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Preface

This volume contains the proceedings of the International Conference on
Computer Aided Verification (CAV), held in Edinburgh, Scotland, July 6–10,
2005. CAV 2005 was the seventeenth in a series of conferences dedicated to
the advancement of the theory and practice of computer-assisted formal anal-
ysis methods for software and hardware systems. The conference covered the
spectrum from theoretical results to concrete applications, with an emphasis on
practical verification tools and the algorithms and techniques that are needed
for their implementation.

We received 123 submissions for regular papers and 32 submissions for tool
papers. Of these submissions, the Program Committee selected 32 regular papers
and 16 tool papers, which formed the technical program of the conference.

The conference had three invited talks, by Bob Bentley (Intel), Bud Mishra
(NYU), and George C. Necula (UC Berkeley). The conference was preceded by
a tutorial day, with two tutorials:

– Automated Abstraction Refinement, by Thomas Ball (Microsoft) and Ken
McMillan (Cadence); and

– Theory and Practice of Decision Procedures for Combinations of (First-
Order) Theories, by Clark Barrett (NYU) and Cesare Tinelli (U Iowa).

CAV 2005 had six affiliated workshops:

– BMC 2005: 3rd Int. Workshop on Bounded Model Checking;
– FATES 2005: 5th Workshop on Formal Approaches to Testing Software;
– GDV 2005: 2nd Workshop on Games in Design and Verification;
– PDPAR 2005: 3rd Workshop on Pragmatics of Decision Procedures in Au-

tomated Reasoning;
– RV 2005: 5th Workshop on Runtime Verification; and
– SoftMC 2005: 3rd Workshop on Software Model Checking.

Publications of workshop proceedings were managed by their respective chairs.
In addition to the workshops, a special tools competition called “Satisfiability
Modulo Theories Competition” was held for tools implementing decision proce-
dures for combinations of theories. A preliminary report on this competition is
included in this volume.

The CAV 2005 banquet was dedicated to Prof. Ed Clarke on his 60th birthday.
CAV 2005 was supported by generous sponsorships from IBM, Microsoft,

the J. von Neumann Minerva Center for Verification of Reactive Systems at the
Weizmann Institute, Intel, Jasper Design Automation, Synopsys and Cadence
Design Systems. We are grateful for their support. We would like to thank the
Program Committee members and the subreferees for their hard work in eval-
uating the submissions and the selection of the program. We also thank the
Steering Committee and the chairs of CAV 2004 for their help and advice.



VI Preface

For logistical support we are grateful to the staff at the School of Informatics,
University of Edinburgh, the National eScience Centre in Edinburgh, and to the
support staff of Microsoft Research’s Conference Management Toolkit.

July 2005 Kousha Etessami and Sriram K. Rajamani
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Randomized Algorithms for Program Analysis
and Verification

George C. Necula and Sumit Gulwani

Department of Electrical Engineering and Computer Science,
University of California, Berkeley

{necula, gulwani}@cs.berkeley.edu

Program analysis and verification are provably hard, and we have learned not
to expect perfect results. We are accustomed to pay this cost in terms of in-
completeness and algorithm complexity. Recently we have started to investigate
what benefits we could expect if we are willing to trade off controlled amounts
of soundness. This talk describes a number of randomized program analysis
algorithms which are simpler, and in many cases have lower computational com-
plexity, than the corresponding deterministic algorithms. The price paid is that
such algorithms may, in rare occasions, infer properties that are not true. We
describe both the intuitions and the technical arguments that allow us to eval-
uate and control the probability that an erroneous result is returned, in terms
of various parameters of the algorithm. These arguments will also shed light on
the limitations of such randomized algorithms.

The randomized algorithms for program analysis are structured in a manner
similar to an interpreter. The key insight is that a concrete interpreter is forced
to ignore half of the state space at each branching point in a program. Instead, a
random interpreter executes both branches of a conditional and combines the re-
sulting states at the join point using a linear combination with random weights.
This function has the property that it preserves all linear invariants between
program variables, although it may introduce false linear relationships with low
probability. This insight leads to a quadratic (in program size) algorithm for in-
ferring linear relationships among program variables, which is both simpler and
faster than the cubic deterministic algorithm due to Karr (1976). This strategy
can be extended beyond linear equality invariants, to equality modulo unin-
terpreted functions, a problem called global value numbering. This results in
the first polynomial-time algorithm for global value numbering (randomized or
deterministic).

These ideas have application in automated deduction as well. We describe a
satisfiability procedure for uninterpreted functions and linear arithmetic. Some-
what surprisingly, it is possible to extend the randomized satisfiability procedure
to produce satisfying models for the satisfiable problems, and proofs for the un-
satisfiable problems. This allows us to detect by proof checking all instances
when the randomized algorithm runs unsoundly.

We will also show that it is possible to integrate symbolic and randomized
techniques to produce algorithms for more complex problems. We show that in
this manner we can extend in a natural way randomized algorithms to inter-
procedural analyses.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Validating a Modern Microprocessor 
Extended Abstract 

Bob Bentley 

2111 N.E. 25th Avenue, Hillsboro, Oregon 97124, U.S.A. 
bob.bentley@intel.com 

1   Introduction 

The microprocessor presents one of the most challenging design problems known to 
modern engineering. The number of transistors in each new process generation con-
tinues to follow the growth curve outlined by Gordon Moore 40 years ago. Microar-
chitecture complexity has increased immeasurably since the introduction of out-of-
order speculative execution designs in the mid-90s; and subsequent enhancements 
such as Hyper-Threading (HT) Technology, Extended Memory 64 Technology and 
ever-deeper pipelining indicate that there are no signs of a slowdown any time soon.  
Power has become a first-order concern thanks to a 20x increase in operating frequen-
cies in the past decade and leakier transistors at smaller geometries, and the various 
schemes for managing and reducing power while retaining peak performance have 
added their own dimensions of complexity. 

2   Microprocessor Design 

Microprocessor design teams vary widely in size and organizational structure.  Within 
Intel, implementing a new microarchitecture for the IA-32 product family typically 
requires a peak of more than 500 design engineers across a wide range of disciplines - 
logic and circuit design, physical design, validation and verification, design automa-
tion, etc. – and takes upwards of 2 years from the start of RTL coding to initial tape-
out.  Many of the same engineers, plus specialists in post-silicon debug, test, product 
engineering, etc. are needed to get from first silicon to production, which typically 
takes between 9 and 12 months.  The product then has to be ramped into high-volume 
manufacturing, at a run rate of tens of millions of units per quarter, and sustained until 
end of life.  The overall cycle is significantly longer than the time (roughly 24 
months) between successive semiconductor process generations. 

3   Microprocessor Validation 

Microprocessor validation starts early in the design cycle – these days, even before the 
start of RTL coding.  Validation engineers are involved in microarchitecture definition, 
helping to prevent architectural bugs and produce a more validatable design.  On our 
most recent design, we have for the first time deployed formal tools and methods – built 
around Lamport’s TLA - during the microarchitecture definition phase. 
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Most validation starts with the first release of RTL code.  For a new microprocessor, 
code is typically created and released in a number of carefully planned phases, over 
the course of approximately one year.  We rely heavily on Cluster Test Environments 
(CTEs) to allow us to do microarchitecture validation on logically related subsets of 
the design, which provides for a much greater degree of controllability than full chip 
and also decouples each cluster from the others.  Even after a full chip model is avail-
able, we continue to focus much of our dynamic validation effort and cycles at the 
cluster level, since controllability in the later pipeline stages of an out-of-order ma-
chine will always be a significant issue.  During the RTL development phase of the 
project, we have also started to deploy SAT checking as bug-finding tool. 

4   Formal Verification 

The Pentium® 4 processor was the first project of its kind at Intel where we deployed 
Formal Property Verification (FPV) as a mainstream validation technique during CPU 
development.  Hitherto, FPV had only been applied retroactively, as was done for the 
FP divider of the Pentium® Pro processor.  We focused on the areas of the design 
where we believed that FV could make a significant contribution – in particular, the 
floating-point execution units and the instruction decode logic.  Bugs in these areas 
had escaped detection on previous designs, so this allowed us to apply FPV to some 
real problems with real payback. 

A major challenge for the FPV team was to develop the tools and methodology 
needed to handle a large number of proofs in a highly dynamic environment.  The 
RTL model is constantly changing due to feature additions or modifications, bug 
fixes, timing-induced changes, etc.  By the time we taped out we had over 10,000 
proofs in our proof database, each of which had to be maintained and regressed as the 
RTL changed over the life of the project. 

Though our primary emphasis was on proving correctness rather than bug hunting, 
FPV had found close to 200 logic bugs by the time we taped out. This was not a large 
number in the overall scheme of things (we found almost 8000 bugs total), but about 
20 of them were “high quality” bugs that we do not believe would had been found by 
any other of our pre-silicon validation activities.  Two of these bugs were classic 
floating-point data space problems: 

• The FADD instruction had a bug where, for a specific combination of source 
operands, the 72-bit FP adder was setting the carryout bit to 1 when there was no 
actual carryout  

• The FMUL instruction had a bug where, when the rounding mode was set to 
“round up”, the sticky bit was not set correctly for certain combinations of source 
operand mantissa values, specifically: 

src1[67:0] := X*2(i+15) + 1*2i 
src2[67:0] := Y*2(j+15) + 1*2j 
where i+j = 54, and {X,Y} are any integers that fit in the 68-bit range 

These bugs could easily have gone undetected, not just in the pre-silicon environment 
but in post-silicon testing also. 
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5   Future Challenges 

Validating the next generation of microprocessors is going to be a real challenge.  
One area that we are exploring is the development of a more abstract level of mi-
croarchitectural specification to help us in this task - both to slow the rate of growth 
for bugs from its historical trend line and to enable us to find bugs earlier in the de-
sign cycle.  We are already applying formal methods at a higher level of abstraction 
during the microarchitecture definition phase of the project. 

We are also looking to increase the contribution of formal verification to the over-
all validation effort.  We are developing combined FPV and dynamic verification 
plans whose implementation will be coordinated so that we apply the best approach to 
the problem at hand.  We are counting on the next generation of FPV tools like gSTE 
to provide greater capacity, thus reducing the effort needed to decompose problems 
into a tractable form.  In addition, we are applying SAT solver technology for bug 
hunting (falsification), especially in combination with dynamic verification. 
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Abstract. In this paper, we suggest a possible confluence of the theory
of hybrid automata and the techniques of algorithmic algebra to cre-
ate a computational basis for systems biology. We describe a method
to compute bounded reachability by combining Taylor polynomials and
cylindric algebraic decomposition algorithms. We discuss the power and
limitations of the framework we propose and we suggest several possible
extensions. We briefly show an application to the study of the Delta-
Notch protein signaling system in biology.

1 Prologue

Presently, there is no clear way to determine if the current body of biological
facts is sufficient to explain phenomenology. In the biological community, it is
not uncommon to assume certain biological problems to have achieved a cog-
nitive finality without rigorous justification. In these particular cases, rigorous
mathematical models with automated tools for reasoning, simulation, and com-
putation can be of enormous help to uncover cognitive flaws, qualitative simpli-
fication or overly generalized assumptions. Some ideal candidates for such study
would include: prion hypothesis, cell cycle machinery (DNA replication and re-
pair, chromosome segregation, cell-cycle period control, spindle pole duplication,
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etc.), muscle contractility, processes involved in cancer (cell cycle regulation, an-
giogenesis, DNA repair, apoptosis, cellular senescence, tissue space modeling
enzymes, etc.), signal transduction pathways, circadian rhythms (especially the
effect of small molecular concentration on its robustness), and many others.

Fortunately, similar issues had been tackled in the past by other disciplines:
verification of VLSI circuits, hybrid supervisory controllers, robotics, etc. Yet,
biology poses new challenges. The most interesting biology combines unimag-
inable diversity with an understanding of molecular events in minute detail. A
single base-pair change can influence the folding of a protein, and alter the femto-
second dynamics of any of a tangle of interacting macromolecules. Of course, a
system of millions of ordinary differential equations (ODEs) and their accurate
simulation via numerical integration will not have much effect on uncovering
the key biological insights. What sort of natural computational abstractions of
biological systems can then be most effective? Can we understand biology by
“simulating the biologist, and not biology”?

1.1 Biological Models

The central dogma of biology is a good starting point for understanding a math-
ematical formalism for biochemical processes involved in gene regulation. This
principle states that biochemical information flow in cells is unidirectional—DNA
molecules code information that gets transcribed into RNA, and RNA then gets
translated into proteins. To model a regulatory system for genes, we must also
include an important subclass of proteins (transcription activators), which also
affects and modulates the transcription processes itself, thus completing the cy-
cle. We can write down kinetic mass-action equations for the time variation of
the concentrations of these species, in the form of a system of ODEs [10, 14, 23].
In particular, the transcription process can be described by equations of the Hill
type, with its Hill coefficient n depending on the cooperativity among the tran-
scription binding sites. If the concentrations of DNA and RNA are denoted by
xM , yM , etc., and those of proteins by xP , yP , etc., then the relevant equations
are of the form:

ẋM = −k1xM + k3
1 + θyn

P

1 + yn
P

(1)

ẋP = −k2xP + k4xM (2)

where the superscripted dots denote the time-derivatives.
Each equation above is an algebraic differential equation consisting of two al-

gebraic terms, a positive term representing synthesis and a negative term repre-
senting degradation. For both RNA and DNA, the degradation is represented by
a linear function; for RNA, synthesis through transcription is a highly nonlinear
but a rational Hill-type function; and for proteins, synthesis through translation
is a linear function of the RNA concentration. In the equation for transcription,
when n = 1, the equations are called Michaelis-Menten equations; yP denotes
the concentration of proteins involved in the transcription initiation of the DNA,
k1 and k2 are the forward rate constants of the degradation of RNA and proteins
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respectively, k3 and k4 are the rate constants for RNA and protein synthesis and
θ models the saturation effects in transcription.

If one knew all the species xi involved in any one pathway, the mass-action
equations for the system could be expressed in the following form

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n

When the number of species becomes large, the complexity of the system of
differential equations grows rapidly. The integrability of the system of equa-
tions, for example, depends on the algebraic properties of appropriate bracket
operations [19, 18]. But, we can approximately describe the behavior of such a
system using a hybrid automaton [2, 21]. The “flow”, “invariant”, “guard”, and
“reset” conditions can be approximated by algebraic systems and the decision
procedures for determining various properties of these biological systems can be
developed using the methods of symbolic algorithmic algebra.

1.2 Intercellular Communication

Communication between adjacent cells are used by biological systems in coor-
dinating the roles, which can be ultimately assigned to any individual cell. For
instance, in both vertebrates as well as invertebrates, lateral inhibition through
the Delta-Notch signaling pathway leads to cells, starting initially in uniform
distribution, to differentiate into “salt-and-pepper” regular-spaced patterns. In
a communication mechanism employing lateral inhibition, two adjacent cells
interact by having one cell adopt a particular fate, which in turn inhibits its
immediate neighbors from doing likewise. In flies, worms and vertebrates, the
transmembrane proteins Notch and Delta (or homologs) mediate the reaction,
with Notch playing a receptor with its ligand being a Delta protein on a neigh-
boring cell.

Thus, imagine that one has a description of this system in terms of a state-
space, its dynamics (i.e. rules for flows and state transitions), and the subregion
of its state space corresponding to a desired property (e.g., fine-grained pattern-
ing of cells in a neighborhood). The first interesting question would be whether
the model adequately predicts that, when started in a biologically reasonable
initial state with all the model parameters assuming some known values, this
system actually evolves into the subregion encoding the desired properties. If
it does, the second question to ask would be whether one can completely and
succinctly characterize all possible regions (“backward-reachable region”) from
which the system also evolves into the desired subregion. The volume of such
a region, its symmetry and other invariants may tell us quite a lot about those
properties of the underlying biological system, which may have attributed to its
selective advantages. Furthermore, the model is now amenable to verification
by wet-lab experimentation involving the creation and analysis of mutants (in
the genes/proteins of relevance), some of which may “live” inside the reachable
region and others outside. To answer the first question, a good numerical simu-
lation tool suffices. However, it is less clear how best the second problem should
be solved computationally.
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In a simplified continuous time model, the changes to the normalized levels
of Notch nP,X and Delta dP,X activity in a cell X can be expressed as the ODEs
ṅP,X = μ[f(d̄P,X)− nP,X ] and ḋP,X = ρ[g(nP,X)− dP,X ], where

d̄P,X =
1

#N (X)

∑
X′∈N (X)

dP,X′ , f(x) =
xk

a + xk
, g(x) =

b

b + xh
,

with N (X) being the set of neighboring cells of the cell X and μ, ρ, a, b > 0,
k, h ≥ 1. Note that f monotonically increases from 0 to 1 and g monotonically
decreases from 1 to 0 as x takes increasing value from 0 to ∞ (see Collier et al.
[9] for details of the model). Collier et al. concluded that the feedback loop was
adequate for generating spatial patterns from random stochastic fluctuations in
a population of initially equivalent cells, provided that feedback is strong enough.
Though they also observed that the model does not account for the longer-range
patterns.

In a related computational analysis, Ghosh et al. [11] proposed a piecewise
linear approximation to the continuous time model to generate a hybrid au-
tomaton. On this automaton, they conducted a symbolic reachability analysis
using SAL - a heuristic symbolic decision procedure, to characterize the reach-
able region by numerical constraints, further sharpening the observations of [9].
Our model described below, shows that the reachable set computed by Ghosh
et al. lacks a completeness in description.

2 Technical Preliminaries

2.1 Semi-algebraic Hybrid Automata: Syntax

The notion of hybrid automata was first introduced as a model and specifica-
tion language for systems with both continuous and discrete dynamics, i.e., for
systems consisting of a discrete program within a continuously changing en-
vironment. A useful restriction is through the notion of semi-algebraic hybrid
automata whose defining conditions are built out of polynomials over the reals,
and reflect the algebraic nature of the DAEs (differential algebraic equations) ap-
pearing in kinetic mass-action models of regulatory, metabolic and signal trans-
duction processes.

Definition 1. Semi-algebraic Hybrid Automata. A k-dimensional hy-
brid automaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting
of the following components:

– Z = {Z1, . . . , Zk} a finite set of variables ranging over the reals R; Ż =
{Ż1, . . . , Żk} denotes the first derivatives with respect to the time t ∈ R

during continuous change; Z ′ = {Z ′
1, . . . , Z

′
k} denotes the set of values at

the end of a discrete change;
– (V,E) is a directed graph; the vertices of V are called control modes, the

edges of E are called control switches;
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– Each vertex v ∈ V is labeled by “initial”, “invariant” and “flow” labels:
Init(v), Inv(v), and Flow(v); the labels Init(v) and Inv(v) are constraints
whose free variables are in Z; the label Flow(v) is a constraint whose free
variables are in Z ∪ Ż;

– Each edge e ∈ E is labeled by “jump” conditions: Jump(e), which is a con-
straint whose free variables are in Z ∪ Z ′.

We say that H is semi-algebraic if the constraints in Init, Inv, Flow, and Jump
are unquantified first-order formulæ over the reals (i.e., over (R,+,×,=, <)).
We say that H is in explicit form if each Flow(v) is of the form

∧k
i=1 Żi =

fi(Z1, . . . , Zk). �

In this paper we consider only semi-algebraic hybrid automata in explicit form.
Notice that although, as defined, semi-algebraic hybrid automata in explicit form
apply only to the cases where the fi’s of the flow conditions are all polynomi-
als, the definitions can be immediately extended to deal with rational functions
instead without significant changes to the basic approach.

Example 1. Consider the following semi-algebraic automaton in explicit form.

The initial mode of this hybrid automaton is shown on the left, where from
the starting value of Z = 1, Z grows with a constant rate of 1. At time t = 2,
when the automaton reaches a value of Z = 3, it jumps to the other mode on
the right. In this second mode, Z wanes with a constant rate of −1 and upon
reaching the value of Z = 1, it jumps back to the initial mode. �

2.2 Hybrid Automata: Semantics

Let H be a hybrid automaton of dimension k. For any given control mode v ∈ V ,
we denote with Φ(v) the set of functions from R

+ to R
k satisfying the constraints

in Flow(v). In addition, for any given r ∈ R
k, we use Init(v)(r) (Inv(v)(r) and

Flow(v)(r)) to denote the Boolean value obtained by pairwise substitution of r
with Z in Init(v) (Inv(v) and Flow(v), respectively). Similarly, for any given r,
s ∈ R

k, we use Jump(e)(r, s) to denote the boolean value obtained by pairwise
substitution of r with Z and s with Z ′ in Jump(e). The semantics of hybrid
automata can now be given in terms of execution traces as in the definition
below.

Definition 2. Semantics of Hybrid Automata. Let H = (Z, V , E, Init,
Inv, Flow, Jump) be a hybrid automaton of dimension k.

A location � of H is a pair 〈v, r〉, where v ∈ V is a state and r ∈ R
k is

an assignment of values to the variables of Z. A location 〈v, r〉 is said to be
admissible if Inv(v)(r) is satisfied.

Inv: 1 ≤ Z ≤ 3

Flow: Ż = 1

Init: Z = 1

Flow: Ż = −1

Init: Z = 3

Inv: 1 ≤ Z ≤ 3

Jump: Z = Z
′ = 3

Jump: Z = Z
′ = 1
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The continuous reachability transition relation, →C , between admissible lo-
cations is defined as follows:

〈v, r〉 →C 〈v, s〉
iff ∃t > 0, f ∈ Φ(v)

(
f(0) = r ∧ f(t) = s ∧ ∀t′ ∈ [0, t](Inv(v)(f(t′)))

)
.

The discrete reachability transition relation, →D, between admissible loca-
tions is defined as follows:

〈v, r〉 →D 〈u, s〉 iff 〈v, u〉 ∈ E ∧ Jump(〈v, u〉)(r, s)
A trace of H is a sequence �0,�1, . . ., �n, . . . of admissible locations such that

∀i ≥ 0 �i →C �i+1 ∨ �i →D �i+1. �

2.3 The Bounded Reachability Problem

Let H be a semi-algebraic k-dimensional hybrid automaton in explicit form,
S ⊆ R

k be a set of “start states”, characterized by the first order formula S(Z),
and B ⊆ R

k be a set of “bad states”, characterized by the first order formula
B(Z). We wish to check that there exists no trace of H starting from a location of
the form 〈v, s〉 with s ∈ S and reaching a location of the form 〈u, b〉 with b ∈ B
within a specified time interval [0, end]. If such traces exist we are interested in
a characterization of the points of S which reach B in the time interval [0, end].

Note that for our applications of interest, it suffices to place an upper-bound
on the time interval.

3 Our Approach

In this paper, we explore solutions to the bounded-reachability problem through
symbolic computation methods, applied to the descriptions of the traces of the
hybrid automaton. Because the description of the automaton is through semi-
algebraic sets, the evolution of the automaton can be described even in cases
where system parameters and initial conditions are unspecified. Nonetheless,
semialgebraic decision procedures provide a succinct description of algebraic
constraints over the initial values and parameters for which proper behavior
of the system can be expected. In addition, by keeping track of conservation
principles (e.g., of mass and energy) in terms of constraint or invariant mani-
folds on which the system must evolve, we avoid many of the obvious pitfalls of
numerical approaches.

Note also that the “algorithmic algebraic model checking approach” that we
propose here naturally generalizes many of the basic ideas inherent to BDD-
based symbolic model checking or even the more recent SAT-based approaches.

Nonetheless, our method has an inherent incompleteness: we proceed on the
traces using a time step δ which implies that our answer is relative to a lim-
ited time interval. Furthermore, when the solutions of the differential equations
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cannot be computed we approximate them using the first few terms of the cor-
responding Taylor polynomials, hence the error we accumulate depends on δ.

We start by presenting how our method applies to the case of a system of
differential equations, i.e., a hybrid automaton with only just one mode and no
Init , Inv , and Jump conditions.

3.1 The Basic Case

Consider a system of differential equations of the form Ż = f(Z), where Ż and
Z are vectors of length k and f is a function that operates on them.

Let S, B ⊆ R
k be characterized by the formulæ S(Z) and B(Z), respectively.

As before, let [0, end] be a time interval and 0 < δ ≤ end be a time step.
We use pj(Z0, δ) to denote the Taylor polynomial of degree j relative to the

solution Z(t) centered in Z0 with a step size of δ. For instance, p1(Z0, δ) is the
vector expression Z0 + f(Z0) · δ.

Consider the following first-order formula over the reals

Fδ(Z0, Z) ≡ S(Z0) ∧ ∃δ′
(

Z = pj(Z0, δ′) ∧ 0 ≤ δ′ ≤ δ

)
.

The points reachable from S in the time interval [0, δ] can be approximated with
the set of points satisfying the formula ∃Z0(Fδ(Z0, Z)). Hence, the points in B
and reachable from S in [0, δ] can be approximated by the formula

∃Z0(Fδ(Z0, Z)) ∧ B(Z).

Symbolic algebraic techniques can be applied in order to both simplify (e.g.,
eliminate quantifiers) and decide the satisfiability of this formula. If the formula
is satisfiable, then the values of Z for which the formula is true represent the
portion of B that can be reached in time δ′ ≤ δ. Similarly, the points in S which
reach any point in B within the time interval [0, δ] can be characterized by the
formula ∃Z(Fδ(Z0, Z) ∧ B(Z)). If these formulæ are not satisfiable then we can
proceed with a second step, getting the formula

F2δ(Z0, Z) ≡ S(Z0) ∧ ∃Z1, δ′(Z1 = pj(Z0, δ) ∧ Z = pj(Z1, δ′) ∧ 0 ≤ δ′ ≤ δ).

The above reasoning can now be applied to F2δ(Z0, Z), i.e., use F2δ(Z0, Z)
instead of Fδ(Z0, Z), to check if S reaches B within the time interval [0, 2δ], etc.
Notice that the new variable Z1 which occurs in F2δ(Z0, Z) can be eliminated
by applying substitutions. If after time end all the formulæ we generate are
unsatisfiable, then S cannot reach B within the time interval [0, end].

It is important to notice that: (1) The only approximation we have introduced
is due to the use of the Taylor polynomials; (2) We have only used existential
quantified formulæ; (3) The degree of the Taylor polynomial together with the
degrees of the fi’s influence the complexity of the first-order formulæ we create
and the number of steps needed to get a sufficient precision. As far as the approx-
imation issues are concerned, when the derivative of order j + 1 of f is bounded
we can use the Lagrange Remainder Theorem to both under and over approxi-
mate the set of points reachable within the time interval [0, end] and to estimate



12 C. Piazza et al.

the error. It is easy to see that our method can be generalized to the case in
which the fi’s are rational functions, i.e., ratios of polynomial functions. In fact,
in this case we only have to preprocess the formulæ by computing the LCMs of
the denominators and using them to get formulæ over polynomial functions.

When we terminate, we are left with deciding the satisfiability of a semialge-
braic formula involving n = 2 + k · �end/δ� + N(S) + N(B) variables in degree
d = max[j + deg(f),deg(S),deg(B)], where N and deg denote the number of
variables and total degree, respectively used in the semialgebraic description of
S and B. In addition, if we assume that the coefficients of the polynomials can be
stored with at most L bits, then the total time complexity (bit-complexity) [17,
20, 24] of the decision procedure is (L log L log log L)dO(n). We note that even
with low degree polynomials, this exponential complexity in the number of vari-
ables makes it impractical to test for bounded-reachability even when the spec-
ified time interval is relatively short. Here we focus on rather simple examples
where the complexity is rather manageable, and is achieved by approximating
polynomial and rational functions by piecewise linear functions.

Example 2. Next, examine the following toy example. The following system of
differential equations describes the dynamics Ż = 2Z2 + Z, with S and B char-
acterized by S ≡ Z > 4 and B ≡ Z2 < 4. Now, consider the time interval
[0, 0.5] and time step 0.5. After time 0.5, using an approximation with Taylor
polynomial of degree 2, we derive the formula

∃Z0, δ′
(

Z0 > 4 ∧ Z = Z0 + (2Z02 + Z0) · δ′ + (8Z03 + 6Z02 + Z0) · (δ′)2/2

∧ 0 ≤ δ′ ≤ 0.5 ∧ Z2 < 4
)

.

This formula is unsatisfiable, thus implying that the dynamical system reaches
no bad states in the specified time interval [0, 0.5]. �

The formulæ involved in our method can be easily simplified, if we introduce
further approximations. For instance, we may approximate reachability by first
evaluating the maxima and the minima of the j-th Taylor polynomial pj(Z, δ′)s
over S and [0, δ], and then using them as upper and lower bounds.

Example 3. Next, consider the differential equation Ż = 2Z, with S and B
characterized by S ≡ 2 ≤ Z ≤ 4 and B ≡ 3 < Z < 5.

The Taylor polynomial of degree 1 with δ = 0.5 is Z + 2Z · δ′, i.e., 2Z. Note
that since the maximum and the minimum in S are 8 and 4, respectively, and
since the interval [4, 8] intersects (3, 5), S reaches B in time 0.5. �

3.2 The General Case

We are ready to deal with the general case, where we have a polynomial k-
dimensional hybrid automaton H in explicit form.



Algorithmic Algebraic Model Checking I: Challenges from Systems Biology 13

Given a mode v of H, we use the notation pjv(Z, δ) to denote the Taylor
polynomial of degree j in the mode v centered in Z. The first-order formula

F[v, S](Z0, Z) ≡ S(Z0) ∧ ∃δ′
(

Z = pjv(Z0, δ′) ∧ 0 ≤ δ′ ≤ δ

∧ ∀δ′′(0 ≤ δ′′ ≤ δ′ → Inv(v)(pjv(Z0, δ′′))
))

characterizes the points reached within time δ in the mode v, under the approx-
imation implied by the use of the Taylor polynomial. Notice that, if we assume
that the invariant regions are convex and we use the Taylor polynomial of degree
1, we can avoid the universal quantification. As before, the formula

∃Z0(F[v, S](Z0, Z)) ∧ B(Z)

is satisfiable if and only if the set B can be reached from S without leaving
mode v within the time step δ. In this case, the points of S which reach B are
characterized by ∃Z(F[v, S](Z0, Z) ∧ B(Z)). If the preceding formula is not
satisfiable, we have to consider all possible alternative situations: that is, either
we continue to evolve within the mode v or we discretely jump to another mode,
u ∈ V . We define the formula S

vu
δ

S
vu
δ (Z) ≡

{∃Z0(Fv
δ(Z0, Z), if u = v;

∃Z0, Z1(Fv
δ(Z0, Z1) ∧ Jump(〈v, u〉)(Z1, Z)), otherwise.

representing the states reached within time δ in the mode u. In this way, in the
worst case we generate |E| satisfiable formulæ on which we have to iterate the
method, treating them as we treated S(Z) in the first step. In practice, many of
these formulæ would be unsatisfiable, and hence at each iteration, the number of
formulæ we have to consider will remain considerably low. We may also use an
optimized traversal over the graph to reduce the number of generated formulæ.

Let end be the total amount of time during which we examine the hybrid
system’s evolution in terms of at most m = �end/δ� time steps: the number
m ∈ N is such that (m− 1)δ < end ≤ mδ. Since at each iteration the jumps can
occur before δ instants of time have passed, just iterating the method for m steps
does not ensure that we have indeed covered the entire time interval [0, end]. In
particular, if there are Zeno paths starting from S, i.e., paths in which the time
does not pass since only the jumps are used, our method will fail to converge
in a finite number of steps. For these reasons, at each step, we must check the
minimum elapsed time before a jump can be taken. Let M(Z) ≡ S

v,u...,w(Z) be
one of the formulæ obtained after some number of iterations. Suppose now that
we intend to jump from this mode w to the next mode z. We will then need to
check whether the minimum amount of time has passed before the jump can be
taken. Consider the formula:

T(w, z, M)(T ) ≡ ∃Z0, Z1, Z

(
M(Z0) ∧ Z1 = pjw(Z0, T ) ∧ 0 ≤ T ≤ δ

∧∀T ′(0 ≤ T ′ ≤ T → Inv(v)(pjv(Z0, T ′))) ∧ Jump(〈w, z〉)(Z1, Z)
)

.
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The minimum amount of time can now be computed as solution of the formula

Min(w, z, M)(T ) ≡ T(w, z, M)(T ) ∧ ∀T ′
(

T ′ < T → ¬T(w, z, M)(T ′)
)

.

To avoid Zeno paths we could eliminate the paths in which the minimum is 0.
Along each generated path we have to iterate until the sum of the minimum
amounts reaches end. If all the paths accumulate a total amount of time greater
than end and B is never reached we can be sure that B cannot be reached from
S in the time interval [0, end]. If B is reached, i.e., one of the formulæ involving
B is satisfiable before m iterations, then we can be sure that B is reachable
from S in the time interval [0, end]. If B is reached after the first m iterations,
then B is reachable from S but we are not sure about the elapsed time, since
we keep together flows of different length. It is possible that some paths do not
accumulate a total time greater than end, e.g., the sequence of the minimum
times converges rapidly to 0. In this case our method could not converge. Notice
that even in this general case, we can extend the method to rational flows.

Notice that if at each step the derivatives of order j + 1 of the involved flows
are bounded on the set of points satisfying the invariant conditions, we can again
exploit the Lagrange Remainder Theorem to both under and over approximate
the set of reachable points and to estimate errors (see [15]).

In order to provide a time-complexity, assume the special situation where
no path accrues more than M discrete jumps (i.e., our method has converged).
When we terminate, we are left with deciding the satisfiability of a quantified
semialgebraic formula with O(M) alternations and involving n = k · [�end/δ�+
O(M)] + N(S) + N(B) variables in degree d = max[j + deg(Init , Inv , Jump),
deg(S), deg(B)], where N and deg denote the number of variables and total
degree, respectively as before. Assume that the coefficients of the polynomi-
als can be stored with at most L bits. Then the total time complexity (bit-
complexity) [17, 20, 24] of the decision procedure is (L log L log log L)d2O(n)

, i.e.,
double-exponential in the number of variables.

3.3 Rectangular Regions

When the formulæ Init(v)s, Inv(v)s, Jump(e)s, S, and B identify rectangular
(closed) regions (e.g., product of intervals) we can rely on other approaches from
symbolic computations, while achieving further simplifications along the way.

Given a mode v of H, the region obtained from the intersection of Inv(v)
and S is of the form R(v) ≡ a(v) ≤ Z ≤ b(v). We can symbolically determine
the maximum max(v) and the minimum min(v) of pjv(Z, δ′) over R(v)× [0, δ].
We can use the following formula to over-approximate the points reached within
the time interval [0, δ]:

Ov(Z) ≡ min(v) ≤ Z ≤ max(v) ∧ Inv(v)(Z).

The formulæ Ov(Z) ∧ B(Z) and Ov(Z1) ∧ Jump(〈v, u〉)(Z1, Z), can be used to
check if the set B is reached or if it is possible to jump to another mode. Since
these formulæ identify rectangular regions, we can iterate the method.
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4 A Case Study: the Delta-Notch Protein Signaling

Let us now return to the Delta-Notch protein signaling system that we had
introduced earlier. The mathematical model for the Delta-Notch signaling pre-
sented in [9] can be approximated by piecewise linear functions and results in a
rectangular hybrid automaton that can be analyzed symbolically.

For instance, in [11] a rather simple piecewise linear hybrid automaton model
was created, and was extensively studied through the predicate abstraction
method of [22]. The piecewise affine hybrid automaton of [11] is defined by: (1) A
set of global invariant conditions which must be always true; (2) A finite number
of modes; (3) Each mode is characterized by a set of local invariant conditions
and a set of differential equations determining the flow of the variables.

The automaton modeling the evolution of a one-cell system has been de-
scribed using the SAL language [7] in [11]. In this description, all the fluxes have
been reversed in order to determine the set of initial conditions from which a
particular steady-state is reached (by solving a forward reachability problem).
The automata relative to the two and four cell systems have also been similarly
studied. Here we consider the two-cell piecewise affine hybrid automaton and ap-
ply our method to the forward reachability problem. For a complete description
of the automaton we refer the reader to [11].

The system representing the evolution of two cells presented in has the
following set of invariant conditions

0 ≤ d1, d2 ≤ RD/λD ∧ 0 ≤ n1, n2 ≤ RN/λN

∧ −RN/λN ≤ hD ≤ 0 ∧ 0 ≤ hN ≤ RD/λD.

The variables d1 and d2 represent the concentration of the Delta protein in the
first and in the second cell, respectively. The variables n1 and n2 represent the
concentration of the Notch protein in the first and in the second cell, respec-
tively. RD and RN are constants representing the Delta and Notch production
rates, respectively. λD and λN are the Delta and Notch protein decay constants,
respectively. hD is an unknown switching threshold which determines the Delta
protein production. hN , similar to hD, is an unknown switching threshold which
determines the Notch protein production.

A possible equilibrium for the system is given by the point d∗1 = 0, n∗
1 =

RN/λN , d∗2 = RD/λD, n∗
2 = 0, which belongs to the mode v characterized by

the following invariant and flow conditions

0 ≤ d1 ≤ hN ∧ −hD ≤ n1 ≤ RN/λN ∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD,

ḋ1 = λDd1 ∧ ṅ1 = −RN + λNn1 ∧ ḋ2 = −RD + λDd2 ∧ ṅ2 = λNn2.

We apply our method to the analysis of the admissible locations reachable from
v. In particular, in this case we can apply the simplifications described in Section
3.3. Even if we limit our attention to one possible evolution with relatively few
iterations, this suffices to compute a somewhat different result from what is
presented in [11].

[11]
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The formula Ov(〈d1, n1, d2, n2〉) representing the points reached in the time
interval [0, δ] is

0 ≤ d1 ≤ hN + λD · hN · δ ∧ −hD −RN · δ − λN · hD · δ ≤ n1 ≤ RN/λN ∧
hN −RD · δ + λD · hN · δ ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD − λN · hD · δ.

Consider a mode u characterized by the following invariant conditions

hN ≤ d1 ≤ RD/λD∧−hD ≤ n1 ≤ RN/λN ∧hN ≤ d2 ≤ RD/λD∧0 ≤ n2 ≤ −hD.

Since the formula O(v) ∧ Inv(u) is satisfiable we can jump to the mode u. In
particular, assuming that δ is so chosen that hN + λD · hN · δ ≤ RD/λD, in the
interval [0, δ], we can reach the points satisfying

hN ≤ d1 ≤ hN + λD · hN · δ ∧ −hD ≤ n1 ≤ RN/λN

∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD.

This formula in conjunction with d1 < d2 is easily seen to be satisfiable. For
instance, one can prove that with RN = RD = λN = λD = 1.0 and −hD =
hN = 0.5 and starting from v with values 〈0.5, 0.89, 0.68, 0.42〉, at time 0.5,
we can reach 〈0.84, 0.81, 0.47, 0.04〉. In [11], it was proven that all the points
satisfying d1 < d2 ∧ n1 > n2 are reachable from the stable equilibrium state
belonging to v. Our observation, which does not contradict this result of [11],
nonetheless proves that our method can be combined with that of [11] to obtain
better approximations of the region reachable from the equilibrium in v.

5 Related Literature, Future Work and Conclusions

To place the results described here in the context of a large existing and contin-
ually growing literature, we mention a few related results.

In [4] symbolic computation over (R,+, <,=) is used to compute precondi-
tions on automata with linear flow conditions. Avoiding multiplication ensures
good performance, but the class of automata on which the result can be applied
is quite restricted, and of limited descriptive power.

In the d/dt tool (see [6]), a method involving several successive time steps is
applied. Since the flow conditions (differential equations) are linear, the exact
solution after a time step dt is used to compute the set of points that can
be reached in that time. In another similar tool CheckMate (see [8]), a more
sophisticated method involving time steps is introduced for the case of regions
defined by polyhedra and solvable flow differential equations.

In a much closer related result of [22], predicate abstraction was introduced to
map a hybrid automaton into a discrete one. The states of the discrete automaton
represent sets of values which are indistinguishable with respect to a fixed set of
predicates over the reals. Symbolic computation is used to determine the edges
of the discrete automaton. In [11], the method was applied on piecewise linear
hybrid automata to study the Delta-Notch signaling process. In a sequel, we will
explain connections and differences between these and our methods.
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Recently in [3], predicate abstraction is combined with symbolic computa-
tions over the reals and with the use of time steps. The symbolic computation is
used to determine the transitions between the abstract states, but the differen-
tial equations are kept linear so that the exact solutions are used in the symbolic
computation. In particular, abstract states are forced to evolve at a given time
step and symbolic computation is used to draw transitions by determining if in-
tersections between (abstract) states are non empty. The main differences with
respect to our methods are as follows: (1) We do not use predicate abstraction;
(2) We can apply our method in the case of non-linear differential equations as
well, through the use of Taylor polynomials.

The approach outlined here provides a general framework, but still lacks the
needed degree of applicability, especially in the context of biological questions.
We enumerate these issues: (1) Can one deal with unbounded time interval? (2)
Can one deal with different and adaptively chosen time steps? This is particularly
important if one is dealing with slow reactions as well as reactions that are
relatively fast. (3) Can one conclude about the limiting situations when the time
step sizes approach zero in the limit? (4) Is there a purely differential algebraic
approach (e.g., Ritt algebra) for studying reachability?

In the other directions, one can ask similar questions about how to extend
these constructs for reachability to cases involving various modal operators (e.g.,
next). Beyond these questions, the other remaining problems are of algorithmic
nature dealing with approximability, complexity, and probabilistic computations.

Our plan is to address these problems in a sequence of papers that will form
sequels to the current paper: “Algorithmic Algebraic Model Checking (AAMC)
series.” An incomplete, and evolving list of topics that will be addressed are
as follows: generalization to the dense time logic TCTL [1, 12]; decidability is-
sues in this context and under various reasonable models of computation [16];
state-space discretization and predicate abstractions; “quasi-static simulation,”
combining flux-balanced analysis with slow dynamics; a topological characteri-
zation of bio-chemical processes, etc.

The present status of this project is as described below: There is a prelimi-
nary implementation of the algorithms in C/C++: part of the software system
Tolque, the algebraic model checker for semi-algebraic hybrid automata. As it
gets integrated with our Lisp-based Systems Biology tool Simpathica[5], it will
allow biochemical networks to be easily represented, stored and analyzed. The
resulting technology is hoped to provide a simple framework for biologists to
think about biology and computer scientists to think about how biologists think
about biology.
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1 Introduction

Decision procedures for checking satisfiability of logical formulas are crucial for many
verification applications (e.g., [2, 6, 3]). Of particular recent interest are solvers for Sat-
isfiability Modulo Theories (SMT). SMT solvers decide logical satisfiability (or dually,
validity) with respect to a background theory in classical first-order logic with equality.
Background theories useful for verification are supported, like equality and uninter-
preted functions (EUF), real or integer arithmetic, and theories of bitvectors and arrays.
Input formulas are often syntactically restricted; for example, to be quantifier-free or to
involve only difference constraints. Some solvers support a combination of theories, or
quantifiers.

The Satisfiability Modulo Theories Competition (SMT-COMP) is intended to spark
further advances in the SMT field, especially for applications in verification. Public
competitions are a well-known means of stimulating advancement in automated rea-
soning. Examples include the CASC Competition for first-order reasoning, the SAT
Competition for propositional reasoning, and the Termination Competition for check-
ing termination of term rewriting systems [4, 1, 7]. Significant improvements in tool
capabilities are reported from year to year, which anecdotal evidence suggests the com-
petitions play a strong role in fueling. The primary goals of SMT-COMP at CAV 2005
are:

– To spur development of SMT solver implementations.
– To collect benchmarks in a common format, namely the SMT-LIB format [5].
– To jump start definition of SMT theories, again using the proposed SMT-LIB for-

mat.
– To connect implementors of SMT solvers with potential users in the verification

community.

The idea of holding SMT-COMP came out of discussions of the SMT-LIB initiative
at the 2nd International Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR) at IJCAR 2004. SMT-LIB is an initiative of the SMT community
to build a library of SMT benchmarks in a proposed standard format. SMT-COMP aims
to serve this goal by contributing collected benchmark formulas used for the competi-
tion to the library, and by providing an incentive for implementors of SMT solvers to
support the SMT-LIB format.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 20–23, 2005.
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Evaluation of SMT solvers entered in SMT-COMP takes place July 6-10, while CAV
2005 is meeting, in the style of CASC [4]. Intermediate results are posted periodically
as SMT-COMP proceeds, and final results are announced on the last day of CAV. The
local organizers have arranged for SMT-COMP to have exclusive access to a group of
GNU Linux machines, which are used to run the competition.

The SMT organizers wish to thank Cesare Tinelli and Silvio Renise for developing
the SMT-LIB format and theory specifications for SMT-COMP. Also to be thanked are
Sriram Rajamani and Kousha Etessami for helping make SMT-COMP possible at CAV
2005. Finally, thanks go to everyone contributing benchmarks or entering solvers to
SMT-COMP, and the entire SMT community for supporting the competition.

2 Rules and Competition Format

This Section presents a summary of the rules and competition format for SMT-COMP.
These draw substantially on ideas from the design and organization of CASC [4]. More
detailed information can be found on the SMT-COMP web site: http://www.csl.
sri.com/users/demoura/smt-comp/

2.1 Entrants

An entrant to SMT-COMP is an SMT solver submitted in either source code or binary
format to the organizers. The organizers reserve the right to submit their own systems,
or other systems of interest, to the competition. For solvers submitted in source code
form, the organizers take reasonable precautions to ensure that the source code is not
viewed by anyone other than the organizers. Submitters of an SMT-COMP entrant are
encouraged to be physically present at SMT-COMP, but are not required to be so to
participate or win. The organizers commit to making reasonable efforts to install each
system, but they reserve the right to reject an entrant if its installation process proves
overly difficult. Finally, an entrant to SMT-COMP must include a short (1-2 pages)
description of the system.

2.2 Execution of Solvers

Each SMT-COMP entrant, when executed, must read a single input formula presented
on its standard input channel. All formulas are given in the concrete syntax of the SMT-
LIB format, version 1.1 [5]. For its given input formula, each SMT-COMP entrant is
expected to report on its standard output channel whether the formula is satisfiable or
unsatisfiable. An entrant may also report “unknown” to indicate that it cannot deter-
mine satisfiability of the formula. Each SMT-COMP solver is executed on an unloaded
competition machine for each given formula, up to a fixed time limit. This limit is yet
to be determined, but expected to be at least 5 minutes.

2.3 Judging and Scoring

Scoring is done using the system of points and penalties in Figure 1. In recognition
of the greater difficulty of achieving completeness than soundness in SMT systems,
smaller penalties are assessed for incompleteness than for unsoundness. The organizers
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take responsibility for determining in advance whether formulas are satisfiable or not.
In the event of a tie in total number of points, the solver with the lower average CPU
time on formulas for which it did not timeout is considered the winner.

Reported Points for correct response Penalty for incorrect response
unsat +1 -8
sat +1 -4
unknown 0 0
timeout 0 0

Fig. 1. Points and Penalties

2.4 Problem Divisions

Each SMT-COMP problem division consists of well-sorted formulas in SMT-LIB for-
mat version 1.1. Divisions and the corresponding theories are defined in SMT-LIB for-
mat on the SMT-LIB web page (linked from SMT-COMP’s page). The divisions contain
a range of problems from relatively easy to difficult. Benchmark formulas for the divi-
sions have been collected by the organizers from other researchers in the field, mostly
from verification applications. The organizers reserve the right to cancel a division if
there are too few solvers entered or benchmarks collected. For more detailed informa-
tion on the divisions, see the SMT-COMP web page. The prefix “QF ” below means
the formulas in the division are quantifier-free, and in some cases there are pairs of
divisions for integers and reals, respectively.

– QF UF: uninterpreted functions
– QF IDL (QF RDL): integer (real) difference logic
– QF UFIDL: integer difference logic with uninterpreted functions
– QF LIA (QF LRA): linear integer (real) arithmetic
– QF UFLIA (QF UFLRA): linear integer (real) arithmetic with uninterpreted func-

tions
– QF A: non-extensional arrays
– QF AUFLIA: linear integer arithmetic with uninterpreted functions, arrays
– AUFLIA: linear integer arithmetic with uninterpreted functions, arrays, quantifiers

2.5 Proofs and Models

SMT-COMP recognizes entrants which produce suitable evidence for the results they
report. Entrants which can produce proofs for unsatisfiable formulas are recognized as
proof-producing, and entrants which can produce models for satisfiable formulas are
recognized as model-generating. No award other than this recognition is given on the
basis of such capabilities, and such capabilities are strictly optional for SMT-COMP
entrants.
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Abstract. We present a new approach for performing predicate abstrac-
tion based on symbolic decision procedures. A symbolic decision proce-
dure for a theory T (SDPT ) takes sets of predicates G and E and sym-
bolically executes a decision procedure for T on G′∪{¬e | e ∈ E}, for all
the subsets G′ of G. The result of SDPT is a shared expression (repre-
sented by a directed acyclic graph) that implicitly represents the answer
to a predicate abstraction query.

We present symbolic decision procedures for the logic of Equality and
Uninterpreted Functions(EUF) and Difference logic (DIF) and show that
these procedures run in pseudo-polynomial (rather than exponential)
time. We then provide a method to construct SDP ’s for simple mixed
theories (including EUF + DIF) using an extension of the Nelson-Oppen
combination method. We present preliminary evaluation of our procedure
on predicate abstraction benchmarks from device driver verification in
SLAM.

1 Introduction

Predicate abstraction is a technique for automatically creating finite abstract
models of finite and infinite state systems [10]. The method has been widely
used in abstracting finite-state models of programs in SLAM [2] and numerous
other software verification projects [11, 4]. It has also been used for synthesizing
loop invariants [9] and verifying distributed protocols [8, 13].

The fundamental operation in predicate abstraction can be summarized as
follows: Given a set of predicates P describing some set of properties of the sys-
tem state, and a formula e, compute the weakest Boolean formula FP (e) over
the predicates P that implies e1. Most implementations of predicate abstrac-
tion [10, 2] construct FP (e) by collecting the set of cubes (a conjunction of the
predicates or their negations) over P that imply e. The implication is checked
using a first-order theorem prover. This method may require making a very large
(2|P | in the worst case) number of calls to a theorem prover and can be expensive.

1 The dual of this problem, which is to compute the strongest Boolean formula GP (e)
that is implied by e, can be expressed as ¬FP (¬e).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 24–38, 2005.
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Several techniques have been suggested to improve the performance of pred-
icate abstraction. Some techniques enumerate the cubes over P in an increasing
order of size [8, 9, 18]. However, these techniques still require an exponential
number of theorem prover calls in the worst case, and demonstrate worst case
behavior in practice. Other techniques sacrifice precision to gain efficiency, by
only considering cubes of some fixed length [2].

Alternately, predicate abstraction can be formulated as a quantifier elimina-
tion problem. Lahiri et al. [13] and Clarke et al. [5] perform predicate abstraction
by reducing the problem to Boolean quantifier elimination. The former method
first transforms a first-order quantifier elimination problem into Boolean quan-
tifier elimination by encoding first-order formulas into Boolean formulas; the
latter assumes a finite representation of integers. The method in [13] first con-
verts the quantifier-free first-order formula to a Boolean formula such that the
translation preserves the set of satisfying assignments of the Boolean variables
in the original variable. Both these techniques use incremental Boolean Satisfi-
ability (SAT) techniques [5, 14] to perform the Boolean quantifier elimination.
Namjoshi and Kurshan [15] also proposed using quantifier elimination for first-
order logic directly to perform predicate abstraction — however many theories
(such as the theory of Equality with Uninterpreted Functions) do not admit
quantifier elimination.

Most of the above approaches use decision procedures or SAT solvers as
“black boxes”, at best in an incremental fashion, to perform predicate abstrac-
tion. We believe that having a customized procedure for predicate abstraction
can help improve the efficiency of predicate abstraction on large problems.

We propose a new way to perform predicate abstraction based on symbolic
decision procedures. A symbolic decision procedure for a theory T (SDPT ) takes
sets of predicates G and E and symbolically executes a decision procedure for T
on G′∪{¬e | e ∈ E}, for all the subsets G′ of G. The output of SDPT (G ,E ) is a
shared expression (an expression where common subexpressions can be shared)
representing those subsets G′ ⊆ G, for which G′ ∪ {¬e | e ∈ E} is unsatisfiable.
We show that such a procedure can be used to compute FP (e) for performing
predicate abstraction.

We present symbolic decision procedures for the logic of Equality and Unin-
terpreted Functions(EUF) and Difference logic (DIF) and show that these proce-
dures run in polynomial and pseudo-polynomial time respectively, and therefore
produce compact shared expressions. We provide a method to construct SDP for
a combination of two simple theories T1 ∪ T2 (including EUF + DIF), by using
an extension of the Nelson-Oppen combination method. We use Binary Decision
Diagrams (BDDs) [3] to construct FP (e) from the shared representations effi-
ciently in practice. The proofs for the theorems and lemmas can be found in a
detailed technical report [12].

We present a preliminary evaluation of our procedure on predicate abstraction
benchmarks from device driver verification in SLAM, and show that our method
outperforms existing methods for doing predicate abstraction.
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2 Setup

Figure 1 defines the syntax of a quantifier-free fragment of first-order logic. An
expression in the logic can either be a term or a formula. A term can either be a
variable or an application of a function symbol to a list of terms. A formula can
be the constants true or false or an atomic formula or Boolean combination
of other formulas. Atomic formulas can be formed by an equality between terms
or by an application of a predicate symbol to a list of terms.

term ::= variable | function-symbol(term, . . . , term)

formula ::= true | false | atomic-formula

| formula ∧ formula | formula ∨ formula | ¬formula

atomic-formula ::= term = term | predicate-symbol(term, . . . , term)

Fig. 1. Syntax of a quantifier-free fragment of first-order logic

The function and predicate symbols can either be uninterpreted or can be
defined by a particular theory. For instance, the theory of integer linear arith-
metic defines the function-symbol “+” to be the addition function over integers
and “<” to be the comparison predicate over integers. If an expression involves
function or predicate symbols from multiple theories, then it is said to be an
expression over mixed theories.

A formula F is said to be satisfiable if it is possible to assign values to the
various symbols in the formula from the domains associated with the theories to
make the formula true. A formula is valid if ¬F is not satisfiable (or unsatisfi-
able). We say a formula A implies a formula B (A ⇒ B) if and only if (¬A)∨B
is valid.

We define a shared expression to be a Directed Acyclic Graph (DAG) rep-
resentation of an expression where common subexpressions can be shared, by
using names to refer to common subexpressions. For example, the intermedi-
ate variable t refers to the expression e1 in the shared expression “let t =
e1 in (e2 ∧ t) ∨ (e3 ∧ ¬t)”.

2.1 Predicate Abstraction

A predicate is an atomic formula or its negation2. If G is a set of predicates,
then we define G̃

.= {¬g | g ∈ G}, to be the set containing the negations of the
predicates in G. We use the term “predicate” in a general sense to refer to any
atomic formula or its negation and should not be confused to only mean the set
of predicates that are used in predicate abstraction.

Definition 1. For a set of predicates P , a literal li over P is either a predicate
pi or ¬pi, where pi ∈ P . A cube c over P is a conjunction of literals. A clause

2 We always use the term “predicate symbol” (and not “predicate”) to refer to symbols
like “<”.



Predicate Abstraction via Symbolic Decision Procedures 27

cl over P is a disjunction of literals. Finally, a minterm over P is a cube with
|P | literals, and exactly one of pi or ¬pi is present in the cube.

Given a set of predicates P
.= {p1, . . . , pn} and a formula e, the main opera-

tion in predicate abstraction involves constructing the weakest Boolean formula
FP (e) over P such that FP (e) ⇒ e. The expression FP (e) can be expressed as
the set of all the minterms over P that imply e:

FP (e) =
∨
{c | c is a minterm over P and c implies e} (1)

Proposition 1. For a set of predicates P and a formula e, (i) FP (¬e) ⇒
¬FP (e), (ii) FP (e1 ∧ e2) ⇔ FP (e1) ∧ FP (e2), and (iii) FP (e1) ∨ FP (e2) ⇒
FP (e1 ∨ e2) (refer to [12] for proofs).

The operation FP (e) does not distribute over disjunctions. Consider the ex-
ample where P

.= {x �= 5} and e
.= x < 5 ∨ x > 5. In this case, FP (e) =

x �= 5. However FP (x < 5) = false and FP (x > 5) = false and thus
(FP (x < 5) ∨ FP (x > 5)) is not the same as FP (e).

The above properties suggest that one can adopt a two-tier approach to
compute FP (e) for any formula e:

1. Convert e into an equivalent Conjunctive Normal Form (CNF), which com-
prises of a conjunction of clauses, i.e., e ≡ (

∧
i cli).

2. For each clause cli
.= (ei

1 ∨ ei
2 . . . ∨ ei

m), compute ri
.= FP (cli) and return

FP (e) .=
∧

i ri.

We focus here on computing FP (
∨

ei∈E ei) when ei is a predicate. Unless
specified otherwise, we always use e to denote (

∨
ei∈E ei), a disjunction of pred-

icates in the set E in the sequel. For converting a formula to an equivalent CNF
efficiently, we can use the method proposed by McMillan [14].

3 Symbolic Decision Procedures (SDP)

We now show how to perform predicate abstraction using symbolic decision
procedures. We start by describing a saturation-based decision procedure for a
theory T and then use it to describe the meaning of a symbolic decision procedure
for the theory T . Finally, we show how a symbolic decision procedure can yield
a shared expression of FP (e) for predicate abstraction.

X = Y

Y = X

X = Y Y = Z

X = Z

X = Y X �= Y

⊥
X1 = Y1 · · · Xn = Yn

f(X1, · · · , Xn) = f(Y1, · · · , Yn)

Fig. 2. Inference rules for theory of equality and uninterpreted functions
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A set of predicates G (over theory T ) is unsatisfiable if the formula (
∧

g∈G g)
is unsatisfiable. For a given theory T , the decision procedure for T takes a set of
predicates G in the theory and checks if G is unsatisfiable. A theory is defined
by a set of inference rules. An inference rule R is of the form:

A1 A2 . . . An

A
(R)

which denotes that the predicate A can be derived from predicates A1, . . . , An in
one step. Each theory has least one inference rule for deriving contradiction (⊥).
We also use g : − g1, . . . , gk to denote that the predicate g (or ⊥, where g = ⊥)
can be derived from the predicates g1, . . . , gk using one of the inference rules in
a single step. Figure 2 describes the inference rules for the theory of Equality
and Uninterpreted Functions.

3.1 Saturation Based Decision Procedures

Consider a simple saturation-based procedure DPT shown in Figure 3, that takes
a set of predicates G as input and returns satisfiable or unsatisfiable.

The algorithm maintains two sets: (i) W is the set of predicates derived from
G up to (and including) the current iteration of the loop in step (2); (ii) W ′

is the set of all predicates derived before the current iteration. These sets are
initialized in step (1). During each iteration of step (2), if a new predicate g
can be derived from a set of predicates {g1, . . . , gk} ⊆ W ′, then g is added to
W . The loop terminates after a bound derivDepthT (G). In step (3), we check if
any subset of facts in W can derive contradiction. If such a subset exists, the
algorithm returns unsatisfiable, otherwise it returns satisfiable.

The parameter d
.= derivDepthT (G) is a bound (that is determined solely

by the set G for the theory T ) such that if the loop in step (2) is repeated
for at least d steps, then DPT (G) returns unsatisfiable if and only if G is
unsatisfiable. If such a bound exists for any set of predicates G in the theory,
then DPT procedure implements a decision procedure for T .

Definition 2. A theory T is called a saturation theory, if the procedure DPT

described in Figure 3 implements a decision procedure for T .

In the rest of the paper, we only consider saturation theories. To show that
a theory T is a saturation theory, it suffices to consider a decision procedure
algorithm for T (say AT ) and show that DPT implements AT . This can be
shown by deriving a bound on derivDepthT (G) for any set G in the theory.

3.2 Symbolic Decision Procedure

For a (saturation) theory T , a symbolic decision procedure for T (SDPT ) takes
sets of predicates G and E as inputs, and symbolically simulates DPT on G′∪Ẽ,
for every subset G′ ⊆ G. The output of SDPT (G ,E ) is a symbolic expression
representing those subsets G′ ⊆ G, such that G′ ∪ Ẽ is unsatisfiable. Thus with
|G| = n, a single run of SDPT symbolically executes 2n runs of DPT .
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1. Initialize W ← G. W ′ ← {}.
2. For i = 1 to derivDepthT (G):

(a) Let W ′ ← W .
(b) For every fact g �∈ W ′, if (g : − g1, . . . , gk) and gm ∈ W ′ for all m ∈ [1, k]:

– W ← W ∪ {g}.
3. If (⊥ : − g1, . . . , gk) and gm ∈ W for all m ∈ [1, k]:

– return unsatisfiable
4. else return satisfiable

Fig. 3. DPT (G): A simple saturation-based procedure for theory T

We introduce a set of Boolean variables BG
.= {bg | g ∈ G}, one for each pred-

icate in G. An assignment σ : BG → {true, false} over BG uniquely represents
a subset G′ .= {g | σ(bg) = true} of G.

Figure 4 presents the symbolic decision procedure for a theory T , which sym-
bolically executes the saturation based decision procedure DPT on all possible
subsets of the input component G. Just like the DPT algorithm, this procedure
also has three main components: initialization, saturation and contradiction de-
tection. The algorithm also maintains sets W and W ′, as the DPT algorithm
does.

Since SDP(G ,E ) has to execute DPT (G ′ ∪ Ẽ ) on all G′ ⊆ G, the number of
steps to iterate the saturation loop equals the maximum derivDepthT (G′∪Ẽ) for
any G′ ⊆ G. For a set of predicates S, we define the bound maxDerivDepthT (S)
as follows:

maxDerivDepthT (S) .= max{derivDepthT (S′) | S′ ⊆ S}
During the execution, the algorithm constructs a set of shared expressions

with the variables over BG as the leaves and temporary variables t[·] to name in-
termediate expressions. We use t[(g, i)] to denote the expression for the predicate
g after the iteration i of the loop in step (2) of the algorithm. We use t[(g,�)] to
denote the top-most expression for g in the shared expression. Below, we briefly
describe each of the phases of SDPT :

Initialization [Step (1)]. The set W is initialized to G ∪ Ẽ and W ′ to {}. The
leaves of the shared expression symbolically encode each subset G′ ∪ Ẽ, for
every G′ ⊆ G. For each g ∈ G, the leaf t[(g, 0)] is set to bg. For any ei ∈ E,
since ¬ei is present in all possible subset G′ ∪ Ẽ, we replace the leaf for ¬ei

with true.
Saturation [Step (2)]. For each predicate g, S(g) is the set of derivations of g

from predicates in W ′ during any iteration. For any predicate g, we first add
all the ways to derive g until the previous steps by adding t[(g, i− 1)] to
S(g). Every time g can be derived from some set of facts g1, . . . , gk such that
each gj is in W ′, we add this derivation to S(g) in Equation 2. At the end of
the iteration i, t[(g, i)] and t[(g,�)] are updated with the set of derivations
in S(g). The loop is executed maxDerivDepthT (G ∪ Ẽ) times.

Contradiction [Steps (3,4)]. We know that if G′ ∪ Ẽ is unsatisfiable, then G′

implies e (recall, e stands for
∨

ei∈E ei). Therefore, each derivation of ⊥
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1. Initialization
(a) W ← G ∪ Ẽ and W ′ ← {}.
(b) For each g ∈ G, t[(g, 0)] ← bg.
(c) For each ei ∈ E, t[(¬ei, 0)] ← true.

2. For i = 1 to maxDerivDepthT (G ∪ Ẽ) do:
(a) W ′ ← W .
(b) Initialize S(g) = {}, for any predicate g.
(c) For every g ∈ W ′, S(g) ← S(g) ∪ {t[(g, i − 1)]}.
(d) For every g, if (g : − g1, . . . , gk) and gm ∈ W ′ for all m ∈ [1, k]:

i. Update the set of derivations of g at this level:

S(g) ← S(g) ∪ {
⎛
⎝ ∧

m∈[1,k]

t[(gm, i − 1)]

⎞
⎠} (2)

ii. W ← W ∪ {g}.
(e) For each g ∈ W : t[(g, i)] ← ∨

d∈S(g) d

(f) For each g ∈ W , t[(g,	)] ← t[(g, i)]
3. Check for contradiction:

(a) Initialize S(e) = {}.
(b) For every {g1, . . . , gk} ⊆ W , if (⊥ : − g1, . . . , gk) then

S(e) ← S(e) ∪ {
⎛
⎝ ∧

m∈[1,k]

t[(gm,	)]

⎞
⎠} (3)

(c) Create the derivations for the goal e as t[e] ←
(∨

d∈S(e) d
)

4. Return the shared expression for t[e].

Fig. 4. Symbolic decision procedure SDPT (G,E) for theory T . The expression e stands

for
∨

ei∈E ei.

from predicates in W gives a new derivation of e. The set S(e) collects these
derivations and constructs the final expression t[e], which is returned in step
(4).

The output of the procedure is the shared expression t[e]. The leaves of the
expression are the variables in BG. The only operations in t[e] are conjunction
and disjunction; t[e] is thus a Boolean expression over BG. We now define the
evaluation of a (shared) expression with respect to a subset G′ ⊆ G.

Definition 3. For any expression t[x] whose leaves are in set BG, and a set
G′ ⊆ G, we define eval(t [x ],G ′) as the evaluation of t[x], after replacing each
leaf bg of t[x] with true if g ∈ G′ and with false otherwise.

The following theorem explains the correctness of the symbolic decision pro-
cedure.

Theorem 1. If t[e] .= SDPT (G ,E ), then for any set of predicates G′ ⊆ G,
eval(t [e],G ′) = true if and only if DPT (G ′ ∪ Ẽ ) returns unsatisfiable.
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Corollary 1. For a set of predicates P , if t[e] .= SDPT (P ∪ P̃ ,E ), then for
any P ′ ⊆ (P ∪ P̃ ) representing a minterm over P (i.e. pi ∈ P ′ iff ¬pi �∈ P ′),
eval(t [e],P ′) = eval(FP (e),P ′).

Hence t[e] is a shared expression for FP (e), where e denotes
∨

ei∈E ei. An
explicit representation of FP (e) can be obtained by first computing t[e] .=
SDPT (P ∪ P̃ ,E ) and then enumerating the cubes over P that make t[e] true.

In the following sections, we will instantiate T to be the EUF and DIF theories
and show that SDPT exists for such theories. For each theory, we only need to
determine the value of maxDerivDepthT (G) for any set of predicates G.

Remark 1. It may be tempting to terminate the loop in step (2) of SDPT (G ,E )
once the set of predicates in W does not change across two iterations. However,
this would lead to an incomplete procedure and the following example demon-
strates this.

Example 1. Consider an example where G contains a set of predicates that de-
notes an “almost” fully connected graph over vertices x1, . . . , xn. G contains an
equality predicate between every pair of variables except the edge between x1

and xn. Let E
.= {x1 = xn}.

After one iteration of the SDPT algorithm on this example, W will contain an
equality between every pair of variables including x1 and xn since x1 = xn can
be derived from x1 = xi, xi = xn, for every 1 < i < n. Therefore, if the SDPT

algorithm terminates once the set of predicates in W terminates, the procedure
will terminate after two steps.

Now, consider the subset G′ = {x1 = x2, x2 = x3, . . . , xi = xi+1, . . . , xn−1 =
xn} of G. For this subset of G, DPT (G ′∪ Ẽ ) requires lg(n) > 1 (for n > 2) steps
to derive the fact x1 = xn. Therefore SDPT (G ,E ) does not simulate the action
of DPT (G ′ ∪ Ẽ ). More formally, we can show that eval(t [e],G ′) = false, but
G′ ∪ Ẽ is unsatisfiable.

3.3 SDP for Equality and Uninterpreted Functions

The terms in this logic can either be variables or application of an uninterpreted
function symbol to a list of terms. A predicate in this theory is t1 ∼ t2, where ti
is a term and ∼ ∈ {=, �=}. For a set G of EUF predicates, G= and G�= denote the
set of equality and disequality predicates in G, respectively. Figure 2 describes
the inference rules for this theory.

Let terms(φ) denote the set of syntactically distinct terms in an expression
(a term or a formula) φ. For example, terms(f(h(x))) is {x, h(x), f(h(x))}. For
a set of predicates G, terms(G) denotes the union of the set of terms in any
g ∈ G.

A decision procedure for EUF can be obtained by the congruence closure
algorithm [17], described in Figure 5.

For a set of predicates G, let m = |terms(G)|. We can show that if we iterate
the loop in step (2) of DPT (G) (shown in Figure 3) for at least 3m steps, then
DPT can implement the congruence closure algorithm. More precisely, for two
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1. Partition the set of terms in terms(G) into equivalence classes using the G= pred-
icates. At any point in the algorithm, let EC (t) denote the equivalence class for
any term t ∈ terms(G).
(a) Initially, each term belongs to its own distinct equivalence class.
(b) We define a procedure merge(t1, t2) that takes two terms as inputs. The pro-

cedure first merges the equivalence classes of t1 and t2. If there are two terms
s1

.
= f(u1, . . . , un) and s2

.
= f(v1, . . . , vn) such that EC (ui) = EC (vi), for

every 1 ≤ i ≤ n, then it recursively calls merge(s1, s2).
(c) For each t1 = t2 ∈ G=, call merge(t1, t2).

2. If there exists a predicate t1 �= t2 in G�=, such that EC (t1 ) = EC (t2 ), then return
unsatisfiable; else satisfiable.

Fig. 5. Simple description of the congruence closure algorithm

terms t1 and t2 in terms(G), the predicate t1 = t2 will be derived within 3m
iterations of the loop in step 2 of DPT (G) if and only if EC (t1 ) = EC (t2 ) after
step (1) of the congruence closure algorithm (the proof can be found in [12]).

Proposition 2. For a set of EUF predicates G, if m
.= |terms(G)|, then the

value of maxDerivDepthT (G) for the theory is bound by 3m.

Complexity of SDPT . The run time and size of expression generated by
SDPT depend both on maxDerivDepthT (G) for the theory and also on the max-
imum number of predicates in W at any point during the algorithm. The maxi-
mum number of predicates in W can be at most m(m−1)/2, considering equality
between every pair of term. The disequalities are never used except for generat-
ing contradictions. It is also easy to verify that the size of S(g) (used in step (2)
of SDPT ) is polynomial in the size of input.Hence the run time of SDPT for EUF
and the size of the shared expression returned by the procedure is polynomial
in the size of the input.

3.4 SDP for Difference Logic

Difference logic is a simple yet useful fragment of linear arithmetic, where predi-
cates are of the form x �� y+c, where x, y are variables, ��∈ {<,≤} and c is a real
constant. Any equality x = y+c is represented as a conjunction of x ≤ y+c and
y ≤ x−c. The variables x and y are interpreted over real numbers. The function
symbol “+” and the predicate symbols {<,≤} are the interpreted symbols of
this theory. Figure 6 presents the inference rules for this theory3.

Given a set G of difference logic predicates, we can construct a graph where
the vertices of the graph are the variables in G and there is a directed edge in the
graph from x to y, labeled with (��, c) if x �� y + c ∈ G. We will use a predicate
and an edge interchangeably in this section.

Definition 4. A simple cycle x1 �� x2 + c1, x2 �� x3 + c2, . . . , xn �� x1 + cn

(where each xi is distinct) is “illegal” if the sum of the edges is d = Σi∈[1,n]ci

3 Constraints like x �� c are handled by adding a special variable x0 to denote the
constant 0, and rewriting the constraint as x �� x0 + c [19].
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and either (i) all the edges in the cycle are ≤ edges and d < 0, or (ii) at least
one edge is an < edge and d ≤ 0.

It is well known [6] that a set of difference predicates G is unsatisfiable if
and only the graph constructed from the predicates has a simple illegal cycle.
Alternately, if we add an edge (��, c) between x and y for every simple path from
x to y of weight c (�� determined by the labels of the edges in the path), then we
only need to check for simple cycles of length two in the resultant graph. This
corresponds to the rules (C) and (D) in Figure 6.

X ≤ Z + C Z �� Y + D

X �� Y + (C + D)
(a)

X < Z + C Z �� Y + D

X < Y + (C + D)
(b)

X < Y + C Y �� X + D C + D ≤ 0

⊥ (c)

X ≤ Y + C Y ≤ X + D C + D < 0

⊥ (d)

X ≤ Y Y ≤ X

X = Y
(e)

Fig. 6. Inference rules for Difference logic

For a set of predicates G, a predicate corresponding to a simple path in the
graph of G can be derived within lg(m) iterations of step (2) of DPT procedure,
where m is the number of variables in G (the proof is in [12]).

Proposition 3. For a set of DIF predicates G, if m is the number of variables
in G, then maxDerivDepthT (G) for the DIF theory is bound by lg(m).

Complexity of SDPT . Let cmax be the absolute value of the largest constant
in the set G. We can ignore any derived predicate in of the form x �� y +C from
the set W where the absolute value of C is greater than (m − 1) ∗ cmax . This
is because the maximum weight of any simple path between x and y can be at
most (m− 1) ∗ cmax . Again, let const(g) be the absolute value of the constant in
a predicate g. The maximum weight on any simple path has to be a combination
of these weights. Thus, the absolute value of the constant is bound by:

C ≤ min{(m− 1) ∗ cmax , Σg∈Gconst(g)}

The maximum number of derived predicates in W can be 2∗m2 ∗ (2∗C +1),
where a predicate can be either ≤ or <, with m2 possible variable pairs and the
absolute value of the constant is bound by C. This is a pseudo polynomial bound
as it depends on the value of the constants in the input.

However, many program verification queries use a subset of difference logic
where each predicate is of the form x �� y or x �� c. For this case, the maximum
number of predicates generated can be 2∗m∗ (m−1+k), where k is the number
of different constants in the input.
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4 Combining SDP for Saturation Theories

In this section, we provide a method to construct a symbolic decision procedure
for the combination of saturation theories T1 and T2, given SDP for T1 and T2.
The combination is based on an extension of the Nelson-Oppen (N-O) frame-
work [16] that constructs a decision procedure for the theory T1 ∪ T2 using the
decision procedures of T1 and T2.

We assume that the theories T1 and T2 have disjoint signatures (i.e., they do
not share any function symbol), and each theory Ti is convex and stably infinite4.
Let us briefly explain the N-O method for combining decision procedures before
explaining the method for combining SDP .

4.1 Nelson-Oppen Method for Combining Decision Procedures

Given two theories T1 and T2, and the decision procedures DPT1
and DPT2

,
the N-O framework constructs the decision procedure for T1 ∪ T2, denoted as
DPT1∪T2

.
To decide an input set G, the first step in the procedure is to purify G into sets

G1 and G2 such that Gi only contains symbols from theory Ti and G is satisfiable
if and only if G1 ∪G2 is satisfiable. Consider a predicate g

.= p(t1, . . . , tn) in G,
where p is a theory T1 symbol. The predicate g is purified to g′ by replacing each
subterm tj whose top-level symbol does not belong to T1 with a fresh variable
wj . The expression tj is then purified to t′j recursively. We add g′ to G1 and
the binding predicate wj = t′j to the set G2. We denote the latter as binding
predicate because it binds the fresh variable wj to a term t′j .

Let Vsh be the set of shared variables that appear in G1 ∩ G2. A set of
equalities Δ over variables in Vsh is maintained; Δ records the set of equalities
implied by the facts from either theory. Initially, Δ = {}.

Each theory Ti then alternately decides if DPTi
(Gi∪Δ) is unsatisfiable. If any

theory reports unsatisfiable, the algorithm returns unsatisfiable; otherwise,
the theory Ti generates the new set of equalities over Vsh that are implied by
Gi ∪ Δ5. These equalities are added to Δ and are communicated to the other
theory. This process is continued until the set Δ does not change. In this case,
the method returns satisfiable. Let us denote this algorithm as DPT1∪T2

.
Theorem 2 ([16]). For convex, stably infinite and signature-disjoint theories
T1 and T2, DPT1∪T2

is a decision procedure for T1 ∪ T2.
There can be at most |Vsh | irredundant equalities over Vsh , therefore the

N-O loop terminates after |Vsh | iterations for any input.

4.2 Combining SDP Using Nelson-Oppen Method

We will briefly describe a method to construct the SDPT1∪T2
by combining

SDPT1
and SDPT2

. As before, the input to the method is the pair (G,E) and

4 We need these restrictions only to exploit the N-O combination result. The definition
of convexity and stably infiniteness can be found in [16].

5 We assume that each theory has an inference rule for deriving equality between
variables in the theory, and DPT also returns a set of equality over variables.
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the output is an expression t[e]. The facts in E are also purified into sets E1 and
E2 and the new binding predicates are added to either G1 or G2.

Our goal is to symbolically encode the runs of the N-O procedure for G′ ∪
Ẽ, for every G′ ⊆ G. For any equality predicate δ over Vsh , we maintain an
expression ψδ that records all the different ways to derive δ (initialized to false).
We also maintain an expression ψe to record all the derivations of e (initialized
to false).

The N-O loop operates just like the case for constructing DPT1∪T2
. The

SDPTi
for each theory Ti now takes (Gi ∪ Δ,Ei) as input, where Δ is the set

of equalities over Vsh derived so far. In addition to computing the (shared)
expression t[e] as before, SDPTi

also returns the expression t[(δ,�)], for each
equality δ over Vsh that can be derived in step (2) of the SDPT algorithm.

The leaves of the expressions t[e] and t[(δ,�)] are Gi ∪ Δ (since leaves for
Ẽi are replaced with true). We substitute the leaves for any δ ∈ Δ with the
expression ψδ, to incorporate the derivations of δ until this point. We also update
ψδ ← (ψδ ∨ t[(δ,�)]) to add the new derivations of δ. Similarly, we update
ψe ← (ψe ∨ t[e]) with the new derivations.

The N-O loop iterates |Vsh | number of times to ensure that it has seen every
derivation of a shared equality over Vsh from any set G′

1 ∪G′
2 ∪ Ẽ1 ∪ Ẽ2, where

G′
i ⊆ Gi.
After the N-O iteration terminates, ψe contains all the derivations of e from

G. However, at this point, there are two kind of predicates in the leaves of ψe;
the purified predicates and the binding predicates. If g′ was the purified form of
a predicate g ∈ G, we replace the leaf for g′ with bg. The leaves of the binding
predicates are replaced with true, as the fresh variables in these predicates are
really names for subterms in any predicate, and thus their presence does not
affect the satisfiability of a formula. Let t[e] denote the final expression for ψe

that is returned by SDPT1∪T2
. Observe that the leaves of t[e] are variables in

BG.

Theorem 3. For two convex, stably-infinite and signature-disjoint theories T1

and T2, if t[e] .= SDPT1∪T2
(G ,E ), then for any set of predicates G′ ⊆ G,

eval(t [e],G ′) = true if and only if DPT1∪T2
(G ′ ∪ Ẽ ) returns unsatisfiable.

Since the theory of EUF and DIF satisfy all the restrictions of the theories of
this section, we can construct an SDP for the combined theory that still runs in
pseudo-polynomial time.

5 Implementation and Results

We have implemented a prototype of the symbolic decision procedure for the
combination of EUF and DIF theories. To construct FP (e), we first build a
BDD (using the CUDD [7] BDD package) for the expression t[e] (returned by
SDPT (P ∪ P̃ ,E )) and then enumerate the cubes from the BDD.

Creating the BDD for the shared expression t[e] and enumerating the cubes
from the BDD can have exponential complexity in the worst case. This is because
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a1

b1

d1

c1

a2

b2

d2

c2

an

bn

dn

cn

n |P | SDPT UCLID
time (s) time (s)

3 14 0.20 19.37

4 19 0.43 656

5 24 0.65 -

10 49 5.81 -

12 59 12.28 -

Fig. 7. Result on diamond examples with increasing number of diamonds. The ex-

pression e is (a1 = dn). A “-” denotes a timeout of 1000 seconds

the expression for FP (e) can involve an exponential number of cubes (e.g. the
example in Fig 7). However, most problems in practice have a few cubes in FP (e).
Secondly, as the number of leaves of t[e] (alternately, number of BDD variables)
is bound by |P |, the size of the overall BDD is usually small, and is computed
efficiently in practice. Finally, by generating only the prime implicants6 of FP (e)
from the BDD, we obtain a compact representation of FP (e).

We report preliminary results evaluating our symbolic decision procedure
based predicate abstraction method on a set of software verification benchmarks.
The benchmarks are generated from the predicate abstraction step for construct-
ing Boolean Programs from C programs of Microsoft Windows device drivers in
SLAM [2].

We compare our method with two other methods for performing predicate
abstraction: (i) DP-based: This method uses the decision procedure zapato [1]
to enumerate the set of cubes that imply e. Various optimizations (e.g. consid-
ering cubes in increasing order of size) are used to prevent enumerating expo-
nential number of cubes in practice. (ii) UCLID-based: This method performs
quantifier-elimination using incremental SAT-based methods [13].

To compare with the DP-based method, we generated 665 predicate abstrac-
tion queries from the verification of device-driver programs. Most of these queries
had between 5 and 14 predicates in them and are fairly representative of queries
in SLAM. The run time of DP-based method was 27904 seconds on a 3 GHz. ma-
chine with 1GB memory. The run time of SDP -based method was 273 seconds.
This gives a little more than 100X speedup on these examples, demonstrating
that our approach can scale much better than decision procedure based methods.
We have not been able to run UCLID-based method on SLAM benchmarks at
the point of submitting this paper.

To compare with UCLID-based approach, we generated different instances of
a problem (see Figure 7 for the example) where P is a set of equality predicates
representing n diamonds connected in a chain and e is an equality a1 = dn. We
generated different problem instances by varying the size of n. For an instance

6 For any Boolean formula φ over variables in V , prime implicants of φ is a set of
cubes C

.
= {c1, . . . , cm} over V such that φ ⇔ ∨

c∈C c and two or more cubes from
C can’t be combined to form a larger cube.
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with n diamonds, there are 5n − 1 predicates in P and 2n cubes in FP (e) to
denote all the paths from a1 to dn. Figure 7 shows the result comparing both the
methods. We should note that UCLID method was run on a slightly slower 2GHz
machine. The results illustrate that our method scales much better than the SAT-
based enumeration used in UCLID for this example. Intuitively, UCLID-based
approach grows exponentially with the number of predicates (2|P |), whereas our
approach only grows exponentially with the number of diamonds (2n) in the
result.
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Abstract. In predicate abstraction, exact image computation is prob-
lematic, requiring in the worst case an exponential number of calls to
a decision procedure. For this reason, software model checkers typically
use a weak approximation of the image. This can result in a failure to
prove a property, even given an adequate set of predicates. We present an
interpolant-based method for strengthening the abstract transition rela-
tion in case of such failures. This approach guarantees convergence given
an adequate set of predicates, without requiring an exact image com-
putation. We show empirically that the method converges more rapidly
than an earlier method based on counterexample analysis.

1 Introduction

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which an infinite-state system is represented abstractly by a finite-state
system whose states are the truth valuations of a chosen set of predicates. The
reachable state set of the abstract system corresponds to the strongest inductive
invariant of the infinite-state system expressible as a Boolean combination of the
given predicates.

The primary computational difficulty of predicate abstraction is the abstract
image computation. That is, given a set of predicate states (perhaps represented
symbolically) we wish to compute the set of predicate states reachable from
this set in one step of the abstract system. This can be done by enumerating
the predicate states, using a suitable decision procedure to determine whether
each state is reachable in one step. However, since the number of decision proce-
dure calls is exponential in the number of predicates, this approach is practical
only for small predicates sets. For this reason, software model checkers, such
as Slam [2] and Blast [16] typically use weak approximations of the abstract
image. For example, the Cartesian image approximation is the strongest cube
over the predicates that is implied at the next time. This approximation loses
all information about predicates that are neither deterministically true nor de-
terministically false at the next time. Perhaps surprisingly, some properties of
large programs, such as operating system device drivers, can be verified with
this weak approximation [2, 7]. Unfortunately, as we will observe, this approach
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fails to verify properties of even very simple programs, if the properties relate to
data stored in arrays.

This paper introduces an approach to approximating the transition relation of
a system using Craig interpolants derived from proofs of bounded model checking
instances. These interpolants are formulas that capture the information about
the transition relation of the system that was deduced in proving the property
in a bounded sense. Thus, the transition relation approximation we obtain is tai-
lored to the property we are trying to prove. Moreover, it is a formula over only
state-holding variables. Hence, for abstract models produced by predicate ab-
straction, the approximate transition relation is a purely propositional formula,
even though the original transition relation is characterized by a first-order for-
mula. Thus, we can apply well-developed Boolean image computation methods
to the approximate system, eliminating the need for a decision procedure in the
image computation. By iteratively refining the approximate transition relation
we can guarantee convergence, in the sense that whenever the chosen predi-
cates are adequate to prove the property, the approximate transition relation is
eventually strong enough to prove the property.1

Related work. The most closely related method is that of Das and Dill [6].
This method analyzes abstract counterexamples (sequences of predicate states),
refining the transition relation approximation in such a way as to rule out in-
feasible transitions. This method is effective, but has the disadvantage that it
uses a specific counterexample and does not consider the property being veri-
fied. Thus it can easily generate refinements not relevant to the property. The
interpolation-based method does not use abstract counterexamples. Rather, it
generates facts relevant to proving the given property in a bounded sense. Thus,
it tends to generate more relevant refinements, and as a result converges more
rapidly.

In [7], interpolants are used to choose new predicates to refine a predicate
abstraction. Here, we use interpolants to refine an approximation of the abstract
transition relation for a given set of predicates.

The chief alternative to iterative approximation is to produce an exact propo-
sitional characterization of the abstract transition relation. For example the
method of [9] uses small-domain techniques to translate a first-order transition
formula into a propositional one that is equisatisfiable over the state-holding
predicates. However, this translation introduces a large number of auxiliary

1 The reader should bear in mind that there are two kinds of abstraction occurring
here. The first is predicate abstraction, which produces an abstract transition system
whose state-holding variables are propositional. The second is transition relation
approximation, which weakens the abstract transition formula, yielding a purely
propositional approximate transition formula. To avoid confusion, we will always
refer to the former as abstraction, and the latter as approximation. The techniques
presented here produce an exact reachability result for the abstract model. However,
we may still fail to prove unreachability if an inadequate set of predicates is chosen
for the abstraction.
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Boolean variables, making it impractical to use BDD-based methods for im-
age computation. Though SAT-base Boolean quantifier elimination methods can
be used, the effect is still essentially to enumerate the states in the image. By
contrast, the interpolation-based method produces an approximate transition re-
lation with no auxiliary Boolean variables, allowing efficient use of BDD-based
methods.

Outline. In the next section, we introduce some notations and definitions re-
lated to modeling infinite-state systems symbolically, and briefly describe the
method of deriving interpolants from proofs. Then in section 3, we introduce
the basic method of transition relation approximation using interpolants. In the
following section, we discuss a number of optimizations of this basic method that
are particular to software verification. Section 6 then presents an experimental
comparison of the interpolation method with the Das and Dill method.

2 Preliminaries

Let S be a first-order signature, consisting of individual variables and unin-
terpreted n-ary functional and propositional constants. A state formula is a
first-order formula over S, (which may include various interpreted symbols, such
as = and +). We can think of a state formula φ as representing a set of states,
namely, the set of first-order models of φ. We will express the proposition that
an interpretation σ over S models φ by φ[σ].

We also assume a first-order signature S′, disjoint from S, and containing for
every symbol s ∈ S, a unique symbol s′ of the same type. For any formula or term
φ over S, we will use φ′ to represent the result of replacing every occurrence of a
symbol s in φ with s′. Similarly, for any interpretation σ over S, we will denote
by σ′ the interpretation over S′ such that σ′s′ = σs. A transition formula is a
first-order formula over S∪S′. We think of a transition formula T as representing
a set of state pairs, namely the set of pairs (σ1, σ2), such that σ1 ∪σ′

2 models T .
Will will express the proposition that σ1 ∪ σ′

2 models T by T [σ1, σ2].
The strongest postcondition of a state formula φ with respect to transition for-

mula T , denoted spT (φ), is the strongest proposition ψ such that φ∧T implies ψ′.
We will also refer to this as the image of φ with respect to T . Similarly, the
weakest precondition of a state formula φ with respect to transition formula T ,
denoted wpT (φ) is the weakest proposition ψ such that ψ ∧ T implies φ′.

A transition system is a pair (I, T ), where I is a state formula and T is a
transition formula. Given a state formula ψ, we will say that ψ is k-reachable
in (I, T ) when there exists a sequence of states σ0, . . . , σk, such that I[σ0] and
for all 0 ≤ i < k, T [σi, σi+1], and ψ[σk]. Further, ψ is reachable in (I, T ) if it is
k-reachable for some k. We will say that φ is an invariant of (I, T ) when ¬φ is
not reachable in (I, T ). A state formula φ is an inductive invariant of (I, T ) when
I implies φ and spT (φ) implies φ (note that an inductive invariant is trivially an
invariant).
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Bounded Model Checking. The fact that ψ is k-reachable in (I, T ) can be
expressed symbolically. For any symbol s, and natural number i, we will use the
notation s〈i〉 to represent the symbol s with i primes added. Thus, s〈3〉 is s′′′.
A symbol with i primes will be used to represent the value of that symbol at
time i. We also extend this notation to formulas. Thus, the formula φ〈i〉 is the
result of adding i primes to every uninterpreted symbol in φ.

Now, assuming T is total, the state formula ψ is k-reachable in (I, T ) exactly
when this formula is consistent:

I〈0〉 ∧ T 〈0〉 ∧ · · ·T 〈k−1〉 ∧ ψ〈k〉

We will refer to this as a bounded model checking formula [3], since by test-
ing satisfiability of such formulas, we can determine the reachability of a given
condition within a bounded number of steps.

Interpolants From Proofs. Given a pair of formulas (A,B), such that A ∧
B is inconsistent, an interpolant for (A,B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as ∧ and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [5]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A∧B in linear time.
For example, a purely propositional refutation of A∧B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [8, 13].

In [11] it is shown that linear-size interpolants can be derived from refutations
in a first-order theory with uninterpreted function symbols and linear arithmetic.
This translation has the property that whenever A and B are quantifier-free, the
derived interpolant Â is also quantifier-free.2 We will exploit this property in the
sequel.

Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A
is inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and
focus on relevant ones, we can think of interpolation as a way of filtering out
irrelevant information from A.

For the purposes of this paper, we must extend the notion of interpolant
slightly. That is, given an indexed set of formulas A = {a1, . . . , an} such that∧

A is inconsistent, a symmetric interpolant for A is an indexed set of formulas

2 Note that the Craig theorem does not guarantee the existence of quantifier-free
interpolants. In general this depends on the choice of interpreted symbols in the
logic.
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Â = {â1, . . . , ân} such that each ai implies âi, and
∧

Â is inconsistent, and each
âi is over the symbols common to ai and A \ ai. We can construct a symmetric
interpolant for A from a refutation of

∧
A by simply letting âi be the interpolant

derived from the given refutation for the pair (ai,
∧

A \ ai). As long as all the
individual interpolants are derived from the same proof, we are guaranteed that
their conjunction is inconsistent. In the sequel, if Â is a symmetric interpolant
for A, and the elements of A are not explicitly indexed, we will use the notation
Â(ai) to refer to âi.

3 Transition Relation Approximation

Because of the expense of image computation in symbolic model checking, it is
often beneficial to abstract the transition relation before model checking, remov-
ing information that is not relevant to the property to be proved. Some examples
of techniques for this purpose are [4, 12].

In this paper, we introduce a method of approximating the transition relation
using bounded model checking and symmetric interpolation. Given a transition
system (I, T ) and a state formula ψ that we wish to prove unreachable, we will
use interpolation to refine an approximation T̂ of the transition relation T , such
that T implies T̂ . The initial approximation is just T̂ = True.

T̂ ← True
repeat

if ψ unreachable in (I, T̂ ), return “unreachable”

else, if ψ reachable in k steps in (I, T̂ )

A ← {I〈0〉, T 〈0〉, . . . , T 〈k−1〉, ψ〈k〉}
if

∧
A satisfiable, return “reachable in k steps”

else

Â ← Itp(A)

T̂ ← T̂ ∧ ∧k−1

i=0
(Â(T 〈i〉))〈−i〉

end repeat

Fig. 1. Interpolation-based transition approximation loop. Here, Itp is a function that
computes a symmetric interpolant for a set of formulas

We begin the refinement loop by attempting to verify the unreachabilty of ψ
in the approximate system (I, T̂ ), using an appropriate model checking algo-
rithm. If ψ is found to be unreachable in (I, T̂ ), we know it is unreachable in
the stronger system (I, T ). Suppose, on the other hand that ψ is found to be
k-reachable in (I, T̂ ). It may be that in fact ψ is k-reachable in (I, T ), or it may
be that T̂ is simply too weak an approximation to refute this. To find out, we
will use bounded model checking.

That is, we construct the following set of formulas:

A
.= {I〈0〉, T 〈0〉, . . . , T 〈k−1〉, ψ〈k〉}
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Note that
∧

A is exactly the bounded model checking formula that characterizes
k-reachability of ψ in (I, T ). We use a decision procedure to determine satisfi-
ability of

∧
A. If it is satisfiable, ψ is reachable and we are done. If not, we

obtain from the decision procedure a refutation of
∧

A. From this, we extract a
symmetric interpolant Â. Notice that for each i in 0 . . . k − 1, Â(T 〈i〉) is a for-
mula implied by T 〈i〉, the transition formula shifted to time i. Let us shift these
formulas back to time 0, thus converting them to transition formulas. That is,
for i = 0 . . . k − 1, let:

T̂i
.= (Â(T 〈i〉))〈−i〉

where we use φ〈−i〉 to denote removal of i primes from φ, when feasible. We will
call these formulas the transition interpolants. From the properties of symmetric
interpolants, we know the bounded model checking formula

I0 ∧ T̂
〈0〉
0 ∧ · · · T̂ 〈k−1〉

k−1 ∧ ψk

is unsatisfiable. Thus we know that the conjunction of the transition inter-
polants

∧
i T̂i admits no path of k steps from I to ψ. We now compute a refined

approximation Ṫ
.= T̂ ∧ ∧

i T̂i. This becomes our approximation T̂ in the next
iteration of the loop. This procedure is summarized in Figure 1. Notice that at
each iteration, the refined approximation Ṫ is strictly stronger than T̂ , since T̂
allows a counterexample of k steps, but Ṫ does not. Thus, for finite-state sys-
tems, the loop must terminate. This is simply because we cannot strengthen a
formula with a finite number of models infinitely.

The approximate transition formula T̂ has two principle advantages over T .
First, it contains only facts about the transition relation that were derived by
the prover in resolving the bounded model checking problem. Thus it is in some
sense an abstraction of T relative to ψ. Second, T̂ contains only state-holding
symbols. We will say that a symbol s ∈ S is state-holding in (I, T ) when s occurs
in I, or s′ occurs in T . In the bounded model checking formula, the only symbols
in common between T 〈i〉 and the remainder of the formula are of the form s〈i〉

or s〈i+1〉, where s is state-holding. Thus, the transition interpolants T̂i contain
only state-holding symbols and their primed versions.

The elimination of the non-state-holding symbols by interpolation has two
potential benefits. First, in hardware verification there are usually many non-
state-holding symbols representing inputs of the system. These symbols con-
tribute substantially to the cost of the image computation in symbolic model
checking. Second, for this paper, the chief benefit is in the case when the state-
holding symbols are all propositional (i.e., they are propositional constants). In
this case, even if the transition relation T is a first-order formula, the approxi-
mation T̂ is a propositional formula. The individual variables and function sym-
bols are eliminated by interpolation. Thus we can apply well-developed Boolean
methods for symbolic model checking to the approximate system. In the next
section, we will apply this approach to predicate abstraction.
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4 Application to Predicate Abstraction

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which the state of an infinite-state system is represented abstractly by the
truth values of a chosen set of predicates P . The method computes the strongest
inductive invariant of the system expressible as a Boolean combination of these
predicates.

Let us fix a concrete transition system (I, T ) and a finite set of state for-
mulas P that we will refer to simply as “the predicates”. We assume a finite
set V ⊂ S of uninterpreted propositional symbols not occurring in I or T . The
set V consists of a symbol vp for every predicate p ∈ P . We will construct an
abstract transition system (Ī , T̄ ) whose states are the minterms over V . To re-
late the abstract and concrete systems, we define a concretization function γ.
Given a formula over V , γ replaces every occurrence of a symbol vp with the
corresponding predicate p. Thus, if φ is a Boolean combination over V , γ(φ) is
the same combination of the corresponding predicates in P .

For the sake of simplicity, we assume that the initial condition I is a Boolean
combination of the predicates. Thus we choose Ī so that γ(Ī) = I. We define
the abstract transition relation T̄ such that, for any two minterms s, t ∈ 2V , we
have T̄ [s, t] exactly when γ(s) ∧ T ∧ γ(t)′ is consistent. In other words, there
is a transition from abstract state s to abstract state t exactly when there is a
transition from a concrete state satisfying γ(s) to a concrete state satisfying γ(t).

We can easily show by induction on the number of steps that if a formula ψ
over V is unreachable in (Ī , T̄ ) then γ(ψ) is unreachable in (I, T ) (though the
converse does not hold). To allow us to check whether a given ψ is in fact
reachable in the abstract system, we can express the abstract transition relation
symbolically [9]. The abstract transition relation can be expressed as

T̄
.=

((∧
p∈P (vp ⇐⇒ p)

)
∧ T ∧

(∧
p∈P (p′ ⇐⇒ v′

p)
))
↓ (V ∪ V ′)

where Q ↓ W denotes the “hiding” of non-W symbols in Q by renaming them
to fresh symbols in S. Hiding the concrete symbols in this way takes the place
of existential quantification. Notice that, under this definition, the state-holding
symbols of (Ī , T̄ ) are exactly V . Moreover, for any two minterms s, t ∈ 2V , the
formula s∧ T̄ ∧ t′ is consistent exactly when γ(s)∧ T ∧ γ(t)′ is consistent. Thus,
T̄ characterizes exactly the transitions of our abstract system.

To determine whether ψ is reachable in this system using the standard “sym-
bolic” approach, we would compute the reachable states R of the system as the
limit of the following recurrence:

R0
.= Ī

Ri+1
.= Ri ∨ spT̄ (Ri)

The difficulty here is to compute the image spT̄ . We cannot apply standard
propositional methods for image computation, since the transition formula T̄ is
not propositional. We can compute spT̄ (φ) as the disjunction of all the minterms
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s ∈ 2V such that φ∧ T̄ ∧s′ is consistent. However, this is quite expensive in prac-
tice, since it requires an exponential number of calls to a theorem prover. In [9],
this is avoided by translating T̄ into a propositional formula that is equisatisfi-
able with T̄ over V ∪ V ′. This makes it possible to use well developed Boolean
image computation methods to compute the abstract strongest postcondition.
Nonetheless, because the translation introduces a large number of free propo-
sitional variables, the standard approaches to image computation using Binary
Decision Diagrams (BDD’s) were found to be inefficient. Alternative methods
based on enumerating the satisfiable assignments using a SAT solver were found
to be more effective, at least for small numbers of predicates. However, this
method is still essentially enumerative. Its primary advantage is that informa-
tion learned by the solver during the generation of one satisfying assignment can
be reused in the next iteration.

Here, rather than attempting to compute images exactly in the abstract
system, we will simply observe that state-holding symbols of the abstraction
(Ī , T̄ ) are all propositional. Thus, the interpolation-based transition relation ap-
proximation method of the previous section reduces the transition relation to
a purely propositional formula. Moreover, it does this without introducing ex-
traneous Boolean variables. Thus, we can apply standard BDD-based model
checking methods to the approximated system (I, T̂ ) without concern that non-
state-holding Boolean variables will cause a combinatorial explosion. Finally,
termination of the approximation loop is guaranteed because the abstract state
space is finite.

5 Software Model Checking

In model checking sequential deterministic programs, we can make some signif-
icant optimizations in the above method.

Path-Based Approximation. The first optimization is to treat the program
counter explicitly, rather than modeling it as a symbolic variable. The main
advantage of this is that it will allow us to apply bounded model checking only
to particular program paths (i.e., sequences of program locations) rather than
to the program as a whole.

We will say that a program Π is a pair (L,R), where L is a finite set of
locations, and R is a finite set of operations. An operation is a triple (l, T, l′)
where T is a transition formula, l ∈ L is the entry location of the statement, and

l
′ ∈ L is the exit location of the statement.

A path of program Π from location l0 ∈ L to location lk ∈ L is a sequence
π ∈ Rk−1, of the form (l0, T0, l1)(l1, T1, l2) · · · (lk−1, Tk−1, lk). We say that the
path is feasible when there exists a sequence of states σ0 · · ·σk such that, for
all 0 ≤ i < k, we have Ti[σi, σi+1]. The reachability problem is to determine
whether program Π has a feasible path from a given initial location l0 to a given
final location lf .
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As in the previous section, we assume a fixed set of predicates P , and a
corresponding set of uninterpreted propositional symbols V . Using these, we
construct an abstract program Π̄ = (L, R̄). For any operation r = (l, T, l′), let
the abstract operation r̄ be (l, T̄ , l′), where, as before

T̄
.=

((∧
p∈P (vp ⇐⇒ p)

)
∧ T ∧

(∧
p∈P (p′ ⇐⇒ v′

p)
))
↓ (V ∪ V ′)

The abstract operation set R̄ is then {r̄ | r ∈ R}. We can easily show that if
a path r0 · · · rk−1 is feasible, then the corresponding abstract path r̄0 · · · r̄k−1 is
also feasible. Thus if a given location lf is unreachable from l0 in the abstract
program, it is unreachable from l0 in the concrete program.

Now we can apply the interpolation-based approximation approach to pro-
grams. We will build an approximate program Π̂ = (L, R̂), where R̂ consists of
an operation r̂ = (l, T̂ , l′) for every r̄ = (l, T̄ , l′) in R̄, such that T̄ implies T̂ , and
T̂ is over V ∪ V ′. Initially, every T̂ is just True.

At every step of the iteration, we use standard model checking methods to
determine whether the approximation Π̂ has a feasible path from l0 to lf . We can
do this because the transition formulas T̂ are all propositional. If there is no such
path, then lf is not reachable in the concrete program and we are done. Suppose
on the other hand that there is such a path π̂ = π̂0 · · · π̂k−1. Let π̄ = π̄0 · · · π̄k−1

be the corresponding path of Π̄. We can construct a bounded model checking
formula to determine the feasibility of this path. Using the notation T (r) to
denote the T component of an operation r, let

A
.= {T (π̄i)〈i〉 | i ∈ 0 . . . k − 1}

The conjunction
∧

A is consistent exactly when the abstract path π̄ is feasible.
Thus, if

∧
A is consistent, the abstraction does not prove unreachability of lf

and we are done. If it is inconsistent, we construct a symmetric interpolant Â
for A. We extract transition interpolants as follows:

T̂i
.= (Â(T (π̄i)〈i〉))〈−i〉

Each of these is implied by the T (π̄i), the transition formula of the corresponding
abstract operation. We now strengthen our approximate program Π̂ using these
transition interpolants. That is, for each abstract operation r̄ ∈ R̄, the refined
approximation is ṙ = (l, T (ṙ), l′) where

T (ṙ) .= T (r̂) ∧
(∧{T̂i | π̄i = r̄, i ∈ 0 . . . k − 1}

)
In other words, we constrain each approximate operation r̂ by the set of tran-
sition interpolants for the occurrences of r̄ in the abstract path π̄. The refined
approximate program is thus (L, Ṙ), where Ṙ = {ṙ | r̄ ∈ R̄}. From the inter-
polant properties, we can easily show that the refined approximate program does
not admit a feasible path corresponding to π̄.

We continue in this manner until either the model checker determines that
the approximate program Π̂ has no feasible path from l0 to lf , or until bounded



48 R. Jhala and K.L. McMillan

statement transition interpolant

a[x] ← y (x = z)′ ⇒ (a[z] = y)′

y ← y + 1 (a[z] = y ⇒ (a[z] = y − 1)′) ∧ ((x = z)′ ⇒ x = z)
assume z = x (a[z] = y − 1 ⇒ (a[z] = y − 1)′) ∧ x = z
assume a[z] �= y − 1 a[z] �= y − 1

Fig. 2. An infeasible program path, with transition interpolants. The statement “as-
sume φ” is a guard. It aborts when φ is false. In the transition interpolants, we have
replaced vp with p for clarity, but in fact these formulas are over V ∪ V ′

model checking determines that the abstract program Π̄ does have such a feasible
path. This process must terminate, since at each step Π̂ is strengthened, and we
cannot strengthen a finite set of propositional formulas infinitely.

The advantage of this approach, relative to that of section 3, is that the
bounded model checking formula

∧
A only relates to a single program path. In

practice, the refutation of a single path using a decision procedure is considerably
less costly than the refutation of all possible paths of a given length.

As an example of using interpolation to compute an approximate program,
Figure 2 shows a small program with one path, which happens to be infeasible.
The method of [7] chooses the predicates x = z, a[z] = y and a[z] = y − 1
to represent the abstract state space. Next to each operation in the path is
shown the transition interpolant T̂i that was obtained for that operation. Note
that each transition interpolant is implied by the semantics of the corresponding
statement, and that collectively the transition interpolants rule out the program
path (the reader might wish to verify this). Moreover, the transition interpolant
for the first statement, a[x] ← y, is x = z ⇒ a[z] = y. This is a disjunction and
therefore cannot be inferred by predicate image techniques that use the Cartesian
or Boolean programs approximations. In fact, the Blast model checker cannot
rule out this program path. However, using transition interpolants, we obtain a
transition relation approximation that proves the program has no feasible path
from beginning to end.

Modeling with Weakest Precondition. A further optimization that we can
use in the case of deterministic programs is that we can express the abstract
transition formulas T̄ in terms of the weakest precondition operator. That is,
if T is deterministic, the abstract transition formula T̄ is satisfiability equivalent
over V ∪ V ′ to:(∧

p∈P (vp ⇐⇒ p)
)
∧ ¬wpT (False) ∧

(∧
p∈P (v′

p ⇐⇒ wpT (p))
)

Thus, if we can symbolically compute the weakest precondition operator for the
operations in our programming language, we can use this formula in place of T̄
as the abstract transition formula. In this way, the abstract transition formula
is localized to just those program variables that are related in some way to
predicates P . In particular, if π is an assignment to a program variable not
occurring in P , then we will have v′

p ⇐⇒ p, for every predicate in P .
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Interpolant Strengthening. In preliminary tests of the method, we found
that transition interpolants derived from proofs by the method of [10] were
often unnecessarily weak. For example, we might obtain (p∧ q) ⇒ (p′ ∧ q′) when
the stronger (p ⇒ p′) ∧ (q ⇒ q′) could be proved. This slowed convergence
substantially. For this reason, we use here a modified version of the method
of [10] that produces stronger interpolants. Space prohibits a description of this
method here, but a discussion can be found in a full version of this paper [1].
The full version also discusses a hybrid between the Cartesian approximation
and the interpolation-based approximation.

6 Experiments

We now experimentally compare the method of the previous section with a
method due to Das and Dill [6]. This method refines an approximate transi-
tion relation by analyzing counterexamples from the approximate system to
infer a refinement that rules out each counterexample. More precisely, a coun-
terexample of the approximate program (L, R̂) is an alternating sequence π =
σ0r̂0σ1 · · · r̂k−1σk, where each σi is a minterm over V , each r̂i is an operation
in R̂, l(r0) = l0, l′(rk−1) = lf , and for all 0 ≤ i < k, we have T (r̂i)[σi, σi+1].
This induces a set of transition minterms, ti = σi ∧ σ′

i+1, for 0 ≤ i < k. Note
that each ti is by definition consistent with T (r̂i).

To refine the approximate program, we test each ti for consistency with the
corresponding abstract transition formula T (r̄i). If it is inconsistent, the coun-
terexample is false (due to over-approximation). Using an incremental decision
procedure, we then greedily remove literals from ti that can be removed while
retaining inconsistency with T (r̄i). The result is a minimal (but not minimum)
cube that is inconsistent with T (r̄i). The negation of this cube is implied by T (r̄i),
so we use it to strengthen corresponding approximate transition formula T (r̂i).
Since more than one transition minterm may be inconsistent, we may refine sev-
eral approximate operations in this way (however if none are inconsistent, we
have found a true counterexample of the abstraction).

Both approximation refinement procedures are embedded as subroutines of
the Blast software model checker. Whenever the model checker finds a path
from an initial state to a failure state in the approximate program, it calls the re-
finement procedure. If refinement fails because the abstraction does not prove the
property, the procedure of [7] is used to add predicates to the abstraction. Since
both refinement methods are embedded in the same model checking procedure
and use the same decision procedure, we can obtain a fairly direct comparison.

Our benchmarks are a set of C programs with assertions embedded to test
properties relating to the contents of arrays.3 Some of these programs were
written expressly as tests. Others were obtained by adding assertions to a sample
device driver for the Linux operating system from a textbook [14]. Most of the

3 Available at http://www-cad.eecs.berkeley.edu/~kenmcmil/cav05data.tar.gz
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Fig. 3. Comparison of the Das/Dill and interpolation-based methods as to run time
and number of refinement steps

properties are true. None of the properties can be verified or refuted by Blast
without using a refinement procedure, due to its use of the Cartesian image.

Figure 3 shows a comparison in terms of run time (on a 3GHz Intel Xeon pro-
cessor) and number of refinement steps. The latter includes refinement steps that
fail, causing predicates to be added. Run time includes model checking, refine-
ment, and predicate selection. Each point represents a single benchmark prob-
lem. The X axis represents the Das/Dill method and the Y axis the interpolation-
based method. Points below the heavy diagonal represent wins for the interpo-
lation method, while points below the light diagonal represent improvements of
an order of magnitude (note in one case a run-time improvement of two orders
of magnitude is obtained).

The lower number of refinement steps required by interpolation method is
easily explained. The Das/Dill method uses a specific counterexample and does
not consider the property being verified. Thus it can easily generate refinements
not relevant to proving the property. The interpolation procedure considers only
the program path, and generates facts relevant to proving the property for that
path. Thus, it tends to generate more relevant refinements, and as a result it
converges in fewer refinements.

7 Conclusions

We have described a method that combines bounded model checking and interpo-
lation to approximate the transition relation of a system with respect to a given
safety property. The method is extensible to liveness properties of finite-state
systems, in the same manner as the method of [12]. When used with predicate
abstraction, the method eliminates the individual variables and function sym-
bols from the approximate transition formula, leaving it in a propositional form.
Unlike the method of [9], it does this without introducing extraneous Boolean
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variables. Thus, we can apply standard symbolic model checking methods to the
approximate system.

For a set of benchmark programs, the method was found to converge more
rapidly that the counterexample-based method of Das and Dill, primarily due
to the prover’s ability to focus the proof, and therefore the refinements, on facts
relevant to the property. The benchmark programs used here are small (the
largest being a sample device driver from a textbook), and the benchmark set
contains only 19 problems. Thus we cannot draw broad conclusions about the
applicability of the method. However, the experiments do show a potential to
speed the convergence of transition relation refinement for real programs. Our
hope is that this will make it easier to model check data-oriented rather than
control-oriented properties of software.
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1 Kestrel Technology/QSS, NASA Ames, Moffett Field, CA 94035, USA
2 Masaryk University Brno, Czech Republic

3 RIACS/USRA, NASA Ames, Moffett Field, CA 94035, USA

Abstract. We propose an abstraction-based model checking method
which relies on refinement of an under-approximation of the feasible be-
haviors of the system under analysis. The method preserves errors to
safety properties, since all analyzed behaviors are feasible by definition.
The method does not require an abstract transition relation to be gener-
ated, but instead executes the concrete transitions while storing abstract
versions of the concrete states, as specified by a set of abstraction pred-
icates. For each explored transition the method checks, with the help of
a theorem prover, whether there is any loss of precision introduced by
abstraction. The results of these checks are used to decide termination
or to refine the abstraction by generating new abstraction predicates. If
the (possibly infinite) concrete system under analysis has a finite bisim-
ulation quotient, then the method is guaranteed to eventually explore
an equivalent finite bisimilar structure. We illustrate the application of
the approach for checking concurrent programs. We also show how a
lightweight variant can be used for efficient software testing.

1 Introduction

Over the last few years, model checking based on abstraction-refinement has
become a popular technique for the analysis of software. In particular the ab-
straction technique of choice is a property preserving over-approximation called
predicate abstraction [13] and the refinement removes spurious behavior based
on automatically analyzing abstract counter-examples. This approach is often re-
ferred to as CEGAR (counter-example guided automated refinement) and forms
the basis of some of the most popular software model checkers [2, 3, 17]. Fur-
thermore, a strength of model checking is its ability to automate the detection
of subtle errors and to produce traces that exhibit those errors. However, over-
approximation based abstraction techniques are not particularly well suited for
this, since the detected defects may be spurious due to the over-approximation
— hence the need for refinement. We propose an alternative approach based
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on refinement of under-approximations, which effectively preserves the defect
detection ability of model checking in the presence of aggressive abstractions.

The technique uses a novel combination of (explicit state) model checking,
predicate abstraction and automated refinement to efficiently analyze increas-
ing portions of the feasible behavior of a system. At each step, either an error
is found, we are guaranteed no error exists, or the abstraction is refined. More
precisely, the proposed model checking technique traverses the concrete transi-
tions of the system and for each explored concrete state, it stores an abstract
version of the state. The abstract state, computed by predicate abstraction, is
used to determine whether the model checker’s search should continue or back-
track (if the abstract state has been visited before). This effectively explores an
under-approximation of the feasible behavior of the analyzed system. Hence all
counter-examples to safety properties are preserved.

Refinement uses weakest precondition calculations to check, with the help
of a theorem prover, whether the abstraction introduces any loss of precision
with respect to each explored transition. If there is no loss of precision due
to abstraction (we say that the abstraction is exact) the search stops and we
conclude that the property holds. Otherwise, the results from the failed checks
are used to refine the abstraction and the whole verification process is repeated
anew. In general, the iterative refinement may not terminate. However, if a finite
bisimulation quotient [19] exists for the system under analysis, then the proposed
approach is guaranteed to eventually explore a finite structure that is bisimilar
to the original system.

The technique can also be used in a lightweight manner, without a theorem
prover, i.e. the refinement guided by the exactness checks is replaced with refine-
ment based on syntactic substitutions [21] or heuristic refinement. The proposed
technique can be used for systematic testing, as it examines increasing portions
of the system under analysis. In fact, our method extends existing approaches to
testing that use abstraction mappings [14, 28], by adding support for automated
abstraction refinement.

To the best of our knowledge, the presented approach is the first predicate
abstraction based analysis which focuses on automated refinement of under-
approximations with the goal of efficient error detection. We illustrate the ap-
plication of the approach for checking safety properties in concurrent programs
and for testing container implementations.

Comparison with Related Work. The most closely related work to ours is
that of Grumberg et al. [15] where a refinement of an under-approximation is
used to improve analysis of multi-process systems. The procedure in [15] checks
models with an increasing set of allowed interleavings of the given processes,
starting from a single interleaving. It uses SAT-based bounded model checking
for analysis and refinement, whereas here we focus on explicit model checking
and predicate abstraction, and we use weakest precondition calculations for ab-
straction refinement.

Our approach can be contrasted with the work on predicate abstraction
for modal transition systems [12, 24], used in the verification and refutation of
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branching time temporal logic properties. An abstract model for such logics dis-
tinguishes between may transitions, which over-approximate transitions of the
concrete model, and must transitions, which under-approximate the concrete
transitions (see also [1, 6, 7]). The method presented here explores and generates
a structure which is more precise (contains more feasible behaviors) than the
model defined by the must transitions, for the same abstraction predicates. The
reason is that the model checker explores transitions that correspond not only
to must transitions, but also to may transitions that are feasible (see Section 2).

Moreover, unlike [12, 24] and over-approximation based abstraction tech-
niques [2, 3], the under-approximation and refinement approach does not require
the a priori construction of the abstract transition relation, which involves expo-
nentially many theorem prover calls (in the number of predicates), regardless of
the size of (the reachable portion of) the analyzed system. In our case, the model
checker executes concrete transitions and a theorem prover is only used during
refinement, to determine whether the abstraction is exact with respect to each
executed transition. Every such calculation makes at most two theorem prover
calls, and it involves only the reachable state space of the system under analysis.
Another difference with previous abstraction techniques is that the refinement
process is not guided by the spurious counter-examples, since no spurious behav-
ior is explored. Instead, the refinement is guided by the failed exactness checks
for the explored transitions.

In previous work [22], we developed a technique for finding guaranteed feasi-
ble counter-examples in abstracted programs. The technique essentially explores
an under-approximation defined by the must abstract transitions (although the
presentation is not formalized in these terms). The work presented here explores
an under-approximation which is more precise than the abstract system defined
by the must transitions. Hence it has a better chance of finding bugs while en-
abling more aggressive abstraction and therefore more state space reduction.

Model-driven software verification [18] advocates the use of abstraction map-
pings during concrete model checking in a way similar to what we present here.
The CMC model checking tool [20] also attempts to store state information in
memory using aggressive compressing techniques (which can be seen as a form
of abstraction), while the detailed state information is kept on the stack. These
techniques allow the detection of subtle bugs which can not be discovered by
classical model checking, using e.g. breadth first search. or by state-less model
checking [11]. While these techniques use abstractions in an ad-hoc manner, our
work contributes the automated generation and refinement of abstractions.

Dataflow and type-based analyzes have been used to check safety proper-
ties of software (e.g. [25]). Unlike our work, these techniques analyze over-
approximations of system behavior and may generate false positive results due
to infeasible paths.

Layout. The rest of the paper is organized as follows. Section 2 shows an exam-
ple illustrating our approach. Section 3 gives background information. Section 4
describes the main algorithm for performing concrete model checking with ab-
stract matching and refinement. Section 5 discusses correctness and termination
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for the algorithm. Section 6 proposes extensions to the main algorithm. Section 7
illustrates applications of the approach and Section 8 concludes the paper.

2 Example

The example in Fig. 1 illustrates some of the main characteristics of our ap-
proach. Fig. 1 (a) shows the state space of a concrete system that has only one
variable x; states are labelled with the program counter (e.g. A, B, C ...) and
the concrete value of x. Fig. 1 (b) shows the abstract system induced by the
may transitions for predicate p = x < 2. Fig. 1 (c) shows the abstract system
induced by the must transitions for predicate p.
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Fig. 1. (a) Concrete system (b) May abstraction using predicate p = x < 2 (c) Must

abstraction using p (d) Concrete search with abstract matching using p (e) Concrete

search with abstract matching using predicates p and q = x < 1

Fig. 1 (d) shows the state space explored using our proposed approach, for
an abstraction specified by predicate p. Dotted circles denote the abstract states
which are stored, and used for matching, during the concrete execution of the
system. The approach explores only the feasible behavior of the concrete system,
following transitions that correspond to both may and must transitions, but it
might miss behavior due to abstract matching. For example, state (E, 1) is not
explored, assuming a breadth-first search, since (D, 0) was matched with (D, 1) -
both have the same program counter and both satisfy p. Notice that, with respect
to reachable states, the produced structure is a better under-approximation than
the must abstraction. Fig. 1 (e) illustrates concrete execution with abstract
matching, after a refinement step, which introduced a new predicate q = x < 1.
The resulting structure is an exact abstraction of the concrete system.

3 Background

Program Model. To make the presentation simple, we use as a specifica-
tion language a guarded commands language over integer variables. Most of
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the results extend directly to more sophisticated programming languages. Let
V be a finite set of integer variables. Expressions over V are defined us-
ing standard boolean (=, <,>) and binary (+,−, ·, ...) operations. A model
is a tuple M = (V, T ). T = {t1, . . . , tk} is a finite set of transitions, where
ti = (gi(x) �−→ x := ei(x)). gi(x) is a guard and ei(x) are assignments to
the variables represented by tuple x; throughout the paper, we write this as a
sequence of assignments.

Semantics. As a semantics of a model we use transition systems. A transition
system over a finite set of atomic propositions AP is a tuple (S,R, s0, L) where
S is a (possibly infinite) set of states, R = { i−→} is a finite set of deterministic
transition relations: i−→⊆ S × S, s0 is an initial state, and L : S → 2AP is a
labelling function. State s is reachable if it is reachable from the initial state
via zero or more transitions, i.e. s0 →∗ s. The set of reachable labellings RL is
{L(s) | ∃s ∈ S : s0 →∗ s}. The concrete semantics of model M is the transition
system C(M) = (S, { i−→}, s0, L) over AP , where:

– S = 2V →Z, i.e. states are valuations of variables,
– s

i−→ s′ ⇔ s |= gi∧s′ = ui(s); the semantics of guards (boolean expressions)
and updates is as usual; guards are functions (V → Z) → {true, false},
written as s |= gi; updates are functions ui : (V → Z) → (V → Z),

– s0 is the zero valuation (∀v ∈ V : s0(v) = 0),
– L(s) = {p ∈ AP | s |= p}.

Weakest Precondition. The weakest precondition of a set of states X with
respect to transition i is wp(X, i) = {s | s i−→ s′ ⇒ s′ ∈ X}. If the set of states
X is characterized by a predicate φ, then the weakest precondition with respect
to transition i can be expressed as wp(φ, i) = (gi ⇒ φ[ei(x)/x]).

Predicate Abstraction. Predicate abstraction is a special instance of the
framework of abstract interpretation [5] that maps a (potentially infinite state)
transition system into a finite state transition system via a set of predicates
Φ = {φ1, . . . , φn} over the program variables. Let Bn be a set of bitvectors
of length n. We define abstraction function αΦ : S → Bn, such that αΦ(s)
is a bitvector b1b2 . . . bn such that bi = 1 ⇔ s |= φi. Let Φs be the set
of all abstraction predicates that evaluate to true for a given state s, i.e.
Φs = {φ ∈ Φ | s |= φ}. For succinctness we sometimes write αΦ(s) (or just
α(s)) to denote

∧
φ∈Φs

φ ∧∧
φ/∈Φs

¬φ.
We also give here the definitions of may and must abstract transitions. Al-

though not necessary for formalizing our algorithm, these definitions clarify the
comparison with related work. For two abstract states (bitvectors) a1 and a2:

– −→must: a1
i−→must a2 iff for all concrete states s1 such that α(s1) = a1,

there exists concrete state s2 such that α(s2) = a2 and s1
i−→ s2,

– −→may: a1
i−→may a2 iff there exists concrete state s1 such that α(s1) = a1

and there exists concrete state s2 such that α(s2) = a2, such that s1
i−→ s2.
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Algorithms for computing abstractions using over-approximation based pred-
icate abstraction are given in e.g. [2, 13] (they compute may abstract transitions
automatically, with the help of a theorem prover). In the worst case, these algo-
rithms make 2n×n× 2 calls to the theorem prover for each program transition.
Note that our approach does not require the computation of abstract transitions,
since it executes the concrete transitions directly.

Bisimulation. A symmetric relation R ⊆ S × S is a bisimulation relation iff
for all (s, s′) ∈ R:

– L(s) = L(s′)
– For every s′ i−→ s′1 there exists s

i−→ s1 such that R(s1, s
′
1)

The bisimulation is the largest bisimulation relation, denoted ∼. Two tran-
sition systems are bisimilar if their initial states are bisimilar. As ∼ is an equiv-
alence relation, it induces a quotient transition system whose states are equiva-
lence classes with respect to ∼ and there is a transition between two equivalence
classes A and B if ∃s1 ∈ A and ∃s2 ∈ B such that s1

i−→ s2.

4 Concrete Model Checking with Abstract Matching

Algorithm. Fig. 2 shows the reachability procedure that performs model check-
ing with abstract matching (αSearch). It is basically concrete state space ex-
ploration with matching on abstract states; the main modification with respect
to classical state space search is that we store α(s) instead of s. The procedure
uses the following data structures:

– States is a set of abstract states visited so far,
– Transitions is a set of abstract transitions visited so far,
– Wait is a set of concrete states to be explored.

The procedure performs validity checking, using a theorem prover, to deter-
mine whether the abstraction is exact with respect to each explored transition —
see discussion below. The set Φnew maintains the list of abstraction predicates.
The procedure returns the computed structure and a set of new predicates that
are used for refinement.

Fig. 3 gives the iterative refinement algorithm for checking whether M can
reach an error state described by ϕ. At each iteration of the loop, the algorithm
invokes procedure αSearch to analyze an under-approximation of the system,
which either violates the property, it is proved to be correct (if the abstraction
is found to be exact with respect to all transitions), or it needs to be refined.
Counterexamples are generated as usual (with depth-first search order using the
stack, with breadth-first search order using parent pointers).

Checking for Exact Abstraction and Refinement. We say that an ab-
straction function α is exact with respect to transition s

i−→ s′ iff for all s1 such
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proc αSearch(M, Φ)
Φnew = Φ; add s0 to Wait; add αΦ(s0) to States
while Wait �= ∅ do

get s from Wait
L(αΦ(s)) = {a ∈ AP | s |= a}
foreach i from 1 to n do

if s |= gi then
if αΦ(s) ⇒ gi is not valid

then add gi to Φnew fi
s′ = ui(s)
if αΦ(s) ⇒ αΦ(s′)[ei(x)/x] is not valid

then add predicates in αΦ(s′)[ei(x)/x] to Φnew fi
if αΦ(s′) �∈ States then

add s′ to Wait
add αΦ(s′) to States

fi
add (αΦ(s), i, αΦ(s′)) to Transitions

else
if αΦ(s) ⇒ ¬gi is not valid

then add gi to Φnew fi
fi

od
od
A = (States, Transitions, αΦ(s0), L)
return (A, Φnew)

end

Fig. 2. Search procedure with checking for exact abstraction

proc RefinementSearch(M, ϕ)
i = 1; Φi = ∅
while true do

(Ai, Φi+1) = αSearch(M, Φi)
if ϕ is reachable in Ai then return counter-example fi
if Φi+1 = Φi then return unreachable fi
i = i + 1

od
end

Fig. 3. Iterative refinement algorithm

that α(s) = α(s1) there exists s′1 such that α(s′1) = α(s′) and s1
i−→ s′1. In other

words, α is exact with respect to s
i−→ s′ iff α(s) i−→must α(s′). This defini-

tion is also related to the notion of completeness in abstract interpretation (see
e.g. [10]), which states that no loss of precision is introduced by the abstraction.

Checking that the abstraction is exact with respect to concrete transition
s

i−→ s′ is equivalent to checking that αΦ(s) ⇒ wp(αΦ(s′), i) is valid. This
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formula is equivalent to αΦ(s) ⇒ αΦ(s′)[ei(x)/x] when s |= gi. Checking the
validity for these formulas is in general undecidable. As is customary, if the
theorem prover can not decide the validity of a formula, we assume that it is not
valid. This may cause some unnecessary refinement, but it keeps the correctness
of the approach. If the abstraction can not be proved to be exact with respect
to some transition, then the new predicates from the failed formula are added to
the set of abstraction predicates. Intuitively, these predicates will be useful for
proving exactness in the next iteration.

5 Correctness and Termination

In this section we discuss the properties of the refinement algorithm. We state
only the main theorems, technical lemmas and proofs are given in [23] (due to
space limitations). First, we show that the set RL(αSearch(M,Φ)) of reachable
labellings computed by the algorithm RefinementSearch is a subset of the
reachable labellings of the system under analysis. Note that sometimes we let
αSearch(M,Φ) denote just the structure A computed by the algorithm and not
the tuple (A,Φnew).

Theorem 1. Let AP ⊆ Φ. Then RL(αSearch(M,Φ)) ⊆ RL(C(M)).

Moreover, it holds that RL(αSearch(M,Φ)) is a superset of the reachable
labellings in the must abstraction (see Lemma 1 in [23]), hence it is (potentially)
a better approximation.

We now show that, if the iterative algorithm terminates then the result is
correct and moreover, if the error state is unreachable, the output structure is
bisimilar to the system under analysis:

Theorem 2. If RefinementSearch(M,ϕ) terminates then:

– If it returns a counter-example, then it is a real error.
– If it returns ’unreachable’, then the error state is indeed unreachable in M

and moreover the computed structure is bisimilar to C(M).

In general, the proposed algorithm might not terminate (because of the halt-
ing problem). However, the algorithm is guaranteed to eventually find all the
reachable labellings of the concrete program, although it might not be able to
detect that (to decide termination). Moreover, if the (reachable part of the) sys-
tem under analysis has a finite bisimulation quotient, then the algorithm will
eventually produce a finite bisimilar structure.

Theorem 3. Let the αSearch use breadth-first search order and let A1, A2 ...
be a sequence of transition systems generated during iterative refinement per-
formed by RefinementSearch(M,ϕ). Then

– There exits i such that RL(Ai) = RL(C(M)).
– If the reachable part of the bisimulation quotient is finite, then there exists i

such that Ai ∼ C(M).
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The basic idea of the proof is that any two states that are in different bisimu-
lation classes (s �∼ s′) will eventually be distinguished by the abstraction function
(αΦi

(s) �= αΦi
(s′)). Moreover, each bisimulation class will eventually be visited

by RefinementSearch and the (finite set) of reachable labellings will emerge.

Discussion. The search order used in αSearch (depth-first or breadth-first)
influences the size of the generated structure, the newly computed predicates,
and even the number of iterations of the main algorithm. If there are two states
s1 and s2 such that αΦ(s1) = αΦ(s2) but s1 �∼ s2 then, depending on whether
s1 or s2 is visited first, different parts of the transition system will be explored.

Also note that the refinement algorithm is non-monotone, i.e. a labelling
which is reachable in one iteration may not be reachable in the next iteration.
A similar problem occurs in the context of must abstractions: the set of must
transitions is not generally monotonically increasing when predicates are added
to refine an abstract system [12, 24]. However, we should note that the algorithm
is guaranteed to converge to the correct answer.

We should also note that the proposed iterative algorithm is not guaranteed
to terminate even for a finite state program. This situation is illustrated by the
following example (the property we are checking is that pc = 2 is unreachable).

pc = 0 �−→ x := 0, y := 0, pc := 1
pc = 1 ∧ y ≥ 0 �−→ y := y + x
pc = 1 ∧ y < 0 �−→ pc := 2

Although the program is finite state (and therefore the problem can be easily
solved with classical explicit model checking), it is quite difficult to solve using
abstraction refinement techniques. The iterative algorithm will not terminate on
this example: it will keep adding predicates y ≥ 0, y + x ≥ 0, y + 2x ≥ 0, . . ..
Note that, in accordance with Theorem 3, it will eventually produce a bisim-
ilar structure. However, the algorithm will not be able to detect termination,
and it will keep refining indefinitely. The reason is that the algorithm keeps
adding predicates that refine the unreachable part of the system under analy-
sis. Also note that the same problem will occur with over-approximation based
abstraction techniques that use refinement based on weakest precondition cal-
culations [3, 21]. Those techniques will introduce the same predicates.

To solve this problem, we propose to use the following heuristic. If there is
a transition for which we cannot prove that the abstraction is exact in several
subsequent iterations of the algorithm, then we add predicates describing the
concrete state; i.e. in our example we would add predicates x = 0; y = 0. The
abstraction will eventually become exact with respect to each transition. And
since the number of reachable transitions is finite, the algorithm must terminate.

Corollary 1. If C(M) is finite state then the modified algorithm terminates.

6 Extensions

Lightweight Approach. As mentioned, the under-approximation and refine-
ment approach can be used in a lightweight but systematic manner, without
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using a theorem prover for validity checking. Specifically, for each explored tran-
sition ti refinement adds the new predicates from αΦ(s′)[ei(x)/x], regardless of
the fact that the abstraction is exact with respect to transition ti. This approach
may result in unnecessary refinement. A similar refinement procedure was used
in [21] for automated over-approximation predicate abstraction.

We are also considering several heuristics for generating new abstraction pred-
icates. For example, it is customary to add the predicates that appear in the
guards and in the property to be checked. One could also add predicates gener-
ated dynamically, using tools like Daikon [9], or predicates from known invariants
of the system (generated using static analysis techniques).

In order to extend the applicability of the proposed technique to the analysis
of full-fledged programming languages, we are investigating abstractions that
record information about the shape of the program heap, to be used in conjunc-
tion with the abstraction predicates. Section 7 shows an example use of such
abstractions for the analysis of Java programs.

Transition Dependent Predicates. The predicates that are generated after
the validity check for one transition are used ‘globally’ at the next iteration. This
may cause unnecessary refinement — the new predicates may distinguish states
which do not need to be distinguished. To avoid this, we could use ‘transition
dependent’ predicates. The idea is to associate the abstraction predicates with
the program counter corresponding to the transition that generated them. New
predicates are then added only to the set of the respective program counter.
However, with this approach, it may take longer before predicates are ‘propa-
gated’ to all the locations where they are needed, i.e. more iterations are needed
before an error is detected or an exact abstraction is found. We need to further
investigate these issues. Similar ideas are presented in [4, 16], in the context of
over-approximation based predicate abstraction.

7 Applications

We have implemented our approach for the guarded command language. Our
implementation is done in the language Ocaml and it uses the Simplify theo-
rem prover [8]. The implementation uses several optimizations for checking only
necessary queries. When updating Φnew for refinement, we add only those con-
juncts of αΦ(s′)[ei(x)/x] for which we cannot prove validity. Moreover, we cache
queries to ensure that the theorem prover is not called twice for the same query.

We discuss the application of our implementation for two concurrent pro-
grams: property verification for the Bakery mutual exclusion protocol and error
detection in RAX (Remote Agent Experiment), a component extracted from an
embedded spacecraft-control application.

These preliminary experiments show the merits of our approach. Of course,
much more experimentation is necessary to really assess the practical benefits
of the proposed technique and a lot more engineering is required to apply it to
real programming languages. We are currently doing an implementation in the
Java PathFinder (JPF) model checking framework [26] for the analysis of Java
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(Process 1)
pc1 = 0 �−→ x := y, pc1 := 1
pc1 = 1 �−→ x := x + 1, pc1 := 2
pc1 = 2 ∧ x ≤ y �−→ pc1 := 3
pc1 = 3 �−→ pc1 := 0

(Process 2)
pc2 = 0 �−→ y := x, pc2 := 1
pc2 = 1 �−→ y := y + 1, pc2 := 2
pc2 = 2 ∧ y < x �−→ pc2 := 3
pc2 = 3 �−→ pc2 := 0

Fig. 4. Bakery example

Iteration Concrete states Abstract states New predicates

1 17 11 x ≤ y
2 18 12 x + 1 ≤ y, x ≤ y + 1, y ≥ 0
3 26 19 x + 2 ≤ y, y ≥ 1, x ≤ 1
4 44 32 y ≤ 1, x ≤ 0, y ≥ 2
5 48 36 -

Fig. 5. Bakery example: intermediate results of the refinement algorithm

programs. We briefly discuss at the end of this section the use of our approach
for test-case generation for Java container implementations.

The Bakery Mutual Exclusion Protocol. We have analyzed several ver-
sions of the Bakery mutual exclusion protocol (for two and more processes).
These versions are infinite state but they have a finite bisimulation quotient.
The guarded command representation for a simplified version of the protocol is
given in Fig. 4.

The mutual exclusion property is encoded as “pc1 = 3 ∧ pc2 = 3 is unreach-
able”. We used our tool to successfully prove that the property holds. Fig. 5 gives
the intermediate results of the analysis. For each iteration, we report the number
of generated concrete states, the number of stored abstract states and the newly
generated predicates. Note that we never abstract the program counter. The
reported results are for the breadth-first search order. For the depth-first search
order the algorithm requires only 4 iterations (see the discussion in Section 5).
The algorithm proceeds in similar way for the full version of the protocol.

RAX. The RAX example (illustrated in Fig. 6) is derived from the software used
within the NASA Deep Space 1 Remote Agent experiment, which deadlocked
during flight [27]. We encoded the deadlock check as “pc1 = 4 ∧ pc2 = 5 ∧
w1 = 1 ∧ w2 = 1 is unreachable”. The error is found after one iteration, for
breadth-first search order; the reported counter-example has 8 steps. For depth-
first search order, the algorithm needs one more iteration to find the error, using
the predicates that appear in the guards c1 = e1 and c2 = e2.

Note that the state space of the program is unbounded, as the program keeps
incrementing the counters e1 and e2, when pc2 = 2 and pc1 = 6, respectively.
We also ran our algorithm to see if it converges to a finite bisimulation quotient.
Interestingly, the algorithm does not terminate for the RAX example, although
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it has a finite bisimulation quotient. The results are shown in Fig. 7 (breadth-
first search order). However, if we assume that the counters in the program are
non-negative, i.e. we introduce two new predicates, e1 ≥ 0, e2 ≥ 0, then the
algorithm terminates after three iterations.

The application of over-approximation based predicate abstraction to a Java
version of RAX is described in detail in [27]. In that work, four different pred-
icates were used to produce an abstract model that is bisimilar to the original
program. In contrast, the work presented here allowed more aggressive abstrac-
tion to recover feasible counter-examples.

In general, we believe that the technique presented here is complementary
to over-approximation abstraction methods and it can be used in conjunction
with such methods, as an efficient way of discovering feasible counter-examples.
We view the integration of the two approaches as an interesting topic for future
research. Our technique explores transitions that are guaranteed to be feasible
in the state space bounded by the abstraction predicates. In contrast, the over-
approximation based methods may also explore transitions that are spurious
and therefore could require additional refinement before reporting a real counter-
example. Hence, our technique can potentially finish in fewer iterations and it can
use fewer predicates (which enable more state space reduction), while retaining
the model checker’s capability of finding real bugs.

Testing. We have used our preliminary implementation in the JPF model
checker to perform test case generation to achieve code coverage for Java con-
tainer classes (tree-map, linked-list, fibonacci-heap). Test cases are sequences of
API calls, i.e. method calls that add and remove elements in a container, to obtain

(Process 1)
pc1 = 1 �−→ c1 := 0, pc1 := 2
pc1 = 2 ∧ c1 = e1 �−→ pc1 := 3
pc1 = 3 �−→ w1 := 1, pc1 := 4
pc1 = 4 ∧ w1 = 0 �−→ pc1 := 5
pc1 = 2 ∧ c1 �= e1 �−→ pc1 := 5
pc1 = 5 �−→ c1 := e1, pc1 := 6
pc1 = 6 �−→ e2 := e2 + 1, w2 := 0, pc1 := 2

(Process 2)
pc2 = 1 �−→ c2 := 0, pc2 := 2
pc2 = 2 �−→ e1 := e1 + 1, w1 := 0, pc2 := 3
pc2 = 3 ∧ c2 = e2 �−→ pc2 := 4
pc2 = 4 �−→ w2 := 1, pc2 := 5
pc2 = 5 ∧ w2 = 0 �−→ pc2 := 6
pc2 = 3 ∧ c2 �= e2 �−→ pc2 := 6
pc2 = 6 �−→ c2 := e2, pc2 := 2

Fig. 6. RAX example

Iteration Concrete states Abstract states New predicates

1 56 35 c1 = e1, c2 = e2

2 68 44 e1 = 0, e2 = 0
3 100 65 e1 = −1, e2 = −1
4 100 65 e1 = −2, e2 = −2
5 100 65 ...

Fig. 7. RAX example: intermediate results of the refinement algorithm
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for example, branch coverage. The model checker analyzes all sequences of API
calls up to a predefined sequence size and generates paths that are witnesses to
testing coverage criteria encoded as reachability properties. Abstraction is used
to match states between API calls and to avoid the generation of redundant
tests.

We used an abstraction recording the (concrete) shape of the containers aug-
mented with different predicate abstractions on the data fields from each con-
tainer element — two states are matched if they represent containers that have
the same shape and valuation for the abstraction predicates. The behavioral
coverage obtained in this fashion is highly dependent on the different abstrac-
tions that are used. Therefore we believe that the capability of generating and
refining the abstractions automatically is crucial for achieving good coverage.
Although the work presented here is only a first step towards this goal (the JPF
implementation does not yet allow automated refinement), we obtained better
behavioral coverage than with exhaustive model checking. In fact, for some of
the examples, exhaustive analysis runs out of memory even before generating
tests that cover all the reachable branches in the code.

8 Conclusions and Future Work

We presented a novel model checking algorithm based on refinement of under-
approximations, which effectively preserves the defect detection ability of model
checking in the presence of powerful abstractions. The under-approximation is
obtained by traversing the concrete transition system and performing the state
matching on abstract states computed by predicate abstraction. The refinement
is done by checking exactness of abstractions with the use of a theorem prover.
We illustrated the application of the algorithm for checking safety properties of
concurrent programs and for testing container implementations. In the future,
we plan to extend the algorithm to checking liveness properties. We also plan to
do an extensive evaluation of our approach on real systems.

References

1. T. Ball. A theory of predicate-complete test coverage and generation. Technical
Report MSR-TR-2004-28, Microsoft Research, 2004.

2. T. Ball, A. Podelski, and S. Rajamani. Boolean and cartesian abstractions for
model checking C programs. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), volume 2031 of LNCS, 2001.

3. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. ACM Trans. Computer Systems, 30(6):388–402, 2004.

4. S. Chaki, E. Clarke, A. Groce, and O. Strichman. Predicate abstraction with
minimum predicates. In Proc. 12th CHARME, volume 2860 of LNCS, 2003.

5. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 4(2):511–547, August 1992.



Concrete Model Checking with Abstract Matching and Refinement 65

6. D. Dams and K. S. Namjoshi. The existence of finite abstractions for branching
time model checking. In Proc. 19th Symposium on Logic in Computer Science
(LICS’04), 2004.

7. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games:
Uncertainty, but with precision. In Proc. 19th Symposium on Logic in Computer
Science (LICS’04), 2004.

8. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, 1998.

9. M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In Proc. 22nd International Conference on Software
Engineering (ICSE’00), 2000.

10. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refine-
ments in abstract model checking. In Proc. 8th Static Analysis Symposium
(SAS’01), volume 2126 of LNCS, 2001.

11. P. Godefroid. Software Model Checking: the Verisoft Approach. Formal Methods
in Systems Design (to appear).

12. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking
using modal transition systems. In Proc. CONCUR 2001 - Concurrency Theory,
volume 2154 of LNCS, 2001.

13. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc.
Computer Aided Verification (CAV’97), volume 1254 of LNCS, 1997.

14. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state
machines from abstract state machines. In Proc. International Symposium on
Software Testing and Analysis (ISSTA’04), July 2002.

15. O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Proc. 32nd Sympo-
sium on Principles of Programming Languages (POPL’05), 2005.

16. T. A. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions
from proofs. In Proc. 31st Symposium on Principles of Programming Languages
(POPL’04), 2004.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and Gregoire Sutre. Lazy abstraction.
In Proc. 29th Symposium on Principles of Programming Languages, 2002.

18. G. J. Holzmann and R. Joshi. Model-driven software verification. In Proc. 11th
SPIN Workshop, volume 2989 of LNCS, Barcelona, Spain, 2004.

19. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc.
24th ACM Symposium on Theory of Computing, 1992.

20. M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC:
A pragmatic approach to model checking real code. In Proc. 5th Symposium on
Operating Systems Design and Implementation (OSDI’02), 2002.

21. K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for auto-
matic abstraction. In Proc. Computer Aided Verification (CAV’00), volume 1855
of LNCS, 2000.
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Abstract. Abstraction is traditionally used in the process of verification. There,
an abstraction of a concrete system is sound if properties of the abstract system
also hold in the concrete system. Specifically, if an abstract state a satisfies a
property ψ then all the concrete states that correspond to a satisfy ψ too. Since
the ideal goal of proving a system correct involves many obstacles, the primary
use of formal methods nowadays is falsification. There, as in testing, the goal is
to detect errors, rather than to prove correctness. In the falsification setting, we
can say that an abstraction is sound if errors of the abstract system exist also in
the concrete system. Specifically, if an abstract state a violates a property ψ, then
there exists a concrete state that corresponds to a and violates ψ too.

An abstraction that is sound for falsification need not be sound for verification.
This suggests that existing frameworks for abstraction for verification may be too
restrictive when used for falsification, and that a new framework is needed in
order to take advantage of the weaker definition of soundness in the falsification
setting.

We present such a framework, show that it is indeed stronger (than other ab-
straction frameworks designed for verification), demonstrate that it can be made
even stronger by parameterizing its transitions by predicates, and describe how
it can be used for falsification of branching-time and linear-time temporal prop-
erties, as well as for generating testing goals for a concrete system by reasoning
about its abstraction.

1 Introduction

Automated abstraction is a powerful technique for reasoning about systems. An abstrac-
tion framework [CC77] consists of a concrete system with (large, possibly infinite) state
space C, an abstract system with (smaller, often finite) state space A, and an abstraction
function ρ:C → A that relates concrete and abstract states. An abstraction framework
is sound with respect to a logic L if all properties specified in L that hold in an abstract
state a also hold in all the concrete states that correspond to a. Formally, for all a ∈ A
and ϕ ∈ L, if a satisfies ϕ then for all c ∈ C with ρ(c, a), we have that c satisfies ϕ.
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The soundness of the abstraction framework enables the user to verify properties of the
abstract system using techniques such as model checking [CE81, QS81] and conclude
their validity in the concrete system.

While the ultimate goal of formal verification is to prove that a system satisfies
some specification, there are many obstacles to achieving this ideal in practice. Thus,
the primary use of formal methods nowadays is falsification, where the goal is to detect
errors rather than to provide a proof of correctness. This is reflected in the extensive
research done on bounded model checking (c.f., [FKZ+00]), runtime verification (c.f.,
[Sip99]), etc. In the falsification setting, we can say that an abstraction is sound with
respect to a logic L if all errors specified in L that hold in an abstract state a also hold
in some concrete state that corresponds to a. Formally, for all a ∈ A and ϕ ∈ L,
if a satisfies ϕ then there is c ∈ C such that ρ(c, a) and c satisfies ϕ. 1 Since every
abstract state corresponds to at least one concrete state, the soundness condition in the
falsification setting is weaker than the soundness condition in the verification setting.
To see that this weaker definition is sufficiently strong for falsification, note that the
concrete state c that satisfies ϕ witnesses that the concrete system is erroneous (we note
that in the falsification setting ϕ is a “bad” property that we don’t wish the system to
have, while in the verifications setting ϕ is a “good” property that we wish the system
to have).

We develop a new abstraction framework to take advantage of the weaker defini-
tion of soundness in the falsification setting. Our framework is based on modal tran-
sition systems (MTS) [LT88]. Traditional MTS have two types of transitions: may
(over-approximating transitions) and must (under-approximating transitions). The use
of must transitions in the falsification setting was explored in [PDV01, GLST05], with
different motivations. Our framework contains, in addition, a new type of transition,
which can be viewed as the reverse version of must transitions [Bal04]. Accordingly,
we refer to transitions of this type as must− transitions and refer to the traditional must
transitions as must+ transitions. While a must+ transition from an abstract state a to
an abstract state a′ implies that for all concrete states c with ρ(c, a) there is a succes-
sor concrete state c′ with ρ(c′, a′), a must− transition from a to a′ implies that for all
concrete states c′ with ρ(c′, a′) there is a concrete predecessor state c with ρ(c, a). The
must− transitions correspond to the weaker soundness requirement in the falsification
setting and are incomparable to must+ transitions.

Consider, for example, a simple concrete system consisting of the assignment state-
ment x:=x-3. Suppose that the abstract system is formed via predicate abstraction
using the predicate x > 6. Consider the abstract transition {x > 6} x:=x-3 {x > 6}.
This transition is not a must transition, as there are pre-states satisfying x > 6 (namely
x = 7, x = 8, and x = 9) for which the assignment statement results in a post-
state that does not satisfy x > 6. Therefore, in a traditional MTS this transition is a

1 Note that the falsification setting is different than the problem of generalized model check-
ing [GJ02]. There, the existential quantifier ranges over all possible concrete systems and the
problem is one of satisfiability (does there exist a concrete system with the same property as
the abstract system?). Here, the concrete system is given and we only replace the universal
quantification on concrete states that correspond to a by an existential quantification on them.
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may transition. However, in an MTS with must− transitions, the above transition is
a must− transition, as for every post-state c′ satisfying x > 6 there is a pre-state c
satisfying x > 6 such that the execution of x:=x-3 from c yields c′. It is impossible to
make this inference in a traditional MTS, even those augmented with hyper-must tran-
sitions [LX90, SG04]. As we shall see below, the observation that the abstract transition
is a must− transition rather than a may transition enables better reasoning about the
concrete system.

We study MTS with these three types of transitions, which we refer to as ternary
modal transition systems (TMTS)2. We first show that the TMTS model is indeed
stronger than the MTS model: while MTS with only may and must+ transitions are
logically characterized by a 3-valued modal logic with the AX and EX (for all suc-
cessors/exists a successor) operators, TMTS are logically characterized by a strictly
more expressive modal logic which has, in addition, the AY and EY (for all prede-
cessors/exists a predecessor) past operators. We then show that by replacing must+

transitions by must− transitions, existing work on abstraction/refinement for verifi-
cation [GHJ01, SG03, BG04, SG04, DN05] can be lifted to abstraction/refinement for
falsification.

In particular, this immediately provides a framework for falsification of CTL and μ-
calculus specifications. Going back to our example, by letting existential quantification
range over must− transitions, we can conclude from the fact that the abstract system
satisfies the property EXx > 6 (there is a successor in which x > 6 is valid) that
some concrete state also satisfies EXx > 6. Note that such reasoning cannot be done
in a traditional MTS, as there the must− transition is overapproximated by a may
transition, which is not helpful for reasoning about existential properties. Thus, there
are cases where evaluation of a formula on a traditional MTS returns ⊥ (nothing can
be concluded for the concrete system, and refinement is needed) and its evaluation on a
TMTS returns an existential true or existential false. Formally, we describe a 6-valued
falsification semantics for TMTS. In addition to the T (all corresponding concrete states
satisfy the formula), F (all corresponding concrete states violate the formula), and ⊥
truth values that the 3-valued semantics for MTS has, the falsification semantics also
has the T∃ (there is a corresponding concrete state that satisfies the formula), F∃ (there
is a corresponding concrete state that violates the formula), and M (mixed – both T∃
and F∃ hold) truth values.

The combination of must+ and must− transitions turn out to be especially power-
ful when reasoning about weak reachability, which is useful for abstraction-guided test
generation [Bal04] and falsification of linear-time properties. As discussed in [Bal04],
if there is a sequence of must− transitions from a0 to aj followed by a sequence of
must+ transitions from aj to ak, then there are guaranteed to be concrete states c0

and ck (corresponding to a0 and ak) such that ck is reachable from c0 in the concrete
system (in which case we say that ak is weakly reachable from a0). In this case, we
can conclude that it is possible to cover the abstract state ak via testing. When the ab-
straction is the product of an abstract system with a nondeterministic Büchi automaton
accepting all the faults of the system, weak reachability can be used in order to de-

2 Not to be confused with the three-valued logic sometimes used in these systems.
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tect faults in the concrete system. We focus on abstractions obtained from programs by
predicate abstraction, and study the problem of composing transitions in an TMTS in a
way that guarantees weak reachability. We suggest a method where must+ and must−

transitions are parameterized with predicates, automatically induced by the weakest
preconditions and the strongest postconditions of the statements in the program3.

The paper is organized as follows. Section 2 formally presents ternary modal tran-
sition systems (TMTS), how they abstract concrete systems (as well as each other) and
characterizes their abstraction pre-order via the full propositional modal logic (full-
PML). Section 2.3 presents the 6-valued falsification semantics for TMTS and demon-
strates that TMTS are more precise for falsification than traditional MTS. We also show
that falsification can be lifted to the μ-calculus as well as linear-time logics. Section 3
shows that weak reachability can be made more precise by parameterizing both must+

and must− transitions via predicates. Section 4 describes describes applications of
TMTS to abstraction-guided testing and to model checking. Section 5 concludes the
paper.

Due to a lack of space, this version does not contain proofs and contains only a
partial discussion of the results. For a full version, the reader is referred to the authors’
URLs and our technical report [BKY05].

2 The Abstraction Framework

In this section we describe our abstraction framework. We define TMTS — ternary
modal transition systems, which extend modal transition systems by a third type of
transition, and study their theoretical aspects.

2.1 Ternary Modal Transition Systems

A concrete transition system is a tuple C = 〈AP, SC , IC ,−→C , LC〉, where AP is a
finite set of atomic propositions, SC is a (possibly infinite) set of states, IC ⊆ SC is a
set of initial states,−→C⊆ SC×SC is a transition relation and LC :SC×AP �→ {T, F}
is a labeling function that maps each state and atomic proposition to the truth value of
the proposition in the state.4

An abstraction of C is a partially defined system. Incompleteness involves both the
value of the atomic propositions, which can now take the value ⊥ (unknown), and the
transition relation, which is approximated by over- and/or under-approximating transi-
tions. Several frameworks are defined in the literature (c.f. [LT88, BG99, HJS01]). We
define here a new framework, which consists of ternary transition systems (TMTS, for
short). Unlike the traditional MTS, our TMTS has two types of under-approximating
transitions. Formally, we have the following.

3 We note (see the remark at the end of Section 3 for a detailed discussion) that our approach is
different than refining the TMTS as the predicates we use are local to the transitions.

4 We use T and F to denote the truth values true and false of the standard (verification) seman-
tics, and introduce additional truth values in Section 2.3.
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A TMTS is a tuple A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉, where AP is a fi-

nite set of atomic propositions, SA is a finite set of abstract states, IA ⊆ SA is a set of

initial states, the transition relations
may−→A,

must+−→A , and
must−−→A are subsets of SA×SA sat-

isfying
must+−→A⊆ may−→A and

must−−→A⊆ may−→A, and LA:SA × AP → {T, F,⊥} is a labeling
function that maps each state and atomic proposition to the truth value (possibly un-
known) of the proposition in the state. When A is clear from the context we sometimes

use may(a, a′), must+(a, a′), and must−(a, a′) instead of a
may−→A a, a

must+−→A a′, and

a
must−−→A a′, respectively.

The elements of {T, F,⊥} can be arranged in an “information lattice” [Kle87] in
which ⊥ � T and ⊥ � F. We say that a concrete state c satisfies an abstract state a
if for all p ∈ AP , we have LA(a, p) � LC(c, p) (equivalently, if LA(a, p) �= ⊥ then
LC(c, p) = LA(a, p)).

Let C = 〈AP, SC , IC ,−→C , LC〉 be a concrete transition system. A TMTS A =

〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 is an abstraction of C if there exists a total and

onto function ρ:SC → SA such that (i) for all c ∈ SC , we have that c satisfies ρ(c),

and (ii) the transition relations
may−→A,

must+−→A , and
must−−→A satisfy the following:

– a
may−→A a′ if there is a concrete state c with ρ(c) = a, there is a concrete state c′

with ρ(c′) = a′, and c −→C c′.

– a
must+−→A a′ only if for every concrete state c with ρ(c) = a, there is a concrete state

c′ with ρ(c′) = a′ and c −→C c′.

– a
must−−→A a′ only if for every concrete state c′ with ρ(c′) = a′, there is a concrete

state c with ρ(c) = a and c −→C c′.

Note that may transitions over-approximate the concrete transitions. In particular,
the abstract system can contain may transitions for which there is no corresponding
concrete transition. Dually, must− and must+ transitions under-approximate the con-
crete transitions. Thus, the concrete transition relation can contain transitions for which
there are no corresponding must transitions. Since ρ is onto, each abstract state cor-

responds to at least one concrete state, and so
must+−→A⊆ may−→A and

must−−→A⊆ may−→A. On

the other hand,
must+−→A and

must−−→A are incomparable. Finally, note that by letting must-
transitions become may-transitions, and by adding superfluous may-transitions, we
can have several abstractions of the same concrete system.

A precision preorder on TMTS defines when one TMTS is more abstract than an-

other. For two TMTS A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 and B = 〈AP, SB ,

IB ,
may−→B ,

must+−→B ,
must−−→B , LB〉, the precision preorder is the greatest relationH ⊆ SA×

SB such that ifH(a, b) then

C0. for all p ∈ AP , we have LA(a, p) � LB(b, p),
C1. if b

may−→B b′, then there is a′ ∈ SA such thatH(a′, b′) and a
may−→A a′,

C2. if b′
may−→B b, then there is a′ ∈ SA such thatH(a′, b′) and a′ may−→A a,
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C3. if a
must+−→A a′, then there is b′ ∈ SB such thatH(a′, b′) and b

must+−→B b′, and

C4. if a′ must−−→A a, then there is b′ ∈ SB such thatH(a′, b′) and b′ must−−→B b.

When H(a, b), we write (A, a)  (B, b), which indicates that A is more abstract
(less defined) than B.

By viewing a concrete system as an abstract system whose may, must+, and must−

transition relations are equivalent to the transition relation of the concrete system, we
can use the precision preorder to relate a concrete system and its abstraction. Formally,
the precision preorderH ⊆ SC×SA (also known as mixed simulation [DGG97, GJ02])
is such thatH(c, a) iff ρ(c) = a.

