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Preface

Questions abound.

• What is the deep structure of a purchase order, or for that matter any
other business document, such as an invoice, bill of lading, receiving re-
port, or contract? How can a purchase order (or other document) be
represented so that organizations may—automatically, without direct hu-
man involvement—create, send, reason correctly about, and act properly
on the purchase order (or other document)?
• How may a purchase order (or other business document) be structured

without ad hoc-ness, so that it may be used by automated agents every-
where?
• Beyond sending simple messages, how can the need of organizations to

conduct extended conversations automatically be supported?
• Is it possible, and if so how, for artificial agents to negotiate contracts

and trade procedures? What are the possibilities? the limitations?
• What are the underlying principles of reasoning about such subtle con-

cepts as obligations, permissions, actions, and norms? How might these
principles be formalized and employed generally in electronic commerce
automation?
• How can artificial agents discover and learn strategies that are effective in

commercial—hence, game-theoretic—contexts? What are the candidate
learning regimes and what are their performance characteristics? Will
they be exploitable? Will they be exploiting?
• What are the behavioral characteristics of markets and other commercial

transaction spaces when populated by artificial agents that are intelligent,
adaptive, and learning? Will they be stable? Will they be efficient?

These questions, and many other questions like them, matter because impor-
tant prospective advances in electronic commerce—the progressive automa-
tion of the conduct of business—depend on answering them. The questions
are deep. They merit and will receive enduring attention. It is widely agreed
that the state-of-the-art on these questions calls for intensive and protracted
attention. Happily, the issues they raise admit of imperfect solutions, which
may profitably be translated into practice, then replaced as knowledge im-
proves. The scene is dynamic and filled with opportunities, both for funda-
mental contributions and for transfer of knowledge to practice.

The FMEC (Formal Modeling for Electronic Commerce) community is an
informal, diverse, international, and very open group of researchers, who share
an interest in these questions. The community has been operating actively
since 1987, and has produced nearly a score of workshops (with attendant
papers), nine special issues of journals (totaling 59 papers), and at least 21
Ph.D. theses. In addition, several score papers have appeared in journals,
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conferences, and workshops. The community has been fecund in its ideas and
prolific in its published output.

The purposes of this volume are several:

• To present the latest work from the FMEC community
The book contains 14 new papers, representing the best of the current
FMEC work.
• To present FMEC papers of historical and conceptual import, which are

not otherwise available in the open literature
The book contains 5 such papers.
• To provide an historical and, mainly, conceptual guide to the issues that

have been addressed by the FMEC community
The book’s first chapter provides an integrating essay on FMEC work. It
will be a useful guide to the reader of this book and to the researcher who
wishes to probe further. In addition, the book contains a unified master
bibliography of several hundred entries, as well as a comprehensive index.

We hope, and believe, this volume will be useful for researchers and grad-
uate students with interests in electronic commerce or in the fundamental
issues engaged by the questions listed above. Practitioners, especially those
involved in research or development of leading-edge systems, will also find
here much to reckon with. Most, if not all, of the ideas explored here are ripe
for conversion to applications.

We end with a note of thanks. Since 1987, dozens of people have made
important contributions to the creation and maintenance of the FMEC com-
munity. We thank them all, even if it is not possible to name them all. Special
thanks, however, go to four senior individuals who have been exemplary in
the support and encouragement they have given this community.

• Melvin F. Shakun, editor of Group Decision and Negotiation
• Ralph H. Spague, Jr., organizer of the Hawaii International Conference

on System Sciences
• Andrew Whinston, editor of Decision Support Systems
• Vladimir Zwass, editor of Journal of Management Information Systems

and International Journal of Electronic Commerce

Finally, thanks to Mike Shaw for suggesting this project and to the editors
at Springer for their patience.

Bala Cynwyd, PA and Atlanta, GA Steven O. Kimbrough
September 2004 D.J. Wu
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Abstract. This paper is an integrative essay on the activities and intellectual con-
cerns of the FMEC community. The paper frames these concerns around three
‘non-standard’ formalisms (logic, graphs, and procedures), three themes or general
problems (representation, inference, and learning), and seven more specific topics
(electronic data interchange, electronic contracting, speech acts, special logics, sys-
tem and process modelling, strategy formation, and computational discovery). In
addition, the paper introduces each of the chapters in this book and places them
within the general FMEC framework. An appendix to the paper records the bibli-
ographic history of the FMEC community.

1 Introduction

Electronic commerce is an attractive field for anyone interested in originating
fresh ideas or in innovatively translating them into practice. Underlying tech-
nical progress in computing and communications continues a torrid advance.
In consequence the deployment, full exploitation, and even conception of ap-
plications enabled by technical progress inevitably lag and go unrealized, at
least for a time, sometimes a considerable time. Thus is created a permanent
(if moving) frontier, open to insight and rewarding it.

Electronic commerce is equally attractive to those with a taste for fun-
damental challenges and with aspiration to make foundational contributions.
The general challenge is “to expand the realm of the automated in a princi-
pled and generalized fashion.”1 To take up this challenge is to be confronted
with any number of fundamental problems, calling for fundamental insight
and innovation.

The papers in this volume address both kinds of challenges—e-commerce
application challenges and e-commerce fundamental challenges—in detail. It
will be useful, for the sake of interpreting these papers, to frame what it is
that the FMEC community has been about. For that purpose, three facets or
perspectives will serve to characterize, at least roughly, the intellectual con-
cerns that have drawn the attention of researchers in the FMEC community:
1 Since the early 1980s, this has been Steven O. Kimbrough’s slogan for character-

izing the mandate of Information Systems as a discipline.
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• Formalisms
• Themes
• Topics

2 Formalisms

Formal modelling requires some formalism or other in which to express mod-
els. Moreover, electronic commerce is a capacious area of research and much
formal modelling has long been directed at it. What distinguishes FMEC?
How is it different from standard modelling work, say, in economics, or the
management sciences? The FMEC community may perhaps best (but al-
ways approximately) be described as having focused on non-standard formal
modelling for electronic commerce. What we may call the standard modelling
formalism employs broadly algebraic (or equational) models of various sorts.
The literatures of economics, the management sciences, and the various busi-
ness disciplines (e.g., marketing, finance) are suffused with models using the
standard formalism(s). Moreover, modelling in this style has been present
and welcomed in the FMEC literature.2

From the outset, however, the FMEC community has been interested in
problems and topics for which other formalisms are most naturally used.
These other, ‘non-standard’ formalisms have been of broadly three kinds:

• Logic
• Graphs
• Procedures

Logic. The origin of the FMEC community was a series of Logic Modelling
minitracks at the HICSS meetings (Hawaii International Conference on Sys-
tem Sciences), beginning in January 1987 (see §A, below). From the outset,
and continuing to the present, a large segment of the FMEC community has
focused on the use of formal logic as a modelling tool. The opening article in
the first FMEC special issue, “Logic Modeling: A Tool for Management Sci-
ence” [KL88], presents the case. In a nutshell, the promise of logic modelling
is that:

1. Logic models are natural representational formalisms for any target sys-
tem that is propositional, such as documents and messages used to con-
duct business.

2. Logic models afford construction of clear and rigorous models; and they
bring with them the considerable foundational underpinnings of formal
logic.

3. Via the logic programming paradigm, logic models are readily imple-
mented and translated into applications. In this context, we may think
of a logic model as an ‘executable theory’.

2 E.g., [Jer88,BCK00,Wu97]
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Close to half of the FMEC papers appearing either in this volume or in
the ten previous special issues of journals (see §A.2, below) employ a logic
formalism.

Graphs. Graphs—articulated structures of nodes and arcs—are an espe-
cially apt formalism for electronic commerce.

1. Graphs are natural representational formalisms for processes (e.g., trade
procedures, workflow processes) and indeed for systems. UML and all
other formalisms used in systems analysis and design are largely graph-
based. Networks—social, trading, transportation, etc.—appear regularly
in e-commerce contexts, and networks are special kinds of graphs.

2. Graphs afford construction of clear and rigorous models; and they bring
with them extensive theoretical underpinnings.

3. Graph models are easily implemented. In fact, they are special cases of
logic models and are naturally implemented via logic programming.

4. Graph models are familiar to many people and afford excellent visualiza-
tions.

Procedures. A procedural or computational model seeks to account for—to
explain or illustrate—its target system [Kim03]. Standard, equational mod-
els have the same purpose. For that matter, so do logic models and graph
models. We identify a system of interest; we develop a model or formal repre-
sentation (including the proposed correspondence between the model and the
target system); and then we observe the behavior of the two. If the model’s
behavior matches the target system’s behavior in the right ways, we congrat-
ulate ourselves on a good job and are prepared to rely upon the model in
making predictions and in otherwise directing our own behavior.

Perhaps the clearest example of an explicitly procedural explanation is
the Darwinian theory of evolution. There are no equations in The Origin
of Species and the theory has not been successfully axiomatized. Equational
models are used—extensively—to model the behavior of evolutionary sys-
tems, but not to model the basic theory itself. See for details the quoted
passage on the next page, taken from [Kim03].
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It is by now standard to note that evolutionary theories of adap-
tation (e.g., Lamarck’s and that of Charles’s grandfather Erasmus
Darwin) predated The Origin of Species (1859). Darwin’s achieve-
ment was not to originate a theory of evolution. Rather it was
(with Alfred Russell Wallace) to propose a workable (and largely
correct) mechanism or procedure by which evolution comes about.
In fact, Darwin did not use the term evolution in the first edition of
the Origin. Instead, he consistently wrote of his theory of “descent
with modification by natural selection.” Most fundamentally (and
sufficient for present purposes) Darwin (and Wallace) put together
three ideas or observations:

1. Profusion of individuals with variance of traits
Every species has the capability to, and tends to, produce more
offspring each generation than can possibly survive and repro-
duce. The individuals so produced are not all identical.

2. Selection among the variants
Natural selection operates on populations of varying individu-
als, selecting for properties favorable to survival and reproduc-
tion.
The individuals in a species vary in many different ways, in-
cluding their capacity, at least in expectation, for survival and
reproduction.

3. Reproduction of variants favored by selection, with inheritance
of favorable traits.
Inheritance may be approximate and far from perfect. What is
required is a heritable association between the traits favorable
to the parents and the traits of their offspring.

Given such a regime—of profusion with variance of traits, selection
by traits, and reproduction with inheritance—it is nearly inevitable
that evolution or “descent with modification by natural selection”
will occur. Darwin and Wallace claimed that in fact it did routinely
and that this process has in the main been responsible for adapta-
tion and speciation. Such, boiled down for present purposes, is the
(biological) theory of evolution by natural selection.a So success-
ful has this theory become that now when we say something is an
evolutionary theory or account, we mean it appeals to, or posits, a
profusion-selection-reproduction process.
a For a more detailed analysis see [Kim80].
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3 Themes

A number of themes, or general problems, have been prevalent among various
FMEC contributors. It is convenient to list them as follows:

• Representation
• Inference
• Learning

Representation. The first and most pervasive theme was the impetus for
Ronald M. Lee’s seminal Ph.D. dissertation, describing his CANDID sys-
tem.3 Lee’s problem was how to represent business entities, including actors,
economic objects, financial entities and instruments, and business documents
(such as invoices and purchase orders). We might call this the representation
theme in e-commerce. It leads to conceptual analysis with formal presentation
of the results.

Lee’s thought was to model the gamut of business entities using a formal,
broadly logical language. Lee’s work is extensive but incomplete and often
programmatic. His reliance on Montague semantics may pose severe problems
for implementation. Nevertheless, his results and insights are important. Fur-
ther, the inherent subtlety and difficulty, along with the potential usefulness,
of the project may fairly be said to have inspired a body of research that
continues to this day and that has been central to the FMEC community.
Much has been achieved and much remains to be done. Lee’s dissertation
has until now appeared only in working paper form. We are very pleased to
present an updated version in this volume. The new CANDID manuscript
constitutes three chapters in Part I, pages 101–176.

Inference. Inference is the second theme that has occupied the attention
of FMEC researchers. There has been a shared vision, not often explicitly
articulated in print,4 of having general, widely-used deductive databases for
reasoning in electronic commerce about obligations, time, actions, contracts,
trade procedures, and so on, and to be able to do so defeasibly.

Learning. Interest in learning, the third major theme in FMEC research,
has been occasioned by the shared vision of having very powerful—AAAA
(“anything, any time, anywhere, anywise”)—artificial agents present on the
Internet, doing business on our behalf. Because these agents will be inter-
acting with other agents (artificial or not), they will be acting in strategic
or game-theoretic contexts. Because classical game theory has little to say
about how to pick a strategy for play in a game and because many of the

3 See [Lee80].
4 But see [KM93a].
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strategic contexts of electronic commerce will involve repetitions of simpler
games, having the artificial agents learn which strategies to play becomes
imperative. Understanding what agents will learn under various regimes of
play and kinds of learning is very much an open issue, although significant
results are reported in this volume.

4 Topics

Quite a number of more specific topics—falling within the general themes—
have been investigated by the FMEC community. We now provide, with brief
discussion, a representative list.

• Electronic data interchange.
The term electronic data interchange is used as an abstract, more gen-
eral term for EDI (Electronic Data Interchange) in the sense denoting
use of specific protocols, such as X12 and UN/EDIFACT, or protocols
like them. The topic of electronic data interchange covers the general
problem of designing effective and powerful protocols (or more generally
languages) for conduct of business. Not only must standard documents,
such as invoices, purchase orders, and bills of lading, be represented, but
conversations must be held, trading agreements made and so on. Much of
the FMEC work on this topic is self-described as working on an FLBC,
a Formal Language for Business Communication.
• Electronic contracting.

This is closely related to the electronic data interchange topic. How can
artificial agents effectively compose, evaluate, monitor, and be directed
by contracts in electronic form? Much of the FMEC work has focused
on analysis and representation of trade procedures, with the view that
libraries might be created upon which agents might draw in negotiating
deals. An important part of the electronic contracting topic is the first
trade problem. A main cause of the high expense of EDI is the cost of
setting up the contractual arrangements for making the first trade. Once
that is done, if done well, the incremental costs of EDI (more generally,
electronic data interchange) may be quite modest.
• Speech acts.

Contracts and other business documents (the usual: invoices, purchase
orders, bills of lading, etc.) are propositional. They make assertions, is-
sue promises, give commands, and so on. Individual assertions, promises,
commands et cetera are widely recognized as speech acts. They say things
and they do things. Speech acts are essential to business communication,
yet their logical structure is problematic. FMEC researchers have been
much concerned with exploring how speech acts should be represented
formally, so that artificial agents may undertake them and reason about
them.
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• Special logics.
FMEC researchers have investigated logics of defeasible reasoning, ac-
tion, deontic reasoning, modal reasoning, epistemic reasoning, temporal
reasoning, institutional power, and reasoning about speech acts—all as
applicable to electronic commerce.
• System and process modelling.

FMEC researchers have expended much attention on developing graph
models (usually) or logic models (less usually) for representing workflows,
trade procedures, and other processes of import to electronic commerce,
as well as systems in which such processes occur.
• Strategy formation.

FMEC researchers have produced a now extensive body of work (the
most recent of which is contained in this volume) exploring how various
computational learning regimes fare in finding effective strategies for play
in repeated games.
• Computational discovery.

In the strategy formation work, FMEC researchers have investigated how
computations may discover effective strategies. More generally, FMEC
researchers have explored related learning methods for computational
discovery in such areas as data mining5 and investment policies.6

5 A Brief Guide to the Volume

With these remarks serving as a map, we may make short work of character-
izing the twenty papers of this volume. The result will guide the reader. The
papers are divided into four parts of the volume.

Part I. “Representation: Objects, Processes & Policies” contains seven pa-
pers:

• Alan Abrahams, David Eyers, and Jean Bacon, “Practical Contract Stor-
age, Checking, and Enforcement for Business Process Automation,” pages
33–77.

This paper describes an extensive prototype implementation, in Java and a
relational database, of a logic-based language for conducting commerce (Kim-
brough’s FLBC). In terms of our FMEC framework, the paper focuses on a
procedural implementation of a logic formalism. It addresses the principal
themes of representation and inference in electronic commerce, and it has
much to say on the topics of electronic data interchange, electronic contract-
ing, speech acts, and special logics.

5 E.g., [PT02].
6 E.g., [Wu97].
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• Aldo de Moor and Hans Weigand, “Legitimacy Checking in Communica-
tive Workflow Design,” pages 79–99.

This paper introduces what the authors call an extended workflow loop. Using
this idea as the basic unit of analysis, they introduce the concept of workflow
loop norms, which are grounded in internal control theory. The paper develop
this and related ideas, and demonstrates their use with examples. In terms
of our FMEC framework, the paper focuses on graphs for its formalism.
The paper addresses the principal themes of representation and inference
in electronic commerce, and it has much to say on the topic of system and
process modelling.

We have already discussed the three chapters on the CANDID system:

• Ronald M. Lee, “CANDID Specification of Commercial and Financial
Contracts: A Formal Semantics Approach to Knowledge Representation,
Part I: Syntax & Formal Semantics of CANDID,” pages 101–143.
• Ronald M. Lee, “CANDID Specification of Commercial and Financial

Contracts: A Formal Semantics Approach to Knowledge Representation,
Part II: Formal Description of Economics Actors and Objects,” pages
145–158.
• Ronald M. Lee, “CANDID Specification of Commercial and Financial

Contracts: A Formal Semantics Approach to Knowledge Representation,
Part III: CANDID Specification of Financial Concepts,” pages 159–176.

We warn the reader that these chapters are dense with notation. The under-
lying ideas, however, are significant and merit the effort to take them in.

• Ronald M. Lee, “Performatives, Performatives Everywhere but Not a
Drop of Ink,” pages 177–200.

This fourth paper by Lee, like the previous three and like the next paper
by Kimbrough, is from the FMEC archives. Written in the mid-1990s, it has
never been published, although it has circulated widely and influenced FMEC
work.

The paper observes that the feasibility of open, flexible electronic com-
merce relies heavily on the effective management of documentary procedures,
i.e., the sequence by which (structured) business documents are exchanged
among contracting parties. These communications are performative (versus
informative) in that the act of communicating itself is a social action that al-
ters the contractual, legal, or ownership relationship among the parties. The
paper goes on to discuss the problems of supporting performative communi-
cations and how they might be handled in principle. In terms of our FMEC
framework, the paper focuses on logic for its formalism. The paper addresses
the principal themes of representation and inference in electronic commerce,
and it has much to say on the topic of speech acts (speech act theory was
developed in part as a response to the recognition that utterances may be
performative), electronic data interchange, and electronic contracting.
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• Steven O. Kimbrough, “EDI, XML, and the Transparency Problem in
Electronic Commerce,” pages 201–227.

This paper, written in the mid-1990s and presented at a conference, attempts
to put to rest a confusion still present in some quarters. Standard EDI pro-
tocols (including the X12 and UN/EDIFACT series) have repeatedly been
criticized for poor design, incoherent or absent semantics, and much else.
XML has been touted by some as a proper remedy. The paper argues that
this is a confusion. While there are many positive aspects of XML, the claim
that its tagging system allows documents to be semantically “self-describing”
is misleading and overblown. XML may well be useful as a part of the solution
to the problem of making documents and messages semantically transparent,
but its role is at best marginal for this problem. The paper goes on to pro-
vide an account of what a proper solution would look like. In terms of our
FMEC framework, the paper focuses on logic for its formalism. The paper
addresses the principal themes of representation and inference in electronic
commerce, and it has much to say on the topics of speech acts, electronic
data interchange, and electronic contracting.

Part II. “Applications” has two papers:

• Vera Kartseva and Yao-Hua Tan, “Designing Control Mechanisms for
Value Exchanges in Network Organisations,” pages 231–246.

This paper proposes a model for monitoring contract compliance, based in
part on concepts from deontic logic. The result is a design tool for mod-
elling violations of obligations, which can be used in contract drafting and
contingency planning for inter-organisational collaboration in network organ-
isations. In terms of our FMEC framework, the paper focuses on logic and
graphs (of organizational procedures) for its formalism. The paper addresses
the central topic of strategy formation, has as a key theme representation
in electronic commerce, and offers much on the topic of system and process
modelling.

• Max Boisot, Ian MacMillan, Kyeong Seok Han, Casey Tan, and Si Hyung
Eun, “Sim-I-Space: An Agent-Based Modelling Approach,” pages 247–
294.

This paper describes Sim-I-Space, an agent-based model that operationalises
key features of a conceptual framework: the Information-Space (I-Space).
The I-Space relates the speed and extent of information flows between agents
to how far their messages have been structured through acts of codification
and abstraction. The more structured a message, the faster and more exten-
sively it diffuses to other agents—intentionally or not. This concept is used
to discover and analyze strategic options for businesses, contingent upon the
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diffusion of knowledge. In terms of our FMEC framework, the paper focuses
on procedures for its formalism. The paper addresses the central topic of
strategy formation, and has as a key theme representation in electronic com-
merce.

Part III. “Communication” contains three papers:

• Steven O. Kimbrough and Yinghui (Catherine) Yang, “On Representing
Special Languages with FLBC: Message Markers and Reference Fixing
in SeaSpeak,” pages 297–324.

SeaSpeak is “English for maritime communications.” It is a restricted, special-
ly-designed dialect of English used in merchant shipping and accepted as an
international standard. This paper discusses, in the context of SeaSpeak, two
key problems in the formalization of any such restricted, specially-designed
language, viz., representing the illocutionary force structure of the messages,
and formalization of such reference-fixing devices from ordinary language as
pointing and use of demonstratives. In terms of our FMEC framework, the
paper focuses on logic for its formalism. The paper addresses the principal
themes of representation and inference in electronic commerce, and it has
much to say on the topic of speech acts.

• Andrew J.I. Jones and Steven O. Kimbrough, “A Note on Modelling
Speech Acts as Signalling Conventions,” pages 325–342.

This paper presents a fully formal integration of Jones’s logical theory of
speech acts as signalling conventions with Kimbrough’s Formal Language for
Business Communication (FLBC). The paper distinguishes between ‘inten-
tionist’ accounts of speech acts and ‘conventionist’ accounts. In contradis-
tinction to essentially all work in agent communication languages, Jones’s
theory of speech is thoroughly conventionist. The paper argues that this is a
strong advantage for the theory and demonstrates that Kimbrough’s FLBC
fits comfortably and naturally with Jones’s theory of speech acts. In terms
of our FMEC framework, the paper focuses on logic for its formalism. The
paper addresses the principal themes of representation and inference in elec-
tronic commerce, and it has much to say on the topics of speech acts, special
logics, and electronic data interchange.

• Scott A. Moore, “Dynamic Conversation Structures: An Extended Ex-
ample,” pages 343–360.

The subject of this paper is the important one of modelling and design of
conversations between communicating agents. The paper provides a detailed
look at a moderately complex conversation as represented by a finite state ma-
chine, a representation used by an established agent communication system.
Various representational methods are compared and discussed. The paper
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concludes with a demonstration of how a multi-agent conversation policy can
be used to control the flow of messages, contrasts this with how messages are
handled via an inference-based process, and shows how the inference-based
processing can be integrated with the policy-based handling in order to deal
with exceptions to the policy. In terms of our FMEC framework, the paper
focuses on graphs for its formalism. The paper addresses the principal themes
of representation and inference in electronic commerce, and it has much to
say on the topic of electronic data interchange.

Part IV. “Agents and Strategic Interactions” has eight papers:

• Scott A. Moore and Kurt Demaagd, “Investigating the Value of Informa-
tion and Computational Capabilities by Applying Genetic Programming
to Supply Chain Management,” pages 363–391.

This paper presents the design of an innovative system for simulating agents
in supply chains. The agents undertake computational search for effective
strategies using genetic programming. In terms of our FMEC framework, the
paper focuses on procedures for its formalism. The paper addresses the prin-
cipal theme of learning in electronic commerce, and it has much to say on the
topics of electronic data interchange, strategy formation, and computational
discovery.

• Olga Streltchenko, Yelena Yesha, and Timothy Finin, “Multi-Agent Sim-
ulation of Financial Markets,” pages 393–419.

This paper discusses the principal reasons for, and prospective opportuni-
ties of, simulating financial markets using an architecture based on artificial
agents. The paper then discusses in detail the design and architecture of a
simulator for financial markets. In terms of our FMEC framework, the paper
focuses on procedures (principally, reinforcement learning) for its formalism.
The paper addresses the principal theme of representation in electronic com-
merce, and it has much to say on the topic of strategy formation.

• Alex K. Chavez, “Adaptive Agents in Coalition Formation Games,” pages
421–443.

Coalition formation games form an important subclass of mixed-motive stra-
tegic situations, in which players must negotiate competitively to secure con-
tracts. This paper compares the performance of two learning mechanisms,
reinforcement learning and counterfactual reasoning, for modeling play in
coalition formation games. In terms of our FMEC framework, the paper fo-
cuses on procedures (principally, reinforcement learning) for its formalism.
The paper addresses the principal theme of representation in electronic com-
merce, and it has much to say on the topic of strategy formation.
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• Jim R. Oliver, “On Learning Negotiation Strategies by Artificial Adaptive
Agents in Environments of Incomplete Information,” pages 445–461.

This paper examines automated negotiation by artificial adaptive agents,
which holds great promise for electronic commerce. Difficult practical is-
sues remain unresolved, however. Published studies of learning of negotiation
strategies by agents have been based on artificial environments that include
complete payoff information for both sides of the bargaining table. This is
not realistic in applied contexts. This paper considers the case of a seller who
knows its own preferences over negotiation outcomes but who has only lim-
ited information about the private values of each customer. In terms of our
FMEC framework, the paper focuses on procedures (principally, genetic al-
gorithms) for its formalism. The paper addresses the central topic of strategy
formation, particularly in the context of negotiation.

• Steven O. Kimbrough, Ming Lu, and Ann Kuo, “A Note on Strategic
Learning in Policy Space,” pages 463–475.

This paper introduces learning in policy space, in distinction to the usual
learning in state space, for agents in games. Instead of, as in most studies,
the agents learning to associate plays with the recent history of play, agents
here learn which policies to play for a period of time, based on how well they
perform compared to other policies. The paper examines play in a number of
repeated 2×2 games and finds that policy-space learning agents are generally
more effective than state-space learning agents in extracting wealth from the
game. In terms of our FMEC framework, the paper focuses on procedures (re-
inforcement learning in several senses) for its formalism. The paper addresses
the central topic of strategy formation.

• Steven O. Kimbrough, Ming Lu, and Frederic Murphy, “Learning and
Tacit Collusion by Artificial Agents in Cournot Duopoly Games,” pages
477–492.

This paper explores learning by artificial agents in repeated play of Cournot
duopoly games. The agents’ employ policy-space learning regimes. The re-
sulting behavior is markedly different from behavior predicted by classical
economics for the single-shot (unrepeated) Cournot duopoly game. In re-
peated play under this learning regime, agents are able to arrive at a tacit
form of collusion and set production levels near to those for a monopolist. The
paper notes that Cournot duopoly games are reasonable approximations for
many real-world arrangements, including hourly spot markets for electricity.
In terms of our FMEC framework, the paper focuses on procedures (rein-
forcement learning in several senses) for its formalism. The paper addresses
the central topic of strategy formation.
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• Fang Zhong, “A Note on Working Memory in Agent Learning,” pages
493–507.

The existing literature reports mixed findings on the effects of the amount
of working memory on the effectiveness of agents in strategic contexts. In
this note, Zhong describes an intelligent agent system in which three agents,
one buyer and two bidders, play an Exchange game repeatedly. The buyer
agent decides whether to list a request for proposal, while the bidders bid
for it independently. The paper finds that the relationship between working
memory and the effectiveness of the agents has an inverted U shape, i.e., there
seems to be an optimal memory size. When agents with different memory
sizes are mixed together, agents with the same amount of working memory
generate the most efficient outcome in terms of total payoffs. In terms of our
FMEC framework, the paper focuses on procedures (reinforcement learning)
for its formalism. The paper addresses the central topic of strategy formation.

• Sofia Chajadine, Daniel Mack, and Aaron Jeffrey Slan, “Investigations
of Granularity and Payoffs in 2×2 Games under Replicator Dynamics,”
pages 509–527.

This paper describes an investigation of several 2×2 games in iterated form.
Players play the games repeatedly and are limited to mixed strategies, with
particular actions chosen probabilistically. The games investigated include
Prisoner’s Dilemma, Chicken, and Stag Hunt in various forms. The reward
structure and the granularity of the games—number of games played per
generation in the replicator dynamics—are the main factors investigated,
with results that contravene existing studies that neglect these factors. In
terms of our FMEC framework, the paper focuses on procedures (replicator
dynamics) for its formalism. The paper addresses the central topic of strategy
formation.

6 Upwards and Onwards

This completes our survey of FMEC research prior to and including this
volume. What does or should the future hold? In what directions is the com-
munity likely to go?

Engaging more directly with practice has been a much-discussed goal of
the group. One considered view is that “next generation enterprise comput-
ing” and agent-mediated electronic commerce, two important concepts under
wider development, could benefit from achievements of FMEC research. Both
concepts are by nature incremental (although they are not advertised that
way!). This facilitates a trial-and-feedback arrangement between ideas orig-
inated in the FMEC community and the greater world of practice and use
(aka: the ‘real’ world). Proxy bidding, in which artificial agents participate in
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auctions while closely supervised by their human masters, is already in use
and may well be a good model for deployment of other ideas.

Stepping back and taking perspective, the themes and topics addressed by
the FMEC community are important, are interesting, and afford nearly un-
limited scope for further investigation and development. Moreover, the (‘non-
standard’) modelling formalisms in use—logic, graphs, and procedures—have
been productive and show no signs of exhaustion. Clearly, ‘broader and
deeper’ is a fine option. There is ample reason to continue on the path that
got us here. That said, there is every reason to think that new ideas and
new directions will also be found and welcomed. What might they be? We
do not presume to say. Instead, we close this essay with a speculative idea,
which has been discussed at times within the FMEC community. We con-
clude, then, in the spirit of asking a question—Is this a good idea?—rather
than of predicting, let alone mandating, new developments.
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Embodied Research

By design, open source software development resembles scientific research in
certain ways. Both are open in the sense of being public and in the sense
of inviting participation by anyone having a genuine contribution to make.
Both are conducted by loosely organized, modestly hierarchical communities
of volunteers. Both produce public goods, which may be exploited by anyone,
including non-contributors. Both command general approbation in virtue of
the open, public, and objective processes that underlie them, including an
open market for testing and validation. Both motivate and reward their par-
ticipants largely by recognition, by the satisfaction due to making an impact,
by access to information and other contributors “on the leading edge”, and
by whatever immediate value the partcipants get from the resulting work
products.

Scientific research and open source development differ crucially in that
one is research and the other is development. Roughly, research aims at pro-
ducing knowledge or know-how. Development aims at producing products
that are useful and used, products in which knowledge is embodied (to bor-
row a term from patenting). Again roughly, the work product of research is
symbolic and representational—axioms, models, equations, texts, theorems,
algorithms, and so forth. The work product of development is tangible and
embodied, locatable in space as well as time. Software is of course a border-
line case. Even so, we may think of ‘research software’ as embodying ideas
and demonstrating their feasibility. Production or ‘commercial grade’ soft-
ware is more unproblematically an embodiment of its originating, abstract
ideas (whether or not produced by research).

Open source development projects are normally not driven by scientific
research. They are ascientific. Their usual purpose is to produce a useful
product of some sort (Web server, text editor, browser, etc.), unmotivated
by any scientific or research-oriented considerations. The question we wish to
raise is:

• Under what conditions would it be attractive and sensible to undertake
open-source-like development (of software or of other forms of content)
for the sake of furthering scientific (and possibly purely practical) ends?

We shall call such a venture an embodied research programme; it aims at
producing both scientific advances and useful, production-grade products,
such as software and courseware. The concept itself raises any number of
new questions. We will briefly address a few of them here.

• What sorts of research projects or topics might be suitable for embodied
research?

Properties of promising embodied research projects involving software (or
courseware) development would seem to include the following:
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1. The envisioned software is not otherwise available or likely to be supplied
by the market.

2. The envisioned software is sufficiently simple that it can be created with
academic-level resources and capabilities. This suggests ‘lightweight’ ap-
plications for lower-end users.

3. The envisioned software is demonstrably valuable to a significant client
community, which is unable to afford commercial purchase of the ca-
pability but which is ready and able to participate in the research and
development efforts.

4. The envisioned software can be produced in individually useful incre-
ments.

5. The envisioned software is useful for testing interesting research concepts,
or for answering research questions.

6. The envisioned software is useful for demonstrating interesting research
concepts and results, and for communicating ideas to interested parties,
including funding organizations and potential clients.

7. The associated research issues are not exhaustible in the near term. The
research topic must afford depth, challenge, and longevity to the research
programme. It must also be inherently interesting from a research per-
spective.

8. The embodied research project must afford partial, limited contributions
by the participants. Specialized contributions should be welcome and
legitimately appropriate; the project is decomposable, both in research
and in development.

• Are there any plausible examples of, or candidates for, such topics?

Plausible examples include:

1. FMEC: formal modeling for electronic commerce.
Embodied agent communication languages, e.g., via ebXML. This presents
an apt challenge for theoretical analysis, and for connection to automated
(presumably logical) reasoning. Software affords a demonstration testbed
and could be used by SMEs (small and medium-sized entities) and firms
in developing countries.

2. Information retrieval, mining, and management for communities of mu-
seums, hospitals, local governments, and other non-profit organizations.

3. Optimization software for researchers and practitioners (and for educa-
tors).
An excellent start has been achieved by COIN (www.coin-or.org), which
is perhaps the closest existing embodiment to the embodied research
concept we are attempting to vet here.

4. Agent-based software for research and teaching purposes.
An intriguing, although nascent, example is www.agentbasedis.org (Asso-
ciation for Information Systems, Special Interest Group on Agent-Based
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Information Systems). Note as well the Swarm Development Group at
www.swarm.org.
VATSIM (www.vatsim.net) offers another, also successful, model. From
their “About” page:

The Virtual Air Traffic Simulation Network, known as VATSIM.net
or “VATSIM” was created in 2001 by a group of individuals who
came together with a goal of creating an organization which truly
served the needs of the flight simulation and online air traffic con-
trol community. With an eye towards more than just providing a
network of computers for users to log into, VATSIM is an online
community where people can learn and, at the same time, enjoy
the pastimes of flight simulation and air traffic control simulation
all while making new friends from all over the world.

There now exists a vibrant community organized around VATSIM, as well
as remarkably complex and robust software supporting these activities.

• What incentives would or could scientific (normally academic) researchers
have to contribute to an embodied research program?

Possibilities:

1. Recognition, impact
2. Access to leading ideas and people; stimulus for research ideas
3. Prospect for joint proposals for research funding
4. Expectation of being able to use the developed software for teaching,

research, or consulting
5. Special interest in furthering the subject matter, e.g., e-business for SMEs

(small and medium-sized entities) and developing countries
6. Providing students with opportunities to contribute in ways that will

further their careers.
7. Interest in the open source process itself
8. As a vehicle for furthering and embodying existing ideas and expertise
9. Exposure, publicity, networking

10. Useful feedback and testing of ideas

• How would one organize and initiate such a venture?

This is good question. It should be answered in more detail once the
plausibility case is established. But roughly: (1) organize on the model of a
journal: editorial board of leading contributors, find contributing clients; (2)
carefully initialize to guarantee some immediate successes (e.g., produce a
body of work and make it the initial contribution to the project); (3) system-
atically think through mechanisms for rewarding and incenting participation.

Regarding point (3), at least in some computer science departments soft-
ware contributions can be ‘counted as’ valid forms of publication. Perhaps in
time this convention could be strengthened and extended in scope. Also, the
leadership of an embodied research project (e.g., the editorial board) could
do much to arrange for opportunities for refereed publication.
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• Could you be a bit more specific on what the next steps are?

Yes, but this is best left open to a general discussion. May it continue.
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A FMEC Bibliographic History

The birth of the FMEC community may be dated to the Logic Modelling
minitrack at the 20th Hawaii International Conference on System Sciences
(HICSS), held in January 1987, and organized that year by Ronald M. Lee
and Steven O. Kimbrough. At HICSS, the annual Logic Modelling sessions,
and later the FMEC minitrack itself, were supported throughout by Ralph
H. Spague, Jr. We are pleased to again acknowledge his contributions, for
which we are most sincerely grateful.

Special, independent FMEC workshops have been held at:

• EURIDIS (Erasmus University Research Institute for Decision and Infor-
mation Systems), Erasmus University, Rotterdam, The Netherlands, in
1999
• Drexel Univeristy and the University of Pennsylvania, Philadelphia, USA,

in 2000
• The University of Oslo, Oslo, Norway, in 2001
• �Lodz, Poland, in 2002

Papers from the FMEC community may be found in the HICSS Proceedings,
beginning in 1987. The Logic Modelling and FMEC minitracks have concen-
trations of the papers, but other minitracks hold them as well. To date, 21
Ph.D. theses have been produced in the FMEC community. They are listed
in Appendix A.1, below.7 The FMEC community has so far published 10
special issues of journals, comprising 59 refereed articles. These are listed in
Appendix A.2, below. We are most grateful for the support of the editors of
the host journals:

• Melvin F. Shakun, Group Decision and Negotiation
• Andrew Whinston, Decision Support Systems
• Vladimir Zwass, Journal of Management Information Systems and In-

ternational Journal of Electronic Commerce
7 We apologize if we have missed any.
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The open literature contains a large number of papers arising out of the
FMEC community. The comprehensive References section of this volume is
a good source for locating these papers. The home pages and curricula vitae
of the FMEC authors may be consulted for additional papers.

Besides HICSS, members of the FMEC community have been, and con-
tinue to be, active in a number of conferences and workshops, notably: ICAIL
(International Conference on Artificial Intelligence and Law), DEON (Inter-
national Workshop on Deontic Logic in Computer Science), the Bled Elec-
tronic Commerce Conference, and LAP (Language-Action Perspective on
Communication Modelling, International Working Conference).

A.1 FMEC Ph.D. Theses

1. CANDID: A Logical Calculus for Describing Financial Contracts by Ron-
ald M. Lee, University of Pennsylvania, USA, 1980, [Lee80].

2. A Logic Model for Model Management: An Embedded Languages Ap-
proach by Hemant K. Bhargava, University of Pennsylvania, USA, 1990,
[Bha90].

3. Timed Coloured Petri Nets and their Application to Logistics by W.M.P.
van der Aalst, Eindhoven Technical University, The Netherlands, 1992,
[Aal92].

4. Schematic Evaluation of Internal Accounting Control Systems by Kuo-
Tay Chen, University of Texas at Austin, USA, 1992, [Che92].

5. Contracting on a Performative Network: Using Information Technology
as a Legal Intermediary by Sandra D. Dewitz, University of Texas at
Austin, USA, 1992, [Dew92].

6. A Formal Model for Maintaining Consistency of Evolving Bureaucratic
Policies: A Logical and Abductive Approach by Kay Liang Ong, Univer-
sity of Texas at Austin, USA, 1992, [Ong92]

7. Probabilistic and Defeasible Reasoning Using Extended Path Analysis by
Stephen F. Roehrig, University of Pennsylvania, USA, 1992,
[Roe92].

8. A Formal Representation of Normative Systems: A Defeasible Deontic
Reasoning Approach by Young Ryu, University of Texas at Austin, USA,
1992, [Ryu92].

9. Saying and Doing: Uses of Formal Languages in the Conduct of Business
by Scott A. Moore, University of Pennsylvania, USA, 1993, [Moo93].

10. Theory and Applications of Argumentation Support Systems by Hua Hua,
University of Pennsylvania, USA, 1995, [Hua95].

11. Formal Theories of Rights by Henning Herrestad, University of Oslo,
Norway, 1996, [Her96].

12. On Artificial Agents for Negotiation in Electronic Commerce by Jim R.
Oliver, University of Pennsylvania, USA, 1996, [Oli96b].

13. The Structure of Business Communication: Theory, Model and Applica-
tion by Victor Emil van Reijswoud, Delft University, The Netherlands,
1996, [vR96].
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14. Designing Trustworthy Trade Procedures for Open Electronic Commerce
by Roger Bons, Erasmus University, The Netherlands, 1997, [Bon97].

15. Normative Structures in Natural and Artificial Systems by Cristen Krogh,
University of Oslo, Norway, 1997, [Kro97].

16. Managing Complex, Open, Web-Deployable Trade Objects by Hung Wing,
University of Queensland, Australia, 1997, [Win97].

17. Using Genetic Algorithms to Determine Near-Optimal Pricing, Invest-
ment and Operating Strategies in the Electric Power Industry by Dongjun
(D.J.) Wu, University of Pennsylvania, USA, 1997, [Wu97]

18. Logic-Based Tools for the Analysis and Representation of Legal Contracts
by Aspassia Daskalopulu, Imperial College, University of London, UK,
1999, [Das99].

19. Information Sharing among Ideal Agents by Alessio R. Lomuscio, School
of Computer Science, University of Birmingham, UK, 1999,
[Lom99].

20. Developing and Executing Electronic Commerce Applications with Oc-
currences by Alan S. Abrahams, University of Cambridge, UK, 2002,
[Abr02].

21. Strategy as Valuation by Christina Fang, University of Pennsylvania,
Philadelphia, PA, USA, [Fan03].

A.2 FMEC Special Issues Bibliography

March 1988 Decision Support Systems, volume 4, number 1, 1988.

1. “Logic Modeling: A Tool for Management Science” by Steven O. Kim-
brough and Ronald M. Lee [KL88].

2. “Requirements Analysis Assisted by Logic modelling” by Peter C. Scott
[Sco88].

3. “A Logic Model for Electronic Contracting” by Ronald M. Lee [Lee88b].
4. “A Quantitative Approach to Logical Inference” by J.N. Hooker

[Hoo88].
5. “Spatial Imbedding for Linear and for Logic Structures” by Robert G.

Jeroslow [Jer88].
6. “Logic modelling with Partially Ordered Preferences” by George R. Wid-

meyer [Wid88].
7. “Defeasible Reasoning and Decision Support Systems” by Donald Nute

[Nut88].
8. “Why Nonmonotonic Logic?” by Steven O. Kimbrough and Fred Adams

[KA88].
9. “A Conditional Logic for Defeasible Beliefs” by Marvin Belzer and Barry

Loewer [BL88].
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May 1990 Decision Support Systems, volume 6, number 2, 1990.

10. “The Sensitivity Properties of Hierarchical Logic-Based Models” by Rob-
ert W. Blanning [Bla90].

11. “On Representation Schemes for Promising Electronically” by Steven O.
Kimbrough [Kim90].

12. “A Logic modelling Language for Automated Model Construction” by
Ramayya Krishnan [Kri90].

13. “Controlling Expert System Recommendations with Defeasible Logic” by
Donald Nute, Robert I. Mann, and Betty F. Brewer [NMB90].

14. “Meta-Interpreters for Rule-Based Inference under Uncertainty” by Shi-
mon Schocken and Tim Finin [SF90].

15. “Reasoning with Preferences and Values” by George R. Widmeyer
[Wid90].

February 1994 Decision Support Systems, volume 11, number 2, 1994.

16. “EVID: A System for Interactive Defeasible Reasoning” by Robert L.
Causey [Cau94].

17. “Defeasible Reasoning in Law” by Sandra D. Dewitz, Young Ryu, and
Ronald M. Lee [DRL94].

18. “Ordered Logic: Defeasible Reasoning for Multiple Agents” by P. Geerts,
D. Vermeir, and D. Nute [GVN94].

19. “Bayesian Logic” by K. A. Andersen and J. N. Hooker
[AH94].

20. “A Relational Algebra for Propositional Logic” by Robert W. Blanning
[Bla94].

21. “Text Editing and Beyond: A Study in Logic modelling” by Michael
Bieber and Thomás Isakowitz [BI94].

Summer 1997 International Journal of Electronic Commerce, volume 1,
number 4.

22. “Formal Aspects of Electronic Commerce: Research Issues and Chal-
lenges” by Steven O. Kimbrough and Ronald M. Lee
[KL97].

23. “On Designing a Language for Electronic Commerce” by Michael A. Cov-
ington [Cov97].

24. “Artificial Agents Learn Policies for Multi-Issue Negotiation” by Jim R.
Oliver [Oli97a].

25. “Designing a Market for Quantitative Knowledge” by Georg Geyer,
Christoph Kuhn, and Beat Schmid [GKS97].

26. “Electronic Commerce in Decision Technologies: A Business Cycle Anal-
ysis” by Hemant K. Bhargava, Ramayya Krishnan, and Rudolf Müller
[BKM97].

27. “The Development of FEDI in Switzerland: A Life-Cycle Approach” by
Ivo Cathomen and Stefan Klein [CK97].
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March 1998 Decision Support Systems, volume 22, number 3, 1998.

28. “Speech Acts, Electronic Commerce, and KQML” by Michael A. Coving-
ton [Cov98].

29. “Categorizing Automated Messages” by Scott A. Moore [Moo98].
30. “A Logic-Based modelling of Resource Consumption and Production” by

Young U. Ryu [Ryu98].
31. “On Hypermedia-Based Argumentation Decision Support Systems” by

Gary H. Hua and Steven O. Kimbrough [HK98].
32. “Defeasible Logic Graphs: I. Theory” by Donald Nute and Katrin Erk

[NE98].
33. “Defeasible Logic Graphs: II. Implementation” by Donald Nute, Zachary

Hunter, and Christopher Henderson [NHH98].

Winter 1998–99 International Journal of Electronic Commerce, volume 3,
number 2.

34. “Framework for Specifying, Building, and Operating Electronic Markets”
by Markus A. Lindemann and Beat F. Schmid
[LS99].

35. “Formal Language for Business Communication: Sketch of a Basic The-
ory” by Steven O. Kimbrough [Kim99].

36. “Meta-Patterns for Electronic Commerce Transactions Based on the For-
mal Langauge for Business Communication (FLBC)” by Hans Weigand
and Willem-Jan van den Heuvel [Wv99].

37. “Specifying Deadlines with Continuous Time Using Deontic and Tempo-
ral Logic” by Frank Dignum and Ruurd Kuiper [DK99].

38. “A Logical Model of Directed Obligations and Permissions to Support
Electronic Contracting” by Yao-Hua Tan and Walter Thoen
[TT99].

39. “Distributed Electronic Trade Scenarios: Representation, Design, Proto-
typing” by Ronald M. Lee [Lee99].

Fall 2000 International Journal of Electronic Commerce, vol. 5, no. 1.

40. “Artificial Agents for Discovering Business Strategies for Network Indus-
tries” by D.J. Wu [Wu00].

41. “Pricing and Product Design: Intermediary Strategies in an Electronic
Market” by Hemant K. Bhargava, Vidyanand Choudhary and Ramayya
Krishnan [BCK00].

42. “A Formal Analysis of Auditing Principles for Electronic Trade Proce-
dures” by Roger W.H. Bons, Frank Dignum, Ronald M. Lee, and Yao-Hua
Tan [BDLT00].

43. “On Lean Messaging with Unfolding and Unwrapping for Electronic Com-
merce” by Steven O. Kimbrough and Yao-Hua Tan
[KT00].
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44. “KQML and FLBC: Contrasting Agent Communication Languages” by
Scott A. Moore [Moo00a].

July 2002 Decision Support Systems, volume 33, number 3, 2002.

45. “On the Concept of Trust” by Andrew J.I. Jones [Jon02].
46. “Formal Aspects of a Generic Model of Trust for Electronic Commerce”

by Yao-Hua Tan and Walter Thoen [TT02].
47. “Cross-Organizational Workflow Integration Using Contracts” by Hans

Weigand and Willem-Jan van den Heuvel
[Wv02].

48. “Computational Aspects of the FLBC Framework” by Aspassia Daskalop-
ulu and Marek Sergot [DS02].

49. “Automated Generation of Electronic Procedures: Procedure Constraint
Grammars” by Ronald M. Lee [Lee02].

50. “Knowledge Refinement Based on the Discovery of Unexpected Patterns
in Data Mining” by Balaji Padmanabhan and Alexander Tuzhilin [PT02].

51. “Computers Play the Beer Game: Can Artificial Agents Manage Supply
Chains?” by Steven O. Kimbrough, D.J. Wu, and Fang Zhong
[KWZ02].

52. “Cooperation in Multi-Agent Bidding” by D.J. Wu and Yanjun Sun
[WS02].

November 2002 Group Decision and Negotiation, vol. 11, no. 6, 2002.

53. “Cooperative Agent Systems: Artificial Agents Play the Ultimatum Game”
by F. Zhong, Steven O. Kimbrough, and D.J. Wu [ZKW02].

54. “On Adaptive Emergence of Trust Behavior in the Game of Stag Hunt” by
Christina Fang, Steven O. Kimbrough, Stefano Pace, Annapurna Valluri,
and Zhiqiang Zheng [FKP+02].

55. “Evidence-Based Electronic Contract Performance Monitoring” by As-
passia Daskalopulu, Theo Dimitrakos. and Tom Maibaum
[DDM02].

56. “A Software Implementation of Kimbrough’s Disquotation Theory for
Representing and Enforcing Electronic Commerce Contracts” by Alan S.
Abrahams and Jean M. Bacon [AB02b].

January 2003 Group Decision and Negotiation, vol. 12, no. 1, 2003.

57. “B2B Negotiation Support: The Need for a Communication Perspective”
by Hans Weigand, Mareike Schoop, Aldo de Moor, and Frank Dignum
[WSdMD03].

58. “A Classification Scheme for Negotiation in Electronic Commerce” by
Alessio R. Lomuscio, Michael Wooldridge, and Nicholas R. Jennings
[LWJ03].
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59. “The Effects of Personal and Group Level Factors on the Outcomes of
Simulated Auditor and Client Teams” by Gary Kleinman, Dan Palmon,
and Picheng Lee [KPL03].
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Abstract. We show how Kimbrough’s Disquotation Theory, a formal theory about
sentences that embed propositional content, can be profitably applied to the cre-
ation of computational environments for monitoring and enforcing electronic com-
merce contracts using pervasive, mainstream industrial technologies such as Java
and relational databases. We examine the notion of an occurrence and provide a
structural representation of this abstraction. We show how contractual provisions -
obligations, permissions, prohibitions, and powers - can be stored, monitored, and
enforced. Detailed examples illustrate how a query coverage-determination mecha-
nism can be used to check inter-organizational contractual provisions against inter-
nal policies and external legislation for dynamic conflicts. The work presented here
demonstrates that an extended version of Kimbrough’s theory presents a novel
and promising means of storing interrogable and executable specifications for e-
commerce workflow applications.

1 Introduction

Implicit and explicit contracts are an important mechanism for coordinat-
ing the activities of an organization. In their contracts, organizations express
which states of affairs are desirable and undesirable. They specify which legal
states of affairs are achievable, and how, and which are not. In each case, a
subjective attitude towards propositional content is stated: the state of af-
fairs is obliged, forbidden, permitted, obtains in law, or does not, according
to some clause. We demonstrate here that representing and reasoning about
subjective, propositional content has applications in the automation of com-
merce.

We favor a broadly declarative approach. A procedural execution style
hardwires process sequences and requires a complex, manual search-and-fix
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strategy each time a business’s contracts change. The obligations, permis-
sions, and powers expressed in contracts are not explicit in procedural code,
being lost in line-by-line invocations. Traditional imperative languages, which
provide no direct representation of rights and duties of parties, therefore intro-
duce an impedance mismatch between the contracts that specify the desired
system behavior, and the software that implements these requirements. In
conventional imperative language approaches, rules and procedures are ob-
scured in computer code and not directly accessible or modifiable; instead of
reproducing rules in procedure manuals, memoranda, and dispersed across
computer code, a centralized rule base should be used to ensure locality of
update and avoid update inconsistencies [Lee88a]. Our goal is to store ex-
plicit representations of the obligations, permissions, and powers inherent
in contracts in order that we may use these stored contractual provisions to
executably specify workflow applications. Our approach to the representation
of rights and duties has been informed by the vast literature on deontic logic,
and in particular by Kimbrough’s Disquotation Theory. In our software real-
ization, we adopt a declarative, event-driven approach, where each contract
provision is explicitly stored and monitored, and software and human com-
ponents may consult the provisions to determine what currently holds, and
what to do next.

Kimbrough’s Disquotation Theory [Kim01] is a nascent formal theory
that can be used for representing and reasoning about sentences that em-
bed propositional content, such as those commonly found in electronic com-
merce contracts. We find ourselves in broad agreement with Kimbrough’s
theory and wish to offer many detailed amendments and extensions. We seek
to describe a software implementation of Kimbrough’s theory that provides
an environment in which we can examine practical application development
cases. Our contribution is to move beyond a purely logical view and towards
a system that can be implemented and used. Applications and practice very
properly have roles in informing the development of the theory. Many have
preceded us in the theory department. A vast philosophical literature exists
on deontic logic,1 speech acts [Aus62,SV85], and event semantics.2 Our goal
here is to present a practical approach aimed at mimicking the devices of a
particular theory and establishing its plausibility through testing with real
applications. We hope to contribute to the theory through an understanding
of how to implement the promising ideas. We explain the data structure and
software features implemented in our prototype development and execution
environment, Edee, which is capable of representing, storing, and enforcing
electronic commerce contracts over diverse platforms using occurrence stores.
Our software includes a novel continuous query mechanism for determining
which stored provisions apply to a new occurrence.

1 See [MW93], [And58], [And62], [Das99], [Mak86], [Lin77], [Lee88a], and [PS97]
for starters.

2 See, e.g., [Dav80], [Ben88], [Par90], [JM00], and [PV00].
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We begin with a brief application scenario (§3), and an overview of our
approach to storing and executing contractual provisions (§4). Section 5 then
describes what is meant by an occurrence and demonstrates how an occur-
rence may be used to store a workflow event, such as a payment, or an associ-
ation state, such as ‘being a supplier for’. In Section 6, we give a brief review
of Kimbrough’s Disquotation Theory. Section 7 explains how Kimbrough’s
notions may be implemented in software: we show that stored queries can
be used as the implementation mechanism of Kimbrough’s quotation con-
struct that is used for bracketing propositions within deontic statements.
Our representations of common contractual provisions such as prohibitions,
permissions, powers and liabilities, and obligations are shown (§7.2 - §7.5),
and we demonstrate how the use of functions provides a means of determin-
ing the necessary deontic and legal consequences of particular provisions. We
discuss a number of detection, intervention, and prevention strategies that
may be employed to find or avoid violations (§8 and §9). Section 10 reviews
the features of our software prototype and explains the novel mechanism used
for finding conflicting provisions. We conclude with a comparison to related
work.

2 Contributions

In this paper, our investigations into event semantics lead to the definition
of a database schema for the representation of these variable-attribute occur-
rences (see also [AB01b]), paving the way to interrogation and execution of
stored e-commerce application specifications. Our Edee prototype provides
a platform-independent active wrapper (see also [AB01d]), which allows us
to record, reason about, and enact contractual provisions.3 We demonstrate
a novel query storage and coverage determination mechanism, which allows
contract performance monitoring and facilitates dynamic consistency check-
ing of contracts against policies.4

In our earlier work, a new model of the life and times of identified and
situated norm instances was proposed.5 The model is used in our contract-
driven and legislation-aware workflow automation approach, to support con-
flict resolution [AEB02a]. Our previous work also provided a set of guidance
rules, which could be employed by an analyst to expose salient occurrences in
English language user requirements documents, such as business contracts,
policies, and legislation.6

The work described here contributes to the understanding of the represen-
tation and implementation of contracts, policies, and legal requirements, for
business process automation. The use of a database to record history in an
3 See also [AB01c,AB02c].
4 See also [Abr02,AEB02b,AEB02c].
5 [AB02a,AK02]
6 [AB00,AB01a,Abr02]
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integrated form enables querying of state and history, which is essential to the
abstract modelling of processes at the business level. We propose a significant
attempt to advance the state of the art in the capturing of user requirements
and their mapping to computer systems functions such as access control, en-
actment, and audit. This research may stimulate new approaches to delivering
security and integrity to business processes, and has the potential to feed into
developer tools based on policy specification and enforcement. The novel de-
velopment style described could have a significant impact on the automation
of activities in commercial organisations and would be an important contri-
bution to workflow management in e-business. Progress towards the creation
of an integrated methodology and environment for provision identification,
representation, storage, conflict detection and resolution, monitoring, and
enforcement presents a significant engineering challenge, and constitutes the
main contribution of this work.

3 Application Scenario

To clarify the problem we are seeking to address, consider the following ap-
plication scenario, which we will return to throughout the paper.

SkyHi Builders is a constructor of small office buildings. Steelman’s Ware-
house is a supplier of high-grade steel. SkyHi, having recently won a tender
to build a new office block, enters into a contract with Steelman’s Warehouse.
An excerpt appears as follows:

Contract between SkyHi Builders and Steelman’s Warehouse
. . .
SkyHi Builders must pay Steelman’s Ware-
house £25,000 before 1st September 2000

(Clause C.1)

. . .

In addition, SkyHi has the following internal organizational policies:

SkyHi Risk Management Procedures
. . .
Clerks may not buy steel. (Clause P.1)
Employees older than 25 may buy steel. (Clause P.2)
Payments of more than £10,000 to suppliers are
prohibited.

(Clause P.3)

. . .

And SkyHi finds themselves subject to the following provisions of legislation:
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Commercial Trade Act
. . .
Performance of all actions fitting the description
of obliged actions counts as filling that obligation.

(Clause L.1)

Failure to perform all actions fitting the descrip-
tion of obliged actions by the deadline counts as
violating the obligation.

(Clause L.2)

Following successful instigation of the prescribed
procedure for claiming compensation, damages
for violation of an obligation must be paid, by
the liable party, to the party entitled to compen-
sation.

(Clause L.3)

. . .

SkyHi wishes to store the provisions of their contracts and internal busi-
ness policies, in addition to the legal regulations to which they are subject,
in a database, so that the provisions can be used to guide the behavior of
their (computer and human-activity) systems. Scripting the system with pro-
cedural code is not an option: the sequence of SkyHi’s business processes is
not static and they do not wish to employ a programmer to sift through
and change procedural code to reflect the frequent alterations in contracts,
policies, and regulations. SkyHi would like to the human and software com-
ponents in their system to consult the database in order to determine what
to do next in the light of a dynamically changing set of provisions. They
need to use the provisions to ascertain the state-of-affairs that obtains at the
present moment. They need to store a history of events and states, so that
they know what occurrences have happened over time. They want to know,
for instance, what consequential obligations and legal powers resulted, and
whether these obligations were fulfilled or powers were exercised. Further,
they need to be able to assess whether a given activity is permitted, to de-
termine which historical occurrences where prohibited, and what violations
ensued.

4 Overview

We view a contract, policy, or regulation, as a set of provisions. A pro-
vision specifies an obligation (§7.5), permission (§7.3), prohibition (§7.2), or
power (§7.4). Provisions are described in clauses. Broadly, provisions repre-
sent rights and duties. We wish to represent and store these provisions and
their contents as records in a database.

Figure 4 presents the general architecture of our Edee environment. Con-
tractual provisions are stored in the database, along with workflow occur-
rences. When business and environmental occurrences are inserted into the
database, an active database layer consults the stored provisions to deter-
mine which provisions cover those occurrences, and consequently, which obli-
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gations, permissions, prohibitions, and powers apply. A separate fulfillment
scheduler consults the list of active obligations and permissions, and attempts
to fulfil the relevant provisions. The database is not intended as a general
e-marketplace, but rather as a repository of the current contracts and poli-
cies of a single company. Together these contracts and policies represent the
workflow system specification for that company. Our system is intended for
inter-organizational contracts, internal policies within an organization, and
external legislation, since all specify the norms that govern the organization
and guide execution. Execution components use the database to ascertain
what they are obliged to do: that is, what procedures to enact. Users may
query the database to ascertain what legal relations have obtained as a result
of past occurrences.

What is meant by ‘contract enforcement’ in this context? Are norms that
the system infers as applicable at a given point in time intended to be im-
posed on the business process, with no possibility of violation, or are parties
merely to be informed that such norms apply and have the freedom to violate
them? The answer depends on the type of norm. In the case of descriptive
norms, which govern construal of a situation, the construal is forced by the
system. Consider, in particular, a norm such as ‘if Steelman’s fails to deliver
by 10pm then, according to clause 2.4, Steelman’s is obliged to refund the
purchase price’. Here, the construal that a particular obligation arises as a
result of a failure to deliver is forced by the rule specification. There can be
no argument that, in terms of that rule taken on its own, such an occurrence
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(an obligation according to clause 2.4 ) has come about. The case of prescrip-
tive norms, which prescribe behavior, is somewhat different. Our assumption
is that a party is free to observe or violate such norms, but bound to accept
the legal consequences of their actions. For example, for the obligation ac-
cording to clause 2.4 above, Steelman’s is free to refund the purchase price
or not; but if they don’t they are bound to be construed as being in viola-
tion of the obligation to refund. Existing approaches to policy specification
(see for example [D+01,DDLS01]), primarily targeted at network manage-
ment, assume that components lack free will and execute all their obligations
immediately and without delay. In commercial environments though, agents
typically have more flexibility in scheduling the fulfillment of their obligations:
immediate enacting is one possible option which may or may not minimize
overall response time or maximize profitability. With commercial obligations
it is more often the case that agents can fulfill an obligation by acting at any
time before a deadline or within an interval. Furthermore, while we agree
that in the ideal world all obligations are fulfilled, real world practicalities
such as resource limitations, conflicting obligations, unpredictable environ-
mental forces, and free agents make this ideal unattainable; the possibility
of deviation from prescribed behavior should not be overlooked [DDM01].
The intention of obligations is, we believe, not only to specify what should
ideally take place, but also what happens when the ideal cannot be met, or
when things go wrong. We must qualify our assumption of free will though,
since we do not mean to imply that the software components are simply free
to ignore obligations. Rather, our architecture requires that software compo-
nents are diligent : they consult the database to ascertain what obligations
currently apply, or are notified of such by the active database, and attempt
to fulfil them within their resource constraints. Similarly for human compo-
nents. When they fail, or indeed when they succeed, they are forced to accept
the construals of the database as to what obligations come into play, and as
to what occurrences are deemed to have occurred as a result of their action
(or inaction).

Unlike Standard Deontic Logic, which presumes that being-obliged to do
that which is prohibited is a logical contradiction (obligation and prohibi-
tion are treated as operators), we assume that prohibitions and obligations
are independent entities (variables that are quantified over), and conflicting
norms can exist. An agent may find itself violating a prohibition in order to
fulfil an obligation, or vice versa. Entirely avoiding such conflicts is not our
intention since we believe, in a world of multiple norm-givers, conflicts and
consequent trade-offs are inevitable. Indeed, even a single norm promulgated
by a single party can result in conflict. Consider Hansson and Makinson’s
example [HBC97] of a single imperative “a doctor must visit heart-attack
victims immediately” which can produce conflicts: if John and Jeff, living at
remote locations in the rural outback, both suffer heart-attacks simultane-
ously, the local doctor has two conflicting obligations and must decide who to
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visit first, since, given his resource constraints, he cannot satisfy both “I must
visit John immediately” and “I must visit Jeff immediately”. Hansson and
Makinson’s view is that, since conflicts cannot exist, one of these norms must
be blocked (restrained from the output set of norms) to eliminate the conflict.
Our view is that it is undeniable, prima facie, that both obligations exists.
It may be that one is violated if the doctor visits only one of the patients.
More likely though, one of the obligations is voided by a separate principle of
fairness which effectively specifies that a violation in this case is forgivable.
Other principles may exist which specify another obligation, to visit the sec-
ond patient within a more lenient time interval, that can be fulfilled by the
doctor. Some ordering criteria must specify which patient is ‘second’. In an
e-commerce scenario, Hansson and Makinson’s example might become “Sup-
pliers are obliged to dispatch books within 24 hours of order”. In the presence
of one or more orders, the various obligations that this generates may become
unfulfillable as a result of any number of resource limitations: inventory, hu-
man resources, monetary resources, machinery, or time. Our intention is to
accept that conflicts are common, and be able to specify conflicting provi-
sions so that we may detect such conflicts and flag them to the norm-giver.
We deal with conflict resolution in [Abr02,AB02a,AEB02a].

We now turn to an explanation of what is meant by the notion of an
‘occurrence’.

5 Occurrences

We treat an ‘occurrence’ as being a instance of a specific relationship type
or association type that exists between entities, at a moment in time or over
an interval in time. For instance, we would treat buying, owning, approving,
being-obliged, and being-prohibited as occurrences. Each occurrence has role-
players acting in a role in the occurrence: an occurrence of ‘buying’, typically
has at least participants in the roles buyer, seller, sold item, and purchase
price. An occurrence may be an event, a state, or indeed even a process. Con-
sider an event of ‘supplying’ which is instantaneous, and has as participants
a supplier, a supplied party, and an item supplied at that instant. In contrast,
a state of ‘being supplier’ has (perhaps unspecified) duration, where the sup-
plier and supplied party have an association for the whole duration of the
state. And a process of supplying does not imply that what is being supplied
is ever supplied. When referring to an occurrence of ‘supplying’ we should
generally clarify which semantics (event, state, or process) we mean, and also
which sense of the word we intend. Each occurrence has a single type, and, an
occurrence type (such as ‘buying’) may have multiple occurrence instances.
Different occurrences may overlap in time: John may be involved in a process
of buying a fridge, while Jeff is involved in a process of buying a car. Indeed,
if both processes are brought to a successful conclusion by the single fall of a
hammer in a clearance sale, then the occurrence of the instantaneous events
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of buying could occur simultaneously as well. For this reason, occurrence
times are insufficient to identify occurrences, and we require instead unique
identifiers.

We have chosen the term ‘occurrence’ since the term ‘event’, used in the
philosophical literature7 to describe a momentary or prolonged state of af-
fairs, is typically connoted as being instantaneous in the active database and
systems programming literature [PD94]. Furthermore, we do not wish to im-
ply that our notion shares any of the philosophical subtleties of various uses
of the term ‘event’ in the literature. For instance, Bennett [Ben88], contro-
versially (though he is not alone is his sentiment) argues that John’s crossing
the Channel and John’s swimming the Channel are the same ‘event’, whereas
we treat them as separate occurrences. Kimbrough (personal communication)
argues that an obligation state, ought(e), can be the same as a violation state,
violating(e). Our contention is that each is an independent entity: an occur-
rence, being obliged1, and an occurrence, violating1, where the participant in
the role ‘violated’ in violating1 is the obligation being obliged1. Nevertheless,
our notion of an ‘occurrence’ most closely resembles Parsons’s notion of an
‘eventuality’ (an event, state, or process), which Kimbrough [Kim01,Kim02]
has applied to deontic reasoning.

The question arises as to why we treat occurrences of events, states, and
processes uniformly in certain respects. Our contention is that all indicate a
temporal relatedness between participants in various roles, and the abstrac-
tion of a notion of an ‘occurrence’ is therefore useful. Policies such as ‘Bob
is forbidden to buy X’ or ‘Bob is forbidden to own X’ speak of occurrences
of buying and owning in pragmatically similar ways even though the former
seems to be an occurrence of an event and the latter an occurrence of a state.
The difference, we argue, is only significant in certain respects, and for our
purposes we wish to exploit the similarity in order to uniformly monitor for
the occurrence of events, states, and processes over time. Furthermore, we
can provide a uniform set of facilities for querying occurrences, and their role-
holders, without necessarily having to explicitly decide in each case whether
the occurrence is instantaneous or prolonged.

Take the scenario where Steelman’s Warehouse is a supplier for SkyHi
Builders, and SkyHi Builders has paid £25,000 to Steelman’s Warehouse
for a specific shipment. Ignore for the moment any contractual relationships
(contract-related occurrences), which we return to later, and consider only
the simple occurrence of being a supplier, and an occurrence of paying. Let be-
ing supplier1 and paying1 be Skolem constants that name occurrence instances
of types being a supplier and paying respectively. We might add allocating1
to denote that the payment was allocated, using the First-In First-Out ba-
sis, to a delivery, and occurring1 to indicate that the payment occurred on
15th August 2001. A basic occurrence-role-participant tabular schema can be
employed for storing occurrences: in each row, we store the occurrence iden-

7 E.g., [Dav80,Par90,PV00].
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Table 1. A tabular schema for storing various occurrences

Commentary Occurrence Role Participant

Represent Steelman’s being a sup-
plier for SkyHi

being supplier1 supplier Steelman’s
supplied SkyHi

. . .

According to Clause 1, SkyHi paid
£25,000 to Steelman’s

paying1 payer SkyHi
paid-amount £25,000
payee Steelman’s
isAccordingTo Clause 1

The payment was allocated to a
previous shipment

allocating1 allocated paying1
allocatedTo shipment1
allocationBasis FIFO
isAccordingTo Clause 2

The payment occurred on 15 Au-
gust 2001

occurring1 occurred paying1
occurredOn 15 August 2001

tifier, a participant and its role in the occurrence. Table 1 depicts a tabular
representation of the above-mentioned occurrences. For readability we have
included values like Steelmans in our tables instead of foreign key references.
Similarly we show occurrence primary keys in forms such as being supplier1,
instead of foreign key references into a table describing the occurrence type
being supplier. Finally we omit repeated key values in adjacent rows.

We should comment at this point that an occurrence store ought to cap-
ture subjective propositions. By this we mean the fact that propositions ought
not to be believed to be true until a principled reasoning process that accounts
for conflicts and contextual information has been undergone. This means that
the parsing of the sentence ‘SkyHi Builders paid £25,000 to Steelman’s Ware-
house’ should not lead to the direct representation of the objective fact that
‘authoritatively, Steelman’s Warehouse was paid’, since this would prema-
turely and recklessly presume the truth of the proposition; rather the pars-
ing of the sentence should lead only to the representation of ‘a particular
clause (utterance) asserts that Steelman’s Warehouse was paid’ or, synony-
mously, ‘according to the utterance, Steelman’s Warehouse was paid’. Thus,
while there is clearly contention, there should be no logical contradiction in
‘Clause2 says Steelman’s Warehouse was paid for shipment1’ and ‘Clause3
says Steelman’s Warehouse was not paid for shipment1’ since both clauses
may have been said and indeed, under different assignments of payments to
performances, both clauses may indeed be subjectively true. The contention
between the opinions can be resolved by a principled (i.e., rule-based) deci-
sion as to which utterance to accept at a given time (in a given circumstance).
Making each assertion relative to a clause (utterance or provision) is a means
of embedding subjectivism in the representation; in Table 1 we have achieved
this by tagging each posited occurrence with a clause (utterance identifier)
which asserts its existence. This subjectivism provides us with the ability to
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make rational choices as to which uttered content is believed over time, and
allows belief revision through choice of alternative subjective statements.

The storage schema depicted bears some resemblance to the graph-based
binary-relational model used by the functional database language Hydra
[AK96], and shares some of the same useful properties. Ayres and King com-
ment that conventional relational and object-oriented database systems are
unable to support associational queries corresponding to questions such as
‘what is the relationship between Sandra and Mike?’. Hydra, in contrast, pro-
vides associational primitives, which return the list of functions or inverse-
functions that relate two particular items. Our occurrence-centric representa-
tion provides similar functionality advantages, allowing the framing of queries
such as

(select occurrences where Steelman’s Warehouse participates)
intersection (select occurrences where SkyHi participates)

This would return paying1 and being supplier1 in the example. This style of
associational query is especially useful in commerce applications for determin-
ing legal relationships between parties. For instance, an associational query
may be framed to determine the history of interactions between two parties,
or indeed to determine what obligations (occurrences of being-obliged) bind
two parties.

Kimbrough’s ESΘ theory [Kim98a,Kim01], based on proposals by Parsons
[Par90], represents events and states using event variables and thematic roles.
An occurrence of SkyHi Builders paying £25,000 to Steelman’s Warehouse
for a particular shipment would be formally represented as:

∃e(paying(e) ∧ Subject(e, SkyHiBuilders)
∧DirectObject(e,£25000)
∧ IndirectObject(e, Steelman′sWarehouse)
∧ Sake(e, e′)
∧ shipment(e′))

(1)

The ways in which our ‘occurrences’ differ from Kimbrough’s events and
states could be summarized as:

• We see occurrences as being of a single type, implying obligation states
and violation states are distinct entities
• We choose to use domain- or application-specific roles - so-called ‘deep

roles’ [JM00] - rather than generic thematic roles (such as agent, theme,
etc.) or grammatical syntax markers (such as subject, object, etc.), in
the representation of occurrences. While generic thematic roles - such
as agent, patient, instrument, source, and destination - are often
helpful and are commonly used in knowledge representation in artificial
intelligence [All95,Sow00], they have been criticized. Davis [Dav96], for
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instance, argues that the thematic role of a participant in an event oc-
currence may be difficult to determine or ambiguous. Reliance solely on
thematic roles may therefore be problematic as it has been argued that
thematic roles do not always uniquely identify participants in a given
role in a commercial occurrence. Citing Jackendoff, Fillmore, Gawron,
and Croft, Davis explains that in a commercial event such as ‘buying’
both the buyer and the seller can be construed to be in the agent the-
matic role of the event occurrence, as the buyer acts to supply money
and the seller acts to supply goods. Using domain-specific roles (such as
buyer, seller, etc.) allows us to avoid this vagueness. An alternative to
using thematic roles is to use grammatical syntax markers such as sub-
ject and object. Kimbrough, acknowledging that it is almost certainly
preferable to employ semantic markers instead, uses these for illustration
purposes. The problem with grammatical syntax markers is that they
are vague when it comes to semantics: consider that, in ‘John opened
the door’ (active or causitive reading) and ‘the door opened’ (passive or
inchoative reading), the door occupies different syntactic positions - ob-
ject and subject respectively - even though its semantic role as being
opened stays constant. One of the triumphs of event semantics is se-
mantic stability in its treatment of active and passive sentences [Par90];
a benefit lost by simplifying the illustration with grammatical syntax
markers. We prefer to employ domain-specific roles, such as opener and
opened, as these are stable, precise, and simple for an analyst untrained
in linguistics to identify and comprehend.
• We employ ‘allocating’ occurrences in place of Kimbrough’s Sake(. . . )

predicate to allow different parties to allocate performances to obligations
using different bases.
• To support measures by different parties over time, we employ measuring

occurrences [Abr02] instead of Kimbrough’s unit() and quantity() predi-
cates [Kim98a].

In the case of simple occurrences, the representation we offer (tuples ver-
sus Kimbrough’s logical expressions) affords us an implementation mecha-
nism using relational, or simply tabular, data stores. The representation is
similar whether the occurrences are stored in a relational database, held in
a spreadsheet, or transmitted in a comma-delimited text file. No data trans-
position is technically necessary, so streaming the data into and out of the
database from communication channels can proceed without schema transfor-
mation difficulties, and using very simple and efficient parsers. We have not
dealt with compression or data clustering techniques, though it seems clear
the representation could be stored and accessed more efficiently without loss
of information.

In the case of more complex occurrences, which nest queries, the relation-
ship to Kimbrough’s Disquotation operator is more removed, but, we believe,



Contract Storage, Checking, and Enforcement 45

still faithful to the intentions of the logic. The details are described in Sections
7 and 10.

6 Kimbrough’s Disquotation Theory

Kimbrough’s Disquotation Theory [Kim01] provides a representation of the
objects of sentences that embed propositional content. In this section we il-
lustrate briefly Kimbrough’s representation of a number of types of sentences
with embedded propositions: assertions, permissions, prohibitions, and obli-
gations.

Assertions: Instantiating ‘Mary asserts that SkyHi Builders paid £25,000 to
Steelman’s Warehouse’ from Kimbrough’s axiom schema for assertions would
yield:

∃e1(asserting(e1) ∧ Subject(e1,Mary) ∧Object(e1, [φ]))
→ (Veridical(e1)↔ φ)

(2)

where φ represents the predicates from Formula (1) above which says, in
brief, ‘SkyHi Builders was paid’. The brackets ‘[. . . ]’ are special quotation
operators that turn their contents into an opaque string; thereby preventing
‘Mary asserting that Steelman’s Warehouse was paid’ from necessarily entail-
ing ‘Steelman’s Warehouse was paid’. This says that Mary’s assertion that
SkyHi Builders paid £25,000 to Steelman’s Warehouse is veridical (true) if
and only if there was an actual occurrence of SkyHi Builders paying £25,000
to Steelman’s Warehouse.

Prohibitions: Using Kimbrough’s semantics, a prohibition against paying
Steelman’s Warehouse more than £10,000 could be expressed as:

∃e2(prohibiting(e2) ∧ IsAccordingToClause(e2, c) ∧Object(e2, [φ]))
→ (Violated(e2, c)↔ φ)

(3)

where φ is an expression describing an occurrence of Steelman’s Warehouse
paying more than £10,000. Thus we say the prohibition of SkyHi Builders
against paying Steelman’s Warehouse is violated, in terms of clause c, if and
only if, more than £10,000 is actually paid to Steelman’s Warehouse. Note
that we have, here and elsewhere, supplanted Kimbrough’s original sugges-
tion of an InSystemOfNorms(e,n) predicate, with an IsAccordingToClause(e,c)
predicate, to capture the more specific sentence, ‘. . . is violated, according to
this clause (utterance) c, if . . . ’. We believe this adjustment is necessary as
systems of norms (sets of regulations) may contain conflicting provisions that
can only be resolved through choice between identified clauses. Therefore, in
each provision it is only appropriate to authoritatively state that ‘there is vi-
olation in terms of this specific clause’, but not ‘there is violation in terms of
this system of norms’, since other provisions (clauses) in the system of norms
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may conflict and override. For instance, the so-called de minimus provision
of English Law [TB99, p144] may rule that there is no violation in the event
that SkyHi paid only £24,499, since the difference is not material.

Permissions: In Kimbrough’s semantics, the permission of SkyHi Builders to
pay Steelman’s Warehouse could be expressed as:

∃e3(permitting(e3) ∧ IsAccordingToClause(e3, c) ∧Object(e3, [φ]))
→ (¬Violated(e3, c))

(4)

Kimbrough reads this as ‘permissions cannot be violated’. More partic-
ularly, we would read this as ‘no violations are brought about by permit-
ted occurrences’. A similar interpretation of permission, following Anderson
[And58], is provided in Lee [Lee88a], who says that a state of affairs is per-
mitted if and only if it will never be the case that bringing about that state of
affairs implies sanctions. We prefer the Kimbrian interpretation, since we see
violations as being distinct from sanctions, as the former does not necessar-
ily imply regress (penalty), merely transgress. Lee’s interpretation receives
support from Cholvy, Cuppens, and Saurel [CCS97], who argue that it is
prejudicial that p is the case if and only if it is necessary that if p occurs then
it is obligatory to repair for damage. However, we wish to emphasize that the
fact that something is wrong (there is a violation) is distinct from any penal-
ties - ‘sanctions’ [Lee88a] or ‘reparations’ [CCS97] - that follow from that
violation. That someone has been wronged does not automatically imply an
obligation to repair the wrong: there are many cases where no reparations
are specified or available, yet the violation is still deemed to have occurred.

Another useful sense of the term ‘permission’, commonly attributed to
Bentham [Lin77], is permission in the sense of ‘vested liberty’. A vested liberty
is combined with an obligation for others not to prevent the action [Lin77,
p17], whereas a naked liberty is combined with freedom for other people to
prevent the action in question. Violation (through attempting to prevent a
permitted occurrence, or more specifically, through attempting to interfere
with a vested liberty) can bring about a set of obligations or prohibitions on
a liable party.

Obligations: In Kimbrough’s semantics, the obligation of SkyHi Builders to
pay Steelman’s Warehouse could be expressed as:

∃e4(ought(e4) ∧ IsAccordingToClause(e4, c) ∧Object(e4, [φ]))
→ (Violated(e4, c)↔ ¬φ)

(5)

This says that the obligation of SkyHi Builders to pay Steelman’s Warehouse
is violated, in terms of clause c, if, and only if, SkyHi Builders did not actually
pay £25,000 to Steelman’s Warehouse. Kimbrough here uses a variant of
the Anderson’s [And58] reduction, which says that ‘φ ought to be the case’
unpacks to ‘necessarily, if φ is not the case, violation happens’.
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7 An Implementation of Kimbrough’s Disquotation
Theory

Kimbrough’s logic is, by and large, appealing; certain alterations were pro-
posed above. What we desire is a database representation that mimics this
logic. We suggest an implementation in Java which models the quoted con-
tents [φ] as a query - specifically, a query that returns occurrences. The
quoted contents cannot be modeled as facts as this would imply that the oc-
currences actually occurred, when in fact they were only described. That is,
the occurrences enclosed in a disquotation operator should not be regarded as
actual occurrences, but descriptions of occurrences. For instance, if obliged
occurrences were regarded as actual (rather than described) this would imply
that all obligations are kept, when indeed obligations may be violated should
the described occurrences never happen. Thus it is proper to model only the
criteria that describe the occurrences, since these describe what nature of oc-
currence was obliged, without the undesirable implication that the described
occurrences were actually realized. We provide a continuous query mecha-
nism,8 which determines incrementally, as data is added to the database,
which stored queries produce new results or consume existing results, and
which stored queries begin to, or cease to, overlap. Such a mechanism en-
ables the system to determine whether an occurrence is obliged, permitted,
or prohibited, by determining whether the occurrence fits a stored query.

When we store obligations, permissions, prohibitions, and powers, what
we are putting into the database are representations of expressions with
propositional content: e.g. x permits that P , it is obligatory that Q, y pro-
hibits that R, S brings about T . We know that the expression is true since
we can be sure the obligation, permission, prohibition, or power was once
given, that is expressed (even if it has since been overridden). However, we
do not assume that the disquoted propositional content - P , Q, R, S, or T
- is true, since permissions are not always used, obligations are not always
met, prohibitions are not always violated, and powers are not always exer-
cised. We must then use a query - a descriptive set of criteria - to store the
disquoted propositional content, rather than storing the disquoted proposi-
tional content as an actual occurrence. This captures the intuition that the
disquoted contents was described, but may not have actually occurred. The
disquoted contents is not an actual occurrence, but a description of an oc-
currence or set of occurrences. The benefit of using stored queries - that is,
stored descriptions - is that, when and if the content (occurrence or set of oc-
currences) does eventuate, we can detect that the occurrences (eventualities)
are covered by a stored query. A continuous query mechanism, or ‘coverage
checker’, is employed for this purpose. Upon insertion of a new occurrence,
the coverage checker determines which stored queries covers the new occur-

8 See §10.4, and [AEB02b], [AEB02a], and [AEB02c].
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rence, and which expressions of permission, obligation, prohibition, or power
- and hence, which clauses of which contracts - pertain to the occurrence.

This section revisits examples of assertions, prohibitions, permissions, and
obligations above, demonstrating implementations of Kimbrough’s constructs
as well as additional notions we have found necessary.

7.1 Assertions

The case of assertions is unique, in that we have decided not to adopt the dis-
quotation operator for reasons of the inherent subjectivism of our approach.
By this we mean that we have chosen a world-view where all recorded facts
are taken as subjective opinions. For our purposes, we do not find it mean-
ingful to determine whether an assertion is ‘veridical’ since we are unable
to compare to an objective truth: only subjective opinions - X is the case
according to this clause, and Y is the case according to another clause - are
stored.

For the anomolous case of assertions then, our approach has been to sup-
plant the disquotation operator with an alternative: we append the conjunct
IsAccordingTo(e, ClauseX) to all occurrence descriptions. This captures the
notion that all occurrence descriptions are prima-facie construals relative to
an utterance (identified by a system-defined clause identifier). Our database
representation assumes that, while objective truth exists, it may sometimes
be arguable as to what it is - all occurrence descriptions are relative to some
clause. For instance, ‘The clerk, John, bought steel, according to Clause 8 ’
does not mean that the steel was certainly bought (for other regulations may
override); only that the Clause 8 certainly provides such. That ‘John bought
steel’ is therefore the opinion of Clause 8, and is merely prima facie, not con-
clusive, evidence of buying. Our rules must be specific. We must differentiate
‘buying according to Clause 8’ from ‘buying according to Clause P.1’, since it
is possible, in the case where clerks are not empowered to buy steel and John
is a clerk, for there to be a buying in terms of the former clause, but not in
terms of the latter. In contrast to many traditional views of data representa-
tion, in our database we record what has been said, rather than merely what
is: when we ask the database what is, we are more specifically asking what
is according to a certain utterance (clause). Objective truth there is, but we
may never know what it is: comparing and contrasting assertions may guide
us towards it.

It is worthwhile to note here that many approaches to evaluating subjec-
tive evidence are available. In our qualitative approach, occurrences accord-
ing to a particular clause are brought about, through a function, whenever
there are occurrences in a particular domain - that is, whenever an occur-
rence fitting a convention is recognized. An interesting and complementary
quantitative approach to assessing the believability of subjective opinions of
various agents in a distributed setting is provided in Dimitrakos and Bicar-
regui [DB01] and Daskalopulu, Dimitrakos, and Maibaum [DDM01]. In that
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work, a believability metric is associated with propositions, where such metric
is computed by a numeric combination of weighted opinions. Roughly, Dimi-
trakos and co-authors have it that ‘pizza A is delivered’ if Susan believes with
0.8 probability that it was delivered, Peter believes with 0.2 probability that
it was delivered, and Susan’s opinion is weighted more strongly than Peter’s,
based on their reputations and credibility in the area. In contrast, we might
have it that ‘pizza A is delivered, according to Clause 8.6 of the delivery con-
tract between Peter and Susan’ whenever Peter says it has been delivered,
irrespective of Peter’s credibility. Such a construal of what ‘delivery’ means
is common in ‘customer satisfaction guaranteed’ contracts. Clause 9.1 of the
Uniform Commercial Code may specify different criteria as to what it means
for a good to have been delivered, and we may need to choose, in accordance
with explicit legal principles, which construal overrides in the circumstance.
Our approach to subjectivity of information is one of ‘locality of inference’,
whereas Dimitrakos and co-authors deal with the aspect of ‘reliability of ev-
idence’.

7.2 Prohibitions

We distinguish here between two types of prohibitions: violable prohibitions,
and inviolable prohibitions (legal disabilities).

Violable prohibitions: Violable prohibitions admit the possibility of violation.
This is the sense of prohibition used by Kimbrough. If an occurrence fits the
description of occurrences prohibited by a particular clause, it can be said to
be prohibited in terms of that clause, and its existence brings about a vio-
lation of that clause. Consider Clause P.3 (‘payments of more than £10,000
to suppliers are prohibited’) from our application scenario of 2. The ‘violable
prohibition’ sense of this clause can be modeled as shown in Table 2. Here,
Query10 is a pointer to a query describing the set of prohibited occurrences:
in our example, occurrences of a supplier being paid more than £10,000.
§10.3 describes how such a query would be represented and stored. violat-
ing function1 is an identified function, whose domain is Query10 and whose
range is a set of occurrences violating function1(Query10). We append the oc-
currence type produced by the function to the start of the function name to
make the output range more clear and more easily accessible to the query
mechanism. Therefore, an occurrence, paying1, as defined in Table 1, which is
covered by Query10 and hence in the domain of violating function1, would pro-
duce an occurrence violating function1(paying1), which can be seen (Table 2)
to be an occurrence of violating, where it is prohibiting1 that is violated. The
function construct is comparable in some senses to Jones and Sergot’s [JS96]
counts-as connective, ⇒S , and Goldman’s conventional-generation connec-
tive, though our functions are relativized to an identified clause, C, rather
than relativized to an institution, S, as for the counts-as connective. Thus,
it is the clause that deems that a certain occurrence is brought about, rather



50 Alan Abrahams, David Eyers, and Jean Bacon

Table 2. A schema for storing a violable prohibition

Occurrence Role Participant

prohibiting1 prohibited Query10 = occurrences where more than
£10,000 is in role=paid ∩ occurrences where a
supplier is in role=payee

isAccordingTo Clause 2.4

violating function1 domain Query10
violated prohibiting1
isAccordingTo Clause 82

Table 3. A schema for storing a disability or immunity (inviolable prohibition)

Occurrence Role Participant

counting1 isAccordingTo Clause P.1
counted Query200 = occurrences where a clerk is buyer ∩ oc-

currences where steel is bought
count 0

than an institution. This is necessary because clauses are atomic, whereas
current institutional interpretations can only be selected once all prima facie
atomic clausal interpretations have been compared.

Again, we point out that all provisions in a contract should be regarded
as subjective construals. ‘The prohibition is violated’ should not be taken
to mean that the prohibition is authoritatively violated; but should rather
be taken as a partial rendering of the sentence ‘The prohibition is violated
according to some clause’. Another clause may provide that the prohibition
is not violated, and a choice as to which clause to accept as authoritative
is then required. An institution states multiple clauses, and the contents of
clauses may conflict. Determining the overarching construal of the institution
involves choosing which clause applies in the circumstance.

Inviolable prohibitions (legal disability or immunity): Inviolable prohibitions
cannot be violated, since the prohibited party simply doesn’t have the legal
power to bring about the prohibited state. Under Hohfeld’s [Hoh78] terminol-
ogy this would be called disability. We could take Clause P.1 of our application
scenario (§3) as specifying that clerks have no authority to purchase steel.
Table 3 illustrates the representation of this sense of the clause: it specifies
that the number of purchases of steel by a clerk under this clause is zero (the
count of results produced by Query200 is 0). This means that no action by
them can bring about a purchase in terms of this clause.

A similar construction can be used to implement Hohfeld’s [Hoh78] notion
of immunity : under immunity, no action by any party can bring about a
certain state of affairs (e.g., no party can bring about an occurrence of a
particular party being obliged to do something). The party that benefits from
this immunity is said to be immune. In Table 3, the description (Query200)
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does not specify the seller; the implication is that steel purchases by a clerk
from any seller may not come about. This means that, according to this
clause, everyone has immunity from entering into steel purchases with a clerk.

The relationship between violable and inviolable prohibitions, and soft
and hard constraints in databases is oblique. A soft constraint in a database
is one where the update is allowed, but a violation is flagged. The violation
may or may not be persistent; that is, an exception may be generated, but
typically the exception is logged in a text log, that cannot be easily queried. A
hard constraint is one where the update is rejected, but the attempt to update
may be logged, again typically in a text log that cannot be easily queried. A
violable prohibition is somewhat similar to a soft constraint. However, in the
case of violable prohibitions, the violations are persistent: their existence may
be ascertained by querying the database. The database may, of course, also
notify an interested party of the violation. An inviolable prohibition is subtly
different from a hard constraint in the database: updates are not rejected, but
simply have no harmful effect. A purchase by John, who is not empowered to
make purchases, is still recorded as a purchase (since it is a purchase in some
sense), but cannot be a ‘purchase according to Clause P.1 of company policy’.
Since only ‘purchases according to company policy’ bring about obligations,
John’s purchase does not bring about any obligation to pay, and consequently
has no effect.

Finally, note that when a policy states ‘clerks may not purchase steel’,
this may be intended as implying the existence of either a violable prohibi-
tion, an inviolable prohibition, or both. We do not intend the choice to be an
either/or choice between the types of prohibition, since often the intention
is that there is both a violable and an inviolable prohibition in existence.
English specifications of policy are problematic since it is not clear whether
‘may not’ is intended to imply the existence of a violable prohibition, or an
inviolable prohibition (legal disability or immunity), or both. Our purpose in
distinguishing between violable and inviolable prohibitions is so that we may
disambiguate English specifications of policy and be more particular as to
whether we mean for there to be a violable prohibition, an inviolable prohi-
bition, or both. In this case, assume we mean for there to be both a violable
prohibition and a inviolable prohibition (legal disability or immunity). If the
clerk indeed proceeds to make a purchase, he violates the violable prohibition
and his purchase is still covered by the inviolable prohibition which prevents
it from having an effect. It is tempting to say that the clerk violated the
prohibition by performing an act which he is not empowered to perform, but
this is a little misleading. In fact, the clerk did not exercise his power in this
case, since he performed a purchase, but not a ‘purchase in terms of Clause
P.1’ so no legal power was really exercised in that respect (because the clerk
in fact had a legal disability). Yet he is still guilty of a violation, and per-
haps subject to sanctions against him, since it was purchases of any sort that
were forbidden, and even though he did not perform a ‘purchase in terms of
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Clause P.1’, he did perform a purchase in some other sense. The fact that
the purchase is not effectual in terms of Clause P.1 does not mean that it
doesn’t violate a prohibition against all purchases, since it is still nonetheless
a purchase in some other sense.

7.3 Permissions

‘Employees older than 25 may buy steel (Clause P.2)’, from our application
scenario, is also an ambiguous expression. It may refer to employees older
than 25 being permitted (allowed) to buy steel, or to employees older than 25
being empowered (that is, legally capable in terms of a clause) to buy. The
former is dealt with here, whilst the latter we leave for the next subsection
(§7.4).

We distinguish between two types of permissions: violable and inviolable
permissions.

Violable Permissions : These are the Benthamite ‘vested liberties’ referred
to by various authors [Lin77,Mak86]. This sense of permission can be repre-
sented as a violable prohibition (§7.2), where the prohibited occurrences are
described as ‘any attempts to prevent the permitted occurrences’.

Inviolable Permissions : This is the sense of permission used by Kimbrough.
Inviolable permissions are not directly comparable to Benthamite ‘naked lib-
erties’ since the concept of naked liberty entails only that interference by
other parties is not prohibited, but does not explicitly specify that perform-
ing the permitted action can never lead to a violation as Kimbrough [Kim01]
and Lee [Lee88a], following Anderson [And58], suggest. That is, by ‘invio-
lable permission’ we specifically mean to capture the idea that performing
any action covered by the permission does not lead to any violation. This
subtlety is not captured by the term ‘naked liberty’. Consider an example.
‘Employees older than 25 are permitted to buy steel ’ embeds the query ‘se-
lect purchases by employees older than 25 of steel’. That is, according to
this clause, any occurrence fitting this query is permitted and does not bring
about any violation. The permission implies the count of violations brought
about by occurrences of this nature is zero. Table 4 illustrates. Inviolable
permissions are comparable in some sense to Hohfeldian privileges; privileges
[Hoh78] imply no duty to refrain exists, i.e., no violation is brought about by
indulging in the action.

As we pointed out for prohibitions above, we do not mean for the terms
‘violable’ and ‘inviolable’ to imply that the two types of permissions cannot
co-exist in relation to a particular set of described occurrences. Nor do we
mean that a particular English sentence implies one or the other. Indeed,
violable and inviolable permissions often do co-exist, and a given English
sentence may ambiguously imply, either or both. Consider “Employees older
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Table 4. A schema for storing an inviolable permission (privilege)

Occurrence Role Participant

permitting1 permitted Query300 = occurrences where employee older than
25 is buyer ( occurrences where steel is bought

isAccordingTo Clause P.2

counting1 counted Query400 = occurrences of violating brought about
by occurrences in Query3

count 0
isAccordingTo Clause 2.6

Table 5. A schema for storing a power

Occurrence Role Participant

buying function1 domain Query500 = (occurrences where an employee older
than 25 is buyer ∩ occurrences where steel is
bought) - occurrences where Clause P.2 is isAc-
cordingTo9

isAccordingTo Clause P.2
buyer participants in role buyer in occurrence

|Query500|10
bought participants in role bought in occurrence

|Query500|

than 25 may buy steel (Clause P.2)”. This may be taken to imply either or
both of:

• Anyone who interferes with such an employee’s right to buy steel is in
violation (a violable permission)
• Such an employee buying steel does not bring about a violation in terms

of this clause (an inviolable permission).

Should another clause prohibit an individual who is such an employee from
buying steel, we can see that this prohibition conflicts with the permission,
since the prohibition implies that violations are brought about by such pur-
chases, whereas the permission implies that no (zero) such violations are
brought about.

7.4 Powers and Liabilities

In our variation of Jones and Sergot’s usage, powers encode the ability of an
actor to bring about a state-of-affairs according to a clause. Consider the rule
‘Clause P.2: Employees older than 25 may buy steel’. The reading of this as
a power of the employee may be represented as shown in Table 5.
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In Table 5 the function buying function1 encodes the power to bring about
a purchase. Clearly, the only means of bringing about a purchase in terms
of Clause P.2 is to insert an occurrence in the domain (Query500) of the
function. Assume buying4 is a purchase of steel by the 40-year old manager
Marge. buying4 is covered by Query500 and therefore is in the domain of
the function buying function1(). Substituting buying4 for Query500 in buy-
ing function1(Query500), the function therefore produces the occurrence in-
stance identified as buying function1(buying1). However, it should be noticed
that, as the database wrapper automatically tags each occurrence with a
clause identifier upon addition to the database, simply adding an occurrence
of buying to the database, does not make it a purchase in terms of Clause
P.2. So a purchase, say buying6, of gold by a dispatch clerk would not be
construed as a purchase in terms of Clause P.2, since buying6 is not covered
by Query500 and therefore not in the domain of buying function1.

Notice that the mechanism of using functions to bring about states-of-
affairs-according-to-a-clause implements not just powers, but also liabilities,
which, according to Hohfeld [Hoh78], are the correlative of powers. Hohfeld
does not here use ‘liability’ in the accounting sense of debt or “having an
obligation towards another party”; rather, he makes use of ‘liability’ in the
sense of “being subject to having one’s legal relationships altered by another
party”. As Hohfeld explains, his sense of liability does not necessarily im-
ply disadvantage to the liable party; liability implies merely that the party
is subject to having their legal relations altered by virtue of an occurrence.
The notion of power implies that an actor is empowered to bring about a
state of affairs11 through their own action; what Hohfeld terms ‘volitional
control’. The notion of liability is similar, though it implies that the state
9 This third set criterion is necessary in order to prevent infinite recursion: that

is, to prevent purchases according to Clause P.2 from bringing about purchases
according to Clause P.2. The symbol ‘-’ can be read ‘. . . but not . . . ’.

10 We use the notation |. . . | to refer to the specific item in the domain of the
function that caused the function to produce a value (i.e., the variable bound
to the function instantiation). This gives us a means of referring to the orig-
inating occurrence that brought about the state of affairs produced by the
function. We can refer to the attributes of said originating occurrence, by em-
bedding the reference |. . . | into query expressions from our language (such
as participants in . . . ) as shown. To give an example: Assuming the occur-
rence buying1 is in the domain denoted by Query500, it then brings about an
occurrence buying function1(buying1) as shown in Table 5. Substituting buy-
ing1 for |Query500| in the query expression participants in role buyer in

occurrence |Query500| we obtain participants in role buyer in occurrence

buying1. The result of this query is the participant in the buyer role in the oc-
currence buying function1(buying1).

11 Often, a deontic state-of-affairs such as being-obliged in terms of a particular
clause may be brought about. However, the state of affairs need not necessarily
involve obligations, prohibitions, or permissions. It may be, for instance, buying
or owning in terms of a particular clause. The state of affairs brought about,
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of affairs may be brought about by another party, by an environmental oc-
currence (such as the passing of a certain date), or even, as we argue, by an
action of the liable party. We contend that power and liability are in fact
best treated using the single function device to describe how occurrences
fitting a convention bring about other occurrences. Consider that an occur-
rence of violating a prohibition against interference may, through a function
being obliged function1(. . . ), bring about an occurrence of being-obliged (a
so-called ‘secondary’ obligation) to pay damages. For Hohfeld [Hoh78], this
situation is awkward since X is both the liable (to have his legal relations
changed) and empowered (to change legal relations) party. Hohfeld says a
person holding a ‘power’ has the legal ability by doing certain acts to alter
legal relations; the one whose legal relations will be altered if the power is
exercised is under a ‘liability’. And yet here, X clearly has a power to alter
legal relations (by interfering and violating the prohibition), and a liability
to have his legal relations altered (by interfering). This situation is awkward
because Hohfeld sees his legal relations as being ‘relations of one individual
with another’, yet here X has a relationship with himself. As is evident from
our function device, we do not see it as problematic that any occurrence,
whether intentional or not, positive or negative, can bring about legal rela-
tions upon any person. The liable party is often a passive participant in an
occurrence in the domain of the function which encodes the liability, but he
may just as well be an active participant in said occurrence (as in the case of
interfering) or not participate in the occurrence at all (as in the case where an
obligation is, say, contingent on the occurrence of an environmental event).

7.5 Obligations

In our application scenario, “SkyHi is obliged to pay Steelman’s £25,000 by
1 September 2000 (Clause C.1)” embeds the query: “select the first payment,
before 1 September 2000, of £25,000 by SkyHi to Steelman’s” since that is
the nature of the obliged occurrence. Only occurrences of that nature can
fulfill the obligation. It can be noticed that the duty-bound party is the agent
specified in the occurrence description (in this case, SkyHi). The obliged
occurrence may not exist yet, but when it does, we can say, by its nature,
that it was obliged if it fits the query. If in the future the query is ‘filled’
- that is, the count of items fitting the query is the maximum number of
results the query can produce; in our example, one result - the obligation can
be said to be ‘fulfilled’. In the absence of occurrences fitting the description
- that is, when the count of items fitting the query is zero - the obligation
is not fulfilled. If the count of items fitting the query is less than one after

though not necessarily deontic, is essentially a legal state of affairs: i.e., one
recognised as such by some clause of a normative system.
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Table 6. A schema for storing an obligation, its fulfillment and violation conditions,
and general liability to damages

Commentary Occurrence Role Participant

SkyHi being-obliged (according to
Clause C.1) to pay, before 1 Septem-
ber 2001, to Steelman’s, £25,000 for
shipment.

being obliged1 according-to Clause C.1
obliged Query19 =

first occurrence of SkyHi paying
Steelman’s £25,000 for the shipment,
where paying is before 1 September
2001

Filling of the above-mentioned query
bringing-about, in terms of Clause L.1,
fulfillment of the obligation (an oc-
currence of fulfilling the obligation).

fulfilling function1 domain Query700 =
first occurrence of count (Query19) be-
ing 1

fulfilled being obliged1
IsAccordingTo Clause L.1

Failure to fill the above-mentioned
query after the deadline bringing-about,
in terms of Clause L.2, violation of
the obligation (an occurrence of vio-
lating the obligation).

violating function1 domain Query800 =
first occurrences of count (Query19), af-
ter the deadline (1 Sept 2001) being
less than 1

violated being obliged1
IsAccordingTo Clause L.2

Successful instigation of prescribed
procedure following violation of obli-
gations, bringing-about , in terms of
Clause L.3, secondary obligations to
pay damages

being obliged function2 domain Query900 =
occurrences of successfully instigating
prescribed procedure following occur-
rences of violation of occurrences of
being-obliged

IsAccordingTo Clause L.3
obliged Query1000 (secondary obligation) =

first occurrence of paying damages for
the violation for which legal action
was instigated in |Query9|

the deadline (1 September 2000), the obligation is violated12. The violation
usually brings about secondary obligations upon the violator; in this case
Clause L.3 of our application scenario tell us there is a secondary obligation
to pay damages for violation. Often the violator is not personally liable for the
violation - for example, in the case of insurance or other transfer of liability -
as the secondary obligations may fall upon other parties. So, the descriptions
of occurrences obliged by the secondary obligation may be of occurrences
where the agent (i.e., duty-bound party) is the original violator, or where the
agent is some other party.

Our obligation of SkyHi to pay Steelman’s (Clause C.1) may be repre-
sented as shown in the Table 6, where Query19 is a pointer to a stored query
that describes the set of obliged occurrences in the primary obligation, be-
ing obliged1). Representation of obligation fulfillment (Clause L.1), violation
(Clause L.2), and liability to damages (Clause L.3), is also shown.

With reference to Table 6, we are able to specify the following parties
mentioned as important in §6:

• party responsible to act: payer mentioned in Query19 describing the pri-
mary obligation (SkyHi Builders)
• party responsible in surety: payer mentioned in Query1000 describing the

secondary obligation (happens to be SkyHi again)
• party directly benefiting from the obliged action: payee mentioned in

Query19 describing the occurrences obliged under the primary obligation
(Steelman’s Warehouse)

12 Note that if the count, before the deadline, of items fitting the query is zero, the
obligation is not violated, but rather ‘not (yet) fulfilled’ (which is not to imply
that it ever will be fulfilled).
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• party empowered to initiate recourse: instigator mentioned in Query900
describing the occurrence that brings about the secondary obligation
(happens to be Steelman’s again)
• party entitled to outcome of recourse: payee mentioned in Query1000

describing the secondary obligation (Steelman’s, again)
• party issuing the norm: the party uttering, or organization or document

associated with, the clause (for example, the Clause C.1 is associated
with the contract between SkyHi and Steelman’s)

As each obligation is according to a particular clause, these obligations
may be considered as a representation of the notion of prima facie obligations
discussed in the deontic logic literature [PS97]. We ought to note at this
point, to avoid confusion, the distinction between primary obligations and
prima facie obligations put forth in Prakken and Sergot [PS97]. There is one
contrast between primary and secondary obligations (the latter coming into
being upon violation of the former), and another contrast between prima
facie and all-things-considered obligations (the former being on-the-surface,
if clauses are considered in isolation, and the latter being what is said by
the contract, act, or law as a whole). Our treatment of obligations as being
‘according to a particular clause’ and our selection of a particular clause
during conflict resolution is intended to deal with the distinction between
prima facie and all-things-considered obligations. The distinction between
primary and secondary obligations, we have seen (Table 6), is dealt with
through occurrences of violating and functions that bring about secondary
obligations as a result of those occurrences of violating.

A particular English sentence (clause) may define a single obligation, such
as the single occurrence of being-obliged (by that clause) to pay Steelman’s
Warehouse £25,000 by 1 September 2000. However, a single clause may also
define how multiple separate obligations are brought about. Consider Clause
L.3 of our application example, which effectively says that ‘each occurrence
of successfully instigating the prescribed procedure after each violation of an
obligation brings about a separate obligation to pay damages’. Interpreting
Clause L.3 as implying the existence of a single occurrence of being obliged
would be incorrect, as this would implies a joint or collective obligation by
all liable parties together to pay damages to all aggrieved parties together.
Rather what is intended is that there are several, separate obligations. The
several obligations may be formally defined as:

f : occurrences of successfully instigating → occurrences of being-obliged
This reads that a function f maps occurrences of successfully instigating

to occurrences of being obliged. For example, in Table 6 f is the function be-
ing obliged function2. That is, the identified function, being obliged function2,
takes as its domain occurrences of successfully instigating and produces occur-
rences of being-obliged. In Table 6 we have defined the domain of the function
using a query, Query900, and specified the participants in the occurrences in
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the range of the function. Bindings from a participant in an output occurrence
to a participant in the corresponding input occurrence that produced that
output may be represented using |Query900| embedded in any valid query ex-
pression. |Query900| in the query is then substituted with the corresponding
value from the domain of the function. For example, assuming instigating1 is
a successful instigation, first occurrence of paying damages for the violation for
which legal action was instigated in |Query9|, becomes first occurrence of paying
damages for the violation for which legal action was instigated in |instigating1|,
for the occurrence being obliged function2(instigating1) brought about by the
occurrence instigating1. It should be clear from this discussion that, in the
case of clauses that generate multiple obligations, individual obligations can
be identified by their function identifier (e.g. being obliged function2) and
the identifier of the occurrence that generated the obligation. For exam-
ple, as we saw above, instigating1 generated the particular obligation be-
ing obliged function2(instigating1) where being obliged function2 was a func-
tion defined in Clause L.3. For ease of lookup, we always prefix the function
identifier with the occurrence type of the occurrences it produces: therefore
instead of simply function2(. . . ) we store being obliged function2(. . . ) so that
we can see that the function produces occurrences of being obliged.

Functions may also be used to represent the generation of individual,
separable obligations on each member of a group. However, equally impor-
tant, and frequently mentioned in the deontic logic literature, is the ability
to represent collective obligations, where no specific individual bears the per-
sonal responsibility. Moffett and Sloman [MS93] mention the notion of col-
lective responsibility, but no implementation is provided in the subsequent
work on Ponder [DDLS01]. Ponder distributes an obligation to all subjects of
the obligation—that is, distributes multiple, separate obligations—whereas a
collective obligation is meant to capture the idea that the obligation is one
obligation and any of the members of the group could fulfil the obligation.
Only a single occurrence, by any one of the group members responsible, needs
to be brought about to fulfil the collective obligation. Consider the obliga-
tion, say being obliged4, of any report-writing component to generate year
end reports on 30 September 2001. Assume there are many such components
capable of fulfilling the obligation. In our approach, the obliged occurrence
can be described using the query “the first occurrence of generating, on 30
September 2001, year end reports, by a report-writing component”. Clearly,
only one suitable occurrence of report-generating is required to fill this query
and therefore fulfil the obligation, and any of the report-generating compo-
nents, having seen the obligation, can bring about an occurrence that fills the
query. Though we do not deal formally with such matters here, some coordi-
nation mechanism is obviously desirable to ensure that no component tries to
fulfil the obligation when another component is busy with it, and looks likely
to succeed. Certainly, there is some indeterminacy here, as any of a number
of components could fulfil the obligation, but this is not problematic since we
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require only that the obligation be fulfilled by some member of a group and
do not prescribe who specifically must fulfil it. Our high level requirement
need not be polluted by specific indication of which particular component
is responsible, but can nevertheless meaningfully specify responsibility of a
group. Our representation is able to assess when the group’s responsibility
has been fulfilled. We of course assume that all components are diligent , i.e.,
that one of them will take up, or be assigned, the task. And in the event that
none do, we are equally able to assess that the group’s obligation has been
violated, since no occurrences fitting the query described in the obligation
have occurred by the deadline.

8 Contract Provision Monitoring

By contract monitoring we mean that, when workflow occurrences are added
to the database, our implementation sees to it that the necessary contractual
consequences are inferred. This usually includes the inference of obligations
that effectively drive the system by identifying what it is that capable com-
ponents ought to perform next. Coordination and mutual understanding are
facilitated as components are able to use the database to determine which
legally-recognized states of affairs hold: for instance, they may unambiguously
determine whether a purchase is valid in terms of a particular provision stored
in the database.

Multiple modes of contract provision monitoring are possible. In cases
where third parties bring about occurrences, violation may not be avoidable,
and immediate detection of such violations is required. Often, however, poli-
cies are not sufficiently critical to warrant constant monitoring, and delayed
detection may be suitable.

8.1 Immediate Detection

Often, detection of a violation is required immediately after an occurrence is
added to the database. This section describes how immediate detection may
occur, and explains the basics of the coverage-checking mechanism employed.
The coverage-checking mechanism makes use of covering relations between
queries, and partial re-evaluation of dirtied queries. The intention is to deter-
mine when the results of stored queries change as a new data is added. For
instance, if a new occurrence is covered by a stored query that describes the
occurrences in the prohibited role, in a prohibition, this indicates that the
occurrence is prohibited under that prohibition.

A taste of the coverage-checking algorithm is best given through an ex-
ample. Take the policy ‘payments of more than £10,000 to suppliers are pro-
hibited’. As illustrated in §7.2, this is represented by storing an occurrence of
prohibiting, prohibiting1, with a reference to Query10 in the prohibited role of
that occurrence, where Query10 describes the occurrences that are prohibited.
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The storage of queries, and determination of covering relationships be-
tween queries, is described in §10.3 and §10.4. Now, assume that this prohibi-
tion, and its associated query (which describes the prohibited occurrences) are
stored in an empty database. Then, assume that we record, in this database,
that Steelman’s Warehouse is a supplier of SkyHi Builders, by inserting an
occurrence, being supplier1, as described in Table 1, into the data-store. Upon
insertion of the rows for being supplier1 the coverage-checking algorithm kicks
in. The coverage-checking algorithm determines that the new occurrence, be-
ing supplier1, is not prohibited, since no relevant queries cover it. Now assume
that the payment, paying1, is inserted. The coverage-checking algorithm de-
termines that paying1 is covered by Query10. A quick lookup shows us that
Query10 is in the Participant column in a row in the database where prohibit-
ing1 is in the Occurrence column. As paying1 is covered by Query10, which
describes the set of prohibited occurrences, paying1 is therefore prohibited.

Our incremental coverage-checking mechanism determines which queries
cover an item newly added to the database. The incremental nature of the
algorithm is important as tens of thousands of occurrences may be stored in
the database. Re-executing every query stored in the database each time an
occurrence is added is infeasible, especially as most results will be unchanged.
It is important therefore to only re-execute queries whose results may have
been changed. This may involve re-expressing computation-intensive gen-
eral queries as more efficient specific queries: a process we call ‘partial re-
evaluation’. For large data volumes, a query execution approach is likely to
be more efficient than a vanilla theorem-proving or logic programming ap-
proach, as the query execution approach incorporates query optimizers which
take into account data profiles (predicate selectivity) when executing a query,
whereas basic theorem provers and logic programs typically do not concern
themselves with such execution efficiency issues.

The computationally-intensive immediate conflict detection algorithm,
which checks which queries cover every incoming occurrence, is sometimes
infeasible for large data volumes. Another alternative, discussed in the next
section, is to buffer occurrences and perform delayed detection.

