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Preface

The 8th Workshop on the Foundations of Genetic Algorithms, FOGA-8, was held
at the University of Aizu in Aizu-Wakamatsu City, Japan, January 5–9, 2005.
This series of workshops was initiated in 1990 to encourage further research
on the theoretical aspects of genetic algorithms, and the workshops have been
held biennially ever since. The papers presented at these workshops are revised,
edited and published as volumes during the year following each workshop. This
series of (now eight) volumes provides an outstanding source of reference for the
theoretical work in this field.

At the same time this series of volumes provides a clear picture of how the
theoretical research has grown and matured along with the field to encompass
many evolutionary computation paradigms including evolution strategies (ES),
evolutionary programming (EP), and genetic programming (GP), as well as the
continuing growth in interactions with other fields such as mathematics, physics,
and biology.

A tradition of these workshops is organize them in such a way as to encourage
lots of interaction and discussion by restricting the number of papers presented
and the number of attendees, and by holding the workshop in a relaxed and
informal setting. This year’s workshop was no exception. Thirty-two researchers
met for 3 days to present and discuss 16 papers. The local organizer was Lothar
Schmitt who, together with help and support from his university, provided the
workshop facilities.

After the workshop was over, the authors were given the opportunity to revise
their papers based on the feedback they received from the other participants.
It is these revised papers that are included in this volume and follow the order
in which they were presented at the workshop. In addition to these 16 papers,
there were 2 invited talks: an opening presentation by Alden Wright and a clos-
ing presentation by Kenneth De Jong. These slides-only presentations are not
included in this volume, but can be obtained from the authors upon request. A
brief summary of these presentations is provided here.

Alden Wright opened the workshop with a presentation titled “Can Evolu-
tionary Computation Theory Have Significance Outside of EC?” and subtitled
“Can EC Theory Help Us To Understand Evolution?”. The field of artificial life
has been successful in reaching a wide audience with claims that artificial life ex-
periments can give insight into natural evolution. Wright asked if EC theory can
do the same? He proposed that EC theory might be relevant to some challenges
in evolutionary research1. These included:

• Analysis of the evolution of rates of mutation and recombination. Do “optimal”
rates evolve?

• Analysis of the evolution of the information content of genomes.
1 Some of these challenges came from the website:
http://evonet.sdsc.edu/evoscisociety/chall and oppors in e res.htm
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• Analysis of genic selection and of conflict within genomes (e.g., segregation
distortion, evolution of gene expression, etc.).

• How does evolution maintain the great complexity of organisms while also
allowing “rapid” evolution in some areas?

• How is it possible that phenotypic variations do not destroy brittle interactions
between the subsystems of an organism while still allowing for the variablity
that allows for evolutionary innovations?

Wright suggested that investigation of the genotype-phenotype map might give
insight into the last two challenges.

Kenneth De Jong closed the workshop with a presentation titled “Unify-
ing EC Theory.” In this presentation he argued that developing a more unified
framework for EC theory was important for further progress in the field. This
was based on the observation that historically the field has evolved around a
number of EA demes (GAs, ESs, etc.), resulting in deme-specific terminology
and theory. We now have deme-independent EC toolkits that provide creative
mixing and matching of EA components, but we have no theory to guide EA
design at this level.

De Jong outlined a strategy for developing such a theory. He suggested that
we need to clearly distinguish between EAs as dynamical systems and EAs as
problem solvers. Adopting a dynamical systems view allows us to answer ques-
tions about trajectories, fixed points, etc., and makes contact with a large body
of existing theoretical work in evolutionary biology, evolutionary game theory,
and dynamical systems theory. Adopting a problem-solving view allows us to an-
swer questions about the effectiveness of EAs for optimization, search, machine
learning, etc., and makes contact with a large body of existing theoretical work
from computer science, operations research, and artificial intelligence.

De Jong argued that in both of these areas it is important to find a middle
ground between theories that are too abstract to be helpful and too specific to be
applicable to new situations. He gave several examples of how that might be done
using a top-down strategy. He concluded by noting that several of the papers
presented were nice examples of this middle theoretical ground, and expressed
the hope that he would see more of them at the next FOGA.

In between those 2 presentations 16 papers were presented on a wide range
of theoretical evolutionary computation topics. We hope that you find them as
interesting and provocative as we did. We fully expect that these papers will serve
as a catalyst for further progress to be reported at the next FOGA workshop in
2007.