2.2 A Logical Characterization

The logic full-PML is a propositional logic extended with the modal operators AX (“for
all immediate successors”) and AY (“for all immediate predecessors”). Thus, full-PML
extends PML [Ben91] by the past-time operator AY . The syntax of full-PML is given
by the rules θ ::= p | ¬θ | θ ∧ θ | AXθ | AY θ, for p ∈ AP .

We define a 3-valued semantics of full-PML formulas with respect to TMTS. The

value of a formula θ in a state a of a TMTS A = 〈SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉,

denoted [(A, a) |= θ], is defined as follows:

[(A, a) |= p] = LA(a, p).

[(A, a) |= ¬θ] =

⎧⎨
⎩

T if [(A, a) |= θ] = F.
F if [(A, a) |= θ] = T.
⊥ otherwise.

[(A, a) |= θ1 ∧ θ2] =

⎧⎨
⎩

T if [(A, a) |= θ1] = T and [(A, a) |= θ2] = T.
F if [(A, a) |= θ1] = F or [(A, a) |= θ2] = F.
⊥ otherwise.

[(A, a) |= AXθ] =

⎧⎨
⎩

T if for all a′, if may(a, a′) then [(A, a′) |= θ] = T.
F if exists a′ s.t. must+(a, a′) and [(A, a′) |= θ] = F.
⊥ otherwise.

[(A, a) |= AY θ] =

⎧⎨
⎩

T if for all a′, if may(a′, a) then [(A, a′) |= θ] = T.
F if exists a′ s.t. must−(a′, a) and [(A, a′) |= θ] = F.
⊥ otherwise.

While PML logically characterizes the precision preorder on MTS [GJ02], full-
PML characterizes the precision preorder on TMTS. It follows that the TMTS model
is indeed stronger than the MTS model, because TMTS are logically characterized by
a strictly more expressive modal logic which has the past operators AY and EY , in
addition to AX and EX operators. Formally, we have the following.

Theorem 1. Let A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 and B = 〈AP, SB , IB ,

may−→B ,
must+−→B ,

must−−→B , LB〉 be two TMTS. For every two states a ∈ SA and b ∈ SB , we
have that (A, a)  (B, b) iff [(A, a) |= θ] � [(B, b) |= θ] for all full-PML formulas θ.
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2.3 Falsification Using TMTS

As shown in Section 2.2, the backwards nature of must− transitions makes them suit-
able for reasoning about the past. Thus, TMTS can be helpful in the verification setting
for reasoning about specifications in full μ-calculus and other specification formalisms
that contain past operators. We view this as a minor advantage of TMTS. In this section
we study their significant advantage: reasoning about specifications in a falsification
setting5.

In addition to the truth values T, F, and ⊥, we now allow formulas to have the
values T∃ (existential true), F∃ (existential false), and M (“mixed” – both T and F).
Intuitively, the values T∃, F∃, and M refine the value⊥, and are helpful for falsification
and testing, as they indicate that the abstract state corresponds to at least one concrete
state that satisfies the property (T∃), at least one concrete state that violates the property
(F∃), and at least one pair of concrete states in which one state satisfies the property,
and the other state violates it (M).

As shown in the figure the six values L6 = {T, F, M, T∃, F∃,⊥}
can be ordered in the information lattice depicted on the left. The values can also be
ordered in the “truth lattice” depicted on the right:

T �� M
�� �� F

��
T∃

��
F∃

��
⊥

T

T∃
�� ��

⊥ �� M
��

F∃

F
information lattice truth lattice

We allow the truth values of the (abstract) labeling function LA to range over the six
truth values.

A TMTS A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉 is an abstraction of a con-

crete transition system C = 〈AP, SC , IC ,−→C , LC〉 if there exists a total and onto
function ρ:SC → SA such that for all a ∈ SA and p ∈ AP :

– LA(a, p) = T only if for all c ∈ SC such that ρ(c) = a, LC(c, p) = T;
– LA(a, p) = F only if for all c ∈ SC such that ρ(c) = a, LC(c, p) = F;
– LA(a, p) = T∃ only if there exists c ∈ SC such that ρ(c) = a and LC(c, p) = T;
– LA(a, p) = F∃ only if there exists c ∈ SC such that ρ(c) = a and LC(c, p) = F;
– LA(a, p) = M only if there exist c, c′ ∈ SC such that ρ(c) = ρ(c′) = a,

LC(c, p) = T, and LC(c′, p) = F.

In addition, ρ satisfies the requirement (ii) defined in Section 2.1.

5 The specifications may contain both future and past operators. For simplicity, we describe the
framework here for the μ-calculus, which does not contain past modalities. By letting the AY
modality range over must+ transitions, the framework can be used for falsification of full
μ-calculus specifications.

below,
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The complementation (¬:L6 → L6) and the conjunction (∧:L6 ×L6 → L6) oper-
ations are defined as follows:

¬
F T

F∃ T∃
M M
T∃ F∃
T F
⊥ ⊥

∧ F F∃ M T∃ T ⊥
F F F F F F F

F∃ F F∃ F∃ F∃ F∃ F∃
M F F∃ F∃ F∃ M F∃
T∃ F F∃ F∃ ⊥ T∃ ⊥
T F F∃ M T∃ T ⊥
⊥ F F∃ F∃ ⊥ ⊥ ⊥

We define a 6-valued falsification semantics of PML formulas with respect to TMTS.

The value of a formula θ in a state a of a TMTS A = 〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A ,

LA〉, denoted [(A, a) |= θ], is defined as follows:

[(A, a) |= p] = LA(a, p).
[(A, a) |= ¬θ] = ¬([(A, a) |= θ])
[(A, a) |= θ1 ∧ θ2] = ∧([(A, a′) |= θ1], [(A, a′) |= θ ])

[(A, a) |= AXθ] =

⎧⎪⎪⎨
⎪⎪⎩

T if for all a′, if may(a, a′) then [(A, a′) |= θ] = T.
F if exists a′ s.t. must+(a, a′) and [(A, a′) |= θ] = F.
F∃ if exists a′ s.t. must−(a, a′) and [(A, a′) |= θ] ! F∃.
⊥ otherwise.

Note that the conditions for the F and the F∃ conditions are not mutually exclusive.
If both conditions hold, we take the value to be the stronger F value.

For clarity, we give the semantics for the existential operator EX explicitly (an
equivalent definition follows from the semantics of AX and ¬):

[(A, a) |= EXθ] =

⎧⎪⎪⎨
⎪⎪⎩

F if for all a′, if may(a, a′) then [(A, a′) |= θ] = F.
T if exists a′ s.t. must+(a, a′) and [(A, a′) |= θ] = T.
T∃ if exists a′ s.t. must−(a, a′) and [(A, a′) |= θ] ! T∃.
⊥ otherwise.

Thus, the semantics of the next-time operators follows both must− and must+

transitions (that is, a′ is such that must−(a, a′) or must+(a, a′)). To understand why
must− transitions are suitable for falsification, let us explain the positive falsifica-
tion semantics for the EX modality. The other cases are similar. Consider a con-
crete transition system C = 〈AP, SC , IC ,−→C , LC〉, and an abstraction for it A =

〈AP, SA, IA,
may−→A,

must+−→A ,
must−−→A , LA〉. Let ρ:SC → SA be the witness function for

the abstraction.
We argue that if [(A, a) |= EXp] = T∃, then there is a concrete state c such that

ρ(c) = a and c |= EXp. By the semantics of the EX operator, [(A, a) |= EXp] = T∃
implies that there is a′ ∈ SA such that must−(a, a′) and LA(a′, p) ! T∃. Let ĉ be a
concrete state with ρ(ĉ) = a′ and LC(ĉ, p) = T (by the definition of abstraction, at
least one such ĉ exists). Since must−(a, a′), then for every concrete state c′ such that
ρ(c′) = a′ there is a concrete state c such that ρ(c) = a and c −→C c′. In particular,
there is a concrete state c such that ρ(c) = a and c −→C ĉ. Thus, c |= EXp and we are
done.

2
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Let a and a′ be abstract states. The (reflexive) transitive closure of must−, denoted
[must−]∗ is defined in the expected manner as follows: [must−]∗(a, a′′) if either a =
a′′ or there is an abstract state a′ such that [must−]∗(a, a′) and must−(a′, a′′). We say
that an abstract state a′ is onto reachable from an abstract state a if for every concrete
state c′ that satisfies a′, there is a concrete state c that satisfies a and c′ is reachable from
c. Dually, we can define the transitive closure of must+ transitions, denoted [must+]∗,
and total reachability. The transitive closure of must+ and must− transitions retain
the reachability properties for a single transition: [must−]∗(a, a′) only if a′ is onto
reachable from a, and [must+]∗(a, a′) only if a′ is total reachable from a [Bal04].

By extending PML by fixed-point operators, one gets the logic μ-calculus [Koz83],
which subsumes the branching temporal logics CTL and CTL�. The 3-valued semantics
of PML can be extended to the μ-calculus [BG04]. Note that in the special case of
CTL and CTL� formulas, this amounts to letting path formulas range over may and
must+ paths [SG03]. The fact that the “onto” nature of must− transitions is retained
under transition closure enables us to extend the soundness argument for the 6-valued
falsification semantics described above for a single EX or AX modality to nesting
of such modalities and thus, to PML and the μ-calculus, as shown in our technical
report [BKY05].

3 Weak Reachability

When reasoning about paths in the abstract system, one can often manage with an even
weaker type of reachability (than transitive closure over must− transitions): we say that
an abstract state a′ is weakly reachable from an abstract state a if there is a concrete
state c′ that satisfies a′, there is a concrete state c that satisfies a, and c′ is reachable
from c. The combination of must+ and must− transitions turn out to be especially
powerful when reasoning about weak reachability.

If there are three abstract states a1, a2, and a3 such that a2 is onto reachable from
a1 and a3 is total reachable from a2, then a3 is weakly reachable from a1. Hence, weak
reachability can be concluded from the existence of a sequence of must− transitions
followed immediately by a sequence of must+ transitions:

Theorem 2. [Bal04] If [must−]∗(a1, a2) and [must+]∗(a2, a3), then a3 is weakly
reachable from a1.

3.1 Weak Reachability in Predicate Abstraction

We now focus on the case where the concrete system is a program, and its abstraction
is obtained by predicate abstraction. We then show that weak reachability can be made
tighter by parameterizing the abstract transitions by predicates. The predicates used
in these transitions may be (and usually are) different from the predicates used for
predicate abstraction.

Consider a program P . Let X be the set of variables appearing in the program and
variables that encode the program location, and let D be the domain of all variables (for
technical simplicity, we assume that all variables are over the same domain). We model
P by a concrete transition system in which each state is labeled by a valuation in DX .
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L0 if x < 6 then
L1 x := x + 3;
L2 if x > 7 then
L3 x := x − 3;
L4 end

Fig. 1. The program P

Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (quantifier-free formulas of first-order
logic) on X . For a set a ⊆ Φ and an assignment c ∈ DX , we say that c satisfies a
iff c satisfies all the predicates in a. The satisfaction relation induces a total and onto
function ρ : DX → 2Φ, where ρ(c) = a for the unique a for which c satisfies a. An
abstraction of the program P that is based on Φ is a TMTS with state space 2Φ, thus
each state is associated (and is labeled by) the set of predicates that hold in it. For a
detailed description of predicate abstraction see [GS97].

Note that all the transitions of the concrete system in which only the variables that
encode the program location are changed (all transitions associated with statements that
are not assignments, c.f., conditional branches, skip, etc.) are both must+ and must−

transitions, assuming that Φ includes all conditional expressions in the program. We
call such transitions silent transitions. The identification of silent transitions makes our
reasoning tighter: if a

silent−→A a′ we can replace the transition from a to a′ with transitions
from a’s predecessors to a′. The type of a new transition is the same as the type of the
transitions leading to a. 6 Such elimination of silent transitions result in an abstract
system in which each transition is associated with an assignment statement.

For simplicity of exposition, we present a toy example.7 Consider the program P
appearing in Figure 1.

When describing an abstract system, it is convenient to describe an abstract state in
SA as a pair of program location and a Boolean vector describing which of the program
predicates in Φ hold. Let φ1 = (x < 6) and φ2 = (x > 7). The abstraction of P that
corresponds to the two predicates is described in the left-hand side of Figure 2. In the
right-hand side, we eliminate the silent transitions.

We now turn to study weak reachability in the abstract system. By Theorem 2, if
[must−]∗(a1, a2) and [must+]∗(a2, a3), then a3 is weakly reachable from a1. While
Theorem 2 is sound, it is not complete, in the sense that it is possible to have two
abstract states a and a′ such that a′ is weakly reachable from a and still no sequence
of transitions as specified in Theorem 2 exists in the abstract system. As an example,
consider the abstract states a = (L1 : TF) and a′ = (L4 : TF). While a′ is weakly
reachable from a; c.f., c′ =(L4:x = 5) is reachable from c =(L0:x = 5), the only path
from a to a′ in the abstraction contains two may transitions, so Theorem 2 cannot be

6 A transition from a′ may also be silent, in which case we continue until the chain of silent
transitions either reaches an end state or reaches an assignment statement. If the chain reaches
an end state, we can make a an end state.

7 Our ideas have proven useful also in real examples, as described in our technical re-
port [BKY05].
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Fig. 2. The abstract transition system of the program P from Figure 1

applied. In fact, the status of the abstract states (L4:FT) and (L4:FF) also is not clear,
as the paths from a to these states do not follow the sequence specified in Theorem 2.
Accordingly, Theorem 2 does not help us determining whether there is an input x < 6
to P such that the execution of P on x would reach location L4 with x that is strictly
bigger than 7 or with x that is equal to 6 or 7. Our goal is to tighten Theorem 2, so that
we end up with fewer such undetermined cases.

3.2 Parameterized Must Transitions

Recall that each abstract state is associated with a location of the program, and thus
it is also associated with a statement. For a statement s and a predicate e over X , the
weakest precondition WP(s, e) and the strongest postcondition SP(s, e) are defined as
follows [Dij76]:

– The execution of s from every state that satisfies WP(s, e) results in a state that
satisfies e, and WP(s, e) is the weakest predicate for which the above holds.

– The execution of s from a state that satisfies e results in a state that satisfies SP(s, e),
and SP(s, e) is the strongest predicate for which the above holds.

For example, in the program P , we have WP(x := x + 3, x > 7) = x > 4,
SP(x := x + 3, x < 6) = x < 9, WP(x := x − 3, x < 6) = x < 9, and SP(x :=
x− 3, x > 7) = x > 4.

Let θ be a predicate over X . We parameterize must+ and must− transitions by θ
as follows:

– must+(θ)(a, a′) only if for every concrete state c that satisfies a ∧ θ, there is a
concrete state c′ that satisfies a′ and c −→C c′.

– must−(θ)(a, a′) only if for every concrete state c′ that satisfies a′ ∧ θ, there is a
concrete state c that satisfies a and c −→C c′.
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Thus, a must+(θ) transition is total from all states that satisfy θ, and a must−(θ)
transition is onto all states that satisfy θ. Note that when θ = T, we get usual must+

and must− transitions. Parameterized transitions can be generated automatically (us-
ing WP and SP) while building the TMTS without changing the complexity of the
abstraction algorithm.

Theorem 3. Let a and a′ be two abstract states, and s the statement executed in a.
Then, must+(WP(s, a′))(a, a′) and must−(SP(s, a))(a, a′).

The good news about Theorem 3 is that it is complete in the sense that for all predi-
cates θ, if there is a must+(θ) transition from a to a′, then a → (θ → WP(s, a′)), and
similarly for must− transitions, as formalized below.

Lemma 1. Let a and a′ be two abstract states, and s the statement executed in a.

– If there is a must+(θ) transition from a to a′, then a→ (θ → WP(s, a′)).
– If there is a must−(θ) transition from a to a′, then a′ → (θ → SP(s, a)).

Thus, the pre and post conditions, which can be generated automatically, are the
strongest predicates that can be used. Note that using Theorem 3, it is possible to replace
all may transitions by parameterized must− and must+ transitions.

It is easy to see how parameterized transitions can help when we consider weak
reachability. Indeed, if must−(θ1)(a, a′), must+(θ2)(a′, a′′), and θ1 ∧ θ2 ∧ a′ is satis-
fiable, then a′′ is weakly reachable from a, as formalized by the following lemma.

Lemma 2. If must−(θ1)(a, a′), must+(θ2)(a′, a′′), and θ1∧θ2∧a′ is satisfiable, then
there are concrete states c and c′′ such that a(c), a′′(c′′), and c′′ is reachable from c.

The completeness of Theorem 3 implies that when a′ is weakly reachable from a
via two transitions, this always can be detected by taking θ1 = SP(s, a) and θ2 =
WP(s′, a′), where s and s′ are the statements executed in the two transitions.

In our example, we have seen that the transitions from (L1:TF) to (L3:FT) and from
(L3:FT) to (L4:TF) are both may transitions, and thus Theorem 2 cannot be applied.
However, the fact that the first transition also is a must−(x < 9) transition and the
second also is a must+(x < 9), together with the fact that x > 7∧x < 9 is satisfiable,
guarantee that there is a concrete state that corresponds to (L1:TF) and from which
a concrete state that corresponds to (L4:TF) is reachable. Indeed, as we noted earlier,
(L4:x = 5) is reachable from (L0:x = 5).

When a and a′ are of distance greater than two transitions, parameterization is use-
ful for composing the sequence of must− transitions with the sequence of must+

transitions:

Theorem 4. If [must−]∗(a1, a2), must−(θ1)(a2, a3), must+(θ2)(a3, a4), [must+]∗

(a4, a5), and a3 ∧ θ1 ∧ θ2 is satisfiable, then a5 is weakly reachable from a1.

Again, the predicates θ1 and θ2 are induced by the pre and postconditions of the
statement leading to the abstract state in which the two sequences are composed.
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The transitive closure of the parameterized must transitions does not retain the
reachability properties of a single transition and requires reasoning in an assume-guarantee
fashion, where two predicates are associated with each transition. Our technical re-
port [BKY05] presents such an extension and shows how to use it to extend the set of
reachable states further.

4 Applications

This section describes application of weak reachability for linear-time falsification and
for abstraction-guided test generation.

In linear-time model checking, we check whether all the computations of a given
program P satisfy a specification ψ, say an LTL formula. In the automata-theoretic
approach to model checking, one constructs an automaton A¬ψ for the negation of
ψ. The automaton A¬ψ is usually a nondeterministic Büchi automaton, where a run
is accepting iff it visits a set of designated states infinitely often. The program P is
faulty with respect to ψ if the product of A¬ψ with the program contains a fair path –
one that visits the set of designated states infinitely often. The product of A¬ψ with an
abstraction of P may contain fair paths that do not correspond to computations of P ,
thus again there is a need to check for weak reachability.

When reasoning about concrete systems, emptiness of the product automaton can
be reduced to a search for an accepting state that is reachable from both an initial state
and itself. In the context of abstraction, we should make sure that the path from the
accepting state to itself can be repeated, thus weak reachability is too weak here8, and
instead we need the following.

Theorem 5. If, in the product automaton of P with respect to LTL formula ψ, there
is an initial abstract state ainit and an accepting state aacc such that aacc is onto
reachable from ainit and from itself, or aacc is weakly reachable from ainit and total
reachable from itself, then P violates ψ.

Falsification methods are related to testing, where the system is actually executed.
The infeasible task of executing the system with respect to all inputs is replaced by
checking a test suite consisting of a finite subset of inputs. It is very important to mea-
sure the exhaustiveness of the test suite, and indeed, there has been an extensive research
in the testing community on coverage metrics, which provide such a measure.

Some coverage metrics are defined with respect to an abstraction of the system. For
example, in predicate-complete testing [Bal04], the goal is to cover all the reachable
observable states (evaluation of the system’s predicates under all reachable states), and
reachability is studied in an abstract system whose state space consists of an overap-
proximation of the reachable observable states. The observable states we want our test
suite to cover are abstract states that are weakly reachable.

The fundamental question in this setting is how to determine which abstract states
are weakly reachable. As we have seen, TMTS provide a sufficient condition for deter-

8 When ψ is a safety property, A¬ψ is an automaton accepting finite bad prefixes [KV01], and
weak reachability is sufficient.
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mining weak reachability (via a sequence of must− transitions followed by a sequence
of must+ transitions). The parameterization method makes this condition tighter.

5 Conclusion

We have described an abstraction framework that contains must− transitions, the back-
wards version of must transitions, and showed how must− transitions enable reason-
ing about past-time modalities as well as future-time modalities in a falsification seman-
tics. We showed that the falsification setting allows for a stronger type of abstraction
and described applications in falsification of temporal properties and testing.

A general idea in our work is that by replacing must+ by must− transitions, ab-
straction frameworks that are sound for verification become abstraction frameworks that
are sound (and more precise) for falsification. We demonstrated it with model checking
and refinement, and we believe that several other ideas in verification can be lifted
to falsification in the same way. This includes generalized model checking [GJ02],
making the framework complete [DN05], and its augmentation with hyper-transitions
[LX90, SG04].

Another interesting direction is to use must− transitions in order to strengthen ab-
stractions in the verification setting: the ability to move both forward and backwards
across the transition relation has proven helpful in the concrete setting. Using must−

transitions, this also can be done in the abstraction setting.
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Abstract. We propose a SAT-based bounded verification technique,
called TCBMC, for threaded C programs. Our work is based on CBMC,
which models sequential C programs in which the number of executions
for each loop and the depth of recursion are bounded.

The novelty of our approach is in bounding the number of context
switches allowed among threads. Thus, we obtain an efficient modeling
that can be sent to a SAT solver for property checking. We also sug-
gest a novel technique for modeling mutexes and Pthread conditions in
concurrent programs. Using this bounded technique, we can detect bugs
that invalidate safety properties. These include races and deadlocks, the
detection for which is crucial for concurrent programs.

1 Introduction

In recent years there have been two main trends in formal verification. The first
is that SAT-based Bounded Model Checking (BMC) [2] has become the leading
technique for model checking of hardware. BMC constructs a propositional for-
mula describing all possible executions of the system of length k, for some bound
k. This formula, conjuncted with the negation of the specification, is fed into a
SAT solver. If the formula is satisfied, the specification is violated.

The second trend is that software verification using formal methods has be-
come an active research area. Special attention is given to verification of con-
current programs, in which testing tools often fail to find bugs that are revealed
only with very specific inputs or timing windows.

However, adopting the BMC technique for software causes a severe problem.
This technique is sensitive to the length of the error trace, i.e., the number
of execution steps until an error state is reached. In software, error traces are
typically quite long, and therefore a large bound k is needed. This, in turn,
may result in a propositional formula that is too large to be handled by a SAT
solver. Ivancic et al. [6] try to shorten the trace length by compressing multiple
statements within one basic block into one complex statement. However, the
resulting traces may still be too long.

C-Bounded Model Checking (CBMC) [4] presents a different approach to
utilizing a SAT solver in order to verify software. CBMC translates a program
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with no loops and no function calls into single assignment form (SSA form). In
this form, variables are renamed so that each variable is assigned only once. As
a result there is no need for a notion of state. Such a program can be viewed as a
set of constraints and solved using a SAT solver. This technique is less sensitive
to the length of a trace.

CBMC can also deal with pointers, arrays, and real size integers rather than
just their restricted abstractions. This distinguishes it from other model checkers,
which use abstractions in order to cope with size problems. Still, most if not
all interesting programs include functions and loops. CBMC handles this by
bounding the number of times each loop may be executed and unwinding the
loop to this bound. It is then possible to inline function calls and even handle
recursion (after bounding its depth as well). As in ordinary Bounded Model
Checking, the bounds over the loops can be increased iteratively until a bug is
found or the SAT solver explodes.

Each variable in a bounded program has a bounded number of assignments
that can be indexed statically in an increasing order. CBMC translates the pro-
gram in such a way that each indexed assignment is to a fresh variable, yielding
a program in SSA form. This is very simple for sequential programs and was
proven effective for some real-life examples [7].

However, it is not straightforward to extend this approach to concurrent pro-
grams. This is because it is not possible to index assignments to global variables
statically. When there are assignments in two different threads to the same global
variable, we cannot determine the order in which they will be executed.

In this paper we propose an extension of CBMC to concurrent C programs,
called TCBMC (Threaded-C Bounded Model Checking). Concurrent C programs
have shared memory and several threads that run concurrently. Each thread has
its own local variables, whereas global variables are shared. Only one thread is
executed at any given time, until, after an unknown period, a context switch
occurs and another thread resumes its execution (see Figure 2). A set of con-
secutive lines of code executed with no intervening context switch is called a
context switch block.

To obtain a bounded concurrent C program, TCBMC bounds the number
of allowed context switches. This strategy is reasonable since most bug patterns
have only a few context switches [5]. For each context switch block i and each
global variable x, TCBMC adds a new variable val xi, which represents the value
of x at the end of block i. It then models the concurrent program in SSA form,
where the value of x in block i + 1 is initialized to val xi.

The technique of bounding the number of context switches was independently
suggested in [8], However [8] uses this idea on Boolean programs using pushdown
automata.

Next we show how synchronization primitives such as mutexes and conditions
can be modeled efficiently within TCBMC. We present a novel approach which,
instead of modeling the internal behavior of a mutex, eliminates all executions in
which a thread has waited for a mutex to unlock. We show that any bug which
can be found in the naive model will also be found in our reduced model.
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Our approach to modeling synchronization primitives is general, and as such,
it is applicable to explicit and BDD-based symbolic model checkers as well.
There, it decreases the number of interleavings and hence gains efficiency.

We next suggest how the TCBMC model can be altered to detect synchro-
nization bugs such as races and deadlocks. Different extensions to the model are
needed for each one. Thus, it will be more efficient to apply TCBMC three times:
for detecting “regular” bugs, races, and deadlocks.

We implemented a preliminary version of TCBMC. This version supports
only two threads. It supports mutexes and conditions, but it cannot detect dead-
locks. Preliminary experiments show that TCBMC can handle a real represen-
tation of integers and that it performs well for data-dependent bugs.

The rest of this paper is organized as follows. The next section presents the
preliminaries and explains CBMC. Section 3 presents TCBMC. Section 4 extends
TCBMC to model mutexes and conditions. Section 5 describes another extension
of TCBMC that allows for detection of races and deadlocks. Section 6 presents
our experiments with TCBMC, and Section 7 outlines future work.

2 Preliminaries

A statement uses a variable when it reads its value, and it defines a variable
when it writes a value to it. A statement accesses a variable when it either uses
it or defines it.

In this paper we consider a concurrent program to be a program with several
threads that share global variables. An execution of such a program starts to
execute statements from a certain thread, after which it performs a context
switch and continues to execute statements from another thread. It keeps track
of the last statement executed in each thread and, when performing a context
switch back to this thread, it continues the execution from the next statement.

A statement is visible if it accesses a global variable1, and it is invisible
otherwise. A visible block is a block of consecutive lines in which only the first
statement is visible. A statement is atomic if no context switch is allowed during
its execution. A sequence of consecutive statements is atomic if each statement
is atomic and no context switch is allowed between them.

The assert function receives a Boolean predicate that should evaluate to True
in all executions. Evaluation of assert to False indicates a bug in the program.

In this paper x and xi are global variables, and y, yi, w, wi, z and zi are
local variables.

2.1 CBMC: C-Bounded Model Checking

CBMC [4] is a tool that gets a C program and an integer bound. It trans-
lates the program into a bounded program by unrolling each loop to the given

1 A local variable that can be pointed by a global pointer is considered to be global
for this definition.
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bound, inlining functions (bounding also the number of recursion calls with the
given bound). CBMC then takes the bounded C program and generates a set of
constraints. There is a one-to-one mapping from the possible executions of the
bounded program to the satisfying assignments of the set of constraints.

CBMC automatically generates cleanness specifications such as no access to
dangling pointers, no access out of array bounds, and no assert violations. It adds
a constraint which requires that one of these specifications be violated. It then
activates a SAT solver over these constraints. If it finds a satisfying assignment
to all the constraints, then it follows that there exists a valid execution that
violates one of the specifications.

CBMC generates the constraints by translating the code to SSA form, in
which each variable is assigned no more than once. To this aim CBMC generates
several copies of each variable, indexed from zero to the number of assignments
to this variable.

Each statement in a C program is executed only if all the “if” conditions
that lead to it are evaluated to True. In order to reflect this in the generated
constraint, CBMC also has several guard variables. Each guard variable is as-
sociated with the conjunction of all the conditions in the “if”s that lead to a
certain statement in the code (If the statement is in the “else” clause of an “if”
condition, the negation of the condition is used). Note that several statements
may have the same guard.

CBMC is best understood by example. Assume CBMC gets the following C
program with bound two.

x = 3;
while (x > 1){

if (x%2 == 0) x = x/2;
else x = 3 ∗ x + 1;

}

It first unrolls the loop, resulting in the program in Figure 1(a). It also adds
an assert that ensures sufficient unrolling (This assert will fail in our example).
Figure 1(b) presents the constraints representing this bounded code. Consider
Constraint (3). It describes the behavior of Line (4) in the bounded code. This is
the second assignment to x and therefore the constraint is on x1. This statement
is executed only if the two “if”s leading to it are True, i.e, guard2 is True. The
constraint presents the following behavior: if guard2 is True, then x1 = x0/2;
otherwise (the statement is not executed) x1 = x0 (x does not change).

As mentioned previously, CBMC supports the assert function and detects
bugs in which an assert is violated. CBMC also supports the assume function.
This function informs CBMC that all legal executions of the program must
satisfy a certain constraint. Assume is the opposite of assert in the sense that
when the constraint does not hold in a certain execution, CBMC ignores this
execution without complaining.
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(1) x = 3;
(2) if (x > 1){
(3) if (x%2 == 0)
(4) x = x/2;
(5) else x = 3 ∗ x + 1;
(6) if(x > 1){
(7) if (x%2 == 0)
(8) x = x/2;
(9) else x = 3 ∗ x + 1;
(10) assert(x <= 1);
(11) }
(12) }

(0) x0 = 3
(1) guard1 = x0 > 1
(2) guard2 = guard1 & x0%2 == 0
(3) x1 = (guard2?x0/2 : x0)
(4) guard3 = guard1 & !(x0%2 == 0)
(5) x2 = (guard3?3 ∗ x1 + 1 : x1)
(6) guard4 = guard1 & x2 > 1
(7) guard5 = guard4 & x2%2 == 0
(8) x3 = (guard5?x2/2 : x2)
(9) guard6 = guard4 & !(x2%2 == 0)
(10) x4 = (guard6?3 ∗ x3 + 1 : x3)
Specification: !(x4 <= 1)

(a) Bounded C code (b) Constraints

Fig. 1. Translation from bounded code to constraints

Pointers and Arrays. In CBMC, every assignment to a dereference of a
pointer is actually instantiated to several assignments, one for each possible
value of the pointer. The instantiations are limited to values that the pointer
might have gotten in the previous assignments. Here is the code for the statement
∗p1 = 3; where the indexes are for a possible program in which this statement
appears.

x12 = (p == &x)?3 : x11;
y7 = (p == &y)?3 : y6;
z4 = (p == &z)?3 : z3;
. . .

Every assignment to an array cell is treated similarly, by instantiating it for
each possible value of the array index. Statements that include the use of a
dereference of a pointer or of an array cell are treated in a similar manner.

Since the program is bounded, the number of malloc calls is bounded as well.
CBMC treats each allocated memory as a regular global variable. CBMC also
supports pointer arithmetic inside array bounds.

3 Bounded Model Checking for Concurrent C Programs

In this section we describe how a concurrent program can be efficiently translated
to a set of constraints.

The main idea is to bound the number of context switches in the run while
allowing them to be anywhere in the code. We denote this bound by n. This
strategy is reasonable since most bug patterns have only a few context switches
[5]. This strategy is also consistent with the main idea of CBMC. We first present
our method for programs with two threads. Later, we describe the required
changes for more than two threads.
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We note that it is possible to limit the places in which a context switch can
occur. There is no advantage in allowing a context switch before an invisible
statement [3]; allowing context switches only before visible statements decreases
the number of possible executions.

Similarly to CBMC, our goal is to translate concurrent C programs into a
set of constraints. As in CBMC, these constraints will be conjuncted with those
representing the negation of the specification, and checked for satisfiability.

The translation process consists of three stages.

Stage 1 - Preprocessing. A C statement is not always executed as an atomic
statement. Consider the code generated by a compiler for a C statement of the
form x1 = x2 + x3. The generated assembly code is:
ra ← x2; rb ← x3; rc ← ra +rb; x1 ← rc; (Where each r is a register). A con-

text switch may occur between these instructions. Statements that involve at
most one global variable are not affected by this. To allow such context switches
in statements that access more than one global variable we need to break state-
ments just as a compiler does. For example, the statement x1 = x2 + x3; (in
which each xi is a global variable) is translated to the following code (in which
each yi is a new temporary local variable): y1 = x2; y2 = x3; x1 = y1+y2;
“if” and loop statements, in which the condition accesses more than one global
variable, are treated similarly. Note that the order of execution of an expres-
sion is not guaranteed under C semantics. Since we assume that this order is
consistent for a compiler, we can configure CBMC for compatibility with any
given compiler. This preprocessing can also be avoided if we are not interested
in examining such interleavings.

Stage 2 - Applying CBMC Separately on Each Thread. In this stage
the first phase of CBMC is applied on each thread, and a list of constraints
is obtained for each. We refer to this set of constraints as a template. In this
template each variable has several copies, and each copy appears only once on
the left-hand side of a constraint.

We can think of this template as either a list of constraints or as a program
in which each constraint is an assignment and each variable is assigned only
once. In the rest of this section we use the latter interpretation, and refer to the
template as being executed.

As a result of the preprocessing, this template has four types of statements:

1. An assignment of an expression defined over local variables to a local variable,
e.g., wk = (guardr?yc ∗ 2 : wk−1)

2. An assignment of an expression defined over local variables to a global vari-
able, e.g., xk = (guardr?yc ∗ 2 : xk−1)

3. An assignment of a global variable to a local variable, e.g., yc = (guardr?xk :
yc−1)

4. An assignment to a guard variable. The guard is local and there may be at
most one copy of a global variable on the right-hand side, e.g., guardr =
guardr−1&&xk > yc
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After CBMC is applied, each variable has several copies, one for each assignment,
where xj refers to the j-th assignment to x.

We will denote by m the number of constraints in this template and enumer-
ate them from 0 to m − 1. We will use the notation lxj

to refer to the number
of the constraint in which xj is assigned.

Each thread may have its own code and therefore its own template. We
translate each thread into a set of constraints. In the following description we
will refer to thread t. To avoid name collision, we add the prefix threadt to each
variable.

Stage 3 - Generating Constraints for Concurrency. The main idea of this
stage is to associate with each line l in the template a variable threadt cs(l). The
value of this variable indicates the number of context switches that occurred
before this line was executed.

We induce the following constraints on the values of the threadt cs(l) vari-
ables:

– Monotonicity: The value of threadt cs must increase monotonically:
∀0≤l<m−1 threadt cs(l) ≤ threadt cs(l + 1). 2

– Interleaving bound: There is a bound on the number of context switches. If
the bound is n, then the maximum value of threadt cs is n. This is described
as follows: threadt cs(m− 1) ≤ n

– Parity: Each context switch changes the thread that runs. Having only two
threads (see extension at the end of Section 3), the values of threadt cs(l)
can be restricted to be even for t = 0 and odd for t = 1. This is described
as follows: ∀0≤l<m−1 (threadt cs(l)mod 2) = t.

Any assignment to the threadt cs(l) variables determines a concurrent execu-
tion over the thread templates: first the block of lines for which thread0 cs(l) = 0
is executed, then those that have thread1 cs(l) = 1, then those that have
thread0 cs(l) = 2, and so on. Figure 2 illustrates such an execution.

It will be useful to extend the definition of threadt cs in the following manner:
threadt cs(vj) = threadt cs(lvj

). This definition maps a copy of a variable to
the value of threadt cs(lvj

), where lvj
is the line in which vj was assigned. Thus

threadt cs(vj) is the context switch block number in which vj gets its value.
Up to this point we added the threadt cs(l) variables that determine where

the context switches occurs. We still need to generate constraints for the values
of global variables. Because the global variables are shared among the threads,
their behavior is not fully covered by the constraints in the templates.

In order to correctly model the global variables in a concurrent program, we
define n new variables x vali for each global variable x, and 0 ≤ i < n. Variable
x vali is the value of variable x at the end of the i-th context switch block. We

2 Our implementation of the tool is more efficient: When two lines are in the same
visible block (the assignment in line l + 1 is invisible), the constraint can be
threadt cs(l) = threadt cs(l + 1). As a result, these two variables can become one.
In this paper we disregard this improvement for better readability.
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Fig. 2. Context Switch Blocks

can think of x vali as the thread interface. This is because in our model, threads
can influence each other only through these variables.

Before we define the constraint over x vali, we remind the reader that x
has several copies in a template, one for each assignment. These assignments
are numbered from 0 to p − 1 (assuming p is the number of assignments to x).
The assignment to xj is in context switch block threadt cs(xj). Note that the
template of thread zero sets x vali for even values of i, and the template of
thread one sets x vali for odd values of i.

Variable x vali should get its value according to the last assignment that was
made to x in the i-th context switch block. If x was assigned in the i-th context
switch block, x vali will be equal to xj , the last assignment to x in this block.
Otherwise, if there were no assignments to x in the i-th context switch block,
then x vali preserves the value it had at the end of the previous block.
∀i s.t. i mod 2=t

x vali = for 0 ≤ j < p
if (threadt cs(xj) == i) ∧ (i < threadt cs(xj+1)))

threadt xj

if (∀0≤j<p threadt cs(xj) �= i)
x vali−1

For simplicity we define: x val(−1) = init value(x), threadt cs(xp) = n + 1.
After introducing the additional variables needed for concurrent programs

and their constraints, we are now ready to translate each statement in the tem-
plate into a constraint. We present the translation for each of the four statement
types in the template:

1. For regular statements, which do not access global variables
(e.g. yj = (guardr?(f(zk, wc), yj−1), we simply add the thread prefix:
threadt yj = (threadt guardr?f(threadt zk, threadt wc) : threadt yj−1)

2. For statements of the form yj = (guardr?xk : yj−1), where y is a local
variable and x is a global variable, there are two options:
– If the assignment to xk is in the same context switch block as the as-

signment to yj , the thread prefix can simply be added.
– Otherwise, the x val of the previous context switch block should be used.
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threadt yj = if (threadt guardr)
if (threadt cs(yj) == threadt cs(xk))

threadt xk

else
x val(threadt cs(yj)−1)

else
threadt y(j−1)

3. For statements that have a global variable in their left-hand side and in the
else clause of their right-hand side (e.g., xj = (guardr?f(yk, wc) : xj−1),
special treatment is required for the else clause. This treatment is similar to
that given in the previous item.

threadt xj = if (threadt guardr)
f(threadt yk, threadt wc);

else
if (threadt cs(xj) == threadt cs(xj−1))

threadt xj−1;
else

x val(threadt cs(xj)−1);

4. For an assignment to a guard that does not access a global variable, we
simply add the correct prefixes (as in the first item). An assignment to a
guard that uses a global variable is treated as in the second item.

Pointers and Arrays. No special treatment is required to support assignments
to a pointer dereference or to a cell in an array. Such an assignment is already
instantiated into several assignments, one for each possible value, when executing
CBMC in Stage 2. Note that for concurrent programs there are more potential
values for a global pointer (or a global index of an array), since it may get its
value in another thread.

However, we do need to handle dereference of a pointer that may point to
a global variable (or a use of a global array cell). These are handled in the
preprocessing stage. Their handling is similar to that of expressions with more
than one global variable: we break the statement in two. In the first statement,
the value of the dereference of the pointer is assigned to a new local variable, y.
The second statement is a copy of the original statement, in which the value of
the dereference is replaced with y. For example, the statement v1 = ∗p + v2; (in
which each p may point to a global variable, and each vi is a local variable) is
translated to the following code: y = ∗p; v1 = y + v2;

More Than Two Threads. There are two options for extending this algorithm
to T threads where T > 2: The first is to enforce a round robin among the threads
(thread 0 runs first, then thread 1, 2, . . ., T-1, and then 0 again and so on). Note
that a thread might not perform any statement while running, but the number of
context switches still increases. The changes to the constraints are quite trivial.
In particular, we change the parity constraint and use mod T instead of mod 2.
This will often require a larger bound over the number of context switches.
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Another option for extending TCBMC to T threads is to add a new set of
variables: runi for 0 ≤ i < n, where runi is the ID of the thread that runs in
the i-th context switch block. The value of runi is set by the SAT solver, and
determines the order in which the threads run. There are some changes in the
constraints, which we explain in the full version of this paper. We suggest two
methods for extending TCBMC because neither one is better than the other for
all input programs.

Note that, when threads are dynamically generated, T can be increased iter-
atively until a bug is found or the SAT solver explodes.

4 Modeling Synchronization Primitives

Until this point the model we present enables the threads to communicate with
each other only via global variables. Concurrent programs usually use synchro-
nization primitives as well. In this section we will describe how we can efficiently
model mutexes and the Pthread condition (i.e., the wait/signal mechanism).
The modeling presented in this section interferes with deadlock detection, and
will be revisited in subsection 5.2 where deadlocks are handled. We will present
the modeling of the synchronization primitives via transformation to C code. It is
possible and sometimes even more efficient to directly create the model without
changing the C code first. In fact, our implementation actually constructs the
model directly from the original code. However, we find the current presentation
more readable and easy to understand.

4.1 Modeling Atomic Sections

The first primitive we model is the atomic section, which is not a real program-
ming primitive but is used to model other primitives. Atomic sections are also
useful in the verification process. If TCBMC users do not wish to allow context
switch along certain sections, they can mark these sections as atomic. This will
yield a shorter formula, which will result in a better performance of the SAT
solver.

Modeling an atomic section is very simple. We just add constraints that force
the threadt cs values of the lines in an atomic section to be identical. Thus, no
context switch is allowed along this section.

4.2 Modeling Mutexes

Mutex is the mechanism for implementing mutual exclusion between threads.
A mutex has two states, L (locked) and U (unlocked), and at least two basic
operations: lock and unlock. Lock waits until the mutex is in U and then changes
its state to L. Unlock is applied to a mutex in state L and changes its state to
U . There are two common ways to implement the lock operation: The first is to
wait until the mutex is in state U . This is done by means of a busy wait. The
second is to move the thread to the operating system’s sleep state. The thread
will return to a ready state when the mutex returns to state U .
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A naive approach may model mutexes by including one of these implementa-
tions explicitly. The result is a complicated model. In fact, this is not necessary.
Our goal is not to verify that the mutex implementation is correct; we assume it
is correct. Rather we aim at verifying the programs that use mutexes. We also
manage to avoid the main difficulty in modeling mutexes: the modeling of lock
operations when the mutex is in state L.

Before explaining how we model mutexes, we present two definitions and a
lemma that help us to explain the idea behind our method.

Two executions of a concurrent program are mutex-free-equivalent iff they
have the same states when ignoring the internal implementation of mutexes (We
consider only the state of the mutex U or L). We use the notation π ≈w π′ to
indicate that π and π′ are mutex-free-equivalent.

We define redundant-attempt as an attempt to lock a mutex that is already in
state L. A wait-free execution is an execution that has no redundant-attempts.

Lemma 1. Let P be a concurrent program. For every non-wait-free execution
π of P there is a wait-free execution π′ that satisfies π ≈w π′.

In our modeling all executions are wait-free. If a thread tries to lock a mutex,
it either succeeds (the mutex is in state U) or this execution is eliminated. Fur-
thermore, all errors other than deadlock that appear in a non-wait-free execution
appear also in a mutex-free equivalent wait-free execution. Thus it is possible to
find all the errors.

We model a mutex by implementing special C functions for the lock and
unlock primitives, and translate it using CBMC. The lock function uses the
assume function. Figure 3 presents the modeling of lock and unlock. Only 1
bit is used for each mutex. In order to improve performance, we maximize the
atomic sections in the modeling of lock. We will continue to maximize the atomic
sections in other modelings as well.

locking trd id can be added to the mutex modeling to ensure that the thread
that performs the unlock operation is the same one that locked it earlier. A
bounded counter of the number of locks can also be added to support recursive
mutexes.

atomic{
assume(∗mutex == U);
∗mutex = L;

}

atomic{
assert(∗mutex == L);
∗mutex = U ;

}

(a) lock(mutex) (b) unlock(mutex)

Fig. 3. Modeling of lock and unlock in C

4.3 Modeling Conditions

A condition has 3 primitives: wait, signal and broadcast. wait(cond,mutex)
stops the run of the thread until it is awakened by another thread’s call to signal
or broadcast. Signal(cond) awakens one of the threads that are waiting for this
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condition. There is no guarantee as to which of the waiting threads will be
awakened. Broadcast awakens all the threads that are waiting for this condition.
If a signal is sent and there is no thread waiting for it, then the signal is lost;
there is no accumulation of signals. wait also receives mutex as parameter. It
needs to unlock it before stopping and lock it again before continuing (after the
thread has been awakened).

Here we model each condition cond using a vector of flags, one for each thread.
To model a wait in thread i we raise the cond[i] flag, allow context switch, and
then assume that the cond[i] is down. The idea is similar to the one we used for
mutexes; we actually eliminate all the interleavings in which this thread resumes
running before it should. To model signal, we nondeterministically choose one
raised flag and lower it. Broadcast is modeled by simply lowering all the flags.

In order to understand why this modeling is similar to that of mutexes, recall
that the wait operation can be divided into four stages:

1. Raise a flag indicating that this thread is waiting.
2. Unlock the mutex.
3. Wait for this flag to reset.
4. Lock the mutex again.

We model only wait-free executions: wait operations that do not wait in the
third stage.

Figure 4 presents the modeling of wait and signal. broadcast(cond) is simply
modeled by lowering all the flags.

atomic{
cond[current thread] = 1;
unlock(mutex);

}
assume(cond[current thread] == 0);
lock(mutex);

atomic{
i = rand(number of threads);
assume(cond[i] == 1||cond == 0);
cond[i] = 0;

}

(a) wait(cond, mutex) (b) signal(cond)

Fig. 4. Modeling of wait and signal in C

5 Verifying Race Conditions and Deadlocks

When verifying concurrent programs it is important to detect race conditions
and deadlocks. This section presents the changes in the model for each of them.

5.1 Detecting Races

A race condition is a state in which the next instructions of different threads
access the same memory location and at least one of them is a write.

We can identify races by adding to each global variable x a new global bit
variable x write flag. x write flag is raised whenever x is defined (i.e., as-
signed to) and lowered in the next instruction. There can be a context switch
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between these two instructions. In addition, on every access to x we assert that
its x write flag is low. Figure 5 presents an example of such translation.

Pointers and Arrays. Special treatment is required for pointers and arrays.
When there is an assignment to a dereference of a pointer p that points to
x, we should change x write flag. We have to consider all possible variables
which p might point to (see example in subsection 2.1). For each one, we change
the corresponding flag while changing the variable itself. Arrays are handled
similarly.

atomic{
assert(x write flag == 0);
x = 3;
x write flag = 1;

}
x write flag = 0;

assert(x write flag == 0);
y = x;

(a) Translation of x = 3 (b) Translation of y = x

Fig. 5. Detecting races

5.2 Finding Deadlocks

Deadlock detection is one of the most interesting issues in concurrent programs.
We divide deadlocks into two kinds: a global deadlock is a deadlock in which
all the threads are waiting for a mutex or a condition, and a local deadlock is
a deadlock in which some of the threads form a waiting cycle (e.g., thread 1 is
waiting for mutex ma which is held by thread 2 which is waiting for mutex mb

which is held by thread 1). In this section we present the extension to TCBMC
that allows for detection of global deadlocks. In the full version of this paper we
present the extension of TCBMC that allows for detection of local deadlocks 3.

When modeling the code to detect deadlocks, we ignore the existence of other
errors. As mentioned before, we encourage TCBMC users to perform three runs:
for detecting “regular” errors, for detecting races, and for detecting deadlocks.

In the model we presented in Section 4 we eliminated non-wait-free exe-
cutions. But this could result in missing global deadlocks because these occur
when all threads are in a waiting state. Therefore, we must change the mod-
eling of lock(m), and wait(cond,mutex): We add a new global counter called
trds in wait. This counter counts the number of threads in a wait state. When
modeling lock(m), if mutex m is already in state L, we increase trds in wait,
allow context switch, and then assert that trds in wait < T . If the assertion
fails, a global deadlock was detected; otherwise we eliminate this execution, as
in the original mutex modeling. When modeling wait(cond,mutex), we increase

3 We are able to find local deadlocks that involve only mutexes. It is not always possible
to find deadlocks that involve conditions when bounding the program.
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trds in wait after raising the cond[current thread] flag, allow context switch,
and then assert that trds in wait < T . If the assertion fails, a deadlock was
detected; otherwise we decrease trds in wait and continue as in the original
modeling of wait(cond,mutex) by assuming that the flag is down.

We also add a global Boolean flag named dd(deadlock detected), This flag is
raised when a deadlock is found. Once a deadlock has been detected, we know
that a bug has been found, and so we can ignore later uses of lock and wait.
More details can be found in the full version.

Figure 6 present the modeling of lock(m) and wait(cond,mutex).

if (!dd){
atomic{

unlocked = (∗m == U);
if (unlocked) ∗m = L
else trds in wait + +;

}
atomic{

if (!unlocked){
dd = (trds in wait == T );
assert(!dd);
assume(dd);

}
}

}

if (!dd){
atomic{

cond[current thread] = 1;
unlock(mutex);
trds in wait + +;

}
atomic{

dd = (trds in wait == T );
assert(!dd);
assume(dd ∨ cond[current thread] == 0);
trds in wait −−;

}
lock(mutex);

}

(a) lock(m) (b) wait(cond, mutex)

Fig. 6. Modeling of lock and unlock in C when looking for deadlocks

6 Experimental Results

We implemented an initial version of TCBMC that works with two threads
and supports mutexes and conditions. Future extensions will support more than
two threads, as well as detect deadlocks using the described algorithms. We
performed preliminary experiments that checked TCBMC on a naive concurrent
implementation of bubble sort. We executed TCBMC over several array sizes,
for different values of n (i.e., the number of allowed context switches), and for
different integer widths. We used a sufficient loop unwinding bound. The bug in
this implementation was dependent on both data and the interleaving.

We also compared it with Microsoft’s Zing [1], a state-of-the-art explicit
model checker for software that uses various reductions including partial order
resuctions. Note that Zing and TCBMC were executed on different platforms 4.
The results are summarized in Table 1.

4 Zing was executed on the Windows operating system on a Pentium4 1.8Ghz with
1GB memory. TCBMC was executed on the Linux operating system on a Pentium4
2Ghz with 250MB memory.
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Table 1. Run time comparison of Zing and TCBMC

array size Zing TCBMC

8 bit 12 bit 8 bit 16 bit 32 bit

n=6 n=10 n=6 n=10 n=6 n=10

3 330.0s > 1h 0.4s 0.2s 3.6s 4.0s 20.3s 48.3s
4 831.0s > 1h 11.5s 1.3s 14.6s 58.7s 135.2s 323.0s
5 1496.0s > 1h 71.0s 94.1s 125.7s 3013.0s 1124.0s > 1h

From this preliminary experiment we can deduce the following:

– It seems that TCBMC scales better with respect to integer widths. Zing ran
for more than an hour for 12 bits, while TCBMC managed to get results
even for 32 bits.

– Although tested on different platforms, it seems that TCBMC performs bet-
ter than Zing for detecting bugs dependent on both data and interleavings.

– Increasing the number of allowed context switches (n) sometimes improves
the performance (e.g., array size of 4, and 8 bits). This unexpected behavior
can be explained by the fact that for larger n, TCBMC generates a larger
formula, but with more satisfying assignments.

7 Conclusions and Future Work

This paper presented an extension of CBMC for concurrent C programs. It
explained how to model synchronization primitives and how to detect races and
deadlocks. We should complete our implementation to support all of the above.

We also consider changing the template translation into constraints: rather
than defining for each line a variable indicating in which context switch block it
is executed, we can define, for each context switch block, a variable indicating
in which line it begins. This will result in a completely different formula which
may be handled better by the SAT solver.

Acknowledgments. We thank Sharon Barner, Ziv Glazberg and Daniel Kroen-
ing for many helpful discussions.
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Abstract. Bounded model checking is an efficient method for finding bugs in
system designs. The major drawback of the basic method is that it cannot prove
properties, only disprove them. Recently, some progress has been made towards
proving properties of LTL. We present an incremental and complete bounded
model checking method for the full linear temporal logic with past (PLTL). Com-
pared to previous works, our method both improves and extends current results in
many ways: (i) our encoding is incremental, resulting in improvements in perfor-
mance, (ii) we can prove non-existence of a counterexample at shallower depths
in many cases, and (iii) we support full PLTL. We have implemented our method
in the NuSMV2 model checker and report encouraging experimental results.

Keywords: Bounded Model Checking, Incremental, Complete, PLTL, NuSMV

1 Introduction

Bounded model checking (BMC) [1] has established itself as an efficient method of
finding bugs to LTL specifications from system designs. The method works by search-
ing for witnesses of length k to the negation of the specification. This bounded search
problem is translated to the propositional satisfiability problem (SAT) and a SAT solver
is used to get an answer.

A problem with BMC is knowing how large the bound k should be, before we
can be sure that no counterexample exists. This bound, referred to as the completeness
threshold [2], depends on the system, the property, and how the problem is mapped to
SAT. Computing a tight bound on the completeness threshold is a challenging problem.

One method of finding small completeness thresholds for invariant properties is us-
ing induction. Sheeran et al. [3] present an inductive scheme for invariants. They show
that invariants can be proven by automatically strengthening induction to show that no
path of length k breaks the invariant and that there is no initialised loop free path of
length k +1. The longest initialised loop free path in the state graph is called the recur-
rence diameter [1]. The inductive method can easily be generalised to safety proper-
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in [4], generalised to BDD based model checking of PLTL in [5]. However, the liveness-
to-safety transformation doubles the number of state variables in the model [4,5], which
is unnecessary for BMC. This increases the size of the already large loop free predicate
that in many cases already is the biggest bottleneck. The method of Sheeran et al. has
been generalised in various ways. Kroening and Strichman [2] show that the size of loop
free predicate can be optimised to O(k log2 k) (vs. O(k2)) using sorting networks. They
also suggest ways to leave out state variables from the loop free predicate to improve
efficiency while maintaining completeness. Two papers that consider strengthening of
induction without always doing deeper BMC queries are [6,7].

Recently, some work has focused on computing a completeness threshold for gen-
eral LTL properties. Clarke et al. [8] show how the completeness threshold can be com-
puted for general LTL properties by computing the recurrence diameter of the product
of the system and a Büchi automaton. Awedh and Somenzi [9] apply the same approach,
but they use a refined method for calculating the completeness threshold. Both papers
have the problem that they use an explicit representation of Büchi automata in their im-
plementations and thus potentially using an exponential number of state bits in the size
of the formula to represent the Büchi automaton. Furthermore, they do not use gener-
alised Büchi automata to represent LTL properties and might therefore have to proceed
deeper to prove properties than the method proposed in this paper or methods based on
generalised Büchi automata.

McMillan [10] uses interpolants derived from unsatisfiability proofs of BMC coun-
terexample queries to overapproximate reachability. The deeper the BMC query is, the
more exact the overapproximation is. The method is complete and can be extended to
LTL through the liveness to safety transformation [4]. A weakness of the method is that
the unsatisfiability proofs can be of exponential size and cause a blow up.

A promising technique for improving the performance of BMC is using incremen-
tal SAT solving. When a solver is faced with a sequence of related problems, learning
clauses (see e.g., [11]) from the previous problems can drastically improve the solution
time for the next problem and thus for the whole sequence. BMC is a natural candidate
for incremental solving as two BMC instances for bounds k and k +1 are very similar.
Strichman [12] and Whittemore et al. [13] were among the first to consider incremental
BMC. Both papers presented frameworks for transforming a SAT problem to the next in
the sequence by adding and removing clauses from the current problem instance. Eén
and Sörensson [14] consider incremental BMC combined with the inductive scheme
presented in [3]. Their approach is based on using the special syntactic structure of
the BMC encoding for invariants to forward all learned clauses, and therefore they do
not need to perform any potentially expensive conflict analysis between two sequen-
tial problem instances. Jin and Somenzi [15] present efficient ways of filtering conflict
clauses when creating the next problem instance. In [16] a framework for incremental
SAT solving based on incremental compilation of the encoding to SAT is presented,
however, their PLTL encoding is based on the original and inefficient encoding of [17].

Our contribution is a BMC encoding specifically adapted to an incremental setting
based on the PLTL encoding presented in [18]. The encoding has been designed to allow
easy separation of constraints that remain active over all instances and constraints that
should be removed when the bound is increased. In addition, we have tried to minimise
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the number of constraints that must be removed in order to allow maximal learning in a
solver independent fashion. Both of these are achieved while maintaining the efficiency
of the original encoding [18]. Additionally, our encoding is able to prove properties of
full PLTL with smaller bounds than previous methods for LTL [8,9], as these papers em-
ploy a method for translating generalised Büchi automata to standard (non-generalised)
Büchi automata in a way which does not preserve the minimal length of counterexam-
ples. We have implemented our method in the NuSMV model checker [19] and present
promising experimental results.

2 Bounded Model Checking for LTL

The main idea of bounded model checking [1] is to search for bounded witnesses for a
temporal property. A bounded witness is an infinite path on which the property holds,
and which can be represented by a finite path of length k. A finite path can represent
infinite behaviour, in the following sense. Either it represents all its infinite extensions or
it forms a loop. Given l > 0, an infinite path π = s0s1s2 . . . of states is a (k, l)-loop, if π =
(s0s1 . . .sl−1)(sl . . .sk)ω. In a finite state system we can restrict ourselves to searching
for counterexamples to an LTL (and also PLTL) property representable as a (k, l)-loop.
In BMC all possible k-length bounded witnesses of the negation of the specification
are encoded as a SAT problem. The bound k is increased until either a witness is found
(the instance is satisfiable) or a sufficiently high value of k to guarantee completeness
is reached.

2.1 PLTL

PLTL is a commonly used specification logic with both past and future temporal oper-
ators. We refer to the sublogic consisting of only the future temporal operators as LTL.
The semantics of an PLTL formula is defined along infinite paths π = s0s1 . . . of states.
Each state si is labelled by a labelling function L such that L(si)∈ 2AP, where AP is a set
of atomic propositions. The states are part of a model M with a total transition relation
T and initial state constraint I. Let πi denote the suffix of π starting from the i:th state.
The semantics is as follows:

πi |= ψ ⇔ ψ ∈ L(si) for ψ ∈ AP.
πi |= ¬ψ ⇔ πi �|= ψ.
πi |= ψ1 ∨ψ2 ⇔ πi |= ψ1 or πi |= ψ2.
πi |= ψ1 ∧ψ2 ⇔ πi |= ψ1 and πi |= ψ2.
πi |= Xψ ⇔ πi+1 |= ψ.
πi |= ψ1 U ψ2 ⇔ ∃n ≥ i such that πn |= ψ2 and π j |= ψ1 for all i ≤ j < n.
πi |= ψ1 R ψ2 ⇔ ∀n ≥ i,πn |= ψ2 or π j |= ψ1 for some i ≤ j < n.
πi |= Yψ ⇔ i > 0 and πi−1 |= ψ.
πi |= Zψ ⇔ i = 0 or πi−1 |= ψ.
πi |= Oψ ⇔ π j |= ψ for some 0 ≤ j ≤ i.
πi |= Hψ ⇔ π j |= ψ for all 0 ≤ j ≤ i.
πi |= ψ1 S ψ2 ⇔ π j |= ψ2 for some 0 ≤ j ≤ i and πn |= ψ1 for all j < n ≤ i.
πi |= ψ1 T ψ2 ⇔ for all 0 ≤ j ≤ i : π j |= ψ2 or πn |= ψ1 for some j < n ≤ i.
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When π0 |= ψ we simply write π |= ψ. With M |= ψ we denote that π |= ψ for all
infinite initialised paths π of M. Commonly used abbreviations are the standard Boolean
shorthands �≡ p∨¬p for some p ∈ AP, ⊥≡¬�, p ⇒ q ≡¬p∨q, p ⇔ q ≡ (p ⇒ q)∧
(q ⇒ p), and the derived temporal operators Fψ ≡ � U ψ (’finally’), Gψ ≡ ¬F¬ψ
(’globally’). It is always possible to rewrite any formula to positive normal form, where
all negations appear only in front of atomic propositions. This can be accomplished
by using dualities of the form ¬(ψ1 U ψ2) ≡ ¬ψ1 R¬ψ2, which are available for all
operators. In the rest of the paper we assume that all formulas are in positive normal
form. The maximum number of nested past operators in PLTL formula is called the past
operator depth.

Definition 1. The past operator depth for a PLTL formula ψ is denoted by δ(ψ) and is
inductively defined as:

δ(ψ) = 0 for ψ ∈ AP,
δ(◦φ) = δ(φ) for ◦ ∈ {¬,X ,F ,G} ,
δ(ψ1 ◦ ψ2) = max(δ(ψ1),δ(ψ2)) for ◦ ∈ {∨,∧,U,R} ,
δ(◦φ) = 1+δ(φ) for ◦ ∈ {Y ,Z ,O ,H} , and
δ(ψ1 ◦ ψ2) = 1+max(δ(ψ1),δ(ψ2)) for ◦ ∈ {S,T} .

The set of subformulas of a PLTL formula ψ is denoted by cl(ψ) and is defined as
the smallest set satisfying the following conditions:

ψ ∈ cl(ψ),
if ◦ φ ∈ cl(ψ) for ◦ ∈ {¬,X ,F ,G ,Y ,Z ,O ,H} then φ ∈ cl(ψ), and
if ψ1 ◦ ψ2 ∈ cl(ψ) for ◦ ∈ {∨,∧,U,R,S,T} then ψ1,ψ2 ∈ cl(ψ).

2.2 Incremental Bounded Model Checking for LTL

We start by presenting an incremental encoding for LTL based on our simple BMC
encoding [20,18]. There are a few considerations that need to be taken into account for
a good incremental encoding. First of all, the encoding needs to be formulated so that it
is easy to derive the case k = i+1 from k = i. This is done by separating the encoding to
a k-invariant part and a k-dependent part. The information learned from the k-invariant
constraints can be reused when the bound is increased while the information learned
from the k-dependent constraints needs to be discarded. Thus we try to minimise the
use of k-dependent constraints in our encoding. The so called Base constraints are also
k-invariant, but they are conditions that are constant for all 0 ≤ i ≤ k.

Given an LTL property ψ, in our new encoding the state variables of the system are
split at each time i to the actual state variables si of the system, to the set of variables for
all subformulas |[sψ]|i (one for each subformula ϕ ∈ cl(ψ)), and to the set of variables
for the so called auxiliary translation 〈〈sψ〉〉i (one for each F ,G ,U,R subformula ϕ ∈
cl(ψ)). The encoding also contains a few additional variables which will be referred to
explicitly. The rules of the encoding are given as a set of Boolean constraints.

Paths of length k are encoded using model constraints. They encode initialised finite
paths of the model M of length k:
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where I(s) is the initial state predicate and T (s,s′) is a total transition relation.
The loop constraints employ k + 2 fresh loop selector variables l0, . . . , lk+1. They

constrain the finite path of the system to be: (a) a finite path, in which case none of
the l0, . . . , lk+1 variables is true, or (b) a (k, i)-loop, in which case the variable li is true
and all other l j variables are false. Many k-dependent constraints of our original encod-
ing [20] have been eliminated by introducing a new special system state sE with fresh
(unconstrained) state variables acting as a proxy state for the endpoint of the path. In
the k-dependent part the proxy state sE is constrained to be equivalent to sk. The vari-
able InLoopi is true iff the state si belongs to the loop part of a (k, l)-loop. The variable
LoopExists is k-dependent, and true when π is a (k, l)-loop and false otherwise. This is
encoded by conjuncting the constraints below and denoted by |[LoopConstraints]|k:

Base l0 ⇔ ⊥
InLoop0 ⇔ ⊥

k−invariant li ⇒ (si−1 = sE)

1 ≤ i ≤ k InLoopi ⇔ InLoopi−1 ∨ li,

InLoopi−1 ⇒ ¬li

k−dependent lk+1 ⇔ ⊥
sE ⇔ sk

LoopExists ⇔ InLoopk

The LTL constraints restrict the bounded path defined by the model constraints and loop
constraints to witnesses of the given LTL formula ψ. One intuition for understanding
the encoding is given by the fact that for (k, l)-loops the semantics of CTL and LTL
coincide [21,22,20]. Thus for (k, l)-loops the encoding can be seen as a CTL model
checker for the single (k, l)-loop selected by the loop constraints.

As mentioned above, the translation for LTL uses for each time point i and each
subformula ϕ ∈ cl(ψ) one state variable denoted by |[ϕ]|di . The superscript d is needed
in order to extend the encoding to the PLTL case but d = 0 holds for all LTL properties.
Note that although the transition relation is unrolled up to i = k, there are formula
state variables up to i = k + 1. We will now start introducing constraints on these free
subformula variables.

We use a proxy state sL with associated (free) formula variables |[ϕ]|dL to simplify
the notation a bit. In the no-loop case they will all be forced to false in order to safely
underapproximate the semantics of LTL. In the loop case they will pick up the truth
value for each subformula in the loop state sL, i.e. the successor state of sE . The k-
dependent rules bind the truth values of |[ϕ]|dE to |[ϕ]|dk and the truth values of |[ϕ]|dk+1

to |[ϕ]|min(d+1,δ(ϕ))
L (jump to the next unrolling level d + 1, needed for the PLTL case).

|[M]|k := I(s0)∧
k̂

i=1

T (si−1,si),
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For all ϕ ∈ cl(ψ) the following constraints are created:

0 ≤ d ≤ δ(ϕ)

Base ¬LoopExists ⇒
(
|[ϕ]|dL ⇔⊥

)
k−invariant,1 ≤ i ≤ k li ⇒

(
|[ϕ]|dL ⇔ |[ϕ]|di

)
k−dependent |[ϕ]|dE ⇔ |[ϕ]|dk

|[ϕ]|dk+1 ⇔ |[ϕ]|min(d+1,δ(ϕ))
L

Atomic propositions, their negations and the basic Boolean connectives can be dealt
with straightforwardly in a k-invariant fashion. The encoding for the temporal subfor-
mulas follows the recursive semantic definition of LTL temporal subformulas. The Base
encoding guarantees in the (k, l)-loop case the following. If an until holds at sE then the
ψ2 subformula will hold in some state in the loop. In the release case if ψ2 is true on
all states along the loop, then also the release formula holds at sE . In the case of a non-
looping path we do not have to care about eventualities and thus the Base encoding is
disabled. Rules for finally and globally are just special case optimisations of these two.

ϕ

Base Fφ LoopExists ⇒
(
|[Fφ]|δ(φ)

E ⇒ 〈〈Fφ〉〉δ(φ)
E

)
Gφ LoopExists ⇒

(
|[Gφ]|δ(φ)

E ⇐ 〈〈Gφ〉〉δ(φ)
E

)
ψ1 U ψ2 LoopExists ⇒

(
|[ψ1 U ψ2]|δ(ϕ)

E ⇒ 〈〈Fψ2〉〉δ(ψ2)
E

)
ψ1 R ψ2 LoopExists ⇒

(
|[ψ1 R ψ2]|δ(ϕ)

E ⇐ 〈〈Gψ2〉〉δ(ψ2)
E

)
k−invariant p |[p]|di ⇔ pi

¬p |[¬p]|di ⇔¬pi

0 ≤ i ≤ k, ψ1 ∧ψ2 |[ψ1 ∧ψ2]|di ⇔ |[ψ1]|di ∧|[ψ2]|di
0 ≤ d ≤ δ(ϕ) ψ1 ∨ψ2 |[ψ1 ∨ψ2]|di ⇔ |[ψ1]|di ∨|[ψ2]|di

Xφ |[Xφ]|di ⇔ |[φ]|di+1

Fφ |[Fφ]|di ⇔ |[φ]|di ∨|[Fφ]|di+1

Gφ |[Gφ]|di ⇔ |[φ]|di ∧|[Gφ]|di+1

ψ1 U ψ2 |[ψ1 U ψ2]|di ⇔ |[ψ2]|di ∨
(
|[ψ1]|di ∧|[ψ1 U ψ2]|di+1

)
ψ1 R ψ2 |[ψ1 R ψ2]|di ⇔ |[ψ2]|di ∧

(
|[ψ1]|di ∨|[ψ1 R ψ2]|di+1

)
The auxiliary encoding 〈〈ϕ〉〉d

i is used to enforce eventualities. As it is not referenced in
the no-loop case, we consider only the (k, l)-loop case. In that case 〈〈Fφ〉〉d

E (〈〈Gφ〉〉d
E )

is true iff Fφ (Gφ) holds in the end state sE (in unrolling d for the PLTL case). For
〈〈Fφ〉〉d

E , this is implemented by requiring that |[φ]|di holds in at least one state in the
loop, while 〈〈Gφ〉〉d

E requires that |[ψ]|di holds in all states of the loop. The formulation
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ϕ

Base Fφ 〈〈Fφ〉〉δ(φ)
0 ⇔⊥

Gφ 〈〈Gφ〉〉δ(φ)
0 ⇔�

k−invariant Fφ 〈〈Fφ〉〉δ(φ)
i ⇔ 〈〈Fφ〉〉δ(φ)

i−1 ∨
(

InLoopi ∧|[φ]|δ(φ)
i

)
1 ≤ i ≤ k Gφ 〈〈Gφ〉〉δ(φ)

i ⇔ 〈〈Gφ〉〉δ(φ)
i−1 ∧

(
¬InLoopi ∨|[φ]|δ(φ)

i

)
k−dependent Fφ 〈〈Fφ〉〉δ(φ)

E ⇔ 〈〈Fφ〉〉δ(φ)
k

Gφ 〈〈Gφ〉〉δ(φ)
E ⇔ 〈〈Gφ〉〉δ(φ)

k

Our incremental encoding is close to the symbolic Büchi automata construction for
LTL formulae presented in [23], were it to be adapted to an incremental BMC setting
(see also [5] for more on this connection). By restricting the encoding to looping coun-
terexamples, and replacing our auxiliary encoding with an encoding that would track
the Büchi acceptance conditions for until and finally formulas, the encoding for LTL
would essentially correspond to an incremental BMC version of [23].

For LTL we have now generated the full encoding which will be extended to PLTL
in the next section, where we will also present the correctness claims. Let |[M,ψ]|k
denote the encoding above with the bound set to k. Intuitively, the LTL formula ψ has
a bounded witness of length k in M iff the encoding is satisfiable. Moreover, when
moving from an instance with bound k = i to an instance with bound k = i + 1 only
the k-dependent constraints (and of course things learned from them by the SAT solver)
need to be discarded.

3 Generalising to PLTL

The generalisation to full PLTL is based on our BMC encoding for PLTL [18]. With past
operators, encoding the BMC problem is slightly more complicated. The main source
of complexity is the fact that when a (k, l)-loop is traversed forward, each time we reach
the loop point, the future looks the same but the past is different. Fortunately, the ability
of a PLTL formula ψ to distinguish between different loop points is bounded by the past
formula nesting depth δ(ψ) [24,17]. Therefore the evaluations of past operators inside
the loop will eventually stabilise. This can be exploited in BMC by virtually unrolling
the (k, l)-loop δ(ψ) times, to ensure that the evaluations of the past operators have sta-
bilised. Consider a simple counter that increments a variable x at each step. When x
reaches five the value of x is reset to two. The counter has the single execution π =
012(3452)ω that corresponds to a (6,3)-loop. Let ϕ = (x = 3∧O (x = 4∧O (x = 5)))
which has δ(ϕ) = 2. At the loop state i = 3 we have that π3 �|= ϕ. At the next corre-
sponding time step i = 7 the formula ϕ still does not hold. However, when we reach
i = 11 the formula ϕ has stabilised and π11 |= ϕ. In Fig. 1 the (6,3)-loop of the counter

of the auxiliary encoding is one of the main differences to the encoding of [18] and
allows several new optimisations in Sect. 5.
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and each subformula ϕ ∈ cl(ψ) the formula variables |[ϕ]|di , where 0 ≤ d ≤ δ(ϕ). Please
refer to our paper on BMC for PLTL for details [18]. The first rule of the encoding for
PLTL is based on the property mentioned above: PLTL can only distinguish between
different unrollings of the loop up to the past depth of the formula.

0 ≤ d ≤ δ(ϕ)

k−invariant |[ϕ]|di := |[ϕ]|δ(ϕ)
i , when d > δ(ϕ)

The encoding for the past operators is very similar to our encoding presented in [18].
The basic idea is to use the recursive definitions of the past temporal operators. The
history past operators should evaluate corresponds to the straight black arrows of Fig. 1.
An if-then-else construct is used to determine if the previous time point in the past
is si−1 at the current depth or sE at the previous depth d − 1 (see Fig. 1). We define
ite(a,b,c)≡ (a∧b)∨(¬a∧ c) to obtain a more compact representation of the encoding.

The largest change to our previous encoding [18] is the translation at i = 0 when d >
0, which is now identical to i = 0 of d = 0. This is done on purpose to make all the virtual
unrollings identical in the no-loop case (this allows some of the optimisations given
in Sect. 5). Moreover, references to subformulas at state sk have been replaced with
references to subformulas at the proxy state sE making all the constraints k-invariant.

Combining all the components the encoding |[M,ψ]|k for PLTL is defined to be:

|[M,ψ]|k := |[M]|k ∧|[LoopConstraints]|k ∧|[ψ]|00.

system has been virtually unrolled to depth d = 2.. The corresponding state to i = 11 is
at depth d = 2 at i = 3. The encoding is modified by introducing for each time point i
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ϕ
k−invariant Yφ |[Yφ]|00 ⇔⊥, |[Yφ]|0i ⇔ |[φ]|0i−1

Zφ |[Zφ]|00 ⇔�, |[Zφ]|0i ⇔ |[φ]|0i−1

1 ≤ i ≤ k +1, Oφ |[Oφ]|00 ⇔ |[φ]|00, |[Oφ]|0i ⇔ |[φ]|0i ∨|[Oφ]|0i−1

d = 0 Hφ |[Hφ]|00 ⇔ |[φ]|00, |[Hφ]|0i ⇔ |[φ]|0i ∧|[Hφ]|0i−1

ψ1 S ψ2 |[ψ1 S ψ2]|00 ⇔ |[ψ2]|00, |[ψ1 S ψ2]|0i ⇔ |[ψ2]|0i ∨
(
|[ψ1]|0i ∧|[ψ1 S ψ2]|0i−1

)
ψ1 T ψ2 |[ψ1 T ψ2]|00 ⇔ |[ψ2]|00, |[ψ1 T ψ2]|0i ⇔ |[ψ2]|0i ∧

(
|[ψ1]|0i ∨|[ψ1 T ψ2]|0i−1

)
k−invariant Yφ |[Yφ]|d0 ⇔⊥, |[Yφ]|di ⇔ ite

(
li, |[φ]|d−1

E , |[φ]|di−1

)
Zφ |[Zφ]|d0 ⇔�, |[Zφ]|di ⇔ ite

(
li, |[φ]|d−1

E , |[φ]|di−1

)
1 ≤ i ≤ k +1, Oφ |[Oφ]|d0 ⇔ |[φ]|00, |[Oφ]|di ⇔ |[φ]|di ∨ ite

(
li, |[ϕ]|d−1

E , |[ϕ]|di−1

)
1 ≤ d ≤ δ(ϕ) Hφ |[Hφ]|d0 ⇔ |[φ]|00, |[Hφ]|di ⇔ |[φ]|di ∧ ite

(
li, |[ϕ]|d−1

E , |[ϕ]|di−1

)
ψ1 S ψ2 |[ψ1 S ψ2]|d0 ⇔ |[ψ2]|00, |[ψ1 S ψ2]|di ⇔ |[ψ2]|di ∨

(
|[ψ1]|di ∧ ite

(
li, |[ϕ]|d−1

E , |[ϕ]|di−1

))
ψ2 T ψ1 |[ψ1 T ψ2]|d0 ⇔ |[ψ2]|00, |[ψ1 T ψ2]|di ⇔ |[ψ2]|di ∧

(
|[ψ1]|di ∨ ite

(
li, |[ϕ]|d−1

E , |[ϕ]|di−1

))

The correctness claims are stated below but proofs have been omitted due to space
considerations. Moreover, similarly to the LTL case, when moving from a PLTL encod-
ing instance |[M,ψ]|k to the instance |[M,ψ]|k+1 only the k-dependent constraints (and
of course things learned from them by the SAT solver) need to be discarded.

Theorem 1. Given a finite Kripke structure M and a PLTL formula ψ, M has a path π
such that π |= ψ iff there exists a k ∈ N such that |[M,ψ]|k is satisfiable. Specifically, if
π = s0s1s2 . . . is a (k, l)-loop such that π |= ψ then |[M,ψ]|k is satisfiable. 1

4 Completeness for PLTL

The incremental encoding above can easily be extended to prove properties. The basic
intuition is similar to the induction strengthening of [3] for invariants, restricted to the
forward direction but extended for PLTL.

The procedure starts with bound k = 0. First we create a completeness formula,
denoted by |[M,ψ,k]|, which is satisfied only for the initialised finite paths of length
k which one might be able to extend to a bounded witness of formula ψ (of length k
or longer). Furthermore, the completeness formula should be conjuncted with a sim-
ple path formula which is satisfied for exactly those paths which do not contain two
“equivalent” states. If the conjunction of the completeness and simple path formulas is
unsatisfiable the model checked formula ¬ψ holds in the system and the procedure can
be terminated. Otherwise the witness formula |[M,ψ]|k is created which is satisfied for
bounded witnesses of length k to the formula ψ (see Theorem 1). If the witness formula
is satisfiable, a witness is found, and the procedure can terminate and the model checked
formula ¬ψ does not hold. Otherwise, the procedure is repeated after incrementing k
by one.

The termination of the procedure above is guaranteed if there are only finitely many
equivalence classes of states considered by the simple path formula. The soundness

1 A direct corollary of this is that minimal length (k, l)-loop counterexamples can be detected.
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and completeness of the procedure is more involved and basically requires the witness,
completeness, and simple path formulas to be compatible with each other.

In our case we will use as the completeness formula |[M,ψ,k]| the encoding |[M,ψ]|k
where all the k-dependent constraints have been discarded. Clearly, any witness formula
for bounds > k will contain all the constraints in |[M,ψ,k]| and thus if |[M,ψ,k]| is un-
satisfiable all more constrained formulas are going to be unsatisfiable as well.

The definition of which states are equivalent w.r.t. the simple path formula is a bit
more involved and the following definition is used: two states si and s j are equivalent
if either: (i) they both do not belong to the loop and agree on the system state si = s j

and the formula state restricted to the first virtual unrolling |[sψ]|0i = |[sψ]|0j , or (ii) they
both belong to the loop and agree on the system state si = s j, on the formula state on
all unrollings |[sψ]|i = |[sψ]| j and on the auxiliary formula state 〈〈sψ〉〉i = 〈〈sψ〉〉 j. The
simple path formula can thus be expressed by:

|[SimplePath]|k :=
V

0≤i< j≤k

(
si �= s j ∨ InLoopi �= InLoop j ∨|[sψ]|0i �= |[sψ]|0j∨(
InLoopi ∧ InLoop j ∧

(
|[sψ]|i �= |[sψ]| j ∨〈〈sψ〉〉i �= 〈〈sψ〉〉 j

)))
.

The intuition of case (i) is that if the states si and s j agree on both the system state
and the formula state restricted to the first virtual unrolling, then the witness is of non-
minimal length and would have been already detected with bound k− ( j− i). Similar
reasoning also applies to case (ii), where in addition to the system state, all unrollings
have to agree on the formula state (please refer to Fig. 1) and the auxiliary formula state
has to be identical in si and s j in order not to erroneously remove any states from the
witness which are needed to fulfil the temporal eventualities.

The proof why this notion of state equivalence is a sound formulation in the con-
text of our procedure is slightly more involved but here we will give a sketch. As-
sume we have a bounded witness of length k which contains two equivalent states si

and s j. In the case of two equivalent states of type either (i) or (ii) we can show by
(a slightly tedious but straightforward analysis of) the structure of the formulas |[M,ψ]|k
and |[M,ψ]|k−( j−i) that there exists a bounded witness of length k− ( j− i) to ψ where
all system states sm such that i < m ≤ j have been removed and all system states with
indexes n > j have their indexes decreased by j − i. Thus if a witness contains two
equivalent states then also a shorter witness exists. Because repeating the procedure
will terminate in a situation where no two equivalent states exist, the simple path for-
mula does not remove any minimal length witnesses. We have the following result.

Theorem 2. Given a model M and a PLTL formula ψ, M |= ψ iff for some k ∈ N

|[M,¬ψ,k]| ∧ |[SimplePath]|k is unsatisfiable and |[M,¬ψ]|i is unsatisfiable for all 0 ≤
i < k.

5 Optimising the Encoding

There are several straightforward ways of optimising the encoding. We present some
of them below. For example, many subformulas in cl(ψ) do not need a formula state
variable bit as only subformulas to which other time points can refer to with tempo-
ral subformulas need to be included in |[sψ]|. In the following table we have included
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several optimisations. The first class consists of binding formula variables in |[sψ]|E to
those in sE and |[sψ]|L in a k-invariant manner. There are several optimisations which
exploit the monotonic nature of the unary LTL operators to infer things even before a
loop on the system side has been closed. For example, if Gφ holds in a state s whose
future is a superset of the future of state s′ then clearly Gφ has to also hold in s′. (Some
of these optimisations have to be enabled by InLoopi because the required subset rela-
tions only hold for the black nodes of Fig. 1.) Also the over (under) approximation of
the main encoding and auxiliary encoding for unary future formulas is exploited, and
so on.

Base,0 ≤ d ≤ δ(ϕ) k−invariant,0 ≤ i ≤ k,0 ≤ d ≤ δ(ϕ)

|[p]|dE ⇔ pE li ⇒ LoopExists
|[¬p]|dE ⇔¬pE |[Gφ]|di ⇒ |[Gφ]|dE

|[ψ1 ∧ψ2]|dE ⇔ |[ψ1]|dE ∧|[ψ2]|dE InLoopi ⇒
(
|[Oφ]|di ⇒ |[Oφ]|dE

)
|[ψ1 ∨ψ2]|dE ⇔ |[ψ1]|dE ∨|[ψ2]|dE |[Fφ]|dE ⇒ |[Fφ]|di

|[Xφ]|dE ⇔ |[φ]|min(d+1,δ(φ))
L InLoopi ⇒

(
|[Hφ]|dE ⇒ |[Hφ]|di

)
|[ψ1 U ψ2]|dE ⇔ |[ψ2]|dE ∨

(
|[ψ1]|dE ∧|[ψ1 U ψ2]|min(d+1,δ(ϕ))

L

)
|[ψ1 R ψ2]|dE ⇔ |[ψ2]|dE ∧

(
|[ψ1]|dE ∨|[ψ1 R ψ2]|min(d+1,δ(ϕ))

L

)
|[Fφ]|dE ⇔ |[φ]|dE ∨|[Fφ]|min(d+1,δ(ϕ))

L 〈〈Fφ〉〉δ(φ)
i ⇒ 〈〈Fφ〉〉δ(φ)

E

|[Gφ]|dE ⇔ |[φ]|dE ∧|[Gφ]|min(d+1,δ(ϕ))
L 〈〈Gφ〉〉δ(φ)

E ⇒ 〈〈Gφ〉〉δ(φ)
i

|[Gφ]|δ(φ)
E ⇒ 〈〈Gφ〉〉δ(φ)

E |[Gφ]|δ(φ)
i ⇒ 〈〈Gφ〉〉δ(φ)

i

〈〈Fφ〉〉δ(φ)
E ⇒ |[Fφ]|δ(φ)

E 〈〈Fφ〉〉δ(φ)
i ⇒ |[Fφ]|δ(φ)

i

|[Gφ]|dE ⇒ |[Gφ]|d+1
E , when d < δ(φ) InLoopi ⇒

(
|[Gφ]|di ⇒ |[Gφ]|d+1

i

)
, when d < δ(φ)

|[Oφ]|dE ⇒ |[Oφ]|d+1
E , when d < δ(φ) InLoopi ⇒

(
|[Oφ]|di ⇒ |[Oφ]|d+1

i

)
, when d < δ(φ)

|[Fφ]|d+1
E ⇒ |[Fφ]|dE , when d < δ(φ) InLoopi ⇒

(
|[Fφ]|d+1

i ⇒ |[Fφ]|di
)

, when d < δ(φ)

|[Hφ]|d+1
E ⇒ |[Hφ]|dE , when d < δ(φ) InLoopi ⇒

(
|[Hφ]|d+1

i ⇒ |[Hφ]|di
)

, when d < δ(φ)

6 Experiments

We have implemented our work in version 2.2.3 of the NuSMV model checker [19].
We have built an incremental SAT solver interface to NuSMV allowing one to add con-
straints to the solver either in a permanent or a temporary manner. The temporary con-
straints can be removed from the solver, automatically also removing all the constraints
that the solver has learned based on those. The incremental SAT solvers currently sup-
ported by the interface are MiniSat [25] and ZChaff [26]. In the experiments we use
the latest version 2004.11.15 of ZChaff as the SAT solver. The memory was limited to
900MiB and the cumulative time to one hour. No cone of influence reductions are used
during benchmarking and our implementation does not contain any invariant (or any
other property class) specific optimisations (left for further work). As the benchmark
problems we use: (i) the systems involving PLTL specifications that we have used ear-
lier in [18] (the VMCAI/* problems), (ii) IBM benchmarks from [27], and (iii) some
systems in the standard NuSMV distribution involving LTL specifications which we
could prove to be true.

Table 1 reports some of the results. The NuSMV 2.2.3 column refers to the non-
incremental PLTL BMC model checker of NuSMV 2.2.3, the VMCAI column refers to
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NuSMV 2.2.3 VMCAI new inc. new non-inc. new inc. new non-inc.
counter-ex. counter-ex. completeness completeness

problem t/f k time t/f k time t/f k time t/f k time t/f k time t/f k time
VMCAI2005/abp4 f 16 70 f 16 47 f 16 56 f 16 55 f 16 26 f 16 68
VMCAI2005/brp 28 152 1771 166 89 39
VMCAI2005/dme4 23 49 56 51 57 39
VMCAI2005/pci 15 18 f 18 2388 17 18 17
VMCAI2005/srg5 12 242 736 210 54 44
IBM/IBM FV 2002 01 f 14 90 f 14 113 f 14 44 f 14 87 f 14 54 f 14 113
IBM/IBM FV 2002 03 f 32 134 f 32 206 f 32 32 f 32 200 f 32 74 f 32 727
IBM/IBM FV 2002 04 f 24 38 f 24 91 f 24 12 f 24 90 f 24 38 f 24 156
IBM/IBM FV 2002 05 f 31 258 f 31 421 f 31 17 f 31 251 f 31 52 f 31 617
IBM/IBM FV 2002 06 f 31 573 f 31 732 f 31 77 f 31 723 f 31 270 f 31 2032
IBM/IBM FV 2002 09 232 84 787 81 81 76
IBM/IBM FV 2002 15 f 9 38 f 9 40 f 9 3 f 9 4 f 9 3 f 9 9
IBM/IBM FV 2002 18 26 27 f 29 2362 26 f 29 1789 24
IBM/IBM FV 2002 19 f 29 3057 29 f 29 86 28 f 29 300 23
IBM/IBM FV 2002 20 27 27 35 26 35 24
IBM/IBM FV 2002 21 f 29 2276 f 29 3442 f 29 144 f 29 2741 f 29 239 24
IBM/IBM FV 2002 22 25 26 49 25 42 20
IBM/IBM FV 2002 23 25 25 31 24 31 21
IBM/IBM FV 2002 27 f 25 298 f 25 291 f 25 15 f 25 322 f 25 44 f 25 406
IBM/IBM FV 2002 28 f 14 1046 f 14 973 f 14 245 f 14 1023 f 14 278 f 14 1160
IBM/IBM FV 2002 29 14 15 17 14 20 14
bmc/barrel5 28 28 67 26 t 11 63 t 11 314
ctl-ltl/counter 1 181 970 8025 3019 t 24 0 t 24 0
ctl-ltl/mutex 196 728 6855 2578 t 19 0 t 19 0
ctl-ltl/periodic 561 331 2063 781 t 201 593 t 201 2596
ctl-ltl/ring 159 264 713 165 t 66 3203 44 3598
ctl-ltl/short 182 870 2496 800 t 11 0 t 11 0

the implementation of our earlier non-incremental PLTL translation [18] ported on top
of NuSMV 2.2.3, while “new inc. completeness” (“new non-inc. completeness”, resp.)
is an incremental (non-incremental, resp.) implementation of the new translation with
completeness. The “new inc. counter-ex.” (“new non-inc. counter-ex.”) column refers
to a “counter-example only” version of the new (non-incremental) implementation in
which the completeness check is disabled (and thus the simple path constraint is not
used). The “t/f” column shows whether the implementation was able to show that the
property is either true or false, the k column shows the maximum k that was reached
within the memory and time limits, and time is the cumulative time in seconds used to
solve the problem.

The results show many interesting things. First of all, it can be seen that incre-
mentality usually significantly improves the running times and thus also enables higher
bounds to be reached faster. Furthermore, it never degraded the performance consider-
ably. Second, compared to the counter-example only version, the completeness check is
sometimes essentially free but sometimes it significantly slows down the search. Third,
with the incremental SAT solver technology and the new translation it was possible
to build a BMC procedure with completeness that usually performs much better than
the standard NuSMV BMC procedure (without completeness) even when the specifi-
cations are simple invariants (the IBM problems). Last, our new incremental imple-
mentation is significantly better than the previously suggested compact encoding for
PLTL (the VMCAI column). The implementation and experiments are available from:
http://www.tcs.hut.fi/˜tjunttil/experiments/CAV05/
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7 Discussion and Conclusions

We have created an efficient incremental and complete BMC procedure for full PLTL
detecting counterexamples at minimal bounds, an improvement over complete BMC
procedures for LTL based on non-generalised Büchi automata [9,8]. The encoding most
similar to ours is [5], which is unsurprising as it is also based on the joint work [18].
However, the main aim of [5] was to create a BDD based symbolic model checker,
without incremental BMC in mind.

An interesting feature of our new PLTL encoding (unlike the earlier version [18])
is that it is sound also in the case we replace the function δ(·) with a constant function
that always returns 0. In this case the size of the encoding will be linear in |ψ| (similar
to [28], see [5]). In fact, we can limit the maximum virtual unrolling depth of formulas
to any value between zero (minimal size encoding, potentially longer counterexamples)
and δ(ψ) (minimal length counterexamples, larger encoding) and Theorem 2 still holds.
Limiting the number of virtual unrollings to zero can be beneficial in order to sometimes
prove completeness with a smaller bound.

In order to enhance the performance of the completeness part of the translation,
more efficient ways of handling simple path constraints are needed. Thus an interesting
future improvement in the SAT solver technology would be to enhance the constraint
language of solvers so that they could handle mutual disequality of sets of Boolean vec-
tors natively. An alternative approach would be to develop an incremental version of the
more compact loop free predicate presented in [2]. In addition, we haven’t tried adding
the simple path constraints lazily on-demand as is done in [14]. Our current implemen-
tation of the new translation can be improved in many ways. Firstly, we suspect that
the simple path formula can be refined, and several new k-independent formula invari-
ants can be developed. Several interesting subsets of PLTL could possibly benefit from
special case treatment, especially w.r.t. completeness. Also incremental and complete
BMC for PLTL using backward traversal is left for further work.

Acknowledgements The authors would like to thank Viktor Schuppan for interesting
discussions on the topic.
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Abstract. Counterexample-Guided Abstraction Refinement (cegar)
techniques have been very successful in model checking large systems.
While most previous work has focused on model checking, this paper
presents a Counterexample-Guided abstraction refinement technique for
Bounded Model Checking (bmc). Our technique makes bmc much faster,
as indicated by our experiments. bmc is also used for generating re-
finements in the Proof-Based Refinement (pbr) framework. We show
that our technique unifies pbr and cegar into an abstraction-refinement
framework that can balance the model checking and refinement efforts.

1 Introduction

One of the most successful techniques for combating the infamous state-explosion
problem in model checking is abstraction combined with automatic refinement.
Starting from Kurshan’s localization reduction [Kur94] in the 80’s and later on
a long list of symbolic techniques based at least partially on BDDs [CGKS02]
[BGA02] [CCK+02] [GKMH+03], this framework proves to be highly efficient in
solving model checking problems, many of which simply cannot be solved without
it. The reason abstraction works, is that sometimes the checked property can
be proved or refuted with only partial information about the model. Algorithms
following the abstraction-refinement framework try to identify small subsets of
the original model that on the one hand contain enough information to get the
correct answer, and on the other hand are small enough to be handled by a
model checker.

Abstraction techniques are mostly conservative: they preserve all the be-
haviors of the original model, but may introduce additional behaviors in the
abstract model. This means that the model checker can produce spurious coun-

terexamples, i.e. traces that are only possible in the abstract model, and not
in the original model. In such cases we need to refine the abstraction in order
to remove the spurious behavior. If the refinement is done based on an anal-
ysis of the spurious counterexample, which is the typical case, it is known as
Counterexample-Guided Abstraction Refinement (cegar).

In this paper, we present a Counterexample-Guided abstraction-refinement
technique for Bounded Model Checking, called cg-bmc. SAT-based Bounded
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Model Checking (bmc) [BCCZ99] has gained wide acceptance in industry in the
last few years, as a technique for refuting properties with shallow counterex-
amples, if they exist. Given a model M , a property ϕ and a positive integer
k representing the depth of the search, a Bounded Model Checker generates a
propositional formula that is satisfiable if and only if there is a counterexample
of length k or less to ϕ, in M . bmc iteratively deepens the search for counterex-
amples until either a bug is found or the problem becomes too hard to solve in
a given time limit. The motivation for making this technique more powerful, i.e.
to enable it to go deeper in a given time limit, is clear.

The guiding principle behind cg-bmc is similar to that of any good cegar
technique: attempt to eliminate spurious behavior in few iterations, while keeping
the abstract model small enough to be solved easily. cg-bmc therefore focuses
on eliminating those spurious transitions that may lead to an error state.

Our abstraction makes parts of the model non-deterministic as in [Kur94],
i.e. the defining logic of some variables (those that are known in literature as
invisible variables) is replaced with a nondeterministic value. This abstraction
works well with a SAT-solver since it corresponds to choosing a set of ‘important’
clauses as the abstract model. Our initial abstraction is simply the empty set of
clauses, and in each refinement step we add clauses from the original, concrete
model.

We start the cg-bmc loop with search depth k = 1. In each iteration of the
loop, we first try to find a counterexample of length k in the current abstract
model, with a standard bmc formulation and a SAT-solver. If the abstract model
has no counterexamples of length k, the property holds at depth k and we move to
depth k+1. Otherwise, if a counterexample is detected in the abstract model, we
check the validity of the counterexample on the original model. More specifically,
we formulate a standard bmc instance with length k, and restrict the values of
the visible variables (those that participate in the abstract model) to their values
in the counterexample. If the counterexample is real, we report a bug and exit.
If the counterexample is spurious, the abstract model is refined by adding to it
gates that participated in the proof of unsatisfiability. This refinement strategy
has been previously used by Chauhan et al.[CGKS02] in the context of model
checking. We chose this technique because for our purposes, it provides a good
balance between the effort of computing the refinement and the quality of the
refinement, i.e. how fast it leads to convergence and how hard it makes the
abstract model to solve.

An alternative to our two-stage heuristic, corresponding to checking the ab-
stract and concrete models, is to try to emulate this process within a SAT-solver
by controlling the decision heuristic (focusing first on the parts of the model cor-
responding to the abstract model). Wang et al. [WJHS04] went in this direction:
they use the unsatisfiable cores from previous cycles to guide the search of the
SAT-solver when searching for a bug in the current cycle. Guidance is done by
changing the variable selection heuristic to first decide on the variables that par-
ticipated in the previous unsatisfiable cores. Furthermore, McMillan observed in
[McM03] that modern SAT-solvers internally behave like abstraction-refinement
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engines by themselves: their variable selection heuristics move variables involved
in recent conflicts up in the decision order. However, a major drawback of this
approach is that while operating on a bmc instance, they propagate values to
variables that are not part of the abstract model that we wish to concentrate
on, and this can lead to long phases in which the SAT-solver attempts to solve
local conflicts that are irrelevant to proving the property. In other words, this
approach allows irrelevant clauses to be pulled into the proof through propaga-
tion and cause conflicts. This is also the drawback of [WJHS04], as we will prove
by experiments. Our approach solves this problem by forcing the SAT-solver to
first find a complete abstract trace before attempting to refute it. We achieve
this by isolating the important clauses from the rest of the formula in a separate
SAT instance.

Another relevant work is by Gupta et al. [GGYA03], that presents a top-down
abstraction framework where proof analysis is applied iteratively to generate suc-
cessively smaller abstract models. Their work is related because they also suggest
using the abstract models to perform deeper searches with bmc. However, their
overall approach is very different from ours. They focus on the top-down itera-
tive abstraction, and refinement is used only when they cannot go deeper with
bmc.

We take the cg-bmc approach one step further in Section 5.2, by considering
a new abstraction-refinement framework, in which cg-bmc unifies cegar and
Proof-Based Refinement (pbr) [MA03, GGYA03]. pbr eliminates all counterex-
amples of a given length in a single refinement step. The pbr refinement uses the
unsatisfiable core of the (unrestricted) bmc instance to generate a refinement.
Amla et al. showed in [AM04] that cegar and pbr are two extreme approaches:
cegar burdens the model checker by increasing the number of refinement itera-
tions while pbr burdens the refinement step because the bmc unfolding without
the counterexample constraints is harder to refute. They also present a hybrid
approach that tries to balance between the two, which results in a more robust
overall behavior. We show that by replacing bmc with a more efficient cg-bmc
as the refinement engine inside pbr, we also get a hybrid abstraction-refinement
framework that can balance the model checking and refinement efforts.

In the next section we briefly describe the relevant issues in bmc, unsatisfiable
cores produced by SAT-solvers, and the cegar loop. In Section 3 we describe
our cg-bmc algorithm, which applies cegar to bmc. We also describe a variant
of this algorithm, called cg-bmc-t, which uses timeouts in one stage of the
algorithm to avoid cases in which solving the abstract model becomes too hard.
In Section 4 we describe our experiments with these two techniques and compare
them to both standard bmc and [WJHS04]. Our implementation of cg-bmc on
top of zChaff [MMZ+01] achieved significant speed-ups comparing to the other
two techniques. In Section 5, we describe how this approach can very naturally
be integrated in a hybrid approach, which benefits from the advantages of both
cegar and pbr. We conclude in Section 6 by giving some directions for future
work.
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2 Preliminaries

2.1 Bounded Model Checking

SAT-based Bounded Model Checking [BCCZ99] is a rather powerful technique
for refuting properties. Given a model M , a property ϕ and a positive integer
k representing the depth of the search, a Bounded Model Checker generates a
propositional formula that is satisfiable if and only if there is a counterexample
of length k or less to ϕ, in M . In this case we write M �|=k ϕ. The idea is to iter-
atively deepen the search for counterexamples until either a bug is found or the
problem becomes too hard to solve in a given time limit. The extreme efficiency
of modern SAT-solvers make it possible to check properties typically up to a
depth of a few hundred cycles. More importantly, there is a very weak correla-
tion, if any, between what is hard for standard BDD-based model checking, and
bmc. It is many times possible to refute properties with the latter that cannot
be handled at all by the former. It should be clear, then, that every attempt to
make this technique work faster, and hence enable to check larger circuits and
in deeper cycles, is worth while.

2.2 Unsatisfiable Cores Generated by SAT-Solvers

While a satisfying assignment is a checkable proof that a given propositional
formula is satisfiable, until recently SAT-solvers produced no equivalent evidence
when the formula is unsatisfiable. The notion of generating resolution proofs from
a SAT-solver was introduced in [MA03]. From this resolution proof, one may also
extract the unsatisfiable core, which is the set of clauses from the original CNF
formula that participate in the proof. Topologically, these are the roots of the
resolution graph. The importance of the unsatisfiable core is that it represents a
subset, hopefully a small one, of the original set of clauses that is unsatisfiable by
itself. This information can be valuable in an abstraction-refinement process as
well as in other techniques, because it can point to the reasons for unsatisfiability.
In the case of abstraction-refinement, it can guide the refinement process, since
it points to the reasons for why a given spurious counterexample cannot be
satisfied together with the concrete model.

2.3 Counterexample-Guided Abstraction-Refinement

Given a model M and an ACTL property ϕ, the abstraction-refinement frame-
work encapsulates various automatic algorithms for finding an abstract model
M̂ with the following two properties:

– M̂ over-approximates M , and therefore M̂ |= ϕ → M |= ϕ;
– M̂ is smaller than M , so checking whether M̂ |= ϕ can be done more effi-

ciently than checking the original model M .

This framework is an important tool for tackling the state-explosion problem
in model checking. Algorithm 1 describes a particular implementation of the
Counterexample-Guided Abstraction-Refinement (cegar) loop. We denote by
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BMC(M, ϕ, k) the process of generating the length k bmc unfolding for model
M and solving it, according to the standard bmc framework as explained in
Section 2.1. The loop simulates the counterexample on the concrete model using
a SAT-solver (line 4), and uses the unsatisfiable core produced by the SAT-solver
to refine the abstract model (lines 5,6). This refinement strategy was proposed
by Chauhan et al.[CGKS02].

Algorithm 1 Counterexample-Guided Abstraction-Refinement
cegar (M, ϕ)
1: M̂ = {};
2: if MC(M̂, ϕ) = TRUE then return ‘TRUE’;
3: else let C be the length k counterexample produced by the model checker;
4: if BMC(M, k, ϕ) ∧ C = SAT then return ‘bug found in cycle k’;
5: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver;
6: M̂ = M̂ ∪ U ;
7: goto line 2;

3 Abstraction-Refinement for Bounded Model Checking

The underlying principles behind the cegar framework are the following:

– The information that was used to eliminate previous counterexamples, which
is captured by the abstract model, is relevant for proving the property.

– If the abstract model does not prove the property, then the counterexamples
in the abstract model can guide the search for a refinement.

We apply these principles to guide the SAT-solver, thereby making bmc faster.

3.1 The cg-bmc Algorithm

The pseudo-code of our Counterexample-Guided Bounded Model Checking al-
gorithm is shown in Algorithm 2. We start with an empty initial abstraction
and an initial search depth k = 1. In each iteration of the cg-bmc loop, we
first try to find a counterexample in the abstract model (line 3). If there is no
counterexample in the abstract model, the property holds at cycle k and the
abstract model now contains the gates in the unsatisfiable core generated by
the SAT-solver (lines 4,5). Otherwise, if a counterexample is found, we simulate
the counterexample on the concrete model (line 8). If the counterexample can
be concretized, we report a real bug. If the counterexample is spurious, the ab-
stract model is refined by adding the gates in the unsatisfiable core (line 10).
Like standard bmc, cg-bmc either finds an error or continues until it becomes
too complex to solve within a given time limit.

3.2 Inside a SAT-Solver

Most modern SAT-solvers are based on the DPLL search procedure [DP60]. The
search for a satisfying assignment in the DPLL framework is organized as a bi-
nary search tree in which at each level a decision is made on the variable to split
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Algorithm 2 Counterexample-Guided Bounded Model Checking
cg-bmc (M, ϕ)
1: k = 0; M̂ = {};
2: k = k + 1;
3: if BMC(M̂, k, ϕ) = UNSAT then
4: Let U be the set of gates in the unsatisfiable core produced by the SAT-solver;
5: M̂ = U ;
6: goto line 2;
7: else let C be the satisfying assignment produced by the SAT-solver;
8: if BMC(M, k, ϕ) ∧ C = SAT then return ‘bug found in cycle k’;
9: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver;

10: M̂ = M̂ ∪ U ;
11: goto line 3;

on, and the first branch to be explored (each of the two branches corresponds
to a different Boolean assignment to the chosen variable). After each decision,
Boolean Constrain Propagation (BCP) is invoked, a process that finds the im-
plications of the last decision by iteratively applying the unit-clause rule (the
unit-clause rule simply says that if in an l-length clause l−1 literals are unsatis-
fied, then the last literal must be satisfied in order to satisfy the formula). Most
of the computation time inside a SAT-solver is spent on BCP. If BCP leads to a
conflict (an empty clause), the SAT-solver backtracks and changes some previous
decision.

The performance of a SAT-solver is determined by the choice of the decision
variables. Typically SAT-solvers compute a score function for each undecided
variable that prioritizes the decision options. Many branching heuristics have
been proposed in the literature: see, for example, [Sil99]. The basic idea behind
many of these heuristics is to increase the score of variables that are involved in
conflicts, thereby moving them up in the decision order. This can be viewed as
a form of refinement [McM03].

An obvious question that comes to mind is why do we need an abstraction-
refinement framework for bmc when a SAT-solver internally behaves like an
abstraction-refinement engine. A major drawback of the branching heuristics
in a SAT-solver is that they have no global perspective of the structure of the
problem. While operating on a bmc instance, they tend to get ‘distracted’ by
local conflicts that are not relevant to the property at hand. cg-bmc avoids this
problem by forcing the SAT-solver to find a satisfying assignment to the abstract
model, which contains only the relevant part of the concrete model. It involves
the other variables and gates only if it is not able to prove unsatisfiability with
the current abstract model.

The method suggested by Wang et al. [WJHS04] that we mentioned in the
introduction, tries to achieve a similar effect by modifying the branching heuris-
tics. They perform bmc on the concrete model, while changing the score function
of the SAT-solver so it gives higher priority to the variables in the abstract model
(they do not explicitly refer to an abstract model, rather to the unsatisfiable core
of the previous iteration, which is what we refer to as the abstract model). Since
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their SAT-solver operates on a much larger concrete model, it spends a lot more
time doing BCP. Moreover, many of the variables in the abstract model are also
present in clauses that are not part of the abstract model and their method often
encounters conflicts on these clauses. cg-bmc, on the other hand, isolates the
abstract model and solves it separately, in order to avoid this problem.

3.3 The cg-bmc-t Algorithm

The following is an implicit assumption in the cg-bmc algorithm: Given two
unsatisfiable sets of clauses C1 and C2 such that C1 ⊂ C2, solving C1 is faster
than solving C2. While this is a reasonable assumption and mostly holds in
practice, it is not always true. It is possible that the set of clauses C2 is over-

constrained, so that the SAT-solver can prove its unsatisfiability with a small
search tree. Removing clauses from C2, on the other hand, could produce a set
of clauses C1 that is critically-constrained and proving the unsatisfiability of C1

could take much more time [CA93].
We observed this phenomenon in some of our benchmarks. As an example,

consider circuit PJ05 in Table 1 (see Section 4). The cg-bmc algorithm takes
much longer than bmc to prove the property on PJ05. This is not because of the
overhead of the refinement iterations: the abstract model has enough clauses to
prove the property after an unfolding length of 9. The reason for this is that bmc
on the small abstract model takes more time than bmc on the original model.

In order to deal with such situations, we propose a modified cg-bmc algo-
rithm, called cg-bmc-t (t stands for Timeout). The intuition behind this algo-
rithm is the following: if the SAT-solver is taking a long time on the abstract
model, it is possible that it is stuck in a critically-constrained search region, and
therefore we check if it can quickly prune away this search region by adding
some constraints from the concrete model. The algorithm is described in Algo-
rithm 3. In each iteration of the cg-bmc-t loop, we set a timeout T for the
SAT-solver (line 4) and try to find a counterexample in the abstract model (line
5). If the SAT-solver completes, the loop proceeds like cg-bmc. However, if the
SAT-solver times-out, we simulate the partial assignment on the concrete model
with a smaller timeout (T ×β, β < 1) (lines 14,16). If the concrete model is able
to concretize the partial assignment, we report a bug (line 17). If the concrete
model refutes the partial assignment, we add the unsatisfiable core generated by
the SAT-solver to the abstract model, thereby eliminating the partial assignment
(line 21). If the concrete solver also times-out, we go back to the abstract solver.
However, for this next iteration, we increase the timeout with a factor of α (line
14). The cg-bmc-t algorithm is more robust, as indicated by our experiments.

4 Experiments

We implemented our techniques on top of the SAT-solver zChaff [MMZ+01].
Some modifications were made to zChaff to produce unsatisfiable cores while
adding and deleting clauses incrementally. Our experiments were conducted on
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Algorithm 3 cg-bmc with Timeouts
cg-bmc-t (M, ϕ)
1: k = 0; M̂ = {};
2: k = k + 1;
3: T = Tinit;
4: Set T imeout(T );
5: Res = BMC(M̂, k, ϕ);
6: if Res = UNSAT then
7: Let U be the set of gates in the unsatisfiable core produced by the SAT-solver;
8: M̂ = U ;
9: goto line 2;

10: else
11: if Res = SAT then
12: Let C be the satisfying assignment produced by the SAT-solver;
13: else
14: T = T × α; Set T imeout(T × β);
15: Let C be the partial assignment produced by the SAT-solver;
16: Res = BMC(M, k, ϕ) ∧ C;
17: if Res = SAT then return ‘bug found in cycle k’;
18: else
19: if Res = UNSAT then
20: Let U be the set of gates in the unsat core produced by the SAT-solver;
21: M̂ = M̂ ∪ U ;
22: goto line 4;

a set of benchmarks that were derived during the formal verification of an open
source Sun PicoJava II microprocessor [MA03]. All experiments were performed
on a 1.5GHz Dual Athlon machine with 3Gb RAM. We set a timeout of 2 hours
and a maximum bmc search depth of 60.

We use the incremental feature of zChaff to optimize the cg-bmc loop as
follows. We maintain two incremental SAT-instances: solver-Abs contains the
bmc unfolding of the abstract model while solver-Conc contains the bmc un-
folding of the concrete model. The counterexample generated by solver-Abs is
simulated on solver-Conc by adding unit clauses. The unsatisfiable core gener-
ated by solver-Conc is added to solver-Abs. Our algorithm can in principle be
implemented inside a SAT-solver although this requires fundamental changes in
the way it works, and it is not clear if it will actually perform better or worse.
We discuss this option further in Section 6.

Table 1 compares our techniques with standard bmc. For each circuit, we
report the depth that was completed by all techniques, the runtime in seconds,
and the number of backtracks (for cg-bmc/cg-bmc-t we report the backtracks
on both abstract and concrete models). We see a significant overall reduction in
runtime. This reduction is due to a decrease in the total number of backtracks,
and the fact that most of the backtracks (and BCP) are performed on a much
smaller abstract model. We also observe a more robust behavior with cg-bmc-t
(Tinit = 10s, α = 1.5, β = 0.2).

Table 2 compares our technique with the approach based on modifying the
SAT-solver’s branching heuristics, as described in Wang et al. [WJHS04]. We re-
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Table 1. Comparison of cg-bmc/cg-bmc-t with standard bmc.

Circuit Depth Time(s) Backtracks

bmc cg-bmc cg-bmc-t bmc cg-bmc cg-bmc-t

Abs Conc Abs Conc

PJ00 35 7020 48 48 139104 378 27 378 27

PJ01 60 273 99 99 169 187 9 187 9

PJ02 39 6817 51 51 79531 807 5 807 5

PJ03 39 6847 51 51 79531 807 5 807 5

PJ04 60 125 99 98 169 184 7 184 7

PJ05 25 751 2812 296 12476 582069 59 64846 445

PJ06 33 2287 2421 364 23110 346150 92 82734 137

PJ07 60 1837 789 449 34064 197843 86 111775 132

PJ08 60 5061 201 201 43564 44468 124 44468 124

PJ09 60 1092 110 110 22858 32453 57 32453 57

PJ10 50 6696 47 46 76153 3285 67 3285 67

PJ11 33 6142 69 70 120158 1484 95 1484 95

PJ12 24 5266 28 28 117420 2029 91 2029 91

PJ13 60 327 103 102 1005 4019 4 4019 4

PJ14 60 5086 295 316 103217 64392 84 62944 93

PJ15 34 6461 117 115 86567 16105 111 16105 111

PJ16 56 4303 172 173 37843 30528 56 30528 56

PJ17 20 7039 815 1153 81326 68728 548 72202 2530

PJ18 43 7197 719 992 170988 102186 1615 126155 1904

PJ19 9 5105 2224 2555 544941 522702 2534 522460 34324

port results for both static (Ord-Sta) and dynamic (Ord-Dyn) ordering methods.
The static ordering method gives preference to variables in the abstract model
throughout the SAT-solving process. The dynamic ordering method switches to
the SAT-solver’s default heuristic after a threshold number of decisions. Our
approach performs better than these methods.

5 A Hybrid Approach to Refinement

5.1 Proof-Based Refinement and a Hybrid Approach

We described the cegar loop in Section 2.3. An alternative approach, called
Proof-Based Refinement (pbr), was proposed by McMillan et al. [MA03] (and
independently by Gupta et al.[GGYA03]). The pseudo-code for this approach is
shown in Algorithm 4. In each refinement iteration, pbr performs bmc on the
concrete model (line 4) and uses the unsatisfiable core as the abstract model
for the next iteration (line 6). As opposed to cegar that eliminates one coun-
terexample, pbr eliminates all counterexamples of a given length in a single
refinement step.

Amla et. al. [AM04] performed an industrial evaluation of the two approaches
and concluded that pbr and cegar are extreme approaches. pbr has a more ex-



Abstraction Refinement for Bounded Model Checking 121

Table 2. Comparison of cg-bmc/cg-bmc-t with Wang et al. [WJHS04]

Circuit Depth Time(s)

Ord-Sta Ord-Dyn cg-bmc cg-bmc-t

PJ00 60 961 942 104 104

PJ01 60 729 711 99 99

PJ02 60 694 678 101 101

PJ03 60 693 679 101 100

PJ04 60 656 641 99 98

PJ05 25 219 205 2812 296

PJ06 20 4786 1192 148 154

PJ07 25 4761 124 40 41

PJ08 60 703 712 201 201

PJ09 60 494 483 110 110

PJ10 54 827 6493 54 69

PJ11 60 816 796 135 111

PJ12 60 1229 973 101 101

PJ13 60 673 657 103 102

PJ14 60 3101 2746 295 316

PJ15 60 3488 3456 296 371

PJ16 60 3022 3021 198 199

PJ17 21 3132 6114 1069 1570

PJ18 38 6850 4846 556 721

PJ19 5 5623 176 113 116

Algorithm 4 Proof-Based Refinement
pbr(M, ϕ)
1: M̂ = {};
2: if MC(M̂, ϕ) = TRUE then return ‘TRUE’;
3: else let k be the length of the counterexample produced by the model checker;
4: if BMC(M, k, ϕ) = SAT then return ‘bug found in cycle k’;
5: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver.
6: M̂ = U ;
7: goto line 2;

pensive refinement step than cegar, since pbr performs unrestricted bmc while
cegar restricts bmc to the counterexample produced by the model checker. ce-
gar, on the other hand, has a larger number of refinement iterations since it
only eliminates one counterexample per refinement iteration, thereby putting
more burden on the model checker. To balance the two, they propose a hybrid
of the two approaches.

Their hybrid approach also performs bmc on the concrete model after given
a counterexample from the abstract model. However, they use the counterexam-
ple only to provide the initial decisions to the SAT-solver. They also set a time
limit to the SAT-solver. If the SAT-solver completes before the time-out with an
Unsat answer, the hybrid approach behaves like pbr. On the other hand if the
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SAT-solver times-out, they rerun a bmc instance conjoined with constraints on
some of the variables in the counterexample (but not all). From this instance
they extract an unsatisfiable core, thereby refuting a much larger space of coun-
terexamples (note that this instance has to be unsatisfiable if enough time was
given to the first instance due to the initial decisions). Their experiments show
that the hybrid approach is more robust than pbr and cegar.

5.2 A Hybrid Approach Based on cg-bmc

Since the cg-bmc algorithm outperforms bmc, it can be used as a replacement
for bmc in the refinement step of pbr. For example, in our experiments on PJ17

(see Section 4), cg-bmc proved the property up to a depth of 29, and model
checking could prove the correctness of the property on the generated abstract
model. bmc could only finish upto depth of 20, and the resulting abstract model
had a spurious counterexample of length 21.

cg-bmc is also a better choice than bmc because it provides an elegant way of
balancing the effort between model checking and refinement. Algorithm 5 shows
the pseudo code of our hybrid algorithm, that we obtained after replacing bmc
with cg-bmc inside the refinement step of pbr, and adding a choice function
(line 2). At each iteration, hybrid chooses either the model checker (line 3) or
a SAT-solver (line 8) to find a counterexample to the current abstract model.
The model checker returns ‘TRUE’ if the property holds for all cycles (line 3). If
the SAT-solver returns UNSAT, the property holds at the current depth and the
unsatisfiable core is used to refine the current abstraction. If a counterexample
is produced by either the model checker or the SAT-solver, it is simulated on
the concrete model (line 13). If the counterexample is spurious, the unsatisfiable
core generated by the SAT-solver is added to the abstract model (line 15).

At a first glance, the hybrid algorithm looks like a cegar loop, with the
additional option of using a SAT-solver instead of a model checker for verifying
the abstract model. However, the hybrid algorithm captures both the cegar
and the pbr approaches. If the choice function always chooses the model checker
(line 3), it corresponds to the standard cegar algorithm. Now consider a strat-
egy that chooses the model checker every time there is an increase in k at line
10, but chooses the SAT-solver (line 8) in all other cases. This is exactly the
pbr loop that uses cg-bmc instead of bmc. Other choice functions correspond
to a hybrid approach. There can be many strategies to make this choice, some
of which are: 1) Use previous run-time statistics to decide which engine is likely
to perform better on the next model, and occasionally switch to give the other
engine a chance; 2) Measure the stability of the abstract model, i.e., whether in
the last few iterations (increases of k) there was a need for refinement. Only if
not - send it to a model checker; and, 3) Run the two engines in parallel.

6 Conclusions and Future Work

We presented cg-bmc, a Counterexample-Guided Abstraction Refinement algo-
rithm for bmc. Our approach makes bmc faster, as indicated by our experiments.
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Algorithm 5 Hybrid of cegar and pbr

hybrid (M, ϕ)
1: k = 1; M̂ = {};
2: goto line 3 OR goto line 8;
3: if MC(M̂, ϕ) = TRUE then return ‘TRUE’;
4: else
5: Let C be the length r counterexample produced by the model checker;
6: k = r;
7: goto line 13;
8: if BMC(M̂, k, ϕ) = UNSAT then
9: Let U be the set of gates in the unsatisfiable core produced by the SAT-solver;

10: M̂ = U ; k = k + 1;
11: goto line 2;
12: else let C be the satisfying assignment produced by the SAT-solver;
13: if BMC(M, k, ϕ) ∧ C = SAT then return ’bug found in cycle k’;
14: else let U be the set of gates in the unsatisfiable core produced by the SAT-solver;
15: M̂ = M̂ ∪ U ;
16: goto line 2;

There are many directions in which this research can go further. First, the
hybrid algorithm should be evaluated empirically, and appropriate choice func-
tions should be devised. The three options we listed in the previous section are
probably still naive. Based on the experiments of Amla et al. reported in [AM04]
in hybrid approaches, it seems that this can provide a better balance between
the efforts spent in model checking and refinement, and also enjoy the benefit of
cg-bmc. Second, it is interesting to check whether implementing cg-bmc inside
a SAT-solver can make it work faster. This requires significant changes in various
fundamental routines in the SAT-solver. In particular, this requires some mecha-
nism for clustering the clauses inside the SAT-solver into abstraction levels, and
postponing BCP on the clauses in the lower levels until all the higher levels are
satisfied. Refinement would correspond to moving clauses up (and down) across
levels, possibly based on their involvements in conflicts. We are currently work-
ing on this implementation. A third direction for future research is to explore the
application of cg-bmc to other theories and decision procedures, like bit-vector
arithmetic.

Acknowledgements. The first author would like to thank Ken McMillan for
useful discussions.
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Abstract. The major challenge facing model checking is the state explosion
problem. One technique to alleviate this is to apply symmetry reduction; this
exploits the fact that many sequential systems consist of interchangeable compo-
nents, and thus it may suffice to search a reduced version of the symmetric state
space. Symmetry reduction has been shown to be an effective technique in both
explicit and symbolic model checking with Binary Decision Diagrams (BDDs).
In recent years, SAT-based model checking has been shown to be a promising
alternative to BDD-based model checking. In this paper, we describe a symmetry
reduction algorithm for SAT-based unbounded model checking (UMC) using cir-
cuit cofactoring. Our method differs from the previous efforts in using symmetry
mainly in that we do not require converting any set of states to its representative
or orbit set of states except for the set of initial states. This leads to significant
simplicity in the implementation of symmetry reduction in model checking. Ex-
perimental results show that using our symmetry reduction approach improves
the performance of SAT-based UMC due to both the reduced state space and sim-
plification in the resulting SAT problems.

1 Introduction

Model checking [1] is an important technique for verifying sequential systems. The use
of BDDs in symbolic model checking [2] has led to the successful verification of many
industrial designs that could not be verified previously. However, BDD-based model
checking does not scale well and suffers from a potential state space explosion problem.
In order to alleviate this problem, symmetry reduction techniques have been explored
in both explicit and BDD-based symbolic model checking [3, 4, 5, 6, 7, 8, 9]. In recent
years, SAT-based model checking [10, 11, 12, 13] has been shown to be a promising
alternative to BDD-based model checking. However, symmetry reduction techniques
specific to SAT-based model checking have not been developed thus far. This paper
aims to fill this gap.

The existence of more than one instance of the same component indicates the pos-
sible existence of symmetry in the design. Such high level symmetric descriptions im-
ply symmetries in the underlying Kripke structure. The basic idea behind most of the
existing work on symmetry reduction is to partition the state space into equivalence
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classes and choose one or more representatives from each equivalence class during
model checking. Previous work has demonstrated reductions in both memory and time
consumption when symmetries are exploited in model checking. Therefore, it is worth-
while exploring the possibility of using symmetry reduction in SAT-based model check-
ing. However, due to their different approaches of computing and representing state sets,
symmetry reduction techniques in explicit and BDD-based symbolic model checking
cannot be applied directly in SAT-based model checking.

In this paper, we describe a symmetry reduction approach based on the SAT-based
model checking algorithm recently proposed by Ganai et al. [13]. We show that adding
symmetry reduction in SAT-based model checking using circuit cofactoring gives uni-
form speedups on all the instances that we have tried. Further, our symmetry reduction
can be easily applied to those systems where symmetry exists in only part of the system.
To verify properties for the whole system, we do not need to scale down the symmetric
part, or reason about it separately as a (meta-)theorem. Rather, we can simply incor-
porate the symmetry reduction into the verification of the whole system, where the re-
duction will automatically ensure that only the representative states from the symmetric
part are explored.

2 SAT-Based Model Checking: A Review

Solutions of SAT instances have been used in two scenarios in model checking: Bounded
Model Checking (BMC) [10] and Unbounded Model Checking (UMC) [11, 12, 13, 14,
15]. BMC unrolls the transition relation and uses a SAT solver to search for counterex-
amples of certain length. BMC tends to be robust and quick for finding bugs, which are
reported as counterexamples. However, if no counterexample exists, verification is in-
complete unless a completeness threshold is reached. SAT-based UMC is complete and
provides the capability to prove properties that are true. Image and pre-image computa-
tions are the key operations of UMC. In the interpolation-based method [12], the refu-
tation produced by a SAT solver is used to get an over-approximated image, while for
other SAT-based UMC methods, quantifier elimination is at the core of image and pre-
image computations. SAT-based existential quantification is done by enumerating satis-
fying solutions. Repeated enumerations of the same satisfying solutions are prevented
by adding blocking constraints which are negations of the previously enumerated solu-
tions [11, 13]. Suppose we want to compute g(X) = ∃Y f(X,Y ), where X and Y are
sets of Boolean variables and f(X,Y ) is a propositional formula. A partial assignment,
also called a cube, of the X variables can be derived each time a satisfying solution
of f(X,Y ) is returned by a SAT solver. The blocking constraints are conjuncted with
f(X,Y ) until the resulting propositional formula is unsatisfiable. g(X) is the disjunc-
tion of all the enumerated cubes of the X variables. Many approaches [11, 14, 15] use
this cube enumeration method to do existential quantification. A variation uses a SAT-
based decision procedure to disjunctively accumulate sets of solutions computed using
BDD-based quantification methods [16]. Alternately, a recently proposed method [13]
does existential quantification by enumerating the cofactors 1 with respect to complete

1 A cofactor of a function f(X, Y ) with respect to an assignment Y = a is the function f(X, a).
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assignments (minterms) of the Y variables, and adding the negations of these cofac-
tors (represented as circuits) as blocking constraints. g(X) is the disjunction of all the
enumerated cofactors. It is demonstrated in [13] that the cofactor enumeration method
captures a larger set of satisfying assignments with each enumeration than the cube
enumeration method, thus giving much better performance when utilized in SAT-based
UMC. We use the algorithms proposed in [13] to do our pre-image and fixed-point
computations and add symmetry reduction to this framework.

It is generally known (though not documented!) that image computation using SAT
results in an explicit enumeration of the state set, while pre-image computation allows
avoiding this problem by state enlargement techniques. Thus, we focus on backward
reachability using pre-image computation for our implementations of model checking.

3 Symmetry Reduction: A Review

3.1 Preliminaries

For a sequential system that contains k identical components, usually a unique integer
index is assigned to each component in the description of the system. Informally, two
components are identical to each other if exchanging their indices does not affect the be-
havior of the system. This means that permuting the indices of symmetric components
does not change the state transition relation of the system.

If the set of component indices is denoted as I , the set of all permutations acting
on I forms a group, denoted as GI , under the composition operation. Permuting the
component indices induces corresponding changes of the evaluation of the state vari-
ables. For a Kripke structure M = (S, S0,Δ, L), where S is the state space, S0 is the
set of initial states, Δ is the transition relation and L is the labeling function, a compo-
nent index permutation α is a symmetry if and only if the following condition holds:
∀s, t ∈ S((s, t) ∈ Δ → (αs, αt) ∈ Δ). GI is a symmetry group of M iff for each
α ∈ GI , α is a symmetry of M . Given a group G, the orbit of a state s is defined
as the set of states θ(s) = {s′|∃α ∈ G,αs = s′}. Two states are symmetric if and
only if they are in the same orbit. We require that all states in an orbit have the same
labeling function, i.e. ∀t ∈ θ(s), L(s) = L(t). The orbit of a set of states S is de-
fined as θ(S) = ∪s∈Sθ(s). The orbit relation is Θ = {(s, t)|s, t ∈ S; t ∈ θ(s)}. The
set of representative states SR is obtained by choosing one or more representatives in
each orbit. The representative relation is defined as Γ = {(s, r)|s ∈ S; r ∈ SR;∃α ∈
GI , (αs = r)}. The selection of representative states is described in section 4.3. When
each state has a single representative, the representative relation is a function denoted
by γ(s) = {t|t ∈ SR, t ∈ θ(s)}. The representative set of a set of states S is defined as
γ(S) = ∪s∈Sγ(s). A symmetry group GI of M is an invariance group for an atomic
proposition p if ∀α ∈ GI∀s ∈ S(p(s) ⇔ p(αs)). The quotient model of the model
M = (S, S0,Δ, L) is defined as MR = (SR, SR0,ΔR, LR), where SR = γ(S),
SR0 = γ(S0), ΔR = {(r, r′)|r, r′ ∈ SR;∃α1, α2 ∈ GI , (α1r, α2r

′) ∈ Δ} and
LR(γ(s)) = L(s). It has been shown that given a formula f and the condition that
GI is an invariance group for every atomic proposition in f , f holds in M if and only
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if it holds in MR[4, 5]. Therefore, model checking over M can be reduced to model
checking over MR.

3.2 Symmetry Reduction in Model Checking: Previous Work

Symmetry reduction is beneficial for explicit state model checking due to the reduction
of the state space [3, 4]. Many research efforts have considered combining symmetry
reduction with BDD-based symbolic model checking [5, 8, 9]. To compute the set of
representative states for a given set of states represented by a BDD, an orbit relation
is needed if a unique representative is chosen for each orbit [5]. Although computing
the orbit relation is of exponential complexity in general, it can be done in polynomial
time for certain practical symmetric systems [6]. It has also been proposed to allow
multiple representatives for each orbit [5, 6]. Although choosing multiple representa-
tives gives less savings in terms of the state space reduction, it has been pointed out that
computing the orbit relation can be avoided in this case and better overall performance
obtained. On-the-fly representatives have also been proposed [8], where at any iteration
of the fixed-point computation, states whose symmetric states are not encountered in the
previous iterations are chosen to be the representative states of their respective orbits.
Thus, it is possible to have multiple representatives for each orbit. Another way to ex-
ploit symmetry is to first translate the description of the symmetric system into a generic
form, where the local state variables of the symmetric components are substituted by
global counter variables, then translate the generic representation into corresponding
BDDs [9]. Such translations require modifications to the front-end of the verification
tool that cannot be done easily.

3.3 Symmetry Reduction in SAT: Previous Work

There has been some work done in exploiting symmetry in solving SAT instances. Sym-
metry breaking predicates can be added to a SAT instance in conjunctive normal form
(CNF) to prune the search of SAT solvers by restricting the satisfying assignments to
contain only one representative member of a symmetric set [17, 18]. These works con-
sider symmetries in the CNF formula only and cannot be directly applied for using
symmetry reduction in model checking. When high level descriptions are translated
into Boolean functions and further encoded as SAT instances, most of the high level
symmetries are lost. Specifically, automorphisms of the state transition graph do not
necessarily translate to automorphisms of the corresponding Boolean next state func-
tions and their CNF formulations. Moreover, symmetry breaking for a SAT problem
only ensures that its satisfiability does not change. It blocks some of the satisfying so-
lutions of the original formula. This is not acceptable for our use of SAT in model
checking, as the solutions corresponding to representative states should not be blocked.
Therefore, breaking symmetries in the Boolean formula cannot guarantee the correct-
ness of the model checking algorithms. Symmetries in the state transition sequences
have also been explored in prior work [19]. Symmetry breaking constraints that allow
only one transition sequence in a symmetric set are added to the Boolean representation
of the transition systems. Although this approach can be beneficial for BMC, it is not
clear how to use it in SAT-based UMC.
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4 Symmetry Reduction in SAT-Based Model Checking

4.1 Overview of the Algorithm

We add our symmetry reduction scheme to the pre-image computation and fixed-point
computation algorithms using SAT-based circuit cofactoring[13]. The algorithm for
checking the CTL [20] AG property, enhanced by symmetry reduction, is shown in
algorithm 1. The major differences between this algorithm and the one without sym-
metry reduction are in lines 2, 5 and 11. The characteristic function for the set of rep-
resentative states Rep(X) are determined before the CHECK AG procedure. We will
describe in section 4.3 how Rep(X) is derived. In line 2, the orbit Iorb(X) of the set
of initial states I(X) is computed. Computing the orbit of a set of states is discussed in
section 4.4. The set of representative states R(X) that can reach a bad state are calcu-
lated iteratively in the while loop. In the ith iteration, fi(X,W ) is an unrolling of the
transition relation for i time frames with the last state constrained by the predicate B.
Let Wj(j = 1, · · · , i) denote the set of primary input variables for the jth time frame.
A cofactor of fi(X,W ) with respect to the primary input sequence W = W1W2 · · ·Wi

yields a circuit CW that has only the X variables as inputs. In the ith iteration, the
predicate B ensures that every state in CW can reach a bad state in i steps. The pred-
icates ¬R and Rep, also depending on only the X variables, respectively ensure that
every state in CW has never been reached in previous iterations and is a representa-
tive state. The frontier representative set F (X) is the disjunction of all the enumerated
CW . It is worth emphasizing that to compute F (X) in the SAT-based UMC approach
proposed in [13], no state set at any intermediate time frame of fi(X,W ) needs to be
computed because an unrolling implicitly represents such intermediate state sets at the
price of quantifying out more variables. Note also that these intermediate states are not
restricted to be representative states, only the states at the ith time frame (expressed in
terms of the X variables) are restricted to be representative states. Furthermore, in our
setting, the SAT-based existential quantification using circuit cofactoring is performed
directly on the circuit with the constraint ¬R(X) ∧ Rep(X). Thus, non-representative
states as well as previously reached states of the X variables are never enumerated. If
the set F (X) overlaps with Iorb(X) in any iteration, the property p is false (line 13).
On the other hand, if R(X) has no intersection with Iorb(X), AG(p) must hold (line
16).

Note that in the existential quantification step (line 11), only representative states
are enumerated as the input formula has the conjunct Rep(X), All other states, even
though they might be backward reachable from the set of bad states, are blocked. For the
correctness of this algorithm, we need to make sure that for every backward reachable
state, its representative state is also backward reachable.

Lemma 1. Given a Kripke structure M = (S, S0,Δ, L) and a symmetry group G of
M , if Sq is the orbit of a set of states, then the set of pre-image states Sp of Sq is also
an orbit of a set of states.

Proof: We prove this by contradiction. Assume Sp is not an orbit of a set of states. Then
there must exists two states s and t such that they are in the same orbit and s ∈ Sp and
t 	∈ Sp. Let s′ and t′ be the image states of s and t respectively. Since s ∈ Sp and Sq
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is the image state set of Sp, s′ ∈ Sq. Since s and t are in the same orbit, ∃α ∈ G such
that s = αt. Since G is a symmetry group of M , α is a symmetry of M . This means
that s′ = αt′. Therefore, s′ and t′ are in the same orbit. Because Sq is an orbit of a set
of states and s′ ∈ Sq, we must have t′ ∈ Sq. Thus t ∈ Sp as Sp is the pre-image of Sq.
This contradicts the assumption. Therefore, Sp is an orbit of a set of states. 
�

Using Lemma 1, we can prove the following theorem.

Algorithm 1 Algorithm for computing AG with symmetry reduction
1: procedure CHECK AG(p)
2: Iorb(X) ← COMPUTE ORBIT(I(X)) � X is the present state variables
3: i ← 0
4: R(X) ← ∅
5: B(X) ← COMPUTE ORBIT(¬p(X))

� This line is for sanity check, it should be equivalent to B(X) ← ¬p(X)
6: F (X) ← B(X) ∧ Rep(X)
7: while F (X) �= ∅ do
8: R(X) ← R(X) ∨ F (X)
9: i ← i + 1

10: fi(X, W ) ← Unroll(B(X), i)
11: F (X) ← ∃W (fi(X, W ) ∧ ¬R(X) ∧ Rep(X))

� SAT-based existential quantification using circuit cofactoring
12: if (F (X) ∧ Iorb(X)) �= ∅ then
13: return false
14: end if
15: end while
16: return true
17: end procedure

Theorem 1. Let B be the set of bad states from which we want to compute the set of
backward reachable states R. If B is an orbit of a set of states, then the representative
state of every state in R is also in R.

Proof: As B is an orbit of a set of states, from Lemma 1, we know that the pre-image
state set at every iteration is an orbit of a set of states. Thus every backward reachable
state and its representative are reached at the same iteration. 
�

Note that algorithm 1 uses the fact that the symmetry group GI of M is an invariance
group of p. This implies that states belonging to the same orbit either all satisfy p or all
violate p. Thus p and ¬p are both characteristic functions of an orbit set of states. As the
orbit of an orbit set is the set itself, line 5 of algorithm 1 can simply be B(X) ← ¬p(X).
Thus COMPUTE ORBIT(¬p(X)) provides a mechanism to check whether p is truly
an invariance with respect to GI . Although only the algorithm for checking the AG
property is given here, similar ideas can be applied to derive algorithms for computing
other CTL modalities by using Rep(X) appropriately in pre-image computations to
restrict enumerations to representative states only.
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4.2 Discussion and Comparison to Related Work

In previous work, representative states are obtained by either converting the reached
states to their representatives [5] or picking the first reached states in each orbit as rep-
resentatives for that orbit [8]. Figure 1(a) illustrates previous approaches for symmetry
reduction in backward reachability analysis with BDDs. B is the set of bad states for
backward reachability analysis. Fi(i = 0, 1, · · · , n) is the set of frontier representative
states at iteration i. Si(i = 1, · · · , n) is the pre-image set of Fi−1. A dotted line in the
figure maps a set of states to its frontier representative set. The solid line indicates the
process of pre-image computation. Converting a set of states to their representatives
can be done symbolically by image computation where the representative relation is
treated as the transition relation. Although this conversion can be done using BDDs
once the representative relation is known, it is hard for SAT as SAT-based image com-
putation explicitly enumerates the image states. The on-the-fly scheme for choosing
the representatives [8] in this context essentially lets every state be the representative,
unless the approximations of state sets that are not orbits are used. This is because, by
Lemma 1 and the fact that B is the orbit of a set of states, states symmetric to each
other are reached at the same iteration. Figure 1(b) illustrates our approach for obtain-
ing the representatives. The dashed lines indicate the pre-image computation, denoted
as Preimagei, with the transition relation unrolled i times. In general, our algorithm
for symmetry reduction differs from the symmetry reduction techniques used in previ-
ous BDD-based model checking [5, 8] in the following two ways:

1. Our approach does not require either the orbit relation or the representative relation.
Except for the initial states, we do not convert any state to its orbit. States that are
not representatives are blocked during the existential quantification, and thus are never
enumerated as intermediate data. This implies that our algorithm searches for solutions
over the smaller representative state space without the more complicated re-encoding
of the original model as a quotient model.
2. Except during the initialization step where the orbit of the bad states and the initial
states are computed, we do not need to expand any state to its orbit. In practice, the
orbit calculation during the initialization step for the bad states and the initial states is
often simpler than on-the-fly orbit/representative calculations for the intermediate sets
of backward reachable states.

Note that if there is no symmetry reduction in algorithm 1, most of the computation
is in the existential quantification step. Therefore, accelerating existential quantification
is key to improving the performance of SAT-based model checking. Our approach for
symmetry reduction is likely to speed up the SAT-based existential quantification due
to the following two reasons:

1. Doing existential quantification using SAT requires multiple calls to the SAT proce-
dure. As described in section 2, SAT-based existential quantification is done by enumer-
ating cofactors of the variables to be eliminated. Constraining the input of the existential
quantification procedure by adding the conjunct Rep reduces the number of satisfying
solutions of the input propositional formula. Therefore, it is possible to have fewer co-
factor enumerations and thus fewer calls to the expensive SAT procedure.
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Fig. 1. Backward reachability analysis with symmetry reduction

2. It has been shown that adding symmetry breaking predicates to SAT instances gives
significant speed-ups [17, 18]. This is because the search space of the SAT solver is con-
fined to only non-symmetric regions. Rep is a high-level symmetry breaking constraint
that often cannot be extracted from low-level representations like CNF. Thus, Rep can
also confine the search space of the SAT solver which results in reduced SAT runtime.

4.3 Using the Representative Predicate as a Symmetry Breaking Constraint

As stated in section 3.1, the symmetry considered in this paper is that between isomor-
phic components of the same sequential system. Similar to the shared variable model of
computation[4, 6], the state of the system is described by the local state li(i = 1, ..., k)
of each component and the assignment to the global state variables. There are two types
of global state variables: those that are not relevant to any symmetric component and
those that are relevant to one or more symmetric components. For example, in a shared-
memory multiprocessor system, state variables indicating the status of the memory are
the first type of global state variables; state variables describing which processor has
write access to the shared-memory are the second type of global state variables. Per-
muting the indices of the symmetric components implies permuting the local states and
remapping the values of the second type of global state variables. The assignments to
the first type of global state variables remains the same. Let us illustrate this by using
the example of a shared-memory multiprocessor system whose components indices are
1, 2, ..., k. Suppose after index permutation operation α, the new sequence of indices are
i1, i2, ..., ik. α can also be viewed as renaming the symmetric components. If before the
index permutation, the local states are l1, l2, ..., lk, then after renaming, the local states
become li1 , li2 , ..., lik

. If the state variable Widx stores the index of the component that
has write access to the shared memory and the value of Widx is j before the index per-
mutation, then the new value of Widx after permuting the indices is ij . Two states s and
t are symmetric if there exists an index permutation α of the symmetric components
such that s can be transformed to t by the state mapping illustrated above.

The set of representative states are those states that satisfy the symmetry breaking
constraint Rep. Rep must make sure that there exists a representative for every state.
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In another words, each orbit has at least one representative. Representatives can be
chosen by imposing a certain order on the components. For example, we can order the
components by sorting the binary encodings of the local states. In this case, Rep =
(l1 ≤ l2 ≤ · · · ≤ ln). Note that we use ≤ instead of < in this formula. This is because
for a state where two components with indices i and j are in the same local states, i.e.
li = lj , its representative state, which must satisfy Rep, also has two components with
indices i′ and j′ that satisfy li′ = lj′ . We can also select the representative states as
those that have the value of some global variables fixed. For example, the index of the
processor that has the write access to the shared memory of the multiprocessor system
is fixed to be 1. In this case, Rep = (Widx == 1). To ensure the presence of at least
one representative for each orbit, Rep should not be over constrained. For instance,
Rep = (Widx == 1) ∧ (l1 ≤ l2 ≤ ... ≤ ln) is over constrained, while Rep =
(Widx == 1) ∧ (l2 ≤ ... ≤ ln) is a valid constraint. In general, a more constrained
symmetry breaking predicate means fewer representatives, thus more reductions in the
state space. Currently, the symmetry breaking constraints are provided manually. Since
symmetry breaking constraints are essentially characteristic functions for representative
states, their correctness can be checked by checking whether the orbit of the states
satisfying Rep is equivalent to the state space of the original model.

4.4 Computing Orbits

In this section, we describe two approaches to compute the orbit of a set of states given
the characteristic function of an arbitrary set of states.

The first approach is essentially a pre-image computation. In section 4.3, we de-
scribed how a state can be mapped to its symmetric state by permuting the local states
of the symmetric components and re-assigning the global state variables given a per-
mutation α of the component indices. If all possible α in the symmetric group GI of
the system to be verified are applied on a state, then we can get the orbit of this state.
In this way, the orbit of an arbitrary state set can be obtained by applying every α in GI

on the state set. Based on this, we construct a combinational circuit Oc(Id, S, T ) where
Id and S are sets of input variables and T is the set of output variables for this circuit.
For a k component symmetric system, Id is an array of k integers: id1, id2, · · · , idk.
The values of Id are all permutations of 1, 2, ..., k, where each permutation is inter-
preted as a permutation of the component indices. It maps the states S into their sym-
metric states T . Let A denote the set of states whose orbit needs to be computed. Let
Perm denote all possible assignments to Id resulting from permuting 1, 2, ..., k. Then
Perm(Id) = (

∧
i=1,···,k(1 ≤ idi ≤ k)) ∧ (

∧
i�=j(idi 	= idj)). The orbit of A is de-

noted as Orb. It is easy to see that Orb(T ) = ∃Id, S. Oc(Id, S, T )∧Perm(Id)∧A(S)
and Orb(S) = ∃Id, T. Oc(Id, S, T ) ∧ Perm(Id) ∧ A(T ). The above two equations
compute the same set of states in terms of state variables T and S respectively. If Oc

is viewed as the transition relation from S to T , then computing Orb(T ) and Orb(S)
correspond to image and pre-image computations respectively. As mentioned earlier, it
is not efficient to do SAT-based existential quantification for image computation. There-
fore, we use the pre-image computation for Orb(S) to compute orbits.

The second method to compute orbits uses generators of GI . Let g1, g2, ..., gm be
the generators of GI . If A is a set of states and Orb is the orbit of A, then Orb is the
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least fix-point of the equation f(x) ≡ x ∨ (g1x ∨ g2x ∨ ... ∨ gmx) where x = A
initially. This is similar to the approach used in [8], although [8] does not require that a
fixed-point is obtained.

The first method of computing orbits requires eliminating the Id variables through
existential quantification. Since the existential quantification is done by multiple calls
to SAT, this method of computing orbits may be slow. Although the second method of
computing orbits does not require quantification, it needs to run many iterations before
reaching a fixed-point. Each iteration conjuncts m state sets, which usually results in a
large circuit representation of the state sets even when circuit simplification techniques
are used. This large representation of state sets tends to slow down the subsequent pre-
image computation. Moreover, the fixed-point has to be checked using SAT solvers.
Such SAT problems become harder as the circuit representation gets larger. Both of the
above methods to compute orbits are computationally expensive. Luckily, we only need
to invoke orbit computation for the initial states. This makes our approach different
from past efforts. Computing the orbit of an orbit of a set of states returns the same set,
thus it can be used to check whether a state set is an orbit.

5 Experimental Results

We implemented the SAT-based framework using circuit cofactoring as described in [13].
This is then augmented with the symmetry reduction techniques described in section 4.
We chose four examples to conduct our experiments. One is a handmade example called
swap described in [11]. The state variables of swap are an array of k integers. The state
transition is swapping the neighboring integers. The property that we verified was that
for all 1 ≤ i ≤ k, the ith integer at time t is different from the ((i + k/2) mod k)th in-
teger at time (t + k/2− 1), i.e. you cannot move a value by k/2 positions in (k/2− 1)
steps. The other three examples all come from the VIS package [21]. All of the four
examples consist of symmetric components and the number of components can be in-
creased. All experiments were run on a workstation with Intel Pentium IV 2.8 GHz
Processor and 1GB physical memory running Linux Fedora Core 1. We imposed a five
hour time limit on each property checking run.

We compared the performance of SAT-based model checking with and without sym-
metry reductions. The results are shown in table 1. Column 2 shows whether a safety
property of the instance in column 1 is true or false. Column 3 shows the number of
components that are symmetric to each other. The number of state variables for each in-
stance is indicated in column 4. Columns 5-8 show the number of pre-image iterations
finished within the time limit and the CPU time needed to finish these iterations with and
without symmetry reduction respectively. The results demonstrate the effectiveness of
our symmetry reduction technique. Our approach can either compute more pre-images
within the time limit or finish the same number of pre-image computations in less time.
To obtain a more detailed analysis of the impact of symmetry reduction on the number
of cofactor enumerations and the difficulty of the SAT problems, we compare the re-
sults at each step of the fixed-point computation for the gigamax example and the swap
example, both with 8 components. The results are shown in table 2. Column 1 shows
the depth of the fixed-point computation, columns 2-9 show the number of cofactor
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enumerations and the time used at the corresponding depth with and without symmetry
reduction. In general, using symmetry reduction reduces the number of cofactor enu-
merations as shown in the gigamax example. The time spent on these enumerations is
reduced with symmetry reduction because of two reasons: one is that the time spent
on the extra enumerations is omitted by exploiting symmetry; the other is that the SAT
problems become easier when the symmetry breaking constraints are added. The lat-
ter of the two reasons can be demonstrated by the swap example. Here, the number of
cofactor enumerations remains the same even when symmetry is exploited, but there is
significant reduction in runtime.

Table 3 shows the effect of symmetry reduction with increased number of compo-
nents. The label of each column has the same meaning as that of table 1 and 2. The
last column shows the time used to check the correctness of the representative pred-
icate. We can see from table 3 that greater benefit from symmetry reduction can be
obtained with increased number of components. This can be expected since the ratio
of the original number of states to the number of representative states increases when
the number of symmetric components increases. In general, checking the correctness of
the representative predicate by computing its orbit requires n! SAT solution enumera-
tions since all possible permutations of component indices may need to be enumerated.
This scales poorly with increased number of components as shown in table 3. However,
the representative predicate is usually a parametric description in terms of the number
of replicated components. Thus, once it is known that the representative predicate for
smaller n is correct, this can be used to infer that the representative predicate for larger
n is also correct.

Although we do not have a BDD-based model checker with symmetry reduction to
compare our symmetry reduction approach against, we implemented previous symmetry-
based techniques in our SAT-based model checker. Specifically, the standard iterative
procedure (as shown in figure 1(a)) using pre-image computations, where each interme-
diate state set is converted to a set of representatives, is adapted for SAT-based UMC.
Representative computation is done by first computing the orbit set and then conjoining
the orbit set with the representative predicate. The experimental data for this approach
are shown in table 4. The pre-image and representative computation time for each itera-
tion are shown in columns 2-9 for different instances. The number inside the parenthesis
besides the instance name is the number of components for that instance. From the data
which shows larger runtime for representative computation than pre-image computa-
tion, it can be seen that previous symmetry reduction techniques used in BDD-based
model checking do not work well with SAT-based UMC. This is mainly due to the
inefficiency of converting a set of states to its representative set using the SAT-based
method. Moreover, this method of symmetry reduction needs to use the result of pre-
image and representative computation for the next iteration, thereby losing the possible
benefit of compact state set representation introduced by unrolling.

Most model checkers will generate a debugging trace when a testcase does not sat-
isfy a certain property. Due to the use of a representative predicate, the trace returned
by our algorithm may be the result of permuting the component indices of a real trace.
As an alternative to the process of getting the actual trace by permuting back the com-
ponent indices on the counter-example returned by our algorithm, we use BMC method



136 D. Tang et al.

Table 1. Performance summary

w/o symm w/ symm
Testcase T/F #Comp #Var #Iter Time(s) #Iter Time(s)

swap T 8 24 3 >5Hr 4 0.54∗

coherence T 3 43 6 >5Hr 8 >5Hr
needham(buggy) F 3 54 8 8142.28∗ 8 3948.53∗

needham(fixed) T 3 57 8 6542.73∗ 8 1853.49∗

gigamax T 8 41 5 >5Hr 11 17844.70∗

* indicates either a bug is found or fixed-point is reached

Table 2. Detailed comparison of performance

swap w/o symm swap w/ symm gigamax w/o symm gigamax w/ symm
Iter# #Enum Time(s) #Enum Time(s) #Enum Time(s) #Enum Time(s)

1 8 0.01 8 0.03 7 0.03 2 0.02
2 21 0.32 21 0.32 18 0.31 5 0.07
3 18 10.86 18 0.06 152 14.37 32 0.89
4 0 >5Hr 0 0.07∗ 461 586.11 46 12.72
5 - - - - 1091 9838.08 119 54.01
6 - - - - 0 >5Hr 85 316.76
7-11 - - - - - - 109 17196.35∗

* indicates either a bug is found or fixed-point is reached

Table 3. Performance with increased number of components

gigamax w/o symm gigamax w/ symm Check Rep
#Comp #Var #Iter #Enum Time(s) #Iter #Enum Time(s) Time(s)

4 21 9 114 167.21∗ 9 77 61.84∗ 0
5 26 11 421 8845.18∗ 11 157 1183.48∗ 0.01
6 31 7 901 >5Hr 11 243 3259.92∗ 0.22
7 36 6 1555 >5Hr 11 272 6343.68∗ 11.64
8 41 5 1729 >5Hr 11 398 17844.70∗ 392.87

* indicates either a bug is found or fixed-point is reached

Table 4. Performance of SAT-based procedure using standard pre-image computations

swap(8) time(s) coherence(3) time(s) needham(buggy)(3) time(s) gigamax(8) time(s)
Iter# Pre-image Rep Pre-image Rep Pre-image Rep Pre-image Rep

1 1.98 >5Hr 0.02 0.06 0.03 0.10 2.13 377.34
2 - - 0.14 0.68 1.28 128.85 65.80 7568.49
3 - - 5.83 46.66 73.84 5349.00 16.48 >5Hr
4 - - 1041.63 >5Hr 1192.04 >5Hr - -
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to generate the counter-example once its length is known from our algorithm. BMC for
this length is likely to be much simpler than UMC using the cofactoring technique used
here. For example, for the buggy version of the needham example, we know that there is
a counter-example with length 8. A counter-example was generated using BMC under
one second.

6 Conclusions and Future Work

Significant research has been done on exploiting symmetry reduction techniques in ex-
plicit and BDD-based symbolic model checking with some demonstrated benefits of
the proposed approaches. Compared to BDD-based UMC, SAT-based UMC offers pos-
sibly better behavior with respect to memory utilization and is therefore gaining interest
in the verification community. We propose a symmetry reduction algorithm for model
checking using SAT-based methods. Our symmetry reduction approach is not a natural
extension of the previous works. It takes advantage of the structure of the algorithm for
SAT-based UMC using circuit cofactoring. Experimental results show the effectiveness
of our approach, especially when the number of components gets large. An interest-
ing future direction is to see how our symmetry reduction method can be extended to
checking fairness properties, as has been done in explicit model checking [22, 23]. It
is also worth investigating the application of symmetry reduction in SAT-based UMC
using interpolation[12].

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem.

Kluwer Academic Publishers (1993)
3. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design

(1996) 41–75
4. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System

Design 9 (1996) 105–131
5. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model

checking. Formal Methods in System Design 9 (1996) 77–104
6. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking.

In: International Conference on Computer Aided Verification (CAV). (1998)
7. Jha, S.: Symmetry and Induction in Model Checking. PhD thesis, School of Computer

Science, Carnegie Mellon University (1996)
8. Barner, S., Grumberg, O.: Combining symmetry reduction and under-approximation for

symbolic model checking. In: International Conference on Computer-Aided Verification
(CAV). (2002)

9. Emerson, E.A., Wahl, T.: On combining symmetry reduction and symbolic representation
for efficient model checking. In: Conference on Correct Hardware Design and Verification
Methods (CHARME). (2003)

10. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: Design Automation Conference (DAC). (1999)



138 D. Tang et al.

11. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Inter-
national Conference on Computer-Aided Verification (CAV). (2002)

12. McMillan, K.L.: Interpolation and SAT-based model checking. In: International Conference
on Computer-Aided Verification (CAV). (2003)

13. Ganai, M., Gupta, A., Ashar, P.: Efficient SAT-based unbounded symbolic model checking
using circuit cofactoring. In: International Conference on Computer-Aided Design (ICCAD).
(2004)

14. Kang, H.J., Park, I.C.: SAT-based unbounded symbolic model checking. In: Design Au-
tomation Conference(DAC). (2003)

15. Sheng, S., Hsiao, M.: Efficient pre-image computation using a novel success-driven ATPG.
In: Design, Automation and Test in Europe Conference (DATE). (2003)

16. Gupta, A., Yang, Z., Ashar, P., Gupta, A.: SAT-based image computation with application
in reachability analysis. In: International Conference Formal Methods in Computer-Aided
Design (FMCAD). (2000)

17. Crawford, J.M., Ginsberg, M., Luks, E., Roy, A.: Symmetry breaking predicate for search
problems. In: International Conference on Principles of Knowledge Representation and Rea-
soning (KR). (1996)

18. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult instances of Boolean
satisfiability in the presence of symmetry. IEEE Transactions on CAD 22 (2003) 1117–1137

19. Rintanen, J.: Symmetry reduction for SAT representation of transition systems. In: Interna-
tional Conference on Automated Planning and Scheduling. (2003)

20. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons from branching time
temporal logic. In: Workshop on Logics of Programs. (1982)

21. VIS: The VIS Home Page. In: http://www-cad.eecs.berkeley.edu/Respep/Research/vis/.
(1996)

22. Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model-checking under fairness as-
sumptions: an automata-theoretic approach. ACM Trans. Program. Lang. Syst. 19 (1997)
617–638

23. Gyuris, V., Sistla, A.P.: On-the-fly model checking under fairness that exploits symmetry.
Formal Methods in System Design 15 (1999) 217–238



Saturn: A SAT- ased Tool for Bug Detection�
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1 Introduction

Saturn is a boolean satisfiability (SAT) based framework for static bug detec-
tion. targets software written in C and is designed to support a wide range
of property checkers.

The goal of the Saturn project is to realize SAT’s potential for precise check-
ing on very large software systems. Intraprocedurally, Saturn uses a bit-level
representation to faithfully model common program constructs. Interprocedu-
rally, it employs a summary-based modular analysis to infer and simulate func-
tion behavior. In practice, this design provides great precision where needed,
while maintaining observed linear scaling behavior to arbitrarily large software
code bases. We have demonstrated the effectiveness of our approach by building
a lock analyzer for Linux, which found hundreds of previously unknown errors
with a lower false positive rate than previous efforts [16].

The rest of the paper is organized as follows. Section 2 gives an overview of
the Saturn analysis framework. Section 3 describes the modeling of common
program constructs in Saturn. Section 4 describes the lock checker for Linux.
We discuss related work in Section 5 and our conclusions in Section 6.

2 Overview

The Saturn framework consists of four components: 1) a low-level Saturn
Intermediate Language (SIL) that models common program constructs such as
integers, pointers, records, and conditional branches, 2) a CIL-based [14] fron-

tend that parses C code and transforms it into SIL, 3) a SAT-based transformer

that translates SIL statements and expressions into boolean formulas, and 4)
property checkers that infer and check program behavior with respect to a spe-
cific property.

A Saturn analysis proceeds as follows:

– First, we use the frontend to parse C source files and transform them into
SIL. The resulting abstract syntax trees are stored in a database indexed by
file and function names.