8.2 Delayed Detection

The previous section described how the coverage-checking mechanism may be
employed for immediate detection of violation: as each occurrence is added,
it is checked against stored policies. However, some policies do not require
such rigid enforcement. Stationing a full time security guard at the office
supplies cupboard would likely be a sub-optimal allocation of resources. Sim-
ilarly, checking all occurrences against policies is inappropriate for those oc-
currences that, individually, are of little consequence. Delays in detecting
violation may be traded off against the computational cost of detecting vio-
lation immediately. Periodic or aperiodic detection, such as ‘at the end of the
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day’, ‘on every second Tuesday of the month’, or ‘at off-peak times of sys-
tem utilization’, may be all that is called for. Thus, to reduce the monitoring
burden, configurable evaluation based on the time-criticality of violation de-
tection should be possible, to allow non-critical policies to be assessed less
frequently.

Two primary mechanisms for delayed detection are possible:

1. Top-down query re-evaluation: periodically (or aperiodically) executing
the queries associated with selected policies. This would be inefficient if
many of the queries were unchanged during the interval.

2. Bottom-up batched occurrence detection: Batch checks of unique identi-
fiers across multiple occurrences may reduce computational cost. In batch
checks, unique identifiers added to the database within an interval are
fed into the coverage-checking mechanism after a batch of occurrences,
rather than after a single occurrence. The computational saving achiev-
able by this mechanism depends on the frequency of updates of each
particular concept identifier. For concept identifiers frequently added to
the database the saving would be greater as the concept identifier would
be fed into the continuous query mechanism only once for all updates
during the interval. For instance, assuming the addition of a thousand
occurrences of paying, each with roles payer, and payee. An immediate de-
tection mechanism would check which queries mention the role payer one
thousand times, and which mention the role payee one thousand times.
A batch mechanism would check once which queries mention payer and
would check once which queries mention payee. Adelberg, Garcia-Molina
and Widom [AGMW97] illustrate, in a stock market application, that a
mechanism for batching updates and computing the net effect at the end
of a delay window is efficient when data is input in short bursts of similar
data.

The need for more delicate control of when inferencing occurs is another
reason for our choice of Java. Delaying inferencing to prevent bottlenecks
during intervals when the data update rate is high is not provided in logic
programming and theorem proving approaches, which would need to be sup-
plemented by data-preprocessors, such as the delayed detection mechanism
mentioned here.

9 Contract Performance and Enforcement

Performance and enforcement of a contract may be roughly divided into:
intervention, prevention by refusal, and prevention by construal. We treat
performance and enforcement together since we view enforcement as over-
lapping with performance: part of enforcement is the performance, typically
by a supervisory component, of obligations that arise from violations of a
contract. Performance is via intervention: we take it that components are
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diligent, though perhaps not always successful, in attempting to perform
their obligations. We assume that components consult the central active con-
tract database to determine their current obligations and attempt to fulfill
them. Enforcement may, however, involve not just intervention, but also pre-
vention. In the case of policies where the consequences of violation are high
and control over activity is possible, prevention by refusal is appropriate. A
refusal of a request to execute contemplated action avoids violation. Where
control over third-party activity is not possible, prevention by construal can
be employed. Here, any occurrence not fitting the ‘rules of the game’ is not
deemed to be an occurrence of a certain type in terms of ‘the game’ (the
law), thereby preventing it from having consequence and effect.

9.1 Intervention

As we noted earlier (§4) our architecture presents a central database where
contractual provisions, workflow occurrences, and consequent contractual
construals derived from those workflow occurrences are stored. The database
stores both the application’s specification—that is, the provisions which spec-
ify what can, should, and should not happen in various circumstances—and
the operational workflow occurrences. This dynamically changing contract
database is consulted by the various implementation components to deter-
mine what states of affairs hold in terms of the contract, and what occur-
rences to perform, or refrain from performing, next based on prevailing obli-
gations, permissions, and prohibitions. Ponder [DDLS01] provides a policy
deployment mechanism whereby language-specific imperative scripts or ac-
cess control policies are deployed to distributed components. We provide no
such mechanism, which in any event limits enforceability of the policies to
only the specific platforms supported by the script generators. Instead, we
rely on the heterogeneous components to consult the database and determine
their obligations, by looking up occurrences of being-obliged which pertain
to them. They can then attempt to fulfill these obligations. Alternatively,
we allow facilitator components (e.g., a fulfillment scheduler) to do the con-
sultation and invoke the implementation components. This process by which
diligent components determine and fulfill relevant obligations is called inter-
vention, and is one contract provision enforcement mechanism. Prevention, in
various modes (by refusal and by construal), is another possible enforcement
mechanism.

9.2 Prevention by Refusal

In the case of policies where the consequences of violation are high and con-
trol over activity is possible, prevention by refusal is appropriate. Here, a
decision not to execute contemplated action avoids violation. Prevention via
refusal requires analytic detection of a conflict between a contemplated set
of occurrences and a prohibition.
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Again, this is best illustrated through an example. Let us record, in a
new and otherwise empty data store, that Steelman’s is a supplier of SkyHi,
by inserting an occurrence, being supplier1, as described in Table 1. Assume
that there is no occurrence of paying yet. Further, assume that a prohibition
against paying more than £10,000 to suppliers is provided by Clause P.3. As
illustrated in §7.2, this is represented by storing an occurrence of prohibit-
ing, prohibiting1, with a reference to Query10 in the prohibited role of that
occurrence, where Query10 is the stored query:

Query10 = occurrences where [>10,000] is [=paid-amount] ∩
occurrences where [participants in the role [=supplier]

in [occurrences of [being supplier]]]
are [=payee]

(Query describing prohibited occurrences)

Consider now that SkyHi Builders is obliged, according to Clause C.1, to
pay, before 1 September 2001, to Steelman’s Warehouse, £25,000 for a ship-
ment. Assume that this payment has been contemplated, but not effected,
i.e., it has not yet occurred; no occurrence of paying has been added to the
data store. As shown in §7.5 the obligation is stored by storing an occur-
rence, being obliged1, where the obliged (that is, contemplated) occurrences
are described by the query Query19:

Query19 = first occurrence of SkyHi paying Steelman’s £25,000
for the shipment where paying is before 1 September 2001

or, more formally:

Query19 = 1st of [
occurrences where [=SkyHi] is [=payer]
occurrences where [=Steelman’s] is [=payee] ∩
occurrences where [=25,000] is [=paid amount] ∩
[participants in role [=allocated]

in [occurrences where [=shipping1]
is [=allocatedTo]
and [=FIFO]
is [=allocationBasis]]] ∩

[participants in role [=occurred]
in [occurrences where [<1 September 2001]
is [=occurredOn]]]]

in [ascending] [temporal] order
(Query describing obliged occurrences)

Now, comparing the description of the obliged occurrences (Query19) to
other queries stored in the database, even in the absence of data, our coverage-
checker (§10.4) finds that Query19 analytically overlaps with Query10. Fur-
ther, Query10 is a description of prohibited occurrences (by virtue of Query10’s
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participation in prohibiting1). We have thus shown that what is obliged (the
description of the obliged occurrences) in this context is covered by what is
prohibited (the description of the prohibited occurrences). This indicates a
conflict. Our analytic, specification-time query overlap determination mech-
anism can be compared to the empirical approach employed in Damianou
et al [D+01] which requires that actual run-time data exist in order to be
able to determine that an item is covered by two queries (or what they call
‘domain scope expressions’). Their approach is therefore not able to detect
certain conflicts until run-time.

If we assume the existence of a choice principle that says the prohibition
overrides the obligation in this case, our prevention by refusal mechanism
tells us that no operation that might bring about an occurrence of paying to
fulfill the obligation should be allowed to execute. That is, if a component
is contemplating executing an operation that would bring about such an
occurrence, and it requests permission to go ahead from some supervisory
or control component, the permission should be refused. We leave it to the
implementation component (e.g., firewall, gateway, or access control layer)
to see to it that the refusal is enforced. The intention of our ‘prevention by
refusal’ mechanism is merely to illustrate that enforcement decisions can be
made by determining whether the contemplated (obliged) action is covered
by a prohibition.

9.3 Prevention by Construal

It may be the case that the implementation component is somehow able
to bypass controls, flout the refusal, and nevertheless execute a prohibited
operation (e.g., a payment), even when they are not legally empowered to
bring about a particular legal state of affairs with that name. In this case,
a prevention by construal mechanism is necessary as the component has no
legal ability to bring about payment-in-some-particular-sense, even though
they can actually execute something and call it, in some other sense, a pay-
ment. The rogue component may succeed in convincing parties outside the
normative system that a payment has occurred but will have no such luck in
misleading parties that consult the contract database to determine whether
a particular (legally recognized) payment occurs. In prevention by construal,
the contract database ensures that, even though a payment has occurred in
some sense, it is not construed as such by a particular provision stored in
the database and is therefore of no legal consequence. Forced construals may
therefore be used as a preventive mechanism. Here occurrences are regarded
as being of a certain type according to a certain clause. It is impossible to
coax the occurrence to be of a different type as the database wrapper always
appends the clause identifier to the occurrence when it is added to the data
store. We saw, in §7.4, how our representation makes use of a function with
a restricted domain, buying function1, to prevent purchases of steel by clerks
from being construed as purchases in terms of Clause P.1.
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10 Software Implementation

We have developed a software prototype in Java of many of the principles
described in this paper. The software, Edee, currently supports immedi-
ate detection (§8.1), bottom-up batched detection (§8.2), and prevention by
construal (§9.3). The simple participant-occurrence-role data structure em-
ployed by the software enables us to use a broad variety of back-end data
stores to uniformly store occurrences, queries, and contractual provisions.
Edee is able to run against Oracle, Postgres, IBM DB/2, Microsoft SQL
Server, and Microsoft Access running on SunOS, Red Hat Linux, Windows
NT and Windows 2000. The ability to uniformly store queries and contracts in
a vendor-independent manner provides greater platform-independence than
proprietary stored-procedures and triggers, and potentially allows distribu-
tion of contractual provisions across heterogeneous remote sites. With an
Edee wrapper, passive databases—which do not support triggers—can be
used for active contract storage and enforcement. Simple active databases
can be extended with multi-table triggers that can monitor for complex con-
ditions involving multiple abstract data types, rather than simply detecting
updates to a single relation as is conventional [PD94]. Our choice of Java as
an implementation approach (over logic programming and theorem proving
approaches such as Prolog, PVS, and Isabelle) was driven by a number of
factors:

• Java provides platform independence and is standard and pervasively
available in industry.
• Query-based reasoning is likely to be more efficient than proof-oriented

approaches for large data volumes, as the former takes into account data
profiles (predicate selectivity) when executing queries. Optimized query
plans can provide substantial performance enhancements on large data
sets.
• We saw the need to store rules, and not just facts, in a database, rather

than merely leaving rules in unmanageable and non-queryable text files.
Further, for conflict detection purposes it is necessary to store, in the
database, queryable contents of the rule (queryable occurrence descrip-
tions to analytically check for overlap). Also, for conflict resolution pur-
poses it is necessary to store, in the database, all the attributes of rules
(such as author, creation date, unique identifier of provision and its case-
based instantiations). Many Prolog implementations do not support rule
storage, and we envisaged that storage of and reasoning with rule at-
tributes and contents, and selecting rules to apply in a circumstance,
would require as much effort in Prolog as in Java.
• We preferred a set-based semantics (sets of occurrences) rather than a

truth-value based approached, and query-based reasoning seemed more
suited to union, intersection, count, ordering, and other set-based opera-
tions on occurrences.
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• Data pre-processors, written in more efficient imperative languages, were
in any event necessary to delay inferencing to cope with spikes in update
rates (§8.2).

Our system has not yet, however, been tested on actual contracts of any
size, and scalability beyond toy examples therefore remains to be demon-
strated in an extension of our proof-of-concept implementation. We are satis-
fied though that the basic mechanisms are in place to store provisions, assess
which provisions apply to an occurrence, and analytically detect a range of
static and dynamic conflicts through checking for overlap between stored
queries. In other work [AB02a,AEB02a], we describe progress towards con-
flict resolution, though a case-based policy instantiation mechanism which
accounts for a norm’s life cycle (creation and fulfillment, violation, or void-
ance) and for defeasible, time-tagged conclusions.

We do not envisage usage of Edee in an e-market setting, but rather
a context where an individual company stores the terms of its contracts in
a database and this database is used to guide, and also to conventionally
describe, behavior of software and human components within a single organi-
zation. Implementation of the software in a distributed setting remains to be
addressed; our assumption has been of a single centralized contract database,
as we have many issues still to address before moving on to the more com-
plex distributed scenario. Our future work will include improvement of the
performance of the coverage determination algorithm. We plan to enhance
the interface to the occurrence store by defining high-level business contract
definition templates. We also hope to extend our query coverage determina-
tion mechanism to be able to support the semantic resolution of hypothetical
queries such as ‘what obligations is the company subject to if it does not
deliver the goods by 26th July?’.

The following subsections describe in detail how Edee’s coverage-checker
operates.

10.1 Storing Operational Data

Let us say SkyHi, a customer of Steelmans, has paid Steelmans £25,000
for a specific shipment. Let being supplier1 and paying1 denote instances
(hence the 1 added to create a unique identifier) of occurrences of type be-
ing a supplier and paying respectively. Table 1 shows the occurrence, role,
participant schema employed in Edee to store this operational data.

10.2 Storing Provisions of Contracts and Policies

To store contractual provisions – e.g., “X prohibits that [Y be paid]” and “X
promises that [X pay Y]” – in a relational database we need to handle their
embedded propositional content.13

13 See §7 and [AB02c,Kim01].
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Table 7. Schemas for storing prohibitions and promises

Occurrence Role Participant

prohibiting1 prohibited Query10

promising1 promised Query19
(Query10 = occurrences of paying with over £10,000 in role paid ∩
occurrences of paying with a supplier in role payee. See figure 2),

(Query19 = first occurrence of SkyHi paying Steelmans £25,000. See figure 3)

Consider Clause P.3 from the application scenario presented above. We
cannot store simply “Steelmans prohibits [paying1]” because paying1 is a con-
crete instance and might not yet have occurred anyway. We instead store the
prohibition as prohibiting1 in Table 7, and indicate the prohibited oc-
currences using a pointer to a database view (query) describing the set of
prohibited occurrences, which is query10 in Figure 2. Note that this query
would be empty in the case that no prohibited occurrences exist.

Similarly, the promise in Clause C.1 of our scenario cannot be stored via
“SkyHi promises paying1”, because we need to store a description of a pay-
ment. The promise is thus stored as promising1 in Table 7 with the promised
occurrence represented by the pointer to query19 in Figure 3. Query19 asks
for the first payment since it is exactly one payment that is promised. It may
be empty in cases where the promise is broken or voided and no payments
are made.

Storing provisions therefore requires the storage of views or queries which
describe the promised or prohibited occurrences. Conflicts can be detected
from the overlaps between these stored descriptions. The next section de-
scribes how the semantics of a query may be stored in a database.

10.3 Storing Queries

To make queries that return occurrences more concise, we use our own lan-
guage, EdeeQL [AB02c]. Queries may be stored in occurrence-role-participant
tabular form by assigning a query-identifier for each criterion’s occurrence
entry, and storing its type and value in the role and participant columns
respectively. The criterion-value may be constant or a reference to an em-
bedded query. The EdeeQL parser takes the textual form of the query and
converts it to its tabular semantic form.

Take for example the query that returns all occurrences where more than
£10,000 is paid to a supplier (query10, in the Participant column, for the
row with prohibiting1, in Table 7 above). Figure 2 illustrates the parse
tree for query10, and shows its nested sub-queries (Currency representation
is omitted for simplicity). The second query we need to store is “select the first
payment of £25,000 by SkyHi to Steelmans” (Query19 in the Participant
column, for the row with promising1, in Table 7 above). The complete parse
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query2

query4

query3

QueryID Criterion Type Value

query2 greater-than 10000

query3 identified-concept paid_amount

query1 type paying

query6 type being_supplier

participant query2

role

role

query3

query4 occurrence query1

query5 identified-concept supplier

query8 identified-concept payee

query7

occurrence query6

query5

participant query7

role query8

query9 occurrence query1

query10 intersectand query4

intersectand query9

query10

query5

query7

query6

query9

query8

query1

query1

 where [>10,000]

occurrences

 is [=paid_amount]

occurrences

 where [participants in

  role [=supplier]

  in [occurrences

 are [=payee]

 of [paying]

 of [paying]

   of [being_supplier]]

Fig. 2. Parse tree and storage schema for query that returns all occurrences where
more than £10,000 is paid to a supplier

query11

query13

query12

query14

query15

query18

query19
query8

query16

query17

query3

QueryID Criterion-type Value

query11 identified-concept SkyHi

query12 identified-concept

identified-concept

payer

participant

participant

participant

query11

query13 occurrence query1

role query12

query14 Steelmans

query14

query15 occurrence query1

role query8

query16 equal-to 25000

query16

query17 occurrence query1

role query3

query18 intersectand

intersectand

intersectand

query13

query15

query17

query19 set query18

query1

query1

query1

  occurrences

   where [=Steelmans]

1st of [

   is [=payer]

  occurrences

   of [paying]

   of [paying]

   of [paying]

   is [=payee]

  occurrences

   where [=25,000]

   is [=paid_amount]

   where [=SkyHi]

] in [ascending]
[temporal] order

Fig. 3. Parse tree and storage schema for query that returns the first payment of
£25,000 by SkyHi to Steelmans

tree for this query, excluding the repeated query sub-expressions shown ear-
lier, is given in Figure 3. Storing queries explicitly is helpful for finding
covering-queries since we can analytically determine which queries, among
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a large number of stored queries, cover a certain item or query. We describe
the mechanism for finding covering-queries, in the next subsection.

10.4 Finding Overlapping and Inconsistent Provisions

Assume a prohibition, prohibiting1, and the associated query describing the
prohibited occurrences are stored in an empty database as shown in Table
7 and Figure 2. We then record that Steelmans is a supplier of SkyHi by
inserting the occurrence, being supplier1, as described in Table 1 (assume
the payment, paying1, is not ever inserted). Upon insertion, the coverage-
checking algorithm examines each of the unique items Steelmans, supplier,
SkyHi, being supplier1, and supplied in the set of triples added for this
occurrence14:

1. By Rule 4 item supplier is covered by the query [=supplier].
2. By Rule 1 item being supplier1 is covered by the query occurrences

of [being supplier].
3. By Rule 9 the query occurrences of [being supplier] and the query

[=supplier] dirty the query [participants in role [=supplier] in
occurrences of [being supplier]]. Substitution of the input dirt for
the dirtied criteria (shown underlined) yields the partial re-evaluation
query: [participants in role [=supplier] in [=being supplier1]].
Evaluation of this query yields the output dirt Steelmans.

4. By Rule 9 and step 3 Item (Steelmans) dirties query occurrences of
paying where [participants in role [=supplier] in occurrences of
[being supplier]] are [=payee]. Substitution of the input dirt (shown
underlined) for the dirtied criterion yields the partial re-evaluation query:
occurrences of paying where [=Steelmans] are [=payee]. Evaluation
of this partial re-evaluation query yields no output dirt. The coverage-
checker thus stops.

We conclude that the new occurrence, being supplier1, is not prohibited,
since the only query that covers it is, occurrences of [being supplier],
which is not in the prohibited role in any prohibition. We nevertheless record
which queries were dirtied by this new data and cache the output dirt, since
we can use this dirt in future partial re-evaluations. The dirtied queries and
their output dirt is shown in Table 8.

The cache of dirtied queries facilitates creation of more specific partial
re-evaluation queries. Even if the actual dirt cache was cleared to conserve
resources, we can still rely upon the query optimizer to only re-evaluate the
minimal set requiring re-evaluation.

Say SkyHi promises to pay to Steelmans £25,000. Assume this payment
has been contemplated, but not effected; no occurrence of paying has been
added to the data store. As shown in Table 7 and Figure 2, the promise can
14 Each of the rules mentioned here is defined in detail in the Appendix.
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Table 8. Dirtied queries and their output dirt after addition of occurrence of
being supplier1 to a new data-store

Dirtied Query Output Dirt

query5 supplier

query6 being supplier1, . . .

query7 Steelmans
(query5 = [=supplier]), (query6 = occurrences of [being supplier]),

(query7 = [participants in role [=supplier] in occurrences of [being supplier]])

be represented by embedding the stored query, query19, in an occurrence
of promising. Now, comparing the description of the promised occurrences
(query19) to other stored queries, proceeding from its most deeply nested
sub-expressions upwards:

1. By Rule 3 [=25,000] (query16) is covered by [>10,000] (query2)
2. By Rule 7 query4, which is occurrences of paying where [>10,000]

is [=paid amount] covers the query occurrences of paying where
[=25,000] is [=paid amount] (query17)

3. By Rule 5 [=Steelmans] (query14) is covered by any query which cov-
ers Steelmans. As seen earlier, [participants in role [=supplier] in
occurrences of [being supplier]] (query7) covers Steelmans. This
fact is stored in the last row of the “dirtied query and dirt” cache shown
in Table 8. Therefore query7 covers query14.

4. By Rule 7, and step 3 occurrences of paying where [=Steelmans]
is [=payee] (query15) is covered by the query occurrences of paying
where [participants in role [=supplier] in occurrences of [being
supplier]] are [=payee] (query9).

5. By Rule 6, step 2 and step 4 Query18 is covered by Query10
6. By Rule 8 and step 5 The set criterion (Query18) covers Query19
7. By Rule 2, step 5 and step 6 Query19 is covered by Query10.

We have thus shown that what is promised (the description of the promised
occurrences = Query19) in this context is covered by what is prohibited
(the description of the prohibited occurrences = Query10). We have thus de-
tected a dynamically appearing conflict between a provision embedded in a
contract, and an organizational policy. In [Abr02], [AEB02a], and [AB02a],
we describe mechanisms for resolving such conflicts. [Abr02] gives an ex-
perimental evaluation of the performance of our dynamic conflict detection
mechanism. Research into increasing the efficiency of our implementation is
ongoing.
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11 Related Work

Computational aspects of Kimbrough’s approach are dealt with in Daskalop-
ulu and Sergot [DDM01]. Their Prolog implementation models the proposi-
tional content inside the disquotation brackets as a prototypical, hypotheti-
cal, identified occurrence. These hypothetical occurrences are then matched
to actual occurrences to determine if a promise is kept; this is in many re-
spects analogous to determining if an obligation is fulfilled. The developer
is required to state separate matching rules for each new object type de-
fined, as well as for occurrences with non-standard thematic roles. The num-
ber of matching rules is then linear with the number of object types. In
contrast, our query-based approach provides coverage checking (matching
of objects to queries which cover them) as a standard system service. We
make use of a small number of rules to determine whether an object of any
type matches a query, and no additional rules are required as new object
types are added. The query-based approach is also well-suited to the spec-
ification of free-choice obligations such as the obligation to ‘deliver a thick-
base pizza or a burrito with extra cheese’. Such an obligation is awkward
for an approach based on matching prototypical objects: it is unclear what
the prototypical object in this case is, since pizzas and burritos are differ-
ent object types entirely. A query based approach simply states the query
as first of ((delivering a thick-base pizza) union (delivering a
burrito with extra cheese)). As any appropriate delivery can fill this
query, the obligation is straightforward to express.

Grosof, Labrou, and Chan [GLC99] aim to declaratively represent and ex-
ecute contracts using Situated Courteous Logic Programs. No representation
of obligations, permissions, and powers is provided; their contracts are simply
labeled if-then rules with procedural attachments and rule override facilities.
Theirs is a synchronous approach where procedures are fired during deduc-
tion, whereas ours is an asynchronous approach where components look up
and fulfil their obligations. Rule labels are manually assigned and non-unique
in their approach, requiring the developer to refer to the rule by label and
forcing relabeling in cases when new rule conflicts are discovered. Our clause
identifiers are system-assigned and unique, and our provisions can be referred
to either by label (clause-id) or by a query which specifies the attributes of
the provision. Their rules are held in text files; our provisions are managed
in a database. Furthermore, as we explicitly express obligations, permissions,
and powers we are able to automatically detect conflicts at specification time.

Previous software approaches to ascertaining the status of permissions,
prohibitions, and obligations have been based on Petri Nets15 or finite state
machines [Das99,DDM01]. Using regular Petri Nets [Lee88a,Das99] for repre-
senting workflows has been criticized [Das99] on two points. Firstly, explicit
representation of the rights and duties of the parties is obliterated as obliga-

15 [BLWW95,Das99,Lee88a]



72 Alan Abrahams, David Eyers, and Jean Bacon

tory, permissible, and prohibited actions are incorporated into the model im-
plicitly rather than explicitly. Secondly, deriving the Petri Net—establishing
the procedure—from the business contract is non-trivial. Tagging Petri Nets
places with obligations and violation states that hold [BLWW95] helps ad-
dress the first issue. Our approach, of employing a database representation
of provisions and a continuous query mechanism for monitoring, offers some
useful advantages over Petri Nets and state machines. An event and state
history is stored. New provisions can be added to the database, without re-
quiring re-derivation of a Petri Net or state machine, which is a difficult
manual task. Expressing provisions which entail that multiple obligations are
brought about by separate occurrences is easily achieved through a function
device; a problem not tackled in Petri Nets and state machines which deal
with provisions referring to single obligations. Assessing which obligations
persist in a successor state to a state in which multiple obligations applied
is easier in a database approach than in a finite state machine or Petri Net
approach where multiple graphs would be required and interactions between
such graphs are difficult to manage.

A substantial body of literature on the logic of obligations, prohibitions,
and permissions (deontic logic) exists; see, for example, Meyer and Wieringa
[MW93]. Formal deontic logics have provided valuable insights into the de-
tection of conflicting norms. Our aim has been to enlighten the extension
of theory to practice, and, in so doing, contribute to improvement of the
theory. In Standard Deontic Logic (SDL) the inter-definition of obligation,
prohibition, and permission excludes the possibility of conflicting norms; an
assumption we see as too strong in practice, where conflicts are unavoidable.
Kimbrough’s approach quantifies over obligations, permissions, and prohibi-
tions rather than treating them as operators as in SDL. Individual obliga-
tions are therefore identifiable, conflicts are expressible, and each obligation
instance can then have a life cycle extending from creation to fulfillment,
violation, or voidance. SDL neither captures the provenance of a norm (e.g.,
its author, specification time, or document position), nor a unique identifier
for each norm. We believe this makes conflict resolution for practical appli-
cations untenable as insufficient information about provision instances exist
to enable choice amongst them.

12 Conclusions

Our contribution has been to describe a software implementation of an up-
dated version of Kimbrough’s formal Disquotation Theory. We made a num-
ber of revisions to the framework in the process: provisions were relativized
to an utterance (clause), rather than to the norm system as a whole; viola-
tion states and obligation states were treated as separate entities; permissions
were extended to include the sense of vested liberty; and a notion of legal
power was added. A novel database representation and software wrapper
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which mimics Kimbrough’s logic was specified using a practical application
scenario: we demonstrated how to implement a computational environment
for electronic contract modeling, storage, analysis, and execution. An im-
portant innovation was employing an incremental continuous query evalua-
tion mechanism for the monitoring of occurrences against contractual pro-
visions stored in tabular data stores, using pervasive industrial technology
(Java and relational databases). We specified a number of contract provi-
sion monitoring mechanisms—immediate and delayed detection—as well as
some contract provision performance and enforcement mechanisms: interven-
tion, prevention by refusal, and prevention by construal. We have proposed a
coverage-determination mechanism for queries within e-service environments.
We discussed the data and query storage techniques employed by the Edee
system, and through worked examples, demonstrated how our approach ef-
ficiently determined conflicts which appeared dynamically between business
contracts and organizational policies. Though much remains to be done before
we have an industrial strength application, we believe our alterations to the
formal logical framework and our novel software prototype implementation
have advanced the state-of-the-art in executable specification for e-commerce
applications.
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A Coverage Checking Rules

Below are the rules used for determining coverage relationships between
queries in our example (the complete list is specified in [Abr02]).

Rule 1 An item is covered by queries with matching type criteria.
Rule 2 Transitively, a query is covered by any coverer of its coverers.
Rule 3 A numeric equal-to query Q, is covered by an equal-to, less-than or

greater-than query if its equal-to, less-than, or greater-than crite-
rion is, respectively, equal to, greater than, or less than Q’s equal-to
criterion. A numeric less-than query Q, is covered by numeric less-than
queries where the less-than criterion is greater than the less-than
criterion of Q. A numeric greater-than query Q, is covered by numeric
greater-than queries where the greater-than criterion is less than the
greater-than criterion of Q.

Rule 4 Any participant, occurrence, or role is covered by those concept-
identification queries whose identified-concept criterion is identical
to the participant, occurrence, or role identifier.

Rule 5 A concept-identification query is covered by any query that covers
its identified-concept criterion.

Rule 6 An intersection query Q, is covered by any given intersection query
P, if each of P’s intersectands covers some non-zero number of Q’s
intersectands.

Rule 7 For two participant queries,16 P covers Q if P’s role criterion covers
Q’s and P’s occurrence criterion covers Q’s. Similarly for occurrence
queries17.

Rule 8 An ordinal (sequence) query is covered by its set criterion, e.g., 1st
[payments] is covered by payments.

Rule 9 A query, Q, dirties any participant or occurrence query that has Q
as its participant criterion, occurrence criterion, or role criterion.
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Abstract. Communicative workflow modelling is key to describing, analyzing, and
designing business procsses in virtual collaborative networks, such as present in e-
commerce. To make workflow models meaningful and acceptable to all partners,
their legitimacy must be ensured. To this purpose, the underlying norms must be
made explicit and used to check model acceptability. A key class of communica-
tive workflow models are captured by our extended workflow loop. Using this loop
as the basic unit of analysis, we introduce the concept of workflow loop norms,
grounded in, amongst others, internal control theory. Workflow loop schemas are
used to represent workflow situations, allowing for actual or proposed situations
to be matched with the norms. Using these constructs, we outline our legitimacy
checking process for workflow designs, and illustrate it with a case.

1 Introduction

In today’s networked organizations, organizational hierarchies are rapidly be-
coming less relevant for structuring business processes. Intra-organizational,
self-organizing teams, learning organizations, and inter-organizational e-busi-
ness alliances are emerging in which fixed power and communication struc-
tures no longer suffice. To make sense of the increasing organizational com-
plexity and dynamics, and to design more adequate supporting information
systems, a workflow view on organizational interactions is often helpful. A
good example is the increasing prominence of supply chain modelling [KS03].
Thus, workflow modelling is becoming increasingly important as a structured
way of describing, analyzing, and designing the collaborative business pro-
cess.

Many workflow models exist, ranging from Petri-nets representing logis-
tical or production workflows [Aal97] to approaches that capture more of the
organizational semantics of business processes [Sch96]. One class of workflow
modeling approaches takes a communications view, grounded in the Lan-
guage/Action Perspective (LAP), as originally introduced by Winograd and
Flores [WF87]. In contrast to data-oriented methods such as those based on
state-transition or UML interaction diagrams, LAP modeling is based on the
notion of communicative action, which implies that workflows are seen as
grounded in social relationships and focused on organizational coordination.
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For example, a request for a certain good not only aims at the performance
of a particular action, but is also an action in itself. A successful request
creates a commitment for the party that has promised to deliver a service,
for instance, thus changing the social world. LAP workflows are represented
as communication loops between business roles. For example, in the Action
Workflow approach [MMWFF93] customers and performers go through four
communication acts: in the preparation, a customer asks a performer to do
something; at the end of the negotiation stage, the performer promises to do
this; in the performance the performer reports that he has done so; and, fi-
nally, with the acceptance act the customer reports that she is satisfied. In the
DEMO (Dynamic Essential Modeling of Organizations) approach [DV98], an
initiator and an executor subsequently (inter)act in similar order, execution,
and result stages.

From a coordination perspective, communication loops are more than se-
quences of communicative acts. LAP imposes a certain normative structure
on communication processes [Wd03]. For instance, ActionWorkflow modeling
requires communication loops to be complete, or “closed”. This means that
all stages of a communication loop must be followed, none can be skipped.
Another example of a communication norm implicit in, for instance, DEMO,
is that the initiator of a transaction must also be the person who evaluates
the success of that transaction. It can be argued, however, that, especially
in a complex network organization, such evaluative activities can be dele-
gated to third parties. Also, many workflows spawn other workflows, making
the coordination of their interdependencies soon very complex. An additional
factor is the strong co-evolution of social and technical requirements in the
modern organization [Lym96]. The resulting dynamics in organizational re-
quirements, structures, and behaviour greatly increases the complexity of
workflow analysis.

In order to ensure successful organizational performance, the workflow
specifications of electronic business networks need to be legitimate, implying
that they are both meaningful and acceptable to all partners.1 Such legiti-
macy is essential to create a sense of trust and ownership in the network and
its supporting IT infrastructure. Central to this analysis are the communica-
tive norms that apply to the workflows of a particular community. To ensure
the legitimacy of workflow models, it is important that (1) underlying norms
are made explicit and (2) actual or proposed workflow models are checked
against these norms. However, the complexity of the communicative norms
resulting from their subtle definition, compounded by delegation, recursion,
and evolutionary aspects, makes manual analysis very hard to perform. In this
chapter, we therefore propose a formal approach to the legitimacy checking
of communicative workflow loops, as this helps to deal with representational
and reasoning complexities.

1 [dJ01]



Legitimacy Checking 81

In Section 2, we first define the extended workflow loop, our basic unit
of analysis. Section 3 introduces our concept of workflow loop norms, and
shows how they are firmly grounded in internal control theory, among others.
In Section 4, we present workflow loop schemas as a concise way of repre-
senting workflow situations. Section 5 outlines the method for the legitimacy
checking of extended workflow loops. We end the article with discussion and
conclusions. In the various sections, we illustrate the ideas with a typical case.

2 The Extended Workflow Loop

In [Wd03] we extensively explained extended workflow loops and their norms.
In Sections 2 and 3, we give a brief summary of these ideas.

To define the extended workflow loop, we take the service relationship
between two actors as its starting point. In most cases, this is a symmetric
relationship where a service or object of value is exchanged against some
financial compensation. This is thus a form of a contractual relationship,
whether there is a written contract or not. The service has a provider and
a beneficiary, which usually but not necessarily coincides with the customer
of the service. Service relationships are typically found at the organizational
borders, but they may also be explored within organizations.

To activate a service relationship, we start with describing a service loop,
that is, the communication around the service. This service loop should not be
identified with the service relationship, although it necessarily follows from
it. From DEMO, we take the workflow loop roles of initiator and execu-
tor, to which we add the evaluator role. Instead of using the specific DEMO
(order, execution, result) and ActionWorkflow (preparation, negotiation, per-
formance, and acceptance) workflow loop phases, we distinguish two, more
neutral pairs of communicative acts, each pair defining a conversation: a re-
quest is followed by a commit (an actagenic conversation), and a report is
followed by an accept (a factagenic conversation). Furthermore, we distin-
guish three workflow tasks: initiation (I), execution (X), and evaluation (E).
The initiation is the preparation of a request. The execution is the actual per-
formance of the service, around which the communication loop revolves. The
evaluation or the assessment is the work that must be done before the service
report can be accepted. All four communicative acts and three workflow loop
tasks are examples of workflow acts.

The service relationship is fundamental, but it can be complemented with
delegation relationships. In this paper, we will focus on delegation on the side
of the provider, but delegation at the customer’s side is possible as well. Al-
though any workflow loop act can be delegated to an agent, the delegating
actor, the principal, still keeps a responsibility to the customer, that is, the
service relationship itself is not delegated. From internal control theory, we
derive the distinction in operational and control tasks. We define the func-
tional role of principal to be responsible for the control tasks (initiation and
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evaluation), and the agent for the operational (execution part). The control
loop is very similar to the service loop, which makes it possible to view them
as two types of communication loops.

Figure 1 presents the extended workflow loop model. Notice that the agent
has two executor roles, but there is a slight difference between the X-role of
the agent in the service loop and the X-role of the agent in the control loop.
From a control perspective, the agent’s performance may consist of these
executive tasks making up the service, but also of the conversations with the
beneficiary (so his overall performance in the service loop is what counts as
X in the control loop).

Beneficiary /
Customer

Performer /
Agent

Provider / 
Principal

I / X / E

I / X / E

Service Loop

Control Loop

Service
Relation

Delegation
Relation

Fig. 1. The extended workflow loop model

3 Extended Workflow Loop Norms

Today’s Internet-age information systems are much more communication
than computation systems. There are many applications that support com-
plex communication processes, like discussion and group decision making,
and many kinds of collaborative work such as group authoring. The semiotics
of these systems are often much more complex than in traditional informa-
tion systems, particularly because the intended semantics and pragmatics are
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not under the control of one single organization, and therefore often remain
un(der)defined. This entails that often the meaning of information produced
and responsibilities for system use and specification are not clear.

3.1 Norms for Organizational Communication

Effective organizational communication presupposes that the communicative
partners agree (or can arrive at agreement) on certain norms: not only syn-
tactical norms on the language that is used, but also norms related to the
semantics and pragmatics (what are the intended and perceived effects of
and on senders and receivers?) of the communication. For instance, a ma-
jor customer to a company may expect a priority treatment and receive an
immediate response to his request for repairs.

Not all organizational communication norms need to be explicit. Many
norms, for instance, are implicit or tacit knowledge: everybody is aware of
their existence, but they cannot or should not be formalized [Bau99]. For
example, in a scientific research group, there is a tacit norm that participants
are prepared to defend the claims that they make, whereas a director in a
multinational company may expect his staff to follow orders. If such norms
are not observed, miscommunications may occur that can have serious effects
on the efficacy of the organization.

Having said this, sometimes organizational communication norms do need
to be made explicit. They often act as clear decision making rules for staff
members. Also, in case of breakdowns [WF87]—for example, by two commu-
nicating parties disagreeing on the meaning of a term or responsibility—the
rules of action that seemed clear turn out to be really norms that can be
violated [OY98].

There are many types of organizational communication norms. One class
of norms, for example, concerns social norms defining the effectiveness and
efficiency of internal organizational communication aimed at motivating or
informing employees [dv96]. Of course, these norms may ultimately influ-
ence what are proper workflow loop norms. We, however, do not focus on
how workflow norms came to be, but on the norms that (currently) gener-
ally apply. Finding such relatively generic principles is important, as these
criteria can be built into system designs. By making information systems
more legitimate in this way, they can significantly improve organizational
communication.

3.2 Workflow Loop Norms Implicit in LAP

One important source of stable workflow loop norms is internal control theory.
This theory provides normative guidance in complex organizational struc-
tures, when there are delegated task structures which allow agents to estab-
lish commitments on behalf of the organization. Delegating an activity does
not mean that the responsibility for this activity is delegated as well. Instead,
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it introduces a control task for the principal that delegated the task to the
agent. This involves communication: since in most cases, the principal re-
sponsible for that control task cannot personally observe the performance of
operating tasks, he must rely on documentary evidence (evidence function).
At the same time, to protect himself, the executing party (the agent) must
be able to prove the completion of an activity (preventative function).

An extensive literature related to internal control theory exists, often
drawing from accountancy research. For example, Chen [Che92] lists a set of
principles such as “An operational task and its corresponding control task
should be segregated into two different organizational positions and into two
different agents”. Bons [Bon97] notes that control tasks can be divided into
two categories: control tasks that make direct statements about the opera-
tional tasks (such as witness reports), and control tasks that evaluate the
resulting document and draw conclusions based on them. Many principles
can be found in the literature, but more interesting at the moment is to see
how they can actually be used to construct workflow loop norms.

In [Wd03] we proposed an approach to analyze workflows using commu-
nicative norms based on such internal control theory norms. We identified the
following list as a first approximation of the basic implicit norms underlying
LAP:

1. For any activity, a distinction must be made between the operational task
and the control task. These two tasks are executed by different roles and
different subjects.

2. If an operational task exists, there should be a corresponding initiating
control task and the operational task should follow the initiating task.

3. If an operational task exists, its corresponding evaluative control task
should exist as well and should always follow the operational task.

4. The initiating task should contain a request for action from a role (ini-
tiator) independent of the role performing the task

5. The role issuing the initiating task (initiator) should be the same as the
role responsible for the (evaluative) control task.

6. The initiating task should be closed with a commitment (promise) from
the role performing the operational task.

7. The evaluative control task should be furnished by supporting documents.
The supporting documents should originate from the role performing the
operational task.

8. The evaluative control task should be closed with a performative state-
ment from the role performing the evaluative control task.

9. The performative statement of the evaluative control task should be re-
ceived by the role that performed the operational task.

Based on our own extended workflow loop model and principles from
internal control theory, we then generalized and refined those implicit LAP
norms. We formalized the basic concepts from our extended workflow loops
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as well as the norms, resulting in a formal ontology and a set of extended
workflow loop norms expressed in terms of this ontology. In the next section,
we present an adapted version of this ontology.

3.3 The Extended Workflow Loop Ontology

A normative analysis quickly becomes complex. To deal with this complexity,
formal representation and reasoning can be of great help. Having introduced
the concepts underlying the extended workflow loop, we are now ready to
start our formalization. The formalization consists of two main parts: (1) a
formal ontology to precisely define the meaning of the extended workflow
loop concepts, and (2) a set of extended workflow loop norms based on these
definitions. We present both the ontology and formal representation in the
remainder of this section.

First, we present our extended workflow loop ontology, adapted from
[Wd03].

A service is a tuple<Service Type, Service Executor, Object, Beneficiary>,
where Service Type is some predicate designating a service type. The Object
is the object of value. The object can be immaterial. Service Executor and
Beneficiary are actor roles with respect to the service. The Service Executor
role should not be confused with the conversational role of Executor.

A service relation is a tuple <Service, Customer, Provider>, where
Customer and Provider are actor roles, and Service is some service as defined
above.

The service loop for a certain service is a tuple <Service, Exec, Init,
Eval, Acta, Facta>, where Exec, Init and Eval are tasks and Acta and Facta
are conversations consisting of pairs of communicative acts.

A delegation relation is a tuple<Workflow Loop Act, Principal, Agent>,
where Workflow Loop Act stands for one or more of the tasks or communica-
tive acts that make up a workflow loop. Principal and Agent are Actors. For
the time being, we omit what exactly has been delegated (that is, task roles
and/or conversations). The transitive closure of the delegation relationship
is called the delegation line.

A control loop for a certain delegation relation is a tuple
<Delegation, Exec, Init, Eval, Acta, Facta>,

where Init, Exec, and Eval are acts, and Acta and Facta are conversations.
The Exec task of the control loop of a delegation is by definition done by
the Agent of the delegation, whereas the Init and Eval acts belong to the
Principal, unless he has delegated these acts as well.

3.4 Formal Extended Workflow Loop Norms

The purpose of the ontology is to define precisely the extended workflow
loop norms. In [Wd03] we presented a rather comprehensive set of extended
workflow loop norms. These formal norms follow from the implicit set listed
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in Section 3.2. Here, we take only one of these norms to illustrate the main
contribution of this paper: developing an operational method for legitimacy
checking of workflow schemas. Other norms can be addressed in similar ways.

XWL Norm 1 :

∀s:service loop(s.init=s.service.customer ∧
s.eval=s.service.customer)

This norm requires that the customer of a service (as defined in the service
relation) is both initiator and evaluator – which reflects a strong commitment
to customer orientation that may be violated for other reasons.

4 Workflow Loop Schemas

To apply workflow loop norms, we need to distinguish between actual and
deontic states. Norms indicate deontic (“soll”) states: how the world should
(not) be. However, equally important are the current or proposed states on
which the norms are to have their regulatory deontic effect. We call these
actual states the workflow situation. Each workflow situation comprises one
or more extended workflow loops. Each extended workflow loop is represented
by two workflow loop schemas: a service loop schema and a control loop
schema.

4.1 The Schema Structure

In order to model current or proposed workflow loop situations, we introduce
the concept of workflow schema. Schemas can be used to organize knowledge
that represents complex situations or objects in a domain.2 Here, we use a
schema to decompose a workflow loop into its constituent acts. To these acts,
the various roles and subjects playing these roles are mapped.

Table 1 shows the basic structure of a workflow loop schema. The first row
represents the workflow loop acts. There are seven possible acts: the init-task
(to prepare the request), the request, the commit-act, the execution of the
commit, the reporting stage, the evaluation of the results, and the acceptance
of the results. As these acts together make up the full workflow loop, they
are always completely represented in the schema.

The second row shows the actor roles that carry out the workflow loop
acts. These roles are often defined in the specific domain in which the work-
flows are carried out. The labels are thus domain-dependent.

The third row describes the conversational role (initiator, executor, or
evaluator) that performs the workflow loop act. In general, there is a strong

2 [LS89]
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correlation between the workflow loop acts and the conversational roles that
perform them. For instance, in DEMO the role performing the evaluative
task is always the initiator. However, as our analysis of workflow loop norms
has shown, such constraints often need to be relaxed in the complexity of real
work situations. In many networked organizations, for example, it is not the
initiator, but a separate evaluator role that performs the evaluative task, for
reasons of efficiency or to implement checks and balances.

The fourth row captures the complexity introduced in the extended work-
flow loop: a role can act as a customer, beneficiary, provider, principal, or
agent. As many mappings to the other roles are possible, a separate row is
justified. For example, in case of delegation, the customer role requesting a
service is not necessarily the beneficiary.

The fifth row describes the subjects performing the workflow loop acts.
In DEMO, for example, no specific constraints are imposed on which sub-
jects perform the acts. From an internal control perspective, however, many
constraints (i.e., prohibitive norms) are often demanded, such as that the
evaluation of performance cannot be done by the same subject who has exe-
cuted the work.

4.2 Modelling Workflow Loop Situations

In Table 1, we use the workflow loop schema to model a simple workflow
loop situation: a baker promises his customer to bake a bread, upon request,
and then bakes and delivers the bread himself. In this case the customer
explicitly asked the baker to bake the bread. No preparation of the request
was needed, so the init-task remains empty. This situation has been modelled
using standard LAP semantics, with no explicit evaluator role distinguished.
As there is no delegation, only the provider and customer3 roles need to be
defined. It is clear that in this situation there are only two subjects performing
the subsequent workflow loop acts. For clarity, these subjects have labels here
similar to the domain roles that they play. However, normally there is not
necessarily a one-to-one mapping between subjects and domain roles, as one
subject can play more than one such role, for example.

The simple workflow loop can be modelled using a single workflow loop
schema as follows:
Note that there are two customer-roles here: a domain role (somebody buying
a bread) and a workflow loop role (the LAP role).

To illustrate how workflow loop schemas can also be used to model the
more complex workflow situations typical of extended workflow loops, we

3 Alternatively, or additionally, the beneficiary role could have been modelled. How-
ever, current LAP semantics is unclear about the precise differences. We therefore
limit ourselves to the customer role here. Note that structuring semantics in these
workflow loop schemas can be of considerable help in identifying such semantic
unclarities or gaps.
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Table 1. Using a workflow loop schema to represent a simple workflow situation

Workflow loop: Simple Pizza Delivery

WL Act Init Reqst Commit Exec Report Eval Accept

Dom. Role - Cust. Baker Baker Baker Cust. Cust.

Conv. Role - I X X X I I

WL Role - Cust. Prov. Prov. Prov. Cust. Cust.

Subject - #cust #bak #bak #bak #cust #cust

now represent the scenario about the extended pizza delivery case described
in [Wd03].

The Complex Pizza Delivery Case
In the case of a pizza baker who originally bakes and delivers his
pizzas himself, the communication between him and a customer can
be easily modelled using a standard workflow loop (within a contract
relation, but we will focus here on the baker as performer). Now
the baker hires a boy to deliver the pizza to the house of the hungry
client for him. Then there exists an agency relation between the baker
and the boy: the baker plays the manager/principal role, the boy
the employee/agent role. The workflow loop now seems distorted,
since the new pizza delivery workflow loop performer is no longer one
subject. Say the hungry client calls the baker on the phone. In an
actagenic conversation, part of the workflow loop, the baker agrees
to bake and deliver a pizza. After calling the boy, the baker orders
the boy to bring the pizza to the client. The boy takes the pizza,
drives to the house, rings and starts a factagenic conversation in which
the hungry client accepts the pizza, perhaps after having signed a
note. The boy returns to the baker and reports the succesful delivery,
possibly with handing over the note as evidence.

Note that there are now a control loop and a service loop, together forming the
extended workflow loop. We therefore require two—related—workflow loop
schemas to represent the complex workflow loop norms (including delegation)
implicit in this case. See Table 2.
These tables should be mostly self-explanatory after the previous introduc-
tion. Note that there is now an Init-task (namely, the baking of the pizza)
which has to be done before the baker can request the boy to deliver the
pizza. Also, the workflow loop roles in the service loop schema are distributed
among customer, provider, and agent. In the example, we abstain from the
difficulties added by more than one subject playing a particular role of some
act. Such set-theoretical issues need to be addressed in future work though.
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Table 2. Using workflow loop schemas to represent a complex workflow loop situ-
ation

Service Loop Schema: Complex Pizza Delivery

WL Act Init Reqst Commit Exec Report Eval Accept

Dom. Role - Cust. Baker Boy Boy Cust. Cust.

Conv. Role - I X X X E E

WL Role - Cust. Prov. Agent Agent Cust. Cust.

Subject - #cust #bak #boy #boy #cust #cust

Control Loop Schema: Complex Pizza Delivery

WL Act Init Reqst Commit Exec Report Eval Accept

Dom. Role Baker Baker Boy Boy Boy Baker Baker

Conv. Role I I X X X E E

WL Role Princ. Princ. Agent Agnt Agnt Princ. Princ.

Subject #bak #bak #boy #boy #boy #bak #cust

5 A Method for Legitimacy Checking

The basic idea underlying the method is that the extended workflow loop
schemas, as well as the norms, can be defined as semantic networks in the
form of conceptual graphs. The workflow loop norm graphs put selectional
constraints on the workflow schema graphs, in other words, on the actual or
proposed workflow loop situation. These norms define what schema elements
are required or forbidden. Legitimacy is checked by projecting the workflow
norm patterns on the workflow schema definitions. If required patterns have
are matched (i.e. have projections), and forbidden patterns have no matches
(i.e. have no projections), no norm violations occur. The present set of work-
flow schema definitions, and thus of the workflow situation, is thus legitimate.
Next, we first formalize the workflow schemas using conceptual graphs. We
then present our method for legitimacy checking.

5.1 Conceptual Graph Theory

In Section 3 we formalized the norms by defining an ontology and norms
using first order logic. We now formalize the concept of schema, in order to
provide precise semantics and be able to reason about their properties. To
this purpose, we use conceptual graph theory. Two important advantages of
conceptual graphs are that they allow for the efficient construction of gener-
alization hierarchies of graphs, and that they can represent contextualized or
nested definitions. These properties are needed to efficiently check normative
knowledge definitions. We will give a brief introduction of conceptual graph
theory, as it is relatively unknown. The theory is explained in much more
detail in [Sow84].

Conceptual graphs are constructed out of concepts and relations.
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Concepts. A concept has two fields: a type and a referent field. It has the
following format:

[Type : Ref ], an example being [Customer: #John]

The type field contains a type label that is part of a type hierarchy. The
referent field designates a particular entity with the mentioned type. This
field is optional: if not specified, the concept is considered to be generic, and
is by default existentially quantified.

A referent can be an individual marker or a generic marker. An individual
marker can be a number sign, followed by some constant, e.g., #John. A
generic marker, denoted by *, indicates a generic concept. It may be followed
by a variable identifier, e.g., *x1. This allows one to refer to a specific, but
as of yet unidentified entity. These named generic markers are useful for
cross-referencing concepts in graphs. A co-referent concept is indicated with
a question mark, e.g., ?x1.

Conceptual Relations. A conceptual relation links two or more concepts. Each
conceptual relation has a relation type, surrounded by parentheses. It also
has one or more arcs, represented by arrows, each of which must be linked to
some concept. A dyadic relation has the following representation:

[Type 1: Ref 1] -> (R Type ) -> [Type 2: Ref 2]

Generally, the relations can be read, in the direction of the arrows, as ‘the
source concept has a relation to the destination concept ’. An example of a
conceptual relation could be:

[XWL: #Pizza Delivery] ->

(Part) -> [Service Loop]

which states that the extended workflow loop for pizza delivery has some (yet
unspecified) service loop.

Conceptual Graphs. A conceptual graph is a combination of concept nodes
and conceptual relation nodes. It can also consist of a single concept node.
To represent such a graph, one of its concepts is chosen as its head. If more
than one relation is linked to a concept, the dash symbol ‘-’ can be used to
separate the common concept from the rest of these relations. A conceptual
graph is ended by a period. Many examples of these graphs are given in the
remainder of this section.
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5.2 Outline of the Method

The method for legitimacy checking of workflow loop norms is an adaption
of the method used in [dv01] to match required and enabled web service
functionality.

The method consists of the following steps:

1. Define an extended workflow loop ontology
2. Represent the workflow loop norms in patterns
3. Represent the workflow situation in workflow loop schemas
4. Calculate the match between situations and norm patterns
5. Interpret the matching results

Define the Extended Workflow Loop Ontology. First, we define the
extended workflow loop ontology as a type hierarchy, with accompanying
type definitions. All entities followed by a ‘>’ sign are supertypes of the in-
dented entities that follow. The hierarchy and type definitions follow from
the previous discussion.

The Extended Workflow Loop Type Hierarchy.

Entity >
WL_Act >

Task >
Init
Exec
Eval

Comm_Act >
Request
Commit
Report
Accept

Actor >
Serv_Actor >

Beneficiary
Serv_Executor

Dom_Role
Conv_Role >

Inititiator
Executor
Evaluator

WL_Role >
Customer
Provider
Principal
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Agent
Conversation >

Acta
Facta

Comm_Loop >
Service_Loop
Control_Loop

Deont_Eff >
Perm
Req
Forb

Relation >
Del_Rel
Serv_Rel

Schema >
Comm_Loop_Schema >

SL_Schema
CL_Schema

Object
Service
Speech_Act
Subject
XWL

There is also a short relation type hierarchy, defining such roles as (Agnt),
(Part), and (Conv_Role), but this will be omitted here, as it is a flat tree,
with no relation subtypes.

The semantics of the concept types are given by the following type defi-
nitions:

• Workflow loops revolve around the performance of services. A service is
of a particular type, has some object, and is done by an executor for a
beneficiary. As in conceptual graphs, the type is already mentioned in
the concept, no separate Service Type concept is needed.

[Service: *x] -> (Def)-> [Entity: ?x] -
(Obj) -> [Object]
(Agnt) -> [Serv_Executor]
(Ptnt) -> [Beneficiary]

Notice that such a (meta) type definition indicates the ontological properties
that a concept must have. This definition may be contracted, by replacing the
genus (entity) by the defined type (service) and dropping the (Def) relation.

• An extended workflow loop consists of both a service and a delegation
relation as well as a service loop and a control loop.
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[XWL: *x] -> (Def)-> [Entity: ?x] -
(Part) -> [Serv_Rel]
(Part) -> [Del_Rel]
(Part) -> [Service_Loop]
(Part) -> [Control_Loop]

• Each extended workflow loop contains two relations: a service relation
and a delegation relation.

[Serv_Rel: *x] -> (Def) -> [Relation: ?x] -
(Obj) -> [Service]
(Agnt) -> [Customer]
(Agnt) -> [Provider]

[Del_Rel: *x] -> (Def) -> [Relation: ?x] -
(Obj) -> [WL_Act]
(Agnt) -> [Principal]
(Agnt) -> [Agent]

• Both a service loop and a control loop are communication loops. Each
of these loops has a communication loop schema. This consists of an
Init-task, a Request-act, . . . . The Init-task is done by a domain role, a
conversation role, a workflow loop role, and subject.

[Comm_Loop_Schema: *x] ->
(Def) -> [Schema: ?x] -> (Part) -

[Init] -
(Dom_Role) -> [Dom_Role]
(Conv_Role) -> [Conv_Role]
(WL_Role) -> [WL_Role]

[Request] -
...

[Commit] -
...

[Exec]
...

[Report]
...

[Eval]
...

[Accept]
...]

• Each communication loop contains two conversations, an actagenic and a
factagenic conversation. Although for completeness we define its seman-
tics, we do not further address how conversations and larger communica-
tional structures can be used here.
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[Acta: *x] -> (Def) ->
[Conversation: ?x] -> (Part) -

[Request]
[Commit]

[Facta: *x] -> (Def) ->
[Conversation: ?x] -> (Part) -

[Report]
[Accept]

Represent the Workflow Loop Norms in Patterns. To represent the
norms we define two kinds of patterns: required patterns and forbidden pat-
terns. These patterns are projected on the workflow schemas, to check whether
they conform to the workflow loop norms. Thus, these patterns act as meta-
norms, norms about norms, in this case stating whether patterns must or
may not be there, respectively [LSDN01].

Each workflow loop norm can be translated into one or more required
and forbidden patterns. Here we show this for the first extended workflow
loop norm (XWL Norm #1). This norm said that the customer of a service
must be both the initiator and the evaluator of the accompanying service loop.
Ontological concepts that are relevant here are: the service relation, service
loop, customer, initiator, and evaluator. This norm is translated into the
following patterns:

Required patterns. For the customer #cust of the service (as defined by the
service loop), there is only one required pattern #rp1.

[SL_Schema] -> (Part) -
[WL_Act] -

(WL_Role) -> [Customer: #cust]
[WL_Act] -

(Conv_Role) -> [Initiator: #cust]
[WL_Act] -

(Conv_Role) -> [Evaluator: #cust]

For all service loop schemas, the customer, initiator, and evaluator roles must
be played by the same subject #cust.

Forbidden patterns. As according to XWL Norm #1 the customer must be
both the initiator and the evaluator, there may not be schemas in which the
either one of these roles is played by a subject other than #cust. Thus, the
following two patterns #fp1 and #fp2 are forbidden:
[SL_Schema] -> (Part) -

[WL_Act] -
(Agnt) -> [Initiator: *y1] where
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*y1 /∈ #cust

[SL_Schema] -> (Part) -
[WL_Act] -

(Agnt) -> [Evaluator: *y1] where

*y1 /∈ #cust

Represent the Workflow Situation in Workflow Loop Schemas. Key
to the definition of the workflow situation are the workflow schemas. Auxiliary
definitions, such as a list of the services and service relations also need to be
defined, but will be omitted here.

There are two workflow loop schemas, each of which is a specialization
of the workflow loop type definition given in the previous section. Note that
in this case we have not represented domain roles, as they are not relevant
in this case. In fact, the baker, the boy and the customer are regarded as
subjects only. Instead of using the abstract subject notations #s1, #s2, and
#s3 we use the more comprehensible subject identifiers #customer, #baker,
and #boy in the graphs. However, in other especially organizational, cases,
the domain role is indeed important. Many formal norms, for example, are
domain-dependent: a manager may, an employee must, etc. In future work,
we will investigate the role of this additional complexity in our schemas.

The service loop schema of the case #sl1 is:

[SL_Schema: #Complex_Pizza_Del] -> (Part) -
[Request] -

(Conv_Role) -> [Initiator: #cust]
(WL_Role) -> [Customer: #cust]

[Commit] -
(Conv_Role) -> [Executor: #bak]
(WL_Role) -> [Provider: #bak]

[Exec] -
(Conv_Role) -> [Executor: #boy]
(WL_Role) -> [Agent: #boy]

[Report] -
(Conv_Role) -> [Executor: #boy]
(WL_Role) -> [Agent: #boy]

[Eval] -
(Conv_Role) -> [Evaluator: #cust]
(WL_Role) -> [Customer: #cust]

[Accept] -
(Conv_Role) -> [Evaluator: #cust]
(WL_Role) -> [Customer: #cust]

The control loop schema of the case #cl1 is:
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[CL_Schema: #Complex_Pizza_Del] -> (Part) -
[Init] -

(Conv_Role) -> [Initiator: #bak]
(WL_Role) -> [Principal: #bak]

[Request] -
(Conv_Role) -> [Initiator: #bak]
(WL_Role) -> [Principal: #bak]

[Commit] -
(Conv_Role) -> [Executor: #boy]
(WL_Role) -> [Agent: #boy]

[Exec] -
(Conv_Role) -> [Executor: #boy]
(WL_Role) -> [Agent: #boy]

[Report] -
(Conv_Role) -> [Executor: #boy]
(WL_Role) -> [Agent: #boy]

[Eval] -
(Conv_Role) -> [Evaluator: #bak]
(WL_Role) -> [Principal: #bak]

[Accept] -
(Conv_Role) -> [Evaluator: #cust]
(WL_Role) -> [Principal: #cust]

Note that—contrary to the service loop—the Init-task is now performed by
the baker: baking the bread is a necessary preparatory act for the baker to
be able to request the boy to deliver it. The Eval-task of the baker could, for
instance, consist of regularly checking with the customer if the deliveries are
in time, either face-to-face in the shop or by phone.

Calculate the Match between Workflow Loop Schemas and Norm
Patterns. S is the set of all workflow loop schemas. RP is the set of all
required patterns, FP is the set of all forbidden patterns.

S = { #sl1, #cl1 }, RP = { #rp1 }, FP = { #fp1, #fp2 }.
– Project all required patterns on all workflow loop schemas s ∈ S:

RM = the set of schemas matching (i.e. being a specialization of) all
required patterns.

Here RM = { SL Schema: #Complex Pizza Del }
– Project all forbidden patterns on all workflow loop schemas s ∈ S:

FM = the set of schemas matching any of these patterns. Here FM = ∅.

Interpret the Matching Results. If ∀s ∈ S: s ∈ RM and s /∈ FM, then
the workflow situation is legitimate, otherwise it is illegitimate. In that case,
the conflicting pattern(s) must be dealt with by redefining one or more of the
workflow loop definitions. The proposed definitions must be checked in turn
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by running the calculation again. How exactly this interpretation process is
to occur, depends on (1) the type of workflow loop definitions causing the
violation, (2) the type of norm being violated, and (3) the meta-norms gov-
erning what should be done in case of violation. No uniform interpretation
approach can thus be given. In future research, we intend to develop inter-
pretation classifications to structure such norm conflict resolution processes.

6 Conclusions

In contemporary information society, the quality of the communication in
and between organizations is becoming a critical success factor. To design
and maintain effective communication systems, we need more than commu-
nication modeling. We should also be able to check the quality of the com-
munication models. Thus, there must be norms that define legitimate, i.e.
meaningful and acceptable organizational communication.

In modern rational organizations and networks, not only the communica-
tion structures themselves must be legitimate, but also the process in which
these norms are generated. This means that communication norms may have
to be made explicit, and become the subject of a rational discussion.

These two considerations provided the motivation for this chapter on the
role of legitimacy checking in communicative workflow loop design. First,
we have shown an analysis of communication norms based on the Extended
Workflow Loop model. Using this model to define a workflow loop ontology
and accompanying norms, we have described a practical method of legitimacy
checking. The method uses the notion of workflow loop schemas in which vari-
ous elements of the communication workflow loops are integrated. It is shown
how such a schema can be represented using Conceptual Graph Theory. This
makes it possible to delegate the norm checking to reasoning tools. Note that
the norm checking process itself is not yet necessarily legitimate; for this it
should be embedded in a social process in which the communication struc-
tures and norms can be discussed and challenged by relevant stakeholders.

One important application of the legitimacy checking method is commu-
nication diagnosis [vWd02], which works in a bottom-up fashion. The goal of
diagnosis is to model the current situation and to analyze actual or poten-
tial flaws by linking them to communicative norm violations. The diagnosis
should result in recommendations for improvement. In the case of workflow
redesign, the reengineering process description should indicate how the new
situation can be reached from the current situation by redefining workflow
structures that violate the communication norms. This reengineering process
itself must also be legitimate.

The current trend in information system development is a move away from
detailed and formal methodologies [AF03]. Formalization is not a goal in it-
self; what is needed is rationalization. A more contingent approach is therefore
needed. What is most problematic in contemporary, elaborate methodogies,
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is, in our view, the lack of attention to systematic involvement of users—as
stakeholders—in collaborative system (re)design. Admittedly, user involve-
ment and stakeholder analysis have been gaining prominence for a long time.
Some approaches use brainstorming sessions, for instance. However, this is
still far off from encouraging rational discussion. A rational discussion also
allows participants to challenge the norms that underly the design choices. A
legitimacy checker as discussed in this paper can be instrumental in such a
process and—if embedded in a carefully designed social interaction process—
can be an example of a useful application of formal methods.
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CANDID Specification of Commercial and
Financial Contracts: A Formal Semantics
Approach to Knowledge Representation, Part
I: Syntax & Formal Semantics of CANDID

Ronald M. Lee
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Abstract. The formal language CANDID is presented as a knowledge represen-
tation formalism for artificially intelligent decision support systems. The language
is specifically oriented to representation of concepts in finance, commerce and ad-
ministration. Later parts of the paper demonstrate the application of CANDID
to explication of corporate entities and contractual objects, as well as to various
concepts in elementary finance.

1 Introduction

This part presents the syntax and formal semantics of the language we have
called CANDID, originally described in Lee [Lee80].

In the discussion that follows, the reader is presumed to be familiar with
the first order predicate calculus (FOPC), which we takes as our starting
point. For background, we suggest the text by Kalish, Mantague and Mar
[KMM80]. The extension to this that comprise CANDID are drawn chiefly
from Montague’s “intensional logic” [Mon02,Dow78], and Von Wright’s “de-
ontic logic”,1 with minor influence from the temporal logic of Rescher and
Urquhart [RU71]. The presentation given here is a model theoretical one.
Background on model theory is given in Dowty [Dow78] Kalish et al. [KMM80]
mentioned above. Deeper coverage is provided in van Fraasen [vF71] and
Chang and Keisler [CK73].

The CANDID language as described here loosely follows the develop of
Montague’s Intensional Logic, as presented in Dowty [Dow78], augmented
with the operators of Von Wright’s Deontic Logic. The principle differences
up to the language IL (Intensional Logic) are as follows:

• addition of operators and the definite reference operator ι.
• omission of the tense, P and F (past and future)
• addition of the sets C (character strings) and N (numbers) in the model.

1 [VW65,VW67,VW68]
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• recognition of time (designated as the set T rather than J) with the object
language; addition of the operator R for temporal realization (adapted
from a similar notation by Rescher and Urquhart.2

The language IL is then extended to include the connectives and operators
of Von Wright’s deontic logic with the following modifications:

• addition of an agent place in the I connective
• re-interpretation of contingent permission and obligation
• addition of operators for contractual obligation and permission, and the

connective OE (“or else”).

1.1 General Notational Conventions

Throughout this paper we will describe a series of formal languages of increas-
ing complexity. The formal language itself will be called the object language,
whereas its description is done via a meta-language.

Object Language – Constants In the object language, constant names
will be strings of upper or lower case Roman letters or digits or dashes, be-
ginning with a capital letter. These will denote individuals in the domain.
Later, the object language is extended to include symbolic entities, i.e. char-
acter strings and numbers. These may be designated directly in the language,
with the intermediate device of a constant name. Character string constants
will be shown between double quotes, e.g., “this is a character string”, while
numeric constants will have the usual Arabic notation, with an optional em-
bedded decimal point, e.g., 1, 4, 5, 98.6. For consistency, these designations
will be treated as names for themselves. Thus, the general notation for con-
stants is that they begin with a capital letter, digit, or double quote.

Object Language – Variables Variables will be denoted as one or more
lower case letters, with an optional subscript, e.g., x, y, z1, z2.

Meta-Language In the meta-language, constants will be represented using
the Greek characters, α, β, γ, Φ, Ψ . Variables will be designated in the meta-
language by the characters µ and ν.

2 [RU71]
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2 The Language L1

L1 is a fairly standard version of a first order predicate calculus with equality.
(See Dowty [Dow78, pages 15–21] for a more detailed discussion.)

2.1 Syntax of L1

Basic Expressions:

Constants:

Individual constants are denoted as a capital letter followed by one or more
lower case letters, e.g., A, B, Tom, Dick, Harry.

Propositional and predicate constants are denoted as all capital letters, pos-
sibly with embedded hyphens or digits, e.g., TALL, TALLER-THAN.

Variables: Individual variables are denoted as one or more lower case letters,
e.g., x, y, z. Each predicate has associated zero or more places. (A zero place
predicate is called a proposition. Note: in language L1 there are no variables
for propositions or predicates.)

Terms: A term in L1 is an individual variable or an individual constant.

Formation Rules of L1: A well formed formula of L1 is defined recursively
as follows:

1. If Φ is a predicate of n places, (n ≥ 0), and α1, . . .αn are terms, then Φ(α1,
. . .αn) is a well formed formula;

2-6. If Φ and Ψ are well formed formulae, the so are:
2. ¬Φ
3. Φ&Ψ
4. Φ ∨ Ψ
5. Φ→ Ψ
6. Φ↔ Ψ

7-8. If µ is a variable and Φ a well formed formula, then:
7. ∀µΦ is a well formed formula
8. ∃µΦ is a well formed formula
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A variable µ is bound in a formula, Φ, if and only if it occurs in Φ within a
sub-formula of the form ∀µΦ or ∃µΦ; otherwise the variable is free in Φ.

A sentence is a well formed formula containing no free variables.

2.2 Semantics of L1

A model for L1 is an ordered pair <D, F> such that D (the universe of dis-
course) is a non-empty set and F (the interpretation function) is a function
assigning a denotation to each constant of L1 (i.e. to individual constants and
predicate constants). The set of possible denotations of individual constants
is D. The set of possible denotations of one place predicates is ρ(D), where ρ
is the powerset of D, i.e. the set of all subsets). the set of possible denotations
for an n-place predicate is ρ(Dn), where

Dn = {<d1, . . .,dn>|d1 ∈ D, . . . , dn ∈ D}.

The set of possible denotations for a 0-place predicate (proposition) is the
set {True, False}.

An assignment of values to variables (or value assignment) g is any function
assigning a member of D to each variable of L1. “DenM,g(α)” is the abbre-
viation for “denotation of α with respect to model M and value assignment
g”; “true with respect to M, g” abbreviates “true with respect to a model M
and value assignment g”.

Denotations of Basic Expressions of L1 (relative to a model <D, F>
and value assignment g)

1. If µ is an individual variable of L1, then DenM,g (µ) = g(µ).

2. If α is a (non-logical) constant of L1, then DenM,g(α) = F(α).

Truth Conditions for Formulae of L1 (relative to a model <D,F> and
value assignment g)

1. If Φ is an n place predicate and α1, . . . , αn are terms, then Φ(α1, . . . αn) is
true with respect to M, g, if and only if Denm,g <α1, . . ., αn> ∈ DenM,g(Φ).

2. If Φ is a well formed formula, then DenM,g(¬Φ) = True if and only if
DenM,g(Φ) = False
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3-6. If Φ and Ψ are well formed formulae, then:

3. DenM,g(Φ&Ψ) = True if and only if DenM,g(Φ) = True and DenM,g(Ψ) =
True;

4. DenM,g(Φ ∨ Ψ) = True if and only if either DenM,g(Φ) = True or
DenM,g(Ψ) = True;

5. DenM,g(Φ → Ψ) = True if and only if either DenM,g(Φ) = False or
DenM,g(Ψ) = True;

6. DenM,g(Φ↔ Ψ) = True if and only if either
(a.) DenM,g(Φ) = True and DenM,g(Ψ) = True or
(b.) DenM,g(Φ) = False and DenM,g(Ψ) = False ;

7. If Φ is a formula and µ is a variable, then DenM,g(∀µΦ) = True if and only
if for every value assignment g′ such that g′ is exactly like g except possibly
for the individual assignment of µ by g′, DenM,g′(Φ) = True.

8. If Φ is a formula and µ is a variable then DenM,g(∃µΦ) = True if and
only if there is some value assignment, g′, such that g′ is exactly like g except
possibly for the value assigned to µ by g′ and DenM,g′(Φ) = True.

Truth Conditions for Formulas of L1 Relative to a Model M

1. A formula Φ of L1 is true with respect to M if for all value assignments g,
DenM,g(Φ) = True.

2. A formula Φ of L1 is false with respect to M if for all value assignments
g, DenM,g(Φ) = False.

Note: if a formula Φ is a sentence or proposition (i.e. with no free variables),
then it will turn out that DenM,g(Φ) = True with respect to M and all
value assignments, g (hence true with respect to M by 1. above) or else
DenM,g(Φ) = False with respect to M and all value assignments (hence
false with respect to M by 2. above.) It can never be true with respect to
M for some value assignments, and false with respect to M for other value
assignments. However, if Φ has one or more free variables, then it may be
true with respect to some assignments, and false with respect to others. In
this case, its truth or falsity is simply undefined by the above rules.
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3 Re-Interpretation of Predicates

In the preceding section, a one place predicate was regarded as denoting a
subset of the domain D. Hence, for a term α and a predicate Φ, Φ(α) is
true (denotes True) if and only if the thing α denotes is an element of the
set denoted by Φ. Similarly for n-place predicates, Φ is viewed as an n-place
relation on D, and is true of n terms, α1, . . . , αn, if and only if the n-tupe
of entities they denote is an element of the relation denoted by Φ. Follow-
ing Dowty [Dow78, pages 29–30], this interpretation will now be modified
slightly. Consider first the case of a one place predicate, P. Suppose we had
a domain, D, consisting of five individuals as follows:

D = {D1, D2, D3, D4, D5}

and

Den(P ) = {D1, D4, D5}

Here P is true (denotes True) of the individuals in the set {D1, D4, D5} and
is false (denotes False) of the individuals not in this set. These denotations
of True and False can be made explicit by describing the characteristic func-
tion of P. This is a function that maps any individual in D to True or False,
according to whether it is in the subset of D denoted by P. For instance, the
characteristic function in this case is the set of pairs:

<D1, True>
<D2, False>
<D3, False>
<D4, True>
<D5, True>

The information conveyed here is essentially that of the previous subset
plus the interpretation of elementhood conveying the truth of the predicate
applied to its argument. However here, this interpretation is conveyed di-
rectly. That is, let us henceforth view a one place predicate as denoting the
characteristic function of the set of elements for which it is true. Then the
denotation of the predicate applied to an argument is simply the result of
functional application of this argument to the characteristic function, i.e. if
Φ is a one place predicate and α is a term, then

DenM,g(Φ(α)) = DenM,g(Φ)DenM,g(α).

For instance, in the above example, if α is D1, then DenM,g(Φ(α)) = True;
if α is D2 then DenM,g(Φ(α)) = False.
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We might similarly extend this so that two-place predicates denoted sets
of triples, mapping two individuals to a true value, and that n-place predicates
denoted n+1 tuples mapping n individuals to a truth value. However, it will
provide more flexibility later on if we regard a two place predicate not as a
function of two arguments mapping to truth values, but as a function of one
argument mapping to another function of one argument that maps to a truth
value.

Thus a predicate of any number of places is considered to denote a func-
tion of only one argument whose result is either another function or a truth
value. (The idea of functions that have other functions as values may seem
strange – except perhaps to LISP programmers. Its motivation will become
clear when we introduce lambda abstraction.) To incorporate this new inter-
pretation, the language L1 is modified as follows. Replace formation rule 1
with:

Syn. 1a. If Φ is a one-place predicate and α is a term, then Φ(α) is a well
formed formula.

Syn. 2a. If Φ is an n-place predicate and α is a term, then Φ(α) is an n-1
place predicate.

Replace semantic rule 1 with:

Sem 1. If Φ is an n-place predicate (n ≥ 1) and α is a term, then
DenM,g(Φ(α)) = DenM,g(Φ)(DenM,g(α)).

Note that the previous notation Φ(α1, α2, . . . , αn) now takes the form

Φ(α1)(α2) . . . (αn)

The former notation will still be used on occasion to abbreviate the latter
however.

4 Many-Sorted, Type-Theoretic Languages

A many-sorted formal language is one that assumes there is a non-empty set
I whose members are called sorts. For each sort i, there are variables Vi1 , Vi2 ,
. . . that belong to sort i. Also for each sort i there is a possibly empty set of
constant symbols of sort i. For each n > 0 and each n-type <i1, . . ., in> of
sorts, there is a (possibly empty) set of predicates, each of which is said to
be of sort <i1, . . ., in>. For each sort i there is a universal and existential
quantifier, ∀i, and ∃i. A many sorted logic can be embedded in a first order
predicate calculus (using special predicates for each sort) and therefore does
not have any more power.
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A many sorted approach will be useful later when we extend the domain
of the formal language to include in addition to entities, character strings,
numbers and times. The purpose of a many sorted language is to coordinate
references among the several domains of discourse representing each sort. As
noted above, these references remain first-order, that is, only individuals and
their properties and relationships (indicated by predicates) are represented
in the language. Recall that in the previous section we modified the inter-
pretation of a predicate so that it no longer denoted a set or relation on
a domain, but rather characteristic functions of such sets. Rather than ori-
ent the formal language towards the first order framework of a multi-sorted
language, we will instead continue the development begun the last section
and introduce a more general framework that includes the multiple domain
features of a multi-sorted language. Such a language is called a higher-order
type-theoretic language (the name derives from origins in Russell’s simple
theory of types).

Basically, a type is like a sort as described above, except that a type may
be not only a class of individuals (like a sort), but classes of higher order
objects (e.g., sets, sets of sets) as well. So far, the elementary types we have
discussed are individuals in the domain, designated as type ‘e (for “entity”
and truth values, which we designate as type ‘v (from Latin, veritas; the
obvious abbreviation t is reserved for time, which appears later).

The set of types, called Type, is defined recursively as follows:
(1) e is a type
(2) v is a type
(3) if a and b are any types, then <a, b> is a type.

The members of Type are labels of categories. The notation MEa (the mean-
ingful expressions of type a) denotes the set of expressions of type a itself.
By way of example:

a formula or proposition is of type v;
a one place predicate is of type <e,v>;
a two place predicate is of type <e, <e,v>>;
negation (¬) is of type <v,v>;
connectives (&, V, →,↔) are all of type <v, <v, v>>.

5 λ Abstraction

Using set notation, a set may be defined extensionally, listing its elements,
for example,

A = {A1, A2, A3}
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or “intensionally”, by means of some predicate that selects from the domain
a subset of individuals, for example,

B = {x|P (x)}

is the set of all individuals satisfying P. This brace notation thus provides
the means for constructing higher order sets from a predicate. But, by our
first interpretation of predicates, they themselves denoted sets, e.g., Den(P).
Thus, substituting,

B = {x|x ∈ Den(P )}
or,

B = Den(P ).

In our revised interpretation, however, the denotation of P was modified to
be the characteristic function of this set. The device for referring to this in
the object language is the so-called lambda operator, λ. Thus, for P a one
place predicate,

λxP (x)

is the set of ordered pairs of the form <e,v>, one pair for each individual in
the domain, which assigns True or False if P is true or false of that individual
respectively. While we have introduced lambda in terms of individuals and
one place predicates, it can in fact be generalized to apply to expressions and
variables of any type. This involves the following additions to the syntactic
and semantic rules:

Syn. If α ∈ MEa and µ is a variable of type b, then λµα ∈ ME<b,a>.

Sem. If α ∈ MEa, and µ is a variable of type b, then DenM,g(λµα) is that
function h from Db into Da such that for all objects k in Db, h(k) is equal
to DenM,g′(α), where g’ is that variable assignment exactly like g except for
the possible difference that g’(µ) = k.

Note that lambda abstraction takes the role of set definition and func-
tional application takes the role of set membership in the object languages
we are developing, whereas traditional set concepts are used in the meta-
language definitions. In later parts, where we illustrate the use of CANDID
with examples, it will occasionally be convenient to revert back to traditional
set notation because of its familiarity. For this reason, we include the follow-
ing additional definitions in the object language. For a predicate Φ and a
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variable µ,

{µ|Φ(µ)} ::= λµ[Φ(µ)]µ ∈ Φ ::= Φ(µ)

To repeat, while set notation may thus be used in the object language, its
interpretation is in terms of lambda abstraction and characteristic functions.
In the meta-language definitions, set notation is used in the normal way.

6 Operations, Definite Reference

The expressions discussed so far have all been of the type e or <a,v> where
‘a’ is some other, possibly complex type. An operation is an expression of the
form <a,b> where b is an elementary type other than v. At the current level
of the language, the only expressions that qualify are of the form <a, e>,
i.e. expressions that result in an individual, when applied to an argument.
Indeed, an individual constant may be regarded as a 0-place operation. Op-
erations may thus serve as arguments to predicates. For example, for the
predicate ITALIAN, the operation, Father,

ITALIAN(Father(Roberto))

asserts that Roberto’s father is Italian. Note: to aid readability in the exam-
ples, we adapt the following practice for constant names: constants denoting
individuals (individual constants and operations) are given names beginning
with a capital letter, followed by lower case. Other constants, including pred-
icates, are given names all in upper case.

Operations serving as arguments to predicates are included in the defi-
nition of functional application given in the preceding section: that is, the
argument to a function of type <a,b> may be an meaningful expression of
type ‘a’. This includes operations as well as variables and constants. For in-
stance, in the above example,

John ∈ MEe

Father ∈ ME<e,e>

ITALIAN ∈ ME<e,v>

so that, by functional application,

Father(John) ∈ MEe

ITALIAN(Father(John)) ∈ MEv

(The quantifiers ∀ and ∃ as well as the lambda operator, λ, are confined by
definition to variables only.) Note that by combining an operation with a
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predicate of equality we can define a corresponding predicate:

FATHER(x,y) ::= ( y=Father(x) )

A new operator, the so-called descriptive or iota operator, IOTA, allows
making definitions in the other direction. This operator has the following
syntactic and semantic rules:

Syn. If Φ ∈ ME<a,v> and µ is a variable of type a, then ιµΦ ∈ MEa.

Sem. For Φ ∈ ME<a,v> and µ is a variable of type a, if for some constant, c,
DenM,g(∀µ[Φ(µ)↔ µ = c]) = True, then DenM,g(ιµΦµ) = c.

Note that by this definition, the expression ιµΦµ has a denotation only if
Φ is true of just one individual; otherwise, if Φ is true of no individuals or
more than one individual, the denotation of ιµΦµ is undefined. Expressions
of the form “ιµΦµ” are read “the unique µ such that Φ”. ι is thus an oper-
ation forming operator. For example, the earlier operation Father(x), could
be formed from the predicate FATHER(x,y) as follows:

λxFather(x) ::= λxιyFATHER(x,y)

Comment: By way of comparison, ιµΦµ denotes the set (or rather character-
istic function thereof) of individuals satisfying Φ. This may, coincidentally,
be a set with only one element (characteristic function with only one domain
value mapping to True), or indeed it may be the null set. The expression
ιµΦµ , on the other hand, denotes a single individual if it denotes at all.

7 Summary of the Language Lv

The language Lv incorporates the features discussed thus far (see also Dowty
[Dow78, pages 46–54]).

7.1 Syntax of Lv

The set of types of Lv is the set defined as follows:

(1) e is a type
(2) v is a type
(3) if a and b are any types, then <a, b> is a type.

The basic expressions of Lv consist of:
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(1) for each type, a, the set of (non-logical) constants of type a, denoted Cona.
Names for particular constants follow the conventions defined earlier: all con-
stant names begin with a capital letter. Names of constants which refer to
entities, have the remainder spelled in lower case; all other constants have
names spelled entirely in upper case.

(2) for each type, a, the set of variables of type a, denoted Vara (Names for
variables are as before; that is, lower case letters with an optional numeric
subscript.)

(3) for each type, a, the set of terms of type a, denoted Terma, are defined
recursively as follows:

— if α ∈ Cona then α ∈ Terma

— if α ∈ Vara then α ∈ Terma

— if β1, . . . , βn are terms of type x1, . . . , xn respectively and Φ is an op-
eration of type <x1, . . . , <xn, a>> then Φ(β1, . . . , βn) ∈ Terma.

— if µ ∈ Vara and Φ ∈ ME<a,t> whose only unbound variable is µ, then
ιµΦ ∈ Terma.

Formation Rules of Lv The set of meaningful expressions of type, a, denoted
MEa, for any type, a, (the well formed expressions for each type) is defined
recursively as follows:
1. For each type, a, every variable and constant of type, a, is in MEa.
2. If α ∈ ME<a,b> and β ∈ MEa then α(β) ∈ MEb.
3. If α ∈ MEa and µ is a variable of type, b, then λµα ∈ ME<a,b>.
4. If α and β are terms of type, a, then [α = β] ∈ MEv.
5. If Φ ∈ ME<a,v> and µ ∈ Vara, then ιµΦ ∈ MEa.

6-10. If Φ and Ψ are in MEv, then so are:
6. [¬Φ]
7. [Φ&Ψ ]
8. [Φ ∨ Ψ ]
9. [Φ→ Ψ ]
10.[Φ↔ Ψ ]

11-12. If Φ ∈ MEv and µ is a variable (of any type) then
11. [∀µΦ] ∈ MEv

12. [∃µΦ] ∈ MEv

7.2 Semantics of Lv

Given a non-empty set D (the domain of individuals or entities), the set of
possible denotation of meaningful expressions of type, a, (abbreviated Da) is
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given by the following recursive definition

(1) De = D
(2) DV = {True, False}
(3) D<a,b> = DbDa

for any types a and b.

(The notation of the form YX is the set of all possible functions from the set
X into the set Y .) A model for Lv is an ordered pair <D, F> such that D is
as above and F is a function assigning a denotation to each constant of Lv

of type, a, from the set Da. An assignment of values to variables (or simply
a variable assignment) g is a function assigning to each variable µ ∈ Vara

denotation from the set Da, for each type, a. The denotation of an expression
α of Lv relative to a model M and variable assignment g is defined recursively
as follows:

1. If α is a constant, then DenM,g(α) = F(α).

2. If α is a variable then DenM,g(α) = g(α).

3. If α ∈ ME<a,b> and β ∈ MEa, then
DenM,g(α(β)) = DenM,g(α)(DenM,g(β)).

(That is, the result of applying the function DenM,g(α) to the argument
DenM,g(β)).

4. If α ∈ MEa and µ ∈ Varb , then DenM,g(λµα) is that function, h, from Db

into Da such that for all objects, k, in Db, h(k) is equal to DenM,g, where
g’ is that variable assignment exactly like g except for the possible difference
that g’(µ) = k.

5. If α and β are terms of type, a, then DenM,g(α = β) = True if and only
if DenM,g(α) is the same as DenM,g(β).

6. For Φ = ME<a,t> and µ ∈ Vara , if for some constant, c, DenM,g∀µ[Φµ↔
µ = c] = True, then DenM,g(ιµΦµ) = c. (Otherwise the expression ιµΦµ has
no denotation defined.)

7-11. For Φ and Ψ in MEv:

7. DenM,g(¬Φ) = True if and only if DenM,g(Φ) = False;

8. DenM,g(Φ&Ψ) = True if and only if DenM,g(Φ) = True and DenM,g(Ψ) =
True;
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9. DenM,g(Φ ∨ Ψ) = True if and only if either DenM,g(Φ) = True or
DenM,g(Ψ) = True;

10. DenM,g(Φ → Ψ) = True if and only if either DenM,g(Φ) = False or
DenM,g(Ψ) = True;

11. DenM,g(Φ↔ Ψ) = True if and only if either (a.) DenM,g(Φ) = True and
DenM,g(Ψ) = True or (b.) DenM,g(Φ) = False and DenM,g(Ψ) = False ;

12. If Φ is a formula and µ is a variable, then DenM,g(∀µΦ) = True if and
only if for every value assignment g’ such that g’ is exactly like g except
possibly for the individual assignment of µ by g’, DenM,g′(Φ) = True.

13. If Φ is a formula and µ is a variable then DenM,g(∃µΦ) = True if and
only if there is some value assignment, g’, such that g’ is exactly like g except
possibly for the value assigned to µ by g’ and Den′

M,g(Φ) = True.

8 Character Strings, Labels

We now introduce a new elementary type, called a character string, abbre-
viated by the type name, c. The set of types (Type) is therefore extended as
follows:

e is a type
c is a type
v is a type
if x and y are types, then <x,y> is a type.

The set of elementary characters is the set Char where

Char = {A, B, . . . , Z, 0, 1, . . . , 9, ., -}

This character set is sufficient for our purposes here. It can be extended as
needed to include e.g., lower case letters, special character markings such as
accents, circumflex, cedilla, tilde, or completely different alphabets such as
Cyrillic or Greek.

The set C of character strings is the set of n-place relations defined on
Char, i.e.

C =
⋃∞

n=1 Charn

where Charn is Char X Char X Char . . . n times. A character string con-
stant is therefore an n tuple, <α1, α2, . . . , αn> where α1 ∈ C, . . ., αn ∈ C.
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This will henceforth be abbreviated,

“α1α2 . . . αn”

i.e. a character string constant is a string of characters from the above set C
listed between double quotes.

Various computer languages, such as SNOBOL, provide a rich vocabu-
lary of predicates and operations on strings. Here we make use of only the
bare minimum of such a vocabulary, namely predicate of equality which is
defined for all types in the calculus. Again this could be extended as needed
for diverse applications. Here the principle interest in character strings is
with operations of the form <e,c>. This is a mapping from an entity to a
character string, what we will call a label. Examples of labels are:

Last-Name(x) = “SMITH”
First-Name(y) = “JOHN”
Corp-Name(z) = “GENERAL MOTORS”
Vehicle-Number(a) = “N33E76”
Social-Security-Number(b) = “474-52-4829”

As is probably evident from these examples, a label is an association of a
character string with an individual for identification purpose only. Labels may
or may not provide unique identification, as the above examples illustrate.

9 Numbers and Measurement

Another elementary type is now added, that of numbers, which we take to be
the real numbers. The set of numbers is designated as N , and the elementary
type, number, is abbreviated n. The set of types is now extended as follows:

e is a type
c is a type
n is a type
v is a type
if x and y are types, then <x,y> is a type.

Numeric constants are denoted in the common way as a string of Arabic
digits, with an optional imbedded decimal point and an optional leading sign,
e.g., 0, 1.2, -3.7. The one-place predicate INT (i.e. of type <n,v>, designates
the set of integers. As for all types, the predicate “=” is assumed. Further, a
linear ordering, indicated by the predicate “<” is assumed. Based on these,
plus negation, the other numeric inequalities are easily derived. The notation
is as follows, for α and β terms of type n:

α = β α equals β
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α < β α less than β
α ≤ β α less than or equal to β
α > β α greater than β
α = β α greater than or equal to β
α �= β α not equal to β

These predicates are all of type <n, <n,v>> The following operations, of
type <n, <n,n>> are also assumed. For α and β terms of type n:

α+ β addition
α− β subtraction
α ∗ β multiplication
α/β division
α ∗ ∗β exponentiation

Our principle interest in numbers in CANDID is as they are related to enti-
ties (and later, times). An operation of type <x,t>, where is a term of type
e, is called a measurement function, that is, it is a mapping from the entities
to the numbers (or a subset thereof). For instance,

Height-In-Meters(x) = 6.5

indicates that x is 6.5 meters tall. In the theory of measurement, a measure-
ment is generally taken to include a so-called measurement operation and
a measurement standard. Measurement standards are the sorts of objects
maintained by for instance the National Bureau of Standards in Washington,
D.C., which have some special property against which other objects are to
be gauged. Thus a particular rod is regarded as the standard meter for the
country. (A more picturesque example: the roundish stone on the front of
St. Stephan’s cathedral in the center square of Vienna was used in medieval
times as a standard for the size of a load of bread.)

A measurement operation is the procedure by which another object is
compared to the standard. This procedure may be direct, e.g., by aligning
the object against the standard meter, or indirect, through the use of in-
termediating measurement devices (rulers, measuring tapes, etc.) which are
ultimately compared to the standard.

In the formal language, a measurement operation is regarded as a (for-
mal) operation, which a measurement standard is an individual constant. For
instance, we may modify the last example to be:

Height(x, Meter) = 6.5

Here, Height is a measurement operation and Meter is an individual, which
serves as a measurement standard. Note that measurement operations are nu-
meric terms and thus may appear as arguments to other numeric predicates
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and operations. For example, to assert measurement unit convertibility from
inches to centimeters:

∀xHeight(x, Cm) = 2.54 ∗Height(x, Inch)

where Cm and Inch are measurement standards.

10 Time, Realization, Change

Time Individuals. Another elementary type is now added, consisting of ele-
mentary points in time. The set of times (past, present, and future) is denoted
T , and its corresponding type, t. The set of types is thus extended as follows:

e is a type
c is a type
n is a type
t is a type
v is a type
if x and y are types, then <x,y> is a type.

Equality, “=” and “<”, a linear ordering, are assumed as predicates on T.
With the aid of negation and disjunction, other temporal relations are defined
in a straightforward way. If α and β are terms of type t, these have the
following interpretation:

α = β α is the same time (point) as β
α < β α is earlier than β
α ≤ β α is earlier than or equal to β
α > β α is later than β
α = β α is later than or equal to β
α �= β α not equal to β

Lastly, the predicate NEXT, indicates adjacent point in time:

NEXT(α, β) ::= (α < β)&
∀µ((µ �= α)&(µ �= β)→ ¬(α < µ < β))

In many cases, our interest is not with points in time, but rather time in-
tervals or spans. A time span is the set of points between and including two
time points. This is provided by the operation Span, of type <t <t, <t,v>>>:

Span ::= λxλyλz[(z ≥ x)(z ≤ y)]

For type time points, α and β,
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Span(α)(β)

is the set (technically, characteristic function) of points between and includ-
ing these two points. Further, for a third time point, γ,

Span(α)(β)(γ)

evaluates True or False depending whether γ is between α and β or not.
(Note: as we have defined it, Span can also be used to select an interval of
numbers.) Conversely, it is often convenient to go in the opposite direction
to obtain the beginning and end points of a time span:

Beg ::= λxιy∃z[x = Span(y, z)]
End ::= λx∃yιz[x = Span(y, z)]

Thus, for a time span α, Beg(α) is its beginning point; End(α) is its ending
point. It is also occasionally useful to express that one time span is contained
within another. We call this PT (for part):

PT ::= λxλy[Beg(x) ≥ BEG(y)&End(x) ≤ End(y)]

Thus for two time spans α and β, PT(α) (β) says that β begins after α be-
gins and ends before α ends. As noted, Span(α)(β) results (maps to) a set
of time points of type <t,v>. Many of these time spans have familiar labels,
as provided by the Gregorian calendar, e.g., 28 February, 2001, and 20 July
2004 are two individual day time spans, February, 2001, and July 2004 are
two individual month time spans, and 2001 and 2004 are two individual year
time spans. Reference to the time span constants labeled by the Gregorian
calendar will be provided by three operations:

Date of type <n, <n, <n <t, v>>>>
Mo of type <n, <n <t, v>>>
Yr of type <n <t, v>>

That is, each of these maps (three, two or one) numbers to time spans, where
months are specified by an integer 1-12. Thus the operation Date imitates
the informal notation, e.g., 28.2.2001. The time span (individuals) mentioned
above would thus be referenced as:

Date(28, 2, 2001)
Date(10, 7, 2004)
Mo(2, 2001)
Mo(7, 2004)
Yr(2001)
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Yr(2004)

Further, we often want to apply numeric measurement to time spans. For
this we use the measurement operation Dur (for duration). Thus for a time
span α, a temporal measurement standard β and a number γ,

Dur(α, β) = γ

is read that the duration of α in terms of β is γ. The choice of measurement
standards is however somewhat problematic in the case of time spans. Stan-
dards such as Second, Minute and Hour pose no particular problems since
these are precisely determined based on a particular physical phenomenon
(e.g., movement of a standard pendulum, molecular vibrations of quartz crys-
tals). Generally for commercial purposes however, we have need of larger size
units, e.g., days, months, years. Following the procedure recommended ear-
lier, suppose we chose one particular month to serve as our standard, say
January, 2001. Then, the duration of year, e.g., 2003, in terms of this stan-
dard month would be:

Dur(Yr(2003), Mo(1, 2001)) = 11.77.

If, however, we take the next month as our standard, February, 2001, we
would have:

Dur(Yr(2003), Mo(2, 2001)) = 13.04.

Neither of these accords with the popular usage that a year comprises twelve
months. A similar, though slightly less serious problem arises in the choice
of a standard year, since leap years do not have the same number of days as
other years. Indeed, even the choice of a standard day has potential difficul-
ties, since the length of the last day in a century is slightly longer than the
rest. This however seems to be a tolerable level of inaccuracy. Thus, we may
take as our standard, call it Day, any of the non-end-of-the-century days or
equivalently, define it in terms of standard hours, minutes or seconds. Thus,
for example,

Dur(Mo(1, 2001), Day) = 31.
Dur(Mo(2, 2001), Day) = 28.
Dur(Date(1,1, 2001), Day) = 1.

Temporal Realization We next consider the association of times to entities.
For this we adopt a notation suggested by Rescher and Urquhart3 where for

3 [RU71]



120 Ronald M. Lee

a time point, α, and a formula Φ,

R(α)Φ

is read that Φ is “realized” at time α. That is, if Φ is the formula “it is rain-
ing”, this expression would be true at certain times, false at others. Including
this in the formal language would obviously require a syntactic rule like:

Syn. If α is a term of type t, and Φ ∈ MEv, then R(α)Φ is in MEv.

However, the inclusion of the R operator will lead us to revise our semantic
format somewhat. Like character strings and numbers, time points are merely
another sort added to the object language. Viewed this way, the R operator
is simply a functional application, i.e.,

R(α)Φ ::= Φ(α)

(This would of course assume that a variable ranging over time points was
lambda abstracted within Φ.) However, in order to make various needed dis-
criminations in the semantic rules, we prefer to take a different tack: in ad-
ditional to including time in the object language, we will also include it in
the meta-language. That is to say, time is not only another sort or type
within the object language, but will also figure as an additional dimension on
which the denotation depends in the meta-language. Or, one may regard it as
though there were actually two times involved: those referred to within the
expression, and the time of the expression itself. In order to make the sepa-
ration clear, we will use variables beginning with “t” in the object language
to stand for times. In the meta-language we will indicate times as “j”. (This
latter maintains a notational convention begun by Montague.) Thus, where
we former wrote DenM,gΦ, we will now write DenM,j,gΦ, The semantic rule
for R is therefore as follows:

Sem. For α a term of type t, and Φ ∈ MEv, DenM,j,gR(α)Φ = True if and
only if for some j′ , α = j′ and j′ < j, DenM,j′,gΦ = True.

Some explanation might be in order. Here, and henceforth, j will be the
time when the expression in question is interpreted, i.e. when the denotation
is evaluated (in computer terms, the time when the database is queried).
R(α)Φ is true at this time if and only if Φ is true at some earlier time, α.
Note that if α refers to some future time, i.e. α > j, then the denotation of
the expression R(α)Φ remains undefined by this semantic rule. Several fur-
ther realization operators will prove useful. They are defined as follows. For
a time span α, and a formula Φ:
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RT (α)Φ ::= ∀tα(t)→ R(t)Φ

Reading: Φ is “realized throughout” time span α. Note: since time spans were
defined as characteristic functions, the expression “α(t)” evaluates True if
time point t is in α.

RD(α)Φ ::= ∃µ[PT (µ, α)&RT (µ)Φ]

Reading: Φ is “realized during” time span α, i.e. it is realized throughout
some sub-interval of α. For a time point, γ, and a formula Φ,

RB(γ)Φ ::= ∃µ[(µ <= γ)&(R(µ)Φ)]

Reading: Φ is “realized before” time γ; there is some other time µ earlier
than γ when Φ is realized.

Change. The above realization operators are “state oriented”, i.e. they in-
dicate something to be true at a particular point or span of time. Another
construct will allow us to describe change. One could describe change using
the above constructs, e.g.,

∃t0∃t1NEXT(t0, t1)&R(t0)Φ&R(t1)Ψ

where t0 and t1 are succeeding moments in time. However, often we will want
to describe changes generically, without reference to the specific time when
it is occurred. For this we adopt a notation of Von Wright [VW65], where

(α T β)

is read “α and then β”. Here in CANDID, this will be defined essentially as
a lambda abstraction on the preceding formula:

(α T β) ::= λt0∃t1NEXT(t0, t1)&α(T0)&β(t1).

It will be remembered that the set D was defined as consisting of physical
objects existing in the past or present. However, it is often necessary to in-
dicate just when a particular object exists. For that we need to adopt the
predicate,

EXISTS(µ)

With the aid of the preceding realization operators, we can indicate whether
an object existed at a particular time, e.g.
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RT(YR(2000))EXISTS(John)

indicates that John existed throughout the year 2000 (he may have existed
at other times as well). Birth and death are designated respectively as

BIRTH(x) ::= ¬EXISTS(x) T EXISTS(x)
DEATH(x) ::= EXISTS(x) T ¬EXISTS(x)

One may question how this differs from the existential quantifier, ∃, which
is sometimes read as “there exists”. Rescher and Urquhart4 offer the inter-
pretation that the predicate, ∃, is one of “temporal existence”. In our case
this is merely a question of convenient readings of the two symbols. The ex-
istential quantifier refers to the inclusion of some individual in the model
(domain of individuals). The existence predicate EXISTS, however, refers to
the relationship between this individual and points or spans of time.

11 Possible Worlds, Intensions

In the last section, we generalized the notion of denotation to depend not
only on the model M = <D, C, N, T, F> and an assignment of values to
variables, g, but also on the location of the expression in a time dimension. In
this section we generalize one final time on the notion of denotation, making
it in addition dependent on its location in a so-called possible world. This con-
cept has had a rich and not uncontroversial recent history in logic, philosophy
and linguistics. The early Wittgenstein [Wit21] saw this as the key to the for-
malization of natural languages. Later in life, after an immense following was
pursuing his earlier work, he reversed this claim [Wit58]. Kripke [Kri63] used
the concept of possible world to create a formal semantics for modal logic.
On the one hand, mathematical logicians, e.g., Chang and Keisler [CK73],
Kalish et al. [KMM80], equate the notion with a model for a formal language
(at least at the level of first order languages). On the other hand, linguists
and philosophers, e.g., Cresswell [Cre73] and Rescher [Res75], seem to regard
possible worlds more broadly, as a sort of gedanken experiment, not limited
by the vocabulary of the language.

Our usage of possible worlds here will be more on the mathematical side,
i.e. that a possible world is an alternative model. Following Montague’s nota-
tion, the collection of possible worlds will be designated by the set W, whose
individuals are written as i, i′, etc. in the meta-language. Apart from the
model M and assignment g, the denotation of an expression therefore de-
pends on its location in a possible world, i, and a time, j. The pair, <i, j>,
is called an index.

In the previous formal summary, of the language Lt, the model consisted
of the domain, D, of individual entities, and F an interpretation function on D
4 [RU71]
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interpreting the predicate and operation constants as relations and functions
on D. Since then, we added the additional sets C (Character strings), N
(numbers) and T (times) to the model. Our use of character strings and
numbers was essentially an alternative to introducing more predicate names,
e.g., Height(x) = 20 might be viewed as an abbreviation of HEIGHT-IS-20(x)
and Last-Name(x) = “SMITH” might abbreviate LAST-NAME-SMITH(x).

Time, on the other hand, introduced a dimension on which the truth
value denotations of an expression depended. That is, for an expression Φ,
DenM,j,gΦ = True or False depending, inter alia, on the time j. Here M =
<D, C, N, T, F>. The only one of these sets that varies with time is D,
that is, the set of individuals existing at or before time j. Correspondingly,
the interpretation function, F, will also depend on the time, j, since while F
includes relations in all the sets, the relations involved in D will vary. Thus,
it is essentially only the pair <D,F> that vary with j. Here the changes in
<D,F> as j increases might be viewed as all “due to natural causes”, that is,
individuals are born and dies; and single individuals change their properties.

The aspects of the model that vary between different possible worlds are
also confined to the pair <D,F>. Here, however, the differences in <D, F>
between one possible world and another are arbitrary. (There is no notion of
adjacency between possible worlds as there is with times, since worlds are not
ordered under “<”, hence there is no basis for graduating differences.) Indeed,
while we will continue to discuss the pair <D,F> as depending on a possible
world i, though in an arbitrary way, in fact a possible world is equivalent
to some arbitrarily chosen domain and interpretation function, that is, some
<D’, F’>. Thus, possible worlds and points in time determine a coordinate
system on which <D,F> depends. Graphically, we might represent this for
two possible worlds, i1, and i2, and three times, j1, j2, and j3, as shown in
Figure 1.

The purpose, to Montague, of this device is to explicitly represent what
philosophers call the intension (spelled with an “s”) of an expression. (Thus
Montague’s calculus is called “Intensional Logic”). Very briefly, it has long
been recognized that the usual concept of denotation is insufficient to cap-
ture what we consider its complete meaning. (In informal usage, this residual
part of meaning is often called its connotation. Intension and extension, as
used here, are more technical terms corresponding to connotation and de-
notation, respectively.) Frege [Fre93] captured the problem succinctly in his
famous example of Morning Star and Evening Star: the two phrases denote
the same thing, but they have somewhat different uses, hence different con-
notations or intensions. More to the point of our interests is the problem of so
called opaque contexts. In English, these appear with such verbs as “believe”,
“think”, “imagine”, etc. followed by the relative pronoun “that”. (In Latin
based languages these are the class of subjunctive constructions.) Consider
the following example. Let
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Fig. 1. Coordinate System of Possible Worlds and Times

P = “the world is flat”

Q = “the moon is made of green cheese”

Suppose that an individual, John, believes P, i.e.

BELIEVES(John, P).

The problem is that this would lead us to infer:

BELIEVES(John, Q).

Since P and Q denote the same thing, namely False. However, we intuitively
find it unacceptable to infer that if someone believes one false thing, he/she
then believes every false thing. As relates to the applications of CANDID,
this same problem of opaque contexts arises in all types of commercial and
financial contracts: if someone contracts to do some thing, we do not want
to infer that they are obliged to do every thing. The mechanism that Mon-
tague proposes to avoid this is his intension operator,

∧
. Effectively, this

operates as an implicit lambda abstraction on indices (possible world, point-
in-time pairs). For instance, Φ ∈ MEv,

∧
Φ refers to the set of tuples of the

form <<i,j>, v>, i.e. evaluating the proposition Φ at every index. Cresswell
[Cre73, pages 23–4] offers an intuitive motivation of what this provides:

If we think for a moment of the job a proposition has to do we see
that it must be something which can be true or false, not only in
the actual world, but in each possible world. Suppose for the moment
that we could “show” a person all possible worlds in turn. This is of



CANDID Specification, Part I: Syntax & Formal Semantics of CANDID 125

course impossible, but try to imagine it anyway. We want to know
whether two people are thinking of the same proposition. So we ask
them, as we show them each (complete) possible world. “Would the
proposition you are think of be true if that was the way things were?”
If their answers agree for every possible world, there is at least the
temptation to suppose that they have the same proposition in mind.
Or to put it another way, if the set of worlds to which A says “yes”
is the same as the set of worlds to which B says “yes” we can say
that A and B have the same proposition in mind. So why not simply
identify the proposition with the set of worlds in question? As a first
approximation, therefore, we shall say that a proposition is a set of
possible worlds.

Thus, we reference to our previous example, we would avoid the erroneous
substitution by writing:

BELIEVES(John,
∧
P ).

Since there are conceivable possible worlds in which P is true and Q false,
or vice versa,

∧
P �= ∧

Q, even though both P and Q are false in the actual
world. The converse of the intension operator is written “

∨
”; that is,

∨
Φ is

the application of the intension Φ to the actual world. Hence,

∨
[
∧
Φ] = Φ.

This latter notation will however be of lesser importance for our applications.
As seen in the above discussion, intension and extension are inter-related

concepts. Further, extension corresponds to what we have heretofore called
denotation. In keeping with the terminology of Montague (and Dowty), we
will switch to the abbreviation “Ext” (for extension) rather than “Den” in the
semantic rules. Correspondingly, the new abbreviation, “In” (for intension)
will be introduced. Let us now summarize the formal language as it stands
thus far.

12 Summary of the Language IL

Corresponding to each type, a, the intension of that type will be a new type,
written <s, a> (where s stands for “sense” – Frege’s original term for “in-
tension”, which was introduced by Carnap.) The “s” may be read as an
abbreviation for the <i,j>. Hence <s, a> abbreviates <<i,j>, a>. The set
of types (i.e. Type) is defined recursively as follows:

v is a type
e is a type
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c is a type
n is a type
t is a type
If a and b are types, then <a,b> is a type.
If a is any type, then <s,a> is a type.

The basic expressions of IL consist of:

1) For each type a, the set of constants of type a denoted Cona. (Names for
particular constants follow the conventions described earlier.)

2) For each type, a, the set of variables of type a, denoted Vara. (Names for
variables follow the conventions described earlier.)

3) For each type a, the set of terms of type a denoted Terma, defined recur-
sively as follows:

— if α ∈ Cona then α ∈ Terma

— if α ∈ Vara then α ∈ Terma

— if β1, . . . , βn are terms of types x1, . . . , xn

respectively and Φ is an operation of type
<x1, . . ., <xn, a>>
then Φ(β1, . . . , βn) ∈ Terma.

— if µ ∈ Vara and Φ ∈ ME<a,t>, whose only unbound variable is µ, then
ιµΦ ∈ Terma.

The set of meaningful expressions of type a, denoted MEa, is defined recur-
sively as follows:

SynIL 1: Every term of type a is in MEa

SynIL 2: If α ∈ ME<a,b> and β ∈ MEa, then α(β) ∈ MEb.
SynIL 3: If α ∈ MEa and µ is a variable of type b, then λµα ∈ ME<b,a>

SynIL 4: If α and β are both in MEa, then α = β ∈ MEv.
SynIL 5: If Φ ∈ MEv and µ ∈ Vara then ιµΦ ∈ MEa

SynIL6-10: If Φ and Ψ are in MEv, then so are:
SynIL 6: ¬Φ
SynIL 7: Φ & Ψ
SynIL 8: Φ ∨ Ψ
SynIL 9: Φ→ Ψ
SynIL 10: Φ↔ Ψ

SynIL 11-12: If Φ ∈ MEv and µ is a variable of any type, then
SynIL 11: ∀µΦ ∈ MEv
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SynIL 12: ∃µΦ ∈ MEv

SynIL 13: if µ ∈ Vart and Φ ∈ MEv then RµΦ ∈ MEv

SynIL 14: If Φ and Ψ are in MEv, then Φ T Ψ ∈ MEv

SynIL 15: If Φ ∈ MEv, then
∧

[Φ] ∈ ME<s,v>

SynIL 16: If Φ ∈ ME<s,v>, then
∨
Φ ∈ MEv

12.1 Semantics of IL

A model for IL is an ordered tuple M = <D, C, N, T, W, F > where D, C,
N, T and W are non-empty sets, that assign an appropriate denotation to
each (non-logical) constant of IL relative to each pair <i,j>, for i ∈ W and j
∈ T. Thus “F (<i, j>, α) = γ” asserts that the denotation of the constant α
in the possible world i at time j is the object γ.)) The set of possible denota-
tions of type a, writtenDa, is defined as follows (where a and b are any types):

De = D
Dc = C
Dn = N
Dt = T
Dv = {True, False}
D<a,b> = DbDa
D<s,a> = DaWxT

(where WxT is the set of all world, time point pairs, i.e. the set of all indices
<i,j>).

12.2 Semantic Rules

SemIL 1: If α is a non-logical constant, then ExtM,i,j,g(α) = F (α)(¡i,j¿).
(That is, the extension of α at <i, j> is simply the result of applying the
intension of α, which is supplied by F, to <i, j>).

SemIL 2: If α is a variable, then ExtM,i,j,g(α) = g(α).

SemIL 3: If α ∈ ME<a, b> and µ is a variable of type b, then ExtM,i,j,g

(λµα) is that function h with domain Db such that for any object x in that
domain, h(x) = ExtM,i,j,g′(α), where g′ is that value assignment exactly like
g with the possible difference that g′(u) is the object x.

SemIL 4: If α ∈ Ext<a,b> and β ∈ MEa, then ExtM,i,j,g(α(β)) is
ExtM,i,j,g(α)(ExtM,i,j,g(β)) (i.e., the result of applying the function
ExtM,i,j,g(α) to the argument ExtM,i,j,g(β)).
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SemIL 5: If α and β are in MEa, then ExtM,i,j,g(α = β) is True if and only
if ExtM,i,j,g(α) is the same as ExtM,i,j,g(β).

SemIL 6: If Φ ∈ MEv, then ExtM,i,j,g(¬Φ) is True if and only if ExtM,i,j,g(Φ)
is False, and ExtM,i,j,g(¬Φ) is False otherwise.

SemIL 7: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ&Ψ ] is True if and only
if both ExtM,i,j,g(Φ) and ExtM,i,j,g(Ψ) are True.

SemIL 8: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ ∨ Ψ ] is True if and only
if either ExtM,i,j,g(Φ) is True or ExtM,i,j,g(Ψ) is True.

SemIL 9: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ→ Ψ ] is True if and only
if either ExtM,i,j,g(Φ) is False or ExtM,i,j,g(Ψ) is True.

SemIL 10: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ ↔ Ψ ] = True if and
only if either both ExtM,i,j,g(Φ) and ExtM,i,j,g(Ψ) are both True or both
False.