March 2005 Alden Wright
Michael Vose

Kenneth De Jong
Lothar Schmitt
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Genetic Algorithms for the Variable Ordering Problem
of Binary Decision Diagrams

Wolfgang Lenders� and Christel Baier

Universität Bonn, Institut für Informatik I, Römerstrasse 164, 53117 Bonn, Germany
wolfgang@lenders.it, baier@cs.uni-bonn.de

Abstract. Ordered binary decision diagrams (BDDs) yield a data structure for
switching functions that has been proven to be very useful in many areas of com-
puter science. The major problem with BDD-based calculations is the variable
ordering problem which addresses the question of finding an ordering of the in-
put variables which minimizes the size of the BDD-representation. In this paper,
we discuss the use of genetic algorithms to improve the variable ordering of a
given BDD. First, we explain the main features of an implementation and report
on experimental studies. In this context, we present a new crossover technique
that turned out to be very useful in combination with sifting as hybridization
technique. Second, we provide a definition of a distance graph which can serve
as formal framework for efficient schemes for the fitness evaluation.

1 Introduction

Ordered binary decision diagrams (BDDs for short) are data structures to represent
switching functions that rely on a compactification of binary decision trees. More gen-
eral, using appropriate binary encodings, BDDs can serve to represent discrete func-
tions with a finite domain. They were first introduced by Lee [28] and Akers [1]. In the
meantime, various variants of BDDs have been suggested in the literature and applied
successfully in many areas of computer science. Most popular are Bryant’s (reduced)
ordered binary decisions diagrams [8] that require a fixed variable ordering on any
path. They have been proven to be very useful for the verification of reactive systems,
often called symbolic model checking [10, 32]. Other application areas of BDDs in-
clude VLSI design, graph algorithms, complexity theory, matrix-operations, data bases,
artificial intelligence, and many more. See e.g. the text books [18, 25, 33, 36, 48].

The crucial point with ordered BDD-based computations is the variable ordering
problem. For a wide range of switching functions, there are polynomial-sized BDDs
for “good” variable orderings, while the BDDs under “bad” variable orderings have
exponential size. Unfortunately, the problem of finding an optimal variable ordering
is NP-complete [6, 45]. However, there are many reordering algorithms that improve
the ordering of a given BDD. Most popular are Rudell’s sifting algorithm [41] and the
window permutation algorithm [21]. A first attempt to use genetic algorithms for the
variable ordering problem for BDDs was presented by Drechsler, Becker and Göckel
[15] where the main genetic operations are partially-mapped crossover and mutation.

� The paper is based on material of the diploma thesis by the first author Wolfgang Lenders
which he submitted in August 2004 at the Department of Computer Science, Universität Bonn.

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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A related approach using simulated annealing was suggested by Bollig, Löbbing and
Wegener [5]. In experimental studies it turned out that these methods yield better re-
sults (smaller BDDs) than other dynamic reordering techniques, but they are compa-
rably slow, see e.g. [42]. To speed up the computations, several approaches have been
suggested, including advanced tricks for the parameter setting and treating sifting as a
genetic operation that replaces crossover techniques [16, 46], evolutionary algorithms
with learning heuristics [17], the use of computed tables and approximate fitness values
[24] or parallel genetic algorithms [12].

The goal of our paper is orthogonal to the above mentioned strategies by present-
ing alternative techniques to improve the efficiency and quality of genetic reordering
algorithms for BDDs, while still retaining the concept of crossover (in contrast to the
approaches of [16, 46]). We concentrate here on the purely genetic part of such reorder-
ing algorithms. However, the techniques suggested here can easily be combined with
other (non-genetic) methods to increase the efficiency, e.g. by using “ordinary” sifting
as in [16, 46].

Unlike [16, 46] which uses inversion as the only genetic recombination technique,
we discuss several crossover techniques and present a new one, called alternating cross-
over which attempts to maximize the benefits of hybridization, i.e., the combination of
a deterministic search algorithm with a genetic algorithm. The idea in the context of
BDD minimization relies in generating an interleaving of the parent’s variable order-
ings (alternating crossover) and moving the variables with the sifting-technique to the
next local optimum after (the hybridization step). Our experimental results show that
alternating crossover outperforms other recombination techniques such as order, par-
tially matched or cycle crossover and inversion, by means of the BDD-sizes, while no
significant differences in the runtime could be observed.