� Supported by NSF grant CCF-0430378.
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– Second, we construct the static call graph of the program. The call graph is
then sorted in topological order (callee first). Strongly connected components
(SCC) in the call graph are collapsed into supernodes that represent the
collection of functions in the SCC.

– Third, the property checker retrieves and analyzes each function in the code-
base in topological order. (Property checkers determine how call graph cycles
are handled; currently our analyses simply break such cycles arbitrarily.) It
infers and checks function behavior with respect to the current property
by issuing SAT-queries constructed from the boolean constraints generated
by the transformer. The inferred behavior is then summarized in a concise
representation and stored in the summary database, to be used later in the
analysis of the function’s callers.

– Finally, violations of the property discovered in the previous step are com-
piled into bug reports. The summary database is also exported as documen-
tation of the inferred behavior of each function, which is immensely helpful
during bug confirmation.

3 The Saturn Intermediate Language

In this section, we briefly highlight the program constructs supported by the
Saturn Intermediate Language (SIL). The formal definition of SIL and the
details of its translation to the boolean representation are described in [16].
Integers. Saturn models n-bit signed and unsigned integers by using bit-vector
representations. Signed integers are expressed using the 2’s complement repre-
sentation and common operations such as addition, subtraction, comparison,
negation, and bitwise operations are modeled faithfully by constructing boolean
formulas that carry out the computation (e.g., a ripple carry adder). More com-
plex operations such as division and remainder are modeled approximately.
Pointers. Saturn supports pointers in C-like languages with two operations:
load and store. We use a novel representation called guarded location sets (GLS),
defined as a set of pairs (g, l) where g is a boolean guard and l is an abstract
location. GLS track the set of locations that a pointer can point to and the
condition under which the points-to relationship holds. This approach provides a
precise and easily accessible representation for the checker to obtain information
about the shape and content of a program’s heap.
Records. Records (i.e., structs in C) in Saturn are modeled as a collection of
component objects. Supported operations include field selection (e.g. x.state),
dereference (e.g. p->data.value) and taking an address through pointers (e.g.
&curr->next).
Control flow. Saturn supports programs with reducible control flow graphs.1

Loops are modeled by unrolling a predetermined number of times and discarding

1 Non-reducible control flow are rare (0.05% in the Linux kernel), and can be trans-
formed into reducible ones by node-splitting [1].

the backedges. The rationale of our approach is based on the observation that
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many errors have simple counterexamples, and therefore should surface within
the first few iterations of the loop; this approach is essentially an instance of the
small scope hypothesis [12]. Compared to abstraction based techniques, unrolling
trades off soundness for precision in modeling the initial iterations of the loop.
Our experiments have shown that for the properties we have checked, unrolling
contributes to the low false positive rate while missing few errors compared to
sound tools.

Function calls. We adopt a modular approach to modeling function calls. Sat-
urn analyzes one function at a time, inferring and summarizing function behav-
ior using SAT queries and expressing the behavior in a concise representation.
Each call site of the function is then replaced by instrumentation that simu-
lates the function’s behavior based on the summary. This approach exploits the
natural abstraction boundary at function calls and allows Saturn to scale to
arbitrarily large code bases.2 The summary definition is checker specific; we give
a concrete example in the following section.

4 Case Study: A Lock Checker for Linux

To experimentally validate our approach, we have
developed a checker using the Saturn framework
that infers and checks locking behavior in Linux.
Locks are a classic example of a temporal safety
property and have been the focus of several previous
studies [8, 7, 3]. Locking behavior for a single lock in
a single thread is described by the finite state ma-

chine (FSM) shown in Figure 1. Re-locking an already locked object may result
in a system hang, and releasing an unlocked object also leads to unspecified
behavior. Our checker targets such violations.

We model locks using SIL constructs. We use integer constants to represent
the three states locked, unlocked, and error, and we attach a special state
field to each lock object to keep track of its current state. State transitions on a
lock object are modeled using conditional assignments. We show an example of
this instrumentation below:

void lock wrapper(lock t *l) {
lock(l);

}

⇒

void lock wrapper(lock t *l) {
if (l−>state == UNLOCKED)

l−>state = LOCKED;
else

l−>state = ERROR;
}

For the lock operation above, we first ensure the current state is unlocked. If
so, the new state is locked; otherwise, the new state is error. Every call to lock

is replaced by this instrumentation. The instrumentation for unlock is similar.
Using this instrumentation for locks, we infer the locking behavior of a func-

tion f by issuing SAT queries for each possible pair of start and finish states

2 The lock checker we describe in Section 4 averages 67LOC/s over nearly 5M lines of
Linux.

Fig.1. FSM for locks
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of each lock f uses. If the query is satisfiable, then there is a possible transi-
tion between that pair of states across the function. In the example above, the
satisfiable pairs are unlocked → locked and locked → error. We record the
set of possible transitions in the summary database and use it later when we
analyze the callers of the function. To check a function’s locking behavior, we
check that there is at least one legal transition (i.e. one that does not end in the
ERROR state) through the function.

We have run the lock checker over Linux, which contains roughly 5 million
lines of code. Our analysis finished in about 20 hours and issued 300 warnings,
179 of which are believed to be real errors by manual inspection.

5 Related Work

Jackson and Vaziri were apparently the first to consider finding bugs via reducing
program source to boolean formulas [12]. Subsequently there has been signifi-
cant work on a similar approach called bounded model checking [13, 4, 11]. While
there are algorithmic differences between Saturn and these other systems, the
primary conceptual difference is our emphasis on scalability (e.g., function sum-
maries) and focus on fully automated checking of properties without separate
programmer-written specifications.

Static analysis tools commonly rely on abstraction techniques to simplify the
analysis of program properties. SLAM [3] and BLAST [10, 9] use predicate ab-
straction techniques to transform C code into boolean programs. ESP [5] and
MC [8, 6] use the finite state machine (FSM) abstraction and employ interpro-
cedural dataflow analyses to check FSM properties. CQual [7, 2] is a type-based
checking tool that uses flow-sensitive type qualifiers to check similar properties.
In contrast, a SAT-based approach naturally adapts to a variety of abstractions,
and therefore should be more flexible in checking a wide range of properties with
precision.

Several other systems have investigated encoding C pointers using boolean
formulas. CBMC [13] uses uninterpreted functions. SpC [15] uses static points-
to sets derived from an alias analysis. There, the problem is much simplified
since the points-to relationship is concretized at runtime and integer tags (in-
stead of boolean formulas) can be used to guard the points-to relationships.
F-Soft [11] models pointers by introducing extra equivalence constraints for all
objects reachable from a pointer, which is inefficient in the presence of frequent
pointer assignments.

6 Conclusion

We have presented Saturn, a scalable and precise error detection framework
based on boolean satisfiability. Our system has a novel combination of features:
it models all values, including those in the heap, path sensitively down to the
bit level, it computes function summaries automatically, and it scales to millions
of lines of code. We demonstrate the utility of the tool with a lock checker for
Linux, finding in the process 179 unique locking errors in the Linux kernel.
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1 Introduction

We describe JVer, a tool for verifying Java bytecode programs annotated with
pre and post conditions in the style of Hoare and Dijkstra. JVer is similar to
ESC/Java [1], except that: (1) it produces verification conditions for Java byte-
code, not Java source; (2) it is sound, because it makes conservative assumptions
about aliasing and heap modification; (3) it produces verification conditions di-
rectly using symbolic simulation, without an intermediate guarded-command
language; (4) by restricting predicates to conjunctions of relations between in-
tegers, it produces verification conditions that are more efficient to verify than
general first-order formulae; (5) it generates independently verifiable proofs using
the Kettle proof-generating theorem prover [2].

We initially designed JVer as a tool for verifying that downloaded Java byte-
code programs do not abuse the computational resources available on a cell phone
[3]. These resources include physical resources such as CPU, memory, storage,
and network bandwidth, and virtual resources such as handles and threads.
However, since JVer uses standard pre and post conditions, it has many uses not
limited to resource certification, such as bug finding and security hole detection.
We describe JVer’s implementation, as well as an experiment using it to limit
the resources consumed by a cell phone version of tetris.

2 Verifier

Figure 1 shows our annotation language, which is a subset of JML. It includes
the usual Hoare-style pre and post conditions, global invariants, loop invariants,
and side-effect annotations. The exsures annotation means that the method
terminates with an exception of the given class.

Predicates are conjunctions of literals. Literals are of the form e0 ≥ e1 or
e0 = e1. Expressions include only the usual Java operators, without method
calls. Expressions can refer to class fields and instance fields. Expressions in
post conditions can include the keyword result to refer to the method’s return
value (in ensures) or thrown exception (in exsures).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 144–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



JVer: A Java Verifier 145

JVER uses true as the default loop invariant. If necessary for verification,
the user must supply a stronger invariant, which is located by program counter
value. In this respect, JVer differs from ESC/Java, which unrolls loops a fixed
number of times and is therefore unsound.

annotation ::=
invariant pred |
ghost class.field |
static ghost class.field |
type class.method (type argument, ...)
method-annotation*

method-annotation ::=
requires pred |
ensures pred |
exsures class pred |
loop invariant pc, pred

pred ::= literal ∧ · · · ∧ literal

literal ::= exp relop exp

exp ::= int | argument | class.field | exp.field |
exp binop exp | \old(exp) | \result

relop ::= = | != | < | <= | > | >=

binop ::= + | - | * | / | % | << | >> | >>> | & | | | ^

Fig. 1. Annotation definition

To verify Java bytecode, we use a standard verification condition generator
(VCG) based on weakest pre conditions. The verifier begins at the start of a
method and at each loop invariant and traces all paths through the code. Each
path must terminate either at the end of the method, or at a loop invariant. If
a path loops back on itself without encountering a loop invariant, the verifier
raises an error and fails to verify the program.

Along each path, the verifier begins with a abstract symbolic state containing
logical variables for the method’s arguments and for all class fields. It simulates
the bytecode using a stack of expressions. At the end of the path, it produces the
VC that if the pre condition (or initial loop invariant) holds of the initial state,
and all of the conditionals hold at their respective intermediate states, then the
post condition (or final loop invariant) holds of the final state.

The VC for the program is the conjunction of the VCs for the methods. The
VC for the method is the conjunction of the VCs for the execution paths. The
VC for each path is an implication between conjunctions of literals, of the form
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a1 ∧ · · · ∧ am ⇒ b1 ∧ · · · ∧ bn

where the ai and bi are literals. This implication is valid if and only if

a1 ∧ · · · ∧ am ∧ ¬bi

is unsatisfiable for each bi, which we check with a decision procedure for sat-
isfiability of conjuncts of literals. In essence, we check the original formula for
validity by converting it to CNF [4].

2.1 Java Features

Java includes several features that make it more difficult to verify than a hy-
pothetical “simple imperative language”: concurrency, exceptions, inheritance,
and the object heap. We address these issues in turn.

Concurrency. Since most cell phone applets are single-threaded, JVER does
not handle concurrency. In particular, we assume that each method has exclusive
access to shared data for the duration of its execution. In contrast, ESC/Java
detects unprotected shared variable access and discovers race conditions using a
user-declared partial order.

Exceptions. Java has three sources of exceptions: explicit throw instruc-
tions, instructions that raise various exceptional conditions, such as NullPointer
or ArrayIndexOutOfBounds, and calling methods that themselves raise excep-
tions. Since our control flow analyzer produces a set of possible next instruc-
tions, it handles exceptions without difficulty. In essence, an exception is a
form of multi-way branch, like the usual conditionals, or the JVM instructions
tableswitch and lookupswitch. ESC/Java provides essentially the same sup-
port for exceptions.

Inheritance. If class B extends class A, then when invoking method m on
an object of class A, we may actually execute B.m instead of A.m. Thus, the pre
condition for B.m must be weaker than the pre condition for A.m, while the post
condition for B.m must be stronger than the post condition for A.m. Thus, when
we compute the post condition for B.m, we conjoin the post condition for A.m.
And when we compute the pre condition for A.m, we conjoin the pre condition
for B.m. Thus, we inherit post conditions downwards and pre conditions upwards.
On the other hand, if class B defines method m, but class A does not, then we do
not inherit pre or post conditions in either direction.

Inheritance of pre and post conditions is convenient, because we can state
them just once, and JVer propagates them as necessary. However, to determine
the specification for a method, we need the specification for the methods related
to it by inheritance, both up and down. However, once we know its specification,
we can verify each method in isolation. ESC/Java inherits pre conditions down-
wards, which is unsound in the presence of multiple inheritance via interfaces.

Object Heap. At the moment, we use Java’s type system to automatically
over-estimate the set of heap locations that each method modifies. That is, we
assume that the assignment a.x = e modifies the x field of all objects whose
type is compatible with a. We also determine automatically which static class



JVer: A Java Verifier 147

variables each method modifies. In the future, we plan to experiment with more
precise alias analysis algorithms. If the user requires more precise modification
information, he can declare explicitly in the post condition that x = \old(x).
ESC/Java requires the user to state explicitly which heap locations each method
modifies, but since it does not verify this information, its heap model is unsound.

3 Applications

We are using JVer to enforce resource bounds on downloaded cell phone applets
using proof-carrying code [3]. Thus, we need a prover that can generate proofs
and a small, fast verifier that can check them on the handset.

Our resource-verification technique uses a static ghost variable pool to ensure
that the applet dynamically allocates the resources that it uses. Allocations
increment pool, while uses decrease it. We use JVer to check the invariant that
pool remains non-negative.

In an experiment, we verified the security of a Tetris game / News display
cell phone applet running on DoCoMo’s DoJa Java library. The security policy
limited the applet’s use of the network, persistent storage, and backlight. The
1850-line applet required 111 lines of annotation and verified in less than one
second. By checking network use once per download of the news feed rather than
once per byte, we reduced the number of dynamic checks by a factor of roughly
5000.

4 Conclusion

Unlike ESC/Java, JVer is sound, simple, efficient, and produces independently-
verifiable proofs from Java bytecode, not source. It accomplishes these goals
by restricting the properties that it checks and by requiring more user-supplied
annotations. We have found in practice that JVer is a useful and efficient tool
for verifying properties of cell phone applets.
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Abstract. Model checking has proven to be an effective technology for
verification and debugging in hardware and more recently in software
domains. We believe that recent trends in both the requirements for soft-
ware systems and the processes by which systems are developed suggest
that domain-specific model checking engines may be more effective than
general purpose model checking tools. To overcome limitations of existing
tools which tend to be monolithic and non-extensible, we have developed
an extensible and customizable model checking framework called Bogor.
In this tool paper, we summarize (a) Bogor’s direct support for model-
ing object-oriented designs and implementations, (b) its facilities for ex-
tending and customizing its modeling language and algorithms to create
domain-specific model checking engines, and (c) pedagogical materials
that we have developed to describe the construction of model checking
tools built on top of the Bogor infrastructure.

Motivation

Temporal logic model checking [CGP00] is a powerful framework for reasoning
about the behavior of finite-state system descriptions and it has been applied,
in various forms, to reasoning about a wide-variety of software artifacts. The
effectiveness of these efforts has in most cases relied on detailed knowledge of the
model checking framework being applied. In some cases, a new framework was
developed targeted to the semantics of a family of artifacts [BHPV00], while in
other cases it was necessary to study an existing model checking framework in
detail in order to customize it [CAB+01]. Unfortunately, the level of knowledge
and effort required to do this kind of work currently prevents many domain
experts, who are not necessarily experts in model-checking, from successfully
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applying model checking to systems and software analysis problems. Our broad
goal is to allow these experts to apply model checking without the need to build
their own model-checker or to pour over the details of an existing model-checker
implementation while carrying out substantial modifications.

The Bogor Extensible Software Model Checking Framework

To meet the challenges of using model checking in the context of current trends
in software development, we have constructed an extensible and highly modular
explicit-state model checking framework called Bogor [RDH03, SAnToS03]. Us-
ing Bogor, we seek to enable more effective incorporation of domain knowledge
into verification models and associated model checking algorithms and optimiza-
tions, by focusing on the following principles.

Software-oriented Modeling Language: In contrast to most existing model
checkers, Bogor’s modeling language (BIR) provides constructs commonly found
in modern programming languages including dynamic creation of objects and
threads, garbage collection, virtual dispatch and exceptions. This rich language
has enabled model checking relatively large featureful concurrent Java programs
by translating them to Bogor using the next generation of the Bandera tool set.

Software-oriented State Representations and Reduction Algorithms:
To support effective checking of BIR software models, we have adapted and ex-
tended well-known optimization/reduction strategies such as collapse compres-
sion [Hol97], data and thread symmetry [BDH02], and partial-order reductions
to support models of object-oriented software by providing sophisticated heap
representations [RDHI03], partial-order reduction strategies that leverage static
and dynamic escape and locking analyses [DHRR04], and thread and heap sym-
metry strategies[Ios02, RDHI03].

Extensible Modeling Language: Bogor’s modeling language can be extended
with new primitive types, expressions, and commands associated with a partic-
ular domain (e.g, multi-agent systems, avionics, security protocols, etc.) and a
particular level of abstraction (e.g., design models, source code, byte code, etc.)

Open Modular Architecture: Bogor’s well-organized module facility allows
new algorithms (e.g., for state-space exploration, state storage, etc) and new
optimizations (e.g., heuristic search strategies, domain-specific scheduling, etc.)
to be easily swapped in to replace Bogor’s default model checking algorithms.

Robust Feature-rich Graphical Interface: Bogor is written in Java and
comes wrapped as a plug-in for Eclipse – an open source and extensible universal
tool platform from IBM. This user interface provides mechanisms for collecting
and naming different Bogor configurations, specification property collections,
and a variety of visualization and navigation facilities.

Design for Encapulation: Bogor provides an open architecture with well-
defined APIs and intermediate data formats that enable it (and customized
versions of it) to be easily encapsulated within larger development/verification
environments for specific domains.
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Courseware and Pedagogical Materials: Even with a tool like Bogor that is
designed for extensibility, creating customizations requires a significant amount
of knowledge about the internal Bogor architecture. To communicate this knowl-
edge, we have developed an extensive collection of tutorial materials and exam-
ples. Moreover, we believe that Bogor is an excellent pedagogical vehicle for
teaching foundations and applications of model checking because it allows stu-
dents to see clean implementations of basic model checking algorithms and to
easily enhance and extend these algorithms in course projects. Accordingly, we
have developed a comprehensive collection of course materials [SAnToS04] that
have already been used in graduate level courses on model checking at several
institutions.

In short, Bogor aims to be not only a robust and feature-rich software model
checking tool that handles the language constructs found in modern large-scale
software system designs and implementations, it also aims to be a model checking
framework that enables researchers and engineers to create families of domain-
specific model checking engines.

Experience Using Bogor

In the past ten months, Bogor has been downloaded more than 800 times by
individuals in 22 countries. We know that many of those individuals are using
Bogor in interesting ways. To date, we are aware of more than 28 substantive
extensions to Bogor that have been built by 18 people, only one of whom was
the primary Bogor developer.

It is difficult to quantify the effort required to build a high-quality extension
in Bogor. As with all software framework there is a learning curve. In the case
of Bogor, which is a non-trivial system consisting more than 22 APIs, we find
that reasonably experienced Java developers get up to speed in a couple of
weeks. At that point extensions are generally require only a few hundred lines
of code and often they can be modeled closely after already existing extensions.
To give a sense of the variety of extensions built with Bogor we list a sampling
of those extensions and indicate, in parentheses, the number of non-comment
source statement lines of Java code used to implement the extension.
Partial-order Reduction (POR) Extensions: Multiple variations on POR
techniques have been implemented in Bogor including: sleep sets (298), condi-
tional stubborn sets (618), and ample sets (306) approaches. Multiple variations
of the notion of dependence have been incorporated into these techniques that
increase the size of the independence relation by exploiting : read-only data
(515), patterns of locking (73), patterns of object ownership (69), and escape
information (216). These latter reductions, while modest in size and complexity
to implement, have resulted in more than four orders of magnitude reduction in
model checking concurrent Java programs [DHRR04].
State-encoding and Search Extensions: Bogor is factored into separate
modules that can be treated independently to help lower the cost of learning
the framework’s APIs. For example, extensions to the state-encoding and man-
agement APIs have yielded implementations of collapse compression (483), heap
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and thread symmetry (317), and symmetric collection data structures (589).
Extensions to Bogor’s searcher APIs have enabled the POR extensions above in
addition to ones supporting stateless search (14) and heuristic selective search
(641).
Property Extensions: Supporting different property languages is just as im-
portant as supporting flexibility in modeling languages. Bogor’s property APIs
have allowed multiple checker extensions to be implemented including : regular
expression/finite-state automata (1083), an automata-theoretic Linear Tempo-
ral Logic (1011) checker, and a Computation-tree Logic (1418) checker based on
alternating tree automata. We have also implemented a checker extension for
the Java Modeling Language [RRDH04] (3721).
Problem Domain Extensions: A main objective of Bogor was to bring so-
phisticated state-space analyses to a range of systems and software engineering
domains. Several extensions have been built that target specific issues in reason-
ing about multi-threaded Java programs, for example, treating dynamic class
loading (425), reasoning about event-handler behavior in program written us-
ing the Swing framework [DRTV04], and reasoning about properties of method
atomicity (359) [HRD04].

Departing from the software domain somewhat, in our work on the Cadena
development environment [HDD+03] for designing component-based avionics
systems, we have extended Bogor’s modeling language to include APIs associated
with the CORBA component model and an underlying real-time CORBA event
service (2593). [DDH+02, DRDH03]. For checking avionics system designs in Ca-
dena, we have customized Bogor’s scheduling strategy to reflect the scheduling
strategy of the real-time CORBA event channel (439), and created a customized
parallel state-space exploration algorithm that takes advantage of properties of
periodic processing in avionics systems (516). These customizations for Bandera
and Cadena have resulted in space and time improvements of over three orders
of magnitude compared to our earlier approaches.

We are currently building extensions of Bogor for checking highly dynamic
multi-agent systems. Researchers outside of our group are extending Bogor to
support checking of programs constructed using AspectJ, and UML designs.
Bogor is targetted as a framework for explicit state checking, and its current
architecture is not necessarily amenable for incorporating symbolic techniques.
We are working with researchers at Brigham Young University to refactor the
framework (or develop an alternate set of APIs) to facilitate the use of symbolic
techniques.
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Abstract. Wolf is a “push-button” model checker for concurrent C
programs developed in IBM Haifa. It automatically generates both the
model and the specification directly from the C code. Currently, Wolf
uses BDD-based symbolic methods integrated with a guided search frame-
work. According to our experiments, these methods complement explicit
exploration methods of software model checking.

1 Introduction

Wolf is a software bug hunter that uses formal methods in order to discover
bugs in a concurrent C program. Concurrency related bugs may depend on a
specific rare interleaving of the program, and are likely to be missed by standard
testing tools. In addition, even when the presence of a bug is known, it is hard
to reproduce it, or locate its source. When using formal methods, we can explore
all possible interleavings; hence, detecting the presence of a bug. In addition, we
can generate the trace that led to the bug.

Wolf is a “push-button” bug hunter, that is, it does not require intervention
by the user. Unlike with hardware verification, users need not be experts in
verification. Users who are familiar with verification can use their knowledge of
the software to tune the model or verify additional specification. Wolf operates
the IBM model checker RuleBase PE [4] using special software algorithms [3] on
an automatic generated model and cleanness properties. Cleanness properties are
those that every program should obey. For example, a dangling pointer should
never be dereferenced, there should never be a deadlock situation, and no assert
should fail. Programmers can validate functional properties of a program using
the assert mechanism with which they are already familiar.

Wolf displays the bug trace in a debugger-like GUI named Vet. Vet translates
the trace into an easy-to-understand graphical display which is intuitive for the
average programmer.

We believe that there is no ultimate software model checking algorithm. Each
different kind of software and bug has a different winning algorithm. We designed
Wolf as an easy to upgrade framework, which enables us to add different algo-
rithms in the future.

There are a number of explicit model checkers for software, among them are
ZING [1], SPIN [10] and JPF [9]. Explicit model checkers handle the dereferenc-
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ing of pointers and the dynamic allocation of resources well. Using various reduc-
tions such as partial order reductions [6] enables them to find bugs in concurrent
software as well. However, they have a hard time coping with non-deterministic
behaviors that result from non-deterministic inputs.

Other software model checkers use SAT-based methods, in these methods
a formula that represents bounded length executions is generated and being
fed to a SAT-solver. SAT-solver does not cope well with long formulas, and
therefore SAT-based tools try to compact the formula. NEC [11] tries to compact
each basic blocks into one transition, and CBMC [7] changes the code to a
single assignment form. Neither [11] nor [7] supports concurrent programs. A
new approach, taken by [12], tries to extend this approach for such programs.

Currently, we are exploring symbolic algorithms. In contrast to Bebop [2]
and JPF [9], which combine symbolic and explicit methods, Wolf uses a pure
symbolic exploration. BDD-based symbolic methods are less bounded than SAT-
based methods and, unlike explicit methods symbolic methods, support non-
deterministic choices naturally. In this sense, BDD-based symbolic algorithms
complement SAT-based and explicit algorithms.

Wolf’s symbolic BDD algorithm uses partial disjunctive partitions [3]. This
method uses the software property of a few changes in each ”cycle” to enhance
the speed of image computation by several orders of magnitude.

We acknowledge the fact that the verification of concurrent software is a hard
task, due to the enormous number of possible states. This can cause state ex-
plosion to occur when dealing with big and complex models. In order to avoid
this problem and find a bug prior to explosion, we use automatically generated
“hints” and “guides” to manipulate the model checker into examining “interest-
ing” states. This way, we enter bug-pattern knowledge [8] into Wolf and allow it
to search for specific occurrences of these patterns.

Section 2 describes the internal modules within Wolf. Section 3 presents our
experimental results, and in section 4, we discuss possible future directions.

2 Structure of Wolf

Wolf is composed of three modules: a C-to-model translator, software verification
algorithms integrated into RuleBase PE, and Vet.

Translator: The translator receives a concurrent C program and generates a
finite model. This translation, described in [3], is not trivial. We model software
concurrent control using two variables: TC (thread chooser) and PC (program
counter vector). These signals point to the next command to be executed. In each
cycle, only TC, PC, and one additional variable may change their values in order
to allow the use of disjunctive partitions [3]. Moreover, the translator models
the synchronization primitives 1. Similarly to the method described in [12], the
modeling of these primitives removes some unnecessary interleavings from the

1 Currently, we support concurrent programs that use Pthread libraries.
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model without changing its behavior. The translator also bounds the number
of threads, the size of the heap, of the stack, and of all data types, making the
problem decidable. In addition to that, it generates cleanness properties such
as assert never fails, no use of/set to dangling pointer, no deadlock occur, no
livelock, no data race, etc. The translator also generates hints and guides that
will guide the software model checker toward the bug. These hints and guides
are generated according to the program and the user’s preferences.

Software Model Checker: Wolf uses a specialized version of RuleBase PE
[4] as its underlying model checker. As mentioned, we are currently focusing
on symbolic model checking using a BDD based model checker. Our algorithm
uses disjunctive partitions [3], which enable faster image computation for soft-
ware models. We implemented a dynamic BDD reordering algorithm especially
designed to reduce the reordering time of software disjunctive BDDs.

Since we are using guided search, we implemented two different ways to divert
the model checker to examine interesting states: hints and guides. In [5], the hints
method was presented: in each step, the image computation is intersected with
the current hint. When a fixed point is reached, the hint is replaced with the
next hint. When all hints are used, another search is done from the reachable
states of the last iteration without any constraints. We implemented this method
with one change: our hints are cyclic, when the last hint results in a fixed-point,
the first hint is rechecked and so forth. Only when all hints do not discover a
new state, the final search is performed. Our hints are usually used to force a

Fig. 1. Vet - wolf’s debugger

round-robin execution of the threads: when the i-th hint is active, we intersect
the image with TC = i. We observed that using such hints kept the BDDs
relatively small.

Guides are another method to direct the model checker toward a bug. After
each K iterations, the model checker finds the highest priority guide that is
satisfied in the frontier2, and continues to step forward only from the states in

2 A frontier is the set of new states which were discovered in the last iteration.
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the frontier that satisfy this guide. If no bug is found after one round-robin, the
model checker backtracks and explores other states. For example, when looking
for a deadlock, a guide may be one thread is locked and a higher priority guide
may be two threads are locked.

Vet: Wolf’s debugger: Finally, Vet displays the trace in a debugger-like GUI,
highlighting the code line that caused the bug 3. Vet allows the user to traverse
the trace forward and backward. Also, the user can display watches over the
variables. Since the trace is of concurrent software, Vet is designed in such a way
that all the threads are displayed side-by-side, and the next line to be executed
in each thread is marked. Figure 1 shows a trace as it is presented by Vet.

3 Experimental Results

We ran Wolf on two Linux drivers and synchronization code taken from an IBM’s
software group. We detected access violation bugs, data races, and deadlocks.
In addition, we tried to estimate the potential that symbolic model checking for
software has with respect to explicit model checking. We compared Wolf with
Zing [1] on three different types of programs. This comparison is problematic
because it could be done only on different platforms. However, it can be seen
in Table 1 that symbolic model checking for software scales better when bugs
occur only in rare interleavings, when the program has nondeterministic inputs.

Table 1. Comparison between Wolf and Zing with of different types of programs

Example Number of Wolf Zing
Threads Symbolic MC Explicit MC

Deterministic input common interleavings 6 2100s 374s

Deterministic input rare interleavings 8 21907s 614s
9 31200s > 10h

Non-deterministic input rare interleavings 7 724s 360s
8 794s > 10h
9 1373s > 10h

4 Future Work

We are now working on new guides and hints based on known bug-patterns [8].
We believe that bug-hunting for hard to detect bugs is worthwhile for our cos-
tumers. Simple bug-patterns, such as lock one thread then lock other thread on
the same mutex, are already implemented in Wolf and show great promise. In
addition, we are interested in introducing other model checking algorithms to
the Wolf platform such as explicit and SAT-based model checking.

3 The model checker exports information about the specific state that led to the prop-
erty failure. Vet translates this into a specific code line.
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Abstract. This paper presents a toolset for model checking x86 executables. The
members of the toolset are CodeSurfer/x86, WPDS++, and the Path Inspector.
CodeSurfer/x86 is used to extract a model from an executable in the form of
a weighted pushdown system. WPDS++ is a library for answering generalized
reachability queries on weighted pushdown systems. The Path Inspector is a soft-
ware model checker built on top of CodeSurfer and WPDS++ that supports safety
queries about the program’s possible control configurations.

1 Introduction

This paper presents a toolset for model checking x86 executables. The toolset builds
on (i) recent advances in static analysis of program executables [1], and (ii) new tech-
niques for software model checking and dataflow analysis [14, 10]. In our approach,
CodeSurfer/x86 is used to extract a model from an x86 executable, and the reachabil-
ity algorithms of the WPDS++ library [9] are used to check properties of the model.
The Path Inspector is a software model checker that automates this process for safety
queries involving the program’s possible control configurations (but not the data state).
The tools are capable of answering more queries than are currently supported by the
Path Inspector (and involve data state); we illustrate this by describing two custom
analyses that analyze an executable’s use of the run-time stack.

Our work has three distinguishing features:

– The program model is extracted from the executable code that is run on the ma-
chine. This means that it automatically takes into account platform-specific aspects
of the code, such as memory-layout details (i.e., offsets of variables in the run-time
stack’s activation records and padding between fields of a struct), register usage,
execution order, optimizations, and artifacts of compiler bugs. Such information
is hidden from tools that work on intermediate representations (IRs) that are built
directly from the source code.

– The entire program is analyzed—including libraries that are linked to the program.
– The IR-construction and model-extraction processes do not assume that they have

access to symbol-table or debugging information.
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Because of the first two properties, our approach provides a “higher fidelity” tool than
most software model checkers that analyze source code. This can be important for cer-
tain kinds of analysis; for instance, many security exploits depend on platform-specific
features, such as the structure of activation records. Vulnerabilities can escape notice
when a tool does not have information about adjacency relationships among variables.

Although the present toolset is targeted to x86 executables, the techniques used
[1, 14, 10] are language-independent and could be applied to other types of executables.

The remainder of the paper is organized as follows: §2 sketches the methods used in
CodeSurfer/x86 for IR recovery. §3 gives an overview of the model-checking facilities
that the toolset provides. §4 discusses related work.

2 Recovering Intermediate Representations from x86 Executables

To recover IRs from x86 executables, CodeSurfer/x86 makes use of both IDAPro [8],
a disassembly toolkit, and GrammaTech’s CodeSurfer system [4], a toolkit for build-
ing program-analysis and inspection tools. Fig. 1 shows the various components of
CodeSurfer/x86.

Fig. 1. Organization of CodeSurfer/x86

An x86 executable is first dis-
assembled using IDAPro. In ad-
dition to the disassembly listing,
IDAPro also provides access to the
following information: (1) proce-
dure boundaries, (2) calls to li-
brary functions using an algorithm
called the Fast Library Identifi-
cation and Recognition Technol-
ogy (FLIRT) [6], and (3) statically
known memory addresses and off-
sets. IDAPro provides access to its
internal resources via an API that
allows users to create plug-ins to
be executed by IDAPro. We cre-
ated a plug-in to IDAPro, called the Connector, that creates data structures to repre-
sent the information that it obtains from IDAPro. The IDAPro/Connector combination
is also able to create the same data structures for dynamically linked libraries, and to
link them into the data structures that represent the program itself. This infrastructure
permits whole-program analysis to be carried out—including analysis of the code for
all library functions that are called.

Using the data structures in the Connector, we implemented a static-analysis al-
gorithm called value-set analysis (VSA) [1]. VSA does not assume the presence of
symbol-table or debugging information. Hence, as a first step, a set of data objects called
a-locs (for “abstract locations”) is determined based on the static memory addresses and
offsets provided by IDAPro. VSA is a combined numeric and pointer-analysis algorithm
that determines an over-approximation of the set of numeric values and addresses (or
value-set) that each a-loc holds at each program point. A key feature of VSA is that it
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tracks integer-valued and address-valued quantities simultaneously. This is crucial for
analyzing executables because numeric values and addresses are indistinguishable at
execution time.

IDAPro does not identify the targets of all indirect jumps and indirect calls, and
therefore the call graph and control-flow graphs that it constructs are not complete.
However, the information computed during VSA can be used to augment the call graph
and control-flow graphs on-the-fly to account for indirect jumps and indirect calls.

VSA also checks whether the executable conforms to a “standard” compilation
model—i.e., a runtime stack is maintained; activation records (ARs) are pushed onto
the stack on procedure entry and popped from the stack on procedure exit; a procedure
does not modify the return address on stack; the program’s instructions occupy a fixed
area of memory, are not self-modifying, and are separate from the program’s data. If it
cannot be confirmed that the executable conforms to the model, then the IR is possibly
incorrect. For example, the call-graph can be incorrect if a procedure modifies the re-
turn address on the stack. Consequently, VSA issues an error report whenever it finds a
possible violation of the standard compilation model; these represent possible memory-
safety violations. The analyst can go over these reports and determine whether they are
false alarms or real violations.

Once VSA completes, the value-sets for the a-locs at each program point are used to
determine each point’s sets of used, killed, and possibly-killed a-locs; these are emitted
in a format that is suitable for input to CodeSurfer. CodeSurfer then builds a collection
of IRs, consisting of abstract-syntax trees, control-flow graphs (CFGs), a call graph,
and a system dependence graph (SDG).

3 Model-Checking Facilities

For model checking, the CodeSurfer/x86 IRs are used to build a weighted pushdown
system (WPDS) that models possible program behaviors. WPDS++ [9] is a library that
implements the symbolic reachability algorithms from [14] on weighted pushdown sys-
tems. We follow the standard convention of using a pushdown system (PDS) to model
the interprocedural control-flow graph (one of CodeSurfer/x86’s IRs). The stack sym-
bols correspond to program locations; there is only a single PDS state; and PDS rules
encode control flow as follows:

Rule Control flow modeled

q〈u〉 ↪→ q〈v〉 Intraprocedural CFG edge u → v
q〈c〉 ↪→ q〈entryP r〉 Call to P from c that returns to r
q〈x〉 ↪→ q〈〉 Return from a procedure at exit node x

Given a configuration of the PDS, the top stack symbol corresponds to the current pro-
gram location, and the rest of the stack holds return-site locations—much like a standard
run-time execution stack.

This encoding of the interprocedural CFG as a pushdown system is sufficient for
answering queries about reachable control states (as the Path Inspector does; see §3.2):
the reachability algorithms of WPDS++ can determine if an undesirable PDS config-
uration is reachable [2]. However, WPDS++ also supports weighted PDSs. These are
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PDSs in which each rule is weighted with an element of a (user-defined) semiring. The
use of weights allows WPDS++ to perform interprocedural dataflow analysis by using
the semiring’s extend operator to compute weights for sequences of rule firings and us-
ing the semiring’s combine operator to take the meet of weights generated by different
paths. (When the weights on rules are conservative abstract data transformers, an over-
approximation to the set of reachable concrete configurations is obtained, which means
that counterexamples reported by WPDS++ may actually be infeasible.)

3.1 Stack-Qualified Dataflow Queries

The CodeSurfer/x86 IRs are a rich source of opportunities to check properties of in-
terest using WPDS++. For instance, WPDS++ has been used to implement an illegal-
stack-manipulation check: for each node n in procedure P , this checks whether the net
change in stack height is the same along all paths from entryP to n that have perfectly
matched calls and returns (i.e., along “same-level valid paths”). In this analysis, a weight
is a function that represents a stack-height change. For instance, push ecx and sub
esp,4 both have the weight λheight.height − 4. Extend is (the reversal of) function
composition; combine performs a meet of stack-height-change functions. (The analysis
is similar to linear constant propagation [15].) When a memory access performed rel-
ative to r’s activation record (AR) is out-of-bounds, stack-height-change values can be
used to identify which a-locs could be accessed in ARs of other procedures.

VSA is an interprocedural dataflow-analysis algorithm that uses the “call-strings”
approach [16] to obtain a degree of context sensitivity. Each dataflow fact is tagged
with a call-stack suffix (or call-string) to form (call-string, dataflow-fact) pairs; the
call-string is used at the exit node of each procedure to determine to which call site
a (call-string, dataflow-fact) pair should be propagated. The call-strings that arise at a
given node n provide an opportunity to perform stack-qualified dataflow queries [14]
using WPDS++. CodeSurfer/x86 identifies induction-variable relationships by using
the affine-relation domain of Müller-Olm and Seidl [12] as a weight domain. A post∗

query builds an automaton that is then used to find the affine relations that hold in a
given calling context—given by call-string cs—by querying the post∗-automaton with
respect to a regular language constructed from cs and the program’s call graph.

3.2 The Path Inspector

The Path Inspector provides a user interface for automating safety queries that are only
concerned with the possible control configurations that an executable can reach. It uses
an automaton-based approach to model checking: the query is specified as a finite au-
tomaton that captures forbidden sequences of program locations. This “query automa-
ton” is combined with the program model (a WPDS) using a cross-product construction,
and the reachability algorithms of WPDS++ are used to determine if an error configu-
ration is reachable. If an error configuration is reachable, then witnesses (see [14]) can
be used to produce a program path that drives the query automaton to an error state.
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The Path Inspector includes a GUI for instantiating many common reachability
queries [5], and for displaying counterexample paths in the disassembly listing.1 In
the current implementation, transitions in the query automaton are triggered by pro-
gram points that the user specifies either manually, or using result sets from CodeSurfer
queries. Future versions of the Path Inspector will support more sophisticated queries in
which transitions are triggered by matching an AST pattern against a program location,
and query states can be instantiated based on pattern bindings. Future versions will also
eliminate (many) infeasible counterexamples by using transition weights to represent
abstract data transformers (similar to those used for interprocedural dataflow analysis).

4 Related Work

Several others have proposed techniques to obtain information from executables by
means of static analysis (see [1] for references). However, previous techniques deal with
memory accesses very conservatively; e.g., if a register is assigned a value from mem-
ory, it is assumed to take on any value. VSA does a much better job than previous work
because it tracks the integer-valued and address-valued quantities that the program’s
data objects can hold; in particular, VSA tracks the values of data objects other than
just the hardware registers, and thus is not forced to give up all precision when a load
from memory is encountered. This is a fundamental issue; the absence of such infor-
mation places severe limitations on what previously developed tools can be applied to.

Christodorescu and Jha used model-checking techniques to detect malicious code
variants [3]. Given a sample of malicious code, they extract a parameterized state ma-
chine that will accept variants of the code. They use CodeSurfer/x86 to extract a model
of each procedure of the program, and determine potential matches between the pro-
gram’s code and fragments of the malicious code. Their technique is intraprocedural,
and does not analyze data state.

Other groups have used run-time program monitoring and checkpointing to perform
a systematic search of a program’s dynamic state space [7, 11, 13]. Like our approach,
this allows for model checking properties of the low-level code that is actually run
on the machine. However, because the dynamic state space can be unbounded, these
approaches cannot perform an exhaustive search. In contrast, we use static analysis to
perform a (conservative) exhaustive search of an abstract state space.
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The ComFoRT Reasoning Framework
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1 Introduction

Model checking is a promising technology for verifying critical behavior of soft-
ware. However, software model checking is hamstrung by scalability issues and
is difficult for software engineers to use directly. The second challenge arises
from the gap between model checking concepts and notations, and those used
by engineers to develop large-scale systems. ComFoRT [15] addresses both of
these challenges. It provides a model checker, Copper, that implements a suite
of complementary complexity management techniques to address state space
explosion. But ComFoRT is more than a model checker. The ComFoRT rea-
soning framework includes additional support for building systems in a particular
component-based idiom. This addresses transition issues.

2 The Containerized Component Idiom

In the containerized component idiom, custom software is deployed into prefab-
ricated containers. A component is a container and its custom code. Containers
restrict visibility of custom code to its external environment (other components
and a standard runtime environment), and vice versa. Components exhibit re-
active behavior, characterized by how stimuli received through the container
interface lead to responses emitted via the container interface. A runtime en-
vironment provides component coordination mechanisms (or “connectors”) and
implements other resource management policies (scheduling, synchronization,
etc.). We define a component technology as an implementation of this design
idiom [17], and many such implementations are possible [19]. Our approach has
much in common with [12], although we give full behavioral models for compo-
nents (UML statecharts and action language) and, subsequently, can generate
full implementations of components and assemblies.

We formalize this idiom in the construction and composition language (CCL)
[18]. The structural aspects of CCL (e.g., interfaces, hierarchy, topology) are sim-
ilar to those found in a typical architecture description language [1]. The behav-
ioral aspects of CCL use a subset of UML statecharts. Our formalization retains
the statechart semantics already familiar to software engineers while refining
it to precisely define those semantics intentionally left open in the standard.
In formalizing both aspects of CCL, we exploit our connection with a specific
component technology, which we use as the oracle for our choice of semantics.
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ComFoRT exploits this design idiom and its formalization in several ways.
Threading information in CCL specifications is exploited to generate concurrent
state machines that more closely approximate actual concurrency than might
otherwise be the case if threading were not considered [16]. The factoring of
component-based systems into custom code and prefabricated containers and
connectors presents opportunities for exploiting compositional reasoning. Mod-
els of containers and connectors can also be pre-fabricated; therefore, develop-
ers need only model their custom code to use the model checker. Moreover, as
explained in Section 3, verification properties are specified using a formalism
adapted to easily describe patterns of interaction among stateful components.

Because CCL is a design language, model checking can be used to verify
early design decisions. However, model checking of software implementations
is also possible because the model checker also processes a restricted form of
ANSI-C source code (even though it is unsound with respect to pointers). The
cumulative result is to make model checking more accessible to the practicing
software engineer by using familiar notations, supporting verification throughout
the development process, and providing automation to hide complexity.

3 Overview of the Model Checking Engine

Combined State Space Reduction. The ComFoRT model checker, Cop-
per, is built on the top of the MAGIC tool [14]. Copper implements a number
of state space reduction techniques, including 1) automated predicate abstrac-
tion, 2) counterexample-guided abstraction refinement (also known as a CEGAR
loop), and 3) compositional reasoning. These techniques are widely used by the
majority of software model checking tools (such as SLAM [2], BLAST [13],
CBMC [9]). The advantage of Copper is that it combines all three of them in
a complementary way to combat the state space explosion of software verifica-
tion. For example, it enables compositional abstraction/refinement loop where
each step of the CEGAR loop can be performed one concurrent unit at a time.
Moreover, Copper integrates a number of complementary state space reduction
techniques. An example is a two-level abstraction approach [3] where predicate
abstraction for data is augmented by action-guided abstraction for events. An-
other key feature of the Copper approach is that if a property can be proved to
hold or not based on a given finite set of predicates P , the predicate refinement
procedure used in Copper automatically detects a minimal subset of P that
is sufficient for the proof. This, along with the explicit use of compositionality,
delays the onset of state-space explosion for as long as possible.

State/Event-based Verification. The Copper model checker provides for-
mal models for software verification that leverage the distinction between data
(states) and communication structures (events). Most formal models are either
state-based (e.g., the Kripke structures used in model checking) or event-based
(e.g., process algebras), but Copper provides models that incorporate both
[7]. Semantically, this does not increase expressive power, since one can encode
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states as events or events as state changes, but providing both directly in the
model fits more natural to software modeling and property specification. It is,
indeed, essential in supporting the containerized component idiom. As impor-
tantly, it allows more efficient verification [7]. Copper models such systems as
Labeled Kripke Structures and provides both state/event-LTL [7] and ACTL for-
malisms [5]. Both versions of temporal logic are sufficiently expressive, yet allow a
tractable implementation for model checking. The Copper model checking algo-
rithms support verification of both safety and liveness properties of state/event
systems. Another feature of the state/event-based framework is a compositional
deadlock detection technique [6] that not only efficiently detects deadlocks but
also acts as an additional space reduction procedure.

Verification of Evolving Systems. The Copper model checker also provides
features that enable it to automatically verify evolving software. These features
simplify verification throughout the development process—and through the ex-
tended life-cycle of a software system—by reducing the cost of re-verification
when changes are made. We define verification of evolving systems as a compo-
nent substitutability problem: (i) previously established properties must remain
valid for the new version of a system, and (ii) the updated portion of the system
must continue to provide all (and possibly more) services offered by its earlier
counterpart. Copper uses a completely automated procedure based on learning
techniques for regular sets to solve the substitutability problem in the context
of verifying individual component upgrades [4]. Furthermore, Copper also sup-
ports analysis of component substitutability in the presence of simultaneous
upgrades of multiple components [8]. Copper uses dynamic assume-guarantee
reasoning, where previously generated assumptions are reused and altered on-
the-fly to prove or disprove the global safety properties on the updated system.

4 Tool Support

ComFoRT consists of two sets of tools: those for generating the state machines
to be verified and those that perform the actual model checking. The first set
deals with the topics discussed in Section 2, parsing and performing seman-
tic analysis of design specifications (in CCL) and the generation of the state
machines in the input language of Copper. Copper, as discussed in Section
3, is the model checker at the core of ComFoRT. Copper was built on top
of MAGIC, portions of which we developed together with collaborators from
Carnegie Mellon’s School of Computer Science specifically to support Com-
FoRT1. Copper has since evolved beyond the MAGIC v.1.0 code base, and
a brief overview of some of the key features of Copper and their lineage in
terms of various tool releases is found in Figure 1. ComFoRT is available at
http://www.sei.cmu.edu/pacc/comfort.html.

1 The reader, therefore, should not be confused by the fact that results of this collab-
oration have been presented in the contexts of both projects.
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− Magic v.1.0
− component substitutability analysis

* Copper model checker

− Component and connector 
specification style
− UML statecharts with
imperative actions
− precise concurrency modeling

ComFoRT

− SATABS (in progress) 
− automated assume/guarantee 

SEI, SCS & SEI

* Component interpretation

Magic v.1.0
* state/event models

* compositional deadlock 

SATABS
* SAT−based predicate 

SEI & SCS

detection

abstraction

Magic pre−v.1.0

* predicate minimization
* CEGAR

* component technology
* composition language

framework

PACC

* performance reasoning

CMU/SCS

CMU/SEI

* two−level abstraction 
refinement

and state/event temporal logics

* predicate abstraction 
(non SAT−based)

Fig. 1. Evolution of the MAGIC and ComFoRT projects

5 Results

We have used ComFoRT to analyze several industrial benchmarks. Our first
benchmark was derived from the OpenSSL-0.9.6c implementation of SSL. Specif-
ically, we verified the implementation of the handshake between a client (2500
LOC) and a server (2500 LOC) attempting to establish a secure connection
with respect to several properties derived from the SSL specification. Figure 2
shows verification results of two properties, each of which was expressed using
only states (ss suffix) and both states and events (se suffix). Note that the
models depend on the property - and hence are different for the pure-state and
state/event versions, even though they are constructed from the same source
code. As shown in Figure 2, verification of the state/event properties outper-
forms the corresponding pure-state properties.

Name St(B) Tr(B) St(Mdl) T(BA) T(Mdl) T(Ver) T(Total) Mem

ssl-1-ss 25 47 25119360 1187 69969 * * 324

ssl-1-se 20 45 13839168 848 37681 113704 153356 165

ssl-2-ss 25 47 33199244 1199 67419 3545288 3615016 216

ssl-2-se 18 40 16246624 814 38080 298601 338601 172

Fig. 2. St(B) and Tr(B) = number of Büchi states and transitions; St(Mdl) = num-
ber of model states; T(Mdl) = model construction time; T(BA) = Büchi construction
time; T(Ver) = model checking time; T(Total) = total verification time. Times are
in milliseconds. Mem = memory in MB. A * ≡ model checking aborted after 2 hours

Two other benchmarks we have used are Micro-C OS and the interprocess-
communication library of an industrial robot controller. With Micro-C OS, ver-
ification of source code revealed a locking protocol violation. With the commu-
nication library, verification of CCL models derived from the implementation
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revealed a problem wherein messages could be misrouted. In both cases, the re-
spective developers informed us that the problems had been detected and fixed;
in the latter case, the problem was undetected during seven years of testing.

6 Future Work

We are currently working on a number of additions to ComFoRT. One is the
incorporation into Copper a SAT-based predicate abstraction technique [10]
that eliminates the exponential number of theorem prover calls of the current
abstraction procedure. Another is the use of a simpler language for expressing
verification properties, such as a pattern language [11]. A third is a technique
for confirming that design-level (i.e., CCL designs) verification results are satis-
fied by eventual component implementations by proving a conformance relation
between the model and its implementation.
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Abstract. We describe a practical methodology for large-scale formal verifica-
tion of control-intensive industrial circuits. It combines symbolic simulation with
human-generated inductive invariants, and a proof tool for verifying implications
between constraint lists. The approach has emerged from extensive experiences
in the formal verification of key parts of the Intel IA-32 Pentium�4 micropro-
cessor designs. We discuss it the context of two case studies: Pentium 4 register
renaming mechanism and BUS recycle logic.

1 Introduction

It is easy to explain why formal verification of microprocessors is hard. A state-of-the-
art microprocessor may have millions of state elements, whereas a state-of-the-art for-
mal verification engine providing complete coverage can usually handle a few hundred
significant state elements. This basic technology problem stems from the computational
complexity of many of the algorithms used for formal verification. At the same time,
the strong guarantees of correctness given by verification would be particularly valuable
in the domain of microprocessors. The products are used in circumstances where their
reliability is crucial, and just the financial cost of correcting problems can be very high.

In an industrial product development project formal verification is a tool, one among
others, and it has to compete with other validation methods such as traditional testing
and simulation. We believe quite strongly that in this setting the greatest value of for-
mal verification comes from its ability to provide complete coverage, finding subtle
design problems that testing may have missed, and yielding strong evidence about the
absence of any further problems. This is naturally not the only usage model for formal
methods: more lightweight approaches providing partial coverage such as partial model
exploration, bounded model checking, capturing design intent by assertions etc. can
also provide value to a project. Nevertheless, systematic testing and simulation often
provide reasonable partial coverage already, and in our opinion the most compelling
argument for the adoption of formal verification is that it can provide guarantees of
correctness that testing cannot.

Formal verification has been pursued in various forms for roughly a decade now in
Intel [19]. Usually the goal of a verification effort is to relate a detailed register transfer
level circuit model to a clear and abstract specification. In some areas, most notably in
arithmetic hardware, verification methods have reached sufficient maturity that they can
now be routinely applied (for discussion see [14]). The work still requires a great deal of
human expertise, but tasks that used to take months can be carried out in days, and the
work can be planned ahead with reasonable confidence. In other areas the track record
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is mixed. Traditional temporal logic model checkers perform well for local properties,
but quickly run out of steam when the size of the sub-circuit relevant for the property
grows. Decompositions and assume-guarantee reasoning can alleviate this problem, but
the help they provide tends to gradually diminish as the circuits grow larger, as well.

Large control intensive circuits have proved to be particularly resistant to formal
verification. They contain enough state elements that even after applying common re-
duction strategies, such as data independence or symmetry reductions, the system is
far too large for traditional model-checking. The state elements tend to be tightly in-
terconnected, and natural decompositions often do not exist, or lead to a replication of
the circuit structure in the specification. Circuit optimizations often take advantage of
various restrictions that are expected to hold throughout the execution of the circuit,
and in order to prove correct behaviour, one needs to first establish the validity of these
restrictions. If a restriction depends on the correct behaviour of the circuit in a global
level, local low level properties become contingent on correctness in a global level. In
effect, either everything in the circuit works, or nothing does.

In the current paper we discuss a methodology that has allowed us to tackle these
large verification problems with far greater success than before. Our starting point is
a simple, concrete and computationally undemanding approach: We try to mechani-
cally verify inductive invariants written by a human verifier, and conformance to a non-
deterministic high-level model. The approach avoids any explicit automated computa-
tion of a fixed point. The concreteness of the computation steps in the approach allows
a user to locate and analyze computational problems and devise a strategy around them
when a tool fails because of capacity issues. This is a very common scenario in practice,
and in our experience one of the key issues regarding the practical usability of a verifi-
cation tool. On a philosophical level, we approach verification in much the same way as
program construction, by emphasizing the role of the human verifier over automation.

Our methodology has gradually emerged over several years of work on large ver-
ification tasks. In the current paper we report on two cases: BUS recycle logic and a
register renaming mechanism, both from a Pentium� 4 design. The BUS recycle mech-
anism contains about 3000 state elements, and with the methods presented here, the
verification is a fairly straightforward task. The logic covered in the verification of the
register renaming mechanism involves about 15000 state elements in the circuit and an
environment model. The case is to our knowledge one of the largest and most complex
circuit verification efforts in the field to date.

We consider the main contributions of the current paper to be the empirical obser-
vation that the methodology is an efficient strategy for practical verification, and the
collection of heuristics and technical innovations used in our implication verification
tool. The methodology scales smoothly to circuits with tens of thousands of state ele-
ments, and allows us to relate low-level RTL circuit models to algorithmically clear and
concise high-level descriptions. Building the verification method on the intuitively very
tangible idea of an invariant allows us to communicate the work easily to designers,
and to draw on their insights in the work. A somewhat surprising observation in the
work was just how difficult the computational task still is. Encountering this kind of
complexity in a verification strategy that is heavily user guided leads us to believe that
the chances of success for fully automatic methods on similar tasks are negligible.
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2 Methodology Overview

2.1 Background

Let us assume that we have a circuit ckt and want to verify that a simple safety property
Ispec holds throughout the execution of the circuit, under some external assumptions Iext .
The circuit models we use are effectively gate-level descriptions of the circuit function-
ality. They are mechanically translated from the RTL code used in the development
project, linked to the actual silicon via schematics.

Let us write Nodes for the set of node or signal names of the circuit, and define the
signature Sig and the set of valuations Val of the circuit by Sig ≡df Nodes× int and
Val ≡df Sig→ bool. We call the elements of Sig timed signals. Intuitively they are refer-
ences to circuit nodes at specific times. The combinational logic and the state elements
of the circuit naturally generate a set of runs of the circuit, Runs ⊆ Val, the definition
of which we do not formalize here. Our circuit models do not have distinguished initial
states, which means that the set Runs is closed under suffixes. A circuit can be powered
up in any state, and we use an explicit initialization sequence to drive it to a sufficiently
well-defined state. The initialization sequence can be described by a collection of timed
signals, a valuation assigning values to elements of these signals, and an initialization
end time tinit . We write Iruns for the set of all initialized runs of the circuit.

We formulate the specification Ispec and the external assumptions Iext as implicitly
conjuncted sets of constraints. Intuitively a constraint is a property characterizing a set
of runs of the circuit, and formally we define the set of constraints Constr by Constr ≡df

Val → bool. If C ⊆ Constr and v ∈ Val, we define C(v) ≡df
∧

c∈C c(v). We also define a
next step operation N for timed signals (s, t)∈ Sig by N(s, t) ≡df (s, t +1) and the notion
extends naturally to signatures, valuations, constraints and constraint sets. We consider
an invariant property Ispec to be valid over a circuit iff it is valid for all time points after
the end of the initialization sequence for all initialized runs of the circuit.

More generally, we want to verify the conformance of the circuit behaviour against
a non-deterministic high-level model (HLM). In this case, a specification consists of an
HLM and a relation between RTL states and HLM states. The components of an HLM
state form its signature SigHLM . We write ValHLM for the set of valuations mapping
each s ∈ SigHLM to an element of an appropriate type, and describe the behaviour of the
HLM by a set of initial state predicates initHLM ⊆ ValHLM → bool and a set of transition
predicates transHLM ⊆ ValHLM ×ValHLM → bool. Both sets are considered implicitly
conjuncted. The relation between RTL and HLM states is described by an abstraction
map abs ∈ Val → ValHLM . We consider the circuit behaviour to conform to the HLM iff
for all initialized runs v ∈ Iruns,

– the RTL state at the end of the initialization sequence maps to an HLM state satis-
fying all the all the initial state predicates in initHLM , and

– for all points n after the end of the initialization sequence, the RTL transition from
point n to n+1 maps to an HLM transition satisfying all the HLM transition pred-
icates in transHLM .
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2.2 Symbolic Simulation

Symbolic simulation is based on traditional notions of digital circuit simulation. In con-
ventional symbolic simulation, the value of a signal is either a constant (T or F) or a
symbolic expression representing the conditions under which the signal is T. To perform
symbolic simulation on circuit RTL models, we use the technique of symbolic trajec-
tory evaluation (STE) [20]. Trajectory evaluation extends the normal Boolean logic to
a quaternary logic, with the value X denoting lack of information, i.e. the signal could
be either T or F, and the value � denoting contradictory information, and carries out
circuit simulation with quaternary values. In the current work we use STE to symboli-
cally simulate the circuit and trace the values of relevant signals. In this context we can
view STE as a routine that is given a circuit ckt, an antecedent signature and valuation
sigant ⊆ Sig, vant ∈ Val, and a signature of interest sigintr ⊆ Sig, and which produces a
valuation vST E ∈ Val such that:

∀v ∈ Runs.(∀s ∈ sigant.v(s) = vant(s)) ⇒ (∀s ∈ sigintr.v(s) = vST E(s)) (1)

Technically our verification work is carried out in the Forte verification framework,
built on top of the Voss system [10]. The interface language to Forte is FL, a strongly-
typed functional language in the ML family [18]. It includes binary decision diagrams
as first-class objects and symbolic trajectory evaluation as a built-in function. In writing
the specification constraints Ispec and Iext , we use all the facilities of the programming
language FL. When describing an HLM, we use an abstract record-like FL data-type to
characterize its signature and the intended types of the state components.

2.3 Inductive Verification

A simple way to verify the safety property Ispec is to strengthen it to an inductive in-
variant Iind . Using a symbolic circuit simulator, the base and inductive steps can then be
carried out as follows:

– symbolically simulate the circuit model from an unconstrained state, driving the
circuit initialization sequence on the inputs of the circuit, and check that Iind holds
in the state after circuit initialization,

– symbolically simulate the circuit model from an unconstrained state for a single
cycle, and check that if Iind holds in the start state of the simulation, then it also
holds in the end state, assuming that Iext holds

In more detail, this approach involves the following verification steps:

A Determine the sub-circuit of interest, i.e. determine signatures siginv and sigext so
that siginv contains all the timed signals referenced in Ispec and abs, and for every
s′ ∈ N(siginv), the value of s′ in the circuit simulation is a function of timed signals
in siginv and sigext . Define the signature of interest for all subsequent STE runs as
the union of the two sets.

B Determine a set of constraints Iind ⊆ Constr such that Ispec ⊆ Iind .
C Symbolically simulate the circuit with STE using the initialization signature and

valuation as antecedent. Write vST Einit for the valuation valuation computed by STE
after the initialization sequence.
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D Verify that after initialization, the inductive invariant Iind holds, and the circuit state
maps to an initial HLM state, i.e. that Iind(vSTEinit) and initHLM(abs(vSTEinit)) hold

E Symbolically simulate the circuit with STE using antecedent signature sigintr and
an antecedent valuation function that assigns a fresh symbolic variable to every
element of sigintr. Write vST E for the valuation computed by STE.

F Verify that the inductive invariant remains true, and the circuit transition maps to a
legal HLM transition:

(Iind ∪ Iext)(vSTE) ⇒ N(Iind)(vSTE) (2)

(Iind ∪ Iext)(vSTE) ⇒ transHLM(abs(vSTE),abs(N(vSTE))) (3)

Much of step A can be automated by causal fan-in analysis of signals, but human in-
tuition is needed to determine which signals to include in the inductive set siginv and
which to consider external inputs sigext in the scope of the proof. Step B is obviously
the most labour-intensive task, and requires great ingenuity and detailed understand-
ing of the circuit’s behaviour. Typically a verifier builds Iind incrementally by adding
constraints to Ispec until the resulting set is inductive. Steps C and E are carried out au-
tomatically by STE, with a moderate amount of user intervention required to create a
reasonable BDD variable ordering and to avoid simulating unnecessary parts of the cir-
cuit. Step D is usually trivial. Step F is the most computation intensive one. It is carried
out with the implication verification tool discussed next. It is easy to see from equation
1 and the disjointness of the symbolic variables used in step E, that the verification goals
for invariant and HLM conformance verification follow from the steps above. It is also
easy to see that the method is complete in a theoretical sense: Since circuits are finite,
one can in principle write down a constraint characterizing its reachable state space,
and verify every valid Ispec with the help of this constraint.

3 Implication Verification

In verification of the inductive step, we need to determine the implication between two
sets of constraints: Given A,G ⊆ Constr and a valuation v ∈ Val, determine whether
A(v) ⇒ G(v), i.e. whether

∧
a∈A a(v) ⇒ ∧g∈G g(v). The problem is non-trivial, given

that for some of our cases the sets have tens of thousands of elements, and the timed
signals map to relatively complex BDD’s in the right side of the implication.

For small instances, one can solve the problem by just computing A =
∧

a∈A a(v),
G =
∧

g∈G g(v), and the implication A ⇒ G . In our setting, the naive solution is feasible
only when the constraint sets have less than fifty elements. A simple improvement is
to consider each goal separately, to compute A ⇒ g(v) for each g ∈ G. In our experi-
ence this strategy works when the constraint sets have up to a few hundred elements. To
move forward we developed techniques which improve the obvious strategy primarily
along two axes. First, instead of using all the assumptions a ∈ A, we can pick a selection
of them and use the selected constraints incrementally in a particular order. Secondly,
we can avoid the computation of complex BDD’s by considering an exhaustive col-
lection of special cases instead of a single general case, and by applying parametric
substitutions.
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Let us discuss assumption selection first. It is quite likely that some assumptions in
A are more useful than others for verifying a goal g(v). In practice we have found that
a simple and useful strategy is to look for overlap in the support of BDD variables, and
to pick assumptions sharing at least one variable with the goal. This heuristic is incom-
plete, but in our experience two or three iterations of assumption selection using the
rule, each followed by the application of the selected assumptions to the goal, are very
likely to pick all relevant assumptions. If we are unable to verify the goal at this stage,
it is better to give up and give the user an opportunity to analyze the problem, rather
than continue applying more assumptions, which will quickly cause a BDD blowup.

In which order should assumptions be applied? A heuristic we have found consis-
tently useful is to look for assumptions that are as specific to the goal as possible. For
example, if a goal talks about a particular data element in a table, assumptions about
the same data element are preferable to assumptions about some other data element. To
automate the heuristic, we statically classify BDD variables into a number of increas-
ingly specific buckets, for example to reset/control/pointer/data variables, and prioritize
assumptions based on the bucket the variables shared with the goal belong to. The more
specific the bucket with the shared variables, the earlier the assumption should be used.

Selection, ordering and other similar heuristics can be fully automated, and they al-
low verification of many goals without user intervention. Nevertheless, the larger the
assumption set is, the easier it is for a mechanism to pick useless assumptions, leading
to BDD blow-ups. The verifier also often knows roughly what assumptions would be
likely to contribute to a goal. After all, the verifier has written the constraints and typ-
ically has a reason for believing why they hold. Therefore it is beneficial to allow the
verifier to customize a strategy for a goal. The degree of customization may vary. In
some instances, the user may just want to guide the heuristics. In others, the user may
want to completely control the strategy down to the level of an individual assumption.

Our second area for complexity reduction, i.e. case splitting and parametric sub-
stitutions, are needed because we encounter goals for which BDD’s are incomputable
within the limits of the current machines. For example, the BDD for a goal about table
elements in a range determined by control bits and pointers reflects both the circuit logic
for all the relevant entities and the calculation of the constraint itself. Case splitting also
allows us to use different verification strategies for different cases. For example, the
reason an invariant holds might depend on an operating mode, and one would like to
write different verification strategies for different modes.

Parametric substitutions are a well-understood technique [13] with direct library
support in Forte. The essence of the parametric representation is to encode a Boolean
predicate P as a vector of Boolean functions whose range is exactly the set of truth
assignments satisfying P. Then, if one wants to verify a statement of the type P ⇒ Q,
one can instead verify the statement Q′ obtained from Q by replacing all occurrences
of variables of P in Q by the corresponding parametric representations. This allow us
to evaluate a goal and required assumptions only in scenarios where the parameterized
restriction holds, never evaluating the constrains in full generality.

To apply the various heuristics and human-guided techniques, a user needs a flexible
way to direct the verification of a goal. We formulate the task as a specialized tableau
system refining sequents A�v G, intuitively “A implies goal G under valuation v”, where
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concr
A �v g

A �v []�g(v)

choose(sel)
A �v []�g

A\ elems(As) �v As �g
where As = sel(A,v,g)
and elems(As) ⊆ A

apply
A �v [a1,a2, . . .an]�g

A �v [a2, . . .an]� (a1(v) ⇒ g)

split(S)
A �v g

A∪{c1} �v g . . . A∪{cn} �v g A �v (c1 ∨′ . . .∨′ cn)
where
{c1, . . .cn} = S ⊆ Constr

psplit(S)
A �v g

A �v1 g . . . A �vn g A �v (c1 ∨′ . . .∨′ cn)
where {c1, . . .cn} = S ⊆ Constr
and vi = λx.param(ci(v))(v(x))

where [] is the empty list, sel(A,v,g) is a function returning a list of constraints in A, elems(A) the
set of elements of list A, a∨′ b ≡df λx.a(x)∨b(x), and param(c,b) for a function that computes
a parametric substitution corresponding to c ∈ bool and applies the substitution to b ∈ bool.

Fig. 1. Implication verification tableau rules

A ⊆ Constr and v ∈ Val, and the right side G is either an uninstantiated goal g ∈ Constr,
or an instantiated goal [a1, . . .an]�g, where a1, . . .an ∈Constr and g∈ bool. The tableau
rules are listed in Figure 1. We consider a leaf of a tableau good, if it is an instantiated
sequent where the goal is true, i.e. of the type A �v As�T . It is easy to see that if there
exists a tableau with root A �v g and only good leaves, then

∧
a∈A a(v) ⇒ g(v).

To verify a goal, the user describes a strategy for building a tableau. Basic strat-
egy steps describe case splits and selection functions for the choose rule. They can
be combined with looping, sequencing and stop constructs. Trusted code then builds
a tableau on the basis of the strategy, using the apply and concr rules automatically.
The process provides constant feedback: which strategies are used, which assumptions
are applied, what the BDD sizes are, etc. This allows the user to quickly focus on a
problem, when one occurs. The code also stores aside intermediate results to facilitate
counterexample analysis later on. In our experience, this approach to user interaction
leads to a good combination of human guidance and automation. Many goals can be
verified completely automatically with a heuristic default strategy, and user guidance
can be added incrementally to overcome complexity barriers in more complex goals.

The tableau rules have evolved during a significant amount of practical work, and
although they may look peculiar at first sight, they reflect key empirical learnings from
that work. For example, we consciously keep the choose and apply rules separate, al-
though a more elegant system could be obtained by replacing them with a single rule
picking an assumption from A and applying it. The reason for this is that the selection
process usually involves iteration over elements of A, which becomes a bottleneck if
done too often, and so in practice it is better to select and order a collection of assump-
tions at once. Similarly, distinguishing uninstantiated and instantiated goals reflects the
need to postpone the time when BDD evaluation happens.
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4 BUS Recycle Logic

Recycle logic forms a key component of the Bus cluster in Pentium 4, the logical por-
tion of the processor enabling communication with other components of a computer
system (for an overview of Pentium 4 micro-architecture, see [11]). The Bus cluster
communicates with the processor’s Memory Execution cluster, which processes data
loads and stores and instruction requests from the execution units, and passes requests
to the Bus cluster as needed. The Bus cluster includes the Bus sequencing unit (BSU)
which is the centralized transaction manager to handle all the transactions that commu-
nicate between the core and the External Bus Controller (EBC). The BSU consists of an
arbiter unit and two queues: the Bus L1 Queue (BSL1Q) to track requests through the
Level 1 cache pipelines and the Bus Sequencing Queue (BSQ) to manage transactions
that need to go to the EBC or the Programmable Interrupt Controller.

All requests travel through the arbiter unit. If a request is granted, Level 1 Cache and
the BSL1Q both receive it. If the Level 1 Cache satisfies the request, BSL1Q can drop
the request after allocating it. Otherwise the request stays in the BSL1Q for some time
and then moves to the BSQ when the BSQ has all the resources to accept it. For every
granted cacheable request, the BUS recycle logic initiates an address match against
all outstanding requests residing in the BSL1Q and the BSQ queues. If the incoming
request has a conflict with an existing request in the queues or in the pipeline ahead of
it, it is recycled and the issuing agent will need to reissue the request. For simplicity we
can assume that there are two types of requests: READ and WRITE requests.

The recycle logic is intended to guarantee that no two requests with conflicts should
reside in the BSL1Q or the BSQ. This is essential to avoid data corruption and to main-
tain the cache coherency. One such conflict is between two cacheable READ requests:
no two cacheable READ requests with the same address should reside in the BSL1Q
and BSQ. Let vi, ri and addri stand for the signals containing the valid bit, cacheable
read bit and the address vector in BSQ. We consider all the signals at the same moment,
without relative timing offsets, and write just vi for the timed signal (vi,0). Let i and j
be indices pointing to different entries in the BSQ, and define the constraint R(i, j) as
the function mapping a valuation v to:

v(vi)∧ v(ri)∧ v(v j)∧ v(r j) ⇒ v(Ai) �= v(A j)

The specification Ispec consists of constraints R(i, j) over all pairs of different entries in
BSQ, similar constraints comparing all pairs of different BSL1Q entries, and a set of
constraints comparing pairs with one element in BSQ and the other in BSL1Q.

Showing that Ispec is satisfied in the base case, after a global reset, is trivial, as reset
clears all the valid bits. However, in general we have found it valuable to run the base
case step early, since it is usually a computationally cheap and quick sanity check.

The inductive step fails immediately for Ispec for several reasons:

– Ispec does not contain any information on what needs to happen when a new re-
quest comes into the pipeline and its address matches with the addresses of existing
entries in the BSL1Q and the BSQ.

– The recycle logic powers down when there is no request in the pipeline and no valid
entry in the Bus queues, but Ispec contains no information about the power-up logic.
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– Ispec does not capture any conditions involving requests moving from BSL1Q to
BSQ. It also does not contain any information on the request-acknowledgement
protocol between BSL1Q and BSQ.

– Address match computation is done over several cycles, and Ispec does not capture
the relation of already computed partial information to the actual addresses.

We strengthened Ispec by adding constraints which capture the conditions mentioned
above along with several others, and arrived at Iind . This was an iterative process and
required low level circuit knowledge. At each step of the iteration, new BDD variables
were introduced and placed in the existing variable ordering based on the knowledge
of the circuit. For example, variables related to the power-up logic were placed high-
est, those related to control logic next, and variables related to the address bits were
interleaved and placed at the bottom. This provided a good initial order which was oc-
casionally fine tuned. We reached an inductive Iind after some fifty iterations of adding
new constraints based on debugging the failure of the previous attempt.

The logic we verified consists of about 3000 state elements and is clearly beyond the
capacity of model-checkers which compute reachable states of the circuit. The entire
verification task took about three person months. The BDD complexity was not very
high, peaking at about 10M BDD nodes, and the peak memory consumption during the
entire verification session did not exceed 1M. The recycle logic had undergone intensive
simulation-based validation and our verification did not uncover new bugs. However,
we artificially introduced some high quality bugs found earlier into the design and were
able to reproduce them with ease.

5 Register Renaming

The Intel NetBurst� micro-architecture of the Pentium 4 processor contains an out-of-
order execution engine. Before reaching the engine, architecturally visible instructions
have been translated to micro-operations (μops) in the Front End of the processor, and
these μops have been sent to the out-of-order engine by the Micro-Sequencer (MS). The
out-of-order engine consists of the Allocation, Renaming, and Scheduling functions.
This part of the machine re-orders μops to allow them to execute as quickly as their
input operands are ready. It can have up to 126 μops in flight at a time.

The register renaming logic renames the logical IA-32 registers such as EAX onto
the processors 128-entry physical register file. This allows the small, 8-entry, architec-
turally defined IA-32 register file to be dynamically expanded to use the 128 physical
registers in the Register File (RF) to remove false conflicts between μops. The renaming
logic remembers the most current version of each register in the Register Alias Table
(RAT) so that a new μop coming down the pipeline can translate its logical sources
(lsrcs) to physical sources (psrcs).

The Allocator logic allocates many of the machine resources needed by each μop,
and sends μops to scheduling and execution. During allocation, a sequence number is
assigned to each μop, indicating its relative age. The sequence number points to an entry
in the Reorder Buffer (ROB) array, which tracks the the completion status of the μop.
The Allocator allocates one of the 128 physical registers for the physical destination
data (pdst) of the μop. The Register File (RF) entry is allocated from a separate list
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of available registers, known as the Trash Heap (TH), not sequentially like the ROB
entries. The Allocator maintains a data structure called the Allocation Free List (ALF),
effectively a patch list that keeps track of the binding of logical to physical destinations
done at μop allocation. Both ROB and ALF have 126 entries. The lists are filled in a
round-robin fashion, with head and tail pointers. The head pointer points to the index of
next μop to be allocated, and the tail pointer to the index of the next μop to be retired.

When the Allocator receives a new μop with logical sources and destination, it grabs
a free physical register from the Trash Heap (TH), updating TH in the process, asso-
ciates the new pdst with the ldst of the μop in RAT, stores the ldst and old and new pdst
in ALF at head pointer location, moves head pointer to next location, and sends the μop
to scheduling with the psrcs and pdst. The μops are retired in-order by the ROB. When
a μop retires, the Allocator returns the old pdst of the retired μop into Trash Heap.

Events are also detected and signalled by ROB at μop retirement. When an event
occurs, we need to restore RAT back to where it was when the eventing μop was allo-
cated. This is done on the basis of the information in the ALF: effectively one needs
to undo the changes to RAT recorded in ALF, and to return the new pdsts of all the
younger μops to the Trash Heap. In the same way, when a branch misprediction occurs,
the RAT needs to be restored to the state where it was when the mispredicting μop was
allocated. For branch misprediction recovery, the Allocator interacts with the Jump Ex-
ecution Unit (JEU) and the Checker-Replay unit (CRU), and maintains a data structure
called Branch Tracking Buffer (BTB) keeping track of all branch μops in the machine,
and whether they are correctly resolved.

The renaming protocol has several sources of complexity. For example, up to three
μops are allocated or retired at a time, there can be multiple active branch mispredictions
in different stages at the same time, and after a misprediction recovery, allocation starts
without waiting for all the previous μops to retire. The RTL implementation of the
protocol is highly optimized and consists of several tens of thousands of code lines. It
also has a number of implementation-specific complications. For example, instead of
one ALF head pointer, there are eight different versions of it, all with their own control
logic, and in total, there are over forty pointers to ALF. Many one-step state updates of
the abstract level also spread over multiple cycles in the implementation.

It is easy to come up with various expected properties of the protocol, e.g. that
two logical registers should never be mapped to the same physical register in the RAT.
However, to understand precisely what is expected of the register renaming logic and
how it interacts with scheduling and retirement, we wanted to describe the out-of-
order mechanism as a whole. We formalized a simple in-order execution model, a
non-deterministic high-level model (HLM) of the out-of-order engine with register re-
naming, and sketched down an argument showing that the out-of-order model should
produce the same results as the simple model, when one considers the stream of retiring
μops. While both models were written down precisely, the argument connecting the two
was not done with full rigour. The primary goal was to guarantee that our specification
of the renaming protocol was based on a complete picture.

The actual target of our verification effort was to establish that the behaviours pro-
duced by the Allocator, including ALF, TH, BTB and RAT, are consistent with a high
level model of the rename logic. The HLM has about 200 lines of code describing the
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lettype mhs_t =
MARBLE_HLM_STATE

{ h :: bv_widx_t } // ALF head pointer
{ btb :: ( int -> bool ) } // BTB array
{ brgoodv :: ( int -> bool ) } // input from CRU:: brgood valid
{ brgood :: ( int -> bv_widx_t ) } // input from CRU:: brgood uop
...

let head_trans_cond ( s, s’) =
( do_alloc s ) => ( s’:>h = s:>h +% 3 ) | ( s’:>h = s:>h )
;

let do_good_idx i s =
Exists_list [ gi | CHANNELS ] .
( s:>brgoodv gi ) AND ( widx2idx ( s:>brgood gi ) ’= i )

;
let btb_trans_cond i ( s, s’) =

s’:>btb i =
( ( do_alloc_idx i s )
=> ( s:>uopjmp ( idx2bank i ) )
| ( ( do_good_idx i s ) => F | ( s:>btb i ) )

);
...

Fig. 2. Parts of register renaming HLM

let btb_abs n2v t i =
let alloc213 = n2v allocateokm213h t in
let hr = wrow2row ( head_th_old_wrow TH0 n2v t ) in
let alloc213_i = alloc213 AND ( hr ’= idx2row i ) in
let goodbrseq271 c = ptr2idx_bv ( V n2v ( goodbrseqnumCm271h c ) t ) in
let goodbr271_i c = ( n2v ( crcgoodbrCm271h c ) t ) AND ( goodbrseq271 c ’= i ) in
// Is there a stage 213 write to this index?
alloc213_i
=> // If so, the real values are waiting to be written into the FLM

( btb_alloc_213 n2v t i )
| ( // Is there a stage 271 clear to this index?

// If so, the real value is F, else the real values are in the BTB
( Exists_list [ c | CHANNELS ] . goodbr271_i c )
=> F | ( btb_raw n2v t i )

);
...

Fig. 3. Parts of RTL-to-HLM abstraction mapping

let head_consistent_213_cond n2v t =
let aok = n2v allocateokm213h t in
let uopv u = n2v ( aluopvUm213h u ) t in
aok = ( Exists_list [ u | UOPS ] . uopv u )
;

let mpred_m_iqjeseq_btb_cons_cond ch d idx n2v t =
let mbrclear = mjmp_clear_ch_d ch d n2v t in
let iqjeseq = widx2idx ( iqjeseq_widx ( JUMP_BRCLEAR_DELAY + d ) ch n2v t ) in
let btb_bit = btb_entry idx TH0 n2v t in
( mbrclear AND ( iqjeseq ’= idx ) )
==>
( btb_bit = T );

...

Fig. 4. Some consistency invariants
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transition relation. The HLM state is defined as an FL abstract data-type. Parts of the
HLM are shown in Figure 2. They specify that the head pointer either stays put or moves
by three steps, based on whether new μops are allocated, and that the BTB bit is set for
branch μops at allocation and cleared based on an indication from CRU. In the verifi-
cation, the HLM is compared against a full circuit model, combined with an abstract
environment circuit. Figure 3 shows a part of the RTL-to-HLM abstraction mapping for
a BTB entry. Since the RTL takes multiple cycles for a single-step HLM update, the
abstraction function looks at intermediate values when the RTL is in the middle of an
update.

We started the verification by determining the sets of timed signals for the invariant
siginv and the proof input boundary sigext . Together the sets have about 15000 signals.
We determined them initially manually, later with automated circuit traversal routines.
The advantage of the manual process is that it forces the user to gain a detailed under-
standing of the RTL behaviour early. The work took several months. After the determi-
nation of signals, the simulation steps were quite easy and could be done in a matter of
days. We used a relatively coarse static BDD ordering, with reset signals on top, fol-
lowed by other control signals, interleaved pointer signal vectors and interleaved data
signal vectors. The largest individual BDD’s in STE simulation have only about 30k
nodes, and the complete simulation uses less than 10M BDD nodes.

By far the hardest part of the verification was the determination of a strong enough
inductive invariant Iind . In the end, the invariant contains just over 20000 constraints,
instantiated from 390 templates. The primary method for deriving the invariant was
counterexample analysis. Constraints were added incrementally to prevent circuit be-
haviour that either failed to conform with the HLM or violated parts of the invariant
introduced earlier. The precise content of the added constraints was based on human
understanding of the intended circuit behaviour, aided by design annotations and by
observing simulation behaviour. During the work, the verifier would typically add a
collection of interdependent invariants related to some particular aspect of circuit func-
tionality, e.g. allocation logic, at a time. In the intermediate stages of the work the
tentative invariant would have quite accurate description of some functional aspects of
circuit behaviour, but leave the yet uncovered aspects unconstrained. Figure 4 contains
a few example constraints: a simple relation between some allocation control signals,
and a requirement that the BTB bit corresponding to a mispredicted branch μop must be
set. The hardest systematic problem in the invariant determination was that some basic
properties depend on complex global protocols, which makes it hard to build the invari-
ants incrementally from bottom up. Another common theme is the don’t-care space for
an invariant. Typically it is easy to see that a certain relation is needed, but determining
precisely when it is needed and when it holds can be challenging. The large majority
of the invariants are quite natural. Exceptions are constraints that are needed for proper
behaviour but hold unintentionally, such as implicit synchronization between different
parts of design. In the process of invariant determination, the capability for rapid exper-
imentation and the quick feedback provided by the Forte toolset were highly valuable.

For verification of the invariants we used the full arsenal of techniques discussed
in Section 3. Most control invariants were verified automatically, and combinations
of user-guided and heuristic strategies were used for pointer and data invariants. Case
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splitting with parametric substitutions was particularly useful for invariants that relate
a pointer and the data it points to, as it allowed us to consider each possible value in
the pointer range separately. The largest individual BDD’s in the verification had about
20M nodes, and the total usage peaked at about 100M nodes.

The verification took about two person-years of work, part of which was attributable
to methodology development. Prior to the current effort, several person-years of work
had gone into an attempt to verify the protocol using traditional temporal logic model
checking and assume-guarantee reasoning. While achieving partial results, the effort
looked unlikely to converge, which led to the adoption of the current approach. During
the work we found two subtle bugs in the design. They had escaped dynamic testing and
found their way into silicon, but did not cause functional failures in the current design
as they were masked in the context of the whole processor. However, they constituted
’time bombs’ that could have gone off on future proliferation products.

6 Conclusion

We have discussed a practical methodology which has allowed us to extend the scope
of full formal verification to systems that are several magnitudes beyond the limits of
current tools based on traditional temporal logic model checking [8]. In our experience
the approach is widely applicable. In addition to the cases here, we have used it e.g. to
verify bypass and cache behaviour. The approach is based on well-known techniques:
BDD’s [5] and STE [10]. In a sense, in building our strategy on human-produced in-
variants, we are going back to basics in verification methods [6, 9, 17].

The verification is computationally manageable, but requires a great deal of human
guidance, and a detailed understanding of the design. On the other hand, in our expe-
rience any formal verification on a large design requires both of these, so the current
approach is no different. Furthermore, the approach does automate a large portion of the
task. We believe that completely user-guided verification, such as pure theorem proving,
would be infeasible on designs of the size we are dealing with.

Another approach to induction-based verification is to use SAT instead of BDD’s
[21]. We carried out some experiments, and for many goals, the implication verification
could be done automatically with common SAT engines, but for others, the engines
failed to reach a conclusion. This leads us to believe that replacing BDD’s with SAT
is a plausible, maybe in some respects superior approach, but it will also require the
creation of a methodology and a tool interface to allow a human to flexibly guide the tool
around computational problems, analogous to the role of BDD tableaux used here. Fully
automated SAT-checking can of course be used very effectively as a model exploration
method on large designs [3, 7], but used in this way, it does not provide the kind of full
coverage that in our opinion is one of the compelling advantages of formal verification.

There is a large body of work examining automated discovery of invariants [1, 2, 4,
12, 22]. Here we have concentrated on a simpler, nearly orthogonal task: given a col-
lection of invariants, how to verify them. An automatic method for invariant discovery
can of course help and is compatible with our approach, but does not remove the need
for verification. Our work also has a number of similarities with formal equivalence
verification [15, 16], but the distance between RTL and HLM is larger here.
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Finally, given the amount of human effort required for full formal verification, does
it make sense to pursue it at all? We believe it does for two reasons. First, full for-
mal verification can provide far higher guarantees of correctness than any competing
method. Secondly, it has been our experience that once a robust, practical solution to
a verification problem has been found, the effort needed for similar future verification
tasks falls dramatically.

Acknowledgements. I would like to thank Khurram Sajid for joint work on the BUS
protocol, the numerous participants of the earlier register renaming verification efforts
and Robert Jones for many useful discussions, and Tom Schubert for the opportunity to
carry out this work.
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Abstract. Microcode is used to facilitate new technologies in Intel CPU de-
signs. A critical requirement is that new designs be backwardly compatible with
legacy code when new functionalities are disabled. Several features distinguish
microcode from other software systems, such as: interaction with the external
environment, sensitivity to exceptions, and the complexity of instructions. This
work describes the ideas behind MICROFORMAL, a technology for fully auto-
mated formal verification of functional backward compatibility of microcode.

1 Introduction

The performance and functionality requirements from current CISC (Complex Instruc-
tion Set Computing) CPUs mandate a dual-layer design. While the external (architec-
tural) appearance is that of a CISC CPU, the internal mechanisms employ RISC (Re-
duced Instruction Set Computing) methodologies. A microcode layer captures the archi-
tectural intent of the processor and translates between the architecture and the hardware
layer, which contains the microarchitectural implementation details [Sta02].

Improvements in successive generations of CPU designs are measured not only in
terms of performance improvements, but also in functional enhancements, such as secu-
rity (e.g., LaGrande technology), hardware virtualization (e.g., Vanderpool technology),
and the like. A significant portion of the implementation of such new functionalities is
done in microcode. Thus, a mature architecture such as the IA32 is accompanied by a
large base of microcode, which is essentially very low-level software.
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When adding new functionality to an existing CPU design, the validation team faces
a major verification challenge of ensuring backward functional compatibility, to guar-
antee that legacy software in the marketplace works without changes on the new CPU.
Since functionality enhancement is often implemented in microcode, this verification
challenge has to be met at the microcode level.

In this paper we describe MICROFORMAL, design technology being developed at
Intel to automatically and formally verify the functional backward compatibility of mi-
crocode.

There is scant work on formal verification at the microcode level. Several papers
describe efforts to prove that the microarchitectural level of a microprocessor imple-
ments correctly the instruction-set architecture [Cyr93, SM96, SH02]. The approach of
these works is that of computer-aided deduction, while we are seeking a more auto-
mated solution. Furthermore, our focus is on functional compatibility between succes-
sive generations of microcode, which we refer to as source and target. Closer to our
work is the automated equivalence verification approach, as applied, for example, in
[CHRF00, HUK00, FH02, CKY03]. These works aim to prove equivalence of low-level
code with higher-level code, using symbolic execution and automated decision proce-
dures. (We note that while equivalence verification is a common verification technique
nowadays [HC98], its industrial application is generally limited to hardware.)

Automated equivalence verification has also been successfully applied to translation
validation, which is an automated verification technique for showing that target code,
generated by an automatic translator (e.g., an optimizing compiler) accurately translates
source code. Rather than proving the correctness of the translator itself, the translation-
validation approach attempts to prove the correctness of each translation separately, by
proving the equivalence of the source and target codes, using symbolic execution and
automated decision procedures [PSS98, Nec00, ZPFG03].

Our work differs from these works in several aspects. The first difference is that
our focus is not on equivalence, but rather on backward compatibility. Nevertheless, we
show that equivalence verification techniques are applicable here. We define backward
compatibility of target with source as equivalence under restrictions that disable the new
functionalities. We view this as an important conceptual contribution, as the problem of
backward compatibility under functionality enhancements is quite common. For exam-
ple, when adding features to the telephony systems, users who do not subscribe to the
new features or have instruments that do not support the new features, should notice no
change when the system is upgraded.

A second, and more challenging difference is our focus on microcode. While mi-
crocode is software, it is extremely “machine aware”, as execution of microcode is
heavily dependent on the microarchitectural state. Previous applications of equivalence
verification to software, for example, in translation validation, typically consider closed
systems that do not interact with their environment (except for initial and final I/O). In
order to make this approach applicable to microcode, we have to make the dependence
of the microcode on the microarchitectural state, as well as the effect that the microcode
has on this state, explicit. Furthermore, we assume that the microarchitectural state does
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not essentially change during the execution of the microcode, unless explicitly modi-
fied by the microcode. This assumption matches the intuition of microcode designers.
(An alternative approach would be to consider microcode as a reactive system [HP85].
This would make the verification task considerably harder, as defining equivalence of
programs in fully open environments is rather nontrivial [AHKV98].)

In addition to considering interactions with the environment, at the microcode level,
executions leading to exceptions are considered normal and can terminate in many dif-
ferent states. Thus, in our framework, we need to deal with exceptions in a rather elab-
orate way and define equivalence to mean that the rich exception structure is preserved.
In contrast, prior works did not report on handling exceptions, cf. [Nec00]. The need
to model interactions with the environment and executions that terminate in exceptions
poses a nontrivial challenge to the application of automated equivalence verification
to the problem of microcode backward compatibility. Furthermore, the need to ap-
ply the technique to industrial problems of today’s scale and complexity poses another
formidable challenge.

Our approach is also considerably different from recent approaches to formal prop-
erty verification of software, where both theory and practice have been gaining momen-
tum. Recent tools include SLAM [BR02], BLAST [HJMS03] and others. A common
feature of these works is the focus on abstracting data away as much as possible. In
microcode, the data types are simpler than those in higher-level software, but control
flow and data flow are tightly integrated, so standard abstraction techniques, such as
predicate abstraction, are not easily applicable.

One challenge in developing generic tools for microcode verification is the com-
plexity and variability of the instruction sets of modern microprocessor designs. Rather
than work directly with microcode, our tool uses an intermediate representation lan-
guage (IRL) that is general and is suitable for a wide family of low-level languages.
The translation between the actual code and IRL is accomplished by means of tem-
plates, where each template consists of IRL code that is operationally equivalent to a
microinstruction. IRL can also be used to provide microcode with formal semantics and
drive microcode emulators.

Once both source and target are translated into IRL, they are processed by MICRO-
FORMAL, which constructs the verification conditions (VCs). The VCs are checked by
a validity checker. Their validity establishes that the target is backwardly compatible
with the source. Failure to establish validity produces a counterexample in the form of
input values that causes the behaviors of source and target to diverge.

A major obstacle to the success of our methodology is the complexity of check-
ing the VCs. Since we are dealing with low-level code, the correctness is expressed
in terms of bit vectors. Unfortunately, to date, there are no efficient validity checkers
that handle bit vectors, and we are forced to reduce bit vectors to bit level and use a
propositional validity checker (i.e., a SAT solver). Another problem is the size of the
VCs: even for relatively small microprograms (several hundred lines), the size of the
VCs is often prohibitively large, i.e., beyond the capacity of most validity checkers. We
use various simplification techniques, such as decomposition and symbolic pruning, to
make verification practically feasible.
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2 Modeling Microcode

Microprograms are essentially low-level, machine-oriented programs with a sequen-
tial control flow. The basic, atomic statements of microprograms are microinstructions.
These are implemented in hardware and executed by various units of the CPU. The
basic data types of microprograms are registers (architectural, control and temporary).
A microinstruction can be thought of as a function that (typically) gets two register
arguments, performs some computation and assigns the result to a third register.

The control flow of microprograms is facilitated by jump-to-label instructions,
where the labels appear in the program or indicate a call to an external procedure. It is
possible to have indirect jumps, in which case the target label resides in a register and
is known only at run time.

The semantics of microinstructions involves both the variables that appear in the
instructions and several other auxiliary variables that reflect the status of the hardware.
In addition to the explicit effect of microprograms on their hardware environment via
microinstructions, microprograms also have implicit interaction with hardware by read-
ing/setting various shared machine-state variables (e.g., memory, special control bits for
signaling microarchitectural events, etc.). The latter is used for governing the microar-
chitectural state and is mostly modeled as side-effects (not visible in the microprogram
source code) of specific microinstructions.

The first challenge in applying formal verification to microcode is defining a suitable
intermediate representation. We need a way to fully capture the functional behavior
of microprograms, including the microinstructions they employ. To that end we have
introduced a new modeling language, which we call IRL– Intermediate Representation
Language. IRL is expressive enough to describe the behavior of microprograms and
their interaction with the hardware environment at the “right” abstraction level, yet its
sequential semantics is simple enough to reason about with formal tools.

IRL is a simple programming language that has bits and bit vectors as its basic data
types. IRL basic statements are conditional assignments and gotos. Vector expres-
sions in IRL are generated by applying a rich set of bit-vector operations (e.g. logical,
arithmetic, shift, concatenation and sub-vector extraction operations) to bit-vector ar-
guments. IRL has the following characteristics:

1. Simple, easy to read and understand with a well-defined semantics;
2. Generic, extendible, and maintainable. It is a formalism that is not tied up to the

microcode language of a specific CPU;
3. Explicit. That is, all operations of a microprogram can be explicitly represented,

with no implicit side effects;
4. Can be the target of a compiler from native microcode.

To make it convenient to (automatically) translate microprograms to IRL and to
bridge the gap between native microcode and IRL, we coupled IRL with a template
mechanism by which each microinstruction has a corresponding IRL template. The
template signature represents the formal arguments of a microinstruction and its body
is a sequence of (plain) IRL statements that compute the effect of the microinstruc-
tion and store the result in the designated argument. In addition, each template’s body
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also reflects the side effects of a microinstruction computation by updating the relevant
auxiliary variables.

The template language includes convenient abstract data types, such as structures
and enumeration, and coding aids such as if-then-else and case statements. These con-
structs make the code easier to read and maintain. During translation these constructs
are transformed into basic IRL.

Fig. 1 presents a small microcode-like example that illustrates some basic features
of microcode. There, a value is read from a location in memory determined by the
memory read parameters (address and offset) and the result added to another value.
Registers, as used in the example, are bitvectors of width 64. The memory is an array
array[32][64] memory. That is, an address space of 32 bits is mapped to entries
of 64 bits. The zeroFlag variable is a a single bit zero flag.

BEGIN FLOW(example) {
reg1 := memory read(reg2, reg3);
reg4 := add(reg1, reg5);

};

Fig. 1. A simple program

Each of the two operations are defined by a template. The add template is de-
scribed in Fig. 2. The template has three formal parameters, corresponding to the two
input registers and the target register of the microinstruction (Fig. 1). The first param-
eter of a template is the target variable, which is instantiated with the variable on the
left-hand side of the assignment (reg4 in our case). Note that a side effect of the add
microinstruction— setting zeroFlag— is specified explicitly in the template. (For
simplicity, we ignore the possibility of add overflow.)

template uop add(register result,
register src1, register src2) {
result := src1 + src2;
zeroFlag := (result = 0);

};

Fig. 2. A template for add

The memory read microinstruction (Fig. 3) is somewhat more complex and in-
cludes a possible exception. The address is calculated as tmp address + offset.
If this is out of the memory address range of 32 bits, then an address overflow
exception is signalled. Exceptions are a normal part of microprograms, and are mod-
eled as executions at the end of which various parameters are checked. If no exception
occurs, the memory contents at this address are placed in register result and the system
bit found valid address is set to true. Such “side-effects” are typical of microin-
structions – an intrinsic part of their functionality is that they read and set global system
bits. In this example the microcode is translated to the (basic) IRL program of Fig. 4.
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exception address overflow(bit[32]);
template uop memory read(register result,

register tmp_address, register offset) {
TMP0 := tmp address + offset;
if (TMP0 > 0xFFFFFFFF)

exit address overflow(TMP0[63:32]);
result := memory[TMP0[31:0]];
zeroFlag := (result = 0);
found valid address := 1;

};

Fig. 3. Simple memory read template

1. entry (reg1, reg2, reg3, reg4, reg5, memory, pc);
2. TMP0 := reg2 + reg3;
3. (TMP0 > 0xFFFFFFFF) ? exit address overflow(TMP0[63:32]);
4. reg1 := memory[TMP0[31:0]];
5. zeroFlag := (reg1 = 0);
6. found valid address := 1;
7. reg4 := reg1 + reg5;
8. zeroFlag := (reg4 = 0);
9. exit end (found valid address, reg1, reg2, memory);

Fig. 4. Basic IRL for the original program: Numbered statements

Note that the address overflow exit has a parameter of type bit[32]. In gen-
eral, an exit has parameters defining the observables at this exit. Similarly, observables
have to be defined also for the entry and for the end exit. When defining backward
compatibility we need to ensure that, when run under the same conditions, the source
and target microprograms would reach the same type of exit with the same observable
values. In contrast, there are variables whose values are ignored or lost at the program
exit and we have no interest in comparing them, e.g. temporary registers. Furthermore,
different expressions may be relevant at different exits – in our example the value of
TMP0 is relevant at the address overflow exit, but not at the end exit, where its
“temporary” value is discarded. Defining the correct observables for the various exits is
not a trivial exercise – too few observables may result in real mismatches being missed,
too many observables may result in false negatives when comparing expressions which
need not be equal. In practice, the observability expressions are built and stabilized
over time; starting with the microcode validator’s first approximation, the expressions

BEGIN FLOW(example) {
reg1 := memory read(reg2, reg3, reg6);
reg4 := add(reg1, reg5);

};

Fig. 5. Microcode example II: An extended version
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template uop memory read(register result,
register tmp_address, register base, register offset) {

TMP0 := tmp address + offset;
TMP0 := TMP0 + base;
if (TMP0 > 0xFFFFFFFF)

exit address overflow(TMP0[63:32]);
result := memory[TMP0[31:0]];
zeroFlag := (result = 0);
found valid address := 1;

};

Fig. 6. A memory read for the extended version

1. entry (reg1, reg2, reg3, reg4, reg5, reg6, memory, pc);
2 TMP0 := reg2 + reg3;
3. TMP0 := TMP0 + reg6;
4. (TMP0 > 0xFFFFFFFF) ? exit address overflow(TMP0[63:32]);
5. reg1 := memory[TMP0[31:0]];
6. zeroFlag := (reg1 = 0);
7. found valid address := 1;
8. reg4 := reg1 + reg5;
9. zeroFlag := (reg4 = 0);
10. exit end (found valid address, reg1, reg2, memory);

Fig. 7. Basic IRL for the updated program: Numbered statements

are tuned during several iterations of false negatives and false positives. Doing so re-
quires a deep understanding of the microcode, and may involve consultation with the
the microcode designers.

We now consider an extended version of this system in which memory addresses can
also include bases (Fig. 5). The extended memory read microinstruction takes an ex-
tra base parameter, and is described in Fig. 6. The IRL corresponding to the microcode
of Fig. 5, using the extended read, is in Fig. 7.

3 The Formal Model

In this section we introduce our formal model of computation, exit-differentiated tran-
sitions systems, which defines the semantics of IRL programs similar to the way transi-
tion systems are used to give semantics to “Simple Programming Language” (SPL) in
[MP95]. We then give a formal definition to the notion of restricted equivalence, termed
compatibility, of two IRL programs. We use the program of Fig. 4 as a running example.

A microprogram usually allows for several types of exits, such as the end exit and
the address overflow exit in our example. At each exit type we may be interested
in different observables. For example, at the address overflow exit we care only
about the values of the overflow bits, while at the end exit we care about the values
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of found valid address, reg1 and reg4. When comparing two microprograms
for equivalence or backward compatibility, we would expect that when the two termi-
nate at corresponding exits, the values of the corresponding observables would match.
Similarly, when comparing the two microprograms, we make some assumptions about
their entry conditions, such as that registers have the same initial values. We refer to the
entry and exit points as doors. Two microprograms are termed equivalent if whenever
their entry values match, they exit through the same doors with matching exit values.

By “matching values” we usually mean that two variables have the same value.
However, it is sometimes the case that a comparison between variables is insufficient,
and a more involved comparison must be made e.g., a sub-vector or a conditional ex-
pression like “if (cond) then a[7 : 0] else b[9 : 2]”. We therefore compare values that
are defined by well-typed observation functions over the system variables.

In order to capture the formal semantics of equivalence with respect to doors, we de-
fine exit-differentiated transition systems, EDTS, an extension of the symbolic transition
systems of [MP95] to systems with differentiated exit types. An EDTS S = 〈V,Δ,Θ, ρ〉
consists of:

– V : A finite set of typed system variables. The set V always includes the program
counter pc. A V -state is a type-consistent interpretation of V . We denote the sym-
bolic value of variable v in state s by s.v;

– Δ: A finite set of doors. Each door is associated with an an observation tuple Oδ

of well-typed observation functions over V . In addition, we have a partial function
ν from pc to Δ, where ν(pc) = δ if pc is associated with door δ and ⊥ if it is
associated with no door. The final state of every computation is associated with
some door. There is a single distinguished entry door, entry, all other doors are
exit doors;

– Θ: An initial condition characterizing the initial states of the system. For every state
s, Θ(s)−→ν(s.pc) = entry;

– ρ(V, V ′): A transition relation relating a state to its possible successors;

The semantics of IRL programs is defined in terms of EDTS in a straightforward way
(cf. semantics of SPL in terms of symbolic transition systems [MP95]). For example,
the EDTS associated with the IRL of Fig. 4 is:

V = {pc, TMP0, reg1, . . . , reg5, found valid address, memory}
ρ =

∨
�=1..7

ρ�

Θ = (pc = 1)
Δ = {entry, address overflow, end} with associated observation tuples

Oentry : (reg1, . . . , reg5, memory)
Oaddress overflow : (TMP0[63 : 32]),
Oend : (found valid address, reg1, reg4, memory)

where each ρ� describes the transition associated with pc = 	.
As discussed earlier, execution of microcode is heavily dependent on the microar-

chitectural state. The translation of microcode to IRL makes this dependence fully ex-
plicit. While microcode has invisible side effects, these are fully exposed in the IRL.



Formal Verification of Backward Compatibility of Microcode 193

This, together with the assumption that the microarchitectural state does not change dur-
ing the execution of the microcode unless explicitly modified by the microcode, makes
our IRL programs deterministic; given an initial assignment to the variables, behavior is
completely determined. Making microcode dependence on the microarchitectural state
fully explicit enables us also to handle busy-waiting loops. In such loops, the microcode
waits for the hardware to provide a certain readiness signal. Since loops pose a chal-
lange to symbolic simulators, we abstract busy-waiting loops, which are quite common,
by adding an auxiliary bit for each such loop. This bit “predicts” whether the readiness
signal will be provided. When this bit is on, the loop is entered and immediately exited,
and when the bit is off, the loop is entered but not exited.

A computation of an EDTS is a maximal sequence of states σ : s0, s1, . . . starting
with a state that satisfies the initial condition, such that every two consecutive states are
related by the transition relation. For j = 1, 2, let P j = 〈V j , Θj , ρj ,Δj〉 be an EDTS.
We say that P 1 and P 2 are comparable if for every δ ∈ Δ1 ∩ Δ2, the corresponding
observation tuples in both programs are of the same arity and type.

We are interested in notions of compatibility. Often we find that a new system has
the same functionality as the old system, plus new functionality. We use restrictions
to constrain the set of initial values and thus compare only the legacy functionality of
the new system. We define systems P 1 and P 2 to be R-compatible with respect to a
restriction R, if they are comparable and, and under the restriction of R, every execution
in the same environment (with matching entry observables) ends in the same exit state,
with matching exit observables. Restrictions are defined as predicates over V 1 ∪ V 2.
Our main focus is on terminating computations; the only non-terminating computations
that we consider are those resulting from getting stuck in infinite busy-wait loops, for
which we verify that both source and target microprograms diverge under the same
conditions.

To illustrate the notion of compatibility, consider again our example codes. Let P 1

be the EDTS of the “source” program of Fig. 4, and let P 2 be the EDTS of the “target”
program of Fig. 7. The two systems are clearly comparable. It is easy to see that these
two flows do not reach the same exit under all conditions. For example, if initially
reg2 + reg3 = 0xFFFFFFFF, P 1 exits at end. If, in addition, reg6 is initially non-
zero, P 2 exits at address overflow. Under the restriction that in system P 2 reg6 is
initially zero (since reg6 is not among P 1’s variables, there is no danger of restricting
P 1’s behavior by this restriction), the two are compatible. This is a typical example of
a restriction in the new system that disables the new functionality to ensure backward
compatibility.

4 Simulation and Verification

We use symbolic simulation to compute the effect of the program on a symbolic initial
state. As defined in Sec. 3, a state is a type-consistent interpretation of the variables.
Variable values are symbolic expressions over the set of initial values and constants that
appear in the program. In our example, in the initial state s0, before any statements have
executed, all variables have symbolic values. After statement 2 is simulated, the value
of TMP0 is the expression s0.reg2 + s0.reg3 over these symbolic values.
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If microprograms were merely lists of assignments, this would suffice. However,
they also include conditional and jump statements. Since the state is symbolic, it is
at times impossible to determine the evaluation of a condition. For example, at state-
ment 3, the program either exits or continues according to the evaluation of the test
(TMP0 > 0xFFFFFFFF), which is equivalent to evaluating whether s0.reg2 + s0.reg3
> 0xFFFFFFFF; it is easy to find assignments to s0.reg2 and s0.reg3 under which
the condition is true, and assignments under which it is false. Both are feasible, under
different initial conditions.

We use symbolic paths to store, for every control-distinct (as opposed to data-
distinct) path the current symbolic variable values, the path condition, and the exit door,
once it has been found. Formally, a symbolic path π is a triple (c, s, δ), where c is the
condition ensuring that this path is taken, s is a state containing the relevant symbolic
values of variables, and δ is an exit door if such is reached, ⊥ otherwise. The path con-
ditions of a program are exhaustive (their disjuntion is one) and mutually exclusive (no
two path conditions can be satisfied simultaneously).

For example, after statement 2 has executed, there is a single symbolic path (TRUE,
s2, ⊥) where the value of TMP0 in s2 is s0.reg2 + s0.reg3. When statement 3 is
executed, the symbolic path is split into two:

(s0.reg2 + s0.reg3 > 0xFFFFFFFF, s2, address overflow)

and
(s0.reg2 + s0.reg3 ≤ 0xFFFFFFFF, s2,⊥).

Statement 3 does not effect the values of variables in the state, but rather the path condi-
tion. The symbolic path conditions are always mutually exclusive, and their disjunction
is TRUE. We note that some of the symbolic paths will be non-viable, that is, their
condition evaluates to FALSE. The remainder represent runs of the EDTS.

Symbolic paths fully capture the possible behavior of non-iterative programs. Han-
dling loops (other than busy-waiting loops) requires the identification of loop invari-
ants and is currently beyond the capability of MICROFORMAL. Also, handling indirect
jumps is quite challending and cannot always be handled by MICROFORMAL.

4.1 Verification

We recall that systems P 1 and P 2 are R-compatible if every execution in the same
environment (matching entry observables) satisfying R will, under the same condi-
tions, ends in the same exit door, with matching observables. For j = 1, 2, Let πj =
(cj , sj , δj) be a symbolic path in P j , and sj

0 be the symbolic initial state of P j . We
require that

Oentry(s1
0) = Oentry(s2

0) ∧ Θ1(s1
0) ∧ Θ2(s2

0) ∧ c1 ∧ c2 ∧R(s1
0, s

2
0)−→

δ1 = δ2 ∧ Oδ1(s1) = Oδ1(s2) (1)

We recall that a computation is a path whose initial state satisfies Θ and that our
equivalence definition refers to paths starting with matching entry observables. The
path conditions, too, are conditions over the symbolic initial values. This formula is thus
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equivalent to requiring that any two computations π1 and π2 starting at matching initial
states (Oentry(s1

0) = Oentry(s2
0)) reach the same door with matching observables, pro-

vided that the relevant restrictions R hold. We note that if c1 ∧ c2 is unsatifiable, then
the formula is trivially true. However, since the path conditions are exhaustive, some
instances of this formula are non-trivial.

Returning to our example, P 1 has two symbolic paths,

π1
1 = (s1

0.reg2 + s1
0.reg3 > 0xFFFFFFFF, s1

2, address overflow)
π1

2 = (s1
0.reg2 + s1

0.reg3 ≤ 0xFFFFFFFF, s1
9, end)

where s1
2 is s1

0 with [TMP0= s1
0.reg2 + s1

0.reg3], and s1
9 is the final state after execut-

ing instruction 8.
Similarly, the two symbolic paths of P 2 are

π2
1 = (s2

0.reg2 + s2
0.reg3 + s2

0.reg6 > 0xFFFFFFFF, s2
3, address overflow)

π2
2 = (s2

0.reg2 + s2
0.reg3 + s2

0.reg6 ≤ 0xFFFFFFFF, s2
10, end)

where s2
3 is s2

0 with [TMP0= s2
0.reg2+s2

0.reg3+ s2
0.reg6].

Applying (1) to π1
2 and π2

1 is easy:

(a) s1
0.reg1 = s2

0.reg1 ∧ . . . ∧ s1
0.reg5 = s2

0.reg5 ∧ s1
0.memory = s2

0.memory
(b) ∧ s1

0.pc = 1 ∧ s2
0.pc = 1

(c) ∧ (s1
0.reg2 + s1

0.reg3 < 0xFFFFFFFF)
∧(s2

0.reg2 + s2
0.reg3 + s2

0.reg6 ≥ 0xFFFFFFFF)
(d) ∧ s2

0.reg6 = 0 −→
(e) end = address overflow ∧ (1 = s2

0.found valid address ∧ . . .)

where (a) is an instantiation of Oentry(s1
0) = Oentry(s2

0), (b) of Θ1(s1
0) ∧ Θ2(s2

0),
(c) of c1 ∧ c2, (d) of R, and (e) of δ1 = δ2 ∧ Oδ1(s1) = Oδ1(s2). Note that with-
out the restriction that s2

0.reg6 = 0, the antecedent would be satisfiable, generating a
counterexample in which the two flows reach different exits. With the restriction the
antecedent evaluates to FALSE, and the formula is valid.

4.2 Optimizations

Instead of verifying (1) for every pair of symbolic paths, we find it more more efficient
to merge the symbolic paths of each system reaching the same exit before verification.
The merged condition is simply a disjunction of all the conditions of symbolic paths
reaching the door. The merged state is built by generating a case statement for each
variable, with its value depending on the path condition. The verification condition has
to be adapted for the merging of symbolic paths.

Symbolic pruning allows us to evaluate some of the conditional statements that ap-
pear in the target code according to the restrictions, and prunes branches of execution,
thus reducing the number of non-viable paths generated, and the size of the verification
conditions. In the microprograms we experimented with, as is often the case with in-
cremental design, the new functionality is localized in some branches that are led to by
tests explicitly referring to the restrictions. Indeed, empirical results establish that of-
ten symbolic pruning, combined with simple Boolean reductions, reduces prohibitively
large VCs into manageable ones.
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5 Results and Future Directions

The MICROFORMAL system has been under intensive research (in collaboration with
academia) and development at Intel since the summer of 2003. We currently have a first
version providing core functionality. The system is fully automated and requires almost
no manual intervention. As inputs it gets:

1. Files containing IRL modeling of microinstructions of current and next generation
CPUs.

2. Source and target microprograms to be compared.
3. A set of restrictions under which to verify compatibility.

The output can be either PASS, or FAIL. In the latter case, a full counter-example
– demonstrating the mismatch by concrete execution paths of the two microprograms
being compared – is provided.

So far, MICROFORMAL has been used by microcode validators to formally verify
backward compatibility for 80 microprograms. In these verification sessions, microcode
of next-generation CPU is compared against that of current-generation CPU. The mi-
croprograms being verified, selected by microcode experts, are quite complex CISC
flows that involve both memory interaction, and multiple sanity and permission checks
that can result in exceptions. To date, MICROFORMAL has found three new unknown
microcode bugs and redetected four known ones. The novel technology provided by
MICROFORMAL has been recognized as one that can significantly improve the quality
of microcode.

Some performance data we collected from our regression is presented in the table
below.

Microprogram Paths Statements on longest path Time (Seconds)
Program1 156 8497 32851
Program2 112 4323 1759
Program3 72 2346 10967
Program4 50 1988 924
Program5 39 1395 671

There are several interesting future directions that are currently being explored. The
first natural extension is verifying compliance with hardware assumptions. Microcode
and hardware interact through a complicated set of protocols. These protocols are cur-
rently expressed as a set of global microcode assumptions. A violation of these proto-
cols by microcode could result in a multitude of undesired results - deadlocks, incorrect
results, etc. Another kind of assumptions is local ones, or microcode assertions; some
of the assumptions made by designers are formalized as inline assertions. These asser-
tions are written inside the code, and are applicable only locally, at the point where they
are written. Both kinds of assumptions (global and local) are validated using standard
simulation, but their coverage is minimal. Most of these can be expressed as state pred-
icates relating various environment variables. One way to formally verify assumptions
is to use symbolic simulation for computing verification conditions, establishing that
the required predicate holds at desired locations starting from an arbitrary initial state.
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A more challenging direction is formal verification of new functionality (currently,
this is validated only via standard simulation). New architectural functionality is coded
both in microcode and in an architectural reference model. For formal verification of
new functionality, the architects will be able to code the intended functionality of new
microprograms in IRL. MICROFORMAL will then compare the architectural specifica-
tion against the actual microcode. This comparison should be able to detect discrepan-
cies, providing complete data-path coverage and reducing the need to exercise the code
in standard simulation.

Acknowledgements. We wish to thank Ittai Anati for his help in clarifying some of
the micro-architectural aspects that are relevant for formally modeling microcode, Amir
Pnueli for ideas on modeling and verifying memory interaction, and Jim Grundy for his
constructive comments on an earlier version of this paper.
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Numerical Filters
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Abstract. Digital linear filters are used in a variety of applications
(sound treatment, control/command, etc.), implemented in software, in
hardware, or a combination thereof. For safety-critical applications, it is
necessary to bound all variables and outputs of all filters.

We give a compositional, effective abstraction for digital linear filters
expressed as block diagrams, yielding sound, precise bounds for fixed-
point or floating-point implementations of the filters.

1 Introduction

Discrete-time digital filters are used in fields as diverse as sound processing,
avionic and automotive applications. In many of these applications, episodic
arithmetic overflow, often handled through saturated arithmetics, is tolerable —
but in safety-critical applications, it may lead to dramatic failures (e.g. disaster
of the maiden flight of the Ariane 5 rocket). Our experience with the Astrée static
analyzer [3] is that precise analysis of the numerical behavior of such filters is
necessary for proving the safety of control-command systems using them.

We provide a method for efficiently computing bounds on all variables and
outputs of any digital causal linear filter with finite buffer memory (the most
common kind of digital filter). These bounds are sound with respect to fixed-
or floating-point arithmetics, and may be used to statically check for arithmetic
overflow, or to dimension fixed-point registers, inside the filter, or in computa-
tions using its results.

In many cases, filters are specified as diagrams in stream languages such
as Simulink, SAO, Scade/Lustre, which are later compiled into lower-level lan-
guages. Our method targets such specifications, modularly and compositionally:
the analysis results of sub-filters are used when analyzing a complex filter.

Our analysis results are valid for whatever range of the inputs. They can thus
be used to simplify the analysis of a more complex, nonlinear filter comprising a
linear sub-filter: the linear sub-filter can be replaced by its sound approximation.

In §3, we shall explain our mathematical model for the filters. In §4 we give
a compositional semantics for ideal filters working on real numbers. In §5 we
explain how to extract bound from this semantics. In §7, we recall some basic
properties of floating-point computation. In §8 we enrich our semantics to deal
with floating-point inaccuracies and other nonlinear behaviors. In §9, we consider
numerical methods and implementation issues.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 199–212, 2005.
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×β2

×α0
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Fig. 1. Decomposition of the TF2 filter Sn = α0En + α1En−1 + α2En−2 + β1Sn−1 +
β2Sn−2 into elementary blocks. The compositional blocks are chained by serial compo-
sition. Inside each compositional on the left, elementary gates are composed in parallel.
On the right hand side, a feedback loop is used

2 Introduction to Linear Filters and Z-Transforms

Let us consider the following piece of C code, which we will use as a running
example (called “TF2”):

Y = A0*I + A1*Ibuf[1] + A2*Ibuf[2];

O = Y + B1*Obuf[1] + B2*Obuf[2];

Ibuf[2]=Ibuf[1]; Ibuf[1]=I;

Obuf[2]=Obuf[1]; Obuf[1]=O;

All variables are assumed to be real numbers (we shall explain in later sec-
tions how to deal with fixed- and floating-point values with full generality and
soundness). The program takes I as an input and outputs O; A0 etc. are constant
coefficients. This piece of code is wrapped inside a (reactive) loop; the time is
the number of iterations of that loop. Equivalently, this filter can be represented
by the block diagram in Fig. 1.

Let us note a0 etc. the values of the constants and in (resp. yn, on) the value
of I (resp. Y, O) at time n. Then, assuming ok = 0 for k < 0, we can develop the
recurrence: on = yn + b1.on−1 + b2.on−2 = yn + b1.(yn−1 + b1.on−2 + b2.on−3) +
b2.(yn−2 + b1.on−3 + b2.on−4) = yn + b1.yn−1 + (b2 + b2

1b0).yn−2 + . . . where . . .
depends solely on yk with k < n − 2. More generally: there exist coefficients c0,
c1. . . such that for all n, on =

∑
k=0 ckyn−k. These coefficients solely depend on

the bk; we shall see later some general formulas for computing them.
But, itself, yn = a0.in+a1.in−1+a2.in−2. It follows that there exist coefficients

c′
n

(depending on the ak and the bk) such that on =
∑

k=0 c′
k
in−k. We again find

a similar shape of formula, known as a convolution product. The c′
k

sequence is
called a convolution kernel, mapping i to o.



Compositional Analysis of Floating-Point Linear Numerical Filters 201

Let us now suppose that we know a bound MI on the input: for all n,
|in| ≤ MI ; we wish to derive a bound MO on the output. By the triangle in-
equality, |On| ≤

∑
k=0 |c

′
k
|.MI . The quantity

∑
k=0 |c

′
k
| is called the l1-norm of

the convolution kernel c′.
What our method does is as follows: from the description of a complex linear

filter, it compositionally computes compact, finite representations of convolution
kernels mapping the inputs to the outputs of the sub-blocks of the filter, and
accurately computes the norms of these kernels (or rather, a close upper bound
thereof). As a result, one can obtain bounds on any variable in the system from
a bound on the input.

3 Linear Filters: Formalism and Behavior

In this section, we give a rough outline of the class of filters that we analyze and
how their basic properties allow them to be analyzed.

3.1 Linear Filters

We deal with numerical filters that take as inputs and output some (unbounded)
discrete streams of floating-point numbers, with causality ; that is, the output of
the filter at time t depends on the past and present inputs (times 0 to t), but not
on the future inputs. 1 In practice, they are implemented with state variables (in
the TF2 example, the Ibuf[] and Obuf[] arrays), and the output at time t is a
function of the input at time t and the internal state (resulting from time t− 1),
which is then updated. In software, this is typically one piece of a synchronous
reactive loop:

while(true) { ...

(state, output) = filter(state, input);

... }

We are particular interested in filters of the following form (or compounds
thereof): if (sk) and (ek) are respectively the input and output streams of the
filter, there exist real coefficients α0, α1, . . .αn and β1, . . .βm such that for all
time t, st (the output at time t) is defined as: st =

∑
n

k=0 αket−k +
∑

m

k=1 βkst−k.
In TF2, n = m = 2.

Consider the reaction (sk) of the system to a unit impulse (e0 = 1 and
∀k > 0 ek = 0). If the β are all null, the filter has necessarily finite impulse
response (FIR): ∃N ∀k ≥ N, sk = 0. Otherwise, it may have infinite impulse
response (IIR): sk decays exponentially if the filter is stable; a badly designed
IIR filter may be unstable, and the response then amplifies with time.

It is possible to design filters that should be stable, assuming the use of real
numbers in computation, but that exhibit gross numerical distortions due to the
use of floating-point numbers in the implementation.

1 There exist non-causal numerical filtering schemes; such as Matlab’s filtfilt func-
tion. However, they require buffering the data and thus cannot be used in real time.
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3.2 Formal Power Series and Rational Functions

The output streams of a linear filter, as an element of R
N, are linear functions

of the inputs and the initial values of the state variables.
Neglecting the floating-point errors and assuming that state variables are

initialized to 0, the output O is the convolution product, denoted C � I of the
input I by some convolution kernel C: there exists a sequence (qn)n∈N of reals
such that for any n, on =

∑
n

k=0 ckin−k. The filter is FIR if this convolution
kernel is null except for the first few values, and IIR otherwise.

Consider two sequences of real numbers A : (ak)k∈N and B : (bk)k∈N. We
can equivalently note them as some “infinite polynomials”

∑
i

k=0 nftyakzk and∑
i

k=0 nftybkzk; such “infinite polynomials”, just another notation for sequences
of reals, are known as formal power series. This “Z-transform” notation is justi-
fied as follows: the sum C = A + B of two sequences is defined by cn = an + bn,
which is the same as the coefficient n of the sum of two polynomials

∑
k
akzk

and
∑

bkzk; the convolution product C = A � B of two sequences is defined by
cn =

∑
k
akbn−k, the same as the coefficient n of the product of two polynomials∑

k
akzk and

∑
bkzk.

Consider now some “ordinary” (finite) polynomials in one variable P (z) and
Q(z); we define, as usual, the rational function P/Q. We shall be particularly
interested in the set R[z](z) of such rational functions where the 0-degree coeffi-
cient of Q is 1 (note that, up to equivalence by multiplication of the numerator
and the denominator by the same quantity, this is the same as requesting that
the 0-degree coefficient of Q is non-zero). Any sum or product of such fractions
is also of the same form. For fraction in R[z](z), we can compute its Taylor ex-
pansion around 0 to any arbitrary order: P (z)/Q(z) = c0 + c1z + c2z

2 + . . . +
cnzn + o(zn). By doing so to any arbitrary n, we define another formal power
series

∑∞
k=0 ck. We shall identify such rational fraction with the power series

that it defines.
We shall see more formally in §4 that the Z-transform of the convolution

kernel(s) of any finite-memory, causal linear filter is a rational function

α0 + α1z + · · · + αnzn

1 − β1z − · · · − βmzm
(1)

The above fraction is the Z-transform for a filter implementing sn =
∑

n

k=0

αk.en−k +
∑

m

k=0 β.sn−k, and thus any ideal causal finite-memory linear filter
with 1 input and 1 output is equivalent to such a filter.2

3.3 Bounding the Response

Let I : (ik)n∈N be a sequence of real or complex numbers. We call l∞-norm
of I, if finite, and denote by ‖I‖∞ the quantity supk∈N |ik|. Because of the

2 Though all designs with the same Z-transform compute the same on real numbers,
they may differ when implemented in fixed- or floating- point arithmetics. Precision
and implementation constraints determine the choice of the design.
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isomorphism between sequences and formal power series, we shall likewise note
‖
∑

k
ikzk‖∞ = supk |ik|. For a sequence (or formal series) A, we denote by ‖A‖1

the quantity
∑∞

k=0 |ak|, called its l1-norm, if finite.
We then have the following crucial and well-known results: [7, §11.3]:

Lemma 1. For any I, ‖I � C‖∞ ≤ ‖I‖∞.‖C‖1. Furthermore, ‖C‖1 = ∞, for
any M > 0 there exists a sequence IM such that ‖IM � C‖∞ > M .

In terms of filters:

– If ‖C‖1 is finite, we can easily bound the output of the filter. Our system will
thus compute (or, rather, over-approximate very closely) C for any filter.

– If ‖C‖1 = ∞, then the filter is unstable: it is possible to obtain outputs of
arbitrary size by feeding appropriate sequences into the filter.

If C is the power series expansion of a rational fraction P/Q (which will be
the case for all the filters we consider, see below), then we have the following
stability condition:

Lemma 2. ‖P/Q‖1 is finite if and only if for all z ∈ C such that Q(z) = 0,
then |z| > 1.

Unsurprisingly, our algorithms will involve some approximation of the com-
plex roots of polynomials.

4 Compositional Semantics: Real Field

In this section, we give a compositional abstract semantics of compound filters
on the real numbers, exact with respect to input/output behavior.

4.1 Formalism

A filter or filter element has

– ni inputs I1, . . . , Ini
(collectively, vector I), each of which is a stream of real

numbers;
– nr reset state values r1, . . . , rnr

(collectively, vector R), which are the initial
values of the state of the internal state variables of the filter;

– no output streams O1, . . . , Ono
(collectively, vector O).

In TF2, ni = no = 1, and nr = 4.
If M is a matrix (resp. vector) of rational functions, or series, let Nx(M)

denote the coordinate-wise application of the norm ‖·‖x to each rational function,
or series, thereby providing a vector (resp. matrix) of nonnegative reals. We note
mi,j the element in M at line i and column j.

When computed upon the real field, a filter F is characterized by:

– a matrix TF ∈ Mno,ni
(R[z](z)) such that ti,j characterizes the linear re-

sponse of output stream i with respect to input stream j;
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TF2TF2+
E S

delay (2)

N2N1

×− k

Fig. 2. A compound filter consisting of two second order filters and a feedback loop

– a matrix DF ∈ Mno,nr
(R[z](z)) such that di,j characterizes the (decaying)

linear response of output stream i with respect to reset value j.

We note F (I,R) the vector of output streams of filter F over the reals, on the
vector of input streams I and the vector of reset values R. F (I,R) = TF .I +
DF .R, and thus N∞(F (I,R)) ≤ N1(TF ).N∞(I)+N1(DF .R), which bounds the
output according to the input.

When the number of inputs and outputs is one, and initial values are assumed
to be zero, the characterization of the filter is much simpler — all matrices and
vectors are scalars (reals, formal power series or rational functions), and DF is
null.

For most gates (addition, reorganization of wires, multiplication by a scalar,
generation of a constant...), the interpretation in terms of linear application
over power series, or a matrix of rational functions, is straightforward. The only
difficulty is the feedback construct: given a circuit C with ni inputs and no < ni

outputs, feed back the outputs into some of the inputs through a unit delay;
it can be shown that such systems have a unique solution, obtained by linear
algebra over rational functions.

4.2 Examples

The TF2 filter of Fig. 1 is expressed by S = α0.E+α1.delay2(E)+α2.delay2(E)+
β1.delay1(S) + β2.delay2(S). This yields an equation S = (α0 + α1z + α2z

2)E +
(β1z + β2z

2)S. This equation is easily solved into S = (α0 + α1z + α2z
2)(1 −

β1z − β2z
2)−1.E.

In Fig. 2, we first analyze the two internal second order IIR filters separately
and obtain Q1 = α0+α1z+α2z

2

1−β1z−β2z2 and Q2 = a0+a1z+a2z
2

1−b1z−b2z2 . We then analyze the
feedback loop and obtain for the whole filter a rational function with a 6th degree
dominator: S = Q1.Q2

1+kz2.Q1.Q2
.E where Q1 and Q2 are the transfer function of the

TF2 filters (form (α0 + α1z + α2z
2)(1 − β1z − β2z

2)−1), which we computed
earlier.

4.3 Practical Computations

To avoid problems during matrix inversion, we perform all our computations
over the ring Q[z](z) of rational functions over the rational numbers. In §8.2 we
explain how to use controlled approximation to reduce the size of the rationals
and thus ensure good computation speed even with complex filters.
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An alternative, at least for the filters on real numbers, is to perform all com-
putations in Q(α1, . . . , αn)[z](z): all the coefficients of the rational functions are
themselves rational functions whose variables represent the various constant co-
efficients inside the filter. This makes it possible to perform one computation
with one particular shape of filter (i.e. class of equivalence of filters up to dif-
ference of coefficients), then use the results for concrete filters, replacing the
variables by the values of the coefficients.

5 Bounding the l∞ and l1-Norms of Rational Functions

In §3.3 and 4.1, we used l1-norms of expansions of rational functions to bound
the gain of filters. In this section, we explain how to over-approximate these.

Let P (z)/Q(z) ∈ R[z](z) be a rational function representing a power series by
its development (un)n∈N around 0. We wish to bound ‖u‖1, which we shall note
‖P/Q‖1. As we said before, most of the mass of the development of P/Q lies in its
initial terms, whereas the “tail” of the series is negligible (but must be accounted
for for reasons of soundness). We thus split P/Q into an initial development
of N terms and a tail, and use ‖P/Q‖1 = ‖P/Q‖<N

1 + ‖P/Q‖≥N

1 . ‖P/Q‖<N

1

is computed by computing explicitly the N first terms of the development of
P/Q. We shall see in Sect. 9.2 the difficulties involved in performing such a
computation soundly using interval arithmetics.

Let dQ be the degree of Q. The development D of P/Q yields an equation
P (z) = D(z).Q(z)+R(z).zN . We have P (z)/Q(z) = D(z)+R(z)/Q(z).zN , thus
‖P/Q‖≥N

1 = ‖R/Q‖1 ≤ ‖R‖1.‖1/Q‖1.
There exist a variety of methods for bounding ‖1/Q‖1 using the zeroes of

Q(z). One uses the following lemma:

Lemma 3. If P (z)/Q(z) is a rational function such that Q(0) 	= 0 and Q is
monic (leading coefficient equal to 1), with roots (counted with their multiplicity)
ξ1, . . . , ξn, then ‖P/Q‖1 ≤ ‖P‖1.(|ξ1| − 1)−1 . . . (|ξn| − 1)−1.

‖R‖∞ is bounded by explicit computation of R using interval arithmetics; as
we shall see (§9.2), we compute D until the sign of the terms is unknown — that
is, when the norm of the developed signal is on the same order of magnitude as
the numerical error on it, which happens, experimentally, when the terms are
very small in absolute values. Therefore, ‖R‖∞ is small, and thus the roughness
of the approximation used for ‖1/Q‖1 does not matter much in practice.

The same method way be used for bounding the l∞-norm: explicit compu-
tation of the norm over a finite development, and bounding of the (negligible)
tail, if necessary by ‖R‖∞ ≤ ‖R‖1.

6 Complex Nonlinear Iterated Filter

We now consider a nonlinear, iterated filter due to Roozbehani et al. [11][§5].
We first analyze separately filter1() (2nd-order linear filter) and filter2()
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(2nd-order affine filter). So as to simplify matters, we do not give the transfer
functions using matrices, matrices inverses etc. but as the solution of a system
of linear equations over polynomials in z. We obtain that system very simply
from the program: whenever we see an assignment x := e, we turn it into an
equation x = e (we assume without loss of generalities that variables are only
assigned once in a single iteration step), where e is the original expression where
a variable v that has not yet been assigned in the current iteration is replaced
by iv + z.v, iv standing for the initialization value of v.

void filter1 () {
static float E[2], S[2];
if (INIT1) {

S[0] = X; P = X;
E[0] = X; E[1]=0; S[1]=0;

} else {
P =0.5*X-0.7*E[0] +0.4*E[1] p = 0.5e − 0.7(ie0 + z.e0)

+1.5*S[0]-S[1]*0.7; +0.4(ie1 + z.e1) + 1.5(is0 + z.s0) − 0.7(is1 + z.s1)
E[1] = E[0]; e1 = ie0 + z.e0

E[0] = X; e0 = e

S[1] = S[0]; s1 = is1 + z.e1

S[0] = P; s0 = p

X=P/6+S[1]/5; x = p/6 + s1/5
}

}

We call e the input value for X. We solve the system and obtain x = Q.e +
Qie0

.ie0 + Qie1
.ie1 + Qis0

.is0 + Qis1
.is1 . The common denominator of the Q

fractions is 10− 15z + 7z2, which has complex conjugate roots z such that |z| 

1.2. ie1 = is1 = 0 and ie0 = is0 = ι (the last value for input e such that INIT1

is true), thus ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ + ‖Qie0
+ Qis0

‖∞.‖ι‖. With a precondition
‖e‖∞ ≤ 400, this yields ‖x‖∞ < 339. If we take the coarser inequality ‖x‖∞ ≤
‖Q‖1.‖e‖∞ + (‖Qie0

‖∞ + ‖Qis0
‖∞).‖ι‖ we get ‖x‖∞ < 528. Roozbehani et al.

find a bound 
 531.

void filter2 () {
static float E2[2], S2[2];
if (INIT2) {

S2[0] =0.5*X; P = X;
E2[0] = 0.8*X; E2[1]=0; S2[1]=0;

} else {
P =0.3*X-E2[0]*0.2+E2[1]*1.4 p = 0.3e − 0.2(ie0 + z.e0)

+S2[0]*0.5-S2[1]*1.7; +1.4(ie1 + z.e1) + 0.5(is0 + z.s0) + 1.7(is1 + z.s1)
E2[1] = 0.5*E2[0]; e1 = 0.5(ie0 + z.e0)
E2[0] = 2*X; e0 = 2e

S2[1] = S2[0]+10; s1 = is0 + z.s0 + τ

S2[0] = P/2+S2[1]/3; s0 = p/2 + s1/3
X=P/8+S2[1]/10; x = p/8 + s1/10

}
}
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We proceed similarily (with the introduction of τ = 10/(1 − z) and obtain
x = Q.e+Qie0

.ie0 +Qie1
.ie1 +Qis0

.is0 +Qis1
.is1 +Qc. The common denominator

of the Q is 60+35z +51z2, with complex conjugate roots z such that |z| 
 1.08.
Then ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ + ‖0.8Qie0

+ 0.5Qis0
‖∞.‖ι‖ + ‖Qc‖∞. This yields

‖x‖∞ ≤ 1105.
The two linear filters are combined into an iterated nonlinear filter. filter1()

(resp. filter2()) is run with a pre-condition of X ∈ [−400, 400] (resp.
[−800, 800]). We replace the call to the filter by its postcondition X ∈ [−339, 339]
(resp. X ∈ [−1105, 1105]).

The program then can be abstracted into:
while (TRUE) {
X = 0.98 * X + 85;

maybe choose X in [−1155, 1055]; }
We obtain X ∈ [−1155, 4250.02] by running
Astrée with a large number of narrowing iter-
ations, whereas Astrée cannot analyze the orig-
inal program precisely and cannot bound X. In
this case, the exact solution [−1155, 4250] (x =
0.98x + 85 has for unique solution x = 4250)
could have been computed algebraically, but in
more complex filters this would not have been
the case. Roozbehani et al. have a bound of
4560.
Note that the non-abstracted program con-
verges to a value 
 205, with X ∈ [0, 209]. How-

void main () {
X = 0;

INIT1 = TRUE; INIT2=TRUE;

while (TRUE) {
X = 0.98 * X + 85;

if (abs(X)<= 400) {
filter1 ();

X=X+100;

INIT1=FALSE;

} else

if (abs(X)<=800) {
filter2();

X=X-50;

INIT2=FALSE;

}
}}

ever, this very simple program illustrates our methodology for compositional
analysis: finding the optimal solution is possible here because the program is
simple, but would not be possible in practice if we had added more nonlinear
behavior and nondeterministic inputs, as in real-life reactive code; whereas by
analyzing precisely each linear filter and plugging the results back into a generic
analyzer, we get reasonable results.

7 Precision Properties of Fixed- or Floating-Point
Operations

Most types of numerical arithmetics, including the widely used IEEE-754 floating-
point arithmetic, implemented in hardware in all current microcomputers, define
the result of elementary operations as follows: if f is the ideal operation (addi-
tion, subtraction, multiplication, division etc.) over the real numbers and f̃ is
the corresponding floating-point operation, then f̃ = r ◦ f where r is a roundoff
function, depending on the current rounding mode.

In this description, we leave out the possible generation of special values such
as infinities (+∞ and −∞) and not-a-number (NaN). We assume as a precon-
dition to the numerical filters that we analyze that they are not fed infinities or
NaNs.
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Our framework provides constructive methods for bounding any floating-
point quantity x inside the filters as ‖x‖∞ ≤ c0 +

∑
n

k=1 ck.‖ek‖∞ where the ek

are the input streams of the system; it is quite easy to check that the system does
not overflow (‖x‖ < M); one can even easily provide some very wide sufficient
conditions on the input (‖ek‖∞ ≤ (M − c0)/(

∑
n

k=1 ck)). We will not include
such conditions in our description, for the sake of simplicity.

For any arithmetic operation, the discrepancy between the ideal result x and
the floating-point result x̃ is bounded, in absolute value, by max(εrel|x|, εabs)
where εabs is the absolute error (the least positive floating-point number)3 and
εrel is the relative error incurred. εabs and εrel depend on the floating-point type
used and possible rounding modes. We actually take the coarser inequality |x−x̃|
≤ εrel|x| + εabs. See [1] for more details on floating-point numbers and [9] for
more about the affine bound on the error.

In the case of fixed-point arithmetics, we have εrel = 0 and εabs = δ (δ
is the smallest positive fixed-point number) if the rounding mode is unknown
(round to +∞, −∞ etc.) and δ/2 is it is the rounding mode is known to be
round-to-nearest.

8 Compositional Semantics: Fixed- and Floating-Point

8.1 Constraint on the Errors

We now enrich our compositional abstract semantics to reflect numerical errors.
Our enriched semantics characterizes a fixed- or floating-point filter F̃ by the
exact semantics of the associated filter F over the real numbers and a bound on
the discrepancy Δ(I) = F̃ (I)−F (I) between the ideal and floating-point filters.

Assuming for the sake of simplicity a single input and a single output and
no initialization conditions, we obtain an affine, almost linear constraint on
‖Δ(I)‖∞: ‖Δ(I)‖∞ ≤ εF

rel‖I‖∞ + εF

abs. In short: since the filter is linear, the
magnitude of the error is (almost) linear. We generalize this idea to the case of
multiple inputs and outputs. The abstract semantics characterizing Δ is given by
matrices εF

rel,T ∈ Mno,ni
(R+) and εF

rel,D ∈ Mno,nr
(R+) and a vector εF

abs ∈ R
no

+

such that ‖F (I,R) − F̃ (I,R)‖∞ ≤ εF

rel,T .N∞(I) + εF

rel,D.N∞(R) + εabs. where
F̃ (I,R) is the output on the stream computed upon the floating-point numbers
on input streams I and initial values I. As before, the matrices for a complex
filter may be computed compositionally from the matrices for the sub-filters.

Let us for instance consider the instruction t = (x + y) + z where all vari-
ables are from the same fixed- or floating-point type (say, IEEE double preci-
sion). We shall note ⊕ (resp. ⊗) the machine operation corresponding to the
ideal + (resp ×) on reals. Then x ⊕ y = x + y + ε1, with ε1 ≤ εrel.|x + y| + εabs

3 The absolute error results from the underflow condition: a number close to 0 is
rounded to 0. Contrary to overflow (which generates infinities, or is configured to
issue an exception), underflow is generally a benign condition. However, it precludes
merely relying on relative error bounds if one wants to be sound.
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≤ εrel.|x| + εrel.|y| + εabs. Also, (x ⊕ y) ⊕ z = (x ⊕ y) + z + ε2, with ε2 ≤
εrel.|(x⊕ y) + z|+ εabs ≤ εrel.|x + y + z + ε1|+ εabs ≤ εrel.(1 + εrel).|x|+ εrel.(1 +
εrel).|y| + εrel.|z| + εabs.(1 + εrel). Then (x ⊕ y) ⊕ z = x + y + z + (ε1 + ε2) with
|ε1 + ε2| ≤ εrel.(2 + εrel).|x| + εrel.(2 + εrel).|y| + εrel.|z| + εabs.(2 + εrel).

8.2 Trading Accuracy for Speed; Nonlinear Elements

We have split the behavior of the filter into the sum of the convolution of the
input signal by the power development of a rational function, representing the
exact behavior, and some error term. If we compute the rational functions exactly
over Q[z](z), then the rational coefficients might grow expensively large. We can
actually take shorter approximations of these coefficients and absorb the error
that we introduce into the error term.

An ideal filter of Z-transform P/Q with no initialization condition, P (z) =∑
k

k=0 αkzk and Q(z) =
∑

k

k=0 βkzk is equivalent to a filter as described in §3.1.
Such a filter may be soundly approximated by a non-ideal feedback filter F � with
TF

�

I
= P �, TF

�

O
= Q�, εrel,I = ‖P � − P‖1, εrel,O = ‖Q� − Q‖1, εabs = 0.

More generally: a filter F (Z-transform P/Q) may be approximated by a
filter F � (P �/Q�) with transfer function TF

�

= TG, εF
�

rel,T = εF

rel,T + εG

rel,T ,

εF
�

rel,D = εF

rel,D + εG

rel,D, εF
�

abs = εF

abs where G is the feedback filter whose internal
filter H is given by TH

I
= P �, TH

O
= Q�, εH

rel,I = ‖P � − P‖1, εH

rel,I = ‖Q� − Q‖1,
εH

abs = 0. In this way, a nonlinear sub-filter can be approximated by a linear part
and a nonlinear part, the latter being constrained by εrel and εabs.

9 Numerical Considerations and Implementation

We have so far given many mathematical formulas that are exact in the real field.
In this section, we explain how to obtain sound abstractions for these formulas
using floating-point arithmetics.

We implemented the algorithms described here. As an example, the serial
composition of the filter in Fig. 1 and another TF2 filter, all with realistic co-
efficients, is analyzed in about 0.04 s on a recent PC; the analyzer finds that
‖S‖ ≤ g‖E‖ with g 
 2, with εrel 
 10−12 and εabs 
 10−305.

For filters implemented over the real numbers, the computation of the rational
fractions representing the convolution kernels can be performed using arbitrary
precision arithmetics; no loss of precision is entailed. When computing the formal
development and its sum, one can use floating-point numbers in round-to-+∞
and round-to-−∞ modes and obtain lower and upper bounds, thus also deriving
a bound on the computation error; similar bounds may be obtained for the
estimate of the norm of the tail. We applied the method to filters extracted from
industrial codes; in all cases, the error bounds were small. In practice, outside
of artificial cases, floating-point arithmetics does not add significantly to the
bounds.
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9.1 Interval Arithmetics

IEEE floating-point arithmetics [1] and good extended precision libraries such
as MPFR4 provide functions computing upward rounded (or rounded-to-+∞)
and downward rounded (or rounded-to-−∞) results: that is, if f(x1, . . . , xn) is
the exact operation on real numbers and f̃− and f̃+ are the associated floating-
point downward and upward operations, then f(x1, . . . , xn) is guaranteed to be
in the interval [f̃−(x1, . . . , xn), f̃+(x1, . . . , xn)], which will guarantee the sound-
ness of our approach. Furthermore, for many operations, f̃−(x1, . . . , xn) and
f̃+(x1, . . . , xn) are guaranteed to be optimal; that is, no better bounds can be
provided within the desired floating-point format; this will guarantee local opti-
mality of certain of our elementary operations.

9.2 Computation of Developments

When bounding the norm ‖P/Q‖1 of a series quotient of two polynomials, we
split the series into its N initial terms of development, which we compute explic-
itly, and a tail whose norm we bound. The first idea is to compute the N first
terms of the series by quotienting the series, as explained in Sect. 3.2 or, equiv-
alently, by running the filter for N iterations on the Dirac input 1, 0, 0, . . .. In
order to provide a sound result, one would work using interval arithmetics over
floating-point numbers. However, as already noted by Feret, after some number
of iterations the sign of the terms becomes unknown and then the magnitude
of the terms increase fast; it is therefore indicated to compute the development
until the first term of unknown sign is reached, and assign N accordingly (one
may still also enforce a maximal number of iterations Nmax). In order to be able
to develop the quotient further with good precision, one can use a library of
extended-precision floating-point computations.

9.3 Bounding the Roots

In order to bound ‖P/Q‖1, we have to get lower bounds of the absolute values of
the roots of Q. For this, we want to obtain discs D(xj , ρj) such that |xj−ξj | ≤ ρj

where the ξj are the roots of Q counted with their multiplicities.
Our polynomial coefficients turned into floating-point intervals [lk, hk]; it is

expected that the hk − lk are small. This suggests to us a two-step method for
obtaining the desired bounds:

1. Use an efficient and, in practice, very accurate algorithm to obtain approxi-
mations xj to the roots of

∑
n

k=1
lk+hk

2 zk (the “midpoint polynomial”). We
used gsl poly complex solve of the GNU Scientific Library [5], which is
based on an eigenvalue decomposition of the companion matrix.

2. From those approximations, obtain bounds on the radius of the error commit-
ted. There exist a variety of bounding methods [12] which take a polynomial
and approximate roots as an input and output error radii; these methods

4 http://www.mpfr.org
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may be performed using interval arithmetics. We implemented the simplest
and roughest one [12, Th. 3.1]: ξj is in a closed disc of center xj − ρj and
radius |ρj | where ρj = (nP (xj))/(2pn

∏
k �=j

xj − xk).

10 Related Works and Applications

In the field of digital signal processing, some sizable literature has been devoted
to the study of the effects of fixed-point and floating-point errors on numeri-
cal filters. While the fact that the l1-norm of the convolution kernel is what
matters for judging overflow, it is argued that this norm is “overly pessimistic”
[7, §11.3] [6, eq 13], not to mention the difficulties in estimating it. In practice,
filter designers have preferred criteria that indicate no saturation for most “com-
monplace” inputs, excluding pathological inputs. As a consequence, most studies
model the errors as random sources of known distribution, independent of each
other and with no temporal correlation [2, 10]. This allows estimating the energy
spectrum (l2-norm) of the typical numeric noise; however, this does not work for
our purpose, which is to provide sound bounds valid in all circumstances.

J. Feret has proposed an abstract domain for analyzing programs comprising
digital linear filters [4]. He provides effective bounds for first and second degree
filters. In comparison, we consider more complex filter networks, in a composi-
tional fashion; but we analyze specifications, and not C code (which is usually
compiled from those specifications, with considerable loss of structure). Another
difference is that we do not perform abstract iterations. Feret’s method currently
considers only second-order filters (i.e. TF2), though it may be possible to adapt
it to higher-order filters. On second-order filters, the bounds computed by Feret’s
method and the method in this paper are very close (since both are based on a
development of the convolution kernel, though they use different methods of tail
estimation).

Lamb et al. [8] have proposed effective methods, based on linear algebra,
for computing equivalent filters for DSP optimization. They do not compute
bounds, nor do they study floating-point errors.

Roozbehani et al. [11] find program invariants by Lagrangian relaxation and
semidefinite programming, with quadratic invariants. In order to make prob-
lems tractable, they too apply a blockwise abstraction. The class of programs
that they may analyze directly is potentially larger, but the results are less pre-
cise than our method on some linear filters. They do not handle floating-point
imprecisions (though this can perhaps be added to their framework).

One possible application of our method would be to integrate it as a pre-
analysis pass of a tool such as Astrée [3]. Astrée computes bounds on all floating-
point variables inside the analyzed program, in order to prove the absence of er-
rors such as overflow. In order to do so, it needs to compute reasonably accurate
bounds on the behavior of linear filters. A typical fly-by-wire controller contains
dozens of TF2 filters, some of which may be integrated into more complex feed-
back loops; in some cases, separate analysis of the filters may yield too coarse
bounds.
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11 Conclusions and Future Works

We have proposed effective methods for providing sound bounds on the outcome
of complex linear filters from their flow-diagram specifications, as found in many
applications. Computation times are modest; furthermore, the nature of the
results of the analysis may be used for modular analyses — the analysis results
of a sub-filter can be stored and never be recomputed until the sub-filter changes.

In the future, we plan to provide abstract domains suitable for the analysis of
source code as written in an imperative language such as C, in order to extract
the filter specification and arithmetic errors from the source.
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Syntax-Driven Reachable State Space
Construction of Synchronous Reactive Programs

Eric Vecchi and Robert de Simone

INRIA Sophia-Antipolis,

Abstract. We consider in the current paper the issue of exploiting the
structural form of Esterel programs [BG92] to partition the algorith-
mic RSS (reachable state space) fix-point construction used in model-
checking techniques [CGP99]. The basic idea sounds utterly simple, as
seen on the case of sequential composition: in P ; Q, first compute en-
tirely the states reached in P , and then only carry on to Q, each time
using only the relevant local transition relation part. Here a brute-force
symbolic breadth-first search would have mixed the exploration of P
and Q instead. The introduction of parallel (state product) operators, as
well as loop iterators and local synchronizing signals make the problem
more difficult (and more interesting). We propose techniques to partition
statically (“at compile time”) the program body, so as to obtain a good
trade-off between locality and multiplicity of steps.

1 Introduction

In the last decade the advent of BDD-based implicit state-space representation
[Bry86] allowed to scale up various analysis techniques to large realistic syn-
chronous reactive system designs. But BDDs alone cannot be relied upon to
cope with all the complexity of the reachable state space construction. Specifi-
cally, while the BDD encoding of the final reachable state space may often be
very compact, the transition relation and the intermediate steps of next-state
computations can be exceedingly larger. Several clever techniques for partition-
ing the application of transition functions have been proposed, which partially
solve the problem [BCL91,BCL+94,HD93,ISS+03]. In the context of Esterel
we propose to use the structural syntactic nature of the design to apply transi-
tion relations piecewise, only when it may provide further states. Intuitively in a
sequential composition P;Q one clearly wants to compute all reachable states in
P first, then progress to states in Q. While this may seem a trivial idea at first
(after all, reachable state space construction can be seen as exhaustive symbolic
simulation of all behaviors), care has to be taken, specially in presence of parallel
components and internal signal communications, so that the approach retains
some of the advantages of symbolic approach, namely that all individual behav-
iors are not enumerated (or not even nearly so). This is a typical time/space
trade-off. Still, using the algorithmic structure of Esterel programs to guide
(symbolic, exhaustive, breadth-first search) state space construction is a clear,
simple idea that was never tried out before to the best of our knowledge. Other
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works with similar concern usually attempt to precede the symbolic breadth-
first search with partial explicit depth-first search simulations that identify new
initial configurations “ahead” in the potential behaviors [GB94,PP03].

In essence our refined algorithm proceeds as follows : initially a very restricted
transition relation is applied, with many locations of (internal or external) signal
receptions “blocked”. Then those signal reception occurrences are progressively
“re-allowed”, in a heuristically ordered fashion. Some transitions can be blocked
again in order to deal with loop constructs but in the general case, as the new
extensions are always applied to “most recent” states, the old and already largely
searched parts get “cleaned up” by some simplification properties of the TiGeR
BDD package [CMT93], which “cofactors” out the transition parts found to lay
outside the domain of states they are applied to. This operation simplifies dras-
tically the support (i.e, the set of variables that the relation effectively depends
upon), and thus the computations. Heuristics for ordering the “reception al-
lowances” are based on a graph structure extracted from the structural syntax,
so that it is compliant with the natural precedence that may exist (for instance,
when a reception on S causes the emission on T otherwise also expected, it is
obviously better to release S before T ).

The paper is organized as follows : first we give a brief summary of (a re-
stricted micro-subset of) Esterel, as well as technical elements of symbolic
model-checking. We focus on how the TiGeR BDD package [CBM89] performs
transition partitioning and “transition cofactoring” in order to decrease the size
of data structures (and optimize the variables support) when applying the next-
state computation. These techniques will come handy later on to understand
ours. Then we provide a description of our approach with the actual algo-
rithm and its BDD implementation, relying on the already mentioned features
of TiGeR. We justify the correctness of our partitioned approach to build the
full RSS. We close with the description of our prototype implementation and
performance benchmarks.

2 Context

Esterel is an imperative synchronous reactive language. We shall only consider
here a simple version, where data variables and data-handling are discarded, as
often in model-checking. We shall thus only use Signals as (identifier) types. A
full program consists of a header (where an interface of input and output signals
are defined), followed by a body. Syntax of program statements is provided by
the following simple grammar :

P ::= pause | P ‖ P | present S then P else P end
| P ; P | emit S | abort P when S
| loop P end | signal S in P end

with S ranging over signals.

Naive semantics of Esterel goes as follows : programs behaviors are dis-
cretely divided between instants. Control threads are executed until reaching a
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pause statement, which is the main statement which cuts behaviors into atomic
instants. We call “reaction” the full behavior performed during a given instant.
In a reaction cycle, input signals are read/sampled, and internal computation
takes place until output signals are emitted in answer, and the program state is
progressed. Instants are based on a common logical clock, which paces all par-
allel threads. This (the fact that all components proceed with the same atomic
steps of instants) is why we call the model “synchronous”. Of course in a reac-
tion various parallel threads do not run independently, as they may synchronize
and affect one another causally (hardware people would say “combinationally”).
When control reaches a present S test statement, it may have to postpone
execution until a consistent definitive value (present or absent) is obtained for
the signal inside the current reaction (either because it is emitted somewhere in
parallel, or because other threads of execution provably progressed to a point
where provably all potential emissions were discarded).
While being a high-level imperative language, Esterel enjoys a semantic-pre-
serving translation to hardware RTL level (net-lists) where causality issue can
be more readily dealt with, and a second level of interpretation into Mealy FSMs
(again semantically sound). This second level actually looses information on fine
causality issues, but makes explicit the actual reachable state space, and thus
can be the definitional background for model-checking analysis techniques. Of
course the purpose of implicit (or symbolic) BDD-based model-checking is to
apply these analysis at the circuit level. In our case we try to lift them some
more by exploiting high-level structuring information from the source syntax.

Symbolic next-state operation. Starting from the initial state ι, the basic breadth-
first search Reachable State Space algorithm can be written:

Algorithm 1.1. Breadth-first search algorithm
1 reachable ← ι
2 new ← ι
3 while ( new �= ∅ ) do
4 new ← ImageΔ(new) � reachable
5 reachable ← reachable ∪ new
6 end while

The set of states reached at the nth iteration is built from the set of states
reached at the (n−1)th iteration and the set of valid inputs of the program, by
computing the image under a transition relation Δ. The algorithm stops when
no new state can be found. Each state of the program is a valuation of the set R
of boolean registers of the circuit and each input of the program is a valuation of
the set I of input signals. The unique global transition relation Δ let us compute
the new states of the program with respect to the value of I and R :

Δ : m × p → p

(I,R) → R′ = Δ(I,R)

where = {0, 1}, m is the number of input signals and p is the number of
registers of the circuit. In fact Δ can be “partitioned” and decomposed into a
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vector of functions δi, where each δi concerns a different image register, and
depends only on a subset of the source registers and of the input signals :

δi : mi × pi →
(Ii, Ri) → r′i = δi(Ii, Ri)

Vectors Ii and Ri are called the support of these transition functions. mi and pi

are respectively the number of input signals and the number of registers of this
support. Such a partitioning scheme is used to speed up applications of BDDs
representing the individual δi [BCL91].

Extended cofactoring methods. We shall extensively use some well-known BDD
transformations, known in general as extended cofactoring techniques [Cou91].
In essence the principle is that, if the value of the BDD is only relevant on a
subset of the possible valuations of its variables, then this restricted domain of
definition can be used to simplify the expression of the BDD (possibly changing
its value outside of it). Generally the domain is itself provided as a BDD. We
note f↓S the cofactoring of f by the set S :

f↓S(X) = λX →
{

f(X) if X ∈ S

? if X �∈ S

The value of f↓S out of S is not used and can be anything. It is set in order to
minimize the size of the BDD representing f↓S . In our algorithm, this operator
is used in the Image function. It lets us handle smaller BDDs during the image
computation since the transition relation is reduced with respect to the domain
it is applied on. More precisely, given a register r, if the activation condition of
r (the set of states for which r = 1) and the domain of the transition relation
are disjoint, then the transition function of r can be reduced to a very simple
expression λX → ¬ r. In other words, the BDD encoding the transition function
of registers that will not be activated in the next instant is very small.