SemIL 11: If Φ ∈ MEv and µ is a variable of type e, then ExtM,i,j,g(∀µΦ) =
True if and only if ExtM,i,j,g′(Φ) = True for all value assignments g’ exactly
like g except possibly for the value assigned to µ.

SemIL 12: If Φ ∈ MEv and µ is a variable of type e, then ExtM,i,j,g(∃µΦ) =
True if and only if ExtM,i,j,g(Φ) = True for some value assignment g’ exactly
like g except possibly for the value assigned to µ.

SemIL 13: For α a term of type t, and Φ ∈ MEv, then ExtM,i,j,g[RαΦ] =
True if and only if for time j′ = F (α), and j′ < j, ExtM,i,j′,g[Φ] = True.

SemIL 14:. If Φ and Ψ are in MEv, then ExtM,i,j,g(Φ T Ψ) is True if and
only if ExtM,i,j,g(Φ) is True and ExtM,i,j′,g(Ψ) is True for the unique j′

such that j < j′ and for all j′′, either not j < j′′ < j′ or j′′ = j′.

SemIL 15: If α ∈ MEα, then ExtM,i,j,g(
∧
α) is that function h with domain

WxT such that for all <i’, j’> in WxT, h(<i’, j’>) is ExtM,i′,j′,g(α).

SemIL 16: If α ∈ MEs,a, then ExtM,i,j,g(
∨
α) is ExtM,i,j,g(α) = (<i,j>) (i.e.,

the result of applying the function ExtM,i,j,g(α), to the argument <i, j>).

Additional Primitive and Derived Predicates and Operations

For Domain C (character strings) None
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For Domain N (numbers)

1. type: <n, <n, v>>
[α < β] primitive
[α ≤ β] ::= [α < β] ∨ [α = β]
[α > β] ::= ¬[α ≤ β]
[α ≥ β] ::= [α > β] ∨ [α = β]
[α �= β] ::= ¬[α = β]

2. type: <n, <n, n>>
[α+ β] primitive
[α− β] primitive
[α/β] primitive
[α ∗ β] primitive
[α ∗ ∗β] primitive

For Domain T (times)

1. type: <t, <t, v>>
[α < β] primitive
[α ≤ β] ::= [α < β] ∨ [α = β]
[α > β] ::= ¬[α ≤ β]
[α ≥ β] ::= [α > β] ∨ [α = β]
[α �= β] ::= ¬[α = β]
NEXT(α, β) ::= (α < β)&∀t[(t �= α)&(t �= β)→ ¬[α < t < β]]

2. type: <t, <t, <t, v>>>
Span ::= λxλyλz[z ≥ x&z ≤ y]

3. type: <<t, v>, t>
Beg ::= λxιy∃z[x = Span(y, z)]
End ::= λxιz∃y[x = Span(y, z)]

4. type: <<t, v>, v>
PT ::= λxλy[(Beg(x) ≥ Beg(y))&(End(x) ≤ End(y))]

5. type: <n, <n, <n, <, v>>>>
Date(α, β, γ) (primitive)

6. type: <n, <n, <t, v>>>
Mo(α, β) (primitive)

7. type: <n, <t, v>>
Yr(α) (primitive)

8. type: <<t, v>, n>
Dur(α, β) (primitive)

9. type: t
Day (primitive, measurement standard individual)
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10. type: <<t, v>, <v, v>>
RT (α)Φ ::= ∀t(t ∈ α)→ R(t)Φ
RD(α)Φ ::= ∃µ(PT (µ, α)&R(t)Φ

11. type: <t,<v, v>>
RB(γ)Φ ::= ∃µ[(µ ≤ γ)&RD(Span(γ, µ))Φ]

13 Action

Earlier, the connective T, a construct due to Von Wright [VW65], was in-
troduced in order to describe generic changes. We now follow Von Wright’s
development further to obtain a description of actions. Von Wright intro-
duces another connective, I, with a syntax like that of T :

Syn. If Φ and Ψ are in MEv, then Φ I Ψ ∈ MEv.

This connective has the reading “instead of”. Its effect is that, due to the
intercession of some agent, Φ is true instead of Ψ being true. As Von Wright
points out, I serves to coordinate two possible worlds. Interpreting Von
Wright’s sense for I in the Montague framework developed it so far, we have:

Sem. For Φ and Ψ in MEv, then ExtM,i,j,g(Φ I Ψ) = True if and only if
Extm,i,j,g(Φ) = True and Extm,i′,j,g(Ψ) = True for some i′ just like i except
that i′ lacks the interference of some agent.

We extend Von Wright’s notion slightly by adding a place in the connective
I which specifies the agent. Thus,

Syn. If Φ and Ψ are in MEv, and α is a term of type e, then [Φ( Iα)Ψ ] ∈ MEv.

The corresponding semantic rule is as follows:

Sem’. For Φ and Ψ in MEv , and α is a term of type e, then
ExtM,i,j,g(Φ( Iα)Ψ) = True if and only if
Extm,i,j,g(Φ) = True and Extm,i′,j,g(Ψ) = True
for some i′ just like i except that i′ lacks the interference of agent α.

This concept of “interference” is admittedly rather uncomfortable. If we com-
pare the models <D,F> and <D’, F’> of i and i′ respectively, what is dif-
ferent about them? Precisely that Φ is true in the first, and Ψ is true in the
second. This is the interference. The I connective combines with T to form
what Von Wright calls “TI expressions”. It is these expressions that are used
to express actions; that is,
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α T (β I µγ)

is read: α is true and then β is true instead of γ due to the interference of µ.
For instance, if the action is for John to open a window, we would have:

CLOSED(Window) T (OPEN(Window) I(John) CLOSED(Window))

i.e., the window was closed and then it was open instead of remaining closed
due to the interference of John.

14 Modals, Deontic Operators

Montague’s Intensional Logic includes the modal operators ♦ and �, for pos-
sibility and necessity, respectively, by means of the following syntactic and
semantic rules:

Syn. 1. If Phi ∈ MEV the ♦Φ ∈ MEv.

Syn. 2. If Phi ∈ MEV then �Φ ∈ MEv.

Sem. 1. For Phi ∈ MEv

ExtM,i,j,g(♦Φ) = True if and only if
ExtM,i′,j′,g(Phi) = True for some i’ in W and some j’ in T.

Sem. 2. For Phi ∈ MEv

ExtM,i,j,g(�Φ) = True if and only if
ExtM,i′,j′,g(Phi) = True for all i’ in W and all j’ in T.

Thus, ♦Φ indicates that Φ is possibly true, i.e. that it is true in some possible
world at some time. Correspondingly, �Φ indicates that Φ is necessarily true,
i.e. true in all possible worlds at all times. Either one of these rules could have
been omitted, recognizing that the two concepts are inter-definable as logical
duals:

�Φ ::= ¬♦¬Φ

or

♦Φ ::= ¬�¬Φ

(This follows from the inter-definability of the quantifiers ∀ and ∃, implicit
in the semantic interpretation of these operators.) Von Wright points out
that this is only one version of necessity (or possibility), when he calls logical
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necessity (or logical possibility). If �Φ then Φ is true by virtue of the in-
teraction of the truth assignments of its composite formulae, independent of
what these formulae denote – i.e. Φ is true in all possible worlds. Alternative
terminology is that Φ is a tautology or that Φ is analytically true.

Another version of necessity (or, possibility) is what Von Wright calls
natural necessity (possibility). We write this as

�NΦ

and

♦NΦ

If �NΦ is true the Φ is true in all worlds and at all times “because of the way
the world operates”. Natural necessity is stronger than logical necessity. For
instance, “if x is a human, then x is warm blooded” is a natural necessity,
though not a logical one. In order to portray natural necessity or possibility
in the semantic framework, we would need to qualify certain possible worlds
as being “natural”, i.e. conforming to the laws of nature. Call this the set
WN such that WN ⊆ W . The syntactic and semantic rules would therefore
be as follows:

Syn’1. If Φ ∈ MEv then ♦NΦ ∈ MEv.

Syn’2. If Φ ∈ MEv then �NΦ ∈ MEv.

Sem’1. If Φ ∈ MEv then ExtM,i,j,g(♦NΦ) = True if and only if
ExtM,i′,j′,g(♦NΦ) = True for some i′ ∈WN and some j′ ∈ T

Sem’2. If Φ ∈ MEv then ExtM,i,j,g(�NΦ) = True if and only if
ExtM,i′,j′,g(�NΦ) = True for all i′ ∈WN and all j′ ∈ T

The logical duality of these concepts again holds, i.e.

�NΦ ::= ¬♦N¬Φ or ♦NΦ ::= ¬�N¬Φ

Von Wright extends this one step further to address the concepts of permis-
sion and obligation, which he calls the deontic modalities. We will abbreviate
these as:

♦DΦ for Phi is permitted, and

�NΦ for Phi is obligatory.
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(Von Wright uses the notation P and O here, but we reserve that for later
uses.) To describe this in the semantic framework, we need to further qualify
certain possible worlds as being legitimate within a general ethical or legal
code. (Given that there are numerous such codes, e.g., for different countries,
there are correspondingly different definitions of permission and obligation.
We ignore this aspect for present purposes.) Let us denote the set of deonti-
cally permissible worlds as WD, where,

WD ⊆W

The syntactic and semantic rules are of similar form as before:

Syn”1. If Φ ∈ MEv then ♦DΦ ∈ MEv.

Syn”2. If Φ ∈ MEv then �DΦ ∈ MEv.

Sem”1. If Φ ∈ MEv then ExtM,i,j,g(♦DΦ) = True if and only if
ExtM,i′,j′,g(♦DΦ) = True for some i′ ∈WN and some j′ ∈ T

Sem”2. If Φ ∈ MEv then ExtM,i,j,g(�DΦ) = True if and only if
ExtM,i′,j′,g(�DΦ) = True for all i′ ∈WN and all j′ ∈ T

Once again, these are logical duals:
�DΦ ::= ¬♦D¬Φ

or
♦DΦ ::= ¬�D¬Φ

That is, if something is obligatory, it is not permissible not to do it. Contrari-
wise, if something is permitted, is is not obligatory not to do it. Prohibition,
i.e. that something is forbidden, is a deontic impossibility, i.e. the negation
of permissibility:

¬♦DΦ

says it is not permitted (forbidden) to do Φ. It is often argued that “ought”
implies “can” – i.e. that if something is obligatory then it should be naturally
possible. This would be reflected in the assumption:

WD ⊆WN ⊆W

The deontic modalities differ from the other modalities in that they generally
apply only to actions. In the Von Wright representation for actions (there may
be others), this suggests that Φ be a TI expression. We would therefore write,
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♦D(α T (βIµγ))

to indicate that µ is permitted to bring about β from the previous state α,
instead of allowing γ to occur, and

�D(α T (βIµγ))

to indicate that µ is obliged to bring about β from the previous state α,
instead of allowing γ to occur.

14.1 Note on Contingent Obligations, Permissions

A contingent obligation (or permission) is where an action Φ is obligatory
(permitted) if another action, Ψ occurs. Considering first the case of contin-
gent obligation, there seems to be two possible representations:

a) �D[Ψ → Φ] (it is obligatory that Psi implies Φ)

b) Ψ → �D[Φ] (if Psi implies it is obligatory to Φ)

The English reading in these two cases does little to help choose between
them – both readings seem adequate. However, if we examine the semantic
interpretations in both cases there is an important difference. We have

a) Sema ExtM, i, j, g�D[Ψ → Φ] = True if and only if
ExtM, i,′ j′, g�D[Ψ → Φ] = True for all i′ ∈WD and j′ ∈ T

b) Semb Ψ → �D[Φ] if and only if
ExtM, i,′ j′, g(Ψ) = False or ExtM, i,′ j′, g(Φ) = True for all i′ ∈ WD and
j′ ∈ T

In case a, Ψ → Φ must be true at all indices involving permissible worlds (i.e.
elements fo WD). In case b, if Ψ is true at the current index, then Φ must
be true at all indices involving permissible worlds. The point is that in the
second case, Ψ and Φ do not necessarily apply to the same possible world.
Thus, if Ψ were not true at the current index, but were true at some other
index involving a permissible world, Φ would not necessarily hold at this other
index. This problem is however avoided in case a, and is thus the preferred
method of representing contingent obligation. Analogous arguments hold in
the case of contingent permission.



CANDID Specification, Part I: Syntax & Formal Semantics of CANDID 135

14.2 Contractual Obligation and Permission

The concepts of obligation and permission discussed thus far pertain to the
structure of a general ethical or legal code. In the case of contracts we are
concerned with obligation and permission at a more specific level – for ex-
ample, x is obliged to y to do Φ or x is permitted by y to do Φ. Our view
here is that these specific obligations and permissions depend on protection
under the general legal system in force. We regard this protection to be in
the form of the possibility of taking legal action if the terms of the contract
are violated. We abbreviate party x taking legal action against party y as
LA(x, y). Thus, our interpretation of x’s obligation to y to do Φ is that y is
permitted to take legal action against x if Φ does not occur. We abbreviate
this as follows:

O(x, y)Φ ::= ♦D¬Φ→ L(y, x)

The symbol O(x, y)Φ will be read “x has the obligation to y to see to it that
Φ”. Usually, x will be an agent of an action contained in Φ, though this is not
required. For instance, Φ might be performed by someone else sub-contracted
by x. The concept of contractual permission is slightly less direct than for
contractual obligation. We will use the notation,

P (x, y)Φ

to indicate that “x permits y to bring about Φ”. We begin with the obser-
vation that this generally presupposes that y would otherwise be prohibited
from doing (bringing about) Φ, which is to say that x would be permitted
legal action against y, if y did Φ. Thus, by granting permission to y to do Φ, x
foregoes this right to take legal action. In symbolic form, this is summarized
as follows:

P (x, y)Φ ::= ¬[♦DΦ→ LA(x, y)]

Reading: that x permits y to do Φ is defined as that it is not permitted for
x to take legal action against y if Φ.

In the preceding section we saw that the various forms of modal operators,
including the deontic modals, were logical duals of one another. This is also
the case with contractual obligation and permission as we have defined it —
however, with one interesting difference: the order of the agent and recipient
places is reversed in the dual form. Thus,

P (x, y)Φ ::= ¬O(y, x)¬Φ

::= ¬[♦D¬(¬Φ)→ LA(x, y)]
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::= ¬[♦DΦ→ LA(x, y)]

Reading: x permits y to Φ is defined that y is not obligated to x not to Φ.
The subsequent substitutions lead to the definition of contractual permis-
sion given previously. One additional aspect needs to be considered. In the
contracts discussed so far, the enforcement of the contract was an implicit
recourse to legal action. However, in certain contracts, this enforcement is
made explicit in the form of a penalty clause indicating some other action
to be taken. We will indicate such penalty clauses by adding an additional
place in the contractual obligation and permission operators, separated by a
“/”. 5 Thus,

O(x, y)Φ/Ψ ::= ♦D[¬Φ→ Ψ ].

The previous syntax is thus a special case of this, where Ψ = LA(y,x):

O(x, y)Φ ::= O(x, y)Φ/LA(y, x)
::= ♦D¬Φ→ LA(y, x)

While explicit penalty clauses are fairly common in the case of contractual
obligation, they are rare for contractual permission. Nevertheless, for the sake
of completeness and symmetry, we offer the following definition:

P (x, y)Φ/Ψ ::= ¬♦D[Φ→ Ψ ]

Letting Ψ be LA(x,y), the earlier definition follows as a special case:

P (x, y)Φ ::= P (x, y)Φ/LA(x, y)
::= ¬[♦D[Φ→ LA(x, y)]

15 Summary of the Language CANDID

15.1 Syntax of CANDID

Corresponding to each type, a, the intension of that type will be a new type,
written <s, a> The set of types (i.e. Type) is defined recursively as follows:

v is a type
e is a type
c is a type
n is a type

5 Note: Von Wright also uses a slash notation resembling this, but with a different
interpretation
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t is a type
If a and b are types, then <a,b> is a type.
If a is any type, then <s,a> is a type.

Basic Expressions: The basic expressions of CANDID consist of:

Constants: for each type a, the set of constants of type a denoted Cona.
(Names for particular constants follow the conventions described earlier.)

Variables: for each type, a, the set of variables of type a, denoted Vara.
(Names for variables follow the conventions described earlier.)

Terms: for each type a, the set of terms of type a denoted Terma, defined
recursively as follows:

— if α ∈ Cona then α ∈ Terma

— if α ∈ Vara then α ∈ Terma

— if β1, . . . , βn are terms of types x1, . . . , xn

respectively and Φ is an operation of type <x1, . . ., <xn, a>> then
Φ(β1, . . . , βn) ∈ Terma.
— if µ ∈ Vara and Φ ∈ ME<a,t>, whose only unbound variable is µ, then
ιµΦ ∈ Terma.

Formation Rules of CANDID

SynCANDID 1: Every term of type a is in MEa

SynCANDID 2: If α ∈ ME <a, b> and β ∈ MEa, then α(β) ∈ MEb.
SynCANDID 3: If α ∈ MEa and µ is a variable of type b, then λµα ∈ ME<b,a>

SynCANDID 4: If α and β are both in MEa, then [α = β] ∈ MEv.
SynCANDID 5: If Φ ∈ MEv and µ ∈ Vara then ιµΦ ∈ MEa

SynCANDID6-10: If Φ and Ψ are in MEv, then so are:
SynCANDID 6: ¬Φ
SynCANDID 7: Φ & Ψ
SynCANDID 8: Φ ∨ Ψ
SynCANDID 9: Φ→ Ψ
SynCANDID 10: Φ↔ Ψ

SynCANDID 11-12: If Φ ∈ MEv and µ is a variable of any type, then
SynCANDID 11: ∀µΦ ∈ MEv

SynCANDID 12: ∃µΦ ∈ MEv
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SynCANDID 13: if µ ∈ Vart and Φ ∈ MEv then RµΦ ∈ MEv

SynCANDID 14: If Φ and Ψ are in MEv, then Φ T Ψ ∈ MEv

SynCANDID 15: If Φ ∈ MEv, then
∧

[Φ] ∈ ME<s,v>

SynCANDID 16: If Φ ∈ ME<s,v>, then
∨
Φ ∈ MEv

SynCANDID 17: If Φ and Ψ are in MEv, and α is a term of type e, then
[ΦIαΨ ] ∈ MEv.

SynCANDID 18-19: If Φ ∈ MEv, then
SynCANDID 18: ♦DΦ ∈ MEv

SynCANDID 19: �DΦ ∈ MEv

15.2 Semantics of CANDID

A model for CANDID is an ordered tuple M = <D, C, N, T, W, F > where
D, C, N , T and W are non-empty sets, that assign an appropriate denota-
tion to each (non-logical) constant of CANDID relative to each pair <i,j>,
for i ∈ W and j ∈ T. Thus “F(<i,j>, α) = γ” asserts that the denotation of
the constant α in the possible world i at time j is the object γ.)) The set of
possible denotations of type a, written Da, is defined as follows (where a and
b are any types):

De = D
Dc = C
Dn = N
Dt = T
Dv = {True, False}
D<a,b> = DbDa
D<s,a> = DaWxT

(where WxT is the set of all world, time point pairs, i.e. the set of all indices
<i,j>).

Semantic Rules The semantic rules of CANDID define recursively for any
expression α, the extension of α with respect to model M, i ∈ W, j ∈ T and
value assignment g, written ExtM,i,j,g(α) as follows:

SemCANDID 1: If α is a non-logical constant, thenExtM,i,j,g(α) = F (α)(¡i,j¿).
(That is, the extension of α at <i, j> is simply the result of applying the
intension of α, which is supplied by F, to <i, j>).

SemCANDID 2: If α is a variable, then ExtM,i,j,g(α) = g(α).

SemCANDID 3: If α ∈ ME <a, b> and µ is a variable of type b, then
ExtM,i,j,g(λµα) is that function h with domain Db such that for any object
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x in that domain, h(x) = ExtM,i,j,g′(α), where g′ is that value assignment
exactly like g with the possible difference that g′(µ) is the object x.

SemCANDID 4 If α ∈ ME<a,b> and β ∈ MEa, then ExtM,i,j,g(α(β)) is
ExtM,i,j,g(α) (ExtM,i,j,g(β)) (i.e., the result of applying the function
ExtM,i,j,g(α) to the argument ExtM,i,j,g(β)).

SemCANDID 5: If α and β are in MEa, then ExtM,i,j,g(α = β) is True if and
only if ExtM,i,j,g(α) is the same as ExtM,i,j,g(β).

SemCANDID 6: If Φ ∈ MEv, then ExtM,i,j,g(¬Φ) is True if and only if
ExtM,i,j,g(Φ) is False, and ExtM,i,j,g(¬Φ) is False otherwise.

SemCANDID 7: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ&Ψ ] is True if and
only if both ExtM,i,j,g(Φ) and ExtM,i,j,g(Ψ) are True.

SemCANDID 8: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ∨Ψ ] is True if and
only if either ExtM,i,j,g(Φ) is True or ExtM,i,j,g(Ψ) is True.

SemCANDID 9: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ → Ψ ] is True if
and only if either ExtM,i,j,g(Φ) is False or ExtM,i,j,g(Ψ) is True.

SemCANDID 10: If Φ and Ψ are in MEv, then ExtM,i,j,g[Φ ↔ Ψ ] = True
if and only if either both ExtM,i,j,g(Φ) and ExtM,i,j,g(Ψ) are both True or
both False.

SemCANDID 11: If Φ ∈ MEv and µ is a variable of type e, then
ExtM,i,j,g(∀µΦ) = True if and only if ExtM,i,j,g′(Φ) = True for all value
assignments g’ exactly like g except possibly for the value assigned to µ.

SemCANDID 12: If Φ ∈ MEv and µ is a variable of type e, then
ExtM,i,j,g(∃muΦ) = True if and only if ExtM,i,j,g(Φ) = True for some value
assignment g’ exactly like g except possibly for the value assigned to µ.

SemCANDID 13: For α a term of type t, and Φ ∈ MEv, then
ExtM,i,j,g[RαΦ] = True if and only if for time j′ = F (α), and j′ < j,
ExtM,i,j′,g[Φ] = True.

SemCANDID 14:. If Φ and Ψ are in MEv, then ExtM,i,j,g(Φ T Ψ) is True if
and only if ExtM,i,j,g(Φ) is True and ExtM,i,j′,g(Ψ) is True for the unique
j’ such that j < j′ and for all j”, either not j < j′′ < j′ or j′′ = j′.
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SemCANDID 15: If α ∈ MEα, then ExtM,i,j,g(
∧
α) is that function h with do-

main WxT such that for all <i’, j’> in WxT, h(< i′, j′ >) is ExtM,i′,j′,g(α).

SemCANDID 16: If α ∈ MEs,a, then ExtM,i,j,g(
∨
α) is ExtM,i,j,g(α) =

(<i,j>) (that is, the result of applying the function ExtM,i,j,g(α), to the
argument <i, j>).

SemCANDID 17: If Φ and Ψ are in MEv, and α is a term of type e, then
ExtM,i,j,g(ΦIαΨ) = True if and only if ExtM,i,j,g(Φ) = True and
ExtM,i′,j,g(Ψ) = True for some i’ just like i except that i’ lacks the interfer-
ence of agent α.

SemCANDID 18: For Φ ∈ MEv then ExtM,i,j,g(♦DΨ) = True if and only if
ExtM,i′,j′,g(Ψ) = True for some i′ ∈WD and some j′ ∈ T .

SemCANDID 19: For Φ ∈ MEv then ExtM,i,j,g(�DΨ) = True if and only if
ExtM,i′,j′,g(Ψ) = True for all i′ ∈WD and all j′ ∈ T .

Additional Primitive and Derived Predicates and Operations

For Domain C (character strings) None

For Domain N (numbers)

1. type: <n, <n, v>>
[α < β] primitive
[α ≤ β] ::= [α < β] ∨ [α = β]
[α > β] ::= ¬[α ≤ β]
[α ≥ β] ::= [α > β] ∨ [α = β]
[α �= β] ::= ¬[α = β]

2. type: <n, <n, n>>
[α+ β] primitive
[α− β] primitive
[α/β] primitive
[α ∗ β] primitive
[α ∗ ∗β] primitive
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For Domain T (times)

1. type: <t, <t, v>>
[α < β] primitive
[α ≤ β] ::= [α < β] ∨ [α = β]
[α > β] ::= ¬[α ≤ β]
[α ≥ β] ::= [α > β] ∨ [α = β]
[α �= β] ::= ¬[α = β]
NEXT(α, β) ::= (α < β)&∀t[(t �= α)&(t �= β)→ ¬[α < t < β]]

2. type: <t, <t, <t, v>>>
Span ::= λxλyλz[z ≥ x&z ≤ y]

3. type: <<t, v>, t>
Beg ::= λxιy∃z[x = Span(y, z)]
End ::= λxιz∃y[x = Span(y, z)]

4. type: <<t, v>, v>
PT ::= λxλy[(Beg(x) ≥ Beg(y))&(End(x) ≤ End(y))]

5. type: <n, <n, <n, <t, v>>>>
Date(α, β, γ) (primitive)

6. type: <n, <n, <t, v>>>
Mo(α, β) (primitive)

7. type: <n, <t, v>>
Y r(α) (primitive)

8. type: <<t, v>, n>
Dur(α, β) (primitive)

9. type: t
Day (primitive, measurement standard individual)

10. type: <<t, v>, <v, v>>
RT (α)Φ ::= ∀t(t ∈ α)→ R(t)Φ
RD(α)Φ ::= ∃µ(PT (µ, α)&R(t)Φ

11. type: <t,<v, v>>
RB(γ)Φ ::= ∃µ[(µ ≤ γ)&RD(Span(γ, µ))Φ]
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For Domain D (deontics)

12. type: <e, <e, v>>
LA (primitive)

13. type: <e, <e, <v, v>>>
O(µ, ν)Φ ::= ♦D¬Φ→ LA(µ, ν)
P (µ, ν)Φ ::= ¬O(µ, ν)¬Φ ::= ¬[♦DΦ→ LA(µ, ν)]

14. type: <e, <e, <v, <v, v>>>>
O(µ, ν)Φ/Ψ ::= ♦D¬Φ→ Ψ
P (µ, ν)Φ/Ψ ::= ¬[O(µ, ν)¬Φ/Ψ ::= ¬[♦DΦ→ Ψ
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Abstract. The formal language CANDID is presented as a knowledge represen-
tation formalism for artificially intelligent decision support systems. The language
is specifically oriented to representation of concepts in finance, commerce and ad-
ministration. Later parts of the paper demonstrate the application of CANDID
to explication of corporate entities and contractual objects, as well as to various
concepts in elementary finance.

1 Introduction

The purpose in this part is to illustrate the use of CANDID to the formal
description of principal actors and objects of economic activity. This step
contributes to the larger goal of formalizing the legal and accounting aspects
of contracting and commerce that they may be subjected to a system of
mechanical inference. Applications of such a system include electronically as-
sisted contract negotiation, contract monitoring and other aspects of contract
management. The concepts that appear in such applications range from the
mundane and commonplace, e.g., nuts, bolts, to the complex and esoteric,
e.g., partially allocated costs, sale-leaseback agreements, the U.S. Securities
and Exchange Commission Regulations.

The job of a formal language for describing such concepts is to render them
unambiguous down to a limited set of primitive concept that are consensually
understood by all parties using the language. A computer system using this
language could therefore aid in rectifying definitional misunderstandings be-
tween disagreeing parties. Likewise, as an aid to individual decision making,
it can explain any of its inferences in step by step elementary terms.

A critical factor, however, is that the language be based on primitive con-
cepts that are clearly and unambiguously understood by all its users. Subse-
quent definitions based on these elementary terms can then be as intricate as
necessary without the danger of magnifying an elementary ambiguity. A fun-
damental issue here is the so-called “identification of particulars”, of having



146 Ronald M. Lee

consensual recognition and labeling of the individual entities described by the
language. Strawson [Str59] argues that the proper basis for such identification
is the locatability of these entities in a spatial/temporal framework. Thus,
for instance individual people are locatable in space/time in that they are
born at a particular place and time, and have continuity in space and time
until their deaths. Given sufficient factual data about a person’s whereabouts
throughout time, an arbitrary group of observers could presumably agree as
to the identification of this individual (e.g., whether it were really an actual
person, or multiple persons, an imaginary person, etc.).

Phenomena that do not have continuity in space and time are prone to
much more disagreement of identification. Consider for example Beethoven’s
9th Symphony. Is there one unique referent to this name, or many? We may
individuate versions of this symphony by its reproductions on paper or spe-
cific performances by orchestras, but in both cases we re-case it into a rep-
resentation locatable in a space/time framework. Textual works present a
similar difficulty. A more modern example is a computer program, for in-
stance SPSS (statistical package for the social sciences), as an arbitrary ex-
ample. There have been numerous versions of this program and hundreds
of computer installations have one of these versions . Further, at any given
installation, more than one copy of the program may be executed in the
machine’s memory at a given time.

The problem of individuation becomes especially important when we con-
sider not just information objects, like symphonies and computer programs,
but contractual objects, like notes, bonds, stocks, options, licenses, insurance
policies, etc. Clearly, it is of critical importance for a company to know it has
a certain right or obligation. Indeed, it is precisely because of this problem of
identification that signed documents play such an important role in contrac-
tual transactions: the signed document represents the agreement in a form
locatable in space and time.

As mentioned earlier, the goal here is to formally describe the principle
actors and objects of economic activity. Our criterion for formalization will be
the unique identification of such entities in the spatial/temporal framework. If
we consider only persons as economic actors, and physical objects as economic
objects, the problem is trivial: both types of entities are locatable in space
and time. However, another common type of economic entity (at least in
Western societies) is a corporation. A corporation is more problematic from
this perspective since it has no essential physical reality: no one of its assets,
including is buildings, nor any one of its employees nor any of its executives or
board members nor any one of its stockholders is essential to the identification
of the corporation. Any one of these may change or be removed from the
corporation, and the identity of the corporation can still continue.

The objects of economic activity, i.e., the things that are traded, present
analogous problems for formal description. Money for instance is a key object
of exchange. Yet money is no longer uniquely represented by physical objects
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such as coins and bills, but often appears merely as magnetic records in
bank accounts, these, like computer programs, lose the easy location in a
unique place at a given time. Information objects, such a recorded music,
printed texts and computer programs were already mentioned as presenting
a problem for identification. Such objects present an interesting legal problem
in that they can be “stolen” (copied) without removal of the original. (Our
notion of theft is basically a physical one.) Computer, communications and
photocopy technology are bringing the characteristics of this type of object
to prime economic importance.

One other type of non-physical economic object was also already cited:
contractual objects. Signed documents have historically provided these types
of objects with an easy physical identifiability. However, in most concen-
trated centers of trading in contractual objects, namely commodity, bond
and stock exchanges, there is a definite move towards automation of records
and transactions, so that there to the identifiability of such objects becomes
problematic.

1.1 Legal Framework

Concepts of economic actors and objects are defined win a general legal
framework which to a certain extent varies from one country to the next.
The perspective taken here is an essentially capitalistic one, where corpora-
tions, independent, though perhaps regulated by government, play a major
economic role. Legal definitions and rules are all taken from United States
law, the only code where the author has sufficient familiarity.

As a reference for the definitions used here, we have made use of College
Business Law [RO77]. This is also suggested as a useful elementary-level
reference text. However, we hope that this starting point not be taken as a
boundary. The foundation concepts of contractual obligation, permission, etc.
have their analogues in any society that has moved beyond a simple barter
system, and it is our belief that the concepts presented here are extensible to
other economic systems, whether free market, centrally controlled, or some
intermediate combination.

The general legal system we mention is of course established by the rul-
ing government, which is itself an important economic actor. However, insofar
as the legal system generally reflects a long evolution in comparison to the
shorter time frame of a government’s transactions (i.e., the government gen-
erally cannot change the law from one transaction to the next), we prefer
to separate the legal code from the government as an economic actor, and
consider the government and its agencies as regulated by the law as are other
economic actors. The assumption of a single legal code confines our attention
here to transactions covered entirely by that code, i.e., to domestic transac-
tions. In Part I, general permission and obligation (relative to an arbitrary
set of laws and norms) was denoted as:
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♦D for permission (deontic possibility)
�D for obligation (deontic necessity)

Here to indicate our somewhat more restricted assumption to U.S. law, we
designate this as:

♦L for permission under U.S. law
�L for obligation under U.S. law

Actually, in the U.S. there are two levels of commercial laws, one at the state
and one at the federal level. The scope of the federal laws pertains primarily
to inter-state commerce. When we want to indicate the operation of state
law, as distinguished from U.S. federal law, we will use the notation:

♦L,x for permission under the law of state x

�L,x for obligation under the law of state x

For instance,

♦L,NY Φ

would indicate that Φ is permitted in the state law of New York. Exten-
sion of this work to international commerce would employ still another le-
gal level: international law. An essential difference at this level—which we
avoid for present purposes—is the ultimate source of legal enforcement. In
domestic transactions, the physical power of the ruling government is the
ultimate enforcement of the law. At the international level, lacking a single
dominating world government, such transactions are subject to the treaties
and agreements established between the nations involved, and the appeal for
enforcement is correspondingly complicated.

1.2 Ownership and Possession

The most fundamental concept of economics, perhaps, is that of (legal) own-
ership, which is designated by the predicate,

OWN(x,z)

meaning that x, and economic actor, owns z, an economic object. The essence
of this part is to elaborate the predicates that qualify x and z. Here we adopt
OWN as a primitive predicate. That is not to say it could not be analyzed
further. For instance, there are certain differences in the concept of ownership
between capitalist and communist countries, and to explicate international
commerce one may want to describe these differences in terms of more ele-
mentary concepts. Another relationship between economic actors and objects
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is that of possession, written

POSS(x,y)

indicating that actor x possesses object y. Again, this is a fundamental con-
cept that we take as primitive, though its meaning might vary somewhat in
other economic systems. Intuitively speaking, ownership constitutes a set of
rights granted by the legal system of an actor towards an object. Possession
on the other hand refers to physical custody. Usually, an actor possesses what
it owns, but not always, as in the case of loans and rentals.

Actually, here in Part II, possession has only a minor role. It however fig-
ures more prominently in Part III, which discusses representation of financial
contracts.

1.3 Some Further Definitions and Notation

In CANDID, predicates indicating a change in state may be defined using
the connective T. Here, we will suffix the names of predicates so defined with
the character “!” as a visual aid to reading the expressions. Using OWN and
POSS, two such change predicates are defined as follows:

OCHANGE!(x,y,z) ::= OWN(x,z) T OWN(y, z)
PCHANGE!(x,y,z) ::= POSS(x,z) T POSS(y,z)

OCHANGE! indicates a change in ownership of the object z from x to y.
PCHANGE! indicates a change in possession of the object z from x to y.

Also, in CANDID a concept of action is defined by using so-called TI ex-
pressions containing the connectives T and I. Here, again, only as a visual
aid, we use the suffix “!!” on the names of such predicates. Using OWN and
POSS, four such action predicates may be defined:

OGIVE!!(x,y,z) ::= OWN(x,z) T [OWN(y, z) I(x) OWN(x,z) ]
OTAKE!!(x,y,z)) ::= OWN(x,z) T [OWN(y, z) I(y) OWN(x,z) ]
PGIVE!!(x,y,z)) ::= POSS(x,z) T [POSS(y,z) I(x) POSS(x,z)]
PTAKE!!(x,y,z)) ::= POSS(x,z) T [POSS(y,z) I(y) POSS(x,z)]

In OGIVE!!, x causes a change of ownership of z from x to y.
In OTAKE!!, y causes this same change of ownership to occur.
In PGIVE!!, x causes a change of possession of z from x to y.
in PTAKE!!, y causes this same change to occur.
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2 Economic Actors

2.1 Persons, Proprietorships

The most obvious type of economic actor is individual persons, designated as:

PERSON(x).

However, in U.S. law, not all persons qualify as legitimate economic actors
— minors and the insane are excluded. This more restricted set is designated
LPERSON (legal person), defined as:

LPERSON(x) ::= PERSON(x) & AGE(x, YR) ≥ 18 & SANE(x).

Personal businesses, owned by a single individual are called proprietorships.
In U.S. law they are not distinguished from their owner, hence,

PROPRIETORSHIP(x) ::= LPERSON(x).

2.2 Joint Ownership, Partnerships

Joint ownership is where one or more parties share equally in the ownership
of an object. Essentially, the group of owners form a set which as a unit owns
the object. For instance, for joint owners x1, . . . , xn

OWN(z, y)&z = {x1, . . . , xn}

In U.S. law, a partnership is an economic actor consisting of such a set of
equally participating persons. Hence,

PARTNERSHIP(z) ::=
∃x1, . . . , xnLPERSON(x1)& . . .&LPERSON(xn)&
z = {x1, . . . , xn}

2.3 Private Corporations

It is at this level that the concept of an economic actor becomes philosophi-
cally challenging. A corporation is an artifice of the legal system. In the U.S.,
it is a “legal entity”, entirely separate from and independent of it owners.
Unlike proprietorships and partnerships, which are formed simply by the vo-
lition of the parties involved and have no separate legal status, a corporation
is formed by a specially granted permission from the state.
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Informally, this process is as follows. The group of people who want to
start the corporation, called the promoters, submit registration information,
called incorporation papers, and a prospectus, which describes the capital
structure and intended function of the corporation to the governing state.
If the corporation is to engage in interstate commerce, the prospectus must
also be approved by the Securities and Exchange Commission (SEC).

In addition, a certificate of incorporation is filed by the promotors, which,
if approved, is maintained by the office of the secretary of the state of in-
corporation. This certificate lists the corporation’s principal officers, names
of directors and incorporators, the total number of stock shares (each at a
common value called the par value) and the name and number of shares
held by each stockholder. The corporation cannot sell more than this initial
number of shares without obtaining additional permission from the state. On
acceptance by the state, this certificate becomes the corporation’s charter.

This charter is a contractual permission by the state which, in gross terms,
says the following: Stockholders have a right to vote members of the board of
directors (at least three people) of the firm and to participate in the division
of residual assets on the dissolution of the firm. The board of director’s main
responsibility is to appoint officers of the corporation, which serve as the
agents of the corporation in legal transactions (e.g. engaging the corporation
in contacts, hiring and management of employees). Only the officers, and the
people they employ, can engage in the direct operation of the firm. Note that
being a stockholder does not carry the right to participate in the management
of the corporation nor to act as its agent in contracts.

To summarize, the corporation is essentially a locus of ownership, on
one hand, and a locus of contractual commitment on the other. (These will
define the two sides of the corporate balance sheet: its assets and its liabilities,
including stockholder equity.) Changes in the things owned by the corporation
and its commitments to other parties are made by the corporate officers and
their employees, acting as agents. Corporate officers are appointed by the
Board of Directors, which in turn are voted by the stockholders. A crucial
issue from a formal standpoint, however, is the identification of this locus of
ownership and commitment. If we simply dismiss it as an ’abstract object’
having no spatial/temporal location, we are left with the theoretical as well
as very pragmatic problem of determining when the corporation exists and
the boundaries of its rights and obligations.

However, as noted above, the critical event in the formation of a cor-
poration is the granting, by the secretary of the state of jurisdiction, of the
corporate charter. This provides the creation of the corporation with a unique
location in space and time. Furthermore, the corporate charter provides the
corporation with a unique corporate name (within that state). This provides
any subsequent contracts and titles of ownership with a reference to the cor-
porate charter, and hence to a unique spatial/temporal location. Though this
provides the means to identify a corporation, we have still not explained what
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a corporation is. Clearly, it is not in itself something physical. Rather, it is
a complex of contingent rights and privileges as established by the corporate
laws of the state.

Let us refer to this complex as CORP-RIGHTS. These are granted by
a particular state, and associated to a unique (within the state) corporate
name. Using the notation described earlier for permission under the law of
state µ, this would be

�L,µCORP-RIGHTS(ν)

where ν is a variable of type c, a character string indicating the name of
the corporation. This describes the situation where state µ permits corporate
rights associated with name ν. The type of this expression is:<<e, <c,v>>,v>.
That is, the characteristic function of CORP-RIGHTS maps from character
strings to truth values. The state’s legal permission is a mapping from an
entity (the state) and the previous expression to a truth value.

We would like to say that the corporation is simply this permission. How-
ever, if we are speaking of a certain time, t, the corporation is not simply
this permission at time t, but to account for the corporation’s ownership of
assist, it must also include permission at previous times when the assets were
acquired. Further, if the corporation is in operation it will presumably have
contractual obligations to other parties. These involve evaluation of these cor-
porate rights not only in future times, but under alternative circumstances,
i.e., in other possible worlds. What we need then is to evaluate the corporate
rights predicate not just currently in the ‘actual’ world, but across all times
and in all possible worlds. This, as explained in Part I, is provided by the
intension operator, “

∧
”. Thus,

∧
[�L,µCORP-RIGHTS(ν)]

The earlier expression was of type <<e,<c,v>>,v>. The present expression
will therefore be of type <s, <<e,<c,v>>,v>>, i.e. adding the additional
argument of type s, which is an index to a possible world / time pair. Thus,
the characteristic function of this expression evaluates whether the corporate
rights associated with name ν are permitted by state µ at each possible index.
This, in our view, is what a corporation is. Hence,

PRIVATE-CORPORATION(x) ::=
∃ y ∃ z STATE(y) & CHAR-STRING(z) &
x =

∧
[♦L,y CORP-RIGHTS(z)]

The discussion here has been directed towards the formal description of pri-
vate corporations, i.e., those which are profit oriented and have stockholders
who ultimately receive these profits either through dividend distribution or
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dissolution of the corporation and sale of its assets. Other types of corpora-
tion might also be with a similar form of analysis. For instance, non-profit
corporations do not have stockholders nor do they pay income tax. Quasi-
public corporations are private corporations that provide certain public ser-
vices (e.g., certain utilities, toll roads), and which are supervised by public
authorities. Public corporations, such as cities and certain departments of lo-
cal and state governments, also provide public services but are financed by
the state. Each of these present certain variants on the concept of corporation
we have just described.

Additionally, the concepts of state and federal governments themselves
present a challenge to formal description. Indeed, they appear to be corporate-
like entities, having no essential physical existence. However, in these cases
one cannot appeal to a larger deontic framework as the basis for their defi-
nition, for they are this framework. Instead, at least in democratic societies,
one would appeal to the consensus of the voting population (present and
past) as a deontic basis. However, since our objectives here are primarily
concerned with commercial and financial activities, we confine our discussion
only to the three classes of economic actors described above: proprietorships,
partnerships, and private corporations. Hence,

ECON-ACTOR(x) ::=
PROPRIETORSHIP(x) ∨
PARTNERSHIP(x) ∨
PRIVATE-CORPORATION(x).

3 Economic Objects

3.1 Physical Objects

The most obvious type of economic object are physical ones (i.e., having
mass). As before, to admit these types of entities into the descriptive formal-
ism we must be able to locate them in a spatial / temporal framework. For
most types of physical objects we think of — e.g., tables, chairs, automobiles,
real estate, this is unproblematic. However, when granular substances such
as corn and wheat, or liquids or gases are involved, problems of identification
arise because of the fluid movement of these substances. For instance, con-
sider a contract to buy a certain volume of ocean water located at a certain
latitude and longitude at a given depth, etc. Though the geographical coor-
dinates may be certain, the particular volume (individual) of ocean water at
this location is not.

The practical device that resolves this logical problem in nearly any rea-
sonable commercial context is that of a container. Liquids, gases and grains
are always handled in a container of some sort, and the container provides
the fluid substance with a unique and stable spatial / temporal location
and with that discrete identifiability. Thus, our attention here is confined to
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what we call discrete-physical-objects, which have distinct spatial / temporal
coordinates (for instance at their center of gravity) and can be uniquely iden-
tified and named. Liquids, gases, and grains are assumed always to appear
within discrete containers so that the filled container is itself a discrete phys-
ical object. We are concerned here with those types of objects that can be
owned. Normally, any discrete physical object can be owned; however, U.S.
law specifically excludes one type, persons (slavery having been abolished).
Hence we introduce a concept of LPHYS-OBJ (legal physical object), which
are those that can be owned:

LPHYS-OBJ(x) ::= DISCRETE-PHYS-OBJ(x) & ¬ PERSON(x).

3.2 Promissory Objects

If one examines the asset side of the balance sheet of a company (which lists
categories of what the company owns) one of course finds a number of cat-
egories that are types of physical objects, e.g., land, plant and equipment,
inventory. However, beyond these there are typically other categories that
do not comprise physical objects—e.g., accounts receivable, negotiable secu-
rities, patents, licenses. These are what we call deontic objects. They arise as
the result of a contractual permission of which the company is the benefi-
ciary, i.e., they are ‘rights’ permitting the company to do something (as with
licenses) or obligations of other parties to the company (as with accounts
receivables, and negotiable securities). We consider the case of contractual
permissions first. This is a permission by some other party, say x, to the
economic actor, call it y, to do some action, say Φ. Hence,

P (x, y)Φ

We would like to say that y owns this permission. However, it is not the
assertion itself that y owns, but its sense or intension — its interpretation
across all possible worlds and times*. 1 This is represented once again using
the intension operator:

∧
[P (x, y)Φ]

Thus, to invent a term or the ‘object’ form of a permission, we call it
LPRIVILEGE (legal privilege). Hence for economic actors x and y, and some
1 Note: Contractual permission was defined in terms of general permission (deontic

possibility), which in turn had a semantic interpretation across possible worlds
and times. Thus, contractual permission is not just permission in the present but
in certain future times and circumstances as qualified by Φ. Use of the intension
operator here thus appears as a second lambda abstraction across indices. The
purpose of this second abstraction is essentially to ‘objectify’ the permission,
equating it with its characteristic function across possible worlds and times.
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action, Φ,

LPRIVILEGE(z) ::= ∃ x ∃ y ∃Φ x =
∧

[P(x,y) Φ]

The treatment for the case of contractual obligations is similar. Here we will
call the object form an LPROMISE (legal promise). Again for economic ac-
tors x and y, and action, Φ,

LPROMISE(z) ::= ∃ x ∃ y ∃Φ x =
∧

[O(x,y) Φ]

A deontic object is either one of these types:

DEONTIC-OBJECT(z) ::= LPRIVILEGE(z) ∨ LPROMISE(z).

3.3 Monetary Objects

Money is obviously an important type of object in the description of com-
mercial and financial phenomena. If we consider money only in the form of
‘hard cash’, i.e., coins and bills, money is simply a type of physical object:

CASH-MONEY(x) → LPHYS-OBJ(x).

Coins and bills are obviously of a particular national currency and have a
face value. Thus for instance in the U.S. predicates indicating common type
of bills and coins are:

ONE-CENT-COIN(x)
FIVE-CENT-COIN(x)
TEN-CENT-COIN(x)
ONE-DOLLAR-BILL(x)
TEN-DOLLAR-BILL(x)
etc.

However, in commercial transactions, money is seldom handled at this detail
level, but rather as sums of money. In this case, we add up the face val-
ues of the various coins and bills, and convert them to a common currency
unit—e.g., cents and or dollars. Thus, suppose that y is a set of coins and
bills, x1, . . . , xn. Then the monetary value of y, say n, would be given by a
measurement function:

$(y) = n ::=
MONEY-VALUE(y, Dollar, US) = n
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This measurement function is for tabulating face values of a sum of currency
in a given nationality. Measuring one nation’s currency in terms of another
with this function would thus evaluate zero. So far, we have regarded money
as a special type of physical object. However, the services provided by lending
institutions in most countries have extended this concept of money. In the
U.S. it is quite common tat a bank check is given and accepted in lieu of cash
money. These checks are made against ‘demand deposit’ accounts in a bank,
which promises to pay the payee named on the check a sum of money whose
tabulated value equals the amount specified on the check. Demand deposits
are thus a deontic object, indicating the obligation of the bank, say b, to the
party named on the check, say x, an amount of money, assuming U.S. dollars,
n:

DEMAND-DEPOSIT(b,x,n) ::=∧
[O(b,x): ∃ m & $(m)= n & OGIVE!!(b,x,m)]

Reading: a demand deposit from bank b to party x in amount n for some
amount of money m, whose tabulated face value in U.S. dollar is n, b gives
ownership of m to x. Because checking accounts are used so often (in the
U.S.), we introduce another notational abbreviation to indicate money either
in the form of cash or check:

($$(z) = n) ::=
($(z) = n) ∨ ((∃ b) ( ∃ x) z = Demand-Deposit(b,x,n))

The two abbreviations for U.S. dollars correspond to the two concepts of
money used by the U.S. Federal Reserve Board to calculate the money sup-
ply. Our notation $ corresponds to the money supply measure, M1; our $$
corresponds to M2.

3.4 Information Objects

Physical objects, deontic objects, and money account for most of the types
of objects that are owned by economic actors and trade in commercial trans-
actions. However, there appears to be one additional class of ownable and
tradable objects not yet included: what we call information objects. Infor-
mally, an information object is some meaningful arrangement of symbolic
patterns on a representational medium, e.g., ink on paper or electronic codes
on a magnetic tape or disk. Our concept of information object corresponds to
what Thompson (1981) calls “ethereal goods”. He makes the excellent obser-
vation that what is distinct about this type of object is the technology of its
reproduction. Thus, to him, an ethereal good is one that can be reproduced
more cheaply than it can be purchased. Thus, up until the time of the photo-
copy machine, a book was not an ethereal good. Now there are many books
that are cheaper to photo-copy than purchase from the publisher (especially
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low volume technical books). Similarly, home stereo tape recorders made it
cheaper to copy musical recordings than buy them. However, the innovation
that really expanded the class of ethereal goods was the electronic computer.
A fundamental concept in this technology is that data is easily and instantly
copyable. Hence any information converted for computer storage (or indeed
programs directing the processing of data) can be instantaneously reproduced
(copied to another magnetic medium or sent over communication lines) at
practically no cost. Since considerable labor is often expended in the original
creation of such information objects, the legal problem this presents is how to
protect the developer from having his/her work “stolen” — i.e., reproduced
without compensation.

Our concern here, however, is only with the description of these types of
objects. As we have seen, their essential characteristics are not the physical
medium on which they are represented, but their reproducibility. In owning
such an information object, therefore, one of course owns the physical rep-
resentation medium, but more importantly, one owns rights controlling the
reproduction of the object. (Thus, the copyright laws for textual material
prescribe the “copy rights” of the author and publisher.) Thus, in the per-
spective here, the essential features of an information object are very similar
to that of a license, i.e. a contractual permission from one party to another.
In the case of information objects, the permitted action is a certain limited
range of reproduction. Let us refer to instances of these actions as LTD-
REPRODUCTION!!. In acquiring an information object, one therefore ac-
quires a physical representation of the information object, plus certain rights
of limited reproduction. Let k be this physical representation, x be the party
acquiring the information object, and y the author or holder of the copyright
of the object. Then the rights transferred — which for us is the information
object — is defined as follows:

INFO-OBJ(z) ::=
(∃x)(∃y)(∃k) z =

∧
[P (y, x)¬LTD-REPRODUCTION!!(k)]

Reading: An information object, z is defined as for some parties x and y and
a physical medium k, the permission of y to x to certain actions of limited
reproduction of k.

4 Summary

An economic actor is defined:

ECON-ACTOR(x) ::=
LPERSON(x) ∨
PROPRIETORSHIP(x) ∨
PARTNERSHIP(x) ∨
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CORPORATION(x).

An economic object is defined:

ECON-OBJ(z) ::=
LPHYS-OBJ(z)∨
DEONTIC-OBJ(z) ∨
MONETARY-OBJ(z) ∨
INFO-OBJ(z).

As noted earlier, the class of monetary objects comprises certain physical
objects (coins and bills) and certain deontic objects (demand deposits). Also,
an information object has both physical and deontic aspects to it — the
physical representation of the original and the limited rights of reproduction.
Thus, the above definition of economic object is redundant to this extent.

The two place predicates OWN and POSS were taken as primitive. To in-
dicate that each is a relation between economic actors and economic objects,
we have the following controlling axioms:

OWN(x, z)→ ECON-ACTOR(x) & ECON-OBJ(z).

POSS(x, z)→ ECON-ACTOR(x) & ECON-OBJ(z).
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Abstract. The formal language CANDID is presented as a knowledge represen-
tation formalism for artificially intelligent decision support systems. The language
is specifically oriented to representation of concepts in finance, commerce and ad-
ministration. Later parts of the paper demonstrate the application of CANDID
to explication of corporate entities and contractual objects, as well as to various
concepts in elementary finance.

1 Introduction

In Part I, the formal descriptive language CANDID was developed. In Part
II, this was applied to the description of the principal entities of economic
activity, what we called economic actors, and economic objects. In this part,
we extend the application of CANDID to consider the processes of economic
activity itself, in describing the concepts of elementary finance, i.e. common
types of transactions and financial instruments. We find this domain to be not
only a fairly central and important one to understanding commercial activity
more broadly, but also reasonably representative of the classes of conceptual
problems likely to arise in efforts to formalize other aspects of business. We
thus believe that analogous analyses could be applied for instance to finan-
cial accounting, cost accounting, tax law, contract law, regulatory law, etc.
Again, we want to emphasize that CANDID is proposed as a framework for
formalizing business theory, but is not intended as a theory itself. The discus-
sion here is thus meant to be only illustrative, attempting to capture what we
see as the ordinary usage and understanding of basic financial terminology
and concepts. Various contemporary theories of accounting, finance and eco-
nomics might therefore disagree with aspects of the analysis here. (The only
responsibility we would claim for CANDID is to explicate this disagreement.)

As a general guide to what concepts should be included here, we made use
of Mathematics of Finance [Aye63], a beginning level college primer. This is
likewise suggested as an elementary background reference.
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2 Additional Definitions, Notational Conventions

In Part II the concepts of an economic actor and economic object were devel-
oped. Informally, an economic actor is a legally able person or organization
(proprietorship, partnership or corporation) while an economic object is a
physical object (excluding persons), a contractual object (e.g. stock, bonds,
licenses), a monetary object (cash or demand deposit checks) or an informa-
tion object (e.g. textual materials, computer data and programs). In addition,
two two-place relations between economic actors and economic objects were
assumed. OWN (for ownership) and POSS (for possession). These have the
following associated axioms:

OWN(x,z) → ECON-ACTOR(x) & ECON-OBJ(z).

POSS(x,z) → ECON-ACTOR(x) & ECON-OBJ(z).

Also, the notation $$ is used to indicate U.S. currency in cash or check form.
E.g.

$$(m) = 158.32

indicates that the object m is a sum of money totaling $158.32. As in the
earlier parts, parentheses are used for functional application arguments for
predicates and functions), while square brackets are used for syntactic dis-
ambiguation. Also as previously, predicates may indicate states, changes or
actions. As a visual aid, we append “!” to predicate names for changes and
“!!” to names of actions. Thus, as in Part II, we have the following definitions
of changes and action relating to ownership and possession.

OCHANGE!(x,y,z) ::= OWN(x,z) T OWN(y, z)
PCHANGE!(x,y,z) ::= POSS(x,z) T POSS(y,z)

OCHANGE! indicates a change in ownership of z from x to y.
PCHANGE! indicates an analogous change of possession.

OGIVE!!(x,y,z) ::= OWN(x,z) T [OWN(y, z) I(x) OWN(x,z) ]
OTAKE!!(x,y,z)) ::= OWN(x,z) T [OWN(y, z) I(y) OWN(x,z) ]
PGIVE!!(x,y,z)) ::= POSS(x,z) T [POSS(y,z) I(x) POSS(x,z)]
PTAKE!!(x,y,z)) ::= POSS(x,z) T [POSS(y,z) I(y) POSS(x,z)]

OGIVE!! indicates a change of ownership from x to y initiated by x, whereas
OTAKE!! indicates the same change of ownership, but initiated by y. PGIVE!!
and PTAKE!! are similarly defined for possession. One additional definition
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is added for the purposes of this part, an action, PROMISE!!, indicating the
creation and giving of a “deontic object”, i.e. the (intension of) a contractual
obligation or permission:

PROMISE!!(x,y,z) ::= ¬∃(p) T [ ∃(p) & OGIVE!!(x,y,z)]

Also, we will here need a shorthand device for describing series of conjuncts
that vary only in the definition of variable names and certain numeric pa-
rameters. We call this device iteration and define it as follows. The notation,

[1 ≤ i ≤ n]

is read “for i from 1 to n” and is meant to assign integer values to i = 1, 2,
. . ., n. Further, the variable µ[i]

is replaced with respective subscripts i = 1, . . ., n, and represents n different
variables. Moreover, a formula Φ, may contain several such subscripted vari-
ables µ, . . ., ν,

[i ≤ i ≤ n]: Φ(µ[i], . . ., ν[i]) ::=
Φ(µ1, . . . , ν1) &
Φ(µ2, . . . , ν2) &
. . .
Φ(µn, . . . , νn).

3 Elementary Financial Concepts

3.1 Loans

Loans are a familiar and everyday concept. We think usually of a loan as
letting someone use something of ours with the understanding that they will
return it to us at a later time. Implicit in this notion of lending is the ex-
pectation that the borrower return the same object lent. We call this a loan
in substance. For instance, renting a car or house involve loans in substance.
Another type of loan, one which is especially common in business, might be
called a loan in kind. Here the expectation is that the object returned need
not be the same object, but only of the same type. For instance, loans of
money, grain or oil are typically loans in kind. These two types of loans are
discriminated in CANDID as follows:

LOAN-IN-SUBSTANCE!!(x,y,z,t) ::=
PGIVE!!(x,y,z) &
(∃ p) PROMISE!!(y,x,p) &
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p =
∧

[O(x,y): RD(t): PGIVE!!(y,x,z)]

Reading: x, the lender, gives y, the borrower, the object z, and y promises x
that it be obligatory for y to realize sometime during time t the giving back
of the same object, z.

LOAN-IN-KIND!!(x,y,Φ,t) ::=
(∃z1)Φ(z1) &
PGIVE!!(x,y,z1) &
(∃ p) PROMISE!!(y,x,p) &
p =

∧
[O(x,y): ∃z2(Φ(z2) & RD(t): PGIVE!(y,x,z2))]

The reading here is similar to before except that not the object returned
is not necessarily that the same one, but only one that satisfies the same
predicate, Φ. Note that this second object does not necessarily exist when
the LOAN-IN-KIND!! is realized.

3.2 Loans of Money

Loans of money are loans in kind where Φ is a money predicate. Most com-
monly, however, the borrower is obligated to repay a larger amount than
what was borrowed, the difference being the interest of the loan. A loan of
money with interest is thus a loan involving two kinds:

LOAN-OF-TWO-KINDS!!(x,y,Φ, Ψ , t) ::=
(∃z1)Φ(z1) &
OGIVE!!(x,y,z1) &
(∃ p) PROMISE!!(x,y,p) &
p =

∧
[O(x, y) : (∃z2)Φ(z2)&RD(t) : OGIV E!!(x, y, z2)]

Here, x gives z1 (which satisfies Φ) to y, in exchange for y’s promise to later
return to x some object z2, which satisfies Ψ . Thus the thing given and the
thing returned neither are the same thing, nor do they even satisfy the same
predicate. This hardly seems like a loan anymore. However, in loans of money,
Φ and Ψ are both money predicates that differ only in amount. For simplicity,
let us assume that the currency is US dollars. Then, a loan of money with
interest can be defined more specifically as follows:

LOAN-OF-MONEY1!!(x,y,n1,n2,t) ::=
(∃m1) $$(m1) = n1 &
OGIVE!!(x,y,m1) &
(∃ p) PROMISE!!(y,x,p) &
p =

∧
[O(x,y): (∃m2) $$(m2) = n2

& (RD(t): OGIVE!!(y,x,m2)]
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It is more usual to specify the second amount of money as a multiple of the
first. The common method is to designate a fraction, r1, (where 100 ∗ r1 =
percentage) which is the incremental portion of the first amount to be added
in repayment. In this form we have:

LOAN-OF-MONEY2!!(x,y,n1, r1, t) ::=
(∃n2)n2 = n1 * (1+r) &
LOAN-OF-MONEY1!!(x,y,n1, n2,t).

It is also common, at least in the US, to specify r1 as an annual rate; i.e. the
actual multiplier to applied to n1, call it r2, is determined by multiplying r1
by the duration of t in years. Thus the load of money predicate which takes
r to be an annual rate would be as follows:

LOAN-OF-MONEY3!!(x, y, n1, r1, t) ::=
(∃r2)r2 = r1 * Dur(t,Yr) &
LOAN-OF-MONEY2!!(x,y,n1, r2,t).

where “Dur” measures the duration of years of the time span t. The interpre-
tation so far has been that the borrower is obliged to repay the principal and
interest some time within the period t. As described in this last predicate,
the borrower must pay the full amount of interest irregardless of how early
in this period repayment is made. While this is in fact the condition of some
loans, others limit the amount of interest to apply only to the period up to
the point of repayment. This form of loan would be defined as follows:

LOAN-OF-MONEY4!!(x, y, n1, r1, t1) ::=
(∃m1) $$(m1) = n1 & OGIVE!!(x,y,m1) &
(∃ p) PROMISE!!(y,x,p) &
p =

∧
[O(x,y): (∃m2)(ιt2)(∃t3) : (End(t2) < End(t1)) &

RT(t2) [OGIVE!!(y,x,m2)] &
Beg(t3)=Beg(t1) &
End(t3) = End(t2) &
$$(m2) = m * (1 + r1 * Dur(t3,Yr))).

Reading: For some money, m1, in the amount n1, x gives this money to y;
y promises that for some other money, m2, a unique time span t2, and some
other time span, t3, where t2 ends before t1 ends, and throughout t2, y gives
x the money, m2, and for the time span t3 that began with t1and ended
with t2, m2 is an amount of money equal to n1 plus the interest on n1 over
time t3. Note that the promise in this case involved the introduction of two
time periods, t2 and t3, where t2 was the (relatively short) time in which
repayment is realized throughout, while t3 was the time from the start of the
loan to this repayment.
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3.3 Simple versus Compound Interest

The interest computation in the last case is called simple interest. Often
a more complex computation is used called compound interest. The basic
effect of this is that for some time interval, called the compounding period,
the interest for the period is computed and added to the principal for the
subsequent computation. Suppose the loan is for $1000 at an annual rate of
.05 for three years. Assuming a compounding period of a year, a comparison
of the two methods is as follows:

End of year Simple Interest Compound Interest
Principle Interest Principle Interest

1 1000 50 1000 50
2 1000 50 1050 52.50
3 1000 50 1102.50 55.12

Total† 3150.00 3157.62

†(principle + interest)

Compounding is obviously advantageous to the lender. The computations for
simple and compound interest, n, assuming principal = m, annual rate = r,
total loan duration t1, and compounding period t2, are as follows:

nsimple = m∗ (1+Dur(t1,Yr)) ncompound = m∗ (1+r)∗∗Dur(t1, t2)
While adding arithmetic complexity, compounding does not seriously com-
plicate the descriptive complexity of the CANDID calculus. To modify the
previous example to reflect compounding, one would simply change the for-
mula for the amount of m2 in the last line.

3.4 Present Value of a Debt

A loan or debt has value to the lender. Insofar as the promised future repay-
ments are reasonably assured, the lender typically regards this as a compo-
nent of his/her present wealth, even though it is only the promissory object
that is actually owned. (Wealth here is taken to be the collection of things
owned, according to the CANDID definition of OWN.) In business, it is very
important to measure these and other forms of wealth. Since it is by the proxy
of such measurements that economic objects are made numerically compa-
rable, decision making is simplified by reducing it to arithmetic calculations
and comparisons. Usually wealth is measured in monetary terms. For cash,
wealth obviously is the total face amount of the currency. For physical and
informational objects, wealth is typically measured as the original amount
of cash paid for the object (sometimes with an adjustment for deterioration
and/or obsolescence). With respect to promissory objects for future cash,
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one might initially value them as the amount of the cash expected. However,
most business and economic theorists would regard this as incorrect for two
reasons:

a.) there is always some chance that the borrower may renege on the
promise and the future cash may not be collectable;

b.) if the total amount to be paid were immediately available, one could
invest it elsewhere (e.g. in a bank, securities, other loans) and make addi-
tional interest.

Thus a promise for future cash is usually regarded as having less monetary
value than an equal amount in the present. The more conservative valuation
is termed the present value of the promise. While our concern in CANDID
is with the formal description of phenomena only, and not with valuation
(which we see as a problem for accounting and economics), there is a com-
monly accepted and used method for computing the present value of future
cash receipts that we feel should be mentioned here. This method involves the
assumption of a rate, d, called the discount rate, which might be considered
as a sort of counter-factual interest rate. It is the hypothetical average rate of
return at which cash presently available could be invested. Considering some
future cash amount, n1, expected after a period t1, the present value is the
amount, n2, which if invested now at the discount rate would yield money in
the amount n1. That is,

n1 = n2 * (1 + d * (Dur(t1, Yr)))

hence,

n2 = n1 / (1 + d * (Dur(t1, Yr)))

3.5 Partial Payments

Loans are often re-paid in a series of partial payments rather than as a lump
sum. Sometimes these are of equal size and in regular intervals, though not
necessarily. With respect to partial payments, it is important to distinguish
the requirements of the loan from the options available to the borrower. For
instance, a loan may specify payment of 36 monthly installments of a certain
amount. Sometimes, however, the terms of the lay may disallow early pay-
ment. This, as we will understand it here, is not to be taken literally. Early
payment is always advantageous to the lender. By such a stipulation, it is
generally intended that the borrower will receive no reduction in interest due
by such pre-payment. This is basically the distinction made in the predicates
LOAN-OF-MONEY3!! and LOAN-OF-MONEY4!! above. As observed there,
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the difference in the loan specification is that in the latter case, the amount
of interest depends on the time of pre-payment. To describe loans involving
partial repayments with no adjustments of interest for early payment, we
can ignore the interest computation and regard the borrower’s promise as a
series of payments of certain pre-specified amounts n1, n2, . . . , nk required on
or before certain dates, t1, t2, . . . , tk. The borrower’s obligation in this case
simply covers a series of realization formulas in conjunction. For instance,
suppose that on 1 January 1980 John Doe (j) borrows $1000 from his local
bank (b), with repayment specified in three amounts as follows:

$250 on 31 December 1982
$500 on 31 December 1983
$300 on 31 December 1984

The CANDID description of this loan event and John’s obligation are as fol-
lows:

RD(Date(1,1,1980)):
(∃m0) $$(m0)=1000 & OGIVE!!(b,j,m0) &
(∃ p) PROMISE!!(j,b,p) &
p =

∧
[O(x,y):

(∃m1)(∃m2)(∃m3)
$$(m1)=250 &
$$(m2)=500 &
$$(m3)=300 &
(∃t1)(∃t2)(∃t3)
End(t1)=End(Date(31,12,1982)) &
End(t2)=End(Date(31,12,1983)) &
End(t3)=End(Date(31,12,1984)) &
RD(t1) [OGIVE!!(j,b,m1)] &
RD(t2) [OGIVE!!(j,b,m2)] &
RD(t3) [OGIVE!!(j,b,m3)].

A more common formulation of a loan involves a series of equal size payments
over regular intervals. The intervals most commonly used are that of a month
or year which, as was noted earlier, are of varying length but nonetheless un-
ambiguous. A loan of amount n1 to be repaid as a series of k installments
each of size n2 in intervals of length t1 beginning at time t0 is described as
follows:

LOAN-OF-MONEY5!!(x,y,n1, n2, k, t1, t0) ::=
(∃m1): $$(m1) = n1 & OGIVE!!(x,y,m1) & (∃ p)
PROMISE!!(x,y,p) &
p =

∧
[O(x,y):
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[i=1,k]: ∃(t[i]) ∃(m[i]):
Beg(t[i])=Beg(t0) &
Dur(t[i]) =i ∗ t1 &
$$(m[i]=n2 &
RD(t[i]): OGIVE!!(y,x,m[i]).

Note: as we have defined it, each repayment interval begins at the beginning
of t0, but is terminates incrmentally later by t1 each iteration.

These descriptions provide for no reduction in interest for early pay-
ment. When that is the case, a modification analogous to that in LOAN-
OF-MONEY4!! is required.

4 Financial Instruments

In the last section we looked mainly at the process of loaning money. That is,
the lender gave some sum of money in exchange for the borrower’s promise
to pay it back in various ways. We now broaden our scope to include other
financial mechanisms. As shall be seen, the notion of promise, hence promis-
sory objects, will continue to play a central role. In approximate accordance
with general usage, we refer to the promises themselves as financial instru-
ments. Also in deference to general usage, the terminology of “lender” and
“borrower” needs to be generalized. Broadly, we will call the “promisee” and
“promissor”, respectively. In more narrow contexts, these parties will be as-
signed more specific role names.

4.1 Leases

Leases are agreements involving monetary payments i exchange for rental
or temporary possession of a physical economic object, e.g. a n apartment,
house, car, truck, machine, building, land. Accountants are quick to focus on
the temporariness of this possession, and when it approximates the useful life
of the object, they argue that the lease effectively amounts to a sale of the
object plus a corresponding financing arrangement (loan). The technicality
of casting such would-be sales as leases often has certain tax advantages.
Leases where the duration of possession is short relative to the object’s life
are termed operating leases. Those where the possession approximates the
useful life of the object are financial leases. Let p1be a promise (promissory
object) to pay certain amounts of cash over a specified period. Then a rental
for an object, z, over a period t1, is described as follows:

LEASE1!!(x,y,z,t1, p1) ::=
PGIVE!!(x,y,z) &
PROMISE!!(y,x,p1) &



168 Ronald M. Lee

(∃p2) PROMISE!!(y,x,p2) &
p2 =

∧
[O(x,y): RD(t1): PGIVE(y,x,z)].

Reading: x gives possession of z to y and y makes the promise p1 (left unspec-
ified, but presumably to pay money), and in addition y agrees to the promise
p2 which is the obligation to realize during t1 the giving back of possession
of z to x. Here the roles indicated as x and y are usually termed “lessor”
and “lessee”. Note: as described here, the lease involves two promises: p1, to
pay money, and p2, to return the rented object. Had we wished to specify p1,
these could have been combined as a single promise. Financial leases often
provide an option for the lessee to purchase the object at the end of the lease
period for a usually insignificant amount, called it n1. Such a provision is
incorporated as follows:

LEASE2!!(x, y, z, t1, p1, n1) ::=
PGIVE!!(x,y,z) &
PROMISE!!(y,x,p1) &
(∃p2) PROMISE!!(y,x,p2) &
p2 =

∧
[O(x,y): RD(t1): PGIVE(y,x,z)

∨
(RD(t1) : (∃m1)$$(m1) = n1 &
OGIV E!!(y, x,m1) TOCHANGE!(x, y, z))].

Reading: x gives to y possession of z; y promises p1 (unspecified cash pay-
ments) to x; y also promises p2 to x; the effect of p2 is the obligation that:
for some money m1, in the amount n1, either y gives to x the object z, or
y gives to x the money m1, in which case there is an (automatic) ownership
change from x to y of the object z.

4.2 Options

Options as a general concept are a sort of conditional promise subject to the
promisee’s control. The two parties involved are sometimes distinguished as
the issuer of the option (the promissor) and the option holder ( the promisee).
Let Q1 and Q2 be temporally unbound states of affairs, and t1 be the span
of time in which the option holds. Then the CANDID description of this is
as follows. The general form of an option is the issuer’s promise that if the
holder acts to bring about the state of affairs Q1, then the issuer is obligated
to act to bring about state Q2:

OPTION!!(x,y,Q1,Q2,t1) ::=
(∃ p) PROMISE!!(x,y,p) &
p =∧

[O(x,y):



CANDID, Part III: CANDID Specification of Financial Concepts 169

(∀t2) [PT(t2, t1) &
RT(t2): (* T (Q1 (Ix) *))] →
[(∃t3): Beg(t3) = End(t2) &
RT(t3): (* T (Q2 (Iy) *))]]

Reading: x makes some promise to y that for any time t2 in t1, if x brings
about Q1 (from any state instead of any state) then it is obligatory that for
some t3 that y brings about Q2 (from any state instead of any state). Com-
monly occurring types of options are made for the purchase or sale of publicly
traded stock, usually in units of 100 shares. A “call” is an option to buy 100
shares of stock at a pre-determined price. Obviously if the market price of
the stock goes above this pre-set price, one can exercise the option and sell
the stock in the option market at a profit. Thus, for stock in company z, at
a call price of m, a call can be defined in terms of the preceding definition
for an option as follows:

CALL!!(x,y,z,n1, t1) ::=
OPTION!!(x,y,Q1,Q2,t1)

where

Q1 ↔
[(∃m1)$$(m1) = n1 &
OGIV E!!(x, y,m1)]

and

Q2 ↔
[(∃w)w = {u|Stock(u, z)} &
Count(w,Stock) = 100&
OGIV E!!(x, y, w)]

Here, Q1, the condition of the option, is that x gives y money in the amount
n1. Q2, the obligation initiated by Q1, is that y gives a collection consisting
of 100 shares of stock in company z tox. A “put” is the converse of a call. It is
an option to sell 100 shares of stock at a pre-established price. The holder’s
strategy in a put is usually that if the market price declines to below the
pre-set price, the holder can buy the lower cost stock in the market and then
exercise the option in order to sell it at the higher put price. The CANDID
definition of a put is quite similar to a call; simply the definitions of Q1 and
Q2 are interchanged:



170 Ronald M. Lee

PUT!!(x,y,z,n1, t1) ::=
OPTION!!(x,y,Q2,Q1,t1)

where Q1, Q2 are defined as before. Other types of options derive from puts
and calls. A “spread” is a combination of a put and a call written on the same
stock and running for the same length of time. The put price is below the
current market, while the call price is above it. A “straddle” is a spread where
the put and call prices are equal. These would be described as conjuncts of
a call and a put. A spread has two prices whereas a straddle has only one:

SPREAD!!(x,y,z,n1, n2, t1) ::=
CALL!!(x,y,z,n1, t1) &
PUT!!(x,y,z,n2, t1).

STRADDLE!!(x,y,z,n1, t1) ::=
SPREAD!!(x,y,z,n1, n1, t1).

4.3 Insurance

Insurance is a promise contingent upon some change of state in nature, rather
than an action controlled by one of the parties to the promise. Let Q1 be a
temporally unbound formula describing the event (e.g. Earthquake(), Fire(),
Flood()), and let t1 be the time in which the insurance is valued. Let Q2 be a
formula describing the payment by the insurer if the event occurs. Then the
general structure of an insurance policy is as follows:

INSURANCE!!(x,y,Q1,Q2,t1) ::=
(∃ p) PROMISE!!(x,y,p) &
p =
[(∀t2): [PT(t2, t1) & RT(t2) Q1] →∧

[O(x,y): (∃t3) Beg(t3)=End(t2) &
RD(t3) Q2]]

Reading: x makes some promise to y that for any time t2 on t1 wherein Q1
is realized throughout, then it is obligatory following t2 that Q2 be realized.

For instance, suppose party x writes insurance for party y against a fire
in some building z for the appraised amount of the damage up to a maxi-
mum limit of $100,000. We assume a numeric function, Min(nx,ny), which
returns the smaller of its two numeric arguments, and another numeric func-
tion, Appraisal(z), which returns the dollar amount of the fire damage. Then
this fire insurance policy is specified as follows:

FIRE-INSURANCE!!(x,y,z,n1, t1) ::=
Q1 ↔ Fire!!(z) &
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Q2 ↔
[∃n2) n2 = Min(Appraisal(z), n1)) &
(∃m1) $$(m1)= n2 & OGIVE(x,y,m1)].

4.4 Easements and Licenses

Easements and licenses are promissory objects involving permission rather
than obligation. Easements are the “rights” of persons other than the owner
in the use of real property (land). Presumably these rights are restricted to
some particular actions or activities. If not, we would characterize the un-
restricted right as possession and view the easement as a rental contract or
lease. Typical kinds of easements are permissions to drive on the property, to
have a building located on it, etc. These would not constitute full possession
in that such other activities as extracting oil or minerals, growing crops etc.
are usually not included in this permission. Let Q be the allowed activity.
Then the granting of an easement by x to y on the property z over the time
period t1 is as follows:

EASEMENT!!(x,y,z,Q,t1) ::=
(∃ p) PROMISE!!(x,y,p) &
p =

∧
[P(x,y): RD(t1) Q].

Reading: x makes a promise to y that y may (but doesn’t have to) realize
(one or more times) during the activity Q during the time period t1.

A license, at least as we understand it here, is the general case of an ease-
ment. (Or, rather, an easement is a kind of license.) That is, it is the licenser’s
(promissor’s) permission to the licensee (promissee) to perform certain ac-
tions that normally would be forbidden. This permission is not restricted
to rights to use real property. For instance, a common type of license is for
patent rights. In this case, the licenser allows the normal patent protection
to be suspended for the licensee. Again, let Q be the activity permitted, and
t1 be the period of this permission. The general form of a license is then:

LICENSE!!(x,y,Q,t1) ::=
(∃ p) PROMISE!!(x,y,p) &
p =

∧
[P(x,y): RD(t1) Q].

Reading: x makes a promise to y to the effect that y may do Q repeatedly
during time t1.

4.5 Debt Instruments

Loans as we discussed them in the earlier section were regarded as a particular
promise (to pay cash) from one individual to another. Loans of this type,
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especially when the period of the promise is less than 5 years, are usually
called notes. Bonds are another type of loan. Usually these are for a period
longer than five years. The promissor in these cases is generally an economic
organization. e.g. a corporation or governmental body, rather than a person.
The promissee (bond holder) in these cases may however, be either type of
economic actor. Also, bonds usually occur as a collection of promises to a
number of parties. The collection is referred to as a bond issue. The elements
of each collective bond issue have a common agent, starting date and terms
of payment. They differ in the technicality that different money is promised
in each bond, though the amount of the money is the same, and that the
recipients may be different in each case.

Two major classes of bonds are distinguished based on how the recipients
are identified. A registered bond is one where the bond issuer maintains a
record of each recipient. The bond can only be transferred by the endorse-
ment of the issuer. A coupon bond, on the other hand, is payable to the
“bearer”. This is the more frequent form, comprising 90 % of all bonds. But
the concept of “bearer” raises the interesting and potentially knotty question,
“bearer of what?”. Our treatment of financial instruments thus far has re-
garded them as abstract objects, what we have called “promissory objects”.
The physical representation (document) on which this promise is expressed
has so far not been of importance. If we consider only the promissory object,
we would view the promise to be made to some indefinite recipient who is
the owner of that promise on some given date. Thus, the promissee would
be indicated within the elaboration of the promise as its owner as of some
future date:

p =
∧

[O(x,y): (∀ w): RD(t1) OWN(w,p) →
(∃m1) OGIVE!!(x,w,m1)].

Here the promise p is the obligation that for whoever owns p, x will give
them m1 (some money). This is however a logical anomaly, a so-called “self-
referring” expression. Substitution of p in the argument of OWN here leads
to an infinite regress.

In addition, there is a pragmatic problem with this definition. The promis-
sory object, p, is merely an artifice; an abstraction without physical reality.
Given that many people might claim to be the owner of the promise on the
date t1, how is the company to identify which is the real one? In the case of
the coupon bonds (or any bearer bonds for that matter), the issuer generally
does not keep a record of the promises. The whole point of a coupon bond
is to be able to trade them without notifying the issuer. How, then, does the
issuer know who to pay? The actual mechanism involved is a book contain-
ing physical coupons, one for each promised payment. These coupons operate
effectively as post-dated checks of specified amounts, but with the recipient
left unspecified. After any particular date is reached, the holder of this book
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removes the appropriate coupon and cashes it at a bank (any bank). This
physical book is thus an “authoritative document” in that its purpose is not
only informative, containing information which can be copied as is the case
with other information objects, but also performative, in that the promissory
object in this case is identified with this unique physical object. Note that
this performative aspect cannot be reproduced in a photocopy (except under
false pretence). Designating this book by the variable x, the previous formula
would now read:

(ι x): AUTH-DOC(z, p) &
p =

∧
[O(x,y):

(∀ w): [RD(t1) OWN(x,z) →
(∃m1) OGIVE!!(x,w,m1)].

Thus, at least in the case of coupon bonds, any change in ownership of the
promissory object must also be accompanied by a corresponding change of
ownership of the coupon book. This is expressed:

COLLATERAL-PROMISE!!(x,y,Q,t1,z) ::=
(∃ p) PROMISE!!(x,y,p) &
p =

∧
[O(x,y): RD(t1) Q] ∨

[P (∀t2): Beg(t2)=End(t1) &
RD(t2) OTAKE!!(y,x,z)]]

The promise reads as follows: for all times t2 following t1, it is obligated to
realize during t1 the action Q; or else it is permissible that y takes ownership
of the object z from x.

4.6 Equity Instruments

Equity instruments are the various types of corporate stock. The two principal
types are common and preferred. Common stock corresponds most closely
with the ordinary concept of “ownership” of the corporation. Each share of
common stock permits the holder to one vote in the election of the company’s
board of directors (usually — there have been exceptions). Beyond that,
however, the stockholder has little direct influence on the firm’s everyday
operations nor can he/she legally dispose of any of the firm’s assets without
the permission of the management or board. Common (as well as preferred)
stockholders are not responsible for the corporation’s debts. If the firm goes
bankrupt, creditors have no claim to the stockholder’s personal estate. If the
firm is liquidated without bankruptcy, common stockholders have a residual
claim to the assets — they get whatever is left after all debts have been
satisfied as well as whatever claims preferred stockholders might have.

We find this to be a quite different form of “ownership” than the others
we have considered. For that reason, we have expressly excluded it in the



174 Ronald M. Lee

definition of our OWN predicate. While stockholders are seen to OWN their
stock, they are not seen to OWN the corporation itself. Rather, the stock is
regarded as a promise, essentially no different than the promises involved in
debts, to which the corporation has a commitment.

The details of these promises are rather vague however. Roughly, they are
contingent obligations on the part of the firm to eventually distribute cash
dividends, and/or accumulate valuable assets within the firm which may be
eventually converted to cash on liquidation. Seldom, if ever, are these commit-
ments ever articulated however. (Certainly they exist or else the stock would
have no value.) Given the vagueness and complexity of the corporation’s
agreement with its stockholders, we are forced (at least for the moment), to
accept this a s a primitive type of promise, viz. COMMON-STOCK. Thus, for
a corporation, c, and a stockholder, x, we would describe their relationship
as follows:

(∃ p) PROMISE!!(c,x,p) &
p =

∧
[O(x,y): COMMON-STOCK]

(Recall that by the definition of PROMISE!!, x afterwards OWN’s p.) Pre-
ferred stock is conceptually something of an intermediate category between
bonds and common stock. It often does not have voting privileges, and some-
times is only contingently voting, e.g. only under certain adverse circum-
stances. In the event of liquidation, preferred stockholder’s claims come after
those of bond holders, but before common stock holders. Also, the nature
of the firm’s promise is usually more definite with preferred stock than with
common, but usually contains contingency provisions not found in bonds.
There is a wide range of variations written into the terms of preferred stock
issues. Often there is a fixed dividend rate set, which is payable provided the
firm realizes adequate earnings. Sometimes this dividend obligation is made
cumulative, so that a missed dividend one period is added to the dividend
promised for the following period. Other terms are also variously included,
such as call and sinking fund provisions allowing the firm to retire this stock if
it chooses. Unlike bond holders, preferred stockholders cannot legally enforce
arrearages in dividends, though these dividends to take priority over divi-
dends to common stockholders. This lack of legal enforcement is problematic
in CANDID, since we have presumed that our deontic operators have the
force of law. To give an example of what a preferred stock might look like
in CANDID, let us assume a firm, x, writes a preferred stock to a party, y,
promising a cumulative dividend interval, t1 (for instance every year) in the
amount n. Assume the stock is issued in time t0 and that any dividends paid
will be paid within t2 (e.g. a month) time following the end of the operat-
ing interval t1 (e.g. the fiscal year end). The notion of a dividend contingent
on adequate income, would also necessitate an event predicate, Income!(x),
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which would test for sufficient income.

CUMULATIVE-PREFERRED-STOCK(x,y,t0, t1, t2,n) ::=
(∃ p) PROMISE!!(x,y,p) &
p =

∧
[O(x,y): [1 ≤ i ≤ *]:

(∃m1[i]) $$(m1[i])=n &
(∃t3[i]) (∃t4[i]):
Beg(t3[i])=End(t0) & Dur(t3[i],t1)=(i-1) &
Beg(t4[i])=End(t0) & Dur(t4[i],t1)=1 &
(∃t5[i]) Beg(t5[i])=End(t4[i]) &
Dur(t5[i],t2)=1 &
(∃t6[i]) Beg(t6[i])=End(t4[i]) &
[RT(t4[i]) Income(x)] →
[RD(t5[i]) OGIVE!!(x,y,m1[i] &
¬[RD(t4[i]) Income(x)] →
[RD(t6[i]) OGIVE!!(x,y,m1[i])].

Reading: on each of an indefinite number of iterations, it is obligatory that
for some money in the amount n, and for times t4 (e.g. the current year),
t5 (a short period following t4), and t6 (an unlimited period following t4), if
there is income in t3, x must pay the dividend during t5; if there is no income
in t4, x must pay the dividend during t6.

4.7 Convertibles

Certain bonds and preferred stock are “convertible”. This means that the
holder has the option to exchange them for the issuing company’s common
stock at some specified exchange rate. This option aspect of convertibles is
structurally similar to that of puts and calls. We describe this convertible
aspect as a separate promise taking the form of an option to exchange the
current promise, p1, by the company, that of the bond or preferred stock, for
another promise, p2, that of common stock. Let us assume for issuer x and
holder y this option applies for the period t1 and that y must respond within
t4 amount of time. Then, the issuance of this option would be as follows:

CONVERTIBLE-OPTION!!(x,y,p1, p2, t1, t2) ::=
PROMISE!!(x,y,p1) &
p1 =

∧
[O(x,y): (∀t3) (∃t4): PT(t3, t1) &

Beg(t4)=End(t3) & Dur(t4,t2)=1 &
[RT(t3) OGIVE!!(y,x,p1)] →
[RD(t4) OGIVE!!(x,y,p2)]]

Reading: x promises y that for any time t3 during t1, y gives back ownership
of the promise p, then x is obliged to give to y the promise p2 within the time
t4 (of length t2) which immediately follows.
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5 Concluding Remarks

This completes our list of sample financial instruments described using CAN-
DID. The preceding was of course only a tutorial survey illustrating how
CANDID can be used to represent financial and commercial concepts. As
indicated in the introduction, the motivation behind the development of this
calculus was to serve as a representation language for knowledge bases in
artificially intelligent managerial decision support systems. Definitions such
as these would therefore serve as a basis for inferencing in decision aiding
applications, for instance in evaluating a firm’s financial statements, eval-
uating financing alternatives, verification and monitoring of contracts, etc.
Also, the implementation of this language in a deductive computer system
would assist in the verification of the definitions. Even at this tutorial level,
some of the definitions approached a level of complexity that was difficult to
follow. As further, more detailed concepts are included, mental verification
would become even more difficult, and the assistance of the computer in this
process would be useful.
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Abstract. The feasibility of open, flexible electronic commerce relies heavily on
the effective management of documentary procedures, i.e., the sequence by which
(structured) business documents are exchanged among contracting parties. The
communication of such documents is not merely the passing of information, but
reflects, indeed enacts, the formation and discharge of commitments. Such com-
munications are called performative (versus informative) in that the act of com-
municating itself is a social action that alters the (contractual, legal, ownership)
relationship among the parties.

This paper proposes four tasks for supporting performative aspects of electronic
commerce. The first is that performative documents be communicated using cryp-
tographic protocols (including digital signatures) and the involvement of trusted
third parties. A special problem is negotiable documents, which may involve the
use of chip cards, specialized registries, or both. The second task is the defini-
tion of a common, publicly available language for the specification of documentary
procedures, which is formal, computable and executable. We propose a formalism,
called Documentary Petri Nets, for this purpose. The third task is the definition
of standard business scenarios using this representation. This definition might be
done on a proprietary basis, or perhaps by industry-wide user groups and/or in-
ternational bodies such as the ISO (International Standards Organization) and
the ICC (International Chamber of Commerce). A CASE (Computer Aided Soft-
ware Engineering) tool presented in this paper, InterProcs, is designed to support
undertaking this latter task by providing both a modeling platform and a testing
environment for proposed documentary procedures. The fourth task is development
of an architecture and a protocol for sharing these procedures among contracting
parties. Three modes are suggested: globally standardized procedures; proprietary
procedures; and multi-lateral coordination.

1 Performative Aspects of Commerce and Public
Administration

1.1 Performatives as Social Action

Our everyday world consists of a variety of physical entities such as houses,
cars and people, with corresponding physical properties, such as color, size,
and location. But also in our everyday world are a wide variety of non-physical
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entities, properties, and relationships. Examples include corporations, govern-
ment agencies, departments in these organizations, one’s position of employ-
ment, ownership (of land, of objects), contracts, promises, rights, privileges,
and so on. These belong to the social aspect of our world. That aspect is
putative—we believe in the existence of these things—yet, for the most part
they are not directly perceptible. Though we may recognize the buildings of a
corporation, the legal entity itself is invisible; it has neither color, nor shape.
Likewise, we regularly acknowledge a wide variety of social properties and
relationships—that Smith is a lawyer, that John and Alice are married, that
Jones owns the house on the corner. Again, these are aspects of our world
that we do not directly observe.

What is the basis of this invisible world? It is not material and does
not arise in the way that atoms, electricity, and black holes do. Rather, it
is consensual, a product of social interactions and institutions. These are
conventions that make our societies work. A promise to meet for lunch or
a contract to build an airport are ways to achieve coordination of human
behavior. This leads us to consider the dynamics of this social world, how
social entities, properties and relationships are brought about, modified, and
terminated. We refer to this as social action.

The focus of this paper is on how social action and social coordination
might be supported by computerized telecommunications networks. The goal
is not only to make social coordination more efficient, reducing the effects of
distance and bureaucratic red tape, but also more effective in permitting new
types of inter-organizational relationships and alliances not presently feasible.

Computerized networks supporting social action are appearing in a wide
variety of areas, such as automated teller machines, airline and hotel reser-
vations systems, automated supplier ordering, and electronic financial mar-
kets. However, our objective is not simply to observe such developments, but
rather to develop a deeper, more formal theory of the principles they reflect.
Presently under development is a representation language and modeling plat-
form for social action infrastructures. In the course of this project, we hope
to demonstrate the design and behavior of a wide variety of computerized
social agents and institutions, both private and public sector, and how they
might flexibly interact and mutually adjust their behaviors. We also seek to
make these systems adaptable by their human constituency.

In this paper we focus specifically on doing business via electronic net-
works: e-business as well as related e-government interactions with agencies
such as customs and other regulatory authorities.

An important enabler for electronic commerce is the evolution of elec-
tronic document interchange (EDI), providing standard, computer-interpret-
able formats for common business documents so that many routine transac-
tion-oriented communications can be handled directly by the parties’ com-
puters, without human intervention.
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In the process of actually doing business, the communication of such doc-
uments is not merely the passing of information, but reflects, indeed enacts,
the formation and discharge of commitments. Such communications are called
performative (in distinction to informative) in that the act of communicating
itself is a social action that alters the (contractual, legal, ownership) rela-
tionship among the parties. Similarly, the record of such communications
constitutes evidence of the occurrence of these actions. Thus, we use the
terminology performative communication for this model of communicating;
performative document for the structure and content of the message; and
performative record for its (secure) storage.

Because of the commitment consequences of performatives, careful con-
trols are typically imposed so that performative communications are (a) not
made falsely or accidentally (as is the case with marriage annulments) and
(b) when made, are recognized as such (thus, the need for ceremonies, to
enhance recognition of the event). More broadly, we hold that performative
communications are conventional, and various enabling conditions must hold
for them to succeed or have effect. For example, in the wedding case, the
priest must be ordained, the couple must be of legal age, and so on. Most
of these enabling conditions are also social, requiring additional social evi-
dence (performative records). In this way, performatives (communications,
documents, records) are linked, as a chain. In the context of business and
public administration, we call these performative chains, documentary proce-
dures. In certain cases, these are highly regular and routinized, such as the
application for a lending card (performative document) from a public library.
In other cases, the procedure may have conditional requirements depending
on the situation, e.g., in a mortgage application, septic inspection. In still
other cases, the procedure might be specially customized by the contracting
parties, as in a letter of credit for international trading of goods.

1.2 Doing Things With Words

The linguistic concept of a performative was first introduced by Austin1 and
elaborated by Searle [Sea69] and others. Logical formalization (so-called illo-
cutionary logic) is first presented by Searle and Vanderveken [SV85]. Early
discussion of performative aspects of information technology applications in-
clude Lee [Lee80], involving data modeling for contracts and financial instru-
ments; Flores and Ludlow2 for office automation; Kimbrough, Lee and Ness
[KLN84]; Lehtinen and Lyytinen [LL86], for information systems analysis
and design, and Kimbrough and Lee [KL86], Dewitz and Lee [DL89], Dewitz
[Dew92], for electronic commerce systems.

A performative is an utterance that not only conveys information but also,
by its being spoken, accomplishes a socially significant act. For instance,

1 [Aus62]
2 [FL81]
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the sentence “I now pronounce you husband and wife” when spoken by a
priest during a marriage ceremony not only describes the relationship between
the couple, but may actually create it. This example brings out several key
features of performatives. One is that the state created by such an utterance
is generally a social artifact. Obviously, the mere speaking of a few words has
very little physical effect. Rather, when an utterance is successful it places
one or more people under a socially-defined relation. Often, this involves a
certain set of obligations, e.g., of fidelity, or economic responsibility.

The roles involved in a linguistic utterance are usually cast as speaker
and listener. However, in the case of performatives, the listener role must be
divided between addressees and by-standers. Clearly, not everybody attend-
ing the marriage ceremony becomes socially obligated by the priest’s pro-
nouncement, only the two people specifically addressed. The social contract
surrounding a performative is not always overtly institutional, as is marriage.
For instance, such remarks as “I promise to do the dishes tomorrow,” are also
performatives. Here, however, attention is limited to performatives in insti-
tutional environments. In these cases the speaker and addressee must have
certain social qualifications in order for the performatives to have force. For
example, only priests, ministers, ship captains, justices of the peace, etc., can
pronounce marriages, and only unmarried couples of a certain age can become
married. Further, apart from the broad social context that enables the per-
formative to have force, for instance the church as an institution, there is also
a narrower, ‘conversational’ context in which the performative must appear.
For example, the marriage pronouncement must appear at a certain point
near the end of the marriage ceremony, not at the beginning, nor afterwards,
during the reception, and so on.

1.3 Written Performatives

Linguists generally refer to performatives as a type of utterance, that is, a
spoken communication. What is sometimes overlooked is that written com-
munications, too, may be performative. In these cases, however, the execution
of the performative takes on a somewhat different character. In a spoken per-
formative, the person making the performative is obviously identified as the
speaker. In written performatives, the issue of authorship arises. Also, with
spoken performatives the addressee hears the performative at the time it is
spoken. Written communications, however, endure throughout time and so
the addressee may receive the communication considerably later than when
it was initially made. The question then arises of when during this interval
does the performative comes into force.

These issues of authorship and timing are commonly resolved by a very
simple device, namely the author’s handwritten signature, accompanied by
the date on which it was signed. The ritual of signing one’s name to a docu-
ment is so pervasive that its fundamental role is often not recognized. Indeed,
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as a rough heuristic, one can usually distinguish purely informative docu-
ments from those with a performative component by whether or not it has
a personal signature. For instance, printed announcements, bulletins, etc.,
seldom have signatures; contracts to pay money (checks, etc.) always do. The
effect of the signature is roughly the declaration:

I hereby acknowledge that my beliefs and intentions are accurately
described by this associated text.

Signed documents, as performative instruments, also acquire a unique fea-
ture not possessed by their purely informative counterparts: the performative
effect of the original signature is not carried over to its mechanical duplicates.
For instance, in legal documents, such as contracts, wills, etc., when several
copies are made, each must be separately signed by the author(s) to have
legal validity.

The unique role of the original in written performatives has, by the way,
its counterpart in spoken performatives as well: repeated playbacks of a tape
recording of a spoken promise, for instance, do not create new promises.
With written performatives the assumption of course is that the signature
provides a unique identification of the author. However, the authenticity of
the signature is seldom called into question (handwriting analysts are seldom
needed in court). A more important effect is that it signals the author’s
declaration of personal responsibility for the associated statements. In the
act of signing such a document the signer typically becomes acutely aware of
its language and contents (especially if the text has been written by someone
else, as in a standardized lease or loan contract), since (s)he is henceforth
expected to behave in accordance with this declaration.

The social significance of this ritual, committing the signer to having
the beliefs, attitudes or intentions as expressed in the document, has been
accepted by nearly every literate culture for centuries. It is an extremely use-
ful historical convention, being the hallmark of honesty and good faith in
all kinds of institutional and governmental transactions and agreements. It
should be noted, however, that a signature is not the only way of marking a
performative document. In many cases, a special seal, stamp or sticker op-
erates similarly, especially where the effect of the document is standardized
and commonplace. Typically, these special performative symbols are designed
with a special, intricate pattern that would be hard to mimic. Often, these
serve effectively as the signature of an institution, rather than a single indi-
vidual. Common examples are coins, bills, and postage stamps.
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1.4 Legal Performatives

The law has long recognized that performative speech acts are actions, not
merely statements [Dew92,DL89]. For example, an objective third party who
witnesses the formation of an oral agreement can testify that a contract was
formed. In fact, Tiersma [Tie86] points out that such evidence would stand
up in court because the law recognizes that uttering a performative verb is a
deed. Testifying what someone said is inadmissible, being hearsay evidence;
however, testifying what someone did in making a performative utterance is
admissible as evidence.

Many of the words in legal procedures indicate performance of legal acts,
such as offering to sell goods, licensing someone to distribute a product, or
accepting an offer. We call these legal speech acts. A legal speech act differs
from an ordinary speech act in that it invokes the rules and conventions of
the law and carries with it a certain legal force. That is, legal speech acts
create obligations, permissions, and prohibitions – deontic states that are
enforceable by law.

1.5 Deontic States Created by Legal Speech Acts

One of the characteristics that distinguishes performative speech acts from
informative speech acts is the ability of performative speech acts to change
the state of the world. Legal speech acts in commercial sales contracts obli-
gate the contractual parties to perform the acts specified in their agreement.
Thus, if a merchant offers to sell goods at a certain price, the buyer’s ac-
ceptance of this offer obligates the merchant to perform a sales transaction.
Obligations, permissions, and prohibitions are deontic states, derived from
deontic logic, a form of logic concerned with normative concepts (see e.g.,
[All82,Cas82,Wri68] . A common function of performative documents in elec-
tronic commerce is to enact changes in deontic status3. The most common
examples are to impose a duty or obligation; to waive an existing obligation;
to permit some activity otherwise forbidden; and to impose a prohibition (see
Figure 1).

1.6 Legal Processes as Formal Conversations

When those engaged in commerce cooperate to perform procedures, the ac-
tions of each agent trigger and restrict the actions of the other agents, each
action creating a new state in which a limited set of subsequent actions is
appropriate [SV85,WF87]). When rules and conventions govern the actions

3 Another common type of performative is baptisms, i.e., rituals which assign a
proper name to a person, company or other entity. An example is the christening
of a ship, “I christen thee the Queen Elizabeth”. Other categories and variations
of performatives are elaborated in Searle and Vanderveken [SV85].
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Fig. 1. Changes in Deontic Status

of agents who use words to form commitments, the procedures in this largely
linguistic interaction constitute a formal conversation.

Our concept of a formal conversation brings together several views of lin-
guistic interaction. From Searle and Vanderveken4 we derive the notion of
a conversation as “ordered speech act sequences that constitute arguments,
discussions, buying and selling.” We adopt the idea of a consensual domain in
which agents share a common language that evolves through their activities
in that domain. Few professions or trades have evolved a more elaborate lan-
guage than the legal profession; legal language is, in essence, a quasi-formal
language whose word meanings are fixed by common use among participants
in the legal consensual domain. Formal conversations also emphasize “con-
versations for action” [FL81,WF87] in which agents use language to form
commitments.

Formal conversations may be viewed as a kind of “language game”.5 A
language game is a special context in which the use of language is governed

4 [SV85]
5 [Wit58]. The notion of a language game was originally proposed as a conceptual

framework for organizing the contexts of usage in natural language. Our usage
here is narrower, focusing on formal languages to capture the language game of
legal communication. The reader should note that the language used in contract
law and other legal specialties is not ordinary natural language but a form of
specialized jargon, a kind of quasi-formal language. It is this formalized use that
qualifies legal language as one of Wittgenstein’s “language games.”
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by conventions. To understand the meaning of words in a language game,
one must first understand the rules and conventions that determine how the
“game” is played. In fact, the context or language game often provides the
criteria for using a word; it defines “the normative aspects of certain lin-
guistic conventions” [Fod86] that determine what an expression denotes in
that game. For example, in contract law, different terms share a common, or
very similar, meanings: convey, transfer, negotiate, assign, and delegate are
legal speech acts that bring about a change in ownership. The attribute that
distinguishes one of these legal speech acts from another is the object of the
ownership change, in essence, the context of the use of the word. Thus, one
conveys real estate, transfers tangible personal property, negotiates commer-
cial paper, assigns contractual rights, and delegates contractual duties.

With this background we can now give a full definition of formal conver-
sation: an ordered sequence of speech acts performed by agents who share
a common language and follow prescribed rules and conventions in order to
form commitments. As this definition suggests, the timing and sequencing of
speech acts matter. Each speech act is an event that must occur in a pre-
scribed order or on, by, or within a certain time. For example, in the legal
procedure of forming a sales contract, an offer must precede an acceptance.
Similarly, the time frame of the acceptance may be restricted: the terms of
the offer may stipulate that it will expire if not accepted within 10 days.

Because timing and sequencing matter, the formal representation must
employ aspects of temporal logic to represent and reason about time. Both
absolute time (e.g., January 1, 1999) and relative time (e.g., event A precedes
event B) must be represented so that we can infer the status of the formal
conversation. That is, we must be able to determine if a contract has been
successfully completed, if it is pending, or if one of the parties has failed to
fulfill a legal obligation within the allotted time.

Offering and counter-offering, accepting and rejecting are all rule-governed
legal speech acts within the formal conversation of contracting. When one uses
these words in other conversations, their effect may not be the same; only
in their ”role within a certain set of social conventions or rules”6—within a
well-defined formal conversation—do these words constitute a legal speech
act capable of obligating the parties.

1.7 Legal Conversations as Documentary Procedures

One of the main reasons for the complexity of the negotiation process is the
fact that parties have to know about each others’ “ways of doing business”
before they can start exchanging data electronically. Knowledge about the
preferred way of doing business of one trading partner has to be conveyed to

6 [KLN84]
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the other; in other words, the parties have to agree upon the documentary
procedure7 they are going to follow.

We define a documentary procedure as the mutually agreed upon set of
steps and rules that govern the activities of all parties involved in a business
transaction. Thus, a documentary procedure controls all interactions among
the roles involved. A documentary procedure stipulates which actions should
be undertaken by which parties, the order in which these actions should be
performed and possibly the timing constraints on the performance of these
actions. Actions of parties include the sending and/or receiving of goods,
documents or funds.

The need for and usefulness of documentary procedures is easy to demon-
strate. Consider only a simple post-payment contract for goods. The buyer
assumes that an invoice will be sent after delivery to trigger the payment
obligation. The seller, on the other hand, abides by the practice that pay-
ment becomes due from the time of delivery, and does not send an invoice.
Thus, the goods arrive, and the buyer does not pay, waiting for an invoice.
Meanwhile the seller becomes irked, and initiates collection proceedings.

This is an example of the so-called “battle of the forms”. Each party
utilizes standardized documents such as a purchase order, delivery agreement,
etc., which contain (typically on the backside, in small print) the terms and
conditions that are their style of doing business. Unfortunately, the small
print is often ignored by the receiving party.

For trade in a well-established industry area, standardized practice be-
comes generally accepted, and this is usually unproblematic.8 However, in
more open trading situations, that cross national, cultural or sectorial bound-
aries, such conflicts are much more likely to arise.

1.8 Performative Networks, Established by Umbrella Contract

Given the above framework, we can now describe a performative network
more fully. A performative network is a telecommunications system that sup-
ports the formation of commitments between agents by providing a formal
language by which they can perform legal speech acts. What makes a net-
work performative is a set of assumptions about its use. For example, an
ATM (automatic teller machine) network is performative in the sense that it

7 It should be noted that although we call these agreements trade procedures,
the principle is applicable to other societal areas than trade. The main focus
of this paper however is electronic commerce which explains the term ’trade’ in
the definition. Other terms used to describe this concept are: trade scenarios,
business scenarios and business protocols.

8 In some cases, guidelines by international bodies such as the International Cham-
ber of Commerce or the UNCID have been issued to diminish these ambiguities
(an example is the Uniform Customs and Practices for Documentary Credits,
issued by the ICC [ICC94]).
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provides a formal system whereby users perform the legal speech acts of with-
drawing and depositing money. In other applications, a performative network
may provide a meeting place, a kind of trading room floor or market place,
that imposes certain rules of discourse on its members: for example, elec-
tronic shopping (see e.g., [BL95,LW86] and electronic contracting (see e.g.,
[Lee80]). The sorts of performative networks that we envision for electronic
commerce could also monitor the fulfillment of agents’ commitments.

An informative network (e.g., the Dow-Jones News Retrieval service or
any other application that provides information to subscribers) merely de-
scribes the states of participants and objects. In contrast, a performative
network actually supports the performance of acts that change the status
of the participants. On an informative network, unauthorized access is the
primary security concern: third parties must be prevented from accessing
or altering the information on the network. In contrast, on a performative
network, forgery and fraud pose the greatest security risks.

Verifying the legitimacy of the acts requires verification of the agent’s
identity: that it was Smith who made the offer and Jones who accepted the
goods. It also requires irrefutable evidence that the act itself was performed:
that Smith tendered delivery of the accounting software or that Jones signaled
his rejection within the trial period. Such authentication services are now
commonplace in e-commerce systems.

One way to overcome this impediment is to construe the execution of a
performative statement on the network as an “affirmative act” in the legal
sense, similar to the act of signing a document or mailing a letter containing
an offer or acceptance. Just as an acceptance conveyed in a letter is effective
upon dispatch (the “mailbox rule”), a legal speech act could be seen as ac-
tivated the moment the appropriate command is executed on the network.
Thus, in our scenario, Jones’ executing the command for entering a sale on
approval is an affirmative act that signals his acceptance of the terms of
the sale and that commits him to either accept and pay for the software or
explicitly reject it within the 48-hour trial period.

This considerations impose legal requirements on the formation of a per-
formative network – that it must be governed by explicit rules stipulating
when and how words from the formal language can be used and what mean-
ing the legal speech acts convey in that context. An umbrella contract, which
all participants on the network would be required to sign, could define the
rules for conducting conversations on the network, thereby defining the con-
ventions that govern how the legal speech acts are interpreted.

2 Issues for Open Electronic Commerce

2.1 Open versus Closed Trading

While introduction of Electronic Data Interchange (EDI) promises tremen-
dous benefits for trading partners, the costs and time of establishing clear
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legal interpretations for such electronic communications can impose serious
obstacles9. As a result, most successful EDI implementations have been re-
alized in what could be called ‘closed trading relationships’, i.e., long-lasting
trading relationships, involving a high number of transactions, between par-
ties that have a high level of trust and possibly a close coordination of the
parties’ business processes (Table 1). In these kind of relationships, parties
can gain extra benefits by closely coordinating each others’ actions, thus
compensating for the extra start-up costs stemming from detailed trading
partner negotiations. This process is an example of business process redesign
or re-engineering.

However, when the partnership is established for a limited period, covering
a few transactions only and on an ”at arms’ length” basis, EDI linkages
are seldom observed since the costs of the necessary negotiations cannot be
recovered from the benefits. These shorter-term partnerships could be called
‘open trading relationships’ (Table 1). The main aim of our research is to
contribute to the lowering of the barriers for using EDI in these open trading
relationships.

Table 1. Open versus closed trading relationships.

Open Closed

Level of Trust Low High

Number of Transactions Low High

Duration of Relationship Short Long

Level of Coordination Low High

2.2 Automation of Documentary Procedures

The need to agree upon generally accepted documentary procedures was not
discovered by the implementation of EDI; many such procedures have already
been developed for paper-based commerce. This is illustrated by observing
trading terms and conditions on the back side of documents, which supply
the receiver with the knowledge needed to behave according to the terms of
the business agreements. Where human involvement is high, this informa-
tion might be sufficient, although experience shows that many disputes can
still arise because of ambiguous formulations in such terms and conditions.
In some cases, guidelines by international bodies such as the International

9 Dewitz [Dew92] gives an example of the size of such negotiations: “At one con-
ference on EDI law, James Pitts, a purchasing manager at R.J. Reynolds, said he
spent 18 months negotiating a single trading partner agreement. That left him
with only 349 other trading partners to go. ”
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Chamber of Commerce or the UNCID have been issued to diminish these am-
biguities (an example is the Uniform Customs and Practices for Documentary
Credits, issued by the ICC [ICC94]).

In electronic commerce however, when the execution of the documen-
tary procedure is governed by automated systems, documentary procedures
should be stipulated in a common formal, computable, and executable lan-
guage. Such a language would allow the specification of downloadable pro-
cedures and would ease the negotiation process since all parties can express
their requirements unambiguously in the same language. But this is just the
first step towards electronic market relationships, since although these docu-
mentary procedures could be specified in a formal language, this still requires
negotiations for each new partnership. Even if a party succeeds in creating
such an agreement with one specific trading partner, if it then wants to estab-
lish EDI linkages with more partners this can lead to the existence of several
slightly different documentary procedures. Clearly, this does not encourage
companies to set-up new EDI linkages.

2.3 Soft Coding of Documentary Procedures

Many existing EDI applications of course embed the types of document ex-
change sequencing of a documentary procedure. However, these sequences
are normally ‘hard coded’ into the application programs, as specified in the
terms of the trading partner agreement – a legal, textual document. A key
aspect of the architecture presented here is that documentary procedures
are ‘soft coded’, in a declarative, rule-based form.10 This has the virtue that
they are reusable among different sets of contracting parties. They may be
downloaded from, e.g., a central library to meet the needs of a particular con-
tractual situation. Also significant is that such procedures can be analyzed
and managed using computational tools. For example, analytical techniques
can be applied to check for formal correctness (boundedness, etc.), as well as
for fraud potential and other audit controls. Further, soft-coding allows for
the representation of generic models that are parameterized for specific cir-
cumstances. Additionally, soft coding enables the navigation, synthesis and
negotiation of procedures from different trading sectors or regulatory envi-
ronments.

3 From Ink to Bits: Original, Signed Writings

Documents used in international trade are typically of a performative na-
ture, i.e., the document itself causes a change in commitments (rights and

10 In the terminology of programming languages, this is like the distinction be-
tween interpreted (soft) versus compiled code. In AI terms, these are declarative
representations, as used for instance in expert systems.
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obligations) between parties. The performative aspect of such business infor-
mation poses additional security requirements on the exchange through an
electronic network as compared to communications that are only informa-
tive. Even more difficult is the exchange of negotiable documents, since the
electronic version needs to be treated in a different manner then their paper
equivalents; the distinction between an ‘original’ and a ‘copy’ of a document
disappears completely in an electronic environment.

3.1 Performative Electronic Documents

Important security requirements on the exchange of performative documents
include non-repudiation, authentication, security, and integrity.

Non-repudiation: It should always be possible to prove that a specific
information exchange did or did not take place. Two possible disputes can
arise in this area:

• An actual information exchange took place but one of the parties denies
it; or,
• Information exchange did not take place but one of the parties claims it

did.

In both cases the receiver or the sender may make the false claim.
Authentication: The ability to verify the identity of the parties involved.

In contract formation the most important aspect of authentication is making
sure that a certain document has been sent by the party specified in the
document as the sender.

Security: The ability to prevent third parties to access the information.
Integrity: The ability to rely on the underlying communication network

that when a message is sent, the content is not modified during the transfer
of the message.

In general, two types of solutions can be proposed to satisfy these re-
quirements: a technical solution using cryptographic methods and an organi-
zational solution involving trusted third parties.

Cryptographic methods employ public and private keys. It is assumed that
these are distributed among parties and that the public keys of parties can be
made known to others, in both case with very strict security requirements.
Both sender and receiver own a private key and both keys are necessary
to decrypt and/or encrypt messages. This encryption can take place in two
directions: the sender can encrypt a message using his own secret key, which
will make sure that people can verify that he is the original sender (only
when his public key is used to decrypt this will yield a readable message).
This solves the authentication problem (the ‘digital signature’). Furthermore,
the sender can encrypt the message using the public key of the receiver. This
means that only the receiver is able to decrypt the message, since he is the
only one who owns the secret key needed for this. This solves the security
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problem. Since most encryption mechanisms also include the calculation of a
check-sum, this technology also provides the means for the integrity checks.
It should be noted however that this task should be mainly done by the
electronic network provided and should be kept transparent for the sender
and receiver.

