and reduce the size and computational expense
associated with these matrices. Based on Fourier analysis of periodic struc-
tures ([20], [37], [21]), this approach provides the impedance boundary con-
ditions in terms of the lattice response functions, also known as the lattice
dynamics Green’s function in solid-state physics ([21]). These functions pro-
vide a compact memory function, similar to θ of Eq. (3.11), to describe the
re-normalization of the interatomic interaction at the boundaries of the sim-
ulated domain. The matrices in the memory kernel are only mB ×mB, where
mB is at most the number of degrees of freedom in a Bravais lattice ([30], [18]),
i.e. one repetitive lattice cell. Though the original formalism Eq. (3.11) was de-
rived assuming harmonic character of the atomic motion along the fine/coarse
grain interface, the current form of the impedance force Eq. (3.11) provides
a reliable first order approximation that treats satisfactory also moderately
non-linear interfaces ([33], [32]). Karpov and Liu ([18]) have shown that for
stronger non-linearities, the performance of the impedance boundary condi-
tions can be improved with an update based on the perturbation approach.
Finally, the quantum mechanical enrichment of the bridging scale formulation
can be expressed, according to the MD/QM equations ĤΨ = (U +

∑
αEα)Ψ

and mir̈i = − ∂U
∂ri

, and Eqs. (3.9) and (3.11) as:

ĤΨ = (U +
∑
α

Eα)Ψ, f(u) = −∂U

∂u

MAq̈ = f(u) +

∫ t

0

θ(t − τ)(q(τ) − ū(τ))dτ (3.12)

Md̈ = NT f(u)
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This set of equations stands for the concurrent coupling of simulations at
the three scales: sub-atomic, atomistic and continuum; in more details, see
reference ([19]).

Wave Propagation. The dynamic bridging scale method with impedance
boundary conditions on the MD/continuum interface was applied by Park
et al. [32] in studying wave propagation, and crack initiation and growth
in the (111) plane of a face-centered cubic lattice structure governed by a
two-body Lennard-Jones potential V = 4ε[(σ r )6]. Figure 3.5 shows a
comparison of the MD region displacements after a Gaussian-type wave with
a combination of high and low frequency components that originated in the
MD region has propagated into the surrounding continuum region.

Figure 3.5. Wave propagation through the atomistic domain in the FCC lattice
structure: a) impedance boundary conditions are involved at the MD/continuum
interface, b) continuity boundary conditions. See Color Plate 13 on page 302.

By comparing the Figures 3.5a and 3.5b, it is evident that if the high fre-
quency waves emitted from the MD region are not treated in a mathematically
rigorous manner, they reflect back from the MD/continuum (finite element)
interface. The high frequency reflections are seen in the wake of the wave that
has departed the MD region. These high frequency waves must be properly
accounted for, particularly if they represent the majority of the initial energy
of the MD system.

Crack Propagation. In the crack propagation problem, Figure 3.6, con-
sidered by the same authors ([32]), the central part of the simulated domain
contains a pre-crack that initiates and later propagates due to the tensile
boundary conditions applied to the coarse scale. These loads are modeled
with velocity boundary conditions applied to the boundaries of the coarse
scale. Atomistic resolution is introduced in the area close to the crack. The
coarse scale information eventually propagates into the MD region, and con-
sequently the crack begins to propagate. Two snapshots of this process are
given in Figures 3.6a and 3.6b; the first snap shot captures initiation of the
crack, and the second shows the configuration just before complete separation
of the structure. Accuracy of the bridging scale simulation was verified by
comparing it with a benchmark MD simulation, where the atomistic resolu-
tion was set throughout the entire coarse grain. The authors observed a very
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Figure 3.6. Bridging multiscale modeling of crack propagation: a) initiation of a
crack in the MD region, b) pre-separation phase, c) lattice dislocation pattern at
the crack tip. See Color Plate 14 on page 303.

good agreement of the results: 1) the crack propagation speed was virtually
identical in both cases; 2) the bridging scale model captures all specific de-
tails of the process within the fine grain, such as initiation and emission of
the lattice dislocations away from the crack tip, see Figure 3.6.

For sufficiently large initial velocities, the authors observed complete frac-
ture of the atomic lattice into two separate sections, depicted in Figure 3.7.