3 Partitioned Algorithm

Our partitioned algorithm consists in performing each step of the reachable
states exploration in a reduced number of program blocks. State search will be
performed inside each block until stabilization, before moving to the next one ;
this algorithm is an adaptation of the algorithm 1.1. The BDD area represents
the set of all states (reachable or not) lying inside the program blocs we are
focusing. At each step of the algorithm, the cofactored image computation is
performed only on the pending reachable states lying inside area (line 8). At the
end of each step, the new-found states are stored in the pending set (line 9). area
is left unchanged as long as new states are found inside it (lines 5, 6, 7).

This algorithm does not describe the evolution of area (this will be developed in
section 4).
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Algorithm 1.2. Partitioned algorithm

1 reachable ← ι
2 pending ← ι
3 area ← area0 /∗ area0 : see algorithm 1.3 ∗/
4 while ( pending �= ∅ ) do
5 if ( (pending ∩ area) = ∅ ) then
6 area ← area′ /∗ area′ : see algorithm 1.4 ∗/
7 end if
8 new ← ImageΔ(pending ∩ area) � reachable
9 pending ← (pending � area) ∪ new

10 reachable ← reachable ∪ new
11 end while

Partitioning into “macro-states” according to syntax. At the heart of the method
is the division of the program body into blocks (or macro-states) of proper
granularity. To disallow search in given blocks, one needs only to remove the
part of the transition relation where all registers of these blocks are inactive.
The bloc division of course relies heavily on the structural syntax, and mostly
on signal receptions (as in abort P when S) and, to a lesser extent, on signal
emissions. We use a control flow graph data structure to help us with this task.
We shall stick to the classical translation from Esterel to circuits described in
[Ber99], which generates exactly one boolean register for each pause statement.
In the sequel we shall consider an abstract syntax tree version for Esterel
programs where pause constructs are explicitly labeled by the corresponding
register names, providing the necessary association. In fact, we want to recognize
each instance of instruction that we identify here with a unique label mentioned
as exponent. Each node of the tree is typed with respect to the instruction it
represents. Thus, the tree node of an instruction of type instruction and labeled
by L is written :

(instructionL subtree1 l1 . . . subtreen ln)

The control flow graph of a given syntax tree T is defined as follows : G(T) =
(I, O, N,E, F) where N is the set of the nodes of the graph. These nodes are
the same as those of the syntax tree. I and O are subsets of N and represent
respectively the start and final nodes of the graph. The edges of our graph
(written i �→ j) are divided into two categories : E contains “normal” edges and
F contains the edges used as frontiers. By construction, the set E ∩ F is empty.
Thus, edges corresponding to present and abort statements are settled in F.
Such edges are called “frontier” edges. Other edges are settled in E.

We describe here the way we build our control flow graph for each Esterel
instruction. This description uses labels of the syntax tree which are a lighter
way to identify the nodes. The usual operator “ × ” allows us to join each element
of a set I = {I1, . . . Im} to each element of a set J = {J1, . . . Jn}.
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(I,O, N,E, F). As well, for i ∈ [1, 2] we have G(Ii) = (Ii,Oi,Ni,Ei, Fi). Atomic
instructions produce graphs containing a single node and no edge :

G(emitL s) = ({L} , {L} , {L} , ∅, ∅)
G(pauseL r) = ({L} , {L} , {L} , ∅, ∅)

In our graph, we can abstract the beginnings and the ends of the scope. The
graph of a local signal declaration is thus the same as for I :

G(signalL s I endL′
) = G(I)

Choice operator. Consider a present S then P else Q end statement. If the
reachable state space is computed in a breadth-first search manner on a global
transition relation, then states in P and Q will be considered at the same time.
In this case the intermediate symbolic description is likely to be larger than the
final one, if one grants that intermediate forms of partially reached state spaces
are more irregular than final ones. Moreover, the sequentially partitioned state
space search here allows to use only the relevant part of the transition relation
when dealing with each component (P , then Q). Frontiers are thus placed before
and after the “then” branch and the “else” branch.

G(presentL s I1 I2 endL′
) = ({L} , {L′} ,N1 ∪ N2 ∪ {L,L′} ,E1 ∪ E2, F

′)
where F′ = F1 ∪ F2 ∪ ({L} × (I1 ∪ I2)) ∪ ((O1 ∪ O2) × {L′})

Preemption. An abort P when S statement allows to add abortive transitions
to the natural terminations of P . Our partitioning technique will aim at exploring
fully P before exploring the next program blocks activated by P ’s terminations
(of course this will have the effect of blocking also the potential emissions causing
the abort, that would figure in the same global transition). Therefore, we want
to consider each transition exiting P as frontier. Each pause instruction may
lead to the end of the abort instruction that encloses it. Thus :

G(abortL s I endL′
) = (I, {L′} ,N ∪ {L′} ,E, F ∪ F′)

where F′ = (O ∪ {l / (pausel r) ∈ N
}
) × {L′}

Sequence statement. Partitioning a P;Q sequence statement is a waste of energy.
If P is a constant-length program like pause;pause then the partitioning of P;Q
is naturally performed by the breadth-first search algorithm. Variable-length
programs are already partitioned since containing present or abort statements.

G(seqL I1 I2 endL′
) = (I1,O2,N1 ∪ N2,E

′, F1 ∪ F2)
where E′ = E1 ∪ E2 ∪ (O1 × I2)

Parallel networks and signal synchronizations. The problem here is to estab-
lish which blocks put in parallel can be active in parallel, so that the global
search can be divided with matching progressions. This is shown in figure 1. The

In this section, we suppose that an instruction I produces a graph G(I) =

218 E. Vecchi and R. de Simoneé



S1
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S1

S2

S1
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Fig. 1. Partitioning method for a parallel component. There are two signals synchro-
nizing three parallel components. Our technique aims at partitioning according to the
black-colored blocks. Hatched blocks should be removed by cofactoring methods

only syntactic element at our disposal here to indicate synchronization will of
course be signal reception. These receptions must be matched by correspond-
ing emissions when signals are local (otherwise receptions of input signals can
occur anytime, but each parallel component must perceive it consistently). Nev-
ertheless it should be noted that, in the synchronous reactive framework, it is
possible that a local signal emission causes no reception, if none are ”actively
watching” at the time. So, while we shall use signal receptions to generate fron-
tier transitions, these will automatically generate simultaneous frontiers at emit
side when they are enabled, and otherwise emissions can be passed and
go unsynchronized. To clarify further, consider the following simple example :
P1; emit S; P2 || Q1; await S; Q2. If the design of this program is so that
any emission of S is received by the await S statement, then P2 can not be ac-
tive if Q2 is not. Thus partitioning according to Q1 and Q2 will partition the first
branch according to P1 and P2 as well. If some emissions of S are not received,
then partitioning according to Q1 and Q2 will have no precise effect on the first
branch. In all case there is a real benefit in partitioning this way. In the best
case, the reachable state space computation will concern P1 and Q1 first and
then, P2 and Q2. In the worst case, it will concern P1, P2 and Q1 and then, P2

and Q2.

G(parL I1 I2 endL′
) = ({L} ,O1 ∪ O2,N1 ∪ N2 ∪ {L} ,E′, F1 ∪ F2)

where E′ = E1 ∪ E2 ∪ ({L} × (I1 ∪ I2))

Loops. In loop constructs a new difficulty arises : whether blocks can be truly
concurrent is in general only known dynamically (this is in a large part why RSS
construction can be so hard). Loops are the only constructs in which we want
to lock frontiers during state space exploration. In Esterel programs, registers
which are not running in parallel cannot be active at the same time. We can
use this static information in order to deactivate registers in loop constructs.
Thus, each time a register r is activated we shall deactivate the set of registers
incompatible with r and belonging to the same loop as r. We call Lock (r) such
a set which of course can be refined at will. The graph of a loop statement is the
following :

G(loopL I endL′
) = (I, ∅,N,E ∪ E′, F) where E′ = O × I
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Frontier ordering. Currently, the order in which frontiers will be unlocked is
defined dynamically, “at run time” during the course of our successive fix-point
iterations searching new states in growing support domains. We select each time
a frontier that is likely to produce new states, and is not strictly preceded by
another one. This relies deeply on the shape of a pending set of states that
are incompletely processed, and can generate configurations beyond the current
frontiers. Details shall be provided in section 4.

This partial order is statically refined according to the syntax of the pro-
grams. This static order written “≺” is a guarantee that frontiers will not be
opened prematurely. The statement “a frontier x should be opened before a fron-
tier y” is written x ≺ y. In fact, defining a static order between frontiers consists
in defining an order between the target nodes of the frontiers. Thus, if u and
v are two nodes, u ≺ v means that any frontier leading to u should be opened
before any frontier leading to v :

u ≺ v ⇐⇒ (x �→u) ≺ (y �→v) ∀x,∀y

The definition of “≺” is purely syntactic. In a sequence (seqL I1 I2 endL′
), one

wants to open frontiers in I1 before frontiers in I2. Thus we have N1 ≺ N2.

In an (abortL s I endL′
) statement, one wants to open frontiers inside I before

frontiers leading outside I. This can be written N ≺ L′.

4 The Precise Algorithm and ts BDD Implementation

We shall introduce useful notations. Given a set R = {r1, . . . rn} of BDD vari-
ables, we introduce the operator :

NOr(R) = λX → ¬ (r1 ∨ . . . ∨ rn)

If r1, . . . rn are variables representing boolean registers R1, . . . Rn then NOr(R)
represents the set of states in which all registers Ri are inactive for all i ∈ [1..n].
We notice that Or(R) = NOr(R) represents the set of states in which at least
one register Ri is active for i ∈ [1..n]. Given a set X of graph nodes, we introduce
the operator Register (X) which returns the set of register BDD variables in X :

Register (X) = {r | (pause r) ∈ X}
This operator will help us to make the link between our control flow graph and
the symbolic BDD-based computations. Source and target node of an edge u �→v

are written :

Src(u �→v) = u and Dest(u �→v) = v

Given a “classical” directed graph (N , E), we write :

Succ(N,E)(X) = {j ∈ N | i ∈ X ∧ i �→j ∈ E}

I

the set of target nodes of edges of E whose source belongs to X and we write :
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Out (N,E)(X) = {i �→j ∈ E | i ∈ X}
the set of edges of E whose source belongs to X. The operator :

Closure(N,E) (Y) = μ(λX → Y ∪ Succ(N,E)(X))

represents the set of nodes reachable from Y through edges in E. The following
operator computes the “surface” of a program block. Given a set Y ⊆ N of nodes
(corresponding to a set of active registers), the surface is the set of edges that
can be crossed in the immediate instant following the activation of one or more
registers in Y. If P is the set of nodes of type “pause”, then :

Surface(N,E) (Y) = μ(λX → Y ∪ (Succ(N,E)(X) � P))

Given a set R = {r1, . . . rn} of registers, we write :

Lock (R) = Lock (r1) ∩ . . . ∩ Lock (rn)

the set of registers which we want to deactivate when all r1, . . . rn are activated.

4.1 Graph-Guided Algorithm

In this section, we describe the evolution of the set area in the algorithm 1.2
with respect to the control flow graph. We assume that the syntax tree of the
analyzed program is given in T .

Control flow graph and restricted area initializations. The initialization process
consists in building the graph to obtain an initial set of locked edges and then
build the set area0 with respect to these initial conditions.

Algorithm 1.3. Initialization of area0

1 (I, O, N,E, F) ← G(T)
2 inner ← Closure(N,E) (I)
3 R ← Register (N), R+ ← Register (inner)
4 area0 ← NOr(R � R+)

The first step consists in building the graph (line 1). Then, we need to know the
set R+ of registers which are allowed to be active (line 3). Finally, area is defined
as the set of states such that no register but those in R+ is active (line 4).

Restricted area enlargement. When area is required to be enlarged, we want to
unlock “good” edges. We only want to unlock edges which allow us to include
some pending states inside the growing area set. Such edges can only be found in
the surface of inner (line 1) and are sorted according to “≺” (line 2). Further-
more, more than one edge may be required to be unlocked. This is the typical
case where two parallel branches are awaiting the same signal. Thus, while no
pending state lies inside area, a new edge is analyzed in order to decide whether
it should be unlocked or not.
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Algorithm 1.4. Enlargement of area′

1 surface ← Surface(N,E∪F) (inner)
2 frontier ← Sort≺(Out (N,F)(surface))
3 i ← 1
4 while ( (pending ∩ area) = ∅ ) do
5 f ← frontier[i]
6 /∗ check if f should be opened, see algorithm 1.5 ∗/
7 if ( open? ) then
8 /∗ open f, see algorithm 1.6 ∗/
9 /∗ close some frontiers, see algorithm 1.7 ∗/

10 end if
11 i ← i + 1
12 end while

Edge crossing. To determine whether an edge should be unlocked, one has to
focus on the new active registers in the set pending.

Algorithm 1.5. Crossing a frontier

1 innernew ← Closure(N,E) (Dest(f))
2 Rnew ← Register (innernew ) � R+

3 open? ← false
4 if ( Rnew = ∅ ) then
5 open? ← true
6 else if ( pending ∩ Or(Rnew ) �= ∅ ) then
7 open? ← true
8 end if

First, we compute the set of nodes in the graph that would be reached if the
edge f was unlocked. We just need to know the new-found registers which are
stored in Rnew at line 2. If f leads to no register, it can be unlocked but this
will have no effect on the set area (line 4, 5). If Rnew is not empty, we check if
there are some states in pending that have activated one or more new registers
contained in Rnew (line 6, 7). In this case, the edge can be unlocked.

Unlocking an edge. Once an edge has been decided to be unlocked, we just have
to perform the following updates : first, the unlocked edge is moved from F to
E. Then, the set area is enlarged.

Algorithm 1.6. Opening a frontier

1 E ← E ∪ {f}, F ← F � {f}
2 inner ← inner ∪ innernew , R+ ← R+ ∪ Rnew

3 area′ ← NOr(R � R+)
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Locking some edges. Finally we close some edges to deal with loop constructs.
In this algorithm, graph updates have been discarded.

Algorithm 1.7. Closing frontiers

1 R+ ← R+
� Lock (Rnew )

2 ...

4.2 Correctness Arguments ( ints)

Formally, one should prove that our new partitioned technique computes the
same RSS as the global one. But the correctness assumption relies on a simple
argument, that we shall state only informally.

In the last iteration of the algorithm’s main loop, the (ever-growing) tran-
sition relation will be the global one, as used in the classical single iteration
breadth-first search. But it is only applied to a selection of new initial states
(those taken from the temporary pending sets), and thus will reach only all states
reachable from there. But older states were only discarded from the pending po-
tential new state generators when all theirs successors were produced (because
they could be so in a more restricted transition relation form. So it is harmless
not to consider them any longer.

5 Experimental Results

The results presented here have been obtained by executing our program on a
Bi-Pentium III - 550 MHz with 1 GByte of memory and running under the Linux
operating system. The memory was limited to 900 MBytes in order to avoid the
use of disk swap. These results have been obtained without closing frontiers in
loop constructs.

We implemented our method with the help of the TiGeR BDD package and
we tested it on numerous Esterel designs. Still, many were small programs
which primarily helped us validate our implementation. Results here are not so
significant since memory consumption is not an issue, as intermediate BDDs
blow-ups are very limited. 2 presents experimental results obtained on
pretty big Esterel designs. Concerning computation time, our method was
slower on the sequencer example as expected since more iterations are required
to reach RSS completion. But, surprisingly it appeared to win on bigger designs
(mmid, sat). This is so since each iteration step works on much smaller objects
(BDD DAGs). We still need more experiments to be fully conclusive on our
findings.

6 Conclusion

To the best of or knowledge our method is the only partitioning method based
on syntactic {sequential/alternative/parallel/synchronized} structural informa-
tion drawn from (synchronous) programs. Our method tends to mimic the be-
havioral progression of control through time, but in a context where all paths

gureFi
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Program Steps Found states Crossed states Memory Time

globalopt def. 3 342 858 276 099 583 065 603 > 900M 34m40s
598 regs. part. 80 705 085 932 547 5 542 740 483 > 900M 26h45m32s

site def. 3 232 705 179 1 049 601 > 900M 22m51s
308 regs. part. 91 2 380 837 289 452 110 875 > 900M 9h58m45s

cabin def. 3 13 321 534 > 900M 14m22s
919 regs. part. 147 719 031 955 484 744 348 > 900M 18h54m29s

sequencer def. 18 122 597 all 40 359K 3m47, 22s
154 regs. part. 145 122 597 all 17 022K 8m56, 59s

mmid def. 13 10 308 357 all 205 214K 45m59s
111 regs. part. 113 10 308 357 all 42 368K 19m38

chorusBin def. 6 16 928 480 441 417 > 900M 5h39m35s
92 regs. part. 79 136 329 824 all 851 369K 238h10m45s

cdtmica def. 10 12 538 388 785 10 651 674 353 > 900M 15h24m46s
208 regs. part. 185 23 384 736 769 all 748 971K 36h31m23s

steam def. 3 3 865 747 524 396 566 399 > 900M 48m36s
128 regs. part. 101 41 774 141 026 all 762 153K 25h30m21s

sat def. 17 43 487 202 056 17 566 150 006 > 900M 6h42m50s
192 regs. part. 339 35 740 420 392 968 all 77 797K 3h00m56s

Fig. 2. Comparison between the default and the partitioned method : the first column
(Steps) is the number of computation steps achieved with success, the second column
(Found states) is the number of found states, the third column (Crossed states) is
the number of states whose image has been successfully computed, the forth column
(Memory) shows the memory required and the fifth column (Time) shows the compu-
tation times.

have to be followed (exhaustive search, as opposed to single path simulation).
We presented a solution to partition the RSS computation, primarily according
to signal receptions, and then order the evaluation of blocks according to pro-
gression of control. This latter information is drawn from a control-flow graph,
itself directly extracted from the abstract syntax tree. The graph is also used to
actually build the precise transition relation selected at any given macro-step,
by including the parts where registers enclosed inside proper frontiers are found.
Frontiers are progressively expanded, in a hopefully “sensible” order, so that
all reachable states can be captured. Sometimes, frontiers are closed in order to
deal with loop constructs as if they were “unrolled”. This method provides good
experimental results showing the relevance of the approach.
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Program Repair as a Game�

Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem

Graz University of Technology

Abstract. We present a conservative method to automatically fix faults in a finite
state program by considering the repair problem as a game. The game consists
of the product of a modified version of the program and an automaton repre-
senting the LTL specification. Every winning finite state strategy for the game
corresponds to a repair. The opposite does not hold, but we show conditions un-
der which the existence of a winning strategy is guaranteed. A finite state strategy
corresponds to a repair that adds variables to the program, which we argue is un-
desirable. To avoid extra state, we need a memoryless strategy. We show that the
problem of finding a memoryless strategy is NP-complete and present a heuristic.
We have implemented the approach symbolically and present initial evidence of
its usefulness.

1 Introduction

Model checking formally proves whether a program adheres to its specifications . If
not, the user is typically presented with a counterexample showing an execution of the
program that violates the specification. The user needs to find and correct the fault in
the program, which is a nontrivial task.

The problem of locating a fault in a misbehaving program has been the attention
of recent research [SW96, JRS02, BNR03, GV03, Gro04]. Given a suspicion of the
fault location, it may still not be easy to repair the program. There may be multiple
suggestions, only one of which is the actual fault and knowing the fault is not the same
as knowing a fix.

The work presented here goes one step beyond fault localization. Given a set of
suspect statements, it looks for a modification of the program that satisfies its specifica-
tions. It can be used to find the actual fault among the suggestions of a fault localization
tool and a correction, while avoiding the tedious debugging that would normally ensue.

The repair problem is closely related to the synthesis problem [PR89]. In order
to automatically synthesize a program, a complete specification is needed, which is a
heavy burden on the user. For the repair problem, on the other hand, we only need as
much of the specification as is necessary to decide the correct repair, just as for model
checking we do not need a full specification to detect a fault. (This has the obvious draw-
back that an automatic repair may violate an unstated property and needs to be reviewed
by a designer.)A further benefit is that the modification is limited to a small portion of
the program.The structure and logic of the program are left untouched, which makes it
amenable to further modification by the user. Automatically synthesized programs may
be hard to understand.
� This work was supported in part by the European Union under contract 507219 (PROSYD).
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We give the necessary definitions in Section 2. We assume that the specification is
given in linear time logic (LTL). The program game is an LTL game that captures the
possible repairs of the program, by making some value “unknown” (Section 3.1). We
focus on finite-state programs and our fault model assumes that either an expression or
the left-hand side of an assignment is incorrect. We can thus make an expression or a
left-hand side variable “unknown”. We have chosen this fault model for the purpose of
illustration, and our method applies equally well to other fault models or even to circuits
instead of programs.

The game is played between the environment, which provides the inputs, and the
system, which provides the correct value for the unknown expression. The game is won
if for any input sequence the system can provide a sequence of values for the unknown
expression such that the specification is satisfied. A winning strategy fixes the proper
values for the unknown expression and thus corresponds to a repair.

In order to find a strategy, we construct a Büchi game that is the product of the
program game and the standard nondeterministic automaton for the specification. If the
product game is won, so is the program game, but because of the nondeterminism in the
automaton, the converse does not hold. In many cases, however, we can find a winning
finite state strategy anyway, and the nondeterministic automaton may be exponentially
smaller than a deterministic equivalent (Section 3.2).

To implement the repair corresponding to a finite state strategy, we may need to add
state to the program, mirroring the specification automaton. Such a repair is unlikely to
please the developer as it may significantly alter the program, inserting new variables
and new assignments throughout the code. Instead, we look for a memoryless strategy,
which corresponds to a repair that changes only the suspected lines and does not intro-
duce new variables. In Section 3.3 we show that deciding whether such a strategy exists
is NP-complete, so in Section 3.4 we develop a heuristic to find one.

We obtain a conservative algorithm that yields valid repairs and is complete for
invariants. It may, however, fail to find a memoryless repair forother types of properties,
either because of nondeterminism in the automaton or because of the heuristic that
constructs a memoryless strategy. In Section 3.5 we describe a symbolic method to
extract a repair from the strategy. We have implemented the algorithm in VIS and we
present initial experiences with the algorithm in Section 4.

Our work is related to controller synthesis [RW89], which studies the problem of
synthesizing a “controller” for a “plant”. The controller synthesis problem, however,
does not assume that the plant is malfunctioning, and our repair application is novel.
Also, we study the problem finding a memoryless repair, which corresponds to a con-
troller that is “integrated” in the plant. Buccafurri et al. [BEGL99] consider the repair
problem for CTL as an abductive reasoning problem and present an approach that is
based on calling the model checker once for every possible repair to see if it is success-
ful. Our approach needs to consider the problem only once, considering all possible
repairs at the same time, and is likely to be more efficient. Model-based diagnosis can
also be used to suggest repairs for broken programs by incorporating proper fault mod-
els into the diagnosis problem. Stumptner and Wotawa [SW96] discuss this approach
for functional programs. The approach appears to be able to handle only a small amount
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of possible repairs, and bases its conclusions on a few failed test cases (typically one)
instead of the specification.

2 Preliminaries

In this section, we describe the necessary theoretical background for our work. We
assume basic knowledge of the μ-calculus, LTL, and the translation of LTL to Büchi
automata. We refer to [CGP99] for an introduction.

A game G over AP is a tuple (S, s0, I, C, δ, λ, F ), where S is a finite set of states,
s0 ∈ S is the initial state, I and C are finite sets of environment inputs and system
choices, δ : S×I×C ⇀ S is the partial transition function, λ : S → 2AP is the labeling
function, and F ⊆ Sω is the winning condition, a set of infinite sequences of states.
With the exception of this section and Section 3.4, we will assume that δ is a complete
function. Intuitively, a game is an incompletely specified finite state machine together
with a specification. The environment inputs are as usual, and the system choices C

represent the freedom of implementation. The challenge is to find proper values for C

such that F is satisfied.
Given a game G = (S, s0, I, C, δ, λ, F ), a (finite state) strategy is a tuple σ =

(Q, q0, μ), where Q is a finite set of states, q0∈ Q is the initial state, and μ : Q × S ×
I → 2C Q is the move function. Intuitively, a strategy automaton fixes a set of possible
responses to an environment input, and its response may depend on a finite memory
of the past. Note that strategies are nondeterministic. We need nondeterminism in the
following in order to have maximal freedom when we attempt to convert a finite state
strategy to a memoryless strategy. For the strategy to be winning, a winning play has to
ensue for any nondeterministic choices of the strategy.

A play on G according to σ is a finite or infinite sequence π = q0s0
i0c0−→ q1s1

i1c1−→ . . .

such that (ci, qi+1) ∈ μ(qi, si, ii), si+1 = δ(si, ii, ci), and either the play is infinite,
or there is an n such that μ(qn, sn, in) = ∅ or δ(sn, in, cn) is not defined, which
means that the play is finite. A play is winning if it is infinite and s0s1· · · ∈ F . (If
μ(qn, sn, in) = ∅, the strategy does not suggest a proper system choice and the game is
lost.) A strategy σ is winning on G if all plays according to σ on G are winning.

A memoryless strategy is a finite state strategy with only one state. We will write a
memoryless strategy as a function σ : Q× I → 2C and a play of a memoryless strategy

as a sequence s0
i0c0−→ s1

i1c1−→ . . . , leaving out the state of strategy automaton.
We extend the labeling function λ to plays: the output word is λ(π) =λ(s0)λ(s1) . . .

Likewise, the input word is ι(π) = i0i1 . . . , the sequence of system inputs. The output
language (input language) L(G) (I(G)) of a game is the set of all λ(π) (ι(π)) with π
winning.

A safety game has the condition F = {s0s1 · · · | ∀i : si ∈ A} for some A ⊆ S. The
winning condition of an LTL game is the set of sequences satisfying an LTL formula
ϕ. In this case, we will write ϕ for F . Büchi games are defined by a set B ⊆ Q, and
require that a play visit the Büchi constraint B infinitely often. For such games, we will
write B for F .

We can convert an LTL formula ϕ over the set of atomic propositions AP to a Büchi
game A = (Q, q0, 2AP, C, δ, λ, B) such that I(A) is the set of words satisfying ϕ. The
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system choice models the nondeterminism of the automaton. Following the construction
proposed in [SB00] we get a generalized Büchi game, which has more than one Büchi
constraint. Our approach works with such games as well but for simplicity we explain
it for games with a single constraint. Besides, we can easily get rid of multiple Büchi
constraints with help of the well-known counting construction. The size of the resulting
automaton is exponential in the length of the formula in the worst case.

In order to solve games, we introduce some notation. For a set A ⊆ S, the set
MXA = {s | ∀i ∈ I ∃c ∈ C s ∈ A : (s, i, c, s ) ∈ δ} is the set of states from which
the system can force a visit to a state in A in one step. The set MAU B is defined by
the μ-calculus formula μY. B ∪MX (A∩ Y ). It defines the set of states from which the
system can force a visit to B without leaving A. The iterates of this computation are
Y0 = B and Yj+1 = Yj ∪ (A ∩ MXYj 1) for j > 0. From Yj the system can force a
visit to B in at most j steps. Note that there are only finitely many distinct iterates.

We define MGA = νZ.A∩MXZ , the set of states from which the system can avoid
leaving A. For a Büchi game, we define W = νZ.MXMZU(Z ∩ B). The set W is the
set of states from which the system can win the Büchi game. Note that these fixpoints
are similar to the ones used in model checking of fair CTL and are easily implemented
symbolically.

Using these characterizations, we can compute memoryless strategies for safety and
Büchi games [Tho95]. For a safety game with condition A, the strategy σ(s, i) = {c ∈
C | ∃s ∈ MGA : (s, i, c, s ) ∈ δ} is winning if and only if s0 ∈ MGA. For a Büchi
game, let W = νZ.MXMZ U(Z ∩ B). Let Y1 through Yn be the set of distinct iterates
of MW U(W ∩ B) = W . We defi ne the attractor strategy for B to be

σ(s, i) = {c ∈ C | ∃j, k < j, s ∈ Yk : s ∈ Yj \ Yj 1, (s, i, c, s ) ∈ δ} ∪

{c ∈ C | s ∈ Y0, ∃s ∈ W, ∃i ∈ I : (s, i, c, s ) ∈ δ}.

The attractor strategy brings the system ever closer to B, and then brings it back to a
state from which it can force another visit to B.

3 Program Repair

This section contains our main contributions. In 3.1, we describe how to obtain a pro-
gram game from a program and a suspicion of a fault. The product of the program
game and the automaton for the LTL formula is a Büchi game. If the product game
is winning, it has a memoryless winning strategy. In 3.2 we show how to construct a
finite state strategy for the program game from the strategy for the product game and
we discuss under which conditions we can guarantee that the product game is winning.
A finite state strategy for the program game corresponds to a repair that adds states to
the program. Since we want a repair that is as close as possible to the original program,
we search for a memoryless strategy. In 3.3, we show that it is NP-complete to decide
whether a memoryless strategy exists, and in 3.4, we present a heuristic to construct a
memoryless strategy. This heuristic may fail to find a valid memoryless strategy even if
one exists. Finally, we show how to extract a repair from a memoryless strategy.
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3.1 Constructing a Game

Suppose that we are given a program that does not fulfill its LTL specification ϕ. Sup-
pose furthermore that we have an idea which variables or lines may be responsible for
the failure, for instance, from a diagnosis tool.

A program corresponds to an LTL game K = (S, s0, I, {c}, δ, λ, ϕ). The set of sys-
tem choices is a singleton (the game models a deterministic system) and the acceptance
condition is the specification. Given an expression e in which the right-hand side (RHS)
may be incorrect, we turn K into a program game G by freeing the value of this expres-
sion. That is, if Ω is the domain of the expression e, we change the system choice to
C = C×Ω and let the second component of the system choices define the value of the
expression. If we can find a winning memoryless strategy for G, we have determined a
function from the state of the program to the proper value of the RHS, i.e., a repair.

We can generalize the fault model by including the left-hand side (LHS). Thus, we
convert the program to a game by adding a system choice that determines whether the
LHS or the RHS should be changed and depending on that choice, which variable is
used as the LHS or which expression replaces the RHS. Then we compute the choice
that makes the program correct.

We do not consider other fault models, but these can be easily added. The experi-
mental results show that we may find good repairs even for programs with faults that
we do not model.

3.2 Finite State Strategies

Given two games G = (S, s0, IG, CG, δG, λG, FG) and A = (Q, q0, 2AP, CA, δA, λA,

FA), let the product game be G � A = (S × Q, (s0, q0), IG, CG × CA, δ, λ, F ), where
δ((s, q), iG, (cG, cA)) =

(
δG(s, iG, cG), δA(q, λG(s), cA)

)
, λ(s, q) = λG(s), and F =

{(s0, q0), (s1, q1), · · · | s0, s1, · · · ∈ FG and q0, q1, · · · ∈ FA}. Intuitively, the output
of G is fed to the input of A, and the winning conditions are conjoined. Therefore, the
output language of the product is the intersection of the output language of the first
game and the input language of the second.

Lemma 1. For games G, A, L(G � A) = L(G) ∩ I(A).

Lemma 2. Let G and A be games. If a memoryless winning strategy for G � A exists,
then there is a finite state winning strategy σ for G such that for all plays π of G

according to σ, λ(π) ∈ L(G) and λ(π) ∈ I(A).

The finite state strategy σ is the product of A and the memoryless (single state) strat-
egy for G � A. If FG = Sω, then σ is the winning strategy for the game G with the
winning condition defined by A. The following result (an example of game simulation,
cf. [Tho95]) follows from Lemma 2.

Theorem 1. Let G = (S, s0, I, C, δ, λ, ϕ) be an LTL game, let G be as G but with
the winning condition Sω, and let A be a Büchi game with I(A) = L(G). If there is
a memoryless winning strategy for the Büchi game G � A then there is a finite state
winning strategy for G.
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a=0 a=1

(a) (b)

s1 s2 q2 q1 q3
a=1 a=0

Fig. 1. (a) Game in which the environment can assign the value for variable a. (b) automaton for
F G(a = 1) ∨ FG(a = 0)

Note that the converse of the theorem does not hold. In fact, Harding [Har05] shows
that we are guarantee to find a winning strategy iff the game fulfills the property and the
automaton is trivially determinizable, i.e., we can make it deterministic by removing
edges without changing the language.

For example, there is no winning strategy for the game shown in Fig. 1. If the
automaton for the property FG(a = 1) ∨ FG(a = 0)) moves to the state q3, the en-
vironment can decide to move to s2 (set a = 0), a move that the automaton cannot
match. If, on the other hand, the automaton waits for the environment to move to s2, the
environment can stay in s1 forever and thus force a non-accepting run. Hence, although
the game fulfills the formula, we cannot give a strategy. Note that this problem depends
not only on the structure of the automaton, but also on the structure of the game. For
instance, if we remove the edge from s1 to s2, we can give a strategy for the product.

In general, the translation of an LTL formula to a deterministic automaton requires
a doubly exponential blowup and the best known upper bound for deciding whether a
translation is possible is EXPSPACE [KV98]. To prevent this blowup, we can either
use heuristics to reduce the number of nondeterministic states in the automaton [ST03],
or we can use a restricted subset of LTL. Maidl [Mai00] shows that translations in the
style of [GPVW95] (of which we use a variant [SB00]) yield deterministic automata
for the formulas in the set LTLdet, which is defined as follows: If ϕ1and ϕ2 are LTLdet

formulas, and p is a predicate, then p, ϕ1 ∧ ϕ2, Xϕ1, (p ∧ ϕ1) ∨ (¬p ∧ ϕ2), (p ∧
ϕ1)U(¬p∧ϕ2) and (p∧ϕ1)W(¬p∧ϕ2) are LTLdet formulas. Note that this set includes
invariants (G p) and ¬p U p = F p. LTLdet describes the intersection of LTL and CTL.
In fact, deterministic Büchi automata describe exactly the properties expressibly in the
alternation-free μ-calculus, a superset of CTL [KV98].

Alur and La Torre [AL01] define a set of LTL fragments for which we can com-
pute deterministic automata using a different tableau construction. They are classified
by means of the operators used in their subformulas. (On the top level, negation and
other Boolean connectives are always allowed.) Alur and La Torre give appropriate
constructions for the classes LTL(F,∧) and LTL(F, X,∧). In contrast, for LTL(F,∨,∧)
and LTL(G, F) they show that the size of a corresponding deterministic automaton is
necessarily doubly exponential in the size of the formula. Since trivially deterministic
automata can be made deterministic by removing edges, they can be no smaller than
the smallest possible deterministic automaton and thus there are no exponential-size
trivially deterministic automata for the latter two groups.
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3.3 Memoryless Strategies re NP-Complete

As argued in the introduction, a finite state strategy may correspond to an awkward
repair and therefore we wish to construct a memoryless strategy.

It follows from the results of Fortune, Hopcroft, and Wyllie [FHW80] that given a
directed graph G and two nodes v and w, it is NP-complete to compute whether there
are node-disjoint paths from v to w and back. Assume that we build a game G based on
the graph G. The acceptance condition is that v and w are visited infinitely often, which
can easily be expressed by a Büchi automaton. Since the existence of a memoryless
strategy for G implies the existence of two node-disjoint paths from v to w and back,
we can deduce the following theorem.

Theorem 2. Deciding whether a game with a winning condition defined by a Büchi
automaton has a memoryless winning strategy is NP-complete.

It follows that for LTL games there is no algorithm to decide whether there is a
memoryless winning strategy that runs in time polynomial in the size of the underlying
graph, unless P = NP, even if a finite state strategy is given.

3.4 Heuristics for Memoryless Strategies

Since we cannot compute a memoryless strategy in polynomial time, we use a heuristic.
Given a memoryless strategy for the product game, we construct a strategy that is com-
mon to all states of the automaton, which is our candidate for a memoryless strategy
on the program game. Then, we compute whether the candidate is a winning strategy,
which is not necessarily the case. Note that invariants have an automaton consisting
of one state and thus the memoryless strategy for the product game is a memoryless
strategy for the program game.

Recall that the product game is G � A = (S × Q, (s0, q0), IG, CG × CA, δ, λ, B).
Let σ : (S × Q) × IG → 2CGC A be the attractor strategy for condition B. Note that
the strategy is immaterial on nodes that are either not reachable (under any choice of
the system) or not winning (and thus will be avoided by the system). Let R be the set of
reachable states of the product game, and let W be the set of winning states. We define

τ (s, iG) =
{

cG

∣∣ ∀q ∈ Q :
(
(s, q) /∈R∩W or ∃cA ∈ CA : (cG, cA) ∈ σ((s, q), iG)

)}
.

Intuitively, we obtain τ by taking the moves common to all reachable, winning states
of the strategy automaton.1

If τ is winning, then so is σ, but the converse does not hold. To check whether
τ is winning, we construct a game G from G by restricting the transition relation to
adhere to τ : δ = {(s, i, c, s ) ∈ δ | c ∈ τ (s, i)}. This may introduce states without a
successor. We see whether we can avoid such states by computing W = MG S. If we
find that s0 /∈ W , we cannot avoid visiting a dead-end state, and we give up trying to
find a repair. If, on the other hand, s0 ∈ W , we get our final memoryless strategy τ by
restricting τ to W , which ensures that a play that starts in W remains there and never
visits a dead-end. We thus reach our main conclusion in the following theorem.

1 We may treat multiple Büchi constraints, if present, in the same manner. This is equivalent to
using the counting construction.
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(a)

C

(d)

BA1 2

(c)

1 2

(b)

1 2

Fig. 2. Fig. a, b, c show three games with the winning condition that states 1 and 2 are both
visited infinitely often. Multiple outgoing arcs from a state model a system choice. The winning
condition is defined by the Büchi automaton shown in Fig. d. For Fig. a, the strategies for States A,
B, and C coincide, and a memoryless strategy exists. For Fig. b, no memoryless strategy exists,
and for Fig. c, a memoryless strategy exists, but it is not equal to the intersection of all the
strategies for states A, B, and C. (The strategies are contradictory for the state on the right.)

Theorem 3. If s0 ∈ W then τ is a winning strategy of G.

3.5 Extracting a Repair

This section shows a symbolic method to extract a repair statement from a memory-
less strategy. We determinize the strategy by finding proper assignments to the system
choices that can be used in the suspect locations. For any given state of the program,
the given strategy may allow for multiple assignments, which gives us room for opti-
mization.

We may not want the repair to depend on certain variables of the program, for
example, because they are out of the scope of the component that is being repaired. In
that case, we can universally quantify these variables from the strategy and its winning
region and check that the strategy still supplies a valid response for all combinations of
state and input.

For each assignment to the system choice variables, we calculate a set Pj ⊆ S × I
for which the assignment is a part of the given strategy. We can use these sets Pj to
suggest the repair “if P0 then assign0 else if P1 then ...”, in which Pj
is an expression that represents the set Pj . The expression Pj, however, can be quite
complex: even for small examples it can take over a hundred lines, which would make
the suggested repair inscrutable.

We exploit the fact that the sets Pj can overlap to construct new sets Aj that are
easier to express. We have to ensure that we still cover all winning and reachable states
using the sets Aj . Therefore, Aj is obtained from Pj by adding or removing states
outside of a care set. The care set consists of all states that cannot be covered by Aj

because they are not in Pj and all states that must be covered by Aj because they are
neither covered by an Ak with k < j, nor by a Pk with k > j. We then replace Pj with
an expression for Aj to get our repair suggestion.

For simultaneous assignment to many variables, we may consider generating repairs
for each variable seperately, in order to avoid enumerating the domain. For example, we
could assign the variables one by one instead of simultaneously.

Extracting a simple repair is similar to multi-level logic synthesis in the presence
of satisfiability don’t cares and we may be able to apply multi-level minimization tech-
niques [HS96]; the problem of finding the smallest expression for a given relation is
NP-hard by reduction from 3SAT. One optimization we may attempt is to vary the or-
der of the Ajs, but in our experience, the suggested repairs are typically quite readable.
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3.6 Complexity

The complexity of the algorithm is polynomial in the number of states of the system, and
exponential in the length of the formula, like the complexity of model checking. A sym-
bolic implementation needs a quadratic number of preimage computations to compute
the winning region of a Büchi game, the most expensive operation, like the Emerson-Lei
algorithm typically used for model checking [RBS00]. For invariants, model checking
and repair both need a linear number of preimage computations. Although the combi-
nation of universal and existential quantification makes preimage computations more
expensive and we have to do additional work to extract the repair, we expect that repair
is feasible for a large class of designs for which model checking is possible.

In our current implementation, we build the strategy as a monolithic BDD, which
may use a lot of memory. We are still researching ways to compute the strategy in a
partitioned way.

4 Examples

In this section we present initial experimental results supporting the applicability of our
approach on real (though small) examples.

We have implemented our repair approach in the VIS model checker [B+96] as an
extension of the algorithm of [JRS02]. The examples below are finite state programs
given in pseudo code. They are translated to Verilog before we feed them to the re-
pair algorithm. Suspect expressions are freed and a new system choice is added with
the same domain as the expression. Assertions are replaced by if(...) error=1
and the property G(error = 0). In the current version, this translation and the code
augmentation are done manually.

4.1 Locking Example

We start with the abstract program shown in Fig. 3 [GV03]. This programs abstracts
a class of concrete programs with different if and while conditions, all of which per-
form simple lock request/release operations. The method lock() checks that the lock
is available and requests it. Vice versa, unlock() checks that the lock is held and
releases it. The if(*) in the first line causes the lock to be requested nondeterministi-
cally, and the while(*) causes the loop to be executed an arbitrary number of times.
The variable got_lock is used to keep track of the status of the lock (Lines 4 and 5).
The assertions in Lines 11 and 21 constitute a safety property that is violated, e.g., if
the loop is executed twice without requesting the lock. The fault is that the statement
got_lock-- should be placed within the scope of the preceding if.

Model-based diagnosis can be used to find a candidate for the repair [MSW00]. A
diagnosis of the given example was performed in [CKW05] and localizes the fault in
Lines 1, 6, or 7. We reject the possibility of changing Line 1 or 7 because we want the
repair to work regardless of the if and while conditions in the concrete program. Instead,
we look for a faulty assignment to got_lock. Thus, we free the RHS in Lines 3 and 6.
The algorithm suggests a correct repair, got_lock=1 for Line 3 and got_lock=0
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int got_lock = 0;
do{

1 if (*) {
2 lock();
3 got_lock++; }
4 if (got_lock != 0) {
5 unlock();}
6 got_lock--;
7 } while(*)

void lock() {
11 assert(L = 0);
12 L = 1; }

void unlock(){
21 assert(L = 1);
22 L = 0; }

Fig. 3. Locking Example

1 int least = input1;
2 int most = input1;
3 if(most < input2){
4 most = input2; }
5 if(most < input3){
6 most = input3;}
7 if(least > input2){
8 most = input2; }
9 if(least > input3){
10 least = input3;}
11 assert (least <= most);

Fig. 4. MinMax Example

for Line 6. Note that we repair the program using a different fault model than the one
which caused it, i.e., after the repair the program is correct, even though we did not
suggest to move got_lock-- inside the scope of the if.

4.2 MinMax

To present a more general fault model we show a simple program which assigns the
minimal and maximalvalues out of three input values toleast and most,resp.[Gro04].

The fault is located in Line 8 of Fig. 4, where input2 is assigned to most (in-
stead of least), which was one of five single fault diagnoses found by a model based
debugger based on [MSW00]. To find the correct repair, we replace the assignments in
lines 4, 6, 8, and 10 with switch-statements over the system choice that selects whether
to assign to least, to most, or to replace the RHS. The algorithm correctly suggests
to assign to variable most in Lines 4 and 6, and to least in Lines 8 and 10.

4.3 Critical Sections

Fig. 5 demonstrates how to cope with problems when testing properties that have no
deterministic automaton (see Section 3.2). The example from [BEGL99] depicts two
processes that share flag and turn variables, which are used to avoid concurrent
access to the variables x and y. The process contains an arbiter (not shown) that non-
deterministically yields control to either Process A or B, and records its choice in the
variable arbiter. The fault is that turn1B is set to false in Line 2 of Process A.
The correct value is true. This can cause both a deadlock and a violation of the critical
region of x.
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Process A

1 flag1A = true;
2 turn1B = false;
3 while(flag1B && turn1B);
4 x = x && y;
5 flag1A = false;
6 if(turn1B){
7 flag2A = true;
8 turn2B = true;
9 while(flag2B && turn2B);
10 y = false;
11 flag2A = false;}
12 goto 1;

Process B

1 flag1B = true;
2 turn1B = false;
3 while(flag1A && !turn1B);
4 x = x && y;
5 flag2B = true;
6 turn2B = false;
7 while(flag2A && !turn2B);
8 y = !y;
9 x = x || y;
10 flag2B = false;
11 flag1B = false;
12 goto 1;

Fig. 5. Critical Section Example

To check if Process B is eventually allowed to access x when it is waiting for it, we
check the property FairArbiter → G(Bwaiting → F¬Bwaiting) where FairArbiter =
GF(arbiter = A) ∧ GF(arbiter = B)) and Bwaiting is true whenever Process B
is in Lines 3 or 7. As the implication leads to an negation of FairArbiter we get a
nondeterministic automaton. Our algorithm cannot find a strategy for the product game
of the program and this automaton (See Fig. 1).

We solve this problem by manually changing the arbiter to switch processes in-
finitely often. Freeing turn1B in Line 2 of Process A with domain {false,true}
now leads to the correct answer, turn1B = true. Note that this repair also works
for the original model. This repair can also be found by checking for violations of the
critical section, which can be stated as a simple invariant and therefore does not require
a modification of the system.

4.4 Processor

In order to compare the efficiency of repair algorithm to that of model checking, we have
introduced a fault in a 16-bit version of a simple unpipelined DLX-style processor. The
fault is in the ALU and the property checks that the ALU works correctly.

On a 2.8GHz Linux machine with 2GB of RAM, the model checking run needs 230
seconds to check that the property does not hold on the incorrect version. The repair
algorithm finds a repair in 200 seconds, and the repair is verified to be correct by the
model checker (an unnecessary precaution) in 210 seconds; all runs use around 1.2GB.

5 Conclusions

We have considered the problem of fixing a program to adhere to its specification, given
a suspicion of the fault. We proceed by building the product of a game corresponding to
the broken program and the automaton reflecting the specification. If the product game
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has a winning strategy, we can repair the program. However, a strategy may not exist
for the product even if a repair exists because of nondeterminism in the automaton. We
could circumvent this problem by determinizing the automaton, but the cost is expo-
nential and for many combinations of program and specification, nondeterminism turns
out not to be problematic.

A winning finite state strategy correspond to a repair that introduces new state. We
reject the possibility of changing the program logic and instead turn to the problem
of finding a memoryless strategy. We have shown that deciding whether a memory-
less strategy exists is NP-complete, and we have presented a conservative heuristic that
conjoins the strategies for the different states of the automaton. We have described a
heuristic that finds an efficient repair for a given memorless strategy.

The algorithm is of a complexity that is comparable to that of model checking,
which makes us optimistic as to the practical applicability of the approach. We have
implemented a symbolic version of the algorithm and the initial experimental results
show that the algorithm finds readable repairs in acceptable time, though improvements
in the implementation are still possible.

The algorithm is complete for invariants as they have deterministic automata con-
sisting of one state and in fact we can solve them using the linear algorithm for guaran-
tee games.

A natural extension of this work would be to evaluate the effect of determinizing
the automaton before computing a strategy. It would also be interesting to see in how
far we can minimize the negative effects of using a finite state strategy, e.g., by using
a dependent variable analysis [HD93] to minimize the amount of added state. Finally,
it would be interesting to see in how far the approach can be extended to push-down
games that would result from an attempt to repair Boolean programs that appear in
a SLAM-style abstraction/refinement approach [BR01]. We are looking into further
improvements in the efficiency of the implementation.
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Abstract. The IEEE 802.11 protocol is a popular standard for wireless local
area networks. Its medium access control layer (MAC) is a carrier sense multiple
access with collision avoidance (CSMA/CA) design and includes an exponen-
tial backoff mechanism that makes it a possible target for probabilistic model
checking. In this work, we identify ways to increase the scope of application of
probabilistic model checking to the 802.11 MAC. Current techniques model only
specialized cases of minimum size. To work around this problem, we identify
properties of the protocol that can be used to simplify the models and make ver-
ification feasible. Using these observations, we present generalized probabilistic
timed automata models that are independent of the number of stations. We opti-
mize these through a novel abstraction technique while preserving probabilistic
reachability measures. We substantiate our claims of a significant reduction due to
our optimization with results from using the probabilistic model checker PRISM.

1 Introduction

The IEEE 802.11 protocol [1] is a popular standard for wireless networks. Its medium
access control layer (MAC) is a carrier sense multiple access with collision avoidance
(CSMA/CA) design and includes an exponential backoff mechanism that makes it an
ideal target for probabilistic model checking. This protocol has been modeled using a
range of techniques such as finite state machines and probabilistic timed automata [2].

The 802.11 protocol suffers from a potential livelock problem, demonstrated for-
mally in [3], which is mitigated only by the presence of a finite retry limit for each data
packet. The livelock arises because it is possible, although improbable, for two stations
to behave symmetrically and continuously collide until they drop their respective pack-
ets on exceeding the retry limit. In such a scenario, it is useful to bound the probability
of such pathologically symmetric behavior. This motivates the application of probabilis-
tic model checking to the problem of computing probabilities of desired and undesired
behavior in the protocol. Two primary properties of interest are: the probability of the
number of retries reaching a certain count and the probability of meeting a soft deadline.

A recent solution to the problem of obtaining these probabilities has been proposed
in [2]. It models a limited (but critical) aspect of the protocol using Probabilistic Timed
Automata (PTA) [4] and exploits available tools, namely, the Probabilistic Symbolic
Model Checker (PRISM) [5] for computing the probability values and the real time
model checker Uppaal [6] as a proof assistant. Results on the probability of the backoff
counter on a station reaching a particular value and the probability of a packet being
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transmitted within a certain deadline are presented. This work, however, models only a
specialized case of two stations (sender destination pairs). When we extended the mod-
els to 3 stations (and 3 corresponding destinations), which is a practical sized network
topology, we found it computationally infeasible to model check properties of interest.
Also, the model has an inaccurate assumption that the packet length can vary on every
retransmission.

The aim of this work is twofold. First, we present a more accurate and generalized
model for the protocol that is parameterized by the number of stations. Second, we set
up a logical framework to exploit protocol specific redundancies. Under this framework,
we perform a number of provably correct optimizations that reduce the generalized
multi station model. The optimizations involve abstracting away the deterministic waits
and considering only a subset of the allowed packet sizes that nevertheless captures all
the relevant behavior. In addition, we duplicate the model reduction technique of [2] for
the multi station problem.

Our reduced models are immediately verifiable in PRISM and require no further
tools. It is also possible to use tools like RAPTURE [7] on the reduced PTA models
(see [8] for our experiences with using RAPTURE). Our results show a reduction in
state space over the existing solution for two stations. We are also able to successfully
model check a topology of three station that was infeasible with the current models.

The organization of the paper is as follows. We begin with the modeling formalism
used in this paper. We present the generalized models for the multi station 802.11 prob-
lem and discuss the behavior of the protocol. Next, we present a notion of equivalence
in probabilistic systems that abstracts away deterministic paths in the system but pre-
serves probabilistic reachability. We give sufficient requirements for equivalence both
at the level of untimed probabilistic systems and probabilistic timed automata. Based
on this framework, we present our set of reductions to the generalized model for the
multi station problem. We also show that we can verify soft deadlines inspite of these
optimizations. We conclude with results that detail state space reduction as well as case
studies for a three station topology.

2 Modeling Formalism

We need a modeling formalism that can represent the 802.11 protocol at sufficient depth
and is amenable to transformations for more efficient verification. We have been guided
by the existing work in [2] in our choice of Probabilistic Timed Automata to model the
802.11 protocol.

We introduce Probabilistic Timed Automata (PTA) [4], Probabilistic Systems (PS)
[2, 9] and fully probabilistic systems (FPS). All these have been surveyed in [10] with
special reference to their relationship in the context of probabilistic model checking.

Let χ be a set of non-negative real valued variables called clocks. Call Z the set of
zones over χ, which is the set of all possible atomic constraints of the form x ∼ c and
(x− y) ∼ c and their closure under conjunction. Here x, y ∈ χ, ∼ ∈ {<,≤, >,≥} and
c ∈ N, where N is the set of natural numbers. A clock valuation v is the assignment of
values in R≥0(where R≥0 is the set of non-negative reals) to all clocks in χ. The concept
of a clock valuation v satisfying a zone Y , indicated as v � Y , is naturally derived by
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assigning values to each clock in the zone and checking whether all constraints are
satisfied.

Definition 1. A probabilistic timed automaton is a tuple (L, l, χ,Σ, I, P ) where L is
a finite set of states, l is the initial state, χ is the set of clocks and Σ is a finite set of
labels used to label transitions. The function I is a map I : L → Z called the invariant
condition. The probabilistic edge relation P is defined as P ⊆ L×Z×Σ×Dist(2χ×L),
where Dist(2χ ×L) is the set of all probability distributions, each elementary outcome
of which corresponds to resetting some clocks to zero and moving to a state in L. We
call a distinguished (not necessarily non-null) subset Σu of the set of events as urgent
events.

A critical feature of PTAs that makes them powerful modeling tools is that each
transition presents probabilistic choice in the PTA while different outgoing probabilistic
transitions from a state present non-deterministic choice in the PTA. Hence, a PTA can
model non-determinism, which is inherent in the composition of asynchronous parallel
systems.

Composition of PTAs is a cross product of states with the condition that the com-
posed PTAs must synchronize on shared actions. For a detailed description see [2].
A feature of PTAs that is useful for higher-level modeling is urgent channels. Urgent
channels are a special set of edge labels (symbols) such that time cannot be allowed to
pass in a state when synchronization on an urgent channel is possible. We next define
a probabilistic system (PS) (which is the same as the simple probabilistic automaton of
[9]).

Definition 2. A probabilistic system (PS), is a tuple (S, s,Σ,Steps) where S is the
set of states, s is the start state, Σ is a finite set of labels and Steps is a function
Steps : S → 2Σ×Dist(S) where Dist(S) is the set of all distributions over S.

Definition 3. Given a PTA T = (L, l, χ,Σ, I, P ), the semantics of T is the PS [[T ]]=
(S, s,Act ,Steps), where S ⊆ L×R

|χ|
≥0 is the set of states with the restrictions (s, v) ∈

S iff (s ∈ L and v � I(s)) and s = (l, 0). Act = R>0 ∪ Σ. This reflects either actions
corresponding to time steps (R>0) or actions from the PTA (Σ). Steps is the least set
of probabilistic transitions containing, for each (l, v) ∈ S, a set of action distribution
pairs (σ, μ) where σ ∈ Act and μ is a probability distribution over S. Steps for a state
s = (l, v) is defined as follows.
I. for each t ∈ R>0, (t, μ) ∈ Steps(s) iff

1. μ(l, v + t) = 1 and v + t′ � I(l) for all 0 ≤ t′ ≤ t.
2. For every probabilistic edge of the form (l, g, σ,−) ∈ P , if v + t′ � g for any

0 ≤ t′ ≤ t, then σ is non-urgent.

II. for each (l, g, σ, p) ∈ P , let (σ, μ) ∈ Steps(s) iff v � g and for each (l′, v′) ∈ S:
μ(l′, v′) = ΣX⊆χ&v′=v[X:=0] p(X, l′), the sum being over all clock resets that result
in the valuation v′.

A critical result [11], analogous to the region construction result for timed automata,
states that it is sufficient to assume only integer increments when all zones are closed
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(there are no strict inequalities). Hence, the definition given above is modified to S ⊆
L × N

|χ| and Act = N ∪ Σ. Under integer semantics, the size of the state space is
proportional to the largest constant used. For the rest of this paper, we will assume inte-
ger semantics. Note that, in the presence of non-determinism, the probability measure
of a path in a PS is undefined. Hence, define an adversary or scheduler that resolves
non-determinism as follows:

Definition 4. An adversary of the PS P = (S, s,Act ,Steps) is a function f : S →
∪s∈SSteps(s) where f(s) ∈ Steps(s).

We only consider simple adversaries that do not change their decision about an
outgoing distribution every time a state is revisited, their sufficiency has been shown in
[12]. A simple adversary induces a Fully Probabilistic System (FPS) as defined below.

Definition 5. A simple adversary A of a PS P = (S, s,Act ,Steps) induces an FPS or
Discrete Time Markov Chain PA = (S, s, P ). Here, P (s) = A(s), the unique outgoing
probability distribution for each s ∈ S, where we drop the edge label on the transition.

Given a PS M and a set of “target states” F , consider an adversary A and the corre-
sponding FPS MA. A probability space (ProbA) may be defined on MA via a cylinder
construction [13]. A path ω in MA is simply a (possibly infinite) sequence of states
ss1s2... such that there is a transition of non-zero probability between any two consec-
utive states in the path. For model checking, we are interested in

ProbReachA(F )
def
= ProbA{ω ∈ PathA

∞ | ∃i ∈ N where ω(i) ∈ F}. F is the desired
set of target states, ω(i) is the ith state in the path ω and PathA

∞ represents all infinite
paths in MA. Define MaxProbReachM (F ) and MinProbReachM (F ) as the supre-
mum and infimum respectively of {ProbReachA(F )} where the quantification is over
all adversaries. This definition does not take into account sink states with no outgoing
transitions. However, these states can easily be handled by adding self loops.

Properties of interest at the PTA level are specified using Probabilistic Computa-
tional Tree Logic (PCTL) formulas [14]. We limit ourselves to restricted syntax (but
non trivial) PCTL formulas, expressible as P∼λ{�p}, where ∼∈ {<,>,≤,≥}, λ is
the constant probability bound that is being model checked for and p is a proposition
defined for every state in the state space. These PCTL formulas translate directly into
a probabilistic reachability problem on the semantic PS corresponding to the PTA. The
reason for this restriction is that, in the case of the 802.11 protocol, the properties of
interest, including the real time ones, are all expressible in this form. In this restricted
form of PCTL, we indicate numerical equivalence using the following notation.

Definition 6. Two PSs P1 and P2 are equivalent under probabilistic reachability of

their respective target states F1 and F2, denoted by P1
PS
≡ F1,F2 P2 when

MaxProbReachP1(F1) = MaxProbReachP2(F2)
and MinProbReachP1(F1) = MinProbReachP2(F2).

Definition 7. PTA1
PTA
≡ φ1,φ2 PTA2 when [[PTA1]]

PS
≡ F1,F2 [[PTA2]]. The criterion

for marking target states is that F1 corresponds to the target states in the reachability
problem for the PCTL formula φ1, while F2 corresponds to the target states for the
PCTL formula φ2.
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3 Probabilistic Models of 802.11 Protocol

In this section, we present generalized probabilistic models of the 802.11 basic access
MAC protocol assuming no hidden nodes1. The model for the multi-station 802.11
problem consists of the station model and a shared channel, shown in Figures 2 part
(a) and 1 part(b) respectively. We assume familiarity with conventions used in graph-
ical representation of timed automata. The states marked with a ’u’ are urgent states
while that marked by concentric circles is the start state. The station models are repli-
cated to represent multiple sender-destination pairs. Some critical state variables are: bc
that holds the current backoff counter value, tx len that holds the chosen transmission
length and backoff that represents the current remaining time in backoff. The func-
tion RANDOM (bc) is a modeling abstraction that assigns a random number in the
current contention window. Similarly, NON DET (TX MIN ,TX MAX ) assigns a
non-deterministic packet length between TX MIN and TX MAX , which are the min-
imum and maximum allowable packet transmission times respectively. The values used
for verification are from the Frequency Hopping Spread Spectrum (FHSS) physical
layer [1]. The transmission rate for the data payload is 2 Mbps.

The station automaton shown in Figure 2, begins with a data packet whose transmis-
sion time it selects non-deterministically in the range from 258μs to 15750μs. On sens-
ing the channel free for a Distributed InterFrame Space (DIFS = 128μs), it enters the
Vulnerable state, where it switches its transceiver to transmit mode and begins trans-
mitting the signal. The Vulnerable state also accounts for propagation delay. It moves
to the Transmit state after a time VULN = 48μs with a synchronization on send .
After completing transmission, the station moves to Test channel via one of the two
synchronizations, finish correct on a successful transmission and finish garbled on an
unsuccessful transmission. The channel keeps track of the status of transmissions, going
into a garbled state whenever more than one transmission occurs simultaneously. The
station incorporates the behavior of the destination and diverges depending on whether
the transmission was successful, or not. If the transmission was successful, the por-
tion of the station corresponding to the destination waits for a Short InterFrame Space
(SIFS = 28μs) before transmitting an ack, which takes ACK = 183μs.

On an unsuccessful transmission, the station waits for the acknowledgment timeout
of ACK TO = 300μs. It then enters a backoff phase, where it probabilistically selects
a random backoff period backoff= RANDOM (bc), with uniform probability, a value
from the contention window (CW) given by the range [0, (C + 1).2bc − 1], where C
is the minimum CW (15μs for the FHSS physical layer). The backoff counter (bc) is
incremented each time the station enters backoff. The backoff counter is frozen when a
station detects a transmission on the medium while in backoff.

It may be noted that the channel model in [2] is aware of exactly which stations are
transmitting; for n stations, there are 2n possibilities leading to the channel having Ω(2n)
state space. Our design recognizes the fact that it is sufficient for the channel to be aware
of the number of transmitters using the tx count variable. Hence our channel model has
atmost a constant number of states plus a linear factor in terms of n leading to O(n) states.

1 In the absence of hidden nodes [15], the channel is a shared medium visible to all the stations.
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Also, we start with an abstracted station model, which incorporates the deterministic
destination. The validity of this abstraction for the two station case has been shown in
[2]. The extension to the multi station case is given in [8].

4 Reducing State Space by Compression of Deterministic Paths

In the 802.11 protocol, there are numerous cases where the component automata repre-
senting the system simply count time or where different resolutions of non-determinism
lead to the same state but through different paths. If we are verifying an untimed prop-
erty then such execution fragments increase state space without any contribution to
probabilistic reachability. We discovered on studying these models that it is possible to
derive alternative optimized probabilistic timed automata that avoid the cost of such un-
necessary deterministic behavior by compressing these deterministic paths into equiv-
alent but shorter paths. The problem is the lack of a suitable formalism to support our
optimizations. This section provides a framework that can be used to justify the equiv-
alence of our optimized models to the original ones.

We assume that the state space is a subset of an implicit global set of states. This al-
lows operations such as intersection and union between the set of states of two different
automata. In particular, for this paper we consistently name states across the automata
we consider. Our objective is to formalize “deterministic” behavior of interest. The key
relationship used in this formalization is a specialization of dominators as defined in
[7]. We refer to this restricted version of dominators as “deterministic dominators” in
the rest of this paper.

Definition 8. For a distribution π over the finite elementary event set X , define the
support of the distribution as supp(π) = {x ∈ X | π(x) > 0}

Definition 9. Given a PS consisting of the set of states S, define ≺D as the smallest
relation in S × S satisfying the following: ∀s ∈ S s ≺D s and ∀t ∈ S [∀(a, π) ∈
Steps(s) : ∃x (supp(π) = {x}) ∧ (x ≺D t) ⇒ s ≺D t]

If the relation s ≺D t holds then we say that t is the deterministic dominator of s.
An example of a deterministic dominator is shown in the PSs of Figure 1 part(a),

where S ≺D T .

Definition 10. Given distributions P1 over S1 and P2 over S2, define P1
dist
≡ P2 when

supp(P1) = supp(P2) = S and ∀s ∈ S we have P1(s) = P2(s).

Based on the notion of equivalence of distributions, we define the notion of equivalence
of sets of distributions. Let Steps1 be a set of labeled distributions over S1 and Steps2

be a set of labeled distributions over S2.

Definition 11. Steps1

dist
≡ Steps2 whenever ∀(a, μ1) ∈ Steps1 ∃(b, μ2) ∈ Steps2

such that μ1
dist
≡ μ2 and ∀(a, μ2) ∈ Steps2 ∃(b, μ1) ∈ Steps1 with μ2

dist
≡ μ1.

Definition 12. A path in the PS P = (S, s,Σ,Steps) is a sequence of state-action
pairs (s1, a1), (s2, a2)..(sn+1) such that ∀i ∈ {1..n} we have ∃(ai, μ) ∈ Steps(si)
such that μ(si+1) > 0.
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4.1 Deterministic Path Compression in Probabilistic Systems

Consider the two PSs of Figure 1 part(a), each of which has the start state U . It should be
clear that each of MaxProbReach(X) and MinProbReach(X) takes the same value in
both the systems since we have only removed (compressed) the deterministic segment
B → C.
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Fig. 1. (a)Two Related Probabilistic Systems (left); (b)PTA model for the Channel - Generalized
for the multiple station case(right)

We formalize this notion of deterministic path compression at the level of PSs in
theorem 1.

Consider two finite Probabilistic Systems PS 1 = (S1, s,Act ,Steps1) and
PS 2 = (S2, s,Act ,Steps2) with an identical set of actions. All transitions in Steps1

and Steps2 are simple transitions of the form (s, a, μ) where s is the originating state,
a ∈ Act and μ is a probability distribution over the state space. Note that the S1 and S2

are necessarily not disjoint because of the common start state s.

Definition 13. If, for some s ∈ S1 ∩ S2, Steps1(s)
dist
≡ Steps2(s) does not hold then s

is a point of disagreement between the two PSs.

Theorem 1 (Equivalence in PSs). Given two PSs PS 1(S1, s,Act ,Steps1) and
PS 2(S2, s,Act ,Steps2) satisfying the following conditions:

1. For any state s ∈ S1 ∩ S2, if s is a point of disagreement then ∃t ∈ S1 ∩ S2 such
that, t is not a point of disagreement and in each of the systems, s ≺D t.

2. Let F1 ⊆ S1 and F2 ⊆ S2 be sets of target states we are model checking for. We
impose the condition S1 ∩ S2 ∩ F1 = S1 ∩ S2 ∩ F2. For every s ∈ S1 ∩ S2, which
is a point of disagreement we have the following: For the postulated deterministic
dominator t and for every state u on any path in PS 1 between s and t, u ∈ F1 ⇒
(s ∈ F1)∨ (t ∈ F1). Similarly, for every state u on any path in PS 2 between s and
t, u ∈ F2 ⇒ (s ∈ F2) ∨ (t ∈ F2).

Under these conditions, PS 1
PS
≡ F1,F2 PS 2.
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The proof follows from first principles by setting up a bijective mapping between paths
in the two PSs. The complete proof is available in [8].

4.2 A Comparison Framework for PTAs

Given PTA1 and PTA2 and their respective restricted PCTL requirements φ1 and φ2,

we need a set of conditions under which we may claim PTA1
PTA
≡ φ1,φ2 PTA2. By Def-

inition 7, this is equivalent to showing that [[PTA1]]
PS
≡ F1,F2 [[PTA2]], where F1 and

F2 are the corresponding target states of φ1 and φ2 respectively. Our optimizations are
based on deterministic path compression as outlined in Section 4.1. Hence, we impose
requirements on PTA1 and PTA2 under which we can apply theorem 1 to [[PTA1]]

and [[PTA2]] to deduce [[PTA1]]
PS
≡ F1,F2 [[PTA2]].

Consider two PTAs with an identical set of clocks and events:
PTA1 = (L1, l1, χ,Σ, I1, P1) and PTA2 = (L2, l2, χ,Σ, I2, P2). We assume that the
automata have the same set of urgent events, Σu.

Definition 14. A state s ∈ L1 ∩ L2 is a point of disagreement between the two proba-
bilistic timed automata if either they differ on the invariant or they differ in the set of out-
going transitions or both. Taking a transition out of a state s as the tuple (s, z, σ, P (2χ×
L)), call two transitions different if they disagree on either the guard z, or the event la-
bel on the transition σ, or the distribution P (2χ × L).

The semantic PSs are [[PTA1]] and [[PTA2]] respectively. Let States([[PTA1]]) and
States([[PTA2]]) denote states of the semantic PSs for PTA1 and PTA2 respectively.
The states in the semantic PS are tuples (s, v) where s is a state of the PTA and v is a
clock valuation.

Lemma 1. A state (s, v) ∈ States([[PTA1]]) ∩ States([[PTA2]]) as a point of dis-
agreement (with regard to condition 1 of theorem 1) between the two PS implies that s
is a point of disagreement between PTA1 and PTA2.

The condition that labels should also be identical might seem too restrictive consid-
ering that we are only interested in probabilistic reachability. However, the next set of
lemmas will show that when composing PTAs labels are important.

Most real world systems and the 802.11 protocol in particular are modeled as a com-
position of PTAs. In a composed system, the above lemma will only tell us whether a
particular common state in the PTA can generate a point of disagreement in the seman-
tic PS. This common state represents the composed state of all the PTAs composing the
model. The next few lemmas extend lemma 1 to the scenario of composed probabilistic
timed automata.

Definition 15. Consider two PTAs formed of compositions, as follows.
PTA1 = PTA1

1 ‖ PTA1
2 ‖ PTA1

3 ‖ .. ‖ PTA1
n

and
PTA2 = PTA2

1 ‖ PTA2
2 ‖ PTA2

3 ‖ .. ‖ PTA2
n

.
Define the difference set as the set D ⊆ {1, 2, .., n} such that ∀i ∈ D : PTA1

i
	= PTA2

i

and ∀i /∈ D : PTA1
i

= PTA2
i
. By equality we mean exactly the same automaton in

both the compositions (component wise equality of the tuples defining them).
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Definition 16. We define the specific difference set for the index i ∈ D as Di ⊆
states(PTA1

i
) ∩ states(PTA2

i
) where Di is the set of states that disagree across the

automata as outlined in definition 14. For every i /∈ D set Di = ∅.

Lemma 2. Consider the composed PTA models of Definition 15. Let Scommon be the
set of common states between PTA1 and PTA2. A composed state in Scommon , say
(l1, l2, .., ln) is a point of disagreement between PTA1 and PTA2 implies that at least
one automaton is in its specific difference set.

In the composed PTAs of definition 15, each state in the semantic PS for a PTA is a
combination of states and clock valuations of the individual PTA in the composition.
The next lemma combines lemmas 1 and 2.

Lemma 3 (PTA level requirements).
A state in States([[PTA1]])∩States([[PTA2]])= (l1, l2.., ln, v) as a point of disagree-
ment implies that for at least one i ∈ {1..n}, the common state li of both PTA1

i
and

PTA2
i

is an element of their specific disagreement set.

Lemma 3 identifies precisely those states in the component PTA that may cause a dis-
agreement in the PS for the composed system.

4.3 Proof Technique

We will use the framework in this section to prove the correctness of our reduced mod-
els. Although our objective is the 802.11 protocol, the concept of deterministic path
compression has been developed in a generalized manner anticipating its application to
other protocols.

To prove that a reduced PTA model (PTA2) corresponding to the original PTA

model (PTA1) is correct, we need to prove that PTA1
PTA
≡ φ1,φ2 PTA2. Here φ1 and

φ2 are the corresponding PCTL formulas in the two models. For our purposes φ1 = φ2

since we are interested in proving that we will arrive at the same result for the same
particular PCTL formula. We proceed with the proof in the following manner.

1. Identify the difference set (Definition 15). Compute the specific difference set of each
component automaton in the difference set using Definition 16. This is easily done by
a visual inspection of the automata.
2. Identify composed states where one or more automata are in their specific difference
set. At this point we use protocol specific proofs to limit such combinations to a man-
ageable size. From Lemma 2 we know the set of composed states obtained in this step
is a superset of the actual difference set across the composed PTA.
3. For each composed state, we argue about the possible evolution of the untimed model
obtained through Definition 3. We show that
i) There is the same deterministic dominator in each of [[PTA1]] and [[PTA2]]. This
is usually the hardest part of the proof. However, we use the fact that the deterministic
dominator state in the PS is expressible as the combination of a composed state and
clock valuation in the PTA. Hence the proofs are in terms of the PTA rather than the PS.
We generally show that each component automaton reaches the state in the composition
and progress can only be made when the entire model is in the composed state.
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ii) Final states in [[PTA1]] and [[PTA2]], corresponding to the PCTL formulas φ1 and
φ2 respectively, are distributed as specified in condition 2 of Theorem 1.
iii) PTA1 and PTA2 have the same start state.

From Lemma 3 we know that this is sufficient for Theorem 1 to hold. Hence we con-
clude that at the level of PTAs PTA1

PTA
≡ φ1,φ2 PTA2.

Deterministic Path Compression, at the level of PSs, bears similarity to weak bisim-
ulation [9] that can abstract away internal actions. However, a notable difference in our
approach from weak bisimulation is that we are able to change invariants on states in
the PTA. This corresponds to removing time steps (Definition 3) in the corresponding
semantic PS. These time steps are not internal actions because composed PSs must
synchronize on time steps to maintain the semantics of PTA composition. A possibility
would be to apply weak bisimulation to the final composed model but this would mean
fixing the number of stations in the composition. The reduced models would no longer
be valid for the general multi station problem.

5 Reducing the 802.11 Station Automaton

For the 802.11 problem, we optimize the station automaton in multiple steps, starting
from the original abstract station model of Figure 2 part (a). In each case, the set of
final states correspond to the PCTL formula φ = P<λ[�(bc = k)], which expresses
the property that the backoff counter of some station reaches k. For every reduction
from PTA1 to PTA2, we prove the correctness of our optimizations by showing that

PTA1
PTA
≡ φ,φ PTA2. Due to space constraints, we defer complete proofs to [8] and

only motivate the key ideas. Our proofs are driven by behavior exhibited by the 802.11
PTA models. For example, a key aspect of many of our proofs is the fact that 802.11
backoff counters are frozen when a busy channel is detected. We can essentially ignore
stations in backoff when the channel is busy. These proofs have been constructed to be
independent of the number of stations in the composition.

Our first optimization removes the SIFS wait following a successful transmission.
The original model is AbsLAN = AbsStn1 ‖ AbsStn2 ‖ .. ‖ AbsStnn ‖ Chan
and the reduced model is IntLAN = IntStn1 ‖ IntStn2 ‖ .. ‖ IntStnn ‖ Chan .
The intermediate station model IntStn has the SIFS wait removed and is shown in
Figure 2 part (b). The difference set (see Definition 15) includes all the stations and
does not include the channel, which is unchanged. The specific difference set is only
the Test Channel urgent state immediately after asserting finish correct . The key
idea of the proof is as follows: All the other stations will detect the busy channel and
move into the Wait until free or Wait until free II state. The successfully complet-
ing station will move into the Done state while the rest of the stations will move ei-
ther into Wait for DIFS or Wait for DIFS II states, which gives us a deterministic
dominator in both the automata (AbsLAN and IntLAN ). In the proof, we exploit the
fact that in the 802.11 protocol, the backoff counters are frozen when a transmission
is detected on the channel. This is modeled by the station in Backoff moving into the
Wait until free II state.

In the final reduced station model, used in our experiments, the DIFS wait has also
been removed. Proving the deterministic dominator relationship is a little more com-



Improved Probabilistic Models for 802.11 Protocol Verification 249

Transmit
x<=tx_len

Sense
x<=DIFS

Wait_for_ACK_TO

x<=ACK_TO

Initial

Backoff

x<=ASLOTTIME

Wait_for_DIFS
x<=DIFS

Wait_until_free

Vulnerable

x<=VULN

Wait_for_SIFS
x<=SIFS

Wait_for_DIFS_II
x<=DIFS

Wait_until_free_II

Wait_for_ACK

Test_channel_II Test_channel

Done

Select_backoff

x==ASLOTTIME, 
backoff>0
backoff := backoff -1, 
x:=0

free(i) x := 0

x==DIFS
x:=0

x:=0

x==VULN
send(i)

x==ASLOTTIME, 
backoff==0
x:=0

busy(i)

busy(i)

busy(i)

free(i)

x:=0

busy(i)

x==DIFS
x:=0

bc<MAX_BACKOFF
bc:=bc+1

bc==MAX_BACKOFF

x==ACK_TO
x:=0

busy(i)

start_ack(i)
x==SIFS

x:=0

x==tx_len
finish_correct(i)
x:=0

x==tx_len
finish_garbled(i)

x:=0

free(i)

busy(i)

busy(i)

free(i)

x:=0,
tx_len:=NON_DET(TX_MIN,TX_MAX)

x==ACK
end_ack(i)
bc:=0,x:=0

x==DIFS
x:=0
free(i)

backoff:=RANDOM(bc)

x==ACK_TO
free(i)

x:=0

Transmit

x<=tx_len

Sense
x<=DIFS

Wait_for_ACK_TO
x<=ACK_TO

Initial

Backoff

x<=ASLOTTIME

Wait_for_DIFS
x<=DIFS

Wait_until_free

Vulnerable

x<=VULN

Wait_for_DIFS_II
x<=DIFS

Wait_until_free_II

Test_channel_II Test_channel

Done

Select_backoff

x==ASLOTTIME, 
backoff>0
backoff := backoff -1, 
x:=0

free(i)
x := 0

x==DIFS
x:=0

x:=0

x==VULN
send(i)

x==ASLOTTIME, 
backoff==0
x:=0

busy(i)

busy(i)

busy(i)

free(i)
x:=0

busy(i)

x==DIFS
x:=0

bc<MAX_BACKOFF
bc:=bc+1

bc==MAX_BACKOFF

x==ACK_TO
x:=0

busy(i)

x==tx_len
finish_correct(i)
x:=0

x==tx_len
finish_garbled(i)

x:=0

free(i)

busy(i)

busy(i)

x:=0,
tx_len:=NON_DET(TX_MIN,TX_MAX)

free(i)
x:=0

x==DIFS
x:=0
free(i)

backoff:=RANDOM(bc)

x==ACK_TO
free(i)

x:=0

Fig. 2. (a) PTA model for an Abstract Station representing both the sender and destination (top);
(b) PTA model for an Intermediate Abstracted and Reduced Station - ACK protocol removed
(bottom)
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plicated here because we need to consider both collision and successful transmission
cases. A discussion of the steps involved can be found in [8].

The major contributor of state space in the protocol is the large range of allowed
transmission lengths. The range is from 315μs to 15717μs and this proves to be a
significant impediment.

To overcome this problem, we begin by parameterizing our models as follows.
Rather than having a non-deterministic edge that selects packet lengths, which are
subsequently held constant, we parameterize the models by packet length and remove
the non-deterministic choice. Hence, we now have a series of PTA models depend-
ing on the choice of parameterizations. The allowable assignment of packet (trans-
mission) lengths is from Par full , the set of all possible parameterizations. Each of
tx len1, .., tx lenn is assigned a value from the interval [TX MIN ,TX MAX ]. For-
mally, Par full = [TX MIN ,TX MAX ]n.

Consider the reduced set of parameterizations Par reduced ⊂ Par full where
tx len1 = TX MIN and tx leni+1 − tx leni ≤ VULN , 1 ≤ i < n. Here we restrict
the maximum allowable increase in transmission length of one station over its immediate
predecessor. This eliminates many parameterizations that would have assigned transmis-
sion lengths close to maximum resulting in a large state space. We have shown (see [8]
for details) that it is sufficient to consider only this limited range of transmission lengths.

6 Soft Deadline Verification

The probability of meeting soft deadlines, which is the minimum probability of a station
delivering a packet within a certain deadline, is a real time property that can be formu-
lated as a probabilistic reachability problem. For example, in an 802.11 topology of
three senders and three receivers, we are interested in the probability that every station
successfully transmits its packet within a given deadline. The reductions presented in
this paper, which depend on deterministic path compression, do not preserve total time
elapsed since certain states in the probabilistic timed automata where the composite
model can spend time have been removed. As a result, paths are replaced with shorter
(time wise) versions.

However, one key aspect of our reductions is that they affect deterministic and well-
defined segments of the automata. The intuition is that it should be possible to “compen-
sate” for the reductions by using additional available information. For example, remov-
ing the acknowledgment protocol has the effect of subtracting a SIFS + ACK period
for every successful transmission made. On the other hand removing DIFS wait results
in subtracting DIFS from the elapsed time for any transmission made.

We begin with the traditional “decoration” of a PTA in order to verify real time
properties. Assume the existence of a composed state Done , which is the compo-
sition of the state Done across the components the model. Decorating the PTA in-
volves adding a global clock (say y) to the system that counts total time elapsed and
a state Deadline exceeded . Edges are added from each state other than Done , with
guard y ≥ deadline to Deadline exceeded . Every invariant other than at Done and
Deadline exceeded is taken in conjunction with y ≤ deadline . The objective is to
model check for the PCTL formula P>λ[�Done], which expresses the soft deadline
property. We defer further discussion of the details to [8] due to lack of space.
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7 Results

Our verification platform is a 1.2 GHz Pentium III server with 1.5 GB of ECC memory
and running Linux 2.4. Our experiments used the Multi-Terminal Binary Decision Di-
agram (MTBDD) engine of PRISM. All properties were checked with an accuracy of
10−6, which means that the model checker stops when probabilities returned by suc-
cessive iterations differ by, or less than, this value.

The growth in state space for the multi station problem is shown in Table 2 part
(a). The optimized two station models show a significant improvement in size when
compared with the models of [2]. Unoptimized models for three and four stations cannot
even be built by the model checker within the resources provided. The obtained upper
bounds on the probability of the backoff counter reaching a certain value are shown in
Table 1. The values for a three station model are higher due to increased contention for
the channel. Verification costs for our optimized models are clearly lower.

Table 1. Probability of backoff counter reaching a specified value in 2 station and 3 station cases

Backoff 2original 2optimized Maximum 3optimized 3opt Maximum
Counter (secs) (secs) probability Iterations (secs) probability
1 0.69 0.09 1.0 285 1428 1.0
2 8.95 1.15 0.18359375 107 124 0.59643554
3 37.37 6.29 0.0170326 259 1250 0.104351032
4 113.25 29.12 7.9424586e-4 506 14183 0.008170952
5 327.04 120.5 1.8566660e-5 525 37659 2.83169319e-4
6 970.38 508.26 2.1729427e-7 947 246874 2.85355921e-5

Table 2. State space sizes for the backoff counter problem and soft deadline problem results

Stations 2Orig 2Opt 3 4
States 5958233 393958 1084111823 1377418222475
Transitions 16563234 958378 3190610466 5162674182210
Choices 11437956 598412 1908688031 2958322202754

G.729 Time Min
type (sec) Probability
1 613 0
2 52388 0.0117

(a) State space size (b) Soft deadline results

We include results from an example case study involving soft deadlines. Consider
three overlapping 802.11 wireless networks each servicing seven 802.11 stations. As-
sume voice data being distributed to all stations from a 100 Mbps 802.3 LAN through the
wireless network using either of two subtypes of the G.729 [16] voice encoding scheme.
A soft deadline for meeting the resultant bandwidth constraints can be formulated; for
details see [8]. The probability of meeting this deadline is shown in Table 2 part (b).

8 Conclusion

In this paper, we have introduced generalized probabilistic timed automata models for
the 802.11 MAC and optimized them using deterministic path compression, a novel
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technique to remove protocol redundancies. We have been somewhat successful, using
this optimization in tackling the state space problem for the 802.11 wireless LAN pro-
tocol. We have also shown that it is still possible to compute the minimum probability
of meeting soft deadlines with the optimized models.

Future extenstions to this effort are to model check four or more stations as well as
consider extensions to the basic access protocol considered here.
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Probabilistic Verification for
“Black-Box” Systems�

H̊akan L.S. Younes

Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Abstract. We explore the concept of a “black-box” stochastic system,
and propose an algorithm for verifying probabilistic properties of such
systems based on very weak assumptions regarding system dynamics.
Properties are expressed as formulae in a probabilistic temporal logic.
Our presentation is a generalization of and an improvement over recent
work by Sen et al. on probabilistic verification for “black-box” systems.

1 Introduction

Stochastic processes are used to model phenomena in nature that involve an
element of chance (the throwing of a die) or are too complex to fully capture in
a deterministic fashion (the duration of a call in a telephone system). Certain
classes of stochastic processes have been studied extensively in the performance
evaluation and model checking communities. Numerous temporal logics, such as
TCTL [1], PCTL [8], and CSL [2, 3], exist for expressing interesting properties
of various types of stochastic processes. Model checking algorithms have been
developed for verifying properties of discrete-time Markov chains [8], continuous-
time Markov chains [3, 11], semi-Markov processes [10], generalized semi-Markov
processes [1], and stochastic discrete event systems in general [15].

Given a stochastic process, we want to know if certain probabilistic properties
hold. For instance, we may ask whether the probability of exhausting bandwidth
over a communication link is below 0.01. We can also introduce deadlines, for
example that a message arrives at its destination within 15 seconds with proba-
bility at least 0.8. Properties of this type can be verified using either numerical
methods or statistical sampling techniques, as discussed by Younes et al. [14].
Numerical methods provide highly accurate results, but rely on strong assump-
tions regarding the dynamics of the systems they are used to analyze. Statistical
techniques require only that the dynamics of a system can be simulated. They
can thus be used for a larger class of stochastic processes, but results are only
probabilistic and attaining high accuracy can to be costly.

For some systems, it may not even be feasible to assume that we can simulate
their behavior. Sen et al. [12] consider the verification problem for such “black-
box” systems. Here, “black-box” means that the system cannot be controlled to

� Supported in part by the US Army Research Office (ARO), under contract no.
DAAD190110485, and the Royal Swedish Academy of Engineering Sciences (IVA).

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 253–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



254 H.L.S. Younes

generate execution traces, or trajectories, on demand starting from arbitrary
states. This is a reasonable assumption, for instance, for a system that has
already been deployed and for which we are given only a set of trajectories
generated during actual execution of the system. We are then asked to verify a
probabilistic property of the system based on the information provided to us as
a fixed set of trajectories. Statistical solution techniques are certainly required to
solve this problem. The statistical method described by Younes and Simmons [15]
(see also [13–Chap. 5]) cannot be used to verify “black-box” systems, however,
because it depends on the ability to generate trajectories on demand.

Sen et al. [12] present an alternative solution method for verification of “black-
box” systems based on statistical hypothesis testing with fixed sample sizes. In
this paper, we improve upon their algorithm by making sure to always accept
the most likely hypothesis, and we correct their procedure for verifying nested
probabilistic properties. Differences between the two approaches are discussed
in detail in Sect. 5.

We focus our attention on systems with piecewise constant trajectories. The
class of stochastic discrete event systems, defined in Sect. 2, satisfies this con-
straint. Sect. 3 introduces the unified temporal stochastic logic (UTSL), which
can be used to express probabilistic and temporal properties of stochastic dis-
crete event systems. UTSL represents a unification of Hansson and Jonsson’s [8]
PCTL, which has a semantics defined for discrete-time Markov chains, and Baier
et al.’s [3] version of CSL (excluding the steady-state operator), which has a se-
mantics defined for continuous-time Markov chains.

Sect. 4 presents an algorithm for the verification of “black-box” systems. Our
algorithm, like that of Sen et al. [12], provides no a priori guarantees regarding
accuracy. Instead, the algorithm computes a p-value for the result, which is a
measure of confidence. The algorithm is essentially finding the most likely answer
to a model checking problem given a fixed set of trajectories. This is the best we
can do, provided that we cannot generate trajectories for the system as we see
fit and are restricted to using a predetermined set of trajectories.

The algorithm presented in this paper is complementary to the statistical
model checking algorithm presented by Younes and Simmons [15], and is useful
under different assumptions. If we cannot generate trajectories for a system on
demand, then the algorithm presented here still allows us to reach conclusions
regarding the behavior of the system. If, however, we can simulate the dynamics
of the system, then we are better off with the approach of Younes and Simmons
as it gives us full control over the probability of obtaining an incorrect result.

2 Stochastic Discrete Event Systems

A stochastic process is any process that evolves over time, and whose evolution
one can follow and predict in terms of probability [4]. At any point in time, a
stochastic process is said to occupy some state. If we attempt to observe the state
of a stochastic process at a specific time, the outcome of such an observation
is governed by some probability law. Mathematically, a stochastic process is
defined as a family of random variables.
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Definition 1 (Stochastic Process). Let S and T be two sets. A stochastic
process is a family of random variables X = {Xt | t ∈ T}, with each random
variable Xt having range S.

The index set T in Definition 1 represents time and is typically the set of
non-negative integers, ZZ∗, for discrete-time stochastic processes and the set of
non-negative real numbers, [0,∞), for continuous-time stochastic processes. The
set S represents the states that the stochastic process can occupy, and this can
be an infinite, or even uncountable, set.

The definition of a stochastic process as a family of random variables is
quite general and includes systems with both continuous and discrete dynamics.
We will focus our attention on a limited, but important, class of stochastic
processes: stochastic discrete event systems. This class includes any stochastic
process that can be thought of as occupying a single state for a duration of time
before an event causes an instantaneous state transition to occur. The canonical
example of such a process is a queuing system, with the state being the number
of items currently in the queue. The state changes at the occurrence of an event
representing the arrival or departure of an item.

2.1 Trajectories

A random variable Xt ∈ X represents the chance experiment of observing the
stochastic process X at time t. If we record our observations at consecutive time
points for all t ∈ T , then we have a trajectory, or sample path, for X . Our work
in probabilistic verification is centered around the verification of temporal logic
formulae over trajectories for stochastic discrete event systems. The terminology
and notation introduced here is used extensively in later sections.

Definition 2 (Trajectory). A trajectory for a stochastic process X is any
sequence of observations {xt ∈ S | t ∈ T} of the random variables Xt ∈ X .

T0 t1 t2 t3 t4

S

0

1

2

3

Fig. 1. A trajectory for a simple queuing system with arrival events occurring at t1, t2
and t3 and a departure event occurring at t4.

The trajectory of a stochastic discrete event system is piecewise constant
and can therefore be represented as a sequence σ = {〈s0, t0〉, 〈s1, t1〉, . . .}, with
si ∈ S and ti ∈ T \ {0}. Zero is excluded to ensure that only a single state can
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be occupied at any point in time. Fig. 1 plots part of a trajectory for a simple
queuing system. Let

Ti =
{

0 if i = 0∑
i−1
j=0 tj if i > 0

, (1)

i.e. Ti is the time at which state si is entered and ti is the duration of time
for which the process remains in si before an event triggers a transition to
state si+1. A trajectory σ is then a sequence of observations of X with xt = si

for Ti ≤ t < Ti + ti. According to this definition, trajectories of stochastic
discrete event systems are right-continuous. A finite trajectory is a sequence
σ = {〈s0, t0〉, . . . , 〈sn,∞〉} where sn is an absorbing state, meaning that no
events can occur in sn and that xt = sn for all t ≥ Tn.

2.2 Measurable Stochastic Discrete Event Systems

Of utmost importance to probabilistic verification is the definition of a probabil-
ity measure over sets of trajectories for a system. The set of trajectories must be
measurable. Formally, a measurable space is a set Ω with a σ-algebra FΩ of sub-
sets of Ω [7]. A probability space is a measurable space 〈Ω,FΩ〉 and a probability
measure μ.

For stochastic discrete event systems, the elements of the σ-algebra are sets
of trajectories with common prefix. A prefix of σ = {〈s0, t0〉, 〈s1, t1〉, . . .} is a
sequence σ

≤τ = {〈s′0, t
′
0〉, . . . , 〈s

′
k
, t′

k
〉}, with s′

i
= si for all i ≤ k,

∑
k

i=0 t′
i

= τ ,
t′
i

= ti for all i < k, and t′
k

< tk. Let Path(σ
≤τ ) denote the set of trajectories

with common prefix σ
≤τ . This set must be measurable, and we assume that a

probability measure μ over sets of trajectories with common prefix exists. This
requirement is not a problem in practice. In general, a stochastic discrete event
system is measurable if the sets S and T are measurable.

The precise definition of μ depends on the specific probability structure of
the stochastic process being studied. A stochastic process is a Markov chain if
μ(Path({〈s0, t0〉, . . . , 〈sk, tk〉})) = μ(Path({〈sk, 0〉})) for all trajectory prefixes
{〈s0, t0〉, . . . , 〈sk, tk〉}. We define a “black-box” probabilistic system in terms of
what we know (or rather, do not know) regarding the probability measure μ.

Definition 3 (“Black-Box” Probabilistic System). A “black-box” proba-
bilistic system is a stochastic discrete event system for which the probability
measure μ over sets of trajectories with common prefix is not fully specified.

3 UTSL: The Unified Temporal Stochastic Logic

A stochastic discrete event system is a triple 〈S, T, μ〉. We assume a factored
representation of S, with a set of state variables SV and a value assignment
function V (s, x) providing the value of x ∈ SV in state s. The domain of x is the
set Dx =

⋃
s∈S V (s, x) of possible values that x can take on. We define the syntax

of UTSL for a factored stochastic discrete event system M = 〈S, T, μ,SV , V 〉 as

Φ ::= x ∼ v
∣∣ ¬Φ

∣∣ Φ ∧ Φ
∣∣ P�	 θ[XI Φ]

∣∣ P�	 θ[Φ UI Φ] ,
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where x ∈ SV , v ∈ Dx, ∼ ∈ {≤,=,≥}, θ ∈ [0, 1], �� ∈ {≤,≥}, and I ⊂ T .
Additional UTSL formulae can be derived in the usual way. For example, ⊥ ≡
(x = v)∧¬(x = v) for some x ∈ SV and v ∈ Dx, � ≡ ¬⊥, Φ∨Ψ ≡ ¬(¬Φ∧¬Ψ),
Φ → Ψ ≡ ¬Φ ∨ Ψ, P�	 θ[Φ U Ψ] ≡ P�	 θ[Φ UT Ψ], and P< θ[ϕ] ≡ ¬P≥ θ[ϕ].

The standard logic operators have their usual meaning. P�	 θ[ϕ] asserts that
the probability measure over the set of trajectories satisfying the path formula ϕ

is related to θ according to ��. Path formulae are constructed using the temporal
path operators XI (“next”) and UI (“until”). The path formula XI Φ asserts
that the next state transition occurs t ∈ I time units into the future and that
Φ holds in the next state, while Φ UI Ψ asserts that Ψ becomes true t ∈ I time
units into the future while Φ holds continuously prior to t.

The validity of a UTSL formula, relative to a factored stochastic discrete
event system M, is defined in terms of a satisfaction relation |=M:

{〈s0, t0〉, . . . , 〈sk, tk〉} |=M x ∼ v iff V (sk, x) ∼ v
σ
≤τ |=M ¬Φ iff σ

≤τ |	=M Φ
σ
≤τ |=M Φ ∧ Ψ iff (σ

≤τ |=M Φ) ∧ (σ
≤τ |=M Ψ)

σ
≤τ |=M P�	 θ[ϕ] iff μ({σ ∈ Path(σ

≤τ ) | σ, τ |=M ϕ}) �� θ

σ, τ |=M X
I Φ iff ∃k ∈ IN.

(
(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I) ∧ (σ≤Tk

|=M Φ)
)

σ, τ |=M Φ UI Ψ iff ∃t ∈ I.
(
(σ≤τ+t |=M Ψ) ∧ ∀t

′ ∈ T.
(
(t′ < t) → (σ

≤τ+t′ |=M Φ)
))

The semantics of Φ UI Ψ requires that Φ holds continuously, i.e. at all time
points, along a trajectory until Ψ is satisfied. This is consistent with the seman-
tics of time-bounded until for TCTL [1]. Depending on the probability measure
μ, Φ may hold immediately at the entry of a state s and also immediately af-
ter a transition from s to s′, but still not hold continuously while the system
remains in s. Conversely, Ψ may hold at some point in time while the system
remains in s, and not hold immediately upon entry to s nor immediately after
a transition from s to s′. It is therefore not sufficient, in general, to verify Φ
and Ψ at discrete points along a trajectory. It is sufficient to do so, however, for
Markov chains. Our semantics for UTSL interpreted over general stochastic dis-
crete event systems therefore coincides with the semantics for PCTL interpreted
over discrete-time Markov chains [8] and CSL interpreted over continuous-time
Markov chains [3], provided we choose the time domain T appropriately.

A UTSL model checking problem is a triple 〈M, s,Φ〉, with the problem being
to verify whether Φ holds for M if execution starts in state s, i.e. {〈s, 0〉} |=M Φ.
We use s |= Φ as a short form for the latter, leaving out M when it is clear from
the context which system is involved in the model checking problem.

4 Statistical Verification Algorithm

A stochastic discrete event system M is a “black-box” system if we lack an
exact definition of the probability measure μ over sets of trajectories of M (Def-
inition 3) and we cannot sample trajectories according to μ. Thus, to solve a
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verification problem s |= Φ for M, we must rely on an external source to pro-
vide a sample set of n trajectories for M that is representative of the probability
measure μ. We further assume that we are provided only with truncated trajec-
tories, because infinite trajectories would require infinite memory to store.

We use statistical hypothesis testing to verify properties of a “black-box”
system given a sample of n truncated trajectories. Since we rely on statistical
techniques, we will typically not know with certainty if the result we produce is
correct. The method we present for verification of “black-box” systems computes
a p-value for a verification result, which is a value in the interval [0, 1] with values
closer to 0 representing higher confidence in the result [9–pp. 255–256].

4.1 Verification Without Nested Probabilistic Operators

Given a state s, verification of a UTSL formula x ∼ v is trivial. We can simply
read the value assigned to x in s and compare it to v. We consider the remaining
three cases in more detail, starting with the probabilistic operator P�	 θ[·]. The
objective is to produce a Boolean result annotated with a p-value.

Probabilistic Operator. Consider the problem of verifying the UTSL formula
P�	 θ[ϕ] in state s of a stochastic discrete event system M. Let Xi be a random
variable representing the verification of the path formula ϕ over a trajectory for
M drawn according to the probability measure μ(Path({〈s, 0〉})). If we choose
Xi = 1 to represent the fact that ϕ holds over a random trajectory, and Xi = 0
to represent the opposite fact, then Xi is a Bernoulli variate with parameter p =
μ({σ ∈ Path({〈s, 0〉}) | σ, 0 |= ϕ}), i.e. Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p.
To verify P�	 θ[ϕ], we can make observations of Xi and use statistical hypothesis
testing to determine if p �� θ is likely to hold. An observation of Xi, denoted
xi, is the verification of ϕ over a specific trajectory σi. If σi satisfies the path
formula ϕ, then xi = 1, otherwise xi = 0.

In our case, we are given n truncated trajectories for a “black-box” system
that we can use to generate observations of Xi. Each observation is obtained
by verifying the path formula ϕ over one of the truncated trajectories. This is
straightforward given a truncated trajectory {〈s0, t0〉, . . . , 〈sk−1, tk−1〉, sk}, pro-
vided that ϕ does not contain any probabilistic operators. For ϕ = XI Φ, we
just check if t0 ∈ I and s1 |= Φ. For ϕ = Φ UI Ψ, we traverse the trajectory
until we find a state si such that one of the following conditions holds, with Ti

defined as in (1) to be the time at which state si is entered:

1. (si |= ¬Φ) ∧ ((Ti /∈ I) ∨ (si |= ¬Ψ))
2. (Ti ∈ I) ∧ (si |= Ψ)
3. ((Ti, Ti+1) ∩ I 	= ∅) ∧ (si |= Φ) ∧ (si |= Ψ)

In the first case, Φ UI Ψ does not hold over the trajectory, while in the last two
cases the time-bounded until formula does hold. Note that we may not always
be able to determine the value of ϕ over all trajectories because the trajectories
that are provided to us are assumed to be truncated.
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We consider the case P≥ θ[ϕ] in detail, noting that P≤ θ[ϕ] can be handled in
the same way simply by reversing the value of each observation. We want to test
the hypothesis H0 : p ≥ θ against the alternative hypothesis H1 : p < θ by using
the n observations x1, . . . , xn of X1, . . . , Xn. To do so, we specify a constant
c. If
∑

n

i=1 xi is greater than c, then hypothesis H0 is accepted, i.e. P≥ θ[ϕ] is
determined to hold. Otherwise, if the given sum is at most c, then hypothesis
H1 is accepted, meaning that P≥ θ[ϕ] is determined not to hold. The constant c
should be chosen so that it becomes roughly equally likely to accept H0 as H1

if p equals θ. The pair 〈n, c〉 is referred to as a single sampling plan [6, 5].
The probability distribution of a sum of n Bernoulli variates with parameter

p is a binomial distribution with cumulative distribution function F (c;n, p) =∑
c

i=0

(
n

i

)
pi(1 − p)n−i. Using a single sampling plan 〈n, c〉, we accept hypothesis

H1 with probability F (c;n, p) and hypothesis H0 with probability 1−F (c;n, p).
Ideally, we should choose c such that F (c;n, θ) = 0.5, but it is not always possible
to attain equality because the binomial distribution is a discrete distribution.
The best we can do is to choose c such that |F (c;n, θ) − 0.5| is minimized.

We now have a way to decide whether to accept or reject the hypothesis that
P≥ θ[ϕ] holds, but we also want to report a p-value reflecting the confidence in
our decision. The p-value is defined as the probability of the sum of observations
being at least as extreme as the one obtained provided that the hypothesis that
was not accepted holds. The p-value for accepting H0 when

∑
n

i=1 xi = d is
Pr[
∑

n

i=1 Xi ≥ d | p < θ], which is less than F (n − d;n, 1 − θ) = 1 − F (d −
1;n, θ). The p-value for accepting H1 is Pr[

∑
n

i=1 Xi ≤ d | p ≥ θ], which is
at most F (d;n, θ). The following theorem justifies our choice of the constant c
[13–Theorem 7.1]:

Theorem 1 (Minimization of p-value). By choosing c to minimize the value
of |F (c;n, θ) − 0.5| when testing H0 : p ≥ θ against H1 : p < θ using a single
sampling plan 〈n, c〉, the hypothesis with the lowest p-value is always accepted.

In practice, it is unnecessary to compute c. It is easier simply to compute the
p-value of each hypothesis and accept the hypothesis with the lowest p-value.

Example 1. Consider the problem of verifying Φ = P≥ 0.9

[
� U [0,100] x=1

]
in a

state satisfying x=0 for a “black-box” system that in reality is the continuous-
time Markov chain shown in Fig. 2. The probability measure of trajectories start-
ing in state x=0 and satisfying � U [0,100] x=1 is 1 − e−1 ≈ 0.63, so the UTSL
formula does not hold, but we would of course not know this unless we had ac-
cess to the model. Assume that we are given a set of 100 truncated trajectories,
of which 63 satisfy and 37 do not satisfy the path formula � U [0,100] x=1. Thus,
n = 100 and d = 63. The p-value for H0 is 1 − F (62; 100, 0.9) ≈ 1 − 10−13,
while the p-value for H1 is F (63, 100, 0.9) ≈ 5.48 · 10−13. The hypothesis with
the lowest p-value is H1, so we conclude that Φ does not hold.

In the analysis so far we have assumed that the value of ϕ can be determined
over all n truncated trajectories. Now, assume that we are unable to verify the
path formula ϕ over some of the n truncated trajectories. This would happen
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x = 0

1/100

x = 1

Fig. 2. A simple two-state continuous-time Markov chain

if we verify Φ UI Ψ over a trajectory that has been truncated before either
¬Φ∨Ψ is satisfied or time exceeds all values in I. We cannot simply ignore such
trajectories: it is assumed that the entire set of n trajectories is representative
of the measure μ, but the subset of truncated trajectories for which we can
determine the value of ϕ is not guaranteed to be a representative sample.

Example 2. Consider the same problem as in Example 1. Assume that we are
given a set of 100 trajectories for the system that all have been truncated be-
fore time 50. Some of the trajectories, on average 39 in every 100, will satisfy
� U [0,100] x=1, while the remaining truncated trajectories will not contain suf-
ficient information to determine the validity of � U [0,100] x=1 over these trajec-
tories. An analysis based solely on the trajectories over which the path formula
can be decisively verified would be severely biased. If the number of positive ob-
servations is exactly 39, with 61 undetermined observations, we would wrongly
conclude that Φ holds with p-value 1 − F (38; 39, 0.9) ≈ 0.0164, which implies a
fairly high confidence in the result.

Let n′ be the number of observations whose value we can determine and let d′

be the sum of these observations. We then know that the sum of all observations,
d, is at least d′ and at most d′ + n− n′. If d′ > c, then hypothesis H0 can safely
be accepted. Instead of a single p-value, we associate an interval of possible p-
values with the result: [F (n′ − d′;n, 1 − θ), F (n − d′;n, 1 − θ)]. Conversely, if
d′ + n− n′ ≤ c, then hypothesis H1 can be accepted with p-value in the interval
[F (d′;n, θ), F (d′ +n−n′;n, θ)]. In all other cases it is not clear which hypothesis
should be accepted. We could then say that we do not have enough information
to make an informed choice. Alternatively, we could accept one of the hypotheses
with its associated p-value interval. We prefer to always make some choice, and
we recommend choosing H0 if F (n − d′;n, 1 − θ) ≤ F (d′ + n − n′;n, θ) and H1

otherwise. This strategy minimizes the maximum possible p-value. Alternatively,
we could minimize the minimum possible p-value by instead choosing H0 if
F (n′ − d′;n, 1 − θ) ≤ F (d;n, θ) and H1 otherwise.

Example 3. Consider the same situation as in Example 2, with 39 positive and
61 undetermined observations. The p-value for accepting Φ = P≥ 0.9

[
� U [0,100]

x=1
]

as true lies in the interval [F (0; 100, 0.1), F (61, 100, 0.1)] ≈ [2.65 ·10−5, 1−
3.77·10−15]. For the opposite decision, we get [F (39; 100, 0.9), F (100; 100, 0.9)] ≈
[1.59 · 10−35, 1]. Both intervals are almost equally uninformative, so no matter
what decision we make, we will have a low confidence in the result. This is in
sharp contrast to the faulty analysis suggested in Example 2, which lead to an
acceptance of Φ as true with a low p-value.
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Composite State Formulae. To verify ¬Φ, we first verify Φ. If we conclude
that Φ has a certain truth value with p-value pv , then we conclude that ¬Φ
has the opposite truth value with the same p-value. To motivate this, consider
the case ¬P≥ θ[ϕ]. To verify P≥ θ[ϕ], we test the hypothesis H0 : p ≥ θ against
H1 : p < θ as stated above. Note, however, that ¬P≥ θ[ϕ] ≡ P< θ[ϕ], which could
be posed as the problem of testing the hypothesis H ′

0 : p < θ against H ′
1 : p ≥ θ.

Since H ′
0 = H1 and H ′

1 = H0, we can simply negate the result of verifying
P≥ θ[ϕ] while maintaining the same p-value (cf. [12]).

For a conjunction Φ∧Ψ, we have to consider four cases. First, if we verify Φ
to hold with p-value pvΦ and Ψ to hold with p-value pvΨ, then we conclude that
Φ∧Ψ holds with p-value max(pvΦ, pvΨ). Thus, we are no more confident in the
result for Φ∧Ψ than we are in the results for the individual conjuncts. Second, if
we verify Φ not to hold with p-value pvΦ, while verifying that Ψ holds, then we
base the decision for the conjunction on the result for Φ alone and conclude that
Φ∧Ψ does not hold with p-value pvΦ. The third case is analogous to the second
with Φ and Ψ interchanged. Finally, if we verify Φ not to hold with p-value pvΦ

and Ψ not to hold with p-value pvΨ, then we conclude that Φ∧Ψ does not hold
with p-value min(pvΦ, pvΨ). In this case, we have two sources (not necessarily
independent) telling us that the conjunction is false. We have no reason to be
less confident in the result for the conjunction than in the result for each of the
conjuncts, hence the minimum.

For a mathematical derivation of the given expressions, we consider the for-
mula P≥ θ1 [ϕ1]∧P≥ θ2 [ϕ2]. Let di denote the number of trajectories that satisfy
ϕi. Provided we accept the conjunction as true, which means we accept each
conjunct as true, the p-value for the result is

Pr[
n∑

i=1

X
(1)
i

≥ d1 ∧

n∑
i=1

X
(2)
i

≥ d2 | p1 < θ1 ∨ p2 < θ2] . (2)

To compute this p-value, consider the three ways in which p1 < θ1 ∨ p2 < θ2

can be satisfied (cf. [12]). We know from elementary probability theory that
Pr[A ∧ B] ≤ min(Pr[A],Pr[B]) for arbitrary events A and B. From this fact,
and assuming that pv i is the p-value associated with the verification result for
P≥ θi

[ϕi], we derive the following:

1. Pr[
∑

n

i=1 X
(1)
i

≥ d1 ∧
∑

n

i=1 X
(2)
i

≥ d2 | p1 < θ1 ∧ p2 < θ2] ≤ min(pv1, pv2)
2. Pr[

∑
n

i=1 X
(1)
i

≥ d1∧
∑

n

i=1 X
(2)
i

≥ d2 | p1 < θ1∧p2 ≥ θ2] ≤ min(pv1, 1) = pv1

3. Pr[
∑

n

i=1 X
(1)
i

≥ d1∧
∑

n

i=1 X
(2)
i

≥ d2 | p1 ≥ θ1∧p2 < θ2] ≤ min(1, pv2) = pv2

We take the maximum over these three cases to obtain a bound for (2), which
gives us max(pv1, pv2). For the same formula, but now assuming we have verified
both conjuncts to be false, we compute the p-value as

Pr[
n∑

i=1

X
(1)
i

≤ d1 ∧

n∑
i=1

X
(2)
i

≤ d2 | p1 ≥ θ1 ∧ p2 ≥ θ2] ≤ min(pv1, pv2) . (3)

If one conjunct has been verified to be false with p-value pv and the other
conjunct has been verified to be true with p-value pv ′, then the conjunction is
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determined to be false with p-value pv . This is because the result for the entire
conjunction depends only on the conjunct that has been verified to be false.

4.2 Verification with Nested Probabilistic Operators

If we allow nested probabilistic operators, verification of UTSL formulae for
“black-box” stochastic discrete event systems becomes much harder. Consider
the formula P≥ θ

[
� U [0,100] P≥ θ′ [ϕ]

]
. In order to verify this formula, we must

test if P≥ θ′ [ϕ] holds at some time t ∈ [0, 100] along the set of trajectories that
we are given. Unless the time domain T is such that there is a finite number
of time points in a finite interval, then we potentially have to verify P≥ θ′ [ϕ]
at an infinite or even uncountable number of points along a trajectory, which
clearly is infeasible. Even if T = ZZ∗, so that we only have to verify nested
probabilistic formulae at a finite number of points, we still have to take the
entire prefix of the trajectory into account at each time point. We are given a
fixed set of trajectories, and we can use only the subset of trajectories with a
matching prefix to verify a nested probabilistic formula. It is thus likely that
we will have few trajectories available to use for verifying nested probabilistic
formulae. In the worst case, there will be only a single matching prefix, in which
case the uncertainty in the result will be overwhelming.

Only if we assume that the “black-box” system is a Markov chain, which
is a rather strong assumption, can we hope to have a significant number of
trajectories available for the verification of nested probabilistic formulae. This is
because, under the Markov assumption, we only have to take the last state along
a trajectory prefix into consideration. Consequently, any suffix of a truncated
trajectory starting at a specific state s can be regarded as representative of the
probability measure μ({〈s, 0〉}) for a Markov chain.

Another complicating factor for verifying P≥ θ[ϕ], where ϕ contains nested
probabilistic operators, is that we cannot verify ϕ over trajectories without some
uncertainty in the result. This means that we no longer obtain observations of
the random variables Xi, as defined above, but instead we observe some other
random variables Yi, related to Xi through bounds on the observation error.

To compute a p-value for nested verification, we assume that Pr[Yi = 0 | Xi =
1] ≤ α and Pr[Yi = 1 | Xi = 0] ≤ β. We can make this assumption if we introduce
indifference regions in the verification of nested probabilistic formulae and use
the procedure described by Younes [13–Chap. 5] to verify path formulae over
truncated trajectories. We have the following bounds [13–Lemma 5.7]: p(1−α) ≤
Pr[Yi = 1] ≤ 1 − (1 − p)(1 − β). The p-value for accepting P≥ θ[ϕ] as true
when the sum of the observations is d is Pr[

∑
n

i=1 Yi ≥ d | p < θ], which is
less than F (n − d;n, (1 − θ)(1 − β)). The p-value for the opposite decision is
Pr[
∑

n

i=1 Yi ≤ d | p ≥ θ], which is at most F (d;n, θ(1 − α)). Since F (d;n, p)
increases as p decreases, we see that the p-value increases as the error bounds
α and β increase, which makes perfect sense. As was suggested earlier, we can
minimize the p-value of the verification result by computing the p-values of both
hypotheses and accept the one with the lowest p-value.
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We can let the user specify a parameter δ0 that controls the relative width of
the indifference regions. A nested probabilistic formula P≥ θ[ϕ] is verified with an
indifference region of half-width δ = δ0θ if θ ≤ 0.5 and δ = δ0(1 − θ) otherwise.
The verification is carried out using acceptance sampling as before, but with
hypotheses H0 : p ≥ θ + δ and H1 : p ≤ θ − δ. Instead of reporting a p-value,
as is done for top-level probabilistic operators, we report bounds for the type
I error probability of the sampling plan in use if H1 is accepted and the type
II error probability if H0 is accepted. In our case, assuming a sampling plan
〈n, c〉 is used, the type I error bound is 1 − F (c;n, θ + δ) and the type II error
bound is F (c;n, θ − δ). As error bounds for the computation of the p-value for a
top-level probabilistic operator, we simply take the maximum error bounds for
the verification of the path formula over all trajectories.

5 Comparison with Related Work

The idea of using statistical hypothesis testing for verification of “black-box” sys-
tems was first proposed by Sen et al. [12]. This section highlights the differences
between their approach and the approach presented in this paper.

First, consider the verification of a probabilistic formula P≥ θ[ϕ]. Our ap-
proach is essentially the same as theirs: given a constant c, accept if

∑
n

i=1 Xi > c
and reject otherwise. Their choice of c is different, however, and is based on the
normal approximation for the binomial distribution. Their acceptance condition
is
∑

n

i=1 Xi ≥ nθ, which corresponds to choosing c to be �nθ − 1. Their al-
gorithm, as a consequence, will under some circumstances accept a hypothesis
with a larger p-value than the alternative hypothesis. By choosing c as we do,
without relying on the normal approximation, we guarantee that the hypothesis
with the smallest p-value is always accepted (Theorem 1). Consider P≥ 0.01[ϕ],
for example, with n = 501 and d = 5. Our procedure would accept the formula as
true with p-value 0.562, while the algorithm of Sen et al. would reject it as false
with p-value 0.614. It is important to note that their choice of c does not impact
the soundness of their algorithm, but it may lead to counterintuitive results.

The second improvement over the method presented by Sen et al. is in the
calculation of the p-value for the verification of a conjunction Φ ∧ Ψ when both
conjuncts have been verified to be false. They state that the p-value is bounded
by pvΦ+pvΨ, which is correct but unnecessarily conservative. There is no reason
to believe that the confidence in the result for Φ ∧ Ψ would be lower (i.e. the
p-value higher) if we are convinced that both conjuncts are false. We have shown
that the p-value in this case is bounded by min(pvΦ, pvΨ).

Sen et al., in their handling of nested probabilistic operators, confuse the
p-value with the probability of accepting a false hypothesis (generally referred
to as the type I or type II error of a sampling plan). The p-value is not a bound
on the probability of a certain test procedure accepting a false hypothesis. In
fact, the test that both they and we use does not provide any useful bound
on the probability of accepting a false hypothesis. Their analysis relies heavily
on the ability to bound the probability of accepting a false hypothesis, and we
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have presented a way to provide such bounds by introducing indifference regions
(rather than computing p-values) for nested probabilistic operators.

In addition, Sen et al. are vague regarding the assumptions needed for their
approach to produce reliable answers. The fact that they treat any portion of a
trajectory starting in s, regardless of the portion preceding s, as a sample from
the same distribution, hides a rather strong assumption regarding the dynamics
of their “black-box” systems. As we have pointed out, this is not a valid as-
sumption unless we know that the system is a Markov chain. They also assume
that truncated trajectories are sufficiently long so that a path formula can be
verified fully over each truncated trajectory. We have removed this assumption
and we have presented a procedure for handling situations when the value of a
path formula cannot be determined over all truncated trajectories.

Finally, the empirical analysis offered by Sen et al. easily gives the reader the
impression that a low p-value can be guaranteed for a verification result simply by
increasing the sample size, even though the authors correctly state that a certain
p-value never can be guaranteed. If we are unlucky, we may make observations
that give us a large p-value even in cases when this is unlikely, and a large p-
value may even be the most likely outcome in some cases. The empirical results
of Sen et al. cannot be replicated reliably because there is no fixed procedure by
which one can determine the sample size required to achieve a certain p-value.
Their results give the false impression that their procedure is sequential, i.e.
that the sample size automatically adjusts to the difficulty of attaining a certain
p-value, when in reality they selected the reported sample sizes manually based
on prior empirical testing (K. Sen, personal communication, May 20, 2004). It
is therefore misleading to say that an algorithm for “black-box” verification is
“faster” than a statistical model checking algorithm that is designed to realize
certain a priori performance characteristics (such as the algorithm described by
Younes and Simmons [15]).

6 Discussion

Sen et al. [12] were first to consider the problem of probabilistic verification for
“black-box” systems. We have generalized their idea to a wider class of proba-
bilistic systems that can be characterized as stochastic discrete event systems.
Our most important contribution is to have given a clear definition of what
constitutes a “black-box” system, and to have made explicit any assumptions
making feasible the application of statistical hypothesis testing as a solution
technique for verification of such systems.

The algorithm presented in this paper should not be thought of as an al-
ternative to the statistical model checking algorithm proposed by Younes and
Simmons [15] and empirically evaluated by Younes et al. [14]. The two algorithms
are complementary rather than competing, and are useful under disparate sets
of assumptions. If we cannot generate trajectories for a system on demand, then
the algorithm presented here allows us to still reach conclusions regarding the be-
havior of the system. If, however, we know the dynamics of a system well enough
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to enable simulation, then we are better off with the alternative approach as it
gives full control over the probability of obtaining an incorrect result.
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Abstract. Statistical methods to model check stochastic systems have
been, thus far, developed only for a sublogic of continuous stochastic logic
(CSL) that does not have steady state operator and unbounded until
formulas. In this paper, we present a statistical model checking algorithm
that also verifies CSL formulas with unbounded untils. The algorithm is
based on Monte Carlo simulation of the model and hypothesis testing
of the samples, as opposed to sequential hypothesis testing. We have
implemented the algorithm in a tool called VESTA, and found it to be
effective in verifying several examples.

1 Introduction

Stochastic models and temporal logics such as continuous stochastic logic
(CSL) [1, 3] and probabilistic computation tree logic (PCTL) [9] are widely used
to model practical systems and analyze their performance and reliability. There
are two primary approaches to analyzing the stochastic behavior of such sys-
tems: numerical and statistical. In the numerical approach, the formal model of
the system is model checked for correctness with respect to the specification using
symbolic and numerical methods. Model checkers for different classes of stochas-
tic processes and specification logics have been developed [10, 13, 12, 4, 5, 14, 2].
Although the numerical approach is highly accurate, it suffers from memory
problem due to state-space explosion and being computationally intensive. An
alternate method, proposed in [18], is based on Monte Carlo simulation of the
model and performing sequential hypothesis testing on the sample generated.
In [15], this method was extended to statistically verify black-box, deployed sys-
tems that can only be passively observed. Being statistical, these methods are
less precise: they only provide probabilistic guarantees of correctness.

Both statistical approaches (presented in [18, 15]), considered a sublogic
of continuous stochastic logic (CSL) that excludes steady state operator and
unbounded until operator. In this paper, we extend the statistical verification
method to verify CSL (or PCTL) formulas that may have unbounded until con-
nectives. Specifically, we consider a sublogic of CSL (and PCTL) that contains
all the logical connectives, except for the steady-state operator and present a
model checking algorithm for it. As in [18], we assume we have a model that can
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be simulated on a need basis. The samples generated by Monte Carlo simulation
are subjected to hypothesis testing. However, unlike [18], we do simple hypothe-
sis testing as opposed to sequential hypothesis testing. Simple hypothesis testing
is easily amenable to parallelism, since the sampling and statistical tests can be
done in parallel. We exploit parallelism in our implementation of the algorithm.

We make no inherent assumptions about the model that is being verified,
other than it can be simulated using discrete event simulation, and that the
model checking problem is well defined with respect to CSL (or PCTL). Thus,
our algorithm can be successfully applied to Discrete Time Markov Chains,
Continuous Time Markov Chains, and Semi Markov Chains. However, it is un-
clear whether our method can be applied to Generalized Semi Markov Processes
(GSMP). This is because there is no well understood definition of a probability
space on execution paths of a GSMP such that the model checking problem is
well-defined, i.e., path formulas in CSL define measurable sets.

The rest of the paper is organized as follows. In Section 2, we give our assump-
tions about the system being analyzed, and present the syntax and semantics
of CSL (and PCTL). The model checking algorithm is presented in Section 3.
The algorithm is inductive, based on the structure of the formula being verified,
and we present the details of the algorithm for all the CSL connectives in our
sublogic, though our analysis of the previously considered operators (such as
conjunction, negation, next, bounded until, and the probabilistic operator) is
similar to that presented in [18], the decision procedures we use differ. Section 4
contains details of our implementation in the VESTA tool and the results of our
experimental analysis of the tool. Finally, we conclude in Section 5.

2 Model and Logic

We consider stochastic models that meet the following requirements:

1. Sample execution paths can be generated through discrete-event simulation.
Execution paths will be a sequences of the form π = s0

t0→ s1
t1→ s2

t2→ · · ·
where each si is a state of the model and ti ∈ R>0 is the time spent in the
state si before moving to the state si+1.

2. A probability space can be defined on the execution paths of the model in
such a way that the paths satisfying any path formula in our concerned logic
(CSL or PCTL), is measurable.

3. The number of states of the system is finite.

It has been shown that commonly used models such as continuous-time
Markov chains (CTMC) [17], semi-Markov chains (SMC) [7, 14], which are a
generalization of CTMC, meet the above requirements. While we believe our
algorithm will work for any model that satisfies the above conditions, in order
to establish the mathematical concepts and notation clearly, we focus on SMCs.

Let AP be a set of finite atomic propositions. A labelled semi-Markov chain
(SMC) is a tuple M = (S, sI ,P,Q, L) where S is a finite set of states, sI is
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the initial state, P : S × S → [0, 1] is a transition probability matrix such that∑
s′∈S P(s, s′) = 1 for each s in S, Q : S × S → (R≥0 → [0, 1]) is a matrix of

continuous cumulative probability distribution functions such that P(s, s′) = 0
implies for all t, Q(s, s′, t) = 1, and L : S → 2AP is a labelling function that
maps every state to a set of atomic propositions.

If for any two states s and s′, P(s, s′) > 0 then there is a transition from
s to s′, and the probability of the transition is given by P(s, s′). Thus we can
see (S, sI ,P, L) as the discrete-time Markov chain embedded in the SMC M.
Once a next state s′ from the current state s is sampled according to the matrix
P, the sojourn time in the state s is determined according to the cumulative
probability distribution function Q(s, s′, t). The probability to move from state
s to s′ within t units of time given that s′ is sampled as the next state is given
by Q(s, s′, t). Note that if all the probability distribution functions in the matrix
Q are exponential then the SMC becomes a CTMC.

A sequence π = s0
t0→ s1

t1→ s2
t2→ · · · is called a path of M, if s0 = sI , si ∈ S,

ti ∈ R≥0, and P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in an execution
π by π[i] = si, and the time spent in the ith state by δ(π, i) = ti. The time at
which the execution enters state π[i+ 1] is given by τ(π, i+ 1) =

∑j=i
j=0 δ(π, j).

The state of the execution at time t (if the sum of sojourn times in all states in
the path exceeds t), denoted by π(t), is the state si such that i is the smallest
number for which t ≤ τ(π, i+ 1). We let Path(s) be the set of paths starting at
state s.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. Let
I0, I1, I2, . . . Ik−1 be non-empty intervals in R≥0. Then C(s0, I0, s1, . . . Ik−1, sk)
denotes a cylinder set consisting of all paths π ∈ Path(s0) such that π[i] = si

(for 0 ≤ i ≤ k), and δ(π, i) ∈ Ii (for i < k). Let B be the smallest σ-algebra on
Path(s0) which contains all the cylinders C(s0, I0, s1, . . . Ik−1, sk). The measure
μ on cylinder sets can be inductively defined as μ(C(s0)) = 1 and for k > 0 as

μ(C(s0, I0, s1, . . . Ik−1, sk))
= μ(C(s0, I0, s1, . . . sk−1)) ·P(sk−1, sk) · (Q(sk−1, sk, u)−Q(sk−1, sk, �))

where � = inf Ik and u = sup Ik. The probability measure on B is then defined as
the unique measure that agrees with μ (as defined above) on the cylinder sets.

2.1 CSL and PCTL Syntax and Semantics

Continuous stochastic logic (CSL) is introduced in [1] as a logic to express prob-
abilistic properties of continuous time Markov chains (CTMCs). We adopt a
sublogic of CSL that excludes the steady-state probabilistic operator. Let φ rep-
resents a state formula and ψ represents a path formula. Then:

φ ::= true | a ∈ AP | ¬φ | φ ∧ φ | P��p(ψ) ψ ::= φ U φ | φ U≤tφ | Xφ | X≤tφ

where AP is the set of atomic propositions, 	
 ∈ {<,≤, >,≥}, p ∈ [0, 1], and
t ∈ R≥0. The notion that a state s (or a path π) satisfies a formula φ is denoted
by s |= φ (or π |= φ), and is defined inductively as follows:
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s |= true s |= a iff a ∈ AP(s)
s |= ¬φ iff s �|= φ s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ 2

s |= P��p(ψ) iff Prob{π ∈ Path(s) | π |= ψ} �� p
π |= Xφ iff τ(π, 1) < ∞ and π[1] |= φ

π |= X≤tφ iff τ(π, 1) ≤ t and π[1] |= φ
π |= φ1 U φ2 iff ∃x ∈ R≥0 (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

π |= φ1 U≤tφ2 iff ∃x ∈ [0, t]. (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

It can shown that for any path formula ψ and any state s, the set {π ∈
Path(s) | π |= ψ} is measurable [14]. A formula P��p(ψ) is satisfied by a state
s if Prob[path starting at s satisfies ψ] 	
 p. The path formula Xφ holds over a
path if φ holds at the second state on the path. The formula φ1 U≤tφ2 is true
over a path π if φ2 holds in some state along π at a time x ∈ [0, t], and φ holds
at all prior states.

Note that if we change the time domain in the above logic from R≥0 to natural
numbers N, we get the logic PCTL (stands for probabilistic computation tree
logic) [9]. The model-checking algorithm that we describe next is correct for both
time domains. Therefore, we can use the model-checking algorithm for verifying
properties expressed in both CSL and PCTL. In case of model-checking a PCTL
formula, we will assume that the model provided is discrete-time with unit time
associated with every transition.

3 Statistical Model Checking

Our model checking algorithm, A, proceeds recursively based on the structure
of the formula. Before describing the details of the algorithm, we present the
theorem that formally states the correctness of the algorithm. The statement
of the theorem is instructive in understanding the subsequent analysis. The
algorithm A takes as input a stochastic model M, a formula φ in CSL, error
bounds α∗ and β∗, and three other parameters δ1, δ2, and ps. The result of model
checking on these parameters, denoted by Aδ1,δ2,ps(M, φ, α∗, β∗), can be either
true or false. The algorithm provides the following correctness guarantees.

Theorem 1. If the model M satisfies the following conditions

C1: For every subformula of the form P≥pψ in the formula φ and for every state
s in M, the probability that a path from s satisfies ψ must not lie in the
range [p−δ1−α∗

1−α∗ , p+δ1
1−β∗ ];

C2: For any subformula of the form φ1 U φ2 and for every state s in M, the
probability that a path from s satisfies φ1 U φ2 must not lie in the range
(0, δ2

(1−ps)N ], where N is the number of states in the model M.

Then the algorithm provides the following guarantees

R1 : Prob[Aδ1,δ2,ps(M, φ, α∗, β∗) = true | M �|= φ] ≤ α∗

Prob[Aδ1,δ2,ps(M, φ, α∗, β∗) = false | M |= φ] ≤ β∗
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Condition C1 requires that the model be such that for any subformula P≥pψ,
the probability of ψ being satisfied at a state be bounded away from p. Condition
C2 requires that either an until formula does not hold in a state or it holds with
some probability that is bounded away from 0. Under such circumstances, we
guarantee that the probability of error of A is within the required bounds.

A few points about the algorithm are in order. First, the requirement that the
model satisfy condition C1, is something that previous stochastic model checking
algorithms also have. Second, the error bounds α∗ and β∗ are parameters to the
algorithm. Hence, we can improve the confidence in the algorithm’s answer to
be as close to 1 as we like. Third, the bounds required in conditions C1 and
C2 depend on the parameters δ1, δ2, and ps given to the algorithm. Thus, they
can be tuned based on the model and formula being analyzed, to ensure that
C1 and C2 are satisfied. Typically, for our experiments, we picked δ1 = δ2 =
0.01 and ps = 0.1. Note that one may easily pick ps to be c/N where N is
the number of states and c is some positive constant. This will ensure that
the upper bound of the range in condition C2 is δ2

(1−c/N)N ≤ δ22ec (proved
in [16]), which can be made as close to 0 as desired by a suitable choice of c.
Note that making ps smaller comes with a price: if we make ps very small, the
expected length of the samples increases. This can increase the computation
cost, something we also observed in our experiments. However, techniques such
as caching and discounting optimization (discussed in Section 4) helped us to
considerably reduce the computation cost for small ps.

We make the following notational simplifications in the rest of the paper.
The parameters δ1, δ2, and ps are global to the algorithm A; therefore, we will
omit the superscript δ1, δ2, ps from Aδ1,δ2,ps(M, φ, α∗, β∗) and write it simply
as A(M, φ, α∗, β∗). The value of the error bounds α and β will change for the
invocation of A on various subformulas; therefore, we will carry them with A.
The result of model-checking a state formula φ at a state s will be denoted by
A(s, φ, α, β); similarly, the result of model-checking a path formula ψ over a
path π will be denoted by A(π, ψ, α, β). Note that A(M, φ, α∗, β∗) is same as
A(sI , φ, α

∗, β∗).

3.1 Probabilistic Operator: Computing A(s, P��p(ψ), α, β)

We use statistical hypothesis testing [11] to verify a probabilistic property φ =
P��p(ψ) at a given state s. Without loss of generality, we show our procedure
for φ = P≥p(ψ). Note that P<p(ψ) is the same as ¬P≥p(ψ) and < (or >) is
essentially the same as ≤ (or ≥). Let p′ be the probability that ψ holds over a
random path starting at s. We say that s |= P≥p(ψ) if and only if p′ ≥ p and
s �|= P≥p(ψ) if and only if p′ < p.

We want to decide whether s |= P≥p(ψ) or s �|= P≥p(ψ). By condition C1,
we know that p′ cannot lie in the range [p−δ1−α

1−α , p+δ1
1−β ], which implies that p′

cannot lie in the range [p − δ1, p + δ1]. Accordingly, we set up the following
experiment. Let H0 : p′ < p−δ1 be the null hypothesis and H1 : p′ > p+δ1 be the
alternative hypothesis. Let n be the number of execution paths sampled from the
state s. We will show how to estimate n from the different given parameters. Let
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X1, X2, . . . , Xn be a random sample having Bernoulli distribution with unknown
mean p′ ∈ [0, 1] i.e., for each i ∈ [1, n], Prob[Xi = 1] = p′. Then the sum
Y = X1 +X2 + . . .+Xn has binomial distribution with parameters n and p′. We
say that xi, an observation of the random variable Xi, is 1 if the ith sample path
from s satisfies ψ and 0 otherwise. In the experiment, we reject H0 : p′ < p− δ1
and say A(s, φ, α, β) = true if

∑
xi

n ≥ p; otherwise, we reject H1 : p′ ≥ p and
say A(s, φ, α, β) = false if

∑
xi

n < p. Given the above experiment, to meet the
requirement R1 of A, we must have

Prob[accept H1 | H0 holds] = Prob[Y/n ≥ p | p′ < p− δ1] ≤ α
Prob[accept H0 | H1 holds] = Prob[Y/n < p | p′ > p + δ1] ≤ β

Accordingly, we can choose the unknown parameter n for this experiment such
that Prob[Y/n ≥ p | p′ < p − δ1] ≤ Prob[Y/n ≥ p | p′ = p − δ1] ≤ α and
Prob[Y/n < p | p′ ≥ p+ δ1] ≤ Prob[Y/n < p | p′ = p+ δ1] ≤ β. In other words,
we want to choose the smallest n such that both Prob[Y/n ≥ p] ≤ α when Y is
binomially distributed with parameters n and p − δ1, and Prob[Y/n < p] ≤ β
when Y is binomially distributed with parameters n and p+ δ1, holds. Such an
n can be chosen by standard statistical methods.

3.2 Nested Probabilistic Operators: Computing A(s, P��p(ψ), α, β)

The above procedure for hypothesis testing works if the truth value of ψ over
a sample path determined by the algorithm is the same as the actual truth
value. However, in the presence of nested probabilistic operators in ψ, A cannot
determine the satisfaction of ψ over a sample path exactly. Therefore, we modify
the hypothesis test so that we can use the inexact truth values of ψ over the
sample paths.

Let the random variable X be 1 if a sample path π from s actually satisfies
ψ in the model and 0 otherwise. Let the random variable Z be 1 for a sample
path π if A(π, ψ, α, β) = true and 0 if A(π, ψ, α, β) = false. In our algorithm,
we cannot get samples from the random variable X; instead, our samples come
from the random variable Z. Let X and Z have Bernoulli distributions with
parameters p′ and p′′ respectively. Let Z1, Z2, . . . , Zn be a random sample from
the Bernoulli distribution with unknown mean p′′ ∈ [0, 1]. We say that zi, an
observation of the random variable Zi, is 1 if A(πi, ψ, α, β) = true for ith sample
path πi from s and 0 otherwise.

We want to test the null hypothesis H0 : p′ < p − δ1 against the alternative
hypothesis H1 : p′ > p + δ1. Using the samples from Z we can estimate p′′.
However, we need an estimation for p′ in order to decide whether φ = P≥p(ψ)
holds in state s or not. To get an estimate for p′ we note that the random
variables X and Z are related as follows: Prob[Z = 1 | X = 0] ≤ α′ and
Prob[Z = 0 | X = 1] ≤ β′, where α′ and β′ are the error bounds within which A
verifies the formula ψ over a sample path from s. We can set α′ = α and β′ = β.
By elementary probability theory, we have

Prob[Z = 1] = Prob[Z = 1 | X = 0]Prob[X = 0] + Prob[Z = 1 | X = 1]Prob[X = 1]
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Therefore, we can approximate p′′ = Prob[Z = 1] as follows:

Prob[Z = 1] ≤ α(1− p′) + 1 · p′ = p′ + (1− p′)α
Prob[Z = 1] ≥ Prob[Z = 1 | X = 1]Prob[X = 1] ≥ (1− β)p′ = p′ − βp′

This gives the following range in which p′′ lies: p′ − βp′ ≤ p′′ ≤ p′ + (1− p′)α.
By condition C1, we know that p′ cannot lie in the range [p−δ1−α

1−α , p+δ1
1−β ].

Accordingly, we set up the following experiment. Let H0 : p′ < p−δ1−α
1−α be the

null hypothesis and H1 : p′ > p+δ1
1−β be the alternative hypothesis. Let us say that

we accept H1 if our observation is
∑

zi

n ≥ p and we accept H0 if
∑

zi

n < p.
By the requirement of algorithm A, we want Prob[accept H1 | H0 holds] ≤ α

and Prob[accept H0 | H1 holds] ≤ β. Hence, we want Prob[
∑

Zi

n ≥ p | p′ <
p−δ1−α

1−α ] ≤ Prob[
∑

Zi

n ≥ p | p′′−α
1−α ≤ p−δ1−α

1−α ] = Prob[
∑

Zi

n ≥ p | p′′ < p − δ1] ≤
Prob[

∑
Zi

n ≥ p | p′′ = p − δ1] ≤ α. Similarly, we want Prob[
∑

Zi

n < p | p′′ =
p+ δ1] ≤ β. Note that

∑
Zi is distributed binomially with parameters n and p′′.

We choose the smallest n such that the above requirements for A are satisfied.

3.3 Negation and Conjunction: A(s, ¬φ, α, β) and A(s, φ1∧φ2, α, β)

For the verification of a formula ¬φ at a state s, we recursively verify φ at state
s. If we know the decision of A for φ at s, we can say that A(s,¬φ, α, β) =
¬A(s, φ, β, α).

For conjunction, we first compute A(s, φ1, α1, β1) and A(s, φ2, α2, β2). If one
of A(s, φ1, α1, β1) or A(s, φ2, α2, β2) is false, we say A(s, φ1 ∧ φ2, α, β) = false.
Now:

Prob[A(s, φ1 ∧ φ2, α, β) = false | s |= φ1 ∧ φ2]
1

= Prob[A(s, φ1, α1, β1) = false ∨ A(s, φ2, α2, β2) = false | s |= φ1 ∧ φ2]
≤ Prob[A(s, φ1, α1, β1) = false | s |= φ1 ∧ φ2] + Prob[A(s, φ2, α2, β2) = false |s |= φ1 ∧ φ2]
= Prob[A(s, φ1, α1, β1) = false | s |= φ1] + Prob[A(s, φ2, α2, β2) = false | s |= φ2]
≤ β1 + β2 = β [by the requirement R1 of A]

The equality of the expressions in the third and fourth line of the above
derivation follows from the fact that if s |= φ1 ∧ φ2 then the state s actually
satisfies φ1 ∧ φ2; hence, s |= φ1 and s |= φ2. We set β1 = β2 = β/2.

If both A(s, φ1, α1, β1) and A(s, φ2, α2, β2) are true, we say A(s, φ1 ∧
φ2, α, β) = true. Then, we have

Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ1 ∧ φ2]
≤ max(Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ1],Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ2])
≤ max(Prob[A(s, φ1, α1, β1) = true | s �|= φ1],Prob[A(s, φ2, α2, β2) = true | s �|= φ2]
≤ max(α1, α2)

We set α1 = α2 = α.

1 Note that this is not a conditional probability, because s |= φ1 ∧ φ2 is not an event.
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3.4 Unbounded Until: Computing A(π, φ1 U φ2, α, β)

Consider the problem of checking if a path π satisfies an until formula φ1 U φ2.
We know that if π satisfies φ1Uφ2 then there will be a finite prefix of π which will
witness this satisfaction; namely, a finite prefix terminated by a state satisfying
φ2 and preceded only by states satisfying φ1. On the other hand, if π does not
satisfy φ1U φ2 then π may have no finite prefix witnessing this fact; in particular
it is possible that π only visits states satisfying φ1 ∧ ¬φ2. Thus, to check the
non-satisfaction of an until formula, it seems that we have to sample infinite
paths.

Our first important observation in overcoming this challenge is to note that
set of paths with non-zero measure that do not satisfy φ1U φ2 have finite prefixes
that are terminated by states s from which there is no path satisfying φ1 U φ2,
i.e., s |= P=0(φ1U φ2). We therefore set about trying to first address the problem
of statistically verifying if a state s satisfies P=0(φ1 U φ2). It turns out that this
special combination of a probabilistic operator and an unbounded until is indeed
easier to statistically verify. Observe that by sampling finite paths from a state
s, we can witness the fact that s does not satisfy P=0(φ1U φ2). Suppose we have
a model that satisfies the following promise: either states satisfy P=0(φ1U φ2) or
states satisfy P>δ(φ1U φ2), for some positive real δ. Now, in this promise setting,
if we sample an adequate number of finite paths and none of those witness the
satisfaction then we can statistically conclude that the state satisfies P=0(φ1Uφ2)
because we are guaranteed that either a significant fraction of paths will satisfy
the until formula or none will.

There is one more challenge: we want to sample finite paths from a state s to
check if φ1 U φ2 is satisfied. However, we do not know a priori a bound on the
lengths of paths that may satisfy the until formula. We provide a mechanism to
sample finite paths of any length by sampling paths with a stopping probability.

We are now ready to present the details of our algorithm for the unbounded
until operator. We first show how the special formula P=0(φ1 U φ2) can be
statistically checked at a state. We then show how to use the algorithm for
the special case to verify unbounded until formulas.

Computing A(s, P=0(φ1 U φ2), α, β). To compute A(s,P=0(φ1 U φ2), α, β),
we first compute A(s,¬φ1 ∧ ¬φ2, α, β). If the result is true, we say
A(s,P=0(φ1 U φ2), α, β) = true. Otherwise, if the result is false, we have to
check if the probability of a path from s satisfying φ1 U φ2 is non-zero. For this
we set up an experiment as follows.

Let p be the probability that a random path from s satisfies φ1 U φ2. Let
the null hypothesis be H0 : p > δ2 and the alternative hypothesis be H1 : p = 0
where δ2 is the small real, close to 0, provided as parameter to the algorithm.
The above test is one-sided: we can check the satisfaction of the formula φ1 U φ2

along a path by looking at a finite prefix of a path; however, if along a path
φ1 ∧ ¬φ2 holds only, we do not know when to stop and declare that the path
does not satisfy φ1U φ2. Therefore, checking the violation of the formula along a
path may not terminate if the formula is not satisfied by the path. To mitigate
this problem, we modify the model by associating a stopping probability ps with
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every state s in the model. While sampling a path from a state, we stop and
return the path so far simulated with probability ps. This allows one to generate
paths of finite length from any state in the model.

Formally, we modify the model M as follows: we add a terminal state s⊥
to the set S of all states of M. Let S′ = S ∪ {s⊥}. For every state s ∈ S,
we define P(s, s⊥) = ps, P(s⊥, s⊥) = 1, and for every pair of states s, s′ ∈ S,
we modify P(s, s′) to P(s, s′)(1 − ps). For every state s ∈ S, we pick some
arbitrary probability distribution function for Q(s, s⊥, t) and Q(s⊥, s⊥, t). We
further assume that L(s⊥) is the set of atomic propositions such that s⊥ �|= φ2.
This in turn implies that any path (there is only one path) from s⊥ do not satisfy
φ1 U φ2. Let us denote this modified model by M′. Given this modified model,
the following result holds:

Theorem 2. If a path from any state s ∈ S in the model M satisfies φ1 U φ2

with some probability, p, then a path sampled from the same state in the modified
modelM′ will satisfy the same formula with probability at least p(1−ps)N , where
N = |S|.
Proof is given in [16].

By condition C2 of algorithm A, p does not lie in the range (0, δ2
(1−ps)N ]. In

other words, the modified probability p(1 − ps)N (= p′, say) of a path from
s satisfying the formula φ1 U φ2 does not lie in the range (0, δ2]. To take into
account the modified model with stopping probability, we modify the experiment
to test whether a path from s satisfies φ1 U φ2 as follows. We change the null
hypothesis to H0 : p′ > δ2 and the alternative hypothesis to H1 : p′ = 0.

Let n be the number of finite execution paths sampled from the state s in
the modified model. Let X1, X2, . . . , Xn be a random sample having Bernoulli
distribution with mean p′ ∈ [0, 1] i.e., for each j ∈ [1, n], Prob[Xj = 1] = p′. Then
the sum Y = X1 +X2 + . . .+Xn has binomial distribution with parameters n
and p′. We say that xj , an observation of the random variable Xj , is 1 if the
jth sample path from s satisfies φ1 U φ2 and 0 otherwise. In the experiment, we
reject H0 : p′ > δ2 if

∑
xj

n = 0; otherwise, if
∑

xj

n > 0, we reject H1 : p′ = 0.
Given the above experiment, to make sure that the error in decisions is bounded
by α and β, we must have

Prob[accept H1 | H0 holds] = Prob[Y/n = 0 | p′ > δ2] ≤ α
Prob[accept H0 | H1 holds] = Prob[Y/n ≥ 1 | p′ = p] = 0 ≤ β

Hence, we can choose the unknown parameter n for this experiment such that
Prob[Y/n = 0 | p′ > δ2] ≤ Prob[Y/n = 0 | p′ = δ2] ≤ α i.e., n is the smallest
natural number such that (1− δ2)n ≤ α.

Note that in the above analysis we assumed that φ1 U φ2 has no nested
probabilistic operators; therefore, it can be verified over a path without error.
However, in the presence of nested probabilistic operators, we need to modify
the experiment in a way similar to that given in section 3.2.

Computing A(π, φ1 U φ2, α, β). Once we know how to compute
A(s,P=0(φ1 U φ2), α, β), we can give a procedure to compute A(π, φ1 U φ2, α, β)
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as follows. Let S be the set of states of the model. We partition S into the sets
Strue , Sfalse , and S? and characterize the relevant probabilities as follows:

Strue = {s ∈ S | s |= φ2}
Sfalse = {s ∈ S | it is not the case that ∃k and ∃s1s2 . . . sk such that s = s1

and there is a non-zero probability of transition from si to si+1 for 1 ≤ i <k

and si |= φ1 for all 1 ≤ i < k, and sk ∈ Strue}
S? = S − Strue− Sfalse

Theorem 3.

Prob[π ∈ Path(s) | π |= φ1 U φ2]
= Prob[π ∈ Path(s) | ∃k and s1s2 . . . sk such that s1s2 . . . sk is a prefix of π and

s1 = s and si ∈ S? for all 1 ≤ i < k and sk ∈ Strue]
Prob[π ∈ Path(s) | π �|= φ1 U φ2]
= Prob[π ∈ Path(s) | ∃k and s1s2 . . . sk such that s1s2 . . . sk is a prefix of π and

s1 = s and si ∈ S? for all 1 ≤ i < k and sk ∈ Sfalse]

Proof of a similar theorem is given in [8].
Therefore, to check if a sample path π = s1s2s3 . . . (ignoring the time-stamps

on transitions) from state s satisfies (or violates) φ1 U φ2, we need to find a k
such that sk ∈ Strue (or sk ∈ Sfalse ) and for all 1 ≤ i < k, si ∈ S?. This is
done iteratively as follows:
i ← 1

while(true){
if si ∈ Strue then return true;

else if si ∈ Sfalse then return false;

else i ← i + 1; }
The above procedure will terminate with probability 1 because, by Theorem 3,
the probability of reaching a state in Strue or Sfalse after traversing a finite
number of states in S? along a random path is 1.

To check whether a state si belongs to Strue , we compute A(s, φ2, αi, βi);
if the result is true, we say si ∈ Strue . The check for si ∈ Sfalse is essentially
computing A(si,P=0(φ1 U φ2), αi, βi). If the result is true then si ∈ Sfalse ; else,
we sample the next state si+1 and repeat the loop as in the above pseudo-code.

The choice of αi and βi in the above decisions depends on the error bounds
α and β with which we wanted to verify φ1 U φ2 over the path π. By arguments
similar to conjunction, it can be shown that we can choose each αi and βi such
that α =

∑
i∈[1,k] αi and β =

∑
i∈[1,k] βi where k is the length of the prefix of

π that has been used to compute A(π, φ1 U φ2, α, β). Since, we do not know the
length k before-hand we choose to set αi = α/2i and βi = β/2i for 1 ≤ i < k,
and αk = α/2k−1 and βk = β/2k−1.

An interesting and simple technique for the verification of the unbounded
until proposed by H. Younes (personal communications) based on theorem 2 is
as follows. Let p denote the probability measure of the set of paths that start in
s and satisfy φ1 U φ2. Let p′ be the corresponding probability measure for the



276 K. Sen, M. Viswanathan, and G. Agha

modified model with stopping probability ps in each state. Then by theorem 2,
we have p ≥ p′ ≥ p(1 − ps)N , where N is the number of states in the model.
These bounds on p can be used to verify the formula P≥θ(φ1 U φ2) in the same
way as we deal with nested probabilistic operators.

However, there are trade-offs between these two approaches. The simple ap-
proach described in the last paragraph has the advantage of being conceptually
clearer. The disadvantage of the simpler approach, on the other hand, is that we
have to provide the exact value of N as input to the algorithm, which may not
be available for a complex model. Our original algorithm does not expect the
user to provide N ; rather, it expects that the user will provide a suitable value
of ps so that condition C2 in theorem 1 holds. Moreover, the bounds on p′ given
in theorem 2 holds for the worst case. If we consider the worst case lower bound
for p′, which is dependent exponentially on N , then the value of ps that needs
to be picked to ensure that θ − δ < (θ + δ)(1 − ps)N might be very small and
sub-optimal resulting in large verification time. Note that our method for the
verification of P=0(φ1U φ2) can be used as a technique for verifying properties of
the form P≥1(ψ) and P≤0(ψ) which were not handled by any previous statistical
approaches.

3.5 Bounded Until: Computing A(π, φ1 U≤tφ2, α, β)

The satisfaction or violation of a bounded until formula φ1 U≤tφ2 over a path π
can be checked by looking at a finite prefix of the path. Specifically, in the worst
case, we need to consider all the states π[i] such that τ(π, i) ≤ t. The decision
procedure can be given as follows:
i ← 0

while(true){
if τ(π, i) > t then return false;

else if π[i] |= φ2 then return true;

else if π[i] �|= φ1 then return false;

else i ← i + 1; }
where the checks π[i] |= φ2 and π[i] �|= φ1 are replaced by A(π[i], φ2, αi, βi) and
A(π[i],¬φ1, αi, βi), respectively. The choice of αi and βi are done as in the case
of unbounded until.

3.6 Bounded and Unbounded Next: Computing A(π, X≤tφ, α, β)
and A(π, Xφ, α, β)

For unbounded next, A(π,Xφ, α, β) is same as the result of A(π[1], φ, α, β).
For bounded next, A(π,X≤tφ, α, β) returns true if A(π[1], φ, α, β) = true and
τ(π, 1) ≤ t. Otherwise, A(π,X≤tφ, α, β) returns false.

3.7 Computational Complexity

The expected length of the samples generated by the algorithm depends on the
various probability distributions associated with the stochastic model in addition
to the parameters α, β, ps, δ1, and δ2. Therefore, an upper bound on the expected
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length of samples cannot be estimated without knowing the probability distribu-
tions associated with the stochastic model. This implies that the computational
complexity analysis of our algorithm cannot be done in a model independent
way. However, in the next section and in [16], we provide experimental results
which illustrate the performance of the algorithm.

4 Implementation and Experimental Evaluation

We have implemented the above algorithm in Java as part of the tool called
VeStA (available from http://osl.cs.uiuc.edu/∼ksen/vesta/). A stochas-
tic model can be specified by implementing a Java interface, called State. The
model-checking module of VeStA implements the algorithm A. It can be exe-
cuted in two modes: single-threaded mode and multithreaded mode. The single
threaded mode is suitable for a single processor machine; the multithreaded mode
exploits the parallelism of the algorithm when executed on a multi-processor ma-
chine. While verifying a formula of the form P��p(ψ), the verification of ψ over
each sample path is independent of each other. This allows us to run the veri-
fication of ψ over each sample path in a separate thread, possibly running on a
separate processor.

We successfully used the tool to verify several DTMC (discrete-time Markov
chains) and CTMC (continuous-time Markov chains) models. We report the
performance of our tool in the verification of unbounded until formulas over a
DTMC model. The performance of our tool in verifying two CTMC model is
provided in the [16]. The experiments were done on a single-processor 2GHz
Pentium M laptop with 1GB SDRAM running Windows XP.

IPv4 ZeroConf Protocol: We picked the DTMC model of the IPv4 ZeroConf
Protocol described in [6]. We next describe the model briefly without explain-
ing its actual relation to the protocol. The DTMC model has N + 3 states:
{s0, s1, . . . , sn, ok , err}. From the initial state s0, the system can go to two states:
state s1 with probability q and state ok with probability 1− q. From each of the
states si (i ∈ [1, N −1]) the system can go to two possible states: state si+1 with
probability r and state s0 with probability 1− r. From the state sN the system
can go to the state err with probability r or return to state s0 with probability
1− r. Let the atomic proposition a be true if the system is in the state err and
false in any other state. The property that we considered is P��p(true U a).

The result of our experiment is plotted in Figure 1. In the plot x–axis rep-
resents N in the above model and y–axis represents the running time of the
algorithm. The solid line represents the performance of the tool when it is used
without any optimization. We noticed that computing A(s,P=0(φ1 U φ2), α, β)
at every state along a path while verifying an unbounded until formula has a
large performance overhead. Therefore, we used the following optimization that
reduces the number of times we compute A(s,P=0(φ1 U φ2), α, β).

Discount Optimization: Instead of computing A(s,P=0(φ1 U φ2), α, β) at ev-
ery state along a path, we can opt to perform the computation with certain
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probability say pd = 0.1, called discount probability. Note that once a path
reaches a state s ∈ Sfalse , any other state following s in the path also belongs
to Sfalse . Therefore, this way of discounting the check of s ∈ Sfalse , or comput-
ing A(s,P=0(φ1 U φ2), α, β), does not influence the correctness of the algorithm.
However, the average length of sample paths required to verify unbounded until
increases. The modified algorithm for checking unbounded until becomes
i ← 1

while(true){
if si ∈ Strue then return true;

else if rand(0.0, 1.0) ≤ pd then if si ∈ Sfalse then return false;

else i ← i + 1; }
The two dashed lines in the plot show the performance of the algorithm when

the discount probability is pd = 0.1 and pd = 0.5.
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Fig. 1. Performance Measure for Verifying Unbounded Until Formula

Caching Optimization: If the algorithm has already computed and cached
A(s, φ, α, β), any future computation of A(s, φ, α′, β′) can use the cached value
provided that α ≤ α′ and β ≤ β′. However, note that we must maintain a
constant size cache to avoid state-space explosion problem. The plot shows the
performance of the tool with caching turned on (with no discount optimization).

The experiments show that the tool is able to handle a relatively large state
space; it does not suffer from memory problem due to state-explosion because
states are sampled as required and discarded when not needed. Specifically, it
can be shown that the number of states stored in the memory at any time is
linearly proportional to the maximum depth of nesting of probabilistic opera-
tors in a CSL formula. Thus the implementation can scale up with computing
resources without suffering from traditional memory limitation due to state-
explosion problem.
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5 Conclusion

The statistical model-checking algorithm we have developed for stochastic mod-
els has at least four advantages over previous work. First, our algorithm can
model check CSL formulas which have unbounded untils. Second, boundary case
formulas of the form P≥1(ψ) and P≤0(ψ) can be verified using the technique
presented for the verification of P=0(φ1 U φ2). Third, our algorithm is inherently
parallel. Finally, the algorithm does not suffer from memory problem due to
state-space explosion, since we do not need to store the intermediate states of
an execution. However, our algorithm also has at least two limitations. First,
the algorithm cannot guarantee the accuracy that numerical techniques achieve.
Second, if we try to increase the accuracy by making the error bounds very small,
the running time increases considerably. Thus our technique should be seen as
an alternative to numerical techniques to be used only when it is infeasible to
use numerical techniques, for example, in large-scale systems.
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Abstract. AVISPA is a push-button tool for the automated validation
of Internet security-sensitive protocols and applications. It provides a
modular and expressive formal language for specifying protocols and
their security properties, and integrates different back-ends that imple-
ment a variety of state-of-the-art automatic analysis techniques. To the
best of our knowledge, no other tool exhibits the same level of scope and
robustness while enjoying the same performance and scalability.

1 Introduction

With the spread of the Internet and network-based services, the number and scale
of new security protocols under development is out-pacing the human ability to
rigorously analyze and validate them. To speed up the development of the next
generation of security protocols, and to improve their security, it is of utmost
importance to have tools that support the rigorous analysis of security proto-
cols by either finding flaws or establishing their correctness. Optimally, these
tools should be completely automated, robust, expressive, and easily usable, so
that they can be integrated into the protocol development and standardization
processes to improve the speed and quality of these processes.

A number of (semi-)automated protocol analysis tools have been proposed,
e.g. [1, 4, 6, 7, 13, 14], which can analyze small and medium-scale protocols such as
those in the Clark/Jacob library [10]. However, scaling up to large scale Internet
security protocols is a considerable challenge, both scientific and technological.
We have developed a push-button tool for the Automated V alidation of Internet

� This work was supported by the FET Open Project IST-2001-39252 and the BBW
Project 02.0431, “AVISPA: Automated Validation of Internet Security Protocols and
Applications” (www.avispa-project.org).
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Security-sensitive Protocols and Applications, the AVISPA Tool1, which rises
to this challenge in a systematic way by (i) providing a modular and expres-
sive formal language for specifying security protocols and properties, and (ii)
integrating different back-ends that implement a variety of automatic analysis
techniques ranging from protocol falsification (by finding an attack on the input
protocol) to abstraction-based verification methods for both finite and infinite
numbers of sessions. To the best of our knowledge, no other tool exhibits the
same scope and robustness while enjoying the same performance and scalability.

2 The AVISPA Tool

As displayed in Fig.1, the AVISPA Tool is equipped with a web-based graphical
user interface (www.avispa-project.org/software) that supports the editing
of protocol specifications and allows the user to select and configure the different
back-ends of the tool. If an attack on a protocol is found, the tool displays it
as a message-sequence chart. For instance, Fig.1 shows part of the specification
of Siemens’ H.530 protocol (top-right window) and the attack that AVISPA has
found (bottom window), reported on in [3]. The interface features specialized
menus for both novice and expert users. An XEmacs mode for editing protocol
specifications is available as well.