The use of cryptographic methods only partly solves the non-repu-diation
issue. If a message has been actually sent, the sender cannot deny this since
the receiver holds a message encrypted with the secret key of the sender.
Who else would be able to use this key but the sender? However, the receiver
may still deny that he actually got the message but yet use the content.
Conversely, if a document has not been sent, the receiver cannot provide a
false message since he does not have the secret key of the alleged sender
to make such a document. Of course the sender would be able to claim he
did send it. Evidently, when a party would get to know the secret key of
another party, this would imply that all kinds of illegal actions could take
place. Therefore, very strict security constraints should be posed on the use
of such keys.

The second solution to the four requirements would be to send the message
through a trusted third party. For example, messages sent through a Value
Added Network (VAN) may be stored by the VAN to serve as an archive to
be used when a dispute arises. This would satisfy the non-repudiation and
the authentication requirement, albeit with the VAN being able to access the
information stored, a major drawback for an actual implementation of such a
system since the VAN may be able to profit from this information. However,
the security and integrity constraints cannot be solved in this manner.

The combination of these two types of solutions satisfies all these require-
ments. It is assumed that all messages are encrypted using the public key
of the receiver (security) and the secret key of the sender (authentication or
digital signature). Furthermore, the VAN keeps track of the communications
through its network. Since the messages are encrypted the VAN cannot ac-
cess the actual information being sent without the cooperation of the parties
involved. This is impossible in a paper-based scenario, since it is hardly prac-
ticable to witness and store these communications without actually seeing the
information (an envelope must be opened before the content can be copied;
therefore, instruments such as registered mail can only partially fulfill the
same functionality as the electronic equivalents in this respect). This would
solve the non-repudiation problem. The integrity problem is solved by both
the underlying network and the calculation of checksums in the encryption
algorithms used.

3.2 Negotiable Electronic Documents

The implementation of negotiability is complicated by the fact that there is
no distinction between originals and copies of electronic documents. When a
document is transferred to another party, the first owner will still have an
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identical copy that could also be used to exercise this right. When documents
are printed on paper, several protection mechanisms are in place to guarantee
the uniqueness of a document (signatures, seals, watermarks etc.). This means
that if a party transfers a right by transferring an electronic document, the
copy that this party retains should be made void. Three means can be chosen
to solve this problem:

• There may be a technical guarantee that there is at all times only one
document, i.e., the remaining copy is automatically erased beyond the
control of the owner.
• A database could be maintained by an independent, trusted third party to

serve as an alternative to provide information about who owns a specific
right.
• The negotiable document is replaced by a non-negotiable equivalent.

A technical solution has to be used to physically erase the original when a
document is sent. This can be implemented in a number of ways, such as
by using smart card technology. This technology can guarantee that when a
specific set of data is transferred from one smart card to the other (preferably
over an electronic network), the original data are automatically deleted by
the programs implemented on the smart-cards as well.

The second solution involves the introduction of a trusted third party in
the form of a registry. This registry would serve as an agent for all parties
involved; both the issuer of the right and the holders of the right will benefit
from the registry. The registry would maintain a database containing the cur-
rent holder of the right. Two functions are provided by this database. First, it
provides the issuer of the right with the knowledge to verify whether a party
may claim that right. Secondly, if the right is transferred, it will provide the
new holder of the right with the knowledge to verify whether the seller of the
right was entitled to sell it. It should be noted that the information main-
tained in this database should be minimized, because a party governing such
a database may otherwise be able to deduce information about the trades
covered and use this commercially. This minimal amount of information con-
tains only a reference number to the actual data (and not the data itself)
and the identity of the current holder.

Finally, it might be possible to circumvent the problem by using another
type of document which is non-negotiable. For example, in certain kinds of
documentary credit procedures the Bill of Lading may be replaced by a
Waybill. Whether it is possible to make such a replacement depends of the
context in which the negotiable instrument is used and the business customs
and practices of those parties using the instrument.

All solutions have their merits and their disadvantages. If the negotiable
document can be replaced by a non-negotiable document this is in many cases
the cheapest solution. However, this is not always possible. If the negotiable
instrument is a key requirement in the execution of the trade transaction, one
of the other solutions should be taken. The main advantage of the smart card
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solution is the freedom from dependence on third parties; when two parties
decide to trade a right by exchanging the negotiable document evidencing
that right, they are not depending on the performance of a third party. On
the other hand, the smart-card technology poses constraints on the reacha-
bility of the parties involved and it introduces extra administrative overhead
within the organizations to keep track of the smart-cards in relation with the
transactions these smart-cards belong to. These disadvantages do not exist
when a trusted third party is involved.

4 Computational Modeling of Documentary
Procedures

4.1 Representation: Documentary Petri Nets

The representation we have developed for representing documentary proce-
dures is based on the formalism called Petri nets [Pet62,Pet81]. The main
advantage of the Petri net formalism, in addition to its capability to graph-
ically model both concurrency and choice, is that it offers various kinds of
both formal and informal analysis methods, which make Petri Nets especially
suitable for modeling discrete dynamic systems.11 In the remainder of this
section, we introduce the Documentary Petri Net representation, an exten-
sion we developed to the classical Petri net formalism in order to satisfy the
modeling requirements of documentary procedures [LB96].

A classical Petri net is a bi-partite, directed graph. It has two kinds of
nodes: places (represented as circles) and transitions (represented as bars).
Arcs connect places with transitions or vice versa (it is not allowed to connect
two places or two transitions). The dynamic behavior of the modeled system
is represented by tokens flowing through the net (represented as dots). Each
place may contain several tokens (the marking of the place); a transition is
enabled if all its input places (i.e., arcs exist from those places to the transi-
tion) contain at least one token. If this is the case, the transition removes one
token from each input place and instantaneously produces one in each output
place (i.e., an arc exists from the transition to the place). This is called the
firing of a transition. The transitions in Documentary Petri Nets are labeled
in order to identify the role that brings about the transition. The syntax of
these labels is Role(s) : Action. The classical Petri nets only allow one kind
of token. In order to distinguish between different types of documents, differ-
ent types of places (and their tokens) have to be distinguished. In the DPN
notation, these are represented as document places, drawn as a rectangle,
and labeled by the document type(s).12

11 [Aal92,AH02]
12 This typing of places involves what are called colored Petri nets [Aal92]. A similar

extension of the classical Petri nets are the Predicate/Transition nets, in which
logical predicates are associated with transitions (Genrich and Lautenbach, 1979;
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One important requirement of modeling complex scenarios is the ability to
model roles as separate Documentary Petri Nets. This allows the decomposi-
tion of a documentary procedure into a number of logically separate sub-nets.
This modeling style results in a clear “geographical” separation between the
roles. As the role description is a sub-net in the scenario description, designers
have some flexibility for experimenting with different role descriptions within
the overall scenario constraints.

A state transition is enabled by receiving an information parcel, goods
or funds, or the expiration of an internal timer (events). Firing a transition
can lead to sending information parcel(s), goods or funds and/or setting an
internal timer (actions). An example of a Documentary Petri Net model is
presented in Figure 2.

Fig. 2. Example of Documentary Petri Net

The sub-nets of the several roles may need to be combined in order to
build the model of the overall documentary procedure. This can be done
simply by connecting the roles at their communication points: the document
and goods places. Since this process can be reversed as well, the Documentary
Petri Net representation allows both a top-down and a bottom-up approach
for the modeling of documentary procedures.

Genrich and Lautenbach, 1981). Documentary Petri Nets use colors and predi-
cates to specify the different information parcel types, goods, funds and deontic
states.
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4.2 Prototyping Environment: InterProcs

InterProcs is a prototyping environment for documentary procedures and
EDI documents developed by Lee [Lee92,Lee98]. InterProcs offers a graphical
user interface with which Documentary Petri Nets can be drawn. Further-
more, since InterProcs embeds a Prolog engine, rule-bases can be added to
a Documentary Petri Net model, allowing automatic reasoning about mod-
eled documentary procedures. InterProcs cannot only be used to draw Doc-
umentary Petri Nets, it also offers the possibility to simulate and/or animate
documentary procedures modeled by these nets.

The practical contribution of this research is to provide organizations with
a method and a tool to define and test trade scenarios. These scenarios may
be constructed either top-down or bottom-up. In the first case, an overall
documentary procedure will be distributed over the individual roles. In the
second case, the individual role descriptions of the parties have to be com-
bined. In either case, the role descriptions can be distributed over multiple
machines, where information parcels may be exchanged over a local or wide
area network using an electronic document standard such as EDI or ebXML.
This provides a realistic testing environment in which roles can be played
and evaluated by different organizations.

Once tested and agreed upon, these scenarios may be stored in a pub-
lic repository, governed by an international body. Since these scenarios are
defined using a formal language such as the Documentary Petri Net formal-
ism, it will be possible for organizations to then download the scenarios and
execute them. During this execution the overall control on the documentary
procedure is distributed among the individual organizations.

5 Protocols for Procedure Adoption

We now consider the architectural aspects of this proposal – how documen-
tary procedures should be made available and shared among contracting
parties. We distinguish three broad modalities: generally accepted standard
(guideline) procedures; proprietary procedures; and multi-lateral negotiation
of procedures.

5.1 Generally Accepted Standard (Guideline) Procedures

This first modality applies when there is a generally accepted style of prac-
tice to which all parties conform. This is typical of situations in which an
organized market has been established, e.g., as for commodities. In this case,
a ‘boiler-plate’ contract is available, which stipulates delivery and payment
terms, handling of contingencies and, possibly, arbitration mechanisms in
case of dispute. In electronic form, this entails that standardized trading pro-
cedures be made available, via a publicly accessible library, so that (role)
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procedures can then be downloaded and executed by each of the parties. Al-
though international standards for the structuring of EDI documents exist
(i.e. UN/EDIFACT or ANSI X.12), such standardized documentary proce-
dures have not been developed yet. Standardized (electronic) documentary
procedures might be specified by industry groups such as EDIFICE, SWIFT
or CEFIC or international trade facilitation bodies such as UNCTAD or the
International Chamber of Commerce (ICC).

5.2 Proprietary Procedural Standards

The second modality is typified by situations in which one trading partner
dominates the relationship, such as a large corporation, or otherwise is inflex-
ible in its control policies, e.g., a governmental regulatory agency. The elec-
tronic interpretation of this case has (role) procedures for the other parties
downloaded from a library provided by this dominant party. Such libraries
expressing the ‘way of doing business’ of a particular party we call a regime.

5.3 Multi-Lateral Negotiation of Procedures

The third modality is multi-lateral, and includes situations in which several
of the parties have established control policies. This is typical of situations
where multiple regulatory agencies are involved. The electronic interpretation
here would again be that each of these major players has their documentary
procedures available in network accessible regimes. For a particular contract,
each of the relevant procedures is collected and assembled. This third modal-
ity introduces the potential for conflict among control policies of the parties.
In conventional trading circumstances, such conflicts (assuming they are de-
tected!) are typically resolved in one of two ways: be negotiating compromise,
or by seeking other partners.

5.4 A Messenger Model

To help cope with cases of conflicting control policies, we introduce an ad-
ditional computational device, what we call a messenger. A messenger is a
kind of computational agent, specialized in navigating procedure libraries or
regimes, and where needed, negotiating procedural alternatives.

The notion of messenger is based on a metaphor to physical messenger
services (such as UPS, Federal Express). Such physical messengers are nor-
mally charged with delivering a message or parcel. More importantly, they of-
ten make delivery of performative communications such as contractual offers
(bids), legal summons, as well as payments. If obstacles arise—perhaps the
recipient is not home—the messenger has some limited discretion to resolve
the problem (leave parcel at neighbor’s). If this is not possible, the messen-
ger is to contact the client for further instructions. Our notion for electronic
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messengers goes beyond this physical metaphor to include not only the ex-
ecution of certain contractual actions, but also the navigation and (limited)
negotiation of control procedures.

Here is a brief scenario. Lee, an American, lives abroad in Holland. His
passport renewal is due. Normally he would need to travel to the U.S. Con-
sulate in Amsterdam, wait in line, fill out the forms, pay the fee, etc. In all,
this could easily cost an entire afternoon (if evrything goes well; if not, for in-
stance if the passport photo is the wrong size, a return trip might be needed).
Instead, Lee logs on (to InterNet) and initiates a messenger with the goal:
U.S. passport renewal. The messenger contacts the U.S. Consulate’s on-line
regime, and identifies the procedural subset relevant to Lee’s case. Since the
messenger has access to the relevant personal data for Lee (including dig-
itized passport photo), it can do most of the form-filling automatically. It
then returns to Lee with a request for confirmation (plus requests for any
additional data, e.g., choice of delivery mode), and release of payment for
the fee. Lee gives the OK, and the messenger then returns to the Consulate
and executes the transaction. The passport is sent via post or conventional
messenger service. (Perhaps someday the passport itself will be electronic.)

The reader is no doubt acquainted with various other bureaucratic duties
of this ilk. They include driver’s license applications, voting registrations,
building permits, visa applications, credit card applications, phone card ap-
plications, and so on. These illustrate the use of messengers in a uni-lateral
situation. In bi- or multi-lateral cases, the messenger needs to navigate among
multiple regimes and attempt to synthesize the various procedural require-
ments. Failing this, the messenger may attempt to locate another company
or agency that offers similar goods or services, but with more compatible
control requirements (either stricter or more lenient as the case may be). Or,
the messenger may request a compromise in the control requirements of a
current party, e.g. include the sending of an invoice where none was required.
As outlined, messengers have four kinds of capabilities:

1. navigation of regimes (procedural requirements)
2. synthesis of procedures (from multiple regimes)
3. detection of procedural conflicts
4. suggestion of remedies for conflicts

These are the subject of our continuing research. To address these four areas,
we are developing a generalization of the DPN representation called Proce-
dure Constraint Grammars (PCG’s). Like language grammars, which give
rules of well-formedness, PCG’s specify the characteristics of a family of pro-
cedures at various levels of abstraction. Just as a generative grammar for
a language can produce various sentences, so too a PCG can generate par-
ticular procedures, given specified parameters. Representing regimes in this
formalism, procedures specific to individual cases are extracted and presented
as Documentary Petri net procedures.
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Unlike language grammars, however, which are typically represented as
an integrated hierarchy of rules, PCG’s are organized as constraints on a
target procedure. It is the job of the PCG constraint solver to identify a
(minimal) solution procedure (according to some preference ordering of the
user – e.g. minimal duration vs minimal risk). This mechanism is essential for
the other three areas of messenger functionality: synthesis, conflict detection,
and conflict resolution.

Presently, an initial representation of PCG’s has been defined and is oper-
ational. Work continues on the procedural constraint solver design (possibly
incorporating constraint logic programming, CLP). Aspects of the conflict
detection problem (for static deontic rules) are addressed in Ong and Lee
[OL93], using abductive reasoning. Aspects of the constraint resolution prob-
lem, again for static deontic rules, are discussed in Ryu and Lee [RL93], using
defeasible reasoning.

6 Discussion and Further Research Directions

This paper has proposed four tasks for supporting performative aspects of
electronic commerce.

The first is that performative documents be communicated using cryp-
tographic protocols (including digital signatures) and the involvement of
trusted third parties. A special problem is negotiable documents, which may
involve the use of chip cards, specialized registries, or both.

The second task is the definition of a common, publicly available language
for the specification of documentary procedures, which is formal, computable
and executable. A formalism, called Documentary Petri Nets (DPN), was
proposed for this purpose.

The third task is the definition of standard business scenarios using this
representation. This definition might be done on a proprietary basis, or per-
haps by industry-wide user groups and/or international bodies such as the
ISO and the ICC. A CASE tool presented in this paper, InterProcs, intends
to support these groups in this task by providing both a modeling platform
and a testing environment for proposed documentary procedure designs.

The fourth task is development of an architecture and a protocol for
sharing these procedures among contracting parties. Three modes were sug-
gested: globally standardized procedures; uni-lateral coordination; and bi- or
multi-lateral coordination.

We have two broad directions for future research. One of these relates to
the above mentioned protocol for negotiating procedures among contracting
parties with differing control requirements. This includes further refinement
of the messenger model and the constraint resolution mechanism for Proce-
dure Constraint Grammars (PCG’s, [Lee02]).

The other research direction relates to normative modeling of documen-
tary procedures: given situational goals and the parties’ risk, cost and time
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preferences, what constitutes a good documentary procedure? This research
will result in automated verification tools that may be used to check whether
a proposed documentary procedure conforms to certain requirements. Exam-
ples of automated verification tools include algorithms stemming from graph
theory to detect possible dead-lock situations. Another kind of analysis has
been proposed by Chen and Lee [CL03,Che92] applied to Petri Net specifica-
tions of internal accounting control structures. They have shown that the de-
tection of undesirable patterns, for example when the ordering and payment
tasks are assigned to the same person, can be performed automatically using
‘audit daemons’. This approach has been extended to inter-organizational
procedures in the work of Bons and Lee [Bon97,LBW01].
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Abstract. Standard (that is, long-standing and currently much in use) EDI pro-
tocols (including the X12 and EDIFACT series) have repeatedly been criticized for
poor design, confusing or absent semantics, and much else. Most of these criticisms
are indeed on the mark. The main conclusions that the critics have drawn are
also correct: business-to-business e-commerce is expensive and difficult to set up
and maintain, because of shortcomings in the design concepts underlying standard
EDI. Something must be done, but what?

Central to the problem is the fundamental question of semantic transparency:
When A sends B a message, how does B’s machine know what the message is
about, what it means? Given proper standards, message meanings are determined
and computers can be programmed to act appropriately to the intended message
meanings. The complaint against EDI has been that proper standards cannot be
made because of the misguided way in which the EDI standards are designed.

Proponents of XML have been touting XML’s strengths and claiming that they
overcome, or can overcome, the semantic transparency problem in e-commerce. In
support of this claim, proponents point to the DTDs (or similar devices) that any
XML/EDI solution would use. The claim is that semantic transparency is/can be
achieved through the DTDs.

In this paper I argue that indeed the DTD mechanism offers a kind of progress
on the semantic transparency problem, but that it cannot provide anything ap-
proaching a complete solution. While XML+DTDs is indeed a very promising ve-
hicle for structuring and transporting messages for business-to-business commerce,
it is not itself a semantic theory of what those messages say. We need the semantic
theory. Once we have that, XML can be used to embody it for applications.

Drawing on previous work, I will present the elements of my formal semantic
theory for business messaging (the “lean events theory”). With examples from this
theory before us, we can get a more proper view of the semantic transparency
problem (aka: the spanning problem). This is not a problem that can be made to
go away entirely, but we can live with it and do commerce.
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1 EDI and the Transparency Problem

The standard EDI protocols (including the X12 and EDIFACT series) are of
long-standing and effective use.1 Yet, they have repeatedly been criticized for
poor design, confusing or absent semantics, and much else.2 Many of these
criticisms are indeed on the mark. The main conclusions that the critics
have drawn are also correct: business-to-business e-commerce is expensive
and difficult to set up and maintain, because of shortcomings in the design
concepts underlying standard EDI.

The problem is particularly acute for SMEs (small and medium-sized
enterprises), which all too often find the cost of initial setup prohibitive.
This cost includes substantial investment in legal services, management and
staff time, and software. In the world of EDI, this is often referred to as the
first trade problem. Once an EDI system is up and running smoothly, the
incremental costs can be quite low and the incremental benefits very high.
The problem is getting the first messages sent and working properly. That
typically involves a large fixed cost.3

And, the first trade problem is hardly peculiar to the world of EDI. More
broadly, it is recognized that there are important conceptual and technical
issues to be addressed if the common vision—of millions of artificial agents
cruising the Internet and doing deals for their owners in ad hoc and oppor-
tunistic ways—is to be realized. This is sometimes called the spontaneity
problem [Dic00]; it is a more challenging generalization of the EDI first trade
problem.

Something needs to be done to address these problems—first trade, spon-
taneity, etc.—but what?

A central issue—and the focus of this paper—is the fundamental question
of semantic transparency : When S (speaker) sends A (addressee) a message,
how does A’s machine (or indeed A itself) know what the message is about,
what it means? Or, given that A needs to understand a particular message,
how can this be achieved at low cost and hence in a maximally-automated
fashion?

Given proper standards, message meanings are determined and computers
can be programmed to act appropriately to the intended message meanings.
This is something that happens millions of times daily. The rap against EDI
has been that proper standards have not in fact been created, and indeed
cannot be made because of the misguided way in which the EDI standards
are designed. The worry associated with the spontaneity problem is that we

1 See, e.g., [Emm93,Emm94,Kim91] for valuable general introductions to electronic
data interchange (EDI).

2 For a sample of the criticisms, many from a basically friendly perspective, see:
[AY96], [BLW97], [Dic00], [Kim91], [Kim99], [KM93a], [KT00], [Leh96], [Sal95],
[Ste94], and [Ste96].

3 On the EDI first-trade problem see [Lee99,TT98a] and papers throughout [AY96].
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do not know how to design a communication regime that will support the
vision.

Into this unresolved situation comes XML. Proponents of XML have been
touting XML’s strengths and claiming that XML overcomes, or can overcome,
the semantic transparency problem in general, and the e-commerce first trade
problem in particular. It would serve no constructive purpose to rehearse the
particular misstatements and exaggerations that have been committed by
the advocates of XML. Rather, the question is—regardless of what anyone
has claimed—What can XML do to address the transparency problem in e-
commerce?4 The aims of this paper are to answer this question (regarding
XML’s capabilities), and—since the answer will be a negative one, albeit
qualified—to state positively something on how the transparency problem
may be solved. To this end, the paper is organized as follows.

In §2 I briefly review why XML (or anything like it) might be–and has
been—thought capable of contributing to solving the transparency problem.
I assume a passing familiarity with XML on the reader’s part. While XML
has considerable virtues, I shall argue that it cannot in any very meaningful
sense solve the transparency problem. §3 is devoted to the more fundamental
discussion of how meaning is communicated between machines (and indeed
people). There is nothing irredeemably mysterious here. Once we remind
ourselves how it works, we see better why XML cannot solve the transparency
problem and we can see better how the problem can be addressed. §§4–5
carry the main burden of the argument. In §4, I provide a formal grammar for
microFLBC, a simple but surprisingly powerful language. microFLBC, I shall
argue, can be used to provide a genuine semantics for business messaging and
can provide a foundation for addressing the transparency problem. In §5, we
return to XML and I describe through an example how XML, in conjunction
with microFLBC, can yield actual progress on the transparency problem. §6
concludes, and positions the small degree of progress evidenced here in the
context of the much larger problem.

Now to the details.

2 XML’s Pertinent Virtues and Limitations

HTML’s simplicity and beauty of design doubtless contributed enormously
to the extraordinarily rapid acceptance of the World Wide Web. Documents
marked up in HTML may easily be stored, served from, and read on essen-
tially any widely used computer, using any standard display device. Not only
does HTML support a quite usable set of document display features (lists,
tables, images, etc.), but it has built-in mechanisms for enabling hypertext
linking and email addressing (among many other useful features). Add the
fact that the elements of HTML can be learned and applied in just a few
4 The curious reader, however, can look to [Dri97], [GP98], and [XML98] for ex-

amples of honest, perhaps too exuberant, overstatement.
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hours, and we can begin to appreciate a truly elegant and effective technical
design.

Given all these virtues, what’s wrong with HTML and why is there so
much excitement about replacing it with XML? Why not, as with other
technologies, proceed with incremental refinement? Quite simply, the demand
for new features far outstrips the ability of any standards–setting body to
keep up. Further, if mutliple standards proliferate the World Wide Web will
lose one of its greatest strengths: universal access. Even Microsoft supports
XML strongly, thereby eschewing any attempt to dictate a universal standard
for HTML.

But despair in keeping up with demand is not the only major source
of criticism of HTML. Perhaps even more important is HTML’s nearly ex-
clusive orientation towards display of documents. HTML tags—the markup
supported by HTML—are nearly entirely content neutral. It is both their
main virtue and their main weakness that they apply to all documents, re-
gardless of content, regardless of what the documents are about. A numbered
list is the same in a public presentation, a private memo, or an invoice. This
facilitates display by arbitrary browsers, but it hinders processing of the un-
derlying document by specialized applications. It is just this latter purpose
that must be served for electronic commerce. As envisioned by the many
proponents of XML, electronic data interchange (EDI) messages will migrate
away from the present standards (e.g., X12 and EDIFACT) and be expressed
in XML. But the point of EDI is computer-to-computer exchange of infor-
mation. The messages must be generated and processed as automatically as
possible. This, in turn, requires that the structure of a message substantially
informs the processing of the message. A list of items cannot, as in HTML,
be merely a list; we need to know, e.g., whether it is a list of items to be sold
or items to be bought.

XML—as well as SGML, its larger, more general but too unwieldy for
the Web parent—has much to offer by way of addressing these two problems.
For present purposes, it is fair to say that there are two key moves or ideas
present in XML (and SGML). First, the philosophy is to use markup (the
tags) for specifying content. Presentation, or display, instructions are specified
in a separate, general accompanying document, called the stylesheet. This
addresses our second problem, above. Documents are marked for processing
purposes. Stylesheets, which apply to all documents in a given class and
which can be referenced in particular documents, may be used by browsers
in presenting the documents on screen or in print.

The second key move addresses our first problem, above, that of too many
features and forms. If documents are to be marked for processing purposes,
are not those purposes manifold? Indeed they are. How, one then wonders,
does this increasing of the uses for marked up documents cohere with the need
to reduce the onrush of features in our markup language? Is there something
about XML (SGML) that circumvents the need in HTML to add new fea-
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tures? Indeed there is: the DTD (document type definition). The purpose of
a DTD is to define correct usage of the tags. HTML has a fixed DTD, which
needs to be changed whenever new features are added. XML (and before
all of this, SGML) has a dynamic DTD mechanism, in the sense that each
document can contain (or refer to) its own DTD. There is a fixed specifica-
tion for valid DTDs, so a document processer need only “know” how to read
DTDs in general when it encounters a new XML (SGML) document with
a heretofore unseen DTD. The new document has tags that the processor
(e.g., browser) has never seen before (or been told of), but the processor
can automatically handle the document because it understands DTDish (my
name for the DTD language). DTDish is a language language, and it tells the
processor about interpreting the tags in the document. Think of DTDish as
a language for instructions. Every (XML/SGML) document comes with a set
of instructions pertaining to how the document is to be processed. So long as
these instructions are in a language understandable by the processor, it will
be possible for the processor to handle the document properly, i.e., according
to the instructions.

The reason we don’t need a standards organization to define what tags
there are and what they mean is that this information is provided anew with
every document. Anyone can define new tags, or give new definitions to old
tags. So long as the definitions are in a valid accompanying DTD, then any
processor that understands DTDish will understand the newly defined tags.
Thus, XML (and SGML) documents are often said to be “self-describing”
[Lig97].

These are lovely ideas. The fact that SGML has been an international
standard since 1986, and is widely accepted and used (although not on the
Web) attests incontrovertably to its practicality. Nor is there anything im-
portantly special about XML that would make it less useful for electronic
commerce than SGML. Quite the contrary. XML is a distilled version of
SGML with Web-related additions. XML can be, is being, will be, and prob-
ably should be used for EDI purposes in electronic commerce. Even so, it
cannot by itself solve the first trade, or transparency, problem in electronic
commerce. This, despite widespread intimations and outright claims to the
contrary.

To see why XML, nor anything at all like it, cannot solve the transparency
problem, we need briefly to consider some fundamentals about communica-
tion. With that in hand, I will discuss how, and to what degree, the trans-
parency problem can be solved. This in turn will take us back to XML and
to an understanding of its proper role in EDI and electronic commerce.
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s’s knowledge base r’s knowledge base

Sender, s Addressee, r

Convention: Interchange Agreement

�
� �

� �

Message, u

Fig. 1. Basic Messaging Framework: Message u from speaker s to addressee r (after
[KT00])

3 Communications Requisites

Consider in the abstract how business messaging—and EDI messaging in
particular—is effected. See Figure 1, the basic EDI messaging schema. When
two organizations, s and r, wish to do business with EDI they typically begin
by negotiating an Interchange Agreement. This is a contract which, among
other things, specifies rules of trade between s and r, including which EDI
protocols and transaction sets are to be used, and how EDI messages are to
be interpreted. Once this contract is in place the sender of a message can
draw upon its own knowledge bases, Background Knowledge (e.g., relevant
laws and administrative rules), and the Interchange Agreement to formulate
a specific message, u (utterance) in the Figure. Similarly, the receiver of a
message draws upon its own knowledge bases and the Background Knowledge
(including the Interchange Agreement) in order to interpret and act upon the
incoming message, u.

All of this is well and good, and even inevitable. The first trade (or trans-
parency) problem is not a complaint against the basic schema. Rather it is a
complaint regarding the cost of constructing the Interchange Agreement, and
in particular regarding the cost of fixing the meanings of the messages to be
exchanged so that business may be conducted automatically. EDI standards
are supposed to reduce this cost. Perhaps they do, but the general consensus
is that in fact much manual labor, for analysis and negotiation, is required
before two parties will have achieved sufficient agreement to do business by
machine. Hence the goal: design a messaging regime that will support common
business transactions and that will allow original messages to be composed by
machine, transmitted, and understood by the machine of a new trading part-
ner. The first trade problem is simply our name for the fact that this goal
has not been achieved.

Examining and reflecting on some examples of computer-based commu-
nication will help us see certain fundamental principles, which in turn will
point towards a solution to the first trade problem. Consider, then, a case
of primitive (and very common) computer-to-computer communication. Fig-
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ure 2, adapted from [McD85], is an example of a ‘conversation’ between two
computers.

1. Computer A: 1, 360

2. Computer B: 6, 350

3. Computer A: 3, 1, 1, 2

4. Computer B: 5, 1, 1

5. Computer A: 3, 1, 1, 3

6. Computer B: 5, 1, 1

7. Computer A: 3, 1, 1, 1

8. Computer B: 4, 1, 1

9. Computer A: 3, 2, 1, 150

10. Computer B: 4, 2, 150

11. Computer A: 6
12. Computer A: 8
13. Computer B: 6

Fig. 2. Example of a Process–to–Process Dialog

This is an illustration of what in the trade is called hand-shaking between
devices, here processes running on computers. But what does it mean? Al-
though the meaning is hardly transparent at first, in fact the exchange is
easily decoded.5 Here, in Figure 3, is roughly what this means in English.
But how is it that the dialog in Figure 2 comes to have the meaning shown

1. Computer A: Please talk to me on lines 360/361.
2. Computer B: OK. You can talk to me on 350/351.
3. Computer A: Can you do CVSD?
4. Computer B: No, but I can do LPC.
5. Computer A: Can you do RELP?
6. Computer B: No, but I can do LPC.
7. Computer A: How about LPC?
8. Computer B: LPC is fine with me.
9. Computer A: Can you use 150 microsecond sampling?

10. Computer B: I can use 150 microsecond sampling.
11. Computer A: I am ready.
12. Computer A: Are you ready?
13. Computer B: I am ready.

Fig. 3. Example of a Process–to–Process Dialog: Translated into English

in Figure 3? No mystery at all: In one way or another, the owners of the two

5 See [BK95] for the distinction between decoding and inference.
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computers agreed ahead of time what all the messages would mean, and then
they programmed their machines to act appropriately. Points arising:

1. First trade
The communication scheme here could be effected without the two com-
puter owners entering directly into extended discussions regarding what
messages there will be and what they will mean. This could happen if
someone published a communications protocol adequate for the purposes
and it was decided to use that protocol. This would, or could, essentially
solve the first trade problem (or its analog in the present case). The
solution is rather like what is in fact in place for modem-based communi-
cations. Standards are published on how modems are to do handshaking,
and manufacturers simply implement to the standards.
Then why is there a first trade problem in electronic commerce, if there
isn’t a first handshake problem with Internet service providers?

2. Complex communications
The source of the problem is complexity. In the current example (or
range of examples), only a few things need to be said. We arbitrarily
name those things, e.g., with numbers, and we publish a table, as it
were, of the required names and what they stand for. This is not possible
in electronic commerce. There is no way that at any one time we can
come usefully close to identifying—to listing in a table—everything that
needs to be said. Even if we were to stick to something as basic as a
purchase order, there is literally a combinatorial explosion of firms, trade
conditions, prices, quantities, items, and so on. Some other approach,
other than that evidenced in Figure 2, is required.

Now the second example. Consider a different but still very simple exam-
ple of computer-based communication. Without loss of generality, the exam-
ple uses standard Lisp. We begin by defining a symbol—m for message—for
an arbitrary arithmetic expression:

(setq m ’(* 5 (- 6 4))) (1)

If we ask the Lisp intepreter for the value of m (by typing the symbol)

m (2)

we see returned its value, the arithmetic expression:

(* 5 (- 6 4)) (3)

If we now ask Lisp to evaluate m

(eval m) (4)

it correctly calculates the result and returns 10. This utterly normal, com-
monplace interaction bears reflection in the present context. Remarking on
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something that is usually quite unremarkable will help us understand the
first trade problem. Patience will yield insight.

Notice that in this little interaction we have—or by strong analogy nearly
have—created a message, sent the message to a computerized process, and
the process has correctly interpreted what the message means. Notice further
that so long as the message (the symbol m) is well formed, Lisp’s eval will
interpret it properly, even if the message expresses an arithmetic formula that
happens never to have been created previously during the history of human
kind. Nothing surprising in this, except to note that in a way we have solved
the first trade problem. More generally: the message is semantically trans-
parent to the interpreter. Of course, it was built that way. But how does it
work? My claim is that a properly general description of what is going on
here must also apply to any regime that hopes to solve the transparency (first
trade) problem in electronic commerce.

Understood aright, our little Lisp story contains three essential elements
for solving our problem. First, the Lisp eval function is able to evaluate
(interpret) the message because:

1. The message conforms to a formal grammar, which is used by the eval
function, and

2. Using the grammar the message is composed ultimately of primitive sym-
bols, which eval also knows how to evaluate.

In short, there is a compositional formal language for the evaluator to work
with. Starting with certain basic elements, a grammar is present that speci-
fies how these elements may be composed into larger expressions. Our basic
elements can be specified in a lexicon, using BNF. We need the digits, the
arithetic functions, and markers for whitespace.

1. 〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
2. 〈arith-functor-1〉 −→ + | - | *
3. 〈arith-functor-2〉 −→ /
4. 〈S〉−→ #x20 | #x9 | #xD | #xA | 〈S〉〈S〉

The gammar composes messages from the lexicon, using its elements as
primitives. Again, we use BNF.

1. 〈message〉 −→ 〈number〉 | ( 〈arith-functor-1〉 〈S〉 〈message-list〉 ) | ( 〈arith-
functor-2〉 〈S〉 〈message-list〉 〈S〉 〈message-list〉 )

2. 〈message-list〉 −→ 〈message〉 | 〈message〉 〈S〉 〈message-list〉
3. 〈integer〉 −→ 〈digit〉 | 〈digit〉〈integer〉
4. 〈float〉 −→ 〈integer〉 . 〈integer〉
5. 〈number〉 −→ 〈integer〉 | -〈integer〉 | 〈float〉 | -〈float〉

Thus, with a total of 18 primitive symbols in the lexicon, the grammar covers
an infinite number of arithmetic expressions. Communicants only need prior
agreement on the 18 primitive symbols and the 5 rules in the grammar.
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One way or another, any genuinely efficient electronic commerce regime of
computer-to-computer communications will require this: a fundamental lexi-
con plus a formal grammar for composing messages. But we need something
else. The second essential facet of this example is broadly called a semantics.
The lexicon and grammar are necessary for any reasonably rich communica-
tion regime, but they are not sufficient. They need to mean what we want
them to mean. The example to hand works fine for arithmetic expressions,
but would not work for other kinds of meanings. If we want to talk about
baseball, or move funds between bank acounts, or request payment for ser-
vices, then in spite of their other nice features, our arithmetic lexicon and
grammar just won’t do.

So, how do we get a formal language (lexicon + grammar) to mean what
we want it to mean? We can stipulate meanings for the terms in the lexicon,
just as in our first example. The grammar should be understood as a model,
a formal structure whose behavior mimics in relevant ways a certain part of
the world. As is true for other kinds of models, we can define a grammar how-
ever we will, but then we must engage in empirical investigation to determine
whether in fact it maps well to that portion of the world we wish to capture.
The matching will typically be at best approximate (think of models in the
management sciences). The question of whether the model is sufficiently ac-
curate will typically be resolved only by careful study and judicious decision.
In the present example, the decision of whether the language properly models
arithmetic expressions is a straightforward one. The larger question, of what
a language would have to be to properly model what needs to be said in
electronic commerce, is of course much more difficult and not yet resolved.
(But I shall have something to say about that in the next sections.)

Finally, there is a third important facet of the current example that is
relevant to the discussion of communication for electronic commerce. The
grammar more or less completely spans its intended domain, in that every
valid arithmetic expression is either recognized by our language, or (if it
uses a different syntax) can be automatically transformed into an equivalent
expression that is recognized by the language. A language to span all of
electronic commerce is a feckless goal. But the other extreme—utterly ad
hoc languages, special-built for each application—is a large part of why the
first trade problem now looms so large.6

With these principles of communication in mind, let us see—if only by
glimpse—how we might find our way to a workable solution to the first trade,
or transparency, problem in electronic commerce.

6 See [KM93b] for a detailed discussion of the spanning problem in electronic com-
merce.
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4 microFLBC and the Transparency Problem

For some time, I have been engaged in the problem of designing a general-
purpose formal language for business communication (FLBC).7 To date, a
main emphasis of this work has been on the challenge of modeling speech
acts, such as promising, requesting, accepting, asserting, and so on. Speech
acts are, I believe, central to business communication. A purchase order is
a request for payment. An offer is a promise, conditioned on acceptance of
the offer. A contract is an exchange of promises, among other things. And
so on. Systematic examination of EDI messages reveals that in fact they are
closely organized around speech acts.8 Yet, how to formalize speech acts has
been an open question. I have developed the elements of such a theory—
based on what I call lean event semantics—and have presented it elsewhere
(see references above). Recounting the lean event theory is not my aim here.
Instead, my aim is to exploit the theory for the purpose of making progress
on the first trade problem.9

Continuing the line of argument from the previous section, I offer here
(for the first time10) a precisely defined, albeit small, language (lexicon +
grammar) for electronic commerce. The purpose to hand, recall, is to indicate
in a fundamental way how the first trade (or semantic transparency) problem
can be satisfactorily resolved. Much work remains to be done and this is not
a draft standard for the ISO.

The language to be defined here is microFLBC. It is a fragment of first-
order modal logic. I assume a standard formulation of the underlying logic
and make no particular assumption regarding which modal system is in play.
I have S5 in mind, but the reader is free to pick a favorite system.

Here is the grammar for microFLBC, version 1.0:

1. 〈microFLBC-utterance〉 −→ ( 〈i-force〉 〈S〉 ∧ 〈S〉 � 〈i-content〉 )
2. 〈i-force〉 −→ ( 〈speech-act-predicate〉 〈S〉 ∧ 〈S〉 〈speaker-predicate〉 ) | (
〈i-force〉 〈S〉 ∧ 〈S〉 〈i-force-thematic-role-predicate〉 )

3. 〈speech-act-predicate〉 −→ 〈speech-act-verb〉 ( 〈eventuality-ref 〉 )
4. 〈speaker-predicate〉 −→ Speaker ( 〈eventuality-ref 〉 , 〈S〉 〈general-ref 〉 )

7 See, e.g., [Kim90], [Kim99], [KL86], [KM97], [KT00], and references cited therein.
8 See [Kim98a], [KM93b], [Moo93], [Moo98], [Moo00a], [Moo01], [Sin93], and

[Sin98].
9 Lean event semantics is an extension of what is now called ESΘ theory: event

semantics with thematic rôles (aka: subatomic semantics). See [Par90,LS95]; also
[Kim98a,Kim97].

10 Previously, e.g., [KM97], Moore and I have presented a formal language for busi-
ness communication. That language, however, is what I now call an application
FLBC. Here, the language being defined aims at capturing the fundamental se-
mantics for the application, and I call it a semantic FLBC. The relationship
between the two will be clarified in the following section when we return to
XML.
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5. 〈i-force-thematic-role-predicate〉 −→ 〈i-force-thematic-role〉 ( 〈eventuality-
ref 〉 , 〈S〉 〈general-ref 〉 ) | ( 〈i-force-thematic-role-predicate〉 〈S〉 ∧ 〈S〉
〈i-force-thematic-role-predicate〉 )

6. 〈i-content〉 −→ ( 〈condition〉 〈S〉 → 〈S〉 ( 〈speech-act-auxiliary-predicate〉
〈S〉 ↔ 〈S〉 〈content〉 ) )

7. 〈condition〉 −→ � | 〈speech-act-auxiliary-predicate〉
8. 〈speech-act-auxiliary-predicate〉 −→ 〈speech-act-auxiliary〉 ( 〈eventuality-

ref 〉 )
9. 〈content〉 −→ 〈microFLBC-utterance〉 | 〈simple-content〉 | ( 〈content〉 〈S〉
∧ 〈S〉 〈content〉 )

10. 〈simple-content〉 −→ ( 〈simple-content-verb-predicate〉 ) | ( 〈simple-content-
verb-predicate〉 〈S〉 ∧ 〈S〉 〈content-predicates〉 )

11. 〈simple-content-verb-predicate〉 −→ 〈ordinary-verb-predicate〉 | 〈speech-
act-auxiliary-predicate〉

12. 〈content-predicates〉 −→ 〈content-predicte〉 | ( 〈content-predicte〉 〈S〉 ∧
〈S〉 〈content-predicte〉 )

13. 〈content-predicte〉 −→ 〈thematic-role-predicate〉 | 〈prepositional-predicate〉
| 〈misc-predicate〉 | 〈domain-specific-predicate〉

14. 〈ordinary-verb-predicate〉 −→ 〈ordinary-verb〉 〈eventuality-ref 〉
15. 〈thematic-role-predicate〉 −→ 〈thematic-role〉 〈event-arg-pair〉
16. 〈event-arg-pair〉 −→ ( 〈eventuality-ref 〉 , 〈S〉 〈general-ref 〉 )
17. 〈prepositional-predicate〉 −→ 〈preposition〉 〈event-arg-pair〉
18. 〈misc-predicate〉 −→ 〈misc1〉 〈general-ref〉 | 〈misc2〉 ( 〈general-ref〉 ,
〈general-ref〉 ) | 〈misc3〉 ( 〈general-ref〉 , 〈general-ref〉 , 〈general-ref〉 )

19. 〈domain-specific-predicate〉 −→ 〈domain-specific1〉 〈general-ref〉 | 〈domain-
specific2〉 ( 〈general-ref〉 , 〈general-ref〉 ) | 〈domain-specific3〉 ( 〈general-
ref〉 , 〈general-ref〉 , 〈general-ref〉 )

20. 〈general-ref 〉 −→ PCDATA | 〈function1〉 〈general-ref〉 | 〈function2〉 (
〈general-ref〉 , 〈general-ref〉 ) | 〈function3〉 ( 〈general-ref〉 , 〈general-ref〉 ,
〈general-ref〉 )

21. 〈eventuality-ref 〉 −→ 〈general-ref 〉
Lexicon 1.0 for microFLBC. Terminals/lexicon for microFLBC:

1. 〈S〉−→ #x20 | #x9 | #xD | #xA | 〈S〉〈S〉
2. 〈speech-act-verb〉 −→ promise | assert | declare | request | purchase-order
| cancel | confirm | endorse | invoice | inquire | estimate | order | report |
specify | clear | approve | void | discharge

3. 〈ordinary-verb〉 −→ pay | deliver | ship | arrive | become-due | become-
effective | change | examine | count | create | expire | fail | manufacture
| open | close | perform | place | process | arrive | depart | load | unload |
receive

4. 〈i-force-thematic-role〉 −→ Addressee | Theme | Cul | Comc | Hold | Sake
5. 〈speech-act-auxiliary〉 −→ V | K | H | Auth
6. 〈thematic-role〉 −→ Agent | Performer | Experiencer | Benefactive |

Goal | Theme | Sake | Cul | Comc | Hold | Location | Source |
Instrument
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7. 〈preposition〉 −→ to | from | into | at | for | with | by | in
8. 〈misc1〉 −→ red | green | blue
9. 〈misc2〉 −→ ≤ | = | < | > | ≥ | description | during |

10. 〈misc3〉 −→ unit | quantity | unitprice
11. 〈function1〉 −→ day
12. 〈function2〉 −→ + | - | * | /
13. 〈domain-specific2〉 −→ FOB | TERMS

4.1 Representing a Simple Promise

Our first example is a simple promise, of the sort that is made many times
daily in the conduct of commerce.

At time t, s promises r that s will deliver to r goods g within 30 days.

(5)

Using an EDI-like message notation, this might be expressed formally (but
not logically) as:

1. promise : 12345
2. date-time : 1999-09-23
3. from : s
4. to : r
5. deliver

(a) goods : g
(b) to : r
(c) by : s
(d) date-time : 1999-09-23 + day(1999-09-23 + 30)

(6)

So, we should think of expression (6) as an instance of u in Figure 1.
Using my lean event sementics [Kim99] and microFLBC, expression (5)

is rendered into first-order modal logic as follows:

promise(12345) ∧ Speaker(12345, s) ∧Addressee(12345, r) ∧ Cul(12345,
1999-09-23) ∧ �(� → (K(12345) ↔ (deliver(e) ∧ Agent(e, s) ∧
Benefactive(e, r) ∧ Sake(e, 12345) ∧ Theme(e, g) ∧ Cul(e, t) ∧ ≤(t,
+(1999-09-23, day(1999-09-23 + 30))))))

(7)
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Comments and points arising:

1. Expression (7) reads roughly as “12345 is a promise by s to r, occurring
on September 23, 1999. The promise 12345 concerns a delivery event e.
Necessarily, this promise is kept if and only s effects a delivery to r of g,
and this is for the sake of the promise 12345. In addition, the delivery,
e must occur (for the promise 12345 to be kept) within thirty days of
September 23, 1999.”

2. This reading is also (I claim) a correct intepretation of the EDI-like mes-
sage, Expression (6) and of the original ordinary language-like utterance,
Expression (5).

3. � in Expression 7 is a modal logic necessity operator. For any sentence,
P , read �P as “Necessarily, P” or “It is necessary that P .” This neces-
sity operator is required for technical reasons, which for present purposes
I elide. It is generally safe simply to drop the operator, �. Doing this
yields the extensional approximation, and for practical purposes the ap-
proximation suffices. Sticking to principles, the grammar for microFLBC
retains the requirement that the � be present.

4. Unlike Expression (6), Expression (7) is logical and fully formal. Note
in this regard how Expression (7) makes explicit so much that would
otherwise have to be read into or assumed regarding Expressions (5) and
(6), which are open to more than one interpretation.

5. The predicates in Expression (7) all occur in the lexicon, and are of
general utility. They could be used in representing very many types of
primary messages.

6. There is nothing special about promising that limits the scope of this
approach to representing messages. The move in evidence here general-
izes to the other illocutionary forces, such as asserting, requesting, and
declaring. Although further details are required, the analysis is remark-
ably simple. Even so, it is able to capture the core logical behavior of
various illocutionary forces.11

7. Two kinds of semantic theory are present: a theory applying to natural
language and a theory applying to first-order modal logic. Expression
(7) exploits lean event semantics, a partial theory of natural language
semantics, to represent a meaning in logic. Lean event semantics extends
ESΘ theory [Par90,LS95]. See also [Kim98a,Kim97]. I am assuming (and
have argued elsewhere) that this theory provides us with an adequate ac-
count of the semantics of the sorts of expressions exhibited for discussion
here (i.e., messages in electronic commerce). If it does, then—I am now
arguing—we can see a way through to solving the first trade problem in
electronic commerce. The second semantic theory to hand is the seman-
tics for first-order modal logic. This theory is well-established and I take
it to be unproblematic.

11 See [Kim90], [Kim97], [Kim98a], [Kim98b], and [Kim99].
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8. �, appearing in item (7) of the microFLBC grammar, is shorthand for
any logical tautology. It always evaluates to true. Anything conditioned
on � is thus only vacuously conditioned. If I say I will go to the store
whether or not it rains, my going is but vacuously conditioned on the
weather.

9. PCDATA, appearing in item (20) of the microFLBC grammar, alludes to
the XML use of that expression: basically PCDATA matches any string
of characters. This is where we give up specifying structure and content
ourselves with names of things.

10. microFLBC contains very little by way of validation principles. Data
types are not recognized and no real distinction is made between names
of eventualities (events, processes, and states) and names of other kinds
of things (e.g., people and products). Every utterance act must have a
Speaker, but little else is required. These are important matters indeed,
but they are beyond the scope of this paper.

Now to a more complex example.

4.2 Representation of a Simple Purchase Order

Figures 4 and 5 show, respectively, a simple example of a specific purchase
order and a representation of it in an EDI-like (structured, not logical) syntax.
I have kept the names of data items short, and the number of data items
few, for the sake of convenience. The example is rich enough to bear the
points I wish to make, and sparse enough to avoid burdening the reader with
unnecessary detail. Actual purchase orders, and the EDI protocols for them,
are of course much more complex. Full treatment of such examples is beyond
the scope and purposes of this paper.

Figure 6, page 218, displays the results of using lean event semantics and
microFLBC to represent the purchase order of Figures 4 and 5. Although
there is very much to say about this example, I shall give just a few remarks,
aimed at making the example accessible and its connection with the main
points clear.

1. The expression in Figure 6 is a fully formal, logical model (and hence,
approximation) of what I think would typically be meant by the purchase
order shown in Figure 4.

2. As in the previous example:
(a) Predicates beginning with a capital letter (Speaker, Theme, Comc,

etc.) are generic reserved words in lean event semantics;
(b) Predicates in lower case (e.g., deliver, pay) are (here) verbs whose

meaning is specified independently (more on this below); and
(c) Predicates in all upper case (e.g., FOB, TERMS) are domain-specific.
All of these predicates appear in the microFLBC lexicon.

3. The expression in Figure 6 is a single logical conjunction with four main
blocks of code.
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TO: r

SHIP TO: an-address

CUSTOMER NO. s

TERMS 30-days-net

SALES

SHIP WEEK OF 1999-12-03

FOB customer

ORDER NO. 54321 DELIVERY VIA ROUTING

PLEASE SHIP THE FOLLOWING AS SPECIFIED

ITEM
QUANTITY
ORDERED

DESCRIPTION
UNIT

COUNT
UNIT
PRICE

TOTAL
AMOUNT

catid-
32-9

box copier paper 6 $45.01 $270.06

catid-
35-9

dozen no. 2 pencil 3 $1.99 $5.97

TOTAL AMOUNT $276.03SPECIAL
INSTRUCTIONS:

DATE

1999-11-19

APPROVAL SIGNATURE

PURCHASER SIGNATURE

TITLE

*** PURCHASE ORDER ***

Fig. 4. Simple Purchase Order Example
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1. purchase-order : 54321

2. date : 1999-11-19

3. from : s

4. to : r

5. ship-to: an-address

6. terms: 30-days-net

7. ship-week-of: 1999-12-03

8. FOB: customer

9. grand-total: 276.03

10. deliver

(a) goods : catid-32-9

(b) unit: box

(c) description: "copier paper"

(d) quantity: 6

(e) unit-price: 45.01

(f) line-total: 270.06

11. deliver

(a) goods : catid-35-9

(b) unit: dozen

(c) description: "no. 2 pencil"

(d) quantity: 3

(e) unit-price: 1.99

(f) line-total: 5.97

Fig. 5. EDI-like representation of the simple purchase order in Figure 4

4. The gist of the first block is that this is a purchase order from s to r
happening (“culminating,” Cul) on 1999-11-19.

5. The gist of the second and third blocks is to indicate that this purchase
order is making a request (of r by s). The request is honored (H) if
and only if two shipping events occur, e1 and e2. Descriptions of these
events follow and match to the original purchase order. Note that in
both cases, the shipping events are (requested to) begin (“commencing”,
Comc) during the period indicated. Nothing is said about when delivery
should occur. Also, both both events are vacuously conditioned on �, a
generic symbol for something that is always true. Vacuous conditioning
is no conditioning at all.

6. The gist of the fourth block is that if the afore-described request is in
fact honored (here the conditioning is nonvacuous), then this purchase
order is also making a promise. The promise is kept (K) if and only if e3
is a paying event with the properties described.

7. Note that the expression is fully logical and supports inferencing. For
example, suppose the purchase order is issued and in fact r honors it
fully (ships the goods as, when, and where described). Suppose further
that s fails pay r as described. It follows logically (as it should) that the
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purchase-order(54321) ∧ Speaker(54321, s) ∧ Addressee(54321, r) ∧ Cul(54321,
1999-11-19) ∧

�( (� → (H(54321) ↔
((ship(e1) ∧ Agent(e1, r) ∧ Benefactive(e1, s) ∧ to(e1, an-address) ∧
Theme(e1, catid-32-9) ∧ Sake(e1, 54321) ∧ unit(e1, catid-32-9, box) ∧
description(catid-32-9, “copier paper”) ∧ quantity(e1, catid-32-9, 6) ∧
Comc(e1, t1) ∧ FOB(e1, customer) ∧ during(t1, week-of(1999-12-03)))
∧

(ship(e2) ∧ Agent(e2, r) ∧ Benefactive(e2, s) ∧ to(e2, an-address) ∧
Theme(e2, catid-35-9) ∧ Sake(e2, 54321) ∧ unit(e2, catid-35-9, dozen)
∧ description(catid-35-9, “no. 2 pencil”) ∧ quantity(e2, catid-35-9, 3) ∧
Comc(e2, t2) ∧ FOB(e2, customer) ∧ during(t2, week-of(1999-12-03)))
))) ∧

(H(54321) → (K(54321) ↔
(pay(e3) ∧ Agent(e3, s) ∧ Benefactive(e3, r) ∧ Sake(e3, [e1, e2]) ∧
Theme(e3, p3) ∧ unit(e3, p3, $) ∧ quantity(e3, p3, q) ∧ unitprice(e1, catid-
32-9, p1) ∧ unitprice(e2, catid-35-9, p2) ∧ unit(e1, p1, $) ∧ unit(e2, p2,
$) ∧ quantity(e1, p1, 45.01) ∧ quantity(e2, p3, 1.99) ∧ =(p3, +( *(45.01,
6), *(1.99, 3))) ∧ Cul(e3, t3) ∧ TERMS(e3, 30-days-net))) ) )

Fig. 6. Representation, via lean event semantics, of a simple purchase order, Figures
4 and 5

promise associated with the purchase order, made by s, has not been
kept, i.e., that ¬K(54321).

4.3 Mapping to the World

No semantics can ever be entirely formal. At some point we need to map
between the formal symbols used in the formal language, and the system
that language is to model. The trick is to give this mapping at a very basic
level, and then rely as much as possible on composition of symbols to provide
additional meaning. With our logical semantics (e.g., Figure 6) we need to
provide a basic mapping for: terms (s, r, etc.), functions (e.g., week-of), and
predicates (e.g., ship, pay). Terms are rather straightforward: one makes a
catalog, a sort of table, in which the referring expression is mapped to what it
refers to. For example, s might be the customer number of the firm Nadir, Inc.
Functions are also straightforward: one either maps them, much as terms are
mapped, or one defines them by composition from more primitive functions.
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Predicates, as noted, are of three kinds:

1. Specific for lean event semantics, e.g., Theme, Comc, Unit
2. Generic, e.g., ship, pay
3. Domain specific, e.g., FOB, TERMS

The specific predicates should be few in number and can be defined (mapped)
explicitly. The generic predicates can and should be mapped to a clear,
broadly-accepted, and public specification. Language having the importance
it does, such specifications are indeed available. WordNet, an electronic lexi-
con produced over a number of years at Princeton University, is an excellent
example [Fel98]. Let us see, briefly, what WordNet has to say about the three
generic (verb) predicates in Figure 6: purchase-order, ship, pay.

WordNet recognizes purchase order as a noun, but not as verb. Nonethe-
less, what it says is useful. The following passage, as well as all the subse-
quently quoted passages, is from WordNet 1.6.

The noun purchase order has 1 sense
(no senses from tagged texts)

1. {04902219} <noun.communication> order1#7,
purchase order#1 --

(a commercial document used to request someone to supply
something in return for payment; "IBM received an order for
a hundred computers")

Notice that a purchase order here—and in Figure 6—involves both a request
for something and a (promised) payment for it.

WordNet 1.6 recognizes ship as a verb for which there is exactly one sense:
to transport commercially.

1 sense of ship
Sense 1
{01328437} <verb.motion> transport1#4, send#4, ship#1 --
(transport commercially)

=> {01328337} <verb.motion> barge1#2 --
(transport by barge on a body of water)

=> {01331285} <verb.motion> dispatch#1, despatch#1,
send off#1 -- (send off promptly)

=> {01331167} <verb.motion> bundle off#1 --
(send off unceremoniously)

=> {01331450} <verb.motion> route2#1 --
(send documents or materials to appropriate
destinations)

=> {01331576} <verb.motion> forward#1, send on#1 --
(send or ship onward from an intermediate post or
station in transit; "forward my mail")
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More refined meanings are available with different verbs. We may thus ten-
tatively identify the ship of Figure 6 with ship#1 of WordNet.

Finally, WordNet 1.6 recognizes 11 distinct meanings for pay as a verb.

The verb pay has 11 senses (first 11 from tagged texts)
1. {01540968} <verb.possession> pay#1 --

(give money in exchange for goods or services;
"I paid four dollars for this sandwich";
"Pay the waitress, please")

2. {00718708} <verb.communication> give1#5, pay#2 --
(convey, as of a compliment, regards, attention, etc.;
bestow; "Don’t pay him any mind"; "give the orders";
"Give him my best regards"; "pay attention")

3. {01541614} <verb.possession> pay up#1, ante up#1, pay4#3 --
(cancel or discharge a debt; "pay up, please!")

4. {01542031} <verb.possession> pay2#4, pay off4#4, make up#3,
compensate2#4 -- (do or give something to somebody in
return; "Does she pay you for the work you are doing?")

5. {01695538} <verb.social> pay#5 --
(render; "pay a visit"; "pay a call")

6. {00500874} <verb.cognition> pay3#6 --
(bear (a cost or penalty), in recompense for some action;
"You’ll pay for this!"; "She had to pay the penalty for
speaking out rashly"; "You’ll pay for this opinion later")

7. {01566906} <verb.possession> yield#10, pay1#7, bear1#8 --
(bring in; as of investments; "interest-bearing accounts";
"How much does this savings certificate pay annually?")

8. {01869530} <verb.stative> pay#8 --
(be worth it; "It pays to go through the trouble")

9. {00496485} <verb.cognition> give2#10, pay#9, devote#2 --
(as in the expressions "give thought to";
"give priority to", etc.)

10. {01541783} <verb.possession> pay14#10 --
(discharge or settle; "pay a debt"; "pay an obligation")

11. {01600647} <verb.possession> pay13#11 --
(make a compensation for; "a favor that cannot
be paid back")

Pretty straightforwardly, we can tentatively identify microFLBC’s pay with
WordNet’s pay#1.

If our lexicon is to be properly completed, this sort of mapping must be
carried through systematically. Further excursions in that direction, however,
would only divert us from our main subject.
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5 Back to XML

It will help to summarize before returning to discussion of XML. Through
a series of examples I have observed that effective computer-to-computer
(automated) communication requires:

1. A common lexicon, which identifies the primitive expressions and what
they mean
This is what makes possible the simple sort of communication illustrated,
above, in Figure 2. If we are content with such an elementary form of com-
munication, then the transparency problem can (in principle) be solved
simply by making available to all parties the common lexicon. Each may
then program its own computers without consulting the other, and (in
principle) the first exchange and all subsequent exchanges will work prop-
erly.
The problem is that for most purposes, especially for electronic commerce,
a “words only”—or atomic—form of exchange is insufficiently rich, and
we must resort to messages composed from items in the lexicon.

2. A common grammar that specifies the permitted compositional expres-
sions
Lacking this, it would border on miraculous if the sender composed mes-
sages that the receiver could recognize correctly.

3. A common convention for interpreting what the expressions produced by
the common grammar mean
This is also known as a semantics for the (common) language. In the
two relevant examples above, the Lisp arithmetic expressions and mi-
croFLBC, I alluded to but did not specify the associated semantics. For
the case of the Lisp expressions, it is the semantics that tells us that
applying the functor + to a list of numbers produces their sum, instead of
something else. microFLBC, being a fragment of first-order modal logic,
inherits the semantics for that language. This is what tells us that ∧
means (roughly, and but a truth table can be given to make this rigor-
ous), and indeed what each possible expression in the grammar (BNF)
means.12

12 Regarding common,, I oversimplify for the sake of the issues at hand. I do not
want to suggest that communicants must be looking at exacting the same lexicon,
etc. They could have in common different copies of things. Also, they might
come to acquire their copies by incremental learning. Skyrms [Sky96, chapter 5]
is particularly convincing on this subject, but we are far from seeing our way to
applications via learning of meaning.
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With these points to hand, we can diagnose the sources of the trans-
parency (spontaneity, or first-trade) problem in EDI as:

1. Lack of a clear and complete lexicon
Nothing resembling even the above mapping of a few predicates to Word-
Net is generally available, although in certain domains much has been
achieved in this direction.

2. No fully-specified grammar
The various EDI standards (X12, EDIFACT, etc.) attempt to define com-
positional expressions, and hence can be seen as providing grammars for
business communication. Two major shortcomings are present. First, the
grammars are incomplete; they do not fully and rigorously specify the
permitted messages. This is often an important locus of negotiation for
organizations preparing for their first electronic trade. Second, grammars
have proliferated. The standards each identify scores of message types
(invoice, purchase order, request for quotation, etc.), called transaction
sets. Individual ‘grammars’ (speaking loosely) are defined for each trans-
action set. This, too, only increases the pre-trade clarification burden.

3. No semantics
Or nearly no semantics. The standards provide rough and intuitive—and
occasionally quite specific—information on what the various fields are
for and what can go in them, but this is a very long way from having a
full and rigorous semantics. Even if the trading parties are determined
to follow the standards exactly, this is impossible because the standards
are not exact. Negotiation ensues.

What of XML? It indeed brings much to our table. First, the DTD mechanism
offers the prospect of a fully rigorous grammar for business messaging. What
a DTD really is is an executable BNF specification. At least in principle (and
surely for very many practical purposes), this answers well to the requirement
for a formal grammar. In this regard alone, XML presents the prospect of
a great improvement over current EDI specification regimes. Second, XML
has a namespace mechanism by which it can fix the references of the terms
it uses. For example, a catalog number for a product need not be universally
unique. If it is locally unique—within a given catalog—and we have a way to
refer to the catalog in question, then the product number can (in principle)
be used without ambiguity. Exploring this aspect of XML in detail is beyond
the scope of this paper, but it is safe to say that the namespace mechanism
is at least a promising vehicle for solving the lexicon requirement.

This leaves the question of semantics. Just as a BNF provides the gram-
mar or syntax for a language, and cannot provide the semantics, so XML’s
DTD mechanism cannot provide a semantics either. As with namespaces, an
XML document can point to a semantic specification, but it cannot provide
one for itself. What to do? We can give an XML document a semantics by
mapping its DTD to another language which itself is or has a formal seman-
tics. What is special (although not unique) about logic is that it can serve
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as such a language. Semantics for logic is well worked out, and arguably the
microFLBC fragment can properly express much of what we need to say
for business messaging. So, the trick is to define XML DTDs that can be
mapped to microFLBC. Then, microFLBC (or something like it) and the
mapping correspondence with the DTD can together serve as the common
semantics. This in principle completes our three requirements for effective
communication and—in principle—lets us solve the transparency problem.

I will illustrate with a simple example. Suppose s wants to send a message
to a requesting payment for items delivered in response to a previous work
order, number 789, originally issued by a. In English the message is:

s requests of a that a pay s for item 789.

In microFLBC this is more carefully stated as

request(2345) ∧ Speaker(2345, s) ∧ Addressee(2345, a) ∧ � (� →
(H(2345) ↔ (pay(23456) ∧ Agent(23456, a) ∧ Benefactive(23456, s)
∧ Sake(23456, 789) ))

Here is one way to say this in XML:

<microFLBC-utterance>
<i-force>

<speech-act-predicate>
<speech-act-verb>request</speech-act-verb>
<eventuality-ref>2345</eventuality-ref>

</speech-act-predicate>
<speaker-predicate>

<eventuality-ref>2345</eventuality-ref>
<general-ref>s</general-ref>

</speaker-predicate>
<i-force-thematic-role-predicate>

<i-force-thematic-role>Addressee</i-force-thematic-role>
<eventuality-ref>2345</eventuality-ref>
<general-ref>r</general-ref>

</i-force-thematic-role-predicate>
<i-force>
<i-content>

<condition>True</condition>
<speech-act-auxiliary-predicate>

<speech-act-auxiliary>H</speech-act-auxiliary>
<eventuality-ref>2345</eventuality-ref>

</speech-act-auxiliary-predicate>
<content>
<simple-content>

<simple-content-verb-predicate>
<ordinary-verb-predicate>pay</ordinary-verb-predicate>



224 Steven O. Kimbrough

<eventuality-ref>23456</eventuality-ref>
</simple-content-verb-predicate>
<content-predicates>
<content-predicate>
<thematic-role-predicate>
<thematic-role>Agent</thematic-role>
<event-arg-pair>
<eventuality-ref>23456</eventuality-ref>
<general-ref>a</general-ref>
</event-arg-pair>
</thematic-role-predicate>
</content-predicate>
<content-predicate>
<thematic-role-predicate>
<thematic-role>Benefactive</thematic-role>
<event-arg-pair>
<eventuality-ref>23456</eventuality-ref>
<general-ref>s</general-ref>
</event-arg-pair>
</thematic-role-predicate>
</content-predicate>
<content-predicate>
<thematic-role-predicate>
<thematic-role>Sake</thematic-role>
<event-arg-pair>
<eventuality-ref>23456</eventuality-ref>
<general-ref>789</general-ref>
</event-arg-pair>
</thematic-role-predicate>
</content-predicate>
</content-predicates>

</simple-content>
</content>

</i-content>
</microFLBC-utterance>

There is a more or less transparent mapping between this XML expression
and microFLBC. I leave it to the reader as an exercise.

6 Conclusion

If communicating automated agents are to benefit from drastically reduced
first-trade costs, it will be necessary to provide them (and their human mas-
ters) with:
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1. a fundamental semantic language for modeling communication, including
(a) a lexicon
(b) a grammar
(c) a semantics

2. an application language, for business communication,
3. a mapping between the two languages

and all of this must be fully formal and processable by machine. This is a
tall order and very much remains to be done. Fortunately, what we have but
glimpsed here can be realized in increments. How much would microFLBC
have to expanded in order to serve as the semantic foundation for some
domain of application, heretofore poorly served by EDI? The prospects, I
think, are quite good, but that is something for another paper.

References

[AY96] Nabil R. Adam and Yelena Yesha (eds.), Electronic commerce: Current
research issues and applications, Lecture Notes in Computer Science, vol.
1028, Springer, Berlin, Germany, 1996.

[BK95] Hemant K. Bhargava and Steven O. Kimbrough, On embedded lan-
guages, meta-level reasoning and computer-aided modeling, The Impact
of Emerging Technologies on Computer Science and Operations Research
(Stephen G. Nash and Ariela Sofer, eds.), Kluwer Academic Publish-
ers, Boston, MA, 1995, ISBN 0-7923-9542-5. File: csts-94-meta-sok-hkb.,
pp. 27–44.

[BLW97] Roger W.H. Bons, Ronald M. Lee, and Renée Wagenaar, Computer-aided
auditing of inter-organizational trade procedures, Intelligent Systems in
Accounting, Finance and Management 6 (1997), no. 2, 29–46.

[Dic00] Kevin Dick, XML: A manager’s guide, Addison-Wesley, Reading, Mas-
sachusetts, 2000, ISBN: 0-201-43335-4.

[Dri97] Chris Driscoll, XML touted as cure for EDI ills: New markup language
extends web capabilities beyond HTML’s limits, Web page, 5 August 1997,
http://www.geocities.com/WallStreet/Floor/5815/edinews01.htm,
accessed 1999-12-28.

[Emm93] Margaret A. Emmelhainz, EDI: A total management guide, second ed.,
Van Nostrand Reinhold, New York, NY, 1993, ISBN: 0-442-312690-9.

[Emm94] , Electronic data interchange in logistics, The Logistics Handbook
(James F. Robeson and William C. Copacino, eds.), The Free Press, New
York, NY, 1994, ISBN: 0-02-926595-9., pp. 737–756.

[Fel98] Christiane Fellbaum (ed.), Wordnet: An electronic lexical database, The
MIT Press, Cambridge, MA, 1998, ISBN: 0-262-06197-X.

[GP98] Charles F. Goldfarb and Paul Prescod, The xml handbook, Prentice Hall
PTR, Upper Saddle River, NJ, 1998, ISBN: 0-13-081152-1.

[Kim99] Steven O. Kimbrough, Formal language for business communication:
Sketch of a basic theory, International Journal of Electronic Commerce
3 (Winter 1998–99), no. 2, 23–44.

[Kim90] , On representation schemes for promising electronically, Decision
Support Systems 6 (1990), no. 2, 99–121.



226 Steven O. Kimbrough

[Kim91] Paul Kimberley, Electronic data interchange, McGraw-Hill, Inc., New
York, New York, 1991.

[Kim97] Steven O. Kimbrough, On electronic commerce, subatomic semantics and
Cæsar’s stabbing, Proceedings of the Thirtieth Hawaii International Con-
ference on System Sciences (Los Alamitos. CA) (Ralph H. Sprague, Jr.,
ed.), IEEE Press, 1997, pp. 361–370.

[Kim98a] , On ESΘ theory and the logic of the X12 date/time qualifiers,
Proceedings of the Thirty-First Hawai’i International Conference on Sys-
tem Sciences (Los Alamitos. CA) (Ralph H. Sprague, Jr., ed.), IEEE Press,
1998, pp. 330–339.

[Kim98b] , Sketch of a basic theory for a formal language for business com-
munication, Proceedings of the Thirty-First Hawai’i International Con-
ference on System Sciences (Los Alamitos. CA) (Ralph H. Sprague, Jr.,
ed.), IEEE Press, 1998, pp. 717–725.

[KL86] Steven O. Kimbrough and Ronald M. Lee, On illocutionary logic as a
telecommunications language, Proceedings of the International Conference
on Information Systems (San Diego, CA), December 1986, pp. 15–25.

[KM93a] Steven O. Kimbrough and Scott A. Moore, On obligation, time, and
defeasibility in systems for electronic commerce, Proceedings of the
Twenty-Sixth Annual Hawaii International Conference on System Sci-
ences, Volume III, Information Systems: DSS/Knowledge-Based Systems
(Los Alamitos, California) (Jay F. Nunamaker, Jr. and Ralph H. Sprague,
Jr., eds.), IEEE Computer Society Press, 1993, pp. 493–502.

[KM93b] , On the spanning hypothesis for EDI semantics, Proceedings of
the Thirty-Second Annual Hawaii International Conference on System
Sciences (Los Alamitos, California) (Jay F. Nunamaker, Jr. and Ralph H.
Sprague, Jr., eds.), IEEE Computer Society Press, January 1993.

[KM97] , On automated message processing in electronic commerce and
work support systems: Speech act theory and expressive felicity, ACM
Transactions on Information Systems 15 (October 1997), no. 4, 321–367.

[KT00] Steven O. Kimbrough and Yao-Hua Tan, On lean messaging with un-
folding and unwrapping for electronic commerce, International Journal of
Electronic Commerce 5 (2000), no. 1, 83–108.

[Lee99] Ronald M. Lee, Distributed electronic trade scenarios: Representation, de-
sign, prototyping, International Journal of Electronic Commerce 3 (1999),
no. 2, 105–136.

[Leh96] Fritz Lehmann, Machine-negotiated, ontology-based EDI (electronic data
interchange), Electronic Commerce: Current Research Issues and Applica-
tions (Nabil R. Adam and Yelena Yesha, eds.), Lecture Notes in Computer
Science, vol. 1028, Springer, Berlin, Germany, 1996, pp. 27–46.

[Lig97] Richard Light, Presenting xml, SAMS Net, Indianapolis, IN, 1997, ISBN:
1-57521-334-6.

[LS95] Richard Larson and Gabriel Segal, Knowledge of meaning: An introduc-
tion to semantic theory, The MIT Press, Cambridge, Massachusetts, 1995,
ISBN: 0-262-62100-2.

[McD85] David McDonald, Conversations between programs, Cognitive Constraints
on Comunication (Lucia Vaina and Jaakko Hintikka, eds.), Synthese Lan-
guage Library, vol. 18, D. Reidel Publishing Company, Boston, MA, 1985,
ISBN: 90-277-1456-8., pp. 403–424.



The Transparency Problem in Electronic Commerce 227

[Moo93] Scott A. Moore, Saying and doing: Uses of formal languages in the con-
duct of business, Ph.D. thesis, University of Pennsylvania, The Wharton
School, Philadelphia, PA, 19104, USA, December 1993.

[Moo98] , Categorizing automated messages, Decision Support Systems 22
(1998), no. 3, 213–241.

[Moo00] , KQML and FLBC: Contrasting agent communication languages,
International Journal of Electronic Commerce 5 (2000), no. 1, 109–124.

[Moo01] , A foundation for flexible automated electronic commerce, Infor-
mation Systems Research 12 (2001), no. 1, 34–62.

[Par90] Terence Parsons, Events in the semantics of English: A study in subatomic
semantics, Current Studies in Linguistics, The MIT Press, Cambridge,
MA, 1990, ISBN: 0-262-66093-8.

[Sal95] Airi Salminen, EDIFACT for business computers: Has it succeeded?, Stan-
dardView 3 (March 1995), no. 1, 33–42.

[Sin93] Munidar P. Singh, A semantics for speech acts, Annals of Mathematics
and Artificial Intelligence 8 (1993), no. I–II, 47–71, Reprinted in [HS98].

[Sin98] Munindar P. Singh, Agent communication languages: Rethinking the prin-
ciples, IEEE Computer 31 (1998), no. 12, 40–47.

[Sky96] Brian Skyrms, Evolution of the social contract, Cambridge University
Press, Cambridge, UK, 1996.

[Ste94] K. Steel, Another approach to standardising EDI, Electronic Markets 12
(1994), 34–47.

[Ste96] Ken Steel, The standardisation of flexible EDI messages, Electronic Com-
merce: Current Research Issues and Challenges (Nabil R. Adam and Ye-
lena Yesha, eds.), Springer-Verlag, Berlin, Germany, 1996, ISBN 3-540-
60738-2., pp. 13–26.

[TT98] Yao-Hua Tan and Walter Thoen, A logical model of transfer obligations in
trade contracts, Accounting, Management and Information Technologies
8 (1998), no. 1, 23–38.

[XML98] The XML/EDI Group, Home page for the XML/EDI Group, Web page,
January 1998, http://www.xmledi.net.



Part II

Applications



Designing Control Mechanisms for Value
Exchanges in Network Organisations

Vera Kartseva1 and Yao-Hua Tan2

1 Free University Amsterdam, Faculty of Economics and Business
Administration, Information Systems Group, de Boelelaan 1105, 1081 HV
Amsterdam, The Netherlands,
vkartseva@feweb.vu.nl

2 Free University Amsterdam, Faculty of Economics and Business
Administration, Information Systems Group, de Boelelaan 1105, 1081 HV
Amsterdam, The Netherlands,
ytan@feweb.vu.nl

Abstract. Contracts and organizational controls to monitor contract compliance
are important tools to enhance trust in a fair business transaction in network
organisations and electronic commerce in general. In this chapter, we propose a
design methodology for such contracts and supporting controls, utilizing inter-
organisational value models. We argue that a framework for designing control mech-
anisms should include three steps: design of an inter-organizational value model,
analysis of possible violations of contractual obligations underlying this value model,
and design of control mechanisms to detect or prevent such violations. It is shown
how the e3−value methodology, which was developed to design business value mod-
els, can be extended to model obligations of parties. We use concepts and ideas from
deontic logic (the logic of obligations and permissions) to develop an extension of
e3−value called e3−value+. The e3−value+ approach is a design tool for modelling
violations of obligations, which can be used in contract drafting and contingency
planning for inter-organisational collaboration in network organisations.

1 Introduction

As is well-known, lack of trust is one of the main reasons that companies and
consumers do not engage in electronic commerce.1 Technical means, such as
encryption technology and digital signatures to build trust-facilitating ser-
vices, are available right now. Additionally, current research topics in com-
puter science such as web services and peer-to-peer networking enable pro-
viding inter-organisational business processes, which are required for trust en-
hancing procedures [Bar01,FKT01]. However, advanced technology will never
develop trust models without a proper underlying organisation design. For
example, although technically speaking an electronic signature is much more
reliable than a hand-written signature, the historically proven “paper and
1 See, e.g., [MCC98,TT98b].
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pen” way of signing a contract is more trusted. One can surmise that the
reason is because an electronic signature is not backed with a proven infras-
tructure of legislative practices and underlying control mechanisms that make
it possible to solve any disagreement between parties.

In [TT98b] a generic model of trust for electronic was introduced that
explains how trust can be created by developing party trust and control trust.
In this chapter we focus on control trust. In traditional organisations, control
mechanisms, with their main focus on management control, have been studied
extensively (see [AG03] and [Ouc79]). For electronic commerce, however, the
design of control mechanisms is rather uncharted territory. What is needed
is an understanding how to design trustworthy control mechanisms on top of
technical possibilities of electronic commerce.

Our definition of control mechanisms is as in [TT98b]: procedures and
protocols that control and monitor the successful performance of a transac-
tion. Contract negotiation can be seen as a way to ensure legality and protect
interests of all parties involved in electronic commerce. Technology-oriented
research on electronic contracting2 typically assumes that a plain textual,
natural language representation of the contractual content that can be read
and interpreted by business people and lawyers suffices. However, business
studies3 indicate that incomplete contracting practices result in increased op-
portunism and failure of inter-organisational cooperation. In [DS97,TT01] a
need for contract negotiating and drafting methodology and tools is identified.
In this chapter we suggest that in electronic commerce incomplete contract-
ing practices have to be solved by the negotiation of a contract as well as its
supporting controls. This is a multi-disciplinary task, and it involves obvi-
ously legal aspects. Also, computer science issues are relevant (many controls
take the form of computer software), as well as inter-organisational business
process design (many contracts say how, and in which order, business trans-
actions should be carried out, and by whom). In addition, in electronic com-
merce a thorough understanding of the corresponding business value model
is often lacking [Gor02], which makes contingency planning of contracts more
complex.

The main contribution of this chapter is that we propose a methodol-
ogy for designing contracts and control mechanisms for inter-organizational
economic exchanges, in particular between enterprises in (virtual) network
organizations.

This chapter is structured as follows. In Section 2 we introduce a method-
ology to design control mechanisms. The methodology consists of analysing
ideal and sub-ideal situations in economic exchanges, and designing control
mechanisms to prevent sub-ideal situations. Subsequently, we address the
modelling of the ideal situation in Section 3, and propose some ideas for
modelling sub-ideal situations and control mechanisms in Section 4.

2 E.g., [LS03].
3 E.g., [Luo01].
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2 A Methodology for Designing Control Mechanisms

The main purpose of control mechanisms in electronic commerce is to ensure
that all value exchanges between enterprises take place as planned or stated
in a contractual agreement. There are many theories dealing with control
mechanisms. The main elements of every control system4 are the entity being
controlled, detection of the violation, measurement of the severeness of the
violation, and behaviour alteration. Similarly, control mechanisms can be
seen as measures to prevent violation of obligations. Raskin, Tan, and van
der Torre distinguish in [RTv96] two viewpoints on the behaviour of actors
with regard to contractual obligations: either there is (1) no violation of
an obligation by the actor, which is called ideal behaviour, or (2) there is
a violation of an obligation, which is called sub-ideal behaviour. Thus, we
suggest that a methodology for designing control mechanisms should include
at least the following subsequent steps:

1. Design of a business value model (ideal situation)
2. Analysis of contractual obligations and their possible violations (sub-ideal

situation)
3. Design of control mechanisms (prevention of sub-ideal situation)

A business value model shows what is actually being controlled or governed
by a contract. This is an essential element of every control system.5 In elec-
tronic commerce, such a value model is often unclear because most models
are innovative. Consequently, it is necessary to understand the exchanges of
economically valuable objects between actors before starting to design con-
trols for these exchanges. We assume that a business value model only deals
with ideal behaviour; that there is no violation of obligations. In practice, it
is sufficiently difficult to design and understand such a model [GA03], and
the addition of obligation issues would unnecessary complicate such a task.
Therefore, we divide the design of a commercially sound value model from
the analysis of possible violations and the design of control mechanisms.

After it is understood what value exchanges actually have to be controlled,
possible violations are analysed and control mechanisms are designed. Ac-
cording to the description of a control system in Anthony and Govindarjan,6

it is necessary to measure what is going on in the process being controlled,
and to determine the significance of what is happening. In our terms, before
introducing control mechanisms, we need to know how the ideal situation
can be violated, i.e., the sub-ideal situation has to be modelled, and what
the severeness of the violation is. In the next two sections we address the
modelling of ideal and sub-ideal situation in electronic commerce.

4 [AG03]
5 [AG03]
6 [AG03]
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3 Modelling Business Value Models

A first step in designing an electronic commerce business case, is the devel-
opment of a business value model, focusing on how value creation, distribu-
tion and consumption happens in a network of actors.7 We use the e3-value
methodology for designing a business value model.8

The e3-value methodology is a graphical tool for supporting the design
of business models. Moreover, the tool enables sensitivity analysis of the
profitability of such business models (for further details see [Gor02]). In par-
ticular, the e3-value methodology provides modelling concepts for showing
which parties exchange things of economic value with whom, and what is ex-
pected what in return. The methodology has been applied in a series of case
studies to design value models of network organisations in media, banking,
insurance and telecommunications.

Most of the currently available design methodologies for business models
focus on process design rather than value design. They only focus on analysing
the business processes that are needed to realise a value proposition. There
are a few value chain design methodologies, which provide concepts for de-
scribing value constellations. For example, the AIAI Enterprise conceptual
framework [GM99] or the Resource Event Agent (REA) [UKMZ98] concep-
tual framework. However, these frameworks are mainly descriptive theories,
and do not support the value chain design process. Other business modelling
methodologies9 offer only generic conceptual frameworks, but lack a precisely
defined ontology that is required for modelling the relevant details of a busi-
ness model. (The ontology of e3-value will be explained below.) Tapscott et
al.10 provide a graphical tool to represent economic exchanges between en-
terprises, however, compared to e3-value, it has several drawbacks; e.g., it
has no notion of economic activity, does not allow the profitability analysis
of the economic exchanges, and is not based on a precisely defined ontology.

We briefly describe the core concepts of the e3-value methodology. In
Figure 1 a buyer obtains goods from a seller and offers money in return.
According to law, the seller is obliged to pay the value-added tax (VAT).
This is conceptualised by the following e3-value constructs:
(Note: The legend upper part is only for explanatory purposes and is not
part of the e3-value modelling technique itself.)

Actor. An actor is perceived by its environment as an independent eco-
nomic (and often legal) entity. An actor aims to make a profit or increase its
utility. In a sound, sustainable business model each actor should be capable
of making profit. The example shows a number of actors: a buyer, a seller,
and a tax administration.

7 See [PG03] for an overview.
8 [Gor02,GA03]
9 E.g., [AZ01], [OP02], and [PKT01].

10 [TTL00]
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Fig. 1. e3-value model of a purchase with tax payment

Value Object. Actors exchange value objects, which are services, prod-
ucts, money, or even consumer experiences. The important point here is that
a value object is of value for one or more actors. Good and payment are
examples of value objects, but legal compliance to pay tax is also a value
object.

Value Port. An actor uses a value port to show to its environment that
it wants to provide or request value objects. The concept of port enables to
abstract away from the internal business processes, and to focus only on how
external actors and other components of the business model can be ‘plugged
in’.

Value Interface. Actors have one or more value interfaces, grouping
reciprocal, opposite-directed value ports. A value interface shows the value
object an actor is willing to exchange, in return for another value object via
its ports. The exchange of value objects is atomic at the level of the value
interface.

Value Exchange. A value exchange is used to connect two value ports
with each other. It represents one or more potential exchanges of value objects
between value ports.

Using these concepts we can explain who wants to exchange values with
whom, but we cannot yet explain what happens in response to a particular
end-consumer need. For this purpose we include in the value model a repre-
sentation of dependency paths (based on [Buh98]) between value interfaces.
A dependency path connects the value interfaces in an actor and represents
triggering relations between these interfaces. A dependency path consists of
dependency nodes and segments.
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Dependency Node. A dependency node is a stimulus (represented by a
bullet), a value interface, an AND-fork or AND-join (short line), an OR-fork
or OR-join (triangle), or an end node (bull’s eye). A stimulus represents a
consumer need, an end node represents a model boundary.

Dependency Segment. A dependency segment connects dependency
nodes and value interfaces. It is represented by a link.

Dependency Path. A dependency path is a set of dependency nodes
and segments that leads from one value interface to other value interfaces or
end nodes of the same actor. A path indicates that if values are exchanged
via a value interface, then other value interfaces connected by the path also
have to exchange values.

A basic assumption of the e3-value methodology is the Principle of Reci-
procity, which means that if an actor offers something of value to another
actor, this actor always gets something in return what s/he wants. In other
words, in e3-value models it is assumed that all actors behave correctly, and
hence only ideal situations can be represented. The violation of the principle
of reciprocity (e.g. an actor obtaining something without paying for it) can
be seen as a violation of an obligation, which would lead to incorrect e3-value
models with a value interface with only one incoming or outgoing value ob-
ject, i.e. delivering goods and not receiving a payment in return. In the next
section we extend e3-value with additional concepts and rules to enable the
representation of such sub-ideal situations as violations of the principle of
reciprocity.

4 Modelling Sub-Ideal Situations

A large number of theories about modelling obligations and their violations
have been developed in the area of deontic logic (for an overview see [MW93].)
In Raskin et al.11 and in Tan & Thoen,12 a method was introduced to model
obligations using Petri Nets. A Petri net is a graphical formalism for mod-
elling and analysing discrete dynamic systems. It was suggested to model
procedures and processes within and between organisations with extended
Petri Nets, which model preference relations for different executions of trans-
actions between actors.

A method similar to the one described in [RTv96] can be used to extend
e3-value in such a way that it becomes possible to represent obligations and
violations of obligations. We will call this extension e3-value+. Violations
of obligations in e3-value+ are modelled by so-called sub-ideal paths. These
are typically paths for which the principle of reciprocity does not hold. For
example, although in a contract it was agreed that the buyer would pay the
seller in return for the delivery of the goods, there can be a sub-ideal path in
which the seller does deliver the good, but the buyer does not pay within the
11 [RTv96]
12 [TT98a]
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agreed period of time. So, the first extension we have to make to the standard
e3-value tool is that we omit the principle of reciprocity and allow for this
type of sub-ideal paths. The second extension is that we assign weights to the
segments of a path. As in [RTv96], these weights represent a kind of fines.
So, if a segment has a non-zero positive weight it reflects that this is a kind
of sub-ideal behaviour that is fined with a penalty. A zero weight means that
the segment does not violate the terms of the contract.

Figure 1 shows an e3-value model, representing the ideal situation. In
Figure 2 we use an e3-value+ to model sub-ideal situations that can happen
when one of the actors violates the contract (e.g., does not respect economic
reciprocity).

Fig. 2. Modelling violated obligations in e3-value+

Modelling these sub-ideal paths is typical for contract drafting when the
contract partners negotiate about the possible problems and contingencies
that can occur during the execution of the contract and mutually agree on
additional clauses to cover risks of non-performance of the other party. Typ-
ically, these extra contract clauses also include certain financial compensa-
tions, for example a reduction of the price if the goods are delivered too late.
In research on contracting it has been observed that this reasoning about
sub-ideal paths, which is called contingency planning, is one of the most im-
portant, as well as most labour intensive, stages of contract negotiation. For
example, in [McC63] it was observed that contingency planning is the most
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useful part of the contract, because it learns the contract partners what prob-
lems they could encounter, what reasonable financial compensations are to
be paid when they do occur, and how to minimise the likelihood that these
problems will occur. One of the main purposes of e3-value+ is to support this
contingency planning process in contract negotiations.

Compared to Figure 1, in Figure 2 we now have two additional value
exchanges between the buyer and the seller, which represent two possible
sub-ideal situations: (1) the seller delivers goods, and the buyer does not
pay, and (2) the seller does not deliver goods, while the buyer pays. The first
is bad behaviour of the buyer, and the second is bad behaviour of the seller.
As a result, instead of one scenario path in the ideal situation in Figure 1, we
now have in Figure 2 three different alternatives, modelled as one ideal and
two sub-ideal paths coming out of the OR-fork. In addition, we also assigned
weights to each of the path segments. These weights reflect the severeness of
the violation. For example, the buyer can face three situations: to pay and
to receive goods, to receive goods and not pay, and to pay, but not to receive
goods. The worst behaviour of the buyer is to receive goods, but not to pay,
because then the buyer violates his/her obligation to pay. By assigning a
higher weight to the segment, which indicates the worst case for the buyer,
the incentive is modelled for the buyer not to take this sub-ideal path.

As for the exchanges between the seller and the tax administration, the
ideal situation is modelled as the seller paying tax and the tax administration
confirming a legal compliance. In the sub-ideal situation the principal of
reciprocity can be only violated by not paying tax (we assume that a tax
office cannot violate it by punishing the seller even if the tax is paid). Note
that the violations of obligations in exchanges between the seller and the tax
administration are independent of violations of obligations between the seller
and the buyer, and the other way around. The model includes a number of
possible sub-ideal paths: (a) the goods are delivered, the fee is not paid, and
the tax is paid, (b) the goods are not delivered, the fee is paid, and the tax
is paid, (c) the goods are delivered, the fee is not paid, and the tax is not
paid, (d) the goods are not delivered, the fee is paid, and the tax is not paid,
and (e) the goods are delivered, and the fee is paid, but the tax is not paid.
Below we describe the extensions of e3-value+ in more detail.

4.1 Extension 1: The Violation of the Principle of Reciprocity

The ideal situation between the buyer and the seller is represented by value
exchanges denoting transfers of goods and fees between them. We model a
sub-ideal situation as a violation of the principle of economic reciprocity. The
failure to deliver a value object is the violation of the principle of reciprocity.
In e3-value the principle of reciprocity is “hard-wired”, and the violation of
the principle of reciprocity in e3-value+ is reflected in the changes of the
following e3-value concepts:
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Value Interface. A value interfaces consists of groups of in-going and
out-going value ports. It shows the value object an actor is willing to exchange
in return for another value object via its ports. The failure to deliver value
object results in an incomplete set of value exchanges coming out and in the
value interface.

Value Port. Value object is exchanged between actors via value ports of
the value interface. If the principle of reciprocity is violated, no value object
and no value exchange goes through the value port. We call this value port
an empty value port.

Value Object. The violation the principle of reciprocity results in new
types of value objects. Basically, there are two types of value objects: delivered
value object and non-delivered value object.

Value Exchange. Value exchange is closely related to value interface,
and the violation of the principal of reciprocity will result in a value exchange
that it is not executed. Thus, there are also two types of value exchanges:
executed value exchanges and non-executed value exchanges.

To graphically represent the violation of the principle of reciprocity we use
different types of value exchanges in e3-value+. Executed value exchanges are
represented with solid lines, and non-executed ones with dashed lines. The
value ports that are connected to non-executed value exchanges are empty.
The names of non-delivered value objects are also changed depending on the
corresponding delivered value objects (like, “Payment” for the delivered value
object and “No Payment” for the non-delivered one).

4.2 Extension 2: Weights of Value Ports, Path Segments, and
Sub-Paths

We modelled five violation situations, but they are not of the same severeness.
For example, one can argue that even if the buyer did not pay the seller for
the delivered goods, for the seller it is still better to pay tax rather than not
to pay tax, because VAT is based on the seller’s invoice, and not on whether
the seller actually received the payment from the buyer.

The idea of differentiating between levels of severeness of sub-ideal situa-
tions is well known and widely applied in laws and policies. The systems of
various punishments for different levels of crimes are an example.

We model the difference in severeness of violations by assigning differ-
ent weights to value ports. Weights represent fines. The basic heuristics is
the higher the weight, the more severe the violation. Weights are assigned
to outgoing value ports (value ports, having outgoing value objects). It is
presupposed that the failure to deliver the value object is a responsibility of
the party that offers this object, not the party that accepts it. A non-empty
value port has a zero weight, notifying that there is no violation of the terms
of the contract, and, therefore, no fine is assigned. An empty value port has
a non-zero positive weight, which reflects a kind of sub-ideal behaviour that
is fined with a penalty. Weights are accumulated at the segment, connected
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to the value interface. We define a weight of the segment as a function of the
corresponding outgoing value ports.

The following definitions and rules characterize the modelling weight in
e3-value+ methodology. The ordering of seriousness of violations for segments
is done at the level of the actor. First, we introduce the following heuristics
to distinguish the weights assigned in ideal and sub-ideal situations.

Property 1 (The weights of non-empty value ports are equal to
zero). Let Vi, i=(1,n), be a non-empty outgoing value port, n is the number
of non-empty outgoing value ports in the value model, wi is the weight of the
value port Vi. Then ∀i∈(1,n) w i = 0.

Property 2 (the weights of empty and non-empty value ports).
Let Vi, i=(1,n), be a non-empty outgoing value port, n is the number of a
non-empty outgoing value ports in the value model, wi is the weight assigned
to the value port Vi; Vj, j=(1,m), is an empty outgoing value port, j is the
number of such value ports in the value model, wj is a weight function of the
value port Vj . Then

∀i ∈ (1, n), j ∈ (1,m), wi < wj

Further, we define the weight of a segment as a function of the weights of
the connected value interface.

Definition 1 (the weight of a segment). Let (Ii, Si) be a tuple ranging
over i = (1, n), where n is the number of all the value interfaces in a specific
value model, Ii is a value interface and Si is a segment connected to this
interface, Vij ∈ Ii,with i=(1,n), j=(1,m), is an outgoing value port (a value
port having outgoing value object), j is a number of outgoing value ports in
the value interface Ii, wij , with wij ≥ 0, is the weight of the value port Vij .
We call

wi =
∑

wij , i = (1, . . . , n), j = (1, . . . ,m)

the weight of the segment Si.
This definition says that the weight of the value interface is the sum of

the weights of value objects exchanged via this value interface. For example,
in Figure 3, the buyer and the seller exchange goods, and the buyer has to
make two payments: one for goods, and the other for delivery. The model on
the left shows that the buyer receives two fines: the weight 10 is assigned to
the outgoing value port for not paying goods, and the weight 2 is assigned
to the outgoing value port for not paying for the delivery. Thus, the buyer
accumulated 12 points of fine as a segment weight. The model on the right
shows that the buyer did not pay the delivery, thus receiving 2 points of fine
as in the previous case, but the value port with the “Goods payment” object
receives has a zero weight, because the buyer pays for the goods; in total the
segment weight of the buyer is 2.

In the other examples in this chapter the models do not contain such a
value interface with more than one outgoing value port, and therefore, the
segment weight equals the weight of the only outgoing value port.



Designing Control Mechanisms 241

Fig. 3. Weight of the segment as a sum of the weights of value ports with outgoing
value objects

From Properties 1 and 2, and Definition 1 it follows that the weight of a
segment connected to a value interface with empty value ports is larger than
the weight of the segment connected to a value interface with non-empty
value ports, which reflects a kind of sub-ideal behaviour that is fined with a
penalty.

A path can be assigned a total weight, which is the sum of the weights of
the segments that the path consists of.

Definition 2 (the weight of a path). Let Si, i=(1,n) be a collection of
segments from a scenario path P , n is the number of segments in the scenario
path P , wi, with wi ≥ 0, is the weight of the segment Si. We call W =∑

w i, i=(1,n) the weight of the path P .
In the ideal situation the total weight of the path will be zero. In sub-ideal

situations the total weight of the path will be a non-zero positive number; we
call these paths sub-ideal paths. The weight of the path reflects the seriousness
of violations in the path from global perspective. We use the concept of the
path weight to distinguish between the ideal and sub-ideal paths.

Observation 1. The weight of the ideal path equals 0.
Observation 2. (weights of ideal and sub-ideal paths) The weight

of the ideal path is less than the weight of any sub-ideal path. Let Ps be
an ideal path with total weigh Ws, Pi, i = (1, n) be a set of sub-ideal paths
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with total weight Wi, i = (1, n), i is a number of sub-ideal paths in the value
model. Then ∀i ∈ (1, n), Ws < Wi.

Assigning different weights to different sub-ideal situations is part of the
modelling process, just as is the introduction of sub-ideal paths. The e3-
value+ methodology does not prescribe the contract partners, which sub-
ideal paths are relevant to consider, or which specific numbers have to be
assigned to a weight. These are modelling issues that contract partners have
to agree upon among each other. However, e3-value+ provides concepts and
rules to structure this modelling process.

For example, in Figure 2, the weights of segments that are connected
to value interfaces with non-empty outgoing value ports are zero. In the
exchange between the buyer and the seller when the goods are delivered (value
object “Goods”) and the fee is not paid (value object “No Payment”), a non-
zero positive weight (in this case 10), is assigned to the segment connected
to the empty outgoing value port with the non-delivered value object “No
Payment”. Similarly, the segments leading to empty outgoing value ports with
the associated non-delivered objects “No Goods”, and “No VAT” have non-
zero positive weights 10 and 2, respectively. In assigning weights in Figure 2
we used the heuristics, that (1) the same penalty for the seller of not delivering
goods as for the buyer of not paying the goods, and (2) for the seller, not
delivering goods is less serious than not paying taxes.

To keep things simple we use absolute numbers here to explain the method.
Of course, these weights are rather arbitrary. In typical contract negotiations
the contract partners agree among each other how to assign these weights
(and typically translate these weights in financial compensations). For exam-
ple, the seller might require that in case of late payment the buyer should
pay a certain percentage extra on top of the sales price. A more sophisticated
representation could be to use a partial ordering of all the weights rather
than absolute numbers. This partial ordering will be investigated in future
research.

Having weights assigned to segments it is possible to distinguish the
severeness of violation from the viewpoint of every single actor in the model.
Table 2 represents five sub-ideal paths of Figure 2. The last three columns in-
clude the actors. Each actor in each sub-ideal situation accumulates weights,
which are assigned to the individual segments.

For example, the “No Payment” value object is assigned to the buyer, be-
cause the value interface with outgoing value object “No Payment” belongs
to the buyer, notifying that the buyer did not pay (see Figure 2). Conse-
quently, we can say that for the buyer sub-ideal situations (a) and (c) are the
worst because they have the highest weights 10, while other paths are equal
to the path of the ideal situation. Similarly, for the seller, the worst sub-ideal
situation is (d): it has the highest total weight 12 (no goods are delivered
and no tax is paid). The situation (c), when the buyer did not pay for the
goods, and the seller did not pay taxes, is worse for the buyer than for the
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Table 1. Actor’s view on modelling severeness of violation weights for different
sub-ideal situations

Sub-ideal path
Non-delivered value objects

Buyer Seller Tax adminis-
tration

a) The goods are deliv-
ered, the fee is not paid,
and the tax is paid

No Payment
w = 10

w = 0 w = 0

b) The goods are not de-
livered, the fee is paid,
and the tax is paid

w = 0 No Goods (w = 10) w = 0

c) The goods are deliv-
ered, the fee is not paid,
and the tax is not paid

No Payment
w = 10

No VAT (w = 2) w = 0

d) The goods are not de-
livered, the fee is paid,
and the tax is not paid

w = 0 No Goods (w = 10) No
VAT (w =2)

w = 0

e) The goods are deliv-
ered, and the fee is paid,
but the tax is not paid

w = 0 No VAT (w = 2) w = 0

seller: the buyer accumulates the weight 10, while the seller has only 2. For
the tax administration every modelled situation is equal to ideal: the tax ad-
ministration is modelled as a governing institution that cannot be punished
for violation of obligations.

5 Distinguishing Different Types of Control
Mechanisms

Management control systems are applied by the management of an organi-
zation to achieve strategic objectives. Management control systems include
many types of control mechanisms. An important type of control mecha-
nisms are so-called Formal Control Mechanisms, which can be subdivided
into Outcome Control mechanisms and Behaviour Control mechanisms (see
[DT98] and [Dek03]). Outcome control mechanisms are characterized by the
definition of goals for task performance, in particular incentive and reward
systems to encourage desired behaviour or fine systems to discourage unde-
sired behaviour. Behaviour control mechanisms are characterized according
to Das and Teng by “reporting and checking devices, written notice of any
departure from the agreement, accounting examination”. Hence the use of
trade documents to monitor the actual behaviour of buyers and sellers is a
typical example of a behavioural control mechanism.

In the e3-value+ methodology we can clearly define the outcome control
mechanisms. The weights can be considered as a fine system to discourage
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undesirable sub-ideal behaviour. What is still lacking is behaviour control
mechanisms to monitor the actual performance of the behaviour. Here one
could think about the use of a bank statement as evidence by the seller that
a payment was made. In the current version of e3-value+ methodology these
evidentiary documents are not modelled. In particular the exchange of these
documents. This would require the model of business processes between and
within organisations.

The efficiency of control mechanism is related to the cost of the imple-
mentation of control mechanism. If an actor considers implementing a control
mechanism, the cost of it should be not higher than the potential losses of
the sub-ideal behaviour.

6 Conclusions

We have introduced the e3-value+ design methodology, which is an exten-
sion of the e3-value methodology for designing business models for virtual
network organisations. The e3-value+ design methodology is being devel-
oped, in particular, for modelling inter-organisational control mechanisms.
The e3-value+ methodology supports the analysis of violations of obligations
as well as the corresponding design of control mechanisms to minimise the
likelihood of these violations. The fine systems, described in this chapter,
can be considered as an incentive for actors not to misbehave, and hence
as a type of control mechanism. This methodology supports the contingency
planning phase of contract drafting, because it helps the contract partners to
understand what violations of contractual obligations they could encounter,
what reasonable financial compensations are to be paid when they do occur,
and how to minimise the likelihood that these problems will occur.
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Abstract. In the chapter we offer a verbal description of Sim-I-Space, an agent-
based model that operationalises key features of a conceptual framework: the Infor-
mation-Space (I-Space). The I-Space relates the speed and extent of information
flows between agents to how far their messages have been structured through acts
of codification and abstraction. The more structured a message, the faster and more
extensively it diffuses to other agents—intentionally or not.

Following a brief introduction, the paper divides into two sections. Section 2 de-
scribes the models architecture, the agents, the nature of the knowledge assets that
they create, articulate, and trade in, and the types of the interactions—trading,
licensing, joint-venturing, merging and acquiring—that agents can engage in. Sec-
tion 3 presents the main components of Sim-I-Space, namely, agent characteristics,
agent knowledge, and agent interaction. Two appendices—A and B—describe the
model variables and provide a more detailed model specification.

1 Introduction

In this paper we offer a verbal description of the Sim-I-Space simulation
model. The model is designed to operationalise some of the main features of
the Information Space or I-Space [Boi98].

The paper is structured into two main parts as follows. In the first part
we look at the overall architecture of Sim-I-Space that brings together three
components:
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• agents,
• knowledge assets, and
• agent interactions.

In the second part we examine in more detail each of the model components.
There are two appendices. In Appendix A we describe the variables used in
the model and identify the input parameters used in the model. In Appendix
B we provide a more detailed specification of the model, with illustrative
examples.

2 Model Architecture

Sim-I-Space is a multi-agent simulation characterized by mixture of compe-
tition and collaboration. Although built in part on a Swarm platform, in the
limited number of time periods it runs, and given that agents make their de-
cisions at random—i.e., they do not learn—it only exhibits limited elements
of evolutionary behavior. Survival is the aim of individual agents in the sim-
ulation. The rents that agents earn provide them with the means to survive.
If agents run out of money they are ‘cropped’. They can quit while they are
still ahead. The overall value of a given simulation run is the sum of the
rents earned by all agents during the run. The social welfare generated by
the simulation is the sum total of all knowledge created in the course of the
simulation and then diffused out to ‘society’. Note that ‘society’ is located
outside the simulation. The price paid by ‘society’ for this social welfare is
the cumulative rent earned by the agents inside the simulation, i.e., the price
paid by ‘society’ turns out to be the value of the simulation.

How does Sim-I-Space implement and embody the concepts of the I-
Space? The I-Space is a conceptual framework for analyzing the nature of
information flows between agents as a function of how far such flows have
been structured through processes of codification and abstraction. Such flows,
over time, give rise to the creation and exchange of knowledge assets. Where
given types of exchange are recurrent, they will form transactional patterns
that can be institutionalized. In Sim-I-Space, we focus on the creation and
exchange of knowledge assets alone without concerning ourselves with the
phenomenon of recurrence and institutionalization. In later versions of the
model, recurrence will become our central concern.

Sim-I-Space is populated with agents that carry knowledge assets in their
heads. Each of these knowledge assets has a location in the I-Space that
changes over time as a function of diffusion and obsolescence processes as
well as of what agents decide to do with them. These have the possibility
of exchanging their knowledge assets in whole or in part with other agents
through different types of dealing arrangements.

Natural selection is at work in Sim-I-Space at two levels. At one level,
agents survive by learning to make good use of their knowledge assets. They
can make use of these assets directly to earn rents, or they can make indirect
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use of these assets by entering into trades with other agents who will then
use them directly. Agents that fail to make good direct or indirect use of
such assets in a timely fashion fail to earn the minimum rent required to
survive and are selected out of the simulation, i.e., they are ‘cropped’. At
another level, knowledge assets, in turn, and somewhat like Dawkins’s memes
[Daw82,Daw89], survive by inhabiting the heads of many agents. If they fail
to occupy at least one agent’s head, they die out and the knowledge associated
with the asset disappears from the simulation as a resource.

Existing agents have the option of quitting the simulation while they are
ahead and before they are cropped. Conversely, new agents can be drawn into
the simulation if the environment becomes sufficiently rich in opportunities
for earning rents.

The rate of entry and exit of new agents into the simulation are based
on the difference in mean rents between between two periods. The rate of
entry and exit is a parameter that is set at the beginning of the simulation
for every % (percentage) change in mean rents. Change in the entry and exit
rates is a function of % change in mean rents. In this way one can control
the level of market turbulence—of creative destruction, if you will—that is
generated by the performance of existing players.

We start by discussing the agents and then turn to a discussion of the
nature of their knowledge assets. This is followed by a brief discussion of
agent interactions.

2.1 Agents

Sim-I-Space operates through a number of agents that, taken together, make
up the diffusion dimension of the I-Space. In the model as developed, agents
are intended to represent organizations—firms or other types of information-
driven organizations—within an industrial sector. It would be quite feasible,
however, with suitable parameter settings, to have the agents represent in-
dividual employees within a single firm and hence to simulate the behavior
of individual organizations. It would also be possible to have an individ-
ual agent represent the behavior of a strategic business unit within a single
firm. Conversely, one could run Sim-I-Space above the firm level and simulate
knowledge flows within a population of industries.

As we have already seen, agents can enter or exit Sim-I-Space according
to circumstances and can also be cropped from the simulation if their perfor-
mance falls below a certain threshold. Agent entry and exit is an important
source of variation within the simulation. Clearly, the population that is lo-
cated along the diffusion dimension of the I-Space will vary in size at different
moments in the simulation.

Agents aim to survive within the simulation and to maximize their wealth
over the periods of the simulation. Wealth here is taken to be the sum of
rent streams and of rent-generating knowledge assets. The first accumulate
in a financial fund that is used to cover the expenses incurred in meeting
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and transacting with other agents. The second accumulates in an experience
fund that is used to finance the creation of new knowledge assets by moving
existing ones in the I-Space. In sum, agents modify their wealth either by
trading in knowledge assets they possess with other agents thereby enlarging
or shrinking their asset base, or by creating new knowledge assets. They do
this by moving around the I-Space in a learning process and by adding and
then linking new knowledge assets to their existing stock [Boi98]. In this way
they enhance their rent-generating potential. The details of how this is done
are given under the heading of ‘agent interaction’.

From the financial and experience funds, agents draw meetings and know-
ledge-investment budgets. Money that is not spent in a given period gets put
back into the relevant fund where it accumulates. An agent’s financial funds
correspond to its tangible assets whereas its experience funds correspond to
its non-fungible intangible assets. Each fund, or both, can be switched off with
a toggle. The program can thus be made to behave in a modular fashion with
agents surviving either through trading and collaboration with other agents
alone, or through knowledge creation alone. An agent’s preference for using
one type of fund or for another—i.e., for trading in existing knowledge or for
investing in knowledge creation—is set at the beginning of the simulation for
all agents.

2.2 Knowledge Assets

In Sim-I-Space, knowledge assets are represented in network form. A knowl-
edge network consists of a collection of elements and of relations between
elements. We shall refer to the elements of the network as nodes and to the
relations between elements as links. Nodes and links can be combined with
certain probabilities1 called linkage probabilities. A knowledge asset, then,
can either be a node, a link between two nodes, or a set of interlinked nodes
that can vary in size and complexity. Each node and each link varies in how
far it has been codified, made abstract, or has been diffused to other agents.
Thus each node and link has a unique location in the I-Space that determines
its value to the agent and hence it’s rents-generating potential. The more cod-
ified and abstract a knowledge asset in the I-Space, the greater its utility and
hence the greater its value. Also, the less diffused a knowledge asset in the
I-Space, the scarcer it is and hence, again, the greater its value. Different lo-
cations in the I-Space thus offer different rental potential to agents. These can
be calibrated to reflect a variety of industry conditions—rates of knowledge
obsolescence, tendencies to spillovers, etc. Agents can enhance the value of
their knowledge assets—and hence their rents-generating potential—in two
ways:

1 Since in Sim-I-Space we do not specify the contents of nodes or links, we do not
face the problem of establishing the coherence of networks created in this way.
Future developments of the model will address this issue.
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Fig. 1. Sim I-Space

• By investments in the Social Learning Cycle (SLC) that offer the possi-
bility of changing the location of knowledge assets in the I-Space;
• By combining nodes and links into networks that can be nested and in

this way building up more complex knowledge assets.

2.3 Agent Interactions

Agents meet each other throughout the simulation. The frequency of en-
counters can be varied. They can ignore each other or they can attempt to
engage in different types of transactions. In the second case, they need to be
able to inspect each other’s knowledge assets in order to establish whether a
transaction is worth pursuing. Having established that it is, they can either:

1. engage in straight buying as selling of knowledge assets;
2. license other agents to use their knowledge assets;
3. enter into a joint-venture with another agent by creating a new agent

that is jointly owned;
4. acquire another agent and convert it into a wholly-owned subsidiary; or
5. merge with another agent, thus reducing the number of agents in the

simulation.
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The way that the simulation model maps onto the I-Space architecture is indi-
cated by the flowchart of Figure 1. Having described the general architecture
of Sim-I-Space, we now examine each of its components in more detail.

3 Model Components

In this section, we briefly describe the components of Sim-I-Space’s architec-
ture and show how I-Space elements and relationships are expressed in the
model. We shall use the same basic headings to describe the components as
we did to describe the model’s overall architecture, namely, agent character-
istics, agent knowledge, and agent interactions.

3.1 The Components of Agent Characteristics

Agent ID: a unique ID that is allocated sequentially identifies Agents in
the model. No two Agents will have the same ID: Agent 0 is the first Agent
created, Agent 1 is the second, and so on.

The Financial Fund and the Experience Fund: Agents possess resources
that are used to cover their operating expenses. These resources are of two
kinds: financial and experiential. Agents manage their resources by allocating
rents to either a Financial or to an Experience fund, and by setting Finan-
cial and Experience Budgets. Speaking loosely, financial funds correspond
to tangible assets such as cash in the real world whereas experience funds
correspond to intangible assets such as know how. In effect, in the model,
financial funds covers the costs of overt behaviors involving interactions be-
tween agents, whereas experience funds covers the costs of implicit agent
behaviors associated with activities such as thinking and learning. Although
in the real world overt and implicit behaviors are intimately intertwined, we
can associate the first type of behavior with operations and the second with
development. Specifically:

• Financial Funds and Financial Budget : Financial Funds correspond to
tangible resources, such as cash, that are used to meet operating expenses,
including the cost of meeting other Agents, trading for Assets, and paying
out dividends. The Financial Budget is set by the Agent for each period
to limit the amount of the Financial Funds that the Agent intends to
expend each period.
• Experience Funds and Experience Budget : Experience Funds correspond

to intangible resources, such as the experience gained from learning-by-
doing, that are used to manipulate Assets – to increase/decrease their
degree of Abstraction or Codification, or to combine Assets to create new
Assets. The Experience Budget is set by the Agent to limit the amount
of the Experience Funds that the Agent intends to expend each period.
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Although Agents can survive without Experience Funds, they must not
run out of financial funds otherwise they get cropped.