Figure 3.7. Comparison of crack simulations at the lattice separation stage: a) the
full MD model, b) the bridging multiscale model. c) The subdomain of coexisting of
the MD and FE solutions (zoom in). See Color Plate 15 on page 303.

The multiscale simulation of the entire region is shown in Figure 3.7b,
where the FE mesh is present everywhere, and MD model in a smaller sub-
section of the total domain. The zoom Figure 3.7c shows only the region in
which both the FE and MD models exist, as opposed to the entire domain. The
bridging scale simulation can be seen to agree very well with the benchmark
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MD simulation, Figure 3.7a. It is also noteworthy that complete fracture of
the underlying MD lattice is allowed in the coupled simulation - this is because
the finite element simulation in that region is simply carried along by the MD
simulation. The crack opening is shown in the Figure 3.7c by magnifying the
y-component of the displacement by a factor of three.

4 Bridging Scale Computations for Localized Failure

In the analysis of failure phenomena with rate-independent strain-softening
material, one needs a regularization method to avoid spurious mesh depen-
dence [7]. Also, in order to capture the detail deformation inside the localized
region, very fine discretization is required. In this study, the micropolar con-
tinuum [11] is employed to regularize the numerical solution, and the bridging
scale computation [29, 38, 15, 40, 39, 22, 17, 33, 32] is utilized in the cou-
pling of two FEM calculations of different resolutions to achieve accuracy and
computational efficiency at the same time.

4.1 Governing Equations of the Micropolar Continuum

In addition to the displacement fields ui, a micro-rotation field ωij is involved
in the micropolar continuum. Following the approach of Germain [12] with the
principle of virtual power, the governing equations can be written as follows:∫

Ω

(ρüiδu̇i + ρIω̈ijδω̇ij) dΩ =

−
∫
Ω

[
σSjiδDij + σAji (δω̇ij − δWij) + τkjiδω̇ij,k

]
dΩ (4.1)

+

∫
Ω

(biδu̇i+Bjiδω̇ij) dΩ +

∫
Γ

(tiδu̇i + Tjiδω̇ij) dΓ

for all δu̇i and δω̇ij , where Ω and Γ are the domain and its boundary, respec-
tively. Superposed dots represent the material time derivatives. Inside each
integral in (4.1), the first terms are identical to those of the conventional con-
tinuum. Material constants ρ and ρI represent the density of mass and the
density of inertia of micro-rotation, respectively. The symmetric and the skew-
symmetric part of the virtual velocity gradient ∂δu̇i

∂xj
are denoted by δDij and

δWij . The conventional symmetric Cauchy stress is denoted by σSji. A comma
in a subscript of a tensor denotes the spatial derivative. A skew-symmetric
stress is denoted by σAji which is called micro-stress. A third-order tensor τkji
is called couple-stress and is skew-symmetric in terms of the second and the
third subscripts. The conventional body force and surface traction are denoted
by bi and ti. The body-couple and the surface moment are denoted by Bji

and Tji.
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The plastic response of this model is described by the generalized J2-
flow theory of de Borst [10] with small modifications. The generalized stress
invariant J2 and the time derivative of the generalized plastic strain invariant
γ are defined as follows:

J2 = (a1 + a2) sijsij + (a1 − a2)σAijσ
A
ij + 2a3τkjiτkji/�2 (4.2)

γ̇ =

[
(b1 + b2) ėpij ė

p
ij + (b1 − b2)

(
ω̇pij − W p

ij

) (
ω̇pij − W p

ij

)
+

b3

2
ω̇pij,kω̇

p
ij,k�

2

]1/2

(4.3)

where sij denotes the deviatoric portion of σSij . The superscript p on the
strain-rate components indicates their plastic contribution, and ėpij denotes
the deviatoric portion of the plastic contribution of Dij . The material length
scale parameter is denoted by �. The yield stress σ̄ is a function of γ. It
decreases from the initial value σ̄0 at the beginning of the plastic deformation
and stays constant after the strain invariant reaches a specified value γc.