The AVISPA Tool consists of independently developed modules, intercon-
nected as shown at the bottom left of Fig.1. A protocol designer interacts with
the tool by specifying a security problem (a protocol paired with a security
property that it is expected to achieve) in the High-Level Protocol Specifica-
tion Language HLPSL [8]. The HLPSL is an expressive, modular, role-based,
formal language that allows for the specification of control flow patterns, data-
structures, alternative intruder models, complex security properties, as well as
different cryptographic primitives and their algebraic properties. These features
make HLPSL well suited for specifying modern, industrial-scale protocols.

The HLPSL enjoys both a declarative semantics based on a fragment of the
Temporal Logic of Actions [12] and an operational semantics based on a trans-
lation into the rewrite-based formalism Intermediate Format IF. HLPSL specifi-
cations are translated into equivalent IF specifications by the HLPSL2IF trans-
lator. An IF specification describes an infinite-state transition system amenable
to formal analysis. IF specifications can be generated both in an untyped variant
and in a typed one, which abstracts away type-flaw attacks (if any) from the
protocol; this is particularly useful as in many cases type-flaws can be prevented
in the actual implementation of a protocol [11]. IF specifications are input to the
back-ends of the AVISPA Tool, which implement different analysis techniques.
The current version of the tool integrates the following four back-ends.

1 The AVISPA Tool is a successor to the AVISS Tool [1], which automated the anal-
ysis of security protocols like those in the Clark/Jacob library. The AVISPA Tool
significantly extends its predecessor’s scope, effectiveness, and performance.
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Fig. 1. A screen-shot of the AVISPA Tool

The On-the-fly Model-Checker (OFMC) [3] performs protocol falsifica-
tion and bounded verification by exploring the transition system described by
an IF specification in a demand-driven way. OFMC implements a number of cor-
rect and complete symbolic techniques. It supports the specification of algebraic
properties of cryptographic operators, and typed and untyped protocol models.

The Constraint-Logic-based Attack Searcher (CL-AtSe) applies con-
straint solving as in [9], with some powerful simplification heuristics and redun-
dancy elimination techniques. CL-AtSe is built in a modular way and is open to
extensions for handling algebraic properties of cryptographic operators. It sup-
ports type-flaw detection and handles associativity of message concatenation.

The SAT-based Model-Checker (SATMC) [2] builds a propositional
formula encoding a bounded unrolling of the transition relation specified by the
IF, the initial state and the set of states representing a violation of the security
properties. The propositional formula is then fed to a state-of-the-art SAT solver
and any model found is translated back into an attack.

The TA4SP (Tree Automata based on Automatic Approximations
for the Analysis of Security Protocols) back-end [5] approximates the in-
truder knowledge by using regular tree languages and rewriting. For secrecy prop-
erties, TA4SP can show whether a protocol is flawed (by under-approximation)
or whether it is safe for any number of sessions (by over-approximation).
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Upon termination, the AVISPA Tool outputs the result of the analysis stating
whether the input problem was solved (positively or negatively), the available re-
sources were exhausted, or the problem was not tackled for some reason. In order
to demonstrate the effectiveness of the AVISPA Tool on a large collection of prac-
tically relevant, industrial protocols, we have selected a substantial set of security
problems associated with protocols that have recently been, or are currently being
standardized by organizations like the Internet Engineering Task Force IETF. We
have then formalized in HLPSL a large subset of these protocols, and the result of
this specification effort is the AVISPA Library (publicly available at the AVISPA
web-page), which at present comprises 112 security problems derived from 33 pro-
tocols. We have thoroughly assessed the AVISPA Tool by running it against the
AVISPA Library. The experimental results are summarized in the appendix. In
particular, the AVISPA Tool has detected a number of previously unknown at-
tacks on some of the protocols analyzed, e.g. on some protocols of the ISO-PK
family, on the IKEv2-DS protocol, and on the H.530 protocol.
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Appendix: Experimental Results

The following table displays the results of running the AVISPA Tool against
the 112 security problems from 33 protocols in the AVISPA Library. For each
of the protocols, the table gives the number of security problems (#P), and
for each back-end, the number of problems successfully analyzed with the given
resources2 (P), the number of problems for which attacks are detected (A), and
the time (T) spent by the back-end to find the attacks or to report that no
attack exists in the given (bounded) scenario, where “-” indicates that the back-
end does not support the analysis of that problem. For SATMC, we list both
the time spent to generate the SAT formula (TE) and that spent to solve the
formula (TS). Note that the times of unsuccessful attempts (due to time out
or memory out) are not taken into account. By running the TA4SP back-end

Protocol #P P A T P A T P A TE TS
UMTS_AKA 3 3 0 0,02 3 0 0,01 3 0 0,11 0,00
AAAMobileIP 7 7 0 0,75 7 0 0,20 7 0 1,32 0,01
ISO-PK1 1 1 1 0,02 1 1 0,00 1 1 0,05 0,00
ISO-PK2 1 1 0 0,05 1 0 0,00 1 0 1,62 0,00
ISO-PK3 2 2 2 0,04 2 2 0,01 2 2 0,27 0,00
ISO-PK4 2 2 0 0,54 2 0 0,03 2 0 1.153 1,16
LPD-MSR 2 2 2 0,02 2 2 0,02 2 2 0,17 0,02
LPD-IMSR 2 2 0 0,08 2 0 0,01 2 0 0,43 0,01
CHAPv2 3 3 0 0,32 3 0 0,01 3 0 0,55 0,00
EKE 3 3 2 0,19 3 2 0,04 3 2 0,22 0,00
TLS 3 3 0 2,20 3 0 0,32 3 0 - 0,00
DHCP-delayed 2 2 0 0,07 2 0 0,00 2 0 0,19 0,00
Kerb-Cross-Realm 8 8 0 11,86 8 0 4,14 8 0 113,60 1,69
Kerb-Ticket-Cache 6 6 0 2,43 6 0 0,38 6 0 495,66 7,75
Kerb-V 8 8 0 3,08 8 0 0,42 8 0 139,56 2,95
Kerb-Forwardable 6 6 0 30,34 6 0 10,89 0 0 - -
Kerb-PKINIT 7 7 0 4,41 7 0 0,64 7 0 640,33 11,65
Kerb-preauth 7 7 0 1,86 7 0 0,62 7 0 373,72 2,57
CRAM-MD5 2 2 0 0,71 2 0 0,74 2 0 0,40 0,00
PKB 1 1 1 0,25 1 1 0,01 1 1 0,34 0,02
PKB-fix 2 2 0 4,06 2 0 44,25 2 0 0,86 0,02
SRP_siemens 3 3 0 2,86 0 0 - 0 0 - -
EKE2 3 3 0 0,16 0 0 - 0 0 - -
SPEKE 3 3 0 3,11 0 0 - 0 0 - -
IKEv2-CHILD 3 3 0 1,19 0 0 - 0 0 - -
IKEv2-DS 3 3 1 5,22 0 0 - 0 0 - -
IKEv2-DSx 3 3 0 42,56 0 0 - 0 0 - -
IKEv2-MAC 3 3 0 8,03 0 0 - 0 0 - -
IKEv2-MACx 3 3 0 40,54 0 0 - 0 0 - -
h.530 3 1 1 0,64 0 0 - 0 0 - -
h.530-fix 3 3 0 4.278 0 0 - 0 0 - -
lipkey-spkm-known 2 2 0 0,23 0 0 - 0 0 - -
lipkey-spkm-unknown 2 2 0 7,33 0 0 - 0 0 - -

OFMC CL-atse SATMCProblems

on a subset of the AVISPA Library, the AVISPA Tool is able to establish in a
few minutes that a number of protocols in the library (namely, EKE, EKE2,
IKEv2-CHILD, IKEv2-MAC, TLS, UMTS AKA, CHAPv2) guarantee secrecy.

2 Results are obtained by each single back-end with a resource limit of 1 hour CPU
time and 1GB memory, on a Pentium IV 2.4GHz under Linux.
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Abstract. ORCHIDS is an intrusion detection tool based on techniques for fast,
on-line model-checking. Temporal formulae are taken from a temporal logic tai-
lored to the description of intrusion signatures. They are checked against merged
network and system event flows, which together form a linear Kripke structure.

Introduction: Misuse Detection as Model-Checking. ORCHIDS is a new intrusion
detection tool, capable of analyzing and correlating events over time, in real time. Its
purpose is to detect, report, and take countermeasures against intruders. The core of the
engine is originally based on the language and algorithm in the second part of the pa-
per by Muriel Roger and Jean Goubault-Larrecq [6]. Since then, the algorithm evolved:
new features (committed choices, synchronization variables), as well as extra abstract
interpretation-based optimizations, and the correction of a slight bug in op.cit., appear
in the unpublished report [1]. Additional features (cuts, the “without” operator) were
described in the unpublished deliverable [2]. Finally, contrarily to the prototype men-
tioned in [6], ORCHIDS scales up to real-world, complex intrusion detection.

The starting point of the ORCHIDS endeavor is that intrusion detection, and specif-
ically misuse detection, whereby bad behavior (so-called attacks) is specified in some
language and alerts are notified when bad behavior is detected, is essentially a model-
checking task. The Kripke model to be analyzed is an event flow (collected from various
logs, and other system or network sources), and complex attack signatures are described
in an application-specific temporal logic.

Let us give an example of a modern attack [5]. Far
from being a gedankenexperiment, this really works
in practice and has already been used to penetrate
some systems. We also insist that, as systems get more
and more secure, we are faced with more and more
complex attacks, and [5] is just one representative.
The schema on the right displays what a modular ker-
nel (e.g., Linux) does when a user program (here with
pid 100) calls an unimplemented functionality.

socket(AF_SECURITY, ...)

Malicious program

Not implemented

pid = 100

Search for
a matching
kernel module

modprobe

User mode

pid=101

(kernel privileges)

not found

Fail

errno=ENOSYS

Kernel mode

(unimplemented system functionality)

� Partially supported by the RNTL Project DICO, the ACI jeunes chercheurs “Sécurité informa-
tique, protocoles crypto. et détection d’intrusions” and the ACI cryptologie “Psi-Robuste”.
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The kernel will search for a kernel module that implements this functionality, call-
ing the modprobe utility to search and install the desired module. If modprobe
does not find any matching module, an error code is reported to the user program.

socket(AF_SECURITY, ...)

Malicious program

(unimplemented system call)

Not implemented

pid = 100

Search for
a matching
kernel module

modprobe

User mode

pid=101

(kernel privileges)

not found

Fail

errno=ENOSYS

Kernel mode

Kernel updates rights

pid 101 : root, root

1

2

1

2

socket(AF_SECURITY, ...)

(unimplemented system call)

Not implemented

Search for
a matching
kernel module

modprobe

Kernel mode User mode

pid=101

(kernel privileges)
Kernel updates rights

pid 101 : root, root

ptrace(PTRACE_ATTACH, 101)

Insert shellcode

exec ("/bin/sh")

Shellcode runs
with root privileges

Attacker has
root privileges.

Malicious program

While this is how this is meant to work, some versions of Linux suffer from a race
condition (above, left): while modprobe has all kernel privileges, the kernel updates
the owner tables to make modprobe root-owned while modprobe has already started
running. So there is a small amount of time where the malicious program has com-
plete control over the kernel process modprobe: between timepoints 1 and 2 . The
malicious program takes this opportunity to attach the modprobe process through
the standard Unix debugging API function ptrace, inserting a shellcode (malicious
code) inside modprobe’s code. When modprobe resumes execution, it will execute
any code of the intruder’s choosing, with full root privileges (above, right).

Challenges in On-line, Real-Time Model-Checking. Intrusion detection requires spe-
cific logics to describe attack signatures, and specific model-checking algorithms.

Compared to standard misuse detection tools, a temporal logic allows one to de-
scribe behavior involving several events over time: standard misuse detection tools (e.g.,
anti-virus software or simple network intrusion detection systems) match a library of
patterns against single events, and emit an alert once single so-called dangerous events
occur. More and more attacks nowadays involving complex, correlated sequences of
events, which are usually individually benign. In the ptrace attack, no individual
event (calling an unimplemented system call, or ptrace, etc.) is dangerous per se.

The signature language of ORCHIDS extends [6–Section 4]. Among other things, it
allows one to write temporal formulas of the typical form F1 ∧ �(F2 ∧ �(F3 . . .) ∨
F ′

2 ∧ �(F ′
3 . . .)), where � is the strict “there exists in the future” operator. In general,

more complex formulae can be written, using operators resembling Wolper’s ETL [7]—
except going through a transition denotes either no time-passing at all (ε-transitions),
or � (not © as in ETL). Such formulae are described internally as automata; we just
give a signature for the ptrace exploit as an illustration. (Some other attacks such as
the do_brk exploit [3] require committed choices, or other features of ORCHIDS not
described in [6]. To save space, we don’t recount them here.) A formula matching the
ptrace exploit is the following automaton, described in slightly idealized form:

Attach(X, Y, Z) � Exec(Y ) � Syscall(X, Y )
�

� Getregs(X, Y )
�

Poketext(X, Y ) � Detach(X, Y )

(1)
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where X , Y , Z are existentially quantified first-order variables meant to match the
attacker’s pid, the target’s pid (i.e., modprobe’s pid), and the attacker’s effective uid
respectively; where Attach(X,Y,Z) abbreviates a formula (not shown) matching any
single event displaying a call to ptrace by process X owned by Z, on process Y , with
the ATTACH command, Exec(Y ) matches single events where /sbin/modprobe is
execed with pid Y , and the remaining formulas match single events where process X
issues a call to ptrace on target Y , with respective commands SYSCALL, GETREGS,
POKETEXT (used to insert the shellcode), and DETACH.

Compared to other more standard uses of model-checking, the logic of ORCHIDS

is constrained to only specify eventuality properties. This is because the model-checker
needs to to work on-line, that is, by always working on some finite (and expanding over
time) prefix of an infinite sequence of events. Compared to standard model-checking
algorithms, e.g., based on Büchi automata for LTL, the model-checker is not allowed
to make multiple passes over the sequence of events (e.g., we cannot rebuild a product
automaton each time a new event is added); in general, intrusion detection tasks are
submitted to very stringent efficiency requirements, both in time and in space.

Second, the logic of ORCHIDS includes some first-order features. As witnessed by
the use of variables X , Y , Z in (1), this logic can be seen as an existential fragment of
a first-order temporal logic.

Finally, such a model-checker cannot just report the existence of matches, but must
enumerate all matches among a given representative subset, with the corresponding
values of the existential variables, build an alert for each match and possibly trigger
countermeasures. This is the raison d’être behind the Getregs(X,Y ) formula in (1);
if we only wanted a yes/no answer, this would just be redundant, and could be erased
from the automaton; here, this is used to be able to report whether the attacker issued at
least one call to ptrace(PTRACE_GETREGS) or not during the attack.

The model-checking task for the logic of ORCHIDS is NP-hard (it includes that
of [6–Section 4]), but can be done using an efficient, on-line and real-time algorithm
[2, 1]. Moreover, this algorithm is optimal in the following sense: for every attack sig-
nature (formula F ), if at least one attack (sequence of possibly non-contiguous events)
is started at event e0 that matches F , then exactly one attack is reported amongst these,
the one with the so-called shortest run. The latter is usually the most meaningful attack
among all those that match. The notion of shortest run was refined in ORCHIDS, and
now appears as a particular case of cuts [2]; this gives more control as to which unique
attack we wish to isolate amongst those that match.

Related Work. There are many other formalisms attempting to detect complex intru-
sion detection scenarios, using means as diverse as Petri nets, parsing schemata, con-
tinuous data streams, etc. Perhaps one of the most relevant is run-time monitoring (or
cousins: F. Schneider’s security automata and variants, and security code weaving),
where the event flow is synchronized at run-time with a monitor automaton describing
paths to bad states. The ORCHIDS approach is certainly close to the latter (although
arrows in e.g., (1) are more complex than simple automaton transitions); shortest runs
and cuts, which introduce priorities between paths in the monitor, and the fact that only
one optimal path among equivalent paths is reported, is a useful refinement.
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Implementation. The ORCHIDS engine is implemented in C. At the core of ORCHIDS

lies a fast virtual machine for a massively-forking virtual parallel machine, and a byte-
code compiler from formulae (such as (1)) to this virtual machine. ORCHIDS uses a
hierarchy of input modules to subscribe to, and to parse incoming events, classified by
input source and/or event format. A main event dispatcher reads from polled and real-
time I/O, reads sequences of events in syslog format, snare, sunbsm, apache
and other various formats, coming from log files or directly through dedicated network
connections, and feeds the relevant events to the core engine. ORCHIDS is able to do
both system-level and network-based intrusion detection, simultaneously.

Here are a few figures of ORCHIDS on an instance of the ptrace attack:

Time : Real time : 1267s
CPU Time : 370.810s
CPU usage : 29.27%

Resources : Memory (peak) : 2.348 MB
Signalisation network load : 1.5 GB

Analyzer : Loading and rule compilation : < 5 ms
Processed events : 4 058 732

To stress the detection engine, the attack was hidden in the middle of a huge amount of
normal ptrace debugging events, generated by tracing the compilation of the whole
GCC C Compiler (with the command line tar xzvf gcc-3.3.2.tar.gz ; cd
gcc-3.3.2 ; ./configure ; cd gcc ; strace -F -f make).

Conclusion. The ptrace attack above is one of the typical attacks that ORCHIDS can
detect. Experiments are going on at LSV to test ORCHIDS on actual network traffic and
system event flows.

From the point of view of security, a good news is that, contrarily to most misuse in-
trusion detection systems, ORCHIDS is able to detect intrusions that were not previously
known (contrarily to popular belief on misuse IDSs). E.g., the signature we use for the
do_brk attack [3], which tests whether some process managed to gain root privilege
without calling any of the adequate system calls, detected the recent (Jan. 2005) Linux
uselib attack.

For more information, see the Web page [4].
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Abstract. We describe a tool called TVOC, that uses the translation
validation approach to check the validity of compiler optimizations: for
a given source program, TVOC proves the equivalence of the source code
and the target code produced by running the compiler. There are two
phases to the verification process: the first phase verifies loop transforma-
tions using the proof rule permute; the second phase verifies structure-
preserving optimizations using the proof rule Validate. Verification con-
ditions are validated using the automatic theorem prover CVC Lite.

1 Introduction

Verifying the correctness of modern optimizing compilers is challenging because
of their size, complexity, and evolution over time. Translation Validation [8] is
a novel approach that offers an alternative to the verification of translators in
general and of compilers in particular. Rather than verifying the compiler itself,
one constructs a validating tool that, after every run of the compiler, formally
confirms that the target code produced is a correct translation of the source
program. A number of tools and techniques have been developed for compiler
validation based on translation validation[7, 8, 10]. In this paper, we introduce
TVOC, a tool for translation validation for compilers.

2 System Architecture

Fig. 1 shows the overall design of TVOC. TVOC accepts as input a source program
S and target program T , both in the WHIRL intermediate representation, a
format used by Intel’s Open Research Compiler (ORC) [9] among others. Just
as compilers perform optimizations in multiple passes, it is reasonable to break
the validation into multiple phases, each using a different proof rule and focusing
on a different set of optimizations. Currently, TVOC uses two phases to validate
optimizations performed by the compiler. Below, we explain these two phases in
more detail. Fig. 2 shows a program called TEST that we will use as a running
example. The transformation in question is loop fusion plus the addition of an
extra branch condition before the loop.
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Phase 1
S’

Phase 2TVOC
Valid
Invalid

CompilerSource S Target T

Verification Conditionsyes/no yes/no

Source program

CVC    Lite

Fig. 1. The architecture of TVOC

do i = 0 to N
A[i] = 0;

do i = 0 to N
B[i] = 1;

do i = 0 to N {
A[i] = 0;
B[i] = 1;

}

if N ≥ 0 {
do i = 0 to N {

A[i] = 0;
B[i] = 1;

}
}

Fig. 2. S, S′ and T for Program TEST

3 Phase 1: Reordering Transformations

In phase 1, TVOC focuses on reordering transformations. These are transforma-
tions which simply permute the order in which statements are executed, without
adding or removing any statements. Examples of reordering transformations in-
clude loop interchange, loop fusion and distribution, and tiling [2]. Reordering
transformations are validated using the proof rule permute, which, given a bijec-
tive function defining the permutation, produces a set of verification conditions
which ensure the correctness of the transformation. Essentially, the verification
conditions specify that every pair of statements whose order is exchanged by
the permutation have the same result regardless of the order in which they are
executed.

TVOC automatically determines the loop transformations by comparing the
number and structure of loops in the source and target. This approach is de-
scribed in [5, 6] and works quite well in practice. Note that if TVOC guesses
wrong, this can only lead to false negatives, never to false positives. The valida-
tion performed is always sound. For program TEST, if i1 is a loop index variable
for the first loop and i2 is a loop index variable for the second loop, the permu-
tation function reorders two statements exactly when i2 < i1. The verification
condition can thus be expressed as follows, where ∼ denotes program equiva-
lence: (i2 < i1) −→ A[i1] = 0; B[i2] = 1 ∼ B[i2] = 1; A[i1] = 0. The validity
of this verification condition can be checked automatically by CVC Lite [3].

Phase 1 also detects transformations such as skewing, peeling and alignment.
Even though these do not actually reorder the statements, they do change the
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structure of the loops and so it is necessary to handle these transformations
before moving on to phase 2, which assumes that S′ and T have the same loop
structure.

4 Phase 2: Structure-Preserving Transformations

Phase 2 handles so-called structure-preserving transformations by applying rule
Validate. This rule is quite versatile and can handle a wide variety of stan-
dard optimizations and transformations [1], including the insertion or deletion
of statements. The main requirement is that the loop structure be the same in
the source and target programs.

Two important mappings are required to apply rule Validate, a control map-
ping and a data mapping. The control mapping is formed by finding a correspon-
dance between a subset of locations in the target T and a subset of locations in
the source S′. These locations are called cut-points. The sets of cut-points must
include the initial and final locations in S′ and T and at least one location from
every loop. The other required mapping is the data mapping. Some of the source
variables are identified as observable. These are the variables whose values must
be preserved in order for a transformation to be correct. The data mapping gives
a value for each observable source variable in terms of expressions over target
variables. TVOC generates the control and data mappings automatically.

Fig. 3 shows program TEST annotated with cut-points. Assuming A and B
are the observable variables, the data mapping simply maps A to a and B to b.

CP0 : do I = 0 to N {
CP1 : A[I] = 0;

B[I] = 1;
}

CP2 :

cp0 : if n ≥ 0 {
do i = 0 to n {

cp1 : a[i] = 0;
b[i] = 1;

}
}

cp2 :

Fig. 3. Cut-points for program TEST

Validation of the source against the target is done by checking that the data
mapping is preserved along every target path between a pair of cut-points. The
overall correctness follows by induction [4, 10]. Initially, TVOC tries to show that
all variables correspond at all program locations. When it finds that the data
mapping is not preserved for a given variable at some cut-point, that variable is
removed from the data mapping at that location. As long as all of the observable
variables are still in the data mapping at the final cut-point, the validation
succeeds.

For the example, in Fig. 3, there are four possible target paths: 0→ 1, 0 → 2,
1 → 1 and 1→ 2. Therefore, four verification conditions must be checked by CVC
Lite. Each verification condition checks that if the data mapping holds, and the
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corresponding source and target transitions are taken, then the data mapping
still holds. Transitions are modeled using logical equations with primed variables
denoting the values of variables after the transition. The verification condition
for the transition from 1 to 1 is shown below:

A = a ∧ B = b ∧
a′ = write(a, i, 0) ∧ b′ = write(b, i, 1) ∧ i′ = i+ 1 ∧ i+ 1 ≤ n ∧ n′ = n∧

A′ = write(A, I, 0) ∧B′ = write(B, I, 1) ∧ I ′ = I + 1 ∧ I + 1 ≤ N ∧N ′ = N
→

A′ = a′ ∧ B′ = b′.

In the general case, the data mapping may not be inductive, so additional
invariants may be needed to establish that it holds. TVOC calculates a simple
invariant for each cut-point based on data flow analysis. These invariants are
often sufficient to establish the induction. Another complication is that because
of branching, there may be multiple paths between two cut-points. In this case,
TVOC uses the disjunction of the path transition relations. This allows TVOC
for example to correctly identify a transformation in which multiple source paths
are merged into a single target path.

5 Conclusions and Future Work

At this point, TVOC still has some limitations: there are some optimizations and
language features that cannot yet be validated. For instance, we are still in the
process of adding support for procedures and pointers.

Although TVOC has primarily been used as a research prototype and experi-
mental platform for theoretical work, we are hoping it will be of use and interest
to a broader community. In addition, we hope to receive feedback and sugges-
tions for further improvement. We are thus making it freely available together
with basic examples and documentation at http://www.cs.nyu.edu/acsys/tv/.
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Abstract. Many symbolic software verification engines such as Slam
and ESC/Java rely on automatic theorem provers. The existing theorem
provers, such as Simplify, lack precise support for important program-
ming language constructs such as pointers, structures and unions. This
paper describes a theorem prover, Cogent, that accurately supports all
ANSI-C expressions. The prover’s implementation is based on a machine-
level interpretation of expressions into propositional logic, and supports
finite machine-level variables, bit operations, structures, unions, refer-
ences, pointers and pointer arithmetic. When used by Slam during the
model checking of over 300 benchmarks, Cogent’s improved accuracy
reduced the number of Slam timeouts by half, increased the number of
true errors found, and decreased the number of false errors.

1 Introduction

Program verification engines, such as symbolic model checkers and advanced
static checking tools, often employ automatic theorem provers for symbolic rea-
soning. For example, the static checkers ESC/Java [1] and Boogie [2] use the
Simplify [3] theorem prover to verify user-supplied invariants. The Slam [4]
software model-checker uses Zapato [5] for symbolic simulation of C programs.
The Blast [6] and Magic [7] tools use Simplify.

Most automatic theorem provers used in program verification are based on
either Nelson-Oppen or Shostak’s combination methods. These methods combine
various decision procedures to provide a rich logic for mathematical reasoning.
However, when applied to software verification, the fit between the program
verifier and the theorem prover is not ideal. The problem is that the theorem
provers are typically geared towards efficiency in the mathematical theories, such
as linear arithmetic over the integers. In reality, program verifiers rarely need
reasoning for unbounded integers, and the restriction to linear arithmetic is too
limiting. Moreover, because linear arithmetic over the integers is not a convex
theory (a restriction imposed by Nelson-Oppen and Shostak), the real numbers
are often used instead. Software programs, however, use the reals even less than
they do the integers.

The program verifiers must provide support for language features that are not
easily mapped into the logics supported by the existing theorem provers. These
features include pointers, pointer arithmetic, structures, unions, and the poten-
tial relationship between these features. When using provers such as Simplify,
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the program verification tools typically approximate the semantics of these fea-
tures with axioms over the symbols used during the encoding. However, using
such axioms has a drawback—axioms can interact badly with the performance
heuristics that are often used by provers during axiom-instantiation. Addition-
ally, because bit vectors and arrays are not convex theories, many provers do
not support them. In those that can, the link between the non-convex decision
procedures can be unsatisfactory. As an example, checking equality between a
bit-vector and an integer variable is typically not supported.

Another problem that occurs when using prover such as Simplify or Za-
pato is that, when a query is not valid, the provers do not supply concrete
counterexamples. Some provers provide partial information on counterexamples.
However, in program verification this information rarely leads to concrete valu-
ations to the variables in a program, which is what a programmer most wants
when a program verification tool reports a potential bug in the source code. For
this reason, model checkers such as Slam, Blast, and Magic do not provide
valuations to the program variables when an error trace is presented to the user.

This paper addresses the following question: When verifying programs, can we
abandon the Nelson-Oppen/Shostak combination framework in favor of a prover
that performs a basic and precise translation of program expressions into propo-
sitional logic?

We present a tool, called Cogent, that implements an eager and accurate
translation of ANSI-C expressions (including features such as bitvectors, struc-
tures, unions, pointers and pointer arithmetic) into propositional logic. Cogent
then uses a propositional logic SAT-solver to prove or disprove the query. Because
Cogent’s method is based on this eager translation to propositional logic, the
models found by SAT-solvers can be directly converted to counterexamples to
the original C input query. We evaluated Cogent’s performance in Slam, Com-
FoRT [8], and Boogie. The experimental evidence indicates that Cogent’s
approach can be successfully used in lieu of conventional theorem provers.

2 Encoding into Propositional Logic

Cogent operates by eagerly translating expressions into propositional logic, and
then using a propositional logic SAT-solver. Cogent is inspired by the success
of CBMC and UCLID. UCLID encodes separation logic and uninterpreted
functions eagerly into propositional logic. It does not, however, support bitvector
logic. CBMC is a bounded model checker for C programming language and
eagerly compiles bitvector arithmetic into propositional logic. Cogent is also
used as a decision procedure for the SATABS [9] model checker. Cogent is a
theorem prover intended for use in an abstraction framework such as Slam or
Magic, and thus, does not implement any abstraction by itself.

In hardware verification, the encoding of arithmetic operators such as shifting,
addition, and even multiplication into propositional logic using arithmetic circuit
descriptions is a standard technique. We use a similar approach in Cogent, with
several modifications:
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– In addition to the features supported by the existing tools, Cogent’s trans-
lation allows the program verification tools to accurately reason about arith-
metic overflow, bit operations, structures, unions, pointers and pointer arith-
metic.

– Cogent uses non-determinism to accurately model the ambiguity in the
ANSI-C standard, i.e., for the representation of signed types. This differs
from the support for bitvectors from theorem provers such as CVC-lite [10].

– We use non-determinism to improve the encodings of some functions, such
as multiplication and division, in a way that is optimized for SAT-solvers.

The technical details of Cogent’s encoding for ANSI-C expressions including
the use of non-determinism for accuracy and efficiency, can be found in [11].

3 Experimental Evaluation

Experiments with symbolic software model checking. We have integrated Co-
gent with Slam and compared the results to Slam using its current theorem
prover, Zapato. We ran Slam/Cogent on 308 model checking benchmarks.
The results are summarized in Fig. 1.

Slam/Cogent outperforms Slam/Zapato. Notably, the number of cases
where Slam exceeded the 1200s time threshold was reduced by half. As a result,
two additional device driver bugs were found. The cases where Slam failed to
refine the abstraction [12] were effectively unchanged. During Slam’s execution,
the provers actually returned different results in some cases. This is expected,
as the provers support different logics. For this reason, there are queries that
Zapato can prove valid and Cogent reports as invalid (e.g., when overflow is
ignored by Zapato), and vice-versa (e.g., when validity is dependent on pointer
arithmetic or non-linear uses of multiplication). Overall, we found that Cogent
is more than 2x slower than Zapato. On 2000 theorem proving queries Zapato
executed for 208s, whereas Cogent ran for 522s. Therefore, the performance
improvement in Fig. 1 is indicative that, while Cogent is slower, Cogent’s
increased accuracy allows Slam to do less work overall.

During the formalization of the kernel API usage properties that Slam is
used to verify [4], a large set of properties were removed or not actively pursued
due to inaccuracies in Slam’s theorem prover. For this reason the results in Fig. 1
are not fully representative of the improvement in accuracy that Slam/Cogent
can give. In order to further demonstrate this improved accuracy, we developed

Model checking result Slam/Zapato Slam/Cogent

Property passes 243 264
Time threshold exceeded 39 17
Property violations found 17 19
Cases of abstraction-refinement failure 9 8

Fig. 1. Comparison of Slam/Zapato to Slam/Cogent on 308 device driver correct-
ness model checking benchmarks. The time threshold was set to 1200 seconds
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and checked several new safety properties that could not be accurately checked
with Slam/Zapato. For more information on this property and a previously
unknown bug that was found see [11].

Experiments with extended static checking. We have also integrated Cogent
with Boogie [2], which is an implementation of Detlef et al.’s notion of ex-
tended static checking [1] for the C# programming language. Boogie computes
verification conditions that are checked by an automatic theorem prover.

We have applied Cogent to these verification conditions generated by Boo-
gie and compared the performance to Simplify. The results were effectively
the same. For more information on this application and, in particular, how we
handle the nested quantifiers that appear in the Boogie queries, see [11]. We
make [11], our tool, and bitvector benchmark files available on the web1 in order
to allow other researchers to reproduce our results.

4 Conclusion

Automatic theorem provers are often used by program verification engines. How-
ever, the logics implemented by these theorem provers are not a good fit for the
program verification domain. In this paper, we have presented a new prover
that accurately supports the type of reasoning that program verification engines
require. Cogent’s strategy is to directly encode input queries into proposi-
tional logic. This encoding accurately supports bit operations, structures, unions,
pointers and pointer arithmetic, and pays particular attention to the sometimes
subtle semantics described in the ANSI-C standard. Our evaluation of Cogent
demonstrates that it improves the accuracy of Boogie, and both the perfor-
mance and accuracy of Slam. Additionally, Cogent provides concrete coun-
terexamples in the case of failed proofs. To the best of our knowledge, Cogent
is the only theorem prover that accurately supports pointer arithmetic, unions,
structures and bitvectors and produces concrete counterexamples for a logic
suitable for program verification.
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1 Introduction

In this paper, we describe our verification tool F-Soft which is developed for
the analysis of C programs. Its novelty lies in the combination of several recent
advances in formal verification research including SAT-based verification, static
analyses and predicate abstraction. As shown in the tool overview in Figure 1,
we translate a program into a Boolean model to be analyzed by our verification
engine DiVer [4], which includes BDD-based and SAT-based model checking
techniques. We include various static analyses, such as computing the control
flow graph of the program, program slicing with respect to the property, and
performing range analysis as described in Section 2.2. We model the software
using a Boolean representation, and use customized heuristics for the SAT-based
analysis as described in Section 2.1. We can also perform a localized predicate ab-
straction with register sharing as described in Section 2.3, if the user so chooses.
The actual analysis of the resulting Boolean model is performed using DiVer.
If a counter-example is discovered, we use a testbench generator that automati-
cally generates an executable program for the user to examine the bug in his/her
favorite debugger. The F-Soft tool has been applied on numerous case studies
and publicly available benchmarks for sequential C programs. We are currently
working on extending it to handle concurrent programs.

2 Tool Features

In this section, we describe the software modeling approach in F-Soft and
the main tool features. We perform an automatic translation of the given pro-
gram to a Boolean model representation by considering the control flow graph
(CFG) of the program, which is derived after some front-end simplifications per-
formed by the CIL tool [9]. The transitions between basic blocks of the CFG
are captured by control logic, and bit-level assignments to program variables
are captured by data logic in the resulting Boolean model. We support primitive
data types, pointers, static arrays and records, and dynamically allocated objects
(up to a user-specified bound). We also allow modeling of bounded recursion by

� The author is at Western Michigan University.
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including a bounded function call stack in the Boolean model. Assuming the
program consists of n basic blocks, we represent each block by a label consist-
ing of �log n bits, called the program counter (pc) variables. A bounded model
checking (BMC) analysis is performed by unrolling the block-wise execution of
the program. Similar block-based approaches have been explored in a non-BMC
setting for software model checking [3, 11]. However, by incorporating basic-block
unrolling into a SAT-based BMC framework, we are able to take advantage of
the latest SAT-solvers, while also improving performance by customizing the
SAT-solver heuristics for software models. More details of our software modeling
approach can be found in [6].

DiVer analysis

SW modeling

Pred. Abstraction

Register Sharing

Localization

Control flow graph

Program slicing

Range analysis

Refinement

Control flow

Data flow

BMC Heuristics

C programsProperty monitor

Static analysis

Spurious?Testbench
NO

counter−example

reachable

YES

time
out not reachable

unknown property correct

Fig. 1. F-Soft tool overview

2.1 Customized Heuristics for SAT-Based BMC

The Boolean models automatically generated by our software modeling approach
contain many common features. We have proposed several heuristics in order to
improve the efficiency of SAT-based BMC on such models [6]. In particular, a
useful heuristic is a one-hot encoding of the pc variables, called selection bits.
A selection bit is set if and only if the corresponding basic block is active.
This provides a mechanism for word-level, rather than bit-level, pc decisions
by the SAT solver. Furthermore, by increasing the decision score of the selection
bits (or the pc variable bits), in comparison to other variables, the SAT-solver
can be guided toward making decisions on the control location first. We also
add constraints obtained from the CFG, to eliminate impossible predecessor-
successor basic block combinations. These constraints capture additional high-
level information, which helps to prune the search space of the SAT-solver.

Experimental results for use of these heuristics on a network protocol case
study (checking the equivalence of a buggy Linux implementation of the Point-
to-Point protocol against its RFC specification) are shown in Figure 2. For these
experiments, the bug was found by SAT-based BMC at a depth of 119, and
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the figure shows the cumulative time in seconds up to each depth. All experi-
ments were performed on a 2.8GHz dual-processor Linux machine with 4GB of
memory. The graph labeled standard represents the default decision heuristics
implemented in the DiVer tool, while the other three graphs show the effect of
specialized heuristics – higher scoring of pc variables (score), one-hot encoding of
pc variables (one-hot), and addition of constraints for CFG transitions (trans).
The advantage of the the one-hot encoding heuristic can be seen clearly.
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Fig. 2. Cumulative time comparison of SAT-based BMC heuristics for PPP

2.2 Range Analysis

F-Soft includes several automatic approaches for determining lower and upper
bounds for program variables using range analysis techniques [12]. The range in-
formation can help in reducing the number of bits needed to represent program
variables in the translated Boolean model, thereby improving the efficiency of
verification. For example, rather than requiring a 32 bit representation for every
int variable, we can use the range information to reduce the number of bits for
these variables. As discussed in the next section, F-Soft also provides an effi-
cient SAT-based approach for performing predicate abstraction. In this context
too, SAT-based enumeration for predicate abstraction [8] can be improved by
using tighter ranges for concrete variables, derived by using our automatic range
analysis techniques.

Our main method is based on the framework suggested in [10], which formu-
lates each range analysis problem as a system of inequality constraints between
symbolic bound polynomials. It then reduces the constraint system to a linear
program (LP), such that the solution provides symbolic lower and upper bounds
for the values of all integer variables. This may require over-approximating some
program constructs to derive conservative bounds. Our second approach to com-
puting ranges exploits the fact that in a bounded model checking run of depth
k, the range information needs to be sound only for traces up to length k. This
bounded range analysis technique is able to find tighter bounds on many program
variables that cannot be bounded using the LP solver-based technique.
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These range analysis techniques in F-Soft have been applied to many ex-
amples, including a network protocol (PPP), an aircraft traffic alert system
(TCAS), a mutual exclusion algorithm (Bakery), and an array manipulation ex-
ample. For these control-intensive examples, we found that the LP-based range
analysis technique reduced the number of state bits in the translated Boolean
model by 60% on average. The bounded range analysis technique produced an
additional 53% reduction on average. These resulted in considerable time savings
in verification using both BDD-based and SAT-based methods.

2.3 Localized Predicate Abstraction and Register Sharing

Predicate abstraction has emerged as a popular technique for extracting finite-
state models from software [1]. If all predicates are tracked globally in the pro-
gram, the analysis often becomes intractable due to too many predicate relation-
ships. Our contribution [7] is inspired by the lazy abstraction and localization
techniques implemented in BLAST [5]. While BLAST makes use of interpo-
lation, we use weakest pre-conditions along infeasible traces and the proof of
unsatisfiability of a SAT solver to automatically find predicates relevant at each
program location. Since most of the predicate relationships relevant at each pro-
gram location are obtained from the refinement process itself, this significantly
reduces the number of calls to back-end decision procedures in the abstraction
computation.

The performance of BDD-based model checkers depends crucially on the
number of state variables. Due to predicate localization most predicates are use-
ful only in certain parts of the program. The state variables corresponding to
these predicates can be shared to represent different predicates in other parts
of the abstraction. However, maximal register sharing may result in too many
abstraction refinement iterations; e.g., if the value of a certain predicate needs
to be tracked at multiple program locations. We make use of a simple heuristic
for deciding when to assign a dedicated state variable for a predicate in order to
track it globally. While it is difficult to compare the performance of these tech-
niques in F-Soft with BLAST under controlled conditions, our experiments [7]
indicated that the maximum number of active predicates at any program loca-
tion are comparable for the two tools, even though BLAST uses a more complex
refinement technique based on computation of Craig interpolants.

We have also applied our predicate abstraction techniques in F-Soft to a
large case study (about 32KLoC) consisting of a serial 16550-based RS-232 device
driver from WINDDK 3790 for Windows-NT. We checked the correct lock usage
property, i.e. lock acquires and releases should be alternating. Of the 93 related
API functions, F-Soft successfully proved the correctness of 72 functions in
about 2 hours (no bugs found so far!).

3 Comparison to Other Tools

The most closely related tool to ours is CBMC [2], which also translates a C
program into a Boolean representation to be analyzed by a back-end SAT-based
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BMC. However, there are many differences. One major difference is that we gen-
erate a Boolean model of the software that can be analyzed by both bounded
and unbounded model checking methods, using SAT solvers and BDDs. Another
major difference in the software modeling is our block-based approach using a pc
variable, rather than a statement-based approach in CBMC. (In our controlled
experiments, the block-based approach provides a typical 25% performance im-
provement over a statement-based approach.) Additionally, the translation to
a Boolean model in CBMC requires unwinding of loops up to some bound, a
full inlining of functions, and cannot handle recursive functions. In contrast, our
pc-based translation method does not require unwinding of loops, avoids multi-
ple inlining, and can also handle bounded recursion. This allows our method to
scale better than CBMC on larger programs, especially those with loops. The
practical advantages over CBMC were demonstrated in a recent paper [6], where
we also used specialized heuristics in the SAT solver to exploit the structure in
software models.

We also differentiate our approach by use of light-weight pre-processing anal-
yses such as program slicing and range analysis. Program slicing has been suc-
cessfully used in other software model checkers [3, 11] as well. Although range
analysis techniques have been used for other applications [10], to the best of our
knowledge we are the first to use them for software model checking. In practice,
it significantly reduces the number of bits needed to represent program variables
in the translated Boolean model, compared to using a full bitwidth encoding,
as in CBMC. Finally, F-Soft also allows abstraction of the software program
using predicate abstraction and localization techniques. These are inspired by
other model checkers [1, 5].

Acknowledgements. We thank Srihari Cadambi, Aleksandr Zaks and Himan-
shu Jain for their help in development of the F-Soft platform.
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6. F. Ivančić, Z. Yang, M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based
bounded model checking for software verification. In Symposium on Leveraging
Formal Methods in Applications, 2004.
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Abstract. We introduce a new decision procedure for Equality Logic.
The procedure improves on Bryant and Velev’s sparse method [4] from
CAV’00, in which each equality predicate is encoded with a Boolean vari-
able, and then a set of transitivity constraints are added to compensate
for the loss of transitivity of equality. We suggest the Reduced Tran-
sitivity Constraints (RTC) algorithm, that unlike the sparse method,
considers the polarity of each equality predicate, i.e. whether it is an
equality or disequality when the given equality formula ϕE is in Nega-
tion Normal Form (NNF). Given this information, we build the Equality
Graph corresponding to ϕE with two types of edges, one for each po-
larity. We then define the notion of Contradictory Cycles to be cycles
in that graph that the variables corresponding to their edges cannot be
simultaneously satisfied due to transitivity of equality. We prove that it
is sufficient to add transitivity constraints that only constrain Contradic-
tory Cycles, which results in only a small subset of the constraints added
by the sparse method. The formulas we generate are smaller and define
a larger solution set, hence are expected to be easier to solve, as indeed
our experiments show. Our new decision procedure is now implemented
in the uclid verification system.

1 Introduction

Equality Logic with Uninterpreted Functions is a major decidable theory used
in verification of infinite-state systems. Well-formed expressions in this logic are
Boolean combinations of Equality predicates, where the equalities are defined be-
tween term-variables (variables with some infinite domain) and Uninterpreted
Functions. The Uninterpreted Functions can be reduced to equalities via either
Ackermann’s [1] or Bryant et al.’s reduction [2] (from now on we will say Bryant’s
reduction), hence the underling theory that is left to solve is that of Equality Logic.

There are many examples of using Equality Logic and Uninterpreted Func-
tions in the literature. Proving equivalence of circuits after custom-design or
retiming (a process in which the layout of the circuit is changed in order to im-
prove computation speed) is a prominent example [3, 6]. Translation Validation
[15], a process in which the input and output of a compiler are proven to be se-
mantically equivalent is another example of using this logic. Almost all theorem
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provers that we are aware of support this logic, either explicitly or as part of
their support of more expressive logics.

Related work. The importance of this logic led to several suggestions for de-
cision procedures in the last few years [17, 9, 13, 2, 4, 16], almost all of which are
surveyed in detail in the full version of this article [11]. Due to space limitations
here we will only mention the most relevant prior work by Bryant and Velev [4],
called the sparse method. In the sparse method, each equality predicate is
replaced with a new Boolean variable, which results in a purely propositional
formula that we denote by B (B for Boolean). Transitivity constraints over these
Boolean variables are then conjoined with B, to recover the transitivity of equal-
ity that is lost in the Boolean encoding. So, for example, given the equality
formula: v1 = v2 ∧ v2 = v3 ∧ ¬(v1 = v3) the sparse method reduces it to the
Boolean formula B = e1,2 ∧ e2,3 ∧ ¬e1,3 and conjoins B with the transitivity
constraints e1,2 ∧ e2,3 → e1,3, e1,2 ∧ e1,3 → e2,3 and e1,3 ∧ e2,3 → e1,2. The
conjoined formula is satisfiable if and only if the original formula is satisfiable.

In order to decide which constraints are needed, following the sparse method
one needs to build a graph in which each equality predicate is an edge and
each variable is a vertex. With a simple analysis of this graph the necessary
constraints are derived. This is where our method is different from the sparse
method: unlike the graph considered by the sparse method, the graph we build
has two kinds of edges: one for equalities and one for disequalities, assuming the
Equality formula is given to us in Negation Normal Form (NNF) . Given this
extra information, about the polarity of each equality predicate, we are able to
find a small subset of the constraints that are generated by the sparse method,
that are still sufficient to preserve correctness. This results in a much simpler
formula that is easier for SAT to solve, at least in theory.

We base our procedure on a theorem that we state and prove in Section
4. The theorem refers to what we call Simple Contradictory Cycles, which are
simple cycles that have exactly one disequality edge. In such cycles, the theorem
claims, we need to prevent an assignment that assigns false to the disequality
edge and true to the rest. And, most importantly, these are the only kind of
constraints necessary. The proof of this theorem relies on a certain property of
NNF formulas called monotonicity with respect to satisfiability that we present in
Section 3. In Section 5 we show an algorithm that computes in polynomial time
a set of constraints that satisfy the requirements of our theorem. In Section 6 we
present experimental results. Our new procedure is now embedded in the uclid
[5] verification tool and is hence available for usage. In Section 7 we conclude
the paper and present directions for future research.

2 Reducing Equality Logic to Propositional Logic

We consider the problem of deciding whether an Equality Logic formula ϕE is
satisfiable. The following framework is used by both [4] and the current work to
reduce this decision problem to the problem of deciding a propositional formula:
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1. Let E denote the set of equality predicates appearing in ϕE. Derive a Boolean
formula B by replacing each equality predicate (vi = vj) ∈ E with a new
Boolean variable ei,j . Encode disequality predicates with negations, e.g.,
encode i �= j with ¬ei,j .

2. Recover the lost transitivity of equality by conjoining B with explicit tran-
sitivity constraints jointly denoted by T (T for Transitivity). T is a formula
over B’s variables and, possibly, auxiliary variables.

The Boolean formula B ∧ T should be satisfiable if and only if ϕE is satisfiable.
Further, we should be able to construct a satisfying assignment to ϕE from
an assignment to the ei,j variables. A straightforward method to build T in a
way that will satisfy these requirements is to add a constraint for every cyclic
comparison between variables, which disallow true assignment to exactly k− 1
predicates in a k-long simple cycle.

In [4] three different methods to build T are suggested, all of which are better
than this straightforward approach, and are described in some detail also in [11].
We need to define Non-Polar Equality Graph in order to explain the sparse
method, which is both theoretically and empirically the best of the three:

Definition 1 (Non-polar Equality Graph). Given an Equality Logic for-
mula ϕE, the Non-Polar Equality Graph corresponding to ϕE is an undirected
graph (V,E) where each node v ∈ V corresponds to a variable in ϕE, and each
edge e ∈ E corresponds to an equality or disequality predicate in ϕE.

The graph is called non-polar to distinguish it from the graph that we will use
later, in which there is a distinction between edges that represent equalities and
those that represent disequalities. We will simply say Equality Graph from now
on in both cases, where the meaning is clear from the context.

The sparse method is based on a theorem, proven in [4], stating that it
is sufficient to add transitivity constraints only to chord-free cycles (a chord
is an edge between two non-adjacent nodes). A chordal graph, also known as
triangulated graph, is a graph in which every cycle of size four or more has a
chord. In such a graph only triangles are chord-free cycles. Every graph can
be made chordal by adding auxiliary edges in linear time. The sparse method
begins by making the graph chordal, while referring to each added edge as a
new auxiliary ei,j variable. It then adds three transitivity constraints for each
triangle. We will denote the transitivity constraints generated by the sparse
method with T S .

Example 1. Figure 1 presents an Equality Graph before and after making it
chordal. The added edge e0,6 corresponds to a new auxiliary variable e0,6 that
appears in T S but not in B. After making the graph chordal, it contains 4
triangles and hence there are 12 constraints in T S . For example, for the triangle
(v1, v2, v3) the constraints are: e1,2∧e2,3 → e1,3, e1,3∧e2,3 → e1,2 and e1,2∧e1,3 →
e2,3.

��



Fig. 1. A non-chordal Equality Graph (left) and its chordal version

We will show an algorithm for constructing a Boolean formula T R (the super-
script R is for Reduced) which is, similarly to T S , a conjunction of transitivity
constraints, but contains only a subset of the constraints in T S . T R is not logi-
cally equivalent to T S ; it has a larger solution set. Yet it maintains the property
that B ∧ T R is satisfiable if and only if ϕE is satisfiable, as we will later prove.
This means that T R not only has a subset of the constraints of T S , but it also
defines a less constrained search space (has more solutions than T S). Together
these two properties are likely to make the SAT instance easier to solve. Since
the complexity of both our algorithm and the sparse method are similar, we
can claim dominance over the sparse method, although practically, due to the
unpredictability of SAT, such claims are never 100% true.

3 Basic Definitions

We will assume that our Equality formula ϕE is given in Negation Normal Form
(NNF), which means that negations are only applied to atoms, or equality pred-
icates in our case. Every formula can be transformed to this form in linear time
in the size of the formula. Given an NNF formula, we denote by E= the set of
(unnegated) equality predicates, and by E�= the set of disequalities (negated)
equality predicates. Our decision procedure, as the sparse method, relies on
graph-theoretic concepts. We will also use Equality Graphs, but redefine them
so they refer to polarity information. Specifically, each of the sets E=, E �= cor-
responds in this graph to a different set of edges. We overload these notations
so they refer both to the set of predicates and to the edges that represent them
in the Equality Graph.

Definition 2 (Equality Graph). Given an Equality Logic formula ϕE, the
Equality Graph corresponding to ϕE, denoted by GE(ϕE), is an undirected graph
(V,E=, E�=) where each node v ∈ V corresponds to a variable in ϕE, and each
edge in E= and E �= corresponds to an equality or disequality from the respective
equality predicates sets E= and E �=. By convention E= edges are dashed and E�=
edges are solid.

As before, every edge in the Equality Graph corresponds to a variable ei,j ∈ B.
It follows that when we refer to an assignment of an edge, we actually refer to
an assignment to its corresponding variable. Also, we will simply write GE to
denote an Equality Graph if we do not refer to a specific formula.

310 O. Meir and O. Strichman
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Fig. 2. The Equality Graph GE(ϕE) corresponding to the non-polar version of the same
graph shown in Figure 1

We now define two types of paths in Equality Graphs.

Definition 3 (Equality Path). An Equality Path in an Equality Graph GE

is a path made of E= (dashed) edges. We denote by x =∗ y the fact that x has
an Equality Path to y in GE, where x, y ∈ V .

Definition 4 (Disequality Path). A Disequality Path in an Equality Graph
GE is a path made of E= (dashed) edges and a single E�= (solid) edge. We denote
by x �=∗ y the fact that x has a Disequality Path to y in GE, where x, y ∈ V .

Similarly, we will use a Simple Equality Path and a Simple Disequality Path
when the path is required to be loop-free. In Figure 2 it holds, for example,
that v0 =∗ v6 due to the simple path v0, v7, v6; v0 �=∗ v6 due to the simple path
v0, v5, v6; and v7 �=∗ v6 due to the simple path v7, v0, v5, v6.

Intuitively, Equality Path between two variables implies that it might be
required to assign both variables an equal value in order to satisfy the formula. A
Disequality Path between two variables implies the opposite: it might be required
to assign different values to these variables in order to satisfy the formula. For
this reason the case in which both x =∗ y and x �=∗ y hold in GE(ϕE), requires
special attention. We say that the graph, in this case, contains a Contradictory
Cycle.

Definition 5 (Contradictory Cycle). A Contradictory Cycle in an Equality
Graph is a cycle with exactly one disequality (solid) edge.

Several characteristics of Contradictory Cycles are: 1) For every pair of nodes
x, y in a Contradictory Cycle, it holds that x =∗ y and x �=∗ y. 2) For every
Contradictory Cycle C, either C is simple or a subset of its edges forms a Simple
Contradictory Cycle. We will therefore refer only to simple Contradictory Cycles
from now on. 3) It is impossible to satisfy simultaneously all the predicates that
correspond to edges of a Contradictory Cycle. Further, this is the only type of
subgraph with this property.

Example 2. In Figure 2 we show an Equality Graph GE(ϕE) corresponding to
the non-polar version shown in Figure 1, assuming some Equality Formula ϕE

for which E= : {(v5 = v6), (v6 = v7), (v7 = v0), (v1 = v2), (v2 = v3), (v3 = v4)}
and E�= : {(v0 �= v5), (v0 �= v1), (v1 �= v4), (v1 �= v3)}. ��
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The reason that we need polarity information is that it allows us to use the
following property of NNF formulas.

Theorem 1 (Monotonicity of NNF). Let φ be an NNF formula and α be an
assignment such that α |= φ. Let the positive set S of α be the positive literals in
φ assigned true and the negative literals in φ assigned false. Every assignment
α′ with a positive set S′ such that S ⊆ S′ satisfies φ as well.

The same theorem was used, for example, in [14]. As an aside, when this theorem
is applied to CNF formulas, which are a special case of NNF, it is exactly the
same as the pure literal rule.

4 Main Theorem

The key idea that is formulated by Theorem 2 below and later exploited by our
algorithm can first be demonstrated by a simple example.

Example 3. For the Equality Graph below (left), the sparse method generates
T S with three transitivity constrains (recall that it generates three constraints
for each triangle in the graph, regardless of the edges’ polarity). We claim, how-
ever, that the single transitivity constraint T R = (e0,2∧e1,2 → e0,1) is sufficient.

αR αS

e0,1 true true
e1,2 true true
e0,2 false true

To justify this claim, it is sufficient to show that for every assignment αR that
satisfies B ∧T R, there exists an assignment αS that satisfies B ∧T S . Since this,
in turn, implies that ϕE is satisfiable as well, we get that ϕE is satisfiable if and
only if B ∧ T R is satisfiable. Note that the ‘only if’ direction is implied by the
fact that we use a subset of the constraints defined by T S .

We are able to construct such an assignment αS because of the monotonicity
of NNF (recall that the polarity of the edges in the Equality Graph are according
to their polarity in the NNF representation of ϕE). There are only two satisfying
assignments to T R that do not satisfy T S . One of these assignments is shown
in the αR column in the table to the right of the drawing. The second column
shows a corresponding assignment αS , which clearly satisfies T S . But we still
need to prove that every formula B that corresponds to the above graph, is still
satisfied by αS if it was satisfied by αR. For example, for B = (¬e0,1∨e1,2∨e0,2),
both αR |= B ∧ T R and αS |= B ∧ T S hold. Intuitively, this is guaranteed to
be true because αS is derived from αR by flipping an assignment of a positive
(un-negated) predicate (e0,2) from false to true. We can equivalently flip an
assignment to a negated predicate (e0,1 in this case) from true to false.
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A formalization of this argument requires a reference to the monotonicity
of NNF (Theorem 1): Let S and S′ denote the positive sets of αR and αS

respectively. Then in this case S = {e1,2} and S′ = {e1,2, e0,2}. Thus S ⊂ S′ and
hence, according to Theorem 1, αR |= B → αS |= B. ��
We need several definitions in order to generalize this example into a theorem.

Definition 6 (A constrained Contradictory Cycle). Let C =
(es, e1, . . . , en) be a Contradictory Cycle where es is the solid edge. Let ψ
be a formula over the Boolean variables in B that encodes the edges of C. C is
said to be constrained in ψ if the assignment (es, e1, . . . , en) ← (F, T, . . . , T )
contradicts ψ.

Recall that we denote by T S the formula that imposes transitivity constraints in
the sparse method, as defined in [4] and described in Section 2. Further, recall
that the sparse method works with chordal graphs, and therefore all constraints
are over triangles. Our method also makes the graph chordal, and the constraints
that we generate are also over triangles, although we will not use this fact in
Theorem 2, in order to make it more general.

Definition 7 (A Reduced Transitivity Constraints function T R). A Re-
duced Transitivity Constraints (RTC) function T R is a conjunction of transitiv-
ity constraints that maintains these two requirements:

R1 For every assignment αS, αS |= T S → αS |= T R (the solution set of T R

includes all the solutions to T S).
R2 T R constrains all the simple Contradictory Cycles in the Equality Graph GE.

R1 implies that T R is less constrained than T S . Consider, for example, a chordal
Equality graph in which all edges are solid (disequalities): in such a graph there
are no Contradictory Cycles and hence no constraints are required. In this case
T R = true, while T S includes three transitivity constraints for each triangle.

Theorem 2 (Main). An Equality formula ϕE is satisfiable if and only if B∧T R

is satisfiable.

Due to R1, the proof of the ‘only if’ direction (⇒) is trivial. To prove the other
direction we show in [11] an algorithm for reconstructing an assignment αS that
satisfies T S from a given assignment αR that only satisfies T R.

5 The Reduced Transitivity Constraints Algorithm

We now introduce an algorithm that generates a formula T R, which satisfies the
two requirements R1 and R2 that were introduced in the previous section.

The rtc algorithm processes Biconnected Components (BCC) [7] in the given
Equality Graph.

Definition 8 (Maximal Biconnected Component). A Biconnected Com-
ponent of an undirected graph is a maximal set of edges such that any two edges
in the set lie on a common simple cycle.
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We can focus on BCCs because we only need to constrain cycles, and in particular
Contradictory Cycles. Each BCC that we consider contains a solid edge es and
all the Contradictory Cycles that it is part of. In line 5 of rtc we make the BCC
chordal. Since making the graph chordal involves adding edges, prior to this step,
in line 4, we add solid edges from GE that can serve as chords. After the graph
is chordal we call Generate-constraints, which generates and adds to some
local cache all the necessary constraints for constraining all the Contradictory
Cycles in this BCC with respect to es. When Generate-constraints returns,
all the constraints that are in the local cache are added to some global cache.
The conjunction of the constraints in the global cache is what rtc returns as
T R.

rtc (Equality Graph GE(V, E=, E �=))
1: global-cache = ∅
2: for all es ∈ E�= do
3: Find B(es) = maximal BCC in GE made of es and E= edges;
4: Add to B(es) all edges from E�= that connect vertices in B(es);
5: Make the graph B(es) chordal; � (The chords can be either solid or dashed)
6: Generate-constraints (B(es), es);
7: global-cache = global-cache ∪ local-cache;
8: T R = conjunction of all constraints in the global cache;
9: return T R;

Generate-constraints (Equality Graph GE(V, E=, E �=), edge e ∈ GE)
1: for all triangles (e1, e2, e) ∈ GE such that

– e1 ∧ e2 → e is not in the local cache
– source(e) �= e1 ∧ source(e) �= e2

do
2: source(e1) = source(e2) = e;
3: Add e1 ∧ e2 → e to the local cache;
4: Generate-constraints (GE, e1); � expand e1

5: Generate-constraints (GE, e2); � expand e2

Generate-constraints iterates over all triangles that include the solid
edge es ∈ E �= with which it is called first. It then attempts to implicitly expand
each such triangle to larger cycles that include es. This expansion is done in the
recursive calls of Generate-constraints. Given the edge e, which is part of a
cycle, it tries to make the cycle larger by replacing e with two edges that ‘lean’
on this edge, i.e. two edges e1, e2 that together with e form a triangle. This is
why we refer to this operation as expansion. There has to be an indication in
which ‘direction’ we can expand the cycle, because otherwise when considering
e.g. e1, we would replace it with e and e2 and enter an infinite loop. For this
reason we maintain the source of each edge. The source of an edge is the edge
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due to the second condition in line 1 we do not expand it through the triangle
(e, e1, e2).

Each time we replace the given edge e by two other edges e1, e2, we also add
a transitivity constraint e1 ∧ e2 → e to the local cache. Informally, one may
see this constraint as enforcing the transitivity of the expanded cycle, by using
the transitivity enforcement of the smaller cycle. In other words, this constraint
guarantees that if the expanded cycle violates transitivity, then so does the
smaller one. Repeating this argument all the way down to triangles, gives us
an inductive proof that transitivity is enforced for all cycles. A formal proof of
correctness of rtc appears in [11].

Example 4. Figure 3 (left) shows the result of the iterative application of line 3
in rtc for each solid edge in the graph shown in Figure 2. By definition, after this
step each BCC contains exactly one solid edge. Figure 3 (right) demonstrates
the application of lines 4 and 5 in rtc: in line 4 we add e1,3, and in line 5 we add
e0,6, the only additional chords necessary in order to make all BCCs chordal.
The progress of Generate-constraints for this example is shown in Table 1.

Table 1. The progress of Generate-constraints when given the graph of Figure
3 (not including steps where the function returns because the triangle contains the
source of the expanded edge). In line 5 the constraint is already in the local cache, and
hence not added again

Iteration Component edge to source Triangle added
expand of edge constraint

1 a e0,5 - (e0,5, e5,6, e0,6) e0,6 ∧ e5,6 → e0,5

2 a e0,6 e0,5 (e0,6, e6,7, e0,7) e6,7 ∧ e0,7 → e0,6

3 b e1,4 - (e1,4, e3,4, e1,3) e1,3 ∧ e3,4 → e1,4

4 b e1,3 e1,4 (e1,3, e2,3, e1,2) e1,2 ∧ e2,3 → e1,3

5 c e1,3 - (e1,3, e2,3, e1,2) e1,2 ∧ e2,3 → e1,3

��

Fig. 3. The BCCs found in line 3 (left) and after lines 4 and 5 in rtc (right)

that it replaces. In the example above when replacing e with e1, e2, source(e1) =
source(e2) = e. So in the next recursive call, where e1 is the considered edge,
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5.1 Complexity of rtc and mprovements

Lines 3-5 in rtc can all be done in time linear in the size of the graph (including
the process of finding BCCs [7]). The number of iterations of the main loop in rtc
is bounded by the number of solid edges in the graph. Generate-constraints,
in each iteration of its main loop, either adds a new constraint or moves to
the next iteration without further recursive calls. Since the number of possible
constraints is bounded by three times the number of triangles in the graph, the
number of recursive calls in Generate-constraints is bounded accordingly.

Improvements: To reduce complexity, we only use a global cache, which re-
duces the number of added constraints and the overall complexity, since we never
generate the same constraint twice and stop the recursion calls earlier if we en-
counter a constraint that was generated in a previous BCC. The correctness
proof for this improvement is rather complicated and appears in the full version
of this paper [11].

We are also currently examining an algorithm that is more strict than rtc in
adding constraints: rtc constrains all contradictory cycles, not only the simple
ones, which we know is sufficient according to Theorem 2. This algorithm checks
whether the cycle that is currently expanded is simple or not. This leads to
certain complications that require to continue exploring the graph even when
encountering a constraint that is already in the cache. This, in turn, can lead to
a worst-case exponential time algorithm, that indeed removes many redundant
constraints but is rarely better than rtc according to our experiments, when
considering the total solving time. Whether there exists an equivalent algorithm
that works in polynomial time is an open question.

6 Experimental Results

uclid benchmarks. Our decision procedure is now integrated in the uclid
[5] verification system. uclid is a tool for analyzing the correctness of models
of hardware and software systems. It can be used to model and verify infinite-
state systems with variables of integer, Boolean, function, and array types. The
applications of uclid explored to date include microprocessor design verifica-
tion, analyzing software for security exploits, verification of a compiler through
Translation Validation and verifying distributed algorithms.

uclid reports to rtc the edges of the Equality Graph corresponding to the
verified formula including their polarity, and rtc returns a list of transitivity
constraints. The Boolean encoding (the generation of B), the elimination of Un-
interpreted Functions, various simplifications and the application of the Positive
Equality algorithm [2], are all applied by uclid as before. The comparison to
the sparse method of [4], which is also implemented in this tool and fed exactly
the same formula, is therefore fair.

We used all the relevant uclid benchmarks that we are aware of (all of which
happen to be unsatisfiable). We compared rtc and the sparse method using
the two different reduction methods of Uninterpreted Functions: Ackermann’s

I
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reduction [1] and Bryant’s reduction [2]. This might cause a bias in our results
not in our favor: the reduction of Uninterpreted Functions to Equality Logic
results in Equality Graphs with specific characteristics. In [11], we explain the
difference between the two reductions and why this influences our results. Here
we will only say that when Bryant’s reduction is used, all edges corresponding
to comparisons between arguments of functions are ‘double’, meaning that they
are both solid and dashed. In such a case rtc has no advantage at all, since
every cycle is a contradictory cycle. This does not mean that when using this
reduction method rtc is useless: recall that we claim for theoretical dominance
over the sparse method. It only means that the advantage of rtc is going to
be visible if there is a large enough portion of the Equality Graph that is not
related to the reduction of Uninterpreted Functions, rather to the formula itself.

Table 2. rtc vs. the sparse method using Bryant’s reduction with positive equalities
(top) and Ackermann’s reduction (bottom). Each benchmark set corresponds to a
number of benchmark files in the same family. The column ‘uclid’ refers to the total
running time of the decision procedure without the SAT solving time

Benchmark # sparse method rtc
set files Constraints uclid zChaff total Constraints uclid zChaff total

TV 9 16719 148.48 1.08 149.56 16083 151.1 0.96 152.0
Cache.inv 4 3669 47.28 40.78 88.06 3667 54.26 38.62 92.8

Dlx1c 3 7143 18.34 2.9 21.24 7143 20.04 2.73 22.7
Elf 3 4074 27.18 2.08 29.26 4074 28.81 1.83 30.6

OOO 6 7059 26.85 46.42 73.27 7059 29.78 45.08 74.8
Pipeline 1 6 0.06 37.29 37.35 6 0.08 36.91 36.99

Total 26 38670 268.19 130.55 398.7 38032 284.07 126.13 410.2

TV 9 103158 1467.76 5.43 1473.2 9946 1385.61 0.69 1386.3
Cache.inv 4 5970 48.06 42.39 90.45 5398 54.65 44.14 98.7

Dlx1c 3 46473 368.12 11.45 379.57 11445 350.48 8.88 359.36
Elf 5 43374 473.32 28.99 502.31 24033 467.95 28.18 496.1

OOO 6 20205 78.27 29.08 107.35 16068 79.5 24.35 103.8
Pipeline 1 96 0.17 46.57 46.74 24 0.18 46.64 46.8

q2 1 3531 30.32 46.33 76.65 855 32.19 35.57 67.7

Total 29 222807 2466.02 210.24 2676.2 67769 2370.56 188.45 2559.0

The SAT-solver we used for both rtc and the sparse method was zChaff
(2004 edition) [12]. For each benchmark we show the number of generated tran-
sitivity constraints, the time it took zChaff to solve the SAT formula, the run
time of uclid, which includes RTC but not zChaff time and the total run time.
Table 2 (top) compares the two algorithms, when uclid uses Bryant’s reduction
with Positive Equality. Indeed, as expected, in this setting the advantage of rtc
is hardly visible: the number of constraints is a little smaller comparing to what is
generated by the sparse method (while the time that takes rtc and the sparse
method to generate the transitivity constraints is almost identical, with a small
advantage to the sparse method), and correspondingly the runtime of zChaff
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is smaller, although not significantly. We once again emphasize that we consider
this as an artifact of the specific benchmarks we found; almost all equalities in
them are associated with the reduction of the Uninterpreted Functions. As fu-
ture research we plan to integrate in our implementation the method of Rodeh
et al. [16] which, while using Bryant’s reduction, not only produces drastically
smaller Equality Graphs, but also does not necessarily require a double edge for
each comparison of function instances. This is expected to mostly neutralize this
side effect of Bryant’s reduction. Table 2 (bottom) compares the two algorithms
when Ackermann’s reduction is used. Here the advantage of rtc is seen clearly,
both in the number of constraints and the overall solving times. In particular,
note the reduction from a total of 222,807 constraints to 67,769 constraints.

Random formulas. In another set of experiments we generated hundreds of
random formulas and respective Equality Graphs, while keeping the ratio of ver-
tices to edges similar to what we found in the real benchmarks (about 1 vertex to
4 edges). Each benchmark set was built as follows. Given n vertices, we randomly
generated 16 different graphs with 4n random edges, and the polarity of each
edge was chosen randomly according to a predefined ratio p. We then generated
a random CNF formula B with 16n clauses (each clause with up to 4 literals)
in which each literal corresponds to one of the edges. Finally, we generated two
formulas, T S and T R corresponding to the transitivity constraints generated by
the sparse and rtc methods respectively, and sent the concatenation of B with
each of these formulas to three different SAT solvers, HaifaSat [8], Siege v4 [10]
and zChaff 2004.

In the results depicted in Table 3 we chose n = 200 (in the uclid benchmarks
n was typically a little lower than that). Each set of experiments (corresponding
to one cell in the table) corresponds to the average results over the 16 graphs, and
a different ratio p, starting from 1 solid to 10 dashed, and ending with 10 solids
to 1 dashed. We set the timeout to 600 seconds and added this number in case
the solver timed-out. We occasionally let siege run without a time limit (with
both rtc and sparse), just in order to get some information about instances
that none of solvers could solve in the given limit. All instances were satisfiable
(in the low ratio of solid to dashed, namely 1:2 and 1:5 we could not solve any of
the instances with any of the solvers even after several hours). The conclusions
from the table are that (1) in all tested ratios rtc generates less constraints
than sparse. As expected, this is more apparent when the ratio is further than
1:1; there are very few contradictory cycles in this kind of graphs. (2) with all
three SAT solvers it took longer to solve B ∧ T S than to solve B ∧ T R.

While it is quite intuitive why the instances should be easier to solve when
the formula is satisfiable — the solutions space rtc defines is much larger, it is
less clear when the formula is unsatisfiable. In fact, SAT solvers are frequently
faster when the input formula contains extra information that further prunes the
search space. Nevertheless, the experiments above on uclid benchmarks (which,
recall, are all unsatisfiable) and additional results on random formulas (see [11])
show that rtc is still better in unsatisfiable instances. We speculate that the
reason for this is the following. Let T represent all transitivity constraints that
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Table 3. rtc vs. the sparse method in random satisfiable formulas listed by the ratio
of solid to dashed edges

ratio constraints zChaff HaifaSat siege v4

solid:dashed Sparse RTC Sparse RTC Sparse RTC Sparse RTC

1:10 373068.8 181707.8 581.1 285.6 549.2 257.4 1321.6 506.4

1:5 373068.8 255366.6 600.0 600.0 600.0 600.0 600.0 600.0

1:2 373068.8 308346.5 600.0 600.0 600.0 600.0 600.0 600.0

1:1 373068.8 257852.6 5.2 0.4 5.9 3.0 1.2 0.1

2:1 373068.8 123623.4 0.1 0.01 0.6 0.22 0.01 0.01

5:1 373068.8 493.9 0.1 0.01 0.6 0.01 0.01 0.01

10:1 373068.8 10.3 0.1 0.01 0.6 0.01 0.01 0.01

average 373068.8 161057.3 255.2 212.3 251.0 208.7 360.4 243.8

are in T S but not in T R. Assuming B is satisfiable, it can be proven that B ∧ T
is satisfiable as well [11]. This means that any proof of unsatisfiability must rely
on clauses from T R. Apparently in practice it is rare that the SAT solver finds
shortcuts through the T clauses.

7 Conclusions and Directions for Future Research

We presented a new decision procedure for Equality Logic, which builds upon
and improves previous work by Bryant and Velev in [4, 3]. The new procedure
generates a set of transitivity constraints that is, at least in theory, easier to
solve. The experiments we conducted show that in most cases it is better in
practice as well, and in any case does not make it worse, at least not in more
than a few seconds. rtc does not make full use of Theorem 2, as it constrains
all Contradictory Cycles rather than only the simple ones. We have another
version of the algorithm, not presented in the article due to lack of space, that
handles this problem, but with an exponential price. As stated before, the ques-
tion whether there exists a polynomial algorithm that does the same or it is
inherently a hard problem, is left open.

Acknowledgement. We are exceptionally grateful to Sanjit Seshia for the
many hours he invested in hooking our procedure to uclid, and for numerous
insightful conversations we had on this and related topics.

References

1. W. Ackermann. Solvable cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1954.

2. R. Bryant, S. German, and M. Velev. Exploiting positive equality in a logic of
equality with uninterpreted functions. In Proc. 11th Intl. Conference on Computer
Aided Verification (CAV’99), 1999.



320 O. Meir and O. Strichman

3. R. Bryant, S. German, and M. Velev. Processor verification using efficient reduc-
tions of the logic of uninterpreted functions to propositional logic. ACM Transac-
tions on Computational Logic, 2(1):1–41, 2001.

4. R. Bryant and M. Velev. Boolean satisfiability with transitivity constraints. In
Proc. 12th Intl. Conference on Computer Aided Verification (CAV’00), volume
1855 of LNCS, 2000.

5. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions.
In Proc. 14th Intl. Conference on Computer Aided Verification (CAV’02), 2002.

6. J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In Proc. 6th Intl. Conference on Computer Aided Verification (CAV’94),
volume 818 of LNCS, pages 68–80. Springer-Verlag, 1994.

7. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, chapter 26,
page 563. MIT press, 2000.

8. R. Gershman and O. Strichman. Cost-effective hyper-resolution for preprocessing
cnf formulas. In T. Walsh and F. Bacchus, editors, Theory and Applications of
Satisfiability Testing (SAT’05), 2005.

9. A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD based procedures for a
theory of equality with uninterpreted functions. In A. Hu and M. Vardi, editors,
CAV98, volume 1427 of LNCS. Springer-Verlag, 1998.

10. L.Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, 2004.

11. O. Meir and O. Strichman. Yet another decision procedure for equality logic (full
version), 2005. ie.technion.ac.il/∼ofers/cav05 full.ps.

12. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proc. Design Automation Conference (DAC’01), 2001.

13. A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by
small-domains instantiations. In Proc. 11th Intl. Conference on Computer Aided
Verification (CAV’99), LNCS. Springer-Verlag, 1999.

14. A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property:
How small can it be? Information and computation, 178(1):279–293, Oct. 2002.

15. A. Pnueli, M. Siegel, and O. Shtrichman. Translation validation for synchronous
languages. In K. Larsen, S. Skyum, and G. Winskel, editors, ICALP’98, volume
1443 of LNCS, pages 235–246. Springer-Verlag, 1998.

16. Y. Rodeh and O. Shtrichman. Finite instantiations in equivalence logic with un-
interpreted functions. In Computer Aided Verification (CAV), 2001.

17. R. Shostak. An algorithm for reasoning about equality. Communications of the
ACM, 21(7):583 – 585, July 1978.



DPLL(T) with Exhaustive Theory Propagation
and Its Application to Difference Logic

Robert Nieuwenhuis and Albert Oliveras�

Abstract. At CAV’04 we presented the DPLL(T ) approach for satis-
fiability modulo theories T . It is based on a general DPLL(X) engine
whose X can be instantiated with different theory solvers SolverT for
conjunctions of literals.

Here we go one important step further: we require SolverT to be able
to detect all input literals that are T -consequences of the partial model
that is being explored by DPLL(X). Although at first sight this may seem
too expensive, we show that for difference logic the benefits compensate
by far the costs.

Here we describe and discuss this new version of DPLL(T ), the
DPLL(X) engine, and our SolverT for difference logic. The resulting very
simple DPLL(T ) system importantly outperforms the existing techniques
for this logic. Moreover, it has very good scaling properties: especially on
the larger problems it gives improvements of orders of magnitude w.r.t.
the existing state-of-the-art tools.

1 Introduction

During the last years the performance of decision procedures for the satisfiability
of propositional formulas has improved spectacularly. Most state-of-the-art SAT
solvers [MMZ+01, GN02] today are based on different variations of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62].

But, in many verification applications, satisfiability problems arise for logics
that are more expressive than just propositional logic. In particular, decision
procedures are required for (specific classes of) ground first-order formulas with
respect to theories T such as equality with uninterpreted functions (EUF), the
theory of the integer/real numbers, or of arrays or lists.

Normally, for conjunctions of theory literals there exist well-studied decision
procedures. For example, such a theory solver for the case where T is equal-
ity (i.e., for EUF logic) can use congruence closure. It runs in O(n log n) time
[DST80], also in the presence of successor and predecessor functions [NO03].
Another example is difference logic (sometimes also called separation logic) over
the integers or reals, where atoms take the form a − b ≤ k, being a and b vari-
ables and k a constant. In difference logic the satisfiability of conjunctions of
such literals can be decided in O(n3) time by the Bellman-Ford algorithm.
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However, it is unclear in general which is the best way to handle arbitrary
Boolean or CNF formulas over theory (and propositional) literals. Typically, the
problem is attacked by trying to combine the strengths of the DPLL approach
for dealing with the boolean structure, with the strengths of the specialized
procedures for handling conjunctions of theory literals.

One well-known possibility is the so-called lazy approach [ACG00, dMR02]
[BDS02, FJOS03, BBA+05]. In this approach, each theory atom is simply ab-
stracted by a distinct propositional variable, and a SAT solver is used to find
a propositional model. This model is then checked against the theory by using
the solver for conjunctions of literals. Theory-inconsistent models are discarded
from later consideration by adding an appropriate theory lemma to the original
formula and restarting the process. This is repeated until a model compatible
with the theory is found or all possible propositional models have been explored.
The main advantage of such lazy approaches is their flexibility: they can eas-
ily combine new decision procedures for different logics with new SAT solvers.
Nowadays, most lazy approaches have tighter integrations in which partial propo-
sitional models are checked incrementally against the theory while they are built
by the SAT solver. This increases efficiency at the expense of flexibility.

However, these lazy approaches suffer from the drawbacks of insufficient con-
straint propagation and blind search [dMR04]: essentially, the theory information
is used only to validate the search a posteriori, not to guide it a priori.

In practice, for some theories these lazy approaches are outperformed by the
so-called eager techniques, where the input formula is translated, in a single
satisfiability-preserving step, into a propositional CNF, which is checked by a
SAT solver for satisfiability. However, such eager approaches require sophisti-
cated ad-hoc translations for each logic. For example, for EUF there exist the
per-constraint encoding [BV02], the small domain encoding [PRSS99, BLS02],
and several hybrid approaches [SLB03]. Similarly, for difference logic, sophis-
ticated range-allocation approaches have been defined in order to improve the
translations [TSSP04]. But, in spite of this, on many practical problems the
translation process or the SAT solver run out of time or memory (see [dMR04]).

1.1 The DPLL(T ) Approach of [GHN+04]

As a way to overcome the drawbacks of the lazy and eager approaches, at CAV’04
we proposed DPLL(T ) [GHN+04]. It consists of a general DPLL(X) engine,
whose parameterX can be instantiated with a solver (for conjunctions of literals)
Solver

T
for a given theory T , thus producing a DPLL(T ) decision procedure.

One essential aspect of DPLL(T ) is that Solver
T

not only validates the choices
made by the SAT engine (as in the lazy approaches). It also eagerly detects lit-
erals of the input CNF that are T -consequences of the current partial model,
and sends them to the DPLL(X) engine for propagation. Due to this, for the
EUF logic the DPLL(T ) approach not only outperforms the lazy approaches,
but also all eager ones, as soon as equality starts playing a significant role in the
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EUF formula [GHN+04]1. On the other hand, DPLL(T ) is similar in flexibility
to the lazy approaches: other logics can be dealt with by simply plugging in their
theory solvers into the DPLL(X) engine, provided that these solvers conform to
a minimal and simple interface.

In the DPLL(T ) version of [GHN+04], Solver
T

is allowed to fail sometimes to
detect that a certain input literal l is a T -consequence of literals l1, . . . , ln in the
current partial model. Then, only when the DPLL(X) engine actually makes ¬l
true, as a decision literal, or as a unit propagated literal, and communicates this
to Solver

T
, it is detected that the partial model is no longer T -consistent. Then

Solver
T

warns the DPLL(X) engine, who has several different ways of treating
such situations. One possibility is to backjump to the level where l actually
became T -entailed, and propagate it there. This mechanism alone gives one a
complete DPLL(T ) decision procedure. But in order to make it more efficient,
it is usually better to learn the corresponding theory lemma l1∧. . .∧ln→ l. In
other similar branches of the DPLL search the literal l can then be propagated
earlier. Altogether, such concrete situations of non-exhaustiveness of Solver

T
are

essentially handled as in the lazy approaches.
The reason why in [GHN+04] the approach was defined considering a possibly

non-exhaustive Solver
T

was due to our experiments with EUF. More precisely,
for negative equality consequences we found it expensive to detect them exhaus-
tively, whereas all positive literals were propagated.

1.2 DPLL(T ) with Exhaustive Theory Propagation

At least for difference logic, it is indeed possible to go one important step fur-
ther in this idea: in this paper we describe a DPLL(T ) approach where Solver

T

is required to detect and communicate to DPLL(X) all literals of the input for-
mula that are T -consequences of the partial model that is being explored. This
assumption makes the DPLL(X) engine much simpler and efficient than before,
because it can propagate these literals in exactly the same way as for standard
unit propagation in DPLL, and no theory lemma learning is required at all.

The DPLL(X) engine then becomes essentially a propositional SAT solver.
The only difference is a small interface with Solver

T
. DPLL(X) communicates

to Solver
T

each time the truth value of a literal is set, and Solver
T

answers with
the list of literals that are new T -consequences. DPLL(X) also communicates to
Solver

T
, each time a backjump takes place, how many literals of the partial inter-

pretation have been unassigned. As in most modern DPLL systems, backjumping
is guided by an implication graph [MSS99], but of course here some arrows in
the graph correspond to theory consequences. Therefore, for building the graph,
DPLL(X) also needs Solver

T
to provide an Explain(l) operation, returning, for

each T -consequence l it has communicated to DPLL(X), a (preferably small)
subset of the true literals that implied l. This latter requirement to our Solver

T

coincides with what solvers in the lazy approach must do for returning the theory
lemmas.

1 And our implementations are now again much faster than reported at CAV’04.
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Due to the fact that DPLL(X) is here nothing more than a standard DPLL-
based SAT solver, the approach has become again more flexible, because it is
now easy to convert any new DPLL-based SAT solver into a DPLL(X) engine.
Moreover, there is at least one important theory for which the exhaustiveness
requirement does not make Solver

T
too slow: here we give extensive experimental

evidence showing that for difference logic our approach outperforms all existing
systems, and moreover has better scaling properties. Especially on the larger
problems it gives improvements of orders of magnitude.

This paper is structured as follows. In Section 2 we give a precise formulation
of DPLL(T ) with exhaustive theory propagation. In Section 3 we show how our
relatively simple solver for difference logic is designed in order to efficiently fulfill
the requirements. Section 4 gives all experimental results, and we conclude in
Section 5.

2 DPLL(T ): Basic Definitions and Notations

A procedure for Satisfiability Modulo Theories (SMT) is a procedure for deciding
the satisfiability of ground (in this case, CNF) formulas in the context of a
background theory T . By ground we mean containing no variables—although
possibly containing constants not in T (which can also be seen as Skolemized
existential variables).

A theory T is a satisfiable set of closed first-order formulas. We deal with (par-
tial Herbrand) interpretations M as sets of ground literals such that {A,¬A} ⊆
M for no ground atom A. A ground literal l is true in M if l ∈ M , is false in
M if ¬l ∈ M , and is undefined otherwise. A ground clause C is true in M if
C ∩M �= ∅. It is false in M , denoted M |= ¬C, if all its literals are false in
M . Similarly, we define in the standard way when M satisfies (is a model of) a
theory T . If F and G are ground formulas, G is a T -consequence of F written
F |=T G, if T ∪F |= G. The decision problem that concerns us here is whether a
ground formula F is satisfiable in a theory T , that is, whether there is a model
M of T ∪ F . Then we say that M is a T -model of F .

2.1 Abstract Transition Rules

Here we define DPLL(T ) with exhaustive theory propagation by means of the
abstract DPLL framework, introduced in [NOT05] (check this reference for de-
tails). Here a DPLL procedure is modelled by a transition relation over states.
A state is either fail or a pair M || F , where F is a finite set of clauses and M
is a sequence of literals that is seen as a partial interpretation. Some literals l
in M will be annotated as being decision literals; these are the ones added to
M by the Decide rule given below, and are sometimes written ld. The transition
relation is defined by means of rules.
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Definition 1. The DPLL system with exhaustive theory propagation consists
of the following transition rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{
M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{
l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ fail if
{
M |= ¬C
M contains no decision literals

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ld N |= ¬C, and there is
some clause C ′ ∨ l′ s.t.:
F |=T C ′ ∨ l′ and M |= ¬C ′

l′ is undefined in M
l′ or ¬l′ occurs in F

T-Propagate :

M || F =⇒ M l || F if

⎧⎨⎩
M |=T l
l or ¬l occurs in a clause of F
l is undefined in M

Learn :

M || F =⇒ M || F, C if
{

all atoms of C occur in F
F |=T C

Forget :
M || F, C =⇒ M || F if

{
F |=T C

Restart :
M || F =⇒ ∅ || F

These rules express how the search state of a DPLL procedure evolves. With-
out T-Propagate, and replacing everywhere |=T by |=, they model a standard
propositional DPLL procedure. Note that this is equivalent to considering T to
be the empty theory: then T-Propagate never applies. The propagation and deci-
sion rules extend the current partial interpretation M with new literals, and if in
some state M || F there is a conflict, i.e., a clause of F that is false in M , always
either Fail applies (if there are no decision literals in M) or Backjump applies (if
there is at least one decision literal in M). In the latter case, the backjump clause
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C ′ ∨ l′ can be found efficiently by constructing a conflict graph. Good backjump
clauses allow one to return to low decision levels, i.e., they maximize the number
of literals in N . Usually such backjump clauses are learned by the Learn rule, in
order to prevent future similar conflicts. The use of Forget is to free memory by
removing learned clauses that have become less active (e.g., cause less conflicts
or propagations).

These first five rules terminate (independently of any strategies or priorities)
and termination of the full system is easily enforced by limiting the applicability
of the other three rules (e.g., if all Learn steps are immediately after Backjump
steps, and Restart is done with increasing periodicity). If we say that a state is
final if none of the first five rules applies, the following theorem is proved in a
similar way to what is done in [NOT05].

Theorem 2. Let =⇒ denote the transition relation of the DPLL system with
exhaustive theory propagation where T-Propagate is applied eagerly, i.e., no other
rule is applied if T-Propagate is applicable, and let =⇒∗ be its transitive closure.

1. ∅ || F =⇒∗ fail if, and only if, F is unsatisfiable in T .

2. If ∅ || F =⇒∗ M || F ′, where M || F ′ is final, then M is a T -model of F .

2.2 Our Particular Strategy

Of course, actual DPLL implementations may use the above rules in more re-
strictive ways, using particular application strategies. For example, many sys-
tems will eagerly apply UnitPropagate and minimize the application of Decide,
but this is not necessary: any strategy will be adequate for Theorem 2 to hold.

We now briefly explain the particular strategy used by our DPLL(T ) imple-
mentation, and the roles of the DPLL(X) engine and of Solver

T
in it.

For the initial setup of DPLL(T ), one can consider that it is Solver
T

that
reads the input CNF, then stores the list of all literals occurring in it, and
hands it over to DPLL(X) as a purely propositional CNF. After that, DPLL(T )
implements the rules as follows:

• Each time DPLL(X) communicates to Solver
T

that the truth value of a
literal has been set, due to UnitPropagate or Decide, Solver

T
answers with

the list of all input literals that are new T -consequences. Then, for each one
of these consequences, T-Propagate is immediately applied.

• If T-Propagate is not applicable, then UnitPropagate is eagerly applied by
DPLL(X) (this is implemented using the two-watched-literals scheme).

• DPLL(X) applies Fail or Backjump if, and only if, a conflict clause C is
detected, i.e., a clause C that is false in M . As said, if there is some decision
literal in M , then it is always Backjump that is applied. The application
of Backjump is guided by an implication graph. Each literal of the conflict
clause C is false in M because its negation l is in M , which can be due to
one of three possible rules:

– UnitPropagate: l is true because, in some clause D ∨ l, every literal in D
is the negation of some l′ in M .
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– T-Propagate: l has become true because it is a T -consequence of other
literals l′ in M .

– Decide: l has been set true by Decide.

In the cases of UnitPropagate and T-Propagate, recursively the l′ are again
true due to the same three possible reasons. By working backwards in this
way from the literals of C, one can trace back the reasons of the conflict. A
conflict graph is nothing but a representation of these reasons. By analyzing
a subset of it, one can find adequate backjump clauses [MSS99]. But for
building the graph, for the case of the T-Propagate implications, SolverT

must be able to return the set of l′ that T -entailed l. This is done by the
Explain(l) operation provided by Solver

T
.

After each backjump has taken place in DPLL(X), it tells Solver
T

how many
literals of the partial interpretation have been unassigned.

• Immediately after each Backjump application, the Learn rule is applied for
learning the backjump clause.

• In our current implementation, DPLL(X) applies Restart when certain sys-
tem parameters reach some limits, such as the number of conflicts or lemmas,
the number of new units derived, etc.

• Forget is applied by DPLL(X) after each restart (and only then), removing at
least half of the lemmas according to their activity (number of times involved
in a conflict since last restart). The 500 newest lemmas are not removed.

• DPLL(X) applies Decide only if none of the other first five rules is applicable.
The heuristic for chosing the decision literal is as in Berkmin [GN02]: we take
an unassigned literal that occurs in an as recent as possible lemma, and in
case of a draw, or if there is no such literal in the last 100 lemmas, the literal
with the highest VSIDS measure is taken [MMZ+01] (where each literal has
a counter increased by each participation in a conflict, and from time to time
all counters are divided by a constant).

3 Design of Solver
T

for Difference Logic

In this section we address the problem of designing Solver
T

for a DPLL(T ) system
deciding the satisfiability of a CNF formula F in difference logic (sometimes also
called separation logic). In this logic, the domain can be the integers, rationals
or reals (as we will see, the problem is essentially equivalent in all three cases),
and atoms are of the form a ≤ b+k, where a and b are variables over this domain
and k is a constant.

Note that, over the integers, atoms of the form a < b+ k can be equivalently
written as a ≤ b + (k − 1). A similar transformation exists for rationals and
reals, by decreasing k by a small enough amount that depends only on the
remaining literals ocurring in the input formula [Sch87]. Hence, negations can
also be removed, since ¬(a ≤ b+k) is equivalent to b < a−k, as well as equalities
a = b + k, which are equivalent to a ≤ b + k ∧ a ≥ b + k. Therefore, we will
consider that all literals are of the form a ≤ b+ k.
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Given a conjunction of such literals, one can build a directed weighted graph
whose nodes are the variables, and with an edge a k−→ b for each literal a ≤ b+k.
It is easy to see that, independently of the concrete arithmetic domain (i.e.,
integers, rationals or reals), such a conjunction is unsatisfiable if, and only if,
there is a cycle in the graph with negative accumulated weight. Therefore, once
the problem has all its literals of the form a ≤ b+ k, the concrete domain does
not matter any more.

Despite its simplicity, difference logic has been used to express important
practical problems, such as verification of timed systems, scheduling problems
or the existence of paths in digital circuits with bounded delays.

3.1 Initial Setup

As said, for the initial setup of DPLL(T ), it is Solver
T

that reads the input CNF,
then stores the list of all literals occurring in it, and hands it over to DPLL(X)
as a purely propositional CNF.

For efficiency reasons, it is important that in this CNF the relation between
literals and their negations is made explicit. For example, if a ≤ b + 2 and
b ≤ a− 3 occur in the input, then, since (in the integers) one is the negation of
the other, they should be abstracted by a propositional variable and its negation.
This can be detected by using a canonical form during this setup process. For
instance, one can impose that always the smallest variable, say a, has to be at
the left-hand side of the ≤ relation, and thus we would have a ≤ b + 2 and
¬(a ≤ b+ 2), and abstract them by p and ¬p for some propositional variable p.

Solver
T

will keep a data structure recording all such canonized input literals
like a ≤ b + 2 and its abstraction variable p. Moreover, for reasons we will see
below, it keeps for each variable the list of all input literals it occurs in, together
with the length of this list.

3.2 DPLL(X) Sets the Truth Value of a Literal

When the truth value of a literal is set, Solver
T

converts the literal into the
form a ≤ b+ k and adds the corresponding edge to the aforementioned directed
weighted graph. Since there is a one-to-one correspondence between edges and
such literals, and between the graph and the conjunction of the literals, we will
sometimes speak about literals that are (T -)consequences of the graph. Here we
will write a0

k ∗−→ an if there is a path in the graph of the form

a0
k1−→ a1

k2−→ . . .
kn−1−→ an−1

kn−→ an

with n ≥ 0 and where k = 0 + k1 + . . . kn is called the length of this path.
Note that one can assume that DPLL(X) does not communicate to Solver

T

any redundant edges, since such consequences would already have been commu-
nicated by Solver

T
to DPLL(X). Similarly, DPLL(X) will not communicate to

Solver
T

any edges that are inconsistent with the graph. Therefore, there will be
no cycles of negative length.
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Here, Solver
T

must return to DPLL(X) all input literals that are new conse-
quences of the graph once the new edge has been added. Essentially, for detecting
the new consequences of a new edge a k−→ b, Solver

T
needs to check all paths

ai
ki ∗−→ a

k−→ b
k′

j ∗−→ bj

and see whether there is any input literal that follows from ai ≤ bj +(ki+k+k′j),
i.e., an input literal of the form ai ≤ bj + k′, with k′ ≥ ki + k + k′j .

For checking all such paths from ai to bj that pass through the new edge
from a to b, we need to be able to find all nodes ai from which a is reachable,
as well as the nodes bj that are reachable from b. Therefore, we keep the graph
in double adjacency list representation: for each node n, we keep the list of
outgoing edges as well as the one of incoming edges. Then a standard single-
source-shortest-path algorithm starting from a can be used for computing all ai

with their corresponding minimal ki (and similarly for the bj).
What worked best in our experience to finally detect all entailed literals is

the following. We use a simple depth-first search, where each time a node is
reached for the first time it is marked, together with the accumulated distance
k, and, each time it is reached again with some k′, the search stops if k′ ≥ k
(this terminates because there are no cycles of negative length).

While doing this, the visited nodes are pushed onto two stacks, one for the
ai’s and another one for the bj ’s, and it is also counted, for each one of those two
stacks, how many input literals these ai’s (and bj ’s) occur in (remember that
there are precomputed lists for this, together with their lengths).

Then, if, w.l.o.g., the ai’s are the ones that occur in less input literals, we
check, for each element in the list of input literals containing each ai, whether
the other constant is some of the found bj , and whether the literal is entailed
or not (this can be checked in constant time since previously all bj have been
marked).

3.3 Implementation of Explain

As said, for building the implication graph, DPLL(X) needs Solver
T

to provide
an Explain(l) operation, returning, for each T -consequence l it has communi-
cated to DPLL(X), a preferably small subset of the literals that implied l.

For implementing this, we proceed as follows. Whenever the m-th edge is
added to the directed weighted graph, the edge is annotated with its associated
insertion number m. In a similar fashion, when a literal l is returned as a con-
sequence of the m-th edge, this m is recorded together with l. Now assume l is
of the form a ≤ b + k, and the explanation for l is required. Then we search a
path in the graph from a to b of length at most k, using a depth-first search
as before. Moreover, in this search we will not traverse any edges with insertion
number greater than m. This not only improves efficiency, but it is it is also
needed for not returning “too new” explanations, which may create cycles in the
implication graph, see [GHN+04].
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4 Experimental Evaluation

Experiments have been done with all benchmarks we know of for difference logic,
both real-world and hand-made ones2. The table below contains runtimes for
five suites of benchmark families: the SAL Suite [dMR04], the MathSAT Suite
(see mathsat.itc.it), and the DLSAT one [CAMN04] come from verification
by bounded model checking of timed automated and linear hybrid systems and
from the job shop scheduling problem (the abz family of DLSAT). The remaining
two suites are hand-made. The Diamond Suite is from the problem generator
of [SSB02], where problem diamondsN has N edges per diamond, generating
between 10 and 18 diamonds (i.e., 9 problems per family), forcing unsatisfiability
over the integers. The DTP Suite is from [ACGM04].

We compare with three other systems: ICS 2.0 (ics.csl.sri.com), Math-
SAT [BBA+05]3 and TSAT++ (see [ACGM04] and ai.dist.unige.it/Tsat,
we thank Claudio Castellini for his help with this system). For the handmade
problems, TSAT++ has been used in the setting recommended by the authors
for these problems; for the other problems, we used the best setting we could
find (as recommended to us by the authors). DPLL(T ) has been used on all
problems in the same standard setting, as described in this paper.

We have included ICS and not others such as CVC [BDS02], CVC-Lite
[BB04], UCLID [LS04], because, according to [dMR04], ICS either dominates
them or gives similar results. It has to be noted that UCLID could perhaps
improve its performance by using the most recent range allocation techniques
of [TSSP04], and that ICS applies a more general solver for linear arithmetic,
rather than a specialized solver for difference logic as MathSAT, TSAT++ and
DPLL(T ) do.

On all benchmark families, DPLL(T ) is always significantly better than all
other systems. It is even orders of magnitude faster, especially on the larger
problems, as soon as the theory becomes relevant, i.e., when in, say, at least 10
percent of the conflicts the theory properties play any role. This is the case for
all problem families except lpsat and the FISCHER problems of the MathSAT
Suite.

Results are in seconds and are aggregated per family of benchmarks, with
times greater than 100s rounded to whole numbers. All experiments were run
on a 2GHz 512MB Pentium-IV under Linux. Each benchmark was run for one
hour, i.e., 3600 seconds. An annotation of the form (n t) or (n m) in a column
indicates respectively that the system timed out or ran out of memory on n
benchmarks. Each timeout or memory out is counted as 3600s.

2 Individual results for each benchmark can be found at www.lsi.upc.es/~oliveras,
together with all the benchmarks and an executable of our system.

3 V3.1.0, Nov 22, 2004, see mathsat.itc.it, which features a new specialized solver
for difference logic. We have no exhaustive results yet of the even more recent V3.1.1
of Jan 12, 2005 on all the larger problems. It appears to be slightly faster than V3.1.0
on some problems, but with results relative to DPLL(T ) similar to V3.1.0. We will
keep up-to-date results on www.lsi.upc.es/~oliveras.
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Benchmark # Problems
family in family ICS MathSAT TSAT++ DPLL(T)

SAL Suite:

lpsat 20 636 185 490 135

bakery-mutex 20 39.44 17.91 9.93 0.5

fischer3-mutex 20 (7t) 27720 363 (2t) 14252 259

fischer6-mutex 20 (10t) 39700 (7t) 27105 (11t) 40705 4665

fischer9-mutex 20 (12t) 43269 (9t) 33380 (13t) 48631 (2t) 14408

MathSAT Suite:

FISCHER9 10 187 187 172 86.68

FISCHER10 11 1162 962 3334 380

FISCHER11 12 (1t) 5643 4037 (2t) 9981 3091

FISCHER12 13 (3t) 11100 (2t) 8357 (4t) 14637 (1t) 6479

FISCHER13 14 (4t) 14932 (3t) 12301 (5t) 18320 (2t) 10073

FISCHER14 15 (5t) 18710 (4t) 15717 (6t) 218891 (3t) 14253

PO4 11 14.57 33.98 28.01 2.68

PO5 13 (10m) 36004 269 220 23.8

DLSAT Suite:

abz 12 (2t) 11901 218 49.02 5.29

ba-max 19 770 211 233 14.55

Diamond Suite:

diamonds4 9 (2m) 11869 9018 501 312

diamonds6 9 (2m) 9054 2926 742 193

diamonds10 9 (2m) 11574 (1t) 4249 1567 207

diamonds20 9 (4m, 1t) 19286 5050 (1t) 6073 219

DTP Suite:

DTP-175 20 (8t) 45060 37.63 35.69 0.77

DTP-210 20 (20t) 72000 50.74 112 5.27

DTP-240 20 (20t) 72000 36.53 191 6.86

4.1 Scaling Properties

To illustrate the scaling properties of our approach, below we include two graph-
ical representations of the behaviour of MathSAT and DPLL(T ) on the fischer6-
mutex family, which is a typical real-world suite for which large benchmarks
exist where the theory plays a relevant role (the other such suites give similar
graphics).

The diagram on the left below compares both systems on the problems of size
between 10 and 20 on a normal time scale of up to 100,000 seconds. MathSAT
did not finish any of the problems 18, 19 and 20 in 210,000 seconds, whereas
DPLL(T ) (almost invisible) takes 603, 1108 and 1778 seconds on them, respec-
tively. The diagram on the right expresses the same results on a logarithmic scale,
in order to get a better impression of the asymptotic behaviour of DPLL(T ).
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5 Conclusions and Further Work

We have shown that it is possible to deal with Satisfiability Modulo Theories
(SMT) in a clean and modular way, even if the information for the theory under
consideration is used exhaustively for propagating implied literals. Although at
first sight one might get the impression that this may be too expensive, we have
shown that, at least for difference logic, this is not the case.

Future work concerns other theories for which exhaustive theory propagation
may be useful, and others where a hybrid approach has to be applied, i.e., where
some classes of unit T -consequences are assumed to be detected and other are
handled more lazily.
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Abstract. The problem of deciding the satisfiability of a quantifier-free formula
with respect to a background theory, also known as Satisfiability Modulo The-
ories (SMT), is gaining increasing relevance in verification: representation ca-
pabilities beyond propositional logic allow for a natural modeling of real-world
problems (e.g., pipeline and RTL circuits verification, proof obligations in soft-
ware systems).

In this paper, we focus on the case where the background theory is the combi-
nation T1∪T2 of two simpler theories. Many SMT procedures combine a boolean
model enumeration with a decision procedure for T1∪T2, where conjunctions of
literals can be decided by an integration schema such as Nelson-Oppen, via a
structured exchange of interface formulae (e.g., equalities in the case of convex
theories, disjunctions of equalities otherwise).

We propose a new approach for SMT(T1 ∪T2), called Delayed Theory Com-
bination, which does not require a decision procedure for T1 ∪T2, but only indi-
vidual decision procedures for T1 and T2, which are directly integrated into the
boolean model enumerator. This approach is much simpler and natural, allows
each of the solvers to be implemented and optimized without taking into account
the others, and it nicely encompasses the case of non-convex theories. We show
the effectiveness of the approach by a thorough experimental comparison.

1 Introduction

Many practical verification problems can be expressed as satisfiability problems in de-
cidable fragments of first-order logic. In fact, representation capabilities beyond propo-
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sitional logic enable a natural modeling of real-world problems (e.g., pipeline and RTL
circuits verification, proof obligations in software systems).

The field has been devoted a lot of interest and has recently acquired the name
Satisfiability Modulo Theories (SMT). SMT can be seen as an extended form of propo-
sitional satisfiability, where propositions are constraints in a specific theory. A promi-
nent approach which underlies several systems (e.g., MATHSAT [16, 6], DLSAT [7],
DPLL(T) [13], TSAT++ [28, 2], ICS [14, 11], CVCLITE [8, 4], haRVey [9]), is based
on extensions of propositional SAT technology: a SAT engine is modified to enumerate
boolean assignments, and integrated with a decision procedure for the theory.

The above schema, which we denote as Bool+T , is also followed when the back-
ground theory T turns out to be the combination T1∪T2 of two simpler theories — for
instance, Equality and Uninterpreted Functions (E) and Linear Arithmetic (LA). The
decision procedure to decide a combination of literals in T is typically based on an in-
tegration schema such as Nelson-Oppen (NO) [18] (we denote the resulting schema as
Bool+no(T1,T2)), starting from decision procedures for each Ti, and combining them
by means of a structured exchange of interface formulae.

In this paper, we propose a new approach for the SMT(T1∪T2) problem, called De-
layed Theory Combination. The main idea is to avoid the integration schema between T1

and T2, and tighten the connection between each Ti and the boolean level. While the truth
assignment is being constructed, it is checked for consistency with respect to each theory
in isolation. This can be seen as constructing two (possibly inconsistent) partial models
for the original formula; the “merging” of the two partial models is enforced, on demand,
since the solver is requested to find a complete assignment to the interface equalities.

We argue that this approach, denoted as Bool+T1 +T2, has several advantages over
Bool+no(T1,T2). First, the whole framework is much simpler to analyze and imple-
ment; each of the solvers can be implemented and optimized without taking into ac-
count the others; for instance, when the problem falls within one Ti, the solver behaves
exactly as Bool+Ti. Second, the approach does not rely on the solvers being deduction-
complete. This enables us to explore the trade-off between which deduction is beneficial
for efficiency and which is in fact hampering the search – or too difficult to imple-
ment. Third, the framework nicely encompasses the case of non-convex theories: in the
no(T1,T2) case, a backtrack search is used to take care of the disjunctions that need to be
managed. We experimentally show that our approach is competitive and often superior
to the other state of the art approaches based on Nelson-Oppen integration.

This paper is structured as follows. We first present some background and overview
the Bool+T procedure in Sect. 2. Then we discuss the T1 ∪ T2 case by means of the
Nelson-Oppen combination schema in Sect. 3. We present our approach Bool+T1+T2

in Sect. 4. Then we describe the implementation of Bool+T1+T2 for the case of LA∪E
in Sect. 5 and some related work in Sect. 6. We discuss the experimental evaluation in
Sect. 7. Finally, we draw some conclusions and discuss some future work in Sect. 8.

2 Satisfiability Modulo Theories

Satisfiability Modulo a Theory is the problem of checking the satisfiability of a
quantifier-free (or ground) first-order formula with respect to a given first-order theory
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T . Theories of interest are, e.g., the theory of difference logic DL , where constraints
have the form x− y ≤ c; the theory E of equality and uninterpreted functions, whose
signature contains a finite number of uninterpreted function and constant symbols, and
such that the equality symbol = is interpreted as the equality relation; the quantifier-
free fragment of Linear Arithmetic over the rationals (or, equivalently, over the reals),
hereafter denoted with LA(Rat); the quantifier-free fragment of Linear Arithmetic over
the integers, hereafter denoted with LA(Int).

Figure 1 presents Bool+T , a (much simplified) decision procedure for SMT(T ).
The function Atoms takes a ground formula φ and returns the set of atoms which occurs
in φ. We use the notation φp to denote the propositional abstraction of φ, which is
formed by the function fol2prop that maps propositional variables to themselves, ground
atoms into fresh propositional variables, and is homomorphic w.r.t. boolean operators
and set inclusion. The function prop2fol is the inverse of fol2prop. We use βp to denote
a propositional assignment, i.e. a conjunction (a set) of propositional literals. The idea
underlying the algorithm is that the truth assignments for the propositional abstraction
of φ are enumerated and checked for satisfiability in T . The procedure either concludes
satisfiability if one such model is found, or returns with failure otherwise. The function
pick total assign returns a total assignment to the propositional variables in φp, that is,
it assigns a truth value to all variables in A p. The function T -satisfiable(β) detects if the
set of conjuncts β is T -satisfiable: if so, it returns (sat, /0); otherwise, it returns (unsat,
π), where π⊆ β is a T -unsatisfiable set, called a theory conflict set. We call the negation
of a conflict set, a conflict clause.

The algorithm is a coarse abstraction of the ones underlying TSAT++, MATHSAT,
DLSAT, DPLL(T), CVCLITE, haRVey, and ICS. The test for satisfiability and the
extraction of the corresponding truth assignment are kept separate in this description
only for the sake of simplicity. In practice, enumeration is carried out on partial as-
signments, by means of efficient boolean reasoning techniques, typically by means of
a DPLL-algorithm (but see also [9] for an approach based on BDDs). Additional im-
provements are early pruning, i.e., partial assignments which are not T -satisfiable are
pruned (since no refinement can be T -satisfiable); theory conflicts discovered by the
theory solver can be passed as conflict clauses to the boolean solver, and trigger non-
chronological backjumping; such conflict clauses can also be learned, and induce the

function Bool+T (φ: quantifier-free formula)
1 A p ←− fol2prop(Atoms(φ))
2 φp ←− fol2prop(φ)
3 while Bool-satisfiable(φp) do
4 βp ←− pick total assign(A p,φp)
5 (ρ,π)←− T -satisfiable(prop2fol(βp))
6 if ρ = sat then return sat
7 φp ←− φp∧¬fol2prop(π)
8 end while
9 return unsat
end function

Fig. 1. A simplified view of enumeration-based T-satisfiability procedure: Bool+T
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discovery of more compact learned clauses; finally, theory deduction can be used to re-
duce the search space by explicitly returning truth values for unassigned literals, as well
as constructing/learning implications. The interested reader is pointed to [6] for details
and further references.

3 SMT(T1∪T2) via Nelson-Oppen Integration

In many practical applications of SMT(T ), the background theory is a combination
of two theories T1 and T2. For instance, DL and E ; LA(Rat) and E ; LA(Int) and
E ; LA(Int), E and the theory of arrays. Many recent approaches to SMT(T1 ∪ T2)
(e.g. CVCLITE, ICS) rely on the adaptation of the Bool+T schema, by instantiating
T -satisfiable with some decision procedure for the satisfiability of T1 ∪ T2, typically
based on the Nelson-Oppen integration schema (see Figure 2, left). In the following,
we briefly recall the most relevant issues pertaining to the combination of decision
procedures. (For a more complete discussion we refer the reader to [20].) 1

BOOLEAN MODEL
ENUMERATION

BOOLEAN MODEL
ENUMERATION

ei j
A p

T1-satisfiable T2-satisfiable

T1-deduce

T2-deduce

∨ei j

βp
1 βp

2

T2-satisfiable

T1-satisfiable

no(T1,T2)

Fig. 2. The different schemas for SMT(T1∪T2)

Let Σ1 and Σ2 be two disjoint signatures, and let Ti be a Σi-theory for i = 1,2. A
Σ1∪Σ2-term t is an i-term if it is a variable or it has the form f (t1, ..., tn), where f is in Σi

and n≥ 0 (notice that a variable is both a 1-term and a 2-term). A non-variable subterm s
of an i-term is alien if s is a j-term, and all superterms of s are i-terms, where i, j∈{1,2}
and i �= j. An i-term is i-pure if it does not contain alien subterms. A literal is i-pure if
it contains only i-pure terms. A formula is said to be pure iff every literal occurring in
the formula is i-pure for some i ∈ {1,2}. The process of purification maps any formula
φ into an equisatisfiable pure formula φ′ by introducing new variables and definitions to
rename non-pure/alien terms. Especially, if φ is a conjunction of literals, then φ′ can be
written as φ1∧φ2 s.t. each φi is a conjunction of i-pure literals. In the following, we call

1 Notice that the Nelson-Oppen schema of Figure 2, left, is a simplified one. In actual imple-
mentations (e.g., CVCLITE, ICS) more than two theories can be handled at a time, and the
interface equalities are exchanged between theory solvers by exploiting sophisticated tech-
niques (see e.g. [10] for details).
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interface variables of a pure formula φ′ the set of all variables c1, . . . ,cn ∈ Var(φ′) that
occur in both 1-pure and 2-pure literals in φ′, and we define ei j as the interface equality
ci = c j.

A Σ-theory T is called stably-infinite iff for any T -satisfiable Σ-formula φ, there
exists a model of T whose domain is infinite and which satisfies φ. A Nelson-Oppen
theory is a stably-infinite theory which admits a satisfiability algorithm. E.g., E , DL ,
LA(Rat), and LA(Int) are all Nelson-Oppen theories. A conjunction Γ of Σ-literals is
convex in a Σ-theory T iff for any disjunction

∨n
i=1 xi = yi (where xi, yi are variables)

we have that T ∪Γ |=∨n
i=1 xi = yi iff T ∪Γ |= xi = yi for some i ∈ {1, ...,n}. A Σ-theory

T is convex iff all the conjunctions of Σ-literals are convex. Note that, while E and
LA(Rat) are convex theories, LA(Int) is not: e.g., given the variables x,x1,x2, the set
{x1 = 1,x2 = 2,x1 ≤ x,x≤ x2} entails x = x1∨ x = x2 but neither x = x1 nor x = x2.

Given two signature-disjoint Nelson-Oppen theories T1 and T2, the Nelson-Oppen
combination schema [18], in the following referred to as no(T1,T2), allows one to
solve the satisfiability problem for T1 ∪ T2 (i.e. the problem of checking the T1 ∪ T2-
satisfiability of conjunctions of Σ1 ∪Σ2-literals) by using the satisfiability procedures
for T1 and T2. The procedure is basically a structured interchange of information in-
ferred from either theory and propagated to the other, until convergence is reached. The
schema requires the exchange of information, the kind of which depends on the convex-
ity of the involved theories. In the case of convex theories, the two solvers communi-
cate to each other interface equalities. In the case of non-convex theories, the no(T1,T2)
schema becomes more complicated, because the two solvers need to exchange arbi-
trary disjunctions of interface equalities, which have to be managed within the decision
procedure by means of case splitting and of backtrack search.

We notice that the ability to carry out deductions is often crucial for efficiency: each
solver must be able to derive the (disjunctions of) interface equalities ei j entailed by its
current facts φ. When this capability is not available, it can be replaced by “guessing”
followed by a satisfiability check with respect to Ti.

Example 1. Let T1 be E and T2 be LA(Int), and consider the following SMT problem
for the purified formula, V = {x,w1,w2} being the set of interface variables:

φ = ¬( f (x) = f (w1))∧ (A↔¬( f (x) = f (w2))) ∧ 1≤ x∧ x≤ 2∧w1 = 1∧w2 = 2.

Suppose we first assign the boolean variable A to true (branch 1), so that φ simplifies
into a conjunction of literals φ1∧φ2, s.t., φ1 =¬( f (x) = f (w1))∧¬( f (x) = f (w2)) and
φ2 = 1≤ x∧ x≤ 2∧w1 = 1∧w2 = 2. Then the no(T1,T2) schema runs as follows:

1. The literals of φ1 are processed, T1-satisfiability is reported, and no equality is derived.
2. The literals of φ2 are processed, T2-satisfiability is reported, and the disjunction x = w1∨x =

w2 is returned.
3. The disjunction induces a case-splitting; first, x = w1 is passed to the solver for T1:

(a) φ1∧ x = w1 is T1-unsatisfiable, since ¬( f (x) = f (w1))∧ x = w1 is;
then, x = w2 is passed to the satisfiability procedure for T1:
(b) φ1∧ x = w2 is T1-unsatisfiable, since ¬( f (x) = f (w2))∧ x = w2 is.
The T1-solver may be able to return the conflict clauses C1: ¬(x = w1)∨ f (x) = f (w1) and
C2:¬(x = w2)∨ f (x) = f (w2) to the boolean solver, which learns them to drive future search.

4. no(T1,T2) returns the T1∪T2-unsatisfiability of φ1∧φ2, and the procedure backtracks.
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Then we assign A to false (branch 2), so that φ1 becomes ¬( f (x) = f (w1))∧ ( f (x) =
f (w2)). Hence the no(T1,T2) combination schema reruns steps 1, 2, and 3(a) as in
branch 1. (Notice that, if the conflict clause C1 has been generated, then ¬(x = w1)
is added to branch 2 by the boolean solver, so that step 2 generates only x = w2, and
hence step 3(a) is skipped.) Then, x = w2 is passed to the satisfiability procedure for T1,
which states that φ1 ∧ x = w2 is T1-satisfiable, and that no new interface equalities are
deducible. Hence φ1∧φ2 in branch 2 is T1∪T2-satisfiable, so that the original formula
φ is T1∪T2-satisfiable.

4 SMT(T1∪T2) via Delayed Theory Combination

We propose a new approach to SMT(T1∪T2), which does not require the direct combi-
nation of decision procedures for T1 and T2. The Boolean solver Bool is coupled with
a satisfiability procedure Ti-satisfiable for each Ti (see Fig. 2, right), and each of the
theory solvers works in isolation, without direct exchange of information. Their mu-
tual consistency is ensured by conjoining the purified formula with a suitable formula,
containing only the interface equalities ei j, even if these do not occur in the original
problem; such a formula encodes all possible equivalence relations over the interface
variables in the purified formula. The enumeration of assignments includes not only the
atoms in the formula, but also the interface atoms of the form ei j. Both theory solvers re-
ceive, from the boolean level, the same truth assignment for ei j: under such conditions,
the two “partial” models found by each decision procedure can be merged into a model
for the input formula. We call the approach Delayed Theory Combination (DTC): the
synchronization between the theory reasoners is delayed until the ei j’s are associated a
value. We denote this schema as Bool+T1+T2.

function Bool+T1+T2 (φi: quantifier-free formula)
1 φ←− purify(φi)
2 A p ←− fol2prop(Atoms(φ)∪E(interface vars(φ)))
3 φp ←− fol2prop(φ)
4 while Bool-satisfiable (φp) do
5 βp

1 ∧βp
2 ∧βp

e = βp ←− pick total assign(A p,φp)
6 (ρ1,π1)←− T1-satisfiable (prop2fol(βp

1 ∧βp
e ))

7 (ρ2,π2)←− T2-satisfiable (prop2fol(βp
2 ∧βp

e ))
8 if (ρ1 = sat∧ρ2 = sat) then return sat else
9 if ρ1 = unsat then φp ←− φp∧¬fol2prop(π1)
10 if ρ2 = unsat then φp ←− φp∧¬fol2prop(π2)
11 end while
12 return unsat
end function

Fig. 3. A simplified view of the Delayed Theory Combination procedure for SMT(T1∪T2)

A simplified view of the algorithm is presented in Fig. 3. Initially (lines 1–3), the for-
mula is purified, the interface variables ci are identified by interface vars, the interface
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equalities ei j are created by E and added to the set of propositional symbols A p, and the
propositional abstraction φp of φ is created. Then, the main loop is entered (lines 4–11):
while φp is propositionally satisfiable (line 4), we select a satisfying truth assignment
βp (line 5). We remark that truth values are associated not only to atoms in φ, but also
to the ei j atoms, even though they do not occur in φ. βp is then (implicitly) separated
into βp

1 ∧βp
e ∧βp

2 , where prop2fol(βp
i ) is a set of i-pure literals and prop2fol(βp

e ) is a set
of ei j-literals. The relevant part of βp are checked for consistency against each theory
(lines 6–7); Ti-satisfiable (β) returns a pair (ρi,πi), where ρi is unsat iff β is unsatisfi-
able in Ti, and sat otherwise. If both calls to Ti-satisfiable return sat, then the formula is
satisfiable. Otherwise, when ρi is unsat, then πi is a theory conflict set, i.e. πi ⊆ β and
πi is Ti-unsatisfiable. Then, φp is strengthened to exclude truth assignments which may
fail in the same way (line 9–10), and the loop is resumed. Unsatisfiability is returned
(line 12) when the loop is exited without having found a model.

To see why Bool+T1+T2 is a decision procedure for SMT(T1∪T2), let us first con-
sider the case where φ is a conjunction of literals. In this case, we claim that the cor-
rectness and completeness of Bool+T1+T2 reduces to that of a nondeterministic ver-
sion of Nelson-Oppen combination schema (see e.g. [27]). The traditional, determin-
istic Nelson-Oppen schema relies on the exchange of entailed interface equalities, i.e.
discovering that ei j is entailed by the set of literals φ modulo the theory Ti. In the non-
deterministic case, the same deduction is simulated by “guessing” that ei j holds, and
then checking whether φ∧¬ei j is Ti-unsatisfiable. Similar reasoning applies in the dual
case where we “guess” that ei j is false. In Bool+T1+T2, the selection of the truth assign-
ment on line 5 corresponds to guessing a truth value for each of the ei j, while the calls to
Ti-satisfiable of lines 6 and 7 check the consistency of this guess with respect to each Ti.
According to [27], T1∪T2-satisfiability can be concluded when both checks return sat.
Otherwise, another guess should be attempted: this is carried out by strengthening the
formula with the conflict clause (lines 9–10), and selecting a different total assignment
to the ei j. This result can be generalized to the case when φ is an arbitrary formula. We
consider that φ is satisfiable iff there exists a satisfying assignment to its literals, which
is also T1∪T2-satisfiable. It is not difficult to see that the set of assignments enumerated
by the algorithm is the same set obtained by enumerating the assignments of Atoms(φ),
and then extending it with a complete assignment over the ei j.

For lack of space, the algorithm is described in Fig. 3 at a high level of abstraction.
In practice, enumeration is carried out by means of a DPLL-based SAT engine, and all
the optimizations discussed for Bool+T can be retained. For a thorough discussion of
these issues, we refer the reader to an extended version of this paper [5]. Here, we only
emphasize the role of theory deduction, where a call to Ti-satisfiable, when satisfiable,
can return in πi a set of theory deductions (i.e. theory-justified implications, which may
in turn force truth values on unassigned literals, thus further constraining the boolean
search space).

Example 2. Consider the formula and the situation of Example 1. As before, we first
assign A to true (branch 1), so that ¬( f (x) = f (w2)). We suppose that the SAT solver
branches, in order, on w1 = w2, x = w1, x = w2, assigning them the true value first.

1. Choosing w1 = w2 causes a T2-inconsistency be revealed by early-pruning calls to the theory
solvers, so that the conflict clause C3: ¬(w1 = 1)∨¬(w2 = 2)∨¬(w1 = w2) is learned, and
the SAT solvers backtracks to ¬(w1 = w2), which does not cause inconsistency.



342 M. Bozzano et al.

2. Similarly, choosing x = w1 causes a T1-inconsistency, the conflict clause C1 of example 1 is
learned, and the SAT solvers backtracks to ¬(x = w1), which does not cause inconsistency.

3. Similarly, choosing x = w2 causes a T1-inconsistency, the conflict clause C2 of example 1 is
learned, and the SAT solvers backtracks to ¬(x = w2).

4. ¬(x = w1) and ¬(x = w2) cause a T2-inconsistency, so that branch 1 is closed.

Then we assign A to false (branch 2), so that f (x) = f (w2). Hence ¬(x = w1) and
¬(w1 = w2) are immediately assigned by unit-propagation on C1 and C3. Thus, after
splitting on x = w2 we have a satisfying assignment.

Notice that (i) when a partial assignment on ei j’s is found unsatisfiable under some
Ti (e.g., w1 = w2 in branch 1, step 1), then all its total extensions are Ti-unsatisfiable, so
that there is no need for further boolean search on the other ei j’s. Therefore techniques
like early pruning, learning and theory deduction allow for restricting the search on
partial assignments; (ii) the extra boolean component of search caused by the non-
convexity of LA(Int) has been merged into the top-level boolean search, so that it can
be handled efficiently by the top-level DPLL procedure.

The following observations indicate what are the advantages of DTC.

Simplicity. The overall schema is extremely simple. Nothing is needed beyond deci-
sion procedures for each Ti, and no complicated integration schema between the Ti is
required. Furthermore, when the input problem is fully contained within one Ti, the
setup reduces nicely to Bool+Ti. All features from the DPLL framework such as early
pruning, theory driven backjumping and learning, deduction, and split control can be
used.

Bool vs. theory. The interaction between the boolean level and each theory is tightened,
thus taking into account the fact that the Boolean structure of the quantifier-free for-
mula can severely dominate the complexity of T1∪T2-satisfiability. In contrast, Nelson-
Oppen privileges the link between T1 and T2, while in fact SMT(T1∪T2) problems may
feature complex interactions between the boolean level and each of the Ti.

Multiple Theories. The DTC approach can be easily extended to handle the combina-
tion of n> 2 component theories. We only need to dispatch each satisfiability procedure
the conjunction of pure literals extended with a total assignment on the interface equali-
ties ei j and return the satisfiability of the formula if all report satisfiability. In case some
of the procedures report unsatisfiability, the conflict sets are added to the formula and
a new propositional assignment is considered. We see no practical difficulty to imple-
ment the DTC schema for n > 2 theories, although we have not yet investigated this
experimentally.

Deduction. The NO schema relies on theory solvers being deduction-complete, that is,
being able to always infer all the (disjunctions of) ei j’s which are entailed in the theory
by the input set of theory literals. However, deduction completeness can be sometimes
hard to achieve (e.g. it may greatly complicate the satisfiability algorithms), and com-
putationally expensive to carry out. In the DTC approach, the theory solvers do not
have to be deduction-complete. This enables us to explore the trade-off between which
deduction is beneficial to efficiency and which is in fact hampering the search – or too
difficult to implement.
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Non-convexity. The DTC schema captures in a very natural way the case of non-convex
theories. The Nelson-Oppen schema implements case-splitting on the disjunction of
equalities entailed by each Ti and this case splitting is separate from the management of
the boolean splitting. Therefore, the combination schema becomes very complex: one
has to deal with the fact that disjunctions of ei j need to be exchanged. Besides compli-
cating the deduction mechanism of each theory, a stack-based search with backtracking
has to be performed. In DTC the search on the “top-level” boolean component of the
problem and the search on the “non-convex” component are dealt with in an “amal-
gamated” framework, and positively interact with each other, so that to maximize the
benefit of the optimizations of state-of-the art SAT procedures.

Theory Conflict. The construction of conflict sets may be a non-trivial task within a
single theory. The problem is even harder in the case of T1∪T2, since the construction
of a conflict set must take into account the conflict obtained in one theory, as well as the
interface equalities that have been exchanged. In our framework, this complication is
avoided altogether: a conflict for the combined theories is naturally induced by the inter-
action between the conflict in one theory and the mechanisms for conflict management
in the boolean search.

As possible drawbacks, we notice that DTC requires the whole formula to be puri-
fied, and the upfront introduction of O(n2) interface constraints ei j. However, many of
these may not occur in the purified formula; and even though the truth assignment of the
interface equalities has to be guessed by the boolean level, which potentially increases
the boolean search space, early pruning, learning and deduction can help to limit the
increase in the search. On the whole, we expect that the DTC schema will make it eas-
ier the task of extending SMT tools to handle combination of theories while ensuring
a high-degree of efficiency. In fact, the DTC approach does not need dedicated mecha-
nisms to exchange selected formulae nor to handle non-convex theories, thereby greatly
simplifying the implementation task. On the one hand, we believe that systems based on
our approach can be made competitive with more traditional systems on theories where
deduction of entailed facts can be efficiently done, by adapting techniques developed
for SAT solvers. On the other hand, the DTC approach offers a flexible framework to
explore the different trade-offs of deduction for theories where deriving entailed facts
is computationally expensive.

5 Delayed Theory Combination in Practice: MATHSAT (E ∪LA)

We implemented the Delayed Theory Combination schema presented in the previous
section in MATHSAT [6]. MATHSAT is an SMT solver for each of the theories DL ,
LA(Rat), LA(Int), and E . Furthermore, it is also an SMT solver for (E ∪LA(Rat))
and for (E ∪LA(Int)), where uninterpreted symbols are eliminated by means of Ack-
ermann’s expansion [1]. MATHSAT is based on an enhanced version of the Bool+T
schema (see [6] for further details).
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We instantiated the Delayed Theory Combination schema to deal with E ∪LA(Rat)
and with E ∪LA(Int). During preprocessing, the formula is purified, the interface vari-
ables ci are identified, and the interface equalities ei j are added to the solver. The most
important points to be emphasized are related to the management of the interface atoms:

– in order to delay the activation of ei j atoms, we instructed the SAT solver not to
branch on them until no other choice is left; (by suitably initializing the activity
vector controlling the VSIDS splitting strategy [17]);

– once the search finds a truth assignment that satisfies φp and is also T1- and T2-
satisfiable, we are not done: to guarantee correctness, we need an assignment also
for those ei j’s that still do not have a value. This is provided by the SAT solver used
in MATHSAT, which constructs total assignments over the propositional variables
that are declared;

– before any new split, the current (partial) assignment is checked for T1- and T2-
satisfiability, and the procedure backtracks if it is found unsatisfiable. In this way,
the SAT solver enumerates total assignments on ei j’s only if strictly necessary;

– depending on the search, it is possible that ei j are given values not only by branch-
ing, but also by boolean constraint propagation on learned clauses, or even by the-
ory deduction. In fact, the ei j interface equalities are also fed into the congruence
closure solver, which also implements forward deduction [6] and therefore is able
to assign forced truth values (e.g., to conclude the truth of c1 = c2 from the truth of
x = c1, y = c2, and x = y). This reduces branching at boolean level, and limits the
delay of combination between the theories;

– when ei j is involved in a conflict, it is treated like the other atoms by the conflict-
driven splitting heuristic: its branching weight is increased and it becomes more
likely to be split upon. Furthermore, the conflict clause is learned, and it is thus
possible to prevent incompatible configurations between interface atoms and the
other propositions;

– the initial value attempted for each unassigned ei j is false. If ci and c j were in the
same equivalence class because of equality reasoning, then ei j had already been
forced to true by equality reasoning. Thus ci and c j belong to different equivalence
classes in the congruence closure solver and setting ei j to false will not result in
expensive merging of equivalence classes nor otherwise change the state of the
solver. However, conflicts can result in the arithmetic solver.

6 Related Work

To our knowledge, the integration schema we describe in this paper has not been pre-
viously proposed elsewhere. Most closely related are the following systems, which
are able to deal with combination of theories, using variants of Bool+no(T1,T2). CV-
CLITE [8, 4] is a library for checking validity of quantifier-free first-order formulas over
several interpreted theories, including LA(Rat), LA(Int), E , and arrays, replacing the
older tools SVC and CVC. VERIFUN [12] is a similar tool, supporting domain-specific
procedures for E , LA , and the theory of arrays. ZAPATO [3] is a counterexample-driven
abstraction refinement tool, able to decide the combination of E and a specific fragment
of LA(Int). ICS [14, 11] is able to deal with uninterpreted function symbols and a large
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variety of theories, including arithmetic, tuples, arrays, and bit-vectors. ICS [21, 24]
somewhat departs from the Bool+no(T1,T2) schema, by mixing Shostak approach (by
merging canonizers for individual theories into a global canonizer), with Nelson-Oppen
integration schema (to deal with non-Shostak’s theories).

Other approaches implementing Bool+T for a single theory are [28, 7, 13]. The
work in [13] proposes a formal characterization of the Bool+T approach, and an ef-
ficient instantiation to a decision procedure for E (based on an incremental and back-
trackable congruence closure algorithm [19], which is also implemented in MATH-
SAT). Despite its generality for the case of a single theory, the approach is bound to
the Bool+T schema, and requires an integration between theory solvers to deal with
SMT(T1∪T2).

A different approach to SMT is the “eager” reduction of a decision problem for T
to propositional SAT. This approach has been successfully pioneered by UCLID [29,
23], a tool incorporating a decision procedure for E , arithmetic of counters, separation
predicates, and arrays. This approach leverages on the accuracy of the encodings and on
the effectiveness of propositional SAT solvers, and performs remarkably well for certain
theories. However, it sometimes suffers from a blow-up in the encoding to propositional
logic, see for instance a comparison in [13] on E problems. The bottleneck is even more
evident in the case of more expressive theories such as LA [26, 25], and in fact UCLID
gives up the idea of a fully eager encoding [15]. The most relevant subcase for this
approach is DL ∪E , which is addressed in [22]. Unfortunately, it was impossible to
make a comparison due to the unavailability of the benchmarks (only the benchmarks
after Ackermann’s expansion were made available to us).

7 Experimental Evaluation

We ran the implementation of MATHSAT with Delayed Theory Combination (hereafter
called MATHSAT-DTC) against the alternative implementation based on Ackermann’s
expansion (hereafter called MATHSAT-ACK), and the competitor tools ICS (v.2.0) and
CVCLITE (v.1.1.0). (We also tried to use the unstable version of CVCLITE, which is
somewhat more efficient, but it was unable to run the tests due to internal errors). Un-
fortunately, there is a general lack of test suites on E ∪LA available. For instance, the
tests in [22] were available only after Ackermann’s expansion, so that the E component
has been removed. We also analyzed the tests in the regression suite for CVCLITE [8],
but they turned out to be extremely easy. We defined the following benchmarks suites.

Modular Arithmetic. Simulation of arithmetic operations (succ, pred, sum) modulo
N. Some basic variables range between 0 and N; the problem is to decide the satisfi-
ability of (the negation of) known mathematical facts. Most problems are unsat. The
test suite comes in two versions: one purely E , where the behaviour of arithmetic op-
erations is “tabled” (e.g., s(0) = 1, . . . ,s(N) = 0); one in E ∪LA , where each arith-
metic operation has also a characterization via LA and conditional expressions (e.g.,
p(x,y) = if (x+ y< N) then x+ y else x+ y−N) take into account overflows.

Random Problems. We developed a random generator for SMT(E ∪LA(Rat)) prob-
lems. The propositional structure is a 3-CNF; the atoms can be either fully proposi-
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Fig. 4. Execution time ratio: the X and Y axes report MATHSAT-DTC and each competitor’s
times, respectively (logarithmic scale). A dot above the diagonal means a better performance
of MATHSAT-DTC and viceversa. The two uppermost horizontal lines and the two rightmost
vertical lines represent, respectively, out-of-memory (higher) or timed-out (lower)
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tional, equalities between two terms, or a comparison between a term and a numer-
ical constant. A basic term is an individual variable between x1, . . . ,xn; a compound
terms xi, with i > n, is either the application of an uninterpreted function symbol (e.g.
f (x j1 , . . . ,x jn)), or a ternary linear polynomial with random coefficients to previously
defined terms. The generator depends on the coupling: high coupling increases the prob-
ability that a subterm of the term being generated is a compound term rather than a
variable. We denote a class of problem as RND(vartype, n, clauses, coupling); for each
configuration of the parameters we defined 20 random samples.

Hash. The suite contains some problems over hash tables modeled as integer-valued
bijective functions over finite sets of integers.

We ran the four tools on over 3800 test formulae. The experiments were run on a
2-processor INTEL Xeon 3 GhZ machine with 4 Gb of memory, running Linux RedHat
7.1. The time limit was set to 1800 seconds (only one processor was allowed to run for
each run) and the memory limit to 500 MB. An executable version of MATHSAT and
the source files of all the experiments performed in the paper are available at [16].

The results are reported in Fig. 4. The columns show the comparison between
MATHSAT-DTC and MATHSAT-ACK, CVCLITE, ICS; the rows correspond to the
different test suites. MATHSAT-DTC dominates CVCLITE on all the problems, and
MATHSAT-ACK on all the problems except the ones on Modular Arithmetic on E . 2

The comparison with ICS is limited to problems in E ∪LA(Rat), i.e. the first four
rows (the Hash suite is in E ∪LA(Int) and ICS, being incomplete over the integers,
returns incorrect results). In the first row, MATHSAT-DTC generally outperforms ICS.
On the second row, MATHSAT-DTC behaves better than ICS on part of the problems,
and worse on others. In the third and fourth rows, MATHSAT-DTC is slower than ICS
on simpler problems, but more effective on harder ones (for instance, it never times
out); this is more evident in the third row, due to the fact that the problems in the fourth
row are simpler (most of them were run within one second).

8 Conclusions and Future Work

In this paper we have proposed a new approach for tackling the problem of Satisfiability
Modulo Theories (SMT) for the combination of theories. Our approach is based on de-
laying the combination, and privileging the interaction between the boolean component
and each of the theories. This approach is much simpler to analyze and implement; each
of the solvers can be implemented and optimized without taking into account the oth-
ers; furthermore, our approach does not rely on the solvers being deduction-complete,
and it nicely encompasses the case of non-convex theories. We have implemented the
approach in the MATHSAT [6] solver for the combination of the theories of Equality
and Uninterpreted Functions (E) and Linear Arithmetic, over the rationals (LA(Rat))
and the integers (LA(Int)), and we have shown its effectiveness experimentally.

2 The tests for CVCLITE on the “random coupled” benchmark (3rd row, 2nd column in Fig. 4)
are not complete, because on nearly all samples CVCLITE produced either a time-out or a
out-of-memory, so that we could not complete on time the whole run on the 2400 formulas of
the benchmark.
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As future work, we plan to further improve MATHSAT by investigating new ad
hoc optimizations for LA(Rat) ∪E and LA(Int) ∪E . In particular, the most evident
limitation of the approach presented in this paper is the upfront introduction of interface
equalities. We believe that this potential bottleneck could be avoided by means of a lazy
approach, which will be the objective of future research. We also want to provide a more
extensive experimental evaluation on additional sets of benchmarks. Finally, we plan to
apply our framework for the verification of RTL circuit designs, where the combination
of LA(Int) and E is essential for representing complex designs.
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11. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer and Solver. In

CAV 2001, volume 2102 of LNCS. Springer, 2001.
12. C. Flanagan, R. Joshi, X. Ou, and J.B. Saxe. Theorem Proving using Lazy Proof Explication.

In CAV 2003, volume 2725 of LNCS. Springer, 2003.
13. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast deci-

sion procedures. In CAV 2004, volume 3114 of LNCS. Springer, 2004.
14. ICS. http://www.icansolve.com.
15. D. Kroening, J. Ouaknine, S. A. Seshia, , and O. Strichman. Abstraction-Based Satisfiability

Solving of Presburger Arithmetic. In CAV 2004, volume 3114 of LNCS. Springer, 2004.
16. MATHSAT. http://mathsat.itc.it.
17. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proc. DAC’01, pages 530–535. ACM, 2001.
18. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures. ACM Trans.

on Programming Languages and Systems, 1(2):245–257, 1979.
19. R. Nieuwenhuis and A. Oliveras. Congruence Closure with Integer Offsets. In LPAR 2003,

number 2850 in LNAI. Springer, 2003.
20. S. Ranise, C. Ringeissen, and D.-K. Tran. Nelson-Oppen, Shostak, and the Extended Can-

onizer: A Family Picture with a Newborn. In ICTAC 2004, volume 3407 of LNCS, 2005.



Efficient Satisfiability Modulo Theories via Delayed Theory Combination 349

21. H. Rueß and N. Shankar. Deconstructing Shostak. In Proc. LICS’01, pages 19–28. IEEE
Computer Society, 2001.

22. S.A. Seshia and R.E. Bryant. Deciding Quantifier-Free Presburger Formulas Using Parame-
terized Solution Bounds. In Proc. LICS’04. IEEE, 2004.

23. S.A. Seshia, S.K. Lahiri, and R.E. Bryant. A Hybrid SAT-Based Decision Procedure for
Separation Logic with Uninterpreted Functions. In DAC 2003. ACM, 2003.

24. N. Shankar and H. Rueß. Combining Shostak Theories. In RTA 2002, volume 2378 of LNCS.
Springer, 2002.

25. O. Strichman. On Solving Presburger and Linear Arithmetic with SAT. In FMCAD 2002,
volume 2517 of LNCS. Springer, 2002.

26. O. Strichman, S. Seshia, and R. Bryant. Deciding separation formulas with SAT. In CAV
2002, volume 2404 of LNCS. Springer, 2002.

27. C. Tinelli and M. Harandi. A New Correctness Proof of the Nelson-Oppen Combination
Procedure. In Proc. FroCos’96. Kluwer Academic Publishers, 1996.

28. TSAT++. http://www.ai.dist.unige.it/Tsat.
29. UCLID. http://www-2.cs.cmu.edu/∼uclid.



Symbolic Systems, Explicit Properties:
On Hybrid Approaches

for LTL Symbolic Model Checking

Roberto Sebastiani1,�, Stefano Tonetta1, , and Moshe Y. Vardi2,��

1 DIT, Università di Trento
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Abstract. In this work we study hybrid approaches to LTL symbolic model
checking; that is, approaches that use explicit representations of the property au-
tomaton, whose state space is often quite manageable, and symbolic representa-
tions of the system, whose state space is typically exceedingly large. We compare
the effects of using, respectively, (i) a purely symbolic representation of the prop-
erty automaton, (ii) a symbolic representation, using logarithmic encoding, of
explicitly compiled property automaton, and (iii) a partitioning of the symbolic
state space according to an explicitly compiled property automaton. We apply
this comparison to three model-checking algorithms: the doubly-nested fixpoint
algorithm of Emerson and Lei, the reduction of emptiness to reachability of Biere
et al., and the singly-nested fixpoint algorithm of Bloem et al. for weak automata.
The emerging picture from our study is quite clear, hybrid approaches outperform
pure symbolic model checking, while partitioning generally performs better than
logarithmic encoding. The conclusion is that the hybrid approaches benefits from
state-of-the-art techniques in semantic compilation of LTL properties. Partition-
ing gains further from the fact that the image computation is applied to smaller
sets of states.

1 Introduction

Linear-temporal logic (LTL) [26] is a widely used logic to describe infinite behaviors
of discrete systems. Verifying whether an LTL property is satisfied by a finite transition
system is a core problem in Model Checking (MC). Standard automata-theoretic MC
techniques consider the formula ϕ that is the negation of the desired behavior and con-
struct a generalized Büchi automaton (GBA) Bϕ with the same language. Then, they
compute the product of this automaton Bϕ with the system S and check for emptiness.
To check emptiness, one has to compute the set of fair states, i.e. those states of the
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product automaton that are extensible to a fair path. The main obstacle to model check-
ing is the state-space explosion; that is, the product is often too large to be handled.

Explicit-state model checking uses highly optimized LTL-to-GBA compilation, cf.
[11, 13, 14, 17, 18, 19, 21, 29, 30], which we refer to as semantic compilation. Such com-
pilation may involve an exponential blow-up in the worst case, though such blow-up is
rarely seen in practice. Emptiness checking is performed using nested depth-first search
[10]. To deal with the state-explosion problem, various state-space reductions are used,
e.g., [25, 31].

Symbolic model checking (SMC) [6] tackles the state-explosion problem by rep-
resenting the product automaton symbolically, usually by means of (ordered) BDDs.
The compilation of the property to symbolically represented GBA is purely syntactic,
and its blow-up is linear (which induces an exponential blow-up in the size of the state
space), cf. [9]. Symbolic model checkers typically compute the fair states by means
of some variant of the doubly-nested-fixpoint Emerson-Lei algorithm (EL) [12, 15, 27].
For “weak” property automata, the doubly-nested fixpoint algorithm can be replaced by
a singly-nested fixpoint algorithm [3]. An alternative algorithm [1] reduces emptiness
checking to reachability checking (which requires a singly-nested fixpoint computation)
by doubling the number of symbolic variables.

Extant model checkers use either a pure explicit-state approach, e.g., in SPIN [22],
or a pure symbolic approach, e.g., in NUSMV[7]. Between these two approaches, one
can find hybrid approaches, in which the property automaton, whose state space is
often quite manageable, is represented explicitly, while the system, whose state space is
typically exceedingly large, is represented symbolically. For example, the singly-nested
fixpoint algorithm of [3] is based on an explicit construction of the property automaton.
(See [2, 8] for other hybrid approaches.)

In [28], motivated by previous work on generalized symbolic trajectory evaluation
(GSTE) [34], we proposed a hybrid approach to LTL model checking, referred to as
property-driven partitioning (PDP). In this approach, the property automaton Aϕ is
constructed explicitly, but its product with the system is represented in a partitioned
fashion. If the state space of the system is S and that of the property automaton is B ,
then we maintain a subset Q⊆ S×B of the product space as a collection {Qb : b∈B}
of sets, where each Qb = {s ∈ S : (s,b) ∈ Q} is represented symbolically. Thus, in
PDP, we maintain an array of BDDs instead of a single BDD to represent a subset of
the product space. Based on extensive experimentation, we argued in [28] that PDP is
superior to SMC, in many cases demonstrating exponentially better scalability.

While the results in [28] are quite compelling, it is not clear why PDP is superior to
SMC. On one hand, one could try to implement PDP in a purely symbolic manner by
ensuring that the symbolic variables that represent the property-automaton state space
precede the variables that represent the system state space in the BDD variable order.
This technique, which we refer to as top ordering, would, in effect, generate a separate
BDD for each block in the partitioned product space, but without generating an explicit
array of BDDs, thus avoiding the algorithmic complexity of PDP. It is possible that,
under such variable order, SMC would perform comparably (or even better) than PDP1.

1 We are grateful to R.E. Bryant and F. Somenzi for making this observation.
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On the other hand, it is possible that the reason underlying the good performance of
PDP is not the partitioning of the state space, but, rather, the explicit compilation of
the property automaton, which yields a reduced state space for the property automaton.
So far, however, no detailed comparison of hybrid approaches to the pure symbolic ap-
proach has been published. (VIS [4] currently implements a hybrid approach to LTL
model checking. The property automaton is compiled explicitly, but then represented
symbolically, using the so-called logarithmic encoding, so SMC can be used. No com-
parison of this approach to SMC, however, has been published). Interestingly, another
example of property-based partitioning can be found in the context of explicit-state
model checking [20].

In this paper we undertake a systematic study of this spectrum of representation
approaches: purely symbolic representation (with or without top ordering), symbolic
representation of semantically compiled automata (with or without top ordering), and
partitioning with respect to semantically compiled automata (PDP). An important ob-
servation here is that PDP is orthogonal to the choice of the fixpoint algorithm. Thus,
we can study the impact of the representation on different algorithms; we use here EL,
the reduction of emptiness to reachability of [1], and the singly-nested fixpoint algo-
rithm of [3] for weak property automata. The focus of our experiments is on measuring
scalability. We study scalable systems and measure how running time scales as a func-
tion of the system size. We are looking for a multiplicative or exponential advantage of
one algorithm over another one.

The emerging picture from our study is quite clear, hybrid approaches outperform
pure SMC. Top ordering generally helps, but not as much as semantic compilation.
PDP generally performs better than symbolic representation of semantically compiled
automata (even with top ordering). The conclusion is that the hybrid approaches benefit
from state-of-the-art techniques in semantic compilation of LTL properties. Such tech-
niques includes preprocessing simplification by means of rewriting [13, 30], postpro-
cessing state minimization by means of simulations [13, 14, 21, 30], and midprocessing
state minimization by means of alternating simulations [17, 18]. In addition, empty-
language states of the automata can be discarded. PDP gains further from the fact that
the image computation is applied on smaller sets of states. The comparison to SMC
with top ordering shows that managing partitioning symbolically is not as efficient as
managing it explicitly.

Section 2 contains required background on explicit-state and symbolic model check-
ing. Section 3 describes hybrid approaches to symbolic model checking. Section 4 con-
tains experimental results. Finally, Section 5 contains some concluding remarks.

2 Background

2.1 Explicit-State LTL Model Checking

Let Prop be a set of propositions. We take Σ to be equal to 2Prop. A fair transition
system (FTS) is a tuple 〈S ,S0,T,Σ,L ,F S 〉, where S is a set of states, S0 ⊆ S are the
initial states, T ⊆ S ×S is the transition relation, L : S → Σ is a labeling function, and
F S ⊆ 2S is the set of fairness constraints (each set in F S should be visited infinitely
often). A generalized Büchi automaton (GBA) is a tuple 〈B ,b0,Σ,δ,F B〉, where B is
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a set of states, b0 ∈ B is the initial state, δ ∈ B ×Σ×B is the transition relation, and
F B ⊆ 2B is the set of fairness constraints. The product between an FTS S and a GBA
B is the FTS 〈P ,P0,T P ,Σ,LP ,F P 〉, where P = S ×B ; P0 = S0×{b0}; (p1, p2) ∈ T P

iff p1 = (s1,b1), p2 = (s2,b2), (s1,s2) ∈ T , L(s1) = a, and (b1,a,b2) ∈ δ; LP (p) = a
iff p = (s,b) and L(s) = a; F P = {FS ×B}FS∈F S ∪{S ×FB}FB∈F B .

LTL model checking is solved by compiling the negation ϕ of a property into a
GBA Bϕ and checking the emptiness of the product P between the FTS S and Bϕ [32].
In explicit-state model checking, emptiness checking is performed by state enumera-
tion: a depth-first search can detect if there exists a fair strongly-connected component
reachable from the initial states [10].

2.2 Symbolic LTL Model Checking

Suppose that for an FTS 〈S ,S0,T,Σ,L ,F 〉 there exists a set of symbolic (Boolean)
variables V such that S ⊆ 2V , i.e. a state s of S is an assignment to the variables of
V . We can think of a subset Q of S as a predicate on the variables V . Since a ∈ Σ can
be associated with the set L−1(a) ⊆ S , a can be thought of as a predicate on V too.
Similarly, the transition relation T is represented by a predicate on the variables V ∪V ′,
where V ′ contains one variable v′ for every v ∈V (v′ represents the next value of v). In
the following, we will identify a set of states or a transition relation with the predicate
that represents it.

Given two FTS S1 = 〈S 1,S 1
0 ,T

1,Σ,L1,F 1〉 with S 1 ⊆ 2V 1
and S2 = 〈S 2,S 2

0 ,T
2,Σ,

L2,F 2〉with S 2⊆ 2V 2
, the composition of S1 and S2 is the FTS 〈S P, S P

0 ,T
P ,Σ,LP ,F P 〉,

where S P ⊆ 2V P
, V P = V 1 ∪V 2, S P (v1,v2) = S 1(v1)∧ S 2(v2)∧ (L1(v1) ↔ L2(v2)),

S P
0 (v1,v2) = S 1

0 (v1)∧S 2
0 (v2), T P (v1,v2,v′1,v

′
2) = T 1(v1,v′1)∧T 2(v2,v′2), LP (v1,v2) =

L1(v1), F P = F 1∪F 2.
Again, the negation ϕ of an LTL property is compiled into an FTS, such that the

product with the system contains a fair path iff there is a system’s violation of the
property. The standard compilation produces an FTS 〈S ϕ,S ϕ

0 ,T
ϕ,Σ,Lϕ,F ϕ〉, where

S ϕ = 2V ϕ
, V ϕ = Atoms(ϕ)∪Extra(ϕ), so that Atoms(ϕ) ⊆ Prop are the atoms of ϕ,

Extra(ϕ)∩V = /0 and Extra(ϕ) contains one variable for every temporal connective
occurring in ϕ [6, 9, 33]. We call this syntactic compilation.

To check language containment, a symbolic model checker implements a fixpoint
algorithm [6]. Sets of states are manipulated by using basic set operations such as in-
tersection, union, complementation, and the preimage and postimage operations. Since
sets are represented by predicates on Boolean variables, intersection, union and comple-
mentation are translated into resp. ∧, ∨ and ¬. The preimage and postimage operations
are translated into the following formulas:

preimage(Q) = ∃v′((Q[v′/v])(v′)∧T (v,v′))
postimage(Q) = (∃v(Q(v)∧T (v,v′)))[v/v′]

The most used representation for predicates on Boolean variables are Binary Deci-
sion Diagrams (BDDs) [5]. For a given variable order, BDDs are canonical representa-
tions. However, the order may affect considerably the size of the BDDs. By means of
BDDs, set operations can be performed efficiently.
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3 Hybrid Approaches

Between the two approaches described in Section 2, hybrid approaches represent the
system symbolically and the property automaton explicitly. Thus, they semantically
compile the LTL formula into a GBA. This can be either encoded into an FTS or used
to drive PDP. Notice that the choice between the two does not affect the set of states vis-
ited. Indeed, the product representation is completely orthogonal to the model-checking
algorithm.

Logarithmic Encoding. Given the GBA B = 〈B ,b0,Σ,δ,F 〉 corresponding to the for-
mula ϕ, we can compile B into the FTS 〈S B,S B

0 ,T
B,Σ,LB,F B〉, where S B = 2V B

,
V B = Extra(B)∪Atoms(ϕ), Extra(B)∩Prop = /0 and |Extra(B)|= log(|B |), S B

0 repre-
sents {b0}, T B(s,a,s′,a′) is true iff (s,a,s′)∈ δ, LB(s,a) = a and finally every FB ∈F B

represents the correspondent set F ∈ F . Intuitively, we number the states of the GBA
and then use binary notation to refer to the states symbolically. This is referred to as
logarithmic encoding.

Property-Driven Partitioning. Given an FTS S and a GBA B, we can consider the par-
titioning of the product state space: {Pb}b∈B , where Pb = {p ∈ P : p = (s,b)}. Thus, a
subset Q of P can be represented by the following set of states of S: {Qb}b∈B , where
Qb = {s : (s,b) ∈ Q}. If Q1 = {Q1

b}b∈B and Q2 = {Q2
b}b∈B , we translate the set opera-

tions used in symbolic algorithms into:

Q1∧Q2 := {Q1
b∧Q2

b}b∈B Q1∨Q2 := {Q1
b∨Q2

b}b∈B ¬Q := {¬Qb}b∈B
preimage(Q) := {∨(b,a,b′)∈δ preimage(Qb′)∧a}b∈B

postimage(Q) := {∨(b′,a,b)∈δ postimage(Qb′ ∧a)}b∈B

All symbolic model-checking algorithms that operate on the product FTS can be
partitioned according to the property automaton, operating on a BDD array rather than
on a single BDD (see [28]).

Hypothesis. Our hypothesis is that hybrid approaches combine the best features of
explicit-state and symbolic model checking techniques. On one hand, they use a sym-
bolic representation for the system and a symbolic algorithm, which may benefit from
the compact representation of BDDs. On the other hand, they may benefit from state-of-
the-art techniques in LTL-to-Büchi compilation, which aim at optimizing the state space
of the property automaton, and prune away redundant and empty-language parts. Op-
timizations include preprocessing simplification by means of rewriting [13, 30]; post-
processing minimization by means of simulations [13, 14, 21, 30], and midprocessing
minimization by means of alternating simulation [17, 18].

In addition, PDP has the advantage of using a partitioned version of the product state
space. Partitioned methods usually gain from the fact that the image operation is applied
to smaller sets of states, cf. [16]. Furthermore, PDP enables traversing the product state
space without computing it explicitly. The experiments reported in the next section test
our hypothesis.
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4 Experimental Results

We tested the different product representations on two scalable systems with their LTL
properties, by using three different model-checking algorithms. Every plot we show in
this paper is characterized by three elements: the system S, the LTL property ϕ and the
model-checking algorithm used.

4.1 Systems, Properties and Model Checking Algorithms

The two systems and their properties are inspired by case studies of the Bandera Project
(http://bandera.projects.cis.ksu.edu). The first system is a gas-station model.
There are N customers who want to use one pump. They have to prepay an operator
who then activates the pump. When the pump has charged, the operator give the change
to the customer. We will refer to this system as gas. The second system is a model of a
stack with the standard pop and push functions. In this case, scalability is given by the
maximum size N of the stack. The properties of the two systems are displayed in Tab. 1.

The first model checking algorithm we used is the classic Emerson-Lei (EL) al-
gorithm [12], which computes the set of fair states. There are many variants of this
algorithm [15, 27], but all are based on a doubly-nested fixpoint computation: an outer
loop updates an approximation of the set of fair states until a fixpoint is reached; at
every iteration of the inner loop, a number of inner fixpoints is computed, one for every
fairness constraint; every inner fixpoint prunes away those states that cannot reach the
corresponding fairness constraint inside the approximation.

Table 1. LTL properties

gas.prop1 G((pump started1 & ((!pump charged1) U operator prepaid 2))
→ ((!operator activate 1) U (operator activate 2 | G!operator activate 1)))

gas.prop2 (G(pump started1→
((!operator prepaid 1) U (operator change 1 | G!operator prepaid 1))))
→ (G((pump started1 & ((!pump charged1) U operator prepaid 2))
→ ((!operator activate 1) U (operator activate 2 | G!operator activate 1)))

gas.prop3 ((!operator prepaid 2) U operator prepaid 1)
→ (!pump started2 U (pump started1 | G(!pump started2)))

gas.prop4 G(pump started1
→ ((!pump started2) U (pump charged1 | G(!pump started2))))

stack.prop1 G(callPushd1 & ((!returnPopd1) U callTop Down)
→ F(callTop Down & F(callProcessd1)))

stack.prop2 G((callPush & (!returnPop U callEmpty))
→ F(callEmpty & F(returnEmptyFalse)))

stack.prop3 G((callPushd1 & F(returnEmptyTrue)) → (!returnEmptyTrue U returnPopd1))
stack.prop4 G((callPushd1 & ((!returnPopd1) U (callPushd2 &

((!returnPopd1 & !returnPopd2) U callTop Down))))
→ F(callTop Down & F(callProcessd2 & FcallProcessd2)))

stack.prop5 G((callPushd1 & (!returnPopd1 U callPushd2))
→ (!returnPopd1 U (!returnPopd2 | G!returnPopd1)))
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The second algorithm is a reduction of liveness checking to safety checking (l2s)
[1]. The reduction is performed by doubling the number of symbolic variables. This
way, it is possible to choose non-deterministically a state from which we look for a fair
loop. We can check the presence of such a loop by a reachability analysis. To assure that
the loop is fair, one has to add a further symbolic variable for every fairness constraint.