Active, Passive and Trading Sets: Agents have a finite memory and
because of this, storing knowledge carries a cost. Agents manage the scarce
resource that is their memory either by holding knowledge assets in one of
two sets, or by discarding them altogether. The two sets are:

• The active set : an Agent’s active set contains all the knowledge assets
that are being actively utilized by the agent and that are generating
rents in the period.
• The passive set : an agent’s passive set contains all the knowledge assets

held by an Agent that are not being actively utilized by the agent or gen-
erating rents in the period. Maintaining knowledge assets in the passive
set reduces the cost of carrying them yet keeps them available for direct
use or for trading purposes in later periods – i.e., they are held for their
option value.

When agents meet, not all of their knowledge assets will necessarily be
available for trading. When two agents meet for the first time, for example,
the transaction costs associated with inspecting each other’s knowledge assets
– presentation, examination, evaluation, etc - will limit the process to the
most abstract and codified of these assets. This much we established in our
earlier discussion of the I-Space in chapter 4. Over time and with recurrent
meetings, the degree of familiarity between any two Agents may increase and
as a result the cost of inspecting each other’s knowledge assets will decrease.
The agents will then be able to inspect each other’s more concrete and less
codified knowledge assets, thus increasing the number of assets available for
trading.

• The Trading Set : a trading set is a set of knowledge assets that an agent
makes available for transactions with other agents. An agent will have
more than one trading set and will present different trading sets to the
different agents it meets according to the degree of prior familiarity with
them.

Clearly, the more one agent is familiar with another, the less codified and
abstract will be the assets that it presents for inspection and hence the larger
the trading set it will present. Also, and by implication, the longer the time
that will be allocated to the interaction.

Agent Memory: Agent memory stores the frequency of the historical en-
counters with other Agents. Based on this memory, an agent “decides” whether
or not to interact with a given other agent, reflected in the probability of inter-
action between the two agents. Based on its previous memory the preference
level of an agent to make a decision for the current meeting period will be
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randomly assigned, ranging from a minimum preference level to a maximum
preference level that can be preset to reflect the industry characteristics be-
ing simulated. In the meeting the agent will select one of several alternative
actions: to trade, to license, to joint-venture, to merge or to walk away.

3.2 The Components of Agent Knowledge

Asset ID and Type: knowledge assets (“Assets”) are either nodes or links.
A unique ID number that is allocated sequentially identifies each Asset, i.e.
no two Assets (nodes or links) will have the same ID. The first Asset will
have ID 0, the second Asset will have ID 1, and so on.

Abstraction and Codification: Knowledge assets vary in how far they are
codified and abstracted. In SimIspace, each Asset is given a discrete value
for Abstraction and Codification that begins at 0 (respectively representing
concrete and uncodified Assets), and goes up to 4. Users have to decide
for themselves what meaning to give to these different levels of codification
and abstraction. Users decide for themselves what meaning to give to these
different levels of codification and abstraction.

Diffusion: Diffusion measures the number of agents in Sim-I-Space who have
access to a given knowledge asset. Reflecting different degrees of codification
and abstraction, each knowledge asset – in line with what is claimed by the
I-Space - varies in the extent to which it is diffused among the agents in the
model. Diffusion ranges from 0 to 3. Users have to decide for themselves what
percentage of a given Agent population corresponds to these different levels
of diffusion. It must be borne in mind that the size of the Agent population
will keep on varying throughout the simulation.

Complexity: We saw earlier that knowledge could be represented as a net-
work of interlinked nodes. Such networks vary in complexity depending on
the number of nodes and the density of links between them. When parts of
the network are tightly integrated with each other, they will themselves be
represented by a node (see Figure 2). Given the network that ‘nests’ in such
a node, it becomes a complex entity. This complex node can in turn par-
ticipate in a higher-level network that is also capable of getting nested. We
can thus represent the complexity of any network by counting the degree of
nesting that takes place within its nodes. Such complexity begins at 0—i.e.,
no nesting takes place within the Assets - and has no upper limit so, a po-
tentially infinite amount of nesting is possible. In the simulation, Assets can
only combine with Assets of equal levels of complexity, and if nesting takes
place at that level, the resulting Asset is of one larger complexity. Users have
to decide for themselves what meaning to give to these different levels of
complexity.
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Fig. 2. Nested nodes

Base Rental Potential: Knowledge assets earn rents that vary with their
position in the I-Space. The more closely they are located to the region of
maximum value in the space—where codification and abstraction are at a
maximum and where diffusion is at a minimum—the higher the rents that
they can earn. The Base Rental Potential reflects the fundamental relation-
ship between rents and the three attributes of abstraction, codification and
diffusion possessed by a given knowledge asset. Thus, each I-Space location
in the I-Space is associated with a Base Rental Potential that is applied to
all Assets residing in that location.

Rental Multiplier: Actual rental levels will be a function of what, specif-
ically, is being simulated in Sim-I-Space. Bread baking, for example, does
not generate the same volumes of rents as biotechnology; no matter how
asymmetrically distributed the knowledge assets might be. The Base Rental
Potential is thus subject to a rental multiplier that determines the difference
between the Rental Potential of two Assets of equal degrees of Abstraction,
Codification, and Diffusion but used in two different industries. The Rental
Multiplier is the link between the Base Rental Potential - a function of where
a given Asset is located in the I-Space - and the actual rents earned per unit
time in a given type of simulation. The Rental Multiplier takes into account a
variety of factors such as complexity (increasing dramatically as Complexity
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increases2), obsolescence (decreasing over time subject to the Obsolescence
decay function described below), and the “jackpot effects” (extraordinary
random increases in rents resulting from particular asset combinations). The
rental multiplier applies to individual assets. It is a summary measure of how
specific characteristics affect that asset’s rents.

The effect of diffusion on the rental value of the Asset is non-linear – the
loss in value from one additional Agent coming into possession of the Asset
varies greatly depending on whether there was originally only one agent who
owned the Asset, or if there were 100 agents who owned the Asset. In the
former case, there is a sharp loss in value, and in the latter case, there will be
only a marginal loss in value. To reconcile this difference there are two relevant
values of Diffusion: 1) Nominal Diffusion (a continuous variable that measures
the actual number of Agents that own the Asset that has no upper bound),
and 2) Model Diffusion, a discrete variable derived from Nominal Diffusion
and that is used in the I-Space Model to calculate the Rents Multiplier of the
Asset. Model diffusion has an upper bound that is specified in the model to
give varying degrees of granularity. For example, in a situation where Model
Diffusion takes on the values of 0∼3, it might be determined as shown in
Table 1.

Table 1. Nominal diffusion & model diffusion

Model Diffusion Nominal Diffusion
(# of Agents that own the Asset)

0 1 ∼ 2

1 3 ∼ 8

2 9 ∼ 26

3 27 +

In the above example, it makes no difference in the Rents Multiplier
whether 1 or 2 Agents own the Asset, but when a 3rd Agent owns the Asset,
the Rents Multiplier suddenly decreases and then remains steady until the
Asset diffuses to the 9th Agent, etc.

Carrying Costs: Maintaining Assets in a usable form imposes carrying costs
on Agents. These are an exponential function both of the Assets’ level of
Complexity,3 as well as of their degree of codification and abstraction. The

2 By combining Assets, Agents create new Assets of higher Complexity (and Rents
Multiplier). By doing so, Agents can reduce Carrying Costs, and usage of Agent
memory (by replacing original Assets with the new combined Asset), while re-
taining some of the value of the original Assets as rental generators.

3 Increasing Complexity thus has two conflicting effects—increasing both the
Rental Multiplier, and the Carrying Cost.
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higher a given knowledge asset’s degree of codification and abstraction, the
lower the level of entropy associated with it and hence the lower its carrying
cost. However, we do not need to represent this second component of carrying
costs as it is already reflected in the base rents potential. The main function
of carrying costs in the simulation is to affect the choice of what assets will
be placed in the active and passive trading sets. Carrying costs will be higher
in the active set than in the passive set.

Creating New Assets: New Assets are created either through moves in
the I-Space—i.e., through increases in codification, abstraction, impacting or
absorption—or through the probabilistic combination of existing nodes and
links (see discussion of the Linkage Probability Matrix in Appendices A and
B). In the first case, new knowledge assets are created through a process of
differentiation; in the second, through a process of integration. In either case,
the “parents” of a new Asset are the nodes and/or links from which this
Asset was derived. The Assets that agents are initially endowed with at the
beginning of a Smart Asset run have no “parents”.

The processes of codification, abstraction, impacting and absorp-tion—
out of the six steps in the Social Learning Cycle—are those through which
new knowledge assets are created in the I-Space. These are processes of dif-
ferentiation. As the links between assets so created themselves increase in
codification, so linked nodes can be nested and then collapsed into single
nodes. These are processes of integration. We first discuss differentiation and
then integration:

Differentiation. Codification: Codification of an Asset creates a new Asset
of the same type and Complexity with the next higher Codification value.
The new Asset inherits the Linkage Probabilities of its predecessor, with
a random increase in all the existing non-zero values in the corresponding
row (for Links) or column (for Nodes) in the Linkage Probability matrix. In
this way, codification increases the linkage probabilities of a given knowledge
asset’s existing links

Abstraction: Abstraction of an Asset creates a new Asset of the same type
and Complexity with the next higher Abstraction value. The new Asset in-
herits the Linkage Probabilities of its predecessor, but with an increase in
the number of non-zero values randomly distributed in the corresponding
row (for Links), or column (for Nodes) in the Linkage Probability matrix. In
this way, abstraction extends a given knowledge asset’s linkage probabilities
to new links.

Absorption: Absorption of an Asset creates a new Asset of the same type and
Complexity with the next lower Codification value. The new Asset inherits
the Linkage Probabilities of its predecessor, with a random decrease in the
all the existing non-zero values in the corresponding row (for Links) or col-



258 Max Boisot et al.

Fig. 3. Differential absorption and impacting in the I-Space

umn (for Nodes) in the Linkage Probability matrix. In this way, absorption
decreases the linkage probabilities of a given knowledge asset’s existing links

Impacting : Impacting of an Asset a new Asset of the same type and Com-
plexity with the next lower Abstraction value. The new Asset inherits the
original Linkage Probabilities of its predecessor, but with a decrease in the
number of non-zero values randomly distributed in the corresponding row
(for Links), or column (for Nodes) in the Linkage Probability matrix. In this
way, abstraction reduces a given knowledge asset’s linkage probabilities to
new links.

There are several ways in which a given Asset can be codified, abstracted,
absorbed or impacted, so that each Asset maintains memory of what are the
possible results of the abstracting, codifying, impacting or absorbing process.
Furthermore, the processes of abstraction, codification, impacting and ab-
sorption vary in their idiosyncrasy so that some results will be more widely
diffused than others. In Figure 3 for example, it may be that the absorption
of Node 3—i.e., its embedding and interpretation—will yield Node 6, Node
9 as well as Node 23. But, as indicated in the figure, 50% of the Agents
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who successfully absorb Node 3 will create Node 6, 33% will create Node
9, and the remaining 17% will create Node 23. Clearly what we are dealing
with here are three quite distinct interpretative schemas some of which are
more idiosyncratic than others. The same argument applies to impacting,
codification and abstraction

Integration. Integration relates one asset to another via links. The best way
to visualize this is via a matrix representation of the I-Space.

The I-Space Matrix and I-Space Locations: The I-Space Matrix is a three-
dimensional matrix representation of the I-Space whose axes stand respec-
tively for abstraction, codification and diffusion. The I-Space Matrix is made
up of discrete I-Space locations or ‘cells’ in which Assets reside. Each I-Space
location is uniquely described by discrete values of abstraction, codification
and diffusion, and can contain any number of Assets. Each I-Space Location
in the I-Space Matrix is also associated with a Base Rental Potential (see
above).

The Linkage Probability Matrix : New knowledge can be created in Sim-I-
Space either by creating new links and nodes – this can be done by investing
in the abstraction, codification, impacting and absorption of existing nodes
and links - or by combining existing links and nodes in new configurations. In
the latter case, nodes and links are brought together to create new knowledge
assets by increasing the probabilities of linking them together. The linkage
probability reflects the uncertainties associated with new knowledge creation.
The linkage probabilities between a given node and a given link is indicated
by their intersection on a Linkage Probability Matrix which lists all links on
one side of the matrix and all nodes on the other. When an agent decides
to increase its investment in new knowledge creation, this has the effect of
either increasing the probability of creating individual nodes or links, or of in-
creasing the linkage probabilities associated with a given link-node cell. Thus
investing in a given knowledge asset does not guarantee that new knowledge
will actually be created, but it increases the chances that such creation will
take place.

Thus, aside from creating new knowledge assets through abstraction, cod-
ification, impacting and absorption, another way in which new assets are
created in the simulation model is when the Linkage Probabilities between
(a) a Node and a Link of equal Complexity; and (b) that same Link with
another Node of equal Complexity, are sufficiently high. When the Linkage
Probabilities in such a Node-Link-Node chain exceeds a specified threshold,
a new Asset is created. Linkage Probability thus measures the propensity
for an Asset to combine with Assets of the same level of Complexity but of
the complementary type – i.e., nodes with links, and links with nodes. Every
possible Node-Link pair of the same level of complexity has some linkage
probability even if this turns out to be zero.
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Each Agent that owns the necessary constituent Assets and that has made
the necessary investment, will discover the new Asset once the appropriate
probability threshold has been crossed. The resulting asset will necessarily
be more complex than its constituent elements. In the model, the new Asset
will have a level of Complexity that is 1 notch further up on the complexity
scale than its constituent Assets.4

Background Processes. Two background processes, Obsolescence decay
and Diffusion decay, shape the environment in which the simulation takes
place:

Obsolescence Decay : Obsolescence decay measures the loss of value of existing
knowledge assets due to their obsolescence over time. Obsolescence is repre-
sented as the shrinking of the Rents Multiplier of existing Assets over time.
The rate of decrease is set as a function of the industry being simulated.

Diffusion Decay : Diffusion decay is the loss of value of existing knowledge
assets due to the unintended diffusion – the ‘spillovers’ - of these assets.This
is represented as the random distribution of Assets to a greater number of
Agents both within and outside the model. Each Agent coming into the pos-
session of these new Assets will make an independent decision as to whether
it will incorporate them into its Active or Passive sets, or whether it will
ignore them (if the agent is fully laden). The probability and rate at which a
given Asset will diffuse will be a function of:

• Its degree of abstraction and codification, in accordance with the tenets
of the I-Space, and
• An industry-specific factor.

Blocking Diffusion Decay : Blocking diffusion decay is in the hands of an agent.
Agents are initialized to block or not to block diffusion decay. Investments
in diffusion decay will be a percentage cost of the rents potential of the asset
and proportional to diffusion.

4 Note that only Assets of equal Complexity have any Linkage Probability, thus
all constituent Assets will have the same level of Complexity.
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3.3 The Components of Agent Interactions

Agent Meetings: Agent meetings can be either arranged or random.

• Arranged meetings: At the beginning of each period, Agents will identify
Agents they wish to meet. Arranging to meet an Agent imposes an Ar-
rangement cost. Arranged meetings can occur between any numbers of
Agents, and only take place when all parties involved arrange to meet all
the other Agents involved. I.e. a 3-party meeting only takes place when
all 3 participating Agents choose to meet the other 2 Agents in the same
period.
• Random meetings : Aside from arranged meetings, random meetings can

occur between any two Agents. Random meetings do not incur any ar-
rangement costs. The users of the simulation are free to specify the fre-
quency with which agents will meet in each period.

Meeting Costs: Agent meetings impose four different kinds of costs on par-
ticipants – arrangement costs, fixed costs, presentation costs and inspection
costs. All meeting costs are Financial Costs. They are set against the Finan-
cial Budget allocated for the period and thus consume Financial Funds.

• Arrangement cost : The arrangement cost is levied on the Agent for each
Agent he attempts to arrange a meeting with – regardless of whether a
meeting results from the attempt. This cost only applies to attempts to
arrange meetings and does not apply when meetings are random. The
arrangement cost of a meeting does not vary as a function of the history
of past transactions.
• Fixed cost : The fixed cost of a meeting is levied on all participants of a

meeting, regardless of size.5 The fixed cost of a meeting does not vary as
a function of the history of past transactions.
• Presentation costs : Presentation costs are the costs of making available

the agent’s Trading Set for inspection. They are imposed once for each
meeting that the agent attends.6 Presentation costs increase with the
number of knowledge assets that the agent presents, and decrease both
with the degree of abstraction and codification of these assets—in line
with I-Space thinking—as well as with the degree of recurrence of trans-
actions with a given agent or group of agents.
• Inspection cost : The inspection cost is the cost of an Agent inspecting

the Trading Set that has been offered for its examination, and is levied
once for each Trading Set that the Agent inspects. Each Trading Set

5 A benefit of a large meeting is that Agents amortize the fixed cost over a greater
number of potential transactional partners.

6 A second benefit of a large meeting is that Agents amortize the presentation cost
over a greater number of potential transaction partners.
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imposes an Inspection cost that increases with the number of Assets in
the Trading Set, and decreases with the Abstraction and Codification of
those Assets,7 as well as decreasing with recurrence.

Transactional options: Agent meetings can result in the following transactions
taking place between agents:

• The trading of knowledge assets : In a trade, agents exchange knowledge
assets for Financial Funds. There is no change in the level of diffusion
of the assets traded since the selling agent relinquishes all rights to the
assets in exchange for a stock of Financial Funds received.
• The licensing of knowledge assets: In licensing, agents share their knowl-

edge assets in return for Financial Funds. Nominal Diffusion (see above)
increases since the agent who grants the license to the Asset retains its
rights to use it. In return for the right to use the Asset, the agent re-
ceiving the license (the licensee) pays the agent granting the license (the
licensor) a continuous flow of Financial Funds.
• Joint Ventures: In a joint venture, agents come together to create a new

agent that is jointly owned. The new agent receives an injection of Fi-
nancial Funds, Experience Funds and Assets from its “parent” agents.
The parents continue to exist as independent agents while receiving a
variable flow of Financial Funds from the Agent created as a result of
the joint venture. The flow will be proportional both to the rents and to
their respective investments in the joint venture.
• Mergers: In a merger, Agents come together to create a new Agent, by

pooling all their Assets, Financial Funds and Experience Funds. The
original Agents cease to exist as independent Agents and will instead
be represented by this new Agent. Thus, in a merger, the total number
of agents in the simulation actually decreases.
• The creation of subsidiaries: In creating a subsidiary, one agent uni-

laterally creates a new Agent, which receives an injection of Financial
Funds, Experience Funds and Assets from the “parent” Agent. The orig-
inal Agent continues to exist independently, and earns a variable flow of
Financial Funds dependent on the success of the subsidiary.8

While all transactions can take place regardless of the number of partici-
pants at a meeting, all transactions are bilateral transactions. I.e. In a meet-
ing with five Agents, the decision to trade an Asset still takes place between
two participants who have presented and inspected each other’s Trading Set -

7 Inspection cost forms the limiting factor to the size of multi-agent meetings. As
the number of potential transaction partners increase, the cost of attending such
a meeting increases.

8 An Agent that finds itself with far too many unrelated Assets may carve off
portions of it into subsidiaries.
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ditto for licensing, joint ventures and mergers. Thus meetings with more than
two Agents serve the primary function of efficiently bringing more Agents to-
gether, but do not, of themselves, constitute new transactional options. The
situation is summarized in Table 2.

Table 2. Multi-agent meetings & 2-agent meetings

N-Party Meeting
(Arranged)

2-Party Meeting
(Arranged/Random)

Trading Set
Presented

Based on lowest degree of recur-
rence with all (N-1) other Agents.

Based on degree of recurrence
with the other participating
Agent.

Arrange-
ment Costs

Pays arrangement cost for (N-1)
Agents that each Agent elects to
meet.

If the meeting is arranged, the
Agent pays the arrangement cost.

Presenta-
tion Costs

Each Agent presents once at each meeting, and pays the presenta-
tion cost for the Trading Set it presents once for each meeting it
attends.

Inspection
Costs

Each Agent inspects (N-1) Trad-
ing Sets, and pays the associated
inspection costs

Each Agent inspects the other’s
Trading Set, and pays the associ-
ated inspection costs

Fixed
Costs

Each Agent pays the Fixed cost of a Meeting once for each Meeting
it attends.
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A Description of Variables

We offer a summary description of the Sim-I-Space variables below together
with their settings for a typical run.

A.1 Input Parameters for Global Switches

ASSET MANAGEMENT

• This activates the asset management module.
• When it is a true, mod discovery and mod research methods will run, if

either of them is true.
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MOD DISCOVERY

• In the I-space world each agent discovers Nodes and Links to generate
new Nodes or Links, after checking the linkage probability between Nodes
and a Link.

• If the Mode of Discovery sets to 0 (TRUE), then the ‘generateDiscovery’
Method is activated.

Otherwise, it will be disabled.

MOD RESEARCH

• Each agent moves a Node or a Link to create new Node or Link in the
I-space.
• If the Mode of Research sets to 0 (TRUE), then the ‘generateResearch’

Method is activated.

Otherwise, it will be disabled.



Sim-I-Space: An Agent-Based Modelling Approach 265

AGENT INTERACTION

• The module that activates encounters and interactions among agents can
be switched on or off.
• If the AGENT INTERACTION sets to 0 (TRUE), then the ‘generate-

Meetings’ Method is activated.

Otherwise, it will be disabled.

MOD OBSOLESCENCE

• This constitutes an end-of-Period functions.
• The module for generating Obsolescence Decay for each node or link can

be switched on or off.
• If the MOD OBSOLESCENCE sets to 0 (TRUE), then the ‘generateOb-

solescenceDecay’ Method is activated.

Otherwise, it will be disabled.

MOD DIFFUSION

• This constitutes an end-of-Period functions.
• The module for generating Diffusion Decay for each node or link can be

switched on or off.
• If the MOD DIFFUSION sets to 0 (TRUE), then the ‘generateDiffusion-

Decay’ Method is activated.

Otherwise, it will be disabled.



266 Max Boisot et al.

A.2 Input Parameters for Main Variables

INIT AGENT NUM

• Number of Agents at the start of the simulation
• What an Agent is depends on the nature of the simulation - it could be a

firm, an employee within a firm, or something intermediate like an SBU
or a department within a firm. The key requirement is that Agents be
endowed with both data-processing and decision-making powers and that
they be homogeneous with respect to the attribute that defines them as
an Agent.
• Possible range (current): 1 - 50 (20)

INIT NODE NUM

• Number of distinct knowledge Nodes at the start of the simulation
• The initial number of Nodes will be distributed randomly to individual

Agents
• Knowledge Nodes are identifiable pieces of knowledge that can stand on

their own when generating revenue. They can themselves be made up of
nested networks of knowledge Nodes and Links
• Possible range (current): 1 - 50 (25)

INIT LINK NUM

• Number of distinct knowledge Links at the start of the simulation
• The initial number of Links will be distributed randomly to individual

Agents
• Knowledge Links establish relationships between knowledge Nodes. They

constitute identifiable pieces of knowledge that help to integrate knowl-
edge assets together.
• Possible range (current): 1 - 30 (15)

MODEL PERIODS

• Number of periods that the simulation will run for
• Possible range (current): 1 - 200 (200)

MAX AGENT NUM

• Maximum number of Agents allowed during the simulation
• Possible range (current): 50 - 300 (50)

MAX NODE NUM

• Maximum number of distinct knowledge Nodes allowed during the simu-
lation
• Possible range (current): 100 - 5000 (300)

MAX LINK NUM

• Maximum number of distinct knowledge Links allowed during the simu-
lation
• Possible range (current): 100 - 3000 (200)
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A.3 Input Parameters for Asset Variables

MAX COMPLEXITY

• Maximum level of Complexity of Assets allowed in the simulation
• Derived from the ”maximum” levels of Complexity perceivable by agents

in the simulation.
• Possible range (current): 1 - 10 (7)

COMPLEXITY COST

• Rate at which holding Assets of increasing Complexity increase their
carrying cost
• Derived from MAX COMPLEXITY (see above) such that

MAX COMPLEXITY is the level at which a fully Abstract, Codified and
Diffused knowledge Asset remains economically viable.
• Possible range (current): 0.00 - 1.00 (0.001)

NEW LINK PROB

• The probability that a new Asset generated by combining two Nodes and
a Link is a Link
• When Agents research the creation of a new Asset via the combination

of existing Nodes/Link, the resulting new Asset can be either a Node or
a Link, and NEW LINK PROB determines the ratio of Nodes to Links
among new Assets.
• Possible range (current): 0.00 - 0.50 (0.20)

MOVE POSSIBILITIES

• Number of possibilities for each type of movement in I-Space for each
Asset
• Movement in I-Space creates new knowledge Assets, and for each existing

knowledge Asset there is a finite number of possible new Assets locations
available in I-Space.
• Possible range (current): 1 - 5 (2)

PASSIVE CARRY MULT

• The carrying cost of knowledge Assets in the Passive set relative to that
of knowledge Assets in the Active set
• Knowledge Assets in the Passive set cost less to maintain as they are not

being actively managed in the I-Space to generate Revenue.
• Possible range (current): 0.00 - 1.00 (0.50)
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A.4 Input Parameters for I-Space World Variables

BASE REV MULT

• A multiplier that determines the allocation of Base Revenue Potential
within the I-Space
• Base Revenue Potential in the I-Space is proportional to the degree of

Abstraction and Codification, and is inversely proportional to the degree
of Diffusion.
• Possible range (current): 0.00 - 2.00 (1.00)

ASSET SHARE PROB

• The probability that a given Agent at the start of the simulation gets
initially allocated a given Asset.
• The initial portfolio of Assets is distributed among such Agents based on

this probability. Each Agent will have
ASSET SHARE PROB probability of getting each Asset. This is a mea-
sure of the initial homogeneity knowledge in the simulation at the begin-
ning of the game.
• Possible range (current): 0.00 - 1.00 (0.20)

OBSOLESCENCE DECAY

• Factor controlling the rate at which Assets become obsolete over the
course of the simulation
• The rate at which the Revenue Multiplier of Assets decays per period due

to obsolescence is proportional both to OBSOLESCENCE DECAY and
the total number of new knowledge Assets that have been created in that
period. What is being measured here is the ”creative destruction” that
goes on within an industry. Dynamic fast-moving industries are subject
to much higher rates of obsolescence decay than slower moving ones.
• Possible range (current): 0.00 - 0.50 (0.001)
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DIFFUSION DECAY

• Factor controlling the rate at which Assets are diffused
• The rate at which Assets diffuse to a broader population each period is

proportional to DIFFUSION DECAY and the degree of Abstraction and
Codification of the Asset
• There are two forms of Diffusion Decay: 1) diffusion of Assets to Agents

within the simulation increases the degree of Diffusion of Assets - as
measured by the simulation metrics; 2) diffusion of Assets to a population
outside the simulation does not increase the degree of Diffusion of the
Asset - as measured by the simulation metrics - but decreases the Revenue
Multiplier of the Asset directly.
• Possible range (current): 0.00 - 0.05 (0.001)

DIFFBLOCK COST MULT

• This is a factor controlling the rate at which the cost of blocking the
diffusion of assets is set.
• The formula for calculating the cost of blocking the diffusion is as fol-

lows: The diffusion block cost = DIFFBLOCK COST MULT * Abstract
* Codify * Diffuse.
• Possible range (current): 0.00 - 0.20 (0.001)

AGENT ENTRY THRESHOLD

• Threshold of mean Agent revenues above which new Agents are attracted
into the simulation
• The number of new Agents is based on an estimate of the number of

Agents the current ”market” can support
• Possible range (current): 1.00 - 5.00 (1.25)

AGENT ENTRY RATE

• The Agent Entry Rate is the number Agents entering per percent change
in revenues between this period and the last period.
• For example, setting AGENT ENTRY RATE to 0.25 means that for ev-

ery percent increase in revenues, 0.25 Agents will be attracted into the
game, translating into a simple number of a 1 agent for every 4% increase
this period. N.B. Although this would be unlikely, one could conceivably
have a negative Agent Entry Rate, i.e. at -0.25, this means that 1 agent
is attracted into the game for every 4% decrease during this period.
• Possible range (current): 0.01 - 1.00 (0.25)

AGENT EXIT THRESHOLD

• Agents exit is controlled by two variables - an Agent Exit Threshold and
an Agent Exit Probability variable. Thus an Agent may decide to exit
depending on how much financial funds it has managed to amass, and
depending on the current trend of its revenues.
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• The Agent Exit Threshold determines the current level of financial funds
that the Agent must achieve before it will consider exiting. This in essence
sets the level at which an Agent feels that it is sufficiently ”ahead” of the
game to choose to quit while it is ahead.
• Possible range (current): 5.00 - 50.00 (12.50)

AGENT EXIT PROB

• The Agent Exit Probability is the probability of any one Agent exiting
per % change in that Agent’s revenues between this period and the last
period. This function works in both directions, depending on the value –
i.e., setting AGENT EXIT PROB to 0.01 means that for every % increase
in revenues, each Agent has a 0.01 (or 1%) chance of deciding to exit.

Similarly, setting this variable to -0.02 means that for every % decrease
in revenues, each Agent has a 0.02 (2% chance of deciding exit). Thus by
playing with the positive and negative values for this, you can have Agents
that decide to leave when revenues are increasing, or Agents that leave when
revenues are declining.

• Possible range (current): -0.007 ∼ +0.007 (-0.005)

MAX AGENT ENTRIES

• Maximum number of new Agents that will enter per period
• Possible range (current): 1 - 10 (5)
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A.5 Input Variables for I-Space Matrix Variables

ABSTRACT DIM SIZE

• Size of the Abstraction dimension
• This establishes the number of discrete intervals in the Abstraction di-

mension
• Possible range (current): 2 - 10 (5)

CODIFY DIM SIZE

• Size of the Codification dimension
• This establishes the number of discrete intervals in the Codification di-

mension
• Possible range (current): 2 - 10 (5)

DIFFUSE DIM SIZE

• Size of the Diffusion dimension
• This establishes the number of discrete intervals in the Diffusion dimen-

sion
• Possible range (current): 2 - 10 (4)

DIFFUSE FACTOR

• Factor which determines rate at which model Diffusion increases with
increases in nominal Diffusion (see text for further details)
• This variable establishes how to convert nominal Diffusion (the number

of Agents in the simulation that own the Asset) into model Diffusion (the
measure of Diffusion which directly impacts the location of the Asset in
discrete I-Space. The DIFFUSE FACTOR essentially converts a linear
discrete model Diffusion into a logarithmic scale.
• Possible range (current): 2 - 5 (2)
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A.6 Input Variables for Linkage Probability Variables

ABS NONZERO VAL

• The value that is given by increasing abstraction to particular cell in the
Linkage Probability matrix – prior to increasing abstraction its value was
set at zero.
• Possible range (current): 0.00 to 0.50 (0.20)

COD INCREASE VAL

• The increase in the Linkage Probability value that occurs following an
increase in codification in a cell with a prior non-zero value.
• Possible range (current): 0.00 to 0.50 (0.20)

ABS NONZERO PROB

• The degree to which an increase in the degree of Abstraction translates
into an increase in the number of non-zero linkage probability entries in
the Linkage Probability matrix
• Abstraction is measured by the number of non-zero entries in the respec-

tive rows or columns in the Linkage Probability matrix. The larger the
number of non-zero entries, the wider the range of potential linkages –
ie, applications - a given Node or Link has.
• As increasing Abstraction increases the number of non-zero linkage proba-

bility entries in the Linkage Probability matrix, so decreasing Abstraction
increases the number of zero linkage probability entries in the matrix.
• Possible range (current): 0.00 to 0.25 (0.05)

NEW ASSET THRESHOLD

• The complexity threshold beyond which a given Node-Link-Node chain
creates a new knowledge Asset of greater Complexity.
• Possible range (current): 0.50 to 1.00 (0.50)

NEW ASSET PROB

• Base probability of successfully achieving the new Asset combination
made possible by a given Node-Link-Node chain whose Linkage Prob-
ability values exceed NEW ASSET THRESHOLD

• Possible range (current): 0.00 - 3.00 (1.00)
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A.7 Input Parameters for Agent Variables

INIT FINANCIAL FUNDS

• The initial endowment of Financial Funds for initial Agents
• Possible range (current): 1.0 - 50.0 (10.0)

INIT EXPERIENCE FUNDS

• The initial endowment of Experience Funds for initial Agents
• Possible range (current): 1.0 - 50.0 (10.0)

FINANCIAL ALLOCATION

• The ratio of financial funds allocated from revenue and costs.
• For example, 0.2 means that 20% of the revenue (cost) is allocated to

financial funds (expense).
• Possible range (current): 0.0 - 1.0 (0.5)

ACTIVE SET

• The size of the Active set
• Possible range (current): 1 - 50 (10)

PASSIVE SET

• The size of the Passive set
• Possible range (current): 1 - 50 (10)

ISPACE MOVE PROB

• The probability of successfully moving an Asset inside I-Space
• The probability of successfully moving an Asset in I-Space is proportional

to the Asset’s Abstraction and Codification.
• Possible range (current): 0.01 - 0.10 (0.03)

ISPACE MOVE COST

• A factor which determines the cost of moving an Asset in I-Space
• The cost of moving an Asset in I-Space is proportional to the Asset’s

Abstraction and Codification.
• Possible range (current): 0.01 - 0.10 (0.03)
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JOINT VENTURE RETURN

• The proportion of a Joint Venture Agent’s net income that is returned
to parent Agents
• Possible range (current): 0.01 - 1.00 (0.10)

SUBSIDIARY RETURN

• The proportion of a Subsidiary Agent’s net income that is returned to
parent Agents
• Possible range (current): 0.01 - 1.00 (0.20)

PAR FUND THRESHOLD

• The financial fund threshold required of a parent company that allows it
to create a subsidiary company
• Possible range (current): 1 - 1000 (15)

PAR ASSET THRESHOLD

• The asset threshold required of a parent company that allows it to create
a subsidiary company
• Possible range (current): 0.01 - 1.00 (0.80)
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A.8 Input Parameters for Agent Meeting Variables

MEETING ARRANGE COST

• The cost of attempting to schedule a meeting with an Agent
• Possible range (current): 0.00 - 0.10 (0.005)

MEETING FIXED COST

• The fixed cost of attending a meeting - irrespective of size
• Possible range (current): 0.00 - 0.10 (0.005)

PRESENT COST MULT

• The factor that sets the cost of presenting an Asset at a meeting
• The cost of presenting an Asset is proportional to the Asset’s Abstraction

and Codification.
• Possible range (current): 0.01 - 0.10 (0.005)

EXAMINE COST MULT

• The factor that sets the cost of inspecting an Asset at a meeting
• The cost of inspecting an Asset is proportional to the Asset’s Abstraction

and Codification.
• Possible range (current): 0.01 - 0.10 (0.005)

TRADE VALUE MULT

• The multiplier that is used to determine the tradeable value of an Asset
• Possible range (current): 1.00 - 5.00 (1.75)

LICENSE VALUE MULT

• The multiplier that is used to determine the licensing value of an Asset
• Possible range (current): 0.01 - 2.00 (0.25)
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A.9 Input Parameters for Meetingspace Variables

PROB RANDOM MEETINGS

• The probability of random meetings per Agent per period
• Possible range (current): 0.0 – 1.0 (0.25)

MAX RANDOM MEETINGS

• The maximum number of random meetings per Agent per period
• Possible range (current): 0 - 10 (5)

TRADING SET RATIO

• The factor that is used to determine size of the Trading Set that an agent
will deploy. This is based on the number of prior meetings that the focal
agent has had with a given Agent
• Possible range (current): 1 - 5 (2)

A.10 Input Parameters for DM Variables

MIN PREFERENCE LEVEL

• The minimum preference that a given agent can display for abstraction,
codification, impacting, and absorption.
• Possible range (current): 0.0 – 1 (1)

MAX PREFERENCE LEVEL

• The maximum preference that a given agent can display for abstraction,
codification, impacting, and absorption.

• Possible range (current): 0 - 10 (5)
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A.11 Input Parameters for Research DM Variables

PROB MOVE

• The probability that an Agent will attempt to move a given knowledge
Asset in I-Space
• Possible range (current): 0.00 - 1.00 (0.20)

A.12 Input Parameters for Meeting DM Variables

PROB POSITIVE

• The base probability of a focal agent adopting a positive disposition to-
wards a given Agent
• Possible range (current): 0.00 - 0.50 (0.10)

PROB NEGATIVE

• The base probability of a focal agent adopting a negative disposition
towards a given Agent
• The probability of having a neutral disposition is thus

100% - PROB POSITIVE - PROB NEGATIVE.
• Possible range (current): 0.00 - 0.50 (0.20)

HIGH COOP MULT

• The multiplier used to determine the level of cooperation among agents.
• Possible range (current): 0.00 – 0.10 (0.50)

PROB TRADE (UNUSED)

• The probability of a given agent offering a Trade during a meeting with
another Agent
• Possible range (current): 0.00 - 1.00 (0.25)

PROB VARIABILITY (UNUSED)

• Possible range (current): 0.00 - 1.00 (0.05)

JOINT VENTURE INVEST

• The rate of the investment for a joint venture
• Possible range (current): 0.00 - 1.00 (0.25)

SUBSIDIARY INVEST

• The rate of the investment for a subsidiary
• Possible range (current): 0.00 - 1.00 (0.25)
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B Detailed Model Specification with Example

B.1 Structure of the Sim-I-Space Model

1. Assets
(a) Asset ID and Type: Knowledge Assets (“Assets”) are either Nodes

or Links. Each Asset is identified by a unique ID number that is
allocated sequentially, i.e. no two Assets (Node or Link) will have the
same ID, and the first Asset will have ID 0, and the next Asset will
have ID 1, and so on.

(b) Abstraction and Codification: Each Asset has discrete attributes
of Abstraction and Codification, which represent the degree each As-
set is abstract or codified respectively. Values for Abstraction and
Codification begin at 0 (respectively representing concrete and un-
codified Assets), and have an upper bound that is specified in the
model to give varying degrees of granularity.

(c) Diffusion: The attribute of Diffusion represents the degree each As-
set is diffused among the Agents in the model. The effect of Diffusion
on the value of the Asset is non-linear – the loss in value from one
additional Agent coming into possession of the Asset varies greatly
depending on whether there was originally only one Agent who owned
the Asset, or if there were 100 Agents who owned the Asset. In the
former case, there is a sharp loss in value, and in the latter case, there
may be almost no loss in value. To reconcile this difference there are
two relevant values of Diffusion.

i. Nominal Diffusion: Nominal Diffusion is a continuous variable
that measures the actual number of Agents that own the Asset.
Nominal Diffusion has no upper bound.

ii. Model Diffusion: Model Diffusion is a discrete variable derived
from nominal Diffusion that is used in the I-Space Model to cal-
culate the Base Revenue Potential of the Asset. Model Diffusion
has an upper bound specified in the model to give varying degrees
of granularity.

For example, in a model with model Diffusion values of 0∼3, model
Diffusion may be determined as in Table 3.

Table 3. Nominal diffusion & model diffusion

Model Diffusion Nominal Diffusion
(# of Agents that own the Asset)

0 1 ∼ 2

1 3 ∼ 8

2 9 ∼ 26

3 27 +
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In this example, there is no difference in the Base Revenue Potential
if 1 or 2 Agents own the Asset, but when a 3rd Agent owns the Asset,
the Base Revenue Potential decreases. Base Revenue Potential then
remains steady until the Asset diffuses to the 9th Agent, etc.

(d) Complexity: Complexity describes the complexity of the knowledge
structure represented by the Asset. Complexity begins at 0 (basic
Assets) and has no upper bound. Assets combine with Assets of equal
Complexity, and the resulting Asset is of one larger Complexity.

(e) Revenue Multiplier: The Revenue Multiplier is the link between
Base Revenue Potential (a function of where the Asset is in the I-
Space) and actual revenue earned per unit time. The Revenue Multi-
plier accounts for a variety of factors, including Complexity (increas-
ing as Complexity increases9), obsolescence (decreasing over time
subject to the Obsolescence decay function), and “jackpot effects”
(random extraordinary increases to the payout from combining As-
sets).

(f) Carry Cost: Maintaining Assets impose a Carry Cost on Agents.
The Carry Cost is a function of the Asset’s Complexity10.

(g) Node/Link Parents: New Assets can be created as a result of the
process of abstraction, codification, impacting and absorption, or by
the combination of a chain of Node/Link/Node of sufficiently high
Linkage Probability. The “parents” of an Asset are thus Nodes and/or
Link from which this Asset was derived from. For initial/basic Assets,
they have no “parents”.

(h) Possible new Assets due to “movement”: The processes of ab-
straction, codification, impacting and absorption yield new Assets.
However, there are only a finite number of ways in which any given
Asset can be abstracted, codified, impacted or absorbed – thus each
Asset maintains memory of what are the possible results of abstract-
ing, codifying, impacting or absorbing itself. Furthermore, the process
of abstraction, codification, impacting and absorption is idiosyncratic
– thus some of the results will be more common than others. E.g., it
may be that the absorption of Node 3, will yield only Node 6, Node 9
or Node 23. However, 50% of the Agents who succesfully absorb Node
3 will discover Node 6, 33% will discover Node 9, and the remaining
17% discover Node 23.

2. I-Space Matrix and I-Space Locations
(a) I-Space Matrix and I-Space Locations: The I-Space Matrix is a

three-dimensional matrix representation of the I-Space, with axes for
9 By combining Assets, Agents create new Assets of higher Complexity (and Rev-

enue Multiplier). By doing so, Agents can offset Carry Costs, and usage of Agent
memory (by replacing original Assets with the new combined Asset), while re-
taining some of the value of the original Assets as revenue generators.

10 Increasing Complexity thus has two conflicting effects – increasing both the Rev-
enue Multiplier, and the Carry Cost.
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Abstraction, Codification and Diffusion. The I-Space Matrix is made
up of I-Space Locations - discrete locations in the I-Space Matrix
where Assets reside. Each I-Space Location is uniquely described by
discrete values of Abstraction, Codification and Diffusion, and can
contain any number of Assets. Each I-Space Location in the I-Space
Matrix is associated with some Base Revenue Potential.

(b) Base Revenue Potential: The Base Revenue Potential reflects the
fundamental relationship between Revenue and the three attributes
of Abstraction, Codification and Diffusion. Thus, each I-Space Loca-
tion in the I-Space Matrix is associated with a Base Revenue Potential
that is used for all Assets residing in that location. The Base Revenue
Potential is further subject to an Industry Multiplier that determines
the difference between the Base Revenue Potential of two Assets of
equal Abstraction, Codification, and Diffusion in two different indus-
tries.11

3. Linkage Probability Matrix
(a) Linkage Probability: Linkage Probability measures the affinity for

an Asset to combine with Assets of the same Complexity, but of
the alternate type (Nodes with Links, and Links with Nodes). Every
possible Node-Link pair with the same Complexity has some Linkage
Probability (although this Linkage Probability may be zero).

(b) Linkage Probability Matrix: The Linkage Probability Matrix is
a two-dimensional matrix that exists for each level of Complexity.
Each column in the matrix represents one of every existing Node of
the given level of Complexity, and each row a Link. Thus the entry
in row i, and column j, is the Linkage Probability between the Link
in row i, and the Node in column j.

4. Agent
(a) Agent ID: Agents in the model are identified by a unique ID that is

allocated sequentially, i.e. no two Agents will have the same ID, and
Agent 0 was the first Agent created, while Agent 1 was the next, and
so on.

(b) Financial Funds and Experience Funds: Agents possess resources
that are used to cover their operating expenses. These resources, and
associated expenses, fall into two categories – Financial and Experi-
ence. Agents manage their resources by allocating revenues into either
Financial or Experience funds, and setting Financial and Experience
Budgets.

i. Financial Funds and Financial Budget: Financial Funds cor-
respond tangible resources, such as cash, that are used to meet
operating expenses, including the cost of meeting other Agents,

11 Base Revenue Potential should not be confused with Revenue Potential - the
former is invariant over time in each simulation run, while the latter is the realized
revenue per period generated by each Asset, varying over time.
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trading for Assets, and paying out dividends. The Financial Bud-
get is set by the Agent each period to limit the amount of the
Financial Funds that the Agent intends to expend each period.

ii. Experience Funds and Experience Budget: Experience Funds
correspond to more intangible resources, such as the experience
from learning-by-doing, that are used to manipulate Assets – to
increase/decrease their Abstraction or Codification, or to com-
bine Assets to create new Assets. The Experience Budget is set
by the Agent as a limit on the amount of the Experience Funds
that the Agent is intending to expend each period.

(c) Active set and Passive set: Agents have a finite memory that is
separated into two sets – an Active set and a Passive set. Assets can
be held in either of these sets, although storing Assets invoke Carry
Costs. Agents manage their memory by choosing to hold Assets in
either of the two sets, or discarding them altogether.

i. Active set: The Active set contains all Assets being actively
utilized by the Agent, and generating revenue.

ii. Passive set: The Passive set contains all Assets that the Agent
possesses, but are not utilized, and not generating revenue. Main-
taining Assets in the Passive set alleviate some of the Carry Cost
associated with the Assets.

(d) Trading Set: Trading Sets are sets of Assets that an Agent makes
available for transactions with other Agents. When two Agents meet,
not all of their Assets may be available for transactions. In the first
meeting, the cost of presenting Assets will limit the sharing to only
the most Abstract and Codified Assets. Over time, as the degree
of familiarity between two Agents increase with recurrent meetings,
the cost of presenting Assets will decrease, and Agents will be able
to share more concrete and uncodified Assets (thus increasing the
size of the set of Assets available for transactions). Agents thus have
more than one Trading Set, and it presents different Trading Sets to
different Agents it meets depending on the degree of familiarity (i.e.
history of meetings).

(e) Agent Memory: Agent memory stores the frequency of the histor-
ical encounters with other Agents.
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B.2 Asset Evolution in the Model

5. Movement/Creation of Assets: The processes of abstraction, codifi-
cation, impacting and absorption are the processes by which Assets evolve
within I-Space.
(a) Abstraction: Abstraction of an Asset creates a new Asset of the

same type and Complexity with the next higher Abstraction value.
The new Asset inherits the Linkage Probabilities of its predecessor,
with an increase in the number Assets it can link with, i.e., an increase
in the number of non-zero values in the corresponding row (for Links),
or column (for Nodes) in the Linkage Probability matrix.

(b) Codification: Codification of an Asset creates a new Asset of the
same type and Complexity with the next higher Codification value.
The new Asset inherits the Linkage Probabilities of its predecessor,
with an increase in its ability to link with Assets, i.e., an increase
in existing non-zero values in the corresponding row (for Links) or
column (for Nodes) in the Linkage Probability matrix.

(c) Impacting: Impacting of an Asset, a new Asset of the same type and
Complexity with the next lower Abstraction value. The new Asset
inherits the original Linkage Probabilities of its predecessor, with a
decrease in the number Assets it can link with, i.e., a decrease in the
number of non-zero values in the corresponding row (for Links), or
column (for Nodes) in the Linkage Probability matrix.

(d) Absorption: Absorption of an Asset creates a new Asset of the same
type and Complexity with the next lower Codification value. The
new Asset inherits the Linkage Probabilities of its predecessor, with
a decrease in its ability to link with Assets, i.e. a decrease in existing
non-zero values in the corresponding row (for Links) or column (for
Nodes) in the Linkage Probability matrix.

6. Creation of new Assets: Aside from abstraction, codification, impact-
ing and absorption, another way in which new Assets are created in the
model is when the Linkage Probabilities between a Node (Nx) and a Link
(Ly) of equal Complexity; and that same Link (Ly) and another Node
(Nz) of equal Complexity are sufficiently high. When the Linkage Proba-
bilities in such a Node-Link-Node chain exceeds a specified threshold, an
Agent can attempt to research the creation of a new Asset.
(a) New Asset: The result of combining a given set of Node-Link-Node

can either be a Node or a Link. However, the result of combination
is unique (?), i.e., every Agent that owns the necessary constituent
Assets that successfully research the creation of a new Asset from this
will discover the same new Asset. The new Asset is also necessarily
more complex than its constituents, and in the model, the new As-
set has Complexity 1 larger than the Complexity of the constituent
Assets.12

12 Note that only Assets of equal Complexity have any Linkage Probability, thus
all constituent Assets will have the same Complexity.
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B.3 Agent Interaction in the Model

7. Agent Meetings: Agent meetings can take place between two Agents
(bilateral) or between a larger number of Agents (multilateral). To ensure
that meetings remain manageable, there is a cap on the largest possible
size for a multilateral meeting. In order for a meeting to occur, partici-
pants in a meeting must have either arranged to meet the other Agent(s),
or have met the Agent(s) in a random encounter.
(a) Arranged Meetings: At the beginning of each period, Agents will

define their disposition towards other Agents in the game. This dis-
position can either be:

i. strong desire for meeting – an Agent who registers such a dis-
position will actively seek to arrange a meeting with the subject
Agent, and will agree to a meeting arranged by the subject Agent;

ii. amenable to meeting – an Agent with this disposition will not
seek to arrange a meeting with the subject Agent, but will agree
to a meeting arranged by the subject Agent; or

iii. no desire for a meeting – an Agent with this disposition will
neither seek to arrange a meeting with the subject Agent, nor
will it be likely to agree to a meeting arranged by the subject
Agent.

(b) Random Meetings: Aside from arranged meetings, random meet-
ings can occur between any two Agents. Random meetings do not
incur any cost to arrange, but Agents do not have control over the
Agents they encounter.

Based on the result of the attempts to arrange meetings, as well as the
random encounters in each period, Agent meetings are generated.
In the model, Agents are aware of the economies of scale present in
multi-Agent meetings, and thus have a default preference for attend-
ing the largest possible multi-Agent meetings (meetings with more than
2 Agents), but are however limited to attending only one multi-Agent
meeting each period.

8. Presentation and Inspection: Agents attending meetings will pre-
sent their Trading Set for inspection, as well as inspecting the Trading
Set of other Agents attending the meeting. In a multi-Agent meeting, an
Agent will present only one Trading Set. However, as it will have varying
degrees of familiarity with the other Agents attending the meeting, it will
restrict itself to the smallest Trading Set among all the Trading Sets it
would present if it had met all the participants in bilateral transaction.
E.g., if Agent X attends a meeting with Agent Y and Agent Z, Agents
that it has met 9 times and 4 times before respectively, the Trading Set
Agent X presents to the group will be the same as the Trading Set it
would have presented to Agent Z (the Agent with which it has the lowest
degree of familiarity).
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9. Meeting Costs: Agent meetings impose four different kind of costs on
participants – arrangement costs, fixed costs, presentation costs and in-
spection costs. All meeting costs are Financial Costs – they are set against
the Financial Budget allocated for the period and consume Financial
Funds.
(a) Arrangement cost: The arrangement cost is levied on the Agent

for each Agent he attempts to arrange a meeting with – regardless of
whether a meeting results from the attempt. This cost only applies to
attempts to arrange meetings and does not apply when meetings are
random. The arrangement cost of a meeting is invariant regardless of
the history of past transactions.

(b) Fixed cost: The fixed cost of a meeting is levied on all participants of
a meeting, regardless of size.13 The fixed cost of a meeting is invariant
regardless of the history of past transactions.

(c) Presentation cost: The presentation cost is the cost of making avail-
able the Agent’s Trading Set for inspection, and is levied once for each
meeting that the Agent attends.14 Presentation cost increases with
the number of Assets the Agent presents, and decreases with the Ab-
straction and Codification of the Assets (i.e. varies depending on the
Trading set presented), as well as decreasing with recurrence.

(d) Inspection cost: The inspection cost is the cost of an Agent inspect-
ing the Trading Set that has been offered for its examination, and is
levied once for each Trading Set that the Agent inspects. Each Trad-
ing Set imposes an Inspection cost that increases with the number of
Assets in the Trading Set, and decreases with the Abstraction and
Codification of those Assets,15 as well as decreasing with recurrence.

10. Meeting Transactions: The following transactions can occur in an
Agent meeting:
(a) Trading of Assets: Trading is a bilateral transaction in which Agents

exchange Assets for Financial Funds. There is no change in Diffusion
as the selling Agent relinquishes all rights to the Assets in exchange
for a stock of Financial Funds received.

(b) Licensing of Assets: Licensing is a bilateral transaction where
Agents share Assets for Financial Funds. Nominal Diffusion increases
as the Agent who grants the license to the Asset retains its rights to
use the Asset. In return for the right to use the Asset, the Agent re-
ceiving the license pays the first Agent a continuous flow of Financial
Funds.

13 A benefit of a large meeting is that Agents amortize the fixed cost over a greater
number of potential transactional partners.

14 A second benefit of a large meeting is that Agents amortize the presentation cost
over a greater number of potential transaction partners.

15 Inspection cost forms the limiting factor to the size of multi-agent meetings. As
the number of potential transaction partners increase, the cost of attending such
a meeting increases.
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(c) Joint Ventures: Joint ventures can occur in either a multilateral
meeting or in a bilateral meeting. In a joint venture, Agents come
together to create a new Agent. The new Agent receives an injection
of Financial Funds, Experience Funds and Assets from the “parent”
Agents. The founding Agents continue to exist independently, while
receiving a variable flow (proportional to their investment in the joint
venture) of Financial Funds from the Agent created as a result of the
joint venture.

(d) Mergers: Mergers can occur in either a multilateral meeting or in a
bilateral meeting. In a merger, Agents come together to create a new
Agent, by pooling all their Assets, Financial Funds and Experience
Funds. The original Agents cease to exist as independent Agents, and
will instead be represented by this new Agent.

(e) Subsidiaries: The creation of subsidiaries is a transaction under-
taken by an Agent alone. In creating a subsidiary, one Agent unilat-
erally creates a new Agent, which receives an injection of Financial
Funds, Experience Funds and Assets from the “parent” Agent. The
original Agent continues to exist independently, and earns a variable
flow of Financial Funds dependent on the success of the subsidiary.16

In a multi-Agent meeting, after the presentation of Trading Sets, the par-
ticipants first decide if they wish to form a Merger, or create a Joint Venture.
If they choose not to do so, the meeting will break up into a sequence of bi-
lateral meetings. The difference is that Agents in these subsequent bilateral
meetings no longer need to pay meeting costs, but are free to transact.

B.4 Background Activity in the Model

1. Obsolescence Decay: Obsolescence decay is the loss of value of existing
Assets due to obsolescence over time. This is represented as the shrink-
ing of the Revenue Multiplier of existing Assets over time. The rate of
decrease is a function of the number of new Assets generated this period.

2. Diffusion Decay: Diffusion decay is the loss of value of existing Assets
due to the unintended diffusion of these Assets. There are two aspects
to this diffusio: diffusion to Agents within the model, and diffusion to
parties outside the model. .
(a) Diffusion Decay to Agents: Diffusion of Assets to Agents within

the model allows beneficiary Agents to use the Assets competitively.
This form of decay is represented as the random distribution of Assets
within the model to a greater number of Agents. Each Agent coming
into the possession of these new Assets will make independent deci-
sions whether to incorporate it into its Active or Passive sets, or to
ignore it (if it is fully laden);

16 An Agent that finds itself with far too many unrelated Assets may carve off
portions of it into subsidiaries.
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Table 4. Multi-agent meetings & 2-agent meetings

Multi-Agent Meeting 2-Agent Meeting

Arrange-
ment Cost

Pays arrangement cost for (N-
1) Agents that each Agent
elects to meet.

If the meeting is arranged, the
Agent pays the arrangement
cost.

Presenta-
tion Cost

Each Agent presents once at each meeting, and pays the pre-
sentation cost for the Trading Set it presents once for each
meeting it attends.

Inspection
Cost

Each Agent inspects (N-1)
Trading Sets, and pays the in-
spection cost for inspecting the
(N-1) Trading Sets.

Each Agent inspects one other
Trading Set, and pays the in-
spection cost for inspecting
that one Trading Set.

Fixed Cost Each Agent pays the Fixed cost of a meeting once for each
meeting it attends.

Trading Set
Presented

Based on lowest degree of re-
currence with all (N-1) other
Agents.

Based on degree of recurrence
with the other participating
Agent.

(b) Diffusion Decay to World: Diffusion of Assets to parties outside
the model causes the beneficiaries to reduce their demand for the
Asset in the model. This reduced demand is represented as a random
decrease in the Revenue Multiplier of the Asset.

The probability and rate at which Assets will diffuse is a function of its
Abstraction, and Codification.
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B.5 An Example

Structure of the Model For this example we use a 5x5x4 I-Space Matrix,
i.e. 5 levels of each Abstraction (A), and Codification (C), and 4 levels of
Diffusion (D). In this case, 0 is the minimum Abstraction, Codification, and
Diffusion; 3 is the maximum level of Diffusion; and 4 is the maximum level
of Abstraction and Codification.

In this model, the corresponding Base Revenue Potential for each location
in I-Space is calculated as ((A+1) * (C+1)) / ((D+1) * 25).

Fig. 3 shows the I-Space Matrix, and the associated Base Revenue Po-
tentials for each location in the I-Space. In order to show the I-Space Matrix
– which is a 3-dimensional matrix, we will view the I-Space Matrix in 2-
dimensional slices, where each slice represents a different level of Diffusion.

Table 5. I-Space matrix: base revenue potential view

Cod (Diffusion=0) Cod (Diffusion=1)

4 0.20 0.40 0.60 0.80 1.00 4 0.10 0.20 0.30 0.40 0.50

3 0.16 0.32 0.48 0.64 0.80 3 0.08 0.16 0.24 0.32 0.40

2 0.12 0.24 0.36 0.48 0.60 2 0.06 0.12 0.18 0.24 0.30

1 0.08 0.16 0.24 0.32 0.40 1 0.04 0.08 0.12 0.16 0.20

0 0.04 0.08 0.12 0.16 0.20
Abs

0 0.02 0.04 0.06 0.08 0.10
Abs

0 1 2 3 4 0 1 2 3 4

Cod (Diffusion=2) Cod (Diffusion=3)

4 0.07 0.13 0.20 0.27 0.33 4 0.05 0.10 0.15 0.20 0.25

3 0.05 0.11 0.16 0.21 0.27 3 0.04 0.08 0.12 0.16 0.20

2 0.04 0.08 0.12 0.16 0.20 2 0.03 0.06 0.09 0.12 0.15

1 0.03 0.05 0.08 0.11 0.13 1 0.02 0.04 0.06 0.08 0.10

0 0.01 0.03 0.04 0.05 0.07
Abs

0 0.01 0.02 0.03 0.04 0.05
Abs

0 1 2 3 4 0 1 2 3 4

The I-Space Matrix above represents the underlying structure, showing
how revenue is distributed within I-Space.
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We now look at the individual Agents participating in this I-space. Each
Agent will have its own set of Nodes and Links that reside in various locations
in the I-Space matrix. For instance, Agent 1 might have a distribution of
Nodes (Nx) and Links (Ly) that looks like Table 6.

Table 6. I-Space matrix: agent asset distribution view

Cod (Diffusion=0) Cod (Diffusion=1)

4 N1 N2 N3,N4 4

3 3 L2 N5,L3

2 2

1 L1 1 N6 N7

0
Abs

0
Abs

0 1 2 3 4 0 1 2 3 4

Cod (Diffusion=2) Cod (Diffusion=3)

4 4 L7

3 L4 L5 3 L8 L9,L10

2 L6 2

1 N8 1 N10

0 N9
Abs

0
Abs

0 1 2 3 4 0 1 2 3 4

From this view, we see that Agent 1 has 10 Nodes and 10 Links. The
general distribution indicates its Links are mostly Abstract and Codified and
Diffused, while its Nodes are mostly Abstract, Codified and unDiffused.

Combining the information from Fig. 3 and Fig. 4, we can thus tell, for
instance, that Node #7 is fairly Abstract (3), fairly unCodified (1), fairly
unDiffused(1) and will generate a Base Revenue of 0.24 units per unit time.
If Node #7 were a basic Node, it would have a Revenue Multiplier of 1
(barring Obsolescence), and would generate revenue of 0.24 units per unit
time.
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Beyond the I-Space, at any point in time, a global Linkage Probability
Matrix exists which maintains the Linkage Probabilities between all existing
Node-Link pairs.

From the perspective of an Agent who has limited memory, only a subset
is relevant. In this case, where an Agent has an Active Set size of 5 of each
type, the relevant subset of the Linkage Probability Matrix might look like
Table 7.

Table 7. Linkage probability matrix: agent subset

Active Node Passive Node

N2 N3 N4 N8 N10 N1 N5 N6 N7 N8

Active Links

L1 0.22 0.30 - 0.16 0.20 - - 0.14 - -
L3 - - 0.23 0.25 0.26 - - - 0.15 -
L4 0.24 0.23 - 0.17 0.18 - - 0.14 - 0.17
L6 - - 0.28 0.23 0.18 - - 0.15 - 0.13
L10 0.22 0.21 - 0.20 0.28 - 0.13 - - -

Passive Links

L2 0.11 0.14 0.14 - - 0.13 0.12 - 0.16 0.15
L5 - - - 0.14 - - 0.20 0.18 0.16 -
L7 - - 0.23 - 0.13 0.20 - - 0.16 0.15
L8 - - - - - - 0.18 0.20 0.16 0.14
L9 - - - - - - 0.17 0.15 - 0.17

The above indicates that for instance, Link #1 has fair Linkage Probabil-
ity with Node #3, and the Node #10 has a fairly high Linkage Probability
with Link #10. As a whole, we also see that Agent 1 appears to have cho-
sen a set of Nodes and Links that have higher than average mutual Linkage
Probabilities and placed them in the Active Set.

The Linkage Probability Matrix also shows implied relationships between
Assets of the same type. Node #2 is a direct competitor with Node #3,
because for every Link that Node #2 has some non-zero Linkage Probability
with, Node #3 has a non-zero Linkage Probability as well.

On the other hand Node #4 is completely unrelated to Node #2 and
Node #3, because for every Link that Node #2 and Node #3 have some
non-zero Linkage Probability with, Node #4 has Linkage Probability of zero,
and vice versa.
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B.6 Asset Evolution in the Example

Over time, an Agent’s portfolio of Assets may change. If we return to Agent 1
after one time period, its portfolio may have been updated to look like Table
8 (changes in bold ).

Table 8. I-Space matrix: agent asset distribution view (one period later)

Cod (Diffusion=0) Cod (Diffusion=1)

4 N1 N2 N3 4 N4

3 3 L2 N5,L3

2 2 N11

1 N12 L1 1 N6↑ N7

0
Abs

0
Abs

0 1 2 3 4 0 1 2 3 4

Cod (Diffusion=2) Cod (Diffusion=3)

4 4 L7

3 L4 L5→ L11 3 L8 L9,L10

2 L6 2

1 N8 1 N10

0 N9
Abs

0
Abs

0 1 2 3 4 0 1 2 3 4

In this updated view, we see that Node #4 has increased in Diffusion,
Node #6 has been codified, and Link #5 has been abstracted. In addition, a
new Node #12 has appeared.

The increase in Diffusion for Node #4 could have come about in a variety
of ways. It might have been the result of Licensing by Agent #1, or it might
have been the impact of Diffusion Decay.

Furthermore we have new Node #11 – the result of codifying Node #6,
and a new Link #11 – the result of abstracting Link #5.

Finally we have Node #12 – a new Node that has not been created as a
result of any of the “moves” in I-Space. There exists two possibilities for the
existence of Node #12, it can either be the result of:

• creation of a new Asset from a set of Nodes and Links that have suffi-
ciently high mutual Linkage Probability; or
• Agent 1 being the beneficiary of some form of Diffusion, whether intended

(through Trading) or unintended (through Diffusion Decay).

In this case, if Node #12 were the result of (a), and the threshold Linkage
Probability for creating new Nodes was 0.25, we can examine the earlier
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Linkage Probability Matrix to see what are the likely constituents of this
Node #12.

Revisiting our original Linkage Probability Matrix (Fig. 5) – we find that
only the chain of Nodes #8, #10 and Link #3, have Linkage Probabilities
that meet this requirement, are thus likely to be the constituents of Node
#12.

In this new time period, the Linkage Probability Matrix will also have
changed as Agent 1 makes its own decisions to include/exclude new Assets.

A possibility might look like Table 9 below (changes in bold ).

Table 9. Linkage probability matrix: agent 1 subset (one period later)

Active Node Passive Node

N2 N3 N4 N8 N10 N1 N5 N11 N7 N8

A
ct

iv
e

L
in

k
s L1 0.22 0.30 - 0.16 0.20 - - 0.17 - -

L3 - - 0.23 0.25 0.26 - - - 0.15 -

L4 0.24 0.23 - 0.17 0.18 - - 0.14 - 0.17

L6 - - 0.28 0.23 0.18 - - 0.20 - 0.13

L10 0.22 0.21 - 0.20 0.28 - 0.13 - - -

P
a
ss

iv
e

L
in

k
s L2 0.11 0.14 0.14 - - 0.13 0.12 - 0.16 0.15

L11 - 0.15 - 0.14 - 0.16 0.20 0.18 0.16 -

L7 - - 0.23 - 0.13 0.20 - - 0.16 0.15

L8 - - - - - - 0.18 0.23 0.16 0.14

L9 - - - - - - 0.17 - 0.15 0.17

Among the Nodes, Node #6 was codified to create Node #11. Therefore,
by definition, Node #11’s Linkage Probabilities are derived from Node #6’s,
with higher non-zero Linkage Probabilities as a result of codification. As Node
#11 is superior to Node #6, the Agent has chosen the former to replace the
latter in its Passive set.

Similarly, among the set of Links, Link #5 was abstracted to create Link
#11, and for similar reasons, the latter has replaced the former in the Agent’s
Passive set. As defined, Link #11’s Linkage Probabilities are essentially those
of Link #5, with more non-zero Linkage Probabilities as a result of abstrac-
tion.

Finally, aside from the changes listed above, other changes will be taking
place in the background. Among others, Obsolescence Decay will have set in,
and the various Nodes and Links that existed will now generate less revenue
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per unit time. Diffusion Decay will also have occurred, and we saw a possi-
ble effect of Diffusion Decay on Node #4 earlier (although this increase in
Diffusion might have also been the result of sharing).

B.7 Agent Interaction in the Example

Stepping back from the Agent 1, we look at the I-Space world that Agent 1
resides in. In this example, there are seven other Agents in Agent 1’s world
(Agent 1, Agent 2... Agent 8).

If this is the very first period in the simulation, Agent 1 will not have met
any other Agent. However, if we visit Agent 1 some time into the simulation,
Agent 1 will have developed a history of interactions with other Agents, and
will have established a set of preferences as to which Agent it would like to
interact with. Similarly for other Agents, each of them will have their own
list of Agents they would prefer to interact with.

At the beginning of a period, each Agent will update its disposition to
other Agents. A possible scenario is shown below, each row is an Agent’s
disposition to the Agents in the columns, i.e. the entry in row i, and column
j, indicates Agent i’s disposition towards Agent j – where “2” indicates a
strong desire for meeting; “1” amenable to meeting; and “0” no desire for a
meeting at all.

Table 10. Agent meetings: arranging meetings

Agent
1

Agent
2

Agent
3

Agent
4

Agent
5

Agent
6

Agent
7

Agent
8

Agent 1 1 2 0 1 1 1 1
Agent 2 1 0 1 1 2 1 2
Agent 3 1 0 0 1 1 1 0
Agent 4 2 1 1 0 0 1 2
Agent 5 1 1 1 0 0 0 1
Agent 6 1 0 1 1 1 1 1
Agent 7 0 0 2 0 1 1 2
Agent 8 0 0 0 1 2 0 0

In this example, Agent 1 does not wish to meet Agent 4, but is amenable
to a meeting if arranged b Agents 2, 5, 6, 7, and 8. In addition, it has a
strong desire to meet Agent 3, and will thus attempt to arrange a meeting
with Agent 3.

Because Agent 3 is amenable to a meeting with Agent 1, it will respond
favorably to Agent 1’s invitation.

On the other hand, Agent 2 will similarly try to engage Agent 6 in a
meeting, but as Agent 6 has no desire to meet Agent 2, no meeting will occur
between Agent 2 and Agent 6.
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In addition to arranged meetings, random encounters may give rise to
meetings as well. The figure below shows the meetings of Agents, after taking
into account Agent disposition that leads to meetings being arranged, as well
as random encounters that lead to Agents meeting other Agents. A “4” in
row i, and column j, indicates that Agent i will meet Agent j in a meeting. At
this point, the type and size of meeting is undetermined because Agents will
aggregate as many as possible meetings with other Agents to reap economies
of scale in multi-Agent meeting.

Table 11. Agent meetings: actual meetings

Agent
1

Agent
2

Agent
3

Agent
4

Agent
5

Agent
6

Agent
7

Agent
8

Agent 1 • • • • •
Agent 2
Agent 3 • •
Agent 4 • •
Agent 5 • •
Agent 6 •
Agent 7 •
Agent 8

Based on the matrix, a 4-Agent meeting is possible between Agent 1,
Agent 4, Agent 6 and Agent 8.

At the same time, a 3-Agent meeting is possible for Agent 3, Agent 5 and
Agent 7. Or for Agent 5, Agent 7 and Agent 8.

Because Agents want to attend the largest possible meeting, Agent 8 will
eschew the 3-Agent meeting in favor of the 4-Agent meeting.

Looking at the 4-Agent meeting between Agent 1, Agent 4, Agent 6 and
Agent 8. Of the four Agents participating, the meeting between Agent 4 and
Agent 8 was arranged by Agent 4 – thus Agent 4 has incurred Arrangement
cost for this meeting. When the four agents do meet, they pay the Fixed cost
of the meeting. All this is before the Agents even have had the chance to
present their Trading Sets or inspect the other Agents’ Trading Sets.

Finally, when the Agents meet, each Agent will make available its Trading
Set. For Agent 1, it has a total of 10 Nodes and 10 Links available. In our
model, with Abstraction/Codification values of 0∼4, Trading Sets are defined
as follows:

In our example, Agent 1 has met Agent 4 six times before, Agent 6 and
Agent 8 nine times before. Now if Agent 1 had met Agent 4, Agent 6 and
Agent 8 separately, it would present Trading Set 2 to Agent 4, and Trading
Set 3 to Agent 6 and Agent 8 respectively. However in the context of a multi-
party interaction however, it will present the Trading Set based on the Agent
with which it has had the least history – in this case Agent 4.
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Table 12. Agent meetings: trading sets

Trading
Set

# of Pre-
vious Meet-
ings

Characteristics of
Assets in Trading Set

Asset in Agent 1’s
Trading Set

0 0 ∼ 1 Abstraction & Codifica-
tion =4

N3, N4

1 2 ∼ 4 Both Abstraction &
Codification >=3

All above + N2, L7, L8, L9,
L10, L11

2 4 ∼ 7 Both Abstraction &
Codification >=2

All above + N1, N5, L3, L4,
L6

3 8 ∼ 12 Both Abstraction &
Codification >=1

All above + N7, N8, N11,L1,
L2

4 13 ∼ 18 All Assets All above + N9, N10

Thus at the Meeting Agent 1 will only make available Trading Set 2 for
inspection. Agent 4, Agent 6 and Agent 8 will also present their Trading
Sets. Additional costs are then incurred - Agent 1 incurs a Presentation cost
based on presenting Trading Set 2, and it incurs an Inspection cost based on
inspecting the Trading Sets of Agent 4, Agent 6 and Agent 8.

After Agents have inspected the Trading Sets of all participants, the meet-
ing has the opportunity to decide if it wishes to combine in a Merger, or create
a Joint Venture. If they choose not to do so, the Agents are then free to engage
in bilateral transactions with the participants. The bonus of the multi-Agent
meeting is that because they have all paid their presentation and inspection
costs, they will be able to engage in three separate bilateral meetings, having
only paid the presentation cost once.

Note that there is no requirement for Agent 1 to collaborate with either
Agent 4, Agent 6 or Agent 8, it can do so, with all of them, some of them
or none of them. The multi-Agent meeting only serves to amortize to cost of
presentation over a larger audience, and really only becomes effective when
all parties have a similar history of collaboration/meetings (otherwise the
Agent can only present the most Abstract and Codified Assets and is unable
to collaborate with its more concrete and uncodified Assets).
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Abstract. SeaSpeak is “English for maritime communications.” It is a restricted,
specially-designed dialect of English used in merchant shipping and accepted as an
international standard. This paper discusses, in the context of SeaSpeak, two key
problems in the formalization of any such restricted, specially-designed language,
viz., representing the illocutionary force structure of the messages, and formaliza-
tion of such reference-fixing devices from ordinary language as pointing and use of
demonstratives. The paper conducts the analysis in terms of Kimbrough’s FLBC
agent communication language.

1 Introduction

SeaSpeak is known as “English for maritime communications.” It is the
language of merchant shipping, a restricted, artificial, specially-developed,
English-like language adopted in 1988 by the International Maritime Orga-
nization (IMO) of the United Nations for use in ship-to-ship and ship-to-
shore communications. Part of the significance of SeaSpeak’s success is that
it demonstrates the value and use of specially-built artificial languages. The
question then naturally arises of whether a designed special language might be
fully formalized and used in machine-to-machine or human-to-machine com-
munication. We have been intrigued by such possibilities and in consequence
have been investigating SeaSpeak to this end.1 In what follows we focus on
two aspects of the larger programme of formalizing special languages:

• Illocutionary forces
• Reference fixing

These aspects of language, discussed in detail herein, are quite common.
They occur in SeaSpeak, but also in nearly any special language that will be
interesting. Our chosen vehicle of formalization, Kimbrough’s FLBC, is also a

1 [KLPY03,KY04]
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special case. SeaSpeak and its ilk present an important test challenge for any
agent communications language (ACL, of which FLBC is an instance). We
shall present evidence in the form of analysis that indeed FLBC is adequate
to the problems of representing illocutionary forces and fixing reference in
SeaSpeak. The exercise and the lessons learned will apply in general to ACLs.

That is the overview. Details begin in the next section with some back-
ground on special languages.

2 Special Languages

Language enables communication. Languages inhibit it, for communication
requires a common language and the cost of learning multiple languages raises
an often unsurmounted barrier. Having a lingua franca, a general language
known universally, would afford universal communication. At various times
and places certain natural languages, such as Greek, Latin, Mandarin, and
French, have approximated universal communication vehicles.

Today English in some form appears headed towards being the universal
language of commerce and affairs. The fact remains, however, that universal
proficiency in English is not around the corner. Further, even with univer-
sal fluency in English there are, and will always be, realms of discourse for
which precise and accurate communication is required concerning specialized
topics. It is not enough to have basic knowledge of English if the purpose of
communication is air traffic control, navigation, law enforcement, and so on.
In these and many other realms of discourse there exist specialized concepts
and vocabulary that have to be mastered in the interests of efficient and ef-
fective communication. General fluency in English is not sufficient. Neither
is it necessary.

Special languages can in principle be created that are relatively easy to
learn and that are sufficiently expressive for particular purposes. They need
be mastered only by a given community of interest. This idea has had an
extensive history and considerable uptake, and it goes by a number of names.
Including planned languages, the literature uses a number of other terms and
recognizes a number of related concepts:2

artificial languages, constructed languages (conlangs), invented lan-
guages, imaginary languages, fictional languages, etc., including uni-
versal languages, auxiliary languages, interlanguages or interlinguas,
international languages; and also including logical languages, number
languages, symbolic languages, etc. [Har02]

as well as others, including restricted languages, designed languages, and sub-
languages.

2 Many of these terms denote different, albeit related, concepts. We shall use special
language as an umbrella term.
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Informally, we can define a sublanguage as the language used by a par-
ticular community of speakers, say, those concerned with a particular
subject matter or those engaged in a specialized occupation.[Sag86,
page 2]

Several artificial sublanguages have been fielded, and are successfully in use
today.3 Examples include AirSpeak, SeaSpeak, PoliceSpeak, and LinguaNet.4

These languages were designed to be easily learned so that they can be spoken
and heard effectively. Their employment and continued development today
suggests they will be useful in the longer term. They employ a controlled, or
restricted, vocabulary. It is typically true of sublanguages that their

. . . grammar contains additional rules not satisfied by the language
as a whole. It also happens that some of the grammatical rules of the
language as a whole disappear, i.e., do not apply, in a sublanguage.
Since the sublanguage must satisfy the rules for the language, this
disappearance is possible only if the rules are satisfied vacuously in
the sublanguage, i.e., if certain word classes or well-formed sequences
or transformations do not appear in the sublanguage. [Har68, page
154]

Telegraphic languages, yet more austere forms of sublanguage, are also widely
in use and readily display the simplified, constrained grammar characteristic
of sublanguages. We note that telegraphic language and telegraphic speech
are also terms of art in the field of child development, and it is here that the
terms obtained their original meaning.

When children initially produce grammar, their language often sounds
rather like the abbreviated language of telegrams (“Daddy gone,”
“Mummy shoe.” “See big car”). This is why, in the past, this type of
early output was referred to as telegraphic speech. At this stage, tod-
dlers omit indefinite and definite articles, as well as prepositions and
the like. They also leave out morphemes like plural “s,” progressive
“ing,” and possessive “’s.” [KK01, page 94]

Telegraphic languages are not unknown among adults. Fitzpatrick et al.
[FBH86] present a particularly clear case study of a telegraphic language used
in the U.S. Navy. The stylization apparent in examples from this language—
e.g., “72 manhours expended,” “Stock requisition shipped,” “Work request
submitted,” “Improper repair work performed,” “No parts required” [FBH86,
page 45]—will be familiar to the reader.5

3 We shall not discuss various more ambitious efforts to develop general-purpose
universal languages. Esperanto is perhaps the most well-known candidate lan-
guage. For relevant background see [Lar85,Mac30,Ogd38,Ric43,Swa80]; also, Har-
rison [Har02] has put together a very useful bibliography.

4 See [Ben03], [Joh98], [Joh02], [Pro03], [Lin03], and [J+93] for an overview.
5 Portions of this section contain a revised version of material appearing in

[KLPY03].
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3 Two Problems

Can special languages—especially artificial languages, sublanguages, and tele-
graphic languages—be formalized so that machines may productively conduct
inferences using them? The question is significant both theoretically and and
for applications, as has been noticed, e.g.,

An interesting suggestion which could have widespread applications is
that particular subdisciplines do in practice use a limited set of gram-
matical structures as well as a restriced vocabulary: a sublanguage or
metalanguage, easily comprehended by those within the subdiscipline
but foreign to the layman. Because of the limited number and special-
ized nature of the grammatical structures found it becomes possible
to apply content analysis techniques to texts within the subdiscipline
with success consistently. The particular subdiscipline illustrated is
pharmacology, but it seems likely that the approach would be valid in
any of the ‘hard’ sciences with a clearly defined vocabulary (jargon!)
and generalized methodology. [Fos82, pages 51–2]

(See also [Sag75].) Theoretically, the question presents an apt challenge for
ACLs (agent communication languages), including the various projects to cre-
ate FLBCs (formal languages for business communication), and the various
XML representation efforts. Can the ACLs adequately represent a given arti-
ficial language? If not, how might they be improved? What does formalization
of artificial languages tell us about requirements for ACLs? From a practical
point of view, formalization could afford human-machine and machine-human
communication, including language translation and error detection, as well
as machine-machine communication, with its attendant possibilities of reduc-
ing time and labor costs. Perhaps of most immediate use, formalization and
structuring present opportunities for automated recovery and discovery of
information.

These are large and fascinating questions, which succinctly put the con-
text for the results reported in this paper. We essay here to make a mod-
est, yet discernible, contribution to the advance on them. We shall examine
one (informal) artificial language—SeaSpeak—and one variety of ACL (agent
communication language), Kimbrough’s FLBC, based on event semantics,
thematic roles, and disquotation of propositional content. (For background
on FLBC see in this volume “A Note on Modeling Speech Acts as Signalling
Conventions” [JK04] and “Practical Contract Storage, Checking, and En-
forcement for Business Process Automation” [AEB04].6

Specifically, SeaSpeak is a notable example of an artificial sublanguage,
which is established and used successfully, and which might benefit from for-
malization. We have been investigating the prospects for such a formalization

6 Other references for FLBC include [Kim90], [Kim99], [KM97], [KT00], [Kim01],
[Kim02], [KLPY03], and [KY04].
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(see [KLPY03,KY04]), with positive results, both for SeaSpeak in particular
and for artificial sublanguages more generally. In what follows, we address
in detail two key technical issues whose resolution is essential for any pro-
gramme of formalizing communication among artificial (and human) agents
in other than very restricted domains. The two issues are:

• The speech act structure of SeaSpeak messages.
• Dynamic reference fixing in SeaSpeak messages.

Central to speech act theory7 is the distinction between the illocution-
ary force and the propositional content of an utterance. This distinction,
commonly thought to originate with Austin [Aus62], goes back at least to
Charles Sanders Peirce, in the nineteenth century.

Like other philosophers of thought and language, Peirce distinguished
the force of an utterance from its propositional content. A proposition
can be ‘affirmed, denied, judged, doubted, inwardly inquired into, put
as a question, wished. . . ’ Assertion of a proposition involves ‘the
deliberate exercise, in uttering a proposition, of a force tending to
determine a belief in it in the mind of the interpreter’ . . . . Asser-
tion involves ‘taking responsibility’ for the truth of the proposition.
[Hoo02, page 62]

In any event, under the perspective of speech act theory, which is widely
accepted and which we accept,8 every utterance (in any language) may be
analyzed as having an F (P ) structure: an illocutionary force, F , is applied to
a propositional content, P . In general, illocutionary forces and propositional
contents are in a many-to-many relationship. One force—e.g., asserting, di-
recting, promising—may be applied to many propositional contents—e.g., ‘I
will arrive tomorrow’, ‘The tide will come in at 6 p.m.’, ‘An act of nuclear
terror will strike New York City within 10 years’. Similarly, one propositional
content may be the object of several different illocutionary forces. One may
assert it, deny it, promise it, and so on. If this most basic tenet of speech
act theory is correct, then it should be possible to recognize speech acts in
SeaSpeak and to say something in general about their structures. In fact, as
we shall see, SeaSpeak presents a happy confirmation of the F (P ) thesis and,
as we shall argue, the SeaSpeak illocutionary forces (called message markers
in SeaSpeak) may be aptly represented in FLBC.

The problem of dynamic reference fixing arises outside the perspective
of speech act theory. We present and discuss the problem in depth in §6.
Briefly, it is this. In communicating we wish to talk about things, about
7 Classically, [Aus62], [Lev83], [Sea69], and [SV85]; [BH79] is useful; [LAP04], and

[KM97] present application-oriented summaries.
8 The Language/Action Perspective community has been holding workshops and

producing papers for some years now, promoting and articulating applications of
speech act theory. See [LAP04].
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shoes, ships, sealing wax, cabbages, kings, kinghood, numbers, beliefs, and
even things that do not exist such as unicorns. To talk about any thing we
need to make reference to it. If the thing has a proper name, this is relatively
unproblematic. Usually, however, we make reference to something with a the-
expression—as in The cat is on the mat—or some similar device. The problem
of dynamic reference fixing for an ACL is the problem of formalizing such
expressions as The cat is on the mat in such a way that reference is successful
and recoverable by the addressee of the utterance. SeaSpeak is replete with
such expressions, particularly the-expressions, and so provides an opportune
context in which to tackle this problem.

All of this requires a bit of background on SeaSpeak. To that now.

4 Background on SeaSpeak

SeaSpeak was developed and deployed in consequence of vastly increased
shipping during the 1960s and 1970s. At the same time, the distribution of
nationalities of ships’ officers gradually changed from roughly 80% English-
speaking and 20% other to roughly 80% other and 20% English-speaking.
The need for regularization of practices in one language and the training of
officers in its use was therefore agreed, and English, already the language of
civil aviation, was chosen by the IMO.

During 1982–1983, SeaSpeak was created by specialists in maritime com-
munications and applied linguistics [Joh02]. SeaSpeak is a system for speech
communication, and it is intended for use in situations where it is essential
that communication should be as clear, brief and accurate as possible.

Like SeaSpeak, Airspeak and Policespeak are also special purpose sys-
tems for speech communication among targeted users. They are the special
languages of command and control where the utterances you make affect
something far away—applying to communication between ships, for air traffic
control and in police operations. Edward Johnson, Senior Fellow of Wolfson
College, University of Cambridge, U.K., has been a pioneer in the field of
operational and communication languages. Johnson was responsible for for-
mulating an international language for maritime communication, SeaSpeak
(1982), an air traffic pilot training communication program, AirSpeak (1986),
and a restricted operational language and set of procedures for police com-
munication, PoliceSpeak (1987).

SeaSpeak regulates ways of speaking and ways of establishing a conver-
sation. It defines a technical vocabulary. All messages begin with a message
marker that indicates the nature of what follows, such as advice, informa-
tion, instruction, intention, question, request, warning, or a response to one of
these. The definitive reference for SeaSpeak is the SeaSpeak Training Manual
[WGJS88], upon which we draw for our analysis and formalization.
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From a formalization perspective the central concept in SeaSpeak is the
message marker. The manual has this (and not much else) to say about
message markers in general.

Maritime messages transmitted over VHF should be short, accurate,
and relevant. Furthermore, messages should be transmitted in lan-
guage simple enough for a non-native speaker of English to compre-
hend without difficulty.
One useful means of making the language simpler is to indicate, at the
beginning of a message, what sort of message it is going to be. Thus,
if a question is going to be asked, the speaker simply says the word
‘QUESTION’ before the question itself. Similarly, if a piece of advice
is going to be given, the speaker says the word ’ADVICE’ in advance
of his message. There are just severn of these Message Markers and
after a little practice, learners should experience no difficulty in using
them.
These Message Markers have another function: that of imposing order
on the conversation, since each message marked in this way requires
a reply correspondingly marked (even if that reply is nothing more
than an acknowledgement of the message received). This procedure
helps to ensure that:
1. messages do not become confused with each other
2. each message is dealt with in turn
3. a participant receiving a reply knows which message is being

replied to.
[WGJS88, page 96]

SeaSpeak has only seven markers (with a mirroring reply-marker in each
case). The seven are [WGJS88, pages 96–7]:

1. Information (Information-Received)
2. Warning (Warning-Received)
3. Intention (Intention-Received)
4. Request (Request-Received)
5. Advice (Advice-Received)
6. Instruction (Instruction-Received)
7. Question (Answer)

SeaSpeak’s message markers are, as we shall analyze them, essentially speech
act operators or illocutionary force indicators. SeaSpeak sentences have, we
shall argue, the F (P ) structure posited by speech act theory. The F s of
SeaSpeak are its message markers. The content that they govern is simple in
form, although not entirely specified and closed. Here is a summary from the
training manual.



304 Steven O. Kimbrough and Yinghui Yang

1. SEASPEAK messages are formed entirely from words within the
English language.

2. The total vocabulary used in SEASPEAK comprises 3 kinds of
words and expressions:
(a) The vocabulary of ‘general’ English. Knowledge of the

non-specialized vocabulary of English is assumed, and so it is
not listed in the SEASPEAK Vocabulary.

(b) Words in general maritime use. These words occur fre-
quently in maritime communications, and are listed in Section
I, as Categorised General Maritime Vocabulary.

(c) Words in specialised maritime use. These words and ex-
pressions may occur only rarely in general maritime use, but
frequently in particular circumstances or for specific commu-
nication subjects. They are listed in Section II under the Ma-
jor Communications Subjects.

[WGJS88, page 160]

Item (2a) presents a particular challenge to formalization efforts. Just what
is the scope of ‘general English’? Examples are useful. Here and in the sequel
we will use italic font for messages in SeaSpeak. The following examples are
from [WGJS88, page 97].

1. QUESTION: What is your ETA at the dock entrance?
2. INSTRUCTION: Go to berth number: two-five.
3. ADVICE: Anchor, position: bearing: one-nine-four degrees true, from

Keel Point distance: one mile.
4. REQUEST: Please send, quantity: five acetylene cylinders.
5. INFORMATION: The pilot is waiting now, position: near buoy number:

two-six.
6. WARNING: Buoy number: two-five and buoy number two-six are unlit.
7. INTENTION: I intend to reduce speed, new speed: six knots.

We cannot fully address here the use of ‘general English’ in SeaSpeak. Instead,
we focus on formal analysis of the seven message markers and on dynamic
reference fixing, particularly use of the-expressions, as seen in the examples
above.9

5 Prototype Example: INFORMATION

Our purpose in this section is to present a prototype, or illustrative, exam-
ple of representing a SeaSpeak sentence in FLBC. Consider then the simple
SeaSpeak sentence:

9 Portions of this section contain a revised version of material appearing in
[KLPY03].
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SeaSpeak Sentence 1 INFORMATION: No vessels are at the anchorage.

We’ll begin by analyzing the content of the simple sentence, No vessels are at
the anchorage, deferring briefly discussion of the illocutionary force indicator,
INFORMATION. Thus,

SeaSpeak Sentence 2 No vessels are at the anchorage.

Note that the anchorage is a referring expression whose meaning cannot be
recovered from the bare sentence. To begin, we assume for the sake of the
example that a definite anchorage has been identified, called (having proper
name) XBar-Harbor-B. Later we will discuss at length our analysis of and
approach to such expressions as the anchorage and the harbor.

The first step in formalizing a given SeaSpeak sentence is to convert it to
more transparent forms, while remaining in natural (informal) language. The
alternative forms are called stylistic variants. They are intended to be ade-
quately similar in meaning (for the purposes at hand) to the original sentence,
while also being more transparent for purposes of formalization. In this ex-
ample we eliminate the referring the-expression in favor of its corresponding
proper name. The first stylistic variant is thus:

SeaSpeak Sentence 3 No vessels are located at XBar-Harbor-B.

Notice that sentence 3 is arguably a clearer version of sentence 2, since the
answer to the question Which anchorage? may be read off by inspection.
We need one further transformation. The result is rather stilted, but fits the
perspective of event semantics as deployed by FLBC.

SeaSpeak Sentence 4 (1) There is a state of being a vessel, s1, at this
time. (2) Nothing now in the vessel state, s1, is located at XBar-Harbor-B.

SeaSpeak Sentence 4 is a well-structured stylistic variant of a SeaSpeak
sentence; it does not constitute a complete SeaSpeak message, if only because
the speaker and addressee are not identified. Figure 1 contains a complete
representation (with comments) of a SeaSpeak message. Note that it is di-
vided into three parts:

1. Reference-fixing
2. Presupposition
3. Message body

Points arising:

1. Fully articulated the message body is

SeaSpeak FLBC Sentence 2 information(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧
Object(e1, �∀x(In(x, s1)→ ¬Located(x, a1))�)
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1. Reference-fixing
s = the speaker
a = the addressee
a1 = XBar-Harbor-B (the name of a particular anchorage)

2. Presupposition

(a) There is a state, s1, of being a vessel at this time:
vessel(s1)∧ Hold(s1, now)

3. Message body

(a) Propositional content.
∀x(In(x, s1) → ¬Located(x, a1))

(b) Illocutionary force.
Further, the utterance is in the class INFORMATION, which indicates its
illocutionary force. SeaSpeak FLBC Sentence 1 represents the INFORMA-
TION force for the utterance to hand, with φ serving as a place-holder for
the propositional content.
SeaSpeak FLBC Sentence 1 information(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, 	φ
)

Fig. 1. Basic example for FLBC representation of SeaSpeak INFORMATION mes-
sages

2. Rendered back into still stilted English, the message body says that e1 is
an INFORMATION utterance event, occurring now, whose speaker is s,
whose addressee is a, and whose propositional content is that no vessel is
located at a1.

3. SeaSpeak FLBC Sentence 2 is a formalized representation of SeaSpeak
Sentence 1 and its stylistic variants. None of these sentences is by itself a
complete message. Abstracting Figure 1 to a more general template, we
will use the message body item (#3) for representing SeaSpeak sentences.

4. The reference-fixing item (#1) of Figure 1 identifies the speaker, the ad-
dressee, and any other proper nouns (here, XBar-Harbor-B) required for
the message. Strictly speaking, this section could be eliminated and the
logical names, e.g., s, could be replaced throughout with their associated
proper names, e.g., Land’s End Radio. It is convenient, however, to retain
this section.

5. Use of the presupposition section will be discussed in the sequel. Here, it
is used to state the presupposition that there is a vessel state, in which
something might potentially be in. Again, this is not strictly speaking
necessary. One might drop this presupposition in favor of an expanded
(but not equivalent) SeaSpeak FLBC Sentence:

SeaSpeak FLBC Sentence 3 information(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1,
�∀x∀s1(vessel(s1)∧ Hold(s1, now) ∧ In(x, s1)→ ¬Located(x, a1))�)
(Note that now s1 is being used as a variable, not a constant.)
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In sum, the pattern in evidence here represents a SeaSpeak message as
a structure, consisting of a reference-fixing section, a presupposition section,
and a message body section, the latter being used to hold representations
of particular SeaSpeak sentences. We devote the balance of this paper to
articulating this pattern with further examples and in response to certain
problems. The bulk of the problems we address fall into the category of
how reference (to external objects) may be fixed in an automated or semi-
automated system. We finessed that issue for the sake of the example in the
present section. We now address it directly.

6 Problems of Reference Fixing

Ordinary discourse, and certainly SeaSpeak discourse, is replete with refer-
ences to entities of various sorts, including particular objects, places, times,
sounds, happenings, lengths, performances, fictional characters, geographi-
cal objects, and social entities (cf., [Jac02, pages 300–3]). Consider a simple
example from ordinary language:

• The cat is on the mat

Both the cat and the mat are referring expressions. Which cat? Which mat?
These references have to be adequately fixed if the hearer is to understand
the sentence. In human–human discourse we have a number of devices we
employ, often automatically and without deliberation or even awareness, so
that both speaker and hearer will know what the sentence is about. Thus,
e.g., the cat might harken back to an earlier part of the conversation, or a
cat might be pointed to (in some way or another) by the speaker at the time
of sentence utterance in such a manner that the speaker has good reason
to believe that the hearer has “gotten the point.” Similarly, the mat might
refer by conventions of discourse to a particular mat identified earlier in the
conversation.

The subject of how reference is fixed in ordinary discourse is a large and
fascinating one. Our concern here is the more limited one of how this might
be achieved in machine–to–machine (or process–to–process) discourse using a
formal language. How might one process point to something in the world and
have the other process be able to discern the object of the reference?10 We
turn now to the-expressions, which shall constitute the focus of our attention
on these matters.

The word the is not always unproblematic, especially in the present con-
text. Consider these typical SeaSpeak sentences:

10 Note we say discern rather than understand. Computer processes supporting
communication need not ‘understand’ messages, whatever that murky term may
mean. If, however, a message is sent referring to an object, the receiving process
will need to pick it out, distinguish it, discern it.
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SeaSpeak Sentence 5 QUESTION; What is your ETA at the dock en-
trance? [WGJS88, page 97]

SeaSpeak Sentence 6 INFORMATION: No vessels are at the anchorage.
[WGJS88, page 101]

SeaSpeak Sentence 7 INFORMATION: The icebreaker intends to assem-
ble the convoy at time: zero-five-three-zero GMT. [WGJS88, page 101]

SeaSpeak Sentence 8 INFORMATION: The casualty is approximately, po-
sition: North distance: three miles from you. [WGJS88, page 101]

The first uses the dock entrance to refer to a particular dock entrance.
Which one? The second sentence uses the anchorage in referring to a specific
anchorage. Again, which one? In order for communication to be entirely suc-
cessful the addressee must be able to ascertain, or pick out, the particular
dock entrance or anchorage referenced by the speaker. How does this happen?
How could this be brought about in an automated (or partially automated)
context, as is under discussion here?

If the referents—the dock entrance and the anchorage—are given proper
names—say Dock Entrance A and Anchorage D—and these are known and
agreed upon prior to communication, then the problem is greatly simplified.
Instead of speaking as above, SeaSpeakers could talk as follows.

SeaSpeak Sentence 9 QUESTION: What is your ETA at Dock Entrance
A?

SeaSpeak Sentence 10 INFORMATION: No vessels are at Anchorage D.

This is exactly what we did in §5, naming the anchorage with XBar-Harbor-
B. More generally, it is certainly possible to construct antecedently a table
of proper names and their meanings, and to include this table in the working
definition of a communications language, whether it be informal, as in Sea-
Speak, or formal as in an FLBC. In the case of Maritime communications,
listing all ships, harbors, lighthouses, and officers in this way would no doubt
be useful. Practically, however, the approach has its limitations. Harbors and
lighthouses may be more or less permanent, but ships and officers come and
go. Ships may be renamed. Officers may fall ill during a voyage and new of-
ficers be declared. How will the list be maintained, how will the language be
updated, and how will the updates be promulgated? Making matters worse,
many of the things that need to be discussed are ephemeral: storms and other
weather patterns, accidents and other incidents at sea, and so on. It is not a
practicable possibility to name antecedently such referents as the storm in

SeaSpeak Sentence 11 QUESTION: When will the storm arrive?
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In natural language—spoken and written, including sublanguages such as
SeaSpeak—the complications of reference fixing are manifold. This creates
enormous difficulties for information retrieval, as is well known and as is so
charmingly described in the following passage from a famous empirical study.

Sometimes we followed a trail of linguistic creativity through the
database. In searching for documents discussing “trap correction”
(one of the key phrases), we discovered that relevant, unretrieved
documents had discussed the same issue but referred to it as the
“wire warp.” Continuing our search, we found that in still other doc-
uments trap correction was referred to in a third and novel way: the
“shunt correction system.” Finally, we discovered the inventor of this
system was a man named “Coxwell” which directed us to some docu-
ments he had authored, only he referred to the system as the “Roman
circle method.” Using the Roman circle method in a query directed
us to still more relevant but unretrieved documents, but this was not
the end either. Further searching revealed that the system had been
tested in another city, and all documents germane to those tests re-
ferred to the sysem as the “air truck.” At this point the search ended,
having consumed over an entire 40-hour week of on-line searching, but
there is no reason to believe that we had reached the end of the trail;
we simply ran out of time. [BM85]

Our problem is akin to, yet distinct from, the information retrieval problem.
The latter aims at finding multiple references to a common object. The ques-
tion before us is how a speaker may establish reference to an object in such
a way that the addressee will be able to distinguish, pick out, establish her
own reference to the object.11

In seeking to formalize and automate it will be helpful to examine how
reference is fixed in natural language, for the devices employed there, or some-
thing like them, may prove useful in our context. Linguists and philosophers
have discerned a number of reference-fixing devices in natural language, in ad-
dition to the use of proper names, already noted. For present purposes, these
devices may be divided into descriptions and indexicals. Reference by de-
scription occurs when the speaker is able to describe an object with precision
adequate for the purposes to hand, without resorting to a proper name (of
the object at the time of the utterance). The notorious example of Prince, a
rock musician who unnamed himself and took on a symbol (different name?),
is illustrative. Speakers quite successfully referred to him by (definite) de-
scription: the artist formerly known as Prince. Accepting for the moment
11 Objects should be understood in a broad sense, to include events, processes, ac-

tions, social conventions, and so on, as well as physical objects such as shoes,
ships, and sealing wax. Also, we do not say or require that the addressee ‘under-
stand’ what the speaker is talking about, whatever that may mean. The question
is whether the addressee can, operationally, identify the referent. See the article
by Jones and Kimbrough in this volume for a discussion of signalling [JK04].
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Russell’s analysis [Rus05], “The artist formerly known as Prince is giving a
concert in Philadelphia tomorrow” will be true just in case:

1. There exists an artist formerly known as Prince,
2. There is only one such artist, and
3. That artist is giving a concert in Philadelphia tomorrow.

(Further complicating the matter, I am told that as of the date of this writing,
29 August 2004, the fellow in question has reverted to calling himself Prince.
Is our sentence still true? Well, suppose that Bobby Short, who has never
changed his name, is playing at the Café Carlisle tonight. Is it true to say
“The artist formerly known as Bobby Short is playing at the Café Carlisle
tonight”?)

Besides describing things, the other main reference-fixing device, and per-
haps a more basic one,12 is simply to point to them, to indicate them in one
way or another. This might be done non-verbally, say by pointing, nodding,
or turning one’s head. When it is done verbally, with language, we say that
indexicals are used. Among them we will count proper names and pronouns.
In addition, the demonstratives—in English, this, that, these, and those—are
widely used in natural language. Here is an example from SeaSpeak, used for
identifying the speaker over a public radio channel.

SeaSpeak Sentence 12 This is Land’s End Radio. [WGJS88, page 39]

Interestingly, however, the SeaSpeak manual [WGJS88] does not have other
kinds of examples using demonstratives. (The above form is used throughout
to identify speakers.)

The use of the, as in SeaSpeak Sentences 5–8, remains unresolved. What
are we to make of it? How are we to analyze it, given the linguistic and logical
concepts described above?

Note that these SeaSpeak Sentences contain locutions that resemble defi-
nite descriptions:13 the dock entrance (but there are many docks and each as
at least one entrance), the anchorage (but there are many anchorages), the
icebreaker (but there are many icebreakers), the convoy, and the casualty. Our
suggestion is that reference gets fixed antecedently to these locutions, which
may then be interpreted as definite descriptions on the presupposition that
the necessary reference-fixing has been done. One might call this a distributed
definite description. The suggestion is illustrated, and we think confirmed,
by an example from the SeaSpeak manual [WGJS88, page 154]. See Figure
2.

12 Since Peirce there has been a tradition of viewing demonstratives as the most
basic form of reference [Hoo02], but that view has not gone unchallenged, e.g.,
[Kin01].

13 The resemblance persists across multiple accounts of definite descriptions, includ-
ing Russell’s [Rus05], Strawson’s [Str71], and Donnellan’s [Don66] .
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Kotka Radio All ships in Gulf of Riga, all ships in Gulf of Riga.
This is Kotka Radio, Kotka Radio.
Ice information, area: Gulf of Riga.
INFORMATION: The ice type is: winter fast ice,

ice change: no change,
ice navigation: ice-breaker assistance is necessary

Fig. 2. Distributed definite description example from SeaSpeak

The recommended SeaSpeak message structure is on display in Figure
2. Messages begin with header information and are followed by message ele-
ments, each of which begins with one of the message markers described above.
Here in Figure 2 we see a header that makes three points:

1. “All ships in Gulf of Riga.” This identifies the addressees. The message
is being broadcast on an open radio channel.

2. “This is Kotka Radio.” This identifies the speaker.
Note: Identifying the addressee(s) and the speaker has to be done in the
header of every message.

3. “Ice information, area: Gulf of Riga.” This serves to specify what we
call the context of focus. The speaker is announcing, declaring, that what
follows is
(a) Information pertaining to ice
(b) Which ice is in the Gulf of Riga
Note: Specifying the context of focus occurs in some but not all message
headers (and messages).

The INFORMATION then consists of three assertions:

1. The ice is (of type) winter fast ice.
2. The ice has not changed recently.
3. Ice-breaker assistance is required for those who wish to navigate the ice.

In each case, we observe, the ice may be interpreted as the ice in the Gulf of
Riga, producing the following stylistic variants of the three assertions:

11. The ice in the Gulf of Riga is (of type) winter fast ice.
21. The ice in the Gulf of Riga has not changed recently.
31. Ice-breaker assistance is required for those who wish to navigate the ice

in the Gulf of Riga.

If ice were a singular count term (e.g., the King of France, the man drinking
a Martini), then one’s preferred analysis of definite descriptions would be
appropriate (see below). In our example, however, ice is a mass term. Conse-
quently, we propose the analysis evidenced in the following stylistic variants.
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12. There is ice in the Gulf of Riga and it is (of type) winter fast ice.
22. There is ice in the Gulf of Riga and it has not changed recently.
32. There is ice in the Gulf of Riga and ice-breaker assistance is required for

those who wish to navigate it.

We note that a stronger interpretation might be preferred:

13. There is ice in the Gulf of Riga and all of it is (of type) winter fast ice.
23. There is ice in the Gulf of Riga and all of it has not changed recently.
33. There is ice in the Gulf of Riga and for all of it, if you wish to navigate

it, then ice-breaker assistance is required.

Other variants are possible. In what follows, unless otherwise noted, we em-
ploy variant 2.

7 Formalizing Distributed Descriptions into FLBC

Our principal goal in the present section is to combine the example from §5
with the analysis of the-expressions from §6. The result will be a structured,
generalizable, and formal SeaSpeak message structure, akin to that in Figure
1, but incorporating distributed definite description.

7.1 Definite Descriptions and Nonexistence

Russell’s analysis of definite descriptions is an excellent starting place for the
method we shall employ here. Briefly, a definite description such as The King
of France is bald would be analyzed as There is exactly one thing that is King
of France and it is bald. Formally,

∃x(F (x) ∧B(x) ∧ ∀y(F (y)→ x = y)) (1)

and similarly for other examples. Russell introduced useful notation for the
x such that φ(x), viz., ( ιx)φ(x). Thus, Expression 1 may be abbreviated as

B(( ιx)F (x)) (2)

This assumes an axiom schema permitting such formulations:14:

y = ( ιx)φ(x)↔ ∀x(φ(x)→ y = x ∧ φ(y)) (3)

Russell’s elegant theory has not gone uncriticized. From Expressions 2
and 3 it follows that ∃xF (x), i.e., that something is King of France. This
might be appropriate and perhaps in the present example it is. Perhaps, The
King of France is bald is false just because (or sufficiently because) there is
no King of France.
14 Cf., [Lam91].
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There cases in which we wish to speak, and think we can speak truly, about
entities that do not or might not exist (in any straightforward way). The
surviving partner in Spade & Archer solved the murder is—or can be taken
as—true, even though we are talking about events in a work of fiction (The
Maltese Falcon by Dashiel Hammett). If it is not true, then is it false? Such
considerations lead naturally to the motivations underlying free logic, the
variety of first-order logic in which names are free of existential commitment.
Using the standard notation—E!—and definition of ‘exists’

E!(y)↔ ∃x(x = y) (4)

the axiom schema in Expression 3 may be modified to be conditioned on the
existence of the entity in question [Lam91]:

E!(y)→ y = ( ιx)φ(x)↔ ∀x(φ(x)→ y = x ∧ φ(y)) (5)

Using expression 5 and given B(( ιx)F (x)) it follows that E!(y)→ F (y), but
in free logic, the inference from F (y) to ∃xF (x) is blocked absent E!(y).

We shall steer a course permitting, but not requiring, free logic. We accept
Expression 3 as an axiom schema or definition, but we require that in an
formula of the form y = ( ιx)φ(x) that y be instantiated to a name, e.g., a1.
From a1 = ( ιx)φ(x) and expression 3 it follows that φ(a1) In standard logic
this will entail ∃xφ(x) and in free logic this will entail only E!(a1)→ ∃xφ(x).
This affords us the flexibility of either using or discarding free logic as the
case mandates.

When would a SeaSpeaker want to employ free logic and names for nonex-
istent things? It will often be useful to do so. Example: The next arrival of
the Rose Maru is scheduled for tomorrow. Suppose that the Rose Maru fails
to arrive. The sentence might still be true and if not perhaps the speaker is
guilty of lying. Free logic will help get the inferences right and is convenient
for this purpose.

7.2 Example

Figure 3, page 314, presents an FLBC representation of a SeaSpeak IN-
FORMATION message with distributed definite description used for a the-
expression. See Figure 2 for the the-expression in question. Figure 3 should
be compared with Figure 1, page 306 in which a proper name is represented
instead of a the-expression.
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1. Reference-fixing
s = the speaker
a = the addressee

2. Presupposition

(a) a1 is the Gulf of Riga region:
a1 = ( ιx)Location(x, ‘Gulf of Riga’)

(b) a1 is the focus of context for utterance e1:
Focus(e1, a1)

(c) There is a state, s1, of being ice at this time:
ice(s1)∧ Hold(s1, now)

(d) The state s1 is located at a1:
Location(s1, a1)

3. Message body
(a) Propositional content.

There is ice in the Gulf of Riga and it is of type winter fast ice:
∃x(In(x, s1)∧ Type(x, winter-fast-ice))

(b) Illocutionary force.
Further, the utterance is in the class INFORMATION, which indicates its
illocutionary force. SeaSpeak FLBC Sentence 1 represents the INFORMA-
TION force for the utterance to hand, with φ serving as a place-holder for
the propositional content.
SeaSpeak FLBC Sentence 4 information(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, 	φ
)

Fig. 3. FLBC representation of a SeaSpeak INFORMATION message with dis-
tributed definite description used for a the-expression

Points arising:

1. The substantive difference, between the message in Figure 3 (containing a
the-expression) and the message in Figure 1 (with a proper noun instead
of a the-expression), lies in section 2, holding the presuppositions.

2. Item (2a) of the message in Figure 3 uses a Russellian definite description
to create a name—a1—for the Gulf of Riga location, to be used as the
context for the message.

3. Item (2b) declares that the contextual focus of the e1 event (keying the
information illocutionary force verb) is to be a1, the Gulf of Riga location
(as distinct from the Gulf of Riga itself).

4. Item (2c) is similar to item (2a) in Figure 1.
5. Item (2d) has no analog in Figure 1. It enforces the declaration of focus

in item (2b).
6. With the presuppositions in order, the SeaSpeak FLBC Sentence is quite

simple. In fact the illocutionary force components are identical in Figures
1 and 3.
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8 Analysis of the Remaining SeaSpeak Message
Markers

We have so far given two example analyses for SeaSpeak sentences with the
INFORMATION message marker. It remains to discuss the other six message
markers.

8.1 SeaSpeak WARNING Message Marker

In general we treat warning as an assertion with the presupposition that the
speaker thinks there is related danger for the addressee.
Example sentence:

SeaSpeak Sentence 13 WARNING: The Leading Lights are not lit.

Stylistic variant:

SeaSpeak Sentence 14 WARNING: The Leading Lights are unlit.

Assumption: It is the Leading Lights of the ship Paisano that are not lit.
Figure 4 presents the FLBC message structure (with comments) for our

WARNING example.
The points we wish to make about the-expressions have now been made.

Consequently, for the remaining SeaSpeak message markers we will focus only
on the treatment of the markers, eschewing treatment of the full messages,
as in Figure 4. This will simplify and, we hope, clarify what follows.

8.2 SeaSpeak INTENTION Message Marker

Example sentence:

SeaSpeak Sentence 15 INTENTION: I intend to reduce speed, new speed
six knots.

Under the analysis we offer, to say you intend that P amounts to asserting
that you will see to it that P . Other analyses are possible and merit investi-
gation, although the one on display is plausible, natural and, we think, quite
serviceable. Our analysis, then, suggests the following stylistic variant:

SeaSpeak Sentence 16 INTENTION: I assert that I will see to it that a
speed reduction event occurs, with the new speed being six knots.

Implicit in the context is that the speaker is referring to the speed of a
particular vessel. Let us say it is the Paisano, a1, as in Figure 4. Here, e3
will be a speed-reduction event, whose Theme and Focus is a1, the Paisano.
What it is that is supposed to be seen to, then, is
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1. Reference-fixing
s = the speaker
a = the addressee
a1 = Paisano (the registered ship of that name)
LeadingLights(a2) (a2 has the property of being Leading Lights.)

2. Presupposition

(a) The theme or topic of this message is a2:
Theme(s1, a2)

(b) The focus of context for utterance s1 is a1:
Focus(s1, a1)

(c) The theme a2 is located at a1:
Location(a2, a1)

(d) The s1 state is dangerous for a, the addressee:
dangerous(s1)∧ Benefactive(s1, a)

3. Message body
(a) Propositional content.

a2 (having the property of being Leading Lights located on the Paisano)
is unlit:
(unlit(s1)∧In(a2, s1))

(b) Illocutionary force.
Further, the utterance is in the class WARNING, which indicates its illo-
cutionary force is assert.
SeaSpeak FLBC Sentence 5 assert(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, 	 (unlit(s1)∧In(a2, s1)) 
)

Fig. 4. FLBC representation of a SeaSpeak WARNING message with a the-
expression

SeaSpeak FLBC Sentence 6 reduce-speed(e3)∧ Theme(e3, a1)∧
Cul(e3, now)

Seeing to it that is represented by the stit predicate, the FLBC analog of
the stit operator in action logic.15 The FLBC Stit Schema—

FLBC Schema 1 (FLBC Stit Schema) stit(e1) ∧ Agent(e1, j) ∧
Cul(e1, t1) ∧ Content(e1, �φ�)
—is rendered into English as Agent j sees to it at time t1 that φ. Thus, adding
the stit aspect to the speed reduction we get:

SeaSpeak FLBC Sentence 7 stit(e2) ∧ Agent(e2, s) ∧
Cul(e2, now) ∧ Content(e2, �reduce-speed(e3)∧ Theme(e3, a1)∧ Cul(e3, now)
�)
on the assumption that the speaker is s. Finally, we wrap all of this in an
assertion to get:
15 See discussion in [JK04], this volume, also [KY04].
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SeaSpeak FLBC Sentence 8 assert(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, � stit(e2) ∧ Agent(e2, s) ∧
Cul(e2, now) ∧ Content(e2, �reduce-speed(e3)∧ Theme(e3, a1)∧
Cul(e3, now) �) �)

8.3 SeaSpeak REQUEST Message Marker

The SeaSpeak manual [WGJS88, page 97] has this to say about requests:

The word REQUEST will be used to signal messages which mean
‘I want something to be arranged or provided’ as in ships’ stores
requirements, bunkering, permission, . . . It is commonly accompanied
by the word Please, e.g.