4.2 Bridging Scale Computations

Consider a problem where we are mainly interested in the deformation in-
side a very small region compared to the entire domain. This region is called
the domain of interest. This method starts with the decomposition of the
displacement field into the coarse part and the fine part as follows (Fig. 4.8):

u = Nd + Qq (4.4)

where operators N and Q are determined so that the shared information be-
tween two FEM computations is correctly subtracted [40]. This decomposition
splits the equation of motion into the coarse-scale part and the fine-scale part:

Md̈ = N T
(−f int(Nd + Qq) + f ext

)
MAq̈ = −f int(q) + f ext (4.5)

In order to reduce the computational cost, the calculation of the degrees
of freedom (DOFs) of the fine-scale FEM outside the domain of interest is
avoided. The effects of these eliminated DOFs are substituted by dynamic
force applied along the interfaces. It is called impedance force and is derived
analytically by the Fourier analysis of a repetitive structures [20, 21](Fig. 4.9).
Thus the governing equations for the fine-scale FEM are reduced to

MAaq̈a = −f int
a

(
Nd + Q

[
qa
0

])
− f imp + f ext

a (4.6)

where f int
a , fext

a , and qa denote the nodal internal force, external force, and
displacement inside the domain of interest, respectively. The lumped mass
matrix for the nodes inside this region is denoted by MAa. The impedance
force applied along the edge of the domain of interest is denoted by f imp.
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Figure 4.8. Bridging scale decomposi-
tion.

Figure 4.9. Reduction of the model
size.

4.3 Numerical Example

A two-dimensional shear failure problem is solved with the micropolar con-
tinuum and the proposed bridging multi-scale method. A bar of the size of
0.4m × 0.04m is compressed in the longitudinal direction by the prescribed
velocity at both ends (Fig. 4.10). The entire domain is discretized by 80 × 8
coarse-scale finite elements, while the central portion of 0.155m is discretized
by the fine-scale finite elements. The fine-scale mesh is aligned to the coarse-
scale mesh near the interfaces, while it is rotated 45 degrees in the middle of
the bar in order to align to the shear bands. When the mesh was not aligned
to the shear band, deformation did not localize sharply. The fine-scale mesh
has 17920 elements and 8 × 8 fine-scale elements occupy the same area as
one coarse-scale element near the interface. All the boundaries are moment
free, and the top and the bottom boundaries are stress free. Fig. 4.11 shows
the accumulated effective plastic shear strain distribution which is regularized
by the micropolar continuum. Fig. 4.12 and Fig. 4.13 show the total shear-
strain profile inside the domain of interest just after the waves created by the
dynamic failure have passed away from this region. The proposed dynamic in-
terface prevents most of the reflection of high frequency waves, while one can
clearly see some reflections when the continuity of displacement is enforced at
the interfaces.

Figure 4.10. Two-dimensional shear lo-
calization problem (plane strain).

Figure 4.11. Regularized solution with
the micropolar continuum.
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Figure 4.12. Reflected high frequency
waves when continuity of displacement
is enforced at the interfaces.

Figure 4.13. Reflected high frequency
waves of the proposed dynamic interface
condition.

5 Conclusions

We have reviewed the bridging scale method utilized in computational nano
mechanics and materials, including the relevant underlying principles and con-
cepts. In great generality, three major issues are still to be challenged by future
researchers in the area of multiple scale simulations. The first is to correctly
account for the non-harmonic high frequency information that emanates from
the molecular simulation when the information reaches the continuum. The
second is the temperature dependent multiscale formulations; in more de-
tails this issue is discussed in [32]. And the third is extending the time range
currently available in standard MD simulations, so that the continuum and
atomistic simulations may each evolve naturally on its natural time scale. It
is noted that while the multi-scale methods reviewed in this work reduce the
spatial computational requirements, they are still limited by the fact that MD
simulations cannot be run for arbitrarily long periods of time. One of the ef-
forts ongoing to relieve this restriction is the work by Voter and co-workers
on the so-called hyper molecular dynamics approach. This method appears
well suited for problems in which the physical phenomena of interest occurs
infrequently over long periods of time, with diffusion being a prime example.
Fundamental nanoscale research is being performed all around the world, and
as this research is more and more being turned into viable engineering appli-
cations, our ability to model the performance of nanoscale structures remains
limited. Continuum-based computational approaches are clearly not applica-
ble over the full range of operational conditions for these nanoscale devices, as
non-continuum behavior is observed in the large deformation behavior of car-
bon nanotubes, ion deposition processes, material mechanics, amongst many
others. More crucially, nanoscale components will likely be used in conjunction
with components that are larger, and therefore have a mechanical response
that is on much larger length and time scales than the nanoscale component. In
such hybrid systems, typical single scale simulation methods such as molecular
dynamics or quantum mechanics may not be applicable due to the disparity
in length and time scales of the structure. For such systems, the computer-
aided engineering tools must be able to span length scales from nanometers
to microns, and time scales from femtoseconds to microseconds. Therefore,
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these systems cannot be modeled by continuum methods alone, because they
are too small, or by molecular methods alone, because they are too large. To
support the design and qualification of nano-structured materials, a range of
simulation tools must be available to designers just as they are today available
at the macroscopic scales in general purpose software. However, considerable
research is still required to establish the foundations for such software and
to develop computational capabilities that span the scales from the atomistic
to continuum. These capabilities should include a variety of tools, from finite
elements to molecular dynamics and quantum mechanical methods, in order
to provide powerful multiscale methodologies. We hope that this work will be
viewed as a step in the right direction in making the multi-scale goal a reality.
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Color Plates