The third technique (weak-safety) consists of checking if the automaton is simple
enough to apply a single fixpoint computation in order to find a fair loop [3]. If the
automaton is weak, we can define a set B of states such that there exists a fair path if
and only if there exists a loop inside B reachable from an initial state. If the automaton
is terminal (the property is safety), we can define a set B of states such that there exists
a fair path if and only if B is reachable from an initial state.

4.2 LTL to Büchi Automata Conversion

In this section, we focus the attention on the compilation of LTL formulas into (general-
ized) Büchi automata. For syntactic compilation, we used ltl2smv, distributed together
with NUSMV. As for semantic compilation, we used MODELLA, which uses also some
techniques described in [13, 14, 19, 30]. In Tab. 2, we reported the size of the automata
used in the tests.

Note that the automata created by MODELLA are degeneralized, i.e. they have only
one fairness constraint. Degenerilization involves a blow-up in the number of states that
is linear in the number of fairness constraints (without degeneralization, the same linear
factor shows up in the complexity of emptiness testing).

Recall that l2s doubles the number of symbolic variables in order to reduce empti-
ness to reachability. This is equivalent to squaring the size of the state space. Since in
PDP we work directly with the state space of the property automaton, we need to square
the explicit state space, while doubling the number of symbolic variables that describe
the system. We provide details in the full version of the paper. In order to apply the third
technique, we checked which automata were weak or terminal: we found that automata
corresponding to stack.prop1, stack.prop2 and stack.prop4 were weak, and that the au-

Table 2. Automata details

ltl2smv modella
property extra variables fairness constraints states extra variables fairness constraints

(�log(states))
gas.prop1 4 4 6 3 1
gas.prop2 7 7 32 5 1
gas.prop3 3 3 4 2 1
gas.prop4 3 3 6 3 1

stack.prop1 4 4 4 2 1
stack.prop2 4 4 4 2 1
stack.prop3 3 3 6 3 1
stack.prop4 6 6 9 4 1
stack.prop5 4 4 5 3 1
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tomata corresponding to gas.prop1, gas.prop3, gas.prop4, stack.prop3 and stack.prop5
were terminal.

4.3 Hybrid Approaches

Hereafter, log-encode stands for the logarithmic encoding of the explicit representa-
tion of the automata. Note that an explicit LTL-to-Büchi compiler usually uses fewer
symbolic variables than standard syntactic compilation (Tab. 2). Nevertheless, one may
think that the syntactic compilation, whose transition constraints are typically simpler,
is more suitable for symbolic model checking. As we see below, this is not the case.

We use top-order to denote the option of putting the symbolic variables of the
property automaton at the top of the variable ordering. Consider a BDD d that represents
a set Q of states of the product and a state b of the property automaton. Let b correspond
to an assignment to the symbolic variables of the property automaton. If you follow this
assignment in the structure of d, you find a sub-BDD, which corresponds to the set Qb.
Thus, by traversing the product state space with the option top-order, every BDD will
contain an implicit partitioning of the set of states it represents.

Finally, we consider the PDP representation of the product state space. PDP uses
the same automaton encoded by log-encode to partition the state space. Unlike
top-order, the partitioning is handled explicitly (see [28]).

4.4 Results

We used NUSMV as platform to perform out tests. We run NUSMV on the Rice Teras-
cale Cluster (RTC)2, a TeraFLOP Linux cluster based on Intel Itanium 2 Processors. A
timeout has been fixed to 72 hours for each run. The execution time (in seconds) has
been plotted in log scale against the size of the system. The results are shown in Figs.
1-26.3 Every plot corresponds to one system, one property, one model checking algo-
rithm. Figs. 1-9 show the results of EL algorithm. Figs. 10-18 show the results of l2s4 .
Figs. 19-26 show the results of BRS (in these plots, syntactic compilation uses EL).

Analyzing the plots, we see that syntactic compilation performs always worse than
semantic compilation. In the case of the stack system, the gap is considerable. The
top-order option typically helps logarithmic encoding, while in the case of syntactic
compilation it is less reliable: in some cases (see Figs. 14,17,18), it degrades the per-
formance a lot. PDP usually performs better than log-encode, even if combined with
top-order.

In conclusion, the results confirm our hypothesis: hybrid approaches perform bet-
ter than standard techniques, independently of the model checking algorithm adopted.
Moreover, they usually benefit from partitioning. Finally, by handling the partitioning
explicitly, we get a further gain. This last point shows that accessing an adjacency list
of successors may perform better than existentially quantifying the variables of a BDD.

2 http://www.citi.rice.edu/rtc/
3 All examples, data and tools used in these tests, as well as larger plots and the full version of

the paper, are available at http://www.science.unitn.it/˜stonetta/CAV05.
4 We are grateful to Armin Biere and Viktor Schuppan for providing us with their tools in order

to test the combination of “liveness to safety” with automata-theoretic approaches.
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Legend Fig. 1-28
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Fig. 28. LCR, large prop. (false), EL

to make the property true in one case, false in another. The results are plotted in Figs.
27-28. Note that the pattern is the same as in the previous results. More importantly,
partitioning does not seem to be affected by the number of partitions. Notice that the
logarithmic encoding pays an initial overhead for encoding symbolically the automa-
ton. However, as the size of the system grows, this technique outperforms syntactic
compilation.

piler we tried managed to translate this property in reasonable time5. For this reason,
we built a new compiler specialized for this kind of properties (Boolean combination of
GF formulas). The resulting automaton has 1281 states. We checked this property on
the leader election algorithm LCR, cf. [23]. We instantiated the propositions in order

5 Actually, the only translator that succeeded was ltl2tgba (http://spot.lip6.fr). How-
ever, we had to disable simulation-based reduction so that the resulting automaton had more
than 70000 states and even parsing such an automaton took more than model checking time.

when the number of partitions grows. For this reason, we looked for some LTL proper-
ties whose corresponding automaton has a large number of states. We took as example a
property used in the PAX Project (http://www.informatik.uni-kiel.de/˜kba/pax):
((GF p0→GF p1)&(GF p2→GF p0)&(GF p3→GF p2)&(GF p4→GF p2)&(GF p5→
GF p3)&(GF p6→ GF(p5|p4))&(GF p7→ GF p6)&(GF p1→ GF p7))→ GF p8.

Trying to compile this property into a GBA, we faced an interesting problem: no com-

4.5 Scaling Up the Number of Partitions

In the previous section, we have seen that PDP has the best performance among the tech-
niques we tested. However, a doubt may arise about the feasibility of the partitioning

5 Conclusions

The main finding of this work is that hybrid approaches to LTL symbolic model check-
ing outperform pure symbolic model checking. Thus, a uniform treatment of the system
under verification and the property to be verified is not desirable. We believe that this



362 R. Sebastiani, S. Tonetta, and M.Y. Vardi

5. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.
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11. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for linear tempo-
ral logic. In CAV, pp 249–260, 1999.
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μ–Calculus. In LICS, pp 267–278, 1986.
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4. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. T. Cheng,
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finding calls for further research into the algorithmics of LTL symbolic model checking.
The main focus of research in this area has been either on the implementation of BDD
operations, cf. [24], or on symbolic algorithms for FTS emptiness, cf. [27], ignoring
the distinction between system and property. While ignoring this distinction allows for
simpler algorithms, it comes with a significant performance penalty.
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Abstract. We present a technique for generating efficient monitors for
ω-regular-languages. We show how Büchi automata can be reduced in
size and transformed into special, statistically optimal nondeterministic
finite state machines, called binary transition tree finite state machines
(BTT-FSMs), which recognize precisely the minimal bad prefixes of the
original ω-regular-language. The presented technique is implemented as
part of a larger monitoring framework and is available for download.

1 Introduction

There is increasing recent interest in the area of runtime verification [17, 31], an
area which aims at bridging testing and formal verification. In runtime verifica-
tion, monitors are generated from system requirements. These monitors observe
online executions of programs and check them against requirements. The checks
can be either precise, with the purpose of detecting existing errors in the ob-
served execution trace, or predictive, with the purpose of detecting errors that
have not occurred in the observed execution but were “close to happen” and
could possibly occur in other executions of the (typically concurrent) system.
Runtime verification can be used either during testing, to catch errors, or during
operation, to detect and recover from errors. Since monitoring unavoidably adds
runtime overhead to a monitored program, an important technical challenge in
runtime verification is that of synthesizing efficient monitors from specifications.

Requirements of systems can be expressed in a variety of formalisms, not all
of them necessarily easily monitorable. As perhaps best shown by the immense
success of programming languages like Perl and Python, regular patterns can
be easily devised and understood by ordinary software developers. ω-regular-
languages [5, 33] add infinite repetitions to regular languages, thus allowing one
to specify properties of reactive systems [23]. The usual acceptance condition in
finite state machines (FSM) needs to be modified in order to recognize infinite
words, thus leading to Büchi automata [8]. Logics like linear temporal logics
(LTL) [23] often provide a more intuitive and compact means to specify system
requirements than ω-regular patterns. It is therefore not surprising that a large
amount of work has been dedicated to generating (small) Büchi automata from,
and verifying programs against, LTL formulae [15, 33, 11, 13].
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Based on the belief that ω-languages represent a powerful and convenient
formalism to express requirements of systems, we address the problem of gen-
erating efficient monitors from ω-languages expressed as Büchi automata. More
precisely, we generate monitors that recognize the minimal bad prefixes [22] of
such languages. A bad prefix is a finite sequence of events which cannot be the
prefix of any accepting trace. A bad prefix is minimal if it does not contain any
other bad prefix. Therefore, our goal is to develop efficient techniques that read
events of the monitored program incrementally and precisely detect when a bad
prefix has occurred. Dual to the notion of bad prefix is that of a good prefix,
meaning that the trace will be accepted for any infinite extension of the prefix.

We present a technique that transforms a Büchi automaton into a special
(nondeterministic) finite state machine, called a binary transition tree finite state
machine (BTT-FSM), that can be used as a monitor: by maintaining a set of
possible states which is updated as events are available. A sequence of events is
a bad prefix iff the set of states in the monitor becomes empty. One interesting
aspect of the generated monitors is that they may contain a special state, called
neverViolate, which, once reached, indicates that the property is not monitorable
from that moment on. That can mean either that the specification has been
fulfilled (e.g., a specification �(x > 0) becomes fulfilled when x is first seen
larger than 0), or that from that moment on there will always be some possible
continuation of the execution trace. For example, the monitor generated for
�(a→ �b) will have exactly one state, neverViolate, reflecting the intuition that
liveness properties cannot be monitored.

As usual, a program state is abstracted as a set of relevant atomic predicates
that hold in that state. However, in the context of monitoring, the evaluation of
these atomic predicates can be the most expensive part of the entire monitoring
process. One predicate, for example, can say whether the vector v[1...1000] is
sorted. Assuming that each atomic predicate has a given evaluation cost and a
given probability to hold, which can be estimated apriori either by static or by
dynamic analysis, the BTT-FSM generated from a Büchi automaton executes a
“conditional program”, called a binary transition tree (BTT), evaluating atomic
predicates by need in each state in order to statistically optimize the decision to
which states to transit. One such BTT is shown in Fig. 2.

The work presented in this paper is part of a larger project focusing on
monitoring-oriented programming (MOP) [6, 7] which is a tool-supported soft-
ware development framework in which monitoring plays a foundational role.
MOP aims at reducing the gap between specification and implementation by
integrating the two through monitoring: specifications are checked against im-
plementations at runtime, and recovery code is provided to be executed when
specifications are violated. MOP is specification-formalism-independent: one can
add one’s favorite or domain-specific requirements formalism via a generic notion
of logic plug-in, which encapsulates a formal logical syntax plus a corresponding
monitor synthesis algorithm. The work presented in this paper is implemented
and provided as part of the LTL logic plugin in our MOP framework. It is also
available for online evaluation and download on the MOP website [1].
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Some Background and Related Work. Automata theoretic model-checking
is a major application of Büchi automata. Many model-checkers, including most
notably SPIN [19], use this technique. A significant effort has been put into the
construction of small Büchi automata from LTL formulae. Gerth et al. [15] show
a tableaux procedure to generate on-the-fly Büchi automata of size 2O(|ϕ|) from
LTL formulae ϕ. Kesten et al. [20] describe a backtracking algorithm, also based
on tableaux, to generate Büchi automata from formulae involving both past and
future modalities (PTL), but no complexity results are shown. It is known that
LTL model-checking is PSPACE-complete [30] and PTL is as expressive and
as hard as LTL [24], though exponentially more succinct [24]. Recently, Gastin
and Oddoux [13] showed a procedure to generate standard Büchi automata of
size 2O(|ϕ|) from PTL via alternating automata. Several works [11, 15] describe
simplifications to reduce the size of Büchi automata. Algebraic simplifications
can also be applied apriori on the LTL formula. For instance, a U b ∧ c U b ≡
(a ∧ c) U b is a valid LTL congruence that will reduce the size of the generated
Büchi automaton. All these techniques producing small automata are very useful
in our monitoring context because the smaller the original Büchi automaton for
the ω-language, the smaller the BTT-FSM. Simplifications of the automaton
with respect to monitoring are the central subject of this paper.

Kupferman et al. [22] classify safety according to the notion of informative-
ness. Informative prefixes are those that “tell the whole story”: they witness the
violation (or validation) of a specification. Unfortunately, not all bad prefixes are
informative; e.g., the language denoted by �(a ∨ ◦(�c)) ∧ �(b ∨ ◦(�¬c)) does
not include any word whose prefix is {a, b}, {a}, {¬c}. This is a (minimal) bad
but not informative prefix, since it does not witness the violation taking place
in the next state. One can use the construction described in [22] to build an
automaton of size O(22|ϕ|

) which recognizes all bad prefixes but, unfortunately,
this automaton may be too large to be stored. Our fundamental construction
is similar in spirit to theirs but we do not need to apply a subset construction
on the input Büchi since we already maintain the set of possible states that
the running program can be in. Geilen [14] shows how Büchi automata can be
turned into monitors. The construction in [14] builds a tableaux similar to [15]
in order to produce an FSM of size O(2|ϕ|) for recognizing informative prefixes.
Here we detect all the minimal bad prefixes, rather than just the informative
ones. Unlike in model-checking where a user hopes to see a counter-example that
witnesses the violation, in monitoring critical applications one wants to detect a
violation as soon as it occurs.

RCTL [4] is an interesting language for safety properties combining regular
expressions and CTL. One can easily generate efficient monitors for RCTL. How-
ever, [4] focused on on-the-fly model-checking of RCTL properties, while here
we focus on online monitoring of properties expressed as ω-languages.

Temporal logics have different interpretations on finite and infinite traces as
shown in [27]. For instance, the formula �(�a ∧ �¬a) is satisfiable in infinite
trace LTL but unsatisfiable in its finite trace version [27]. Ruf et al. [28] present
a finite-trace fragment of MTL [32] with just the “metric” operators always
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(�[t1,t2]ϕ) and eventually (�[t1,t2]ϕ), meaning that the property ϕ holds at all
times or, respectively, at some time between t1 and t2, but without a metric until
operator U [t1,t2] . A similar metric temporal logic, TXP, is presented in [10].
Our goal in this paper is not to present a novel logic, especially one with a finite
trace semantics, neither to generate monitors from logical formulae. Instead,
we consider already existing Büchi automata and show how to transform them
into efficient non-deterministic monitors. One can use off-the-shelf techniques to
generate Büchi automata from formulae in different logics, or reuse them from
complementary model-checking efforts.

The technique illustrated here is implemented as a plug-in in the MOP run-
time verification (RV) framework [6, 7]. Other RV tools include Java-MaC [21],
JPaX [16], JMPaX [29], and Eagle [3]. Java-MaC uses a special interval
temporal logic as the specification language, while JPaX and JMPaX support
variants of LTL. These systems instrument the Java bytecode to emit events
to an external monitor observer. JPaX was used to analyze NASA’s K9 Mars
Rover code [2]. JMPaX extends JPaX with predictive capabilities. Eagle is
a finite-trace temporal logic and tool for runtime verification, defining a logic
similar to the μ-calculus with data-parameterization.

2 Preliminaries: Büchi Automata

Büchi automata and their ω-languages have been studied extensively during
the past decades. They are well suited to program verification because one can
check satisfaction of properties represented as Büchi automata statically against
transition systems [33, 8]. LTL is an important but proper subset of ω-languages.

Definition 1. A (nondeterministic) standard Büchi automaton is a tuple
〈Σ,S, δ, S0,F〉, where Σ is an alphabet, S is a set of states, δ : S × Σ → 2S

is a transition function, S0 ⊆ S is the set of initial states, and F ⊆ S is a
set of accepting states.

In practice, Σ typically refers to events or actions in a system to be analyzed.

Definition 2. A Büchi automaton A = 〈Σ,S, δ, S0,F〉 is said to accept an
infinite word τ ∈ Σω iff there is some accepting run in the automaton, that
is, a map ρ : Nat → S such that ρ0 ∈ S0, ρi+1 ∈ δ(ρi, τi) for all i ≥ 0, and
inf(ρ) ∩ F �= ∅, where inf(ρ) contains the states occurring infinitely often in ρ.
The language of A, L(A), consists of all words it accepts.

Fig. 1. Büchi automaton recognizing
the ω-regular expression (a + b)∗bω

Therefore, ρ can be regarded as an in-
finite path in the automaton that starts
with an initial state and contains at least
one accepting state appearing infinitely
often in the trace. Fig. 1 shows a nonde-
terministic Büchi automaton for the ω-
regular expression (a + b)∗bω that con-
tains all the infinite words over a and b
with finitely many as.
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Definition 3. Let L(A) be the language of a Büchi automaton A=〈Σ, S, δ, S0,F〉.
A finite word x ∈ Σ∗ is a bad prefix of A iff for any y ∈ Σω the concatenation
xy �∈ L(A). A bad prefix is minimal if no other bad prefix is a prefix of it.

Therefore, no bad prefix of the language of a Büchi automaton can be ex-
tended to an accepted word. Similarly to [8], from now on we may tacitly as-
sume that Σ is defined in terms of propositions over atoms. For instance, the
self-transitions of s1 in Fig. 1 can be represented as one self-transition, a ∨ b.

3 Multi-transitions and Binary Transition Trees

Büchi automata cannot be used unchanged as monitors. For the rest of the paper
we explore structures suitable for monitoring as well as techniques to transform
Büchi automata into such structures. Deterministic multi-transitions (MT) and
binary-transition trees (BTTs) were introduced in [18, 27]. In this section we
extend their original definitions with nondeterminism.

Definition 4. Let S and A be sets of states and atomic predicates, respec-
tively, and let PA denote the set of propositions over atoms in A, using the
usual boolean operators. If {s1, s2, ..., sn} ⊆ S and {p1, p2, ..., pn} ⊆ PA, we
call the n-tuple [p1:s1, p2:s2,..., pn:sn] a (nondeterministic) multi-transition
(MT) over PA and S. Let MT (PA, S) denote the set of MTs over PA and S.

Intuitively, if a monitor is in a state associated to an MT [p1: s1, p2: s2, ...
, pn: sn] then p1, p2, ..., pn can be regarded as guards allowing the monitor to
nondeterministically transit to one of the states s1, s2, ..., sn.

Definition 5. Maps θ : A→ {true, false} are called A-events, or simply events.
Given an A-event θ, we define its multi-transition extension as the map
θMT : MT (PA, S) → 2S, where θMT ([p1 : s1, p2 : s2, ..., pn : sn]) = {si | θ |= pi}.

The role of A-events is to transmit the monitor information regarding the
running program. In any program state, the map θ assigns atomic propositions
to true iff they hold in that state, otherwise to false. Therefore, A-events can be
regarded as abstractions of the program states. Moreover, technically speaking,
A-events are in a bijective map to PA. For an MT μ, the set of states θMT (μ) is
often called the set of possible continuations of μ under θ.

Example 1. If μ = [a ∨ ¬b : s1,¬a ∧ b : s2, c : s3], and θ(a)=true, θ(b)=false, and
θ(c)=true, then the set of possible continuations of μ under θ, θMT (μ), is {s1, s3}.
Definition 6. A (nondeterministic) binary transition tree (BTT) over
A and S is inductively defined as either a set in 2S or a structure of the form
a ? β1 : β2, for some atom a and for some binary transition trees β1 and β2. Let
BTT (A,S) denote the set of BTTs over the set of states S and atoms A.

Definition 7. Given an event θ, we define its binary transition tree exten-
sion as the map θBTT : BTT (A,S) → 2S, where:
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θBTT (Q) = Q for any set of states Q ⊆ S,
θBTT (a ? β1 : β2) = θBTT (β1) if θ(a) = true, and
θBTT (a ? β1 : β2) = θBTT (β2) if θ(a) = false.

Definition 8. A BTT β implements an MT μ, written β |= μ, iff for any
event θ, it is the case that θBTT (β) = θMT (μ).

Example 2. The BTT b? (a? (c? s1 s3 : s1) : (c? s2 s3 : s2)) : (c? s1 s3 : s3) imple-
ments the multi-transition shown in Example 1.

Fig. 2. BTT corresponding to
the MT in Example 1

Fig. 2 represents this BTT graphically.
The right branch of the node labeled with b
corresponds to the BTT expression (c ? s1s3 :

s3), and similarly for the left branch and ev-
ery other node. Atomic predicates can be any
host programming language boolean expres-
sions. For example, one may be interested if a
variable x is positive or if a vector v[1...100] is
sorted. Some atomic predicates typically are
more expensive to evaluate than others. Since
our purpose is to generate efficient monitors,
we need to take the evaluation costs of atomic predicates into consideration.
Moreover, some predicates can hold with higher probability than others; for ex-
ample, some predicates may be simple “sanity checks”, such as checking whether
the output of a sorting procedure is indeed sorted. We next assume that atomic
predicates are given evaluation costs and probabilities to hold. These may be
estimated apriori, either statically or dynamically.

Definition 9. If ς : A → R+ and π : A → [0, 1] are cost and probability func-
tions for events in A, respectively, then let γς,π : BTT (A,S)→ R+ defined as:

γς,π(Q) = 0 for any Q ⊆ S, and
γς,π(a ? β1 : β2) = ς(a) + π(a) ∗ γς,π(β1) + (1− π(a)) ∗ γς,π(β2),

be the expected (evaluation) cost function on BTTs in BTT (A, S).

Example 3. Given ς = {(a, 10), (b, 5), (c, 20)} and π = {(a, 0.2), (b, 0.5), (c, 0.5)}, the
expected evaluation cost of the BTT defined in Example 2 is 30.

With the terminology and motivations above, the following problem develops as
an interesting and important problem in monitor synthesis:

Problem: Optimal BTT (A, S).

Input: A multi-transition μ = [p1 : s1, p2 : s2, ..., pn : sn] with associated cost
ς : A → R+ and probability π : A → [0, 1].

Output: A minimal cost BTT β with β |= μ.

Binary decision trees (BDTs) and diagrams (BDDs) have been studied as models
and data-structures for several problems in artificial intelligence [25] and program
verification [8]. [9] discusses BDTs and how they relate to BTTs. Moret [25]
shows that a simpler version of this problem, using BDTs, is NP-hard.
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In spite of this result, in general the number of atoms in formulae is relatively
small, so it is not impractical to exhaustively search for the optimal BTT. We
next informally describe a backtracking algorithm that we are currently using
in our implementation to compute the minimal cost BTT by exhaustive search.
Start with the sequence of all atoms in A. Pick one atom, say a, and make two
recursive calls to this procedure, each assuming one boolean assignment to a. In
each call, pass the remaining sequence of atoms to test, and simplify the set of
propositions in the multi-transition according to the value of a. The product of
the BTTs is taken when the recursive calls return in order to compute all BTTs
starting with a. This procedure repeats until no atom is left in the sequence. We
select the minimal cost BTT amongst all computed.

4 Binary Transition Tree Finite State Machines

We next define an automata-like structure, formalizing the desired concept of an
effective runtime monitor. The transitions of each state are all-together encoded
by a BTT, in practice the statistically optimal one, in order for the monitor
to efficiently transit as events take place in the monitored program. Violations
occur when one cannot further transit to any state for any event. A special state,
called neverViolate, will denote a configuration in which one can no longer detect
a violation, so one can stop the monitoring session if this state is reached.

Definition 10. A binary transition tree finite state machine (BTT-
FSM) is a tuple 〈A,S, btt, S0〉, where A is a set of atoms, S is a set of states po-
tentially including a special state called “neverViolate”, btt is a map associating
a BTT in BTT(A,S) to each state in S where btt(neverViolate)={neverViolate}
when neverViolate ∈ S, and S0 ⊆ S is a subset of initial states.

Definition 11. Let 〈A,S, btt, S0〉 be a BTT-FSM. For an event θ and Q,Q′ ⊆
S, we write Q θ→Q

′
and call it a transition between sets of states, whenever

Q
′

=
⋃

s∈Q θBTT (btt(s)). A trace of events θ1θ2...θj generates a sequence

of transitions Q0
θ1→ Q1

θ2→ ...
θj→ Qj in the BTT-FSM, where Q0 = S0 and

Qi
θi+1→ Qi+1, for all 0≤i<j. The trace is rejecting iff Qj={}.
Note that no finite extension of a trace θ1θ2...θj will be rejected if neverVi-

olate ∈ Qj . The state neverViolate denotes a configuration in which violations
can no longer be detected for any finite trace extension. This means that the set
Qk will not be empty, for any k > j, when neverViolate ∈ Qj . Therefore, the
monitoring session can stop at event j if neverViolate ∈ Qj , because we are only
interested in violations of requirements.

5 Generating a BTT-FSM from a Büchi Automaton

Not any property can be monitored. For example, in order to check a liveness
property one needs to ensure that certain propositions hold infinitely often, which
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cannot be verified at runtime. This section describes how to transform a Büchi
automaton into an efficient BTT -FSM that rejects precisely the minimal bad
prefixes of the denoted ω-language.
Definition 12. A monitor FSM (MFSM) is a tuple 〈Σ,S, δ, S0〉, where
Σ = PA is an alphabet, S is a set of states potentially including a special state
“neverViolate”, δ : S×Σ → 2S is a transition function with δ(neverViolate, true) =

{neverViolate} when neverViolate ∈ S, and S0 ⊆ S are initial states.

Note that we take Σ to be PA, the set of propositions over atoms in A. Like
BTT -FSMs, MFSMs may also have a special neverViolate state.

Definition 13. Let Q0
θ1→Q1

θ2→...
θj→Qj be a sequence of transitions in the MFSM

〈Σ,S, δ, S0〉, generated from t=θ1θ2...θj, where Q0=S0 and Qi+1=
⋃

s∈Qi
{δ(s, σ) |

θi+1 |= σ}, for all 0≤i<j. We say that the MFSM rejects t iff Qj = {}.
No finite extension of t will be rejected if neverViolate ∈ Qj .
From Büchi to MFSM. We next describe two simplification procedures on a
Büchi automaton that are sound w.r.t. monitoring, followed by the construction
of an MFSM. The first procedure identifies segments of the automaton which
cannot lead to acceptance and can therefore be safely removed. As we will show
shortly, this step is necessary in order to guarantee the soundness of the mon-
itoring procedure. The second simplification identifies states with the property
that if they are reached then the corresponding requirement cannot be violated
by any finite extension of the trace, so monitoring is ineffective from there on.
Note that reaching such a state does not necessarily mean that a good prefix has
been recognized, but only that the property is not monitorable from there on.

Definition 14. Let 〈Σ, S, δ, S0,F〉 be a Büchi automaton, C a connected compo-
nent of its associated graph, and nodes(C) the states associated to C. We say that
C is isolated iff for any s ∈ nodes(C) and σ ∈ Σ, it is the case that δ(s, σ) ⊆
nodes(C). We say that C is total iff for any s ∈ nodes(C) and event θ, there are
transitions σ such that θ |= σ and δ(s, σ) ∩ nodes(C) �= ∅.

Therefore, there is no way to escape from an isolated connected component,
and regardless of the upcoming event, it is always possible to transit from any
node of a total connected component to another node in that component.

Removing Bad States. The next procedure removes states of the Büchi au-
tomaton which cannot be part of any accepting run (see Definition 2). Note
that any state appearing in such an accepting run must eventually reach an ac-
cepting state. This procedure is fundamentally inspired by strongly-connected-
component-analysis [20, 33], used to check emptiness of the language denoted by
a Büchi automaton. Given a Büchi automaton A = 〈Σ,S, δ, S0,F〉, let U ⊆ S be
the largest set of states such that the language of 〈Σ,S, δ, U,F〉 is empty. The
states in U are unnecessary in A, because they cannot change its language. For-
tunately, U can be calculated effectively as the set of states that cannot reach
any cycle in the graph associated to A which contains at least one accepting
state in F . Fig. 3 shows an algorithm to do this.
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INPUT : A Büchi automaton A
OUTPUT : A smaller Büchi automaton A′ such that L(A′) = L(A).
REMOVE BAD STATES :

for each maximal connected component C of A
if (C is isolated and nodes(C) ∩ F=∅) then mark all states in C “bad”

DFS MARK BAD ; REMOVE BAD

Fig. 3. Removing bad states

The loop identifies maximal isolated connected components which do not contain
any accepting states. The nodes in these components are marked as “bad”. The
procedure DFS MARK BAD performs a depth-first-search in the graph and marks
nodes as “bad” when all outgoing edges lead to a “bad” node. Finally, the
procedure REMOVE BAD removes all the bad states. The runtime complexity of this
algorithm is dominated by the computation of maximal connected components.
In our implementation, we used Tarjan’s O(V + E) double DFS [8]. The proof
of correctness is simple and it appears in [9]. The Büchi automaton A′ produced
by the algorithm in Fig. 3 has the property that there is some proper path from
any of its states to some accepting state. One can readily generate an MFSM
from a Büchi automaton A by first applying the procedure REMOVE BAD STATES
in Fig. 3, and then ignoring the acceptance conditions.

Theorem 1. The MFSM generated from a Büchi automaton A as above rejects
precisely the minimal bad prefixes of L(A).

Proof. Let A=〈Σ,S, δ, S0,F〉 be the original Büchi automaton, let A′=
〈Σ,S′, δ′, S′

0,F〉 be the Büchi automaton obtained from A by applying the algo-
rithm in Fig. 3, and let 〈Σ,S′, δ′, S′

0〉 be the corresponding MFSM of A′. For any
finite trace t = θ1...θj , let us consider its corresponding sequence of transitions
in the MFSM Q0

θ1→... θj→Qj , where Q0 is S′
0. Note that the trace t can also be

regarded as a sequence of letters in the alphabet Σ of A, because we assumed Σ
is PA and because there is a bijection between propositions in PA and A-events.
All we need to show is that t is a bad prefix of A′ if and only if Qj=∅. Recall that
A′ has the property that there is some non-empty path from any of its states to
some accepting state. Thus, one can build an infinite path in A′ starting with
any of its nodes, with the property that some accepting state occurs infinitely
often. In other words, Qj is not empty iff the finite trace t is the prefix of some
infinite trace in L(A′). This is equivalent to saying that Qj is empty iff the trace
t is a bad prefix in A′. Since Qj empty implies Qj′ empty for any j>j′, it follows
that the MFSM rejects precisely the minimal bad prefixes of A. ��

Theorem 1 says that the MFSM obtained from a Büchi automaton as above
can be used as a monitor for the corresponding ω-language. Indeed, one only
needs to maintain a current set of states Q, initially S′

0 , and transform it ac-
cordingly as new events θ are generated by the observed program: if Q θ→Q′ then



Efficient Monitoring of ω-Languages 373

set Q to Q′; if Q ever becomes empty then report violation. Theorem 1 tells us
that a violation will be reported as soon as a bad prefix is encountered.

Collapsing Never-Violate States. Reducing runtime overhead is crucial in
runtime verification. There are many situations when the monitoring process can
be safely stopped, because the observed finite trace cannot be finitely extended
to any bad prefix. The following procedure identifies states in a Büchi automaton
which cannot lead to the violation of any finite computation. For instance, the
Büchi automaton in Fig. 4 can only reject infinite words in which the state
s2 occurs finitely many times; moreover, at least one transition is possible at
any moment. Therefore, the associated MFSM will never report a violation,
even though there are infinite words that are not accepted. We call such an
automaton non-monitorable. This example makes it clear that if a state like s1
is ever reached by the monitor, it does not mean that we found a good prefix,
but that we could stop looking for bad prefixes.

Let A=〈Σ,S, δ, S0,F〉 be a Büchi automaton simplified with
REMOVE BAD STATES. The procedure in Fig. 5 finds states which, if reached by
a monitor, then the monitor can no longer detect violations regardless of what
events will be observed in the future.

Fig. 4. Non-monitorable automaton

The procedure first identifies the to-
tal connected components. According to
the definition of totality, once a monitor
reaches a state of a total connected com-
ponent, the monitor will have the possi-
bility to always transit within that con-
nected component, thus never getting a
chance to report violation. All states of a
total component can therefore be marked
as “never violate”. Other states can also
be marked as such if, for any events, it is
possible to transit from them to states already marked “never violate”; that is
the reason for the disjunction in the second conditional. The procedure finds such
nodes in a depth-first-search. Finally, COLLAPSE-NEVER VIOLATE collapses all com-
ponents marked “never violate”, if any, to a distinguished node, neverViolate,
having just a true transition to itself. If any collapsed node was in the initial set
of states, then the entire automaton is collapsed to neverViolate. The procedure
GENERATE MFSM produces an MFSM by ignoring accepting conditions.
Taking as input this MFSM, say 〈Σ,S′, δ′, S′

0〉, cost function ς, and probability
function π, GENERATE BTT-FSM constructs a BTT -FSM 〈A,S′, btt, S′

0〉, where A
corresponds to the set of atoms from which the alphabet Σ is built, and the map
btt, here represented by a set of pairs, is defined as follows:

btt = {(neverViolate, {neverViolate}) | neverViolate ∈ S′} ∪
{(s, βs) | s ∈ S′-{neverViolate} ∧ βs |= μs}, where

βs optimally implements μs w.r.t. ς and π, with μs = ⊕(
⋃{[σ : s′] | s′ ∈ δ′(s, σ)})
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INPUT : A Büchi automaton A, cost function ς, and probability function π.
OUTPUT : An effectiveBTT -FSM monitor rejecting the bad prefixes of L(A).
COLLAPSE NEVER VIOLATE :

for each maximal connected component C of A
if ( C is total ) then mark all states in C as “never violate”

for each s in depth-first-search visit

if (
∨{σ | δ(s, σ) contains some state marked “never violate”} )

then mark s as “never violate”
COLLAPSE-NEVER VIOLATE ; GENERATE MFSM ; GENERATE BTT-FSM

Fig. 5. Collapsing non-monitorable states

The symbol⊕ denotes concatenation on a set of multi-transitions. Optimal BTTs
βs are generated like in Section 3. Proof of correctness appears in [9].

6 Monitor Generation and MOP

We have shown that one can generate from a Büchi automaton a BTT -FSM
recognizing precisely its bad prefixes. However, it is still necessary to integrate
the BTT -FSM monitor within the program to be observed. Runtime overhead
is introduced by instrumentation and is also dependent on the selection of cost
and probabilities assigned to atoms by the user.

Monitoring-oriented programming (MOP) [7] aims at merging specification
and implementation through generation of runtime monitors from specifications
and integration of those within implementation. In MOP, the task of generating
monitors is divided into defining a logic engine and a language shell. The logic
engine is concerned with the translation of specifications given as logical formulae
into monitoring (pseudo-)code. The shell is responsible for the integration of the
monitor within the application.

Fig. 6 captures the essence of the
synthesis process of LTL monitors in
MOP using the technique described in
this paper. The user defines specifica-
tions either as annotations in the code
or in a separate file. The specification
contains definitions of events and state predicates, as well as LTL formulae
expressing trace requirements. These formulae treat events and predicates as
atomic propositions. Handlers are defined to track violation or validation of re-
quirements. For instance, assume the events a and b denote the login and the
logoff of the same user, respectively. Then the formula �(a → ◦(¬a U b)) states
that the user cannot be logged in more than once. A violation handler could
be declared to track the user who logged in twice. The logic engine is responsi-
ble for the translation of the formulae ϕ and ¬ϕ into two BTT -FSM monitors.
One detects violation and the other validation of ϕ. Note that if the user is just
interested in validation (no violation handler), then only the automaton for nega-

Fig. 6. Generation of monitors in MOP
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tion is generated. Finally, the language shell reads the definition of events and
instruments the code so that the monitor will receive the expected notifications.

We used LTL2BA [26] to generate standard Büchi automata from LTL for-
mulae. The described procedures are implemented in Java. This software and a
WWW demo are available from the MOP website [1].

6.1 Evaluation

Table 1 shows BTT -FSM monitors for some LTL formulae. The BTT definition
corresponding to a state follows the arrow (�). Initial states appear in brackets.
For producing this table, we used the same cost and probabilities for all events
and selected the smallest BTT. The first formula cannot be validated by mon-
itoring and presents the permanent possibility to be violated; that is why its
BTT -FSM does not have a neverViolate state. The second formula can never be
violated since event a followed by event b can always occur in the future, so its
BTT -FSM consists of just one state neverViolate. The last formula shows that our
procedure does not aim at distinguishing validating from non-violating prefixes.

Table 1. BTT -FSMs generated from temporal formulae

Temporal Formula BTT -FSM

�(a → b U c) [s0] � c ? (b ? s0s1 : s0) : (a ? (b ? s1 : ∅) : (b ? s0s1 : s0))
s1 � b ? (c ? s0s1 : s1) : (c ? s0 : ∅)

�(a → �b) [neverViolate] � {neverViolate}
a U b U c [s0] � c ? neverViolate : (a ? (b ? s0s1 : s0) : (b ? s1 : ∅))

s1 � c ? neverViolate : (b ? s1 : ∅)
neverViolate � {neverViolate}

Table 2 shows that our technique can not only identify non-monitorable for-
mulae, but also reduce the cost of monitoring by collapsing large parts of
the Büchi automaton. We use the symbols ♥, ♣, and ♠ to denote, respec-
tively, the effectiveness of REMOVE BAD STATES, the first, and the second loop
of COLLAPSE NEVER VIOLATE. The first group contains non-monitorable formu-
lae. The next contains formulae where monitor size could not be reduced by
our procedures. The third group shows formulae where our simplifications could
significantly reduce the monitor size. The last group shows examples of “ac-
cidentally” safe and “pathologically” safe formulae from [22]. A formula ϕ is
accidentally safe iff not all bad prefixes are “informative” [22] (i.e., can serve as
a witness for violation) but all computations that violate ϕ have an informative
bad prefix. A formula ϕ is pathologically safe if there is a computation that
violates ϕ and has no informative bad prefix. Since we detect all minimal bad
prefixes, informativeness does not play any role in our approach. Both formulae
are monitorable. For the last formula, in particular, a minimal bad prefix will
be detected as soon as the monitor observes a ¬a, having previously observed
a ¬b. One can generate and visualize the BTT -FSMsof all these formulae, and
many others, online at [1].
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Table 2. Number of states and transitions before and after monitoring simplifications

Temporal Formula # states # transitions symplif.

�a 2 , 1 3 , 1 ♣
a U ◦(�b) 3 , 1 5 , 1 ♣♠

�(a ∧ b → �c) 2 , 1 4 , 1 ♣
a U (b U (c U (�d))) 2 , 1 3 , 1 ♣

a U (b U (c U �(d → �e))) 5 , 1 15 , 1 ♣♠
¬ a U (b U (c U �(d → �e))) 12 , 1 51 , 1 ♣

¬ �a 1 , 1 1 , 1
�(a → b U c) 2 , 2 4 , 4

a U (b U (c U d)) 4 , 4 10 , 10

a ∧ ◦(�b) ∧ �(�e) 5 , 4 11 , 6 ♣
a ∧ ◦(�b) ∧ ◦(�c) ∧ �(�e) 9 , 6 29 , 12 ♣

a ∧ ◦(�b) ∧ ◦(�c) ∧ ◦(�d) ∧ �(�e) 17 , 10 83 , 30 ♣
a ∧ ◦(¬(�(b → c U d))) ∧ �(�e) 7 , 5 20 , 10 ♣
�(a ∨ ◦(�c)) ∧ �(b ∨ ◦(�¬c)) 3 , 3 5 , 5

(�(a ∨ �(�c))∧�(b ∨ �(�¬c))) ∨ �a ∨ �b 12 , 6 43 , 22 ♥♣

7 Conclusions

Not all properties a Büchi automaton can express are monitorable. This paper
describes transformations that can be applied to extract the monitorable compo-
nents of Büchi automata, reducing their size and the cost of runtime verification.
The resulting automata are called monitor finite state machines (MFSMs). The
presented algorithms have polynomial running time in the size of the original
Büchi automata and have already been implemented. Another contribution of
this paper is the definition and use of binary transition trees (BTTs) and cor-
responding finite state machines (BTT -FSMs), as well as a translation from
MFSMs to BTT -FSMs. These special-purpose state machines encode optimal
evaluation paths of boolean propositions in transitions.

We used LTL2BA [26] to generate Büchi automata from LTL, and Java
to implement the presented algorithms. Our algorithms, as well as a graphical
HTML interface, are available at [1]. This work is motivated by, and is part
of, a larger project aiming at promoting monitoring as a foundational principle
in software development, called monitoring-oriented programming (MOP). In
MOP, the user specifies formulae, atoms, cost and probabilities associated to
atoms, as well as violation and validation handlers. Then all these are used to
automatically generate monitors and integrate them within the application.

This work is concerned with monitoring violations of requirements. In the
particular case of LTL, validations of formulae can also be checked using the same
technique by monitoring the negation of the input formula. Further work includes
implementing the algorithm defined in [13] for generating Büchi automata of size
2O(|ϕ|) from PTL, combining multiple formulae in a single automaton as showed
by Ezick [12] so as to reduce redundancy of proposition evaluations, and applying
further (standard) NFA simplifications to MFSM.
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22. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Proceed-
ings of CAV ’99, volume 1633 of LNCS, pages 172–183. Springer, 1999.

23. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

24. N. Markey. Temporal Logic with Past is Exponentially more Succinct. EATCS
Bulletin, 79:122–128, 2003.

25. B. Moret. Decision Trees and Diagrams. ACM Comp. Surv., 14(4):593–623, 1982.
26. D. Oddoux and P. Gastin. LTL2BA. http://www.liafa.jussieu.fr/˜oddoux/ltl2ba/.
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32. P. Thati and G. Roşu. Monitoring Algorithms for Metric Temporal Logic. In
Proceedings of RV’04, volume (to appear) of ENTCS. Elsevier Science, 2004.

33. P. Wolper. Constructing Automata from Temporal Logic Formulas: a Tutorial.
volume 2090 of LNCS, pages 261–277. Springer, 2002.



Verification of Tree Updates for Optimization

Michael Benedikt1, Angela Bonifati2, Sergio Flesca3, and Avinash Vyas1

1 Bell Laboratories
2 Icar CNR, Italy

3 D.E.I.S., University of Calabria

Abstract. With the rise of XML as a standard format for representing tree-
shaped data, new programming tools have emerged for specifying transforma-
tions to tree-like structures. A recent example along this line are the update lan-
guages of [16, 15, 8] which add tree update primitives on top of the declarative
query languages XPath and XQuery. These tree update languages use a “snap-
shot semantics”, in which all querying is performed first, after which a generated
sequence of concrete updates is performed in a fixed order determined by query
evaluation. In order to gain efficiency, one would prefer to perform updates as
soon as they are generated, before further querying. This motivates a specific
verification problem: given a tree update program, determine whether generated
updates can be performed before all querying is completed. We formalize this
notion, which we call “Binding Independence”. We give an algorithm to verify
that a tree update program is Binding Independent, and show how this analysis
can be used to produce optimized evaluation orderings that significantly reduce
processing time.

1 Introduction

The rise of XML as a common data format for storing structured documents and data
has spurred the development of new languages for manipulating tree-structured data,
such as XSLT and XQuery. In this work, we deal with a new class of languages for
specifying updates – programs that describe changes to an input tree. Specification
and processing of updates to tree-structured data is a critical data management task.
In the XML context, updates have long been implementable in node-at-a-time fashion
within navigational interfaces such as DOM, but languages for specifying bulk updates
are now emerging. Several language proposals based on extensions of the declarative
languages XPath and XQuery have been put forward in the literature [16, 15, 8, 7],
and the World Wide Web consortium is well underway in extending XQuery, the XML
standard query language, with the capability of expressing updates over XML data.
Since XML documents are basically trees, and since the update primitives of these
languages cannot violate the tree structure, we refer to these as tree update languages.
A sample declarative tree update program, in the syntax of [15] is shown below:

U1 : for $i in //open auction
insert $i/initial/text into $i/current
delete $i/bidder

//openauction is an XPath expression returning the set of openauction nodes in
the tree, hence the opening for loop binds the variable $i to every openauction node in

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 379–393, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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turn. In the body of the loop, the XPath expression $i/initial/text returns the subtree
underneath a text node lying below a initial child of a node bound to variable $i at this
iteration of the loop. The expression $i/bidder returns all the bidder nodes below the
node bound to $i. Informally, example U1 states that below each current child of an
openauction node a copy of the subtree rooted at a certain text node is inserted, and
that each bidder node lying below a openauction element should be deleted. The effect
of this program over an instance, is shown in Figure 1(a) and (b).

Previous tree update language proposals differ in many details, but they agree on a
critical semantic issue regarding how program evaluation is to be ordered. The current
proposals generally center upon the snapshot semantics [15], which specifies the use of
two logical phases of processing: in the first all evaluation of query expressions is done,
yielding an ordered set of point updates. In the second phase the sequence of updates
is applied in the specified order. In the example above, a sequence consisting of a list
of insertions and deletions will be generated, based on the ordering of the results of
//openauction and the other queries; this sequence will be applied in that order to the
tree.

The snapshot semantics has a number of attractive features; it is easier to reason
about, consistent with the semantics of declarative relational update languages such
as SQL, and it averts the possibility of ill-formed reads arising at runtime. The main
drawback is that the naive implementation of it is very inefficient. In a straightforward
implementation the intermediate results must all be materialized before any writes are
performed. To increase performance, one would prefer a more pipelined chaining of
reads to subsequent writes – an interleaved semantics. Our approach to this problem
is to maintain the use of the snapshot semantics, but to verify that an interleaved im-
plementation does not violate the semantics of a given program. We concentrate on
determining statically whether updates generated from a program can be applied as
soon as they are generated. We denote this property Binding Independence, and our
main contribution is an algorithm for verifying it.

In example U1, our analysis detects that evaluation order of U1 can be rearranged
to perform updates as soon as they are generated: that is, U1 is Binding Independent.
Intuitively, this is because the insert and delete operations in one iteration do not af-
fect the evaluation of expressions in subsequent iterations. More generally, we formal-
ize a notion of non-interference of an update with an expression. We show that non-
interference implies Binding Independence, and then present algorithms that decide
non-interference properties. In this paper, we concentrate on a subset of the language of
[15], but our techniques are applicable to other tree update language proposals that use
snapshot semantics.

Optimization based on specification-time verification is particularly attractive for
bulk updates in XML, given that they are often defined well in advance of their exe-
cution and are used to specify computing-intensive modifications to data that may take
minutes or even hours on current update processors. Thus the contributions of the pa-
per are: (i) a formalization of Binding Independence, a property of programs that is
critical to update optimization, (ii) the notion of non-interference of programs, and an
algorithm for reducing Binding Independence to a series of non-interference properties,
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(iii) an algorithm for deciding non-interference and (iv) experiments investigating the
feasibility of the verification.

Related Work. Tree update languages are similar to tree transducers, whose verification
is studied in [1, 2]. These works are similar to ours in that they concern capturing the
iteration of one transducer with the single action of another transducer. However, the
expressiveness of the respective formalisms is incomparable: update languages work
on ordered trees with no bound on rank, while [1, 2] deal with fixed-ranked trees; the
iteration here is a bounded looping construct, while in [1, 2] it is a transitive closure. The
works differ also in the notion of “capturing” (equality up to isomorphism vs. language
containment) and the application (optimization vs. model checking). There has been
considerable work on static analysis of other tree query and transformation languages.
In the XML setting a good summary, focusing on the type-checking problem, can be
found in [14]. [10] presents a system for doing static analysis of XSLT. Because XQuery
and XSLT cannot perform destructive updates, their analysis is much different than
ours. Still, [10, 5] include techniques for performing conservative satisfiability tests on
trees that could be used in conjunction with our analysis.

The main technique in our analysis is transforming dynamic assertions into static
ones. This idea is certainly an ancient one in program analysis (e.g. [3]). Distinctive
features in our setting include the fact that a tree pattern query language, XPath, is part
of the programming formalism we analyze; also that the update operations stay within
the domain of trees, making both the reduction and the final static test simpler.

Organization. Section 2 gives the data model and presents the update language stud-
ied in this paper, a variant of the language of [15]. Section 3 defines the verification
problem we are interested in and overviews our solution. Section 4 describes our im-
plementation and experimental results on the static analyses.

2 Trees, Queries, and Tree Update Languages

In this section, we review the basics of the data model and the fragment of the XPath
query language considered in this work.

Data Model. We deal here with node-labeled trees. Because we think of these as ab-
stractions of XML documents, we refer to labels as tags, and generally use D (for
document) to range over trees. Each node has additionally a unique identity, referred to
as its node identifier or nodeId. Moreover, trees are ordered according to the document
order for nodes, which is the order returned by an in-order depth-first traversal of the
tree. An example of one of our trees is given in Figure 1(a).

XPath. A key component of update languages is the use of patterns or queries to iden-
tify nodes. Although our analysis could work for many tree pattern languages, for sim-
plicity we use a subset of the XPath language. XPath consists of expressions, each of
which defines a map from a node in a tree to an ordered set of output nodes from the
same tree, and filters, which define predicates on nodes in the tree. The ordering of the
output of our XPath expressions will always be via the depth-first traversal ordering of
the input tree, so we will not show it explicitly. In this paper, a top-level XPath expres-
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Fig. 1. An example XML tree, before (a) and after (b) the update U1

sion is either a basic expression or a union E1 ∪ . . . ∪ En of basic expressions. Basic
expressions are built up from rules E = E/E, E = /A, E = //A, E = /∗, E = //∗,
and E = [F ]. Here A is any label and F is any filter (defined below). An expression
/A returns all the children labeled A of the input node, while //A returns all the A de-
scendants of an input node. The expression /* returns all children of a node, while //*
returns all descendants. / is the composition operator on binary relations and [F] is the
identity restricted to nodes satisfying filter F. A filter is either a basic expression E, [la-
bel=A] for A a tag, or a conjunction of filters. The filter E holds exactly when E returns
nonempty at a node, while the label comparison has the obvious meaning. Following
convention, we often omit the composition operator for brevity: e.g. writing /A/B rather
than ((/A)/(/B)) for the XPath query that returns all B children of A children of an input
node. We use XP to denote the XPath language above. As seen in the opening exam-
ple, our update programs deal with XPath expressions with variables in them. We use
XP(x) to denote the language built up as above but with the additional rule E = xi,
where xi is a variable in x. We let XPv denote an XPath expression with variables.
Such expressions are evaluated relative to an assignment of a nodeId in a tree to each
variable, with the expression xi returning exactly the node associated with the nodeId
bound to xi under the assignment, or ∅ if there is no such node. An expression with
variables in x will be denoted E(x). For a tree D, we let E(a)(D) be the evaluation of
E at the root of D in a context where xi is assigned ai.

Schemas and DTDs. Our algorithms can take into account constraints on the input
tree. Our most general notion of constraint will be a non-deterministic bottom-up tree
automaton on unranked trees. This corresponds roughly to the expressiveness of the
schemas supported by the industry standard XML Schema; hence we refer to an au-
tomaton as a schema. Our implementation requires the schema to be given as a Docu-
ment Type Definition (DTD) from XML. A DTD enumerates a finite set of labels that
can be used, and for each label a regular expression over the label alphabet which con-
strains the children of a node with label. A DTD thus describes a very restricted kind
of regular language of unranked trees, where the state depends only on the label. The
examples in this paper are based on the XMark DTD [13], used for benchmarking XML
tools.

Templates. Finally, in order to present our core update language, we will need functions
that construct trees from XPv expressions. A template is a tree whose nodes are labeled
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with literal tags or XPv expressions, with the latter appearing only at leaves. A template
τ is evaluated relative to a treeD and an assignment b of variables to nodeIds inD. The
result of evaluation is τ(D, b) = Θ, where Θ is the forest formed by replacing each
node in τ that is an XP expression E with the sequence of trees resulting from the
evaluation of E relative to D, b.

Tree Update Language. We present the syntax of the tree update language TUpdate we
use throughout the paper. This language is an abstraction of that presented in [15]. The
top-level update constructs we deal with are as follows:

UpdateStatement ::= SimpleUpdate | ComplexUpdate

ComplexUpdate ::= for var in XPathExpr ComplexUpdate| UpdateBlock

UpdateBlock ::= SimpleUpdate+

SimpleUpdate ::= ( “insert” cExpr (“after” | “before”) tExpr ) | ( “insert” cExpr “into” tExpr )|
( “delete” tExpr ) | ( “replace” tExpr “with” cExpr )

Here XPathExpr and tExpr are XPv expressions, while cExpr is a template. In-
tuitively, tExpr computes the target location where the update is taking place, while
cExpr constructs a new tree which is to be inserted or replaced at the target of the
update.

We now review the semantics of tree update programs in the style of [16, 15]. The
semantics of all existing update proposals [16, 15, 8, 12] consists first of a description
of how individual updates apply, and secondly how query evaluation is used to generate
an ordered sequence of individual updates. Following this, our semantics will be via a
transition system, with two kinds of transitions, one for application of individual up-
dates and the other for reducing complex updates to simpler ones based on queries. We
will give both these transitions, and then discuss the order in which transitions fire.

Concrete Update API. Let D be a tree, f be a forest (ordered sequence of trees),
and n a node identifier. A concrete update u, is one of the following operations: (i)
u = InsAft(n, f) or u = InsBef(n, f): when applied to a tree D the operation returns
a new tree, such that, if n ∈ D, the trees in f are inserted immediately after (before) the
node with id n in the parent node of n, in the same order as in the forest f . If n �∈ D,
the operation just returns D (we omit the similar requirement on the updates below);
(ii) u = InsInto(n, f): when applied to D, the operation returns a new tree such that,
if n ∈ D, the trees in f are inserted after the last child of node n; (iii) u = Del(n):
the operation returns a new tree obtained from D by removing the sub-tree rooted at n;
(iv) u = Replace(n, f): the operation returns a new tree such that, if n ∈ D, the trees
in f replace the sub-tree rooted in the node n (in the ordering given by f ). In all cases
above, fresh nodeIds are generated for inserted nodes.

Single-step processing of programs. We now present the next main component of
update evaluation, the operator that reduces a single partially-evaluated update to a
sequence of simpler ones.

An expression binding for an update u is a mapping associating a set of tuples to
occurrences of XPath expressions in u. A tuple will be either a nodeId in the original
tree or a tree constructed from the original one (e.g., a copy of the subtree below a node).
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A bound update is a pair (b, u) where u is an UpdateStatement and b is an expression
binding for u. The update reduction operator [·] takes a bound update and produces a
sequence of bound updates and concrete updates. We refer to such a sequence as an
update sequence. We define [p] for a bound update p = (b, u) as follows. If p = (for
var in E u′, b), we form [p] by evaluating E to get nodes n1 . . . nk, and return the
sequence whose ith element is (bi, u′) , where bi extends b by assigning var to ni. If
u is an update block u1 . . . ul, then [p] returns (b, u1) . . . (b, ul). If u is a simple update
with no bindings for the expressions in u, [p] is formed by first evaluating the template
in u (in case of replace or insert) to get a forest, and evaluating the target expressions in
u to get one or more target node identifiers. We then proceed as follows: for an insert
or replace if the target expression evaluated to more than one target node, [p] is the
empty sequence, otherwise [p] is (b′, u0), where b′ extends b by binding the remaining
variables according to the evaluation just performed. For a delete, let nodeIds n1 . . . nj

be the result of evaluation of the target expression. [p] is (b1, u) . . . (bj , u), where bi
extends b by assigning the target expression of the delete to ni. Finally, if p = (b, u)
is a bound update in which u is simple and every expression is already bound, then
[p] is simply the concrete update formed by replacing the expressions in u with the
corresponding nodeId or forest given by the bindings.

Processing Order for Complex Updates. We are now ready to define the semantics of
programs, using two kinds of transitions acting on a program state, which consists of a
tree and an update sequence.

An evaluation step on a program state (D, us = p1 . . . pn) is a transition to (D, us′)
where the new update sequence us′ is formed by picking a bound update p = (b, u)
from the update sequence and replacing p by [p] in the sequence. If ps is the program
state before such an evaluation step and ps′ is the result of the step, we write ps �e

p ps′.
For example, the processing of the update U = for $x in /A/B insert $x/C into /B at
program state ps0 = (D, p0 = (∅, U)) would begin with the step: ps0 �e

p0
ps1 where

ps1 is: D, {p1=(〈 $x:i1 〉, insert $x/C into /B); p2 = (〈 $x:i2 〉, insert $x/C into /B) }
and where the nodeIds {i1, i2} are the result of evaluating /A/B. An application step
simply consumes a concrete update u from the update sequence and replaces the treeD
by the result of applying u to D. We write ps �a

u ps′

An evaluation sequence is any sequence of steps �e and �a as above, leading
from the initial tree and update statement to some tree with empty update sequence. The
final tree is the output of the sequence. In general, different evaluation sequences may
produce distinct outputs. As mentioned in the introduction, all existing proposals use a
snapshot semantics which restricts to evaluation sequences such that (i) (snapshot rule)
all available evaluation transitions �e must be applied before any application step �a

is performed, and (ii) (ordering rule) the application steps �a must then be applied in
exactly the order given in the update sequence - that is, we always perform �a

p starting
at the initial concrete update in the update sequence. It is easy to see that this results in
a unique output for each update. We say (D,U) �snap D′ if (D, {(∅, U)} rewrites to
(D′, ∅) via a sequence of �e and �a transitions, subject to the conditions above.
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3 Optimized Evaluation and Verification

Naturally, an implementation of the snapshot semantics will differ from the conceptual
version above: e.g. multiple evaluation or concrete update steps can be folded into one,
and cursors over intermediate tables containing query results will be used, rather than
explicit construction of the update sequence. However, even a sophisticated implemen-
tation may be inefficient if it respects the snapshot rule (i) above. The snapshot rule
forces the evaluation of all embedded expressions to occur: this can be very expensive
in terms of space. Furthermore, it may be more efficient to apply delete operations as
soon as they are generated, since these can dramatically reduce the processing time in
further evaluations.

The eager evaluation of an update u is the evaluation formed by dropping the snap-
shot rule and replacing it with the requirement (i’) that whenever the update sequence
has as initial element a concrete update p, we perform the application step �a

p. It is easy
to see that (i’) also guarantees that there is at most one outcome of every evaluation. We
denote the corresponding rewriting relation by �eager.

We say that a program U is Binding Independent (BI) if any evaluation sequence
for u satisfying requirement the ordering rule (ii) produces the same output modulo
an isomorphism preserving any nodeIds from the input tree. Note that if two trees are
isomorphic in this sense, then no user query can distinguish between them. Clearly, if
an update is BI we can use �eager instead of �snap. Similarly, we say that a program
U is BI with respect to a schema (automaton or DTD) if the above holds for all trees
D satisfying the schema. The example U1 is BI with respect to the XMark DTD (a fact
which our analysis verifies). A simple example of an update that is not BI is:

U2 : for $i in //openauction,for $ j in //openauction,
insert $i into $j

Indeed, the eager evaluation of U2 can increase the size of the tree exponentially,
since at each $i element we duplicate every openauction element in the tree. A simple
argument shows that snapshot evaluation can increase the size of the tree only polyno-
mially. Unfortunately, one cannot hope to decide whether an arbitrary TUpdate program
is BI. That is, we have:

Theorem 1. The problem of deciding whether a TUpdate program is Binding Indepen-
dent with respect to an automaton is undecidable.

The proof is by a reduction to solvability of diophantine equations, and is omitted for
space reasons. We thus turn to the main goal of the paper: a static analysis procedure
that gives sufficient conditions for BI. These conditions will also guarantee that the
number of evaluation steps needed to process the update under eager evaluation is no
greater than its time under snapshot evaluation.

Binding Independence Verification Algorithm. We give a conservative reduction of
BI testing to the decidable problem of satisfiability testing for XPath equations. Given x
a sequence of variables, a system of XPath equations in x is a conjunction of statements
either of the form xi : Ei, where Ei is in XP(x1 . . . xi−1), or of one of the forms
lab(x) = A, lab(x) �= A, xi �= xj for i �= j. Given a tree D and sequence of nodeIds
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a1 . . . an, we say a satisfies the equations if ai is in the result of Ei evaluated in a
context where x interpreted by a, and if the label and inequality conjuncts are satisfied.
A system of equations H(x) is unsatisfiable iff for all trees D there is no a satisfying
H in D. We define the notion of unsatisfiability with respect to a schema analogously.
Our goal is an algorithm that, given a TUpdate program U will produce a set of systems
of XPath equations S1 . . . Sn such that: each Si is unsatisfiable implies U is BI.

Non-interference. Intuitively, an update is BI if performing concrete updates that are
generated from a program does not impact the evaluation of other XPath expressions.
For example U1, we can see that in order to verify BI it suffices to check that: i) for
each a0 in //openauction, the update ($i:a0, insert $i/initial/text into $i/current) does
not change the value of the expression $i/initial/text, $i/current, or $i/bidder, where in
the last expression $i can be bound to any a1 in //openauction, and in the first two to
any a1 �= a0 ii) for each a0 in //openauction, ($i:a0 , delete $i/bidder) does not effect
$i/initial/text, or $i/current for any $i, and does not effect $i/bidder when $i is bound to
a1 �= a0. The above suffices to show BI, since it implies that performing any evaluation
step after an update gives the same result as performing the evaluation before the update.

We say a TUpdate programU is non-interfering if: for everyD, for each two distinct
tuples a and a′ that can be generated from binding the for loops in U on D, for each
simple update u in U and every XPath expression E in U , E(a′)(D) returns the same
set asE(a′)(u(a)(D)), and if the above holds for a = a′ ifE is not in u. Note that both
eager and snapshot semantics agree on what u(a)(D) means for a simple update u. The
discussion previously is summarized in the observation: if U is non-interfering, then U
is BI. Furthermore, if U is non-interfering, the eager evaluation terminates in at most the
number of steps needed to evaluate U under snapshot evaluation. The condition is not
necessary. Thus far we have found that BI updates arising in practice (i.e. in the uses of
our update engine within projects at Lucent Technologies) are non-interfering. More-
over, non-interference can be tested effectively; however, to gain additional efficiency,
we provide only a conservative test in our implementation.

Non-interference breaks down into a number of assertions about the invariance of
expressions under updates, each of which needs to be verified separately. A delete non-
interference assertion is of the form (C(x), u(x),M(x,y)) where C(x) is a system
of XPath equations, M is a system of equations in XP(x,y), and u is a SimpleUpdate.
The system M is the monitored system of the assertion while C is the context system.
An insert non-interference assertion has the same form.

A delete non-interference assertion is valid iff for all trees D a satisfying C(x)
in D, for every b in D, we have D |= M(a, b) → u(a)(D) |= M(a, b). That is, u
does not delete anything from the monitored system. An insert non-interference asser-
tion is valid iff for all trees D, a satisfying C(x) in D, and for every b in u(a)D,
u(a)(D) |= M(a, b) → D |= M(a, b). That is, u does not add anything to the
monitored system. Note that if u is a delete, then we need only consider delete non-
interference assertions, since the XPath queries we deal with are monotone; similarly,
if u is an insert, we consider only insert non-interference assertions. Hence we drop the
word “insert” or “delete” before non-interference assertions for these simple updates,
implicitly assuming the non-vacuous case. We write non-interference assertions in tab-
ular form. For example, the non-interference assertion below, generated from U1, states
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that a delete in U1 for an index $i does not effect the expression $i/current for any other
value of $i:

C= $i1://openauction u= delete $i1/bidder M= $i1 �= $i2 ; $i2://openauction; $z:$i2/current

Non-interference of U amounts to verifying a set of non-interference assertions,
one for each triple consisting of a simple update in U , an XPath expression in U , and an
index that witnesses that the context variables are distinct. To increase precision, we can
exclude considering non-interference assertions where u is a delete and E is the target
expression of u: this broadening of the definition of non-interference is sound, since if
u(a) deletes from E(a′) this does not effect the final evaluation but merely accelerates
it.

From Non-interference to Satisfiability. Validity of non-interference assertions still
requires reasoning about updates over multiple trees, while we wish to reason about
XPath satisfiability over a single tree. Our main result is a reduction of non-interference
assertions to satisfiability tests. This reduction makes use of a fundamental property of
the snapshot semantics: under this semantics elements in the output tree are in one-to-
one correspondence with tuples of elements in the input tree.

Consider the non-interference assertion generated from U1 in the table above. To
check this it suffices to confirm that the deleted items do not overlap with the moni-
tored expression $i2/current. So the non-interference assertion is equivalent to the joint
unsatisfiability of the equations: $i1://openauction; $i2://openauction; $i1 �= $i2; $z:
$i1/bidder//*; $z:$i2/current. This system is unsatisfiable because $z cannot be both a
descendant of $i1 and a child of $i2 �= $i1, and this is easily detected by our satisfiabil-
ity test. In general, for delete operations, a non-interference assertion requires checking
whether the system Γ is unsatisfiable, where Γ contains the context and monitored
equations, and equations $o:te//∗. Here te is the target expression of the delete, and
$o is the variable appearing in an XPath equation in the monitored system (for a delete,
this will consist of inequalities plus one XPath equation).

The analysis for inserts requires a much more complex transformation. We give
the intuition for this by example, leaving details for the full paper. Consider the non-
interference assertion generated from U1, which states that the insert into $i/current
does not effect $i/initial/text:

C=$i://openauction u = insert $i/initial/text into $i/current M = $i′://openauction; $i′ �= $i; $z:$i′/initial/text;

We want to derive a collection of systems of equations such that they are all unsatis-
fiable iff this assertion holds. We start by normalizing the assertion so that all equations
are basic: a basic equation is either a label test, an inequality, or of the form $x:$y/* or
$x:$y//*. That is, all the XPath expressions consist of just a single step. We do this by
introducing additional variables for intermediate steps in all path expressions.

C lab($i)=openauction; $k:$i/*; lab($k)=initial;
$l:$k/*; lab($l)=text; $m:$i/*; lab($m)=current;

u insert $l into $m
M $i′ �=$i; lab($i′)=openauction; $k′:$i′/*;

lab($k′)=initial; $l′:$k′/*; lab($l′)=text;
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So this assertion says that for any values of i, k, l,m satisfying the equations at the
top, the operation in the center does not insert any new witness for the equations on
the bottom. Note that there is a further approximation being done here, since instead of
checking whether the output of an XPath expression changes, we check whether there
is a change to a vector of variables that projects onto that output. This approximation al-
lows us to reduce non-interference to a satisfiability test, while an exact non-interference
test would require a (EXPTIME complete [9]) containment test in the presence of a
schema.

To reason about these assertions, we consider the possible ways in which a new
witness set for the monitored equations can occur. Continuing with our example, let D
be some tree, i, k, l,m be witnesses for the context equations in D, and D′(i, k, l,m)
be the tree resulting from the insert above. Every node in D′ is either a node from the
initial tree D (an “old” witness) or was inserted by the operation insert $l into $m.
In general, nodes n arising from an insert or replace can be classified by which node
of the insert or replace template they arose from. They are either matched by a literal
node tn of a template, or they are matched by a node p that lies inside a copy of the
subtree ta of D rooted at node a, where a was matched by some variable v associated
with template node tn of the insert operation. In either of the last two cases, we say
that n is generated by template node tn. In the second case we say the node p is the
pre-witness of n: that is, p is the element of the old tree that was copied to get n. We
write p = pre(n). In the case n is an old witness, we say pre(n) = n, and in the case n
is associated with a literal template node, we set pre(n) to be the insertion point where
the constructed witness was appended. We can classify our witness tuple by means of a
witness map: this is a function F assigning to each variable in the monitored equations
either an element of the insert or replace template, or the keyword old.

In the example above, one of the witness maps is: F (i′) = F (k′) = old, F (l′) =
tn where tn is the only template node of the insert. We reduce the number of maps
considered by enforcing some simple consistency conditions needed for a map to have
the possibility of generating a witness. For example, not all variables can be mapped to
old, if there is equation lab(x) = A in M , and x is mapped by F to a literal node of a
template, then the label of that node must be the literal A.

In the case above, these rules imply that the map above is the only witness map
that could yield a witness violating the non-interference assertion, because the template
node is a text node and hence cannot witness a non-text node. Figure 2 illustrates the
situation: a) shows the initial tree before the insert, with the inserted tree and insert point
highlighted. b) shows the tree resulting from the insert, and c) shows the pattern needed
to witness the interference assertion in the new tree, according to this witness map. Note
that the monitored equations assert that k′ is the parent of l′. So we have an old node k′

Old Tree

m

New Tree

m

New Tree

m

Old Tree

(a) (b) (c) (d)

l l

copy of l

i′

k′

l

l′
pre(l′)=l

k′=m

i′

Fig. 2. A pattern and its precondition relative to a witness map
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that is the parent of a newly-inserted node l′. From the picture, it is clear that this can
happen only if k′ is actually the target of the insert, namely m, while l′ is a copy of the
root l of the inserted tree. Hence in the original tree D, the pre-witnesses for i′, k′, l′ are
shown in Figure 2d); since k′, i′ are old witnesses, we write i′ instead of pre(i′) in the
figure. The pre-witnesses of i′, k′ are a pair satisfying the context equations, but with
pre(k′) constrained to be m; the pre-witness of l′ will be l. Figure 2d) thus shows what
the old tree must look like. The set of equations corresponding to this is shown below.
The equations are unsatisfiable, since m = pre(k′) but they have distinct labels.

lab($i)=openauction; $k:$i/*; lab($k)=initial; $l:$k/*; lab($l)=text; $m:$i/*; lab($m)=current;
$i′ �= $i; lab($i′)=openauction; pre($k′):$i′/*; lab(pre($k′))=initial; pre($k′) =$m; pre($l′)=$l;

Given a witness map F and assertion A = (H(x), u(x),M(x,y)), we can now
state more precisely our goal: to get a set of equations K(x,y′) such that for any tree
D and a satisfying H in D, for any b′ in D, K(a, b′) holds iff there is b such that
H(a, b) holds in D′ = u(a)(D) and pre(bi) = b′i. As the example shows, we get this
set of equations by unioning the context equations with a rewriting of the monitored
equations. Details are given in the full paper.

Theorem 2. For every non-interference assertion A we can generate a collection of
systems of equations S1 . . . Sn such that A is valid iff each of the Si are unsatisfiable.

Accounting for a schema. The analysis above checks that an update program U is
Binding Independent when run on any tree D. Of course, since many programs are
not BI on an arbitrary input, it is essential to do a more precise analysis that verifies
BI only for input trees satisfying a given automata or DTD S. It is tempting to think
that relativizing to a schema requires one only to do the satisfiability test relative to the
schema. That is, one might think that a program U is BI w.r.t. schema S if for every tree
D satisfying S, for any concrete update u generated from U and any path expression
E with parameters from D, E has the same value on D as it does on u(D). However,
this is not the case. Consider the update U : for $x in //A insert $x into $x//C insert $x
into $x//B delete A/[/B and /C]. Suppose that we wish to consider whether or not U is
BI with respect to a given schema S. It is clear that we need to know that instances of
the insert do not produce a new witness to A/[/B and /C]. Thus, we need to prove that
under eager evaluation there is no evaluation sequence adding a new witness pattern
consisting of A,B, and C nodes. But the final witness to this pattern will result from
an update to some intermediate tree D′, which may not satisfy S. Hence to reduce BI
analysis to non-interference of concrete updates over trees D satisfying the schema, we
must deal with the impact of sequences of concrete updates on D.

For integer k, a TUpdate U is k non-interfering with respect to a schema S if for
every D satisfying S i) no delete or replace operation generated from U deletes a wit-
ness to an XPath expression in U for a distinct binding, and ii) for every sequence
u1(a1) . . . uk(ak), where ui are simple inserts or replaces in U and ai are tuples sat-
isfying the for loop bindings in D, for every expression E, and every b satisfying the
bindings and distinct from all ai, E(b)(D) = E(b)(D′), where D′ is the result of ap-
plying each u+

i (ai) to D. Here u+ for u = replace E with τ is defined to be insert τ
into E, and u+ = u for other simple updates. Informally, k non-interfering means that
no single update deletes a witness to an XPath expression in U , and no sequence of k
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updates inserts a witness. It is easy to see that programs with this property for every k
are Binding Independent w.r.t. S. The following result gives a bound on k: its proof is
given in the full paper.

Theorem 3. A program U is BI with respect to S if it is k-non-interfering, with respect
to S, where k is the maximum of the number of axis steps in any expression E.

From the theorem, we can see that Binding Independence of U w.r.t. schema S can
be reduced to polynomially many non-interference assertions, where this notation is
extended to allow a collection of updates. If we consider the update U1 with regard to
schema-based BI verification, we need to check assertions such as:

C $i1 ://openauction; $i2 ://openauction; $i3 ://openauction;
U insert $i1/initial/text into $i1/current insert $i2/initial/text into $i2/current insert $i3/initial/text into $i3/current
M $i′://openauction; $i′ �= $i1,i2,i3; $z:$i′/initial/text;

These new non-interference assertions are reduced to satisfiability through the use
of witness maps and rewriting as previously – we now map nodes in the monitored
equations to template nodes in any of the updates.

(Un)Satisfiability Test. The previous results allow us to reduce BI analysis to a collec-
tion of unsatisfiability tests of systems of XPath equations on a single tree. Unsatisfi-
ability can be seen decidable via appeal to classical decidability results on trees [17].
Although we could have made use of a third party satisfiability test for logics on trees
(e.g. the MONA system [4], although this deals only with satisfiability over ranked
trees), we found it more convenient to craft our own test. Our satisfiability problem is
in CO-NP; in contrast MONA implements a satisfiability test for a much more power-
ful logic, whose worst-case complexity is non-elementary. For the quantifier-free XPath
equations considered here, the satisfiability problem is known to be NP-complete [6].
From this, we can show that non-interference is CO-NP hard.

Since an exact test is CO-NP, we first perform a conservative unsatisfiability test
which simply extracts the descendant relations that are permitted by the schema (for a
DTD, this is done by taking the transitive closure of the dependency graph) and then
checks each axis equation for consistency with these relations: this test is linear in the
size of the equations, and if all equations generated by the reduction are unsatisfiable,
we have verified Binding Independence. Our exact test uses a fairly standard automata-
theoretic method. The basic idea is to “complete” a system of equations S to get a
system S′ in which: i) the dependency relation between variables forms a tree, ii) dis-
tinct variables are related by inequations, and variables that are siblings within the tree
are related by a total sibling ordering iii) if x is a variable then there is at most one vari-
able y that is related to x by an equation y: x//*. The significance of complete systems is
that they can be translated in linear time into a tree automaton. There are many comple-
tions of a given system, and we can enumerate them by making choices for the relations
among variables. Although the number of completions is necessarily exponential in the
worst case, in the presence of a schema we can trim the number significantly by making
only those choices consistent with the schema dependency graph. In the absence of a
schema, any propositionally consistent complete equation system is satisfiable; thus we
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can test satisfiability by checking for existence of a complete consistent extension. In
the presence of a schema, we translate complete systems into automata, and then take
a product. Consider the standard encoding of an ordered unranked tree T by a binary
tree T ′: in this encoding a node n′ ∈ T ′ represents a node n ∈ T , with the left child
c′ of n′ corresponding to the first child of n, and the right child of n′ corresponding
to the following sibling of n in T (this sibling ordering is given as part of the com-
plete system). Relative to this coding, we translate a complete system into a system
of equations over binary trees. Our translation maps an XPath equation ρ to a “binary
XPath equation” ρ′ , where these equations mention the axes ↓left, ↓right, ↓∗right . . .. For
example, an equation of the form $x:$y/* maps to an equation $x:$y/↓left/↓∗right. The
resulting binary equations are again complete, and can thus be translated easily into a
bottom-up non-deterministic tree automaton over finite trees.

We have thus arrived at a collection of automata Ai representing complete binary
systems extending our original system S. We can likewise transform the schema S into
an automaton AS accepting exactly the binary encodings of trees conforming to S. A
standard product construction then yields an automaton A′

i accepting exactly those trees
conforming toD for which S returns a result, and a simple fixed point algorithm is used
to see if the language returned by an A′

i is nonempty [11].

4 Experimental Results

The overall flow of the verification and its use is shown in Figure 3. At verification time,
a program is parsed and then goes through the stages of: i) generating non-interference
assertions, ii) for each assertion generating the witness maps, iii) for each assertion
and witness map, performing rewriting to get a system of equations which needs to
be found unsatisfiable. Each system produced is tested for satisfiability with respect to
the DTD, if one is present. If a system is found satisfiable, analysis terminates; in this
case, nothing is known about the program. If all systems are unsatisfiable, the analysis
outputs that the program is verified to be BI. At runtime, the program is processed by our
modification of the Galax-based XML update engine. A flag is passed with the program
telling whether the program is BI; if so, the eager evaluation is used. The verification
algorithms are in Java, while the runtime, like the rest of Galax, is in OCAML.

We ran our analysis algorithms on a testbed of sample updates, corresponding in
size and complexity to those used in our application of the XML update language of
[15] at Lucent Technologies. In Table 1 we show the verification times as the number
of steps in the update increases. The times are based on a Pentium 4 with a 1GB RAM
and 2.80GHz CPU running XP: in each case, the verification runs in seconds. The times
are an average over 1-4 updates, 90% BI and 10% non-BI. We were interested also in
tracking the two potential sources of combinatorial blow-up in our algorithms: the first
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Table 1. Results of Analysis on a query with variable number of steps

Query Steps Verification Time(ms) Nr. of Equation Systems

9 4422 7
10 2390 15
11 5125 15
12 6953 17
13 8250 17
14 10984 17
15 8719 17
16 15701 17
17 25046 17
18 29781 17
19 31281 17

is the number of witness maps to be considered, which determines the number of equa-
tion systems that need to be generated. The second is the complexity of the satisfiability
test. The first is controlled by the consistency rules for witness map assignment, and
our preliminary results (also shown in the figure) show that our rules keep the number
of equations systems, and hence calls to satisfiability, low, generally in single digits.
The complexity of the satisfiability test is controlled principally by filtering using an
approximate test and secondly by using the DTD dependency graph to limit the number
of completions. The latter is particularly useful given that DTDs tend to give strong
restrictions on the tags that can appear in a parent/child relationship. Currently, our ap-
proximate test is quite crude, and eliminates only a small percentage of the equation
systems. However, the XMark DTD reduces the number of completions significantly
– in our sample updates, to at most several hundred. This results in low time for the
aggregate test, since for complete systems the satisfiability test is linear.
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Abstract. The coverability problem is decidable for the class of well-
structured transition systems. Until recently, the only known algorithm
to solve this problem was based on symbolic backward reachability. In a
recent paper, we have introduced the theory underlying a new algorith-
mic solution, called ‘Expand, Enlarge and Check’, which can be imple-
mented in a forward manner. In this paper, we provide additional con-
cepts and algorithms to turn this theory into efficient forward algorithms
for monotonic extensions of Petri nets and Lossy Channels Systems. We
have implemented a prototype and applied it on a large set of examples.
This prototype outperforms a previous fine tuned prototype based on
backward symbolic exploration and shows the practical interest of our
new algorithmic solution.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state abstrac-
tions. However, many reactive systems are only naturally modelled as infinite-
state systems. Consequently, a large (and successful) research effort has recently
focused on the application of model-checking techniques to infinite-state models
such as FIFO channel systems [2], (extensions of) Petri nets and automata with
counters [14], broadcast protocols [7], etc.

One of the positive results is the decidability of the coverability problem for
well-structured transition systems (WSTS for short). WSTS enjoy an infinite set
of states that is well-quasi ordered by ≤ and their transition relation is mono-
tonic w.r.t ≤. Examples of such systems are Petri nets and their monotonic
extensions [4, 14], broadcast protocols [6], lossy channel systems [2]. The cov-
erability problem asks whether a given WSTS S can reach a state of a given
≤-upward closed set of states U .

A general algorithm (i.e. a procedure that always terminates) is known to
solve the coverability problem for WSTS [1, 9]. It symbolically manipulates
upward-closed sets of states, obtained by unrolling the transition relation in a
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backward fashion. Unfortunately, backward search is seldom efficient in practice
[12], and the only complete forward approach known so far is the Karp-Miller
algorithm that can only be applied to a small subclass of WSTS: Petri nets. All
the previous attempts to generalize this procedure have led to incomplete for-
ward approaches that are either not guaranteed to terminate (e.g.: [6], as shown
in [7]) or that can be inconclusive due to over-approximation [3].

Nevertheless, we have recently proposed a new schema of algorithms, called
‘Expand, Enlarge and Check’ (EEC for short), to solve the coverability problem
for a large class of WSTS (those that enjoy reasonable effectiveness requirements,
see [11] for the details). EEC works basically as follows. It constructs a sequence
of pairs of approximations of the set of reachable states: an under-approximation
(built during the ‘Expand phase’) and an over-approximation (built during the
‘Enlarge’ phase). Some basic results from the theory of well-quasi ordering and
recursively enumerable sets allow us to show that positive instances of the cov-
erability problem are answered by the sequence of under-approximations while
negative instances are answered by the over-approximations after a finite num-
ber of iterations. The theory and the proofs are very elegant and furthermore
the schema is really promising from the practical point of view because it can
be implemented in a forward manner.

In this paper, we show that, indeed, EEC can be turned into an efficient
algorithm to solve the coverability problem in a forward manner. In particular,
we show how to implement the EEC efficiently for the two most practically
important classes of WSTS in the literature: monotonic extensions of Petri Nets
(EPN for short) and for Lossy Channel Systems (LCS for short). Those two
classes are useful for the analysis of parametric systems and communication
protocols. To obtain efficient algorithms from the EEC schema, we have to get
over two obstacles: first, during the ‘Expand’ phase, we have to analyze finite
graphs that can be very large. Second, during the ‘Enlarge’ phase, we have to
approximate sets of successors efficiently. To solve the first problem, we show
that we can always turn a WSTS into a lossy WSTS that respects the same
coverability properties and for which the graph during the ‘Expand’ phase is
monotonic. The coverability problem can often be solved efficiently in monotonic
graphs because (roughly) only ≤-maximal states of the graph must be explored.
We provide an efficient algorithm for that exploration. This algorithm is also
applicable during the ‘Enlarge’ phase in the case of EPN. We show in the sequel
that it dramatically improves the practical efficiency of the method. The second
problem is difficult for LCS only. We provide here a way to construct efficiently
the most precise approximations of the set of the successors of a downward-closed
set of LCS configurations.

On the basis of those two conceptual tools, we have implemented a proto-
type to analyze coverability properties of EPN and LCS. We have applied the
prototype to a large set of examples taken in the literature and compared its
performances with our fine-tuned implementation of the backward search in the
case of EPN. For LCS, the only available tools are implementing either a poten-
tially non-terminating analysis or an over-approximation algorithm that is not
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guaranteed to conclude due to over-approximation. The performance of our pro-
totype are very encouraging and often much better than those of the backward
search prototype.

The rest of the paper is organized as follows. In Section 2, we recall some
basic notions about well-quasi orderings, WSTS and the coverability problem. In
Section 3, we summarize the results of our previous paper about the EEC schema.
In Section 4, we show how to efficiently explore monotonic graphs to establish
coverability properties and show that the graphs that we have to analyze during
the ‘Expand’ phase are monotonic when the lossy abstraction is applied. In
Section 5, we show how EPN and LCS can be analyzed efficiently with the EEC
schema, and provide practical evidence that it can compete advantageously with
other techniques. Finally, we draw some conclusions in section 6.

Due to the lack of space, the proofs have been omitted in the present version of
the paper. A full version of the paper and complete experimental results (includ-
ing the data) can be found at: http://www.ulb.ac.be/di/ssd/ggeeraer/eec/

2 Preliminaries

In this section, we recall some fundamental results about well-quasi orderings
and well-structured transition systems (the systems we analyze here). We show
how to finitely represent upward- and downward-closed sets of states (which
will allow us to devise symbolic algorithms), and discuss And-Or graphs and
monotonic graphs (useful to represent abstractions of systems).

Well Quasi-Orderings and Adequate Domains of Limits. A well quasi ordering
≤ on C (wqo for short) is a reflexive and transitive relation s. t. for any infinite
sequence c0c1 . . . cn . . . of elements in C, there exist i and j, with i < j and
ci ≤ cj . We note ci < cj if ci ≤ cj but cj �≤ ci.

Let 〈C,≤〉 be a well-quasi ordered set. A ≤-upward closed set U ⊆ C is such
that for any c ∈ U , for any c′ ∈ C such that c ≤ c′, c′ ∈ U . A ≤-downward-closed
set D ⊆ C is such that for any c ∈ D, for any c′ ∈ C such that c′ ≤ c, c′ ∈ D.
The set of ≤-minimal elements Min(U) of a set U ⊆ C is a minimal set such
that Min(U) ⊆ U and ∀s′ ∈ U : ∃s ∈ Min(U) : s ≤ s′. The next proposition is a
consequence of wqo:

Proposition 1. Let 〈C,≤〉 be a wqo set and U ⊆ C be an ≤-upward closed set,
then: Min(U) is finite and U = {c | ∃c′ ∈ Min(U) : c′ ≤ c}.
Thus, any ≤-upward closed set can be effectively represented by its finite set
of minimal elements. To obtain a finite representation of ≤-downward-closed
sets, we must use well-chosen limit elements � �∈ C that represent ≤-downward
closures of infinite increasing chains of elements.

Definition 1 ([11]). Let 〈C,≤〉 be a well-quasi ordered set and L be a set s.t.
L∩C = ∅. The tuple 〈L,%, γ〉 is called an adequate domain of limits for 〈C,≤〉 if
the following conditions are satisfied: (L1: representation mapping) γ : L ∪C →
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2C associates to each element in L∪C a ≤-downward-closed set D ⊆ C, and for
any c ∈ C, γ(c) = {c′ ∈ C | c′ ≤ c}. γ is extended to sets S ⊆ L ∪ C as follows:
γ(S) = ∪c∈Sγ(c); (L2: top element) There exists a special element & ∈ L such
that γ(&) = C; (L3: precision order) The set L ∪ C is partially ordered by %,
where: d1 % d2 iff γ(d1) ⊆ γ(d2); (L4: completeness) for any ≤-downward-closed
set D ⊆ C, there exists a finite set D′ ⊆ L ∪ C: γ(D′) = D.

Well-Structured Transition Systems and Coverability Problem. A transition sys-
tem is a tuple S = 〈C, c0,→〉 where C is a (possibly infinite) set of states,
c0 ∈ C is the initial state, →⊆ C × C is a transition relation. We note c → c′

for 〈c, c′〉 ∈→. For any state c, Post(c) denotes the set of one-step successors of
c, i.e. Post(c) = {c′|c → c′}, this function is extended to sets: for any C ′ ⊆ C,
Post(C ′) =

⋃
c∈C′ Post(c). Without loss of generality, we assume that Post(c) �= ∅

for any c ∈ C. A path of S is a sequence of states c1, c2, . . . , ck such that
c1 → c2 → · · · → ck. A state c′ is reachable from a state c, noted c →∗ c′,
if there exists a path c1, c2, . . . , ck in S with c1 = c and ck = c′. Given a transi-
tion system S = 〈C, c0,→〉, Reach(S) denotes the set {c ∈ C | c0 →∗ c}.
Definition 2. A transition system S = 〈C, c0,→〉 is a well-structured transition
system (WSTS) [1, 9] for the quasi order ≤⊆ C × C (noted: S = 〈C, c0,→,≤〉)
if: (W1: well-ordering) ≤ is a well-quasi ordering and (W2: monotonicity) for
any c1, c2, c3 ∈ C: c1 ≤ c2 and c1 → c3 implies ∃c4 ∈ C : c3 ≤ c4 and c2 → c4.
It is lossy if its transition relation satisfies the following additional property:
(W3) ∀c1, c2, c3 ∈ C such that c1 → c2 and c3 ≤ c2, we have c1 → c3.

Problem 1. The coverability problem for well-structured transition systems is de-
fined as follows: ‘Given a well-structured transition system S and the ≤-upward
closed set U ⊆ C, determine whether Reach(S) ∩ U �= ∅’
To solve the coverability problem, we use the notion of covering set:

Definition 3. For any WSTS S=〈C, c0,→,≤〉, the covering set of S (Cover(S)),
is the ≤-downward closure of Reach(S): Cover(S) = {c|∃c′ ∈ Reach(S) : c ≤ c′}.

Proposition 2 ([14]). For any WSTS S = 〈C, c0,→,≤〉, Cover(S) is such that
for any ≤-upward closed set U ⊆ C: Reach(S) ∩ U = ∅ iff Cover(S) ∩ U = ∅.

Finite Representation. For any WSTS S = 〈C, c0,→,≤〉 with an adequate do-
main of limits 〈L,%, γ〉 for 〈C,≤〉, by property L4 of Definition 1, there exists a
finite subset CS(S) ⊆ L ∪ C s.t. γ(CS(S)) = Cover(S). In the sequel, CS(S) is
called a coverability set of the covering set Cover(S) and finitely represents that
set.

Lossiness Abstraction. Any WSTS can be turned into a lossy WSTS that respects
the same coverability property. Definition 4 and Proposition 3 formalize this:
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Definition 4. The lossy version of a WSTS S = 〈C, c0,→,≤〉 is the lossy WSTS
lossy(S) = 〈C, c0,→,≤〉 where →= {(c, c′) | ∃c′′ ∈ C : c→ c′′ ∧ c′ ≤ c′′}.

Proposition 3. For any WSTS S = 〈C, c0,→,≤〉: Cover(S) = Cover(lossy(S));
and for any ≤-upward closed set U⊆C: Reach(S)∩U=∅ iff Cover(lossy(S)) ∩ U = ∅.

Abstractions. The EEC algorithm considers two kinds of abstractions. To repre-
sent them, we introduce two types of graphs. First, a �-monotonic graph is a
finite graph 〈V,⇒, vi〉 where V is a set of nodes, ⇒⊆ V × V is the transition
relation and vi ∈ V is the initial node. That graph is associated with an order
� ⊆ V × V such that for any v1, v2, v3 ∈ V with v1 ⇒ v2 and v1�v3, there
exists v4 ∈ V with v2�v4 and v3 ⇒ v4. Notice that �-monotonic graphs are
finite WSTS. Second, an And-Or graph is a tuple G = 〈VA, VO, vi,⇒〉 where
V = VA ∪ VO is the (finite) set of nodes (VA is the set of “And” nodes and
VO is the set of “Or” nodes), VA ∩ VO = ∅, vi ∈ VO is the initial node, and
⇒⊆ (VA × VO) ∪ (VO × VA) is the transition relation s.t. ∀v ∈ VA ∪ VO, there
exists v′ ∈ VA ∪ VO with (v, v′) ∈⇒.

Definition 5. A compatible unfolding of an And-Or graph G = 〈VA, VO, vi,⇒〉
is an infinite labelled tree TG = 〈N, root , B, Λ〉 where: (i) N is the set of nodes
of TG, (ii) root ∈ N is the root of TG, (iii) B ⊆ N ×N is the transition relation
of TG, (iv) Λ : N → VA∪V0 is the labelling function of the nodes of TG by nodes
of G that respects the three following compatibility conditions (Λ is extended to
sets of nodes in the usual way): (C1)Λ(root) = vi; (C2) for all n ∈ N such that
Λ(n) ∈ VA, we have that (a) for all nodes v′ ∈ VO such that Λ(n) ⇒ v′, there
exists one and only one n′ ∈ N such that B(n, n′) and Λ(n′) = v′, and conversely
(b) for all nodes n′ ∈ N such that B(n, n′), we have Λ(n) ⇒ Λ(n′). (C3) for all
n ∈ N such that Λ(n) ∈ VO, we have that: there exists one and only one n′ ∈ N
such that B(n, n′), and Λ(n) ⇒ Λ(n′).

Problem 2. The And-Or Graph Avoidability Problem is defined as: ‘Given an
And-Or graph G=〈VA, VO, vi,⇒〉 and E⊆VA∪VO, is there T = 〈N, root , B, Λ〉,
a compatible unfolding of G, s.t. Λ(N)∩E=∅ ?’ When it is the case, we say that
E is avoidable in G. It is well-known that this problem is complete for PTIME.

3 Expand, Enlarge and Check

This section recalls the fundamentals of the EEC algorithm [11]. The principle
of this algorithm consists to build a sequence of pairs of approximations. The
first one, is an under-approximation of the set of reachable states, and allows
one to decide positive instances of the coverability problem. The latter one over-
approximates the reachable states and is suitable to decide negative instances.

More precisely, given a WSTS S = 〈C, c0,→,≤〉, and a set of limits L, the
algorithm considers in parallel a sequence of subsets of C: C0, C1, . . . and a
sequence of limit elements: L0, L1, . . . s.t. (i) ∀i ≥ 0 : Ci ⊆ Ci+1, (ii) ∀c ∈
Reach(S) : ∃i ≥ 0 : c ∈ Ci, and (iii) c0 ∈ C0; and (iv) ∀i ≥ 0 : Li ⊆ Li+1, (v)
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∀� ∈ L : ∃i ≥ 0 : � ∈ Li and (vi) & ∈ L0. Given a set Ci, one can construct
an exact partial reachability graph (EPRG for short) EPRG(S,Ci) which is an
under-approximation of the system. Similarly, given a set Li, one builds an over-
approximation of the system under the form of an And-Or Graph:

Definition 6. Given a WSTS S = 〈C, c0,→,≤〉 and a set C ′ ⊆ C, the EPRG
of S is the transition system EPRG(S,C ′) =

〈
C ′, c0,

( → ∩(C ′ × C ′)
)〉

.

Definition 7. Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,%, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset
L′ ⊆ L with & ∈ L′, the And-Or graph G = 〈VA, VO, vi,⇒〉, noted Abs(S,C ′, L′),
is s.t.: (A1) VO = L′∪C ′; (A2) VA = {S ∈ 2L′∪C′ \{∅} | �d1 �= d2 ∈ S : d1 % d2};
(A3) vi = c0; (A4.1) for any n1 ∈ VA, n2 ∈ VO: (n1, n2) ∈⇒ if and only if
n2 ∈ n1; (A4.2) for any n1 ∈ VO, n2 ∈ VA : (n1, n2) ∈⇒ if and only if (i)
Post(γ(n1)) ⊆ γ(n2) and (ii) ¬∃n ∈ VA : Post(γ(n1)) ⊆ γ(n) ⊂ γ(n2).

Remark 1. The over-approximations are And-Or graphs instead of plain graphs.
The reason is that, in Definition 1, we do not impose strong properties on the lim-
its. Hence, the set of successors of an element c ∈ L′∪C ′ may not have a (unique)
most precise approximation as a subset of L′ ∪C ′. Every over-approximation is
able to simulate the successors in the WSTS, but some of them may lead to bad
states, while others don’t (which will be established by the And-Or graph).

Theorem 1 states the adequacy of these abstractions. Theorem 2 tells us that
we will eventually find the right abstractions to decide the coverability problem.
The EEC algorithm directly follows: it enumerates the pairs of Ci and Li, and,
for each of them, (1 – ‘Expand’) builds EPRG(S,Ci), (2 – ‘Enlarge’) builds
Abs(S,Ci, Li) and (3 – ‘Check’) looks for an error trace in EPRG(S,Ci) and
checks the avoidability of the bad states in Abs(S,Ci, Li) (see [11] for details).
Theorem 1. Given a WSTS S = 〈C, c0,→,≤〉 with adequate domain of limits
〈L,%, γ〉, and an ≤-upward-closed set U ⊆ C: ∀i ≥ 0: If Reach(EPRG(S,Ci)) ∩
U �= ∅ then Reach(S) ∩ U �= ∅. If U is avoidable in Abs(S,Ci, Li), then
Reach(S) ∩ U = ∅.
Theorem 2. Given a WSTS S = 〈C, c0,→,≤〉 with adequate domain of limits
〈L,%, γ〉, and an ≤-upward-closed set U ⊆ C: If Reach(S) ∩ U �= ∅, then
∃i ≥ 0 : Reach(EPRG(S,Ci)) ∩ U �= ∅. If Reach(S) ∩ U = ∅, then ∃i ≥ 0 s.t. U
is avoidable in Abs(S,Ci, Li).

Propositions 4 and 5 give properties of these abstractions. The latter says
that, if C ′ is ≤-downward-closed and S is lossy, EPRG(S,C ′) is a finite ≤-
monotonic graph. Section 4 shows how to efficiently explore these graphs.

Proposition 4. Let S = 〈C, c0,→,≤〉 be a WSTS and 〈L,%, γ〉 be an adequate
domain of limits, for S. Let Abs(S,C ′, L′) = 〈VA, VO, vi,⇒〉 be an And-Or graph
for some C ′ ⊆ C and L′ ⊆ L. For any v1, v2, v3 ∈ VA ∪ VO s.t. v1 ⇒ v2 and
γ(v1) ⊆ γ(v3), there exists v4 ∈ VA ∪ VO s.t. v3 ⇒ v4 and γ(v2) ⊆ γ(v4).

Proposition 5. Given a lossy WSTS S = 〈C, c0,→,≤〉, and a ≤-downward-
closed set C ′ ⊆ C: EPRG(S,C ′) is a ≤-monotonic graph.
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4 Efficient Exploration of �-Monotonic Graphs

This section is devoted to the presentation of Algorithm 1 which efficiently de-
cides the coverability problem on �-monotonic graphs. It is based on ideas bor-
rowed from the algorithm to compute the minimal coverability set of Petri nets,
presented in [8]. However, as recently pointed out in [10], this latter algorithm is
flawed and may in certain cases compute an under-approximation of the actual
minimal coverability set. Algorithm 1 corrects this bug in the context of finite
graphs. At the end of the section, we show how to exploit it in EEC.

Algorithm 1 receives a �-monotonic graph G = 〈V,⇒, vi〉 and constructs
a finite tree T = 〈N,n0, B, Λ〉, with set of nodes N , root node n0 ∈ N , set
of arcs B ⊆ N × N (in the following we denote by B∗ the transitive closure
of B) and labelling function Λ : N '→ V . We denote by leaves(T ) the set of
leaves of T ; by subtree(n), the maximal sub-tree of T rooted in n ∈ N ; and by
nodes(T ) the set of nodes of T . Given a tree T , and two nodes n and n′, the
function Replace subtree(n, n′, T , to treat) replaces, in T , the subtree subtree(n)
by subtree(n′) and removes from to treat the nodes n′′ ∈ (leaves(subtree(n)) \
leaves(subtree(n′))) ∩ to treat. We also attach a predicate removed(n) to each
node n of a tree, which is initially false for any node. When removed(n) is true,
the node n is virtually removed from the tree. It is however kept in memory, so
that it can be later put back in the tree (this makes sense since the bug in [8]

Data : G = 〈V,⇒, vi〉: �-monotonic graph; U ⊆ V : �-upw.-cl. set of states.

Result : true when U is reachable in G; false otherwise.

begin
Let T = 〈N, n0, B, Λ〉 be the tree computed as follows:
to treat = {n0} such that Λ(n0) = vi, N = {n0}, B = ∅ ;
while to treat �= ∅ do

while to treat �= ∅ do
choose and remove n in to treat ;
foreach successor v of Λ(n) do

Add n′ with Λ(n′) = v as successor of n;
1 if �n′′ ∈ N : B∗(n′′, n′) ∧ Λ(n′)�Λ(n′′) then add n′ to to treat;

else removed(n′) = true;

Apply reduction rules (see Algorithm 2);

/* reuse of nodes formerly computed */
2 while ∃n, n′ ∈ N : ¬removed(n) ∧ removed(n′) ∧ ¬covered(Λ(n′), N) ∧

B(n, n′) do removed(n′) = false ;
/*construction of new nodes */

3 while ∃n ∈ (N \ to treat) : ∃v ∈ V : Λ(n)⇒ v ∧ ¬removed(n) ∧
¬covered(v, N) do add n to to treat;

if ∃n ∈ N : removed(n) = false, Λ(n) ∈ U then return true;
else return false;

end

Algorithm 1: Coverability
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while ∃n, n′ ∈ N : Λ(n)≺Λ(n′) do

1 if ¬B∗(n, n′) ∧ ¬removed(n) ∧ ¬removed(n′) then
foreach n′′ ∈ nodes(subtree(n)) do removed(n′′) = true;
to treat ← to treat \ nodes(subtree(n));

2 else if B∗(n, n′) ∧ ¬removed(n) ∧ ¬removed(n′) then
Let S = {n′′ ∈ leaves(subtree(n′)) | n′′ �∈ to treat};
Replace subtree(n, n′, T , to treat);
foreach n′′ ∈ S do

if �n′ ∈ N : B∗(n′, n′′) ∧ Λ(n′′)�Λ(n′) then add n′′ to to treat;

Algorithm 2: Reduction rules

occurs when nodes are deleted by mistake). The function covered(v,N) returns
true iff there is a node n ∈ N with v�Λ(n) and removed(n) = false.

Sketch of the Algorithm. The tree built by Algorithm 1 is the reachability tree of
the �-monotonic graph G on which some reduction rules are applied in order to
keep maximal elements only, (so that the labels of the tree eventually computed
form a coverability set of G). The sketch of the algorithm is as follows. The inner
while loop constructs the tree by picking up a node n from to treat and adding
its successors. When a successor n′ is smaller than or equal to one of its ancestors
n′′ (Λ(n′)�Λ(n′′)), we stop the development of n′ (line 1). Then, reduction rules
(Algorithm 2) are applied: (i) when the tree contains two nodes n and n′ such
that Λ(n)�Λ(n′) and n is not an ancestor of n′, subtree(n) does not need to
be developed anymore and is removed (that is, all the nodes n′′ of subtree(n)
are tagged: removed(n′′) = true, and removed from to treat); (ii) when the
tree contains two nodes n and n′ such that Λ(n)�Λ(n′) and n is an ancestor of
n′, we replace subtree(n) by subtree(n′). As mentioned above, the inner while
loop may fail to compute a coverability set of G and may only compute an
under-approximation. To cope with this problem, we test, at the end of the
inner while loop whether a coverability set has been computed. More precisely
(line 2), we look at all the nodes n′ such that removed(n′) = true and that are
direct successors of a node n actually in the tree (i.e.: removed(n) = false).
When we find that such an n′ is not covered by a node actually in the tree, we
set removed(n′) back to false. This step is iterated up to stabilization. Then
(line 3), we add into to treat the nodes n with removed(n) = false such that
(i) the successor nodes of n have not been developed yet and (ii) there exists
one successor v of Λ(n) that is not covered by nodes actually in the tree. If
to treat is not empty at the end of these steps, it means that the inner while
loop has computed an under-approximation of the coverability set. In that case,
it is iterated again. Otherwise, when to treat is empty, it is easy to see that for
each node n in the tree such that removed(n) = false all the successors of Λ(n)
are covered by nodes n′ of the tree such that removed(n′) = false. Since the
root node of the tree covers vi, we conclude that {v | ∃ a node n of the tree:
Λ(n) = v, removed(n) = false} is a coverability set.
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The next theorem states the correctness of Algorithm 1:

Theorem 3. Algorithm 1, when applied to the �-monotonic graph G and the
�-upward closed set U , always terminates and returns true if and only if there
exists a node v ∈ U such that v is reachable from vi in G.

Remark 2. When ⇒ is computable, Algorithm 1 can compute T without dis-
posing of the whole graph G (vi only is necessary). In that case, Algorithm 1 ef-
ficiently explores a (possibly small) portion of a (potentially large) �-monotonic
graph without building it entirely.

Application to EEC. Thanks to Proposition 5, we can apply Algorithm 1 to any
EPRG built at the ‘Expand’ phase, if the WSTS is lossy (but by Proposition 3,
we can always take the lossy version of any WSTS), and the sets Ci are �e-
downward-closed. We show in Section 5 that this is not restrictive in practice.

Algorithm 1 is also useful to improve the ‘Enlarge’ phase in the case where
the And-Or graph is degenerated. An And-Or graph is degenerated whenever
each Or-node has only one successor. Hence a degenerated And-Or graph G =
〈VA, VO, vi,⇒〉 is equivalent to a plain graph G′ = 〈VO, vi,⇒′〉 where we have
v ⇒′ v′ if an only if ∃v′′ ∈ VA : v ⇒ v′′ ⇒ v′. From Proposition 4, G′ is a
%-monotonic graph, for any WSTS with adequate domain of limits 〈L,%, γ〉.

5 Expand, Enlarge and Check in Practice

Checking the practical usability of EEC by implementing it is an essential step.
Indeed, even if we dispose of a nice theoretical result that shows the completeness
of EEC, the theoretical complexity of the problems addressed here remain non-
primitive recursive [13]. In this section, we specialize EEC to obtain efficient
procedures for the coverability problem on two classes of WSTS: the monotonic
extensions of Petri nets (EPN) and the lossy channel systems (LCS).

Since And-Or graphs for EPN are always degenerated [11], we can exploit the
efficient procedure described in Section 4 in both the ‘Expand’ and the ‘Enlarge’
phase. As far as LCS are concerned, the main difficulty relies in the construction
of the And-Or graph: the ‘Expand’ phase requests an efficient procedure to
compute the most precise successors of any Or-node.

5.1 Extended Petri Nets

We consider monotonic extensions of the well-known Petri net model (such as
Petri nets with transfer arcs, a.s.o., see [4]). Due to the lack of space, we refer the
reader to [11] for the syntax. An EPN P defines a WSTS S = 〈Nk,m0,→〉 where
k is the number of places of P , m0 is the initial marking of P and→⊆ N

k×N
k is

a transition relation induced by the transitions of the EPN (see [11] for details).

Domain of Limits. To apply the schema of algorithm to extensions of Petri
nets, we proposed in [11] to consider the domain of limits 〈L,�e, γ〉 where L =
(N∪{+∞})k \ N

k, �e⊆ (N∪{+∞})k × (N∪{+∞})k is such that 〈m1,. . .,mk〉 �e
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〈m′
1,. . .,m

′
k〉 if and only if ∀1≤ i≤ k :mi ≤m′

i (where ≤ is the natural order over
N∪{+∞}. In particular: c <+∞ for all c ∈ N ). γ is defined as: γ(m) = {m′ ∈
N

k | m′ �e m}. The sequences of Ci’s and Li’s are defined as follows: (D1)
Ci = {0, . . . , i}k ∪{m|m �e m0}, i.e. Ci is the set of markings where each place
is bounded by i (plus the �e-downward closure of the initial marking); (D2)
Li = {m ∈ {0, . . . i,+∞}k |m �∈ N

k}.

Efficient Algorithm. To achieve an efficient implementation of EEC, and ac-
cording to Proposition 3, we consider the lossy version of EPN (that are lossy
WSTS) to decide the coverability problem on EPN. As the sets Ci are �e-
downward-closed, we use the algorithm of Section 4 to efficiently compute the
‘Expand’ phase.

The ‘Enlarge’ phase is improved by using the method of [11] to compute the
successors of any Or-node of the And-Or graph. Moreover, the And-Or graphs
are always degenerated in the case of (lossy) EPN [11], hence we also apply
Algorithm 1 during that phase. Note that, although the set of successors of a
state of a lossy EPN can be large, �e-monotonic graphs and And-Or graphs
allow us to consider the maximal successors only.

Experiments. We have implemented the techniques described so far in a proto-
type capable of analyzing EPN. We have run the prototype on about 30 exam-
ples1 from the literature. Table 1 reports on selected results. The case studies re-
tained here are mainly abstractions of multi-threaded Java programs (from [14]).

When applied to these examples, the basic symbolic backward algorithm of [1]
seldom produces a result within the time limit of 1 hour of CPU time we have
fixed (column Pre). A heuristic presented in [5] uses place-invariants to guide
the search and improves the performance of the prototype (which has been fined
tuned during several years of research). Still, it might not terminate on some
examples (column Pre+Inv). On the other hand, we have implemented EEC
with a basic exploration of the abstractions (column EEC1). The performance
increase is already noticeable when compared to the basic backward approach.
Moreover, when we apply the efficient exploration presented in Section 4, our
prototype perfoms much better, on all the examples (column EEC2). Our ex-
periments prove the practical superiority of the forward analysis at work in EEC.

Other tools such as Fast and Lash can analyze the same examples by using a
forward procedure. Remark that these tools can handle a broader class of systems
than EEC. In practice, Fast does not always terminate on our examples2.

5.2 Lossy Channel Systems

Lossy channel systems (LCS) are systems made up of a finite number of automata
which communicate through lossy FIFO channels, by writing to or reading from
the channels when a transition is fired. This model is well-studied, see e.g. [3, 2].
In particular, the Simple Regular Expressions (sre), a symbolic representation

1 See http://www.ulb.ac.be/di/ssd/ggeeraer/eec
2 See http://www.lsv.ens-cachan.fr/fast/example.php.
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Table 1. results obtained on Intel Xeon 3Ghz with 4Gb of memory : cat.: cate-

gory of example (PNT = Petri nets with transfer arcs, PN = (unbounded) Petri net);

P: number of places; T: number of transitions; EEC1: basic EEC with complete explo-

ration of the graph; EEC2: EEC with efficient exploration of Section 4; Pre + Inv:

Backward approach with invariants; Pre: same without invariants. Times in second

Example EEC1 EEC2 Pre+Inv Pre

cat. name P T Safe Time Time Mem (Kb) Time Time

PNT Java 44 37 × 10.39 8.47 23,852 1.40 1276.56

PNT delegatebuffer 50 52
√ ↑↑ 180.78 116,608 ↑↑ ↑↑

PNT queuedbusyflag 80 104
√

341 28.87 21,388 ↑↑ ↑↑
PN pncsacover 31 36 × 800 7.54 13,704 40.83 ↑↑

for downward-closed sets of states of LCS, have been defined. Algorithms to
symbolically compute classical operations, such as the union, intersection or the
Post, have been devised. In the sequel, we will rely on this background.

Preliminaries. In order to keep the following discussion compact, we will con-
sider, without loss of generality, a LCS C made up of a single automaton (with
set of states Q) and a single FIFO channel (initially empty, with alphabet Σ). A
state of C is a pair 〈q, w〉, where q ∈ Q is the state of the automaton, and w ∈ Σ∗

is the content of the channel. Let SC be the set of states of C. A transition of C
is of the form 〈s1,Op, s2〉 where s1, s2 ∈ Q and Op is !a (add a to the channel),
or ?a (consume a on the channel), or nop (no modification of the channel), for
any a ∈ Σ. The semantics is the classical one, see [3]. The w.q.o. �w⊆ Σ∗ ×Σ∗

is defined as follows: w1 �w w2 iff w1 is a (non-necessarily contiguous) subword
of w2. A downward-closed regular expression (dc-re) is a regular expression that
is either (a+ ε) for some a ∈ Σ, or (a1 +a2 + . . .+an)∗ for {a1, a2, . . . , an} ⊆ Σ.
Given a dc-re d, α(d) (the alphabet of d) is the set of all the elements of Σ
that occur in d. A product (of dc-re) is either ε or an expression of the form
d1 · d2 · . . . · dn, where d1, d2,. . . , dn are dc-re. Given a product p, [[p]] ⊆ Σ∗

denotes the (�w-downward-closed) language generated by p, and |p|, denotes its
size, i.e., the number of dc-re that compose it (for w ∈ Σ∗, |w| is defined the
usual way). Let P (Σ) denote the set of all products built from Σ.

Domain of Limits. Let L(Σ,Q) denote the set of limits {〈q, p〉|q ∈ Q, p ∈
P (Σ)}∪{&}. For any 〈q, p〉 ∈ L(Σ,Q), [[〈q, p〉]] denotes the set of states 〈q, w〉 ∈
SC such that w ∈ [[p]]. We define the function γ : L(Σ,Q) → 2SC such that (i)
γ(&) = Q × Σ∗ and (ii) γ(〈q, p〉) = [[〈q, p〉]], for any 〈q, p〉 ∈ L(Σ,Q) \ {&}.We
define % ⊆ L(Σ,Q) × L(Σ,Q) as follows : c1%c2 if and only if γ(c1) ⊆ γ(c2).
When c1%c2 but c2 �%c1, we write c1�c2.

Let us now define the sets of concrete and limit elements we will consider at
each step. We define Ci = {〈q, w〉 | 〈q, w〉 ∈ SC , |w| ≤ i}, i.e. Ci is the set of
states where the channel contains at most i characters. Similarly, we define Li

as follows: Li = {〈q, p〉 ∈ L(Σ,Q) | |p| ≤ i} ∪ {&}, i.e. Li contains the limits
where a product of length at most i represents the channel (plus &).
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Efficient Algorithm. In the case of LCS, the And-Or graph one obtains is, in
general, not degenerated. Hence, the techniques presented in Section 4 can be
used along the ‘Expand’ phase only (the Cis are �w-downward-closed and the
WSTS induced by LCS are lossy). In the sequel, we try nonetheless to improve the
‘Enlarge’ phase by showing how to directly compute (i.e. without enumeration of
states) the set of (most precise) successors of any Or-node. Notice that following
the semantics of LCS, the Post operation can add at most one character to
the channel. Hence, we only need to be able to approximate precisely any c ∈
Li+1 ∪ Ci+1 by elements in Li ∪ Ci.

Over-Approximation of a Product. Given a product p �= ε and a natural number
i ≥ 1 such that |p| ≤ i + 1, let us show how to directly compute, the most
complete and most precise set of products that over-approximate p, and whose
size is at most i. For this purpose, we first define an auxiliary function L(p). Let
p = d1 · d2 · · · dn be a product.

L(p) =
⋃

1≤i≤n−1{d1 · · · di−1 · (c1 + . . . + cm)∗ · di+2 · · · dn|{c1, . . . , cm} =
α(di) ∪ α(di+1)}. We can now define Approx(p, i) for |p| ≤ i + 1 and i ≥ 1.
Approx(p, i) = {p} when |p| ≤ i, and Approx(p, i) = {q ∈ L(p) | �q′ ∈ L(p) :
q′%q} when |p| = i+ 1.

Proposition 6. Given a natural number i and a product of dc-re p such that
|p| ≤ i + 1, for all products of dc-re p′ such that (i) [[p]] ⊆ [[p′]]; (ii) |p′| ≤ i and
(iii) p′ �∈ Approx(p, i) : ∃p′′ ∈ Approx(p, i) : [[p′′]] ⊆ [[p′]].

Hence, Approx allows us to over-approximate any limit element of Li+1 by ele-
ments of Li. In order to handle elements of Ci+1, we extend the definition of Ap-
prox as follows. Let i be a natural number and w = a1 . . . an ∈ Σ∗ (with n ≤ i+1)
be a word, then Approx(w, i) = w when n ≤ i, and Approx(w, i) = Approx(pw, i)
with pw = (a1 + ε) · · · (an + ε) otherwise. Remark that w and pw both define the
same �w-downward-closed set, and Proposition 6 remains valid.

When the LCS has more than one channel, a state (limit) associates a word
(or a product of dc-re) to each channel. It that case, the best approximation can
be computed by taking the product of the best approximations for each channel.

Experiments. We have built a prototype to decide the coverability problem for
LCS. It implements the improvements of the ‘Expand’ and ‘Enlarge’ phases pre-
sented above. Another improvement in the construction of the And-Or graph
consists in computing only the states that are reachable from the initial state.

Table 2. Results obtained on Intel Xeon 3Ghz with 4Gb of memory : S and E:

number of states and edges of the graph ; C: number of channels; EEC: execution time

(in second) of an implantation of EEC

Case study S E C EEC Case study S E C EEC

ABP 48 192 2 0.18 BRP3 480 2,460 2 0.35

BRP1 480 2,460 2 0.19 BRP4 480 2,460 2 0.41

BRP2 480 2,460 2 0.19 BRP5 640 3,370 2 0.19
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Table 2 reports on the performance of the prototype when applied to various ex-
amples of the literature: the Alternating Bit Protocol (ABP), and the Bounded
Retransmission Protocol (BRP), on which we verify five different properties [3].
Table 2 shows very promising results with our simple prototype.

6 Conclusion

In this paper we have pursued a line of research initiated in [11] with the in-
troduction of the ‘Expand, Enlarge and Check’ algorithm. We have shown in
the present work that, for a peculiar subclass of WSTS, one can derive efficient
practical algorithms from this theoretical framework. We have presented an ef-
ficient method to decide the coverability problem on monotonic graphs. This
solution fixes a bug, for the finite case, in the minimal coverability tree algo-
rithm of [8]. It can always be applied to improve the ‘Expand’ phase. In the case
of extended Petri nets, it can also be used to improve the ‘Enlarge’ phase. In the
case of lossy channel systems, we have also shown how to improve the ‘Expand’
phase, by building the And-Or graph in an efficient way. We have implemented
these techniques in two prototypes, working in a forward fashion. Their excellent
behaviours clearly demonstrate the practical interest of EEC.

Acknowledgements. We are deeply grateful to Ahmed Bouajjani and Mihaela
Sighireanu, who have given us access to their C++ library to manipulate sre.
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1 Introduction

This paper describes the Invisible Invariant Verifier (IIV)—an automatic tool for the
generation of inductive invariants, based on the work in [4, 1, 2, 6]. The inputs to IIV are
a parameterized system and an invariance property p, and the output of IIV is “success”
if it finds an inductive invariant that strengthens p and “fail” otherwise. IIV can be run
from http://eeyore.cs.nyu.edu/servlets/iiv.ss.

Invisible Invariants. Uniform verification of parameterized systems is one of the most
challenging problems in verification. Given S(N) : P [1] ‖ · · · ‖ P [N ], a parameterized
system, and a property p, uniform verification attempts to verify that S(N) satisfies p
for every N > 1. When p is an invariance property, the proof rule INV of [3] can be
applied. In order to prove that assertion p is an invariant of program P , the rule requires
devising an auxiliary assertion ϕ that is inductive (i.e. is implied by the initial condition
and is preserved under every computation step) and that strengthens (implies) p. The
work in [4, 1] introduced the method of invisible invariants, that offers a method for
automatic generation of the auxiliary assertion ϕ for parameterized systems, as well as
an efficient algorithm for checking the validity of the premises of INV.

The generation of invisible invariants is based on the following idea: it is often the
case that an auxiliary assertion ϕ for a parameterized system S(N) is a boolean combi-
nation of assertions of the form ∀i1, . . . , im : [1..N ].q(�i). We construct an instance of
the parameterized system taking a fixed value N0 for the parameter N . For the finite-
state instantiation S(N0), we compute, using BDDs, the set of reachable states, denoted
by reach . Initially, we search for a universal assertion for m = 1, i.e., of the type
∀i.q(i). Fix some k ≤ N0, and let rk be the projection of reach on process P [k], ob-
tained by discarding references to variables that are local to all processes other than
P [k]. We take q(i) to be the generalization of rk obtained by replacing each reference
to a local variable P [k].x by a reference to P [i].x. The obtained q(i) is our initial can-
didate for the body of the inductive assertion ϕ : ∀i.q(i). The procedure can be easily
generalized to generate assertions for higher values of m.

Having obtained a candidate for ϕ, we still have to check its inductiveness and ver-
ify that it implies the invariance property p. As is established in [4, 1], our system enjoys

� This research was supported in part by NSF grant CCR-0205571 and ONR grant N00014-99-
1-0131.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 408–412, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

IIV



: An Invisible Invariant Verifier 409

a small-model property, indicating that for the assertions we generate, it suffices to val-
idate on small instantiations (whose size depend on the system and the candidate asser-
tion) in order to conclude validity on arbitrary instantiations. Thus, the user never needs
to see the auxiliary assertion ϕ. Generated by symbolic BDD-techniques, the represen-
tation of the auxiliary assertions is often unreadable and non-intuitive, and it usually
does not contribute to a better understanding of the program or its proof. Because the
user never sees it, we refer to this method as the “method of invisible invariants.”

The Systems to which IIV is Applicable. As our computational model, we take a
bounded-data discrete systems of [4, 1]. For a given N , we allow boolean and finite-
range scalars denoted by bool, integers in the range [1..N ], denoted by index, integers
in the range [0..N ], denoted by data, arrays of the type index '→ bool, and arrays of
the type index '→ data. Atomic formulae may compare two variables of the same type.
Thus, if y and y′ are same type, then y ≤ y′ is an atomic formula, and so is z[y] = x
for an array z : index '→ bool and x : bool. Formulae, used in the transition relation
and the initial condition, are obtained from the atomic formulae by closing them under
negation, disjunction, and existential quantifiers, for appropriately typed quantifiers.

System Architecture. The TLV (Temporal Logic Verifier) system ([5]) is a flexible en-
vironment for verification of finite state systems based on BDD-techniques. TLV reads
programs written in the SMV input language or in, translates them to OBDDs and then
enters an interactive mode where OBDDs can be manipulated. The interactive mode
includes a scripting language, TLV-BASIC, which also parses SMV expressions. IIV is
built on top of TLV. The main module of IIV is an invariant generator, written
in TLV-BASIC. Users interface with IIV by providing a description of a parametrized
system S(N) (definition of variables, initial condition, transition relation, etc.) and an
invariant property, both of which are written as SMV expressions. Users are also ex-
pected to give additional information that configures the invariant generator, such as the
size of instantiation of the system from which the inductive invariant is generated, max-
imal number of quantifiers of ∀-assertions to be generated, and the set of processes that
is not generic. IIV performs invisible verification in two phases: It generates a candidate
inductive invariant and, according to its structure, computes the size of the model that
has the small model property; In the second phase, IIV performs the necessary validity
check on an instantiation of the system computed in the first step.

Performance of IIV. Using IIV we
Protocol # of BDD N0 reach gen inv # of N1

nodes time size time size alt.
enter pme 256688 11 210.00s 3860 49.00s 3155 4 11
bdd pme 16160 7 33.69s 2510 0.46s 842 2 8
bakery 53921 5 0.09s 860 0.53s 860∗ 1 3
token ring 1229 7 0.03s 72 0.02s 72∗ 1 3
Szymanski 3463 7 0.07s 119 0.01s 100 1 4

Table 1. Some run-time results of IIV

have established safety properties
of a number of parametrized sys-
tems with various types of vari-
ables. Other than safety properties
such as mutual exclusion, we have
deduced properties such as bounded

overtaking, as well as certain liveness properties that are reducible to safety proper-
ties with auxiliary variables. In our examples the invariants generated by the tool were
boolean combinations of up to four universal assertions (the next section elaborates on
boolean combinations).

IIV
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Our experience has shown that the process of computing a candidate invariant from
a BDD containing reach is rather efficient, compared with the process of computing
reach . For instance, in a system with a state space of 255, it took 210 seconds to compute
reach and 49 seconds to generate a nine-quantifier invariant from it. It is usually the case
that a small instantiation (less than 8) suffices for invariant generation (step 1), while
validity checking (step 2) requires much larger instantiations. Since checking validity
is considerably more efficient than computing reach , the validity checking is rarely (if
ever) the cause of bad performance. Table 1 describes some of our results. The third
column,N0, is the size of the instantiation used for invariant generation. The fourth and
fifth column describes the time it took to compute reach and the number of BDD-nodes
in it. The next two columns describe how long it took to generate an inductive invariant
and its size; a ∗ indicates that the invariant computed is exactly reach . The “alt.” column
describes the number of alternations between universally and existentially quantified
parts of the assertion (this is discussed in the next section). Finally, N1 is the size in the
instantiation used for validity checking.

2 Generating Invariants

Generating ∀-assertions. We fix a system S and a safety property p. Given a BDD f
representing a set of concrete states on a finite-state instantiation S(N0) and an integer
m, module proj gen computes a formula α of the form α : ∀j1, . . . , jm.q(�j) that is
an approximation of f . Under appropriate symmetry assumptions about f , α will often
be an over-approximation of f . It returns a BDD that is the instantiation of α to S(N0),
i.e.,
∧

j1,...,jm:[1..N0]
q(�j). Intuitively, f is projected onto some selected m processes,

and α is computed as the generalization of those m processes to any m processes.
We thus choose m pairwise disjoint process indices r1, . . . , rm, and compute α so that
“whatever is true in f for r1, . . . , rm will be true in a for arbitrary j1, . . . , jm”.

For simplicity, we assume m =

Analysis Fact(s) Conjunct(s) Contributed to βr,j

v : bool v′ = v
a : index �→ bool a′[j] = a[r ]
v1, v2 : (v′

1 < v′
2 ⇐⇒ v1 < v2),

index or data (v′
1 = v′

2 ⇐⇒ v1 = v2)
a, b : index �→ data (a[j]′ < b′[j] ⇐⇒ a[r ] < b[r ]),

(a′[j] = b′[j] ⇐⇒ a[r ] = b[r ])
v1 : data (v′

1 < a′[j] ⇐⇒ v1 < a[r ]),
a : index �→ data (v′

1 = a′[j] ⇐⇒ v1 = a[r ])
v : index (v′ = r ⇐⇒ v = j),

Table 2. Rules for construction of βr,j

1. Fix a process index r . The pro-
jection/generalization

∧
j:[1..N0]

q(j) is
computed as follows: For each j ∈
[1..N0] an assertion βr ,j is constructed
over V ∪ V ′ that describes, in the
“primed part”, the projection onto r
generalized to j. Then, q(j) is com-
puted as the unprimed version of
∃V.f ∧ βr ,j . The expression βr ,j is a

conjunction constructed by analyzing, for each program variable, its type in f . Indi-
vidual conjuncts are contributed by the rules shown in Fig. 2. The construction relies
on the fact that equality and inequality are the only operations allowed between index
and data terms. Thus the rules in Fig. 2 only preserve the ordering between these term
types. The first two rules preserve values of non-parameterized variables, the next six
rules preserve ordering among index and data variables. The last rule preserves order-
ing between every index variable v and r .
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For systems with special processes whose behavior differs from the rest, we must
generalize from a generic process r to the processes that are identical to it, and preserve
states of special processes. In cases that the program or property are sensitive to the
ordering between process indices, the last rule should be extended to preserve also
inequalities of the form v < j. In this case, P [1] and P [N ] should be treated as special
processes. In cases of ring architectures and m ≥ 3, it may be necessary to preserve
cyclic, rather than linear, ordering. Thus (r1, r2, r3) = (1, 2, 3) should be mapped on
(j1, j2, j3) = (2, 4, 6) as well as on (j1, j2, j3) = (4, 6, 2).

Determining m. Given a set of states f and a constant M , module gen forall
computes an over-approximation of f of the form αm : ∀j1, . . . , jm.q(j1, . . . , jm), for
some m such that either m < M and αm+1 is equivalent to αm, or m = M . This
is justified by the observation that for higher values of m, αm approximates f more
precisely. If M is too close to N0, αM may fail to generalize for N > N0. We choose
M = N0 − 2 and M = (N0 − 1)/2 for systems with, and without, index variables,
respectively. Experience has shown that gen forall rarely returns assertions with
m > 3.

Generating Boolean combinations of ∀-assertions. Often ∀-assertions are not suf-
ficient for inductiveness and strengthening, requiring fine-tuning. This is done by
gen inv, shown in Fig. 1, which computes candidate invariants as boolean combi-
nations of ∀-assertions. This module is initially called with the candidate ϕ : (ψ0 ∧ p),
where ψ0 is the assertion gen forall(reach). It successively refines ϕ until either an
inductive version is found, or a fix-point is reached, indicating failure.

An iteration of gen inv alternates be-
gen inv(i, ϕ)
1 :

2 :
3 :
4 :

5 :
6 :
7 :

8 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if ϕ is inductive return ϕ
else

ψ2i−1 := gen forall(ϕ ∧ EF¬ϕ)
ϕ := ϕ ∧ ¬ψ2i−1
if ϕ is inductive return ϕ
else

ψ2i := gen forall(reach ∧ ¬ϕ)
if ψ2i−1 = ψ2i

conclude failure
else

return gen inv(i + 1, ϕ ∨ ψ2i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Module gen inv

tween candidate invariants that are over– and
under-approximations of reach . To see this,
recall that for any assertion, gen forall
serves to over-approximate it. Thus, lines
(2)–(3) remove non-inductive states from ϕ,
possibly including some reachable states.
Lines (5)–(8) then “return” to ϕ the reach-
able states that were removed from it.

2.1 Checking Validity

For an assertion α, let Aα and Eα be the number of universal and existential quantified
variables in α, respectively. Let ϕ be a candidate invariant for a system with initial con-
dition Θ and transition relation ρ. According to the small model theorem, we compute
N1 = max(EΘ +Aϕ, Eρ +Aϕ +Eϕ, Aϕ +Ap) such that establishing the validity of
inductive premises on the instantiation of size N1 implies the validity on instantiations
of arbitrary size. Having computed N1, we instantiate the assertion ϕ on S(N1) (which
is easily constructed via proj gen), and use a model-checker to verify its validity.

IIV



412 I. Balaban et al.

References

1. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automati-
cally computed inductive assertions. In CAV’01, pages 221–234. LNCS 2102, 2001.

2. Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In Proc. of the
5th conference on Verification, Model Checking, and Abstract Interpretation, volume 2937,
pages 223–238, Venice, Italy, January 2004.

3. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. New York, 1995.
4. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.

In TACAS’01, pages 82–97. LNCS 2031, 2001.
5. E. Shahar. The TLV Manual, 2000. http://www.cs.nyu.edu/acsys/tlv.
6. L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized systems.

Computer Languages, Systems, and Structures, 30(3–4):139–169, 2004.



Action Language Verifier, Extended�

Tuba Yavuz-Kahveci1, Constantinos Bartzis2, and Tevfik Bultan3

1 University of Florida
2 Carnegie Mellon University

3 UC, Santa Barbara

1 Introduction

Action Language Verifier (ALV) is an infinite state model checker which specializes
on systems specified with linear arithmetic constraints on integer variables. An Action
Language specification consists of integer, boolean and enumerated variables, param-
eterized integer constants and a set of modules and actions which are composed us-
ing synchronous and asynchronous composition operators [3, 7]. ALV uses symbolic
model checking techniques to verify or falsify CTL properties of the input specifica-
tions. Since Action Language allows specifications with unbounded integer variables,
fixpoint computations are not guaranteed to converge. ALV uses conservative approxi-
mation techniques, reachability and acceleration heuristics to achieve convergence.

Originally, ALV was developed using a Polyhedral representation for linear arith-
metic constraints [4]. In the last couple of years we extended ALV by adding an au-
tomata representation for linear arithmetic constraints [2]. ALV also uses BDDs to en-
code boolean and enumerated variables. These symbolic representations can be used in
different combinations. For example, polyhedral and automata representations can be
combined with BDDs using a disjunctive representation. ALV also supports efficient
representation of bounded arithmetic constraints using BDDs [2]. Other extensions to
ALV include several techniques to improve the efficiency of fixpoint computations such
as marking heuristic and dependency analysis, and automated counting abstraction for
verification of arbitrary number of finite state processes [7].

2 Symbolic Representations

ALV uses the Composite Symbolic Library [8] as its symbolic manipulation engine.
Composite Symbolic Library provides an abstract interface which is inherited by every
symbolic representation that is integrated to the library. ALV encodes the transition
relation and sets of states using a disjunctive, composite representation, which uses the
same interface and handles operations on multiple symbolic representations.

Polyhedral vs. Automata Representation: Current version of the Composite Sym-
bolic Library uses two different symbolic representations for integer variables: 1) Poly-
hedral representation: In this approach the valuations of integer variables are repre-
sented in a disjunctive form where each disjunct corresponds to a convex polyhedron
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and each polyhedron corresponds to a conjunction of linear arithmetic constraints. This
approach is extended to full Presburger arithmetic by including divisibility constraints
(which is represented as an equality constraint with an existentially quantified vari-
able). 2) Automata representation: In this approach a Presburger arithmetic formula
on v integer variables is represented by a v-track automaton that accepts a string if it
corresponds to a v-dimensional integer vector (in binary representation) that satisfies
the formula. Both of these symbolic representations are integrated to the Composite
Symbolic Library by implementing the intersection, union, complement, backward and
forward image operations, and subsumption, emptiness and equivalence tests, which
are required by the abstract symbolic interface. We implemented the polyhedral rep-
resentation by writing a wrapper around the Omega Library [1]. We implemented the
automata representation using the automata package of the MONA tool [6] and based
on the algorithms discussed in [2].

BDD Representation for Bounded Integers: We also integrated algorithms for con-
structing efficient BDDs for linear arithmetic formulas to ALV [2]. The size of the BDD
for a linear arithmetic formula is linear in the number of variables and the number of
bits used to encode each variable, but can be exponential in the number of and and
or operators [2]. This bounded representation can be used in three scenarios: 1) all
the integer variables in a specification can be bounded, 2) infinite state representations
discussed above may exhaust the available resources during verification, or 3) infinite
state fixpoint computations may not converge. Note that, for cases 2 and 3, verifica-
tion using the bounded representation does not guarantee that the property holds for the
unbounded case, i.e., the bounded representation is used for finding counter-examples.

Polymorphic Verification: Due to the object oriented design of the ALV, implemen-
tation of the model checking algorithms are polymorphic. This enables the users to
choose different encodings without recompiling the tool. For example, one can first try
the polyhedral encoding and if the verification takes too long or the memory consump-
tion is too much the same specification can be checked using the automata encoding.
The user specifies the encoding to be used as a command line argument to the ALV.
When there are no integer variables in the specification or if the bounded BDD repre-
sentation for integers is used, ALV automatically runs as a BDD based model checker.

3 Fixpoint Computations

ALV is a symbolic model checker for CTL. It uses the least and greatest fixpoint char-
acterizations of CTL operators to compute the truth set of a given temporal property. It
uses iterative fixpoint computations starting from the fixpoint for the innermost tempo-
ral operator in the formula. At the end, it checks if all the initial states are included in the
truth set. ALV supports both the {EX,EG,EU} basis and the {EX,EU,AU} basis for
CTL. ALV uses various heuristics to improve the performance of the fixpoint computa-
tions. We discuss some of them below. The reader is referred to [7] for the experimental
analysis of these heuristics.

Marking Heuristic: Since composite representation is disjunctive, during the least fix-
point computations the result of the kth iteration includes the disjuncts from the k− 1st
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iteration. A naive approach that applies the image computation to the result of the kth
iteration to obtain the result of the k + 1st iteration performs redundant computations,
i.e., it recomputes the image for the disjuncts coming from the result of the k − 1th
iteration. We alleviate this problem by marking the disjuncts coming from the k − 1st
iteration when we compute the result of the kth iteration [7]. Hence, at the k + 1st it-
eration, we only compute the images of the disjuncts that are not marked, i.e., disjuncts
that were added in the kth iteration. Markings are preserved during all the operations
that manipulate the disjuncts and they are also useful during subsumption check and
simplification. When we compare the result of the current iteration to the previous one,
we only check if the unmarked disjuncts are subsumed by the previous iteration. Dur-
ing the simplification of the composite representation (which reduces the number of
disjuncts) we try to merge two disjuncts only if one of them is unmarked.

Dependency Analysis: Typically, in software specifications, the transition relation cor-
responds to a disjunction of a set of atomic actions. Since the image computation dis-
tributes over disjunctions, during fixpoint computation one can compute the image of
each action separately. It is common to have pairs of actions a1 and a2 such that, when
we take the backward-image of a2 with respect to true and then take the backward-
image of a1 with respect to the result, we get false. I.e., there are no states s and s′ such
that s′ is reachable from s by execution of a1 followed by execution of a2. This implies
that, during the kth iteration of a backward (forward) fixpoint computation, when we
take the backward-image (forward-image) of a1 (a2) with respect to the result of the
backward-image (forward-image) of a2 (a1) from the k − 1st iteration, the result will
be false. We use a dependency analysis to avoid such redundant image computations
[7]. First, before we start the fixpoint computation, we identify the dependencies among
the actions using the transition relation. Then, during the fixpoint computation, we tag
the results of the image computations with the labels of the actions that produce them,
and avoid the redundant image computations using the dependency information.

Approximations, Reachability, and Accelerations: For the infinite state systems that
can be specified in Action Language, model checking is undecidable. Action Language
Verifier uses several heuristics to achieve convergence: 1) Truncated fixpoint compu-
tations to compute lower bounds for least fixpoints and upper bounds for greatest fix-
points, 2) Widening heuristics (both for polyhedra and automata representations) to
compute upper bounds for least fixpoints (and their duals to compute lower bounds
for greatest fixpoints), 3) Approximate reachability analysis using a forward fixpoint
computation and widening heuristics, 4) Accelerations based on loop-closures which
extract disjuncts from the transition relation that preserve the boolean and enumerated
variables but modify the integer variables, and then compute approximations of the
transitive closures of the integer part.

4 Counting Abstraction

We integrated the counting abstraction technique [5] to ALV in order to verify prop-
erties of parameterized systems with arbitrary number of finite state modules. When a
module is marked to be parameterized, ALV generates an abstract transition system in
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which the local states of the parameterized module are abstracted away (by removing
all the local variables) but the number of instances in each local state is counted by
introducing an auxiliary integer variable for each local state. An additional parameter-
ized constant is introduced to denote the number of instances of the module. Counting
abstraction preserves the CTL properties that do not involve the local states of the ab-
stracted processes. When we verify properties of a system using counting abstraction
we know that the result will hold for any number of instances of the parameterized mod-
ule and if we generate a counter-example it corresponds to a concrete counter-example.
Note that counting abstraction technique works only for modules with finite number of
local states.

5 An Example

Here, we will briefly describe the verification of the concurrency control component
of an airport ground traffic control simulation program (this and other examples and
the ALV tool are available at http://www.cs.ucsb.edu/˜bultan/composite/).
The simulation program uses an airport ground network model which consists of two
runways (16R, 16L) and 11 taxiways. The Action Language specification has one main
module and two submodules representing departing and arriving airplanes. We use in-
teger variables to denote the number of airplanes in each runway and taxiway. A local
enumerated variable for each submodule denotes the locations of the airplanes. A set of
actions for each submodule specifies how the airplanes move between the runways and
taxiways based on the airport topology. The specification has 13 integer variables and
2 and 4 boolean variables for each instantiation of the departing and arriving airplane
modules, respectively (these boolean variables are generated by the ALV compiler to
encode the enumerated variables).

The property “At any time there is at most one airplane in either runway,” is ex-
pressed as AG(num16R<=1 and num16L<=1). ALV verified this property on an in-
stance with 8 departing and 8 arriving airplanes (13 integer variables, 48 boolean vari-
ables) in 1.20 seconds using 46.5 MBytes of memory (on a 2.8 GHertz Pentium 4
processor with 2 GBytes of main memory). We also verified this property on the pa-
rameterized specification for arbitrary number of arriving and departing airplanes using
automated counting abstraction (which generates 20 additional integer variables and 2
parameterized integer constants). ALV verified the property above on the parameterized
instance in 9.38 seconds using 6.7 MBytes of memory using the option to compute an
approximation of the reachable states (using widening) and the marking heuristic.
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Abstract. In this paper, we present the features of Romeo, a Time
Petri Net (TPN) analyzer. The tool Romeo allows state space com-
putation of TPN and on-the-fly model-checking of reachability prop-
erties. It performs translations from TPNs to Timed Automata (TAs)
that preserve the behavioural semantics (timed bisimilarity) of the
TPNs. Besides, our tool also deals with an extension of Time Petri
Nets (Scheduling-TPNs) for which the valuations of transitions may be
stopped and resumed, thus allowing the modeling preemption.

Keywords: Time Petri nets, model-checking, state-space, DBM, poly-
hedron, scheduling, stopwatch.

1 Introduction

Time Petri Nets (TPNs) are a classical formalism, with Timed Automata (TAs),
to design reactive systems. TPNs extend classical Petri nets with temporal in-
tervals associated with transitions. They benefit from an easy representation of
real-time systems features (synchronization, parallelism . . . ). State reachability
and boundedness is proven to be undecidable for arbitrary TPNs. However, state
reachability is decidable for bounded TPNs, which is sufficient for virtually all
practical purposes.

In real-time applications, it is often necessary to memorize the progress status
of an action when this one is suspended then resumed. In this class of models,
some extensions of Time Petri Nets have been proposed to express the preemp-
tive scheduling of tasks. Roux and Déplanche [1] propose an extension for Time
Petri Nets (Scheduling-TPNs) that consists of mapping into the Petri net model
the way the different schedulers of the system activate or suspend the tasks.
For a fixed priority scheduling policy, Scheduling-TPNs introduce two new at-
tributes associated to each place that respectively represent allocation (processor
or resource) and priority (of the modeled task). Bucci et al. [2] propose a similar
model: Preemptive Time Petri Net (Preemptive-TPN) by mapping the schedul-
ing policies onto transitions.
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2 The Tool Romeo

The purposes of the tool Romeo 1 (available for Linux, MacOSX and Windows
platforms) are the analysis and simulation of reactive systems modelled by TPNs
or Scheduling-TPNs. It consists of: (1) a graphical user interface (GUI) (written
in TCL/Tk) to edit and design TPNs, and (2) computation modules (Gpn and
Mercutio, written in C++).

2.1 System Design

In a system modelling activity, the Romeo GUI allows to model reactive sys-
tems or preemptive reactive systems using TPNs or Scheduling-TPNs. Both
benefit from an easy graphical representation and from an easy representation
of common real-time features (parallelism, synchronization, resources manage-
ment, watch-dogs. . . ).

As a design helper, Romeo implements on-line simulation (TPNs,
Scheduling-TPNs) and reachability model-checking (TPNs). It allows the early
detection of some modeling issues during the conception stage.

2.2 On- ine Model-Checking

In addition to on-line simulation that makes scenarii testing possible, Romeo
provides an on-line model-checker for reachability. Properties over markings can
be expressed and tested. It is then possible to test the reachability of a marking
such that it verifies M(P1) = 1 ∨ M(P3) ≥ 3 where M(Pi) is the number of
tokens in the place Pi of the net. The tool returns a trace leading to such a
marking if reachable.

Such a model-checker allows to verify more complex properties (quantitative
properties for instance) expressed by observers (which translate a quantitative
property into a reachability test), which is the main method used to study the
behavior of a TPN .

2.3 Off- ine Model-Checking

The modeling of a property using observers requires a good knowledge in TPNs
and, as far as we know, no automatic observers generation is available to help a
system designer.

Romeo implements different theoretical methods to translate the model ana-
lyzed into Automata, Timed Automata (TAs) or Stopwatch Automata (SWAs).
The advantages of such translations is that several efficient model-checking tools
are available for these models (Mec, Aldebaran, Uppaal, Kronos, Hytech).
These translations also extend the class of properties that can be model-checked
with observers to temporal logic (LTL, CTL) and quantitative temporal logic
(TCTL).

1 Download at: http://www.irccyn.ec-nantes.fr/irccyn/d/fr/equipes/TempsReel/logs

l
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To our knowledge, the translations of TPNs to TAs implemented in Romeo
are currently the only existing methods allowing the verification of quantitative
time properties (quantitative liveness and TCTL) on TPNs.

Structural Translation. Romeo implements a structural transformation of a
TPN into a timed-bisimilar synchronized product of TAs [3] that can be model-
checked with the tool Uppaal. The translation is optimized to take at its advan-
tage the management of inactive clocks in Uppaal. It follows that the algorithms
implemented in this tool are used efficiently.

State Space Computation Based Translation. A first translation consists
in the computation of the state class graphs (SCG) that provide finite repre-
sentations for the behavior of bounded nets preserving their LTL properties [4].
For bounded TPNs the algorithm is based on DBM (Difference Bounds Matrix)
data structure whereas, for Scheduling-TPNs, the semi-algorithm is based on
polyhedra (using the New Polka library).

Two different methods are implemented for TPNs to generate a TA that pre-
serves its semantics (in the sense of timed bisimilarity): the first one is derived
from TA framework [5], the other one from the classical state class graph ap-
proach [6]. In the latter method, we reduce the number of clocks needed during
the translation, so that the subsequent verification on the resulting TA is more
efficient. In both methods, the TAs are generated in Uppaal or Kronos input
format.

Concerning Scheduling-TPNs, the method introduced in [7] is implemented.
It allows a fast translation into a Stopwatch Automaton (SWA) using an over-
approximating semi-algorithm (DBM-based). Despite the overapproximation, it
has been proven that the SWA is timed-bisimilar to the original Scheduling-
TPN . The SWA is produced in the Hytech input format and is computed with
a low number of stopwatches. Since the number of stopwatches is critical for the
complexity of the verification, the method increases the efficiency of the timed
analysis of the system; moreover, in some cases, it may just make the analysis
possible while it would be a dead-end to model the system directly with Hytech.

2.4 Comparisons

The following tables are an overview of the Romeo features compared to two
others main tools used for the analysis of TPNs and TPNs extension dealing
with preemption. They compare the capabilities of the tools in terms of the
properties classes that can be handled.

Tina [8] is a tool for the analysis of TPNs mainly using state class graphs
techniques. Oris [9] is a tool that analyzes Preemptive-TPNs which are equiv-
alent to Scheduling-TPNs.

Our major contribution is to bring to TPNs frameworks (Scheduling-TPNs)
methods to efficiently model-check TCTL properties.
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Table 1. Romeo capabilities on TPNs

Quantitative
Reachability LTL CTL Liveness a TCTL

Tina Marking Graph SCGb Atomic SCGb – –
+ MCc + MCc

Romeo On-the-fly checking SCG + MCc Translation to Timed Automata

or Marking Graph or ZFGe + MCc + Uppaal d or Kronos

a Includes response properties like ∀�(ϕ =⇒ ∀♦Ψ) where ϕ or Ψ can contain clock
constraints.

b SCG = Computation of the State Class Graph.
c MC = requires the use of a Model-Checker on the SCG or the ZFG.
d Subset of TCTL.
e ZFG = Computation of the Zone-based Forward Graph.

Table 2. Romeo capabilities on Scheduling-TPNs

State-space computation Timed analysis

Overapproximation Exact abstraction RTTL TCTL

Oris DBM-SCGa

DBM – + MCb –

Romeo Efficient translation to timed bisimilar
DBM SCGc Stopwatch automata + Hytech

a Computation of a DBM over-approximation of the State Class Graph.
b Oris supports exact timeliness analysis of traces (with respect to a linear-time variant

of Real-Time Temporal Logic (RTTL).
c As for TPNs, the SCG preserves LTL properties.

3 Case Study

3.1 Description

In this section, we work on a partial model for the control of an oscillation
compensator (hydraulic shock absorber) and a differential blocking on a tractor
with a sowing trailer. The partial system consists of processors running a real-
time operating system, linked together with a CAN bus.

We used the translation of a Scheduling-TPN into a SWA whose state space
is computed with Hytech.

We compared the efficiency of our method with a generic direct modelling
with Hytech on this case study. We also tested several simpler and more com-
plex related systems obtained by removing or adding tasks and/or processors.
Table 3 gives the obtained results.

Columns 2 and 3 give the number of processors and tasks of the system.
Columns 4, 5 and 6 describe the direct modelling in Hytech results: the number

Romeo
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of SWA used to model the system, the number of stopwatches and the time taken
by Hytech to compute the state space. For this generic modelling, we basically
used the product of one SWA per task and one SWA for each scheduler. Columns
7 to 10 give the results for our method: the number of locations/transitions,
stopwatches of the SWA we generated, and the time taken for its generation.
Finally, the last column gives the time used by Hytech to compute the state
space of the SWA generated by our method. Times are given in seconds and NA
means that the Hytech computation could not yield a result on the machine
used.

Table 3. Experimental results

Description Direct SWA Modelling Our methoda

Ex. Proc. Tasks SWA’s Sw. tHytech Loc. Trans. Sw. tRomeo tHytech

1 2 4 8 7 77.8 20 29 3 ≤0.1 0.2

2 3 6 11 9 590.3 40 58 4 ≤0.1 0.5

3 3 7 12 10 NA 52 84 4 ≤0.1 0.7

4 3+CAN 7 13 11 NA 297 575 7 0.3 5.3

5 4+CAN 9 15 13 NA 761 1 677 8 0.9 29.8

6 5+CAN 11 17 15 NA 1 141 2 626 9 6 60.1

7 6+CAN 14 . . NA 4 587 12 777 10 59.7 438.8

8 7+CAN 18 . . NA 8 817 25 874 12 1 146.7 NA

a Scheduling-TPN
Romeo−→ SWA

Hytech−→ state-space

These computations have been performed on a PowerPC G4 1.25GHz with
500MB of RAM.

We observe that the computation on a direct modelling as a product of SWA
is quickly untractable (example 3). However, with our method, we are able to
deal with systems of much greater size.
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TRANSYT: A Tool for the Verification of
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Enric Pastor, Marco A. Peña, and Marc Solé
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08860 Castelldefels (Barcelona), Spain

1 Introduction

transyt is a BDD-based tool specifically designed for the verification of timed
and untimed asynchronous concurrent systems. transyt system architecture is
designed to be modular, open and flexible, such that additional capabilities can
be easily integrated. A state of the art BDD package [1] is integrated into the
system, and a middleware extension [2] provides support complex BDD manip-
ulation strategies.

tsif (Transition System Interchange Format) is the main input language of
transyt. tsif is a low-level language for describing asynchronous event-based
systems, although synchronous systems can be also covered. Many formalisms
can be mapped onto it: digital circuits, Petri nets, etc. transyt integrates spe-
cialized algorithms for untimed reachability analysis based on disjunctive Transi-
tion Relation (TR) partitioning, and relative-time verification for timed systems.
Invariant verification for both timed and untimed systems is fully supported,
while CTL model checking is currently supported for untimed systems. tran-
syt provides orders of magnitude improvement over general untimed verification
tools like NuSMV [3] and VIS [4], and expands the horizon of timed verification
to middle-size real examples.

2 System Functionalities

We provide here a high-level overview of the the most relevant features of tran-
syt. Details of the architecture and algorithms will be provided in Section 3.

User Interaction. transyt works with an interactive shell, processing systems
according to command-line options. The user can activate all phases of the ver-
ification process (file parsing, system construction, reachability analysis, model
checking, simulation, counter-example generation, etc.) with full control of all
available options. On top of the interactive shell, a limited but under expansion
GUI front-end offers access to all interactive commands, as well as an improved
visualization of the systems and the properties under analysis.

� Ministry of Science and Technology TIN 2004-07739-C02-01 and grant AP2001-2819.
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System Description. transyt can process hierarchical systems formalized
(using the tsif format) as a set of variables to encode the state and events
to describe the “actions” that the system can execute. Systems can be simul-
taneously coordinated by variable interchange or event synchronization. Other
formalisms can be encoded and easily mapped onto tsif. Currently we offer a
front-end for BLIF [4] and Petri nets [5], and we are working toward a new SMV
front-end.

Reachability Analysis. Implements specialized reachability schemes based on
disjunctive TRs and uses a mixed BFS/DFS traversal that schedules the ap-
plication of the TR parts in order to maximize the state generation ratio and
minimize BDD peaks. These algorithms have demonstrated orders of magnitude
improvement over existing BFS / conjunctive TR traversal schemes (e.g. [3])
when applied to asynchronous concurrent systems. State-of-the art conjunctive
TR traversal schemes are also available to efficiently manipulate mixed syn-
chronous/asynchronous systems.

Model Checking. transyt implements fair CTL model checking as defined in
[6], and also offers specialized on-the-fly invariant verification. The tool can be
configured to detect a minimum number of failures in a single traversal. Failing
states are stored to allow selective counter-example generation for all of them.

Semi-formal Verification. In addition to classical reachability analysis, tran-
syt offers an automated two-phase simulation-verification hybrid scheme. Sim-
ulation follows a branching scheme that generates traces as divergent as possible
(interleaved traces will be rejected). Traces are stored for further analysis. The
second phase will select a number of simulation traces as seed of a guided-
traversal algorithm. Guided-traversal exploits the behavioral information in the
traces to efficiently identify additional states. On-the-fly invariant verification
can be carried out during both phases.

Relative-time Verification. transyt offers invariant verification of timed
systems based on the relative-timing paradigm. tsif events can be annotated
with min-max delays. If it exists, the tool provides a timed counter-example.
Otherwise, transyt provides a set of graphic structures that inform the user
about how the execution of events is ordered due to timing. Note that not all
existing orderings are provided, but just those that are relevant to prove the
invariants under verification.

3 Tool Architecture and Algorithms

This section describes the main functional modules in transyt (see Figure 1),
the peculiarities of the algorithms implemented in them and their interrelations.

The System Instantiation and Boolean Model Construction provides support
for creating the internal representation of the tsif format. The system is mapped
onto a Boolean model after an encoding process, in which TRs, properties, etc.
are constructed. Once TRs are built, their causal interrelations can be analyzed
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Fig. 1. transyt modular architecture

in order to determine if the application of a TR part may trigger the execution
of other TRs. The granularity of the TR partition is decided here depending on
TR size, number of parts and detected causality. Different partition schemes can
be used according to these parameters.

The BDD-based verification module is the core of transyt. It implements
highly efficient traversal schemes based on mixed BFS/DFS algorithms that
schedule the application of the disjunctive TR parts. New states generated by
one part are immediately reused as source for following parts. If causality is taken
into account, this simple scheme provides orders-of-magnitude improvement over
BFS traversal. Based on BFS/DFS traversal, on-the-fly invariant verification and
fair CTL model checking can be performed on the selected design. Once failures
are detected, counter-example traces can be generated and stored —associated
to each failing property— for both further manipulation or visualization.

An alternative invariant verification approach, combining simulation and
guided-traversal, is provided. Simulation can be executed following a branch-
ing strategy that resembles partial-order verification. At each visited state the
causality between enabled events is analyzed. In case of detecting concurrent
events, only one of the execution traces is followed. In case of conflict (i.e. a
choice in the execution path) both execution traces are explored. Exploration
continues until no additional states are available or until a certain number of fail-
ures have been identified. Causality information can be extracted from traces.
Given a trace, its associated causality can be extracted and directly applied to
a guided-traversal process. Guided-traversal executes a BFS/DFS reachability
analysis applying events in the best order as indicated by causality.

transyt extends symbolic invariant verification to timed systems. The use of
relative timing [7] eliminates the need to compute the exact timed state space.
Instead, the timed behavior of events is captured by means of partial orders
that represent relative temporal relations. Timed systems provide delays for all
the events in the system; however, many of the constraints imposed by such
delays are not actually required. transyt only considers timing information
in an on-demand basis, as long as it is required to prove a given property.
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Moreover, the timing analysis is performed over the subset of events involved in
such proof by any external timing analysis algorithm. As a result, the untimed
state space of the system is refined incrementally. The tool not only proves
or disproves the correctness of the system with respect to a set of invariants,
but also provides a set of sufficient relative-time relations that guarantee such
correctness or demonstrate a counterexample.

4 Results and Future Directions

transyt is a well-structured platform for the verification of asynchronous con-
current systems. The tsif front-end provides a flexible entry point for most
specification languages relevant to the area. Additional functionalities and al-
gorithms for each phase of the verification flow can be easily integrated. The
performance of the tool is satisfactory due to the BDD package and its specific
algorithms. Additional information about transyt is available at

http://research.ac.upc.es/VLSI/transyt/transyt.html.

transyt has been successfully used to analyze a number systems, both in the
timed and untimed domain. Extensive comparisons have been carried out with
the state generation engines in NuSMV [3] and VIS [4]. In both cases, orders
of magnitude improvements have been obtained [8]. Complex timed systems
have been also analyzed using transyt. In particular, several interface FIFO
implementations (IPCMOS by S. Schuster and STARI by M.R. Greenstreet)
connecting different clock domains have been successfully verified.

Currently, several new functionalities are under development. A mixed con-
junctive/disjunctive TR construction and scheduling scheme is being imple-
mented for complex Globally Asynchronous Locally Synchronous (GALS) sys-
tems. The CTL verification algorithm is being upgraded to exploit the same
causality information used during the reachability process. A restricted version of
timed-CTL is being developed to be integrated with the relative-time verification
engine. On the user’s side, better feedback visualization is being implemented
through more powerful visual libraries.
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Abstract. We present Ymer, a tool for verifying probabilistic transient
properties of stochastic discrete event systems. Ymer implements both
statistical and numerical model checking techniques. We focus on two
features of Ymer: distributed acceptance sampling and statistical model
checking of nested probabilistic statements.