REQUEST: Please send, quantity: five acetylene cylinders.

SeaSpeak REQUESTs work, we think, more or less as ordinary requests as
treated in the speech act literature. More specifically, a request differs from
a command in that the request does not invoke any extraordinary authority.
Recall the dialog in the movie Casablanca.

LASZLO
Captain Renault, I am under your
authority. Is it your order that we
come to your office?

RENAULT
(amiably)

Let us say that it is my request.
That is a much more pleasant word.

LASZLO
Very well.

(See http://www.geocities.com/classicmoviescripts/ for a link to the script.)
Letting φ represent the propositional content of a REQUEST, we model

the illocutionary force as follows:

SeaSpeak FLBC Sentence 9 request(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, � φ �)

We note that in the above example—Please send, quantity: five acety-
lene cylinders—it is not specified to whom the cylinders should be sent.
Under the FLBC representation this would be indicated (or not) in the
propositional content, φ, or in the presupposition. If, for example, the ad-
dressee is to send the material to the speaker, the content would include
this fragment: send(e1)∧ Agent(e1, a) and the presupposition could include
Benefactive(e1, s), perhaps by default.
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8.4 SeaSpeak ADVICE Message Marker

The SeaSpeak manual [WGJS88, page 97] has this to say about the
ADVICE marker:

The word ADVICE will be used to signal suggestions, e.g.

ADVICE: Anchor, position: bearing: one-nine-four degrees
true, from Keel Point distance: one mile.

An advice, then, is a suggestion. We broadly agree with Searle and Van-
derveken [SV85, page 202] that a suggestion in this sense is a kind of request
(their category is directive). As we model them, suggestions (and SeaSpeak
ADVICEs) are requests with the presumption that the beneficiary is the ad-
dressee. Thus, ADVICE comes with the presupposition that the event keying
the propositional content, say e2, benefits the addressee, a: benefits(e2, a).
Note that Benefactive is a thematic role and does not imply anything good (or
bad) for anyone. Even in ordinary English we can say “Brenda was the ben-
eficiary of his tongue lashing and assorted insults” without suggesting there
was anything good for Brenda in this. The special predicate benefits(x, y) is
to be interpreted as indicating a good of some kind, that y benefits (would
benefit) from x occurring. Further, this is a general presupposition, unlike
the referential examples above, in that it is not specific to the message to
hand. Thus, it may be given as a general rule or axiom schema as part of
the interchange agreement governing the communications. For development
of this idea see [JK04] in this volume.

8.5 SeaSpeak INSTRUCTION Message Marker

The SeaSpeak manual [WGJS88, page 97] has this to say about the IN-
STRUCTION marker:

The word INSTRUCTION will be used to signal commands, e.g.

INSTRUCTION: Go to berth number: two-five.

We analyze commands as requests (or directives) in which the speaker invokes
an authority and, if all goes well, puts the addressee under an obligation to
honor the request. (See [JK04] in this volume for elaboration.) However, that
there is an authority invoked and that the addressee is under an obligation
need not be explicitly stated in the message. These are general conditions and
they should be inferred from general rules governing the conversation. Conse-
quently, our representation task here (and the burden on the communicants)
is much reduced.

Even so, it will helpful for the speaker to declare the authority he is claim-
ing. A simple and workable way to do this is to employ a special predicate,
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AuthorityTitle(x, y, z),
with interpretation x has and invokes the authority of y for the sake of z.
Thus, for example, AuthorityTitle(s, ‘Lighthouse Master’, e1) added to the
presupposition section would declare that speaker s is invoking the authority
of a Lighthouse Master in uttering the messaged keyed by e1. The illocution-
ary force of that message would have the form:

SeaSpeak FLBC Sentence 10 command(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, � φ �)

8.6 SeaSpeak QUESTION Message Marker

The SeaSpeak manual [WGJS88, page 97] has only this to say about the
QUESTION marker:

The word QUESTION will be used to signal all questions, e.g.

QUESTION: What is your ETA at the dock entrance?

Thus, the SeaSpeak QUESTION message marker is for the most part un-
problematically interpreted as indicating a question in the usual, ordinary
language sense.

We model questions as reference-fixing assertions recognized as presuppo-
sitions, plus requests to describe the referents. For example, a stylistic variant
of “What time is it?” would be “There is some time that it is. [assertion pre-
supposed] Please describe that time to me. [a request]” Similarly, “Senator,
when did you stop beating your wife?” is a stylistic variant of “You used
to beat your wife. Please describe when it was the beating stopped.” Thus,
a question (typically) makes a presupposition and goes bad if the presup-
position is false or otherwise problematic. This is true of both w-questions
(involving who, what, where, when, and why) and yes-no questions (answered
with a ‘yes’ or a ‘no’). We will examine one example of each kind.

W-Questions. Consider the what-question:

SeaSpeak Sentence 17 QUESTION: What is your position?

As usual, let s be the speaker and a the addressee. On our analysis, the
speaker presumes that there is exactly one position that the addressee has,
then requests that the addressee describe it. Thus, in the presupposition
section of the message we would find

SeaSpeak FLBC Sentence 11 x1 = ( ιx)(location(x)∧ At(a, x)∧ Hold(x,
now))



320 Steven O. Kimbrough and Yinghui Yang

which posits x1 as a’s one and only location. Additionally, s would state the
presumption that x1 exists: E!(x1).

The question is completed by a SeaSpeak (FLBC) sentence in which s
requests that a describe x1, a’s one and only location.

SeaSpeak FLBC Sentence 12 request(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, � describe(e2)∧ Agent(e2, a)∧
Theme(e2, x1)∧ Benefactive(e2, s)∧ Cul(e2, now) �)

Yes-No Questions. Consider the yes-no question:

SeaSpeak Sentence 18 QUESTION: Are you going to pass me soon?

As a presupposition, the speaker expresses the event being asked about—

SeaSpeak FLBC Sentence 13 passing(e3)∧ Agent(e3, a)∧
Theme(e3, s)∧ Hold(e3, soon)

—a passing of s by a soon. The speaker does not presume that the event e2
exists. That is the information requested in the SeaSpeak sentence:

SeaSpeak FLBC Sentence 14 request(e1)∧ Speaker(e1, s)∧
Addressee(e1, a)∧ Cul(e1, now)∧ Object(e1, � describe(e2)∧ Agent(e2, a)∧
Theme(e2, e3)∧ Benefactive(e2, s)∧ Cul(e2,now) �)
Because the speaker has not presumed E!(e3), i.e., that e3 actually exists,
the addressee is to infer by the conventions governing the conversation that a
proper answer consists of asserting either that E!(e3) (the addressee will pass
soon) or ¬E!(e3). Questions, we believe, inherently involve presuppositions,
and when we presuppose about events and things that might not exist, free
logic is a most handy tool.

9 Discussion and Conclusion

SeaSpeak, we noted at the outset, affords a natural experiment of sorts.
It was conceived and developed without any apparent regard for doctrines
of speech act theory or for suitability to formalization by an ACL (agent
communication language). This and the fact that SeaSpeak is successful—it is
used and entrenched in maritime communications—presents an apt challenge
for particular ACLs and, more generally, the programme of formalization of
business communication.

At least in a preliminary and theoretical way this challenge has been
met by FLBC. First, we note that the message marker structure in Sea-
Speak messages can only be seen as a heartening confirmation of a basic
tenet of speech act theory, the F (P ) framework. Second, in two previous
papers [KLPY03,KY04] we have explored with some success the translation
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j’s knowledge base k’s knowledge base

Sender, j Addressee, k

Convention: Interchange Agreement

�
� �

� �

Message, u

Fig. 5. Basic Messaging Framework: Message u from speaker j to addressee k (after
[KT00])

of SeaSpeak sentences into FLBC, without at the same time addressing the
problem of dynamic reference fixing. In the present paper, we have addressed
this problem (at least in principle) and we have extended the analysis of
SeaSpeak sentences to entire SeaSpeak messages. Significantly, these two is-
sues are tied together by a common use of presupposition. In the case of
the-expressions, we find a presupposition of a context of focus. In the case of
questions, we find them to be inseparable from their presuppositions.

What about practical considerations? Is there any prospect in all of this
for deployed applications? We think there is, but absent a working demon-
stration we opt not to stretch the reader’s credulity (or our credibility). Nev-
ertheless, we close with two observations. First, automated messaging occurs
within an institutional context. See Figure 5 for a framework. That context
includes conventions governing the exchange and interpretation of messages.
Businesses using EDI even have a name for (a part of) this convention: the in-
terchange agreement. It is the interchange agreement (or its equivalent) that
determines, for example, how many message markers there are and what they
mean. Our analysis shows that in SeaSpeak significant parts of a message be-
long to the reference-fixing or presupposition sections. These elements may
often, then, be supplied by default, as we have remarked, because they are
specified by a governing convention. In principle, what this means for practice
is that with careful formalization and well-crafted conventions the informa-
tion burden on the message composer can be greatly reduced. Messages may
be ‘lean’ [KT00] and still convey all the essential information. Whether one
is designing a user interface for humans or a messaging-generating program,
this is welcome news.

Our second observation has to do with reference fixing. Many, if not most,
of the problematic uses of the-expressions and related indexical reference-
fixing devices can be handled as we have shown by fixing a context of focus
and then relying on a (distributed) description. In ordinary language conver-
sation this fixing of context is most often done by pointing in some way or
by using a demonstrative expression (involving this, that, these, and those).
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Is there a way for a human to instruct a machine in this way? How might a
machine discern the object of an indexical by a human? In the simple case in
which the context of focus has a proper name, e.g., the ship Paisano, there
is little difficulty. The human interface is designed to capture the intended
focus (say by picking from a list of names) and the computer program is given
an established list of names and information about their objects. This simple
case, we observe, may be generalized. Instead of mutually working with a
common list of names, the communicants might be given maps or diagrams.
A speaker might point (in any of various ways) to a region of a map and a
supportive procedure could (for a suitably represented map) automatically
extract the pointed-to context of focus. This might be done if the ‘speaker’
is a computer process and the addressee is a human, or vice versa.

These observations are, we think, straightforward enough. The conse-
quences for applications can only be speculative at this point. We hope others
will join us in exploring these possibilities.

References

[AEB04] Alan S. Abrahams, David M. Eyers, and Jean M. Bacon, Practical contract
storage, checking, and enforcement for business process automation, For-
mal Modelling for Electronic Commerce: Representation, Inference, and
Strategic Interaction (Steven O. Kimbrough and D. J. Wu, eds.), Springer,
Berlin, Germany, 2004.

[Aus62] John L. Austin, How to do things with words, Oxford at the Clarendon
Press, Oxford, England, 1962.

[Ben03] John Benyon, Building police co-operation: The European construction site
around the third pillar, World Wide Web file, Accessed 28 February 2003,
Dated 1996. http://www.psa.ac.uk/cps/1996/beny.pdf.

[BH79] Kent Bach and Robert M. Harnish, Linguistic communication and speech
acts, The MIT Press, Cambridge, Massachusetts, 1979.

[BM85] David C. Blair and M. E. Maron, An evaluation of retrieval effectiveness
for a full-text document-retrieval system, Communications of the ACM 28
(1985), no. 3, 289–299.

[Don66] Keith S. Donnellan, Reference and definite descriptions, The Philosophical
Review 75 (1966), no. 3, 281–304.

[FBH86] Eileen Fitzpatrick, Joan Bachenko, and Don Hindle, The status of tele-
graphic sublanguages, Analyzing Language in Restricted Domains: Sub-
language Description and Processing (Ralph Grishman and Richard Kit-
tredge, eds.), Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ,
1986, pp. 39–51.

[Fos82] Antony Charles Foskett, The subject approach to information, 4th ed.,
Linnet Books, Hamden, CT, 1982.

[Har68] Zellig Harris, Mathematical structures of language, John Wiley & Sons,
New York, NY, 1968.

[Har02] Richard K. Harrison, Bibliography of planned languages (excluding
Esperanto), World Wide Web, 1992-2002, accessed December 2002,
http://www.invisiblelighthouse.com/ langlab/bibliography.html.



SeaSpeak and FLBC 323

[Hoo02] Christopher Hookway, Truth, rationality, and pragmatism: Themes from
peirce, Clarendon Press, Oxford, UK, 2002.

[J+93] Edward Johnson et al., Policespeak: Police communications and language,
English-French lexicon, PoliceSpeak Publications, Cambridge Research
Laboratories, 181a Huntingdon Road, Cambridge, CB3 ODJ, 1993, ISBN:
1 898211 01 9.

[Jac02] Ray Jackendoff, Foundations of language: Brain, meaning, grammar, evo-
lution, Oxford University Press, Oxford, UK, 2002.

[JK04] Andrew J.I. Jones and Steven O. Kimbrough, A note on modeling speech
acts as signalling conventions, Formal Modelling for Electronic Com-
merce: Representation, Inference, and Strategic Interaction (Steven O.
Kimbrough and D. J. Wu, eds.), Springer, Berlin, Germany, 2004.

[Joh98] Edward Johnson, LinguaNet final report, World Wide Web file, 1998,
http://www.hltcentral.org/usr docs/project-source/linguanet/Final-
Report/Final-Report.html, accessed 28 February 2003.

[Joh02] , Talking across frontiers, Proceedings of the International Con-
ference on European Cross-Border Co-operation, 2002, Available at:
http://www.prolingua.co.uk/talking.pdf. Accessed December 2002.

[Kim99] Steven O. Kimbrough, Formal language for business communication:
Sketch of a basic theory, International Journal of Electronic Commerce
3 (Winter 1998–99), no. 2, 23–44.

[Kim90] , On representation schemes for promising electronically, Decision
Support Systems 6 (1990), no. 2, 99–121.

[Kim01] , Reasoning about the objects of attitudes and operators: Towards
a disquotation theory for representation of propositional content, Proceed-
ings of ICAIL ‘01, International Conference on Artificial Intelligence and
Law, 2001.

[Kim02] , A note on the Good Samaritan paradox and the disquotation the-
ory of propositional content, Proceedings of ∆EON’02, Sixth International
Workshop on Deontic Logic in Computer Science (John Horty and An-
drew J.I. Jones, eds.), May 2002, pp. 139–148.

[Kin01] Jeffrey C. King, Complex demonstratives: A quantificational account, MIT
Press, Cambridge, MA, 2001.

[KK01] Kyra Karmiloff and Annette Karmiloff-Smith, Pathways to language: From
fetus to adolescent, Harvard University Press, Cambridge, MA, 2001.

[KLPY03] Steven O. Kimbrough, Thomas Y. Lee, Balaji Padmanabhan, and
Yinghui Yang, On original generation of structure in legal documents, Pro-
ceedings of the International Conference on Artificial Intelligence and Law
(ICAIL), 2003.

[KM97] Steven O. Kimbrough and Scott A. Moore, On automated message pro-
cessing in electronic commerce and work support systems: Speech act the-
ory and expressive felicity, ACM Transactions on Information Systems 15
(October 1997), no. 4, 321–367.

[KT00] Steven O. Kimbrough and Yao-Hua Tan, On lean messaging with unfold-
ing and unwrapping for electronic commerce, International Journal of Elec-
tronic Commerce 5 (2000), no. 1, 83–108.

[KY04] Steven O. Kimbrough and Yinghui Yang, Action at the tables: Sketch-
ing a tabular representation for utterances under the language–action per-
spective, Proceedings of the 9th International Working Conference on the



324 Steven O. Kimbrough and Yinghui Yang

Language Action Perspective on Communication Modelling (Rutgers, The
State University of New Jersey, New Brunswick, NJ) (Mark Aakhus and
Mikael Lind, eds.), School of Communication, Information, and Library
Studies, 2–3 June 2004,
http://www.scils.rutgers.edu/˜aakhus/lap/lap04.htm, pp. 103–120.

[Lam91] Karel Lambert (ed.), Philosophical applications of free logic, Oxford Uni-
versity Press, Oxford, U.K., 1991.

[LAP04] LAP, Home LAP ‘04, World Wide Web page, September 2004,
http://www.scils.rutgers.edu/∼aakhus/lap/lap04.htm.

[Lar85] Andrew Large, The artificial language movement, Basil Blackwell, New
York, NY, 1985, ISBN 0-631-14497-8.

[Lev83] Stephen C. Levinson, Pragmatics, Cambridge University Press, Cam-
bridge, England, 1983.

[Lin03] LinguaNet, The linguanet project, 2003, www.cbs.dk/departments/fir/-
linguanet/, accessed 2003-02-28.

[Mac30] T. C. Macaulay, Interlanguage, The Clarendon Press, Oxford, UK, 1930.
[Ogd38] C. K. Ogden, Basic English : A general introduction with rules and gram-

mar, K. Paul, Trench, Trubner, London, UK, 1938.
[Pro03] Prolingua, Operational communications, controlled languages, computing,

World Wide Web page, Accessed 28 February 2003, www.prolingua.co.uk/.
[Ric43] I. A. Richards, Basic English and its uses, W. W. Norton & Company,

Inc., New York, NY, 1943.
[Rus05] Bertrand Russell, On denoting, Mind (1905), 479–93, Available at:

http://www.mnstate.edu/gracyk/courses/web%20publishing/russell on -
denoting.htm (accessed 30 July 2004).

[Sag75] Naomi Sager, Sublanguage grammers [sic] in information processing, Jour-
nal of the American Society for Information Science 26 (1975), no. 1, 10–
16.

[Sag86] , Sublanguage: Linguistic phenomenon, computational tool, Analyz-
ing Language in Restricted Domains: Sublanguage Description and Pro-
cessing (Ralph Grishman and Richard Kittredge, eds.), Lawrence Erlbaum
Associates, Publishers, Hillsdale, NJ, 1986, pp. 1–17.

[Sea69] John R. Searle, Speech acts, Cambridge University Press, Cambridge, Eng-
land, 1969.

[Str71] P. F. Strawson, Logico-linguistic papers, ch. On Referring, Methuen, 1971,
Originally published 1957.

[SV85] John R. Searle and Daniel Vanderveken, Foundations of illocutionary logic,
Cambridge University Press, Cambridge, England, 1985.

[Swa80] Charles Swanland, Basic English for science & technology, Intercultural
Press, Chicago, IL, 1980.

[WGJS88] Fred Weeks, Alan Glover, Edward Johnson, and Peter Strevens, Sea-
speak training manual: Essential English for international maritime use,
Pergammon Press, Oxford, UK, 1988, Available via www.maritimeusa-
.com.



A Note on Modelling Speech Acts as
Signalling Conventions

Andrew J.I. Jones1 and Steven Orla Kimbrough2

1 King’s College, London, UK,
ajijones@dcs.kcl.ac.uk

2 University of Pennsylvania, Philadelphia, PA, USA,
kimbrough@wharton.upenn.edu

Abstract. This paper presents a fully formal integration of Jones’s logical the-
ory of speech acts as signalling conventions with Kimbrough’s Formal Language
for Business Communication (FLBC). The work is part of a larger programme of
logicism in the context of electronic commerce. Speech acts are an especially apt
subject for this programme because of their pervasiveness and importance in com-
munication for all commerce, electronic or not. The paper demonstrates that the
conventionist view of speech acts, embodied in Jones’s logical theory, fits naturally
with Kimbrough’s FLBC and with the Basic Messaging Framework for business
communications. Further, the paper provides an illustration of how the resulting
integrated theory might be implemented in practice through logic programming.

1 Introduction

A logicist may hold any of several views on the role and value of formal logic
in electronic commerce. Prominent among these views are:

• Formal logic is a useful, perhaps even preferred, tool for analyzing and
clarifying concepts of import in electronic commerce.
• Formal logic is a useful, perhaps even preferred, tool for articulating im-

portant kinds of specifications pertaining to electronic commerce. Among
these kinds are specifications for designing ma-chine-to-machine messag-
ing systems.
• Logic in the applied form of logic programming is potentially a valu-

able, perhaps even preferred, vehicle for implementation of machine-to-
machine messaging systems.

We are logicists, at least in the context of electronic commerce, and we believe
that there is much to be said in favor of each of these views. Too much in fact
to fit into a short paper. Our present ambitions are more limited. We aim to
sketch a formal and logical theory of speech acts as conventional signalling
acts. In virtue of being formal the theory affords rigorous, machine-readable
representation. In virtue of being logical a well-defined and justified formal
inference apparatus is part of the theory. Our strategy for constructing this
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theory is to combine Kimbrough’s FLBC theory1 with Jones’s theory of con-
ventional signalling acts and its attendant logical framework.2 Kimbrough’s
FLBC theory is a representational theory, in first-order logic, that is apt for
expressing signalling acts (among other things). It is not, however, an ac-
count of what signalling acts are, of what constitutes them. Jones’s theory
of conventional signalling acts is such an account. With proper attention to
details, the two theories fit together hand in glove, as we shall explain.

Speech acts are of fundamental import and enduring interest for electronic
commerce, and generally for understanding language and communication.
The concept of the speech act is well entrenched in a number of disciplines,
including linguistics, philosophy, the computational sciences generally, and
particularly in the thinking of researchers in electronic commerce. The un-
derlying notion—originating with Austin [Aus62] and further developed by
Searle [Sea69] and others—is that speaking is a kind of doing or acting, and
that we should consider the broad range of kinds of things that agents can
do with words, rather than one-sidedly focusing on acts of stating that such-
and-such is the case.

Speech acts are interesting theoretically because they seem to be so perva-
sive in language, and because of the logical and conceptual challenges in devel-
oping a workable formal theory of them. These two factors also motivate the
practical interest in speech acts, evidenced by researchers in electronic com-
merce. Pervasive in commercial transactions are mundane communications—
purchase orders, invoices, receiving reports, etc.—that are required in great
volume and that should be, all agree, very profitable targets for formalization
and automation. These communications, it is broadly agreed, are properly
viewed as cases of speech acts. To issue an invoice is (roughly) to request
payment for goods received. To issue a receiving report is (roughly) to assert
that such-and-such goods have arrived in good condition. To issue a purchase
order is (roughly) to request that ownership of certain goods be transferred
to the speaker, in consideration of which the speaker promises to pay the
current owner a certain amount of money.

It is a handicap to electronic commerce not to have an adequate approach
to formalization of speech acts. Our longer-term goal is to replace that de-
ficiency with a productive, well-founded, formal and implementable theory.
This note is meant as a step in that direction.

2 Asserting: Two Prototypes

Our purpose in this paper is to demonstrate the coherence, indeed the fe-
licity, of combining Kimbrough’s FLBC with Jones’s theory of conventional
signalling acts. In the interests of ease and clarity of exposition, we will pro-
ceed incrementally, and we begin with a discussion of asserting.
1 E.g., [Kim99], [KM97], [KT00], [Kim01], and [Kim02].
2 E.g., [Jon02,Jon04,JP04].
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j’s knowledge base k’s knowledge base

Sender, j Addressee, k

Convention: Interchange Agreement

�
� �

� �

Message, u

Fig. 1. Basic messaging framework: message u from speaker j to addressee k (after
[KT00])

FLBC is a formalism for representing speech act messages. It succeeds to
the extent that it affords articulation of speech acts and their contents, and
as well as proper inferencing upon them. FLBC is not, and is not intended
to be, a formal theory of the logic of speech acts. Instead, it is intended
to fit with, to be workable with, a logical theory of speech acts. Jones’s
account of conventional signalling systems is just such a theory. Put in terms
of the Basic Messaging Framework, Figure 1, FLBC is about structuring the
messages, u, and Jones’s theory of conventional signalling systems belongs
to the Interchange Agreement. FLBC is about how we say what we want to
say; Jones’s theory is about how we may make inferences on what is said.

To an approximation adequate for present purposes, any speech act, and
in particular any message u, may be decomposed into an illocutionary force,
F , and its propositional content, C. We express them jointly as F (C). The
notation is for convenience of exposition; it is a framework and is not part of
a logic. That will come shortly.

Jones’s core formula in the case of assertion is

Expression 1 (Jones’s Assert Schema) EjU ⇒s I
∗
sC

(See [Jon04,JP04].) We have made a change of variables to suit present pur-
poses.) Rendered into English, Expression 1 says that j’s seeing to it (Ej)
that U counts as making it the case in conventional signalling system s (⇒s)
that were s in an optimal state with respect to its function of facilitating the
reliable transmission of reliable information, C would be true. Seeing to it
that (Ej), counts as (⇒s), and ideal functioning (I∗s ) each have their own log-
ics, which we will not discuss in any detail, since they are treated elsewhere.3

Points arising now:

1. U in Jones’s theory may be any (description of a) state of affairs brought
about by agent j and falling under the system of conventional signalling,
s. U may be the waving of a flag, the shrugging of a shoulder, or whatever

3 See [Jon04,JP04,JS96].
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is stipulated by the convention in force, so long as it is described by the
proposition U .

2. The class of signalling conventions in which we are interested here are
those that use FLBC expressions to perform U ’s role.

3. A philosophical point, to which we shall return in comment 4c on Axiom
Schema 2, below page 329, is that there is in Expression 1 no requirement
of any intention on the part of j, or anyone else. Expression 1 says that—
by convention in signalling system s—j’s bringing it about that U is a
means of stating that C.

FLBC should be seen as (belonging to) a particular convention for under-
taking speech acts by machine. According to this convention—let us call it
f—one, j, asserts that C to k by sending a message to k of the form:

Expression 2 (FLBC Assert Schema) assert(e1) ∧ Speaker(e1, j) ∧
Addressee(e1, k) ∧ Cul(e1, t1) ∧ Content(e1, �C�)
Rendered into English, Expression 2 says that there is an asserting event,
e1, whose speaker is j, and whose propositional content is C. Further, k is
to whom the assertion is directed and the assertion event happened (culmi-
nated) at time t1. Note that e1, j, k, and t1 are place holders for particular
names, i.e., for particular logical constants which are supplied in any given
instantiation. Similarly, C is a place holder for a particular formula, to be sup-
plied in any given instantiation. Under f , the FLBC Speech Act Convention
for communication in a Basic Messaging Framework, j’s sending a message,
u (see Figure 1), having the form of Expression 2 counts as j’s asserting to k
that C.

Accompanying Expression 2 in FLBC is an axiom schema formalizing
veridicality of an assertion.

Axiom Schema 1 (FLBC Assert Axiom Schema)
(assert(e) ∧ Content(e, �C�)) → (Veridical(e) ↔ C)

This belongs to f and is part of the Interchange Agreement.
FLBC and Jones’s theory of speech act signalling conventions are now

easily combined by adding the following expression to the Interchange Agree-
ment between the communicating parties.

Axiom Schema 2 (Governing Assert Speech Act Axiom Schema)
Ej(assert(e) ∧ Speaker(e, j) ∧ Addressee(e, k) ∧ Cul(e, t) ∧
Content(e, �C�))⇒f I

∗
fC
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Points arising:

1. Axiom Schema 2 is a special case of Expression 1.
2. Axiom Schema 2 should be seen as belonging to the Interchange Agree-

ment. Again, e1, j, k, and t1 are place holders for particular names, i.e.,
for particular logical constants which are supplied in any given instanti-
ation.

3. Successful messaging—utterance of an assert speech act to the effect that
C—works as follows under f .
(a) Parties j and k agree to convention f .
(b) j sends a message (u in Figure 1) to k, having the form of Expression

2 and using a method of authentication agreed to in f .
(c) k receives the message, u, validates its authenticity (i.e., that it is

indeed from j), and (under an obligation stipulated by f) concludes
that Eju. Further, by the logic of seeing to it that (of which more
below), k also concludes that u.

(d) From Eju and Axiom Schema 2, k is also licensed to conclude that
I∗fC.

4. There are a number of ways in which messaging in this context may be
unsuccessful or infelicitous in some way. These include the following:
(a) The message u could be ill-formed with regard to f .

Messages in FLBC are fully formal and can be exactly specified. These
specifications should belong to f , as well as rules for handling vio-
lations. An advantage of logicism and full formalization here is that
acceptance or rejection of messages can be specified rigorously and
automated.

(b) The content asserted by the speaker, C, might not be believed by the
speaker, who may know that its denial is true.
People lie and no logical system will, or should, prevent that. If ¬C,
then it will follow from Axiom Schema 1 and the truth of its an-
tecedent that ¬V (e1), where e1 is the message ID of j’s original ut-
terance.

(c) The speaker, j, may disavow the assertion.
The authentication system in place, which must be part of the govern-
ing convention, is crucial. If it is easily defeated, the signalling system
is unlikely to be successful for very long. If the authentication system
is reliable, there remains the problem of distinguishing accidental ut-
terances from fraudulent attempts to renege. The default assumption
is that if an f -message is transmitted, the act of transmission counts
as an instance of implementation of the governing signalling conven-
tion, and so means what—according to that convention—it says. If
the sender (or its owner) wishes to maintain that the transmission
was made in error, then the onus of proof will be on the sender or
owner to show just that. (Perhaps the governing legal system, or some
other relevant authority, will be the adjudicator of last resort on the
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issue of distinguishing between errors and genuine signalling acts.) In
the case of human signallers, some speech-act theorists would appeal,
at this point, to intention, to sort the act-tokens that count as literal
implementation of a governing signalling convention from those that
do not so count. But the view taken in this paper is that there is here
no need to resort to intention. A good thing this, in the context of
e-commerce, since it is very unclear what ascription of intentions to
electronic agents amounts to; and equally obscure, therefore, is the
issue of how to specify the empirical conditions that would have to be
satisfied before an electronic agent could be said to have a particu-
lar intention. But communicate they can, these electronic agents, for
they can perform acts which—according to the governing interchange
agreement—have a meaning.

(d) Disputes arise because messages are ambiguous.
This is always a possibility, as is resolution by adjudication. That
said, it must also be admitted that it would be difficult to find a
more transparent and clear form of formalization than logic as on
display here. The prima facie case for clarity is strong.

Following a valid assert message (whether felicitous or not), the recipient, k,
is in a good position to make automated inferences of import, depending of
course on the actual course of events. As noted by Jones for example,4 our
present expressions may be combined with a belief operator Bj (j believes
that) to articulate various positions of belief and trust. Again, in the interests
of brevity, we refer the reader to the original discussions [Jon02,Jon04,JP04].

3 Other Speech Acts

While there are an indefinitely large number of distinct speech act types,
most authors recognize a core group that includes assertions, commissives,
requests, and declaratives. We will limit our discussion largely to these. The
pattern we saw in the case of asserting persists, and will (we believe) persist
for other types of speech acts.

3.1 Commands & Requests

Expression 3 (Jones’s Command Schema) EjU ⇒s I
∗
sOEkC

In stylized English, if U counts as a command (by j to k), then in all cir-
cumstances in which the conventional signalling system, s, is working ideally
(I∗s ), it is obligatory (O) that k sees to it (Ek) that C. The thought is that it
is constitutive of the concept of a command that, if given felicitously, there
is an obligation created for the one commanded to do what was commanded.
4 [Jon02,Jon04,JP04]
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Jones’s theory views requests as weaker than, or at least as somewhat differ-
ent from, commands.

Expression 4 (Jones’s Request Schema) EjU ⇒s I
∗
sHjEkC

In English, the upshot of a felicitous request is that the requester, j, attempts
to see to it (Hj) that k sees to it that C.

FLBC has historically taken the view that both commands and requests
(in Jones’s sense) are varieties of the covering speech act, request, and are
characterized by being honored or not, just as assertions are either veridical
or not. In FLBC, then, we have:

Expression 5 (FLBC Command Schema) command(e1) ∧
Speaker(e1, j) ∧ Addressee(e1, k) ∧ Cul(e1, t1) ∧ Content(e1, �C�)
and

Expression 6 (FLBC Request Schema) request(e1) ∧
Speaker(e1, j) ∧ Addressee(e1, k) ∧ Cul(e1, t1) ∧ Content(e1, �C�)
along with

Axiom Schema 3 (FLBC Request Axiom Schema)
(request(e) ∧ Content(e, �C�)) → (Honored(e) ↔ C)

and

Axiom Schema 4 (FLBC Command Axiom Schema)
(command(e) ∧ Content(e, �C�)) → (Honored(e) ↔ C)

Following the pattern in the case of asserting, this leads directly to:

Axiom Schema 5 (Governing Command Axiom Schema)
Ej(command(e) ∧ Speaker(e, j) ∧ Addressee(e, k) ∧ Cul(e, t) ∧
Content(e, �C�))⇒f I

∗
fOEkC

and

Axiom Schema 6 (Governing Request Axiom Schema)
Ej(request(e) ∧ Speaker(e, j) ∧ Addressee(e, k) ∧ Cul(e, t) ∧
Content(e, �C�))⇒f I

∗
fHjEkC

Points arising:

1. If, as in Jones’s view, commands are rather different from requests, group-
ing them together as acts that may or may not be honored, as in the
FLBC schemata above, may not be appropriate; finer distinctions may
be called for.



332 Andrew J.I. Jones and Steven Orla Kimbrough

2. Obligations may themselves be relativized to institutions. Contrast, for
example, a command from a policeman and a command from an arbiter
of social etiquette. Thus, finer distinctions may be appropriate for the
analysis of commands. We note that the counts as operator (⇒s) is in-
dexed by institution as is the ideality operator (I∗s ). These indices might
also be used for relativizing obligations to institutions.

3. As for requests, one way of attempting to see to it that someone does
something is to place that person under an obligation to do so.

4. The upshot here is that while different analyses are certainly possible
the associated logical apparatus is quite flexible and will support a broad
range of views.

3.2 Commissives

Promises and other kinds of commissives have the function, in Jones’s anal-
ysis, of placing the speaker under an obligation to see to it that what was
promised (or committed to) comes about.

Expression 7 (Jones’s Commissive Schema) EjU ⇒s I
∗
sOEjC

In FLBC we have

Expression 8 (FLBC Commit Schema) commit(e1) ∧
Speaker(e1, j) ∧ Addressee(e1, k) ∧ Cul(e1, t1) ∧ Content(e1, �C�)
along with

Axiom Schema 7 (FLBC Commit Axiom Schema)
(commit(e) ∧ Content(e, �C�)) → (Kept(e) ↔ C)

In FLBC, promises (and commissives generally) are characterized by whether
they are kept or not. Jones’s analysis undertakes to represent the deontic
consequences of making a promise and in general of giving a commitment.

The usual pattern applies when the two perspectives are integrated.

Axiom Schema 8 (Governing Commissive Axiom Schema)
Ej(commit(e) ∧ Speaker(e, j) ∧ Addressee(e, k) ∧ Cul(e, t) ∧
Content(e, �C�))⇒f I

∗
fOEjC

Points arising:

1. As noted above, there may be need for a more resolved view of obligation.
Different institutions may require different commitments, so obligations
may need to be relativized to institutions.

2. For some purposes a more detailed modeling may be appropriate. For
example, promises are usually seen as applying only to the future. A
promise to do something in the past is infelicitous. Such constraints can
be added to the formalism we introduce. We leave the details for future
work. In many practical situations, however, these kinds of refinements
may not be necessary.
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3.3 Declaratives

A declarative signalling act (in ideal or felicitous conditions) brings about
the state of affairs described by its content. Sometimes saying so indeed
makes it so. A state of war may be brought about by declaring it to be the
case. Similarly, naming (by parents or other authorities) and pronouncing (by
juries, judges, clerics, and referees) are acts that will typically bring about
the conditions described by their contents.

Jones’s analysis, and the corresponding FLBC representations, follow the
usual patterns.

Expression 9 (Jones’s Declarative Schema) EjU ⇒s I
∗
sEjC

Under Jones’s analysis j’s bringing about the utterance U counts, under ideal
circumstances, as j’s bringing about the state of affairs described by C. In
FLBC we have

Expression 10 (FLBC Declaration Schema) declare(e1) ∧
Speaker(e1, j) ∧ Addressee(e1, k) ∧ Cul(e1, t1) ∧ Content(e1, �C�)

along with

Axiom Schema 9 (FLBC Declaration Axiom Schema)
(declare(e) ∧ Content(e, �C�)) → (Authoritative(e) → C)

Again, the usual pattern applies when the two perspectives are integrated.

Axiom Schema 10 (Governing Declarative Axiom Schema)
Ej(declare(e) ∧ Speaker(e, j) ∧ Addressee(e, k) ∧ Cul(e, t) ∧
Content(e, �C�))⇒f I

∗
fEjC

Regarding the FLBC axiom schema, the special predicate Authoritative
must be interpreted carefully. In a sporting event, such as baseball, an umpire
may declare a player out. Which umpire has the authority to do so depends
upon the state of play, and so an umpire may say a player is out but lack
the proper authority and in fact be overruled by another umpire. But there
is nothing in principle to prevent two umpires, one lacking authority, both to
declare a player out. Consequently, saying without authority that a player is
out is not sufficient for the player to be safe (not out). The usual biconditional
has to be replaced by the weaker conditional.5

5 In fact each of the FLBC speech act auxiliaries—Kept, Honored, Authoritative,
Veridical—merit careful discussion and interpretation. That, however, is beyond
the scope of this paper. We note, however, that the event indices in FLBC, e1,
e2, etc., may be exploited to mark the cause of a truth. C may be true by virtue
of e2 but not true by virtue of e3.



334 Andrew J.I. Jones and Steven Orla Kimbrough

4 Discussion: Towards Deployment

The logical analysis of signalling acts will, we hope, contribute to electronic
commerce in each of the three ways identified in the Introduction: as a means
of clarification, as a guide to design, and as a basis for implementation. To
that end we offer the following remarks, more to spur discussion than to
complete it.

4.1 Clarification: Intentions and Speech Acts

Speech act theory is not without contending schools of thought. Here we wish
to comment briefly on the debate between the intentionist and conventionist
views regarding the proper analysis of speech acts. Despite his criticisms of
the Gricean intention-based theory of meaning [Gri57], Searle will for present
purposes be taken to be one of the many representatives of the intentionist
theory.6 See also many of the papers in [CMP90] and much of the computer
science literature, e.g., [Sin93,SC96], plus KQML7 and other agent commu-
nication languages. The following passage from Searle is representative of
intentionist theory for speech acts as we shall discuss it here.

So far we have considered only the case of a sincere promise. But in-
sincere promises are promises nonetheless, and we now need to show
how to modify the conditions to allow for them. In making an insin-
cere promise the speaker does not have all the intentions he has when
making a sincere promise; in particular he lacks the intention to per-
form the act promised. However, he purports to have that intention.
Indeed, it is because he purports to have intentions which he does
not have that we describe his act as insincere.
A promise involves an expression of intention, whether sincere or
insincere. So to allow for insincere promises, we need only to revise
our conditions to state that the speaker takes responsibility for having
the intention rather than stating that he actually has it. A clue that
the speaker does take such responsibility is the fact that he could not
say without absurdity, e.g., “I promise to do A but I do not intend
to do A”. To say, “I promise to do A” is to take responsibility for
intending to do A, and this condition holds whether the utterance
was sincere or insincere. To allow for the possibility of an insincere
promise, then we have only to revise condition 6 so that it states not
that the speaker intends to do A, but that he takes responsibility for
intending to do A, . . . [Sea69, page 62]

6 Bach and Harnish [BH79] adopt a strong intentionist view of speech acts and
communication. They see Searle as holding a conventionist view in contrast to
their intention-and-inference theory. These are issues beyond the scope of this
paper.

7 E.g., [Cov98], [FFMM94a], [FFMM94b], [FW+93], [LF94], [MLF96], and
[Moo00a]. See for KQML: http://www.cs.umbc.edu/kqml/.
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Searle’s claim that “it is because he purports to have intentions which he
does not have that we describe his act as insincere” is not an argument for
his intentionist position so much as a restatement of it. Falsely purporting is of
course a reason for attributing insincerity. So, according to a conventionist,
would be invoking a convention without intending to meet the obligations
that come with it. By performing a signalling act of the commissive type, the
agent places himself under an obligation (to do A). There is nothing absurd
in his saying, additionally, that he does not intend to do A, although it might
be unwise for him to explicitly reveal his insincerity in this way. Insincerity
can be incorporated without recourse to a change in the way promising itself
is understood. In particular, there is no need to resort to a revised condition
of the type proposed by Searle—unless of course we are to understand ‘taking
responsibility for intending to do A’ as merely a roundabout way of saying
‘placing oneself under an obligation to do A’.

The core of the conventionist view is that communicative acts occur in the
context of governing conventions. These conventions stipulate the states of
affairs that should obtain in consequence of performance of the communica-
tive acts themselves. Under Jones’s analysis of the convention of committing,
Expression 7, if j performs a signalling act that counts in s as a commissive
(with respect to C), then j is placed under an obligation to see to it that
C, unless certain ideality conditions are not met. What conditions are these?
Well, in particular, j will have to be an agent who is empowered to place him-
self under an obligation. Among human agents, a minor, for instance, might
not be so empowered. Among electronic agents, the institutional arrangement
might be that only certain categories of agent are so empowered.

To this the intentionist might perhaps respond: whether or not j’s per-
formance of the given signalling act does indeed count as a commissive will
depend on the intentions j has when he performs the act. For suppose he
sends the signal by accident, or is play-acting, or just joking, would we then
say that he has placed himself under an obligation? But here we are back to
the issue addressed above in point 4c, page 329, pertaining to Axiom Schema
2. If the communicating agent, or its owner, wishes to maintain that the com-
municative act was not serious, not a literal implementation of the governing
convention, then the onus of proof will be on the sender or owner to show
just why it was not.

4.2 Design and Implementation

Kimbrough’s FLBC was designed with an eye to implementation. The for-
mulation in first-order logic, even with quotation, lends itself well to logic
programming formalisms. This facilitates implementation either in a logic
programming environment or in more conventional programming system.8

Combining FLBC with Jones’s analysis of signalling conventions, however,

8 See the work of Alan Abrahams in this regard, e.g., [Abr02,AEB04].
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introduces several new sentence operators, each with its own logic, notably
I∗, Ej , and O. We shall now present an example that illustrates how our
integration of FLBC and Jones’s analysis of signalling conventions might be
implemented in a logic programming formalism. Our purpose is merely to
sketch a plausibility case. The full case requires a lengthy and detailed treat-
ment, which is beyond the scope of this, or any single, paper.

Consider as an example of a content sentence, C:

Expression 11 Andrea Doria leaves Boston on January 1, 2005.

Here is an FLBC representation:

Expression 12 leave(e1) ∧ Experiencer(e1, Andrea Doria) ∧
Goal(e1, Boston) ∧ Cul(e1, 20050101)

Note that e1 is (in virtue of the covering interchange agreement) a unique ID
for Expression 12. Also, Cul is a special predicate indicating the time of an
event, here e1. Converting Expression 12 to a Prolog representation in which
the expression is the quoted part of a Content predicate gives us Expression
13.

Expression 13 content(e2, (leave(e1),
experiencer(e1, ’Andrea Doria’),
goal(e1, ’Boston’), cul(e1, ’20050101’))).

Suppose now that Bob promises Carol that Andrea Doria leaves Boston on
January 1, 2005. In FLBC:

Expression 14 promise(e2) ∧ Speaker(e2, ‘Bob’) ∧ Addressee(e1, ‘Carol’)
∧ Content(e2,�leave(e1) ∧ Experiencer(e1, ‘Andrea Doria’) ∧ Goal(e1, Boston)
∧ Cul(e1, 20050101)�) ∧ Cul(e2, 20041201)

In Prolog, a message/2 clause:

Expression 15 (Utterance Example in Prolog)
message(e2, (promise(e2),
speaker(e2, ’Bob’), addressee(e2, ’Carol’),
content(e2, (leave(e1) , experiencer(e1,
’Andrea Doria’) , goal(e1, ’Boston’),
cul(e1, 20050101))) , cul(e2, 20041201))).

At this point we make contact with Jones’s analysis of signalling conventions.
We need a Prolog representation of

Axiom Schema 11 (Governing Promising Axiom Schema)
Ej(promise(e) ∧ Speaker(e, j) ∧ Addressee(e, k) ∧ Cul(e, t) ∧
Content(e, �C�))⇒f I

∗
fOEjC
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Our representation will be approximate, and in two parts. First, ⇒f , the
‘counts as’ connective in Axiom Schema 11, also the main connective in the
expression, will be represented by a Prolog predicate of arity 2, countsas:

Expression 16 (Promising Axiom Schema in Prolog)
countsas(istar(obligation(
(stit(E),agent(E,S),content(E,C)))),
message(E,(promise(E),speaker(E,S),
addressee(E,A),content(E,C),cul(E,T)))).

Note that the first argument,
istar(obligation(stit(E,C))),

corresponds to the right-hand side of Axiom Schema 11, and the second
argument is the schema for a message (see Expression 15). E, A, C and T
are free variables (subject to uniform substitution), permitting Expression
16 to act as a general rule, or axiom schema. If we are to deduce much from
Expression 16 we need a second part for our representation. There are a
number of ways to achieve this, but perhaps the simplest is to add a general
rule that supports a form of detachment based on Expression 16. We can do
this in Prolog with Expression 17.

Expression 17 (Promising Rule Schema in Prolog)
istar(obligation(
(stit(E),agent(E,S),content(E,C)))) :-
countsas(istar(
obligation((stit(E),agent(E,S),
content(E,C)))),
message(E,(promise(E),speaker(E,S),
addressee(E,A), content(E,C),cul(E,T)))),
message(E,(promise(E),speaker(E,S),
addressee(E,A),content(E,C),cul(E,T))).

Taken together, Expressions 15, 16 and 17 support a deduction in Prolog
that, in ideal circumstances, there is an obligation that Bob sees to it that
there is a leaving by Andrea Doria for Boston on January 1, 2005.

?- istar(X).

X = obligation((stit(e2), agent(e2, ’Bob’),
content(e2, (leave(e1),
experiencer(e1, ’Andrea Doria’),
goal(e1, ’Boston’),
cul(e1, 20050101)))))

Adding new messages having the form of Expression 15 will allow additional
such deductions to be made.
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The illustration just given of an implementation in Prolog is very much an
approximation and obviously requires much to be completed. Even so, it suits
our present purpose, which is to further the plausibility of a thoroughgoing
logicist approach to the Basic Messaging Framework, Figure 1. In furtherance
of that end, we conclude this section with a discussion of how the stit (sees to
it that) operator, Ej , can be articulated in FLBC. The Prolog exercise just
concluded should be sufficient to show that a subsequent translation from
FLBC to logic programming may be made straightforwardly. We acknowledge
this as a promissory note and add to the list detailed articulation of the
countsas operator (⇒s), the I-star operator (I∗s ), and the deontic operators,
including that for obligation O.

4.3 stit in FLBC

From action logic, EjA, or ‘j sees to it that A’, is rendered into FLBC as:

Expression 18 (FLBC Stit Schema) stit(e1) ∧ Agent(e1, j) ∧
Cul(e1, t1) ∧ Content(e1, �A�)
Action logic introduces a second operator, Cj , called capacitation. CjA may
be interpreted as ‘j has the capacity (or ability) to produce the state of affairs
described by A’. This is represented in FLBC as:

Expression 19 (FLBC Capacitation Schema) capacitation(e1) ∧
Agent(e1, j) ∧ Hold(e1, t1) ∧ Content(e1, �A�)
(Rough translation: e1 is a particular capacitation state; j is an agent in that
state; e1 has content �A�, and the state obtains, or holds, at time t1. Note
that events are said to happen or culminate (Cul) at a given time, and states
are said to obtain or hold (Hold) at a given time. See Parsons [Par90] for
exposition on this distinction.)

We assume a standard version of action logic, as presented in [Jon04],
which is characterized by a series of axiom schemas or rules of inference.
We need FLBC analogs to them. In the original logic seven principles apply.
The first is:

If � A↔ B then � EjA↔ EjB (1)

Translation: If A and B are logically equivalent, infer that EjA and EjB are
logically equivalent. The analog for stit is

Expression 20 If � A↔ B then
� stit(e)∧ Agent(e, i)∧ Content(e, �A�) ↔
stit(e)∧ Agent(e, i)∧ Content(e, �B�)
A corresponding rule of inference applies to Cj :

If � A↔ B then � CjA↔ CjB (2)

Its FLBC translation is:
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Expression 21 If � A↔ B then � capacitation(e)∧ Agent(e, i)∧
Content(e, �A�) ↔ capacitation(e)∧ Agent(e, i)∧ Content(e, �B�)

The five remaining principles are axiom schemas in the original action
logic.

EiA→ A (3)

In FLBC:

Expression 22 stit(e)∧ Agent(e, i)∧ Content(e, �A�) → A

(EiA ∧ EiB)→ Ei(A ∧B) (4)

In FLBC:

Expression 23 (stit(e)∧ Agent(e, i)∧ Content(e, �A�) ∧
stit(e′)∧ Agent(e′, i)∧ Content(e′, �B�)) →
stit([e, e′])∧ Agent([e, e′], i)∧ Content([e, e′], �A ∧B�)

¬Ei� (5)

Similarly for Ci:
¬Ci� (6)

In FLBC we add rules of inference:

Expression 24 (Ei Rule) If � A↔ � then
� ¬(stit(e)∧ Agent(e, i)∧ Content(e, �A�))

Expression 25 (Ci Rule) If � A↔ � then
� ¬(capacitation(e)∧ Agent(e, i)∧ Content(e, �A�))

Finally:
EiA→ CiA (7)

In FLBC:

Expression 26 stit(e) ∧ Agent(e, i) ∧ Content(e, �A�) →
capacitation(e) ∧ Agent(e, i) ∧ Content(e, �A�)

5 Summary and Conclusion

The Basic Messaging Framework, Figure 1, describes the communication
setup for electronic commerce. In that framework the Interchange Agree-
ment plays a large and essential role. The Interchange Agreement is, at bot-
tom, a conceptual abstraction that covers the conventions needed to conduct
business transactions. Consequently, seeing speech acts as events in a conven-
tional signalling system fits naturally with the Basic Messaging Framework:
the underlying speech act conventions are simply part of the Interchange
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Agreement. Formalizing any of the conventions in the Interchange Agree-
ment has the salutary prospect of clarifying concepts, of guiding design, and
even of supporting implementation.

We have essayed in this paper a demonstration of how speech act conven-
tions as formalized by Jones’s work may be made to fit with Kimbrough’s
FLBC formalization of messages. The project is far from complete. There
are many technical and conceptual alternatives that merit investigation, and
scaled-up implementation will be required to test fully these ideas. Our goal
here has been the modest one of presenting necessary components for a thor-
ough formal modeling of communicative acts in the context of electronic
commerce. Speech acts are among the most important of these components,
as is their attending inferential apparatus. A philosophically sound formal-
ization of speech acts has been unified with an expressively powerful message
representation formalism, and a sketch has been made of how the combined
result could be rather directly representable in Prolog. Very much remains
to be done to redeem the promissory notes issued. Even so, this is, we sub-
mit, a strong and favorable indicator for the near-term prospects of a strong
logicism in electronic commerce.
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Abstract. The author provides an in-depth look at a moderately complex con-
versation as represented by a finite state machine, a representation used by an
established agent communication system. He compares this to a statechart-based
method used for Moore’s conversation policy framework and observes that these
methods differ in their level of detail, the usefulness of parts of the graphical repre-
sentation, and in the grouping of events. The remainder of the paper demonstrates
how a multi-agent conversation policy can be used to control the flow of messages,
contrasts this with how messages are handled via an inference-based process, and
shows how the inference-based processing can be integrated with the policy-based
handling in order to deal with exceptions to the policy.

1 Introduction

Researchers have proposed many agent communication languages (e.g., fipa’s
acl [Fou97], flbc [Moo01], kqml [LF97]). In the development of each of
these languages, it has become apparent that there needs to be a method for
modeling conversation policies (see the collection in [DG00]). Moore defined a
method of representing conversation policies, applied it to flbc, and demon-
strated it by modeling a series of relatively simple conversations [Moo00b]. In
this paper I apply this method to a more complex conversation. This example
shows how this method works and how the system can be used to coordinate
the actions of two conversational participants.

A conversation among agents is composed of an exchange of messages.
This exchange is generally aims at the accomplishment of some task or the
achievement of some goal. In its simplest form it is a sequence of messages in
which, after the initial message, each is a direct response to the previous one.
More complicated structures occur when subdialogs are needed. Linguists and
philosophers have not come to any consensus about subdialogs, but several
types consistently appear:1 subordinations, corrections, and interruptions. A
message begins a subordinate conversation when it elaborates on a point made
in a previous message. This message should be about the previous message,
probably as a clarification of some fact. A message that begins a correction
1 See [LA87,Moo01,Pol88].
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subdialog indicates that the message somehow corrects a previous message
in the conversation. A message interrupts the current conversation when it
is neither an expected nor the standard reply to the previous message. This
should be used only if the other two do not apply.

A conversation policy (cp) defines 1) how one or more conversation part-
ners respond to messages they receive, 2) what messages one partner expects
in response to a message it sends, and 3) the rules for choosing among com-
peting courses of action. These policies can be used both to describe how
a partner will respond to a message (or series of messages) it receives and
to specify the procedure the partner actually executes in response to that
message (or those messages). The policy is a template describing an agent’s
reactions to an incoming message, its expectations about upcoming messages,
and the rules it applies to determine its own reactions. In a linguistic sense, it
moves the conversation from an inference-based process to a convention-based
one. Inference acts as a backup, providing a more computationally expensive
way of understanding unfamiliar messages for which cps have not been de-
fined. The means by which this backup can be implemented is demonstrated
in §2.

Conversation policies are represented using the statechart formalism de-
fined by Harel [Har87] and then later integrated into the uml.2 This is a
graphical language which developers should find easier to work with than,
e.g., an underlying xml representation which the agents themselves might
use. Statecharts are quite appropriate for event-driven systems, conveniently
representing “the set of allowed sequences of input and output events, condi-
tions, and actions, perhaps with some additional information such as timing
constraints.” [Har87, pp. 231–2].

Since cps are used to govern an agent’s behavior in a conversation, each
one begins with a message being either sent or received. The sent or received
message acts as a tag for the cp, indicating when it will be invoked. An
agent maintains two databases related to cps. One is the set of cps it can
use and the other is the set of currently executing cps. Figure 1 contains a
sample statechart representation of a conversation policy. The whole state-

advertise with brokersend
ask if
broker receives reply [yes]/

send inform that selling
receive acknowledgment/
send description of product

receive
ackmsg with

broker

broker
knows
we sell

broker sent
description

broker has
description

not a broker

receives reply [no]
H*

Fig. 1. A sample statechart representation of a conversation policy

2 [BRJ99,RJB99]
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chart is labeled advertise with broker. It has six states: advertise with broker, msg

with broker, broker knows we sell, broker sent description, not a broker, and broker

has description. Transition labels have the form t[c]/g, each part of which is
optional. When the event represented within the trigger t occurs, then, if the
condition c is met, the transition between states is made. If the g is present
on the transition, then the event g is generated as the transition is taken.

2 Extended Example

In this section I explore in detail an example adapted from Greaves, et al.
[GHB99]. Their example is specified for the KAoS system [BDBW97] using
a form of finite state machine (fsm); this is shown in Figure 2. I will first go
through an analysis of the representation used by Greaves et al. and compare
it with the cp-based representation. I then show how the cp can be used as
a control for an agent’s basic processing of messages; I follow this by showing
how cps can be integrated into a system that uses inference-based messsage
handling.

2.1 Analysis of Representations

Here is an interpretation of this finite state machine:

The contractor announces a request for bids. At this point the
contractor can withdraw, the supplier can fail to respond to the re-
quest, or the supplier can submit a bid. After the bid is received
by the contractor, the contractor can either reject the bid, withdraw
the original offer, fail to respond to the bid, or send a message of
acceptance.

After the message of acceptance is sent, either the supplier or
contractor can withdraw or renege. If neither of these happen, then
the task is complete.

Figure 3 shows a representation of this basic process as a conversation
policy (and as a statechart). The sequencing and policies covering the con-
versation are essentially equivalent to the specification shown in Figure 2
though there are many differences in detail. The actions of the two conver-
sation participants are separate in the current version while the fsm-based
version integrate their actions. The top half of this figure describes the con-
tracting process for the contractor; the bottom half is for the supplier.

In order to understand this cp, we need to examine it in context of all
of the cps governing the agent’s behavior. For this, consider Figure 4. Each
agent has one control process and many cps. In this diagram only one policy
is shown. For each cp one transition to it away from the control process,
and it is labelled with the message that the agent sends. The sending of this
message causes control to transfer from the control state to the cp. When
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10

0

1 6

112

3

4

7

5

8

9

C S: Announce/RFB

C S: Withdraw

S C: (silence)

S C: Bid

C S: Decline/Reject

C S: Withdraw

S C: (silence)

C S: Award

S C: Withdraw/Renege?

C S: Withdraw/Renege?

S C: Task complete

Fig. 2. ‘Contract’ conversation policy as represented by a finite state machine for
the KAos system [BDBW97]. Note: The transition from 2 to 11 is labelled as S→C:
(silence). Since every other transition from state 2 involves the contractor sending
a message to the supplier, I believe that this should be C→S: (silence) (i.e., the lack
of a the contractor sending a message). For the rest of this document I assume that
this correction has been made.

the cp is done executing, the system takes the one transition back from the
cp to the control state. Thus, when the contractor sends the request for bid
message, the contract process state is entered. Figure 4 shows the system’s
overall structure while Figure 3 shows the internal structure of the contract
process state.

The following describes the correspondance between the fsm and cp ver-
sions. At the beginning of each discussion point is a pair x-y; this refers
to the connection between states x and y in Figure 2. The list of numbers
immediately following this pair refers to the numbered transitions in Figure 3.

0-1 : 1, 10. This transition represents the contractor sending out a request
for bid message. Control has passed to the contract process state so we can
assume that a request for bid message has already been sent, thus passing
control to this cp. Once this state is activated, then the contractor follows
the default transition (labelled transition 1 in Figure 3).
The contractor sends the request to the supplier who receives the request
and, thus, follows transition 10. In this case one transition in the fsm
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supplier
knows

bid
known

contract
made

bad bid

process
stops

receive bid/
evaluate evalDone[good]

evalDone[bad]

/send accept

/send reject

/send withdraw

decide to stop or
evalDone[stop] or

time out

contractor

supplier

contractor's basic contract process

supplier
knows

contractor
has bid

contract
made

bad bid

process
stops

evalDone[desired]/
set bid, send bid

rece
ive

accep
t

receivereject

receive withdraw or
evalDone[unwanted] or

time out

supplier's basic contract process

receive
request
for bid/
evaluate

contract process
entry/require-ack = true

1 2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

when(done)

when(done)

Fig. 3. Conversation policy for the control process. This is invoked in response to
a ‘send request for bid’ message. Note: The circled numbers are not part of the
conversation policy; they are included for purposes of exposition.

contract
processcontrol

send request
for bid

when(done)

Fig. 4. Controlling process for conversation policies

version corresponds to two transitions in the cp because the cp models
the actions of the conversation partners at a lower level of detail. Here, the
sending of the message does not imply the receiving of the same message;
this would be appropriate in any electronic community that either is
based on technology with less than 100% reliability or uses technology
for sending messages in which the sending and receiving of messages occur
at different times.

1-6 : 7, 8, 16, 17. The fsm version simply states that the contractor sends
a withdraw message to the supplier. The cp version has more detail. In
this version for the process to stop the contractor either decides to stop,
finishes some evaluation process that indicates that it should stop, or the
process simply times out (from the inactivity of either partner). (The
semantics of statecharts is such that the transition from a superstate is
inherited by all of its substates; thus, if the process is in any of the sub-
states within contractor’s basic contract process, then the process will exit
the substate when an event occurs that triggers a transition from the
superstate.) In this case the contractor decides to stop the process for
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some reason other than the bid’s quality (since it has not even received
the bid yet).
When the contractor decides to stop the process, the process follows tran-
sition 7 and then immediately follows transition 8 and, in doing so, sends
a withdraw message to the contractor. The receiving of the withdraw
message causes the supplier to follow transition 16 and then transition
17. Since both halves of the statechart have reached the final states, the
whole statechart is completed.

1-10 : 7, 8, 16, 17. This step indicates that the supplier does not send a bid in
response to the request. The lack of action by the supplier, resulting in a
time out event to occur, causes the supplier’s process to take transitions
16 and 17. Eventually this lack of action will cause a time out in the
process for the contractor as well, which triggers it to take transitions 7
and then 8. The result is that the contractor sends a withdraw to the
supplier. Sending the message differs from the fsm version but seems
consistent with the scenario. If this were not desired, then the cp could
be modified so that a separate transition were defined for time out that
did not result in the sending of a message.

1-2 : 2, 11. In this step the supplier sends a bid back to the contractor. The
cp again separates this into separate actions. The supplier has finished
the evaluation that it began in transition 10 and the result is that it
desires to send a bid (see evalDone(desired) on transition 11). After this
event occurs, the supplier sets its bid and then sends the bid back to the
contractor (again, transition 11). When the contractor receives the bid,
it then begins evaluating the bid (transition 2).

2-5 : 4, 6, 9, 13, 15, 18. This step indicates that the contractor has decided
to reject the supplier’s bid. When the contractor finishes its evaluation
and determines that the bid is bad, then it takes transition 4 into the bad
bid state and then immediately follows transition 6 and sends a reject
message. After sending this message the process then follows transition
9 since the contractor’s basic contract process is done. When the supplier
receives the reject message, it takes transition 13 into the bad bid state
and then immediately takes transition 15 and then transition 18. Further,
since both substates have completed, then this process is done and control
goes back to the control state in Figure 4.

2-8, 2-11, 3-7, 3-9 : 7, 8, 16, 17. These steps indicate other possible times
for the contractor to withdraw its request for bid. On the statechart this
is again represented by the same transitions as was used for 1-10. On the
fsm the termination of the bidding process for reasons other than simply
rejecting the bid is represented by states 6, 10, 11, 8, 7, and 9; on the
statechart version it is represented by transition 7 into the process stops
state for the contractor and transition 16 for the supplier.

2-3 : 3, 5, 9, 12, 14, 18. This represents the awarding of the contract, that
is, the sending of an acceptance message from the contractor to the sup-
plier. On the statechart this is represented by the generation of an event
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signalling that the evaluation is done and the determination that the bid
is good (transition 3 into the contract made state). This is immediately
followed by the contractor sending an acceptance message, following tran-
sition 5 into the final state of the contractor’s basic contract process, and
then following transition 9 into the final state of the contract process.
When the supplier receives the accept message, it follows transition 12
into the contract made state. It then immediately follows transitions 14
and 18. As above, control is now passed back to the overall control state.

3-4 : It is unclear what this transition does. In any case it does not appear
to be anything that affects the current analysis.

Given the above analysis we can make some observations about the the
relationship between these two representations related to their level of detail,
the usefulness of state names, and the grouping of events.

Level of detail The cp approach shows the process at a greater level of
detail than the fsm approach. This might be merely indicative of the
example Greaves et al. chose or it might accurately represent the purpose
for which the fsm is used — it is unclear. The cp approach aims to
identify and model the activities related to interaction with other agents
plus any other actions that affect the timing or contents of any messages
that flow among conversational partners. Further, the activities of each
participant in the conversation must be shown separated from the others.

Usefulness of state names Regardless of the level of detail shown in the
models, the statechart representation is more explanatory by its nature
than the fsm example shown. For example, remove the labels on all of
the transitions in the cp and it is still quite clear as to what is going on in
the cp. Adding the labels back in provides more insight into the process.
The names of the states are meant to help describe the current state of
the system; clearly, the more descriptive and accurate this description is,
the more it is seen as an advantage over the numbered states of the fsm
approach.

Grouping of events The cp approach groups the events by user. This has
obvious benefits and drawbacks — sometimes an analyst wants to see
events grouped by user, and sometimes he wants to see how the events
relate to one another. Another point related to grouping is that the cp
tends to group all interruptions to the standard process (e.g., that con-
tained in contractor’s basic contract process) so that the regular flow of
control is more apparent. When looking at the fsm-based representation,
it is perhaps not as clear as it could be that states 6, 10, 11, 8, 7, and 9
are all, more or less, equivalent states; the cp representation makes this
more clear.
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2.2 Basic Processing

We have now presented an analysis in detail of these two methods of repre-
senting conversations. The purpose of the following exposition is to demon-
strate how a multi-agent conversation policy can be used to control the flow of
messages, contrast this with how messages are handled via an inference-based
process, and show how the inference-based processing can be integrated with
the policy-based handling in order to deal with exceptions to the policy.

In the following I list the messages that might be sent in fulfillment of
this conversation policy. I use a Prolog-based representation for the flbc
messages for space considerations. The send(A, B, C) predicate should be
interpreted as Agent A sends message Agent C to the agents listed in B.
Further, msg(S, R, F, C, X) should be interpreted as speaker S sending a
message to recipient R with illocutionary force F, content C, and with relevant
context X.

The message in Figure 5 is sent from Agent C to Agent S1 (line #1). This

send(c, [s1],

msg(c, s1, request,

send(s1, c,

msg(s1, c, offer,

[reserve(z),

Agent(z, s1),

Object(z, x),

room(x),

beginDate(z, time(1999, 6, 6)),

endDate(z, time(1999, 6, 10)),

location(x, delft)])),

[cp(contractProcess),

convID(v423),

ackPolicy([c, s1], [parse], yes),

timeSent(time(1999, 5, 11)),

msgID(c45)]))

Fig. 5. Message #1

is a request from the sender to the recipient that the recipient send back
to Agent C an offer in which Agent S1 reserves a hotel room for Agent C in
Delft from June 6 to June 10. Of course, predicates in this term are simplified
versions of what actual applications would require; for instance, information
about the room and the location would have to be markedly more detailed.

When this message is sent by Agent C, the “contract process” conversation
policy is invoked since both the cp() term in the context matches the process’s
name and the message itself matches the process’s trigger (see Figure 4). The
default transition in the top half is taken to put the contractor in the “supplier
knows” state.
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When the supplier receives this message, it determines from the ack-

Policy() term that it must acknowledge to the contractor when it success-
fully parses this message. This requirement of “parsing” is more restrictive
than simply receiving the message but is less so than fully processing the
message. This acknowledgment should indicate to Agent C that the sender
has been able to parse the message and knows what each of the terms mean.
This acknowledgment does not tell Agent C either that the sender has eval-
uated the original message or that the sender is going to respond to the
message. The purpose of this message is to confirm that the receiving agent
is on-line and that the agent communication system is successfully routing
messages. Agent S1 sends Message #2 back to Agent C (see Figure 6). Having

send(s1, c,

msg(s1, c, inform,

parse(s1, msgID(c45)),

[cp(contractProcess),

convID(v423),

msgID(s56)]))

Fig. 6. Message #2

received this acknowledgment, Agent C can reasonably assume that Agent S1

received the message. This takes one level of uncertainty out of the processes
of interpreting messages and managing conversations.

For the most part these acknowledgment messages lie outside the part of
the message processing framework that I want to concentrate on. Notice, how-
ever, that the sequencing of the contract process conversation policy remains
the same whether or not an acknowledgment is requested. The decision about
acknowledgment could be defined as a variable to be agreed upon by the con-
versants before the conversation begins. It could even be agreed upon for
all conversations between the two parties when they first begin to exchange
messages. In fact Figure 3 shows an example of this in the upper-left corner
just under the name of the cp: the phrase entry/ require-ack = true.
This is how uml statecharts (and, thus, conversation policies) represent a
state’s entry actions. In this case when the system enters the contract process
state, it sets require-ack to true. For the rest of this explication I assume
that these acknowledgment messages are being properly sent, received, and
processed.

The supplier, having received the request for bid (Message #1), takes
transition 10 in the bottom half of the statechart. Taking this transition fires
Agent S1’s “evaluate” event. The agent evaluates the request to send a bid.
How this evaluation is to proceed is not specified by the conversation policy.
It is not observable by Agent C; its inner workings do not affect Agent C;
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and it does not need to be known by Agent C. The evaluation function would
have to accept arguments with the following form:
(1) evaluate(request, send(s1, c, msg(s1, c, offer, [...])))

Thus, Agent S1 will evaluate a request that Agent S1 send an offer to Agent C

on a certain item (described above in Message #1). Assume that the output
of this evaluation is a term whose internal representation is
(2) determination(msgID(c45), desired)

This assumption does not affect the generality of this discussion; it simply
provides specifics we can use to proceed.

Whenever an evaluation is completed, it sends the event evalDone. This
triggers the statechart to attempt to take the two transitions leading out of
“supplier knows” in the bottom half of the statechart. Since the value was
determined to be “desired,” the system takes the top transition. In doing
this the system sends the events that cause the system to set the bid and
then send it back to Agent C. The message shown in Figure 7 contains the

send(s1, c,

msg(s1, c, offer,

[reserve(z),

Agent(z, s1),

Object(z, x),

room(x),

beginDate(z, time(1999, 6, 6)),

endDate(z, time(1999, 6, 10)),

location(x, delft),

price(x, $200)],

[convID(v423),

msgID(s57)]))

Fig. 7. Message #3

information from the request for an offer message plus the price() predicate.
The contractor receives this offer. It determines that this message belongs

to conversation v423 so it invokes the already-begun “contract process” con-
versation policy. It currently is in the “supplier knows” state. Having received
the offer, it takes the transition to the “bid known” state and simultaneously
fires the evaluate function. The evaluate function would have to accept ar-
guments with the following form:
(3) evaluate(offer, [...])

Thus, Agent C will evaluate an offer for a reservation of a room at $200. Again,
when this evaluation is done, it sends the event evalDone. This triggers the
statechart to attempt to take the transitions leading out of the “bid known”
state in the top half of the statechart. Assume the value was determined to
be acceptable. This directs the system to take the transition to the “contract
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made” state. In doing this, the system generates the event that causes the
message accepting the bid to be sent (as shown in Figure 8).

send(c, s1,

msg(c, s1, accept, msgID(s57),

[convID(v423),

msgID(c48)]))

Fig. 8. Message #4

The supplier receives this acceptance. It determines that this message
belongs to conversation v423 so it, again, invokes the “contract process” pol-
icy. It currently is in the “contractor has bid” state. Having received the
acceptance, it takes the transition to the “contract made” state. Since both
basic contract process substates have completed, transitions 9 and 18 are
taken; this completes both substates of contract process which means that
the superstate is completed as well.

The above example demonstrates how a conversation policy can provide
fairly straight-forward message processing. The complexity of message han-
dling is dramatically lessened by the pre-defined structure. One cost of this
simplification is the added requirement that the conversation partners have
to agree beforehand that they will use this policy. Further, for them to agree
to use this policy it must already be defined and they must both have access
to it. This is a difficulty that grows increasingly difficult with the number of
conversation partners and with the types of conversations the agent engages
in.

2.3 Inference-Based Message Handling

For a moment let us consider how the system can process messages without
defining conversation policies. Assume that Agent B receives the message
shown in Figure 9. This is a request from Agent A to Agent B that Agent

msg(a, b, request,

send(b, a,

msg(b, a, inform, [x]:name(b, x))),

[ackPolicy([a, b], [parse], yes),

timeSent(time(1999, 5, 12)),

msgID(a63)])

Fig. 9. Message #5

B inform Agent A of Agent B’s name (more directly, “x such that x is the
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name of Agent B”). According to the definition of the standard effects of
request [Moo01], the terms in Figure 10 show the results of this message.
This specification indicates to the developer of Agent B that Agent A wants

considerForKB a wants do(b, send(b, a,

msg(b, a, inform, [x]:name(b, x)))

considerForKB a wants (b wants do(b, send(b,

a, msg(b, a, inform, [x]:name(b, x))))

Fig. 10. Results of a request to inform

the effects on Agent B of this message to be the following two items: 1) Agent
B should consider adding to its knowledge base that Agent A wants Agent
B to send a message to Agent A informing it of Agent B’s name; 2) Agent
B should consider adding to its knowledge base that Agent A wants Agent
B to want to send that message. Because of the diversity of agent models,
it is basically impossible to provide a general accounting of what the agent
would do in response to this message and these two items in particular. What
I provide below is an accounting of two reasonable approaches to defining a
general means of handling these demands.

Simple agent What I am describing here is how a simple agent might
implement the receive function when this “request to inform” message is
received: Little about the agent model can be assumed other than the agent’s

receive(msg(a, b, request,

send(b, a,

msg(b, a, inform, [x]:name(b, x))),

[ackPolicy([a, b], [parse], yes),

timeSent(time(1999, 5, 12)),

msgID(a63)]))

Fig. 11. Message #6

ability 1) to receive flbc messages, 2) to interpret them, and 3) to use the
fl-sas [Moo01] to initially process the message. In the fl-sas process, the
agent verifies that the message is valid and well-formed, composed of terms
it knows the meaning of. It then ensures that it knows all the referents in
the content of the message. In this message, the only referent is “b”, the
recipient of the message. Agent B next verifies that the message’s content is
compatible with its force; that is, it ensures that it is possible to “request”
to “inform about the name of b.” Finally, it ensures that the message as a
whole makes sense.
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receive(msg(From, b, request,

send(b, From,

msg(b, From, inform, WhatInfo),

Context))) :-

rightToKnow(From, WhatInfo),

determineAnswer(From, WhatInfo, Answer),

createNewContextTerm(Context,

responseTo, NewContext),

send(b, From,

msg(b, From, inform, Answer),

NewContext).

Fig. 12. Processing a request to inform with a simple agent

After the above steps are completed for this message (as they are for
all incoming messages), Agent B is reasonably sure that it can process this
message. This should simplify later processing of this message in something
like the same way that both compiling a Java program simplifies the process
of executing that program and checking xml messages to see if they are
well-formed—these remove, early in the process, whole groups of errors. The
agent can now get on with the process of completing that part of the process
defined by the considerForKB items above. These are not meant to be directly
executed because so little can be assumed about the agent model. Thus, these
two considerForKB statements tell the developer of the receiving agent what
the message sender meant to convey with the message but does not tell him
or her how to implement the considerForKB function nor how to respond
to the message. In this simple agent the developer has chosen 1) to not
maintain a model of the sending agent’s intentions, and 2) to do what the
sending agent wants the receiving agent to do. Figure 12 shows a simplified
Prolog representation of how this might be handled. The agent determines
the recipient’s right to know what it’s asking, determines the answer to the
question, creates a new context term (that might, for example, retain the
conversation identifier and stack information, add a term indicating this is
a response to a message, and add a new message identifier), and sends the
reply.

More complex agent While the above addressed how a simple agent would
respond to a request to inform, the following looks at how a more complex
agent might handle this same message. The process for this agent begins as
it did for the simple agent: the fl-sas is applied with exactly the same steps.
After this the actions of the agents diverge. In this agent the developer has
chosen to implement a bdi (belief, desire, intention) agent model, to maintain
a model of the sending agent’s intentions, and to implement an agent that
can make deductions about these intentions. A preferred agent could reason
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receive(msg(From, b, request,

send(b, From, msg(b, From, inform, WhatInfo),

Context))) :-

considerForKB(wants(From, do(b, send(b, From,

msg(b, From, inform, [x]:name(b, x)))))),

considerForKB(wants(From, wants(b, do(b,

send(b, From,

msg(b, From, inform, [x]:name(b, x))))))).

considerForKB(wants(Other, do(b, Action))) :-

/* do some processing, for example, the following */

isBelievable(Other),

worthRemembering(Action),

addToKB(wants(Other, do(b, Action))).

considerForKB(wants(Other, wants(b, do(b, Action)))) :-

/* do some processing, for example, the following */

isBelievable(Other),

worthRemembering(Action),

addToKB(wants(Other, wants(b, do(b, Action)))),

considerForIntentions(wants(b, do(b, Action))).

considerForIntentions(wants(b,

do(b,

send(b, From,

msg(b, From, inform, WhatInfo),

Context)))) :-

/* do some processing */

rightToKnow(From, WhatInfo),

determineAnswer(From, WhatInfo, _),

addToIntentions(do(b, Action)).

fulfillIntentions(do(b,

send(b, From,

msg(b, From, inform, WhatInfo),

Context))) :-

determineAnswer(From, WhatInfo, Answer),

createNewContextTerm(Context, NewContext),

send(b, From,

msg(b, From, inform, Answer),

NewContext).

Fig. 13. Processing by a complex agent
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defeasibly about time and obligation (see [KM93a] for a discussion of what
is needed for such a system and why it might be needed).

Figure 13 shows some snippets of Prolog code that might be used to rea-
son about this message and how the agent would handle it. The receive()

predicate is a fairly direct mapping from the terms shown in Figure 10. The
first considerForKB() term specifies the restrictions on adding information
about another agent’s beliefs to the knowledge base. The second one does
the same but also begins the process of determining (by invoking consider-

ForIntentions) if the receiving agent’s intentions should be affected by this
incoming request. The agent’s intentions are only affected if the requesting
agent has a right to know the information and if the receiving agent can
actually answer the question. (Of course, all these predicates could be more
complicated and effective. For example, maybe the receiving agent cannot de-
termine the answer but knows someone who might know the answer—in some
cases this might be sufficient and appropriate.) Finally, the fulfillIntentions

term would be called by some process when the agent is attempting to do
what it desires to do.

Summary I have described agents with two different agent models. Each
uses the fl-sas to handle the initial message processing, and each interprets
flbc messages. Other than these similarities, the underlying structure of the
agents differ. However, as the sketchy existence proofs I have given in these
two sections indicate, each agent will create a similar response to the incoming
message, and each was able to process the message without a predefined
conversation policy.

2.4 Exception Handling

Another cost of the use of conversation policies (expressed as statecharts)
versus inference-based methods is that—this is not going to be a surprise—
they limit what can be said in a conversation. The standard conversation
policy limits what messages can be said and when; however, there are some
methods available for handling unexpected messages while still using cps
[Moo00b].

Consider again Message #1 (in Figure 5), in which the contractor requests
that the supplier send an offer for a room reservation. This is the first message
in the contract process cp. In response to this message the supplier begins to
evaluate what it should do. The form of this predicate is shown in item (1) in
§2.2. The full predicate might look something like that shown in Figure 14.
This predicate has three main clauses. The first does some processing if it is
able to determine that the agent desires to make an offer. If it determines
that it is desireable, then the process would follow transition 11 in Figure 3.
The second clause does something else if it is able to determine that it does
not want to make an offer; this would send the process down transition 16 in
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evaluate(request,

send(s1, c, msg(s1, c, offer, Description))) :-

((/* some processing if desireable */)

;

(/* some processing if unwanted */)

;

(/* some processing if not enough information */

not contains([beginDate, endDate, beds], Description),

send(s1, [c], msg(S, R, request,

send(R, S, msg(R, S, inform,

[b]:[reserve(z), Agent(z, s1), Object(z, x),

room(x), beginDate(z, time(1999, 6, 6)),

endDate(z, time(1999, 6, 10)),

location(x, delft), beds(x, b)])),

[cp(contractProcess), convID([v441, v423]),

subordinate, timeSent(time(1999, 5, 11)),

msgID(s62)])))).

Fig. 14. Evaluation that sends unexpected message

Figure 3. The last clause, and the one that is elaborated on, does some basic
checking and determines that the description of the offer does not contain
enough information to determine the attractiveness of the request. Suppose
that the evaluate predicate ends up determining that more information than
is provided in the incoming request is needed for the agent to reach a conclu-
sion. In this case the predicate specifies that the agent should send a message
back to Agent C requesting that it inform the supplier about the number of
beds in the room the agent wants.

Agent C receives this message, examines it, and determines that it is part
of the contract process it is already involved with. It also notes (from the
incoming message’s context term) that this message is part of a subordi-
nate conversation and that this message does not match any of the events
coming out of the “supplier knows” state in the top half of the contract pro-
cess statechart. Using the technique for handling unplanned subdialogs with
conversation policies discussed in [Moo00b], the system can use inferential
processing (as described in §2.3 and §2.3) to link the cp described in §2.2
with another cp that is already defined for handling this request for informa-
tion. The agents would go through the process of asking for and receiving the
appropriate information. Having completed this subdialog, Agent S1 would
re-start the evaluate predicate shown in Figure 14. From the additional in-
formation it received in this last message, the agent should be able to come
to a determination as to whether or not it wants to make an offer and, thus,
continue with the conversation policy.
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3 Conclusion

The above demonstration provides reason for believing that the system for
managing conversation policies described in this paper can be integrated with
an inference-based system for interpreting messages. Certainly, the contract
process conversation policy could have been re-defined to handle the request
for information discussed in §2.4; however, that is not really the point. If that
message were the only one that might be sent in violation of the conversation
policy, then of course the policy should be revised. Unfortunately, many such
messages might occur and it is not at all certain that all these messages might
be foreseen. Further, if these exceptions were built into the policy then the
policy would become ever-more complex and difficult to implement. And all
for the benefit of exceptions that may not ever be seen by the agent. The
ability to gracefully handle exceptions allows conversation policy definitions
to describe a flow of conversation directly without needlessly focusing on the
myriad strange twists and turns it might take.

End notes Much of the work described in this paper was produced for the
“Workshop on Formal Models for Electronic Commerce,” organized by Yao-
Hua Tan and Ronald M. Lee, and held at the Erasmus University Research
Institute for Decision and Information Systems (EURIDIS), Rotterdam, The
Netherlands, June 2–3, 1999.
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Abstract. In this paper we describe a research project centering on experiments in
which game-playing evolving agents are used to investigate the value of information.
Specifically, in these experiments we define populations of agents whose strategies
evolve towards those that have better restocking strategies for their supply chain.
The agents evolve their strategies in order to minimize costs (either for themselves
or for their value chain). We describe several different experiments in which we will
vary the abilities of agents both to gather and to store more information. Part of the
results of this project will be related to the value of information and computational
capabilities: Is it always better to have more information? If not, what are the
conditions under which less information is better? The culminating experiment is
one in which evolving agents compete to sell information to other evolving agents
playing their roles in a supply chain.

1 Introduction

It is generally believed that having more information available to make a
decision is a good thing; however, in today’s computing-saturated business
world information overload eventually occurs. Further, given that it costs
money to manage information, care should be taken when the decision is
made to gather an additional piece of information. The general strategy we
are using in the research program described in this paper is to simulate a busi-
ness problem, varying parameters so that players are placed under differing
requirements for, or conditions of, information and computational capabil-
ities. (For the rest of the paper, when it will not cause confusion, we will
use the term “information” to refer to “information and computational ca-
pabilities.”) The players who participate in these simulations will be created
computationally through the use of a genetic program [Koz00]. Genetic pro-
gramming is a computational approach to managing the evolution of agents
whose fitness to live is based on their ability, relative to other agents in the
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population, to perform in a specified way, for example to navigate a space
or to compute a particular function. We are using genetic programming in
this experiment as a means for investigating the information needs of the
participants — the abilities both to gather and to make use of information
— as they vary with the simulation’s complexity. At the end of the series of
experiments we will also look into how effectively evolving agents are able to
sell information to the agents competing in the supply chain. A secondary
result of this research program will be an increased understanding of how
sensitive the genetic program is to its initial parameters, evidence showing
how varying certain genetic program-related parameters affect the experi-
mental results, and how well a genetic program can navigate a large search
space. The specific business situation we will use in this research program is a
multi-level supply chain game as exemplified by Sterman’s beer game [Ste89].
Throughout the rest of the paper we use the term beer game to refer to the
simulation we are investigating. A final result of this project will be insight
into how well solutions found by a genetic program compare with solutions
found by other methods in the management science and information systems
literature. This paper describes the research program we are undertaking on
this subject.

In the initial experiments described in this paper, agents evolve in several
separate populations that correspond to the different roles in the beer game,
namely retailer, wholesaler, distributor, and manufacturer. (See Figure 1.)
The standard scenario is one in which an agent can only send orders to

orders

goods

Cust Ret Whol Dist Mfr Plant

orders

goods

orders

goods

orders

goods

orders

goods

Fig. 1. Basic set-up of supply chain

one agent who is one step upstream (referring to the flow of goods) and
can only send goods to one agent who is one step downstream. Demand is
determined by an exogenous customer who both sends orders to the retailer
and ultimately receives final delivery of the goods. The times for orders and
goods to arrive at their destinations are taken from distributions that are
not known by the players. The goods are manufactured at the plant, another
exogenous player.

Each week each player has a standard series of tasks that it completes
(see Figure 2). First, goods arrive from the player upstream; these goods are
put into inventory. Second, orders arrive from the player downstream; these
orders are added to any previous backorders (i.e., orders from past weeks
that have not been filled). Third, the player ships as many goods as it can in
order to fulfill the orders it has received. Fourth, the player places an order
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Player
2

3

4

1

backorders

inventory

orders arrive

ship goods

place orders

goods arrive

Fig. 2. A player’s tasks each week of the game

for the number of goods that it thinks it needs. It is in this last step that the
player’s re-stocking strategy is applied.

The object of evolution on these populations is to find a strategy for
ordering goods, for each player, that minimizes its costs when playing the
game with other agents. People are notoriously bad at playing this game even
at the simplest of possible settings (e.g., when demand, lead time, and so on
are more or less fixed at constant values). An average player’s performance
has been known to end up with costs ten times worse than optimal [Ste04].
Further, analytical techniques can provide solutions to this problem only
when the settings are simple, but not when demand, lead time, etc. stochastic
and non-stationary, as they usually are in real environments [Che99].

We have several research questions in mind when looking at what evolves
in this environment, some related to the genetic programming tool itself and
others related to the supply chain management process. We will not sum-
marize them all, but there are generally two classes of questions. The first
relates to determining if a genetic program will be able to evolve agents that
use optimal or near-optimal re-stocking strategies. We will be playing a great
variety of supply chain games, varying many parameters, including the num-
ber of players at each level of the supply chain, the information available to
the players, the speed at which goods are shipped, and the pattern of cus-
tomer demand. We believe that some scenarios will prove to be quite simple
for the genetic program while others will prove more demanding. Kimbrough
& Wu [KWZ02] successfully used genetic algorithms (a related technique) to
evolve agents to play this game, though the search space for their solutions
is much constrained relative to our proposal.

The second set of questions relate to looking at the value of information.
We will be looking for situations in which one piece of information ends up
determining a player’s eventual success. Conversely, we will also be looking
for situations in which the volume of information overwhelms a population
and keeps any one member from finding successful strategies. We will also
be looking for ways we can value information. In one set of experiments we
will put costs on the usage of certain information in order to see how the
population reacts. In another set we will add a competing population that
evolves pricing strategies for information in order to determine if the pric-
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ing agents can determine appropriate and sustainable prices for information
without adversely affecting the players’ performance.

We wrote the program that runs the simulations for this project using gnu
CLISP [Fre04]. The source code for our program is available at SourceForge
[MD04] and runs on Windows, Linux, and Unix machines. In its current state
of development it is able to generate the populations, play the games with a
limited set of parameters, breed a new generation based on the performance
statistics of the existing generation, and generate some statistics while it
is running. Much remains but the foundation of the program is completed.
More information about the computing resources used in this simulation are
contained in Appendix C.

2 The Evolutionary Process

In this section we describe the basic set-up of the evolutionary process, the
game played by the members of the population for the purposes of determin-
ing the fitness of each population member, and the representation of each
player’s re-stocking strategy.

2.1 Basic Set-Up

We will vary the experiment somewhat throughout this project but the fol-
lowing describes a standard set-up. (See Figure 3.) This experiment has Φ
separate, co-evolving populations of Λφ agents for each role in the game; in
Figure 3 the dots in the circles represent the members of the population.

Population of 

potential

Retailers

Retailer

Population of 

potential

Wholesalers

Wholesaler

Population of 

potential

Distributors

Distributor

Population of 

potential

Manufacturers

ManufacturerCustomer Plant

A game

The evolutionary process

Fig. 3. The relationship between the evolutionary process and the supply chain
games

(The overall evolutionary scenario is summarized in Figure 4, and related
term definitions are shown in Figure 5.) For each evolutionary scenario the
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Create each population of agents
gen = 1
repeat

Instantiate a particular demand pattern
for φ=1 to Φ

Choose agent j from φ at least M times
Fill all the roles in the game appropriately
Play the game for W weeks
Record the outcome for each agent

end-loop
end-for
Calculate and record fitness scores for all agents
Determine this generation’s best agent
Determine the scenario’s current champion so far
Breed the next generation of each population
gen = gen + 1

until termination condition is met

Fig. 4. Evolutionary scenario

researcher defines a particular demand distribution (e.g., uniform over a cer-
tain range, Poisson with a particular arrival rate). For each generation, a
particular instantiation of this particular demand distribution is created. In
each generation of the process, each agent plays at least M games (this is a
parameter set by the researcher), and it is the agent’s performance in these
games that determines its fitness. For any one of these games, a random
member of each population is chosen to play its specified role (as shown in
Figure 3). At the end of the game, the agent’s score is recorded. We use sev-
eral different fitness functions but a standard one is to minimize an agent’s
costs. One game is usually played for W = 35 weeks (i.e., turns), though we
will vary this to keep the agents from over-specifying. After all games are
played, the program calculates and records fitness scores for all the agents
in all the populations. From these scores the generation’s best agent is de-
termined. Determining the “best” agent is something of a difficult task in
this experiment and is covered in some depth in §2.2. After determining the
generation’s best agent, the program determines if this agent is better than
the best agent that the scenario has uncovered so far. Information about
the current champion (as we refer to this overall best agent) is retained and
updated after each generation. The best players in each generation are then
chosen to reproduce and create the next generation of players (using various
approaches). This entire process is repeated until a termination condition is
met, typically a completion of a specified amount of simulated time.



368 Scott A. Moore and Kurt Demaagd

2.2 Measurements

In the next several sections we are going to discuss the many measurements
that are made in this program. We start by describing many of the basic
variables and functions that are needed to make the measurements discussed
in the following sections. This supply chain game lends itself to many differ-
ent ways of keeping score; we describe several of them in §2.2. The genetic
programming process requires that a specific score be kept as a means of
guiding the process of reproduction. This score is called the fitness function;
we describe this in §2.2. We conclude (§2.2) with a discussion of how the
genetic program itself can be measured.

Useful variables and functions The basic parameters shown in Figure 5
are needed for the following discussion. (Note that all the terms defined in

Φ = number of populations

φ = any value in 1. . .Φ; that is, a particular population

Pφ = a certain population φ

Λφ = number of agents in population φ

j = a particular member of some population

Λ = number of agents in all populations

=
X

φ∈Φ

Λφ

R = the roles in a game: retailer, wholesaler, distributor,

and manufacturer

ρ = any value in R; that is, a particular role

W = number of weeks

w = any value in 1. . .W ; that is, a specific week

G = number of games played in a particular generation

g = any value in G; that is, a particular game

M = the minimum number of games an agent plays in one generation

Hg,ρ = inventory holding costs per item in game g for the role ρ

Pg,ρ = penalty cost per backordered item in game g for the role ρ

Fig. 5. Definitions of standard parameters

the following figures refer to one generation; for example, G refers to all the
games that occur in one generation.) These are set before an evolutionary
scenario is begun. Consider the first function, π(g, ρ). This returns the index
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π(g, ρ) = the index j of the player who played role ρ in game g

φ(j, ρ) = the set of game numbers in which player j played role ρ

µ(j, ρ) = the number of games in which player j played role ρ

ψ(ρ) = the population number that players in role ρ are taken from

Fig. 6. Useful functions

j of the player who played role ρ in game g. This function enables us to tie
the score earned by a player in a role back to a specific member j of the
population — which, in turn, enables us to assign fitness scores and then
reproduce a new generation of players. You will see this function π used in
many variables. The function φ(j, ρ) is basically the inverse of the π function:
given the index j identifying the population member and the specific role,
the function returns a set of game numbers for which this agent fulfilled this
role. The next function, µ(j, ρ), returns the number of games in which player
j played role ρ. This will end up being different values for different members
of the population in a particular generation since members are randomly
selected for games.

The last function in this table, ψ(ρ), is useful when there is more than one
population of agents (as there is in the scenario we are currently examining;
see Figure 3; if there were only one population, then this function would
always return 1). In our conception of this genetic programming investigation,
at the beginning of the evolutionary scenario each population of agents is
created and assigned to a particular role in the game. Thus, if you know the
role in the game, you know the population that any player in that role came
from. This function captures this information.

Figure 7 describes important weekly status variables for the supply chain
game and how they are related to each other. These values are calculated
and stored for each player for each week for each game for each generation.
In most games the information for a particular player will be available to
only that player. In some games the player will know information about all
prior weeks of the game while in other games the player will only know about
the current week. All but the last two variables in this figure are relatively
straight-forward. The last two are related to the problem of coming up with
a measure for the whole value chain. The first, Kg,w, defines a simplistic way
of calculating the costs for a value chain for one week of a game: add up
everyone’s cost. Consider, though, if all of the members of a value chain were
under one management so that both inter-agent backorders and the location
of inventory were irrelevant; if this were the case, then κg,w would be the
preferred measure.
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Bπ(g,ρ),w = inventory on hand at beginning of week w for the player

in role ρ in game g

Sπ(g,ρ),w = shipment received in week w by the player in role ρ in game g

Dπ(g,ρ),w = demand received (that is, the number of goods ordered)

in week w by the player in role ρ in game g

Iπ(g,ρ),w = inventory position in week w for the player in role ρ in game g

= Bπ(g,ρ),w + Sπ(g,ρ),w −Dπ(g,ρ),w

Oπ(g,ρ),w = backordered items in week w for the player in role ρ in game g

=

j
0 if Iπ(g,ρ),w ≥ 0
−Iπ(g,ρ),w if Iπ(g,ρ),w < 0

Cπ(g,ρ),w = costs in week w for the player in role ρ in game g

=

j
Iπ(g,ρ),w ×Hg,ρ if Iπ(g,ρ),w ≥ 0
Oπ(g,ρ),w × Pg,ρ if Iπ(g,ρ),w < 0

Kg,w = total costs in game g in week w for a value chain

=
X

ρ∈R
Cπ(g,ρ),w

κg,w = aggregate costs in game g in week w for a value chain

= Pg,ρ ×Oπ(g,R),w +
X

ρ∈R
(Hg,ρ × Iπ(g,ρ),w)

Fig. 7. Important status parameters for a week in a game

Keeping score in a game We now have some idea about status information
that is available during a game. In this section we define several different
ways to keep score in a game. Figure 8 defines for agents various game scores
whose values are based on these variables. Aπ(g,ρ) defines the total costs for
the player in role ρ in game g; it is the sum of the player’s costs (defined in
Figure 7) for each week of the game. Take a closer look at the name of this
variable: Aπ(g,ρ). This uses the function π that we discussed above. When
we have a value for a specific A′

π(g′,ρ′) — that is, when we are considering
a specific role ρ′ in a specific game g′ — the π function tells us the specific
member of the population j′ that played in the game; thus, A′

j′ represents
the total costs that player j′ incurred in that role in that game.

Depending on the demand function used when running the evolutionary
process, it is possible for players in the same population to play games with
different demands in different generations. As a result, it can be difficult to use
A to compare the fitness scores between different generations. For example,
players in two different generations might play similar games except that the
first player faces an average demand of 10 while the second player faces an
average demand of 100. Both players may have sub-optimal strategies — for
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Aπ(g,ρ) = total costs for the player in role ρ in game g

=

WX

w=1

Cπ(g,ρ),w

Dg,ρ = total demand in game g for role ρ

=

WX

w=1

Dπ(g,ρ),w

Υπ(g,ρ) = normalized total costs for the player in role ρ in game g

=
Aπ(g,ρ)

Dg,ρ

AΞ
π(g,ρ) = the total costs for a player in role ρ facing the demand

pattern used in game g if its strategy is to always order

according to the presumably standard strategy Ξ

ηπ(g,ρ) = relative total costs for player ρ in game g

=
Aπ(g,ρ)

AΞ
π(g,ρ)

Fig. 8. Various game scores for an agent in a game

example only ordering 50% of demand — but the second player will appear to
have a worse strategy. It will probably have backorder costs that are a factor
of 10 higher than the first player’s. Therefore, we need a way of comparing
one agent’s score with the score of another agent who faced a different set of
demands.

The total demand normalized total costs for a player, Υπ(g,ρ), addresses
this issue. Υ is defined as a player’s total costs divided by the sum of its
weekly demands. The resulting game score represents a player’s cost per
unit of demand. Returning to the previous example, the first player had a
backorder cost of 5 and a demand of 10, resulting in a Υ of .5. Likewise,
player two had a backorder cost of 50 and a demand of 100, resulting in a Υ
of .5. This Υ , which we shall refer to as td-normalized, partially resolves the
problem of differences in demand artificially skewing the fitness scores.

What Υπ(g,ρ) does not address is the difficulty raised related to the fact
that a player’s actions (and resulting score) can be non-linearly related to the
incoming demand. What is needed is a score for an agent that uses some sort
of “standard” strategy; this score could be used as a baseline against which
to measure the quality of a strategy. In this case AΞ

π(g,ρ) is our baseline, where
we will assume for now that Ξ = D. The D strategy (placing an order equal
to the player’s demand) is a simple and intuitively appealing baseline strategy
which is also the optimal strategy in simplistic scenarios (as pointed out in
[KWZ02] among others). In some cases we will be able to use as the baseline
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the optimal strategy as defined by the operations management literature but
in other cases we will use heuristics (such as the D strategy).

Given this baseline, it is possible to measure the relative average fitness, η;
it is Aπ(g,ρ) divided by the baseline. The resulting ratio will give a comparison
of the strategy’s effectiveness versus the baseline D strategy. Of course, in
different scenarios it might be useful to use baseline strategies other than D.
The measure η will provide a convenient way to compare strategies across
generations while also signifying how well the genetic program is progressing
relative to some known standard.

In addition to looking at the performance of individual players, we also
can examine the performance of the entire supply chain for a whole game
(see Figure 9). There are two ways to do this, one based on Tg and the

Tg = total costs in game g for a value chain

=

WX

w=1

Kg,w

Ug = td-normalized total costs for the value chain in game g

=
Tg

Dg,R

TΞ
g = the total costs for a value chain in game g if the strategy of

each player is to order according to the standard strategy Ξ

Ng = relative total costs for the value chain in game g

=
Tg

TΞ
G

Θg = total aggregate costs in game g for a value chain

=

WX

w=1

κg,w

Ug = td-normalized aggregate total costs for the value chain in game g

=
Θg

Dg,R

ΘΞ
g = the aggregate total costs for a value chain in game g if each

player orders according to the standard strategy Ξ

Ng = relative aggregate total costs for the value chain in game g

=
Θg

ΘΞ
g

Fig. 9. Various scoring choices for a value chain in a game

other on Θg. These, in turn, are based on the two different ways in which
we measure weekly value chain performance, Kg,w and κg,w, respectively.
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Each of these measurements of total value chain performance (i.e., T and
Θ) has the following associated values: 1) td-normalized scores (Ug and Ug,
respectively), 2) baseline scores (TΞ

g and ΘΞ
g , respectively), and 3) relative

scores (Ng and Ng, respectively). The motivation for these td-normalized
and relative scores mirrors that of the td-normalized (Υ ) and relative (η)
scores described above.

Keeping score for reproduction We can monitor the genetic program-
ming evolutionary process with many different scores, but for purposes of
reproduction we have to select one and only one score. Figure 10 describes
several fitness measures as defined by Koza [Koz00]. The simplest measure

τπ(g,ρ) = game-based raw fitness; this can be any one of A, T, or Θ

τ j = an agent j’s average raw fitness over all of its

games in this generation

=
1

µ(j, ρ)

X

g∈φ(j,ρ)

τπ(g,ρ)

βρ = best score for any player in role ρ in this generation

= min
j∈Pψ(ρ)

τ j

σj,ρ = standardized fitness for the player j in role ρ in game

g where π(g, ρ) = j

= τ j − βρ

αj,ρ = adjusted fitness for agent j in role ρ

=
1

1 + σj,ρ

νj,ρ = normalized fitness for agent j in role ρ

=
αj,ρP

j∈Pψ(ρ)
αj,ρ

Fig. 10. Koza’s standard fitness measures

is τ , the game-based raw fitness. The value of this can come from the fitness
measures defined in Figures 8 and 9, such as A, T , or Θ. (We do not use
any of the td-normalized or relative scores as a basis for a fitness measure,
though we could, because they are transformations that reduce the absolute
differences among scores; however, we will track the td-normalized and rela-
tive scores as part of the reporting process for the reasons described above.)
An agent’s raw fitness for a generation, τ j , can be a bit more complicated
than simply using an agent’s raw fitness score from one game. In many in-
stances the agent has the opportunity to play multiple games. For example,



374 Scott A. Moore and Kurt Demaagd

in the evolutionary scenarios in which there are multiple populations, we will
sometimes have the agent play games with multiple different, random oppo-
nents. The hypothesis is that this will reduce the chances that a high-fitness
agent will be dropped from the population because it played in a game with
a poor value chain partner. For this reason we calculate an agent’s fitness in
a generation, τ j , as that agent’s average game score over all the games that
it plays in that generation.

The genetic program needs standardized fitness, σj,ρ, to have values such
that smaller numbers are better, and the best score is zero [Koz00, p. 96].
All of the measures defined in Figure 8 are based on costs, which should be
minimized. Therefore, as lower is already better, standardized fitness is equal
to raw fitness (with the βρ adjustor needed to set the best score to 0).

The adjusted fitness for the player, α, converts the standardized fitness
into a number between 0 and 1. As in the case of the standardized fitness, this
will result in a score where smaller values are better. It also tends to create a
more pronounced distinction (relative to the distinction among standardized
fitness scores) between scores with similar values. Normalized fitness, ν, is
similar to the adjusted fitness, except larger scores are better. Like adjusted
fitness, the values will range from 0 to 1 and it tends to further emphasize
the difference between values.

When evolving agents, we will use all of the possibilities for the game-
based raw fitness, τ , to calculate an agent j’s score for any particular game,
and will use the normalized fitness based on that τ , ν, as the agent’s fit-
ness value for that generation. We will report all of the τ values for every
generation no matter whether or not that specific τ is being used as the basis.

Comparing scores across experiments The above sections describe a va-
riety of measures which provide different types of insight into the performance
of the player, the value chain, and the genetic program’s ability to improve
the strategy of the players in the game. In order to compare scores across
experiments, the score has to be insensitive to the particulars of the demand
pattern faced, the population size, the number of generations, and any of
the game’s settings. The purpose of this score is to compare the effectiveness
of the genetic program (and the particular settings used in that particular
experiment) at producing players who play the game well. The goals of these
experiments are 1) to find the best re-stocking strategies for particular de-
mand distributions, and 2) to find settings for the genetic program that most
effectively and efficiently search for re-stocking strategies.

Before continuing, let us clarify that there are three classes of scores that
we will be keeping: those based on a player’s scores, those based on a value
chain’s total costs, and those based on a value chain’s aggregate costs. These
measure different aspects of a player’s performance and are not just simple
linear transformations of the others.
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The basis of all the scores (within one class) is a player’s total costs for a
game, A. We defined the player’s td-normalized total costs, Υ , so that we can
consider the player’s score in a way that minimizes the effects of the scale of
the demand placed on the player. We defined the player’s relative total costs,
η, so as to minimize both the pattern of the demand placed on the value
chain and the rest of the game’s parameters. However, it is still the case
that a strategy might perform well against one demand instantiation but not
against another. Recall that at the beginning of each generation we generate a
new demand instantiation that is used for all games played in that generation.
Our goal is to define a genetic programming process that discovers restocking
strategies that are appropriate for certain demand distributions and not just
for certain instantiations of those demand distributions.

It is also the case that we’re interested in all of the strategies that the ge-
netic program looks at in the course of the evolutionary process, not just the
ones considered in the last generation. We want to know what the best strat-
egy was over the course of the entire process, and we want the performance of
the experimental settings to be derived from the the score of this player. The
pertinent questions become “how do we determine what best means in this
context?” and “what is the appropriate process for finding the best player?”

For our purposes, we are attempting to define a genetic programming pro-
cess that finds a strategy that is most effective against any demand instanti-
ation from a particular demand distribution. Each generation each member
of a population plays games against the same demand instantiation; the next
generation will use a different demand instantiation. This means that the
“best” player of any one generation has the lowest total costs against the
particular demand instantiation used in that generation. Over the course
of an n generation experiment, members of the population face n different
demand instantiations.

We propose the procedure described in Figure 11 for finding the best
restocking strategy in an experiment. Each generation one player emerges
as the best performer against the specific demand instantiation that was
used during that particular generation. This player is that generation’s best
candidate to defeat the current champion. The best player from an experiment
will be the current champion after the last generation.

This process best captures what we mean when we say that we are trying
to find a strategy that performs the best against a certain type of demand
distribution. In the long run we do not care whether or not a certain strat-
egy performs the best against a particular demand instantiation — we are
interested in those that perform the best against any demand instantiation
from a particular demand distribution.

It should be noted that this process of choosing a champion depends on,
but is not a part of, the genetic programming process. The experiment’s
best player does not even have to be in the population at the end of the
experiment; it might have existed in an earlier generation but, through the
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1. Generate a set of 30 different demand instantiations from the demand distribution
used in the current experiment. Call this the championship demand set. If a player
plays one game against each of the instantiations in the championship demand set,
then it is said to have played the championship games.

2. Have the standard strategy play the championship games. Call the average of these
scores the standard championship score.

3. After the first generation, save the player with the lowest total costs as the current
champion.

4. Have the current champion play the championship games. Average these scores.
Call this the current champion’s score. Divide the current champion’s score by the
standard championship score; call this the current champion’s ratio.

5. Play the next generation.
6. After this generation, the player with the best score for that generation will be

named as the challenger to the current champion.
7. The challenger will play the championship games. The challenger’s ratio for these

games will be compared against the current champion’s ratio. The player with the
lowest ratio will be declared the champion.

8. Keep a record of the current champion’s ratio.
9. Repeat starting at #5.

Fig. 11. Process for determining the best player over the course of an experiment

vagaries of the genetic programming process, might not have been selected to
reproduce into the next generation. Further, although this process depends
on the genetic programming process, it does not at all influence the course of
the on-going evolution. The championship process merely captures valuable
information that might have otherwise been lost during evolution.

2.3 Specifying a Strategy

We have discussed how the game is played, how the evolution proceeds, how
agents are measured, and how experimental results are evaluated. We now
examine how strategies are defined and how new ones evolve from old ones.

Defining a strategy Each member’s strategy is represented by an S-expres-
sion. An S-expression is a set of terms composed into a tree. Consider the
example shown in Figure 12. The standard mathematical expression can be
translated in a fairly straight-forward manner into the S-expression; this can,
in turn, be mapped onto a tree representation. The program that we have
written manipulates S-expressions but the tree representation can sometimes
be easier to use in exposition so we will generally use that representation in
this paper. The terms in the S-expression can be either terminals or functions.
Terminals are either constants or variables, such as 187 or D. A function takes
a specified number of parameters, performs an operation on those parameters,
and then returns the result. For example, the function (sum 3 4) will add 3
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Standard mathematical representation I + (7 - D)

S-expression (+ I (- 7 D))

Equivalent tree representation

+

I -

7 D

Fig. 12. Equivalent representations

and 4 and return the result. Parameters of a function can be both terminals
and other functions.

When coming up with a set of functions to include in a genetic program,
it is desirable that every function satisfy the closure property [Koz00, p. 86].
To meet this requirement, all functions must accept as a parameter any pos-
sible value in the set composed of all terminals and any value returned by
any function. Thus, no matter what allowed transformations that might be
performed on this function (see the discussion of genetic operations below), it
should not encounter errors in execution. The classic example is division by
zero. Since this would generate an error, a special division operator must be
created to return a pre-specified value if the denominator is zero. In our ex-
periments, if a function encounters an error condition, it will return 100,000,
a number far out of the range of possibly useful order values.

Functions must also satisfy the sufficiency property if we want the genetic
program ultimately to find the answer to the problem at hand. This states
that functions and terminals provided must be able to express a solution to
the problem. For example, in our experiments with the beer game and mit
demand, we know that the optimal solution is based on the demand. If we
failed to provide the demand as a terminal, the program would at best be
able to find only an approximation of the optimal solution.

The terminals and functions are all listed in §A. The terminals consist
of a set of integers plus information that the agent knows about itself and
the game: amount of its own inventory, amount that it has on order, its own
current demand, plus the current week number of the game. There is nothing
that says that the appropriate terminals or functions have to be easy to find,
or that they have to be combined in some straight-forward way, or that the
researcher even knows how the terminals and functions should be combined
in order to reach the best solution. In fact, part of what we are attempting
to do with this research program is to determine how difficult the answer can



378 Scott A. Moore and Kurt Demaagd

be to find while still enabling the genetic program to succeed. Further, some
of the problems that we will pose to the genetic program have no known
optimal solution so we will merely be searching for “best that we can find.”
In this case, we will investigate the value of information and computational
capabilities and how well the agents are able to take advantage of them.

The functions currently under consideration come in three groups (see
Appendix A): mathematical, logical, and informational. The mathematical
set includes fairly standard operations: addition, subtraction, multiplication,
integer division, minimum, maximum, and sine. The logical functions are also
the ones you might expect: and, or, not, if/then, if/then/else, greater than,
less than, and equal to.

The informational functions are a bit more interesting. The function
(mydem y) retrieves a player’s own demand y weeks ago while (myinv y)
does the same thing for inventory and (myord y) for orders. The functions
(dem x y), (inv x y), and (ord x y) are generalizations of these three
functions that provide access to this information for other players. These
functions will not be available to all players in all scenarios. Some of our
experiments will be directed at discovering how useful the players find these
functions, and whether or not some functions allow some population members
to dominate over other population members.

Evolving a new strategy Genetic programs generate new strategies us-
ing many of the same principles of Darwinian evolution. It is essentially a
matter of selecting certain individuals with superior fitness, performing a set
of genetic operations, and adding them to a new population of individuals.
In this way, the genetic program should eventually evolve better solutions to
the problem.

The first problem is to select superior individuals. In §2.2 we described
the different means of rating an agent. The next problem is to select indi-
viduals with higher rankings without destroying the diversity of the genetic
material that may contain components of the optimal solution. Three pri-
mary methods are used in genetic programming: fitness proportionate, rank,
and tournament.

Fitness proportionate selection is the most popular method for selection
[Hol92]. This method effectively treats the fitness score of the individual as
the probability that it will be selected. The easiest means of calculating this
probability for an agent j is to set it equal to the normalized fitness, νj,ρ. The
normalized fitness is already a measure between 0 and 1 with greater scores
being better, and the sum of all νs is 1.0.

While popular, this has a significant weakness. If a particular agent or
small group of agents has a relatively high fitness, they may quickly dominate
the entire population. This can reduce the diversity of the population which
may limit the ability to find an optimal solution. One means of resolving
this is to use rank selection. Each individual is assigned a rank based on its



Genetic Programming and Information Value 379

score, ν. New members of the population are selected from the set of highly
ranked members. This has the effect of reducing the premature convergence
of fitness proportionate selection while still favoring strong individuals.

Tournament selection is the computational equivalent of two individuals
competing for a mate. Two agents are selected at random from the popu-
lation. The agent with a superior fitness score is selected. Once the agent
is selected, one of several genetic operations is performed on it. The goal of
this phase is to create a new population that, ideally, will be superior to the
previous population. Three of the most common operations used in genetic
programming are reproduction, crossover, and mutation.

The simplest one of these is reproduction. The selected individual is simply
copied into the new population. This results in the stronger elements of the
previous population becoming the new population. While this will create a
stronger population, the system will never find any members with superior
fitness compared to those in the original population. To resolve this issue,
members of the population must be modified in some way.

The most common method of evolving the individuals is crossover.

+

I 7

*

2-

D 1

Child Generation

+

I 7

*

2 -

D 1

Parent Generation

Fig. 13. An example of crossover

This is the genetic programming equivalent of sexual reproduction. It
takes material from two parents and uses it to create two new children. The
first step is to select two individuals, using one of the selection methods
described above. These two agents will be the parents.

The next step is to perform the actual crossover. Recall that each parent
can be represented as a tree (Figure 12). To perform the crossover, each
parent swaps part of its tree with the other parent. This is done by selecting
a random point in each parent. These points become the crossover points.
The subtrees under these points are swapped between the two parents (see
Figure 13). The resulting new trees are then inserted into the new population.
It is possible to select the same tree twice so that it serves as both parents.
In such a case, however, the resulting children will most likely not be clones
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of the parents. To get a clone, the crossover operation would have to select
the same crossover point on both trees. Since all points are equally likely to
be selected, the probability of this occurring is minimal.

While the trees shown in Figure 13 are relatively simple, this same process
occurs even with more complex trees. This crossover operation can grow
and shrink the size of the tree; Figure 14 shows an arbitrary tree that was
generated during the course of an experiment. In the event that the tree grows
to a depth greater than the maximum depth allowed, the crossover operation
is cancelled and the first parent is inserted into the new population. In this
way crossover may mimic reproduction.