Plate 1. (Figure 4.6 on page 50) a) Data of the driven cavity test case with irregular
particle distribution. Velocity b) and pressure c) fields for Re = 1000.

Plate 2. (Figure 5.10 on page 66) Equivalent plastic strain for time steps 1, 100
and 200.
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(a) (b)

(c)

Plate 3. (Figure 3.3 on page 117) Smooth quadrilateral I1/C4 RKEM interpolant:

(a) the 1st shape function, Ψ
(00)
I (x), (b) the 2nd shape function Ψ

(10)
I (x), (c) the

3rd shape function Ψ
(01)
I (x).
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(a) (b)

(c) (d)

(e) (f)

Plate 4. (Figure 3.4 on page 119) Compatible quadrilateral I2/C4/P 2 RKPM in-

terpolants: (a) the 1st shape function, Ψ
(00)
I (x), (b) the 2nd shape function Ψ

(10)
I (x),

(c) the 3rd shape function Ψ
(01)
I (x) (d) the 4th shape function, Ψ

(20)
I (x), (e) the 5th

shape function Ψ
(02)
I (x), (f) the 6th shape function Ψ

(11)
I (x).
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Plate 5. (Figure 5 on page 165) (a)-(e) Von-Mises stress distribution for the main
crack interacting with the system of micro-crack and (f) energy release rate, (g)
velocity and (h) elongation of the propagating main crack interacting with a system
of micro-cracks compared with a single main crack.
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Plate 6. (Figure 4.18 on page 188) Deformed configuration and stress distribution
along with the spatially fixed mathematical mesh.
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(a) Case 1 (b) Case 2

(c) Case 3

Plate 7. (Figure 5.2 on page 221) Impact of Tungsten projectile.
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(a) Case 1 RS 20x60

(b) Case 2 RGM 20x60

(c) Case 3 RGM 40x120

Plate 8. (Figure 5.4 on page 224) Dam break problem.
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(a) Case 1 a=3.5 ms−2

(b) Case 2 a=7.0 ms−2

(c) Case 3 a=14.0 ms−2

Plate 9. (Figure 5.5 on page 225) Geyser formation (h = .015 m).
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(a) (b)

Plate 10. (Figure 5.16 on page 250) Stress contours for static crack by the enriched
EFG. (a) σxx, (b) σyy.

(a) (b)

Plate 11. (Figure 5.17 on page 250) Stress contours for static crack by the enriched
RBF. (a) σxx, (b) σyy.
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Plate 13. (Figure 3.5 on page 282) Wave propagation through the atomistic
domain in the FCC lattice structure: a) impedance boundary conditions are involved
at the MD/continuum interface, b) continuity boundary conditions.
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Plate 14. (Figure 3.6 on page 283) Bridging multiscale modeling of crack propa-
gation: a) initiation of a crack in the MD region, b) pre-separation phase, c) lattice
dislocation pattern at the crack tip.

Plate 15. (Figure 3.7 on page 283) Comparison of crack simulations at the lattice
separation stage: a) the full MD model, b) the bridging multiscale model. c) The
subdomain of coexisting of the MD and FE solutions (zoom in).
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