1 Introduction

Ymer is a tool for verifying probabilistic transient properties of stochastic dis-
crete event systems. Properties are expressed using the logics PCTL [2] and
CSL [1]. For example, the CSL property ¬P≥ 0.01[& U [0,15.07] faulty=n] asserts
that the probability of n servers becoming faulty within 15.07 seconds is less than
0.01. In general, Φ U [τ1,τ2] Ψ is a path formula and is evaluated over execution
paths for a stochastic system. The formula P≥ θ[ϕ], where ϕ is a path formula,
holds if and only if the probability measure of the set of paths that satisfy ϕ is
at least θ. To solve CSL model checking problems, one can attempt to compute
the probability measure of a set of paths using numerical techniques, but this
is infeasible for systems with complex dynamics (e.g. generalized semi-Markov
processes) or large state spaces. Existing CSL model checkers—ETMCC [3] and
PRISM [5]—are limited to finite-state Markov chains.

To handle the generality of stochastic discrete event systems, Ymer imple-
ments the statistical model checking techniques, based on discrete event simula-
tion and acceptance sampling, for CSL model checking developed by Younes and
Simmons [12] (see also [10–Chap. 5]). To verify a formula P≥ θ[ϕ], Ymer uses dis-
crete event simulation to generate sample execution paths and verifies the path
formula ϕ over each execution path. The verification result over a sample ex-
ecution path is the outcome of a chance experiment (Bernoulli trial), which is
used as an observation for an acceptance sampling procedure. Ymer implements
both sampling with a fixed number of observations and sequential acceptance
sampling. Ymer includes support for distributed acceptance sampling, i.e. the
use of multiple machines to generate observations, which can result in significant
speedup as each observation can be generated independently.

Ymer currently supports time-homogeneous generalized semi-Markov pro-
cesses specified using an extension of the PRISM input language. PRISM and

� Supported by the Army Research Office (ARO) under contract no. DAAD190110485
and a grant from the Royal Swedish Academy of Engineering Sciences (IVA).
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ETMCC work only with Markov processes, but support a richer set of properties
than Ymer, including steady-state properties and unbounded until operators in
path formulae. Ymer can use numerical techniques for continuous-time Markov
chains (CTMCs) as it includes the hybrid engine from the PRISM tool for CTMC
model checking. Numerical and statistical techniques can be used in combination
to solve nested CSL queries for CTMCs as described by Younes et al. [11].

2 Distributed Acceptance Sampling

Statistical solution methods that use samples of independent observations are
trivially parallelizable. One can use multiple computers to generate the observa-
tions, as noted already by Metropolis and Ulam [7–p. 340], and expect a speedup
linear in the added computing power. To ensure that observations are indepen-
dent, some care needs to be taken when generating pseudorandom numbers on
each machine. Ymer uses the scheme proposed by Matsumoto and Nishimura [6],
which encodes a process identifier into the pseudorandom number generator. This
effectively creates a different generator for each unique identifier.

Ymer adopts a master/slave architecture (Fig. 1) for the distributed verifica-
tion task. One or more slave processes register their ability to generate observa-
tions with a single master process. The master process collects observations from
the slave processes and performs an acceptance sampling procedure. Each slave
process is assigned a unique identifier by the master process to ensure that the
slave processes use different pseudorandom number generators. The right side of
Fig. 1 illustrates a typical communication session.

When using distributed sampling with a sequential test, such as Wald’s [9]
sequential probability ratio test, it is important not to introduce a bias against
observations that take a longer time to generate. For probabilistic model check-
ing, each observation involves the generation of a path prefix through discrete
event simulation and the verification of a path formula over the generated path
prefix. If we simply use observations as they become available, then the guaran-
tees of the acceptance sampling test may no longer hold. For example, negative
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acceptance sampling

SLAVE
simulation

SLAVE
simulation

. . .

SLAVE MASTER
register

model and property

observation

..

.

observation

done
⎭
⎪
⎬
⎪
⎫

repeat

Fig. 1. Master/slave architecture and communication protocol for distributed accep-
tance sampling
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observations for the path formula & U [0,1000] Ψ require simulation for 1000 time
units, while positive observations may be fast to generate if Ψ is satisfied early
(cf. [10–Example 5.4]).

Such bias is avoided by committing, a priori, to the order in which obser-
vations are taken into account. Observations that are received out-of-order are
buffered until it is time to process them. Ymer maintains a dynamic schedule
of the order in which observations are processed. At the beginning, we sched-
ule to receive one observation from each slave process in a specific order. We
then reschedule the processing of the next observation for a slave process at the
arrival of an observation. This gives us a schedule that automatically adjusts
to variations in performance of slave processes without the need for explicit
communication of performance characteristics.

To show the effect of distributed sampling, we use the model of an n-station
symmetric polling system described by Ibe and Trivedi [4]. In this model, each
station has a single-message buffer and the stations are attended by a single
server in cyclic order. The server begins by polling station 1. If there is a message
in the buffer of station 1, the server starts serving that station. Once station i
has been served, or if there is no message at station i when it is polled, the
server starts polling station i + 1 (or 1 if i = n). We verify the CSL property
m1=1 → P≥ 0.5[& U [0,20] poll1], which states that if station 1 is full, then it is
polled within 20 time units with probability at least 0.5. We do so in the state
where station 1 has just been polled and the buffers of all stations are full.

Fig. 2 shows the reduction in verification time for the symmetric polling sys-
tem when using two machines to generate observations. The first machine is
equipped with a 733 MHz Pentium III processor. If we also generate observa-
tions, in parallel, on a machine with a 500 MHz Pentium III processor, we get
the relative performance indicated by the solid curve. The verification time with
two machines is roughly 70 % of the verification time with a single machine.
Fig. 3 shows the fraction of observations used from each machine, with m1 being
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Fig. 2. Fraction of verification time as a
function of state space size for the sym-
metric polling system when using two ma-
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the faster of the two machines. We can see that these fractions are in line with
the relative performance of the machines.

3 Nested Probabilistic Operators

To illustrate the use of nested probabilistic operators, we consider the robot grid
world described by Younes et al. [11]. A robot is moving in an n × n grid from
the bottom left corner to the top right corner. The objective is for the robot to
reach the top right corner within 100 time units with probability at least 0.9,
while maintaining at least a 0.5 probability of periodically (every 9 time units)
communicating with a base station. Let c be a Boolean state variable that is
true when the robot is communicating, and let x and y be two integer-valued
state variables holding the current location of the robot. The CSL property
P≥ 0.9

[P≥ 0.5[& U [0,9] c] U [0,100] x=n ∧ y=n] expresses the desired objective.
The path formula for the outer probabilistic statement contains a probabilis-

tic operator and cannot be verified without error with statistical techniques.
Younes et al. [11] present a mixed solution method using statistical sampling for
top-level probabilistic operators and numerical methods for nested probabilistic
operators. Younes [10–Sect. 5.2] provides a purely statistical approach, which is
made practical through the use of heuristics for selecting observation errors and
memoization [8] to avoid repeated effort. Ymer implements both techniques.

Fig. 4 plots the verification time for the robot grid world property as a func-
tion of state space size. The results were generated on a machine with a 3 GHz
Pentium 4 processor. The purely statistical approach is slower for smaller state
spaces, but handles larger state spaces than the other two solution methods
without exhausting memory resources (800 MB in this case). The dotted line
shows where the property goes from being true to being false as the state space
grows larger. The use of sequential acceptance sampling gives the peak in the
curve for the mixed solution method, but the peak is not present in the curve
for the purely statistical method thanks to memoization. The data shows that
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Fig. 4. Comparison of solution methods for robot grid world property with nested
probabilistic operators
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no method strictly dominates any other method in terms of verification time, al-
though one should keep in mind that the correctness guarantees are different for
all three methods. Numerical methods can guarantee high numerical accuracy,
while statistical methods provide only probabilistic correctness guarantees.

4 Implementation Details and Availability

Ymer is implemented in C (the random number generator) and C++, and uses
the CUDD package for symbolic data structures (BDDs and MTBDDs) used by
the hybrid CTMC model checking engine. The part of the code implementing
numerical analysis of CTMCs has been adopted from the PRISM tool. Ymer is
free software distributed under the GNU General Public License (GPL), and is
available for download at http://www.cs.cmu.edu/˜lorens/ymer.html.
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Abstract. Recent work on weighted-pushdown systems shows how to general-
ize interprocedural-dataflow analysis to answer “stack-qualified queries”, which
answer the question “what dataflow values hold at a program node for a particular
set of calling contexts?” The generalization, however, does not account for pre-
cise handling of local variables. Extended-weighted-pushdown systems address
this issue, and provide answers to stack-qualified queries in the presence of local
variables as well.

1 Introduction

An important static-analysis technique is dataflow analysis, which concerns itself with
calculating, for each program point, information about the set of states that can occur at
that point. For a given abstract domain, the ideal value to compute is the meet-over-all-
paths (MOP) value. Kam and Ullman [10] gave a coincidence theorem that provides
a sufficient condition for when this value can be calculated for single-procedure pro-
grams. Later, Sharir and Pnueli [23] generalized the theorem for multiple-procedure
programs, but did not consider local variables. Knoop and Steffen [12] then further
extended the theorem to include local variables by modeling the run-time stack of a
program. Alternative techniques for handling local variables have been proposed in
[17, 19], but these lose certain relationships between local and global variables.

The MOP value over-approximates the set of all possible states that occur at a pro-
gram point (for all possible calling contexts). Recent work on weighted-pushdown sys-
tems (WPDSs) [18] shows how to generalize interprocedural-dataflow analysis to an-
swer “stack-qualified queries” that calculate an over-approximation to the states that
can occur at a program point for a given regular set of calling contexts. However, as
with Sharir and Pnueli’s coincidence theorem, it is not clear if WPDSs can handle
local variables accurately. In this paper, we extend the WPDS model to the Extended-
WPDS (EWPDS) model, which can accurately encode interprocedural-dataflow anal-
ysis on programs with local variables and answer stack-qualified queries on them. The
EWPDS model can be seen as generalizing WPDSs in much the same way that Knoop
and Steffen generalized Sharir and Pnueli’s coincidence theorem.1

1 Recently, with S. Schwoon, we have shown that the computational power of WPDSs is the
same as that of EWPDSs. We do not present this result in this paper due to space constraints,
but it involves simulating the program run-time stack as a dataflow value.
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The contributions of this paper can be summarized as follows:

– We give a way of handling local variables in an extension of the WPDS model.
The advantage of using (E)WPDSs is that they give a way of calculating dataflow
values that hold at a program node for a particular calling context (or set of calling
contexts). They can also provide a set of “witness” program execution paths that
justify a reported dataflow value.

– We show that the EWPDS model is powerful enough to capture Knoop and
Steffen’s coincidence theorem. In particular, this means that we can calculate
the MOP value (referred to as the interprocedural-meet-over-all-valid-paths, or
IMOVP value, for multiple-procedure programs with local variables) for any dis-
tributive dataflow-analysis problem for which the domain of transfer functions has
no infinite descending chains. For monotonic problems that are not distributive, we
can safely approximate the IMOVP value. In addition to this, EWPDSs support
stack-qualified IMOVP queries.

– We have extended the WPDS++ library [11] to support EWPDSs and used it to
calculate affine relationships that hold between registers in x86 code [2].

A further result was too lengthy to be included in this paper, but illustrates the value
of our approach: we have shown that the IMOVP result of [13] for single-level pointer
analysis is an instance of our framework.2 This immediately gives us something new: a
way of answering stack-qualified aliasing problems.

The rest of the paper is organized as follows: §2 provides background on WPDSs
and explains the EWPDS model; §3 presents algorithms to solve reachability queries
in EWPDSs. In §4, we show how to compute the IMOVP value using an EWPDS; §5
presents experimental results; and §6 describes related work.

2 The EXTENDED-WPDS Model

2.1 Pushdown Systems

Definition 1. A pushdown system is a triple P = (P, Γ,Δ) where P is the set of
states or control locations, Γ is the set of stack symbols and Δ ⊆ P × Γ × P × Γ ∗

is the set of pushdown rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and
u ∈ Γ ∗. A rule r ∈ Δ is written as 〈p, γ〉 ↪→P 〈p′, u〉 where p, p′ ∈ P , γ ∈ Γ and
u ∈ Γ ∗. These rules define a transition relation⇒P on configurations of P as follows:
If r = 〈p, γ〉 ↪→P 〈p′, u〉 then 〈p, γu′〉 ⇒P 〈p′, uu′〉 for all u′ ∈ Γ ∗. The subscript
P on the transition relation is omitted when it is clear from the context. The reflexive
transitive closure of ⇒ is denoted by ⇒∗. For a set of configurations C, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}, which
are just backward and forward reachability under the transition relation⇒.

We restrict the pushdown rules to have at most two stack symbols on the right-hand
side. This means that for every rule r ∈ Δ of the form 〈p, γ〉 ↪→P 〈p′, u〉, we have

2 Multi-level pointer analysis problems (the kind that occur in C, C++, and Java programs) can
be safely approximated as single-level pointer-analysis problems [14].
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|u| ≤ 2. This restriction does not decrease the power of pushdown systems because
by increasing the number of stack symbols by a constant factor, an arbitrary pushdown
system can be converted into one that satisfies this restriction [20]. Moreover, pushdown
systems with at most two stack symbols on the right-hand side of each rule are sufficient
for modeling control flow in programs. We use Δi ⊆ Δ to denote the set of all rules
with i stack symbols on the right-hand side.

It is instructive to see how a program’s control flow can be modeled because even
though the EWPDS model can work with any pushdown system, it is geared towards
performing dataflow analysis in programs. The construction we present here is also
followed in [18]. Let (N , E) be an interprocedural control flow graph where each call
node is split into two nodes: one is the source of an interprocedural edge to the callee’s
entry node and the second is the target of an edge from the callee’s exit node. N is
the set of nodes in this graph and E is the set of control-flow edges. Fig. 1(a) shows
an example of an interprocedural control-flow graph; Fig. 1(b) shows the pushdown
system that models it. The PDS has a single state p, one stack symbol for each node in
N , and one rule for each edge in E . We use Δ1 rules to model intraprocedural edges,
Δ2 rules (also called push rules) for call edges, and Δ0 rules (also called pop rules) for
return edges. It is easy to see that a valid path in the program corresponds to a path in
the pushdown system’s transition system and vice versa.

emain

n1: x = 5

n3: call p

n7: ret from p

exitmain

ep

n5: y = 2

exitp

n4: if (. . .)

n2: y = 1
n6: y = 3

λe.e[x a , y a ]

λe.e[x a 5]

λe.e[y a 1]

λe.e[x a ]
λe.e[y a 2] λe.e[y a 3]

(1) 〈p, emain〉 ↪→ 〈p, n1〉
(2) 〈p, n1〉 ↪→ 〈p, n2〉
(3) 〈p, n2〉 ↪→ 〈p, n3〉
(4) 〈p, n3〉 ↪→ 〈p, ep n7〉
(5) 〈p, n7〉 ↪→ 〈p, exitmain〉
(6) 〈p, exitmain〉 ↪→ 〈p, ε〉
(7) 〈p, ep〉 ↪→ 〈p, n4〉
(8) 〈p, n4〉 ↪→ 〈p, n5〉
(9) 〈p, n4〉 ↪→ 〈p, n6〉
(10) 〈p, n5〉 ↪→ 〈p, exitp〉
(11) 〈p, n6〉 ↪→ 〈p, exitp〉
(12) 〈p, exitp〉 ↪→ 〈p, ε〉

(a) (b)

Fig. 1. (a) An interprocedural control flow graph. The e and exit nodes represent entry and exit
points of procedures, respectively. x is a local variable of main and y is a global variable. Dashed
edges represent interprocedural control flow. Edge labels correspond to dataflow facts and are
explained in §2.3. (b) A pushdown system that models the control flow of the graph shown in (a)

The number of configurations of a pushdown system is unbounded, so we use a
finite automaton to describe a set of configurations.

Definition 2. Let P = (P, Γ,Δ) be a pushdown system. A P-automaton is a finite
automaton (Q,Γ,→, P, F ), where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q is
the transition relation, P is the set of initial states, and F is the set of final states of
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the automaton. We say that a configuration 〈p, u〉 is accepted by a P-automaton if the
automaton can accept u when it is started in state p (written as p u−→∗ q, where q ∈ F ).
A set of configurations is called regular if some P-automaton accepts it.

An important result is that for a regular set of configurations C, both post∗(C) and
pre∗(C) are also regular sets of configurations [20, 3, 8].

2.2 Weighted Pushdown Systems

A weighted pushdown system is obtained by supplementing a pushdown system with a
weight domain that is a bounded idempotent semiring [18, 4].

Definition 3. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1), where
D is a set whose elements are called weights, 0 and 1 are elements of D, and ⊕ (the
combine operation) and ⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕ is
idempotent (i.e., for all a ∈ D, a⊕ a = a).

2. (D,⊗) is a monoid with the neutral element 1.
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .
4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
5. In the partial order % defined by: ∀a, b ∈ D, a % b iff a ⊕ b = a, there are no

infinite descending chains.

Definition 4. A weighted pushdown system is a triple W = (P,S, f) where P =
(P, Γ,Δ) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring
and f : Δ→ D is a map that assigns a weight to each pushdown rule.

Let σ ∈ Δ∗ be a sequence of rules. Using f , we can associate a value to σ, i.e.,
if σ = [r1, . . . , rk], then we define v(σ) def= f(r1) ⊗ . . . ⊗ f(rk). Moreover, for any
two configurations c and c′ of P , we let path(c, c′) denote the set of all rule sequences
[r1, . . . , rk] that transform c into c′. Weighted pushdown systems are geared towards
solving the following two reachability problems.

Definition 5. LetW=(P,S, f) be a weighted pushdown system, whereP=(P, Γ,Δ),
and let C ⊆ P × Γ ∗ be a regular set of configurations. The generalized pushdown
predecessor (GPP) problem is to find for each c ∈ P × Γ ∗:

δ(c) def=
⊕{ v(σ) | σ ∈ path(c, c′), c′ ∈ C }.

The generalized pushdown successor (GPS) problem is to find for each c ∈ P ×Γ ∗:
δ(c) def=

⊕{ v(σ) | σ ∈ path(c′, c), c′ ∈ C }.

2.3 Extended Weighted Pushdown Systems

The reachability problems defined in the previous section compute the value of a rule
sequence by taking an extend of the weights of each of the rules in the sequence. How-
ever, when weighted pushdown systems are used for dataflow analysis of programs
[18] then the rule sequences, in general, represent interprocedural paths in a program.
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To summarize the weight of such paths, we would have to maintain information about
local variables of all unfinished procedures that appear on the path.

We lift weighted pushdown systems to handle local variables in much the same way
that Knoop and Steffen [12] lifted conventional dataflow analysis to handle local vari-
ables. We allow for local variables to be stored at call sites and then use special merging
functions to appropriately combine them with the value returned by a procedure. For a
semiring S on domain D, define a merging function as follows:

Definition 6. A function g : D × D → D is a merging function with respect to a
bounded idempotent semiring S = (D,⊕,⊗, 0, 1) if it satisfies the following properties.

1. Strictness. For all a ∈ D, g(0, a) = g(a, 0) = 0.
2. Distributivity. The function distributes over ⊕. For all a, b, c ∈ D,

g(a⊕ b, c) = g(a, c)⊕ g(b, c) and g(a, b⊕ c) = g(a, b)⊕ g(a, c)
3. Path Extension.3 For all a, b, c ∈ D, g(a⊗ b, c) = a⊗ g(b, c).

Definition 7. An extended weighted pushdown system is a quadruple We =
(P,S, f, g) where (P,S, f) is a weighted pushdown system and g : Δ2 → G as-
signs a merging function to each rule in Δ2, where G is the set of all merging functions
on the semiring S. We will write gr as a shorthand for g(r).

Note that a push rule has both a weight and a merging function associated with it.
The merging functions are used to combine the effects of a called procedure with those
made by the calling procedure just before the call. As an example, Figure 1 shows an
interprocedural control flow graph and the pushdown system that can be used to rep-
resent it. We can perform constant propagation (with uninterpreted expressions) on the
graph by assigning a weight to each pushdown rule. Let V be the set of all variables in
a program and (Z⊥,%,�) with Z⊥ = Z ∪ {⊥} be the standard constant-propagation
semilattice:⊥ % c for all c ∈ Z and � is the greatest-lower-bound operation in this par-
tial order. ⊥ stands for “not-a-constant”. The weight semiring is S = (D,⊕,⊗, 0, 1)
where D = (Env → Env) is the set of all environment transformers with an envi-
ronment being a mapping for all variables: Env = (V → Z⊥) ∪ {&}. We use & to
denote an infeasible environment. Furthermore, we restrict the set D to contain only
&-strict transformers, i.e., for all d ∈ D, d(&) = &. We can extend the meet operation
to environments by taking meet componentwise.

env1 � env2 =

⎧⎨⎩
env1 if env2 = &
env2 if env1 = &
λv.(env1(v) � env2(v)) otherwise

The semiring operations and constants are defined as follows:
0 = λe.&
1 = λe.e

w1 ⊕ w2 = λe.(w1(e) � w2(e))
w1 ⊗ w2 = w2 ◦ w1

The weights for the PDS that models the program in Fig. 1 are shown as edge labels.
A weight of the form λe.e[x '→ 5] returns an environment that agrees with the argument,
except that x is bound to 5. The environment & cannot be updated, and thus (λe.e[x '→
5])& = &.

3 This property can be too restrictive in some cases; App. A discusses how this property may be
dispensed with.
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The merging function for call site n3 will receive two environment transformers:
one that summarizes the effect of the caller from its entry point to the call site (emain to
n3) and one that summarizes the effect of the called procedure (ep to exitp). It then has
produce the transformer that summarizes the effect of the caller from its entry point to
the return site (emain to n7). We define it as follows:

g(w1, w2) = if (w1 = 0 or w2 = 0) then 0
else λe.e[x '→ w1(e)(x), y '→ (w1 ⊗ w2)(e)(y)]

It copies over the value of the local variable x from the call site, and gets the value of y
from the called procedure. Because the merging function has access to the environment
transformer just before the call, we do not have to pass the value of local variable x into
procedure p. Hence the call stops tracking the value of x using the weight λe.e[x '→ ⊥].

To formalize this, we redefine the generalized pushdown predecessor and successor
problem by changing the definition of the value of a rule sequence. If σ ∈ Δ∗ with
σ = [r1, r2, · · · , rk] then let (r σ) denote the sequence [r, r1, · · · , rk]. Also, let [ ]
denote the empty sequence. Consider the context-free grammar shown in Fig. 2.

R0 → r (r ∈ Δ0)
R1 → r (r ∈ Δ1)
R2 → r (r ∈ Δ2)

σs → [ ] | R1 | σs σs

σb → σs | σb σb

| R2 σb R0

σi → R2 | σb | σi σi

σd → R0 | σb | σd σd

σa → σd σi

Fig. 2. Grammar used for parsing rule sequences. The start symbol of the grammar is σa

σs is simply R∗
1. σb represents a balanced sequence of rules that have matched

calls (R2) and returns (R0) with any number of rules from Δ1 inbetween. σi is just
(R2 | σb)+ in regular-language terminology, and represents sequences that increase
stack height. σd is (R0 | σb)+ and represents sequences that decrease stack height.
σa can derive any rule sequence. We use this grammar to define the value of a rule
sequence.

Definition 8. Given an EWPDS We = (P,S, f, g), we define the value of a sequence
of rules σ ∈ Δ∗ by first parsing the sequence according to the above grammar and then
giving a meaning to each production rule.

1. v(r) = f(r)
2. v([ ]) = 1
3. v(σs σs) = v(σs)⊗ v(σs)
4. v(σb σb) = v(σb)⊗ v(σb)

5. v(R2 σb R0) = gR2(1, v(σb)⊗ v(R0))
6. v(σd σd) = v(σd)⊗ v(σd)
7. v(σi σi) = v(σi)⊗ v(σi)
8. v(σd σi) = v(σd)⊗ v(σi)

Here we have used gR2 as a shorthand for gr where r is the terminal derived by R2.

The main thing to note in the above definition is the application of merging functions
on balanced sequences. Because the grammar presented in Fig. 2 is ambiguous, there
might be many parsings of the same rule sequence, but all of them would produce the
same value because the extend operation is associative and there is a unique way to
balance R2s with R0s.

The generalized pushdown problems GPP and GPS for EWPDS are the same as
those for WPDS except for the changed definition of the value of a rule sequence. If we
let each merging function be gr(w1, w2) = w1⊗ f(r)⊗w2, then the EWPDS reduces
to a WPDS. This justifies calling our model an extended weighted pushdown system.
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3 Solving Reachability Problems in EWPDSs

In this section, we present algorithms to solve the generalized reachability problems
for EWPDSs. Throughout this section, let We = (P,S, f, g) be an EWPDS where
P = (P, Γ,Δ) is a pushdown system and S = (D,⊕,⊗, 0, 1) is the weight domain.
Let C be a fixed regular set of configurations that is recognized by a P-automaton
A = (Q,Γ,→0, P, F ) such that A has no transition leading to an initial state. Note
that any automaton can be converted to an equivalent one that has no transition into an
initial state by duplicating the initial states. We also assume that A has no ε-transitions.

As in the case of weighted pushdown systems, we construct an annotated automaton
from which δ(c) can be read off efficiently. This automaton is the same as the automaton
constructed for simple pushdown reachability [20], except for the annotations. We will
not show the calculation of witness annotations because they are obtained in exactly the
same way as for weighted pushdown systems [18]. This is because witnesses record the
paths that justify a weight and not how the values of those paths were calculated.

3.1 Solving GPP

To solve GPP, we take as input the P-automaton A that describes the set of configura-
tions on which we want to query the EWPDS. As output, we create an automatonApre∗

with weights as annotations on transitions, and then read off the values of δ(c) from the
automaton. The algorithm is based on the saturation rule shown below. Starting with
the automatonA, we keep applying this rule until it can no longer be applied. Termina-
tion is guaranteed because there are a finite number of transitions and the height of the
weight domain is bounded as well. For each transition in the automaton being created,
we store the weight on it using function l. The saturation rule is the same as that for
predecessor reachability in ordinary pushdown systems, except for the weights, and is
different from the one for weighted pushdown systems only in the last case, where a
merging function is applied.

– If r = 〈p, γ〉 ↪→ 〈p′, ε〉, then update the annotation on t = (p, γ, p′) to l(t) :=
l(t)⊕ f(r). We assume l(t) = 0 if the transition t did not exist before.

– If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a transition t = (p′, γ′, q), then update the
annotation on t′ = (p, γ, q) to l(t′) := l(t′)⊕ (f(r)⊗ l(t)).

– If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there are transitions t = (p′, γ′, q1) and t′ =
(q1, γ′′, q2), then update the annotation on t′′ = (p, γ, q2) to

l(t′′) := l(t′′)⊕
{
f(r)⊗ l(t)⊗ l(t′) if q1 �∈ P
gr(1, l(t))⊗ l(t′) otherwise

For convenience, we will write a transition t = (p, γ, q) in Apre∗ with l(t) = w as
p

γ−→
w

q. Define the value of a path q1
γ1−−→
w1

q2 · · · γn−−→
wn

qn+1 to be w1 ⊗ w2 · · · ⊗ wn.
The following theorem shows how δ(c) is calculated.

Theorem 1. For a configuration c = 〈p, γ1γ2 · · · γn〉, δ(c) is the combine of the values
of all accepting paths p γ1−−→ q1

γ2−−→ · · · γn−−→ qn, qn ∈ F in Apre∗ .

We can calculate δ(c) efficiently using an algorithm similar to the simulation algo-
rithm for NFAs (cf. [1–Algorithm 3.4]).
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3.2 Solving GPS

For this section, we shall assume that we can have at most one rule of the form 〈p, γ〉 ↪→
〈p′, γ′γ′′〉 for each combination of p′,γ′, and γ′′. This involves no loss of generality be-
cause we can replace a rule r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 with two rules: (a) r′ = 〈p, γ〉 ↪→
〈pr, γ

′γ′′〉 with weight f(r) and merging function gr, and (b) r′′ = 〈pr, γ
′〉 ↪→ 〈p′, γ′〉

with weight 1, where pr is a new state. This replacement does not change the reachabil-
ity problem’s answers. Let lookup(p′, γ′, γ′′) be a function that returns the unique push
rule associated with a triple (p′, γ′, γ′′) if there is one.

Before presenting the algorithm, let us consider an operational definition of the value
of a rule sequence. The importance of this alternative definition is that it shows the
correspondence with the call semantics of a program. For each interprocedural path in
a program, we define a stack of weights that contains a weight for each unfinished call
in the path. Elements of the stack are from the set D × D × Δ2 (recall that Δ2 was
defined as the set of all push rules in Δ), where (w1, w2, r) signifies that (i) a call was
made using rule r, (ii) the weight at the time of the call was w1, and (iii) w2 was the
weight on the call rule.

Let STACK = D.(D × D × Δ2)∗ be the set of all nonempty stacks where the
topmost element is from D and the rest are from (D × D × Δ2). We will write an
element (w1, w2, r) ∈ D × D × Δ2 as (w1, w2)r. For each rule r ∈ Δ of the form
〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ ∗, we will associate a function [[r]] : STACK → STACK. Let
S ∈ (D ×D ×Δ2)∗.

– If r has one symbol on the right-hand side (|u| = 1), then accumulate its weight on
the top of the stack: [[r]] (w1 S) = ((w1 ⊗ f(r)) S)

– If r has two symbols on the right-hand side (|u| = 2), then save the weight of the
push rule as well as the push rule itself on the stack and start a fresh entry on the
top of the stack: [[r]] (w1 S) = (1 (w1, f(r))r S)

– If r has no symbols on the right-hand side (|u| = 0), then apply the appropriate
merging function if there is something pushed on the stack. Otherwise, r represents
an unbalanced pop rule and simply accumulate its weight on the stack. Note that we
drop the weight of the push rule when we apply the merging function in accordance
with case 5 of Defn. 8.

[[r]] (w1 (w2, w3)r1 S) = ((gr1(w2, w1 ⊗ f(r)) S) (1)
[[r]] (w1) = (w1 ⊗ f(r))

For a sequence of rules σ = [r1, r2, · · · , rn], define [[σ]] = [[[r2, · · · , rn]]] ◦ [[r1]].
Let flatten : STACK → D be an operation that computes a weight from a stack as
follows:

flatten(w1 S) = flatten′(S)⊗ w1
flatten′(( )) = 1
flatten′((w1, w2)r S) = flatten′(S)⊗ (w1 ⊗ w2)

Example 1. Consider the rule sequence σ that takes the program in Fig. 1 from emain to
exitp via node n5. If we apply [[σ]] to a stack containing just 1, we get a stack of height
2 as follows: [[σ]](1) = ((λe.e[y '→ 2]) (λe.e[x '→ 5, y '→ 1], λe.e[x '→ ⊥])r), where
r is the push rule that calls procedure p (Rule 4 in Fig. 1(b)). The top of the stack is
the weight computed inside p (Rules 7, 8, 10), and the bottom of the stack contains a
pair of weights: the first component is the weight computed in main just before the call
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(Rules 1, 2, 3); the second component is just the weight on the call rule r. If we apply
the flatten operation on this stack, we get the weight λe.e[x '→ ⊥, y '→ 2] which is
exactly the value v(σ). When we apply the pop rule r′ (Rule 12) to this stack, we get:

[[σ r′]](1) = [[r′]] ◦ [[σ]](1)
= (gr(λe.e[x '→ 5, y '→ 1], λe.e[y '→ 2]))
= (λe.e[x '→ 5, y '→ 2])

Again, applying flatten on this stack gives us v(σ r′). The following lemma formalizes
the equivalence between [[σ]] and v(σ).

Lemma 1. For any valid sequence of rules σ (σ ∈ path(c, c′) for some configurations
c and c′), [[σ]] (1) = S such that flatten(S) = v(σ).

Corollary 1. For a configuration c, let δS(c) ⊆ STACK be defined as follows:
δS(c) = {[[σ]](1) | σ ∈ paths(c′, c), c′ ∈ C}.

Let C be the set of configurations described by the P-automaton A. Then
δ(c) = ⊕{flatten(S) | S ∈ δS(c)}.

The above corollary shows that δS(c) has enough information to compute δ(c) di-
rectly. To solve the pushdown successor problem, we take the inputP-automatonA that
describes a set of configurations and create an annotated P-automaton Apost∗ (one that
has weights as annotations on transitions) from which we can read off the value of δ(c)
for any configuration c. The algorithm is again based on a saturation rule. For each tran-
sition in the automaton being created, we have a function l that stores the weight on the
transition. Based on the above operational definition of the value of a path, we would
createApost∗ on pairs of weights, that is, over the semiring (D×D,⊕,⊗, (0, 0), (1, 1))
where ⊕ and ⊗ are defined component wise. Also, we introduce a new state for each
push rule. So the states of Apost∗ are Q ∪ {qp′,γ′ | 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ}. Let Q′

be the set of new states added. The saturation rule is shown in Fig. 3. To see what the
saturation rule is doing, consider a path in Apost∗ : τ = q1

γ1−−→ q2
γ2−−→ · · · γn−−→ qn+1.

As an invariant of our algorithm, we would have q1 ∈ (P ∪Q′); q2, · · · , qk ∈ Q′; and
qk+1, · · · , qn+1 ∈ (Q − P ) for some 0 ≤ k ≤ n + 1. This is because of the fact that
we never create transitions from a state in P to a state in P , or from a state in Q′ to a
state in P , or from a state in Q − P to a state in P ∪ Q′. Now define a new transition
label l′(t) as follows: l′(p, γ, q) = lookup(p′, γ′, γ) if p ≡ qp′,γ′ .
Then the path τ describes the STACK vpath(τ) = (l1(t1) l(t2)l′(t2) · · · l(tk)l′(tk))
where ti = (qi, γi, qi+1) and l1(t) is the first component projected out of the weight-
pair l(t). This means that each path inApost∗ represents a STACK and all the saturation
algorithm does is to make the automaton rich enough to encode all STACKs in δS(c) for
all configurations c. The first and third cases of the saturation rule can be seen as apply-
ing [[r]] for rules with one and two stack symbols on the right-hand side, respectively.
Applying the fourth case immediately after the second case can be seen as applying [[r]]
for pop rules.

Theorem 2. For a configuration c = 〈p, u〉, we have,
δ(c) = ⊕{flatten(vpath(σt)) | σt ∈ paths(p, u, qf ), qf ∈ F}

where paths(p, u, qf ) denotes the set of all paths of transitions in Apost∗ that go from
p to qf on input u, i.e., p u−→∗ qf .
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– If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a transition t = (p, γ, q) with annotation l(t), then
update the annotation on transition t′ = (p′, γ′, q) to l(t′) := l(t′)⊕ (l(t)⊗ (f(r), 1)).
We assume l(t′) = (0, 0) if the transition did not exist before.

– If r = 〈p, γ〉 ↪→ 〈p′, ε〉 and there is a transition t = (p, γ, q) with annotation l(t), then
update the annotation on transition t′ = (p′, ε, q) to l(t′) := l(t′)⊕ (l(t)⊗ (f(r), 1)).

– If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there is a transition t = (p, γ, q) with annotation l(t)
then let t′ = (p′, γ′, qp′,γ′), t′′ = (qp′,γ′ , γ′′, q) and update annotations on them.

l(t′) := l(t′)⊕ (1, 1)
l(t′′) := l(t′′)⊕ (l(t)⊗ (1, f(r)))

– If there are transitions t = (p, ε, q) and t′ = (q, γ′, q′) with annotations l(t) =
(w1, w2) and l(t′) = (w3, w4) then update the annotation on the transition t′′ =
(p, γ′, q′) to l(t′′) := l(t′′)⊕ w where w is defined as follows:

w =

{
(glookup(p′,γ′,γ′′)(w3, w1), 1) if q ≡ qp′,γ′

l(t′)⊗ l(t) otherwise

Fig. 3. Saturation rule for constructing Apost∗ from A

An easy way of computing the combine in the above theorem is to replace annotation
l(t) on each transition t with l1(t) ⊗ l2(t), the extend of the two weight components
of l(t), and then use standard NFA simulation algorithms (cf. [1–Algorithm 3.4]) as we
would use for Apre∗ .

4 Interprocedural Meet over All Paths

In this section, we show how extended weighted pushdown systems can be used to com-
pute the interprocedural-meet-over-all-paths (IMOVP) solution for a given dataflow
analysis problem. We will first define the IMOVP strategy as described in [12] and
then show how to solve it using an EWPDS.

We are given a meet semilattice (C,�) describing dataflow facts and the
interprocedural-control-flow graph of a program (N , E) where NC ,NR ⊆ N are the
call and return nodes, respectively. We are also given a semantic transformer for each
node in the program: [[ ]] : N → (C → C), which represents (i.e., over-approximates)
the effect of executing a statement in the program. Let STK = C+ be the set of all
nonempty stacks with elements from C. STK is used as an abstract representation of the
run-time stack of a program. Define the following operations on stacks.

newstack : C → STK creates a new stack with a single element
push : STK× C → STK pushes a new element on top of the stack
pop : STK → STK removes the top most element of the stack
top : STK → C returns the top most element of the stack

We can now describe the interprocedural semantic transformer for each program
node: [[ ]]∗ : N → (STK → STK). For stk ∈ STK,

[[n]]∗(stk) =

⎧⎨⎩
push(pop(stk), [[n]](top(stk))) if n ∈ N − (NC ∪NR)
push(stk, [[n]](top(stk))) if n ∈ NC

push(pop(pop(stk)),Rn(top(pop(stk)), [[n]](top(stk)))) if n ∈ Nr
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whereRn : C×C → C is a merging function like we have in EWPDSs. It is applied on
dataflow value computed by the called procedure ([[n]](top(stk))) and the value com-
puted by the caller at the time of the call (top(pop(stk))). This definition assumes that
a dataflow fact in C contains all information that is required by a procedure so that
each transformer has to look at only the top of the stack passed to it – except for return
nodes, where we look at the top two elements of the stack. Now, define a path trans-
former as follows. If p = [n1 n2 · · ·nk] is a valid interprocedural path in the program
then [[p]]∗ = [[[n2 · · ·nk]]]∗ ◦ [[n1]]∗. This leads to the following definition.

Definition 9. [12] If s ∈ N is the starting node of a program, then for c0 ∈ C and
n ∈ N , the interprocedural-meet-over-all-paths value is defined as follows:

IMOVPc0(n) = �{[[p]]∗(newstack(c0)) | p ∈ IP(s, n)}
where IP(s, n) represents the set of all valid interprocedural paths from s to n and meet
of stacks is just the meet of their topmost values: stk1 � stk2 = top(stk1) � top(stk2).

We now construct an EWPDS We = (P,S, f, g) to compute this value when C
has no infinite descending chains, all semantic transformers [[n]] are distributive, and
all merging relations Rn are distributive in each of their arguments. Define a semiring
S = (D,⊕,⊗, 0, 1) as D = [C → C] ∪ {0}, which consists of the set of all distributive
functions on C and a special function 0. For a, b ∈ D,

a⊕ b =

⎧⎨⎩
a if b = 0
b if a = 0
(a � b) otherwise

a⊗ b =
{

0 if a = 0 or b = 0
(b ◦ a) otherwise

1 = λc.c
The pushdown system P is ({q},N ,Δ) where Δ is constructed by including a rule for
each edge in E . First, let Eintra ⊆ E be the intraprocedural edges and Einter ⊆ E be the
interprocedural (call and return) edges. Then include the following rules in Δ.

1. For (n,m) ∈ Eintra, include the rule r = 〈q, n〉 ↪→ 〈q,m〉 with f(r) = [[n]].
2. For n ∈ NC , (n,m) ∈ Einter with nR ∈ NR being the return site for the call at n,

include the rule r = 〈q, n〉 ↪→ 〈q,m nR〉 with f(r) = [[n]] and
gr(a, b) = λc.Rn(a(c), (a⊗ [[n]]⊗ b⊗ [[nR]])(c)).

3. For n ∈ N , if it is an exit node of a procedure, include the rule r = 〈q, n〉 ↪→ 〈q, ε〉
with f(r) = [[n]].

A small technical detail here is that the merging functions defined above need not
satisfy the path-extension property given in Defn. 6. In App. A, we give an alternative
definition of how to assign a weight to a rule sequence such that the path-extension
property is no longer a limitation. This leads us to the following theorem.

Theorem 3. Let A be a P-automaton that accepts just the configuration 〈q, s〉, where
s is the starting point of the program and letApost∗ be the automaton obtained by using
the saturation rule shown in Fig. 3 onA. Then if c0 ∈ C, n ∈ N , δ(c) is read offApost∗

in accordance with Thm. 2, we have,
IMOVPc0(n) = [⊕{δ(〈q, n u〉 | u ∈ Γ ∗}](c0).

If L ⊆ Γ ∗ is a regular language of stack configurations then IMOVPc0(n,L), which
is the IMOVP value restricted to only those paths that end in configurations described
by L, can be calculated as follows:

IMOVPc0(n,L) = [⊕{δ(〈q, n u〉 | u ∈ L}](c0).
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In case the semantic transformers [[.]] and Rn are not distributive but only mono-
tonic, then the two combines in Thm. 3 safely approximate IMOVPc0(n) and
IMOVPc0(n,L), respectively. We do not present the proof in this paper, but the es-
sential idea carries over from solving monotonic dataflow problems in WPDSs [18].

5 Experimental Results

In [2], Balakrishnan and Reps present an algorithm to analyze memory accesses in
x86 code. Its goal is to determine an over-approximation of the set of values/memory-
addresses that each register and memory location holds at each program point. The core
dataflow-analysis algorithm used, called value-set analysis (VSA), is not relational, i.e.,
it does not keep track of the relationships that hold among registers and memory loca-
tions. However, when interpreting conditional branches, specifically those that imple-
ment loops, it is important to know such relationships. Hence, a separate affine-relation
analysis (ARA) is performed to recover affine relations that hold among the registers at
conditional branch points; those affine relations are then used to interpret conditional
branches during VSA. ARA recovers affine relations involving registers only, because
recovering affine relations involving memory locations would require points-to infor-
mation, which is not available until the end of VSA. ARA is implemented using the
affine-relation domain from [16] as a weight domain. It is based on machine arithmetic,
i.e., arithmetic module 232, and is able to take care of overflow.

Before each call instruction, a subset of the registers is saved on the stack, either by
the caller or the callee, and restored at the return. Such registers are called the caller-
save and callee-save registers. Because ARA only keeps track of information involv-
ing registers, when ARA is implemented using a WPDS, all affine relations involving
caller-save and callee-save registers are lost at a call. We used an EWPDS to preserve
them across calls by treating caller-save and callee-save registers as local variables at a
call; i.e., the values of caller-save and callee-save registers after the call are set to the

Table 1. Comparison of ARA results implemented using EWPDS versus WPDS

Branches with
Memory (MB) Time (s) useful information

Prog Insts Procs Branches Calls WPDS EWPDS WPDS EWPDS WPDS EWPDS Improvement
mplayer2 58452 608 4608 2481 27 6 8 9 137 192 57 (42%)
print 96096 955 8028 4013 61 19 20 23 601 889 313 (52%)
attrib 96375 956 8076 4000 40 8 12 13 306 380 93 (30%)
tracert 101149 1008 8501 4271 70 22 24 27 659 1021 387 (59%)
finger 101814 1032 8505 4324 70 23 24 30 627 999 397 (63%)
lpr 131721 1347 10641 5636 102 36 36 46 1076 1692 655 (61%)
rsh 132355 1369 10658 5743 104 36 37 45 1073 1661 616 (57%)
javac 135978 1397 10899 5854 118 43 44 58 1376 2001 666 (48%)
ftp 150264 1588 12099 6833 121 42 43 61 1364 2008 675 (49%)
winhlp32 179488 1911 15296 7845 156 58 62 98 2105 2990 918 (44%)
regsvr32 297648 3416 23035 13265 279 117 145 193 3418 5226 1879 (55%)
notepad 421044 4922 32608 20018 328 124 147 390 3882 5793 1988 (51%)
cmd 482919 5595 37989 24008 369 144 175 444 4656 6856 2337 (50%)
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values before the call and the values of other registers are set to the values at the exit
node of the callee.

The results are shown in Tab. 1. The column labeled ‘Branches with useful informa-
tion’ refers to the number of branch points at which ARA recovered at least one affine
relation. The last column shows the number of branch points at which ARA imple-
mented via an EWPDS recovered more affine relations when compared to ARA imple-
mented via a WPDS. Tab. 1 shows that the information recovered by EWPDS is better
in 30% to 63% of the branch points that had useful information. The EWPDS version
is somewhat slower, but uses less space; this is probably due to the fact that the dataflow
transformer from [16] for ‘spoiling’ the affine relations that involve a given register uses
twice the space of a transformer that preserves such relations.

6 Related Work

Some libraries/tools based on model-checking pushdown systems for dataflow analy-
sis are MOPED [7, 21], WPDS [18], and WPDS++ [11]. Weighted pushdown systems
have been used for finding uninitialized variables, live variables, linear constant propa-
gation, and the detection of affine relationships. In each of these cases, local variables
are handled by introducing special paths in the transition system of the PDS that models
the program. These paths skip call sites to avoid passing local variables to the callee.
This leads to imprecision by breaking existing relationships between local and global
variables. Besides dataflow analysis, WPDSs have also been used for generalized au-
thorization problems [22].

MOPED has been used for performing relational dataflow analysis, but only for fi-
nite abstract domains. Its basic approach is to embed the abstract transformer of each
program statement into the rules of the pushdown system that models the program. This
contrasts with WPDSs, where the abstract transformer is a separate weight associated
with a pushdown rule. MOPED associates global variables with states of the PDS and
local variables with its stack symbols. Then the stack of the PDS simulates the run-
time stack of the program and maintains a different copy of the local variables for each
procedure invocation. A simple pushdown reachability query can be used to compute
the required dataflow facts. The disadvantage of that approach is that it cannot handle
infinite-size abstract domains because then associating an abstract transformer with a
pushdown rule would create an infinite number of pushdown rules. An EWPDS is ca-
pable of performing an analysis on infinite-size abstract domains as well. The domain
used for copy-constant propagation in §2.3 is one such example.

Besides dataflow analysis, model-checking of pushdown systems has also been used
for verifying security properties in programs [6, 9, 5]. Like WPDSs, we can use EW-
PDS for this purpose, but with added precision that comes due to the presence of merg-
ing functions.

A result we have not presented in this paper is that EWPDSs can be used for single-
level pointer analysis, which enables us to answer stack-qualified aliasing queries. Stack-
qualified aliasing has been studied before by Whaley and Lam [24]. However, for recur-
sive programs, they collapse the strongly connected components in the call graph. We
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do not make any such approximation, and can also answer aliasing queries with respect
to a language of stack configurations instead of just a single stack configuration.

The idea behind the transition from a WPDS to an EWPDS is that we attach extra
meaning to each run of the pushdown system. We look at a run as a tree of matching
calls and returns that push and pop values on the run-time stack of the program. This
treatment of a program run has also been explored by Müller-Olm and Seidl [15] in
an interprocedural dataflow-analysis algorithm to identify the set of all affine relation-
ships. They explicitly match calls and returns to avoid passing relations involving local
variables to different procedures. This allowed us to to directly translate their work into
an EWPDS, which we have used for the experiments in §5.
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A Relaxing Merging Function Requirements

This appendix discusses what happens when merging functions do not satisfy the third
property in Defn. 6. The pre∗ algorithm of §3.1 (used for creating Apre∗ ) would still
compute the correct values for δ(c) because it parses rule sequences using the grammar
from Defn. 8, but the post∗ algorithm of §3.2 (used for creating Apost∗ ) would not
work because it utilizes a different grammar and relies on the path-extension property
to compute the correct value. Instead of trying to modify the post∗ algorithm, we will
introduce an alternative definition of the value of a rule sequence that is suited for the
cases when merging functions do not satisfy the path-extension property. The definition
involves changing the productions and valuations of balanced sequences as follows:

σb′ → [ ]
| σb R2 σb R0

σb → σb′ σs

v(σb′ σb′) = v(σb′)⊗ v(σb′)
v(σb R2 σb R0) = gR2(v(σb), v(σb)⊗ v(R0)) (2)
v(σb′ σs) = v(σb′)⊗ v(σs)

The value of a rule sequence as defined above is the same as the value defined by
Defn. 8 when merging functions satisfy the path-extension property. In the absence of
the property, we need to make sure that merging functions are applied to the weight
computed in the caller just before the call and the weight computed by the callee. We
enforce this using Eqn. (2). The STACK values that are calculated for rule sequences in
§3.2 also does the same in Eqn. (1)[Pg. 441]. This means that Lem. 1 still holds and
the post∗ algorithm correctly solves this more general version of GPS. However, the
pre∗ algorithm is closely based on Defn. 8 and does not solve the generalized version
of GPP based on the above alternative definition.
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Abstract. Automaton-based static program analysis has proved to be
an effective tool for bug finding. Current tools generally re-analyze a pro-
gram from scratch in response to a change in the code, which can result
in much duplicated effort. We present an inter-procedural algorithm that
analyzes incrementally in response to program changes and present ex-
periments for a null-pointer dereference analysis. It shows a substantial
speed-up over re-analysis from scratch, with a manageable amount of
disk space used to store information between analysis runs.

1 Introduction

Tools based on model checking with automaton specifications have been very
effective at finding important bugs such as buffer overflows, memory safety vio-
lations, and violations of locking and security policies. Static analysis tools such
as MC/Coverity [1] and Uno [2], and model checking tools such as SLAM [3]
are based on inter-procedural algorithms for propagating dataflow information
[4, 5, 6, 7]. These algorithms perform a reachability analysis that always starts
from scratch. For small program changes—which often have only a localized
effect on the analysis—this can be inefficient.

Our main contribution is to present the first, to our knowledge, incremen-
tal algorithms for safety analysis of recursive state machines. We demonstrate
how these algorithms can be used to obtain simple—yet general and precise—
incremental automaton-based program analyses. We give two such algorithms:
one that operates in the forward direction from the initial states and another
that operates “inside-out” from the locations of the program changes. These
have different tradeoffs, as is true of forward and backward algorithms for model
checking safety properties. The key to both algorithms is a data structure called
a derivation graph, which records the analysis process. In response to a program
change, the algorithms re-check derivations recorded in this graph, pruning those
that have been invalidated due to the change and adding new ones. This repair
process results in a new derivation graph, which is stored on disk and used for
the following increment.
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A prototype implementation of these algorithms has been made for the Orion
static analyzer for C and C++ programs [8]. Our measurements show significant
speedup for both algorithms when compared with a non-incremental version.
This comes at the expense of a manageable increase in disk usage for storing
information between analysis runs. We expect our algorithms to be applicable
to many current program analysis tools.

The algorithms we present are incremental forms of a standard model check-
ing algorithm. As such, their verification result is identical to that of the original
algorithm. The implementation is part of a static analysis tool that checks an
abstraction of C or C++ code. Thus, there is some imprecision in its results:
the analysis may report false errors and miss real ones. However, the incremen-
tal algorithms produce reports with the same precision as the non-incremental
algorithm.

Incremental model checking may have benefits beyond speeding up analysis.
One direction is to trade the speed gain from incremental analysis for higher pre-
cision in order to reduce the number of false errors reported. Another direction
is to integrate a fine-grained incremental model checker into a program develop-
ment environment, so that program errors are caught immediately, as has been
suggested for testing [9]. A third direction is to use an incremental model checker
to enable correct-by-construction development, as suggested by Dijkstra [10]. In
this scenario, instead of applying model checking after a program is written,
an incremental model checker can maintain and update a proof of correctness
during program development. Our work is only a first step towards realizing the
full potential of these possibilities.

Experimental data and full proofs of theorems are available in an expanded
version of this paper [11].

1.1 An Example

The input to the basic algorithm is a program, described by a collection of
control-flow graphs (CFGs), and a checking automaton. The nodes of a CFG
represent control locations, while edges are labeled either with simple assignment
statements, (side-effect free) assertions, or function calls. In the model checking
view, the (possibly non-deterministic) checking automaton “runs” over matched
call-return paths in this collection of CFGs, flagging a potential program error
whenever the current run enters an error state.

The basic model checking algorithm works by building, on-the-fly, a “syn-
chronous product” graph of the collective CFGs with the automaton. At a func-
tion call edge, this product is constructed by consulting a summary cache of
entry-exit automaton state pairs for the function. Using this cache has two conse-
quences: it prevents infinite looping when following recursive calls and it exploits
the hierarchical function call structure, so that function code is not unnecessarily
re-examined.

The key to the incremental version of the algorithm is to observe that the
process of forming the synchronous product can be recorded as a derivation
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int *p, x, y ;
setp() { if C then p = &x ; }
usep() { y = *p ; }
main() { setp() ; usep() ; }

(a)

1

2

3

main:

call setp

call usep

4

5

6

setp:

C
!C

p = &x

7

8

usep:

y = *p

(b)

(1, Z) (4, Z)

(5, Z)

(6, Z)

(6, NZ)

(2, Z)

(2, NZ)

(7, Z) (8, ERR)

(7, NZ) (8, NZ) (3, NZ)
call setp

C

!C

p = &x

ret setp

ret setp call usep

call usep

y = *p

y = *p

ret usep

main setp main usep main

(c)

Fig. 1. (a) An example program, (b) its function CFGs, and (c) the derivation graph

graph. After a small change to the CFGs, it is likely that most of the process of
forming the synchronous product is a repetition of the earlier effort. By storing
the previous graph, this repetitive calculation can be avoided by checking those
portions that may have been affected by the change, updating derivations only
when necessary.

To illustrate these ideas, consider the program in Fig. 1(a). The correctness
property we are interested in is whether the global pointer p is initialized to a
non-null value before being dereferenced. A simple automaton (not shown) to
check for violations of this property has three states: Z, indicating p may be null;
NZ, indicating p is not null; and the error state ERR indicating p is dereferenced
when it may be null.

Figures 1(b) and 1(c) show, respectively, the CFGs for this program and the
resulting derivation graph (in this case a tree). Each derivation graph node is
the combination of a CFG node and an automaton state. If condition C holds
on entry to setp (the upper branch from the state (4, Z) in setp), the function
returns to main with the automaton state NZ, and execution proceeds normally
to termination. If C does not hold (the lower branch), setp returns to main with
the automaton state Z. On the statement “y = *p”, the automaton moves to
the state ERR and an error is reported in usep.

The incremental algorithm operates on the derivation graph data structure.
Besides this graph, its input consists of additions, deletions, and modifications to
CFG edges. The basic idea is simple: inspect each derivation step to determine
whether it is affected by a change; if so, remove the derivation and re-check the
graph from the affected point until a previously explored state is encountered.

For our example, consider the revision obtained by replacing the body of
setp() by “x++; p = &x;”. The new CFGs are shown in Fig. 2(a). Figure 2(b)
shows the incremental effect on the derivation graph. The removal of the if
statement has the effect of removing the conditional branch edges (dashed) from
the graph, making the previous error state unreachable. The addition of x++
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1
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main:

call setp

call usep
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55′
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setp:

x++

p = &x

7

8

usep:

y = *p

(a)

(1, Z) (4, Z)

(5, Z)

(6, Z)

(5′, Z)

(6, NZ) etc.

call setp

C

p = &x

!C

x++
p = &x

main setp

(b)

Fig. 2. (a) The revised CFGs and (b) a portion of the incremental derivation graph

has the effect of adding the state (5′, Z) and two edges (bold) to the graph.
After processing these edges, we get to state (6, NZ), which is identical to the
corresponding state in the previous analysis. At this point, we should be able
to terminate the analysis. This is a simplified picture: our algorithms actually
operate somewhat differently. In particular, the backward algorithm will also
inspect the derivation graph in main, but not that for usep.

2 The Full Analysis Algorithm

A program is given as a set F of functions, with a distinguished initial function,
main. Each function is represented by a CFG, which is a tuple (N,Σ,E). Here,
N is a finite set of control locations containing the distinguished locations ↓
(entry) and ↑ (exit); Σ is a set of (simple) program statements (assignments and
assertions); and E is the set of edges. Let Σ′ be Σ together with call statements
{call(f) | f ∈ F}. E is a subset of (N\{↑})×Σ′×N . We require that there are
no calls to functions outside F . For simplicity of exposition, we do not represent
function call arguments and return values, or variables and their scoping rules.
The implementation takes each of these features into consideration.

Next we define the executions of a program. A position is a pair (f, n), where
f is a function and n is a node in (the CFG for) f . A (global) program state is a
sequence (f1, n1) · · · (fk, nk) of positions, representing a point during execution
where control resides at position (fk, nk) and (f1, n1) · · · (fk−1, nk−1) is the stack
of return locations that is in effect at this point. We define a labeled transition
system on program states, as follows.

1. (f1, n1) · · · (fk, nk) a→ (f1, n1) · · · (fk, n
′
k) iff (nk, a, n

′
k) is an edge in fk and

a is not a call
2. (f1, n1) · · · (fk, nk) → (f1, n1) · · · (fk, n

′
k)(f ′, ↓) iff (nk, call(f ′), n′k) is an edge

in fk

3. (f1, n1) · · · (fk−1, nk−1)(fk, ↑) → (f1, n1) · · · (fk−1, nk−1)

An execution is a finite path in this transition system that begins with the pro-
gram state (main, ↓), consisting of just the initial position. Such an execution
generates a trace consisting of the sequence of labels (which are program state-
ments) along it. Note that this is the definition of a recursive state machine [6, 7],
restricted to the case of finite executions.
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add-to-workset(c)

1 if c is not marked then
2 workset ← workset ∪ {c}
3 mark c

follow-edge(c, e)

1 // c=(f,n,r,q), e=(n,a,n′)
2 if a = call(f ′) then
3 // use summaries; do book-keeping
4 add-to-workset((f ′, ↓, q, q))
5 Add c to call -sites(f ′)
6 for q′ : 〈q, q′〉 ∈ summary(f ′) do
7 add-to-workset((f, n′, r, q′))
8 else
9 // follow automaton transition

10 for q′ : (q, a, q′) ∈ Δ do
11 add-to-workset((f, n′, r, q′))

step(c = (f, n, r, q))

1 if q ∈ F then
2 report-error(c)
3 if n =↑ then
4 // add a summary pair
5 Add 〈r, q〉 to summary(f)
6 workset←workset ∪ call -sites(f)
7 else
8 // follow a CFG edge
9 for e ∈ edges(n) do

10 follow-edge(c, e)

analyze

1 workset ← {(main, ↓, q, q) | q ∈ Q̂}
2 while workset �= ∅ do
3 Remove some c ∈ workset
4 step(c)

Fig. 3. Pseudo-code for the Full Algorithm

Analysis properties are represented by (non-deterministic, error detecting)
automata with Σ as input alphabet. An analysis automaton is given by a tuple
(Q, Q̂,Δ, F ), where Q is a set of (automaton) states, Q̂ ⊆ Q is a set of initial
states, Δ ⊆ Q×Σ ×Q, is a transition relation, and F ⊆ Q is a set of rejecting
states. A run of the automaton on a trace is defined in the standard way. A
rejecting run is a run that includes a rejecting state. Note that in this simplified
presentation, the set Σ of program statements does not include function calls and
returns, and hence the automata cannot refer to them. In the implementation,
transitions that represent function calls and returns (rules 2 and 3 above) carry
special labels, and the error detecting automaton can react to them by changing
its state, e.g. to perform checks of the arguments passed to a function, or the
value returned by it.

We emphasize that an automaton operates on the syntax of the program;
the relationship with the semantics is up to the automaton writer. For instance,
one might define an under-approximate automaton, so that any error reported
by the automaton check is a real program error, but it might not catch all real
errors. It is more common to define an over-approximate automaton, so that
errors reported are not necessarily real ones, but the checked property holds if
the automaton does not find any errors.

The pseudo-code for the from-scratch analysis algorithm (Full) is shown in
Fig. 3. It keeps global configurations in a work-set; each configuration is a tuple
(f, n, r, q), where (f, n) is a position and r, q are automaton states. The presence
of such a configuration in the work-set indicates that it is possible for a run of the
automaton to reach position (f, n) in automaton state q as a result of entering
f with automaton state r (the “root” state). In addition, the algorithm keeps a
set of summaries for each function, which are entry-exit automaton state pairs,
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and a set of known call-sites, which are configurations from which the function is
called. analyze repeatedly chooses a configuration from the work-set and calls
step to generate its successors. In step, if the automaton is in an error state, a
potential error is reported. (In an implementation, the report-error procedure
may also do additional work to check if the error is semantically possible.)

Much of the work is done in the follow-edge procedure. For a non-call
statement, the procedure follows the automaton transition relation (Line 10).
For a function call, the procedure looks up the summary table to determine
successor states (Line 6). If there is no available summary, registering the cur-
rent configuration in call -sites(f ′) and creating a new entry configuration for f ′

ensures that a summary entry will be created later, at which point this config-
uration is re-examined (Line 6 in step). We assume that visited configurations
are kept in a suitable data structure (e.g., a hash-table).

Theorem 1. The Full algorithm reports an error at a configuration (f, n, r, q),
for some r, q, if and only if there is a program execution ending at a position
(f, n), labeled with trace t, such that the automaton has a rejecting run on t.

3 A First Incremental Algorithm: IncrFwd

Input: A textual program change can be reflected in the CFGs as the addition,
deletion, or modification of control-flow edges. It can also result in the redefini-
tion of the number and types of variables. Our incremental algorithms expect
as input CFG changes, and repair the derivation graph accordingly. Changes to
types and variables correspond to automaton modifications. The algorithm can
be easily modified for the situation where the property—and not the program—
changes, since we are maintaining their joint (i.e., product) derivation graph.
Data Structure: The incremental algorithm records a derivation relation on
configurations. This is done in the procedure follow-edge: whenever a new
configuration of the form (f, n′, r, q′) is added after processing a configuration
(f, n, r, q) and an edge a, a derivation edge (f, n, r, q) .a (f, n′, r, q′) is recorded.
This results in a labeled and directed derivation graph. Notice that the derivation
graph can be viewed also as a tableau proof that justifies either the presence or
absence of reachable error states.

Given as input a set of changes to the CFGs and a derivation graph, the
incremental algorithm first processes all the modifications, then the deletions,
and finally the additions. This order avoids excess work where new configurations
are added only to be retracted later due to CFG deletions.
Modifications: For an edge e = (n, a, n′) modified to e′ = (n, b, n′) in function
f , if each derivation of the form (f, n, r, q) .a (f, n′, r, q′) holds also for the new
statement b—which is checked by code similar to that in follow-edge— there
is no need to adjust the derivation graph. Otherwise, the modification is handled
as the deletion of edge e and the addition of e′.
Additions: For a new edge e = (n, a, n′) in the CFG of f , follow-edge is
applied to all configurations of the form c = (f, n, r, q), for some r, q, that are
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add-to-workset(c)

1 if c is not marked then
2 workset ← workset ∪{c}
3 mark c

check-edge(e = c "a c′)

1 // c = (f,n,r,q), c′ = (f,n′,r,q′)
2 if (n, a, n′) is a deleted edge then
3 skip
4 elseif a = call(f ′) then
5 // use stored summaries
6 add-to-workset((f ′, ↓, q, q))
7 Add c to call -sites(f ′)
8 if 〈q, q′〉 is marked in f ′ then
9 add-to-workset(c′); mark e

10 else
11 add-to-workset(c′); mark e

check-step(c = (f, n, r, q))

1 if n =↑ then
2 Mark the summary 〈r, q〉 in f
3 workset ← workset ∪ call -sites(f)
4 else
5 for each deriv. edge e from c do
6 check-edge(e)

check-derivations(Fns)

1 for f ∈ Fns do
2 Unmark f ’s configs, edges,

summaries, and call sites that
originate in Fns

3 workset ← ext-inits(Fns)
4 while workset �= ∅ do
5 Choose and remove c ∈ workset
6 check-step(c)
7 Remove unmarked elements

Fig. 4. The IncrFwd algorithm for Deletions

present in the current graph. Consequently, any newly generated configurations
are processed as in the full algorithm.
Deletions: Deletion is the non-trivial case. Informally, the idea is to check all
of the recorded derivation steps, disconnecting those that are based on deleted
edges. The forward-traversing deletion algorithm (IncrFwd) is shown in Fig. 4.
The entry point is the procedure check-derivations, which is called with the
full set of functions, F . The auxiliary function ext-inits(F ) returns the set of
entry configurations for functions in F that arise from a call outside F . The initial
configurations for main are considered to have external call sites. This gives a
checking version of the full analysis algorithm. Checking an existing derivation
graph can be expected to be faster than regenerating it from scratch with the
full algorithm. The savings can be quite significant if the automaton transitions
Δ are computed on-the-fly—notice that the algorithm does not re-compute Δ.
The similarity between the Full and IncrFwd algorithms can be formalized in
the following theorem.

Theorem 2. The derivation graph resulting from the IncrFwd algorithm is the
same as the graph generated by the Full analysis algorithm on the modified CFGs.

4 A Second Incremental Algorithm: IncrBack

The IncrFwd algorithm checks derivations in a forward traversal. This might
result in unnecessary work: if only function g is modified, functions that are
not on any call path that includes g are not affected, and do not need to be
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retrace(c = (f, n, r, q))

1 if c is not marked then
2 return false
3 elseif f = main then
4 return true
5 else
6 return (∃c′ = (f ′, n′, r′, r):

c′ ∈ call -sites(f) ∧ retrace(c′))

incr-back()

1 // bottom-up repair
2 for each SCC C (in reverse

topological order) do
3 if affected(C) then
4 check-derivations(C)
5 // remove unreachable errors
6 for each error configuration c do
7 if (not retrace(c)) then
8 unmark c

Fig. 5. The IncrBack algorithm for Deletions

checked. Moreover, if the change to g does not affect its summary information,
even its callers do not need to be checked. Such situations can be detected with
an “inside-out” algorithm, based on the maximal strongly connected component
(SCC) decomposition of the function call graph. (A non-trivial, maximal SCC
in the call graph represents a set of mutually recursive functions.)

The effect of a CFG edge deletion from a function f propagates both upward
and downward in the call graph. Since some summary pairs for f may no longer
be valid, derivations in f ’s callers might be invalidated. In the other direction, for
a function called by f , some of its entry configurations might now be unreachable.

The SCC-based algorithm (IncrBack) is shown in Fig. 5. It works bottom-
up on the SCC decomposition, checking first the lowest (in topological order)
SCC that is affected. The function affected(C) checks whether a function
in C is modified, or whether summaries for any external function called from
C have been invalidated. For each SCC C, one can inductively assume that
summaries for functions below C are valid. Hence, it is only necessary to examine
functions in C. This is done by the same check-derivations procedure as in
Fig. 4, only now applied to a single SCC instead of the full program. Note that
check-derivations initially invalidates summaries in C that cannot be justified
by calls outside C.

This process can result in over-approximate reachability information. Con-
sider a scenario where f calls g. Now suppose that f is modified. The algorithm
repairs derivations in f , but does not touch g. However, derivations in f repre-
senting calls to g might have been deleted, making corresponding entry configu-
rations for g unreachable. To avoid reporting spurious errors resulting from this
over-approximation, the (nondeterministic) retrace procedure re-determines
reachability for all error configurations.

Theorem 3. The derivation graph after the IncrBack algorithm is an over-
approximation of the graph generated by the full analysis algorithm on the mod-
ified CFGs, but has the same set of error configurations.
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5 Complexity and Optimality

The non-incremental algorithm takes time and space linear in the product of
the size of the automaton and the size of the collective control-flow graphs.
Algorithms with better bounds have been developed [6, 7], but these are based
on knowing in advance the number of exit configurations of a function; this is
impossible for an on-the-fly state exploration algorithm.

From their similarity to the non-incremental algorithm, it follows that the in-
cremental algorithms cannot do more work than the non-incremental one, so they
have the same worst-case bound. However, worst-case bounds are not particu-
larly appropriate, since incremental algorithms try to optimize for the common
case. Ramalingam and Reps [12, 13] propose to analyze performance in terms of
a quantity ||δ||, which represents the difference in reachability after a change.
They show that any “local” incremental algorithm like ours has worst-case in-
puts where the work cannot be bounded by a function of ||δ|| alone. At present,
the precise complexity of incremental reachability remains an open question [14].

6 Implementation and Experiments

We have implemented the Full, IncrFwd, and IncrBack algorithms in the Orion
static analyzer. In the implementation, we take a function as the unit of change.
This is done for a number of reasons. It is quite difficult, without additional
machinery (such as an incremental parser), to identify changes of finer granular-
ity. It also fits well into the normal program development process. Furthermore,
functions scale well as a unit of modification—as the size of a program increases,
the relative size of individual functions decreases. In the case of large programs,
attempting to identify changes at the CFG or parse tree level may not lead to
significant gains.

We present data on five open source applications: sendmail, the model checker
spin, spin:tl (spin’s temporal logic utility), guievict (an X-Windows process mi-
gration tool) and rocks (a reliable sockets utility). We perform an interprocedural
program analysis from a single entry function, checking whether global pointers
are set before being dereferenced. For sendmail and spin, this analysis is run
for a small subset of the program’s global pointers in order to reduce the time
necessary for the experiments. We simulate the incremental development of code
as follows. For each function f in the program, we run the incremental analysis
on the program with f removed (i.e., replaced with an empty stub). Then we
insert f and run the incremental analysis. The time taken for this incremental
analysis is compared with a full analysis of the program with f . We thus have
one analysis run for each function in the program; each run represents an incre-
mental analysis for the modification of a single function (in this case, replacing
an empty stub with the actual body of the function).

This experiment exercises both the addition and deletion algorithms: the
modification of a function is equivalent to deleting and reinserting a call edge at
each of its call sites; if the function summary changes, derivations based on the
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Table 1. Experimental results

Lines Reachable No. ptrs Full analysis Average speedup Incr. data

of code functions analyzed time (s) IncrFwd IncrBack (KB)

sendmail 47,651 336 3 33.75 1.6 8.6 73.72
spin 16,540 348 6 24.91 1.3 10.1 91.61
spin:tl 2,569 93 2 1.09 1.3 8.0 7.01
guievict 4,545 115 1 0.60 1.4 5.9 3.54
rocks 4,619 134 1 0.66 1.3 4.3 4.36

old summary are deleted and new derivations are generated based on the newly
available, now-accurate summary.

The experimental results are shown in Table 1. The overall average speedup
for IncrBack is 8.2; the average for IncrFwd is 1.4. IncrFwd improves on Full
essentially by “caching” state data between analysis runs. This caching behavior
is able to provide modest performance increases, but the average-case perfor-
mance of the algorithm is unbounded in ||δ||. IncrBack is able to improve on
the performance of IncrFwd by skipping large portions of the derivation graph,
when possible, and using the call graph structure of the program to minimize
its workload. This intuition is confirmed by the experimental results.

To better illustrate the performance characteristics of IncrBack, Fig. 6 plots
the speedups for each analysis run in terms of percentiles. For each percentage
x, we plot the minimum speedup for the best-performing x% of analysis runs.
For example, 50% of analysis runs overall showed a speedup of at least 7.5
(i.e., 7.5 is the median speedup). The legend shows the number of analysis runs
(i.e., the number of (statically) reachable functions) for each benchmark. The
data on the horizontal axis is plotted in uniform intervals of length 100/N for
each benchmark. The plateaus evident in the plots for spin, spin:tl, and rocks
represent clustering of data values (possibly due to rounding) rather than a
sparsity of data points.

There was quite a bit of variation between benchmarks: over 50% of runs on
spin showed a speedup of at least 12.4, while the maximum speedup for rocks was
only 5.5. It is likely that larger programs will exhibit higher speedups in general.
We observed no strong correlation between the the speedup for a function and
its size, its depth in the call graph, or its number of callers and callees (see [11]).

The tests we describe here are conservative in the sense that we only analyze
functions that are reachable from a single distinguished entry function. Prelim-
inary tests on all of the entry functions in guievict show an average speedup of
11.3 (instead of 5.9)—since many functions are unconnected in the call graph to
the modified function, the full algorithm does much unnecessary work.

These tests concentrate on changes that are quite small with respect to the
total size of the program. We hypothesize that changes on the order of a sin-
gle function are a reasonable model of how the analysis would be applied in a
development scenario. However, we have also run tests in which 10-50% of the
functions in the program are modified in each increment. In these tests, IncrBack
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Fig. 6. Distribution of speedups for IncrBack, with quantiles for all at right

showed a more modest average speedup of 2.5, with larger speedups for smaller
incremental changes.

Table 1 also shows the size of the incremental data stored after the re-run of
the incremental analysis, on the complete program. This data may be written
to disk, taking time proportional to the size. In an interactive setting, this time
can be considered irrelevant: the user can begin inspecting errors while the tool
performs I/O.

7 Related Work and Conclusions

The approach of automaton-based model checking of push-down systems [15, 6, 7]
has contributed algorithms for program analysis that are conceptually simple and
powerful. We have developed incremental versions of these algorithms and shown
that this approach leads to incremental dataflow algorithms that are simple yet
precise and general. The algorithms lend themselves to simple implementations
showing excellent experimental results: a factor of 8.2 on average for IncrBack,
at the cost of a manageable overhead in storage. To the best of our knowledge,
the algorithms we propose are the first for inter-procedural, automaton-based
static analysis.

There is a strong similarity between the behavior of our checking procedure
and tracing methods for garbage collection [16] (cf. [17]). A key difference is
the pushdown nature of the derivation graphs, which has no analogy in garbage
collection.

Incremental data flow analysis has been studied extensively. Existing data
flow algorithms are not directly applicable to model checking, because they either
compute less precise answers than their from-scratch counterparts; are applicable
only to restricted classes of graphs, such as reducible flow-graphs; or concern
specific analyses, such as points-to analysis [18, 19, 20] (cf. the excellent survey
by Ramalingam and Reps [21]). Sittampalam et al. [22] suggest an approach to
incremental analysis tied to program transformation (cf. [23]). Since analyses
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are specified on the abstract syntax tree, the technique only applies to idealized
Pascal-like languages. The SCC decomposition has been applied to the flow
graphs of individual functions to speed up analysis by Horwitz et al. [24] and
Marlowe and Ryder [25].

Perhaps most closely related to our work is the research on the incremental
evaluation of logic programs by Saha and Ramakrishnan [26, 27]. Their support
graphs play the same role as derivation graphs in our work. The techniques used
for updating these graphs are reminiscent of Doyle’s truth maintenance sys-
tem [28]. While inter-procedural analysis is readily encoded as a logic program
(cf. [6]), we suspect that it may be hard to recover optimizations such as the
SCC-based method. Previous algorithms for incremental model checking [29, 30]
do not handle either program hierarchy or recursion, working instead with a flat
state space. Some tools (e.g., Uno [2], MOPS [31]) pre-compute per-file informa-
tion; however, the interprocedural analysis is still conducted from scratch.

The Orion tool in which the algorithms are implemented is aimed at pro-
ducing error reports with a low false-positives ratio. In this context, it seems
especially attractive to devote the time gained by incrementalization towards a
further improvement of this ratio, especially for inter-procedural analysis.
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Abstract. We present a new method for solving the fixed point equa-
tions that appear in the static analysis of programs by abstract inter-
pretation. We introduce and analyze a policy iteration algorithm for
monotone self-maps of complete lattices. We apply this algorithm to the
particular case of lattices arising in the interval abstraction of values
of variables. We demonstrate the improvements in terms of speed and
precision over existing techniques based on Kleene iteration, including
traditional widening/narrowing acceleration mecanisms.

1 Introduction and Related Work

One of the important goals of static analysis by abstract interpretation (see
Cousot & Cousot [9]) is the determination of invariants of programs. They are
generally described by over approximation (abstraction) of the sets of values
that program variables can take, at each control point of the program. And they
are obtained by solving a system of (abstract) semantic equations, derived from
the program to analyze and from the domain of interpretation, or abstraction,
i.e. by solving a given fixed point equation in an order-theoretic structure.

Among the classical abstractions, there are the non-relational ones, such as
the domain of intervals [9] (invariants are of the form vi ∈ [c1, c2]), of constant
propagation (vi = c), of congruences [16] (vi ∈ aZ + b). Among the relational
ones we can mention polyedra [28] (α1v1 + · · ·+αnvn ≤ c ), linear equalities [23]
(α1v1 + · · ·+αnvn = c), linear equalities modulo [17] (α1v1 + · · ·+αnvn ≡ a) or
more recently the octagon domain [26] (vi − vj ≤ c).

All these domains are (order-theoretic) lattices, for which we could think of
designing specific fixed point equation solvers instead of using the classical, and
yet not very efficient value iteration algorithms, based on Kleene’s iteration. A
classical way to improve these computations is to use widening/narrowing oper-
ators [10]. They improve the rapidity of finding an over-approximated invariant
at the expense of accuracy sometimes; i.e. they reach a post-fixed point or a
fixed point, but not always the least fixed point of the semantic equations (we
review some elements of this method in Section 2, and give examples in the case
of the interval lattice).
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In this paper, we introduce a new algorithm, based on policy iteration and
not value iteration, that correctly and efficiently solves this problem (Section 3).
It shows good performances in general with respect to various typical programs,
see Section 4.4. We should add that this work started from the difficulty to find
good widening and narrowing operators for domains used for characterizing the
precision of floating-point computations, used by some of the authors in [15].

Policy iteration was introduced by Howard [21] to solve stochastic control
problems with finite state and action space. In this context, a policy is a feed-
back strategy (which assigns to every state an action). The classical policy it-
eration generalizes Newton’s algorithm to the equation x = f(x), where f is
monotone, non-differentiable, and convex. The convergence proof is based on the
discrete version of the maximum principle for harmonic functions. This method
is experimentally efficient, although its complexity is still not well understood
theoretically. We refer the reader to the book of Puterman [29] for background.

It is natural to ask whether policy iteration can be extended to the case
of zero-sum games: at each iteration, one fixes the strategy of one player, and
solves a non-linear (optimal control problem) instead of a linear problem. This
idea goes back to Hoffman and Karp [20]. The central difficulty in the case of
games is to obtain the convergence, because the classical (linear) maximum prin-
ciple cannot be applied any more. For this reason, the algorithm of [20] requires
positivity conditions on transition probabilities, which do not allow to handle
the case of deterministic games. In applications to static analysis, however, even
the simplest fixed point problems lead to deterministic game problems. A policy
iteration algorithm for deterministic games with ergodic reward has been given
by Cochet-Terrasson, Gaubert, and Gunawardena [6, 14]: the convergence proof
relies on max-plus spectral theory, which provides nonlinear analogues of results
of potential theory.

In the present paper (elaborating on [8]), we present a new policy iteration
algorithm, which applies to monotone self-maps of a complete lattice, defined
by the infimum of a certain family satisfying a selection principle. Thus, policy
iteration is not limited to finding fixed point that are numerical vectors or func-
tions, fixed points can be elements of an abstract lattice. This new generality
allows us to handle lattices which are useful in static analysis. For the fixed point
problem, the convergence analysis is somehow simpler than in the ergodic case
of [6, 14]: we show that the convergence is guaranteed if we compute at each step
the least fixed point corresponding to the current policy. The main idea of the
proof is that the map which assigns to a monotone map its least fixed point is in
some weak sense a morphism with respect to the inf-law, see Theorem 1. This
shows that policy iteration can be used to compute the minimal fixed points, at
least for a subclass of maps (Theorem 3 and Remark 3).

Other fixed point acceleration techniques have been proposed in the litera-
ture. There are mainly three types of fixed point acceleration techniques, as used
in static analysis. The first one relies on specific information about the struc-
ture of the program under analysis. For instance, one can define refined iteration
strategies for loop nests [2], or for interprocedural analysis [1]. These methods
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are completely orthogonal to the method we are introducing here, which does
not use such structural properties. However, they might be combined with policy
iteration, for efficient interprocedural analysis for instance. This is beyond the
scope of this paper.

Another type of algorithm is based on the particular structure of the abstract
domain. For instance, in model-checking, for reachability analysis, particular it-
eration strategies have been designed, so that to keep the size of the state space
representation small (using BDDs, or in static analyzers by abstract interpreta-
tion, using binary decision graphs, see [25]), by a combination of breadth-first
and depth-first strategies, as in [31]. For boolean equations, some authors have
designed specific representations which allow for relatively fast least fixed point
algorithms. For instance, [24] uses Beḱic-Leszczyloiwski theorem. In strictness
analysis, representation of boolean functions by “frontiers” has been widely used,
see for instance [22] and [4]. Our method here is general, as hinted in Section 3.
It can be applied to a variety of abstract domains, provided that we can find a
“selection principle”. This is exemplified here on the domain of intervals, but we
are confident this can be equally applied to octagons and polyedra.

Last but not least, there are some general purpose algorithms, such as general
widening/narrowing techniques, [10], with which we compare our policy iteration
technique. There are also incremental or “differential” computations (in order
not to compute again the functional on each partial computations) [12], [13]. In
fact, this is much like the static partitioning technique some of the authors use
in [30]. Related algorithms can be found in [11], [27] and [3].

2 Kleene’s Iteration Sequence, Widenings and
Narrowings

In order to compare the policy iteration algorithm with existing methods, we
briefly recall in this section the classical method based on Kleene’s fixed point
iteration, with widening and narrowing refinements (see [10]).

Let (L,≤) be a complete lattice. We write ⊥ for its lowest element, & for its
greatest element, ∪ and ∩ for the meet and join operations, respectively. We say
that a self-map f of a complete lattice (L,≤) is monotone if x ≤ y ⇒ f(x) ≤
f(y). The least fixed point of a monotone f can be obtained by computing the
sequence: x0 = ⊥, xn+1 = f(xn) (n ≥ 0), which is such that x0 ≤ x1 ≤ . . .
If the sequence becomes stationary, i.e., if xm = xm+1 for some m, the limit
xm is the least fixed point of f . Of course, this procedure may be inefficient,
and it needs not even terminate in the case of lattices of infinite height, such as
the simple interval lattice (that we use for abstractions in Section 4). For this
computation to become tractable, widening and narrowing operators have been
introduced, we refer the reader to [10] for a good survey. As we will only show
examples on the interval lattice, we will not recall the general theory. Widening
operators are binary operators ∇ on L which ensure that any finite Kleene
iteration x0 = ⊥, x1 = f(x0), . . . , xk+1 = f(xk), followed by an iteration of
the form xn+1 = xn∇f(xn), for n > k, yields an ultimately stationary sequence,
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void main() {
int x=0; // 1
while (x<100) { // 2
x=x+1; // 3

} // 4
}

x1 = [0, 0]
x2 = ]−∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)

Fig. 1. A simple integer loop and its semantic equations

whose limit xm is a post fixed point of f , i.e. a point x such that x ≥ f(x).
The index k is a parameter of the least fixed point solver. Increasing k increases
the precision of the solver, at the expense of time. In the sequel, we choose
k = 10. Narrowing operators are binary operators Δ on L which ensure that
any sequence xn+1 = xnΔf(xn), for n > m, initialized with the above post fixed
point xm, is eventually stationary. Its limit is required to be a fixed point of f
but not necessarily the least one.

Consider first the program at the left of Figure 1. The corresponding semantic
equations in the lattice of intervals are given at the right of the figure. The inter-
vals x1, . . . , x4 correspond to the control points 1, . . . , 4 indicated as comments
in the C code. We look for a fixed point of the function f given by the right
hand side of these semantic equations. The standard Kleene iteration sequence
is eventually constant after 100 iterations, reaching the least fixed point. This
fixed point can be obtained in a faster way by using the classical (see [10] again)
widening and narrowing operators:

[a, b]∇[c, d] = [e, f ] with e =
{
a if a ≤ c
−∞ otherwise and f =

{
b if d ≤ b
∞ otherwise,

[a, b]Δ[c, d] = [e, f ] with e =
{
c if a = −∞
a otherwise and f =

{
d if b = ∞
b otherwise.

The iteration sequence using widenings and narrowings takes 12 iterations be-
cause we chose k = 10, and it reaches the least fixed point of f :

x1
2 = [0, 0]
x1

3 = [1, 1]
x1

4 = ⊥
. . .

x9
2 = [0, 8]
x9

3 = [1, 9]
x9

4 = ⊥

(widening)
x10

2 = [0,∞[
x10

3 = [1,∞[
x10

4 = [100,∞[

(narrowing)
x11

2 = [0, 99[
x11

3 = [1, 100]
x11

4 = [100, 100]

3 Policy Iteration Algorithm in Complete Lattices

3.1 Lower Selection

To compute a fixed point of a self-map f of a lattice L, we shall assume that f
is effectively given as an infimum of a finite set G of “simpler” maps. Here, and
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in the sequel, the infimum refers to the pointwise ordering of maps. We wish to
obtain a fixed point of f from the fixed points of the maps of G. To this end, the
following general notion will be useful.

Definition 1 (Lower selection). We say that a set G of maps from a set X
to a lattice L admits a lower selection if for all x ∈ X, there exists a map g ∈ G
such that g(x) ≤ h(x), for all h ∈ G.

Setting f = inf G, we see that G has a lower selection if and only if for all
x ∈ X , we have f(x) = g(x) for some g ∈ G. We next illustrate this definition.

Example 1. Take L = R, and consider the self-map of L, f(x) =
⋂

1≤i≤m(ai +
x)∪bi , where ai, bi ∈ R. Up to a trivial modification, this is a special case of min-
max function [18, 6, 19]. The set G consisting of the m maps x '→ (ai + x) ∪ bi
admits a lower selection. We represent on Figure 2 the case where m = 5,
b1 = −5, a1 = 2.5, b2 = −3, a2 = 0.5, b3 = 1, a3 = −3, b4 = 1.5, a4 = −4, b5 =
2.5, a5 = −4.5. The graph of the map f is represented in bold.

3.2 Universal Policy Iteration Algorithm

In many applications, and specially in static analysis of programs, the smallest
fixed point is of interest. We shall denote by f− the smallest fixed point of a
monotone self-map f of a complete lattice L, whose existence is guaranteed by
Tarski’s fixed point theorem. We first state a simple theoretical result which
brings to light one of the ingredients of policy iteration.

Theorem 1. Let G denote a family of monotone self-maps of a complete lattice
L with a lower selection, and let f = inf G. Then f− = infg∈G g− .

Theorem 1 is related to a result of [7] concerning monotone self-maps of Rn

that are nonexpansive in the sup-norm (see also the last chapter of [5]).
We now state a very general policy iteration algorithm. The input of the

algorithm consists of a finite set G of monotone self-maps of a lattice L with a
lower selection. When the algorithm terminates, its output is a fixed point of
f = inf G.

Algorithm (PI: Policy iteration in lattices).

1. Initialization. Set k = 1 and select any map g1 ∈ G.
2. Value determination. Compute a fixed point xk of gk.
3. Compute f(xk).
4. If f(xk) = xk, return xk.
5. Policy improvement. Take gk+1 such that f(xk) = gk+1(xk). Increment k

and goto Step 2.

We next show that the algorithm does terminate when at each step, the
smallest fixed-point of gk, xk = g−k is selected. We call height of a subset X ⊂ L
the maximal cardinality of a chain of elements of X .
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Theorem 2. Assume that L is a complete lattice and that all the maps of G are
monotone. If at each step k, the smallest fixed-point xk = g−k of gk is selected,
then the number of iterations of Algorithm PI is bounded by the height of {g− |
g ∈ G}, and a fortiori, by the cardinality of G.

Remark 1. Any xk ∈ L computed by Algorithm PI is a post fixed point: f(xk) ≤
xk. In static analysis of programs, such a xk yields a valid, although suboptimal,
information.

Example 2. We first give a simple illustration of the algorithm, by computing
the smallest fixed point of the map f of Example 1. Let us take the first policy
g5(x) = b5 ∪ (a5 + x) = 2.5 ∪ (−4.5 + x), which has two fixed points, +∞
and 2.5. We choose the smallest one, x1 = 2.5. We have f(x1) = g2(x1) where
g2(x) = b3 ∪ (a3 + x) = 1 ∪ (−3 + x). We take for x2 the smallest fixed point
of g2, x2 = 1. Then, the algorithm stops since f(x2) = x2. This execution is
illustrated in Figure 2. By comparison, the Kleene iteration (right) initialized at
the point −∞ takes 11 iterations to reach the fixed point.

A crucial difficulty in the application of the algorithm to static analysis is
that even when the smallest fixed points xk = g−k are always chosen, the policy
iteration algorithm need not return the smallest fixed point of f . For instance, in
Example 2, if one takes the initial policy x '→ a1 ∪ (b1 + x) or x '→ a2 ∪ (b2 + x),
we get x1 = ∞, and the algorithm stops with a fixed point of f , ∞, which is
non minimal. This shows the importance of the initial policy and of the update
rule for policies.

Although Algorithm PI may terminate with a nonminimal fixed point, it is
often possible to check that the output of the algorithm is actually the smallest
fixed point and otherwise improve the results, thanks to the following kind of

g2

g5

x2 x1 x

y

x2 x3 x11

Fig. 2. Policy iteration (left) versus Kleene iteration (right)
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results. We consider the special situation where f is a monotone self-map of R
n
,

with a restriction Rn → Rn that is nonexpansive for the sup-norm, meaning that
‖f(x) − f(y)‖∞ ≤ ‖x − y‖∞, for all x, y ∈ Rn. We shall say that such maps f
have Property N. (For instance, the maps in Example 1 all have Property N.)
The following theorem identifies situations where the uniqueness of the terminal
policy guarantees that the fixed point returned by Algorithm PI is the smallest
one.

Theorem 3. Assume that G is a finite set of monotone self-maps of R
n

that all
have Property N, that G has a lower selection, and let f = inf G. If Algorithm
PI terminates with a finite fixed point xk = g−k such that there is only one g ∈ G
such that f(xk) = g(xk), then, xk is the smallest finite fixed point of f .

Remark 2. The nonexpansiveness assumption cannot be dispensed with in The-
orem 3. Consider the self-map of R, f(x) = 0 ∩ (1 + 2x), and take the set G
consisting of the maps x '→ 0 and x '→ 1 + 2x. Algorithm PI initialized with the
map g1 = 0 stops immediately with the fixed point x1 = 0, and g1 is the only
map g in G such that g(0) = f(0), but x1 is a nonminimal finite fixed point of
f , since f(−1) = −1.

Remark 3. When the policy g such that f(xk) = g(xk) is not unique, we can
check whether xk is the smallest finite fixed point of f in the following way. We
scan the set of maps g ∈ G such that g(xk) = f(xk), until we find a fixpoint
associated to g smaller than xk, or all these maps g have been scanned. In the
former case, an improved post fixed point of f has been found and this process
can be iterated. In the latter case, a small variation of the proof of Theorem 3
shows that xk is the smallest finite fixed point of f (if all the maps in G have
Property N).

Algorithm PI requires to compute at every step a fixed point xk of the map
gk, and if possible, the minimal one, g−k . An obvious way to do so is to apply
Kleene iteration to the map gk. Although this may seem surprising at the first
sight, this implementation may preserve the performance of the algorithm. In
fact, it is optimal in Example 2, since Kleene iteration converges in only one step
for every map gk. In many cases, however, some precise information on the map
gk is available, and policy iteration will benefit from fast algorithms to compute
xk. For instance, the classical policy iteration algorithm of Howard, concerns
the special case where the maps gk are affine. In that case, the fixed point xk is
obtained by solving a linear system. A non classical situation, where the maps gk

are dynamic programming operators of deterministic optimal control problems,
i.e., max-plus linear maps, is solved in [6, 14].

4 Application to the Lattice of Intervals in Static
Analysis

In the sequel, we shall consider the set I(R) of closed intervals of R. This set,
ordered by inclusion, is a complete lattice. It will be convenient to represent
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an interval I ∈ I(R) as I = [−a, b] := {x ∈ R | −a ≤ x ≤ b} with a, b ∈
R ∪ {±∞}. We changed the sign in order to get a monotone map ψ : I '→ (a =
− inf I, b = sup I), from I(R)→ R

2 , converting the inclusion on intervals to the
componentwise order on R

2 . Observe that ψ is a right inverse of ı : (a, b) '→
[−a, b]. By extending ψ and ı to products of spaces, entrywise, we see that any
monotone self-map f of I(Rn) induces a monotone self-map of (R2)n, ψ ◦ f ◦ ı,
that we call the lift of f . The minimal fixed point of f is the image by ı of the
minimal fixed point of its lift, although our algorithms apply preferably to the
map f rather than to its lift.

4.1 The Interval Abstraction

We consider a toy imperative language with the following instructions:

1. loops: while (condition) instruction;
2. conditionals: if (condition) instruction [else instruction];
3. assignment: operand = expression; We assume here that the arithmetic

expressions are built on a given set of variables (belonging to the set V ar),
and use operators +, -, * and /, together with numerical constants (only
integers here for more simplicity).

There is a classical [10] Galois connection relating the powerset of values of
variables to the product of intervals (one for each variable). This is what gives
the correction of the classical [10] abstract semantics [[.]] , with respect to the
standard collecting semantics of this language. [[.]] is given by a set of equations
over the variables x1, . . . , xn of the program that we will show on some examples.
Each variable xi is interpreted as an interval [−x−i ;x+

i ].

4.2 Selection Property for a Family of Finitely Generated
Functions on Intervals

We now define a class of monotone self-maps of I(R), which is precisely the class
of functions arising from the semantic equations of the previous section. This
class may be thought of as an extension of the min-max functions introduced
in [18]. For an interval I = [−a, b], we set ↑ I def= [−a,∞[ and ↓ I def=]−∞, b].
Definition 2. A finitely generated function of intervals, (I(R))n → (I(R))p,
is a map f whose coordinates fj : x = (x1, . . . , xn) '→ fj(x) are terms of the
following grammar G:

CSTE ::= [−a, b] V AR ::= xi

EXPR ::= CSTE | V AR | EXPR+ EXPR |
EXPR ∗ EXPR | EXPR/EXPR | EXPR− EXPR

TEST ::= ↑ EXPR ∩EXPR | ↓ EXPR ∩ EXPR | CSTE ∩ EXPR
G ::= EXPR | TEST | G ∪G

where i can take arbitrary values in {1, . . . , n}, and a, b can take arbitrary values
in R.
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We write F for the set of such functions. The variables x1, . . . , xn correspond
to the different variables in V ar. We set x−i = − inf xi, x+

i = supxi, so that
xi = [−x−i , x+

i ]. Non-terminals CSTE, V AR, EXPR and TEST do correspond
to the semantics of constants, variables, arithmetic expressions, and (simple)
tests. For instance, the fixed point equation at the right of Figure 1 is of the
form x = f(x) where f is a finitely generated function of intervals.

In order to write maps of F as infima of simpler maps, when I = [−a, b]
and J = [−c, d], we also define l(I, J) = I (l is for “left”), r(I, J) = J (r for
“right”), m(I, J) = [−a, d] and mop(I, J) = [−c, b] (m is for “merge”). These
four operators will define the four possible policies on intervals, as shown in
Proposition 1 below.

Let G∪ be the grammar, similar to G except that we cannot produce terms
with ∩.

G∪ ::= EXPR | ↑ EXPR | ↓ EXPR | G∪ ∪G∪ |
l(G∪, G∪) | r(G∪, G∪) | m(G∪, G∪) | mop(G∪, G∪)

We write F∪ for the set of functions defined by this grammar. Terms l(G,G),
r(G,G), m(G,G) and mop(G,G) represent respectively the left, right, m and
mop policies.

The intersection of two intervals, and hence, of two terms of the grammar,
interpreted in the obvious manner as intervals, is given by the following formula:

G1 ∩G2 = l(G1, G2) ∩ r(G1, G2) ∩m(G1, G2) ∩mop(G1, G2) (1)

To a finitely generated function of intervals f ∈ F , we associate a family Π(f)
of functions of F∪ obtained in the following manner: we replace each occurrence
of a term G1 ∩G2 by l(G1, G2), r(G1, G2), m(G1, G2) or mop(G1, G2). We call
such a choice a policy. Using Equation (1), we get:

Proposition 1. If f is a finitely generated function of intervals, the set of poli-
cies Π(f) admits a lower selection. In particular, f = infΠ(f).

4.3 Implementation Principles of the Policy Iteration Algorithm

A simple static analyzer has been implemented in C++. It consists of a parser
for a simple imperative language (a very simplified C), a generator of abstract
semantic equations using the interval abstraction, and the corresponding solver,
using the policy iteration algorithm described in Section 3.

A policy is a table that associates to each intersection node in the semantic
abstraction, a value modeling which policy is chosen among l, r, m or mop, in
Equation (1). There is a number of heuristics that one might choose concerning
the initial policy, which should be a guess of the value of G1∩G2 in Equation (1).
The choice of the initial policy may be crucial, since some choices of the initial
policy may lead eventually to a fixed point which is not minimal. (In such cases,
Remark 3 should be used: it yields a heuristics to improve the fixed point, which
can be justified rigorously by Theorem 3, when the lift of f has Property N.) The
current prototype makes a sensible choice: when a term G1 ∩G2 is encountered,
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if a finite constant bound appears in G1 or G2, this bound is selected. Moreover,
if a +∞ upper bound or −∞ lower bound appears in G1 or G2, then, this bound
is not selected, unless no other choice is available (in other words, choices that
give no information are avoided). When the applications of these rules is not
enough to determine the initial policy, we choose the bound arising from the
left hand side term. Thus, when G1 = [−a,∞[, the initial policy for G1 ∩ G2 is
m(G1, G2), which keeps the lower bound of G1 and the upper bound of G2.

The way the equations are constructed, when the terms G1 ∩G2 correspond
to a test on a variable (and thus no constant choice is available for at least one
bound), this initial choice means choosing the constraint on the current variable
brought on by this test, rather than the equation expressing the dependence of
current state of the variable to the other states. These choices often favor as first
guess an easily computable system of equations.

We then compute the fixed point of the reduced equations, using if possible
specific algorithms. In particular, when the lift of f is a min-max function,
shortest path type algorithms may be used, in the spirit of [6, 14]. Linear or
convex programming might also be used in some cases. For the time being, we
only use a classical Kleene like value iteration algorithm, discussed in Section 4.4.

We then proceed to the improvement of the policy, as explained in Section
3. In short, we change the policy at each node for which a fixed point of the
complete system of equations is not reached, and compute the fixed point of the
new equations, until we find a fixed point of the complete system of equations.
Even when this fixpoint is reached, using Remark 3 can allow to get a smaller
fixpoint in some cases, when the current fixpoint is obtained for several policies.

4.4 Examples and Comparison with Kleene’s Algorithm

In this section, we discuss a few typical examples, that are experimented using
our prototype implementation. We compare the policy iteration algorithm with
Kleene’s iteration sequence with widenings and narrowings (the very classical
one of [10]), called Algorithm K here. For both algorithms, we compare the
accuracy of the results and the cost of the solution.

We did not experiment specific algorithms for solving equations in G∪ (mean-
ing, without intersections), as we consider this to be outside the scope of this
paper, so we chose to use an iterative solver (algorithm K′) for each policy. Algo-
rithm K′ is exactly the same solver as algorithm K, but used on a smaller class
of functions, for one policy. Note that the overall speedup of policy iteration
algorithms could be improved by using specific solvers instead. So Algorithm PI
will run Algorithm K′ at every value determination step (Step 2). Of course,
using Algorithm K′ instead of a specific solver is an heuristics, since the con-
vergence result, Theorem 2, requires that at every value determination step, the
smallest fixed point is computed. We decided to widen intervals, both in Algo-
rithms K and K′, only after ten standard Kleene iterations. This choice is conven-
tional, and in most examples below, one could argue that an analyzer would have
found the right result with only two Kleene iterations. In this case, the speedup
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obtained by the policy iteration algorithm would be far less; but it should be
argued that in most static analyzers, there would be a certain unrolling before
trying to widen the result. In the sequel we compare the number of fixpoint
iterations and of “elementary operations” performed by algorithms K and PI.
We count as elementary operations, the arithmetic operations (+, - etc.), min and
max (used for unions and intersections), and tests (≤, ≥, =, used for checking
whether we reach local fixed points during iterations of algorithms K and K′).

A simple typical (integer) loop is shown on Figure 1, together with the equa-
tions generated by the analyzer. The original policy is mop in equation 2 in
Figure 1 (by equation i, we mean the equation which determines the state of
variables at control point i, here x2), and m in the equation determining x4,
This is actually the right policy on the spot, and we find in one iteration (and
34 elementary operations), the correct result (the least fixed point). This is to
be compared with the 12 iterations of Algorithm K (and 200 elementary oper-
ations), in Section 2. In the sequel, we put upper indices to indicate at which
iteration the abstract value of a variable is shown. Lower indices are reserved as
before to the control point number.

The analysis of the program below leads to an actual policy improvement:

void main(){
int i,j;
i=1; // 1
j=10; // 2

while (j >= i) { // 3
i = i+2; // 4
j = -1+j; // 5

} // 6 }

Semantic equations at control points 3 and 6 are

(i3, j3) = (]−∞,max(j2, j5)] ∩ (i2 ∪ i5), [min(i2, i5),+∞[∩(j2 ∪ j5))
(i6, j6) = ([min(j2, j5) + 1,+∞[∩(i2 ∪ i5), ]−∞,max(i2, i5)− 1] ∩ (j2 ∪ j5))

The algorithm starts with policy mop for variable i in equation 3, m for
variable j in equation 3, m for variable i equation 6 and mop in equation 6,
variable j. The first iteration using Algorithm K′ with this policy, finds the value
(i16, j

1
6) = ([1, 12], [0, 11]). But the value for variable j given by equation 6, given

using the previous result, is [0, 10] instead of [0, 11], meaning that the policy on
equation 6 for j should be improved. The minimum (0) for j at equation 6 is
reached as the minimum of the right argument of ∩. The maximum (10) for j
at equation 6 is reached as the maximum of the right argument of ∩. Hence the
new policy one has to choose for variable j in equation 6 is r. In one iteration
of Algorithm K′ for this policy, one finds the least fixed point of the system of
semantic equations, which is at line 6, (i26, j

2
6) = ([1, 12], [0, 10]). Unfortunately,

this fixed point is reached by several policies, and Remark 3 is used, leading to
another policy iteration. This in fact does not improve the result since the current
fixed point is the smallest one. Algorithm PI uses 2 policy iterations, 5 values
iterations and 272 elementary operations. Algorithm K takes ten iterations (and
476 elementary operations) to reach the same result.

Some benchmarks. In the following table, we describe preliminary results that
we obtained using Algorithms K and PI on simple C programs, consisting essen-
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tially of loop nests. We indicate for each program (available on http://www.di.-
ens.fr/˜goubault/Politiques) the number of variables, the number of loops, the
maximal depth of loop nests, the number of policy iterations slash the total
number of potential policies, value iterations and elementary operations for each
algorithm (when this applies). The last column indicates the speedup ratio of Al-
gorithm PI with respect to K, measured as the number of elementary operations
K needs over the number that PI needs.

Program vars loops depth pols./tot. iters.K/PI ops.K/PI speedup
test1 1 1 1 1/16 12/1 200/34 5.88
test2 2 1 1 2/256 10/5 476/272 1.75
test3 3 1 1 1/256 5/2 44/83 0.51
test4 5 5 1 0/1048576 43/29 2406/1190 2.02
test5 2 2 2 0/256 164/7 5740/198 28.99
test6 2 2 2 1/1048576 57/19 2784/918 3.03
test7 3 3 2 1/4096 62/13 3242/678 4.78
test8 3 3 3 0/4096 60/45 3916/2542 1.54
test9 3 3 3 2/4096 185/41 11348/1584 7.16
test10 4 4 3 3/65536 170/160 11274/10752 1.05

The relative performances can be quite difficult to predict (for instance, for
test3, Algorithm K is about twice as fast as PI, which is the only case in
the benchmark), but in general, in nested loops Algorithm PI can outperform
Algorithm K by a huge factor. Furthermore, for nested loops, Algorithm PI can
even be both faster and more precise than Algorithm K, as in the case of test7:

int main() {
int i,j,k;
i = 0; //1
k = 9; //2
j = -100; //3
while (i <= 100) //4 {
i = i + 1; //5

while (j < 20) //6
j = i+j; //7 //8

k = 4; //9
while (k <=3) //10
k = k+1; //11 //12

} //13 }

Algorithm PI reaches the following fixed point, at control point 13, in 13
value iterations, i = [101, 101], j = [−100, 120] and k = [4, 9] whereas Algorithm
K only finds i = [101, 101], j = [−100,+∞] and k = [4, 9] in 62 iterations. The
fact that Algorithm K does not reach the least fixed point can be explained as
follows. At control point 4, Algorithm K finds successively:

i4 = [0, 0]
j4 = [−100,−100]
k4 = [9, 9]

then:

i4 = [0, 1]
j4 = [−100, 20]
k4 = [4, 9]

up to:

i4 = [0, 9]
j4 = [−100, 28]
k4 = [4, 9]

then widening:

i4 = [0,+∞]
j4 = [−100,+∞]
k4 = [4, 9]

From now on, there is no way, using further decreasing iterations, to find that
j is finite (and less than 20) inside the outer while loop, since this depends on a
relation between i and j that cannot be simulated using this iteration strategy.
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5 Future Work

We have shown in this paper that policy iteration algorithms can lead to fast
and accurate solvers for abstract semantic equations, such as the ones coming
from classical problems in static analysis. We still have some heuristics in the
choice of initial policies we would like to test (using for example a dynamic initial
choice, dependent on the values of variables after the first fixpoint iterations),
and the algorithmic consequences of Theorem 3 should be investigated.

One of our aims is to generalize the policy iteration algorithm to more com-
plex lattices of properties, such as the one of octagons (see [26]). We would like
also to apply this technique to symbolic lattices (using techniques to transfer
numeric lattices, see for instance [32]). Finally, we should insist on the fact that
a policy iteration solver should ideally rely on better solvers than value iteration
ones, for each of its iterations (i.e. for a choice of a policy). The idea is that,
choosing a policy simplifies the set of equations to solve, and the class of such
sets of equations can be solved by better specific solvers. In particular, we would
like to experiment the policy iteration algorithms again on grammar G∪, so that
we would be left with solving, at each step of the algorithm, purely numerical
constraints, at least in the case of the interval abstraction. For numerical con-
straints, we could then use very fast numerical solvers dedicated to large classes
of functions, such as linear equations.
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Abstract. We describe a program verification methodology for spec-
ifying global shape properties of data structures by means of axioms
involving predicates on scalar fields, pointer equalities, and pointer dise-
qualities, in the neighborhood of a memory cell. We show that such local
invariants are both natural and sufficient for describing a large class of
data structures. We describe a complete decision procedure for axioms
without disequalities, and practical heuristics for the full language. The
procedure has the key advantage that it can be extended easily with
reasoning for any decidable theory of scalar fields.

1 Introduction

This paper explores a program verification strategy where programs are an-
notated with invariants, and decision procedures are used to prove them. A
key element of such an approach is the specification language, which must pre-
cisely capture shape and alias information but also be amenable to automatic
reasoning. Type systems and alias analyses are often too imprecise. There are
very expressive specification languages (e.g., reachability predicates [15], shape
types [4]) with either negative or unknown decidability results. A few systems
such as TVLA [19] and PALE [13] have similar expressivity and effectiveness,
but use logics with transitive closure and thus incur additional restrictions.

We propose to use local equality axioms for data structure specification
(“LEADS”), such as “for every list node n, n.next.prev = n”, which specifies
a doubly-linked list. This simple idea generalizes to describe a wide variety of
shapes, as subsequent examples will show. And, as each specification constrains
only a bounded fragment of the heap around a distinguished element n (unlike
with transitive closure), it is fairly easy to reason about.

There are two main contributions of this work. First, we present a methodol-
ogy for specifying shapes of data structures, using local specifications. The spec-
ifications use arbitrary predicates on scalar fields and equality between pointer
expressions to constrain the shape of the data structure. We show that such local
specifications can express indirectly a number of important global properties.

The second contribution is a decision procedure for a class of local shape
specifications as described above. The decision procedure is based on the idea
that local shape specifications have the property that any counterexamples are
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also local. This decision procedure is not only simple to implement but fits
naturally in a cooperating decision procedure framework that integrates pointer-
shape reasoning with reasoning about scalar values, such as linear arithmetic, or
uninterpreted functions.

A related contribution is to the field of automated deduction, for dealing
with universally quantified assumptions: the matching problem is that of finding
sufficient instantiations of universally quantified facts to prove a goal. Perform-
ing too few instantiations endangers completeness while performing too many
compromises the performance of the algorithm and often even its termination.
For the class of universally quantified axioms that we consider here we show
a complete and terminating matching rule. This is a valuable result in a field
where heuristics are the norm [14, 2].

Our experimental results are encouraging. We show that we can describe
the same data structures that are discussed in the PALE publications, with
somewhat better performance results; we can also encode some data structures
that are not expressible using PALE. We also show that the matching rules
are not only complete, but lead to a factor of two improvement in performance
over the heuristics used by Simplify [2], a mature automatic theorem prover.
Furthermore, unlike matching in Simplify, our algorithm will always terminate.

2 Methodology Example

We follow a standard program verification strategy (e.g., [14]), with programmer-
specified invariants for each loop and for the function start (precondition) and
end (postcondition). We use a symbolic verification condition generator to ex-
tract a verification condition for each path connecting two invariants. The em-
phasis in this paper is on the specification mechanism for the invariants and the
decision procedure for proving the resulting verification conditions.

Suppose we wish to verify the procedure in Figure 1, part of a hypothetical
process scheduler written in a Java-like language. It has the job of removing a
process from the list of runnable processes, in preparation for putting it into the
list of sleeping processes. Each list is doubly-linked.

We capture the data structure invariants using the set of axioms in Figure 1,
where the quantifier ranges over list cells. These axioms constitute the data
structure invariant, and must hold at the start and end of the function. Axioms
A1 and A2 express the local invariant that the next and prev fields are inverses.
Axiom A3 says that all the processes in a list have the same state (RUN or SLP),
and axiom A4 says that all the runnable processes have non-increasing priorities.

To begin verifying insert, we need a formal precondition:

PRE : x �= null ∧ x.prev �= null ∧ x.state = RUN

The verification condition generator produces verification conditions, which are
implications where the left-hand side consists of the function precondition along
with the current path predicates, and the right-hand side is the goal to prove.
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1 // precondition: x is runnable (RUN) and not first in list

2 void remove(Process x) {

3 x.prev.next = x.next;

4 if (x.next)

5 x.next.prev = x.prev;

6 x.state = SLP;

7 x.next = x.prev = null;

8 }

prev

next

prev

next

prev

next

prev

next

prev

next

prev

runnable

sleeping

next

A1. ∀p. p �= null ∧ p.next �= null ⇒ p.next.prev = p
A2. ∀p. p �= null ∧ p.prev �= null ⇒ p.prev.next = p
A3. ∀p. p �= null ∧ p.next �= null ⇒ p.state = p.next.state
A4. ∀p. p �= null ∧ p.next �= null ∧ p.state = RUN ⇒ p.prio ≥ p.next.prio

Fig. 1. A scheduler remove function and its data structure axioms

We use the standard strategy to show validity of the verification condition by
showing that its negation is unsatisfiable. For example, to prove that we do not
dereference null in x.next on line 3, we must show unsatisfiability of PRE ∧
x = null. This can be done without any reference to the axioms.

What is harder to show is that the axioms hold when the function returns.
Consider first showing that axiom A3 still holds, which is non-trivial since the
axiom depends on the mutated fields next and state. An update q.f = v is
modeled by saying that the function modeling field f is changed into f[q '→ v],
with semantics

p.f[q '→ v] =

{
v if p = q

p.f otherwise
(upd)

The updated values of the next and state fields relevant to A3 are:

next’ = next[x.prev '→ x.next][x '→ null]
state’ = state[x '→ SLP]

We have to verify that A3 still holds:

∀q. q �= null ∧ q.next’ �= null ⇒ q.state’ = q.next’.state’ (goal)

To prove a formula involving updated fields, such as q.next’, we first elimi-
nate the field updates by performing the case analysis suggested by the update
equation (upd). In each case, what remains to be shown is that a conjunction of
literals involving field accesses is unsatisfiable in the presence of some universally
quantified local equality axioms.

For our example, there are twelve cases to consider: q.next’ has cases q = x,
q = x.prev �= x, and q �= x ∧ q �= x.prev; q.state’ has cases q = x and q �= x;
and q.next’.state’ has cases q.next’ = x and q.next’ �= x. Several cases can
be shown unsatisfiable without relying on the axioms.

Four cases require using the axioms; one such case is when q = x.prev �= x
and q.next’ = x. Consequently q.state’ = q.state, q.next’ = x.next and
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Injectivity ∀p. p �= null ∧ p.a �= null⇒ p.a.b = p
Transitivity ∀p. p �= null ∧ p.a �= null⇒ p.a.b = p.b
Order ∀p. p �= null ∧ p.a �= null⇒ p.a.b > p.b
Grid ∀p. p �= null ∧ p.a �= null ∧ p.f �= null⇒ p.a.f = p.f.a

Fig. 2. Four important axiom forms

q.next’.state’ = x.next.state. We must show q.state = x.next.state. We
first instantiate A2 at x (written A2[x/p]) to derive x.prev.next = x, implying
q.next = x. Then we instantiate A3[q/p] to derive q.state = x.state, and finally
A3[x/p] to derive x.state = x.next.state.

The essence of the above discussion is that the verification strategy will per-
form case analysis based on the memory writes and will generate facts that must
be proved unsatisfiable using a number of axiom instantiations. The only diffi-
culty is how to decide what instances of axioms to use; a strategy that instanti-
ates too few axioms will not be complete (we might fail to prove unsatisfiability),
while a strategy that instantiates too many might not terminate.

2.1 Unrestricted Scalar Predicates

Scalar predicates let us connect the shape of a data structure with the data stored
within it. One advantage of our specification strategy is that we we can combine
our satisfiability procedure with that of any predicate that works within the
framework of a Nelson-Oppen theorem prover [16]. While other approaches often
abstract scalars as boolean fields [13, 19], we can reason about them precisely.
For example, in order to verify that the function remove shown in Figure 1
preserves the priority ordering axiom A4, we need transitivity of ≥, so we use a
satisfiability procedure for partial orders. We also use scalar predicates to allow
descriptions for different types of objects to coexist (e.g., a list and a tree), by
predicating axioms on the object’s dynamic type (modeled as a field).

2.2 Useful Axiom Patterns

In the process of specifying data structures, we have identified several very useful
axiom patterns; four are shown in Figure 2. For example, axiom A1 of the sched-
uler example is an instance of the injectivity pattern. Such an injectivity axiom
implies useful must-not-alias facts such as x �= y ∧ x.a �= null ⇒ x.a �= y.a.
Injectivity can specify tree shapes as well, for example:

∀p. p �= null ∧ p.left �= null ⇒ p.left.inv = p ∧ p.left.kind = L
∀p. p �= null ∧ p.right �= null ⇒ p.right.inv = p ∧ p.right.kind = R

where kind is a scalar field and L �= R. Such axioms specify that left and right
are mutually injective, because inv is the inverse of their union. However, note
that (to support data structures with sharing) pointers are not required to be
injective; the user states when and where injectivity holds.

The axioms A3 and A4 from the example are similar in that they relate the
value of a certain field across the next field, which is in some sense transitive.
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A transitivity axiom can be used to say that two memory cells are in separate
instances of a data structure; we used axiom A3 to require that the runnable
and the sleeping lists are disjoint. More generally, we can prove the powerful
must-not-reach fact x.b �= y.b ⇒ x.an �= y.am, where x.an means the object
reached from x after following the a field n times. But note that transitivity
axioms cannot express must-reach facts.

Axiom A4 is a non-strict order axiom. In its strict form it can be used to
specify the absence of cycles. In this pattern, any transitive and anti-reflexive
binary predicate can be used in place of >.

We defer discussion of the grid pattern to Section 1. A common theme in
these patterns is that we use equalities and scalar predicates to imply disequali-
ties, which are needed to reason precisely about updates. The interplay between
equality axioms and the entailed disequalities is central to our approach.

2.3 Ghost Fields

Often, a data structure does not physically have a field that is needed to specify
its shape. For example, a singly-linked list does not have the back pointers needed
to witness injectivity of the forward pointers. In such cases, we propose to simply
add ghost fields (also known as auxiliary variables, or specification fields), which
are fields that our verification algorithm treats the same as “real” fields, but do
not actually exist when the code is compiled and run. Thus, to specify a singly-
linked list, we add prev as a ghost field and instead specify a doubly-linked
list. For our prototype tool, the programmer must add explicit updates to ghost
fields. Updates to ghost fields often follow a regular pattern, so are presumably
amenable to inference, but in the limit human assistance is required [10].

2.4 Temporary Invariant Breakage

In our tool, the shape descriptions are required to accurately describe the heap
at procedure entry and exit, and at all loop invariant points. But some programs
need their invariants to be broken temporarily at such points. Our solution is to
introduce a special ghost global pointer called (say) broken, and write axioms
of the form

∀p. p �= broken ⇒ Q(p)

where Q(p) is the nominal invariant. Then the program can set broken to point
at whichever object (if any) does not respect the invariant. Once the object’s
invariant is repaired, broken can be set to null, meaning all invariants hold.

3 The Specification Language

Figure 3 describes the main syntactic elements of the specification language. This
is a two-sorted logic, with pointer values and scalar values. Scalar predicates may
have any arity. We use the notation E for disjunctions of pointer equalities, D for
disjunctions of pointer disequalities, and C for disjunctions of scalar constraints.
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Globals x ∈ Var
Variables p ∈ Var
Pointer fields L ∈ PField
Pointer paths α, β ::= ε | α.L
Pointer terms t, u ::= null | x | p.α

Pointer equalities E ::= t1 = t2
Pointer disequal. D ::= t1 �= t2
Scalar fields S, R ∈ SField
Scalar predicates P ∈ Pred
Scalar constraints C ::= P (t1.S, t2.R)

Fig. 3. Specification language

Core Language. We have two languages, one a subset of the other. In the core
language, a data structure specification is a finite set of axioms of the form

∀p. E ∨ C (core)

where p ranges over pointer values. Axioms in the core language cannot have
pointer disequalities, but can have scalar field disequalities in C. This language
is expressive enough to describe many common structures, including those of
Figures 1 and 2. Section 4 describes a satisfiability procedure for this language.

Extended Language. The extended language has axioms of the form

∀p. E ∨ C ∨ D (ext)

This language is more expressive; e.g., it allows us to insist that certain pointers
not be null, or to describe additional kinds of reachability, or to require that a
structure be cyclic, among other things. Unfortunately, the extended language
includes specifications with undecidable theories (see below). However, we ex-
tend the satisfiability procedure for the core language to handle many extended
axioms as well, including all forms that we have encountered in our experiments.

Nullable Subterms. Data structure specification axioms naturally have the
following nullable subterms (NS) property: for any pointer term t.L or any scalar
term t.S that appears in the body of an axiom, the axiom also contains the
equality t = null among its disjuncts. This is because fields are not defined at
null. We require that all axioms have the NS property.

Discussion. The keystone of our technical result is the observation that the NS
property ensures the decidability of the axioms in the core language. In contrast,
if we allow axioms of the form ∀p. p.α = p.β (in the core language, but without
the NS property), then we could encode any instance of the (undecidable) “word
problem” [8] as an axiom set and a satisfiability query.

Intuitively, an axiom with the nullable subterms property can be satisfied by
setting to null any unconstrained subterms. This avoids having to materialize
new terms, which in turn ensures termination. Notice however, that if we allow
arbitrary pointer disequalities we can cancel the effect of the NS condition. For
example, the axiom

∀p. p = null ∨ p.a �= null
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forces t.a to be non-null for any non-null t. Thus the unrestricted use of the
disequalities in D makes satisfiability undecidable. In our experiments we ob-
served that pointer disequalities are needed less frequently than other forms,
which motivates separate treatment of the core and extended languages.

4 A Satisfiability Algorithm

The algorithm is essentially a Nelson-Oppen theorem prover, augmented with
specific matching rules for instantiating the quantified axioms, and deferred,
heuristic treatment of disequalities among uninstantiated terms.

4.1 The Algorithm

The purpose of the algorithm is to determine whether a set of local equality
axioms and a set of ground (unquantified) facts is satisfiable. When used on
axioms without pointer disequalities (core language) the algorithm always ter-
minates with a definite answer. However, in the presence of axioms with pointer
disequalities (extended language) the algorithm may return “maybe satisfiable”.
Note that pointer disequalities in the ground facts do not endanger completeness.

The basic idea of the algorithm is to exploit the observation that in a data
structure described by local axioms, when the facts are satisfiable, they are
satisfiable by a “small” model. Essentially, the algorithm attempts to construct
such a model by setting any unknown values to null.

The algorithm’s central data structure is an equality graph (e-graph) G [16], a
congruence-closed representation of the ground facts. We use the notation t ∈ G
to mean term t is represented in G, and G ∧ f to mean the e-graph obtained by
adding representatives of the terms in formula f to G, and asserting f .

The algorithm must decide which axioms to instantiate and for which terms.
We first define when a ground pointer term umatches an equality disjunct t1 = t2
in an axiom with bound (quantified) variable p, as follows:

– Either t1[u/p] ∈ G or t2[u/p] ∈ G, when neither t1 nor t2 is null, or
– t1 is null and t2[u/p] ∈ G (or vice-versa).

We say that a term matches an axiom if it matches all its pointer equality dis-
juncts. An axiom is instantiated with any term that matches the axiom.

These rules implement an “all/most” strategy of instantiation. For example,
an axiom

∀p. . . . ∨ p.α.a = p.β.b

must include (because of NS) disjuncts p.α = null and p.β = null. For a ground
term u to match this axiom, it must match every equality disjunct (from the
definition above), so u.α, u.β, and either u.α.a or u.β.b must be represented.
Consequently, asserting the literal u.α.a = u.β.b will require representing at
most one new term, but no new equivalence classes.

If G is an e-graph, and DS is a conjunction (i.e., a set) of disjunctions of
pointer disequalities, we define a satisfiability procedure unsat(G,DS) that re-
turns true if the facts represented in G along with DS and the axioms are
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1 unsat(G, DS) =

2 if G is contradictory then true

3 elseif DS = (DS′ ∧ false) then true

4 elseif a term u ∈ G matches axiom ∀p. E ∨ C ∨ D,
5 not yet instantiated for class of u, then

6 for each t1 = t2 ∈ E,
7 unsat(G ∧ t1[u/p] = t2[u/p], DS);
8 for each P (t1.S, t2.R) ∈ C,
9 unsat(G ∧ P (t1[u/p].S, t2[u/p].R), DS);

10 unsat(G, DS ∧ D[u/p])
11 elseif DS = true then

12 raise Satisfiable(G)

13 elseif DS =
(
DS′ ∧ (t1 �= t2 ∨ D)

)
14 with t1 ∈ G and t2 ∈ G, then

15 unsat(G ∧ t1 �= t2, DS′);
16 unsat(G, DS′ ∧ D)
17 else /* search for a cyclic model */

18 for each term t1 �∈ G where t1 �= t2 ∈ DS,
19 for each term t3 ∈ G,

20 unsat(G ∧ t1 = t3, DS);
21 raise MaybeSatisfiable /* give up */

Fig. 4. The basic decision algorithm

unsatisfiable, raises the exception Satisfiable if it is satisfiable, and raises the
exception MaybeSatisfiable if the procedure cannot decide satisfiability (in
presence of axioms with pointer disequalities). Figure 4 contains the pseudocode
for this procedure. This procedure is used by first representing the facts in an
e-graph G, and then invoking unsat(G, true).

Lines 2 and 3 identify contradictions in the e-graph. The judgment “G is
contradictory” may make use of a separate satisfiability procedure for the scalar
predicates. We write DS = (DS′ ∧ false) to deconstruct DS. The heart of the
algorithm is in lines 4–10, which instantiate axioms with terms that match, given
the matching rules described above, and performs the case analysis dictated by
the instantiated axioms. Note that the pointer disequalities are deferred by col-
lecting them in DS (line 10). When line 12 is reached, the axioms are completely
instantiated and all cases fully analyzed, but no contradiction has been found.
Thus, the original G ∧ DS was satisfiable; the current G is a witness.

Lines 13–16 handle pointer disequalities where both sides are already repre-
sented in the e-graph. Finally, lines 17–20 attempt to find a satisfying assignment
for the unrepresented terms in DS by setting them equal to other terms that
are represented. The algorithm searches for cyclic models to accommodate data
structures like cyclic lists.

Recalling the proof from Section 2 that A3 holds after next and state have
been modified, we can now explain how the algorithm would prove it. First,
the update rules are used to split the proof into cases; among those cases is
q �= x ∧ q = x.prev ∧ x.next �= x, which (along with the precondition) is used
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to initialize G, and unsat(G, true) is invoked. Next, the algorithm determines
that the term x matches axiom A2, because x.prev ∈ G, and begins asserting
its disjuncts. Only the x.prev.next = x disjunct is not immediately refuted.
Asserting this literal causes the new term x.prev.next to be represented, by
putting it into the same equivalence class as x. Since q = x.prev, the term
q.next is now represented, and so q matches A3, and A3[q/p] is instantiated.
Finally, as x.next is represented, A3[x/p] is also instantiated. After these three
instantiations, case analysis and reasoning about equality are sufficient.

4.2 Analysis of the Algorithm

Correctness when result is “Unsatisfiable”. The algorithm is always right
when it claims unsatisfiability, which in our methodology means that the goal is
proved. The (omitted) proof is a straightforward induction on the recursion.

Correctness when result is “Satisfiable”. When the algorithm raises
Satisfiable(G′), there is a model Ψ that satisfies the original G ∧ DS ∧ A,
where A is the set of axioms:

Ψ(u) =

{
u∗ if u ∈ G′

null otherwise

where by u∗ we denote the representative of u in the e-graph G′. Ψ satisfies A
because for every pointer term u (represented or not) and axiom A, either A[u/p]
has been instantiated, so G′ satisfies A[u/p] (and so does Ψ), or else u does not
match A, in which case there is a pointer equality t1 = t2 in A that does not
match. By the definition of matching, there are two cases:

– Neither t1 nor t2 are null, and t1[u/p] �∈ G and t2[u/p] �∈ G. But then
Ψ(t1[u/p]) = Ψ(t2[u/p]) = null, satisfying A[u/p].

– t1 is null and t2[u/p] �∈ G. Then Ψ(t2[u/p]) = null, satisfying A[u/p].

That is, the matching rules guarantee that if an axiom has not been instan-
tiated, it can be satisfied by setting unrepresented terms to null.

Termination. The essence of the termination argument is that none of the
steps of the algorithm increases the number of pointer equivalence classes in
the e-graph. Whenever a new pointer term t might be created in the process
of extending the e-graph, it is created while adding the fact t = t′, where t′ is
already in the e-graph. This is ensured by the matching rule that requires one
side of each equality to be present in the e-graph. Furthermore, if t is of the form
t′′.L, then by the NS property, the disjunct t′′ = null is also part of axiom and
thus the matching rule requires t′′ to be already in the e-graph. Thus t is the
only new term and is added to an existing equivalence class. There are only a
finite number of equality and scalar constraints over a fixed number of pointer
equivalence classes; once all entailed constraints are found, the algorithm halts.
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Soundness and completeness on the Core Language. For the core lan-
guage, the algorithm stays above line 13, because DS is always empty (true).
As it always terminates, it must always return either Satisfiable or Unsatisfiable.

Complexity. The algorithm has exponential complexity, because of the case
analysis that is performed in processing updates and conditional axioms. If we
have n nodes in the e-graph representing the facts, a axioms with at most k
disjuncts each, then there could be a total of n×a axiom instantiations. We can
think of the algorithm exploring a state space that resembles a tree. Each node
in the tree corresponds to an instance of an axiom, and has a branching factor
k. Consequently its running time is O(knaS(n)), where S(n) is the complexity
bound for the underlying satisfiability procedure for scalar constraints.

5 Disequalities

Axioms with disequalities are necessary for specifying some shape properties,
such as never-null pointers and cyclic structures. These often take the form of
termination conditions, for example

∀p. Q(p) ⇒ p.next �= null

This poses a challenge for automated reasoning, as the basic approach is to
search for a finite model, so we try to set pointers to null wherever possible,
but setting p.next to null is impossible if Q(p) is known to be true.

In the context of the algorithm in Figure 4, this issue arises when we reach
line 17: all axioms have been instantiated, and G is consistent, but there remain
some disequalities DS among terms not represented in G. We cannot report
satisfiability because the consequences of DS have not yet been considered.

One approach, shown in Figure 4, is to explicitly check for a cyclic model: try
setting unrepresented terms equal to existing terms. When the axioms describe
a cyclic structure, this may be the only way to find a finite model.

Another approach (not shown in the figure for reasons of space) is to sim-
ply grow the model, representing the terms in DS by creating new equivalence
classes. Of course, doing so jeopardizes termination, since the new equivalence
classes may trigger additional axiom instantiations. So, the programmer may
specify an expansion horizon k, and the algorithm will then not create an equiv-
alence class more than k “hops” away from the original set of classes. Typically,
we use the bound k = 2.

If the heuristics fail, the algorithm may report MaybeSatisfiable; but the
algorithm will never make a false claim (in particular, the expansion bound is
not involved in a claim of unsatisfiability).

More generally (and optimistically), it is possible to show for specific axiom
sets that the above heuristics are complete: that the algorithm will never report
MaybeSatisfiable. However, it remains future work to develop a systematic way
of constructing completeness arguments for axiom sets containing disequalities.
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6 Experiments

Our algorithm has been implemented as a modified version of the Simplify [2]
theorem prover. To evaluate the expressiveness of our specification language, we
compare our prototype verifier to the Pointer Assertion Logic Engine (PALE) [13].
To measure the effectiveness of our decision algorithm, we compare it to the un-
modified Simplify. For several example programs, we measure the lines of anno-
tation, which axiom forms are used (from Figure 2, plus disequalities), and the
time to verify on a 1.1GHz Athlon Linux PC with 768MB RAM. See Figure 5.

Annot. lines Axiom Forms Verify Time (s)
example LOC PALE Ours �= inj trans order grid PALE Simplify Ours

bubblesort 47 10 31 2 1.9 0.9 0.6
doublylinked 73 35 69 4 1 2.6 2.9 1.9
taillist 73 38 94 3 4 4 2.4 1.8 1.3
redblacktree 146 112 224 4 4 19.4 36.5 22.0

gc copy 38 58 1 1 2 50.2 15.6
btree 163 185 2 7 4 6 96.7 26.4
set as list 36 73 1 2 1 4 1.9 1.3

pc keyb 1116 163 2 40.1 38.1
scull 534 360 4 5 58.2 46.4

Fig. 5. Programs verified, with comparison to PALE when available

We are able to verify all of the examples distributed with PALE1, however
PALE requires less than half the lines of annotation. There are three reasons:
(1) in PALE, the backbone tree is concisely specified by the data keyword,
whereas our axioms must spell it out with injectivity, (2) PALE specifications
use transitive closure, whereas we use the more verbose transitivity axioms, and
(3) our language does not assume the program is type-safe (it is C, after all), so
we have explicit axioms to declare where typing invariants hold. We plan to add
forms of syntactic sugar to address these points.

a

f

b

a a

b

f

f

a

We also selected two data structures that cannot
be specified in PALE. gc copy is the copy phase
of a copying garbage collector, and has the job of
building an isomorphic copy of the from-space, as
shown at right. This isomorphism, embodied by the
forwarding pointers f, is specified by the “grid” or
“homomorphism” axiom ∀p. . . . ⇒ p.a.f = p.f.a.
This axiom (along with injectivity of f) describes a data structure where the
targets of f pointers are isomorphic images of the sources.

1 In the case of the taillist example, the verified property is slightly weaker due to
the encoding of reachability via transitivity.
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The btree benchmark is a B+-tree implementation, interesting in part be-
cause we can verify that the tree is balanced, by using scalar constraints

∀p. p �= null ∧ p.left �= null ⇒ p.level = p.left.level + 1
∀p. p �= null ∧ p.right �= null ⇒ p.level = p.right.level + 1

along with disequality constraints that force all leaves to have the same level:

∀p. p �= null ∧ p.left = null ⇒ p.level = 0
∀p. p �= null ∧ p.right = null ⇒ p.level = 0

However, this specification is also noteworthy because there is no bound k on the
size of models as advocated in Section 5: the facts x.level = 100 and x �= null
(plus the axioms) are satisfiable only by models with at least 100 elements.
Fortunately, such pathological hypotheses do not seem to arise in practice.

The set as list example uses a linked list to represent a set. We use a ghost
field s, associated with each node in the list, with intended invariant

∀n. n.s = { x | ∃i ∈ N. n(.next)i.data = x }

That is, s contains all data elements at or below the node. But since our language
does not allow “n(.next)i”, we instead write

S1. ∀n. n.next �= null ⇒ n.s = {n.data} ∪ n.next.s
S2. ∀n. n.next = null ⇒ n.s = {n.data}

Axiom S1 imposes a lower bound on s, allowing one to conclude (among other
things) must-not-reach facts. Axiom S2 imposes an upper bound, and allows
conclusion of must-reach facts, but includes a pointer disequality disjunct. To
reason about set-theoretic concepts, we use the procedure in [1]. This exam-
ple highlights the way our technique can integrate with powerful off-the-shelf
“scalar” concepts to specify the relationship between shape and data.

Finally, pc keyb and scull are two Linux device drivers. These real-world
examples demonstrate the applicability of the technique, and the benefits of in-
tegrated pointer and scalar reasoning; for example, their data structures feature
arrays of pointers, which are difficult to model in PALE or TVLA.

An important contribution of this work is the particular matching rules used
to instantiate the axioms. Simplify has heuristics for creating matching rules for
arbitrary universally-quantified facts. As expected, we find that our matching
rules, which instantiate the axioms in strictly fewer circumstances, lead to better
performance (compare timing columns “Simplify” and “Ours” in Figure 5). In
fact, Simplify’s heuristics will often lead to infinite matching loops, especially
while trying to find counterexamples for invalid goals. This is not to denounce
Simplify’s heuristics—they do a good job for a wide variety of axiom sets—just
to emphasize that in the case of axioms expressing data structure shape within
our methodology, one can have a more efficient and predictable algorithm.
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7 Related Work

As explained in Section 1, most existing approaches to specifying shape are either
too imprecise or too difficult to reason about automatically. Here, we consider
alternative approaches with similar expressiveness and effectiveness.

PALE [13], the Pointer Assertion Logic Engine, uses graph types [7] to spec-
ify a data structure as consisting of a spanning tree backbone augmented with
auxiliary pointers. One disadvantage is the restriction that the data structure
have a tree backbone: disequality constraints that force certain pointers to not
be null are not possible, since every tree pointer is implicitly nullable, cyclic
structures are awkward, and grid structures such as the garbage collector exam-
ple in Section 1 are impossible. The second disadvantage is that only boolean
scalar fields are allowed. Thus, all scalar values must first be abstracted into a
set of boolean ghost fields, and updates inserted accordingly.

TVLA [12, 19], the Three Valued Logic Analyzer, uses abstract interpreta-
tion over a heap description that includes 1/2 or “don’t know” values. It obtains
shape precision through the use of instrumentation predicates, which are essen-
tially ghost boolean fields with values defined by logical formulas. In general,
the programmer specifies how instrumentation predicates evolve across updates,
though TVLA can conservatively infer update rules that are often sufficiently
precise. The primary advantage of TVLA is it infers loop invariants automati-
cally, by fixpoint iteration. The disadvantage is that the obligation of proving
that a shape is preserved across updates is delegated to the instrumentation
predicate evolution rules, which are not fully automated. Also, as with PALE,
scalar values must be abstracted as boolean instrumentation predicates.

PALE and TVLA include transitive closure operators, and hence can rea-
son directly about reachability, but they pay a price: PALE has non-elementary
complexity and requires tree backbones, and TVLA has difficulty evolving in-
strumentation predicates when they use transitive closure. The difficulties of
reasoning about transitive closure have been recently explored by Immerman et.
al [6], with significant negative decidability results. Our technique is to approx-
imate reachability using transitivity axioms, giving up some shape precision in
exchange for more precision with respect to scalar values.

The shape analysis algorithm of Hackett and Rugina [5] partitions the heap
into regions and infers points-to relationships among them. Its shape descriptions
are less precise; it can describe singly-linked lists but not doubly-linked lists.

Roles [9] characterize an object by the types it points to, and the types that
point at it. Role specifications are similar to our injectivity axioms. The role
analysis in [9] provides greater automation but it can express fewer shapes.

Separation logic [18] includes a notion of temporal locality, exploited by a
frame rule that allows reasoning about only those heap areas accessed by a
procedure. We believe such a notion is essentially orthogonal to, and could be
useful with, the spatial locality notions of this paper.

Early work on data structures showed that the property of an object being
uniquely generated (e.g., every instance of cons(1,2) is the same object) has de-
cidable consequences [17], a result related to the decidability of the consequences
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of the injectivity axioms presented here. However, the early work does not admit
more refined notions of shape, as it does not address the use of quantifiers.

Our work uses methods most similar to the Extended Static Checker [3]
and Boogie/Spec# [11]. However, while we suspect that specifications similar to
elements described here have been written before while verifying programs, we
are unaware of any attempts to explore their expressiveness or decidability.

8 Conclusion

We have presented a language for describing data structure shapes along with
scalar field relationships. The language is relatively simple because it can only
talk about local properties of a neighborhood of nodes, yet is capable of ex-
pressing a wide range of global shape constraints sufficient to imply the kind
of must-not-alias information needed for strong update reasoning. Furthermore,
it is sufficiently tractable to admit a simple decision procedure, extensible with
arbitrary decidable scalar predicates. Using this language we have verified a
number of small example programs, of both theoretical and practical interest.
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Abstract. We present a complete method for synthesizing lexicographic
linear ranking functions supported by inductive linear invariants for
loops with linear guards and transitions. Proving termination via linear
ranking functions often requires invariants; yet invariant generation is ex-
pensive. Thus, we describe a technique that discovers just the invariants
necessary for proving termination. Finally, we describe an implementa-
tion of the method and provide extensive experimental evidence of its
effectiveness for proving termination of C loops.

1 Introduction

Guaranteed termination of program loops is necessary in many settings, such
as embedded systems and safety critical software. Additionally, proving general
temporal properties of infinite state programs requires termination proofs, for
which automatic methods are welcome [19, 11, 15]. We propose a termination
analysis of linear loops based on the synthesis of lexicographic linear ranking
functions supported by linear invariants.

The method exploits the constraint-based approach to static analysis. In
constraint-based analysis, a property template is constrained by high-level con-
ditions that describe the desired property. These high-level conditions induce a
constraint system; its solutions are valid instantiations of the template. For ex-
ample, [3] describes how to generate linear invariants of linear transition systems
via the constraint-based approach. In contrast to classical symbolic simulation,
constraint-based analyses are not limited to invariants; for example, [4, 5] de-
scribes how to apply the constraint-based approach to generate linear ranking
functions to prove loop termination.

Our approach to termination analysis has two distinct features over previ-
ous work on ranking function synthesis and constraint-based analysis. First, we
combine the generation of ranking functions with the generation of invariants to
form one constraint solving problem. This combination makes invariant gener-
ation implicit : the necessary supporting invariants for the ranking function are
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discovered on demand. In [4, 5], the generation of ranking functions was sup-
ported by independently generated invariants. Second, we take constraint-based
analysis one step further in combining structural constraints with numeric con-
straints, which allows us to specify a set of templates for the ranking function
components and solve for a lexicographic linear ranking function. The numeric
constraints arise, as usual, from placing conditions on the template coefficients.
The structural constraints arise from requiring a lexicographic ordering among
the ranking function components, which constrains the conditions that should be
applied. Consequently, our solving strategy alternates between adding or remov-
ing ordering constraints and solving the resulting numeric constraint systems.
We propose two main components to the solving strategy: first, the numeric
constraint solver quickly solves the special form of parametric linear constraints
that arise; second, the higher-level solver searches for a lexicographic ranking
function. The latter is theoretically complete, in that if a lexicographic ordering
exists, it will be found; moreover, it is fast in practice.

Automatic synthesis of linear ranking functions has received a fair amount of
attention. In [8], Katz and Manna show how to generate constraint systems over
loops with linear assertional guards and linear assignments for which solutions
are linear ranking functions. Synthesis of linear ranking functions over linear
loops with multiple paths and assertional transition relations is accomplished via
polyhedral manipulation in [4, 5]. In [14], Podelski and Rybalchenko specialize
the technique to single-path linear loops without an initial condition, providing
an efficient and complete synthesis method based on linear programming. We
generalize these previous efforts.

Automatic synthesis of ranking functions is applicable in at least two ways.
First, it can serve as the main component of an automated program analysis. We
provide empirical evidence of its effectiveness at analyzing loops that arise in C
programs. Second, it can support theoretically complete verification frameworks
like verification diagrams [11] and transition invariants [15] (see also [6, 9, 1] for
related ideas). In this context, the user guides the construction of the proof with
support from automatic invariant generation and ranking function synthesis. A
verification diagram is a state-based abstraction of the reachable state-space of a
program. A transition invariant is a relation-based abstraction of the transition
relation of a program. Its form is a disjunctive set of relations. Ramsey’s Theorem
ensures that if each of the relations is well-founded, then the transition relation is
well-founded. Both frameworks identify the semantic behavior of a loop, so that
its infinite behavior can be expressed disjunctively. In a verification diagram,
a loop might manifest itself in multiple strongly connected components of the
diagram, each of which can have a different ranking function. Similarly, in a
transition invariant, each disjunct can have a different ranking function. In many
cases, these multiple ranking functions are simpler than a single global ranking
function, so that it is reasonable to expect that automatic synthesis can usually
replace the user in proposing ranking functions.

The rest of the paper is organized as follows. Section 2 introduces basic
concepts and mathematical tools. Section 3 presents the constraint generation
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technique. Section 4 describes the method for synthesizing lexicographic func-
tions in practice, while Section 5 discusses our approach to solving the generated
numeric constraint systems. Section 6 presents empirical data from applying our
analysis to C programs. Section 7 concludes.

2 Preliminaries

We first define our loop abstraction based on sets of linear transitions. Subse-
quently, we formalize ranking functions and inductive invariants in the context
of loops. Finally, we present Farkas’s Lemma.

Definition 1 (Linear Assertion). An atom over a set of variables V :
{x1, . . . , xm} is an affine inequality over V: a1x1 + a2x2 + · · ·+ amxm + b ≥ 0.
Letting x = (x1, x2, . . . , xm, 1)t, we also write atx ≥ 0, where am+1 = b. A lin-
ear assertion over V is a conjunction of inequalities over the program variables,
written (as a matrix in homogenized form) Ax ≥ 0.

int gcd(int y1 > 0, int y2 > 0) :
while y1 �= y2 do

if y1 > y2 then
y1 := y1 − y2

else
y2 := y2 − y1

return y1

Θ : {y1 ≥ 1, y2 ≥ 1}
τ1 : {y1 ≥ y2 + 1} ⇒ {y′

1 = y1 − y2, y′
2 = y2}

τ2 : {y2 ≥ y1 + 1} ⇒ {y′
2 = y2 − y1, y′

1 = y1}

(a) (b)

Fig. 1. (a) Program gcd for finding the greatest common divisor of two positive inte-
gers. (b) Path-sensitive abstraction to set of guarded commands

Definition 2 (Guarded Command). A guarded command τ(V) : g(V) ⇒
u(V,V ′) over a set of variables V consists of a guard g(V), which is a linear
assertion over V, and an update u(V,V ′), which is a linear assertion over primed
and unprimed variables in V. Letting (xx′) = (x1, x2, . . . , xm, x

′
1, x

′
2, . . . , x

′
m, 1)t,

we also write τ(xx′) ≥ 0.
Definition 3 (Loop). A loop L : 〈G, Θ〉 over V consists of a set of guarded
commands G over V and an initial condition Θ, a linear assertion over V. We
sometimes write Θx ≥ 0, viewing Θ as a homogenized matrix of coefficients.
Definition 4 (Loop Satisfaction). A loop L : 〈G, Θ〉 over V satisfies an
assertion ϕ, written L |= ϕ, if ϕ holds in all reachable states of L.
Example 1. Consider the program gcd in Figure 1(a), which computes the
greatest common divisor of two positive integers [10]. Figure 1(b) presents the
program as a loop. Strict inequalities are translated into weak inequalities based
on the integer type of the variables.

To show that a loop is terminating, it is sufficient to exhibit a ranking func-
tion. In this paper we focus on lexicographic linear ranking functions.
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Definition 5 (Lexicographic Linear Ranking Function). A lexicographic
linear ranking function for a loop L : 〈G, Θ〉 over V is an n-tuple of affine
expressions 〈r1tx, . . . , rntx〉 such that for some ε > 0 and for each τ ∈ G, for
some i ∈ {1, . . . , n},
(Bounded) L |= τ(xx′) ≥ 0 → ritx ≥ 0;
(Ranking) L |= τ(xx′) ≥ 0 → ritx− ritx′ ≥ ε;
(Unaffecting) for j < i, L |= τ(xx′) ≥ 0 → rjtx− rjtx′ ≥ 0.

A (non-lexicographic) linear ranking function is simply the case in which n = 1.
For some loops, invariants are necessary to prove that a function is actually

a ranking function for the loop; we say such invariants are supporting invariants.
While in theory, supporting invariants may be of any type, we focus on linear
invariants in this paper.

Definition 6 (Linear Inductive Invariant). A (homogenized) linear asser-
tion Ix ≥ 0 is an inductive invariant of a loop L : 〈G, Θ〉 if it holds at the
start of the loop and it is preserved by all guarded commands. Formally, a linear
inductive invariant satisfies the following conditions:

(Initiation) Θx ≥ 0 → Ix ≥ 0;
(Consecution) for every τ ∈ G, Ix ≥ 0 ∧ τ(xx′) ≥ 0 → Ix′ ≥ 0.

As we are working only with linear transitions, linear ranking functions, and
linear invariants, Farkas’s Lemma [18] will both justify completeness claims and
serve as a tool for encoding and solving conditions for synthesizing ranking
functions.

Theorem 1 (Farkas’s Lemma). Consider the following system of affine in-
equalities over real variables V = {x1, . . . , xm}:

S :

⎡⎢⎣ A1,1x1 + · · · + A1,mxm + A1,m+1 ≥ 0
...

...
...

An,1x1 + · · · + An,mxm + An,m+1 ≥ 0

⎤⎥⎦
If S is satisfiable, it entails affine inequality c1x1 + · · · + cmxm + cm+1 ≥ 0 iff
there exist real numbers λ1, . . . , λn ≥ 0 such that

c1 =
n∑

i=1

λiAi,1 · · · cm =
n∑

i=1

λiAi,m cm+1 ≥
(

n∑
i=1

λiAi,m+1

)
.

Furthermore, S is unsatisfiable iff S entails −1 ≥ 0.

For notational convenience we represent applications of Farkas’s Lemma by
means of assertions in homogenized form as before, without explicitly mentioning
the multipliers λ. Thus, for example, we write

Ax ≥ 0
Cx ≥ 0

where x = (x1, x2, . . . , xm, 1)t.
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3 Constraint Generation

Our approach for finding (lexicographic) ranking functions is based on a tem-
plate ranking function, consisting of a (set of) affine expression(s) over V with
unknown coefficients, and a template supporting invariant, consisting of an n-
conjunct linear assertion with n(|V|+1) unknown coefficients. Conditions on the
templates ensure that any solution to the induced constraint system represents
a ranking function and its supporting invariants. Farkas’s Lemma provides a
means of translating some high-level conditions to numeric constraints. Struc-
tural conditions (i.e., ordering constraints among components) are enforced via
the specific set of high-level conditions that are applied.

Definition 7 (Template Expression). A template expression over V is an
affine expression c1x1 + · · · + cmxm + cm+1, or ctx, with unknown coefficients
c. A template assertion is a linear assertion

∧
i ci

tx ≥ 0, or Cx ≥ 0.

The application of Farkas’s Lemma takes a system of linear assertions and
templates and returns a dual numeric constraint system over the λ-multipliers
and the unknown template coefficients. Given a loop L : 〈G, Θ〉, the support-
ing invariant template Ix ≥ 0, and lexicographic ranking function template
{c1

tx, . . . , cn
tx}, the following Farkas’s Lemma specializations are applied to

encode the appropriate conditions.

(Initiation) The supporting invariant includes the initial condition.

I
def=

Θx ≥ 0
Ix ≥ 0

(Disabled) Transition τi ∈ G and the invariant may contradict each other,
indicating “dead code.”

Di
def=

Ix ≥ 0
τi(xx′) ≥ 0
−1 ≥ 0

(Consecution) For transition τi ∈ G, if the invariant holds and the transition
is taken, then the invariant holds in the next state.

Ci
def=

Ix ≥ 0
τi(xx′) ≥ 0
Ix′ ≥ 0

(Bounded) For transition τi ∈ G and ranking function component cj
tx, the

invariant and transition imply the nonnegativity of the ranking function
component.

Bij
def=

Ix ≥ 0
τi(xx′) ≥ 0
cj

tx ≥ 0
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(Ranking) For transition τi ∈ G and ranking function component cj
tx, taking

the transition decreases the linear ranking function by at least some positive
amount (ε > 0).

Rij
def=

Ix ≥ 0
τi(xx′) ≥ 0
cj

tx− cj
tx′ − ε ≥ 0

(Unaffecting) For transition τi ∈ G and ranking function component cj
tx,

taking the transition does not increase the linear ranking function.

Uij
def=

Ix ≥ 0
τi(xx′) ≥ 0
cj

tx− cj
tx′ ≥ 0

This specialization is used only if n > 1 — i.e., if the ranking function
template is lexicographic.

The specializations are applied according to the definitions of inductive in-
variants and ranking functions discussed in Section 2. In Section 4, we describe
an effective algorithm for finding lexicographic ranking functions in practice.

Theorem 2. Loop L : 〈G, Θ〉 has a �-lexicographic linear ranking function
supported by an n-conjunct inductive linear invariant iff the constraint system
generated by

I ∧
∧

τi∈G

(
Di ∨

(
Ci ∧ Bi,σ(i) ∧ Ri,σ(i)

)) ∧ ∧
τi∈G,j<σ(i)

(Di ∨ Uij)

is satisfiable for some σ mapping transition indices to lexical component indices
{1, . . . , �}.
Corollary 1. Loop L : 〈G, Θ〉 has a linear ranking function supported by an
n-conjunct inductive linear invariant iff the constraint system generated by

I ∧
∧

τi∈G

(Di ∨ (Ci ∧ Bi ∧ Ri))

is satisfiable.

These claims follow from the completeness of Farkas’s Lemma and the definitions
of inductive invariants and ranking functions.

The above formulation of the constraint system assumes a single n-conjunct
invariant supporting all lexical components. An alternate formulation allows
each component to have its own n-conjunct invariant. Specifically, the constraint
system may be split into � constraint systems, one for each component j:

I ∧
∧

τi∈G

(Di ∨ Ci) ∧
∧

τi∈G:σ(i)=j

(Di ∨ (Bij ∧ Rij)) ∧
∧

τi∈G:σ(i)>j

(Di ∨ Uij)
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This separation has two advantages. First, in practice, the multiple smaller sys-
tems are easier to solve than the equivalent large system. Second, the inductive
invariant template may be instantiated differently for each system, so that a
smaller template is sometimes possible. Consequently, each condition contributes
constraints over fewer variables to the generated constraint systems.

Example 2. Consider finding a two-lexicographic linear ranking function for
gcd, with a two-conjunct supporting invariant. Choosing the mapping σ de-
termines the form of the conditions on the ranking function template ctx
and the invariant template Ix ≥ 0. For σ(1) = 2, σ(2) = 1, we obtain
I ∧ C1 ∧ C2 ∧ B1,2 ∧ B2,1 ∧ R1,2 ∧ R2,1 ∧ U1,1, where we omit the disabled cases,
as we often do in practice, so that the dual constraint system is conjunctive. C1

and R1,2 expand to the following:

C1 :

i1,1y1 + i1,2y2 + i1,3 ≥ 0
i2,1y1 + i2,2y2 + i2,3 ≥ 0
y1 ≥ y2 + 1
y′1 = y1 − y2
y′2 = y2
i1,1y

′
1 + i1,2y

′
2 + i1,3 ≥ 0

i2,1y
′
1 + i2,2y

′
2 + i2,3 ≥ 0

R1,2 :

i1,1y1 + i1,2y2 + i1,3 ≥ 0
i2,1y1 + i2,2y2 + i2,3 ≥ 0
y1 ≥ y2 + 1
y′1 = y1 − y2
y′2 = y2
c2,1y1 + c2,2y2 ≥ c2,1y

′
1 + c2,2y

′
2 + ε

Farkas’s Lemma dualizes each component of the condition to produce one nu-
merical constraint system over the λ-multipliers and the unknown template co-
efficients. See Section 5 for details on the form and solution of such constraint
systems. Solving the system that arises here reveals the two-component ranking
function 〈y2 − 2, y1 − 2〉, supported by the invariant y1 ≥ 1 ∧ y2 ≥ 1, which
proves termination for gcd.

If we split the constraint system, as described above, into two constraint
systems induced by I∧C1 ∧C2 ∧B1,2 ∧R1,2 ∧U1,1 and I∧C1 ∧C2 ∧B2,1 ∧R2,1,
then the solution produces the same ranking function 〈y2− 2, y1− 2〉. However,
only a one-conjunct template invariant is needed, as the first component only
requires the invariant y1 ≥ 1, while the second only requires y2 ≥ 1.

4 Lexicographic Linear Ranking Functions

Theorem 2 requires finding a σ mapping transition indices to lexical component
indices. While the number of possible σ’s is finite — as only at most |G| lexi-
cographic components are required — it is exponentially large in the number of
transitions. An implementation could enumerate the possible σ’s to find one that
induces a satisfiable constraint system, but this option is not practically feasible,
nor is it theoretically satisfying. Not only does this approach take too long on
loops for which a ranking function exists, but its worst-case input — loops for
which no solution exists — occurs frequently in real code. In this section, we
describe an effective procedure for deciding whether a loop has a lexicographic
linear ranking function.
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bool has llrf (L, n) :
llrf L,n({})

bool rec llrf L,n(o) :
if satL,n(o) then

if complete(o) then return true
(i, j) := choose unordered(o)
return llrf L,n(o ∪ (i < j)) or llrf L,n(o ∪ (i > j))

else return false

Fig. 2. Search strategy for finding a lexicographic linear ranking function, supported
by an n-conjunct inductive linear invariant, for loop L

Each transition is assigned its own template component in the lexicographic
function so that the discovered function has |G| components, ensuring complete-
ness (although the final function may be compressible). Each transition and its
component induces a bounded condition and a ranking condition. Furthermore,
the transitions and proposed invariant template induce initiation and consecu-
tion (and possibly disabled) conditions. All of these conditions are independent
of the order of the lexicographic components; only the unaffecting conditions
remain to be determined.

Figure 2 outlines the algorithm. Function has llrf indicates if a loop L :
〈G, Θ〉 has a lexicographic linear ranking function supported by an n-conjunct
inductive linear invariant. The function llrf L,n takes as input an order relation o,
which describes the known ordering constraints between components. Initially,
this relation is the empty relation. First, llrf L,n checks the feasibility of the
current ordering o. The function satL,n generates the constraint system induced
by L, n, and o, returning whether the system is satisfiable. If it is not, then no
possible completion of this ordering can induce a satisfiable constraint system, so
the search on the current branch terminates. If the constraint system is satisfiable
and the order relation is complete, a solution is feasible and the function returns.
If the order is not complete, two unordered components are selected and the
function is called recursively on the two alternate orderings of these components.
The ∪ operation returns the transitive closure.

Proposition 1. Assuming that satL,n is a decision procedure, has llrf(L, n)
returns true iff loop L : 〈G, Θ〉 has a lexicographic linear ranking function
supported by an n-conjunct inductive linear invariant.