The final option is mutation. When a particular population appears to
be prematurely converging on a solution, it may be desirable to inject some
diversity into the system. As the title implies, mutation introduces a random
change into the system. It does this by selecting a random point in a selected
tree, removing that point and all elements below it, and then inserting a new
random tree into its place. The crossover operation in genetic programming,
however, is highly effective at finding new solutions. In addition, if a crossover
point is selected on a terminal, it has the same result as a mutation. Therefore,
mutation is very rarely used.

3 Plan of Investigation

In this research project we are completing four series of experiments that
will generally build upon the results of each prior series. The first set of
experiments will focus on fine-tuning the parameters of the beer game and
the genetic program so that the evolution process will go better. The second
set of experiments will focus on parameters of the genetic program that might
significantly affect how well the evolutionary process progresses in our later,
more complex, experiments. The third set of experiments are the centerpiece
of our investigation into information value and information overload. The
fourth set of experiments will build on this last set of experiments. We will
use what we learn from the third set to define future investigations, but we
list here a reasonable set of possibilities.

3.1 Given Parameters

In the following experiments we will use default values for some parameters:
probability of permutation (set to 0) [Koz00, p. 107], probability of editing (0)
[Koz00, p. 108], and the probability of encapsulation (0) [Koz00, p. 110]. Koza
discussed each of these but used them little, if at all, in his experiments. The
variety of a population is “the percentage of individuals for which no exact
duplicate exists elsewhere in the population” [Koz00, p. 93]. Our program
checks for duplicates so the variety will be 100%. We do this so as to ensure
the greatest amount of genetic building blocks enter our population with the
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hopes that this will increase the genetic program’s probability of success. As
is typical among this type of research, we are only interested in attaining
100% variety in the initial population; after that, duplicates are something
that the genetic program naturally creates.

Maximum number of generations is a parameter that is generally set to
keep the genetic program from running forever. We have no initial plan for
the value of this parameter. Some very difficult problems require many gen-
erations (> 500) while simpler problems take far less time to solve (< 50).
We will just have to see how effective and efficient the program is at solving
this problem. There are a wide variety of settings that need values before the
experiment is run; these are shown in Appendix B.

3.2 Fine-Tuning Parameters

The following parameters are not central to our investigation but may po-
tentially have some impact on the performance of the evolutionary process.
We will perform some cursory experiments to determine how the process per-
forms at the different settings; in these experiments we will take the settings
of the parameters in §3.1 as given. We will be looking at two performance
measures: 1) effectiveness: the effect of the setting on the process’s ability to
find the best performing solutions, and 2) efficiency: the effect of the setting
on the speed of the process in its search for the best performing solutions.
We foresee measuring effectiveness in several different ways:

1. Average champion’s ratio. Compare it with 1.0 to determine the equiva-
lence of the final champion of the genetic program (from a certain scenario
with the specific settings) to the standard strategy.

2. Average champion’s ratio. Compare the score from one scenario with the
score from others to determine what settings are preferred.

3. Percent of the time the champion’s ratio is within 10% (for example) of
the best champion’s ratio across all experiments. This should reflect the
robustness of the process with that setting.

We will measure efficiency in at least the following ways:

1. The average number of (simulated) weeks played in an experiment up
until the time the champion is found.

2. The average number of games played in an experiment up until the time
the champion is found.

Given the equal effectiveness of two different settings, we will prefer the one
that enable more efficient searches. One of the findings that we expect from
this research program is that we should be able to describe more completely
the trade-off between effectiveness and efficiency in this problem.

We will use the above statistics to determine the effects of the following
parameters on the effectiveness and efficiency of the genetic program.
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Selection method As we discussed above in §2.3, the three possible means
of selecting individuals for reproduction are fitness proportionate, rank,
and tournament. We will also use the random selection method as a
baseline for these methods.

Percentage of internal crossover points In an S-expression the internal
points are the function nodes. If crossover is performed on two external
(terminal) points, then this mimics the mutation operation on terminals.
We want to encourage the creation of more complex trees so we will
mostly investigate relatively large values for this parameter: 0.7, 0.8, 0.9,
0.95, and 1. Koza uses a value of 90% in his investigations [Koz00, p.
114].

Probability of crossover This is the percentage of the population on which
crossover is performed. Koza uses the value of 0.90 [Koz00, p. 114]. For
that portion of the population on which crossover is not performed, re-
production is performed (that is, those members are directly copied into
the new population). The purpose of investigating this is to see what
combination of crossover and reproduction makes the evolutionary pro-
cess perform best. The possible values that we will investigate are 0.2,
0.5, 0.8, 0.9, 0.95, and 1.

Probability of mutation Koza generally does not use the mutation oper-
ation [Koz00, p. 114]. We hypothesize that the mutation operation might
be useful for helping the genetic program avoid local minima in its search
process. We will investigate possible mutation probabilities of 0.0, 0.01,
0.05, 0.1, and 0.25.

Since the allowed values for the last two parameters are dependent, we will
have to investigate these two values in separate experiments. To look at the
effects of the first three parmeters requires that a 4× 5× 6 (120) completely
randomized experimental design be employed in order to assess the impact
of the above variables on the effectiveness and efficiency of the genetic pro-
gram. We will use the settings indicated by the results of this experiment our
investigation of the mutation parameter. In both experiments we will choose
a moderately difficult problem for which an optimal (or heuristic) solution is
already known. This will allow us to stop the evolutionary process when the
solution is found or when the best value gets within some arbitrarily close
range of this answer.

We will use these results in the following set of investigations.

3.3 Basic Investigation

The follow parameters are also not central to our investigation but may po-
tentially significantly affect the performance of the evolutionary process (as
opposed to the above parameters that we do not believe should have more
than a marginal affect on the process’s effectiveness though they might end
up having a measurable impact on efficiency). We will use the settings of the
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parameters in §3.1 as given and will use the values of the parameters that we
determined in the experiments described in §3.2.

Number of populations (Φ) As the problem is described in §2, each role
is assigned one population and vice versa. In those instances in which the
parameters for each of the roles are the same, it would be computationally
more efficient if all of the players came from one population. Further, it
would be even more efficient if one population member were selected and
then assigned to all four roles. We want to determine if this parameter’s
setting has an effect on the process’s effectiveness. Possible values of 1
(one selection plays all the roles), 1 (one selection for each role), and 4
(one population per role).

Members per population (Λφ) One of the parameters that can have a
significant effect on the process’s effectiveness is the number of members
within a population. Koza uses a population size of 500 about 2

3 of the
time [Koz00, p. 98]. This parameter is also one of the primary determi-
nants of the process’s efficiency. The values for this parameter that we
are going to investigate are 50, 200, 500, and 2000.

Games per member per generation (M) If an agent in a role is playing
in a value chain whose other players are being fulfilled by different agents,
then we need to define a minimum number of games per generation that
need to be played by each member. For comparability across different
population sizes, possible values for this parameter are specified in terms
of the percentage of other members that the member will play in each
generation. The values that we are going to investigate are 5%, 10%, and
20%. This only applies to the last two “number of populations” choices
above.

Turns per game (W ) The number of turns per game has at least two im-
portant effects on the scores that players end up earning in the game.
First, longer games help minimize the effects of the player’s initial inven-
tory position, focusing the scoring more tightly on the player’s re-stocking
strategy. Second, longer games allow for a more complete realization of
the negative effects of a bad re-stocking strategy; if it has not become
obvious by 35 weeks, then it almost certainly would become obvious by
100 weeks. The possible values that we are going to investigate are 35 and
100. (We chose 35 because that is the length of the mit Beer Game, and
we chose 100 because it seems suitably large.) In both cases we will not
use 35 (or 100) per se; we will use a random number distributed around
35 (or 100) in order to keep the agents from over-adapting to the number
of weeks.

Priming of initial population When an initial population is primed that
means that relatively higher fitness agents are put into the population
[Koz00, p. 94]. Koza proposes, and we agree, that it makes sense either
to prime the whole population with relatively equally capable agents or to
not prime at all; thus, possible values for this parameter are either “yes”
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or “no.” This brings up the obvious next question of how to perform this
priming. We hypothesize that a useful approach would be to start with
a high population (maybe 2000), run the simulation for one generation,
choose the best 500, and then run the evolutionary process as normal
with this smaller population. However, this is only a hypothesis. A full
investigation of this parameter will have to wait until we understand more
about this problem.

We are not going to be looking at determining the “best” value for each
of these parameters. Here we simply want to gain insight into 1) the effect
that these factors have on the effectiveness and efficiency of the search, and
2) the dependencies among these factors. We will use insight gathered from
this process in the investigations outlined in the next section.

3.4 Initial Investigation into Information Value

The parameters discussed in this section form the heart of our investigation.
We looked into the parmeters discussed in the previous sections because we
wanted to ensure that the investigations into the parameters in this section
were performed as efficiently and effectively as possible. Further, the param-
eters in this section can take many values and have many interdependencies
so this will be a complex and time-consuming series of experiments.

Items in the function and terminal sets We have currently defined 21
functions: mathematical (7), logical (8), and informational (6). We can
add the functions in each of these three sets to the function set either as
a group or individually in order to see what effect they have. We have
a smaller set of terminals — four plus the set of integers. Certainly one
question relates to how small we can make the set of terminals and still
enable the evolutionary process to proceed.
These are some further questions that we have: Which functions and
terminals are used by higher-performing agents? We can investigate this
question from two different perspectives. 1) One way is to manipulate the
demand distribution and other parameters and observing which functions
and terminals end up in the higher-performing agents. Do certain of the
components appear in higher-performing agents? 2) Another way is to
hold the functions and terminals fixed in three of the populations and
manipulate the function and terminal sets. Do certain components lead
to absolute dominance in a population? Another question relates to in-
vestigating whether or not certain fitness measures require that successful
agents have certain terminals or functions.
In short, the questions in this section relate to examining questions re-
lated to valuing information.

Type of demand function This is one of the primary ways in which we
can manipulate the difficulty of a scenario. Depending on how successful
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the genetic program is on simpler problems for which an optimal solu-
tion is already known, we could run the evolutionary process with one of
many values: standard mit demand function, uniform distribution, Pois-
son distribution, cyclical variations, and non-stationary variations. Other
parameters which can be used to make the problem more difficult: ship-
ment lead time (determinstic or stochastic), information lead time (0,
1, 2). If the genetic program is successful at finding solutions for diffi-
cult problems, then we will compare the findings of this process with the
findings of management science and information systems.

Inventory holding costs and penalty costs We will manipulate the val-
ues of these two parameters to determine if the genetic program is sophis-
ticated enough to respond to this type of control. That is, will it be able
to find low-inventory-level solutions when the first is relatively higher and
high-inventory-level costs when the second is relatively higher.

Fitness measure As we discussed in §2.2, several different fitness measures
are available for this problem. Three (based on A, Υ , and η) are appropri-
ate for encouraging an agent to focus on its own costs; two others (based
on T and Θ) encourage an agent to focus on the costs of the whole value
chain. We want to investigate how much the different incentives actually
affect the performance of the agents in the game in different scenarios. In
order to address this problem, we will have to determine how to assign
credit to members of a value chain that perform well. We have discussed
using T and Θ, and it might be as simple as dividing the cost by the
number of participants in the supply chain — but it might not.

Maximum depth overall The most effective way of controlling the com-
plexity of the genetic programming problem is to limit the maximum
depth of the tree representing the agent’s re-stocking strategy. This places
a limit on the number of different functions that the genetic program has
to explore. We will manipulate this parameter as a means of exploring
how agents can handle information overload. The possible values that we
will look at are 6, 12, 17 (Koza’s standard value), and 25.

Minimum depth of initial population This parameter provides a way of
making the genetic programming process easier or harder. If the solution
to one of the scenarios is simple, then removing all the simple structures
from the initial population (by setting this parameter to 5) would make
the genetic program have to discover the structure by itself, rather than
having it be created in the initial population. Possible values that we will
look at are 1 (Koza’s standard value), 2, and 5.

3.5 Further Investigations into Valuing and Pricing Information

While the above certainly describes an ambitious research agenda, it by no
means exhausts the possibilities. A much more complex supply chain scenario
is one in which multiple players can play each level of the supply chain, and
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a player must decide among them when placing an order. This would add a
significant amount of difficulty to the genetic program.

To this point we have considered information and computational capabil-
ities to be costless. For example, when a player uses the sum or inv functions,
it cost him nothing. We propose that some additional cost should be placed
on the agent for every additional piece of information that it uses in the cal-
culation of its re-stocking strategy. Thus, the value of the information will be
reflected not only in a positive sense — if the information is valuable (useful),
then the re-stocking strategy will be more effective and the agent’s possibility
of reproducing into the next generation will go up — but in a negative sense
as well — if the information is not valuable but is being used anyway, then
the agent will have to bear the burden of the cost of collecting and using that
information. We will change the raw fitness function for this set of investiga-
tions to reflect the cost of using information, and then we will see how this
changes the genetic program’s process.

The most interesting possibility lies in adding another type of competitor
to this scenario. Above we discussed adding information cost to the player’s
fitness function. Here we propose that a population of information sellers
be added to the scenario as a competitor for all the players in all of the
roles. The fitness function of the information sellers will reflect its ability to
sell information for as much as it can. The result of this experiment should
be better insight into which information is most valuable to the agents in
determining their re-stocking strategies.

4 Summary

This paper describes an ambitious research program that will use genetic pro-
gramming to investigate re-stocking strategies in a multi-level supply chain.
After describing the basics of the evolutionary process (§2), we describe our
overall plan of investigation (§3). In this investigation we will be looking at
questions related to the value of information, the usefulness of the genetic
programming approach to this problem, and the supply chain management
problem itself. We describe the design of an early experiment (§3.2) that we
will perform to help determine some settings for the evolutionary scenario.
We next discuss (§3.3) some further investigations into parameters of the
process that will have a large effect on the efficiency and effectiveness of the
process. We follow this up (§3.4) with a discussion of our proposed inves-
tigations into the value of information and computational capabilities, into
the ability of the genetic program to respond to changes in fitness measures,
and into the ability of the genetic program to handle larger search spaces.
We finish the explanation of our research project (§3.5) with a discussion of
alternative approaches for investigating the valuing and pricing information,
the most exciting of which involves sellers of information co-evolving with
the agents evolving in the supply chain game.
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We have great hopes for what we can learn about valuing information,
genetic programming, and supply chain management. Many researchers have
addressed these problems separately, but we think much is to be gained by
looking at them together. All that remains is to find out what that is.

A Terminals and Functions

A.1 Terminals

The following are all the terminals we used in our experiments:

1. j ∈ set of integers
2. I: the amount of the good that the agent has in stock
3. O: the amount of the good that the agent has on order
4. D: the current demand for this agent
5. C: the current week number of the game

A.2 Functions

The following are the functions that can be used in the construction of an
agent’s strategy:

Mathematical

1. (sum X Y): returns X + Y
2. (diff X Y): returns X − Y
3. (% X Y): returns round(X Y), the result of rounding X

Y to the nearest
integer; if Y = 0, returns 100000.

4. (rmndr X Y): returns rem(XY ); e.g., rem(13,5)=3
5. (mult X Y): returns X ∗ Y
6. (min X Y): returns the minimum of X and Y
7. (max X Y): returns the maximum of X and Y

Logical

1. (ifThen X Y): if X does not evaluate to 0, returns value of Y, otherwise
returns 0

2. (ifThenElse X Y Z): if X does not evaluate to 0, returns value of Y,
otherwise returns Z

3. (not X): if X does not evaluate to 0, returns 0, otherwise returns 1
4. (and X Y): if X and Y are true, returns 1, otherwise returns 0
5. (or X Y): if X or Y are true, returns 1, otherwise returns 0
6. (gt X Y): if X > Y , returns 1, otherwise returns 0
7. (lt X Y): if X < Y , returns 1, otherwise returns 0
8. (equal X Y): if X = Y , returns 1, otherwise returns 0
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Informational

1. (MYDEM Y): the player’s own demand Y weeks ago. The function uses the
modulo function on Y; the demand is actually calculated for mod(Y, W)
weeks ago (where W is the number of weeks in a game).

2. (MYINV Y): the player’s own inventory Y weeks ago. The function uses
the modulo function on Y; the inventory is actually retrieved for mod(Y,
W) weeks ago (where W is the number of weeks in a game).

3. (MYORD Y): the player’s order that it placed Y weeks ago. The function
uses the modulo function on Y; the order is actually retrieved for mod(Y,
W) weeks ago (where W is the number of weeks in a game).

4. (DEM X Y): player X’s demand Y weeks ago. The function uses the modulo
function on X to map from integers to game players. For example, if
mod(X, 4)=3, then the retailer would be chosen. The function also uses
the modulo function on Y; the demand is actually retrieved for mod(Y,
W) weeks ago (where W is the number of weeks in a game).

5. (INV X Y): player X’s inventory Y weeks ago. The function uses the mod-
ulo function on X to map from integers to game players. For example, if
mod(X, 4)=3, then the retailer would be chosen. The function also uses
the modulo function on Y; the inventory is actually retrieved for mod(Y,
W) weeks ago (where W is the number of weeks in a game).

6. (ORD X Y): player X’s order that it placed Y weeks ago. The function
uses the modulo function on X to map from integers to game players. For
example, if mod(X, 4)=3, then the retailer would be chosen. The function
also uses the modulo function on Y; the order is actually retrieved for
mod(Y, W) weeks ago (where W is the number of weeks in a game).

B Settings for a Scenario

The following list shows the range of values that are set up before a scenario
is run.

1. game-type: ONE-POP-FOR-ALL
2. num-of-populations: 1
3. members-per-population: 200
4. num-of-roles: 4
5. players-per-role: 1
6. maximum-number-of-generations: 300
7. generative-method-for-initial-population: RAMPED-HALF-AND-HALF
8. how-to-measure-player-performance-in-a-generation: COSTS-FOR-THE-

PLAYER
9. fitness-measure: NORMALIZED

10. selection-method: TOURNAMENT
11. internal-crossover-points: 0.9
12. max-depth-for-individuals-after-crossover: 17
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13. min-depth-for-new-individual: 2
14. max-depth-for-new-individual: 6
15. probability-of-crossover: 0.5
16. probability-of-mutation: 0.02
17. probability-of-permutation: 0
18. probability-of-editing: 0
19. encapsulation: 0
20. probability-of-decimation: 0
21. prime-percent: 0.25
22. prime-type: SCOTT-PRIME
23. seed-strategy: (D D D D)
24. name-of-terminal-set: STANDARD
25. name-of-function-set: STANDARD
26. type-of-demand: UNIFORM-DEMAND
27. minimum-uniform-demand: 5
28. maximum-uniform-demand: 95
29. demand-cycle: none
30. weekly-increase: 0
31. games-per-member: 5
32. average-weeks-per-game: 75
33. inventory-holding-costs: 1
34. penalty-cost: 5
35. beginning-inventory: 100
36. backorder-amt: 0
37. amt-received-in-last-shipment: 50

C Computing-Related Information

These experiments were run on machines with Intel or Intel-compatible chips.
Experiments with 200 members, 300 generations, 1 population, and 5 games
per member (the factors that most significantly affected the time these exper-
iments took) might take, for example, 2.4 hours to complete the 8.3 million
simulated weeks in the experiment.

We wrote the program that runs the simulations for this project using
gnu CLISP [Fre04]. During the course of execution, this program generates
a trace file that captures the basics of the status of the genetic program. The
trace file it generated would end up being around 30MB. After the scenario
is done, a Python program reads the trace file and generates a LATEX file;
the graphics it contains are generated using the PSTricks macros. After this
file is generated, the dvipdf program (part of the tetex distribution) is used
to generate an associated pdf file. In the above scenario this file would be
around one thousand pages and around 1.2MB; the first fifteen pages of this
document generally show relevant graphics and summary statistics while the
remaining 900+ pages simply print out the best player from each generation.
Clearly, the more generations, the longer this part of the document will be.
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Endnote

The inspiration for this paper comes from reading Kimbrough, Wu, and
Zhong’s paper from FMEC20001 as well as interesting conversations held
after the paper was presented. We have also benefitted from several long
discussions concerning GAs and GPs with Michael Gordon.
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Abstract. This paper discusses the principal reasons for, and prospective oppor-
tunities of, simulating financial markets using an architecture based on artificial
agents. The paper then discusses in detail the design and architecture of a simula-
tor for financial markets. The Gaia methodology was employed in the development
of MAFiMSi (Multi-Agent Finanacial Market Simulator), a general-purpose finacial
market simulator of a dealer-type market. MAFiMSi is implemented as a library of
C++ classes that currently support a stand-alone market simulation.

1 Introduction

Simulation of financial markets is a new fast growing research area with two
primary motivations. The first is the need to provide a development testbed
for the ever increasing automation of financial markets. The second is the
inability of traditional computational mathematics to predict market patterns
that result from the choices made by interacting investors in a market.

Section 2 surveys the current state of financial market automation. Sec-
tion 3 discusses the importance of simulation to help understand the patterns
that arise from different investment strategies; it briefly surveys the literature
and identifies some open problems, including the design of a general-purpose
financial market simulator.

The design of a multi-agent simulator of a financial market is the subject
of Section 4. It is a challenging task due to the operational complexity and
computationally costly decision support. We discuss an approach in which the
complexity of the financial market functionality is decomposed into relatively
simple tasks and processes. In general, we separate the transactional and
decision-support intelligence of the market agents. Futher, market entities
are singled out and defined as software objects; the interaction protocols are
specified; and the simulator architecture is presented.
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We conclude with the discussion of possible applications of the simula-
tor, stressing it extensibility to handle other marketplaces, such as emerging
markets, energy and bandwidth markets, etc.

2 Automation of Modern Financial Markets

We define market automation as the execution of trades by software agents
based on goals specified by human agents.

Modern financial market professionals recognize the benefits of financial
market globalization, worldwide trading through electronic interconnectivity,
and around-the-clock market accessibility, as a means to increase liquidity and
market efficiency. Automation is seen as a way to achieve these ends. Frank
Zarb, chairman and CEO of NASD, formulated a vision of digital, global,
continuously available security trading with real-time quotation and order
execution systems accessible worldwide over the Internet via a number of
computing devices in his speech to the National Press Club in 1999 [Zar99]. It
forecasts rendering physical trading floors obsolete and completely replacing
them by electronic transactions. Complete automation is necessary to support
7/24 availability.

This vision of financial market automation is not isolated. It is a part of
a wider phenomenon of globalization and development of digital economy.
The technology that can turn this vision into reality has arrived. The trend
to automation is supported by developments in electronic commerce, agent
technology, and achievements in mathematical and computational finance.

This section gives a brief introduction into the operations of financial mar-
kets and survey the current state of financial market automation. Electronic
Communication Networks (ECNs) are of special interest here due to their
pioneering role in automation of securities trading.

2.1 Securities Markets

Modern financial markets deal in standardized obligations in place of goods
and commodities. In the current trading paradigm, the actual order execu-
tion, or securities exchange, is separated from an investor by several levels of
intermediaries (see Figure 1). In general, a hierarchical structure is a char-
acteristic feature of modern securities trading. Access to the actual financial
market is open only to authorized brokerage houses. Institutional and retail
customers contact a broker to place their orders. Once an order is initiated by
an investor (placed with a broker) it goes through three distinct stages: order
routing, execution, and clearing and settlement. Routing involves communi-
cating, possibly through a number of intermediaries, the details of an order
from a broker with whom the order has been placed to a market agent, human
or software, responsible for order execution. Execution involves agreement to
exchange securities, while clearing and settlement commits the transaction by
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checking availability of the resources committed by both sides and exchanging
the securities.

Brokerage Firm: order verification, routing and

settlement

Investor

Exchange OTC
Other

Markets
ECN

Settlement

Fig. 1. Current trading model; adopted from [FSW00]

Not only the objects of exchange, but the exchange protocols have become
standard. Exchange protocols are designed to achieve a price for a security
that the trading community agrees on, i.e., is willing to trade; this procedure
is called a price discovery mechanism. There are two major types of markets
defined with respect to the price discovery mechanisms that they implement:
the dealer market and the auction market, with a number of hybrid types
between these two extremes. In an auction market a market specialist acts
as a facilitator and does not own traded securities. Trading proceeds as a
continuous double auction with the market specialist acting as an auctioneer
assisting the sides in matching their offers and arriving at a mutually agreed
on price for the trade. There is only one market specialist for a particular
security. In a dealer market a market specialist owns the securities being
traded. A dealer posts his/her ask and bid prices, and all the transactions
occur between him/her and the investor (more precisely, an agent acting on
behalf of the investor). Dealer markets allow several competitive dealers trade
in a particular security.

Security trading occurs at exchanges, over-the-counter markets (OTCs),
and electronic communication networks (ECNs). An exchange, such as New
York Stock Exchange (NYSE) [PBR95], is an example of a hybrid market
with respect to its price discovery mechanism. It operates as an auction mar-
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ket most of the time, with the market specialist occasionally acting as a dealer
when the market conditions require so. This might happen when there is a
considerable disparity between supply and demand that threatens to dramat-
ically swing the prices, and a stabilizing intervention of the market maker is
desirable to the investor community to prevent trading from stalling. Over-
the-counter markets, such as NASDAQ, are dealer markets. ECNs are neither
auction nor dealer markets. In fact, they are not considered to be true mar-
kets since they lack a price discovery mechanism. They will be discussed in
detail below.

A large degree of standardization exhibited by modern financial markets
allowed to automate certain market procedures. We will now proceed to dis-
cuss the current state of financial market automation.

2.2 Current State of Financial Market Automation

As was stated above, there are several levels of intermediaries to a financial
transaction spanning order routing, execution and settlement. The efficiency
of such a pyramid depends on the speed and quality of communications be-
tween the parties as well as streamlining of clearing and settlement for the
trade.

Advances in clearing and settlement automation were made in in the
1970s [PBR95]. The standardized obligations traded on financial markets
readily yielded to software representation due to their abstract nature; the
security ownership information is now almost completely relegated to digital
information systems.

Throughout the century financial markets made heavy use of every ad-
vance in the communications technology. Currently, information exchange is
almost fully automated. Electronic quotation systems came into existence in
the early 1970s [PBR95]. These display price quotes as well as post-trade
information, such as transaction volumes, etc.

Order routing became automated with the development of order routing
systems like SuperDOT (Super Designated Order Turnaround) at the NYSE,
which significantly increased trading throughput. Currently, all exchanges
and most OTCs receive most of their order volume through automated order
routing systems.

Order execution requires the most human involvement. It has been auto-
mated for small-sized orders by some exchanges and OTCs. Such automated
order execution systems handle both market and limit orders. As a rule, there
is an upper bound on the transaction volume for such a system. This number
varies for a particular security depending on how frequently the security is
traded, i.e., depending on its liquidity. An example of an automated order
execution system is SOES of NASDAQ which became ready for use in 1984
and allowed transaction volume up to 1000 shares.

Extending market activities into after-hours and competition from ECNs
(see below) has forced further sophistication of automated execution systems.
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For example, in the 1990s SOES was enhanced by SelectNet which has cer-
tain negotiation capabilities. That allowed the system to implement basic
price discovery, handle disproportionate orders, and, therefore, to be able to
execute transactions of higher volume.

2.3 Electronic Communication Networks

ECNs were designed to compete with existing market makers (specialist)
on the financial markets, particularly NASDAQ. The first ECN to become
operational was Instinet, which opened in 1969. Currently the number of
competitive ECNs is 9.

ECNs are completely automatic: no human market maker is involved in
trading. They emulate the operations of an auction-type exchange by elec-
tronically matching buyers’ and sellers’ orders. However, the original match-
ing procedure was very basic: orders to sell and orders to buy were gathered
from the members and searched for matches in volume and price. If a match
was found, a transaction went through. Otherwise, nothing happened. Such
a procedure does not guarantee order execution; it remains a passive match-
maker and has to avoid disproportionate client portfolios. Since there are
no price negotiation capabilities, it does not lead to price discovery, and,
therefore, cannot be considered an electronic market. Traditional exchanges
became sources of price information for ECN members.

Despite the above mentioned drawbacks, ECN market share has been
steadily growing. This is due to their after-hour trading capacities and low
transaction costs - the benefits of complete automation.

The early example of automated order execution by the ECNs stimulated
the development of automated order execution systems within the traditional
markets. ECNs responded to the competition by extending their functionality
to include order negotiation (price discovery). Once full market functionality
is achieved, an ECN can apply for a change of status and become an exchange.
Archipelago, Island, and NextTrade have done so.

2.4 Further Examples of Financial Market Automation

The major factor currently driving financial market automation is the Inter-
net. Its influence on securities trading has been dramatic; investing is now
as easy and accessible as playing an internet game. Its effect on the investor
community is now under scrutiny by the academic community; for an early
attempt to discuss the issue, and, more generally, the effects of financial mar-
ket automation, see [Var98].

The emergence of online trading was marked by the appearance of purely
electronic brokerages, along with traditional brokerages opening online trad-
ing sites. The Internet has gone beyond just being another channel for order
placing; opportunities for faster and more comprehensive research into an
individual company or security performance, visualization and analysis tools
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for processing historic data offered on online brokerage sites, 7/24 accessi-
bility are just a few services offered by online brokerages. Note that 7/24
availability of an online broker does not directly translate into 7/24 availabil-
ity of financial markets. Orders can be placed with a broker continuously, but
they will be executed according to the trading schedule of a chosen financial
market. A number of issues concerning online brokerages were studied in a
Securities and Exchange commission special study report [SEC99].

Advances in automation have not so far reduced the number of inter-
mediaries to a transaction. For the problems that arise as a result of the
hierarchical structure, such as order internalization, and their effect on over-
all market efficiency, see [FSW00]. The paper assumes an optimistic attitude
and offers a direct trading model (Figure 2), in which disintermediation is
facilitated by completely automated order routing.

Investor

Automated Order Routing System

Exchange
ECNOTC

Other

Markets

Global

Clearing

HouseExecution ReportExecution Report

Best Offer Search

Bank

Electronic

Payment

and

Security

Transfer

Digital Certificate

Fig. 2. Direct trading model; adopted from [FSW00]

Another maturing aspect of financial market automation is automated
decision support on the part of the investors. A large fraction of the investor
community, e.g., all institutional investors, relies on mathematical / computa-
tional modeling of the market to support decisions concerning their portfolios.
In most cases, the computational results are verified by a human agent be-
fore corresponding orders are made. A notable exception to this procedure is
program trading. Currently program trading employs fairly straightforward
algorithms to support decisions about portfolio re-balancing. They implement
what is called technical trading: searching for particular trends in the price
movements of a chosen security(ies) and responding in a predefined manner
once the trends have been observed. In general, the performance of techni-
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cal trading is hotly debated by the financial community. In one particular
instance, unsupervised technical trading—program trading—had a devastat-
ing effect on the stock market; during the 1987 stock market crash program
traders picked up, followed and amplified the trend to sell [Var98]. The les-
son of 1987 suggests the importance of the empirical study of large systems
populated by automated decision-makers of various degrees of intelligence.

However, the importance of automated decision support for investors is al-
most self-evident. A financial market is a highly dynamic environment where
the ability to act upon the latest price quotes is crucial: if a price moves
away from the quote used to make a decision significantly while the deci-
sion is being made, the investor cannot be sure that his/her assessment of
his/her position will hold in a significantly changed environment. The same
argument applies to a market maker who needs to update price quotes of
the securities that he/she is responsible for to maintain a dynamic balance
between supply and demand. The speed of response to market signals is not
the only incentive: automation is a precondition to global continuous, 7/24
trading.

3 Simulation of Financial Markets

The complexity of financial markets defies traditional mathematical and com-
putational analysis [Rus96]. Since many of the questions we would like to
ask about financial markets are not amenable to theoretical analysis, exper-
imental analysis suggests itself. The idea of experimental study originates in
physical sciences, where a controlled experiment involves repeatability and
parameter isolation. A financial market permits neither of these. (For exam-
ple, we can not hold inflation and interest rates steady, as we experiment
with a variety of pricing techniques.)

The impossibility of conducting controlled experiments has been identified
as one of the major hindrances for transition of empirical finance into an
axiomatic theory [FJ97]. Multi-agent simulation of financial markets seeks to
address this problem by providing the conditions for a controlled experiment,
and thus allowing us to isolate cause and effect relationships in the market.
The use of multi-agent simulation, therefore, may help greatly advance the
theoretical developments of finance theory.

For instance, multi-agent simulation can aid in the understanding of
derivative securities pricing for which intuition often takes the place of exact
science among the practitioners [Par97]. This is especially true for energy and
bandwidth contracts, since storability of the underlying - a fundamental as-
sumption of traditional derivatives pricing techniques - is not a characteristic
of these markets.

In traditional mathematical finance, all market participants are modeled
the same way, with each having equal powers, and being subject to the same
constraints. This is an idealized setting. For example, airline companies and
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oil refineries both come to the market to trade in fuel, but they do so with
fundamentally different perspectives, one of them being required to sell, and
the other required to buy. Speculators have a perspective different from either.
One can identify an arbitrary number of individual investor profiles in a
single market. A theoretical study of such a model is virtually impossible.
The strength of multi-agent approach is the ability to (experimentally) study
large heterogeneous populations.

In this section we survey the work of three research communities whose
work, in our opinion, comprises the background for further advances in the
field. We distinguish two main branches in this area of research. One con-
cerns itself with setting the environment, e.g., simulator and agent archi-
tecture, functionality and implementation. The other one concentrates on
specific application domains, special attention being given to agents’ intel-
ligence (decision-support algorithms) and environment modeling. Most re-
search groups have not drawn this distinction, and the projects we survey
below have made contributions to both branches.

3.1 Trading Agent Platforms

Motivated by the idea of facilitating electronic purchases over the Internet
and reducing human involvement in corresponding search and, in some cases,
negotiation, several research groups developed trading agent platforms. Sev-
eral such systems are surveyed in [MGM99]. The features that received special
consideration in such systems are

• search for the most suitable product or a set of alternative products;
• search for the best merchant or a set of merchants for further negotiation;

and
• negotiation itself with a purchasing decision at the end of the process.

Not all of these features were necessarily implemented; most of the agent sys-
tems offered Web-search capabilities while leaving negotiation and/or decision-
making to the user.

Several agent platforms, such as Kasbah, e-Mediator, and AuctionBot,
implemented an auction-type interactions or one-on-one price negotiation
and offered a number of bidding strategies to be chosen by the user prior
to negotiation. Such systems are of interest to us since they actually em-
ulate a certain marketplace as well as well as supply basic regulatory and
administrative infrastructure.

eMediator, an electronic commerce server from the Multi-Agent System
Research Group at Washington University described by Sandholm, is ar-
guably the most advanced of this family [San99]. It features eAuctionHouse
that implements a choice of auction types, strategic (price-quantity graph)
bidding and combinatorial bidding (bidding on a set of products), and cre-
ation of personalized Java agents that perform trading on the server; eCom-
mitter, a decision support engine for leveled commitment contract optimizer;
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and eExchangeHouse, an exchange planner. A number of other features are
under development. The research that developed around the server mostly
concerns semi-binding commitment (level commitment), agent strategic be-
havior in an auction-type environment, namely coalition formation, and com-
binatorial bidding winner determination. We recommend that the interested
reader peruse a collection of publications by the Multi-Agent System Re-
search group at http://www.cs.wustl.edu/∼mas/.

The systems discussed above facilitate product search on the Internet
while providing the user with a varying degree of negotiation and/or bidding
support. Mostly they rely on fairly simple interactions and decision rules.
Those building a financial or economic system simulator can benefit from
their advances in agent platform development, agent architecture, distribu-
tion, and other system related issues as well as the decision support provided
for bidding and negotiations. However, such systems do not provide the in-
frastructure and decision support specific to the financial market domain.

3.2 Simulation of Simple Economies

Auction as a price discovery mechanism has received significant attention
in the experimental research of multi-agent interactions. Part of the reason
for this is that individual agents rely on fairly simple decision rules in such
an environment. However, the apparent simplicity of such systems may be
deceptive.

Evidence of the emergent complexity in systems employing simple pricing
techniques is presented in a series of publications on multi-agent simulation of
simple economies by the Information Economies research group at IBM’s T.
J. Watson Research Center.1 It is important to note that oversimplification of
decision support in a multi-agent system can lead to disastrous consequences
for the economy, such as price wars and stagnation of trading, examples of
which are give in Tesauro et al. [TK98] and Brooks et al. [BDD00]. This
phenomenon is not confined to experimental systems; recall the example of
the stock market crash of 1987 given above. Due to such possible outcomes,
Kephart, Hanson and Greenwald in [KHG00] stress the importance of multi-
agent simulation as a testbed for novel decision support algorithms before
implementing them in a real-world system.

The agent decision support algorithms chosen by this research commu-
nity are variations on Q-learning, an instance of a wider class of reinforcement
learning algorithms. Kephart et al. [KHG00] overview a number of exper-
iments with an information economy populated by heterogeneous agents,
some of which employ Q-learning. The model of the information economy
presented in [KHG00] assumes a dynamic posted pricing paradigm, that is
a model in which buyers do not negotiate posted prices while sellers up-
date their postings at will. The economy is similar to a commodities market

1 See, for example, [KHL+98b] and [KHL+98a].
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populated by rational self-interested agents optimizing their utility function
via one of a number of algorithms ranging from a simple incremental price
increase(decrease) algorithm to foresight-based Q-learning.

While financial markets are not explicitly considered here, the multi-agent
systems under consideration possess the price discovery mechanisms present
in financial markets. Insights into the behavior of large systems presented by
this community can help to better set up the experimental environment for
financial market simulation.

3.3 Financial Market Simulation

While the above examples use the price discovery mechanisms similar to those
present in financial markets, they do not explore the financial domain explic-
itly. We now proceed to discuss simulations specific to financial markets: the
Santa Fe Artificial Stock Market and AGEDASI TOF, A GEnetic-algorithm
Double Auction SImulator of TOkyo Foreign exchange market.

Several early efforts in the area of simulated financial markets are surveyed
by LeBaron in [LeB00]. The paper recognizes the strength of an agent-based
approach in understanding the dynamics of interaction among heterogeneous
agents and agents learning from the environment. The survey concentrates
on the concrete microeconomic (market) models and learning techniques,
predominantly genetic algorithms, used in the surveyed work.

One of the most prolific research efforts in the area is the Santa Fe Artifi-
cial Stock Market, surveyed in [LeB00].2 This line of research, along with fur-
ther experiments on the same platform,3 studies success, in a game-theoretic
sense, of technical traders relying on a variety of learning techniques bor-
rowed from machine learning to improve their forecasting ability and gain a
competitive advantage over other market participants.

The experience of the Santa Fe Artificial Stock Market and a number of
several other simulation efforts are summarized in [LeB01a]. The paper offers
a classification of design issues that a builder of a financial market simulator
may face. The first category, agents, discusses the types of market partici-
pant agents with respect to their intelligence. The stratification of agents on
the bases of their intelligence parallels the classical AI classification offered
by Russell and Norvig [RN95]. These agents are assumed to be price-takers,
or regular investors, since the price setting issues are treated separately, in
the next category, called trading. Trading covers both the trading protocol
and the determination of asset prices. It differentiates between simulating
the price movements and replicating market infrastructure with an appro-
priate price discovery mechanism. The former approach does not call for a
market specialist agent while the latter does. The next design issue concerns

2 Its original design and experiments are presented in [PAHL94], [AHL+97] and
[LAP99]. For a brief digest of the model also see [Tes02].

3 See, for example, [JPB99]
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the securities themselves. The author notes the tendency of simplification in
modeling the traded assets and discusses the difficulties associated with in-
corporating company fundamentals (earnings, dept structure, market share,
product quality, etc) into the simulated securities. The number of securities
in a simulation, and the related issue of diversification, are mentioned. Next,
the issue of market evolution, or market agent learning, is tackled. Learning
based on genetic algorithms is considered as a means of emulating dynamics
and growing the expertise of the market participants. The necessity of model
validation and possible approaches to it are discussed under the category of
benchmarks/calibration. The category of time groups together several issues:
agent memory for learning algorithms, lag in response to new information
arriving to the market, and synchroneity.

[LeB01a] fails to discuss simulation time horizon. The issue of simulation
horizon is important when modeling a community of investors with heteroge-
neous goals, like speculators, who invest for immediate reward, and long-term
investors, who invest for future income. A financial market is populated by
both types, and their interactions are important for maintaining dynamic
balance. A simulation with a short horizon will concentrate on observing be-
havior of more active traders while a longer horizon will give insights into
long-term investors’ behavior.

LeBaron devotes a separate paper to the in-depth treatment of the issue of
agent memory for learning algorithms in a financial market simulation and the
influence of this parameter on the overall dynamics of the system [LeB01b].

In a series of papers by Izumi et al.,4 multi-agent simulation was em-
ployed to study price dynamics in a foreign exchange market. The model
received a name of AGEDASI TOF, which stands for A GEnetic-algorithm
Double Auction SImulator of TOkyo Foreign exchange market. In the model
a community of dealers derive their price quotes from quantifying informa-
tion from various news sources through a system of weights assigned to each
source. Dealer’s success is determined based on the transaction volume, and
a genetic algorithm procedure was used to adjust the weights for each agent.
These simulations exhibited some interesting patterns, such as formation of
dealers’ opinion trends and clusters of agents’ strategies.

Current effort in the area of multi-agent simulation of financial markets
is heavily biased toward machine learning techniques, primarily genetic al-
gorithms, to provide agents’ decision support, as can be seen in the work of
the two research communities reviewed above. The study is thus limited to
technical trading, - the area that traditionally relies on the use of genetic
algorithms. The vast majority of the investment community does not rely
on technical trading; optimization in conjunction with risk management is
the technique of choice for large (institutional) investors. Hedging and risk
management are not directly addressed in technical trading. The genetic al-
gorithm approach, or the survival of the fittest, tends to favor a winner with

4 See, for example, [IU99a] and [IU99b].
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the most money. Thus, risk-averse investors do not win in such a society, and
get “weeded out” by the algorithm. Their success as hedges is not recognized
by the procedure. Therefore, an important and large fraction of the investor
community is not properly modeled by the genetic algorithm setting.

3.4 Concluding Remarks

Existing research concentrates on a series of individual simulation problems.
There has not yet been a unified study of the common properties of financial
market simulations. The focus of attention has been agent’s intelligence. AI
techniques clearly dominate the landscape, while traditional mathematical
models of market agent decision support, such as (stochastic) optimization,
(stochastic) differential equations, etc., have not been implemented for such
systems. As was pointed out above, AI research operates under a heavy game-
theoretic perception of success: finding a winner with the most wealth. This
approach ignores the main concern of mainstream investors: risk manage-
ment and hedging. In our opinion, multi-agent simulation of financial markets
should

• elaborate its criteria of agent success and put more stress on risk man-
agement;
• broaden the choice of decision support techniques to include traditional

portfolio management and security pricing techniques developed by the
computational finance community;

Financial markets are highly regulated and standardized in their opera-
tion. While the motivation behind individual investors’ actions can be ex-
tremely diverse, all market participants are subject to a fixed set of protocols
that regulate securities exchange. These considerations suggest the necessity
of a unified approach to formal modeling of financial market infrastructure -
the issue that we proceed to discuss below.

4 A Multi-Agent Environment for Financial Market
Simulation

This section addresses one of the open problem identified above, and offers
a methodology for the analysis and design of a general-purpose financial
market simulator. Our exposition builds on previous work. Although that
work [SNY01] presents a methodology for a particular application, namely a
derivatives market simulation, here we apply the idea developed in [SNY01]
to a general-purpose financial market simulator.

The methodology to be presented separates the transactional and decision-
making components of the simulated environment. This frees a researcher
from the necessity of implementing the underlying market infrastructure,
while allowing him or her either to choose among the available options for
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agent decision support or to supply new algorithms. This also provides for
independent developments in the areas of market functionality and decision
support.

The methodology presented below models a generic dealer market. While
a number of features we judged to be essential for a valid financial market
simulation are recreated within the environment, certain simplifications were
made to reduce its computational complexity. The simulator offers a univer-
sal quotation system, a unique (for each instance of the simulator) money-
market, a security registration facility, order posting and trade clearing. The
underlying infrastructure supports efficient and correct message flow among
the trading agents.

Financial market participants are highly heterogeneous with respect to
their ability to quote prices, engage in short-sales, borrow money, and many
other respects. The model currently distinguishes one type of a privileged
market participant, the broker, or market specialist, who has the unique power
to quote a price, and who provides liquidity to the market. Other market
participants are modeled after regular investors and are assumed to have no
such power and to be price-takers. This basic division can be enhanced to
accommodate several layers of market specialists and intermediaries with a
variety of market powers. However, such fine stratification is not necessary for
most basic applications, and, therefore, was not considered for the current
simulator. Further we will refer to market agents as investors or brokers
depending on their privileges with respect to quoting prices.

Brokers communicate their prices to the investor community via the quo-
tation system. Investors convey their orders to chosen brokers, and they trade.
However simple this scenario may sound, it comprises a lot of intricacies that
have to be unraveled on the implementation level. Integrity of the exchanged
information must be guaranteed, as well as timely delivery of the messages;
trades must be appropriately cleared and monitored; investors’ portfolios
must be maintained, etc. In order to correctly implement the market op-
erations the overall complexity of interactions and market functionality is
decomposed into relatively simple tasks and processes. We further present a
number of steps that achieve this goal. The decomposition is done accord-
ing to Gaia methodology [WJK00], [ZJW00]. To facilitate our discussion we
proceed with a brief review of Gaia methodology.

4.1 Gaia Methodology

Gaia methodology [WJK00] is a body of high-level software engineering tech-
niques particularly suitable for hierarchical systems of heterogeneous agents
which make use of significant computational resources. While offering a means
of detailed analysis of the target application, it does not presuppose any par-
ticular implementation platform. It does not impose any checks on the overall
system complexity or agent intelligence, but the organization structure of the
system and the agent properties are assumed to be fixed during run-time.
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Gaia recognizes abstract and concrete entities. Abstract entities are used
during the analysis stage to conceptualize the system, while concrete entities
are used within the design process and typically have direct counterparts in
the run-time system.

The topmost abstract entity in the Gaia concept hierarchy is the system.
Gaia views the system (organization) as a collection of roles that interact with
each other. Each role is defined by its responsibilities, permissions, activities,
and protocols. Responsibilities determine role functionality. In order to realize
its responsibilities, a role possesses a set of permissions or rights associated
with the role. Access to information sources, like information generation,
modification or reading, is under the purview of permissions. Computations
associated with a role are called activities. Roles can interact according to
a set of protocols. The dependencies and various relations among the roles
are captured by the interaction model. The interaction model is essentially a
directed graph with roles as nodes.

Once the analysis produces fully elaborated roles and interaction models,
the goal of the design stage is to transform the analysis models (abstract en-
tities) into concrete entities having implementation counterparts. The agent
model defines the agent types present in the system. The service model de-
fines the actions performed by agents. The acquaintance model represents the
communication channels among the agents.

The agent model can combine several closely related roles as a single agent
type for efficiency. It is convenient to think of an agent type model as a tree
with the roles being leaf nodes.

The service model expresses agent functionality. The services are derived
from the protocols, activities and responsibilities of the individual roles com-
bined into an agent type.

The acquaintance model is a directional graph with its arcs corresponding
to communication pathways.

Below we describe analysis and design of a multi-agent environment simu-
lating a financial market based on the guidelines of Gaia methodology. As we
proceed, we will offer further explanation of the methodology when necessary.

4.2 Analysis

The analysis of the system aims to decompose the system’s functionality into
a number of atomic functions or actions. These atomic actions are segregated
and attributed to the entities that perform them. This leads to delineation
of the roles and results in a roles model that describes the system.

Our intention is to separate transaction processing from decision making.
Therefore, each role will be responsible for either of them but not both.
This distinction ultimately propagates to the concrete implementation of a
financial market simulator described below.
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Roles Model We introduce the following roles: Market, Investor, Broker,
Investor Decision Support, and Broker Decision Support.

Orderly trading is impossible without a regulatory and administrative
authority which provides the universal quotation system, security regulation,
trade clearing, etc. The Market (M) role is responsible for providing market
participants with a centralized administrative and regulatory environment.
Its basic responsibilities include

• registering admissible securities upon requests from the brokers and main-
taining a list of registered securities (securities available for exchange);
• maintaining a centralized offer posting service and posting new offers for

registered securities originating from brokers.

Additionally, if a particular simulated environment poses certain security con-
cerns (as may happen in a distributed simulation, for instance), the Market
role may be responsible to act as a clearing house, an arbitrating authority, as
well as perform some system functions as synchronization, quality-of-service
assurance, etc.

As has been previously outlined, brokers establish prices and provide liq-
uidity to the market. Investors are price-takers. All the trades have to be
registered with the market (in order to verify the authenticity of the ex-
changed securities). Only brokers have write access to the quotation system,
and, therefore, only they can be identified as potential counterparts to a
trade. Thus, the investors trade solely with the brokers and are virtually
transparent to each other.

The Investor role is responsible for

• maintaining a portfolio of currently held securities;
• obtaining information about desired changes in the current portfolio;
• obtaining appropriate price quotes along with the quoting broker infor-

mation;
• choosing suitable Brokers based on their price quotes and serving them

with corresponding market orders;
• maintaining a list of unacknowledged (open) orders.

Its responsibilities may also include serving limit orders to the brokers. The
protocols that support these responsibilities are as follows. On behalf of the
Investor Decision Support role, the Investor’s decision-making counterpart
(described below), the Investor queries the Market, namely its quotation sys-
tem, to obtain security offer information and choose the best offer depending
on whether it needs to buy or sell; forwards this information to the Investor
Decision Support role; and receives desired portfolio information in reply.
The Investor then makes provisional changes to its portfolio and initiates
corresponding transactions - forwards orders for each individual security to
appropriate brokers. Until an order is fulfilled, the Investor maintains a list of
open orders. Once an order has been fulfilled by a broker, the Investor com-
mits the portfolio update by removing the order from its list of open orders,
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and acknowledges receipt of the order. Investor’s read permissions open read
access to the price quotation system while its read/write permissions allow
portfolio and order manipulation.

The Broker role extends the Investor role with additional responsibilities
which include

• registering securities that the Broker intends to offer for exchange with
the Market;
• obtaining price quotes for those securities;
• posting current security offers with the Market; and
• maintaining a list of unacknowledged (open) orders from the investors.

The protocols are augmented to facilitate the above activities. A Broker co-
operates with its decision-making counterpart, Broker Decision Support role,
to obtain price quotes for the securities it offers for exchange. Once the quotes
are generated, the Broker forwards them to the quotation system. When an
order is received, a Broker updates its portfolio accordingly and puts the order
on the list of unacknowledged orders. The Broker then notifies its client, the
Investor, about the fulfillment of the order. When the receipt of the order is
acknowledged by the Investor, the Broker commits the portfolio update by re-
moving the order from the list of unacknowledged orders. Brokers are granted
write permission for the offer posting system. Their read/write permissions
allow to manipulate internal data structures containing their security offers
and orders from Investors.

A broker exercises direct control over security prices. The investors in-
fluence the security price evolution through their purchasing activity. The
Investor and Broker roles are provided with their decision making counter-
part, Decision Support (DS), whose responsibility is to supply the desired
portfolio data to the transactional counterpart. The Broker DS role also sup-
plies the price quotes for the securities offered for exchange by the Broker.
Its activity is the computation providing the above data, and the protocols
it supports are: provide the security price (for the Brokers) and the desired
volumes for tradable securities. Reasoning capabilities, knowledge and beliefs
about the market are under the purview of this role.

Interaction Model The interaction model specifies message interchange
in the system. The interactions occur between the Broker and the Market
roles, the Investor and the Market, the Broker and its Decision Support, the
Investor and its Decision Support, and the Investor and the Broker. The
nature of these interactions as well as some operations internal to the roles
and triggered by external messages are described below.

As is mentioned above, the Market role maintains a pool of registered se-
curities - the securities available for trading. All the securities but the money
market are offered for exchange by the broker community. The Market role is
responsible for the money market; this security cannot be offered by a Broker.
It performs the function of the numeraire, or the riskless security.
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For every new security a Broker wants to offer it sends a message to the
Market with the request to register the security. When the security is regis-
tered a designated area is created within the quotation system to accommo-
date further price quotes and the Broker is granted a write permission to the
this area. A similar message exchange happens when a Broker takes upon
itself to offer a registered security that it has not offered before; except that
in this case there is no need to create a new quotation area and the Broker
receives a write permission to the established area allocated to the security.

Price quotes are generated by the Broker Decision Support roles and
conveyed to their respective Broker roles. Once the Broker obtains the price
quote, it conveys the quote to the offer posting service or quotation system
within the Market.

Investors query the quotation system to obtain price quotes. The quotes
are forwarded to their respective Decision Support roles. Once an Investor
Decision Support role has generated desired portfolio information, it forwards
the data to its transactional counterpart, the Investor role. The Investor role
communicates corresponding orders to a number of chosen Brokers. An order
is issued for each individual security and sent to the broker with the best
deal. The Broker then notifies its client, the Investor, about the fulfillment
of the order. The Investor acknowledges the receipt of the security to the
Broker.

The procedure described above makes several assumptions about the
rights and responsibilities of the agents in the system and the communication
infrastructure. The first assumption is that orders are binding; a Broker must
fulfill an order that it receives, and the Investor cannot withdraw an order
once it has been placed. The second assumption is that no messages are lost
or indefinitely delayed by the system. This is a simple model serving as a basis
for further elaboration. A Broker might not be able to fulfill all of the orders
it receives due to certain portfolio constraints that could be imposed on it
by the Market. If this happens, the Broker must remove or update its offer
information with the Market, and notify the Investors about the change. The
Investors roll back the provisional changes in their portfolios corresponding
to returned orders. A system of penalties for the Brokers and restitutions to
the Investors need to be implemented to prevent this from happening. These
decisions are application-specific and should be made on a case-by-case basis.

A market order should generally remain binding for the Investor; a port-
folio constraint check must be made while the provisional changes to the
portfolio are carried through, prior to the issue of the order. Note, that the
changes made to the Investor’s portfolio are determined solely by its corre-
sponding Decision Support while in the Broker’s case its Decision Support
cannot completely determine what changes to the Broker’s portfolio will be
requested by the investor community: it faces uncertainty about Broker’s
portfolio updates and can only make predictions/recommendations.
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Another consideration should be given to a case of imperfect communica-
tion infrastructure. For instance, this may be the case in a large distributed
simulation. In such a simulator certain rules have to be implemented to re-
solve the issue of outdated requests and timeouts. This issue has been ex-
haustively covered by the mainstream database research community [HV99].
Once a transaction has been initiated, agents may utilize protocols devel-
oped for distributed database transaction processing to achieve a mutually
consistent state of their respective portfolios.

4.3 Design

Now we proceed through unification of some abstract entities to achieve con-
crete ones and further translate them into their implementation counterparts.
As will be seen below, we unify transactional and decision-support roles to
obtain a reasoning and acting agent, a market participant. When translat-
ing this design into a concrete implementation it is desirable to keep the
agent architecture highly modular so that one type of decision support can
be easily exchanged for another depending on the application and user pref-
erences. Certain applications call for adaptable agents, i.e., the agents that
must modify their decision-making procedure to accommodate changes in the
environment. These decisions are application-specific and should be treated
on a case-by-case basis.

Agent Model Following the idea outlined above, we unify the Investor role
with its Decision Support role to obtain an Investor agent, and the Broker
role together with its Decision Support role yield a Broker agent. These are
the market participants populating the simulated environment. There could
be an arbitrary number of these agents per instantiation depending on the
user choice and computational resources available. We will further refer to
these agents as Investors and Brokers.

The Market agent encompasses only one role, the Market role. This agent
is unique for each instantiation of the simulator and performs the function
of the centralized administrative and regulatory authority. It regulates the
marketplace and provides the means to the Investors and the Brokers to find
each other.

Service Model The service model describes the interactions on the agent
level and is derived directly from the Interaction Model for the roles.

The Broker agents contact the Market agent to register new securities and
to post quotes for tradable securities. The Investor agents direct their price
queries to the Market agent to obtain current quotes for registered securities.
Once an Investor decides to initiate a transaction it sends an order message
to a set of chosen Brokers. Depending on whether the market model holds
the orders binding for the brokers, the Broker either fulfills the received order
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or notifies his client about his inability to do so. The number and semantics
of the messages exchanged in order to complete or abort the transaction
between the Investor and the Broker may differ depending on the protocol
utilized to achieve a mutually consistent state of their respective portfolios.

Acquaintance Model This model represents communication channels in
the simulated market. Observe that, until an Investor is ready to initiate a
transaction, there is no communication between the Investor and a Broker.
Also, individual Investors do not communicate with each other. All the infor-
mation available to an Investor is contained in the quotation system. Brokers
have access to their respective trade histories. In most applications, Brokers
will be assumed competitive and will not share their private trading histories.

Once an Investor wishes to make changes to its portfolio it obtains rel-
evant offer information from the Market. All the message traffic concerning
securities exchange happens between the Investor and a chosen Broker. Bro-
kers communicate to the Market to post their offers or register new securities
as well as to obtain information from the quotation system. Note that, since
a Broker is also an Investor, it may initiate transactions with other Brokers.
The graph corresponding to this model is presented in Figure 3.

Market Agent

Broker Agent Broker Agent

Investor Agent Investor Agent

Investor Agent Investor Agent

Investor Agent

Price posting

and query

Price query

Trading
Trading

Price posting

and query

Fig. 3. Acquaintance model graph

User’s Perspective The operations of the tranasactional part of the simula-
tor are modeled by the general trading rules of a dealer market, and therefore
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can be assumed to apply without major change through a number of different
applications. The decision support used by the agents is highly application-
specific and may vary even within the same application. For example, stock
price evolution in a community of technical traders can be studied under a
variety of diverse technical trading rules. In the real world, a market is pop-
ulated by market participants governed by the same protocols in their trans-
actions, but individual reasoning in their decisions to trade. The strength of
the multi-agent approach lies in the ability to populate a simulated market
with agents heterogeneous with respect to their decision support, and study
the emerging complexity.

In the market model described above, where the market community is
stratified into investors and brokers, there are two types of decisions to be
made. A security price quote needs to be calculated (this action is available
only to the Broker agents), and portfolio rebalancing information needs to
be generated (this is done by both Brokers and Investors). These decisions
are made based on the following:

• information available from the Market, such as current securities prices
and the money market interest rate, as well as, possibly, price and interest
rate history;
• the agent’s internal beliefs about the market properties.

The above considerartions suggest that it is easy to develop a standard inter-
face between the transactional and the decision-support components of the
agent architecture, since the inputs and the outputs are determined. Thus,
decision support becomes the only application-specific component of the sim-
ulator. While market information is obtained by the Investor role, the agent’s
beliefs are confined to the Investor/Broker Decision Support role. Therefore,
a market agent should provide a standard interface to the market-wide infor-
mation to be utilized by its decision support.

From a user perspective, a market simulation proceeds through a number
of steps. Agent Creation step instantiates the model. The Market agent is
created and the simulation horizon is set. The marketplace is populated with
Broker and Investor agents, which receive only their most basic properties,
such as their identification numbers. Further, the simulator requires a set of
initial data which is supplied at the Data Generation step:

1. Portfolio Definition is concerned with specifying portfolio constraints
(e.g., short-selling and borrowing constraints) and assigning an initial
portfolio for each Broker or Investor agent. The initial portfolio may re-
flect a position in the money market as well as other types of securities.

2. Decision support and learning endows the agents with their respective
reasoning capabilities. Decision support modules are chosen from the set
of available options or supplied by the user .

Notice that every agent in the system is initialized individually. This im-
plies that even within the same type of agent, like a Broker or an Investor
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agent, a great variety of personal features can be implemented, like distinct
utility functions (if optimization is used as decision support) and market
constraints, different pricing algorithms, and so on. The simulator aims to
recreate a variety of investor types and any number of investors and brokers,
as well as to accommodate an array of market models.

Once the setup is over the user starts the simulation. The simulation is
governed by the simulation clock, which triggers price updates by the Brokers
and portfolio re-evaluation by the trading community. The Recorder compo-
nent performs the necessary data capture and visualization. The price history
is made available for the market participants. The transaction log is not seen
by the agents. Broker agents may maintain their own transaction histories,
which, in most applications, will not be shared among the Brokers (remember
the competitiveness assumtion). However, certian studies may target broker
coalition formation or other types of cooperative behavior. In this case, the
user may modify the permissions on the inidividual transaction histories to
accomodate such behavior.

The simulation ends when the simulation clock reaches the horizon. Agent
success is measured through the value of the terminal portfolio. Establishing
an unambiguous procedure to value the resulting portfolio is a challenge to the
decision support designer. If the terminal portfolio consists of securities for
which the market community agrees on a price, i.e., highly liquid securities,
the portfolio can be valued against the market. If there are thinly traded
securities in the agent portfolios the valuation becomes subjective. The latter
situation can be avoided by ensuring that such illiquid securities expire before
the simulation ends.

4.4 Implementation

The methodology presented above was employed in the development of MAFi-
MSi (Multi-Agent Finanacial Market Simulator), a general-purpose finacial
market simulator of a dealer-type market. MAFiMSi is implemented as a li-
brary of C++ classes that currently support a stand-alone market simulation.
C++ was chosen for easy compatibility with numerical methods software,
which is predominantly written in C, specifically with the IBM Optimization
Solutions and Library [IBM04].

The sourse code of the simulator is available at
http://www.cs.umbc.edu/∼streltch/mafimsi.html.

The simulation is guided by a driver. A simulation driver should supply agent
creation and data generation, which is combined into a single step, as well as
simulation clock updates which are sent to the agents. A user is expected to
supply decision support modules to the investors and brokers depending on
the particular microeconomic model employed. A pointer to the correspond-
ing decision support function is supplied to each market participant agent as
it is instaciated, or immediately after. Unless this pointer is initialized within
the agent, it will not be able to participate in market activities.
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A sample simulation driver is supplied for a synchronous simulation. In
such a simulation, as time advances to the next trading date, all the Brokers
in the market are invited to submit their quotes, and then Investors make
their decisions besed on the latest information from the Brokers. All the
orders are completed before the simulation is allowed to proceed to the next
trading date. The simulation is over once the clock reaches the horizon.

4.5 Usage Example: Simulating a Derivatives Market

Understanding the ties between derivative securities pricing and trading in-
centives for both parties of the trade is crucial to the development of a mature
finance theory. The key to it lies in modleing of the trading parties as hetero-
geneous entities that are motivated to trade in order to meet their previous
obligations or hedge their future exposures. While it is prohibitatively hard
to theoretically model heterogeneity of the investor community, an agent-
based system offers ample opportunities for experimantal research. Below we
describe an experimental environment that can be employed for such a study.

To concentrate only on the aspect of price formation for the derivative
securities, the simulation does not reproduce the price formation mechanism
for the underlying assets. Instead, following an established procedure of com-
putational finance, it models the evolution of the prices of the underlying via
a stochastic process [KS98].

In the real world, the price of an asset changes discretely (by a tick) af-
ter a fixed time interval since the last price adjustment (also called a tick).
However, one cannot incorporate all possible discrete states into a simulated
environment: the model size grows exponentially and the computation be-
comes intractable. Mathematically, continuous time/continuous space models
serve to emulate real world granularity. These models work if a closed-form
analytical solution exists. Since, in the general case, such a solution can not
be found, an alternative approach is to employ a discrete time/discrete space
model which bundles several events into one. The discrete setting is of coarser
than real-world granularity, which makes the model amenable to computa-
tional techniques. We follow the latter approach and use a discreet stochastic
procee (a scenario tree) to model the movements of the underlying.

An example of a scenario tree for a discrete stochastic process with a finite
time horizon is given in Figure 4. Each node represents a possible state of the
price process for the underlying at a particular time step. Every state except
the initial one has a unique parent, and every non-terminal state has a set
of child states. The outgoing edges of a particular state in the tree connect
it to all possible states of the price process evolution for the next time step,
provided that the given state occurs. Each path from the root to a leaf node
corresponds to a single scenario. The probability of each scenario is a product
of the probabilities on the edges corresponding to it. For further details of the
mathematical modeling of market processes we refer the reader to [HP81].
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Fig. 4. A scenario tree

To supply the underlying prices to the rest of the agent community we
introduce a single Broker agent, called Stock Broker, whose Decision Support
component performs a random walk through the scenario tree to establish
the underlying price vector at each trading date. An additional setup step,
namely Scenario Definition, becomes a part of the data generation step for
the Stock Broker.

The interactions in a synchronous derivatives market simulator proceed
as follows. The Stock Broker generates a vector of the basic securities prices
and enters the quotes into the quotation system. A Broker trading in deriva-
tive securities observes the prices of the underlyings, and decides on the
derivatives prices according to its private valuation algorithm. Investors ob-
tain price quotes for both the underlying assets and the contracts written
on them (derivatives) and make their portfolio rebalancing decisions. The
brokers provide liquidity to the market, i.e., satisfy the investors’ requests.

The goal of such experiments is to provide a testbed for various con-
tract pricing techniques and to observe market dynamics depending on the
properties (goals) of the market participants.

Further possible applications may include emerging market, such as elec-
tricity and bandwidth exchanges, etc. These types of markets are of special
interest because of the lack of established decision support techniques and
the need to experimentally validate the proposed ones.
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5 Conclusions

Given a financial market, there are two main reasons to simulate it. One is to
provide a testbed for the components (such as price discovery) necessary to
fully automate the market. The other is to provide an experimental setting
to observe the consequences of a range of investor behaviors. The second
case can be thought of as a special case of the first (since decision support
is one of the components required for an automated market), but even if
market automation were not a goal, an experimental environment would still
be desirable.

Once an order is placed, there are three stages to a financial market
transaction: order routing, execution, and clearing and settlement. The first
and last of these have been fully automated, while the negotiation and/or
decision necessary for execution is automated only in limited situations. In
general, decision support, whether for an investor or a market maker, is still to
be automated. Research here has primarily focused on the investor employing
AI techniques such as genetic algorithms. These have been used to build
agents that engage in technical trading with the objective of maximizing
their profit from market transactions. Institutional investors, however, do
not engage in technical trading, and, for the most part, are more interested
in managing risk than in maximizing return on their market investments.
Automation of the market maker’s decision support has not yet received any
attention.

To facilitate experimental study of a wide range of financial market prob-
lems, we propose a unified approach to simulator construction which recog-
nizes the objects common to all financial markets. Our approach decomposes
the complexity of financial markets into relatively simple tasks and processes,
and clearly separates the operational complexity of financial markets from the
decision support that drives market agents. Our approach enables the design
or simulation of a variety of markets, as well as the deployment of agents
with a variety of decision support mechanisms. We ourselves have simulated
a derivative securities market using this approach, and are using it to study
derivative price formation.

We see two main directions on the research agenda for the area of multi-
agent simulation of financial markets. One direction elaborates on the system
and agent architecture, functionality, and properties. The goal is twofold: to
improve the modeling potential of such systems, and to enable the incor-
poration of software agents into real-world financial marketplaces (i.e., to
automate marketplaces). The other direction concentrates on elucidating the
patterns that result from the interaction of heterogeneous market agents. We
feel that our proposed reference architecture will be useful in both pursuits.
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Abstract. Coalition formation games form an important subclass of mixed-motive
strategic situations, in which players must negotiate competitively to secure con-
tracts. This paper compares the performance of two learning mechanisms, rein-
forcement learning and counterfactual reasoning, for modeling play in such games.
Previous work [CK04] found that while the former type of agent converged to the-
oretical solutions, they did so much more slowly than human subjects. The present
work addresses this issue by allowing agents to update extensively based on coun-
terfactual reasoning.

1 Introduction

Traditional solution concepts for n-person characteristic function games give
stable sets of payoff assignments under certain rationality assumptions, but
they have little to say about the process by which players arrive at these payoff
sets. Furthermore, while it is possible that players realize these stable sets
via deliberation, early experimental evidence [KR74] suggested that players
engage in a learning process over repeated trials.

An explicit account of such a learning process can help to elucidate these
problems. Modeling such a process, however, is complicated by the very large
number of actions players must choose from. For example, players decide
whether to accept coalition proposals, presumably based on the offer amount
(drawn from an interval of the rational or real numbers), the offerer, and the
other members of the coalition; they also decide whom to propose coalitions
to, and how much to offer each member in the proposed coalition. To address
these issues, Dworman, Kimbrough & Laing used genetic programming over
the space of 1) the set of players, 2) lower and upper bounds of acceptance
values, and 3) offer amounts.1 They found that when mean payoffs of their
system had settled, agents’ payoffs approximated the game’s quota values (a
solution concept to be discussed).

While population models can be useful for exploring issues in agent-based
systems and for representing evolutionary games, their interpretation for in-
teractions on a smaller time scale (such as those of human players in repeated

1 [DKL95a], [DKL95b], [DKL96], and [DKL96]
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trials) is limited. Firstly, the timescales are different, and learning tends to be
too slow. Secondly, agents in population models cannot be considered to be
“minimally rational,” as they are usually bare strategies (e.g., in replicator
dynamics). Thus, it may be important to model human players as (bound-
edly) rational agents.

Borrowing from the approach of [ER98] in normal form games, [CK04] ap-
plied an individual learning model to five 3-person coalition games of [KR74].
They used a simple linear updating scheme (of reinforcement learning, see
Equation 2) to update “aspiration levels” [MF02] of agents. These values,
which remain within payoff bounds, represent the payoffs each agent believes
it can get from other agents in a given coalition. Aspirations are mapped into
behaviors by either a “greedy” rule, under which the agent maximizes over
aspirations to the other agents, or a “matching” rule, under which the agent
chooses probabilistically in ratios that match aspirations. [CK04] found that
agents using the greedy rule converged to quota solutions in all five games,
while matching agents never did. However, convergence took much longer for
agents compared to human subjects in [KR74], who reached quotas in about
four trials. This difference may have been due to calibration by subjects
during practice rounds for which [KR74] did not report data, to deductive or
counterfactual reasoning (reinforcement learning only uses information about
received payoffs), or to experimental manipulations of a communication con-
dition.

This paper compares the performance of a reinforcement learning model
to that of one which incorporates information about payoffs not received, as
well as payoffs received. It also examines the performance of agents utilizing a
variety of offer behaviors. The remainder of the paper is organized as follows.
Section 2 reviews coalition formation and presents the games studied in this
paper. Section 3 discusses the learning model, updating equations, and offer
behaviors. Section 4 compares the model’s performance against theoretical
solutions and again human data. Section 5 concludes.

2 Background and Description

2.1 Coalition Formation

Coalition formation describes a situation in which n players negotiate com-
petitively to secure advantageous contracts. Each player can act alone to
attain some fixed payoff. However, by pooling resources with one or more
other players and forming a coalition, a player can exploit its comparative
advantages and thereby negotiate for payoffs that are larger than the sum of
the payoffs the individuals in the coalition can get by acting alone.2 The pay-
2 This property is known as superadditivity, and holds for all games studied here.

The payoff for acting alone is normalized to zero, and the assumption is made
that all coalitions have payoffs greater than or equal to zero. Payoffs are assumed
to be on the same scale, or in units of “transferable utility” [LR57].
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off assigned (exogenously) to a given coalition is known as its coalition value,
and is the amount guaranteed to that coalition. While it generally is more
advantageous for a player to be included in some coalition than to go “solo,”
it is up each member to secure a portion of the coalition value for herself or
himself. Once every member of the coalition agrees to some proposed split,
then this agreement becomes binding and is enforced.

While coalitions can have different values, it is not always the case that
individuals will gain the greatest payoffs in coalitions with the highest values.
Players must consider carefully whom to propose coalitions with, and how
much to offer each coalition member. To take an example, let A, B, and C
be players in a game with coalition values defined by v(AB) = 95, v(AC) =
90, v(BC) = 55, so that if A and B were to form a coalition, they would
decide how to split 95 between them. Suppose that A makes an offer first,
and proposes a 66/29 split with B (A would get 66). B declines, and offers
a split of 30/25 with C. Note that both B and C would do better under B ’s
proposal than under A’s proposal. C would do well to accept this proposal,
for this reason: he cannot counteroffer to any other player without that player
being able to propose a split with the excluded player that is better for both her
and the excluded player. This special property makes the 30/25 split between
B and C stable in the sense of [AM64], and the set of such stable allocations
is known as the bargaining set (see also chapters 3 and 4 of [KR84]).

2.2 Formal Description and Play Procedure

The situation of n-person games with transferable utility described above
(a.k.a. coalition formation) falls in the realm of cooperative game theory,
and is given by Γ = 〈P, v〉, where P is the set of player labels and v the char-
acteristic function mapping non-empty subsets S ⊆ P to the reals (assigning
payoffs to each coalition). Specifically, we consider the five games given in
Table 1, in which the special property holds that only pairs of players have
non-zero assignments of payoffs; that is, v(ABC) = v(A) = v(B) = v(C) = 0,
while v(AB), v(AC), v(BC) are positive (ij denotes the set of players {i, j}).

The game is played as follows. A player i is selected as the initial offerer,
and makes an offer Oj

i ∈ [0, v(ij)] to another player j ∈ P − i. The offeree j
considers the offer, and then either accepts or rejects it. In the case of a rejec-
tion, j becomes the offerer for the next round. Instead, if j accepts the offer,
then it becomes binding. Remaining players who have not yet committed to
a coalition are then allowed to make offers in the same manner. When all
players are finished making offers, then the payoffs are disbursed according
to the agreements, and the game ends.

If players cannot reach an agreement within a fixed number of rounds,
then no coalitions form and all players receive their solo payoffs of zero.
Some implementations of the procedure described above include acceptance
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Table 1. Characteristic function and quota solutions by game, from [KR74].
v(ABC) = v(A) = v(B) = v(c) = 0 for all five games

Game:
I II III IV V

Characteristic
Function
v(AB) 95 115 95 106 118
v(AC) 90 90 88 86 84
v(BC) 65 85 81 66 50

Quota Values

ωA 60 60 51 63 76
ωB 35 55 44 43 42
ωC 30 30 37 23 8

and ratification phases, in which tentative agreements only become binding
after further opportunities for negotiation.3

At the end of the game, each player i receives some fraction xi of the value
of final coalition to which she belongs. The mutually exclusive and exhaustive
set of coalitions, S = {S1, . . . , Sm}, form a partition of P , and is referred to
as the game outcome’s coalition structure. For example, if players A and B
form a coalition, and C is excluded, then the coalition structure is {AB,C }
(which we represent in shorthand as AB,C ). Thus, the outcome of the game
can be described by the tuple 〈x;S〉 = 〈x1, . . . , xn;S1, . . . , Sm〉.

2.3 Quota Games

The particular games considered in the present paper are the 3-person co-
operative games shown in Table 1. Because the special property v(ABC) =
v(A) = v(B) = v(C) = 0 and v(AB), v(AC), v(BC) > 0 holds in these
games, they are known as quota games and have a theoretical solution – the
set of quota values, which generally are accepted in cooperative game theory
(see [KR74,Uhl90] for summaries). The quota value for player i is given by
the following equation:

ωi = .5
∑

γ(j, k) ∗ v(jk) ∀j, k ∈ P, j �= k (1)

where γ(j, k) = 1 when i = j or i = k and equals −1 otherwise. By way of
motivating the quota concept, note that

ωi + ωj = v(ij), i, j ∈ {A,B,C}, i �= j

3 Our agents engage only in an acceptance phase; we leave ratification for future
research.
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For example, player A’s quota is ωA = .5[v(AB) + v(AC) − v(BC)], and
ωA + ωB = v(AB). Table 1 presents quotas values for all five games.

The quota solution is analogous to the set of equilibrium payoffs in non-
cooperative games, and is stable for players who follow a weak set of ratio-
nality conditions (e.g., of the bargaining set). If the coalition ij is proposed
with an agreed split where i ’s payoff is larger than his quota, j can make
a counteroffer to k where both j and k do better. On the other hand, if
the proposed coalition is already at the quota solution, then neither player
in the coalition can propose a stable split in which he or she is getting a
higher payoff. In short, quota splits within coalitions are attractive payoff
configurations which represent stability. For this reason, these games elicit
much interest in behavioral studies, and there is an extensive experimental
literature on humans. The present paper extends the algorithmic literature
in these games using various learning models.

3 Learning Models

3.1 Basic Model

The model assumes that players hold beliefs known as aspiration levels4 about
the payoffs they can elicit from other players, and that they update these
beliefs based on information they receive from playing the game.

The first updating mechanism is that of reinforcement learning,5 in which
players adjust their aspiration levels towards others only when they take an
action in the game resulting in a reward. This is in contrast to the second
updating mechanism (i.e., for counterfactual reasoning), which assumes that
players consider rewards actually received and also rewards not received. This
occurs when a player has some new evidence of the future reward she can
receive based on another player’s current action. If a player j rejects an offer
from player i, for example, then j knows the foregone reward she could have
received. Moreover, even if j is not involved in an offer, she may still be able
to update her beliefs based on another player i ’s behavior (the offer amount,
in the case that i is the offerer; and the decision to accept or reject, in the
case that i is the offeree). Of course, j cannot always update her beliefs. For
example, if an offeree k rejects the offer Ok

i (t) from player i, and j ’s aspiration
level to k is less than Ok

i (t), then she has gained no new information and hence
does not update. But on the other hand, if her aspiration level to k is greater
than Ok

i (t), then she can infer from k ’s rejection that she should lower her
aspiration level.

The differences in these updating rules mark two distinct levels of bound-
edly rational play. In the first, the player is a statistical learning machine

4 [MF02]
5 See [KLM96,SB98] for overviews.
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who treats the game as a black box offering different rewards (possibly non-
stationary) over available actions. While the model might seem overly simplis-
tic for a human player, it has been applied successfully in many normal-form
games.6 In contrast, the second model assumes the player is a sophisticated
learner who assigns some level of rationality to the other players of the game.
Such players apply deductive and counterfactual reasoning about rewards not
received, thus better calibrating their aspiration levels. While play still in-
crementally moves toward the equilibrium solution, the players in this model
are closer to the fully rational ones espoused by static solutions.

3.2 Reinforcement Learning

The first updating mechanism is that of reinforcement learning, in which, af-
ter each decision, agents receive a reward from the environment and update
their aspiration levels by adding a fraction of the difference between the re-
ward and the previous aspiration level (for the agent with whom it interacted
in that round). Specifically, an offering agent updates based on the received
reward which equals the portion of the coalition value it secured (in the case
of an acceptance), or zero (in the case of a rejection). The receiving agent also
updates if it accepts the offer, but not if it rejects it (a rejection is implicit
since the receiving agent now makes an offer as the new offerer). Any agent
which did not make or receive an offer (there is only one such agent in the
games studied here) does not update its aspiration levels for that time step.

Formally, let rji(t) denote player i ’s reward from player j at round t, which
equals v(ij) − Oj

i (t) if j accepted i ’s offer that round, and zero otherwise.
Then, i ’s aspiration is updated by:

Aj
i (t) = Aj

i (t− 1) + α[rj
i (t)−Aj

i (t− 1)] (2)

where α ∈ (0, 1] is the weight given to more recent rewards.7 This can be
seen by expanding Expression 2:

Aj
i (t) = Aj

i (t− 1) + α[rj
i (t)−Aj

i (t− 1)]

= (1− α)Aj
i (t− 1) + αrj

i (t)

= (1− α)[(1− α)Aj
i (t− 2) + αrj

i (t− 1)] + αrj
i (t)

= (1− α)2Aj
i (t− 2) + (1− α)αrj

i (t− 1) + αrj
i (t)

= (1− α)tAj
i (0) + (1− α)t−1αrj

i (1) + . . .

+(1− α)αrj
i (t− 1) + αrj

i (t)

= (1− α)tAj
i (0) +

t∑

T=1

(1− α)t−Tαrj
i (T )

6 E.g., [RE95], [ER98], [SV99], and [SV01].
7 [SB98]
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where i ’s aspiration level to j at time t is a weighted average of the prior Aj
i (0)

and the received rewards (the weights are exponentially decreasing as t→ 0).
In [CK04], we set the value of α to 0.2 (a typical value in the reinforcement
learning literature), while noting that convergence in mean coalition payoffs
was robust over many values of this parameter.

3.3 Counterfactual Reasoning

Reinforcement learning has proven useful in a large number of contexts out-
side of game theory, but its primary limitation when applied to strategic
contexts is that it ignores knowledge that players have about the game struc-
ture. Specifically, it fails to model information such as foregone payoffs, of
which players often know the exact value. In the case of coalition formation,
it also does not capture a player’s cognizance of others’ behavior when he
or she is not included in the active offer (as explained above). The second
model presented here is adapted from [CH99]’s experience-weighted attrac-
tion (EWA) model, and mathematically is a special case.8 [CH99] showed that
reinforcement learning and belief learning (e.g., fictitious play, which treats
foregone payoffs like received ones) are related closely and can be generalized
in their hybrid model. In the present application, when player i makes an
offer at time t to player j and gets reward rj

i (t), i updates by:

Aj
i (t) =

φ ∗Ni(t− 1) ∗Aj
i (t− 1) + rj

i (t)
Ni(t)

(3)

Ni(t) = φ ∗Ni(t− 1) + 1 (4)

where the reward rj
i (t) equals v(ij) − Oj

i (t) in the case that j accepts the
offer, and is zero otherwise. The parameter φ is the relative weight placed
on more recent observations, and corresponds to the recency parameter α
in Equation 2. Along with the prior Ni(0), φ determines the “experience
weight” for player i, Ni(t).9 The model thus weights previous aspirations by
φ ∗Ni(t− 1)/Ni(t) and received rewards by 1/Ni(t).

If player j accepts the offer from i, then j uses Equations 3 and 4 to
update aspirations (with i and j permuted in Equation 3, ri

j(t) = Oj
i (t), and

i replaced by j in Equation 4). If j rejects the offer, however, j updates by
weighting the foregone reward by δ/Nj(t):

8 The EWA model allows for attractions to be cumulated or averaged. This paper
sets their parameters ρ = φ, so that attractions are always averaged (as in Equa-
tion 2) and thus remain within payoff bounds. This allows for the interpretation
of attractions as aspiration levels.

9 The present model sets the initial experience weight to Ni(0) = 1, so that Ni(t)
is just a discounted sum of t time steps. That is, Ni(t) = 1 + φ + . . . + φt−2 +
φt−1 +φt ∗Ni(0) =

Pt
T=0 φ

T when Ni(0) = 1. Equation 2 is a special case of the
EWA model when δ = 0 and Ni(0) = 1/(1 − φ) [CH99].
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Ai
j(t) =

φ ∗Nj(t− 1) ∗Ai
j(t− 1) + δ ∗ ri

j(t)
Nj(t)

, (5)

where ri
j(t) = Oj

i (t). (Player j updates her or his experience weight as well;
from here on, every aspiration level update is assumed to be accompanied by
an experience-weight update for that player).

As mentioned earlier, the left-out player k also updates under the coun-
terfactual reasoning model. Upon observing i ’s offer Oj

i (t) to player j, k cal-
culates the amount i is claiming, rj

i (t) = v(ij) − Oj
i (t), and imagines that i

would offer similarly to k. Thus, k estimates i ’s counterfactual offer to k as
r̂i
k(t) = v(ik)− rj

i (t), and updates based on this imagined reward:

Ai
k(t) =

φ ∗Nk(t− 1) ∗Ai
k(t− 1) + δ ∗ r̂i

k(t)
Nk(t)

. (6)

Additionally, if j accepts i ’s offer Oj
i (t), and k ’s aspiration level to j is

below Oj
i (t), then k updates by reasoning that he or she would be able to get

at least Oj
i (t) from j. Thus, k ’s estimate of the counterfactual reward from j

becomes r̂j
k(t) = Oj

i (t), and k updates by:

Aj
k(t) =

φ ∗Nk(t− 1) ∗Aj
k(t− 1) + δ ∗ r̂j

k(t)
Nk(t)

. (7)

Finally, if j rejects i ’s offer and k ’s aspiration level to j is above the offer
value, then k infers that it is too high. In this case, k updates according to
Equation 7 with r̂j

k(t) = 0 (k “imagines” j rejected k ’s offer). The other two
cases do not provide k with any new information (i.e., if k ’s aspiration level
is above Oj

i (t) and j accepts, or if j rejects but Ai
k(t) ≤ Oj

i (t)), and so k does
not update.

The weight δ placed on these counterfactual payoffs can be interpreted as
a combination of the player’s vividness of imagination and the importance he
or she places on counterfactual payoffs [CH98]. When δ is low or zero, then
the model is a form of reinforcement learning, where players place little or no
weight on counterfactual payoffs; when it is high or one, it is an adaptation
of the weighted fictitious play model (see [FL98]), where not only actions for
foregone payoffs are reinforced, but also those entirely imagined as in the case
of player k above.

3.4 Selection Rules

Aspiration levels represent players’ beliefs about the amount of payoff they
can elicit from other players. Players can use these values to select whom to
offer to in a number of a ways. For example, an offerer can select a player to
offer to by maximizing over his aspiration levels. This reflects the traditional
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Table 2. Selection rules

Rule Agent i’s probability of selecting agent j

Random 1
|P |

Greedy
1 if Aj

i (t) = max
p∈P

Ap
i (t)

0 else

ε-greedy
1 − ε if Aj

i (t) = max
p∈P

Ap
i (t)

ε else

Matching
A
j
i (t)P

p∈P
A
p
i (t)

Softmax e
A
j
i
(t)/τ∗

P

p∈P
e
A
p
i
(t)/τ∗

* Where P is the set of agents excluding i, and τ = Θt where t represents the
current episode. The parameters ε and Θ were set at .01 and .9999 respectively,
which are typical and resemble those used in other related studies [SC95]. The
positive parameter τ of the Softmax action selection method decreases over time,
effecting exploration early on, but becoming greedy as τ → 0.

economic precept of choice as maximization over beliefs [SV01]. Instead, play-
ers might choose whom to offer to in non-maximizing ways which allow for
trembles, probability matching [Gal90], or deliberate exploration. The vari-
ous selection rules examined in this paper which map aspirations levels into
actions are given in Table 2.

The Random rule represents a null or “constrained zero-intelligence”
[GS93] model. The Greedy rule represents the traditional economic model
discussed above, ε-greedy its counterpart with trembles. The Matching rule
represents probabilistic selection observed in choice experiments with humans
and other animals [Gal90], while the Softmax rules balance a mix of searching
for better alternatives early on and exploiting later, converging to the Greedy
rule as t→∞ [SB98].

3.5 Offer/Acceptance Behavior

Given the selection rules in Table 2, the natural choice for agent offer and
acceptance behavior is for agents to make offers at their aspiration levels,
and to accept offers which are greater than or equal to their aspiration levels.
While agents could “satisfice” by accepting offers that are below their current
aspiration level, such considerations are left to future work.
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4 Results

4.1 Fit to Theoretical Values

The updating mechanisms of reinforcement learning and counterfactual rea-
soning are tested for their explanatory and predictive powers by fitting them
to the games in Table 1 in three different ways:10 1) individually, 2) over all
five games simultaneously, and 3) in a cross-validation scheme. This is done
for each combination of updating mechanism and selection rule. Specifically,
the mean squared deviation (MSD) of the mean reward as a winning coali-
tion member (MRAC)11 from the respective quota value for each of the three
agents is minimized over the appropriate parameter space (α, or δ and φ),
first for each individual game, then for the best fit over all five games, and
finally for each subset of four out of the five games. The last set of chosen
parameter(s) is then cross-validated against the fifth game (by predicting the
out-of-sample MRAC in the left-out game). This provides two tests of de-
scriptive accuracy and a strict one of prediction. The initial aspiration levels
of each agent i to agent j is set to half of their coalition value. MSD values
for 300 episodes are shown in Tables 3 and 4 (the corresponding parameter
estimates are presented in the Appendix in Tables 7 and 8).

The Softmax rule performs the best, scoring only .26 MSD units over
games for the counterfactual reasoning (CR) model in cross-validation (the
strictest of the three fit measures). The same rule performs substantially
worse, but still well, for the reinforcement learning (RL) model. While they
fit well in-sample, both the RL and CR models overfit for the Greedy and
ε-greedy rules; that is, their out-of-sample performance is poor, as can be
seen by their large MSD cross-validation scores. The Random and Matching
rules perform poorly both in- and out-of-sample for both models.

By 1,000 episodes, however, both the RL and CR models converge to very
small neighborhoods of the quota values (not shown) for any of the greedier
selection rules (Greedy, ε-greedy, and Softmax), while they never do for the
Random or Matching rules. The true test of the two models, then, is to
compare their performances on a much shorter timescale of 10− 20 episodes
– the timescale in which human subjects are able to reach quota values.

4.2 Experimental Data

In their study, [KR74] used human subjects in a computerized experiment
designed to examine coalition formation behavior in the games in Table 1.
Forty-eight undergraduate male subjects were divided into groups of sixteen

10 Following [ER98].
11 Because the quota solution concept is meaningful only for formed coalitions, the

quantity traditionally considered [KR74] as a performance measure is the MRAC
for each player.
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Fig. 1. Convergence over Time of Mean Reward as Members of Winning Coalition
(MRAC) for Greedy Reinforcement Learning (RL) Agents and Greedy Counter-
factual Reasoning Agents. Black = Agent A’s MRAC; Gray = Agent B’s MRAC;
Light Gray = Agent C’s MRAC; Dotted Lines = Players’ Respective Quotas
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and participated in three separate experiments. In the first experiment, mes-
sages were public, so that all players were aware of the others’ offers. Subjects
had to send messages publicly in a fixed order (as opposed to being able to
speak at will). In the second experiment, messages could be private, but
again were sent in order. In the last experiment, messages could be private,
but were sent at will. The sixteen players in each experiment were broken up
into four quartets, who played each of the five games for four iterations. For
each game, one member of the quartet would sit out as an observer – this
procedure was employed to allow subjects to reflect upon the task, and to in-
crease the validity of the assumption of independence between games. Order
of play between and within games was randomized subject to the condition
that no player would be observer in two consecutive rounds. They found that
the mean deviation from the quota decreased both within iterations (mea-
sured over the first offer made to the winning coalition, the first accepted
offer by that coalition, and the ultimately ratified offer by that coalition),
and also across iterations, for first offers made to the winning coalitions. Fur-
thermore, they found that the mean deviation from the quota values was not
significantly different from zero (α = .05).

Despite the fact that subjects were allowed to practice the game prior
to playing for monetary rewards and also to communicate (which may have
sped up convergence), the small number of rounds in which they reached the
quota values is quite remarkable. We noted in [CK04] that the reinforcement
learning agents learn too slowly in comparison to the human subjects. To
give a sense of comparison of the rate of convergence for the RL and CR
agents, Figure 1 shows their MRAC plots over time.12 Visually, the CR model
converges very quickly to the quota values (in less than 50 episodes in many
cases), begging the question of whether its performance can match those
of humans. The RL agents, on the other hand, take far longer (200 − 400
episodes) than humans do.

4.3 Re-estimation on a Short Timescale

The RL and CR models are now re-estimated for the greedier rules (Greedy,
ε-greedy, and Softmax) for ten episodes. As noted earlier, the original model
set each agent’s initial aspiration levels to half of its coalition value for each
other agent.13 However, there is reason to suspect that human subjects began
learning prior to the recorded experiment during unpaid practice rounds.
[KR74] report that the average deviation from the quota of the first offers

12 The parameter estimates from Tables 3 and 4 were used. All other selection rules
also show the trend of faster convergence for the CR model compared to the RL
one.

13 This choice was made after finding similar MRAC and MSD values when the
initial aspirations Aj

i (0) were drawn from the uniform distribution over [0, v(ij)],
which only resulted in more noise.
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to the winning coalition is only −2.95 (see Table 5 for the entire list of the
deviations over games and coalitions). These small initial deviations reflect
pre-game calibration on the part of subjects, possibly due to deliberation or
practice. In any case, the model’s initial conditions are aligned to those of
the humans by setting their initial aspiration levels according to Table 5.14

Table 5. Mean deviations from quota of first offers to the winning coalition over
games and coalitions (source: [KR74])

Game: Over
I II III IV V Games

AB -5.48 2.16 -0.12 -6.17 -8.62 -4.59
AC -4.19 4.38 5.56 -4.00 -11.50 -0.74
BC -1.00 -0.67 1.87 -2.00 NA 0.02

Over
Coalitions -4.51 1.65 2.40 -5.33 -8.98 -2.95

The results for ten episodes for the Greedy, ε-greedy, and Softmax rules
are shown in Table 6 (1,000 simulations were run for every set of parame-
ters). The CR model again fits the data better overall, due to its extensive
counterfactual updating. That is, agents in the CR model update their as-
pirations levels for foregone payoffs and for offers which they neither made
nor received, giving them more chances to move toward theoretical values in
every complete round of play (i.e. every time a winning coalition is formed).
The RL agents only update once every time they make or accept an offer,
on the other hand, and hence are far too slow for the rapid convergence to
quota values observed in human subjects. The parameter estimates for the
CR model, which are shown in the Appendix in Tables 9 and 10, highlight the
importance of counterfactual updating. The imagination parameter δ ranges
from .54 to 1, with most values above .85. This parameter weights counter-
factual payoffs, suggesting that the faster convergence rate of the CR model
is due to counterfactual reasoning for these imagined payoffs.

5 Conclusion

Computational modeling is an important tool for investigating the dynam-
ics of negotiation and bargaining in coalition formation. Previous work found
strong tendencies toward quota solutions under a simple reinforcement learn-
ing framework, but that agents converged too slowly when compared to hu-
14 For coalition BC in game V , no data is available so the previous initial value of
.5 ∗ v(BC) is used.
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Table 6. MSD between MRAC and quota values for RL and CR agents: ten
episodes

Game: Over
I II III IV V Games

Reinforcement Learning

Greedy
Individual Fits: 1.52 2.9 54.64 3.85 0.58 17.26
Cross-Validation: 5.06 4.97 58.24 7.27 9.63 15.7
Over All Games: 5.06 3.51 54.64 5.04 9.63 15.57

ε-Greedy
Individual Fits: 0.88 3.29 55.61 3.87 1.16 17.1
Cross-Validation: 2.89 3.88 55.61 4.79 8.5 15.13
Over All Games: 2.89 3.88 55.61 4.79 8.5 15.13

Softmax
Individual Fits: 0.74 3.6 15.83 3.65 0.73 12.13
Cross-Validation: 4.12 5.29 67.15 3.65 9.56 9.75
Over All Games: 4.12 5.29 15.92 3.65 9.56 7.71

Counterfactual Reasoning

Greedy
Individual Fits: 0 0.01 0.08 0.01 3.4 11.12
Cross-Validation: 0.39 0.62 7.03 1.93 9.2 2.94
Over All Games: 0.39 0.44 3.4 1.93 8.2 2.87

ε-Greedy
Individual Fits: 0.01 0.01 0.1 0.02 3.59 10.73
Cross-Validation: 2.13 0.5 5.13 3.11 24.8 3.35
Over All Games: 0.34 0.5 3.32 2.31 6.45 2.58

Softmax
Individual Fits: 0 0 0.14 0.02 2.93 12.64
Cross-Validation: 0.46 0.19 11.32 1.64 15.51 3.2
Over All Games: 0.46 0.19 3.38 0.88 8.14 2.61

Human: 7.35 6.26 4.41 6.53 45.49 14.01

mans [CK04]. The present work presents a counterfactual reasoning model
adapted from [CH99], in which agents update both for received rewards and
counterfactual ones. The CR model is able to fit quota values closely for the
very short timescale of ten episodes, both in-sample and out-of-sample (where
parameters in the latter case are estimated on four out of the five games, and
then used to predict the MRAC of the left-out game). The weight placed on
counterfactual payoffs in the estimation is high (δ above .85 for most games);
this suggests that counterfactual reasoning does play a role in the adaptive
process of players.
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While the CR model fits well to quota values, another important test is
how well it can model human players. Future work might include modeling
the full trajectories of individual play, should a detailed data set become
available.

In conclusion, the present work extends a simple reinforcement learning
model applied to coalition games to include counterfactual reasoning, and
shows that agents in this model are able to converge to quota solutions within
the very short time frame of ten rounds. Additionally, it demonstrates that
systems of artificial agents using relatively simple (and boundedly rational)
learning rules can serve as benchmarks for understanding solutions of games.
Because these agents are so simple and computationally tractable, this lends
additional credence to the quota as a solution concept, and also shows promise
for the use of such agents in investigating other characteristic function games.
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A Parameter Estimates

The tables of this appendix summarize the parameter settings for the exper-
iments described above.

Table 7. Parameter estimates for the reinforcement learning model: 300 episodes

Game:
I II III IV V

Random:
Individual Fits: (α = 0.19) (α = 0.02) (α = 0.02) (α = 0.05) (α = 0.11)
Cross-Validation: (α = 0.05) (α = 0.05) (α = 0.05) (α = 0.05) (α = 0.05)
Over All Games: (α = .05) (α = .05) (α = .05) (α = .05) (α = .05)

Greedy:

Individual Fits: (α = 0.46) (α = 0.72) (α = 0.6) (α = 0.89) (α = 0.82)
Cross-Validation: (α = 0.74) (α = 0.87) (α = 0.74) (α = 0.09) (α = 0.6)
Over All Games: (α = 0.81) (α = 0.69) (α = 0.69) (α = 0.69) (α = 0.69)

ε-greedy:

Individual Fits: (α = 0.13) (α = 0.94) (α = 0.14) (α = 0.76) (α = 0.65)
Cross-Validation: (α = 0.65) (α = 0.66) (α = 0.86) (α = 0.65) (α = 0.72)
Over All Games: (α = 0.13) (α = 0.94) (α = 0.14) (α = 0.76) (α = 0.65)

Matching:

Individual Fits: (α = 0.74) (α = 0.82) (α = 0.85) (α = 0.78) (α = 0.97)
Cross-Validation: (α = 0.97) (α = 0.97) (α = 0.88) (α = 0.88) (α = 0.82)
Over All Games: (α = .88) (α = .88) (α = .88) (α = .88) (α = .88)

Softmax:
Individual Fits: (α = 0.13) (α = 0.07) (α = 0.26) (α = 0.23) (α = 0.15)
Cross-Validation: (α = 0.15) (α = 0.15) (α = 0.15) (α = 0.1) (α = 0.14)
Over All Games: (α = .15) (α = .15) (α = .15) (α = .15) (α = .15)
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On Learning Negotiation Strategies by
Artificial Adaptive Agents in Environments of
Incomplete Information

Jim R. Oliver

INSEAD, France,
jroliver@ebay.com

Abstract. Automated negotiation by artificial adaptive agents (AAAs) holds great
promise for electronic commerce, but non-trivial, practical issues remain. Published
studies of AAA learning of negotiation strategies have been based on artificial envi-
ronments that include complete payoff information for both sides of the bargaining
table. This is not realistic in applied contexts. Without loss of generality, we con-
sider the case of a seller who knows its own preferences over negotiation outcomes
but will have limited information about the private values of each customer. We
propose a learning environment that takes advantage of partial information likely
to be available to the vendor. General strategies are learned for a group of simi-
lar customers – a market segment – through a simulation approach and a genetic
learning algorithm. In addition, we systematically further relax constraints on the
opponent’s preferences to further explore AAA learning in incomplete information
environments.

1 Introduction

Researchers have demonstrated that artificial adaptive agents (AAAs) can
learn effective negotiation strategies. But the experimental environments in
which these agents learn are also artificial and depart from what is plausible
in natural settings. In particular, the environments completely specify the
payoff structure for the opposing sides, but in applied contexts each side
keeps information private or even misrepresents it. One side never completely
knows the other. Still, we have some hunches about our opponents. Wouldn’t
it be nice if there were a way to take advantage of what is known about our
opponent and incorporate it systematically and effectively into a learning
environment for AAAs? This paper examines the potential of and perils of
incomplete information and the impact on AAA performance.

1.1 The Challenge of Negotiation

Bargaining and negotiation always have, and always will, play a critical role
in commerce. Even within a firm, allocation decisions usually have a negoti-
ation component. Despite its importance and prevalence throughout history,
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human negotiation performance falls significantly short of optimal. Exper-
iments, field studies, and our common experience demonstrate that even
in simple negotiations people often reach sub-optimal agreements, thereby
“leaving money on the table” [Cam90]. Economic efficiency would be greatly
increased if the cost of negotiation could be decreased or superior agreements
could be effected. Computer science and information systems researchers have
approached this problem in two ways. One stream of research has sought to
provide tools that support human negotiators (e.g. [RS97]), while another
stream seeks to build systems that can negotiate by themselves. Our inter-
est here is in the latter approach, specifically systems of Artificial Adaptive
Agents (AAAs) based on evolutionary computation.

The essence of negotiation is two or more parties trying to arrive at a
single agreement from a set – often large – of potential agreements. Part
of the challenge and the opportunity of negotiation arises from differences
between the parties as to how they value possible outcomes.

Negotiation can be viewed as a search process. Optimization is also often
thought of as a search process, but it differs in important ways from nego-
tiation search. Optimization seeks the maximum or minimum of a known
(computable), static, search space. In negotiation, each side has private in-
formation, and neither knows the other’s exact utility function. The situation
is further complicated because both sides have incentive to misrepresent their
preferences. Thus, each party has differing views of the search space, which
change over time as the bargaining session unfolds. Finding an optimal agree-
ment in this dynamic environment is extremely challenging because both sides
are in competition, but must jointly search the space of possible agreements.

Despite the challenging nature of negotiation, researchers pursuing auto-
mated negotiation have had provocative successes. A multitude of approaches
have been taken, and the results have been reviewed extensively elsewhere
(e.g. [Bic01]; [Far98]); thus we will only provide brief background. [CSLC01],
[TWL00], and [Oli96a] used genetic algorithms [Gol89] to evolve agents that
can negotiate in complex, large, multi-dimensional search spaces. [Oli96a]
used simple strategies that capture common decision making processes, but
lack the expressive power to capture and react directly to a particular dy-
namic bargaining path. [TWL00] extended the work by using Finite State
Machines (FSMs) to represent strategies. Another stream of research is repre-
sented by [DKL96] who use genetic programming techniques to evolve agents
that can play coalition games.

1.2 Two Problems: Learning Curves and Knowing Your
Opponent

The promise of Artificial Adaptive Agents learning to negotiate is exciting,
but many practical problems remain to be overcome before the approach is
viable for commercial transactions between firms. We turn our attention to
just one of these difficulties, a specific applied problem that is important and
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that also was the original motivation for the investigations reported here.
Consider the potential situation of a vendor wishing to deploy a set of AAAs
that will be able to negotiate with its customers. These customers could be
human buyers or perhaps automated agents themselves. By focusing on just
this particular situation, we get around a number of problems such as choos-
ing a common negotiation protocol, a shared ontology, and commitments,
because in this situation the vendor defines the rules of the game, and it is
incumbent upon the customer to comply1.

In this simplified case, we are left with only the fundamental challenge:
how do the AAAs learn to negotiate the myriad transactions in the first place?
How do they learn to implicitly or explicitly “understand” the customers? We
might assume that the vendor would wish to leverage the previously men-
tioned studies demonstrating that artificial agents, directed by evolutionary
algorithms, can effectively learn negotiation strategies. However, the pub-
lished approaches have two characteristics that, when taken together, create
a serious practical problem. The first problem we call the learning curve prob-
lem. Although evolutionary learning is effective in many ways, it is not fash
enough for all situations; genetic algorithm (GA) and genetic programming
(GP) based learning requires hundreds or even thousands of trials to learn
effective strategies. The learning curve, or rate at which the agent improves,
is reasonable when compared to the size of the problems, but as a practi-
cal matter this characteristic prevents a vendor from training AAAs “on the
job,” i.e., through real customer interactions. Researchers have avoided this
problem by pitting computer agents against each other. Although computer
cycles, by relevant measures, are cheap and fast, it is here that the other half
of the problem emerges. To play against the other side requires a model of
the other side. That is to say we need a complete environment for the AAAs
that covers both sides of the negotiating table. We argue that our hypotheti-
cal vendor is likely to have some ideas about its customer base but not likely
to have complete access to the subtle preferences its many customers might
have. We call this second problem the know your opponent problem.

To summarize, effective AAA learning of negotiation strategies requires
either a real opponent willing to do thousands of trials or models of the
opponent. We explore one approach to building those models, one that lever-
ages knowledge likely to be available in applied settings but also likely to
be incomplete. We then generalize to other forms of incomplete information
with that aim of shedding light on the potential and the perils of incomplete
models on AAA performance.

1 For widespread adoption, such a vendor dictated approach is inadequate, but it
is not unreasonable that there are situations in which a vendor could take the
lead in such a manner.
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2 Overview of the Approach

The basic approach is as follows. We assume that a vendor can describe
some characteristics of the preferences for a group of customers, interpreted
as a particular customer segment. This description will be the basis of an
incomplete specification of that segment. We aim, in essence, to exploit ap-
proximate models, the details of which will be made clear in a later section.
From the basic characteristics of a market segment, multiple customers are
simulated, and the AAAs of the vendor learn to negotiate with these many
instances of similar customers. The vendor agent learns a general strategy for
the segment with the hope that new but similar customers can be effectively
dealt with. This type of general strategy learning is related to [Oli97b].

3 AAA Platform

We now describe the system that is used in these investigations, address-
ing representation of the negotiation space, modeling of the participants, and
system operation. In the spirit of the motivating example, i.e., a vendor train-
ing AAAs to negotiate with a customer segment, we use the terms vendor
and customer to refer to the different parties and their different models. A
numerical example is provided at the end of the section for clarification.

Evolutionary Learning. The heart of the system is the genetic algorithm
that drives the learning process for the artificial agents. The details of the
algorithm will not be presented; the GA employed was fairly simple, “vanilla”
form [Gol89]. Agents learn from their experience bargaining as follows. After
initializing strategies as described below, a randomly chosen agent, either a
vendor agent or a customer agent, begins a bargaining round with an of-
fer. The receiving agent evaluates the offer and either accepts it or makes a
counter offer. The exception to this occurs when a system-specified maximum
number of offers has been reached, in which case bargaining is terminated and
each agent received a default payoff of zero. This bargaining cycle continues
for a system specified number of rounds, enough to test the effectiveness of
the individual chromosomes/strategies in the population. The GA is run and
this sequence makes one generation. The process continues for a system spec-
ified number of generations, enough that the population becomes effective at
bargaining.

Strategies. Both sides of the negotiation use the same strategy structure
in our experiments. We use simple, sequential, threshold decision rules as the
basis of negotiation strategies, as used by [Oli96a]. An example of this type of
strategy for a vendor agent might be as follows. Initially, accept any customer
offer whose utility is greater than a threshold T1. If the customer’s offer does
not meet that threshold, then make a counter offer. If the customer does not
accept this offer, and another counter offer is made, the purchasing agent
will compare this to another, typically different, threshold, T2. Again, if the
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threshold is not met, a counter offer could be made. This type of decision
rule could be called an adaptive satisficing strategy [Alb88].

In the future, we could consider richer representations of strategies, such
as finite state machines2 or genetic programming,3 which allows the strategic
structure and complexity to be chosen endogenously.

Initializing Strategies. The agents are not endowed with any initial strate-
gic knowledge about offers to make or how to react to offers. Following typical
practice, the initial strategies, for both the vendor and the customers, are ran-
domly created, i.e., random acceptance thresholds and random offers. In the
early phases of the learning process, low value offers are routinely made and
also accepted, but these inferior behaviors are rapidly eliminated through the
operation of the GA.

The Bargaining Space: Negotiable Issues and Alternatives. Multi-ple-issue
negotiations are characterized by a set of issues, each of which has two or
more alternatives. This representation generates a multi-dimensional space
of possible agreements. An offer or potential agreement is a vector in this
space.

Vendor Utilities. Utilities are stored as simple additive value models. Each
issue has a weight and each possibility for each issue has a numerical value.
The value of an option is simply the weighted sum. The value, V , of a par-
ticular option X= (x1, x2, ..., xn) is,

V (X) =
∑

i

wivi(xi), (1)

where, xi is the level of alternative X on the ith issue, vi is the part-worth
function for the alternatives for issue i, and wi is a weighting factor that
may or may not be necessary depending on the scaling of the vi terms. The
simple, additive preference models in use by the current system assume each
alternative is preferentially independent. Extensions to accommodate specific
interactions could be easily made.

Table 1 provides a numerical example that will make the value function
representation clearer. The example is that of a computer manufacturer or
vendor that offers products with a static physical design and microprocessor
type, but the customer is allowed to configure and negotiate certain attributes
such as price, processor speed, memory, and delivery schedule. In the table,
processor speed is the most important issue and the most preferred option, 3.0
GHz, contributes .35 towards the overall value. The table shows the weighted
values, which are the product of the weight for the issue times the value of the
option. In this case, the weights for (price, processor, memory, delivery) are
(.3, .35, .25, .1). Looking at just price alone, the options (1000, 1250, 1500,
1750) have individual values of (1.0, .67, .33, 0). The product of the weight for
price, .30, times the previous values yields the weighted values in the table

2 [TWL00]
3 [DKL96]
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of (.30, .20, .10, 0). The value of any particular option is straightforward
to calculate. For example, the option (price = 1500, processor = 2.0 GHz,
memory = 128 MB, delivery = 15 days) is .10 + .20 + 0 + .03 = .33.

Table 1. Example additive value function

Issues Alternatives Weighted Values

Price 1000 .30
($) 1250 .20

1500 .10
1750 0

Processor 1.5 0
(GHz) 2.0 .20

2.5 .25
3.0 .35

Memory 128 0
(Mbytes) 256 .15

384 .20
512 .25

Delivery 2 .10
(Days) 5 .08

15 .03
30 0

All component values are scaled so that the maximally valued option has
a value of 1.0 and the worst has a value of 0.0. In an applied setting value
functions can be linearly transformed to another more convenient scale for
display on a user interface, but this would only be for user convenience and
interpretation.

Modeling Customer Segments. Although we assume that the vendor’s ex-
act, cardinal preferences are knowable, i.e., an additive value function can be
elicited, this is not the case with customer preference information. Although
detailed preference information is unavailable to the vendor, at least some
constraints on those preferences are likely to be knowable. One interpreta-
tion of the approximate information might be that it represents a customer
type or a particular market segment. For the investigations reported here,
we specifically assume that the vendor has access to some ordinal preference
information, i.e., the vendor knows how the customer segment ranks various
possibilities.

To make this notion clearer, consider the example personal computer man-
ufacturer. While the vendor might not know customer preferences to the ex-
tent shown in Table 1 – knowing the exact value of a 1.5 GHz processor versus
a 1.8 GHz processor – the vendor is likely to know which attributes are more
important. For example, consider the case of graphic designers working for the
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government. This group of customers might value processor speed first, for
complex rendering, followed by memory and price, and finally delivery, which
in this case might be least important because of advance planning. Ranking
the preferences within an attribute is straightforward: more memory is de-
sired over less memory, faster is better than slower, and so forth. Continuing
this process for the remaining attributes constitutes the complete ordinal
preference ranking.

To run learning sessions, cardinal value functions are required and these
are generated from a specified ordinal preference ranking. In our experiments,
individual customer instances are created randomly, each fitting the ordinal
constraints, and in this manner, we simulate customers within the segment.

4 Structure of the Bargaining Space

As our investigations of incomplete information will be based on ordinal pref-
erence information, it is important to note the extent to which this constrains
what the bargaining space “looks like.” Figure pairs 1 and 2 show how two
instances of the same ordinal preferences create strikingly different bargain-
ing spaces, ranging from sharply clustered agreement points (Figure 1) to
scattered bargaining points that create an outward-bowed frontier (Figure
2). The figures are for the case of 4 issues, 4 alternatives for each issue, and
continuous value functions scaled to the interval [0,1] similar to Table 1. For
a careful analysis of how individual value functions, for two issues and two
agents, interact to create dramatically different bargaining spaces, the reader
can refer to [Mum91].

Fig. 1. Example bargaining space and corresponding pareto frontier
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Fig. 2. Bargaining space related to Figure 1 and corresponding Pareto frontier

The above example bargaining spaces are more general than our applied
example. We assume the vendor knows its value function precisely, but the
customer preferences are less precisely known. Figure 3 shows an example of
the variation in the bargaining space under comparatively minor changes in
the cardinal value function for the customer only. Tables 2 and 3 show that
the cardinal values for the vendor are unchanged, and the customer weights
are also unchanged, but the customer’s relative weights for the alternatives
within each issue vary between the two tables. The ordinal ranking of the
alternatives is the same in the two tables.

Fig. 3. Bargaining space and Pareto frontier for Table 2



Learning and Incomplete Information 453

Table 2. Vendor and customer value functions for figure 3. Bold numbers indicate
a most preferred alternative.