Example 3. Since each transition is assigned its own template component, we
drop the second index of B and R. Returning to the gcd program of Example 2,
the search first generates the constraint systems induced by I∧C1∧C2∧B1∧R1

and I ∧ C1 ∧ C2 ∧ B2 ∧ R2 and checks their feasibility. Finding both systems
satisfiable, it adds (arbitrarily) the ordering constraint 1 > 2 between indices 1
and 2, which results in the constraint systems induced by I∧C1∧C2∧B1∧R1∧U1,2

and I∧C1 ∧C2 ∧B2 ∧R2. Both systems are found satisfiable and, since {1 > 2}
is a total ordering, the search terminates with ranking function 〈y2− 2, y1− 2〉,
supported by the invariants y1 ≥ 1 and y2 ≥ 1, respectively, where σ(1) =
2, σ(2) = 1 (i.e., τ1 maps to the second component, τ2 to the first).
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5 Solving the Numerical Constraints

Consider the specialization Rij , and expand the transition relation τi(xx′) to
the guard Gix + gi ≥ 0 and the update Uix + Vix′ + ui ≥ 0, where x =
(x1, . . . , xm)t. By Farkas’s Lemma, Ri,j expands as follows:

Rij :
Ix ≥ 0
τi(xx′) ≥ 0
cj

tx− cj
tx′ − ε ≥ 0

⇒
λI Ix + i ≥ 0
λG Gix + gi ≥ 0
λU Uix + Vix′ + ui ≥ 0

cj
tx− cj

tx′ − ε ≥ 0

The second table corresponds to the constraints

λI
tI + λG

tGi + λU
tUi = cj

λU
tVi = −cj

λI
ti + λG

tgi + λU
tui ≤ −ε

λI , λG, λU ≥ 0
ε > 0

where I, i, and cj are the unknown coefficients. The template invariant coeffi-
cients I and i appear in nonlinear terms, while the template ranking function
coefficients cj occur only linearly. This observation holds in general. Thus, the
number of template ranking function coefficients has little impact on the com-
plexity of the constraint solving problem. Indeed, if no invariant template is
proposed, the constraint solving problem is linear and thus trivial to solve. In
this section, we focus on the nonlinear case that arises with a template invariant.

In principle, Tarski’s decision procedure for polynomials [21] or CAD [2] can
be used to produce solutions of these systems. Sankaranarayanan et al.’s work on
constraint-based linear invariant generation [3, 16] explores several techniques for
solving similar constraint problems that arise in invariant generation; the main
practical solution is partly heuristic. We present a principled technique that
combines bisection search over the invariant template coefficients with linear
constraint solving. It guarantees finding a solution if one exists with integer
coefficients of at most some given absolute value.

Our method searches among linear assertions with integer coefficients in a
preset range, looking for a linear invariant that makes the constraint system
satisfiable. Rather than explicitly enumerating all linear assertions and checking
whether they result in a satisfiable constraint system, the method is guided in
its enumeration by considering regions of coefficients. A feasibility check forms a
linear overapproximation of the constraint system based on the considered region
and checks it for satisfiability. If the overapproximation is found unsatisfiable,
it concludes that no assertion in that region is a supporting invariant, thus
excluding the entire region from further search. If the region is found feasible,
an assertion in the corner of the region is chosen and substituted in the constraint
system, thus linearizing the constraint system. If the resulting constraint system
is satisfiable, the search terminates, as a solution has been found. Otherwise,
the region is bisected, and each subregion is handled recursively until a solution
is found or the preset depth is reached. An outline of the algorithm is given in
Figure 3.
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bool sat(sys, params) :

queue := {(1, [−1, 1]|params|)}
while |queue| > 0 do

(depth, r) := choose(queue)
if feasible(sys, r) then

if corner(sys, r) then return true
if depth ≤ D · |params| then

(r1, r2) := bisect(r)
queue := queue ∪ {(depth + 1, r1), (depth + 1, r2)}

return false

Fig. 3. Satisfiability check for numerical constraint systems

The feasibility check is computed as follows. Consider a constraint system
Φ and a region r consisting of one interval [�i, ui] for each invariant template
coefficient ci. Each constraint ϕ in Φ of the form · · · ± ciλj + · · · ≥ 0 is replaced
by a constraint ϕ′ in which each ci is replaced by �i if ciλj occurs negatively and
by ui if ciλj occurs positively (recall that λj ≥ 0). The resulting linear constraint
system Φ′ is checked for satisfiability.

Lemma 1. If Φ is satisfiable for some value of the ci’s in r, then Φ′ is satisfiable.

Consequently, if Φ′ is found unsatisfiable, then no solution exists for Φ with
coefficients from r; the region r is deemed infeasible.

The linear systems formed during the feasibility check and the check for a
solution contain the positive ε introduced by the ranking specialization. This ε
may be maximized, resulting in a linear program. The resulting maximum must
be positive for the constraint system to be satisfiable. Alternately, ε may be set
to a constant value, resulting in a linear feasibility check.

The satisfiability check may terminate with a solution, terminate because it
hits the maximum depth, or terminate because all regions are found infeasible.
If the search terminates only because regions are found infeasible, then no (lexi-
cographic) linear ranking function exists supported by an invariant of the given
size. If the maximum depth is ever reached but no solution is found, the result
is inconclusive. Assuming a fair bisect criterion and that the “lower-left” corner
of the region is always chosen when checking a particular solution, we have the
following guarantee.

Proposition 2. sat(sys, params) returns true iff a supporting invariant exists
with integer coefficients in the range [−2D−1, 2D−1), for maximum depth D ≥ 1.

The forward direction is immediate. For the other direction, first, every lin-
ear invariant with rational coefficients may be represented such that all coeffi-
cients lie in [−1, 1] and the denominators of coefficients are powers of 2. Second,
if bisect and corner satisfy the stated restrictions, then every combination of
such coefficients, with coefficient denominators up to 2D−1 and numerators in
[−2D−1, 2D−1), appears as a corner. Converting these rational coefficients to in-
tegers results in integer coefficients in [−2D−1, 2D−1). Finally, Lemma 1 ensures
that no region containing a solution is pruned.
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Invariants from other sources can be used directly by adding them “above
the line” of each specialization. For example, polynomial methods exist to gen-
erate all invariant linear equalities [7] and many linear inequalities [17]. These
invariants strengthen the constraint system without introducing nonlinearities.
An invariant template may still be required to enable solving for the harder-
to-find supporting invariants. However, one may expect that a smaller template
will be sufficient for finding the ranking function, thus reducing the complexity
of solving the constraint system.

6 Experimental Results

We implemented our method in O’Caml as a standalone tool. Its input is a set of
guarded commands, the initial condition, known invariants, and the size of the
supporting invariant template. When successful, it returns a ranking function
and its supporting invariants as a witness to termination. By itself, this tool is
suitable for analyzing interesting loops like gcd and McCarthy’s 91 function.
For example, it finds a single ranking function for gcd in about five seconds and
a lexicographic ranking function for gcd in about one second. The computation
of the lexicographic function is faster because it requires only a one-conjunct
template to produce two invariants, while the single ranking function needs two
conjuncts. For McCarthy’s 91 function, our tool finds the lexicographic ranking
function in about a second.

To test our method’s general applicability, we implemented a prototype C
loop abstracter in cil [12]. Its input is C source code; its output is a set of ab-
stracted loops, represented as sets of guarded commands. This set of tests mea-
sures the performance of our lexicographic ranking function synthesis method
without supporting invariants1. Thus, all numeric constraint systems are linear.

We implemented three lexicographic strategies to guide the synthesis. One
tries to find a non-lexicographic linear ranking function. Search tries to find a
non-lexicographic ranking function first, then applies has llrf (L, n) if that fails.
Set tries to find a non-lexicographic ranking function first; if that fails, it tries
to find a |G|-component lexicographic function with a fixed initial ordering. The
third strategy was implemented for comparison purposes. One important feature
of a scalable analysis is that when it fails on a common class of input, it fails
quickly. Comparing Search with Set allows us to assess whether Search fails
quickly on loops that do not have lexicographic linear ranking functions.

The implementation omits the disabled case when generating the constraint
systems to avoid introducing disjunctions, which produce multiple numeric con-
straint systems. In practice, however, the sets of guarded commands extracted
by our C loop abstracter contain inconsistent transitions: each guarded com-
mand represents a path through the loop, but some of these paths are logically
infeasible. Pruning the guarded command set by checking satisfiability of the

1 Our prototype abstracter does not produce initial conditions for the loops, so no
assertions can be proved invariant.
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Table 1. Results of tests. Interpret column headings as follows: Name: name of pro-
gram; LOC: lines of code of files successfully parsed and containing loops, as measured
by wc; #L: number of analyzed loops; #A: number of nontrivial abstracted loops;
#P: number of loops proved terminating; Tm: time in seconds required to analyze
the program; P/A: percent of abstracted loops proved terminating; P/L: percent of
all loops proved terminating. The experimental results are subdivided by the strategies
one, set, and search

One Set Search

Name LOC #L #A #P Tm #P Tm #P P/A P/L Tm

small1 310 8 3 2 2 2 2 2 66 25 2
vector 361 13 13 12 2 12 1 12 92 92 2
serv 457 9 6 5 1 5 1 5 83 55 2
dcg 1K 55 53 53 4 53 4 53 100 96 4
bcc 4K 70 18 18 5 18 5 18 100 25 5
sarg 7K 110 25 25 77 25 77 25 100 22 77
spin 19K 652 124 119 76 119 94 119 95 18 76
meschach 28K 911 778 751 64 758 66 758 97 83 64
f2c 30K 436 100 98 49 98 48 98 98 22 47
ffmpeg/libavformat 33K 451 230 217 55 217 55 217 94 48 55
gnuplot 50K 826 312 300 87 301 89 301 96 36 88
gaim 57K 594 54 52 93 52 94 52 96 8 94
ffmpeg/libavcodec 75K 2223 1885 1863 147 1863 143 1864 98 83 143

guards before starting the main analysis leads to significant time and memory
savings. This pruning is essentially the disabled case without invariants.

We applied our C loop abstracter and termination tool to a set of thirteen C
projects downloaded from Netlib [13] and Sourceforge [20]. Table 1 displays
the results. The timing data are obtained from running the tests on a 3GHz
dual-Pentium processor with 2GB of memory. Loops are counted as successfully
abstracted if they do not have any trivial guards or updates. The data indicate
that our method provides good coverage of successfully abstracted loops (P/A)
at low cost in time (Tm). Moreover, the timing data indicate that the extra
power of lexicographic function synthesis comes at almost no cost. Although
Search invokes the search method on every loop for which One fails, its speed
is competitive with One while proving 9 more loops terminating. Moreover,
comparing Search with Set indicates that the search method fails quickly when
it must fail: the feasibility check controls an otherwise expensive search.

7 Conclusion

Our method of ranking function synthesis demonstrates two new ideas. First,
the constraint-based analysis style of separating the encoding of requirements
from the synthesis itself [4] is extended by incorporating structural and numeric
constraints. The constraint solving process involves an interplay between sat-
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isfying structural requirements and the induced numeric constraints. Second,
supporting invariants are found implicitly. This choice avoids the full cost of in-
variant generation. Our numeric constraint solver exploits the implicit nature of
the supporting invariants, using a feasibility check to exclude sets of irrelevant
assertions and invariants. In a real sense, the ranking conditions guide the search
for supporting invariants.
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Abstract. We propose a new technique for the static analysis of concurrent pro-
grams comprised of multiple threads. In general, the problem is known to be
undecidable even for programs with only two threads but where the threads com-
municate using CCS-style pairwise rendezvous [11]. However, in practice, a large
fraction of concurrent programs can either be directly modeled as threads com-
municating solely using locks or can be reduced to such systems either by ap-
plying standard abstract interpretation techniques or by exploiting separation of
control from data. For such a framework, we show that for the commonly oc-
curring case of threads with nested access to locks, the problem is efficiently
decidable. Our technique involves reducing the analysis of a concurrent program
with multiple threads to individually analyzing augmented versions of the given
threads. This not only yields decidability but also avoids construction of the state
space of the concurrent program at hand and thus bypasses the state explosion
problem making our technique scalable. We go on to show that for programs
with threads that have non-nested access to locks, the static analysis problem for
programs with even two threads becomes undecidable even for reachability, thus
sharpening the result of [11]. As a case study, we consider the Daisy file system
[1] which is a benchmark for analyzing the efficacy of different methodologies for
debugging concurrent programs and provide results for the detection of several
bugs.

1 Introduction

Multi-threading is a standard way of enhancing performance by exploiting parallelism
among the different components of a computer system. As a result the use of concurrent
multi-threaded programs is becoming pervasive. Examples include operating systems,
databases and embedded systems. This necessitates the development of new methodolo-
gies to debug such systems especially since existing techniques for debugging sequen-
tial programs are inadequate in handling concurrent programs. The key reason for that
is the presence of many possible interleavings among the local operations of individual
threads giving rise to subtle unintended behaviors. This makes multi-threaded software
behaviorally complex and hard to analyze thus requiring the use of formal methods for
their validation.

One of the most widely used techniques in the validation of sequential programs
is dataflow analysis [12] which can essentially be looked upon as a combination of
abstract interpretation and model checking [13]. Here, abstract interpretation is used to
get a finite representation of the control part of the program while recursion is modeled
using a stack. Pushdown systems (PDSs) provide a natural framework to model such

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 505–518, 2005.
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abstractly interpreted structures. A PDS has a finite control part corresponding to the
valuation of the variables of the program and a stack which provides a means to model
recursion. Dataflow analysis then exploits the fact that the model checking problem for
PDSs is decidable for very expressive classes of properties - both linear and branching
time (cf. [2, 16]).

Following data-flow analysis for sequential programs, we model a multi-threaded
program as a system comprised of multiple pushdown systems interacting with each
other using a communication mechanism like a shared variable or a synchronization
primitive1. While for a single PDS the model checking problem is efficiently decidable
for very expressive logics, it was shown in [11] that even simple properties like reacha-
bility become undecidable even for systems with only two threads but where the threads
communicate using CCS-style pairwise rendezvous.

However, in a large fraction of real-world concurrent software used, for example, in
file systems, databases or device drivers, the key issue is to resolve conflicts between
different threads competing for access to shared resources. Conflicts are typically re-
solved using locks which allow mutually exclusive access to a shared resource. Before
a thread can have access to a shared resource it has to acquire the lock associated with
that resource which is released after executing all the intended operations. For such
software, the interaction between concurrently executing threads is very limited mak-
ing them loosely coupled. For instance, in a standard file system the control flow in the
implementation of the various file operations is usually independent of the data being
written to or read from a file. Consequently such programs can either be directly mod-
eled as systems comprised of PDSs communicating via locks or can be reduced to such
systems either by applying standard abstract interpretation techniques or by exploiting
separation of control and data. Therefore, in this paper, we consider the model checking
problem for PDSs interacting using locks.

Absence of conflicts and deadlock freedom are among the most crucial properties
that need to be checked for multi-threaded programs, particularly because checking for
these is usually a pre-cursor for verifying more complex properties. Typical conflicts in-
clude, for example, data races where two or more threads try to access a shared memory
location with at least one of the accesses being a write operation. This and most other
commonly occurring conflicts (can be formulated to) occur pairwise among threads.
With this in mind, given a concurrent program comprised of the n threads T1,...,Tn, we
consider correctness properties of the following forms:

– Liveness (Single-indexed Properties): Eh(i) and Ah(i), where h(i) is an LTL\X
formula (built using F “eventually,” U “until,” G “always,” but without X “next-
time”) interpreted over the local control states of the PDS representing thread Ti,
and E (for some computation starting at the initial global configuration) and A (for
all computations starting at the initial global configuration) are the usual path quan-
tifiers.

– Safety (Double-indexed Properties):
∧

i�=j EF(ai ∧ bj), where ai and bj are local
control states of PDSs Ti and Tj , respectively.

– Deadlock Freedom.

1 Henceforth we shall use the terms thread and PDS interchangeably.
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For single-indexed properties, we show that the model checking problem is effi-
ciently decidable. Towards that end, given a correctness property Eh(i) over the local
states of thread Ti, we show how to reduce reasoning in an exact, i.e., sound and com-
plete, fashion about a system with n threads to a system comprised of just the thread
Ti. This reduces the problem of model checking a single-indexed LTL\X formula for a
system with n threads to model checking a single thread (PDS), which by [2] is known
to be efficiently decidable.

The model checking problem for double-indexed properties is more interesting. As
for single-indexed properties, we show that we can reduce the model checking problem
for Eh(i, j) for a system with n threads to the system comprised of just the two threads
Ti and Tj . However, unlike the single index case, this still does not yield decidability
of the associated model checking problem. We show that, in general, the problem of
model checking remains undecidable even for pairwise reachability, viz., properties of
the form EF(ai ∧ bj), where ai and bj are local control states of thread Ti and Tj , even
for programs with only two threads.

However, most real-world concurrent programs use locks in a nested fashion, viz.,
each thread can only release the lock that it acquired last and that has not yet been
released. Indeed, practical programming guidelines used by software developers often
require that locks be used in a nested fashion. In fact, in Java and C# locking is syntacti-
cally guaranteed to be nested. In this case, we show that we can reduce reasoning about
pairwise reachability of a given two-threaded program to individually model checking
augmented versions of each of the threads, which by [2] is efficiently decidable. The
augmentation involves storing for each control location of a thread the history of locks
that were acquired or released in order to get to that location. We show that storing this
history information guarantees a sound and complete reduction. Furthermore, it avoids
construction of the state space of the system at hand thereby bypassing the state ex-
plosion problem thus making our technique scalable to large programs. Thus we have
given an efficient technique for reasoning about threads communicating via locks which
can be combined synergistically with existing methodologies.

As a case study, we have applied our technique to check race conditions in the Daisy
file system [1] and shown the existence of several bugs. Proofs of the results presented
in the paper have been omitted for the sake of brevity and can be found in the full
version which is available upon request.

2 System Model

In this paper, we consider multi-threaded programs wherein threads communicate using
locks. We model each thread using the trace flow graph framework (cf. [4]). Here each
procedure of a thread is modeled as a flow graph, each node of which represents a con-
trol point of the procedure. The edges of the flow graph are annotated with statements
that could either be assignments, calls to other procedures of the same thread or the ac-
quire and release of locks when the thread needs to access shared resources. Recursion
and mutual procedure calls are allowed. So that the flow graph of a program has a finite
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number of nodes, abstract interpretation techniques are often used in order to get a finite
representation of the (potentially infinitely many) control states of the original thread.
This typically introduces non-determinism which is explicitly allowed. Each thread can
then be modeled as a system of flow graphs representing its procedures.

The resulting framework of finite state flow graphs with recursion can be naturally
modeled as a pushdown system (PDS). A PDS has a finite control part corresponding
to the valuation of the local variables of the procedure it represents and a stack which
provides a means to model recursion.

Formally, a PDS is a five-tuple P = (P,Act, Γ, c0,Δ), where P is a finite set of
control locations, Act is a finite set of actions, Γ is a finite stack alphabet, and Δ ⊆
(P×Γ )×Act×(P×Γ ∗) is a finite set of transition rules. If ((p, γ), a, (p′, w)) ∈ Δ then

we write 〈p, γ〉 a
↪→ 〈p′, w〉. A configuration of P is a pair 〈p, w〉, where p ∈ P denotes

the control location and w ∈ Γ ∗ the stack content. We call c0 the initial configuration
of P . The set of all configurations of P is denoted by C. For each action a, we define a
relation

a→⊆ C × C as follows: if 〈q, γ〉 a
↪→ 〈q′, w〉, then 〈q, γv〉 a→ 〈q′, wv〉 for every

v ∈ Γ ∗.
We model multi-threaded programs using PDSs communicating using locks. For a

concurrent program comprised of threads T1,...,Tn, a lock l is a globally shared variable
taking on values from the set {1, ..., n,⊥}. The value of l can be modified by a thread
using the operations acquire(l) and release(l). A thread can acquire a lock l only if its
value is currently ⊥, viz., none of the other threads currently has possession of it. Once
l has been acquired by thread Ti, its value is set to i and it remains so until Ti releases
it by executing release(l) thereby resetting its value to ⊥. Locks are not pre-emptible,
viz., a thread cannot be forced to give up any lock acquired by it.

Formally, we model a concurrent program with n threads and m locks l1, ..., lm as a
tuple of the form CP = (T1, ..., Tn, L1, ..., Lm), where T1,...,Tn are pushdown systems
(representing threads) with the same set Act of non-acquire and non-release actions, and
for each i, Li ⊆ {⊥, 1, ..., n} is the possible set of values that lock li can be assigned
to. A global configuration of CP is a tuple c = (t1, ..., tn, l1, ..., lm) where t1, ..., tn
are, respectively, the configurations of threads T1, ..., Tn and l1, ..., lm the values of
the locks. If no thread holds the lock in configuration c, then li =⊥, else li is the
index of the thread currently holding the lock. The initial global configuration of CP is
(c1, ..., cn,⊥, ...,⊥︸ ︷︷ ︸

m

), where ci is the initial configuration of thread Ti. Thus all locks are

free to start with. We extend the relation
a−→ to pairs of global configurations as follows:

Let c = (c1, ..., cn, l1, ..., lm) and c′ = (c′1, ..., c
′
n, l

′
1, ..., l

′
m) be global configurations.

Then

– c
a−→ c′ if there exists 1 ≤ i ≤ n such that ci

a−→ c′i, and for all 1 ≤ j ≤ n such
that i �= j, cj = c′j , and for all 1 ≤ k ≤ m, lk = l′k.

– c
acquire(li)−→ c′ if there exists 1 ≤ j ≤ n such that cj

acquire(li)−→ c′j , and li =⊥, and
l′i = j, and for all 1 ≤ k ≤ n such that k �= j, ck = c′k, and for all 1 ≤ p ≤ m such
that p �= i, lp = l′p.
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– c
release(li)−→ c′ if there exists 1 ≤ j ≤ n such that cj

release(li)−→ c′j , and li = j, and
l′i =⊥, and for all 1 ≤ k ≤ n such that k �= j, ck = c′k, and for all 1 ≤ p ≤ m such
that p �= i, lp = l′p.

A sequence x = x1, x2, ... of global configurations of CP is a computation if x1 is the
initial global configuration of CP and for each i, xi

a→ xi+1, where either a ∈ Act or
for some 1 ≤ j ≤ m, a = release(lj) or a = acquire(lj). Given a thread Ti and a
reachable global configuration c = (c1, ..., cn, l1, ..., lm) of CP we use Lock-Set(Ti, c)
to denote the set of indices of locks held by Ti in c, viz., the set {j | lj = i}.

Nested versus Non-nested Lock Access. We say that a concurrent program accesses
locks in a nested fashion if and only if along each computation of the program a thread
can only release the last lock that it acquired along that computation and that has not
yet been released. For example in the figure below, the thread comprised of procedures
foo nested and bar accesses locks a,b, and c in a nested fashion whereas the
thread comprised of procedures foo not nested and bar does not. This is because
calling bar from foo non nested releases lock b before lock a even though lock a
was the last one to be acquired.

Global Locks: a,b,c

foo nested() { bar(){ foo non nested(){
acquire(a); release(b); acquire(b);
acquire(b); release(a); acquire(a);
bar(); acquire(c); bar();
release(c); release(c);

} } }

3 Many to Few

Let CP be a concurrent program comprised of n threads T1, ..., Tn and let f be a cor-
rectness property either of the form Efinh(i, j) or of the form Afinh(i, j), where h(i, j) is
an LTL\X formula with atomic propositions over the control states of threads Ti and Tj

and Efin and Afin quantify solely over finite computation paths. Note that since Afin and
Efin are dual path quantifiers it suffices to only consider the case where f is of the form
Efinh(i, j). We show that in order to model check CP for f it suffices to model check
the program CP(i, j) comprised solely of the threads Ti and Tj . We emphasize that this
result does not require the given concurrent program to have nested locks. Formally, we
show the following.

Proposition 1 (Double-Indexed Reduction Result). Given a concurrent program CP
comprised of n threads T1, ..., Tn, CP |= Efinh(i, j) iff CP(i, j) |= Efinh(i, j), where
CP(i, j) is the concurrent program comprised solely of the threads Ti and Tj .

Proposition 2 (Single-Indexed Reduction Result). Given a concurrent program CP
comprised of n threads T1, ..., Tn, CP |= Efinh(i) iff CP(i) |= Efinh(i), where CP(i) is
the program comprised solely of the thread Ti.

Similar results holds for properties of the form Einfh(i, j), where Einf quantifies solely
over infinite computations.
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4 Liveness Properties

Using proposition 2, we can reduce the model checking problem for a single-indexed
LTL\X formula f for a system with n threads to a system comprised solely of the single
thread whose control states are being tracked by f . Thus the problem now reduces
to model checking a pushdown system for LTL\X properties which is known to be
decidable in polynomial time in size of the control part of the pushdown system [2]. We
thus have the following.

Theorem 3 The model checking problem for single-indexed LTL\X properties for a
system with n threads is decidable in polynomial time in the size of the PDS representing
the thread being tracked by the property.

5 Safety Properties

Even though proposition 2 allows us to reduce reasoning about double-indexed LTL\X
properties from a system with n threads to one with 2 threads, it still does not yield
decidability. This is because although the model checking of LTL\X is decidable for a
single pushdown system, it becomes undecidable even for simple reachability and even
for systems with only two PDSs communicating via pairwise rendezvous [11]. The
proof of undecidability rests on the fact that synchronization using pairwise rendezvous
couples the two PDSs tightly enough to allow construction of a system that accepts the
intersection of the two given context free languages (CFLs) the non-emptiness of which
is undecidable.

We show that if we allow PDSs with non-nested lock access then the coupling,
though seemingly weaker than pairwise rendezvous, is still strong enough to build a
system accepting the intersection of the CFLs corresponding to the given PDSs thus
yielding undecidability for even pairwise reachability. This is discouraging from a prac-
tical standpoint. However we exploit the observation that in most real-world concurrent
programs locks are accessed by threads in a nested fashion. In fact, in certain program-
ming languages like Java and C#, locks are syntactically guaranteed to be nested. In that
case, we can reduce the model checking of LTL\X properties in a sound and complete
fashion for a concurrent program comprised of two threads to individually model check-
ing augmented versions of the thread for LTL\X properties, which by [2] is efficiently
decidable. Then combining this with the reduction result of the previous section, we
get that the model checking problem of doubly-indexed LTL\X formulas is efficiently
decidable for concurrent programs with nested locks.

5.1 Decidability of Pairwise Reachability for Nested Lock Programs

We motivate our technique with the help of a simple concurrent program CP shown
below comprised of thread one with procedures thread one and acq rel c, and
thread two with procedures thread two and acq rel b.

Suppose that we are interested in deciding whether EF(c4∧ g4) holds. The key idea
is to reduce this to checking EFc4 and EFg4 individually on (modifications of) the two
threads. Then given computations x and y leading to c4 and g4, respectively, we merge
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them to construct a computation z of CP leading to a global configuration with threads
one and two in local control states c4 and g4, respectively. Consider, for example, the
computations x: c1,c2,d1,d2,c3,c4 and y: g1,g2,g3,h1,h2,g4 of threads
one and two, respectively. Note that at control location g4, thread 2 holds locks c and
d. Also, along computation y once thread two acquires lock c at control location g1,
it does not release it and so we have to make sure that before we let it execute g1
along z, all operations that acquire and release lock c along x should already have been
executed. Thus in our case g1 must be scheduled to fire only after d2 (and hence c1,
c2 and d1) have already been executed. Similarly, operation c3 of thread one must
be executed after h2 has already been fired along z. Thus one possible computation z
of CP with the desired properties is z: c1, c2, d1, d2, g1, g2, g3, h1,
h2, g4, c3, c4.

thread one(){ acq rel c(){ thread two(){
c1: acquire(a) ; d1: acquire(c) ; g1: acquire(c) ;
c2: acq rel c() ; d2: release(c) ; g2: acquire(d) ;
c3: acquire(b) ; } g3: acq rel b() ;
c4: release(b) ; acq rel b(){ g4: release(d) ;
c5: release(a) ; h1: acquire(b) ; }

} h2 release(b) ;
}

Note that if we replace the function call at control location g3 of thread two by
acq rel a() which first acquires and then releases lock a, then there is no way to
reconcile the two local computations x and y to get a global computation leading to a
configuration with threads one and two, respectively, at control locations c4 and g4,
even though they are reachable in their respective individual threads. This is because
in this case h2 (and hence g1, g2, g3 and h1) should be executed before c1 (and
hence c2, d1, d2, c3 and c4). Again, as before, g1 can be fired only after d2
(and hence c1, c2 and d1). From the above observations we get that g1 must be
fired after h2 along z. But that violates the local ordering of the transitions fired along
y wherein g1 was fired before h2. This proves the claim made above.

In general when testing for reachability of control states c and c′ of two different
threads it suffices to test whether there exist paths x and y in the individual threads
leading to states c and c′ holding lock sets L and L′ which can be acquired in a com-
patible fashion. Compatibility ensures that we do not get a scenario as above where
there exist locks a ∈ L and a′ ∈ L′ such that a transition acquiring a′ was fired after
acquiring a for the last time along x and a transition acquiring a was fired after acquir-
ing a′ for the last time along y, else we can’t reconcile x and y. The above discussion
is formalized below in Theorem 5. Before proceeding further, we need the following
definition.

Definition 4 (Acquisition History). Let x be a global computation of a concurrent
program CP leading to global configuration c. Then for thread Ti and lock lj of CP
such that j ∈ Lock-Set(Ti, c), we define AH(Ti, lj , x) to be the set of indices of locks
that were acquired (and possibly released) by Ti after the last acquisition of lj by Ti

along x.
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Theorem 5 (Decomposition Result). Let CP be a concurrent program comprised of
the two threads T1 and T2 with nested locks. Then for control states a1 and b2 of T1 and
T2, respectively, CP |= EF(a1∧ b2) iff there are computations x and y of the individual
threads T1 and T2, respectively, leading to configurations s with T1 in control state a1

and t with T2 in control state b2 such that

– Lock-Set(T1, s) ∩ Lock-Set(T2, t) = ∅.
– there do not exist locks l ∈ Lock-Set(T1, s) and l′ ∈ Lock-Set(T2, t) with l′ ∈
AH(T1, l, x) and l ∈ AH(T2, l

′, y).

To make use of the above result we augment the given threads to keep track of the
acquisition histories. Given a thread P = (P, Act, Γ, c0, Δ) of concurrent program
CP having the set of locks L of cardinality m, we construct the augmented thread
PA = (PA, Act, Γ, d0, ΔA), where PA = P × 2L × (2L)m and ΔA ⊆ (PA ×
Γ )× (PA × Γ ∗). The augmented PDA is used to track the set of locks and acquisition
histories of thread T along local computations of T . Let x be a computation of CP
leading to global configuration s. Each control location of the augmented PDA is of the
form (a, Locks,AH1, ..., AHm), where a denotes the current control state of T in s,
Locks the set of locks currently held by T and for 1 ≤ j ≤ m, if lj ∈ Locks, then
AHj is the set AH(T, lj , x) else it is the empty set. The initial configuration d0 is the
(m+ 2)-tuple (c0, ∅, ∅, ..., ∅). The transition relation ΔA is defined as follows:

〈q, Locks,AH1, ..., AHm, γ〉 a
↪→ 〈q′, Locks′, AH ′

1, ..., AH
′
m, w〉 ∈ ΔA iff

– a is not a lock operation, 〈q, γ〉 a
↪→ 〈q′, w〉 ∈ Δ, Locks = Locks′ and for 1 ≤ j ≤

m, AHj = AH ′
j .

– a is the action acquire(lk), Locks′ = Locks∪{k}, q acquire(lk)−→ q′, γ = w and for
1 ≤ p ≤ m, if p ∈ Locks then AH ′

p = AHp ∪ {k} and AH ′
p = AHp otherwise.

– a is the action release(lk),Lock′ = Locks\{k}, q release(lk)−→ q′, γ = w,AH ′
k = ∅

and for 1 ≤ p ≤ m such that p �= k, AH ′
p = AHp.

Proposition 6. Given a concurrent program CP comprised of threads T and T ′, the
model checking problem for pairwise reachability, viz., formulas of the form EF(a1∧b2)
is decidable.

Implementation Issues. Given a concurrent program, to implement our technique we
introduce for each lock l two extra global variables defined as follows:

1. possession l: to track whether l is currently in the possession of a thread
2. history l: to track the acquisition history of l.

To begin with, possession l is initialized to false and history l to the emptyset.
Then each statement of the form acquire(lk) in the original code is replaced by the
following statements:

acquire(lk) ;
possession lk := true ;
for each lock l

if (possession l = true)
history l := history l ∪ {lk} ;
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Similarly, each statement of the form release(lk) is replaced with the following
sequence of statements:

release(lk) ;
possession lk := false ;

history lk := emptyset ;

Optimizations. The above naive implementation keeps the acquisition history for each
lock of the concurrent program and tests for all possible disjoint pairs L and L′ of lock
sets and all possible compatible acquisition histories at two given error control locations
ai and bj , say. In the worst case this is exponential in the number of locks. However
by exploiting program analysis techniques one can severely cut down on the number of
such lock sets and acquisition histories that need to be tested for each control location
of the given program as discussed below.

Combining Lock Analysis with Program Analysis. Using static analysis on the con-
trol flow graph of a given thread we can get a conservative estimate of the set of locks
that could possibly have been acquired by a thread with its program counter at a given
control location c. This gives us a superset Lc of the set of locks that could possibly
have been acquired at control location c and also the possible acquisition histories. Thus
in performing the reachability analysis, EF(ai ∧ bj), we only need to consider sets L
and L′ of locks such that L ∩ L′ = ∅, L ⊆ Lai

and L′ ⊆ Lbj
. This can exponentially

cut down on the lock sets and acquisition histories that need be explored as, in practice,
the nesting depth of locks is usually one and so the cardinality of Lc will usually be
one.

Combining Lock Analysis with Program Slicing. By theorem 5, for a control location
c of thread T we need to track histories of only those locks that are in possession of T at
c instead of every lock as was done in the naive implementation. Furthermore for a lock
l in possession of T at c we can ignore all lock operations performed by T before l was
acquired for the last time by T before reaching c as these don’t affect the acquisition
history of l. Such statements can thus be deleted using program slicing techniques.

6 Deadlockability

In our framework, since synchronization among threads is carried out using locks, the
only way a deadlock can occur is if there is a reachable global state s with a depen-
dency cycle of the form Ti1 → Ti2 → ... → Tip

→ Ti1 , where Tik−1 → Tik
if

the program counter of Tik−1 is currently at an acquire operation for a lock that is
currently held by Tik

. Thus to decide whether any thread in the given program CP
is deadlockable, for each thread Ti of CP we first construct the set of reachable con-
figurations of the corresponding augmented thread (Ti)A (defined above) where the
control location is such that an acquire operation can be executed from it. Denote the
set of such configurations by Acqi. We then construct a directed graph DCP whose
nodes are elements of the set

⋃
iAcqi and there is a directed edge from configuration

a = (a, L,AH1, ..., AHm) to a′ = (a′, L′, AH ′
1, ..., AH

′
m) iff there exist i �= i′ such
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that (i) a ∈ Acqi, a′ ∈ Acqi′ , and (ii) a and a′ both correspond to acquire operations,
say, acquire(l) and acquire(l′), respectively, and (iii) thread Ti′ currently holds lock l
required by thread Ti, viz., l ∈ L′. Then the given current program is deadlockable iff
there exists a cycle c1 → ...→ cp → c1 in DCP such that every pair of configurations
cj = (cj , Lj , AHj1, ..., AHjm) and cj′ = (cj′ , Lj′ , AHj′1, ..., AHj′m) is consistent,
viz., Lj ∩ Lj′ = ∅ and there do not exist locks lr ∈ Lj and lr′ ∈ Lj′ such that
lr′ ∈ AHjr and lr ∈ AHj′r′ . By theorem 5, consistency ensures that the global state
encompassing the cycle is a reachable state of CP . Note that again we have bypassed the
state explosion problem by not constructing the state space of the system at hand. Fur-
thermore using the optimizations discussed in the previous section, we can severely cut
down on the possible lock sets and acquisition histories that we need to track for each
acquire location in each thread. This ensures that the size of DCP remains tractable.

7 Undecidability for Programs with Non-nested Locks

In this section, we show that for concurrent programs comprised of two threads T1 and
T2 communicating via locks (not necessarily nested), the model checking problem for
pairwise reachability, viz., properties of the form EF(a1 ∧ b2), where a1 and b2 are
control states of T1 and T2, respectively, is undecidable.

Given a concurrent program CP comprised of two threads T1 and T2 communicating
via pairwise rendezvous, we construct a new concurrent program CP ′ comprised of
threads T1 and T2 by (weakly) simulating pairwise rendezvous using non-nested locks
such that the set of control states of T1 and T2 are supersets of the sets of control states
of T1 and T2, respectively, and for control states a1 and b2 of T1 and T2, respectively,
CP |= EF(a1 ∧ b2) iff CP ′ |= EF(a1 ∧ b2). This reduces the decision problem for
pairwise reachability for threads communicating via pairwise rendezvous to threads
communicating via locks. But since pairwise reachability for threads communicating
via pairwise rendezvous is undecidable, our result follows.

Simulating Pairwise Rendezvous using Locks. We now present the key idea behind

the simulation. We show how to simulate a given pair a
m!−→ b and c

m?−→ d of send and
receive pairwise rendezvous transitions, respectively. Recall that for this rendezvous to
be executed, both the send and receive transitions must be simultaneously enabled, else
neither transition can fire. Corresponding to the labels m! and m?, we first introduce
the new locks lm!, lm? and lm.

Cons ider now the send transition tr : a m!−→ b of thread T1, say. Our construction
ensures that before T1 starts mimicking tr in local state a it already has possession of

lock lm?. Then T1 simulates T1 via the following sequence of transitions: a
acquire(lm)−→

a1
release(lm?)−→ a2

acquire(lm!)−→ a3
release(lm)−→ b

acquire(lm?)−→ b1
release(lm!)−→ b2. Similarly

we assume that T2 has possession of lm! before it starts mimicking tr′ : c m?−→ d.

Then T2 simulates tr′ by firing the following sequence of transitions: c
acquire(lm?)−→

c1
release(lm!)−→ c2

acquire(lm)−→ c3
release(lm?)−→ d

acquire(lm!)−→ d1
release(lm)−→ d2.
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The reason for letting thread T1 acquire lm? at the outset is to prevent thread T2

from firing transition c
m?−→ d without synchronizing with tr : a m!−→ d. To initiate

execution of the pairwise rendezvous involving tr, thread T1 releases lock lm? and only
when lock lm? is released can T2 pick it up in order to execute the matching receive
transition labeled with m?. But before T1 releases lm? it acquires lm. Note that this
trick involving chaining wherein before releasing a lock a thread is forced to pick up
another lock gives us the ability to introduce a relative ordering on the firing of local
transitions of T1 and T2 which in turn allows us to simulate (in a weak sense) the firing
of the pairwise rendezvous comprised of tr and tr′. It can be seen that due to chaining,
the local transitions in the two sequences defined above can only be interleaved in the

following order: a
acquire(lm)−→ a1, a1

release(lm?)−→ a2, c
acquire(lm?)−→ c1, c1

release(lm!)−→ c2,

a2
acquire(lm!)−→ a3 a3

release(lm)−→ b, c2
acquire(lm)−→ c3, c3

release(lm?)−→ d, b
acquire(lm?)−→ b1,

b1
release(lm!)−→ b2, d

acquire(lm!)−→ d1, d1
release(lm)−→ d2.

It is important to note that the use of overlapping locks is essential in implementing
chaining thereby forcing a pre-determined order of firing of the local transitions which
cannot be accomplished using nested locks alone. Since the model checking problem
for pairwise reachability is known to be undecidable for threads communicating us-
ing pairwise rendezvous [11] and since we can, by the above result, simulate pairwise
rendezvous using locks in a way so as to preserve pairwise reachability, we have the
following undecidability result.

Theorem 8. The model checking problem for pairwise reachability is undecidable for
concurrent programs comprised of two threads communicating using locks.

8 The Daisy Case Study

We have used our technique to find bugs in the Daisy file system which is a benchmark
for analyzing the efficacy of different methodologies for verifying concurrent programs
[1]. Daisy is a 1KLOC Java implementation of a toy file system where each file is
allocated a unique inode that stores the file parameters and a unique block which stores
data. An interesting feature of Daisy is that it has fine grained locking in that access
to each file, inode or block is guarded by a dedicated lock. Moreover, the acquire and
release of each of these locks is guarded by a ‘token’ lock. Thus control locations in
the program might possibly have multiple open locks and furthermore the acquire and
release of a given lock can occur in different procedures.

We have incorporated our lock analysis technique into F-Soft [8] which is a frame-
work for model checking sequential software. We have implemented the decision pro-
cedure for pairwise reachability and used it to detect race conditions in the Daisy file
system. Towards that end we check that for all n, any n-threaded Daisy program does
not have a given race condition. Since a race condition can be expressed as pairwise
reachability, using Proposition 1, we see that it suffices to check a 2-thread instance.
Currently F-Soft only accepts programs written in C and so we first manually trans-
lated the Daisy code which is written in Java into C. Furthermore, to reduce the model
sizes, we truncated the sizes of the data structures modeling the disk, inodes, blocks,
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file names, etc., which were not relevant to the race conditions we checked, resulting in
a sound and complete small-domain reduction. We emphasize that beyond redefining
the constants limiting these sizes no code restructuring was carried out on the translated
C code.

Given a race condition to be verified, we use a fully automated procedure to generate
two augmented thread representation (Control Flow Graphs (CFG)) on which the verifi-
cation is carried out individually. A race condition occurs if and only if the labels in both
the modified threads are reachable. Using this fully automated procedure, we have shown
the existence of the following race conditions also noted by other researchers (cf. [1]):

1. Daisy maintains an allocation area where for each block in the file system a bit
is assigned 0 or 1 accordingly as the block has been allocated to a file or not. But each
disk operation reads/writes an entire byte. Two threads accessing two different files
might access two different blocks. However since bytes are not guarded by locks in
order to set their allocation bits these two different threads may access the same byte in
the allocation block containing the allocation bit for each of these locks thus setting up
a race condition. For the data race described above, the statistics are as follows. The
pre-processing phase which includes slicing, range analysis, using static analysis to find
the possible set of open locks at the control state corresponding to the error label and
then incorporating the acquisition history statements in the CFGs corresponding to the
threads for only these locks took 77 secs2 for both the threads. The two model checking
runs took 5.3 and 21.67 secs and the error labels corresponding to the race condition
were reached at depths 75 and 333, respectively in the two threads using SAT-based
BMC in F-Soft.

2. In Daisy reading/writing a particular byte on the disk is broken down into two
operations: a seek operation that mimics the positioning of the head and a read/write
operation that transfers the actual data. Due to this separation between seeking and data
transfer a race condition may occur. For example, reading two disk locations, say n
and m, we must make sure that seek(n) is followed by read(n) without seek(m) or
read(m) scheduled in between. Here the pre-processing phase took about the same
time as above. The model checking runs on the two threads took 15 and 35 secs.

9 Conclusion and Related Work

In this paper, we have considered the static analysis of concurrent multi-threaded pro-
grams wherein the threads communicate via locks. We have shown that for single index
LTL\X properties the problem is efficiently decidable. On the other hand, for double
index LTL\X properties, the problem can be shown to be undecidable even for reach-
ability and for systems with only two threads. However, for the practically important
case where the locks are nested we get efficient decidability for pairwise reachability.
We have implemented our technique in a prototype software verification platform and
our preliminary results on the Daisy benchmark are encouraging.

There has been interesting prior work on extending data flow analysis to handle con-
current programs. In [3], the authors attempt to generalize the decision procedures given

2 Machine Specifications: Intel Pentium4 3.20GHz CPU, 2MB RAM.
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in [2] to handle pushdown systems communicating via CCS-style pairwise rendezvous.
However since even reachability is undecidable for such a framework the procedures
are not guaranteed to terminate in general but only for certain special cases, some of
which the authors identify. However their practical utility is not clear. The key idea in
identifying the above cases was to restrict the interaction among the threads so as to by-
pass the undecidability barrier. A natural way to accomplish that which was formulated
in [10] is to explore the state spaces of the concurrent program for a bounded number
of context switches among the threads.

A commonly used approach to cut down on the number of interleavings when rea-
soning about concurrent systems is to exploit syntactic independence among the local
operations of different components of the system. In [9] this idea is exploited using
the concept of transactions, wherein executing a transaction is equivalent to atomically
executing a sequence of operations of each thread that do not involve communication
with other threads and thus their execution does not interfere in the operation of other
threads. The advantage of this technique is that it works well provided one can stati-
cally decide whether two given operations from two different threads are independent,
a problem which is, in general, hard. The disadvantage is that although this technique
can potentially cut down on the number of interleavings to be explored, it still does not
completely address the core issue of state explosion. The use of partial order techniques
([6, 5, 14, 15]) also exploits syntactic independence of transitions to cut down on the
number of interleavings to be explored and although extremely useful, suffers from the
same drawback as above.

Another technique that has been adapted from concurrent protocol verification is the
use of compositional reasoning wherein one tries to reduce reasoning about the correct-
ness of a system comprised of many concurrently executing components to reasoning
about each individual components. In [7] an assume-guarantee style reasoning is used
to abstract out the environment of each thread in a purely automatic fashion for system
where the threads are loosely coupled. A drawback is that the technique is not complete
for reachability and thus is not guaranteed to find all errors. Furthermore, error trace
recovery is hard because abstracting the environment causes a lot of information to be
lost and thus it may not be possible to construct a concrete error trace purely from the
environment assumptions.

We, on the other hand, have identified a practically important case of threads com-
municating using locks and shown how to reason efficiently about a rich class of prop-
erties. We address the state explosion problem by reducing reasoning about indexed
LTL\X properties and deadlockability to reasoning about individual threads. Our meth-
ods are exact, i.e., both sound and complete, and cater to automatic error trace recovery.
A key advantage of our method is that by avoiding construction of the state space of
the system at hand we bypass the state explosion problem, thus guaranteeing scala-
bility of our approach. Most multi-threaded programs use shared data structures that
are guarded by locks to communicate. A potential drawback of our method is that it
works only for threads that communicate purely using locks. However we believe that
a very large fraction of concurrent software is loosely coupled and even where richer
communication mechanisms are used, the interaction between the threads is not very
subtle and can often, by using standard abstract interpretation techniques, be modeled
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as threads communicating solely using locks. Furthermore, even if it not possible to ab-
stract out the shared data structures, by considering only communication via the locks
we over-approximate the set of behaviors of the given program. Our technique can then
be used to generate warnings for potential data race violations. This is advantageous as
model checking a single thread is more tractable than model checking an entire multi-
threaded program. Once these potential data race violations have been isolated, more
general but less tractable techniques like model checking using partial order reductions
can be deployed to further refine the analysis by focusing precisely on these violations.
Our technique can therefore be looked upon as a first line of attack in combating state
explosion in the context of multi-threaded software providing an exact and efficient
procedure for verifying an important class of multi-threaded software.
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1 Introduction

We present an approach to automatically creating abstractions for use in program anal-
ysis. As in some previous work [12, 4, 13, 18, 5, 2, 8], the approach involves the succes-
sive refinement of the abstraction in use. Unlike previous work, the work presented in
this paper is aimed at programs that manipulate pointers and heap-allocated data struc-
tures. However, while we demonstrate our approach on shape-analysis problems, the
approach is applicable in any program-analysis setting that uses first-order logic.

The paper presents an abstraction-refinement method for use in static analyses based
on 3-valued logic [21], where the semantics of statements and the query of interest are
expressed using logical formulas. In this setting, a memory configuration is modeled
by a logical structure; an individual of the structure’s universe either models a sin-
gle memory element or, in the case of a summary individual, it models a collection
of memory elements. Summary individuals are used to ensure that abstract descriptors
have an a priori bounded size, which guarantees that a fixed-point is always reached.
However, the constraint of working with limited-size descriptors implies a loss of in-
formation about the store. Intuitively, certain properties of concrete individuals are lost
due to abstraction, which groups together multiple individuals into summary individu-
als: a property can be true for some concrete individuals of the group, but false for other
individuals. The TVLA system is a tool for creating such analyses [1].

With the method proposed in this paper, refinement is performed by introducing new
instrumentation relations (defined via logical formulas over core relations, which cap-
ture the basic properties of memory configurations). Instrumentation relations record
auxiliary information in a logical structure, thus providing a mechanism to fine-tune an
abstraction: an instrumentation relation captures a property that an individual memory
cell may or may not possess. In general, the introduction of additional instrumentation
relations refines an abstraction into one that is prepared to track finer distinctions among
stores. The choice of instrumentation relations is crucial to the precision, as well as the
cost, of the analysis. Until now, TVLA users have been faced with the task of identi-
fying an instrumentation-relation set that gives them a definite answer to the query, but
does not make the cost prohibitive. This was arguably the key remaining challenge in
the TVLA user-model. The contributions of this work can be summarized as follows:
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– The method has been implemented as an extension of TVLA. In this system, all
of the user-level obligations for which TVLA has been criticized in the past have
been addressed. The input required to specify a program analysis consists of: (i) a
transition system, (ii) a query (a formula that identifies acceptable outputs), and
(iii) a characterization of the program’s valid inputs.

– We present experimental evidence of the value of the approach. We tested the
method on sortedness, stability, and antistability queries for a set of programs that
perform destructive list manipulation, as well as on partial-correctness queries for
two binary-search-tree programs. The method succeeds in all cases tested.

Inductive learning concerns identifying general rules from a set of observed instances—
in our case, from relationships observed in a logical structure. An advantage of an ap-
proach based on inductive learning is that it does not require the use of a theorem prover.
This is particularly beneficial in our setting because our logic is undecidable.

1x 8 5
n n

Fig. 1. A possible store for
a linked list

The paper is organized as follows: §2 introduces terminology and notation. Readers
familiar with TVLA can skip to §2.2, which briefly summarizes ILP. §3 illustrates our
goals on the problem of verifying the partial correctness of a
sorting routine. §4 describes the techniques used for learn
ing abstractions. (Further details can be found in [16].) §5
presents experimental results. §6 discusses related work.

2 Background

2.1 Stores as Logical Structures and heir Abstractions

x

tn,dle

tn,dle

dle

u1rn,x

tn,dle

u2rn,x

n,tn

dle
tn,dle

u3rn,x

n,tn

x rn,x cn

u1 1 1 0
u2 0 1 0
u3 0 1 0

n u1 u2 u3

u1 0 1 0
u2 0 0 1
u3 0 0 0

tn u1 u2 u3

u1 1 1 1
u2 0 1 1
u3 0 0 1

dle u1 u2 u3

u1 1 1 1
u2 0 1 0
u3 0 1 1

Fig. 2. A logical structure S2 that represents the store shown
in Fig. 1 in graphical and tabular forms

Our work extends the program-
analysis framework of [21].
In that approach, concrete
memory configurations (i.e.,
stores) are encoded as logical
structures in terms of a fixed
collection of core relations,
C. Core relations are part of
the underlying semantics of
the language to be analyzed.
For instance,

lem of creating abstractions.We use ILP for learning new instrumentation relations
that preserve information that would otherwise be lost due to abstraction.

– It establishes a new connection between program analysis and machine learning by
showing that inductive logic programming (ILP) [19, 17, 14] is relevant to the prob-

Tab. 1 gives the
definition of a C linked-list
datatype, and lists the relations that would be used to represent the stores manipulated
by programs that use typeList, such as the store in Fig. 1. 2-valued logical structures
then represent memory configurations: the individuals are the set of memory cells;
in this example, unary relations represent pointer variables and binary relation n re
presents the n-field of a List cell. The

less-than-or-equal-to”) listed in Tab. 1.
Fig. 2 shows 2-valued structure S2, which represents the store of Fig. 1 (relations tn,
rn,x, and cn will be explained below).

data field is modeled indirectly, via the
binary relation dle (which stands for “data

-

-
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Let R = {eq, p1, . . . , pn} be a finite vocabulary of relation symbols, where Rk de-
notes the set of relation symbols of arity k (and eq ∈ R2). A 2-valued logical structure
S over R is a set of individuals US , along with an interpretation that maps each relation
symbol p of arity k to a truth-valued function: pS : (US)k → {0, 1}, where eqS is the
equality relation on individuals. The set of 2-valued structures is denoted by S2[R].

In 3-valued logic, a third truth value—1/2—is introduced to denote uncertainty.
For l1, l2 ∈ {0, 1/2, 1}, the information order is defined as follows: l1 � l2 iff l1 = l2
or l2 = 1/2. A 3-valued logical structure S is defined like a 2-valued logical struc-
ture, except that the values in relations can be {0, 1/2, 1}. An individual for which
eqS(u, u) = 1/2 is called a summary individual. A summary individual abstracts one
or more fragments of a data structure, and can represent more than one concrete mem-
ory cell. The set of 3-valued structures is denoted by S3[R].

Concrete and Abstract Semantics A concrete operational semantics is defined by
specifying a structure transformer for each kind of edge e that can appear in a transition
system. A structure transformer is specified by providing relation-update formulas for
the core relations. These formulas define how the core relations of a 2-valued logical
structure S that arises at the source of e are transformed by e to create a 2-valued logical
structure S′ at the target of e. Edge e may optionally have a precondition formula, which
filters out structures that should not follow the transition along e.

However, sets of 2-valued structures do not yield a suitable abstract domain; for
instance, when the language being modeled supports allocation from the heap, the set
of individuals that may appear in a structure is unbounded, and thus there is no a priori
upper bound on the number of 2-valued structures that may arise during the analysis.

To ensure termination, we abstract sets of 2-valued structures using 3-valued struc-
tures. A set of stores is then represented by a (finite) set of 3-valued logical structures.
The abstraction is defined using an equivalence relation on individuals: each individ-
ual of a 2-valued logical structure (representing a concrete memory cell) is mapped to
an individual of a 3-valued logical structure according to the vector of values that the
concrete individual has for a user-chosen collection of unary abstraction relations:

Definition (Canonical Abstraction). Let S ∈ S2, and let A ⊆ R1 be some chosen
subset of the unary relation symbols. The relations in A are called abstraction relations;
they define the following equivalence relation �A on US :

Formulas are first-order formulas with transitive closure: a formula over the vocabulary R is
defined as follows (where p∗(v1, v2) stands for the reflexive transitive closure of p(v1, v2)):
p ∈ R,
ϕ ∈ Formulas,
v ∈ Variables

ϕ ::= 0 | 1 | p(v1, . . . , vk) | (¬ϕ1) | (v1 =v2)
| (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (ϕ1 → ϕ2) | (ϕ1 ↔ ϕ2)
| (∃v : ϕ1) | (∀v : ϕ1) | p∗(v1, v2)

u1 �A u2 ⇐⇒ for all p ∈ A, pS(u1) = pS(u2),

.

typedef struct node {
struct node *n;
int data;

} *List;

Relation Intended Meaning
eq(v1, v2) Do v1 and v2 denote the same memory cell?
q(v) Does pointer variable q point to memory cell v?
n(v1, v2) Does the n field of v1 point to v2?
dle(v1, v2) Is the data field of v1 less than or equal to that of v2?

(a) (b)
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Table 1. (a) Declaration of a linked-list datatype in C. (b) Core relations used for representing the
stores manipulated by programs that use type List

1

1



fA(u3) = u23. S3 represents all lists with two or more elements, in which the first
element’s data value is lower than the data values in the rest of the list. The following
graphical notation is used for depicting 3-valued logical structures:

– Individuals are represented by circles containing their names and (non-0) values for
unary relations. Summary individuals are represented by double circles.

– A unary relation p corresponding to a pointer-valued program variable is repre-
sented by a solid arrow from p to the individual u for which p(u) = 1, and by
the absence of a p-arrow to each node u′ for which p(u′) = 0. (If p = 0 for all
individuals, the relation name p is not shown.)

– A binary relation q is represented by a solid arrow labeled q between each pair of
individuals ui and uj for which q(ui, uj) = 1, and by the absence of a q-arrow
between pairs u′

i
and u′

j
for which q(u′

i
, u′

j
) = 0.

– Relations with value 1/2 are represented by dotted arrows.

tn,dle
x

tn,dle n,tn,dle
n

u1rn,x

u23rn,x

x rn,x cn

u1 1 1 0
u23 0 1 0

n u1 u23

u1 0 1/2
u23 0 1/2

tn u1 u23

u1 1 1
u23 0 1/2

dle u1 u23

u1 1 1
u23 0 1/2

Fig. 3. A 3-valued structure S3 that is the canonical ab-
straction of structure S2

Canonical abstraction ensures
that each 3-valued structure is
no larger than some fixed size,
known a priori. Moreover, the
meaning of a given formula in
the concrete domain (℘(S2)) is
consistent with its meaning in
the abstract domain (℘(S3)), al-
though the formula’s value in an
abstract structure fA(S) may be less precise than its value in the concrete structure S.

Abstract interpretation collects a set of 3-valued structures at each program point. It
can be implemented as an iterative procedure that finds the least fixed point of a certain
collection of equations on variables that take their values in ℘(S3) [21].

p Intended Meaning ψp

tn(v1, v2) Is v2 reachable from v1 along n fields? n∗(v1, v2)
rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1) ∧ tn(v1, v)

along n fields?
cn(v) Is v on a directed cycle of n fields? ∃ v1 : n(v1, v) ∧ tn(v, v1)

Table 2. Defining formulas of some commonly used instrumentation relations. There is a separate
reachability relation rn,x for every program variable x

and the surjective function fA : US → US/ �A, such that fA(u) = [u]�A
, which

maps an individual to its equivalence class. The canonical abstraction of S with re-
spect to A (denoted by fA(S)) performs the join (in the information order) of predicate
values, thereby introducing 1/2’s. �

If all unary relations are abstraction relations (A = R1), the canonical abstraction of
2-valued logical structure S2 is S3, shown in Fig. 3, with fA(u1) = u1 and fA(u2) =

Instrumentation Relations The abstraction function on which an analysis is based,
and hence the precision of the analysis defined, can be tuned by (i) choosing to equip

.
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2.2 Inductive Logic Programming (ILP)

Given a logical structure, the goal of an ILP algorithm is to learn a logical relation
(defined in terms of the logical structure’s other relations) that agrees with the classi-
fication of input examples. ILP algorithms produce the answer in the form of a logic
program.(Non-recursive) logic programs correspond to a subset of first-order logic. A
logic program can be thought of as a disjunction over the program rules, with each rule
corresponding to a conjunction of literals. Variables not appearing in the head of a rule
are implicitly existentially quantified.

Definition (ILP). Given a set of positive example tuples E+, a set of negative ex-
ample tuples E−, and a logical structure, the goal of ILP is to find a formula ψE such
that all e ∈ E+ are satisfied (or covered) by ψE and no e ∈ E− is satisfied by ψE . �

u2

u3 u5

u1
u4

Fig. 4. A linked list with
shared elements

For example, consider learning a unary formula that
holds for linked-list elements that are pointed to by the n
fields of more than one element (as used in [11, 3]). We
let E+ = {u3, u5} and E− = {u1, u4} in the 2-valued
structure of Fig. 4. The formula ψisShared(v) def= ∃ v1, v2 :
n(v1, v) ∧ n(v2, v) ∧¬eq(v1, v2) meets the objective, as
it covers all positive and no negative example tuples.

Input: Target relation E(v1, . . . , vk),
Structure S ∈ S3[R],
Set of tuples Pos, Set of tuples Neg

[1] ψE := 0
[2] while(Pos 	= ∅)
[3] NewDisjunct := 1
[4] NewNeg := Neg
[5] while(NewNeg 	= ∅)
[6] Cand := candidate literals using R
[7] Best := L ∈ Cand with max Gain(L,NewDisjunct)
[8] NewDisjunct := NewDisjunct∧ L
[9] NewNeg := subset of NewNeg satisfying L
[10] ∃-quantify NewDisjunct variables /∈ {v1, . . . , vk}
[11] ψE := ψE ∨ NewDisjunct
[12] Pos :=subset of Pos not satisfying NewDisjunct

Fig. 5. Pseudo-code for FOIL

Fig. 5 presents the ILP
algorithm used by systems
such as FOIL [19], modi-
fied to construct the answer
as a first-order logic for-
mula in disjunctive normal
form. This algorithm is ca-
pable of learning the for-
mula ψisShared(v) (by per-
forming one iteration of the
outer loop and three iter-

ILP algorithms are capable of producing recursive programs, which correspond to first-order
logic plus a least-fixpoint operator (which is more general than transitive closure).

structures with additional instrumentation relations to record derived properties, and
(ii) varying which of the unary core and unary instrumentation relations are used as
the set of abstraction relations. The set of instrumentation relations is denoted by I.
Each relation symbol p ∈ Ik ⊆ Rk is defined by an instrumentation-relation definition
formula ψp(v1, . . . , vk). Instrumentation relation symbols may appear in the defining
formulas of other instrumentation relations as long as there are no circular dependences.

The introduction of unary instrumentation relations that are used as abstraction re-
lations provides a way to control which concrete individuals are merged together, and
thereby control the amount of information lost by abstraction. Tab. 2 lists some instru-
mentation relations that are important for the analysis of programs that use type List.

ations of the inner loop
to successively choose lit
erals n(v1, v), n(v2, v), and

-
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[1]void InsertSort(List x){
[2] List r, pr, rn, l, pl;
[3] r = x;
[4] pr = NULL;
[5] while (r != NULL) {
[6] l = x;
[7] rn = r->n;
[8] pl = NULL;
[9] while (l != r) {
[10] if (l->data > r->data){
[11] pr->n = rn;
[12] r->n = l;
[13] if (pl == NULL) x = r;
[14] else pl->n = r;
[15] r = pr;
[16] break;
[17] }
[18] pl = l;
[19] l = l->n;
[20] }
[21] pr = r;
[22] r = rn;
[23] }
[24]}

Fig. 6. A stable version of insertion
sort

Given the static-analysis algorithm defined in §2.1,
to demonstrate the partial correctness of a proce-
dure, the user must supply the following program-
specific information:

– The procedure’s control-flow graph.
– A data-structure constructor (DSC): a code

fragment that non-deterministically constructs
all valid inputs.

– A query; i.e., a formula that identifies the in-
tended outputs.

The analysis algorithm is run on the DSC concate-
nated with the procedure’s control-flow graph; the
query is then evaluated on the structures that are
generated at exit.

Consider the problem of establishing that
InsertSort shown in Fig. 6 is partially correct.
This is an assertion that compares the state of a
store at the end of a procedure with its state at the
start. In particular, a correct sorting routine must
perform a permutation of the input list, i.e. all list
elements reachable from variable x at the start of
the routine must be reachable from x at the end. We
can express the permutation property as follows:

∀v : r0
n,x

(v) ↔ rn,x(v), (1)

where r0
n,x

denotes the reachability relation for x at the beginning of InsertSort. If
Formula (1) holds, then the elements reachable from x after InsertSort executes are
exactly the same as those reachable at the beginning, and consequently the procedure
performs a permutation of list x. In general, for each relation p, we have such a history
relation p0.

¬eq(v1, v2)). It is a sequential covering algorithm parameterized by the function Gain,
which characterizes the usefulness of adding a particular literal (generally, in some
heuristic fashion). The algorithm creates a new disjunct as long as there are positive
examples that are not covered by existing disjuncts. The disjunct is extended by con-
joining a new literal until it covers no negative examples. Each literal uses a relation
symbol from the vocabulary of structure S; valid arguments to a literal are the variables
of target relation E, as well as new variables, as long as at least one of the arguments
is a variable already used in the current disjunct. In FOIL, one literal is chosen using a
heuristic value based on the information gain (see line [7]). FOIL uses information gain
to find the literal that differentiates best between positive and negative examples.

3 Example: Verifying Sortedness
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In [15], Lev-Ami et al. used TVLA to establish the partial correctness of
InsertSort. The key step was the introduction of instrumentation relation
inOrderdle,n(v), which holds for nodes whose data-components are less than or equal
to those of their n-successors; inOrderdle,n(v) was defined by:

inOrderdle,n(v) def= ∀v1 : n(v, v1) → dle(v, v1). (3)

The sortedness property was then stated as follows (cf. Formula (2)):

∀v : rn,x(v) → inOrderdle,n(v). (4)

empty list 1-element list lists with 2 or more elements

x

tn,dle

rn,x

dle
x

tn,dle n,tn,dle

nrn,x rn,x
tn

Fig. 7. The structures that describe possible in-
puts to InsertSort

After the introduction of relation
inOrderdle,n, the 3-valued structures that
are collected by abstract interpretation at
the end of InsertSort describe all
stores in which variable x points to an
acyclic, sorted linked list. In all of these
structures, Formulas (4) and (1) evaluate
to 1. Consequently,InsertSort is gua
ranteed to work correctly on all valid inputs.

4 Learning an Abstraction

In [15], instrumentation relation inOrderdle,n was defined explicitly (by the TVLA
user). Heretofore, there have really been two burdens placed on the TVLA user:

(i) he must have insight into the behavior of the program, and
(ii) he must translate this insight into appropriate instrumentation relations.

∀ v1 : rn,x(v1) → (∀ v2 : n(v1, v2) → dle(v1, v2)). (2)

If it does, then the nodes reachable from x must be in non-decreasing order.
Abstract interpretation collects 3-valued structure S3 shown in Fig. 3 at line [24].

Note that Formula (2) evaluates to 1/2 on S3. While the first list element is guaranteed
to be in correct order with respect to the remaining elements, there is no guarantee
that all list nodes represented by the summary node are in correct order. In particular,
because S3 represents S2, shown in Fig. 2, the analysis admits the possibility that the
(correct) implementation of insertion sort of Fig. 6 can produce the store shown in
Fig. 1. Thus, the abstraction that we used was not fine-grained enough to establish the
partial correctness of InsertSort. In fact, the abstraction is not fine-grained enough
to separate the set of sorted lists from the lists not in sorted order.

-

Fig. 7 shows the three structures that characterize the valid inputs to InsertSort
(they represent the set of stores in which program variable x points to an acyclic linked
list). To verify that InsertSort produces a sorted permutation of the input list, we
would check to see whether, for all of the structures that arise at the procedure’s exit
node, the following formula evaluates to 1:
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– (Line [8]; [16, §4.3]) Obtain the most precise possible values for the newly intro-
duced instrumentation relations in abstract structures that define the valid inputs to
the program. This is achieved by “reconstructing” the valid inputs by performing
abstract interpretation of the data-structure constructor.

A first attempt at abstraction refinement could be the introduction of the query itself as
a new instrumentation relation. However, this usually does not lead to a definite answer.
For instance, with InsertSort, introducing the query as a new instrumentation re-
lation is ineffective because no statement of the program has the effect of changing the
value of such an instrumentation relation from 1/2 to 1.

In contrast, when unary instrumentation relation inOrderdle,n is present, there are
several statements of the program where abstract interpretation results in new definite
entries for inOrderdle,n. For instance, because of the comparison in line [10] of Fig. 6,
the insertion in lines [12]–[14] of the node pointed to by r (say u) before the node
pointed to by l results in a new definite entry inOrderdle,n(u).

An algorithm to generate new instrumentation relations should take into account the
sources of imprecision. §4.1 describes subformula-based refinement; §4.2 describes
ILP-based refinement. At present, we employ subformula-based refinement first, be-
cause the cost of this strategy is reasonable (see §5) and the strategy is often successful.
When subformula-based refinement can no longer refine the abstraction, we turn to ILP.

Because a query has finitely many subformulas and we currently limit ourselves to
one round of ILP-based refinement, the number of abstraction-refinement steps is finite.

– Perform an abstract interpretation to collect a set of structures at each program
point, and evaluate the query on the structures at exit. If a definite answer is obtained
on all structures, terminate. Otherwise, perform abstraction refinement.

– (Line [6]; §4.1 and §4.2) Find defining formulas for new instrumentation relations.
– (Line [7]) Replace all occurrences of these formulas in the query and in the def-

initions of other instrumentation relations with the use of the corresponding new
instrumentation relation symbols, and apply finite differencing [20] to generate re-
fined relation-update formulas for the transition system.

Input: a transition system,
a data-structure constructor,
a query ϕ (a closed formula)

[1] Construct abstract input
[2] do
[3] Perform abstract interpretation
[4] Let S1, . . . , Sk be the set of

3-valued structures at exit
[5] if for all Si, [[ϕ]]Si

3 ([]) 	= 1/2 break
[6] Find formulas ψp1 , . . . , ψpk

for new
instrumentation rels p1, . . . , pk

[7] Refine the actions that define
the transition system

[8] Refine the abstract input
[9] while(true)

Fig. 8. Pseudo-code for iterative abstraction refine-
ment

The goal of this paper is to auto-
mate the identification of appropri-
ate instrumentation relations, such
as inOrderdle,n. For InsertSort,
the goal is to obtain definite answers
when evaluating Formula (2) on the
structures collected by abstract in-
terpretation at line [24] of Fig. 6.
Fig. 8 gives pseudo-code for our
method, the steps of which can be
explained as follows:

– (Line [1]; [16, §4.3]) Use
a data-structure constructor to
compute the abstract input struc-
tures that represent all valid in-
puts to the program.

Because, additionally, each run of the analysis explores a bounded number of 3-valued
structures, the algorithm is guaranteed to terminate.
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the query and in the definitions of other instrumentation relations with the use of the
corresponding new instrumentation-relation symbols.

Example. For InsertSort, the use of Formula (2) in the query is replaced with
the use of the stored value sorted1(). Then the definitions of all instrumentation re-
lations are scanned for occurrences of ψsorted1 , . . . , ψsorted4 . These occurrences are
replaced with the names of the four relations. In this case, only the new relations’ defi-
nitions are changed, yielding the definitions given in Column 3 of Tab. 3.

In all of the structures collected at the exit node of InsertSort by the second run
of abstract interpretation, sorted1() = 1. The permutation property also holds on all of
the structures. These two facts establish the partial correctness of InsertSort. This
process required one iteration of abstraction refinement, used the basic version of the
specification (the vocabulary consisted of the relations of Tabs. 1 and 2, together with
the corresponding history relations), and needed no user intervention. �

4.2 ILP-Based Refinement

Shortcomings of Subformula-Based Refinement To illustrate a weakness in
subformula-based refinement, we introduce the stability property. The stability prop-

p ψp (after call to instrum) ψp (final version)

sorted1() ∀ v1 : rn,x(v1) → (∀ v2 : n(v1, v2) → dle(v1, v2)) ∀ v1 : sorted2(v1)

sorted2(v1) rn,x(v1) → (∀ v2 : n(v1, v2) → dle(v1, v2)) rn,x(v1) → sorted3(v1)

sorted3(v1) ∀ v2 : n(v1, v2) → dle(v1, v2) ∀ v2 : sorted4(v1, v2)

sorted4(v1, v2) n(v1, v2) → dle(v1, v2) n(v1, v2) → dle(v1, v2)

Table 3. Instrumentation relations created by subformula-based refinement

The actions that define the program’s transition relation need to be modified to gain
precision improvements from storing and maintaining the new instrumentation rela-
tions. To accomplish this, refinement of the program’s actions (line [7] in Fig. 8) re-
places all occurrences of the defining formulas for the new instrumentation relations in

4.1 Subformula-Based Refinement

When the query ϕ evaluates to 1/2 on a structure S collected at the exit node, we invoke
function instrum, a recursive-descent procedure to generate defining formulas for new
instrumentation relations based on the subformulas of ϕ responsible for the imprecision.
The details of function instrum are given in [16, §4.1].

Example. As we saw in §3, abstract interpretation collects 3-valued structure S3

of Fig. 3 at the exit node of InsertSort. The sortedness query (Formula (2)) eval-
uates to 1/2 on S3, triggering a call to instrum with Formula (2) and structure S3, as
arguments. Column 2 of Tab. 3 shows the instrumentation relations that are created as
a result of the call. Note that sorted3 is defined exactly as inOrderdle,n, which was the
key insight for the results of [15]. �

erty usually arises in the context of sorting procedures, but actually applies to list-

.
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values that are transformed into 1/2 in S10. Structure S9 satisfies the sortedness invari-
ant discussed above: every node among u1, ..., u4 has the dle relationship with all nodes
appearing later in the list, except r’s target, u5. However, a piece of this information is
lost in structure S10: dle(u23, u23) = 1/2, indicating that some nodes represented by
summary node u23 might not be in
sorted order with respect to their
successors. We will refer to such
abstraction steps as information-loss
points.

manipulating programs in general: the stability query (Formula (5)) asserts that the
relative order of elements with equal data-components remains the same.

A related property, antistability, asserts that the order of elements with equal data-
components is reversed: ∀ v1, v2 : (dle(v1, v2) ∧ dle(v2, v1) ∧ t0n(v1, v2)) → tn(v2, v1)
Our test suite also includes program InsertSort AS, which is identical to InsertSort
except that it uses ≥ instead of > in line [10] of Fig. 6 (i.e., when looking for the correct place
to insert the current node). This implementation of insertion sort is antistable.

u1 u2
n,dle u3

n,dle u4
n,dle u5

n

x,pl r,rnl pr

dle u1 u2 u3 u4 u5

u1 1 1 1 1 1/2
u2 1/2 1 1 1 1/2
u3 0 0 1 1 1/2
u4 0 0 1/2 1 1/2
u5 1/2 1/2 1/2 1/2 1

tn u1 u2 u3 u4 u5

u1 1 1 1 1 1
u2 0 1 1 1 1
u3 0 0 1 1 1
u4 0 0 0 1 1
u5 0 0 0 0 1

Fig. 9. Structure S9, which arises just before
line [6] of Fig. 6. Unlabeled edges between nodes
represent the dle relation

An abstract structure transformer
may temporarily create a structure S1

that is not in the image of canonical
abstraction [21]. The subsequent appli-
cation of canonical abstraction trans-
forms S1 into structure S2 by grouping
a set U1 of two or more individuals of
S1 into a single summary individual of
S2. The loss of precision is due to one
or both of the following circumstances:
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∀ v1, v2 : (dle(v1, v2) ∧ dle(v2, v1) ∧ t0
n
(v1, v2)) → tn(v1, v2) (5)

Procedure InsertSort consists of two nested loops (see Fig. 6). The outer loop
traverses the list, setting pointer variable r to point to list nodes. For each iteration of
the outer loop, the inner loop finds the correct place to insert r’s target, by traversing
the list from the start using pointer variable l; r’s target is inserted before l’s target
when l->data > r->data. Because InsertSort satisfies the invariant that all
list nodes that appear in the list before r’s target are already in the correct order, the
data-component of r’s target is less than the data-component of all nodes ahead of
which r’s target is moved. Thus, InsertSort preserves the original order of elements
with equal data-components, and InsertSort is a stable routine.

However, subformula-based refinement is not capable of establishing the stability
of InsertSort. By considering only subformulas of the query (in this case, For-
mula (5)) as candidate instrumentation relations, the strategy is unable to introduce
instrumentation relations that maintain information about the transitive successors with
which a list node has the correct relative order.
Learning Instrumentation Relations Fig. 9 shows the structure S9, which arises dur-
ing abstract interpretation just before line [6] of Fig. 6, together with a tabular version
of relations tn and dle. (We omit reachability relations from the figure for clarity.) Af-
ter the assignment l = x;, nodes u2 and u3 have identical vectors of values for the
unary abstraction relations. The subsequent application of canonical abstraction pro-
duces structure S10, shown in Fig. 10. Bold entries of tables in Fig. 9 indicate definite

.

3



relations of the structure that lose definite entries as a result of abstraction (e.g., tn and
dle in the above example). Definite entries of those relations are then used to learn for-
mulas that evaluate to 1 for every positive example and to 0 for every negative example.

We modified the algorithm of §2.2 to learn multiple formulas in one invocation
of the algorithm. Our motivation is not to find a single instrumentation relation that
explains something about the structure, but rather to find all instrumentation relations
that help the analysis establish the property of interest. Whenever we find multiple

Type I: Unary relation r1 with E+ = {u} for one u ∈ U1, and E− = U1 − {u}.
Type II: Unary relation r2 with E+ = U1.
Type III: Binary relation r3 with E+ = U1 × U1.

Type I relations are intended to prevent the grouping of individuals with different
properties, while Types II and III are intended to capture the common properties of
individuals in U1. (Type III relations can be generalized to higher-arity relations.)

For the logical structure that serves as input to ILP, we pass the structure S1 iden-
tified at an information-loss point. We restrict the algorithm to use only non-history

This variant of ILP is able to learn a useful binary formula using structure S9 of
Fig. 9. The set of individuals of S9 that are grouped by the abstraction is U = {u2, u3},
so the input set of positive examples is {(u2, u2), (u2, u3), (u3, u2), (u3, u3)}. The set
of relations that lose definite values due to abstraction includes tn and dle. Literal
dle(v1, v2) covers three of the four examples because it holds for bindings (v1, v2) �→
(u2, u2), (v1, v2) �→ (u2, u3), and (v1, v2) �→ (u3, u3). The algorithm picks that literal

literals of the same quality (see line [7] of Fig. 5), we extend distinct copies of the
current disjunct using each of the literals, and then we extend distinct copies of the
current formula using the resulting disjuncts.
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– Individuals in U1 have a property in
common, which cannot be recomputed
precisely in S2.

u1
n u4 u5

n

x,pl,l r,rnpr

u23
n

n,dle

dle u1 u23 u4 u5

u1 1 1 1 1/2
u23 1/2 1/2 1 1/2
u4 0 1/2 1 1/2
u5 1/2 1/2 1/2 1

tn u1 u23 u4 u5

u1 1 1 1 1
u23 0 1/2 1 1
u4 0 0 1 1
u5 0 0 0 1

Fig. 10. Structure S10, corresponding to
the transformation of S9 by the statement
on line [6] of Fig. 6. Unlabeled edges be-
tween nodes represent the dle relation

In both cases, the solution lies in the introduc-
tion of new instrumentation relations. In the for-
mer case, it is necessary to introduce a unary ab-
straction relation to keep the individuals of U1

that possess the property from being grouped
with those that do not. In the latter case, it is
sufficient to introduce a non-abstraction relation
of appropriate arity that captures the common
property of individuals in U1. The algorithm de-
scribed in §2.2 can be used to learn formulas for
the following three kinds of relations:4

These are what are needed for our analysis framework, which uses abstractions that generalize
predicate-abstraction domains. A fourth use of ILP provides a new technique for predicate
abstraction itself: ILP can be used to identify nullary relations that differentiate a positive-
example structure S from the other structures arising at a program point. The steps of ILP go
beyond merely forming Boolean combinations of existing relations; they involve the creation
of new relations by introducing quantifiers during the learning process.

4

– One of the individuals in U1 possesses a property that another individual does
not possess; thus, the property for thesummary individual is 1/2.



(currently, those with two atomic subformulas). We are in the process of extending our
techniques for pruning useless instrumentation relations. This should make it practical
for us to use all types of relations that can be learned by ILP for refining the abstraction.

Example. When attempting to verify the stability
of InsertSort, ILP creates nine formulas
including Formula (6). The subsequent run of the
analysis successfully verifies the stability of In
sertSort. �

At present, we employ subformula-based refinement first. During each iteration
of subformula-based refinement, we save logical structures at information-loss points.
Upon the failure of subformula-based refinement, we invoke the ILP algorithm de-
scribed in §4.2. To lower the cost of the analysis we prune the returned set of for-
mulas. For example, we currently remove formulas defined in terms of a single relation
symbol; such formulas are usually tautologies (e.g., dle(v1, v2) ∨ dle(v2, v1)). We then
define new instrumentation relations, and use these relations to refine the abstraction by
performing the steps of lines [7] and [8] of Fig. 8. Our implementation can learn rela-
tions of all types described in §4.2: unary, binary, as well as nullary. However, due to
the present cost of maintaining many unary instrumentation relations in TVLA, in the
experiments reported here we only learn binary formulas (i.e., of Type III). Moreover,
we define new instrumentation relations using only learned formulas of a simple form

Test Program sorted stable antistable

BubbleSort 1 1 1/2
InsertSort 1 1 1/2
InsertSort AS 1 1/2 1
Merge 1/2 1 1/2
Reverse 1/2 1/2 1

Fig. 11. Results from applying itera-
tive abstraction refinement to the veri-
fication of properties of programs that
manipulate linked lists

Fig. 11 shows that the method was able to gen-
erate the right instrumentation relations for TVLA
to establish all properties that we expect to hold.
Namely, TVLA succeeds in demonstrating that
all three sorting routines produce sorted lists, that
BubbleSort, InsertSort, and Merge are
stable routines, and that InsertSort AS and
Reverse are antistable routines.
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ψr3(v1, v2)
def= dle(v1, v2) ∨¬tn(v1, v2), (6)

which can be re-written as tn(v1, v2) → dle(v1, v2).
Relation r3 allows the abstraction to maintain information about the transitive suc-

cessors with which a list node has the correct relative order. In particular, although
dle(u23, u23) is 1/2 in S10, r3(u23, u23) is 1, which allows establishing the fact that all
list nodes appearing prior to r’s target are in sorted order.

Other formulas, such as dle(v1, v2) ∨ tn(v2, v1), are also learned using ILP (cf.
Fig. 12). Not all of them are useful to the verification process, but introducing extra
instrumentation relations cannot harm the analysis, aside from increasing its cost.

5 Experimental Evaluation

We extended TVLA to perform iterative abstraction refinement, and applied it to three
queries and five programs (see Fig. 11). Besides InsertSort, the test programs in-
cluded sorting procedures BubbleSort and InsertSort AS, list-merging proce-
dure Merge, and in-situ list-reversal procedure Reverse.

and, because there are no negative examples, dle(v1, v2) becomes the first disjunct. Lit-
eral ¬tn(v1, v2) covers the remaining positive example, (u3, u2), and the algorithm
returns the formula

-



late binary-search trees. InsertBST inserts a new node into a binary-search tree, and
DeleteBST deletes a node from a binary-search tree. For both programs, subformula-
based refinement successfully verified the query that the nodes of the tree pointed to by
variable t remain in sorted order at the end of the programs:

onds and 6 minutes. The total time for the 15 tests is 35 minutes. These numbers are
very close to how long it takes to verify the sortedness queries when the user carefully
chooses the right instrumentation relations [15]. The maximum amount of memory
used by the analyses varied from just under 2 MB to 32 MB.

The cost of the invocations of the ILP algorithm when attempting to verify the
antistability of BubbleSort was 25 seconds (total, for 133 information-loss points).
For all other benchmarks, the ILP cost was less than ten seconds.

Three additional experiments tested the applicability of our method to other queries
and data structures. In the first experiment, subformula-based refinement successfully
verified that the in-situ list-reversal procedure Reverse indeed produces a list that
is the reversal of the input list. The query that expresses this property is ∀ v1, v2 :
n(v1, v2) ↔ n0(v2, v1). This experiment took only 5 seconds and used less than 2
MB of memory. The second and third experiments involved two programs that manipu-

Sortedness is the only query in our set to which TVLA has been applied before this work.
TVLA is written in Java. Here we report the maximum of total memory minus free memory,
as returned by Runtime.

∀ v1: rt(v1)→(∀ v2 : (left(v1, v2)→dle(v2, v1)) ∧(right(v1, v2)→dle(v1, v2))) (7)

The initial specifications for the analyses included only three standard instrumentation
relations, similar to those listed in Tab. 2. Relation rt(v1) from Formula (7), for exam-
ple, distinguishes nodes in the (sub)tree pointed to by t. The InsertBST experiment
took 30 seconds and used less than 3 MB of memory, while the DeleteBST experi-
ment took approximately 10 minutes and used 37 MB of memory.
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5

6

5

6

of applying Reverse to an unsorted list is usually an unsorted list;
however, in the case that the input list happensto be in non-increasing order, Reverse
produces a sorted list.Consequently, the most precise answer to the query is 1/2, not 0.

sorted stable antistable
Test Program # instrum rels # instrum rels # instrum rels

total/ILP total/ILP total/ILP

BubbleSort 31/0 32/0 41/9
InsertSort 39/0 49/9 43/3
InsertSort AS 39/0 43/3 40/0
Merge 30/3 28/0 31/3
Reverse 26/3 27/3 24/0

Fig. 12. The numbers of instrumentation rela-
tions (total and learned by ILP) used during the
last iteration of abstraction refinement

Fig. 12 shows the numbers of instru-
mentation relations used during the last
iteration of abstraction refinement. The
number of ILP-learned relations used by
the analysis is small relative to the total
number of instrumentation relations.

Fig. 13 gives execution times that
were collected on a 3GHz Linux PC. The
longest-running analysis, which verifies
that InsertSort is stable, takes 8.5
minutes. Seven of the analyses take under
a minute. The rest take between 70 sec-

most precise correct answers. For
instance, the result

Indefinite answers are indicated by 1/2 entries. It is important to understand
that all of the occurrences of 1/2 in Fig. 11 are the



Abstraction-refinement techniques from the abstract-interpretation community are
capable of refining domains that are not based on predicate abstraction. In [10], for

applicable in any setting in which
first-order logic is used to describe program states.

A second distinguishing feature of our work is that the method is driven not by coun-
terexample traces, but instead by imprecise results of evaluating a query (in the case of
subformula-based refinement) and by loss of information during abstraction steps (in
the case of ILP-based refinement). There do not currently exist theorem provers for
first-order logic extended with transitive closure capable of identifying infeasible error
traces [9]; hence we needed to develop techniques different from those used in SLAM,
BLAST, etc. SLAM identifies the shortest prefix of a spurious counterexample trace
that cannot be extended to a feasible path; in general, however, the first information-loss
point occurs before the end of the prefix. Information-loss-guided refinement can iden-
tify the earliest points at which information is lost due to abstraction, as well as what
new instrumentation relations need to be added to the abstraction at those points. A po-
tential advantage of counterexample-guided refinement over information-loss-guided
refinement is that the former is goal-driven. Information-loss-guided refinement can
discover many relationships that do not help in establishing the query. To alleviate this
problem, we restricted the ILP algorithm to only use relations that occur in the query.

using shape-analysis queries, this approach is

example, a polyhedra-based domain is dynamically refined. Our work is based on a
different abstract domain, and led us to develop some new approaches to abstraction
refinement, based on machine learning.

In the abstract-interpretation community, a strong (albeit often unattainable) form of
abstraction refinement has been identified in which the goal is to make abstract interpre-
tation complete (a.k.a. “optimal”) [7]. In our case, the goal is to extend the abstraction
just enough to be able to answer the query, rather than to make the abstraction optimal.
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6 Related Work

Fig. 13. Execution times. For each pro-
gram, the three bars represent the
sorted, stable, and antistable queries.
In cases where subformula-based refine-
ment failed, the upper portion of the bars
shows the cost of the last iteration of the
analysis (on both the DSC and the pro-
gram) together with the ILP cost

The work reported here is similar in spirit to
counterexample-guided abstraction refinement
[12, 4, 13, 18, 5, 2, 8, 6]. A key difference be-
tween this work and prior work in the model-
checking community is the abstract domain:
prior work has used abstract domains that are
fixed, finite, Cartesian products of Boolean val-
ues (i.e., predicate-abstraction domains), and
hence the only relations introduced are nullary
relations. Our work applies to a richer
class of abstractions—3-valued structures—
that generalize predicate-abstraction domains.
The abstraction-refinement algorithm described
in this paper can introduce unary, binary,
ternary, etc. relations, in addition to nullary re-
lations. While we demonstrated our approach
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Abstract. We address the issue of efficiently automating assume-guarantee rea-
soning for simulation conformance between finite state systems and specifica-
tions. We focus on a non-circular assume-guarantee proof rule, and show that
there is a weakest assumption that can be represented canonically by a determin-
istic tree automata (DTA). We then present an algorithm LT that learns this DTA
automatically in an incremental fashion, in time that is polynomial in the num-
ber of states in the equivalent minimal DTA. The algorithm assumes a teacher
that can answer membership and candidate queries pertaining to the language of
the unknown DTA. We show how the teacher can be implemented using a model
checker. We have implemented this framework in the COMFORT toolkit and we
report encouraging results (over an order of magnitude improvement in memory
consumption) on non-trivial benchmarks.

1 Introduction

Formal verification is an important tool in the hands of software practitioners for ascer-
taining correctness of safety critical software systems. However, scaling formal tech-
niques like model checking [11] to concurrent software of industrial complexity re-
mains an open challenge. The primary hurdle is the state-space explosion problem
whereby the number of reachable states of a concurrent system increases exponentially
with the number of components.

Two paradigms hold the key to alleviating state-space explosion – abstraction [10, 9]
and compositional reasoning [23, 8]. Both of these techniques have been extensively
studied by the formal verification community and there have been significant break-
throughs from time to time. One of the most important advancements in the domain of
compositional analysis is the concept of assume-guarantee [23] (AG) reasoning. The
essential idea here is to model-check each component independently by making an as-
sumption about its environment, and then discharge the assumption on the collection of
the rest of the components. A variety of AG proof-rules are known, of which we will
concern ourselves with the following non-circular rule called AG-NC:

M1 ‖ MA � S M2 � MA

M1 ‖ M2 � S

where M1 ‖ M2 is the concurrent system to be verified, S is the specification, and � an
appropriate notion of conformance between the system and the specification. AG-NC
is known to be sound and complete for a number of conformance notions, including
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trace containment and simulation. The rule essentially states that if there is an assump-
tion MA that satisfies the two premises, then the system conforms to the specification.
However, the main drawback here from a practical point of view is that, in general, the
assumption MA has to be constructed manually. This requirement of manual effort has
been a major hindrance towards wider applicability of AG-style reasoning on realistic
systems.

An important development in this context is the recent use of automata-theoretic
learning algorithms by Cobleigh et al. [12] to automate AG reasoning for trace contain-
ment, when both the system and the specification are finite state machines. Briefly, the
idea is to automatically learn an assumption MA that can be used to discharge AG-NC.
The specific learning algorithm that is employed is Angluin’s L∗ [2], which learns finite
state machines up to trace equivalence. Empirical evidence [12] indeed suggests that,
often in practice, this learning based approach automatically constructs simple (small
in size) assumptions that can be used to discharge AG-NC.

In this article, we apply the learning paradigm to automate AG-reasoning for simu-
lation conformance between finite systems and specifications. We first show that there
is a weakest assumption MW for AG-NC such that M1 ‖ M2 � S if and only if
M2 � MW . Further, MW is regular in that the set of trees it can simulate can be
accepted by a tree automata. Although one can compute MW and use it to check if
M2 � MW , doing so would be computationally as expensive as directly checking if
M1 ‖ M2 � S. We therefore learn the weakest assumption in an incremental fashion,
and use the successive approximations that are learnt to try and discharge AG-NC. If at
any stage an approximation is successfully used, then we are done. Otherwise, we ex-
tract a counterexample from the premise of AG-NC that has failed, and use it to further
improve the current approximation.

To realize the above approach, we need an algorithm that learns the weakest as-
sumption up to simulation equivalence. As mentioned above the weakest assumption
corresponds to a regular tree language. We present an algorithm LT that learns the min-
imal deterministic tree automata (DTA) for this assumption in an incremental fashion.
Although a similar learning algorithm for tree languages has been proposed earlier [14],
LT was developed by us independently and has a much better worst-case complexity
than the previous algorithm. The algorithm LT may be of independent interest besides
the specific application we consider in this paper. It assumes that an unknown regular
tree language U is presented by a minimally adequate teacher (teacher for short) that
can answer membership queries about U , and that can also test conjectures about U and
provide counterexamples to wrong conjectures. The algorithm LT learns the minimal
DTA for U in time polynomial in the number of states in the minimal DTA.

We will show how the teacher can be efficiently implemented in a model checker,
i.e., how the membership and candidate queries can be answered without paying the
price of explicitly composing M1 and M2. Further, we show how while processing the
candidate queries, the teacher can try to discharge AG-NC with the proposed candidate.
We have empirical evidence supporting our claim that AG-NC can often be discharged
with a coarse approximation (candidate), well before the weakest assumption is learnt.
We have implemented the proposed framework in the COMFORT [7] toolkit and ex-
perimented with realistic examples. Specifically, we have experimented with a set of
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benchmarks constructed from the OPENSSL source code and the SSL specification.
The experimental results indicate memory savings by over an order of magnitude com-
pared to a non-AG based approach.

Related Work. A number of applications of machine learning techniques to verifica-
tion problems have been proposed in the recent past. These include automatic synthesis
of interface specifications for application programs [1], automatically learning the set
of reachable states in regular model checking [20], black-box-testing [22] and its subse-
quent extension to adaptive model-checking [19] to learn an accurate finite state model
of an unknown system starting from an approximate one, and learning likely program
invariants based on observed values in sample executions [15].

The work we present in this paper closely parallels the approach proposed by
Cobleigh et al. [12], where they automate assume-guarantee reasoning for finite state
concurrent systems in a trace-containment setting. They show the existence of a weakest
environment assumption for an LTS and automatically learn successive approximations
to it using Angluin’s L∗ algorithm [2, 24]. Our contribution is to apply this general
paradigm to a branching time setting. Further, the LT algorithm that we present may be
of independent interest. LT may be viewed as a branching time analogue of L∗ where
the minimally adequate teacher must be capable of answering queries on trees and tree
automata (as opposed to traces and finite state machines in L∗). Finally, Rivest et al. [24]
proposed an improvement to Angluin’s L∗ that substantially improves its complexity;
our LT has the same spirit as this improved version of L∗.

Language identification in the limit paradigm was introduced by Gold [17]. This
forms the basis of active algorithms which learn in an online fashion by querying an
oracle (teacher); both L∗ and LT fall in this category. Gold also proposed another
paradigm, namely identification from given data, for learning from a fixed training
sample set [18]. The training set consists of a set of positive and negative samples
from the unknown language and must be a characteristic [18] set of the language. Al-
gorithms have been proposed in this setting for learning word languages [21], tree lan-
guages [16, 4] and stochastic tree languages [5]. Unlike the algorithms in [16, 4] which
learn tree languages offline from a training set, LT learns actively by querying a teacher.
An anonymous reviewer pointed us to a recently proposed active algorithm for learning
tree languages [14], which is closely related to LT . However, LT has a better worst-
case complexity of O(n3) as compared to O(n5) of the previous algorithm. Finally,
we note that learning from derivation trees was investigated initially in the context of
context-free grammars [25] and forms the basis of several inference algorithms for tree
languages [16, 4, 14] including ours.

2 Preliminaries

Definition 1 (Labeled Transition System). A labeled transition system (LTS) is a 4-
tuple (S, Init,Σ, T ) where (i) S is a finite set of states, (ii) Init ⊆ S is the set of initial
states, (iii) Σ is a finite alphabet, and (iv) T ⊆ S ×Σ ×S is the transition relation. We
write s

α−→ s′ as a shorthand for (s, α, s′) ∈ T .
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Definition 2 (Simulation). Let M1 = (S1, Init1, Σ1, T1) and M2 =
(S2, Init2, Σ2, T2) be LTSs such that Σ1 = Σ2 = Σ say. A relation R ⊆ S1 × S2 is
said to be a simulation relation if:

∀s1, s
′
1 ∈ S1 � ∀a ∈ Σ �∀s2 ∈ S2 �s1Rs2∧s1

a−→ s′1 ⇒ ∃s′2 ∈ S2 � s2
a−→ s′2∧s′1Rs′2

We say M1 is simulated by M2, and denote this by M1 � M2, if there is a simulation
relation R such that ∀s1 ∈ I1 � ∃s2 ∈ I2 � s1Rs2. We say M1 and M2 are simulation
equivalent if M1 � M2 and M2 � M1.

Definition 3 (Tree). Let λ denote the empty tree and Σ be an alphabet. The set of trees
over Σ is defined by the grammar: T := λ | Σ • T | T + T . The set of all trees over
the alphabet Σ is denote by ΣT , and we let t range over it.

Definition 4 (Context). The set of contexts over an alphabet Σ can be defined by the
grammar: C := � | Σ • C | C + T | T + C. We let c range over the set of contexts.

A context is like a tree except that it has exactly one hole denoted by � at one of its
nodes. When we plug in a tree t in a context c, we essentially replace the single � in
c by t. The resulting tree is denoted by c[t]. A tree t can naturally be seen as an LTS.
Specifically, the states of the LTS are the nodes of t, the only initial state is the root node
of t, and there is a labeled transition from node t1 to t2 labeled with α if t1 = α • t2 or
t1 = α • t2 + t3 or t1 = t2 + α • t3.

Definition 5 (Tree Language of an LTS). An LTS M induces a tree language, which
is denoted by T (M) and is defined as: T (M) = {t | t � M}. In other words, the tree
language of an LTS contains all the trees that can be simulated by the LTS.

For example, the language of M (Figure 1(a)) contains the trees λ, α•λ, α•(λ+λ),
α•λ+β•λ, β•λ+β•λ and so on. The notion of tree languages of LTSs and simulation
between LTSs are fundamentally connected. Specifically, it follows from the definition
of simulation between LTSs that for any two LTSs M1 and M2, the following holds:

M1 � M2 ⇐⇒ T (M1) ⊆ T (M2) (1)

Definition 6 (Tree Automaton). A (bottom-up) tree automaton (TA) is a 6-tuple A =
(S, Init , Σ, δ,⊗, F ) where: (i) S is a set of states, (ii) Init ⊆ S is a set of initial
states, (iii) Σ is an alphabet, (iv) δ ⊆ S × Σ × S is a forward transition relation, (v)
⊗ ⊆ S × S × S is a cross transition relation, and (vi) F ⊆ S is a set of accepting
states.

Tree automata accept trees and can be viewed as two-dimensional extensions of
finite automata. Since trees can be extended either forward (via the • operator) and
across (via the + operator), a TA must have transitions defined when either of these two
kinds of extensions of its input tree are encountered. This is achieved via the forward
and cross transitions respectively. The automaton starts at each leaf of the input tree at
some initial state, and then runs bottom-up in accordance with its forward and cross
transition relations. The forward transition is applied when a tree of the form α • T is
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α β α β

s2

s3

s1s1 s2

s3

⊗ s1 s2 s3

s1 s1

s2 s2

s3 s3

(a) (b)

Fig. 1. (a-left) an LTS M with initial state s3; (a-right) forward transitions of a tree automaton A
accepting T (M); all states are initial; (b) table showing cross transition relation ⊗ of A. Note
that some table entries are absent since the relation ⊗ is not total

encountered. The cross transition is applied when a tree of the form T1 + T2 is found.
The tree is accepted if the run ends at the root of the tree in some accepting state of A.

Before we formally define the notions of runs and acceptance, we introduce a few
notational conventions. We may sometimes write s

α−→ s′ or s′ ∈ δ(s, α) as a shorthand
for (s, α, s′) ∈ δ, and s1 ⊗ s2 −→ s as a shorthand for (s1, s2, s) ∈ ⊗. Similarly, for
sets of states S1, S2, we use the following shorthand notations:

δ(S1, α) = {s′ | ∃s ∈ S1 � s
α−→ s′}

S1 ⊗ S2 = {s | ∃s1 ∈ S1 � ∃s2 ∈ S2 � (s1, s2, s) ∈ ⊗}
Definition 7 (Run/Acceptance). Let A = (S, Init , Σ, δ,⊗, F ) be a TA. The run of A
is a function r : ΣT → 2S from trees to sets of states of A that satisfies the following
conditions: (i) r(λ) = Init , (ii) r(α•t) = δ(r(t), α), and (iii) r(t1+t2) = r(t1)⊗r(t2).
A tree T is accepted by A iff r(T ) ∩ F = ∅. The set of trees accepted by A is known as
the language of A and is denoted by L(A).

A deterministic tree automaton (DTA) is one which has a single initial state and
where the forward and cross transition relations are functions δ : S × Σ → S and
⊗ : S × S → S respectively. If A = (S, Init , Σ, δ,⊗, F ) is a DTA then Init refers
to the single initial state, and δ(s, α) and s1 ⊗ s2 refer to the unique state s′ such that
s

α−→ s′ and s1 ⊗ s2 −→ s′ respectively. Note that if A is deterministic then for every
tree t the set r(t) is a singleton, i.e., the run of A on any tree t ends at a unique state of
A. Further, we recall [13] the following facts about tree-automata. The set of languages
recognized by TA (referred to as regular tree languages henceforth) is closed under
union, intersection and complementation. For every TA A there is a DTA A′ such that
L(A) = L(A′). Given any regular tree language L there is always a unique (up to
isomorphism) smallest DTA A such that L(A) = L.

The following lemma, which is easy to prove, asserts that for any LTS M , the set
T (M) is a regular tree language. Thus, using (1), the simulation problem between LTSs
can also be viewed as the language containment problem between tree automata.

Lemma 1. For any LTS M there is a TA A such that L(A) = T (M).

For example, for the LTS M and TA A as shown in Figure 1, we have L(A) =
T (M). We now provide the standard notion of parallel composition between LTSs,
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where components synchronize on shared actions and proceed asynchronously on local
actions.

Definition 8 (Parallel Composition of LTSs). Given LTSs M1 = (S1, Init1, Σ1, T1)
and M2 = (S2, Init2, Σ2, T2), their parallel composition M1 ‖ M2 is an LTS M =
(S, Init,Σ, T ) where S = S1 × S2, Init = Init1 × Init2, Σ = Σ1 ∪ Σ2, and the
transition relation T is defined as follows: ((s1, s2), α, (s′1, s

′
2)) ∈ T iff for i ∈ {1, 2}

the following holds:

(α ∈ Σi) ∧ (si, α, s′i) ∈ Ti

∨
(α ∈ Σi) ∧ (si = s′i)

Working with different alphabets for each component would needlessly complicate
the exposition in Section 4. For this reason, without loss of generality, we make the
simplifying assumption that Σ1 = Σ2. This is justified because we can construct LTSs
M ′

1 and M ′
2, each with the same alphabet Σ = Σ1∪Σ2 such that M ′

1 ‖ M ′
2 is simulation

equivalent (in fact bisimilar) to M1 ‖ M2. Specifically, M ′
1 = (S1, Init1, Σ, T ′

1) and
M ′

2 = (S2, Init2, Σ, T ′
2) where

T ′
1 = T1 ∪ {(s, α, s) | s ∈ S1 and α ∈ Σ2 \ Σ1}

T ′
2 = T2 ∪ {(s, α, s) | s ∈ S2 and α ∈ Σ1 \ Σ2}

Finally, the reader can check that if M1 and M2 are LTSs with the same alphabet then
T (M1 ‖ M2) = T (M1) ∩ T (M2).

3 Learning Minimal DTA

We now present the algorithm LT that learns the minimal DTA for an unknown regular
language U . It is assumed that the alphabet Σ of U is fixed, and that the language U is
presented by a minimally adequate teacher that answers two kinds of queries:

1. Membership. Given a tree t, is t an element of U , i.e., t ∈ U?
2. Candidate. Given a DTA A does A accept U , i.e., L(A) = U? If L(A) = U the

teacher returns TRUE, else it returns FALSE along with a counterexample tree CE
that is in the symmetric difference of L(A) and U .

We will use the following notation. Given any sets of trees S1, S2 and an alphabet Σ
we denote by Σ •S1 the set of trees Σ •S1 = {α• t | α ∈ Σ∧ t ∈ S1}, and by S1 +S2

the set S1 +S2 = {t1 + t2 | t1 ∈ S1∧ t2 ∈ S2}, and by Ŝ the set S∪(Σ •S)∪(S+S).

Observation Table: The algorithm LT maintains an observation table τ = (S, E ,R)
where (i) S is a set of trees such that λ ∈ S, (ii) E is a set of contexts such that � ∈ E ,
and (iii) R is a function from Ŝ × E to {0, 1} that is defined as follows: R(t, c) = 1 if
c[t] ∈ U and 0 otherwise. Note that given S and E we can compute R using membership
queries. The information in the table is eventually used to construct a candidate DTA
Aτ . Intuitively, the elements of S will serve as states of Aτ , and the contexts in E
will play the role of experiments that distinguish the states in S. Henceforth, the term
experiment will essentially mean a context. The function R and the elements in Ŝ \ S
will be used to construct the forward and cross transitions between the states.
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�
λ 1 (s0)

α • λ 1
β • λ 1

λ + λ 1

δ α β

s0 s0 s0

⊗ s0

s0 s0

(a) (b) (c)

Fig. 2. (a) A well-formed and closed observation table τ ; (b) forward transition relation of the
candidate A1

τ constructed from τ ; (c) cross transition relation of A1
τ

For any tree t ∈ Ŝ, we denote by Row(t) the function from the set of experiments
E to {0, 1} defined as: ∀c ∈ E � Row(t)(c) = R(t, c).

Definition 9 (Well-formed). An observation table (S, E ,R) is said to be well-formed
if: ∀t, t′ ∈ S � t = t′ ⇒ Row(t) = Row(t′). From the definition of Row(t) above, this
boils down to: ∀t, t′ ∈ S � t = t′ ⇒ ∃c ∈ E � R(t, c) = R(t′, c).

In other words, any two different row entries of a well-formed observation table must be
distinguishable by at least one experiment in E . The following crucial lemma imposes
an upper-bound on the size of any well-formed observation table corresponding to a
given regular tree language U .

Lemma 2. Let (S, E ,R) be any well-formed observation table for a regular tree lan-
guage U . Then |S| ≤ n, where n is the number of states of the smallest DTA which
accepts U . In other words, the number of rows in any well-formed observation table for
U cannot exceed the number of states in the smallest DTA that accepts U .

Proof. The proof is by contradiction. Let A be the smallest DTA accepting U and let
(S, E ,R) be a well-formed observation table such that |S| > n. Then there are two
distinct trees t1 and t2 in S such that the runs of A on both t1 and t2 end on the same
state of A. Then for any context c, the runs of A on c[t1] and c[t2] both end on the same
state. But on the other hand, since the observation table is well-formed, there exists an
experiment c ∈ E such that R(t1, c) = R(t2, c), which implies that the runs of A on
c[t1] and c[t2] end on different states of A. Contradiction. ��

Definition 10 (Closed). An observation table (S, E ,R) is said to be closed if

∀t ∈ Ŝ \ S � ∃t′ ∈ S � Row(t′) = Row(t)

Note that, given any well-formed observation table (S, E ,R), one can always con-
struct a well-formed and closed observation table (S ′, E ,R′) such that S ⊆ S ′. Specif-
ically, we repeatedly try to find an element t in Ŝ \ S such that ∀t′ ∈ S � Row(t′) =
Row(t). If no such t can be found then the table is already closed and we stop. Oth-
erwise, we add t to S and repeat the process. Note that, the table always stays well-
formed. Then by Lemma 2, the size of S cannot exceed the number of states of the
smallest DTA that accepts U . Hence this process always terminates.

Figure 2a shows a well-formed and closed table with S = {λ}, E = {�},
Σ = {α, β}, and for the regular tree language defined by the TA in Figure 1. Note
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that Row(t) = Row(λ) for every t ∈ {α • λ, β • λ, λ + λ}, and hence the table is
closed.

Conjecture Construction: From a well-formed and closed observation table τ =
(S, E ,R), the learner constructs a candidate DTA Aτ = (S, Init , Σ, δ,⊗, F ) where
(i) S = S, (ii) Init = λ, (iii) F = {t ∈ S | R(t,�) = 1}, (iv) δ(t, α) := t′ such that
Row(t′) = Row(α • t), and (v) t1 ⊗ t2 := t′ such that Row(t′) = Row(t1 + t2). Note
that in (iv) and (v) above there is guaranteed to be a unique such t′ since τ is closed and
well-formed, hence Aτ is well-defined.

Consider again the closed table in Figure 2a. The learner extracts a conjecture Aτ

from it with a single state s0, which is both initial and final. Figures 2b and 2c show the
forward and cross transitions of Aτ .

The Learning Algorithm: The algorithm LT is iterative and always maintains a well-
formed observation table τ = (S, E ,R). Initially, S = {λ} and E = {�}. In each
iteration, LT proceeds as follows:

1. Make τ closed as described previously.
2. Construct a conjecture DTA Aτ from τ , and make a candidate query with Aτ . If

Aτ is a correct conjecture, then LT terminates with Aτ as the answer. Otherwise,
let CE be the counterexample returned by the teacher.

3. Extract a context c from CE , add it to E , and proceed with the next iteration from
step 1. The newly added c is such that when we make τ closed in the next iteration,
the size of S is guaranteed to increase.

Extracting an Experiment From CE: Let r be the run function of the failed candidate
Aτ . For any tree t, let τ(t) = r(t), i.e., τ(t) is the state at which the run of Aτ on t
ends. Note that since states of Aτ are elements in S, τ(t) is itself a tree. The unknown
language U induces a natural equivalence relation ≈ on the set of trees as follows:
t1 ≈ t2 iff t1 ∈ U ⇐⇒ t2 ∈ U .

The procedure ExpGen for extracting a new experiment from the counterexample
is iterative. It maintains a context c and a tree t that satisfy the following condition:
(INV) c[t] ≈ c[τ(t)]. Initially c = � and t = CE . Note that this satisfies INV be-
cause CE ∈ U ⇐⇒ CE ∈ L(Aτ ). In each iteration, ExpGen either generates an
appropriate experiment or updates c and t such that INV is maintained and the size of t
strictly decreases. Note that t cannot become λ since at that point INV can no longer be
maintained; this is because if t = λ then τ(t) = λ and therefore c[t] ≈ c[τ(t)], which
would contradict INV. Hence, ExpGen must terminate at some stage by generating an
appropriate experiment. Now, there are two possible cases:

Case 1: (t = α • t′). Let c′ = c[α • �]. We consider two sub-cases. Suppose that
c[τ(t)] ≈ c′[τ(t′)]. From INV we know that c[t] ≈ c[τ(t)]. Hence c′[τ(t′)] ≈ c[t] ≈
c′[t′]. Hence, ExpGen proceeds to the next iteration with c = c′ and t = t′. Note that
INV is preserved and the size of t strictly decreases.

Otherwise, suppose that c[τ(t)] ≈ c′[τ(t′)]. In this case, ExpGen terminates by
adding the experiment c to E . Note that Aτ has the transition τ(t′) α−→ τ(t), i.e.,
Row(τ(t)) = Row(α • τ(t′)). But now, since c[τ(t)] ≈ c′[τ(t′)] ≈ c[α • τ(t′)], the
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� α • �
λ 1 1 (s0)

α • λ 1 0 (s1)
α • α • λ 0 0 (s2)

β • λ 1 0
β • α • λ 0 0

α • α • α • λ 0 0
β • α • α • λ 0 0

λ + λ 1 1
λ + α • λ 1 0

α • λ + α • λ 1 0
λ + α • α • λ 0 0

α • λ + α • α • λ 0 0
α • α • λ + α • α • λ 0 0

δ α β

s0 s1 s1
s1 s2 s2
s2 s2 s2

⊗ s0 s1 s2

s0 s0 s1 s2
s1 s1 s1 s2
s2 s2 s2 s2

(a) (b) (c)

Fig. 3. (a) observation table τ and (b) transitions for the second conjecture A2
τ

experiment c is guaranteed to distinguish between τ(t) and α•τ(t′). Therefore, the size
of S is guaranteed to increase when we attempt to close τ in the next iteration.

Case 2: (t = t1+t2). There are two sub-cases. Suppose that c[τ(t)] ≈ c[τ(t1)+τ(t2)].
In this case, ExpGen terminates by adding the experiment c to E . The experiment c is
guaranteed to distinguish between τ(t) and τ(t1)+ τ(t2) and therefore strictly increase
the size of S when we attempt to close τ in the next iteration.

Otherwise, suppose that c[τ(t)] ≈ c[τ(t1) + τ(t2)]. We again consider two sub-
cases. Suppose that c[τ(t1) + τ(t2)] ≈ c[τ(t1) + t2]. In this case, ExpGen proceeds to
the next iteration with c = c[τ(t1) + �] and t = t2. Note that INV is preserved and the
size of t strictly decreases.

Otherwise, we have c[τ(t1)+t2] ≈ c[τ(t1)+τ(t2)] ≈ c[τ(t)], and by INV we know
that c[τ(t)] ≈ c[t] ≈ c[t1+t2]. Hence, it must be the case that c[τ(t1)+t2] ≈ c[t1+t2].
In this case, ExpGen proceeds to the next iteration with c = c[�+ t2] and t = t1. Note
that, once again INV is preserved and the size of t strictly decreases. This completes
the argument for all cases.

Example 1. We show how LT learns the minimal DTA corresponding to the language
U of TA A of Figure 1. LT starts with an observation table τ with S = {λ} and
E = {�}. The table is then made closed by asking membership queries, first for λ and
then for its (forward and cross) extensions {α • λ, β • λ, λ + λ}. The resulting closed
table τ1 is shown in Figure 2a. LT then extracts a candidate A1

τ from τ1, which is shown
in Figure 2b.

When the conjecture A1
τ is presented to the teacher, it checks if L(A1

τ ) = U . In
our case, it detects otherwise and returns a counterexample CE from the symmetric
difference of L(A1

τ ) and U . For the purpose of illustration, let us assume CE to be
α • β • λ. Note that CE ∈ L(A1

τ ) \ U . The algorithm ExpGen extracts the context
α•� from CE and adds it to the set of experiments E . LT now asks membership queries
corresponding to the new experiment and checks if the new table τ is closed. It finds
that Row(α • λ) = Row(t) for all t ∈ S, and hence it moves α • λ from Ŝ \ S to S in
order to make τ closed. Again, membership queries for all possible forward and cross



Automated Assume-Guarantee Reasoning for Simulation Conformance 543

extensions of α • λ are asked. This process is repeated till τ becomes closed. Figure 3a
shows the final closed τ . As an optimization, we omit rows for the trees t1+t2 whenever
there is already a row for t2 + t1; we know that the rows for both these trees will have
the same markings. The corresponding conjecture A2

τ contains three states s0, s1 and
s2 and its forward and cross transitions are shown in Figure 3b and Figure 3c. s0 is the
initial state and both s0 and s1 are final states. The candidate query with A2

τ returns
TRUE since L(A2

τ ) = U , and LT terminates with A2
τ as the output.

Correctness and Complexity:

Theorem 1. Algorithm LT terminates and outputs the minimal DTA that accepts the
unknown regular language U .

Proof. Termination is guaranteed by the facts that each iteration of LT terminates, and
in each iteration |S| must strictly increase, and, by Lemma 2, |S| cannot exceed the
number of states of the smallest DTA that accepts U . Further, since LT terminates only
after a correct conjecture, if the DTA Aτ is its output then L(Aτ ) = U . Finally, since
the number of states in Aτ equals |S|, by Lemma 2 it also follows that Aτ is the minimal
DTA for U . ��

To keep the space consumption of LT within polynomial bounds, the trees and con-
texts in Ŝ and E are kept in a DAG form, where common subtrees between different
elements in Ŝ and E are shared. Without this optimization, the space consumption can
be exponential in the worst case. The other point to note is that the time taken by LT

depends on the counterexamples returned by the teacher; this is because the teacher can
return counterexamples of any size in response to a failed candidate query.

To analyze the complexity of LT , we make the following standard assumption: every
query to the teacher, whether a membership query or a candidate query, takes unit time
and space. Further, since the alphabet Σ of the unknown language U is fixed, we assume
that the size of Σ is a constant. Then the following theorem summarizes the complexity
of LT .

Theorem 2. The algorithm LT takes O(mn + n3) time and space where n is the num-
ber of states in the minimal DTA for the unknown language U and m is the size of the
largest counterexample returned by the teacher.

Proof. By Lemma 2, we have |S| ≤ n. Then the number of rows in the table, which
is |Ŝ| = |S ∪ (Σ • S) ∪ (S + S)|, is of O(n2). Further, recall that every time a new
experiment is added to E , |S| increases by one. Hence the number of table columns
|E| ≤ n, and the number of table entries |Ŝ||E| is of O(n3).

The trees and contexts in Ŝ and E are kept in a DAG form, where common subtrees
between different elements in Ŝ and E are shared in order to keep the space consumption
within polynomial bounds. Specifically, recall that whenever a tree t is moved from Ŝ\S
to S, all trees of the form α • t for each α ∈ Σ and t + t′ for each t′ ∈ S (which are
O(|S|) in number) are to be added to Ŝ. Adding the tree α • t to Ŝ only needs constant
space since t is already in Ŝ and hence is shared in the DAG representation. Similarly
adding a tree of form t + t′ takes only constant space, since both t and t′ are already in
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Ŝ. Thus, each time S is expanded, a total of O(|S|) space is required to add all the new
trees to Ŝ. Since at most n trees can be added S in all, it follows that the total space
consumed by elements in Ŝ is O(n2).

Now, we compute the total space consumed by the contexts in E . Note that the
teacher can return counterexamples of arbitrary size in response to a wrong conjecture.
Suppose m is the size of the largest counterexample. Observe that an experiment is
extracted from CE (procedure ExpGen) essentially by replacing some of the subtrees
of CE with trees in S, and exactly one subtree of CE with �. But, since in the DAG
form, common subtrees are shared between trees and contexts in S and E , none of
the above replacements consume any extra space. Hence, the size of the experiment
extracted from CE is utmost the size of CE. Since there are at most n contexts in E , the
total space consumed by contexts in E is O(mn). Putting together all observations so
far, we get that the total space consumed by LT is O(mn + n3).

Now, we compute the time consumed by LT . It takes O(n3) membership queries to
fill in the O(n3) table entries. Since each query is assumed to take O(1) time, this takes
a total of O(n3) time. The time taken to extract an experiment from a counterexample
CE is linear on the size of CE. This is because procedure ExpGen involves making a
constant number of membership queries for each node of CE (branch conditions in lines
3, 6, and 8) as CE is processed in a top down fashion. Thus, the time taken to extract an
experiment from CE is at most O(m). Since there can be at most n wrong conjectures,
the total time spent on processing counterexamples is O(mn). Putting these observa-
tions together we conclude that LT takes O(mn+n3) time. We thus have the following
theorem.

4 Automating Assume-Guarantee for Simulation

For M1,M2 and MS , suppose we are to check if M1 ‖ M2 � MS . Recall from
Section 2 that M1 ‖ M2 � MS if and only if T (M1 ‖ M2) ⊆ T (MS), and
T (M1 ‖ M2) = T (M1) ∩ T (M2). Therefore, the verification problem is equivalent

to checking if T (M1) ∩ T (M2) ⊆ T (MS). Now, define Tmax = T (M1) ∩ T (MS).
Then

T (M1) ∩ T (M2) ⊆ T (MS) ⇐⇒ T (M2) ⊆ Tmax

Thus, Tmax represents the maximal environment under which M1 satisfies MS , and

M1 ‖ M2 � MS ⇔ T (M2) ⊆ Tmax

Checking T (M2) ⊆ Tmax is as expensive as directly checking M1 ‖ M2 � MS since
it involves both M1 and M2. In the following, we show how the LT algorithm can be
used for a more efficient solution.

Since regular tree languages are closed under intersection and complementation,
Tmax is a regular tree language. We therefore use the LT algorithm to learn the canon-
ical DTA for Tmax in an incremental fashion. The key idea is that when a candidate
query is made by LT , the teacher checks if the AG-NC proof rule can be discharged
by using the proposed candidate as the assumption. Empirical evidence (see Section 5)
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suggests that this often succeeds well before Tmax is learnt, leading to substantial sav-
ings in time and memory consumption.

We now elaborate on how the teacher assumed by LT is implemented. Specifically,
the membership and candidate queries of LT are processed as follows.

Membership Query. For a given tree t we are to check if t ∈ Tmax. This is equivalent
to checking if t ∈ T (M1) or t ∈ T (MS). In our implementation, both T (M1) and
T (MS) are maintained as tree automata, and the above check amounts to membership
queries on these automata.

Candidate Query. Given a DTA D we are to check if L(D) = Tmax. We proceed in
three steps as follows.

1. Check if (C1) L(D) ⊆ Tmax = T (M1) ∩ L(MS). This is implemented us-
ing the complementation, intersection and emptyness checking operations on tree
automata. If C1 holds, then we proceed to step 2. Otherwise, we return some
t ∈ Tmax \ L(D) as a counterexample to the candidate query D.

2. Check if (C2) T (M2) ⊆ L(D). If this is true, then (C1) and (C2) together imply
that T (M2) ⊆ Tmax, and thus our overall verification procedure terminates con-
cluding that M1 ‖ M2 � MS . Note that even though the procedure terminates
L(D) may not be equal to Tmax. On the other hand, if (C2) does not hold, we
proceed to step 3 with some t ∈ T (M2) \ L(D).

3. Check if t ∈ Tmax, which is handled as in the membership query above. If this is
true, then it follows that t ∈ Tmax \ L(D), and hence we return t as a counterex-
ample to the candidate query D. Otherwise, if t ∈ Tmax then T (M2) ⊆ Tmax, and
therefore we conclude that M1 ‖ M2 � MS .

Thus, the procedure for processing the candidate query can either answer the query
or terminate the entire verification procedure with a positive or negative outcome. Fur-
ther, the reader may note that M1 and M2 are never considered together in any of the
above steps. For instance, the candidate D is used instead of M1 in step 1, and instead
of M2 in step 2. Since D is typically very small in size, we achieve significant savings
in time and memory consumption, as reported in Section 5.

5 Experimental Results

Our primary target has been the analysis of concurrent message-passing C pro-
grams. Specifically, we have experimented with a set of benchmarks derived from the
OPENSSL-0.9.6c source code. We analyzed the source code that implements the critical
handshake that occurs when an SSL server and client establish a secure communica-
tion channel between them. The server and client source code contained roughly 2500
LOC each. Since these programs have an infinite state space, we constructed finite con-
servative labeled transition system (LTS) models from them using various abstraction
techniques [6]1. The abstraction process was carried out component-wise.

1 Spurious counterexamples arising due to abstraction are handled by iterative counterexample
guided abstraction refinement.
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Name Direct AG Gain
Result T1 M1 T2 M2 M1/M2 |A| MQ CQ

SSL-1 Invalid * 2146 325 207 10.4 8 265 3
SSL-2 Valid * 2080 309 163 12.8 8 279 3
SSL-3 Valid * 2077 309 163 12.7 8 279 3
SSL-4 Valid * 2076 976 167 12.4 16 770 4
SSL-5 Valid * 2075 969 167 12.4 16 767 4
SSL-6 Invalid * 2074 3009 234 8.9 24 1514 5
SSL-7 Invalid * 2075 3059 234 8.9 24 1514 5
SSL-8 Invalid * 2072 3048 234 8.9 24 1514 5

Fig. 4. Experimental results. Result = specification valid/invalid; T1 and T2 are times in seconds;
M1 and M2 are memory in mega bytes; |A| is the assumption size that sufficed to prove/disprove
specification; MQ is the number of membership queries; CQ is the number of candidate queries.
A * indicates out of memory (2 GB limit). Best figures are in bold

We designed a set of eight LTS specifications on the basis of the SSL documenta-
tion. We verified these specifications on a system composed of one server (M1) and one
client (M2) using both the brute-force composition (M1 ‖ M2), and our proposed auto-
mated AG approach. All experiments were carried out on a 1800+ XP AMD machine
with 3 GB of RAM running RedHat 9.0. Our results are summarized in Figure 4. The
learning based approach shows superior performance in all cases in terms of memory
consumption (up to a factor of 12.8). An important reason behind such improvement is
that the sizes of the (automatically learnt) assumptions that suffice to prove or disprove
the specification (shown in column labeled |A|) are much smaller than the size of the
second (client) component (3136 states).

6 Conclusion

We have presented an automated AG-style framework for checking simulation con-
formance between LTSs. Our approach uses a learning algorithm LT to incrementally
construct the weakest assumption that can discharge the premises of a non-circular AG
proof rule. The learning algorithm requires a minimally adequate teacher that is imple-
mented in our framework via a model checker. We have implemented this framework
in the COMFORT [7] toolkit and experimented with a set of benchmarks based on
the OPENSSL source code and the SSL specification. Our experiments indicate that
in practice, extremely small assumptions often suffice to discharge the AG premises.
This can lead to orders of magnitude improvement in the memory and time required for
verification. Extending learning-based AG proof frameworks to other kinds of confor-
mances, such as LTL model checking and deadlock detection, and to other AG-proof
rules [3] remains an important direction for future investigation.
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Abstract. The verification problem for a system consisting of compo-
nents can be decomposed into simpler subproblems for the components
using assume-guarantee reasoning. However, such compositional reason-
ing requires user guidance to identify appropriate assumptions for com-
ponents. In this paper, we propose an automated solution for discover-
ing assumptions based on the L∗ algorithm for active learning of reg-
ular languages. We present a symbolic implementation of the learning
algorithm, and incorporate it in the model checker NuSMV. Our experi-
ments demonstrate significant savings in the computational requirements
of symbolic model checking.

1 Introduction

In spite of impressive progress in heuristics for searching the reachable state-
space of system models, scalability still remains a challenge. Compositional ver-
ification techniques address this challenge by a “divide and conquer” strategy
aimed at exploiting the modular structure naturally present in system designs.
One such prominent technique is the assume-guarantee rule: to verify that a
state property ϕ is an invariant of a system M composed of two modules M1

and M2, it suffices to find an abstract module A such that (1) the composition
of M1 and A satisfies the invariant ϕ, and (2) the module M2 is a refinement of
A. Here, A can be viewed as an assumption on the environment of M1 for it to
satisfy the property ϕ. If we can find such an assumption A that is significantly
smaller than M2, then we can verify the requirements (1) and (2) using auto-
mated search techniques without having to explore M . In this paper, we propose
an approach to find the desired assumption A automatically in the context of
symbolic state-space exploration.

If M1 communicates with M2 via a set X of common boolean variables,
then the assumption A can be viewed as a language over the alphabet 2X . We
compute this assumption using the L∗ algorithm for learning a regular language
using membership and equivalence queries [6, 21]. The learning-based approach
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produces a minimal DFA, and the number of queries is only polynomial in
the size of the output automaton. The membership query is to test whether
a given sequence σ over the communication variables belongs to the desired
assumption. We implement this as a symbolic invariant verification query that
checks whether the module M1 composed with the sequence σ satisfies ϕ [16].
For an equivalence query, given a current conjecture assumption A, we first test
whether M1 composed with A satisfies ϕ using symbolic state-space exploration.
If not, the counter-example provided by the model checker is used by the learning
algorithm to revise A. Otherwise, we test if M2 refines A, which is feasible since
A is represented as a DFA. If the refinement test succeeds, we can conclude that
M satisfies the invariant, otherwise the model checker gives a sequence σ allowed
by M2, but ruled out by A. We then check if the module M1 stays safe when
executed according to σ: if so, σ is used as a counter-example by the learning
algorithm to adjust A, and otherwise, σ is a witness to the fact that the original
model M does not satisfy ϕ.

While the standard L∗ algorithm is designed to learn a particular language,
and the desired assumption A belongs to a class of languages containing all
languages that satisfy the two requirements of the assume-guarantee rule, we
show that the above strategy works correctly. The learning-based approach to
automatic generation of assumptions is appealing as it builds the assumption
incrementally guided by the model-checking queries, and if it encounters an
assumption that has a small representation as a minimal DFA, the algorithm will
stop and use it to prove the property. In our context, the size of the alphabet itself
grows exponentially with the number of communication variables. Consequently,
we propose a symbolic implementation of the L∗ algorithm where the required
data structures for representing membership information and the assumption
automaton are maintained compactly using ordered BDDs [9] for processing the
communication variables.

For evaluating the proposed approach, we modified the state-of-the-art sym-
bolic model checker NuSMV [10]. In Section 5, we report on a few examples
where the original models contain around 100 variables, and the computational
requirements of NuSMV are significant. The only manual step in the current
prototype involves specifying the syntactic decomposition of the model M into
modules M1 and M2. While the proposed compositional approach does not al-
ways lead to improvement (this can happen when no “good” assumption exists
for the chosen decomposition into modules M1 and M2), dramatic gains are ob-
served in some cases reducing either the required time or memory by one or two
orders of magnitude, or converting infeasible problems into feasible ones.

Finally, it is worth pointing out that, while our prototype uses BDD-based
state-space exploration, the approach can easily be adopted to permit other
model checking strategies such as SAT-based model checking [8, 18] and counter-
example guided abstraction refinement [15, 11].

Related Work. Compositional reasoning using assume-guarantee rules has a
long history in the formal verification literature [22, 13, 1, 4, 17, 14, 19]. While
such reasoning is supported by some tools (e.g. Mocha [5]), the challenging
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task of finding the appropriate assumptions is typically left to the user and only
a few attempts have been made to automate the assumption generation (in [3],
the authors present some heuristics for automatically constructing assumptions
using game-theoretic techniques).

Our work is inspired by the recent series of papers by the researchers at
NASA Ames on compositional verification using learning [12, 7]. Compared to
these papers, we believe that our work makes three contributions. First, we
present a symbolic implementation of the learning algorithm, and this is essential
since the alphabet is exponential in the number of communication variables.
Second, we address and explain explicitly how the L∗ algorithm designed to learn
an unknown, but fixed, language is adapted to learn some assumption from a
class of correct assumption languages. Finally, we demonstrate the benefits of
the method by incorporating it in a state-of-the-art publicly available symbolic
model checker.

It is worth noting that recently the L∗ algorithm has found applications in
formal verification besides automating assume-guarantee reasoning: our software
verification project JIST uses predicate abstraction and learning to synthesize
(dynamic) interfaces for Java classes [2]; [23] uses learning to compute the set of
reachable states for verifying infinite-state systems; while [20] uses learning for
black box checking , that is, verifying properties of partially specified implemen-
tations.

2 Symbolic Modules

In this section, we formalize the notion of a symbolic module, the notion of
composition of modules and explain the assume-guarantee rule we use in this
paper.

Symbolic Modules. In the following, for any set of variables X, we will denote
the set of primed variables of X as X ′ = {x′ | x ∈ X}. A predicate ϕ over X
is a boolean formula over X, and for a valuation s for variables in X, we write
ϕ(s) to mean that s satisfies the formula ϕ.

A symbolic module is a tuple M(X,XI , XO, Init , T ) with the following com-
ponents:

– X is a finite set of boolean variables controlled by the module,
– XI is a finite set of boolean input variables that the module reads from its

environment; XI is disjoint from X,
– XO ⊆ X is a finite set of boolean output variables that are observable to the

environment of M ,
– Init(X) is an initial state predicate over X,
– T (X,XI , X ′) is a transition predicate over X ∪XI ∪X ′ where X ′ represents

the variables encoding the successor state.

Let XIO = XI ∪XO denote the set of communication variables. A state s of
M is a valuation of the variables in X; i.e. s : X → {true, false}. Let S denote
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the set of all states of M . An input state sI is a valuation of the input variables
XI and an output state sO is a valuation of XO. Let SI and SO denote the set
of input states and output states, respectively. Also, SIO = SI ×SO. For a state
s over a set X of variables, let s[Y ], where Y ⊆ X denote the valuation over Y
obtained by restricting s to Y .

The semantics of a module is defined in terms of the set of runs it exhibits. A
run of M is a sequence s0, s1, · · ·, where each si is a state over X∪XI , such that
Init(s0[X]) holds, and for every i ≥ 0, T (si[X], si[XI ], s′i+1[X

′]) holds (where
s′i+1(x

′) = si+1(x), for every x ∈ X). For a module M(X,XI , XO, Init , T ) and a
safety property ϕ(XIO), which is a boolean formula over XIO , we define M |= ϕ
if, for every run s0, s1, · · ·, for every i ≥ 0, ϕ(si) holds. Given a run s0, s1, · · ·
of M , the trace of M is a sequence s0[XIO ], s1[XIO ], · · · of input and output
states. Let us denote the set of all the traces of M as L(M). Given two modules
M1 = (X1, X

I , XO, Init1, T1) and M2 = (X2, X
I , XO, Init2, T2) that have the

same input and output variables, we say M1 is a refinement of M2, denoted
M1 � M2, if L(M1) ⊆ L(M2).

Composition of Modules. The synchronous composition operator ‖ is a com-
mutative and associative operator that composes modules. Given two modules
M1 = (X1, X

I
1 , XO

1 , Init1, T1) and M2 = (X2, X
I
2 , XO

2 , Init2, T2), with X1∩X2 =
∅, M1‖M2 = (X,XI , XO, Init , T ) is a module where:

– X = X1 ∪ X2, XI = (XI
1 ∪ XI

2 ) \ (XO
1 � XO

2 ), XO = XO
1 � XO

2 ,
– Init(X) = Init1(X1) ∧ Init2(X2),
– T (X,XI , X ′) = T1(X1, X

I
1 , X ′

1) ∧ T2(X2, X
I
2 , X ′

2).

We can now define the model-checking problem we consider in this paper:

Given modules M1 = (X1, X
I
1 , XO

1 , Init1, T1) and M2 = (X2, X
I
2 , XO

2 ,
Init2, T2), with X1 ∩ X2 = ∅, XI

1 = XO
2 and XO

1 = XI
2 (let XIO =

XIO
1 = XIO

2 ), and a safety property ϕ(XIO), does (M1‖M2) |= ϕ?

Note that we are assuming that the safety property ϕ is a predicate over the
common communication variables XIO . This is not a restriction: to check a
property that refers to private variables of the modules, we can simply declare
them to be outputs.

Assume-Guarantee Rule. We use the following assume-guarantee rule to
prove that a safety property ϕ holds for a module M = M1‖M2. In the rule
below, A is a module that has the same input and output variables as M2:

M1‖A |= ϕ
M2 � A

M1‖M2 |= ϕ

The rule above says that if there exists (some) module A such that the com-
position of M1 and A is safe (i.e. satisfies the property ϕ) and M2 refines A, then
M1||M2 satisfies ϕ. We can view such an A as an adequate assumption between
M1 and M2: it is an abstraction of M2 (possibly admitting more behaviors than
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M2) that is a strong enough assumption for M1 to make in order to satisfy ϕ.
Our aim is to construct such an assumption A to show that M1‖M2 satisfies ϕ.
This rule is sound and complete [19].

3 Assumption Generation via Computational Learning

Given a symbolic module M = M1‖M2 consisting of two sub-modules and
a safety property ϕ, our aim is to verify that M satisfies ϕ by finding an
A that satisfies the premises of the assume-guarantee rule explained in Sec-
tion 2. Let us fix a pair of such modules M1 = (X1, X

I
1 , XO

1 , Init1, T1) and
M2 = (X2, X

I
2 , XO

2 , Init2, T2) for the rest of this section.
Let L1 be the set of all traces ρ = s0, s1, · · ·, where each si ∈ SIO , such that

either ρ ∈ L(M1) or ϕ(si) holds for all i ≥ 0. Thus, L1 is the largest language
for M1’s environment that can keep M1 safe. Note that the languages of the
candidates for A that satisfy the first premise of the proof rule is precisely the
set of all subsets of L1.

Let L2 be the set of traces of M2, that is, L(M2). The languages of candidates
for A that satisfy the second premise of the proof rule is precisely the set of all
supersets of L2. Since M1 and M2 are finite, it is easy to see that L1 and L2 are
in fact regular languages. Let B1 be the module corresponding to the minimum
state DFA accepting L1.

The problem of finding A satisfying both proof premises hence reduces to
checking for a language which is a superset of L2 and a subset of L1. To discover
such an assumption A, our strategy is to construct A using a learning algorithm
for regular languages, called the L∗ algorithm. The L∗ algorithm is an algorithm
for a learner trying to learn a fixed unknown regular language U through mem-
bership queries and equivalence queries. Membership queries ask whether a given
string is in U . An equivalence query asks whether a given language L(C) (pre-
sented as a DFA C) equals U ; if so, the teacher answers ‘yes’ and the learner has
learnt the language, and if not, the teacher provides a counter-example which is
a string that is in the symmetric difference of L(C) and U .

We adapt the L∗ algorithm to learn some language from a range of languages,
namely to learn a language that is a superset of L2 and a subset of L1. We do
not, of course, construct L1 or L2 explicitly, but instead answer queries using
model-checking queries performed on M1 and M2 respectively.

Given an equivalence query with conjecture L(C), the test for equivalence
can be split into two— checking the subset query L(C) ⊆ U and checking the
superset query L(C) ⊇ U . To check the subset query, we check if L(C) ⊆ L1,
and to check the superset query we check whether L(C) ⊇ L2. If these two tests
pass, then we declare that the learner has indeed learnt the language as the
conjecture is an adequate assumption.

The membership query is more ambiguous to handle. When the learner asks
whether a word w is in U , if w is not in L1, then we can clearly answer in the
negative, and if w is in L2 then we can answer in the affirmative. However, if
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generating C
Yes/No

Partitioning information
(M1‖M2)M,ϕ

M1‖C |= ϕ

No

M1‖M2 |= ϕ

M1‖ρ |= ϕ
Yes; C No; ρ ∈ L(M2) \ L(C)

M2 � C

M1‖M2 |= ϕ
ρ is a counter-example.

Yes

Yes; ρ

No; cex

equiv(C)

memb(σ)

L∗ algorithm
M1‖σ |= ϕ

Fig. 1. Overview of compositional verification by learning assumptions

w is in L1 but not in L2, then answering either positively or negatively can rule
out certain candidates for A.

In this paper, the strategy we have chosen is to always answer membership
queries with respect to L1. It is possible to explore alternative strategies that
involve L2 also.

Figure 1 illustrates the high-level overview of our compositional verification
procedure. Membership queries are answered by checking safety with respect
to M1. To answer the equivalence query, we first check the subset query (by a
safety check with respect to M1); if the query fails, we return the counterexample
found to L∗. If the subset query passes, then we check for the superset query
by checking refinement with respect to M2. If this superset query also passes,
then we declare M satisfies ϕ since C satisfies both premises of the proof rule.
Otherwise, we check if the counter-example trace ρ (which is a behavior of M2

but not in L(C)) keeps M1 safe. If it does not, we conclude that M1‖M2 does not
satisfy ϕ; otherwise, we give ρ back to the L∗ algorithm as a counter-example
to the superset query.

One of the nice properties of the L∗ algorithm is that it takes time polyno-
mial in the size of the minimal automaton accepting the learnt language (and
polynomial in the lengths of the counter-examples provided by the teacher). Let
us now estimate bounds on the size of the automaton constructed by our al-
gorithm, and simultaneously show that our procedure always terminates. Note
that all membership queries and all counter-examples provided by the teacher in
our algorithm are consistent with respect to L1 (membership and subset queries
are resolved using L1 and counter-examples to superset queries, though derived
using M2, are checked for consistency with L1 before it is passed to the learner).

Now, if M1‖M2 does indeed satisfy ϕ, then L2 is a subset of L1 and hence
B1 is an adequate assumption that witnesses the fact that M1‖M2 satisfies ϕ.
If M1‖M2 does not satisfy ϕ, then L2 is not a subset of L1. Again B1 is an
adequate automaton which if learnt will show that M1‖M2 does not satisfy ϕ
(since this assumption when checked with M2, will result in a run ρ which is
exhibited by M2 but not in L1, and hence not safe with respect to M1).
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Hence B1 is an adequate automaton to learn in both cases to answer the
model-checking question, and all answers to queries are consistent with B1. The
L∗ algorithm has the property that the automata it constructs monotonically
grow with each iteration in terms of the number of states, and are always min-
imal. Consequently, we are assured that our procedure will not construct any
automaton larger than B1.

Hence our procedure always halts and reports correctly whether M1‖M2 sat-
isfies ϕ, and in doing so, it never generates any assumption with more states
than the minimal DFA accepting L1.

4 Symbolic Implementation of L∗ Algorithm

4.1 L∗ Algorithm

The L∗ algorithm learns an unknown regular language and generates a mini-
mal DFA that accepts the regular language. This algorithm was introduced by
Angluin [6], but we use an improved version by Rivest and Schapire [21]. The
algorithm infers the structure of the DFA by asking a teacher, who knows the
unknown language, membership and equivalence queries.

Figure 2 illustrates the improved version of L∗ algorithm [21]. Let U be the
unknown regular language and Σ be its alphabet. At any given time, the L∗

algorithm has, in order to construct a conjecture machine, information about a
finite collection of strings over Σ, classified either as members or non-members
of U . This information is maintained in an observation table (R,E,G) where R
and E are sets of strings over Σ, and G is a function from (R∪R·Σ) ·E to {0, 1}.
More precisely, R is a set of representative strings for states in the DFA such
that each representative string rq ∈ R for a state q leads from the initial state
(uniquely) to the state q, and E is a set of experiment suffix strings that are used

1: R := {ε}; E := {ε};
2: foreach (a ∈ Σ) { G[ε, ε] := member(ε·ε); G[ε·a, ε] := member(ε·a·ε); }
3: repeat:
4: while ((rnew := closed(R, E, G)) �= null) {
5: add(R, rnew );
6: foreach (a ∈ Σ), (e ∈ E) { G[rnew ·a, e] := member(rnew ·a·e); }
7: }
8: C := makeConjectureMachine(R, E, G);
9: if ((cex := equivalent(C)) = null) then return C;
10: else {
11: enew := findSuffix(cex );
12: add(E, enew );
13: foreach (r ∈ R), (a ∈ Σ) {
14: G[r, enew ] := member(r·enew ); G[r·a, enew ] := member(r·a·enew );
15: } }

Fig. 2. L∗ algorithm
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to distinguish states (for any two states of the automaton being built, there is
a string in E which is accepted from one and rejected from the other). G maps
strings σ in (R∪R·Σ) ·E to 1 if σ is in U , and to 0 otherwise. Initially, R and E
are set to {ε}, and G is initialized using membership queries for every string in
(R∪R·Σ) ·E (line 2). In line 4, it checks whether the observation table is closed.
The function closed(R, E, G) returns null (meaning true) if for every r ∈ R
and a ∈ Σ, there exists r′ ∈ R such that G[r ·a, e] = G[r′, e] for every e ∈ E;
otherwise, it returns r·a such that there is no r′ satisfying the above condition.
If the table is not closed, each such r ·a (e.g., rnew is r ·a in line 5) is simply
added to R. The algorithm again updates G with regard to r·a (line 6). Once the
table is closed, it constructs a conjecture DFA C = (Q, q0, F, δ) as follows (line
8): Q = R, q0 = ε, F = {r ∈ R | G[r, ε] = 1}, and for every r ∈ R and a ∈ Σ,
δ(r, a) = r′ such that G[r ·a, e] = G[r′, e] for every e ∈ E. Finally, if the answer
for the equivalence query is ‘yes’, it returns the current conjecture machine C;
otherwise, a counter-example cex ∈ ((L(C) \ U) ∪ (U \ L(C)) is provided by
the teacher. The algorithm analyzes the counter-example cex in order to find
the longest suffix enew of cex that witnesses a difference between U and L(C)
(line 14). Intuitively, the current conjecture machine has guessed wrong since
this point. Adding enew to E reflects the difference in the next conjecture by
splitting states in C. It then updates G with respect to enew .

The L∗ algorithm is guaranteed to construct a minimal DFA for the unknown
regular language using only O(|Σ|n2 +n log m) membership queries and at most
n − 1 equivalence queries, where n is the number of states in the final DFA
and m is the length of the longest counter-example provided by the teacher for
equivalence queries.

As we discussed in Section 3, we use the L∗ algorithm to identify A(XA, XI
A,

XO
A , InitA, TA) satisfying the premises of the proof rule, where XIO

A = XIO .
A is hence a language over the alphabet SIO , and the L∗ algorithm can learn
A in time polynomial in the size of A (and the counter-examples). However,
when we apply the L∗ algorithm to analyze a large module (especially when the
number of input and output variables is large), the large alphabet size poses
many problems: (1) the constructed DFA has too many edges when represented
explicitly, (2) the size of the observation table, which is polynomial in Σ and
the size of the conjectured automaton, gets very large, and (3) the number
of membership queries needed to fill each entry in the observation table also
increases. To resolve these problems, we present a symbolic implementation of
the L∗ algorithm.

4.2 Symbolic Implementation

For describing our symbolic implementation for the L∗ algorithm, we first explain
the essential data structures the algorithm needs, and then present our implicit
data structures corresponding to them. The L∗ algorithm uses the following data
structures:

– string R[int]: each R[i] is a representative string for i-th state qi in the
conjecture DFA.
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– string E[int]: each E[i] is i-th experiment string.
– boolean G1[int][int]: each G1[i][j] is the result of the membership

query for R[i]·E[j].
– boolean G2[int][int][int]: each G2[i][j][k] is the result of the mem-

bership query for R[i]·aj ·E[k] where aj is the j-th alphabet symbol in Σ.

Note that G of the observation table is split into two arrays, G1 and G2, where
G1 is an array for a function from R · E to {0, 1} and G2 is for a function from
R ·Σ ·E to {0, 1}. The L∗ algorithm initializes the data structures as following:
R[0]=E[0]=ε, G1[0][0]=member(ε · ε), and G2[0][i][0]=member(ε ·ai · ε) (for
every ai ∈ Σ). Once it introduces a new state or a new experiment, it adds to
R[] or E[] and updates G1 and G2 by membership queries. These arrays also
encode the edges of the conjecture machine: there is an edge from state qi to qj

on ak when G2[i][k][l]=G1[j][l] for every l.
For symbolic implementation, we do not wish to construct G2 in order to

construct conjecture DFAs by explicit membership queries since |Σ| is too large.
While the explicit L∗ algorithm asks for each state r, alphabet symbol a and
experiment e, if r · a· e is a member, we compute, given a state r and a boolean
vector v, the set of alphabet symbols a such that for every j ≤ |v|, member(r ·
a· ej) = v[j]. For this, we have the following data structures:

– int nQ: the number of states in the current DFA.
– int nE: the number of experiment strings.
– BDD R[int]: each R[i] (0 ≤ i < nQ) is a BDD over X1 to represent the set

of states of the module M1 that are reachable from an initial state of M1 by
the representative string ri of the i-th state qi: postImage(Init1(X1), ri).

– BDD E[int]: each E[i] (0 ≤ i < nE) is a BDD over X1 to capture a set
of states of M1 from which some state violating ϕ is reachable by the i-th
experiment string ei: preImage(¬ϕ(X1), ei).

– booleanVector G1[int]: Each G1[i] (0 ≤ i < nQ) is the boolean vector for
the state qi, where the length of each boolean vector always equals to nE. Note
that as nE is increased, the length of each boolean vector is also increased.
For i = j, G1[i] = G1[j]. Each element G1[i][j] of G1[i] (0 ≤ j < nE)
represents whether ri · ej is a member where ri is a representative string for
R[i] and ej is an experiment string for E[j]: whether R[i] and E[j] have
empty intersection.

– booleanVector Cd[int]: every iteration of the L∗ algorithm splits some
states of the current conjecture DFA by a new experiment string. More
precisely, the new experiment splits every state into two state candidates,
and among them, only reachable ones are constructed as states of the next
conjecture DFA. The Cd[] vector describes all these state candidates and
each element is the boolean vector of each candidate. |Cd| = 2·nQ.
Given M = M1‖M2 and ϕ, we initialize the data structures as follows. R[0]

is the BDD for Init1(X1) and E[0] is the BDD for ¬ϕ since the corresponding
representative and experiment string are ε, and G1[0][0] = 1 since we assume
that every initial state satisfies ϕ. In addition, we have the following functions
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that manipulate the above data structures for implementing the L∗ algorithm
implicitly (Figure 3 illustrates the pseudo-code for the important ones.):

– BDD edges(int, booleanVector): this function, given an integer i and a
boolean vector v (0 ≤ i < nQ, |v| = nE), returns a BDD over XIO represent-
ing the set of alphabet symbols by which there is an edge from state qi to a
state that has v as its boolean vector.

– void addR(int, BDD, booleanVector): when we introduce a new state
(whose predecessor state is qi, the BDD representing edges from qi is b
and the boolean vector is v), addR(i, b, v) updates R, G1 and nQ.

– void addE(BDD[]): given a new experiment string represented as an array of
BDDs (where each BDD of the array encodes the corresponding state in the
experiment string), this function updates E, G1 and nE. It also constructs a
new set Cd[] of state candidates for the next iteration.

– boolean isInR(booleanVector): given a boolean vector v, isInR(v) che-
cks whether v = G1[i] for some i.

– BDD[] findSuffix(BDD[]): given a counter-example cex (from equivalence
queries) represented by a BDD array, findSuffix(cex) returns a BDD ar-
ray representing the longest suffix that witnesses the difference between the
conjecture DFA and A.

While the L∗ algorithm constructs a conjecture machine by computing G2
and comparing between G1 and G2, we directly make a symbolic conjecture DFA
C(XC , XIO , InitC , FC , TC) with the following components:

– XC is a set of boolean variables representing states in C (|XC | = �log2nQ�).
Valuations of the variables can be encoded from its index for R.

– XIO is a set of boolean variables defining its alphabet, which comes from
M1 and M2.

– InitC(XC) is an initial state predicate over XC . InitC(XC) is encoded from
the index of the state q0: InitC(XC) =

∧
x∈XC

(x ≡ 0).
– FC(XC) is a predicate for accepting states. It is encoded from the indices of

the states qi such that G1[i][0]=1.
– TC(XC , XIO , X ′

C) is a transition predicate over XC ∪ XIO ∪ X ′
C ; that is, if

TC(i, a, j) = true, then the DFA has an edge from state qi to qj labeled by
a. To get this predicate, we compute a set of edges from every state qi to
every state candidate with boolean vector v by calling edges(i, v).

This symbolic DFA C(XC , XIO , InitC , FC , TC) can be easily converted to a
symbolic module MC(XC , XI , XO, InitC , TC). Now, we can construct a symbolic
conjecture DFA C using implicit membership queries by edges(). In addition,
we have the following functions for equivalence queries:

– BDD[] subsetQ(SymbolicDFA): our subset query is to check whether all
strings allowed by C make M1 stay in states satisfying ϕ. Hence, given a
symbolic DFA C(XC , XIO , InitC , FC , TC), we check M1‖MC |= (FC → ϕ)
by reachability checking, where MC is a symbolic module converted from C.
If so, it returns null ; otherwise, it returns a BDD array as a counter-example.
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BDD edges(int i, booleanVector v){
BDD eds := true; // eds is a BDD over XIO .
foreach (0 ≤ j < nE){ // In the below, XL

1 = X1 \ XIO .
if (v[j]) then eds := eds ∧ ¬(∃XL

1 , X1
′. R[i](X1)∧T1(X1, X

I
1 , X ′

1)∧E[j](X ′
1));

else eds := eds ∧ (∃XL
1 , X1

′. R[i](X1) ∧ T1(X1, X
I
1 , X ′

1) ∧ E[j](X ′
1));

}
return eds;

}
void addR(int i, BDD b, booleanVector v){

BDD io := pickOneState(b); // io is a BDD representing one alphabet symbol.
R[nQ] := (∃X1, X

I
1 . R[i](X1) ∧ io ∧ T1(X1, X

I
1 , X ′

1))[X
′
1 → X1];

G1[nQ++] := v;
}
void addE(BDD[] bs){

BDD b := ϕ; // b is a BDD over X1.
for (j := length(bs); j > 0; j--) { b := ∃XI

1 , X ′
1. b(X

′
1) ∧ bs[j] ∧ T1(X1, X

I
1 , X ′

1); }
E[nE] := ¬b;
foreach (0 ≤ i < nQ) {

if ((R[i] ∧ E[nE]) = false) then G1[i][nE] := 1;
else G1[i][nE] := 0;
foreach (0 ≤ j < nE) { Cd[2i][j] := G1[i][j]; Cd[2i + 1][j] := G1[i][j]; }
Cd[2i][nE] := 0; Cd[2i + 1][nE] := 1;

}
nE++;

}
Fig. 3. Symbolic implementation of observation table

– BDD[] supersetQ(SymbolicDFA): it checks that M2 � C. The return value
is similar with subsetQ(). Since C is again a (symbolic) DFA, we can simply
implement it by symbolic reachability computation for the product of M2

and MC . If it reaches the non-accepting state of C, the sequence reaching
the non-accepting state is a witness showing M2 � C.

– boolean safeM1(BDD []): given a string σ represented by a BDD array, it
executes M1 according to σ. If the execution reaches a state violating ϕ, it
returns false; otherwise, returns true.

Figure 4 illustrates our symbolic compositional verification (SCV) algorithm.
We initialize nQ, nE, R, E, G1, Cd and C in lines 1–3. We then compute a
set of edges (a BDD) from every source state qi to every state candidate with
boolean vector Cd[j]. Once we reach a new state, we update R, nQ and G1 by
addR() (line 9). This step makes the conjecture machine closed. If we have a
non-empty edge set by edges(), then we update the conjecture C (line 10).
After constructing a conjecture DFA, we ask an equivalence query as discussed
in Section 3 (lines 12–15). If we cannot conclude true nor false from the query,
we are provided a counter-example from the teacher and get a new experiment
string from the counter-example. E, nE, Cd and G1 are then updated based on
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boolean SCV(M1, M2, ϕ)
1: nQ := 1; nE := 1; R[0] := Init1(X1); E[0] := ¬ϕ;
2: G1[0][0] := 1; Cd[0] := 0; Cd[1] := 1;
3: C := initializeC ();
4: repeat:
5: foreach (0 ≤ i < nQ) {
6: foreach (0 ≤ j < 2·nQ) {
7: eds := edges(i, Cd[j]);
8: if (eds �= false) then {
9: if (¬isInR(Cd[j])) then addR(i, eds, Cd[j]);
10: C := updateC (i , eds, indexofR(Cd[j]));
11: } } }
12: if ((cex := subsetQ(C)) = null) then {
13: if ((cex := supersetQ(C) = null) then return true;
14: else if (¬safeM1(cex )) then return false;
15: }
16: addE(findSuffix(cex ));

Fig. 4. Symbolic compositional verification algorithm

the new experiment string. We implement this algorithm with the BDD package
in a symbolic model checker NuSMV.

5 Experiments

We first explain an artificial example (called ‘simple’) to illustrate our method
and then report results on ‘simple’ and four examples from the NuSMV package.

Example: Simple. Module M1 has a variable x (initially set to 0 and updated
by the rule x′ := y in each round where y is an input variable) and a dummy
array that does not affect x at all. Module M2 has a variable y (initially set to
0 and is never updated) and also a dummy array that does not affect y at all.
For M1‖M2, we want to check that x is always 0. Both dummy arrays are from
an example swap known to be hard for BDD encoding [18]. Our tool explores
M1 and M2 separately with a two-state assumption (which allows only y = 0),
while ordinary model checkers will search whole state space of M1‖M2.

For some examples from the NuSMV package, we slightly modified them be-
cause our tool does not support the full syntax of the NuSMV language. The pri-
mary selection criterion was to include examples for which NuSMV takes a long
time or fails to complete. All experiments were performed on a Sun-Blade-1000
workstation using 1GB memory and SunOS 5.9. The results for the examples
are shown in Table 1. We compare our symbolic compositional verification tool
(SCV) with the invariant checking (with early termination) of NuSMV 2.2.2.
The table has the number of variables in total, in M1, in M2 and the number
of input/output variables between the modules, execution time in seconds, the



560 R. Alur, P. Madhusudan, and W. Nam

Table 1. Experimental results

example tot M1 M2 IO SCV NuSMV
name

spec
var var var var time peak BDD assumption states time peak BDD

simple1 69 36 33 4 19.2 607,068 2 269 3,993,976
simple2 true 78 41 37 5 106 828,842 2 4032 32,934,972
simple3 86 45 41 5 754 3,668,980 2 – –
simple4 94 49 45 5 4601 12,450,004 2 – –

guidance1 false 135 24 111 23 124 686,784 20 – –
guidance2 true 122 24 98 22 196 1,052,660 2 – –
guidance3 true 122 58 64 46 357 619,332 2 – –

barrel1 false 20.3 345,436 3 1201 28,118,286
barrel2 true 60 30 30 10 23.4 472,164 4 4886 36,521,170
barrel3 true – – too many – –

msi1 45 26 19 25 2.1 289,226 2 157 1,554,462
msi2 true 57 26 31 25 37.0 619,332 2 3324 16,183,370
msi3 70 26 44 26 1183 6,991,502 2 – –

robot1 false 92 8 84 12 1271 4,169,760 11 654 2,729,762
robot2 true 92 22 70 12 1604 2,804,368 42 1039 1,117,046

peak BDD size and the number of states in the assumption we learn (for SCV).
Entries denoted ‘–’ mean that a tool did not complete within 2 hours.

The results of simple are also shown in Table 1. For simple1 through
simple4, we just increased the size of dummy arrays from 8 to 11, and checked
the same specification. As we expected, SCV generated a 2-state assumption
and performed significantly better than NuSMV.

The second example, guidance, is a model of a space shuttle digital autopilot.
We added redundant variables to M1 and M2 and did not use a given variable
ordering information as both tools finished fast with the original model and
the ordering. The specifications were picked from the given pool: guidance1,
guidance2, guidance3 have the same models but have different specifications.
For guidance1, our tool found a counter-example with an assumption having 20
states (If this assumption had been explicitly constructed, the 23 I/O variables
would have caused way too many edges to store explicitly).

The third set, barrel, is an example for bounded model checking and no
variable ordering works well for BDD-based tools. barrel1 has an invariant de-
rived from the original, but barrel2 and barrel3 have our own ones. barrel1,
barrel2 and barrel3 have the same model scaled-up from the original, but with
different initial predicates.

The fourth set, msi, is a MSI cache protocol model and shows how the tools
scale on a real example. We scaled-up the original model with 3 nodes: msi1 has 3
nodes, msi2 has 4 nodes and msi3 has 5 nodes. They have the same specification
that is related to only two nodes, and we fixed the same component M1 in all of
them. As the number of nodes grew, NuSMV required much more time and the
BDD sizes grew more quickly than in our tool.
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robot1 and robot2 are robotics controller models and we again added redun-
dant variables to M1 and M2, as in the case of guidance example. Even though
SCV took more time, this example shows that SCV can be applied to models
for which non-trivial assumptions are needed. More details about the examples
are available at http://www.cis.upenn.edu/∼wnam/cav05/.
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