Vendor Customer

Alternative Alternative

Issue 1 2 3 4 Issue 1 2 3 4

1 0.424 0.000 0.244 0.334 1 0.006 0.000 0.092 0.100

2 0.034 0.014 0.003 0.000 2 0.000 0.017 0.385 0.395

3 0.000 0.400 0.244 0.224 3 0.430 0.145 0.000 0.007

4 0.024 0.142 0.000 0.113 4 0.000 0.075 0.016 0.036

Fig. 4. Bargaining space and Pareto frontier for Table 3

Table 3. Vendor and customer value functions for figure 4. Bold numbers indicate
a most preferred alternative.

Vendor Customer

Alternative Alternative

Issue 1 2 3 4 Issue 1 2 3 4

1 0.424 0.000 0.244 0.334 1 0.034 0.000 0.077 0.100

2 0.034 0.014 0.003 0.000 2 0.000 0.065 0.254 0.395

3 0.000 0.400 0.244 0.224 3 0.430 0.423 0.000 0.140

4 0.024 0.142 0.000 0.113 4 0.000 0.075 0.006 0.068

5 Experimental Testing and Results

We test the learning capabilities of the AAAs through detailed investigations
of increasingly relaxed constraints on customer preferences. The particular
parameters of the GA were selected based on preliminary testing to determine
values that would reliable create high performing agents. The key parameter
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values are as follows. For recombination, the GA parameters are P(crossover)
= 0.5 and P(mutation) = 0.025. The total number of bargaining sessions in an
experiment depends on the number of bargaining sessions for each generation,
population size, and number of generations; various combinations of these
that extended out to be tens of thousands of bargaining sessions effected
consistently strong learning by the agents.

5.1 Experimental Design

The performance of AAAs with fully specified opposing agents forms the
baseline of performance against which we compare the AAA performance
in the cases of incomplete information. In the baseline case, cardinal prefer-
ences are specified for both issues and for alternatives on each issue, i.e., fully
specified value functions. This is the case in which individual customer prefer-
ences are known precisely and is the best case for learning high-performance
negotiating strategies.

In successive cases, the constraints on customer preferences are relaxed in
systematic ways. Table 4 summarizes each case. Case 1 specifies cardinal pref-
erences for issues, but ordinal preferences on alternatives. This corresponds
to knowing the exact relative weight of each issue – price versus processor
speed, for example – but only knowing that higher price is preferred to lower
price without knowing quantitatively by how much. Case 2 switches these:
ordinal issue preference and cardinal preferences over alternatives. This cor-
responds, in our example, to knowing precisely the relative value of each price
point versus the others, each processor speed versus the others, and so forth,
but only knowing from a ranking viewpoint that processor speed is more im-
portant that price. Cases 3 and 4 relax the constraints further to the point
that might be unusual for applied contexts. Case 3 places no constraints on
the importance of alternatives within each issue, but preserves among those
in the customer group a consistent preference order on the issues themselves.
No preferences over alternatives would be unrealistic in the case of price but
not necessarily in the case of an issue such as color. Case 4 places the opposite
constraints.

The final case, number 5, is meant to approximate more natural conditions
of a vendor/customer interaction. The key difference in this case is that in the
ordering of preferences over alternatives, we force the vendor and customer to
have perfectly opposing interests. For example, the vendor would like to sell
the lowest cost computer for the highest price and with the longest lead-time.
In contrast, the customer would like the highest performance computer at the
best price as soon as possible. The preferences among the issues themselves,
however, are not constrained and, in general, are not the same. The difference
in preferences creates a trade-off so that there is a win-win opportunity to
take advantage of. For example, the vendor might be exceptionally busy and
would like to stretch out lead-time, whereas the customer segment generally
plans ahead and does not need computers delivered right away.
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Table 4. Test cases of incomplete information

Case
IssuePreference Alternative Preference

Baseline Cardinal Cardinal

1 Cardinal Ordinal

2 Ordinal Cardinal

3 Ordinal None

4 None Ordinal

5
(Opposing)

Cardinal Ordinal

Fig. 5. Bargaining space for opposing interests and corresponding Pareto frontier.

Case 5 creates a far more distributive bargaining space, with only modest
integrative opportunity as compared to the other cases. Figure 5 shows an
example of the bargaining space for this case. The primary opportunities for
gain are at the expense of the other player, i.e., by moving among points
in a northwest or southeast direction on the figure. Unlike the other cases
and example bargaining spaces, the extreme payoffs in this case to (vendor,
customer) are (1,0) and (0,1). Points northeast (above and to the right) of
other points represent improvements in payoffs to both parties, but these
opportunities have a smaller improvement than those shown in Figures 1
through 4. Not all the possibilities for case 5 have bargaining spaces that are
as compressed or flat as is shown in this example; the compression is because
in figure 5 the opponents both place the greatest value on the same issue.
When this is not the case, then the integrative opportunity is greater.

Each test case represents a broad market segment, and for each we test
the performance of the strategies learned for the segment to the performance
of more tailored strategies unique to each customer – strategies which could
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be learned if customer preferences were completely known. The experimental
procedure is as follows. Value function generation is a two-step process. First,
random sets of ordinal preferences, covering both the issues and the alterna-
tives for each issue, are generated. Two sets of preferences are generated, one
for each side of the bargaining table. Second, cardinal preferences are gener-
ated that fit the ordinal preferences. For the customer side, portions of this
process, as appropriate, are repeated m times to generate m value functions
corresponding to m customers fitting the structure imposed by the test case.
The single vendor that is paired with each of the m unique customers creates
a unique bargaining space. We calculate and save the average value (to each
player separately) of all the points in the space, the average value of each
point on the frontier, and the average distance of each point to the frontier.
These statistics summarize the bargaining space. In the experiments, a value
of m=20 was adequate for consistent results, but no investigation was per-
formed to understand how this value interacted with or depended on other
parameters.

Each test case proceeds in two phases. First, the vendor agent trains
with a single customer agent and learns a unique strategy for that customer.
Next, a fresh copy of the vendor agent competes against a new customer.
This continues for all m customers simulated for the segment. The vendor
agents are all identical in that they have exactly the same preferences. Data
summarizing the bargaining performance is saved and provides the baseline
benchmark in which the vendor is allowed to evolve specific strategies for
each customer.

In the second phase of each test case, a new instantiation of the ven-
dor agent trains against “experienced” customer agents and evolves general
strategies for the segment. First the trained customer agents from the pre-
vious phase are split into two groups (equal size), one for training and a
hold-out sample for evaluation. The vendor agent is matched with one of
the saved customers from the training group (specifying both strategies and
value functions); these agents use strategies that correspond to those an ex-
perienced customer agent might use. A series of bargaining rounds occurs,
following which the GA is run, for the vendor only. In the next generation,
the vendor is matched with a new (i.e., expectedly different) saved customer,
drawn from the training pool. This process continues for the same number of
generations as in the first phase. At this point, the vendor agent has learned
a ”general” strategy for the customers in the training segment. An evaluation
step captures the performance of the vendor agent by pairing it with each
customer agent from the holdout sample. The results of a standard bargaining
session are saved for each interaction.

5.2 Results

We test agent learning in two ways. First, we statistically compare the payoffs
earned by each agent, after their bargaining experience, to the average payoff
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all the agreements in the bargaining space, i.e., the expected payoff of a
random offer. Second, we compare the earned versus random payoffs in terms
of their distance to the Pareto frontier. Being closer to the Pareto frontier is a
sign of achieving integrative agreements that take advantage of the different
agent preferences in a win-win manner.

t-tests are used to test whether the bargaining outcomes of the trained
agents differ from random points in the bargaining space. Table 5 summarizes
the means and standard deviations for bargaining outcomes in terms of payoff
to each agent; in the table, Player 1 is the vendor and Player 2 is the customer.
For the first test, of payoffs to each agent, the results were highly significant
for all cases (p < .0002 or much better). Based on the column headings
in Table 5, the first test compares the raw data (not shown) for AllPoints
Ave 1 to Baseline Ave 1 and General Ave 1, and the same comparison is
done for player 2. The second tests, of nearness to frontier, were also highly
significant (p < .02 or much better). Table 6 summarizes the means and
standard deviations for bargaining outcomes in terms of nearness to frontier.

We now address the question of whether the specialized vendor agents
perform better than the generalized agents that learn for an entire segment.
Looking at Table 5, we note that in Case 1, the mean payoff to Player 1 (the
vendor) is .773 in the baseline test and .695 in the general strategy test, sug-
gesting that the specialized agents that learn individual strategies for each
customer are more effective negotiators. To verify this, we again perform t-
tests that compare the payoffs for each agent in each case. In Table 5, we
compare the raw data (not shown) for Baseline Ave 1 to General Ave 1 and
Baseline Ave 2 to General Ave 2. All are highly significant (p=1x10−7 or
better) indicating that the varying performance penalty for the cases of in-
complete information is real. The significance also extends to the customer
side, Player 2; these “experienced” players suffer from the bargaining disad-
vantage of the vendor.

Finally we explore which cases of incomplete information are the most
“difficult” for the agents. As a proxy for difficulty we measure the penalty that
the dyad experiences in each case, that is the payoff shortfall to each player
when the vendor agent must learn general strategies for the entire segment.
Table 7 shows the average penalties and the range for a 95% confidence
interval. The smallest penalty, certainly from the vendor’s viewpoint, is case
2, and the greatest penalty is case 3. Case 2 deviates from cardinal utilities
only for the issues, whereas Case 3 removes all restrictions on the alternatives,
of which there are collectively many more than issues. This result is not
terribly surprising on the surface, given the likely impact on the bargaining
space, but more research would be required to fully understand the effect,
as well as the less obvious result that the penalty for the customer is very
similar in three of the cases, despite differences in penalties for the vendor.
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Table 6. Mean and standard deviations of distance to frontier of the average point
in the bargaining space and the bargaining outcomes achieved by trained agents in
each test case.

AllPoints Ave Baseline Ave General Ave

CASE Dist to Frontier Dist to Frontier Dist to Frontier

1 mean .080 .015 .033

std dev .021 .005 .017

2 mean .085 .016 .033

std dev .017 .005 .016

3 mean .079 .015 .037

std dev .007 .005 .012

4 mean .080 .016 .033

std dev .018 .005 .014

5 mean .034 .012 .030

std dev .009 .004 .014

Table 7. Payoff penalties when vendor agents learn general strategies for a segment

Case Baseline Penalty
Vendor Customer Vendor Customer

1 0.773 0.778 0.078±.013 0.074±.018

2 0.790 0.786 0.065±.016 0.074±.016

3 0.770 0.770 0.094±.012 0.091±.013

4 0.770 0.779 0.078±.011 0.070±.015

5 0.609 0.625 0.070±.009 0.076±.017

6 Conclusion

The results of these experiments show that agents can learn strategies in
environments of incomplete information, but there is a penalty as compared
to the benchmark of complete information. The nature of the incomplete
information that we explored was very specific, motivated in part by ap-
plied considerations. The extent to which our models of customer segments,
simulated from ordinal preference data, are reasonable and appropriate in
applied contexts is an empirical question that deserves more attention. One
can imagine other models of customer segments, such as creating uniform
intervals around each point value in a cardinal value function, to name just
one. This interval approach is reminiscent of sensitivity analysis, and a related
research question is: given an AAA negotiation strategy, over what range of
opponent preferences is that strategy effective?

These experiments provide only initial insights into agent performance
in incomplete information environments. The agents live in the bargaining
spaces created by the modeling and simulation techniques. More work is
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needed to understand the links between (1) the impact of incomplete in-
formation to the structure of the bargaining spaces, and (2) the interplay
between the structure of the bargaining space and agent learning. In our
experiments, we combined these effects because the overall effect was what
we wished to research. Additional simulations or even analytical work might
provide key insights into the component effects.

Previous studies have compared the negotiation performance of AAAs
with that of humans. An important follow-on test of the simulation approach
described here would be to have the trained agents negotiate directly with hu-
man agents who are given the appropriate preference information. This would
be the best test of the system prior to deploying in a natural environment.

Human testing, as described, is valuable for validation, but we point out,
in closing, that it is not a practical approach for investigating the questions
posed in this research project. Negotiation outcomes, by both human and
artificial agents, are very noisy. Teasing out the impact of small variations
in structure requires a great deal of data, enough that it would be imprac-
tical to obtain from human experiments but it is quite easy to get through
computational approaches.
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Abstract. We report on a series of computational experiments with artificial
agents learning in the context of games. Two kinds of learning are investigated:
(1) a simple form of associative learning, called Q-learning, which occurs in state
space, and (2) a simple form of learning, which we introduce here, that occurs in
policy space. We compare the two methods on a number of repeated 2×2 games.
We conclude that learning in policy space is an effective and promising method for
learning in games.

1 Introduction

In what follows we report on a series of computational experiments with ar-
tificial agents learning in the context of games (situations of interdependent
decision making). We discuss two kinds of learning. The first is a form of
simple associative learning, called Q-learning (a form of reinforcement learn-
ing) in the machine learning literature.1 This sort of reinforcement learning by
agents in games has been investigated previously by a number of researchers.2

We introduce, in our discussion of the second series of experiments, a new
variety of reinforcement learning in the context of games. This kind of learn-
ing appears to be both very effective from the point of view of the agents and
cognitively plausible.

We begin by providing, in the next two sections, some essential context
and background.

2 Background: Games and Decisions

Decision contexts faced by agents may be distinguished into those that are
and those that are not strategic. In non-strategic contexts, decisions by other
agents do not need to be taken into account. When, for example, one decides
1 Cf., [KLM96,SB98].
2 E.g., [Cam03], [KL03], [KL04], and [SC95].
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whether to dress for rain on a given day, what matters most is whether it
will in fact rain.3 This fact, whichever way it turns out, is not in any way
dependent on the decisions of another agent. Nature, no matter how we joke
otherwise, does not care about and does not have interests in whether we get
wet or not. Similarly, the decisions made by an animal in navigating towards
a goal do not (at least in many cases) need to take into account decisions
by other animals. Constructing and exploiting a map gets the agent/animal
home, not, e.g., negotiation with others.

Strategic decisions—the subject of the theory of games—are those for
which the outcome depends on the agent’s choice and the non-agentive en-
vironment (as in non-strategic decisions), as well as on decisions made by
other agents. Encountering someone approaching on the sidewalk, one has
to decide whether to swerve left or right. The success of the maneuver will
typically depend upon a corresponding decision made by the other agent.
The two agents are playing a game—are interacting strategically—in which
both are rewarded maximally if each swerves right or if each swerves left; and
both are punished, or receive a lesser reward, if one swerves right and the
other swerves left.

CL (Cooperate) CR (Defect)

RU (Cooperate) (R,R)* (S,T)*

RD (Defect) (T,S)* (P,P)#

Fig. 1. Prisoner’s Dilemma. T>R>P>S. 2R>T+S. #=Nash equilibrium. * =
Pareto-optimal outcome.

To illustrate (with a different game), Figure 1 shows the generic and
famous Prisoner’s Dilemma game in strategic form. There are are two play-
ers, Row and Column. Row has a choice between RU (mnemonic: up) and
RD (down), while Column chooses between CL (left) and CR (right). The
outcome (RD, CR), in which both players receive P, is said to be a Nash
equilibrium because neither player could do better by unilaterally changing
its choice of strategy. Row’s only alternative choice is RU , which would yield
Row a return of S<P, and similarly for Column. Classical game theory pre-
dicts that game outcomes will occur at Nash equilibria. An outcome is said
to be (strictly) Pareto-optimal if there is no other outcome at which all (here,
both) players can do better. In the Prisoner’s Dilemma all of the outcomes
except the Nash equilibrium are Pareto-optimal. The outcome (RU , CL), said
to be the result of mutual cooperation, is especially attractive from the play-
ers’ perspective, since both do better than they do at the Nash equilibrium.

3 So we shall assume for the sake of the example. Nothing is ever so simple. One’s
loss function—the value one places on staying dry—does matter as much as
whether it rains or not.
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Why then, in the Prisoner’s Dilemma, would the players end up at the Nash
equilibrium when they would both be better off at the cooperation outcome?
First, it is assumed as part of the setup that the players cannot communi-
cate, or even be aware of who each other is, that no binding agreement on
play is possible, and that the players each make their decisions in ignorance
of the other’s decision. Second, the theory of rationality presumed in game
theory posits that players will not select dominated strategies. For Row, RD

is said to be a dominant strategy (or dominant choice) because no matter
how Column chooses, Row is better off playing RD, for if Column plays CL,
Row does better with RD because T>R, and if Column plays CR, Row does
better with RD because P>S. Similar reasoning applies to Column. Thus, RU

is a dominated strategy for Row and CL is a dominated strategy for Column.
This leaves (RD, CR), the Nash equilibrium, as the predicted outcome.

CL (Stag) CR (Hare)

RU (Stag) (R,R)*# (S,T)

RD (Hare) (T,S) (P,P)#

Fig. 2. Stag Hunt. R>T≥P>S. #=Nash equilibrium. * = Pareto-optimal outcome.

A second game to complete this minimal background may be motivated
as follows [Sky01]. Two agents go hunting and take up their places in a blind,
which hides them both from each other and from any stags that happen by.
Together they can expect to bag a stag, which will feed them each for 3 days.
If, however, one of the players reneges and goes hunting for hare, that player
can expect to bag two hares, enough to feed him for two days. The other
player will receive nothing, neither stag nor hare. If both players renege, each
can expect to bag one hare, a day’s worth of food. The game, presented in
strategic form in Figure 2 is so named in honor of a passage in Rousseau’s A
Discourse on Inequality:

If it was a matter of hunting a deer, everyone well realized that he
must remain faithful to his post; but if a hare happened to pass within
reach of one of them, we cannot doubt that he would have gone off
in pursuit of it without scruple. . .

The Stag Hunt is also called the Assurance game. What assurance does a
player have that the other player won’t renege? The game has been used
to model arms races. To see why, relabel. For the row player, change hunt
stag to refrain from deploying missile defense and change hunt hare to fully
deploy missile defense. For the column player change hunt stag to refrain
from deploying missile defense penetration system and change hunt hare to
fully deploy missile defense penetration system.

Hunting stag (or its strategic equivalent) is a cooperative play, as chasing
hare is uncooperative. The Stag Hunt game is thus another kind of strategic
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repeat forever:

1. Observe the current state, st.
2. Select the current action, at, from Q(s, a).
3. Take action at and obtain reward rt.
4. Update Q(s, a) based on rt.

loop

Fig. 3. Pseudo-code for Q-learning in games

context in which issues of cooperation arise. Note that there are two Nash
equilibria: (Stag, Stag) (both hunt stag) and (Hare, Hare) (both chase hare),
only one of which is Pareto optimal, (Stag, Stag). There is a third, mixed
equilibrium, at which both players (independently) hunt stag with probability
x = P+S

R+P−T−S and chase hare with probability 1− x.

3 Repeated Games

Prisoner’s Dilemma and Stag Hunt are each examples of 2×2 games: 2 players,
each having 2 strategy choices. This is the simplest kind of game, yet each has
generated, and continues to generate, much investigation. Each is problematic
in its own way. In the Prisoner’s Dilemma there is one Nash equilibrium and
it is Pareto inferior to mutual cooperation (C, C). Why can’t rational agents
figure out a better deal for themselves than mutual defection, (D, D)? In Stag
Hunt, there are three Nash equilibria, two of which are Pareto inferior to the
third. The prediction of an equilibrium outcome fails to discriminate among
the three possibilities.

These kinds of problems are compounded when games are repeated. If we
create a repeated (or iterated) game by playing a particular game (called the
stage game; Stag Hunt or Prisoner’s Dilemma are possible examples) over and
over again (indefinitely), what happens? At this point, the Folk Theorem (a
genuine theorem; it has been proved in various forms) intervenes (see [FM86]
or any reasonably advanced and recent textbook on game theory). Roughly,
but accurately enough for present purposes, in repeated games of indefinite
extent (after each round of play of the stage game there is a finite proba-
bility that another round of play will ensue) the number of Nash equilibria
explodes; almost every possible combination of payoffs may be the result of
some equilibrium. Here, predicting an equilibrium outcome is hardly useful
at all. How might rational, or at least intelligent players play and what will
happen? To answer these and related questions, it is helpful to investigate
the effects of learning.
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4 Simple Reinforcement Learning

In Q-learning, the objects of learning are state-action pairs, each of which has
a value, designated Q(s, a), that is estimated during the learning process. In
the context of repeated 2×2 games, the states are constituted by the history
of recent play and the possible actions are strategies (rows or columns) in
the strategic form representation of the game. Thus, for example, actions in
Prisoner’s Dilemma would be either Cooperate or Defect, and states are used
to describe the recent history of play. In the simplest case, recent history is
described merely by what the counter-player did on the last round of play.

The Q-learning algorithm in its barest-bones form may be found in Fig-
ure 3. Q(s, a) is initialized in some arbitrary fashion, each player plays an
arbitrary strategy, then play begins as described in the figure. On each round
of play of the stage game, each agent observes, e.g., what the other agent did
on the previous round (1). Given the observed state there will normally be
many actions permitted, each of whose current estimated value is recorded
in Q(s, a). In the case of 2×2 games, each state will have associated with
it two actions. The agent then selects one of the possible actions based on
its Q-value (2). Under the ε-greedy selection procedure, the agent picks the
available action with the highest Q-value (Q(s, a)) with probability 1−ε, and
the other action with probability ε. (We used the setting ε = 0.05 usually.)
Under the SoftMax selection procedure, the agent picks action a in state s
with probability

eQt(s,a)/τ

∑
n
b=1e

Qt(s,b)/τ
(1)

where τ is a positive parameter and decreases over time. In our runs we used
SoftMax at the start, then ε-greedy as τ reached a minimal threshold. This
guaranteed continued exploration by the agents. This is a standard procedure
in the Q-learning literature.

After selecting and taking its action (playing a strategy in a round of the
game), the agent receives a reward from the round, r, and uses that to update
the Q-value of the chosen action, a (item (4) in Figure 3). Our update rule
was the standard one:

Q(s, a)← Q(s, a) + α[r + γ max
b
Q(s′, b)−Q(s, a)] (2)

where α is the learning rate parameter and Q(s, a) on the left is the new,
updated value of Q(s, a).

Let us now look at some experimental results. Figure 4 describes Pris-
oner’s Dilemma in a parametric form. We undertook 100 runs of 10,000
rounds of play for each value of δ. The totals are reported in Table 1 for the
ε-greedy runs, which were not materially different from the SoftMax runs.
We draw the reader’s attention in particular to the last column in the table,
the meaning which is this. The reward for mutual cooperation is 3 under all



468 Steven O. Kimbrough, Ming Lu, and Ann Kuo

CL (Cooperate) CR (Defect)

RU (Cooperate) (3, 3)* (0, 3+δ)*

RD (Defect) (3+δ, 0)* (δ, δ)#

Fig. 4. Parametric Prisoner’s Dilemma

settings of δ. This represents in an intuitive sense the best each player can
do in the long run, assuming the other player avoids exploitation. During the
10,000 rounds of play summarized in the table, an agent getting 3 points per
round would extract a point total of 30,000=3×10,000. The last column in-
dicates what percentage of this total was actually obtained by the row player
(there was no significant difference for the column player). Quite remarkably,
this number is nearly always very high across all values of δ. Although the
behavior changed dramatically, from a preponderance of mutual cooperation
to a preponderance of mutual defection, the agents were throughout able to
obtain an impressive percentage of the effectively available wealth.

Table 1. Summary of results for Prisoner’s Dilemma. ε-greedy action selection.
Totals for the last 100 rounds of 100 series of 10,000 plays.

CC CD DC DD δ Row’s % CC

9422 218 183 177 0.05 0.963

9036 399 388 150 0.5 0.963

5691 738 678 2693 1 0.931

3506 179 275 6040 1.25 0.972

1181 184 116 8519 1.5 0.930

2 98 103 9797 1.75 0.805

97 114 91 9698 2 0.735

0 100 92 9808 2.5 0.839

2 96 94 9808 2.95 0.986

The story more or less repeats itself in the very different game of Stag
Hunt. Figure 5 presents a parameterized version and Table 2 shows results
under the aforementioned conditions (runs of 10,000, etc.). Again, and we
think most remarkably, while the behavior of the agents changes with δ, the
percentage of the realistic maximal take (here 5 per round) is high and stable
throughout (with the possible exception of when δ=3.0).

We may summarize these findings by saying that the Nash equilibrium
for the one-shot stage game appears to have little predictive value for play by
these agents in the repeated game. Instead, it is the Pareto-superior outcome
that can predict the long-run returns the agents will obtain. These findings
have been replicated in a wide variety of repeated 2×2 games (see [KL04]



Strategic Learning in Policy Space 469

CL (Stag) CR (Hare)

RU (Stag) (5,5)*# (0,3)

RD (Hare) (3,0) (δ, δ)#

Fig. 5. Parametric Stag Hunt

repeat forever:

1. Select a policy πi ∈ Π, where Π is the consideration set of policies.
2. Pick a length of play, l, for policy πi.
3. Play the next l rounds of the game using πi.

Note: At each round, πi will observe the current state, st, take an action a and
obtain a reward rt.

4. Update V πi based on the individual-round rewards, rts, obtained during the l
rounds of play of policy πi.

loop

Fig. 6. Pseudo-code for policy-space learning in games

for detailed elaboration). We now introduce a new variety of reinforcement
learning in the context of agents in games.

Table 2. Summary of results for Stag Hunt. ε-greedy action selection. Totals for
the last 100 rounds of 100 series of 10,000 plays.

SS SH HS HH δ Row’s % CC

9390 126 122 362 0 0.978

9546 91 108 255 0.5 0.976

9211 112 125 552 0.75 0.975

8864 119 110 907 1 0.975

8634 115 132 1119 1.25 0.971

7914 122 130 1834 1.5 0.963

7822 122 104 1952 2 0.965

5936 87 101 3876 2.5 0.925

5266 121 106 4507 3 0.736

5 Learning in Policy Space

Figure 6 is the policy space learning analog of state space learning as de-
scribed in Figure 3. Previously, the objects of learning were state-action pairs,
or rather their values, Q(s, a). The objects of learning here are instead poli-
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cies. A policy πi(s, a) is a mapping from a set of states to an action.4 We
use V πi to designate the estimated value of policy πi. Learning in policy
space works by getting and improving these estimates. The basic procedure
is outlined in Figure 6. Note that step (1) in Figure 6 is analogous to step
(2) in Figure 3. Both may use either ε-greedy or SoftMax selection (or a
combination), but they do this on different objects, Q(s, a) values in the
case of state-space learning and V πi values in the case of policy-space learn-
ing. Updates—step (4) in Figure 6 and step (4) in Figure 3—are also done
similarly. For the policy-learning data described below we used this simpler
update rule:

V πi ← V πi + α(r/l − V πi) (3)

where r is the total reward obtained in the l rounds of play for the strategy.
As before α is a “learning rate”, typically set between 0.1 and 0.4. The results
are not very sensitive to it.

We shall now discuss a number of experiments with learning in policy
space. Table 3 presents results from policy-space learning for parameterized
Prisoner’s Dilemma. In this experiment and in the subsequent experiments
reported below, each of the agents/players used a policy space consisting of 8
policies, coded 000, 001, 010, ..., 111. The policies are to be interpreted
as follows. Left-most bit indicates what the agent is to play on the first round
of play for which the policy applies. In the case of Prisoner’s Dilemma, we
coded Cooperate with a 1 and Defect with a 0. The second (middle) bit a
policy tells the player what to do if on the previous round of play the counter-
player played 0 (or Defect in the case of Prisoner’s Dilemma). Finally, the
right-most bit of a policy tells the player what to do if on the previous round
the counter-player played 1. Thus, in Prisoner’s Dilemma as we coded it, the
policy 101—decimal 5, also known as Tit for Tat—directs its holder to
cooperate on the first round of play and afterwards to mimic the counter-
player’s play from the previous round.

Table 3 may be compared to Table 1, although the correspondence is not
exact. In Table 3 the average payoff reported is the average over all 800,000
rounds of play, while in Table 1 the average was for the final 100 rounds
of a 10,000 round run. Nevertheless, the pattern is clear: policy learners in
Prisoner’s Dilemma consistently and reliably extract values close to those
realized by mutual cooperation. Until δ is very large and the penalty for
mutual defection, P, approximates the reward for mutual cooperation, R,
the players learn to rely on the Tit for Tat strategy, number 5. Here this
means players play Cooperate the first time they play the strategy, and after
that they play as their counter-player played on the previous round. Once δ is
large enough, the players switch to strategy 0, which is to play Defect on every
round, no matter what. We note that with δ low the frequency of strategy
5 is a bit lower. This is because the frequency of strategy 7 (Cooperate no
4 Or more generally, but we do not consider it here, to a probability distribution

on a set of actions. See [SB98].
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matter what) is comparatively high. In the presence of 5, 7 is a good strategy.
The outcome (C, C) of mutual cooperation may be said to be Pareto-ideal
in the game because (a) it is a Pareto-optimal outcome and (b) the sum of
the payoffs is larger than the sum of the payoffs for any other Pareto-optimal
outcome. In the case of repeated play of Prisoner’s Dilemma, we see that it
is generally accurate to predict agents will obtain payoffs on average that
are close to the Pareto-ideal outcome for the one-shot game. We will call a
hypothesis to this effect a Pareto-ideal hypothesis.

Table 3. Summary of results for policy-space learning in Prisoner’s Dilemma. Av-
erage payoff over 800,000 rounds of play. Modal strategy=most frequently-played
strategy; 5 = Tit for Tat, 0 = All Defect.

Average Modal Est. Row’s
δ Payoff Strategy Freq. Value % CC

0.05 2.7224 5 0.5319 2.885 0.907
0.5 2.7577 5 0.7571 2.901 0.919
1.0 2.8108 5 0.8731 2.926 0.937
1.25 2.8139 5 0.8623 2.933 0.938
1.5 2.8083 5 0.8381 2.932 0.936
1.75 2.7950 5 0.8011 2.935 0.932
2.0 2.7314 5 0.6604 2.918 0.910
2.5 2.5324 0 0.8164 2.613 0.844
2.95 2.9524 0 0.8643 3.056 0.984

Table 4. Summary of results for policy-space learning in Stag Hunt. Average payoff
over 800,000 rounds of play. Modal strategy=most frequently-played strategy; 5 =
Tit for Tat.

Average Modal Est. Row’s
δ Payoff Strategy Freq. Value % CC

0 4.402 5 0.4358 4.721 0.8804
0.05 4.4387 5 0.5104 4.705 0.8877
0.5 4.4747 5 0.6312 4.789 0.8949
1.0 4.5805 5 0.8221 4.854 0.9161
1.25 4.5544 5 0.7467 4.812 0.9109
1.5 4.6057 5 0.8757 4.864 0.9211
2.0 4.6263 5 0.8204 4.869 0.9253
2.5 4.6531 5 0.8822 4.884 0.9306
2.95 4.6733 5 0.8832 4.892 0.9347
3.0 4.7334 5 0.9040 4.901 0.9467



472 Steven O. Kimbrough, Ming Lu, and Ann Kuo

Table 4 presents results from policy-space learning for parameterized Stag
Hunt. It may be compared to Table 2. Unlike in the state-space learning case,
Table 2, we note a steady improvement in average payoff as δ increases. Con-
commitantly, there is a nearly monotonic increase in the frequency of using
strategy 5, which is Tit for Tat and which is in any case the modal strat-
egy used throughout. We note that Stag Hunt is characterized by a strong
Pareto-ideal outcome (both hunt stag) and that the Pareto-ideal hypothesis
is amply confirmed in these experiments.

Table 7 presents a parametric form of the game called Chicken. This im-
portant game has been used to model nuclear war and was made famous in
the movie “Rebel without a Cause.” The interplay between Nash and Pareto
outcomes in the single-shot game presents a new pattern. Three of the four

CL (Swerve) CR (Straight)

RU (Swerve) (2+δ, 2+δ)* (1,3)*#

RD (Straight) (3,1)*# (0, 0)

Fig. 7. Parametric Chicken

outcomes are Pareto-efficient, and two of these are Nash equilibria. (There is
a third Nash equilibrium obtained by mixing the strategies probabilistically.
When δ = 0, playing each strategy with probability=0.5 is that Nash equi-
librium.) The results from our experiments with learning in policy space for
parameterized Chicken may be summarized as follows.

1. δ = 0. One player is dominant, gets an average payoff in the neighborhood
of 2.6, and has a modal strategy of 0 (=always go straight). One player is
submissive, gets an average payoff in the neighborhood of 1.1, and has a
modal strategy of 6 (=straight the first time, after that do the opposite of
what the other player did last time). Which player is dominant is entirely
random.

2. δ = 0.3. Same general result as δ = 0.
3. δ = 0.6. Chaotic-looking at first, after which both players adopt Tit

for Tat (strategy 5= swerve the first time, and after that do what the
counter-player did the time before). Each player gets an average payoff
in the 2.18–2.24 range.

4. δ = 0.8. Multiple reversals of dominance towards the beginning. Eventu-
ally both settle down to strategy 5, Tit for Tat, each gets an average
payoff in the 2.3–2.8 range.

5. δ = 0.95. Both players typically do well, averaging payoffs of 2.56–2.58.
Most-used strategies are 3 (= straight the first time, swerve always after
that) and 7 (always swerve).

Our last example is Game #47, as identified in [RGG76]. It is a member
of a small family of games that, like the Prisoner’s Dilemma, have Nash
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CL CR

RU (2, 3)# (4, 1)*

RD (1, 2) (3, 4)*

Fig. 8. Game #47

equilibria disjoint from Pareto-optimal outcomes. The game is of interest as
well because unlike the others described here, Game #47 is asymmetric. Will
the Nash equilibrium prevail when the game is repeated, or will one of the
Pareto-optimal outcomes, and if so, which? In a typical run (typical of all we
have observed), Column has an average payoff of about 3.8, Row gets about
2.9. Both players fix on strategy 1 (=play RD or CR at first, afterwards
play what the counter-player played last round). In short the Pareto-ideal
hypothesis is confirmed again.

6 Discussion

Both varieties of reinforcement learning—state-space learning and policy-
space learning—performed impressively in a number of ways. First, they
reached a limited range of outcomes for the repeated games. For a given
value of δ, reinforcement learning is able to support predictions much more
specific than are offered by classical game theory and Nash equilibria. Sec-
ond, the learning agents were remarkably effective at extracting wealth from
the games. The Pareto-ideal hypothesis held strongly, except in the case of
Chicken, where it held weakly (δ ≥ 0.6). Third, the reinforcement learn-
ing experiments afford insight into the games explored. Game #47 is a good
example. It is especially problematic because of its asymmetry, yet the policy-
space learning experiments produce clear and consistent results: the players
can find Pareto-optimal outcomes that are superior to the Nash equilibrium
and the Column player appears to be in the stronger position, because the
average payoff is nearer the (RD, CR) outcome than the (RU , CR) outcome.
Note the subtlety of the issue. Column plays CR in either case and Row then
prefers RU but is unable to achieve it. What is Column doing to stop Row?
Column, in these experiments, is learning which policies pay off best for its
purposes and this defeats Row. Fourth, the two learning regimes demonstrate
that cognitively limited agents may employ intuitively sensible learning pro-
cedures to good effect.5 This is especially pertinent in light of the fact that
much of the reasoning postulated by classical game theory is computationally
and cognitively beyond the ken of finite agents.

A few comments on learning in policy space. In the examples given, state-
space results are similar to the policy-space results. The latter, however, have
a several of interesting distinguishing properties, including the following. The
5 ‘Good’ in the sense of effectively extracting value for the player.
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number of states in many cases is explosive. The present experiments used a
memory of one round of play. Why stop there? A consequence of employing
more memory is that the number of states to consider goes up at least at the
rate of 2h where h is the length in rounds of the history under consideration.
State-space expansion is a known defeater of learning. Policies, however, of-
fer a way out, which is perhaps not apparent in the examples given here.
Policies can act like categories, and may serve to classify an indefinitely large
number of individual objects (states in our case). Thus, policies, in virtue of
recognizing clusters of states (and failing to discern differences among indi-
vidual states within a cluster), and learning in policy space may circumvent
the “curse of dimensionality” in state space. Moreover, policy space will gen-
erally turn out to be (at least pragmatically) much smaller than state space,
thereby affording more rapid learning.

Very much remains to be done to explore these ideas and the concept
of learning in policy space. What is here is barely a beginning. We think it
plausible, however, that is a beginning and an auspicious one at that.
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Abstract. We examine learning by artificial agents in repeated play of Cournot
duopoly games. Our learning model is simple and cognitively realistic. The model
departs from standard reinforcement learning models, as applied to agents in games,
in that it credits the agent with a form of conceptual ascent, whereby the agent
is able to learn from a consideration set of strategies spanning more than one
period of play. The resulting behavior is markedly different from behavior predicted
by classical economics for the single-shot (unrepeated) Cournot duopoly game. In
repeated play under our learning regime, agents are able to arrive at a tacit form
of collusion and set production levels near to those for a monopolist. We note
that Cournot duopoly games are reasonable approximations for many real-world
arrangements, including hourly spot markets for electricity.

1 Introduction

Strategic behavior by rationally limited agents is interesting for a number
of reasons. We draw the reader’s attention to two in particular. First, real
agents are rationally limited. The rationally ideal agents of economics and
classical game theory are abstractions, idealizations created for the legitimate
purpose of tractable modeling. Without questioning the legitimacy of this,
there remains the question of how systems of non-ideal agents will behave.
Even if we think that humans in standard market conditions do indeed ap-
proximate the rational ideal, no one maintains that birds, bees, monkeys up
in trees, and artificial agents do so. And they are interesting, too. Second, in
many contexts formal game theory makes predictions that are in various ways
unsatisfactory, or unsatisfying, even for rationally ideal agents. ([Col95] and
[Kre90] are excellent and accessible reviews of this broadly-accepted asser-
tion.) A case in point occurs when, as is generally the case in repeated games,
the number of equilibria in the super-game (the game consisting of repeti-
tions of a sub-game) is large or even infinite. Predicting that the outcome of
the super-game will occur at some equilibrium is unsatisfying because it is so
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unspecific. Further, classical game theory has little to say about the process
of playing and finding good strategies, or how to implement effective agents
in strategic contexts, a point developed in [DKL96].

The study of strategic behavior by artificial agents offers a means of ad-
dressing many of these and other issues. Methodologically, we may call this a
form of algorithmic game theory, complementing classical, or a priori, game
theory, and behavioral game theory (aka: experimental economics) [KL04].
In what follows we present results from this perspective. We examine play
and learning by artificial agents in the context of a repeated Cournot duopoly
game [Cou97]. In §2 we describe the particular version of the model used in
our study. §3 discusses briefly the use and appropriateness of the Cournot
model in modern electricity markets, in which repetition of play occurs on
an hourly basis, which means 8760 plays per year. §§4–5 discuss our learn-
ing model for agents in repeated Cournot games. The model is simple and
cognitively realistic, yet it departs in an important way from the literature
on learning by artificial agents in games. We present our results in §6 and
conclude with a discussion in §7.

2 The Duopoly Game: Holt’s Cournot Model

The Cournot duopoly model is a staple of classical economics and its text-
books (see, e.g., [Var03], but any standard microeconomics text will do).
Because it has been studied both in the laboratory with human subjects
(by Holt [Hol85]), and with simple reinforcement learning agents (by Kim-
brough and Lu [KL03]), and because it is unproblematically representative
of Cournot duopoly models generally, we report on agent learning behavior
in the context of a very simple Cournot model, as follows.

There is a duopoly in which the two competing firms are the players
and produce a homogeneous product. They individually decide only their
individual levels of production, x1 and x2. Variable costs are 0 and demand
is linear. The total price paid for the joint production, P , is a linear function
of the total output:

P = A−B(x1 + x2) (1)

(It is assumed that all variables are greater than 0.) The profit for firm i,
π(xi, x−i), is a function of both its production, xi, and the production of
the other firm, x−i. (We use conventional notation: –i denotes the player or
players in the game other than i. This amounts to

π(x1, x2) = x1[A−B(x1 + x2)] (2)

for firm 1 in the case, as we have here, of two players. Similarly, the profit
for firm 2 is

π(x2, x1) = x2[A−B(x1 + x2)] (3)
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The Cournot (and Nash) equilibrium is at x1 + x2 = 2A/3B. The collusive
(“monopolist”) outcome is x1 + x2 = A/2B. And the (fully) competitive
outcome is x1 + x2 = A/B. Assuming identical circumstances (so that x1 =
x2), and setting A = 12 and B = 1/2 (see [Hol85,KL03]), at the Cournot
equilibrium each firm produces 8 and realizes a profit of 32. At the collusive
outcome, each firm produces 6 and obtains a profit of 36. Finally, at the
competitive outcome, each firm produces 12 for a profit of 0.

These are the results predicted by the Cournot model for a one-shot game.
What if the game is repeated? In a laboratory experiment, Holt [Hol85] found
that human subjects tend to reach production outcomes near the Cournot
result, but biased in the direction of the collusive outcome. Kimbrough and
Lu [KL03] obtained very similar results for artificial agents in a simple rein-
forcement learning regime.

3 Background and Application Context: Electricity
Markets

Nash/Cournot games have been central to oligopoly theory for decades. The
Cournot model assumes that each player i sets its output presuming that
the production of the other player, –i, is fixed. Equilibrium is defined as any
outcome in which player i can do no better given the position of player –i,
for each player i.1

In games with repeated play no learning about the other player is included
in the Cournot model. Yet in real life players expend a great deal of effort to
understand the other player(s) with whom they compete. In this paper we
use agent-based modeling techniques to explore the potential of players to
learn about each other and engage each other in a marketplace, occasionally
taking the risk of a suboptimal return in any one period. Using simple learning
models, we examine the potential of using simple strategies to improve the
returns of the players.

We do not claim that a real market will exhibit the behaviors of these play-
ers. However, if these simple strategies of the agents outperform the player
“optimizations” in the classic Cournot model, then the rationality of the
Cournot model needs to be revisited. One would then expect rational busi-
ness decisions to outperform the agents and the resulting market would then
provide higher prices and profits than those predicted by the Cournot model.

Agent-based models of the ilk we describe here will be useful for exploring
the role of a futures market in affecting the equilibrium in the spot market for
electricity. Allaz and Vila [AV93] show via analytic models that the existence
1 This assumption is often softened by including notions of conjectural variation,

in which player i assumes a rate of response for player –i. Player i conjectures
a function that gives the decision of player –i as a function of player i’s actions.
Here the equilibrium is the point at which neither player can improve its position
given the other player’s assumed response. See [Fri77].
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of a futures market leads to higher production and lower prices in the spot
market. This is because the players see the influence of their futures decisions
on the other player’s spot decisions, a kind of conjectural variation.

The literature is mostly confirming of the Allaz and Vila result. Gans,
Price, and Woods [GPW98] reproduce the Allaz and Vila results. Le Coq
and Orzen [LO02] test the Allaz Vila result in laboratory experiments with
students and measure the extent to which futures markets affect spot markets.
They find that a futures market leads to increased production, but not to
the extent that theory would predict. Adding a futures market is not as
effective as increasing the number of players because the students behaved
more competitively than theory would predict.

This result and a subsequent stream of literature have had policy impacts.
The original design for the electricity market in California restricted futures
markets to 20% of expected demand, with the goal of deepening the spot
markets. During and after the California electricity crisis, the lack of a futures
market was thought to contribute to the market breakdown. Futures markets
were added soon after the market stabilized with the belief that they would
lead to lower spot prices.

The Allaz Vila model is interesting because, as noted by Harvey and
Hogan [HH00], both players are worse off with positive futures positions be-
cause they have engaged in a form of the classic Prisoner’s Dilemma game,
which leads to cooperation in experiments. Other aspects of electricity mar-
kets are ripe for study using agent-based modeling. Adjusting the amount
of available capacity through maintenance scheduling can be used to raise
prices and there is the potential for tacit collusion in setting the schedules.
In practice the players bid a set of quantities and prices for every hour while
the Cournot model assumes the decision is to set quantities. This leads to
complicated games that cannot be analyzed analytically when the fixed costs
of starting and shutting down a plant are factored into the decision making.

Bunn and Oliveira [BO03] have used agent-based modeling to explore
aspects of electricity restructuring in the United Kingdom. Our work will
differ from theirs because we are developing models where agents work in the
strategy space (or policy space), not just the state space for a given decision
[KLK04].

In sum, Cournot models (of games) apply quite broadly in oligopoly the-
ory. This itself makes them an interesting target for agent-based modeling.
The effect is magnified when Cournot games are repeated, as they are hourly
in various electricity markets, as well as other markets. With this as amply-
motivating context, we turn now to how we modeled agents in Cournot games.
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4 Framework for Agent Learning

As we model them, learning players in repeated games have three character-
izing attributes:

1. Each player, i, has a consideration set of alternative strategies, iA, from
which it chooses in making particular plays. Suppressing the pre-subscript,
the consideration set A circumscribes the objects of a player’s learning
activities; a player learns to play some element of its consideration set.
In the present experiments, A is fixed and given exogenously for each
player.

2. Each player, i, has for each element of its consideration set, j ∈ iA, at
each period of the game, t, an estimate of attractiveness of the element
j. We represent this by iA

j
t . After the first period (t = 0), each agent

has an attractiveness estimation update rule by which it may revise its
iA

j
t s. We use a linear update rule, (BM), after [BM55]. It is standardly

employed in the psychology literature and in behavioral studies of games
in particular.2 Related examples of reinforcement learning in games are
many.3 The rule has two parts: (a) If strategy j is not played by i at
period t, then

iA
j
t+1 = iA

j
t (4)

(b) If strategy j is played by i at period t, then

iA
j
t+1 = iA

j
t + α(rt+1 − iA

j
t + γmax

k
iA

k
t ) (5)

Expression (5) has the form:
NewEstimate = CurrentEstimate +
StepSize(reward - CurrentEstimate +
DiscountedEstimatedBestPath)
We note that the mean of a series of n observations, Rn =

∑n
t=1 rt/(n),

can be rewritten equivalently as:

Rn = Rn−1 +
1
n

[rn −Rn−1] (6)

Instead of the ever-decreasing StepSize of 1/n, expression (5) sets α to
be a constant, typically in the neighborhood of 0.25. This has the effect
of emphasizing more recent reward values, rt+1s, and allows the learner
to be responsive to changes in the environment. The DiscountedEstimat-
edBestPath term represents the value of taking action j (i.e., playing
strategy j ∈ A), and thereafter playing the strategy with the best esti-
mated return. The term represents the “shadow of the future” [Axe84].
Below, we report experiments with γ = 0.95 and γ = 0.

2 E.g., [FKP+02], [HW98], [KL04], [MF02], [RC65], [RSB79], and [SC95].
3 E.g., [BMS00], [CB98], [ER98], [MS04], and [RE95], with reviews in

[Cam03,KR95].
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3. Each player, i, has an exploitation-and-exploration policy which it invokes
during play to choose which strategy will govern its behavior at a given
time (or round of play).
Intuitively (and standardly in the machine learning literature4) a player’s
choice of strategy at a particular time should depend on a tradeoff be-
tween exploitation and exploration. At an extreme of exploitation, the
player will choose the strategy with the highest estimated attractive-
ness. At an extreme of exploration, the player will choose the least-tried
strategy or perhaps choose randomly among the elements of iA. Ex-
treme policies are in general ill-advised. Instead, it has proven effective to
use an exploitation-and-exploration policy based on randomization with
bias towards choices estimated to be more attractive. Two methods (see
[KLM96,SB98]) are in common use. First, under the ε–greedy policy, the
option—in our case the element of iA—with the highest attractiveness is
picked with probability (1 − ε), and with probability ε one of the other
elements is chosen randomly and uniformly. (We actually chose from the
entire consideration set randomly and uniformly when the ε event oc-
curred.) Second, under the softmax policy the probability that an agent
choses element j from the consideration set at time t is

Probt(j) =
eA

j
t/τ

∑n
j=1 e

Ajt/τ
(7)

where Probt(j) is the probability of choosing action j at time (iteration)
t. The total number of possible actions is n = | iAj |, the size of the
consideration set. τ > 0 is a “temperature” that goes to 0 as t gets large.
We use:

τ = Tυt (8)

where υ is the annealing factor, a constant set to nearly 1 (0.9999 in these
experiments), T is a scaling factor which we set to 5, and t is the time
or iteration number, the present round of play. (In our experiments, once
τ < 0.0001 we switched to ε–greedy strategy selection, with ε = 0.1, for
the remainder of the run, as it is throughout the ε–greedy policy. Thus,
exploration never stopped.)
Finally, when an agent chooses a strategy to play from the consideration
set, the agent also chooses a commitment length, c, so that during the
next c periods of play, t + 1, . . . t + c, the agent commits itself to using
the strategy it selected at t. Then, at t + c, the agent again invokes
its exploitation-and-exploration policy and chooses a new value for c.
Commitment lengths were discrete uniform [a, b] variants with a = 10
and b = 20. We note that the agents’ commitment periods were not
synchronized with each other.

4 On reinforcement learning see, e.g., [KLM96] and [SB98].
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The principal innovation in the work we report here lies in the constitution
of the agents’ consideration set, A. Heretofore, learning agents in repeated
games and models of learning subjects in repeated games have (implicitly)
employed consideration sets consisting of only strategies for the atomic (one-
shot) sub-game of the repeated game (or super-game).5 Previous studies
([SC95] is representative) frame the learning context differently. Strategies
in the consideration set have been atomic in the sense that they are not ex-
plicitly conditioned on prior play. In the Iterated Prisoner’s Dilemma (IPD)
case, for example, the agents are able to recognize certain states (aka: “sen-
sations”) which record recent history of play. They then learn to associate
recognized states with atomic strategies. A = {Cooperate; Defect} in the case
of IPD. Thus, recognized states are molecular in the sense of explicitly recog-
nizing more than one period of play, while elements of the consideration set of
strategies are atomic in the sense of explicitly representing only one period of
play. Our framework inverts this. More precisely, our framework countenances
molecular strategies in the consideration set and the experiments we report
here are about agents recognizing atomic states but having molecular strate-
gies under consideration. Continuing the IPD example, a molecular strategy
learning framework would allow the following consideration set: A = {If the
counter-player cooperated last round, defect this round; If the counter-player
cooperated last round, cooperate this round; If the counter-player defected last
round, defect this round; If the counter-player defected last round, cooperate
this round}. Our framework would also allow only two states to be recognized,
e.g., S = {The counter-player cooperated last round; The counter-player de-
fected last round}. Via the attractiveness values, the iAj

t s, agents accumulate
experience and implicitly remember what has happened. They are not in our
framework explicitly learning to associate a value with a (state, action) pair.
Instead, they learn to associate a value with a strategy and the strategy de-
termines the action, perhaps conditionally. Thus, the agents utilize a kind
of conceptual ascent in using molecular strategies (conditioned on previous
play) instead of atomic strategies, which are statable in terms only of the
atomic sub-game.

We turn now to describing the consideration sets our agents used while
playing the Cournot game.

5 Molecular Strategies in the Cournot Game

It is convenient here to switch notation just slightly. The strategies are pre-
sented from the perspective of one player, x, whose counter-player is y. Thus,
e.g., xt is the production by x at period (play or round) t and yt−1 is produc-
tion by x’s counter-player at period t− 1. We explored play by agents using
the following five strategies in the Cournot game, which unlike the usual 2×2
5 See references cited above. [KL03] might be considered an exception to this state-

ment. If so, it is a borderline one.
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Table 2. Profit realized by selection policy over the last 1000 of 10,000 plays,
averaged over 100 runs; γ = 0.95; strategies 0–4 available

Average Profit

Softmax strategy selection (35.154, 35.109)

ε−greedy strategy selection (35.495, 35.518)

games, affords agents one-period choices from a continuum. More carefully,
the production levels chosen by our agents were represented by floating point
numbers.

0. G-TfT. If yt−1 > yt−2, then xt = xt−1 + δ; else xt = xt−1 − δ
Comments. Mnemonic: Generous Tit for Tat. Here and throughout
these rules, δ is fixed at 0.2. Under this strategy the agent incrementally
reduces its production so long as its counter-player has not just increased
its production. Note: Here and throughout these rules, production is con-
strained to be in [6, 12].

1. BestResponse. xt = 12− 0.5yt−1.
BestResponse is the strategy hypothesized by Cournot to lead to the
Cournot/Nash equilibrium, which occurs at xt = yt−1 = 8. In addition,
π(x, y) is maximized (for x) at x = 12−0.5y. There is only one equilibrium
and it is stable.

2. S-TfT.
(a) If xt−1 < yt−1 and yt−2 ≤ yt−1, then xt = xt−1 + δ.
(b) If xt−1 > yt−1 or xt−2 = xt−1 = yt−1 = yt−2, then xt = xt−1 − δ.
(c) Else, xt = xt−1.
Mnemonic: Suspicious Tit for Tat. A less optimistic and trusting
version of G-TfT.

3. CopyCat. xt = yt−1.
Needs no explanation.

4. M-TfT

(a) If xt−1 = xt−2 = yt−1 = yt−2, then xt = xt−1 − δ.
(b) If xt−1 = xt−2 �= yt−1 = yt−2, then xt = xt−1 + 0.5 · (yt−1 − xt−1)
(c) Else:

Update the step size st:
st = st−1 + β · [xt−1 − xt−2]/[yt−1 − yt−2]
Then update xt:
xt = xt−1 + st · [yt−1 − yt−2]
where β is a positive parameter less than 1(we used 0.9).

Mnemonic: Murphy’s Tit for Tat. Another cautious form of Tit for
Tat.
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Table 3. Profit realized by selection policy over the last 1000 of 100,000 plays,
averaged over 100 runs; γ = 0.95, strategies 0–3 available.

Average Profit

Softmax action selection (35.348, 35.323)

ε−greedy action selection (35.487, 35.507)

Table 4. Profit realized by selection policy over the last 1000 of 100,000 plays,
averaged over 100 runs; γ = 0; strategies 0–4 available

Average Profit

Softmax strategy selection (35.243, 35.255)

ε−greedy strategy selection (35.172, 35.20)

Table 5. Profit realized by selection policy over the last 1000 of 100,000 plays,
averaged over 100 runs; γ = 0; strategies 0–3 available

Average Profit

Softmax strategy selection (34.430, 34.392)

ε−greedy strategy selection (34.689, 34.705)

6 Summary of Results

It is instructive to see how agents will fare pairwise without learning, but
sticking to one of the five strategies we consider. Table 1 shows the re-
sults reached at the end of 10,000 rounds of play. Specifically. x0, y0 ∼
uniform(6, 12); there were 100 runs of 10,000 rounds of play. The results
in Table 1 are the average profits from the 100 last rounds of play, averaged
across the 100 runs. The table should be interpreted by anchoring on the out-
come (32, 32), predicted by the Cournot model for single-shot cases, and by
the Cournot adjustment process, BestResponse, for repeated games. Of the
25 outcome pairs, 15 are at the monopoly (tacit collusion) level of (36, 36),
5 are at the predicted level of (32, 32), 2 are quite nearby, 2 are fairly close,
and one is clearly inferior (CopyCat versus CopyCat).

What happens when the consideration set is expanded to all of the five
strategies described in §5 and learning is turned on? Remarkably, as summa-
rized in tables 2–5, the agents achieve profits on average that are quite close
to the monopoly (collusive) position. They robustly learn to play policies
that give them more than 34, often more than 35, points, regardless of which
exploitation-and-exploration policy they employ, whether γ = 0.95 or 0, and
whether the run is 10,000 or 100,000 rounds of play. The results in the tables
are the average profits from the 100 last rounds of play, averaged across 100
runs of 10,000 or 100,000 rounds.
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Plots of agent profitability are also revealing. Figure 1 plots, for a typical
run of 10,000 rounds of play, the profits obtained by the two players when
the “shadow of the future” is large: γ = 0.95. Figure 2 plots, for a typical
run of 100,000 rounds of play, the profits obtain by the two players when
the “shadow of the future” is non-existent: γ = 0. Notice that play is more
volatile when γ = 0. Both plots, however, exhibit tacit collusion and do so
in a way it would be difficult to detect merely from the plots themselves. In
both cases, the profits of the agents closely track one another, as we might
expect in such a symmetric situation. Further, the results are not materially
different when other sets of strategies are available.

7 Discussion

As mentioned above, simple reinforcement learning applied to atomic strate-
gies in the repeated Holt Cournot game results in agents learning to produce
slightly less than the Cournot/Nash equilibrium amounts. This results in
slightly improved profits for the agents. The consequences are dramatic from
making a conceptual ascent by learning molecular strategies, strategies that
are themselves explicitly conditioned on outcomes of previous games. Our
agents learned to produce, on average, amounts very near (an equal split of)
the monopolist’s quantities, effectively maximizing their profits jointly and
individually. We emphasize that the fundamental learning regime was iden-
tical in the two cases. What differs is the objects of learning, what is in the
consideration set A, rather than the process of learning itself. In both cases
it was simple, classical reinforcement learning. One might think of our agents
as being wiser—in considering more options—rather than being smarter. Our
agents engage in policy space learning rather than the conventional state space
learning of reinforcement learning [KLK04].

Of course, much remains to be done by way of exploring conceptual ascent
to molecular strategies. To that end we close with two comments. First, our
findings are robust. In unpublished work we have examined a broad range of
2 × 2 games and obtained results in conformance with those reported here.
As stated in the title of [KL04], in simple reinforcement learning in 2 × 2
games, “Pareto beats Nash.” That is, when Pareto-optimal outcomes con-
flict with Nash equilibrium outcomes (e.g., as in Prisoner’s Dilemma), these
simple learning agents will under many conditions arrive at outcomes much
closer to the Pareto outcomes than to the Nash outcomes. When the Pareto
outcomes coincide with some of the Nash outcomes (e.g., as in Stag Hunt),
the players tend to find those Nash outcomes that are also Pareto. These
effects are magnified greatly with conceptual ascent to molecular strategies
in the consideration set. In the Cournot game, the Cournot outcome is the
Nash equilibrium, and the collusive outcome—each agent produces 6—is the
Pareto-optimal outcome.
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Second, the Cournot game is—as is Prisoner’s Dilemma—an example of a
social dilemma [Daw80], “in which decisions that make sense to each individ-
ual can aggregate into outcomes in which everyone suffers”.6 The literature
in economics and game theory has tended to assume, or postulate, that play-
ers will reach the Cournot/Nash equilibrium because they will employ the
BestResponse strategy. Our agents have ample access to that strategy and
there are times when they approach Cournot outcomes. Yet on balance they
overwhelmingly are able to rise above their social dilemmas and find ways to
tacitly collude, for mutual profit. If our simple agents can do this in a repeated
Cournot game, is it not plausible that firms playing such a game hourly for
large amounts of money, as in the spot market for electricity, will find simi-
lar ways to collude tacitly at the expense of their customers? The electricity
market is hardly unique in this regard. It is time to use computational agent
technology to revisit some fundamental beliefs.
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Abstract. An important dimension of system and mechanism design, working
memory, has been paid insufficient attention by scholars. Existing literature re-
ports mixed findings on the effects of the amount of working memory on system
efficiency. In this note, we investigate this relationship with a computational ap-
proach. We design an intelligent agent system in which three agents, one buyer and
two bidders, play an Exchange Game repeatedly. The buyer agent decides whether
to list a request for proposal, while the bidders bid for it independently. Only one
bidder can win on a given round of play. Once the winning bidder is chosen by the
buyer, a transaction takes place. The two parties of the trade can either cooperate
or defect at this point. The decisions are made simultaneously and the payoffs essen-
tially follow the Prisoner’s Dilemma game. We find that the relationship between
working memory and the efficiency of the system has an inverted U-shape, i.e.,
there seems to be an optimal memory size. When we mixed agents with different
memory sizes together, agents with the same amount of working memory generate
the most efficient outcome in terms of total payoffs.

1 Introduction

One of the enduring challenges in electronic commerce is modeling and imple-
menting formal conversations among agents [KL97]. In facing this challenge,
researchers need to deal with the design of intelligent agents who can not
only communicate with each other effectively, but also respond promptly,
efficiently, and intelligently in dynamic environments. Previous research has
shown the potential of intelligent agents with learning abilities for achieving
cooperation or a high level of trust in trading environments without legal
enforcement.1 The focus of these studies is on applying Q-learning (a form of
reinforcement learning2) to the design of agents. Learning, however, is only
one aspect of intelligence. Another important dimension is the working mem-
ory of an agent, i.e., how much historical information is incorporated by an
agent in its decision-making processes.

This design question is not trivial. Sandholm and Crites3 conducted a
study in which two artificial agents play the Iterated Prisoner’s Dilemma
1 [KWZ02,SC95,ZKW02]
2 [KLM96,SB98,WD92]
3 [SC95]
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(IPD) game. The two agents could be either Q-learners or Tit-for-Tat
strategy players. They showed that agents with larger memories seemed to
be able to gain larger total payoffs when playing against agents with smaller
memories. However, the focus of their paper is not on the influence of work-
ing memory, but on applying Q-learning in multi-agent system design. One
major difficulty of expanding memory size in the context of reinforcement
learning is the resulting explosive state space [KLK04]. Due to the inherent
computational complexity of large-scale investigation in this topic, we first
need to find evidence in and results for a relatively small system. That is the
purpose of this note.

In our computational approach, learning agents with different memory
sizes play a multi-stage trading game repeatedly. The last stage of the game
is essentially a simultaneous Prisoner’s Dilemma game. Our results show that
the impact of memory size on agent performance has an inverted U-shape.
There seems to be an optimal memory size. Specifically, it appears that for
a two-by-two game, conditioning the bidder’s decision on information from
the last two periods is optimal compared to memory sizes of one or three
periods. Moreover, when agents with different memory sizes trade with each
other, having more memory does not pay off. These findings contravene the
results reported in Sandholm and Crites’s paper [SC95].

Another contribution of this note is the provision of a model in which
agents have the option of choosing their trading partners. In social exchanges
involving trust, participants not only decide how to bargain with one another;
they also choose with whom to bargain. Most studies focus on the bargaining
or exchange process itself, with participants either fixed or matched randomly
against one another.4 However, the situation in which a potential participant
in an exchange can choose a partner, or even whether to enter the exchange
at all, has rarely been investigated. It is important to understand, in this
more realistic context, whether intelligent agents can make the right choices
when facing different potential partners.

The rest of this note is organized as follows. §2 provides motivation for
and description of the Exchange Game we study throughout the note. §3
describes briefly the design of the agents. The experimental design and results
are discussed in §4, after which we conclude the note.

2 The Exchange Game

The model proposed here is motivated by the type of exchange existing in
online markets, in which a buyer initiates an auction by posting a Request
for Proposal (RFP). Listing an RFP is optional. The buyer incurs this cost
only if it decides to solicit proposals. This cost comes from preparing the
RFP and posting it in the right market. Bidders subsequently submit bids.
To consider the endogenous entry decision of bidders, we include bidding cost
4 E.g., [CB98], [HW98], [SC95], and [ZKW02].
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in our model, i.e., if a bidder decides to bid, it incurs a fixed bidding cost.
Upon receiving the bids, the buyer chooses one winning bidder and both
parties proceed to a transaction. In their empirical study, Sandholm and
Crites [SC95] conducted an empirical study of reinforcement learning (RL)
in the Iterated Prisoner’s Dilemma (IPD) game. Their multi-agent system
consisted of two agents, which could be either Q-learners or Tit-for-Tat
strategy players. They found that:

1. Agents were able to learn to cooperate,
2. Agents with larger memories seemed to be able to gain larger total payoffs

when playing against agents with smaller memories,
3. More cooperative results were observed when the memory size is 1 for

both agents,
4. Longer exploration is better at inducing cooperation, and
5. Agents using lookup tables outperformed agents using a recurrent neural

network.

The exchange regime we have modelled is a multi-stage game. There have
been arguments in the literature about the aptness of the mixed game model
as an abstraction of real-world games [BS00]. The existing two-stage game
models usually consist of strategic choices, such as a capacity decision, that
influence subsequent games and in particular the pricing strategy in the sec-
ond stage of the game [Sha89,Sut91]. The multi-stage trading game proposed
here is different from these previous game models. First, we forego the details
of the decisions in the early stage. Instead, the strategic choices in our model
concern game entry: to list an offer or not, to bid or not, and which partner
to select. Such simplification enables us to keep our focus on the emergence of
cooperative behavior rather than the pricing or capacity strategies. Second,
we study the model in the context of repeated games. Consequently, not only
do early stages influence subsequent games, the later stages also have impact
on the early stage decision-making through the repetitions.

In the basic setting there is a community of N sellers or service providers
and one buyer. Each seller can potentially fulfill the requirements of the buyer.
At the beginning of each period, t, the buyer decides whether to list an RFP
for bid. If the buyer lists an RFP, it incurs a fixed cost of Cs. After observing
the RFP, l (l ≤M) sellers send in their bids (one bid per bidder who bids).
Each bid incurs a fixed cost Cb. Both Cs and Cb are private information.
Upon acknowledgement of bidding information, the buyer chooses which bid
to accept or chooses nothing. If a bid is accepted, the two parties proceed to
the trading stage in order to arrange a transaction. In this stage, each party
can choose to defect or cooperate. Without loss of generality, the trading game
is essentially a Prisoner’s Dilemma game defined in Table 1. The payoffs are
unknown to the agents at the beginning of the game. They can only learn
the values of the payoffs through repeatedly playing the Exchange Game.

The net profits of both parties will be their payoffs from the trading stage
after subtracting the costs they incur. Obviously the cost is crucial to the
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Table 1. Payoffs of the trading game. S < P < B < T and 2B > T + S

Bidding Agent

C D

Seller Agent
C (B, B) (S, T)
D (T, S) (P, P)

net profits of the agents. To simplify, we set Cs=Cb=C. In the experiments
we discuss below, both buyer cost and bidder cost can take four values cor-
responding to the payoff structure: C = 0, C = S, C = P , and P < C < B.

Based on this model, the buyer agents have to decide:

1. Whether to announce an RFP or not.
2. Which trading partner to select.
3. Whether to defect or not if there is a trade.

Similarly, bidders decide:

1. While facing an RFP, whether to bid or not.
2. Whether to defect or not if there is a trade agreed upon.

Accordingly, three stages of the game are defined: the offering stage (only
for the buyer agents), the bidding stage, and the trading stage. The three
stages constitute a mixed game of both sequential and simultaneous games
as illustrated in Figure 1.

To simplify, we investigated a 3-agent Repeated Exchange Game. The
three agents include one buyer agent S and two bidder agents B1 and B2.
We start with a basic model, for which in each time period, t, the buyer agent
lists one RFP without incurring any expense. The order of play of the stage
game is as follows:

1. Facing the RFP, agents B1 and B2 individually decide whether to bid or
not. An agent that bids incurs a cost of Cb.

2. Agent S chooses one agent with which to trade. If S chooses a non-bidding
agent, the game is over. Agent S can also choose not to trade with any
of the other agents.

3. If agent S accepts a bid, a trade is arranged for the two parties. Both
parties independently decide whether to defect or not, and the payoffs of
the trade are determined by Table 1.

4. If a stopping condition is not met, go to step 1.

In the extended model, the buyer agent is obliged to pay a fixed cost when
listing an offer. Thus the stage game will be slightly changed to:

1. If the buyer decides to solicit a request, it incurs cost Cs, otherwise, the
game stops.
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Buyer 

Buyer 

Buyer 

Bidder  

Bidder 

 RFP         No RFP 

     Not bid Bid 

Select        Not select 

D   C 

     C     C DD

(Cs, 0) 

          (0, Cb)

(0, 0) 

        (B, B)              (S, T)  (T, S)            (P, P) 

Offering Stage 

Biding Stage 

Trading Stage 

Fig. 1. Extensive form of the stage game

2. Facing the RFP, agents B1 and B2 individually decide whether to bid or
not. An agent that bids incurs a cost of Cb.

3. Agent S chooses one agent with which to trade. If S chooses a non-bidding
agent, the game is over. Agent S can also choose not to trade with any
of the other agents.

4. If agent S accepts a bid, a trade is arranged for the two parties. Both
parties independently decide whether to defect or not, and the payoffs of
the trade are determined by Table 1.

5. If a stopping condition is not met, go to step 1.

In the next section we briefly discuss the design of our agents.

3 Learning Mechanism

We designed a system in which three Q-learning agents learn about their envi-
ronment, i.e., about the behavior of other agents and the payoffs of the game.
Q-learning is a category of reinforcement learning, which is a form of machine
learning. It is a mechanism in which actions that have led to favorable re-
sults are more likely to be chosen in the future. One of the most important
developments in reinforcement learning was the discovery (or invention) of
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Q-learning [WD92], in which the learned state-action-value function Q(s, a),
or Q-value, directly approximates the optimal state-action-value function. In
a stationary environment, the learned Q-value is guaranteed to converge to
the optimal as long as all state-action pairs continue to be updated [SB98].
However, when agents are learning simultaneously, the environment becomes
non-stationary and thus convergence is not guaranteed [SC95]. In this study,
we report statistical results of multiple runs of the same experiment in order
to overcome any concerns in this regard. The rest of this section describe the
learning algorithm in each of the three stages of our Exchange Game.

3.1 Trading Stage

When at the trading stage, agents have memory of the last move, which
leads to four states s ∈ {CC,CD,DC,DD}. For each state, two actions are
available a ∈ {C,D}. After being initialized to arbitrary numbers, Q-values
are estimated on the basis of the following algorithm:

1. From the current state s, select an action. This will cause an immediate
payoff r, and arrival at a next state s′.

2. Update Q(s, a) based on:

Qt+1(s, a) = Qt(s, a) + α[r + γmax
b
Qt(s′, b)−Qt(s, a)] (1)

3. Go to 1 until the last iteration of the repeated game.

3.2 Offering Stage and Bidding Stage

In each of these two stages, agents need to learn if proceeding to the trade
stage is profitable. For the buyer agent, it also needs to learn for each bidder
how profitable it is to trade. To model the decision making process, we let
agents learn the expected average payoff they get from trading. For example,
the buyer agent learns the expected average payoffs from trading with either
bidder agent separately. Agents decide to enter the exchange if and only
if the learned average payoff is larger than the cost they need to pay for
participation. If trading with both bidder agents is profitable, the one which
yields higher average payoff for the buyer is more likely be chosen.

If the buyer agent chooses to list an offer and one bidder agent chooses
to bid, yet the buyer agent doesn’t accept the bid, there will be no trade. In
this case, neither agent can gain anything from the exchange. Instead, they
incur costs and end up with negative rewards.

Since agents have only one state at these two stages, we can drop the state
variable in an action function Q(s, a) and use Q(a) instead. Let α denote the
learning rate and r the reward of taking an action, the Q-value at period t
for choosing action ai at these two stages is updated by:

Qt(ai) = Qt−1(ai) + α[r −Qt−1(ai)] (2)
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3.3 Exploration

At all stages, the selection of an action is based on the Boltzmann distribu-
tion, in which the probability of selecting action ai in state s is

p(ai) =
eQ(s,ai)/τ

∑
a e

Q(s,a)/τ
(3)

τ is a computational ‘temperature’ to control the degree of exploration.
Specifically, in the offering stage, τ is a function of the number of the itera-
tions played heretofore; in the bidding stage, τ is a function of the number of
iterations that have valid offers; while in the trading stage, τ is a function of
the number of trades completed between two agents. Although the starting
value of τ is the same for all stages, the annealing schedule is different. It
is smaller in the later stages, indicating shorter exploration. The rationale
for such a design is that later stage subgames should stop exploration first so
that the earlier stages can use the relatively stable Q-values of the later stages
to keep exploring and learning. When τi reaches 0.01, exploration stops and
instead the best action is selected for the remainder of the run. This method
is usually referred to as Softmax action selection [SB98].

In the following sections, we discuss details of the experimental design
and the results. Unless otherwise stated, the experiments were run with fixed
values of the parameters. The selection of the values is benchmarked with
those in [SC95]. Actual values can be found in the Appendix. Also, we ran
each experiment 100 times with 400,000 iterations in each run and recorded
the last 100 iterations of each run. The frequencies of different game plays—
in which the first strategy belongs to the seller agent and the second one
belongs to bidder agent—from these 10,000 iterations are reported.

4 Experiments on Working Memory

As mentioned earlier, the purpose of these experiments is to investigate the ef-
fects of memory size. We want to see whether having fixed working memory—
specifically the minimum memory—is efficient enough, as predicted by an
economic model [Del03], or whether storing the entire dynamic history in-
formation is better. Could the relationship between memory size and agent
performance take a different form than these two alternatives? To answer
this question, we design agents with a memory size of up to three, i.e., agents
can remember the trading outcome of up to the last three periods. The rea-
son we chose three levels of memory size is because the action space in the
trading stage is fairly small: cooperate or defect. The basic setting includes
three Q-learning agents, one buyer agent and two bidder agents, playing the
Exchange Game repeatedly. We compare the final game play outcome and
the total surplus achieved.
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We conducted three experiments. The purpose of the first is to serve
as a benchmark for subsequent experiments. Then, we looked at cases in
which agents have same memory size. Finally, we looked at cases in which
agents have different memory sizes. To evaluate the impact of memory size
on efficiency, we compare the final game play outcome and the total surplus
achieved by agents in each experiment.

4.1 Benchmark Setting

In the benchmark setting, agents have no memory, i.e., memory sizes of the
three agents are zero, and no costs were involved. The results of this experi-
ment are reported in Tables 2, 3, and 4 in conjunction with results from the
next two experiments.

4.2 Basic Setting: Identical Agents

In this set of experiments, we are going to investigate the following three
cases:

1. All three agents have memory size of 1 (case 1-1-1)
2. All three agents have memory size of 2 (case 2-2-2)
3. All three agents have memory size of 3 (case 3-3-3)

The total payoff of each agent under various different cost schemes is
reported in Tables 2, 3, and 4. All the tables have the same structure. Columns
2 to 5 correspond to the situation in which only bidder agents incur costs.
Columns 6 to 8 correspond to the situation in which both the buyer and the
bidder agents incur costs. Rows 3 to 5 indicate the total points of the three
agents respectively in various cost settings.

1. All three agents have memory size of 1 (case 1-1-1)

Table 2. Results of case 1-1-1

Bidding cost only Bidding and listing costs

C=0 C=S C=P P<C<B C=S C=P P<C<B

Buyer agent 3278 3382 3404 961 2308 1076 -1

Bidder 1 1694 1052 872 50 1068 656 1

Bidder 2 1564 1298 571 -53 1233 720 1
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2. All three agents have memory size of 2 (case 2-2-2)

Table 3. Results of case 2-2-2

Bidding cost only Bidding and listing costs

C=0 C=S C=P P<C<B C=S C=P P<C<B

Buyer agent 3696 3614 3681 1820 2507 1304 7

Bidder 1 1957 1181 830 183 1178 619 2

Bidder 2 1760 1436 772 121 1457 881 0

3. All three agents have memory size of 3 (case 3-3-3)

Table 4. Results of case 3-3-3

Bidding cost only Bidding and listing costs

C=0 C=S C=P P<C<B C=S C=P P<C<B

Buyer agent 3231 3142 2908 435 1989 17 -8

Bidder 1 1578 995 449 71 1046 26 1

Bidder 2 1563 1064 520 23 978 27 1

By comparing the data in the three tables as well as those in the case of
memory size of zero, we can see that agents achieved the most total surplus
in case 2-2-2, in which every agent has memory for the previous 2 rounds
of play. The finding is consistent across all cost levels. This phenomenon
can be observed from Figure 2 directly, which demonstrates that all three
agents obtained their highest total points when they have memory size of 2.
The figure suggests that the relationship between working memory and agent
performance has an inverted U-shape.

To explain the existence of such phenomena, we looked at the game plays
in the last 100 iterations of 100 runs of each case. The percentages of the
four possible game plays, CC, CD, DC, and DD, in the 10,000 iterations in
different memory size settings are shown in Figure 3. When memory size is 0,
the agents converged to the Nash equilibrium (NE) in most runs. When the
memory size is increased to 1, agents start to deviate from the NE outcome
and achieve more Parato frontier game play, which increases the total points
that each agent earns. When the memory size is 2, the deviation becomes
more significant and leads to even higher returns for the agents. However,
when the memory size is 3, the percentage of NE game play bounces back.
Combined with a decrease of mutual cooperation, it results in a lowered
return for each agent.
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Fig. 2. Total points of each agent when memory size is 0, 1, 2, and 3 respectively

Fig. 3. Percentage of four possible game plays in the last 100 iterations of 100 runs
when memory size is 0, 1, 2, and 3 respectively. (No costs were involved.)
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4.3 Extended Setting: Heterogeneous Agents

In the next group of experiments, we looked at cases in which agents have
different memory sizes. Each case is identified by a series of three numbers
indicating the assignment of memory sizes to the three agents. The first
number is the memory size of the buyer agent, the second number is for the
B1 agent and the last number is for the B2 agent. For example, case 1-2-1
means that the seller agent has memory size of one; the B1 agent has memory
size of two; and the B2 agent has memory size of one again. Eight cases were
examined: 1-1-2; 1-2-1; 1-1-2; 2-1-1; 2-2-3; 2-3-2; 2-3-3; and 3-2-2. The eight
cases were further categorized into four groups. The allocation of the groups
is described in Table 5.

Table 5. Grouping of the experiments with asymmetric assignment of memory size

Group number Case number

1 1–1–2 and 1–2–1

2 2–3–2 and 2–2–3

3 2–1–1 and 1–2–2

4 2–3–3 and 3–2–2

Based on the findings from agents with identical memory size, the cost
scheme does not influence the role of memory size. These findings are con-
sistent across all cost schemes. In this set of experiments, we take away both
the bidding and listing costs. The total points of each agent in different cases
are summarized in Table 6.

Table 6. Total points of the three agents in the eight cases of asymmetric memory
size assignment

Group 1 Group 2 Group 3 Group 4

1-1-2 1-2-1 2-2-3 2-3-2 2-1-1 1-2-2 2-3-3 3-2-2

Buyer agent 3348 3235 3562 3623 2658 2588 3207 3404

Bidder 1 3015 299 3250 373 1271 1349 1651 1679

Bidder 2 363 2893 337 3230 1277 1406 1620 1522

A more visual presentation of the results is illustrated in Figure 4. Data
from groups 1 and 2 are similar in the sense that the buyer agent has the
option of choosing between bidder agents with different memory sizes. In
these cases, the buyer agent chooses the one with the same memory size as
that of itself. However, because agents in group 2 have larger memory sizes
than those in group 1, they achieved more total surplus. Groups 3 and 4 are
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identical in the sense that the two bidder agents have the same memory sizes.
It does not make much difference for the buyer agent to choose one over the
other because now it is impossible for the buyer agent to pair with an agent
with the same memory size, i.e., the memory sizes are nonidentical between
the two agents who trade with each other eventually. In these cases, agents in
groups 3 and 4 achieved less total surplus than the agents in groups 1 and 2
respectively where pairing with agents with identical memory size is possible.
What seems consistent throughout is that agents in group 4 obtained more
total points than the agents in group 3 because they have larger memory sizes.
To summarize, it seems that agents with the same memory size tend to pair
together and achieve higher return. When this kind of pairing is impossible,
agents with larger memory sizes would pair together to get more return.

Fig. 4. Total points of the three agents in the eight cases of different memory size
assignment, alternative presentation

5 Discussion

Through the above experiments, we have essentially found two very interest-
ing phenomena. First, the impact of working memory on system efficiency is
not as simple as either economic models or empirical studies predicted. If we
interpret memory size as a dimension of intelligence, the inverted U-shaped
curve we observed implies that neither too little nor too much intelligence is
efficient. With minimum working memory, the historical information is not
sufficient for agents to condition their decisions upon. Research on the classic
iterated Prisoner’s Dilemma (IPD) game can provide evidence of our find-
ings. The strategy Tit-For-Tat (TFT) has been postulated by Axelrod and
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Hamilton [AH81] to be an evolutionary stable strategy for the iterated PD
game. However, in the presence of Tit-For-Two-Tats (TfTT), a strategy
with which the agent does not retaliate until there have been two successive
defections, the TfT strategy is not stable. The strategy that looks at the
information from the last two periods can outperform the one with only one
period of historical information. On the other hand, too much memory leads
to more computational costs and complication. The unnecessary complica-
tion brings in noise to the decision-making process which leads to loss of
efficiency.

Second, when a community consists of agents with different memory sizes,
more intelligence (longer memory in our study) does not necessarily make an
agent better off. The outcome depends on the type of an agent’s trading
partner. It is in the best interest of an agent to have the same amount of
working memory as its partners. It seems that “thinking in the way your
partner thinks” is the most efficient strategy. This seems counterintuitive,
since usually having more information and being more intelligent puts us in
a superior position. In our experiments, after we dropped the costs for both
sides, the trading stage becomes a symmetric game. In this case, it seems
that the best response of one party given the strategy of the other party
is to play the same strategy. So, if one agent conditions its actions on the
historical information of one period, its partner should do the same thing.
The buyer agent in our system is intelligent enough to pick the one with the
same amount of memory when it is possible and achieve an efficient outcome,
and to be indifferent when the two bidder agents’ memory sizes are different
from that of the buyer agent.

6 Conclusion

In this paper, we presented an Exchange Game consisting of sequential and
simultaneous games. Such a mixed game grants the players choices of entering
a game and selecting a partner. Players face costs, a factor that can represent
the risk of playing the game. This game is not proposed as a true descrip-
tion of the auction or exchange process in e-marketplaces, but rather as a
useful approximation. We created a three-agent system to study the impact
of memory size under different cost schemes. The experiments discussed here
are warm-up experiments to provide initial demonstration of the importance
of working memory in system design.

We found that the relationship between working memory and the effi-
ciency of the system has an inverted U-shape, i.e., a seemingly optimal level
of memory size presents itself. When we mixed agents with different memory
sizes together, agents with the same amount of working memory generate
the most efficient outcome. These results support the importance of working
memory in agent and system design, as well as in theoretical modelling of
decision-making when historical information is involved. The optimal mem-
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ory size we found from our experiments coincides with the action space of
the trading game. However, whether the optimal level of working memory
is a function of the action space is not clear. It will be interesting to con-
duct further research on finding the optimal amount of working memory
and the determinants of the optimum. In these experiments, agents’ work-
ing memories are fixed and they cannot adjust it through learning. In the
future research, it will be interesting to see what will happen if memory size
is included in agents’ policy spaces.
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A Parameter Values

Parameter Value
τ1 6 (0.999992n1)
τ2 6 (0.99997n2)
τ3 6 (0.999n3)

Learning rate α 0.2
Discount factor γ 0.95

T 0.6
B 0.4
S 0.1
P 0.2

Number of iterations in each run 400,000
Number of runs in each experiment 100
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Abstract. This paper describes an investigation of several 2×2 games in iterated
form. Players play the games repeatedly and are limited to mixed strategies, with
particular actions chosen probabilistically. The games investigated include Pris-
oner’s Dilemma, Chicken, and Stag Hunt in various forms. The reward structure
and the granularity of the games—number of games played per generation in the
replicator dynamics—are the main factors investigated, with surprising results.

1 Introduction

This paper describes results of experiments on several simple games under
replicator dynamics. The experiments simulate interaction within a popula-
tion of relatively basic artificial agents, each defined entirely by the strategy
it is programmed to carry out. The game is played for multiple generations,
after each of which the proportion of every strategy is adjusted to reflect its
performance relative to other strategies. If a strategy performs very poorly,
it may go extinct. Similarly, there may be cases in which a strategy performs
so well that it takes over the whole population.

The games that we have chosen to experiment with are all 2×2 games.
Such games involve two players, who—on each round of play—can choose
between two courses of action and who receive payoffs that are dependent
on both their own and their counter-player’s decisions. We experimented
with, and report on, the Prisoner’s Dilemma game, the Stag Hunt game, and
variant forms of Chicken.

While our experiments on Prisoner’s Dilemma tried to replicate previous
work by Nowak and Sigmund [NS92], most of our other experiments involve
modifications of various game and simulation parameters. We examined the
number of games played per generation, representing the level of granularity
for the simulation, to determine whether it had a significant effect on the
results. We also tested the robustness of the payoff structure by varying the
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relative magnitudes of payoffs while remaining within the broad definition of
the game in question.

The remainder of the paper discusses several interesting results. The emer-
gence of Generous Tit for Tat (GTFT) strategies in stochastic Iterated
Prisoner Dilemma (IPD) is highly dependent on the granularity of the simu-
lated environment, i.e., on the number of games played per generation in the
replicator dynamics. Further, we found that in all three games considered—
Chicken, IPD, and Stag Hunt—well-accepted findings did not withstand rad-
ical changes to the payoff structure. Also, Flag Chicken simulations demon-
strated that strong group allegiance and outsider prejudice can evolve in the
presence of an arbitrary identifiable feature. This finding remains robust even
with uncertainty in the identification process.

To explain the experiments as clearly as possible, we proceed as follows.
First, §2 presents the games, along with remarks regarding application to
problems in the real world. A detailed discussion of the simulation methodol-
ogy follow in §3. We give special attention to the propagation rules used and
specific variations of the games implemented. Finally, we discuss the principal
findings of our experiments in §4.

2 The Games

2.1 Prisoner’s Dilemma

Description. After the now-standard treatment in [LR57], two criminals
have been arrested and thrown into separate cells, so they cannot communi-
cate with each other. The candid prosecutor explains to each of them their
identical situations. If they both confess to having committed a crime, they
will both go to jail for three years. If they both maintain their innocence,
they will only stay in jail for one year. However, if one defects and testifies
against his partner, the defector will walk out free while his partner in crime
gets five years of imprisonment. Each prisoner has no way of observing the
other’s actions before choosing his own. In matrix, or strategic, form, the
game looks like this :

Table 1. Prisoner’s Dilemma. Canonically: R=Reward, T=Temptation, P=
Penalty, S=Sucker.

Player A pleads innocent Player A confesses
(Cooperate) (Defect)

Player B pleads innocent Reward, Reward Sucker, Temptation
(Cooperate) (3,3) (0,5)

Player B confesses Temptation, Sucker Penalty, Penalty
(Defect) (5,0) (1,1)
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In addition, for a Prisoner’s Dilemma, it is generally required that

T > R > P > S (1)

and that
2R > T + S (2)

The Prisoner’s Dilemma is therefore “a conflict between personal ratio-
nality and mutual risk” [Sky01]. Each player’s payoff ultimately depends on
what the other player decides to do. Weighing the two courses of action avail-
able to them, and being rational in the received sense, both players realize
that defecting (confessing) is the best decision, regardless of what the other
player chooses to do. If player A confesses, player B is better off confessing
as well. If player A pleads innocent, then player B avoids jail entirely by
confessing.

Iterated Prisoner’s Dilemma. While defection appears to be the best
strategy if the scenario occurs only a single time (and classical game theory
agrees), the choice becomes more complicated if the situation is repeated
many times by the same two players, as it is in the case of the iterated
prisoner’s dilemma (IPD). If one defects now, he has little (or at least reduced)
expectation that his opponent will cooperate in the future. Therefore, the
prospect of future interactions raises the possibility of cooperating in the
present in order to signal a willingness to do so in the future, and thereby
possibly gain that cooperation.

Robert Axelrod conducted two IPD tournaments. They involved a variety
of strategies with names such as Tit for Tat, All Defect, SuperRetal-
iate, or Random. Successful strategies were found to have a set of common
characteristics: they are nice (meaning they never defect on the first move),
send clear signals as to the behavior their opponent can expect, reciprocate
both cooperation and defection, and are not envious (do not try to do better
than the other strategies but seek to maximize their payoffs instead) [Axe84,
pages 109-123].

Tit for Tat (TFT), a simple strategy that reciprocates the opponents
last move, was found to be the strongest strategy. However, TFT does not
work as well in noisy environments where a competitor’s move may be mis-
interpreted, principally because TFT will not be generous enough and will
tend to get into costly spirals of defection.1

1 [NS92,NS93]
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2.2 Chicken

Description. The game of chicken was brought to popular attention in the
James Dean movie Rebel without a Cause. The game is simple: two players
get in their cars and start speeding towards a cliff. The point of the game is
to show bravado by being the last driver to stop before self-destruction.

Consider the payoffs. Suppose A swerves first while B stays steadfast. B
gets a higher payoff (W for winner) than A (C for Chicken). If they both
swerve at the same time, they get an equal payoff (E for equal), just as when
they both do not swerve (D for demolition or death). We thus arrive at the
following payoff distribution, represented in matrix format, as in Table 2.

Table 2. Chicken. Canonically:W=Winner, E=Equal, C=Chicken,D=Demolition

Player A swerves Player A is steadfast

Player B swerves Equal, Equal Chicken, Winner
(1,1) (0,5)

Player B is steadfast Winner, Chicken Demolition
(5,0) (-5,-5)

It is generally required that

W > E > C > D (3)

and
2E < W + C (4)

so it pays to take turns swerving.

Applications. This game is of special interest to the international relations,
international political economy and business communities. For example, con-
sider the situation in which two countries are negotiating a trade treaty. The
country that stays steadfast in its position and succeeds in the other making
concessions will receive the higher payoff. If they compromise the payoff to
each country will be situated somewhere in between the two afore-mentioned
payoffs. If, however, they do not manage to sign a treaty and get locked up in
a trade war, the effects on both countries would be detrimental. The essence
of this game is that, while you are best off if your cowardly opponent swerves
first, there is an overwhelming incentive to swerve before the cliff, as riding
off the cliff is the worst of all possible outcomes for both players. In this sense,
Chicken is fundamentally different than a one round PD, in which defection
is clearly optimal.
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2.3 Stag Hunt

Our third game is known as Stag Hunt, and was originally described in
Rousseau’s Discourse on Inequality as follows (cited in [GMS98]):

If it was a matter of hunting a deer, everyone well realized that he
must remain faithful to his post; but if a hare happened to pass within
reach of one of them, we cannot doubt that he would have gone off
in pursuit of it without scruple. . .

In other words: The hunters have the choice of hunting either stag or hare.
One hunter cannot hunt stag alone successfully. A hare is less valuable than a
stag. A hunter’s probability of getting a hare is independent from the choices
of the other hunters. The more hunters there are, the higher the probability
of succeeding in capturing or killing a stag.

The Stag Hunt game comes in various forms. The one we investigate may
be attributed to Hume and his story of the rowers:

Two men who pull at the oars of a boat, do it by an agreement or
convention, tho’ they have never given promises to each other. . . ”
[Hum78].

Here the men could choose to row or not to row. Only when the two men
row can they get to their destination. If one man decides to row and the
other does not row, the boat does not move forward. The worst outcome for
oneself is to row alone, because one is wasting energy while moving in circles.
Following this line of thought, it is a middle outcome when one chooses not
to row, regardless of whether the other man rows or not.

We can see that in Stag Hunt, unlike the Prisoner’s Dilemma, there is
no dominant strategy. Each hunter’s optimal strategy depends on what he
believes the other hunters will decide, and both stag hunting and hare hunting
are equilibria.2

In matrix form, the stag hunt game can be represented as follows:
As is customary, we require that

R > T > P > S (5)

The player finds himself split between considerations of mutual benefit
and considerations of personal risk. The problem of trust makes the player
think that the other players will defect, often pushing the result to the hare
hunting equilibrium.

2 Note that an Iterated Prisoner’s Dilemma game is similar in some ways to a
two-person Iterated Stag Hunt. Because the shadow of the future makes the
players’ moves in the present round matter for the next, cooperation may be
more desirable yet riskier than defection.
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Table 3. Stag Hunt. Canonically: R=Reward, T=Temptation, P=Penalty,
S=Sucker

Player A hunts stag Player A hunts hare

Player B hunts stag Reward,Reward Sucker,Penalty
(4,4) (0,3)

Player B hunts hare Penalty,Sucker Penalty,Penalty
(3,0) (2,2)

3 Methodology

In our replicator dynamics simulations, pairs of strategies were repeatedly
drawn at random from a population. (Initially, all strategies were drawn with
equal probabilities and with replacement.) The strategies played a round of
games (set by the parameter GamesPerRound) against each other and the
resulting scores were recorded. This—random drawing of two strategies and
subsequent play of a round of games—was repeated a certain number of times,
set by the parameter RoundsPerGeneration. Play of RoundsPerGeneration
rounds constituted one generation of play. After one generation’s worth of
play, the likelihood of each strategy being drawn, which represents the strat-
egy’s prominence in the population, was adjusted to reflect the strategy’s
performance in the current generation. The process of competition and ad-
justment is repeated for a number of generations, represented by the param-
eter NumberOfGenerations.

3.1 Number of Generations

The number of generations used for the simulations ranged from 2,000 to
12,000. The choice of number was made with the intent that long-term trends
be evident and observable. Often this meant choosing enough generations
to allow an apparent equilibrium mix of strategies to develop. Simulations
in which no stable pattern of evolution emerged were rerun with a greater
number of generations.

3.2 Rounds Per Generation

The number of rounds per generation was varied experimentally to examine
the impact of granularity upon outcome. The results are discussed below.

3.3 Games Per Round

The expected value of GamesPerRound was fixed in our experiments. It was
normally distributed with mean 80 and standard deviation 20 (with negative
values discarded). The game length was thus not available to the strategies.
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3.4 Propagation Rule

The formula for adjusting the proportion of a strategy x from generation n
to generation n+ 1 reflects both x’s current proportion and its performance
in generation n:

wx,n+1 = wx,n × P x

P all strategies

(6)

where w represents the weight (or probability of selection) and P represents
the average per round payoff of all games played.3

3.5 Iterated Prisoner’s Dilemma

Stochastic Prisoner’s Dilemma, Finite Length. Single frame reactive
strategies were represented in the form (i, c, d), where i represents the prob-
ability of initial cooperation, c the probability of cooperating after observing
a counter-player cooperation, and d the probability of cooperating after ob-
serving a counter-player defection. Deterministic strategies were outlawed, as
a small level of uncertainty (1%) was assumed to be intrinsic to the interac-
tions. Pairs of strategies competed in games of unknown, finite length.

The initial population of strategies consisted of two classes of strategies:
those who cooperated in the first round with probability of 0.99, and those
who defected with the same probability. Within each class, 121 (c, d) pairs
where uniformly distributed on the unit square. All strategies began with
equal weights of occurrence. Payoffs for the game were varied as an experi-
mental parameter.

Stochastic Prisoner’s Dilemma, Infinite Length. In the special case of
games of infinite duration, the initial move has no effect on the expected out-
come when no strategy acts deterministically. Therefore, one-frame reactive
strategies of the form (c, d) where considered, where c and d have the same
meanings as above (cooperate and defect). To approximate an iterated game
of infinite duration, expected payoffs, rather than observed payoffs were used.
The expected payoff of a strategy s1 = (c1, d1) when playing against strategy
s2 = (c2, d2) are as follows :

V (s1|s2) = 1 + 4 · t′ − t− t · t′ (7)

where V (s1|s2) is the value of playing strategy s1 against strategy s2, and

t =
{d1 + (c1 − d1) · d2}

{1− (c1 − d1) · (c2 − d2)} (8)

3 We note that the formula may be modified to accommodate discounting, but we
chose not to explore this.
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and

t′ =
{d2 + (c2 − d2) · d1}

{1− (c2 − d2) · (c1 − d1)} (9)

(See [NS92] and [GMS98, page 169].)
The initial population used for simulations was 121 (c, d) pairs uniformly

disturbed on the unit square (but not at 0 or 1). Again, deterministic strate-
gies were outlawed and equal weights were initially assigned.

3.6 Chicken

Chicken with a Temporal Element. Stochastic Temporal Chicken is
a variant of chicken where players have three opportunities to swerve. If
they see their opponent swerve first, they automatically are accorded victory.
Strategies are of the form (P[swerve at first opportunity], P[swerve at second
opportunity], P[swerve at final opportunity]). (Note: P[X] = the probability
of X occurring.) These probabilities are bounded to the range [.1, .9] to reflect
the uncertainty inherent to the game. Even with a high probability of swerv-
ing, an agent may still crash. Strategies play a single round in each game.
The exact payoffs they received were varied as an experimental parameter.

Flag Chicken. In Stochastic Flag Chicken, players first raise a flag to iden-
tify themselves as members of either the green or the red group. They then
play a one-game round of traditional chicken, with payoffs: W=6, E=4, C=3,
and D=0. Strategies are of the form (P[raising green flag], P[swerve after
seeing a green flag], P[swerve after seeing a red flag]). (Note: P[raise red flag]
= 1-P[raise green flag].) In this way, strategies are allowed to discriminate
based upon perceived group affiliation. As misinterpretation of the flag and
imperfect driving are assumed to be inherent; all probabilities are bound to
the range [.1, .9].

3.7 Stag Hunt

In Stag Hunt, strategies are of the form (P[hunting stag], P[hunting stag |
other player hunted stag in previous round], and P[hunting stag | other player
hunted hare in the previous round].) Payoffs were varied as an experimental
parameter. The base payoffs we used are Reward = 4, Temptation = 3,
Punishment = 2 and Sucker = 0.

4 Discussion of Findings

4.1 Granularity Thwarts Generosity in Stochastic IPD

One of our main goals was to test the validity of the modeling system by
reproducing published results for stochastic IPD. In “Tit for Tat in Heteroge-
neous Populations” [NS92] Nowak and Sigmund report that, using stochastic
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strategies identical to ours and the regime described in §3.5, generous retalia-
tory strategies eventually dominate TFT and control the population. These
GTFT strategies—(0.99, 0.3) is the eventual winner—are driven even closer
to extinction than TFT by the early onslaught of defectors. However, they
recover in later generations and are able to dominate in a noisy world of
cooperators.

Our initial results were to the contrary. As with Nowak and Sigmund,
defector strategies went on an early rampage, capturing nearly half of the
population. TFT, bruised but not beaten, fights back and recovers robustly.
However, TFT was not merely the pivot Nowak and Sigmund describe. TFT
rules the land, controlling 100% of the population. AllD (Always Defect) rises
prominently in the early rounds, conquering half the population (the other
half being held mostly by fellow defectors). Around the 250th generation,
näıve cooperators die out and TFT makes its move. Over the course of 60
generations, it goes from near extinction to total domination. See Figure 1.

Fig. 1. TFT Revolts against Defectors

The reason more generous strategies do not come to prominence is that
they go extinct during the era of the defectors. Unlike Nowak and Sigmund’s
model, where average fitness for the generation is calculated as an expecta-
tion, strategies in our model are actually drawn at random and paired against
each other. Consequently, extinction can and does occur. If a strategy is not
drawn at all in a particular generation, it simply dies out. So it seems the
GTFT’s success hinges upon the granularity of the model.
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To test this hypothesis, simulations were run with less coarse models.
At a granularity level of 300,000 rounds per generation, a GTFT strategy
of (0.99, 0.1) finally survived the defector era and triumphed over TFT. In
doing so, it lingered near extinction for hundreds of generations. At one point,
the likelihood of drawing GTFT was roughly 2 in 100,000. In the simulation
with 300,000 games per round, TFT first wages war against defectors. As the
population becomes filled with nice strategies, GTFT rises from obscurity to
conquer its less generous relative.

Fig. 2. TFT as Pivot for GTFT

The degree to which granularity impedes the emergence of generosity is
not only a problem for modeling, but also a potentially strong barrier for
real world generosity. We note that Skyrms also comments that less granular
populations are more likely to fall into polymorphic traps [Sky96]. Our results
predict that among coarse populations, say the nation states of the world,
generosity is a recipe for extinction. Generous nations may be so vulnerable
to attack that they are unable to sustain themselves and spread their ideology
of generosity. On the other hand, if one looks at cooperation at the level of
single genes,4 where the population is more properly modeled by a continuous
idealization, the prospects for generosity seem much stronger.

4 Dawkins [Daw89] looks at competition at the gene level, concluding that selfish-
ness increases fitness. However, the whole human organism can thought of as a
cooperation among thousands of individual genes.
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4.2 Temporal Chicken Sensitive to Risk Preference

Temporal Chicken was an attempt to see if granting agents timing options
would make a difference in the kinds of strategies that would thrive in an eco-
logical simulation (i.e., under the replicator dynamics). To get a better under-
standing of the influence timing can have we conducted simulation with three
different payoff structures. While there were naturally similarities among all
three simulation types, it is striking how changing the payoffs significantly
changed the relevance of the timing decision. In the following we will discuss
the results, starting with the initial payoff structure of W=6, E=4, C=3,
D=0, then proceeding with the one that makes demolition much worse to
live with and finally one where the difference between winning, losing or be-
ing part of a draw become insignificant in view of the huge penalty involved
in demolition.

Normal Payoffs and the Siege of the Last Minute Strategies. We
define normal payoffs as W=6, E=4, C=3, D=0, values commonly appearing
in the literature. The striking outcome of the simulation here is that only
strategies that have the lowest possible probability of swerving in the first
two time periods survive. In fact all other strategies died off before 850 rounds
were played. Furthermore, there are no clear winners or any other patterns
that are distinguishable among the surviving strategies. This outcome can be
interpreted as meaning that if there is a somewhat equitable difference among
the different payoffs, it pays to wait until the last minute before deciding to
swerve. Using this strategy, one will win against all strategies that have a
tendency to swerve in the first two time periods. These gains seem to allow for
last minute strategies to gradually take over more and more of the population.
Thus, they are leaving all other strategies with an increasing probability of
incurring a loss and giving up the winning payoff. This seems to outweigh
the increased probability of the last minute strategies meeting themselves
and once in a while incurring complete demolition.

Costly Demolition and the Reign of the Generous Last Minute
Strategies. When we changed the payoffs to W=1000, E=900, C=850, D=0
we were expecting this to help non-last minute strategies to survive. Although
they did not make it in the end, they now survive past round 2250. How-
ever, the main difference that the change in payoffs produced was that only
three last minute strategies survived and that there was a clearly dominating
strategy.

Specifically, the most generous last minute strategies survived, namely, the
ones that have a high probability of swerving, albeit only in the final time
period. In fact, the last minute strategies died out in order of their generosity,
with the first five5 dying out while there were still non-last minute strategies
5 (0.1,0.1,0.1), (0.1,0.1,0.2), (0.1,0.1,0.3), (0.1,0.1,0.4), (0.1,0.1,0.5)
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in existence and (.1,.1,.6) surviving until after the 3900th round. Further, the
clear predominance of the most generous last minute strategy shows how the
payoff distribution made it very important not to be suckered out in the first
two rounds but still have a very low probability of actually facing the cost
of demolition; two characteristics that (.1,.1,.9) combines best out of all the
strategies.

Costly Demolition, Minimal Winner’s Advantage and the Survival
of Many. Changing the payoffs to W=1000, E=999, C=998, D=0 allowed
136 different strategies to survive until the end of the simulation. This state-
ment of course should be qualified by the fact that the 10 best strategies
made up almost 85% of the population by the end, the first 25 made up 95%
and that the least successful 71 strategies together only made up 1% of the
entire population.

The most striking change that this variation in payoffs brought about,
is that the dominance of the last minute strategies was clearly broken. Not
one of them was in the top ten. In turn the top ten strategies were entirely
made of agents that had probabilities of between 0.8 and 0.9 of swerving in
the two last time periods and 0.1 and 0.4 for the first time period. Here it
is especially interesting to look more closely at the probabilities of the three
most successful strategies: (.1,.9,.9), (.2,.9,.9), (.1,.8,.9)

In summary, it seems pivotal to avoid the punishing demolition payoff; the
reward of bragging rights that comes with winning has become insignificant
in comparison to the perils of demolition. Therefore, successful strategies are
only willing to risk the first round for a chance to win against ones opponent.
After that, they must minimize their chances of never swerving to make sure
that demolition is avoided. Again, successful strategies have been shown to
be not only the product of the general game, but also of the particular payoffs
applied.

4.3 Flag Chicken

In daily interactions, one is likely to make countless associations, ranging
from race and ethnicity to tone of voice or table manners. Attached to these
associations are heuristics that guide both one’s actions and expectations
towards others. In the traditional Chicken game, players have no way of
associating themselves with a certain group or determining if the other player
is part of a group. The Flag Chicken experiment allows the players to identify
themselves to the other player as red or green.

By allowing for the possibility of discrimination, we hypothesized that
discriminable, easily identifiable agents would become more prevalent in the
population. We were not sure what would happen to unidentifiable agents,
those who have almost the same chance of signaling red or green.

As an illustration, examine one typical run of the simulation. Strategies
that raised the green flag with 90% certainty (the most allowed) took over the
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Fig. 3. Top Ten Strategies. The evolution of the ten strategies that are most suc-
cessful at the end of the simulation. With the extreme payoff structure implemented
here, it is interesting to see how avoiding demolition has become very important
and allows for a different set of strategies to thrive.

population, representing 100% of the population by the end of the simula-
tion. The green strategies that did best were those that courteously swerved
when facing another green player, but rudely refused to swerve when facing
a red player. The top performer was strategy (.90, .70, .20), which ended
the simulation at 14.62% of the population. Other successful strategies in-
cluded (.90, .02, .70) with 6.43%, (.90, .90, .20) with 7.99%, (.90, .79, .10)
with 5.83%, (.90, .90, .10) with 4.84%, and (.90, .79, .50) with 3.49%. Not
swerving when facing another green seems to pay off when done moderately,
as can be observed from our data. This can be explained by the competing
temptation to battle strategies within ones own group.

The indecisive strategies, which have mid-range probabilities of signaling
signal red or green are wiped out quickly, usually before the tenth generation.
The red strategies also disappeared very quickly, without having been able
to team up and reap the benefits of in-group cooperation. What seems to be
happening is that players from the winning, strong identity group (here the
greens) are in fact able to benefit more from cooperation with their peers in
early rounds by pure luck. This initial advantage allows that group to increase
more quickly and to even further perpetuate their strength. The other players
(here the red), quickly decrease in the population, and therefore find fewer
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opportunities to cooperate with other reds. They are quickly eliminated and
only one group prevails (here the green). The fact that the green survived in
this instance was mere chance, and it was equally likely that red could take
over.

The result—that both indecisive strategies and strategies that align to the
wrong color die out fairly quickly, thus leaving a homogeneous group of same-
signaling strategies to make up the population—also holds under changing
granularity assumptions.6 However, differences do arise in terms of the num-
ber of strategies that survive and in the distribution of the percentage of the
population made up by each of the strategies. In our run with 15,000 games
per generation 49 Strategies survived until the cut off; with 30,000 games per
generation 56 survived; and with 150,000 and 300,000 all 81 clearest signaling
strategies survived. Then, if we look at the standard deviations of the per-
centage of the population made up by each of the strategies we see that the
15k run resulted in an ending standard deviation of 0.007226, the 30k run,
0.007055, the 150k run, 0.004852 and the 300k run, 0.004517. These differ-
ences could be further magnified by not including the non-decisive strategies
and the wrong alliance ones into the calculation of the standard deviation.
Thus, granularity results in more strategies surviving and a reduction in the
difference in success among these surviving strategies.

It is natural to speculate on the parallels with discrimination by a group
against another in real life. Our experiment demonstrates that the ability to
identify members of a group and the willingness to treat others differently
(not necessarily better or worse) are sufficient conditions to cause the ex-
termination of whole groups. Those who rise to the top are the ones whose
behavior towards foreign groups is particularly hostile, and whose behavior
towards their own group particularly benign. Always doomed are the people
who claim little allegiance to a particular group, and are not easily identifi-
able.7

For these reasons, we speculate that it would be very hard for peaceful
coexistence to arise between two populations that discriminate against each
other when members of one group regularly interact with members of the
other. This may explain all sorts of spatial segregation: segregation by ethnic
background in neighborhoods, by gender in the workplace or even in social
interactions.

4.4 More on Changing the Payoffs: IPD and Flag Chicken

In order to investigate the effect of changing the Prisoner’s Dilemma payoffs,
we constructed a simulation that, at the onset, was very unfriendly toward
cooperation. Round lengths were short, averaging 50 games, and with only

6 Wrong with SC (Flag or Signal Chicken) means not belonging to the arbitrarily
chosen strong identity group: either red or green.

7 These are the strategies that signal red or green roughly half the time.
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15,000 rounds played per generation, extinction was common. The simulation
was first run with the standard PD payoffs of T=5, R=3, P=1, and S=0.
Defectors killed off all strategies, including TFT, in less than 300 generations.
The experiment was then repeated with of T=1000, R=999, D=10, and S=0.8

With these new payoffs, not even TFT was forgiving enough to survive.
The population was dominated by strategies similar to AllC (cooperation
everywhere).

Fig. 4. PD under Two Different Payoff Regimes. This graph shows a comparison of
AllD with AllC over the first 200 generations in the two different payoff scenarios.
With the normal payoff scheme, AllD dominates early while AllC is rapidly driven
to extinction. When the payoffs are changed to the extreme scenario, it is AllD
that is wiped out on the onset, while AllC ascends slowly over time.

Although both scenarios are true PDs, the results they produce are so
drastically different that it seems misleading to refer to them as the same
game. This experiment demonstrates that the well-established results of Ax-
elrod and others do not apply to all games that fit the strict definition of a
PD. A more precise understanding of the sensitivity of these results to the
payoffs used remains to be explored, but our small experiment shows that
broad generalizations about the PD should be made with care.

The hypothesis that not only relative order, but also relative magnitude
of payoffs can shape the fundamental nature of these simple, 2×2 games is

8 Note that T>R>P>S and R>(T+S)/2, fulfilling the traditional requirements of
a PD game.
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confirmed by similar experiments involving the Flag Chicken game. As the
previously mentioned experiments have shown, Flag Chicken simulations typ-
ically evolve to a population in which all strategies tend to raise the same color
flag, and punish any strategy that defiantly raises a different one. However,
in the extreme payoff example, where crashing is catastrophic compared to
the slight humiliation of being a swerver,9 discriminatory strategies are done
in. The strategies that survive are those that cautiously swerve, regardless of
the flag they show or see. Once again, fundamental emergent properties of
the game vary under different payoffs.

These experiments demonstrate what on second thought seems obvious:
that hopes for cooperation lean heavily upon the costs of chaos. If actors
are in an environment where the benefit from successfully cheating counter-
players is miniscule in comparison to the costs of widespread defection, wise
actors will be inclined to cooperate.

4.5 Stag Hunt

Our first Stag Hunt simulation, Normal Stag Hunt, features the base payoffs
described in Table 3. In addition to Normal Stag Hunt, we ran three Stag
Hunt simulations with varying payoff structures. In Extreme Stag Hunt, we
set Reward = 700, Temptation = 500, Punishment = 200 and Sucker = 0.
This increased the gap between the Reward and Temptation payoffs on one
part and the Punishment and Sucker payoffs on another. The third simula-
tion, Very Extreme Stag Hunt (Reward = 1000, Temptation = 200, Punish-
ment = 50 and Sucker = 0) further accentuated this gap, and increased the
Reward-Temptation gap. Finally, in Clustered Stag Hunt, we clustered the
three highest payoffs, with Reward = 1001, Temptation =1000, Punishment
= 999 and gave the sucker a payoff of 0.

The results of the simulations are quite compelling. In all test runs we
did, the trends were clearly recognizable. In the first three simulations, the
most successful strategy was (.99, .99, .99), which basically hunts stag all
the time no matter what the other player is doing. The only times that this
strategy hunts hare are due to the non-deterministic nature we implemented
in all strategies. However, depending on the relative magnitude of the payoffs,
complete eradication of all other strategies can take more or less time. The
more extreme the payoffs, the faster the strategy’s takeover of the population.
The next most successful players are those that only reduce their probability
of hunting stag when their counterpart hunts hare.

It is nonetheless interesting to note that in all three simulations, those
strategies that do not give the benefit of the doubt and hunt hare in the
first round did significantly worse as a group but within themselves had the
same relative survival rate as the parallel strategies that hunt stag in the first
round. The most successful of these strategies is (.1, .99, .99), i.e., the one that

9 To be specific, payoffs of W=1000, E=900, C=850, D=0.
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always hunts stag except for the first round. The results of the first three Stag
Hunt simulations, very much like the Prisoner’s Dilemma simulation results,
speak in favor of the more generous strategies, and confirm the advantages
of cooperation in a noisy stochastic environment.

However, clustering the three highest payoffs can totally discourage coop-
eration. Under this scenario, all the strategies that are forgiving (those that
sometimes hunt stag after the opponent hunted hare) die out very quickly.
Then there are two non-forgiving categories: the initial hare hunters, and
the initial stag hunters. Within these two categories, the success of the non-
forgiving strategies is correlated to the middle percentage. The higher the
probability of hunting hare after the opponent hunted stag, the better off the
strategy. Accordingly, the most successful strategy is (.01, .01, .01).

An interesting fact that we observed is that the (.99, .01, .01) strategy is
considerably less successful and even dies out before the end of the simulation,
although the only difference between it and the most prevalent strategy is its
first move choice.

Similar to the results we had for IPD, Temporal and Flag Chicken, we
can conclude that relative magnitude of payoffs changes the Stag Hunt char-
acteristics dramatically. Here, we went from a game where generosity and
cooperation performed best all the way to a game where defectors dominated
the population of agents.
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A Summary of Simulations

See Table 4. In all simulations, strategies were selected from the unit cube
(or square) with uniform random deviates (excluding 0 and 1).
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