The second contribution is a formal framework to speed up the calculation of the
fitness values for the newly generated individuals. In fact, for the variable ordering
problem, calculating the BDD-size under a given variable ordering is a time-consuming
step. It is typically realized by a sequence of local (level-wise) reorganizations of the
BDD, the so called swap-operator (see e.g. [48]). Even when the final BDD is smaller
than the original one, an exponential blow-up for the intermediate BDDs is possible.
Thus, strategies that support the fitness calculation of the new population are highly de-
sirable. We introduce a formal notion of a distance graph, a weighted graph where the
nodes are orderings and the edges are labeled with the minimal number of swaps neces-
sary to transform one ordering into another one. Using (variants of) heuristic algorithms
for the traveling salesperson problem a “short” tour in the distance graph through the
newly generated orderings, for which the fitness values (BDD-sizes in our case) are re-
quired, yields an appropriate scheme for the fitness evaluation. The distance graph can
also serve as formal framework for other techniques that support the fitness calculation
as suggested in [24]. Moreover, the fitness computation via our visiting strategy can
easily be modified to weaken the drawback of crossover operations that might lead to
unfeasible BDD-sizes, e.g., if they generate individuals that are far from both parents
and combine the bad attributes of the parents.

Throughout the paper, we concentrate on the use of our algorithm for the minimiza-
tion of ordinary BDDs, but our methods are also applicable to other types of decision
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diagrams, such as zero suppressed BDDs [36] algebraic decision diagrams, [2, 11] and
their normalized version [39], and other DD-variants.

Organization of the paper. The basic concepts of binary decision diagrams and no-
tations used in this paper are summarized in Section 2. Section 3 explains the main
concepts of our genetic algorithm and its implementation we used for the experimental
studies. Section 4 is concerned with alternating crossover. Our graph-based technique
to reduce the runtime for the fitness calculation are described in Section 5. In Section 6,
we report on experimental results. Section 7 concludes the paper.

2 Binary Decision Diagrams

In the remainder of this paper, we fix a finite set Z = {z1, . . . ,zn} of boolean variables
and often refer to the variables by their indices (i.e., we identify index i with variable
zi). An evaluation for Z denotes a function that assigns a boolean value (0 or 1) to any
variable zi ∈ Z. By a switching function over Z, we mean a function f which maps
any evaluation for Z to 0 or 1. If z ∈ Z then f |z=0 and f |z=1 denote the cofactors of
f which arise by fixing the assignment z �→ 0 and z �→ 1 respectively. For instance, if
f = z1 ∧ (z2 ∨ z3) then f |z1=0 = 0 and f |z1=1 = z2 ∨ z3.

The fact that there is no data structure for switching functions that is efficient for all
switching functions becomes clear from the observation that the number of switching
functions over Z grows double exponentially in the size of Z. An explicit representation
of switching functions using truth tables seems coherent, but a truth table for a switching
function with n variables consists of 2n lines and consequently its space complexity
grows exponentially in the number of variables. Implicit descriptions, like propositional
logic formulas and binary decision diagrams can be much more efficient.

Binary decision diagrams are a graph based representation of switching functions
which rely on the decomposition of switching functions in their cofactors according to
the Shannon expansion f = (¬z∧ f |z=0)∨ (z∧ f |z=1). Formally, a BDD is an acyclic
rooted directed graph where every inner node v is labeled with a variable and has two
children, called the 0-successor and 1-successor. The terminal nodes are labeled with
one of the truth values 0 or 1. In ordered BDDs (OBDD) [8], there is a variable ordering
π = (zi1 , . . . ,zin) which is preserved on any path from the root to a terminal node. That
is, if v is an inner node labeled with variable zi� and w a child of v which is non-terminal
and labeled with variable zir then zi� appears in π before zir , i.e., i� < ir. In the sequel,
we shall use the notation π-OBDD to denote an OBDD relying on the ordering π and
we refer to any inner node labeled with variable z as a z-node.

The switching function represented by a terminal node agrees with the correspond-
ing constant 0 or 1. The switching function of a z-node v with 0-successor w0 and
1-successor w1 is fv = (¬z ∧ fw0)∨ (z ∧ fw1). The switching function fB represented
by an OBDD B agrees with the switching function for its root node. Thus, given
an evaluation for Z, the truth value under fB is obtained by traversing B starting
in its root and branching in any inner node according to the given evaluation. Fig-
ure 1 depicts two π-OBDDs with the variable ordering π = (z1,z2,z3) for the function
f = (z1 ∧¬z2 ∧ z3)∨ (¬z1 ∧ z3 ∧ z2) . In the OBDD on the left, both z3-nodes represent
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Fig. 1. OBDD and ROBDD

the same cofactor, namely f |z1=0,z2=1 = f |z1=1,z2=0 = z3. Thus, a further reduction of
the shown OBDD is possible by identifying the two z3-nodes which yields the reduced
OBDD (ROBDD) shown on the right. Intuitively, A OBDD is called reduced if it does
not contain any redundancies. Formally, an ROBDD B denotes an OBDD such that
fv �= fw for all nodes v, w in B with v �= w. Given an π-OBDD, an equivalent π-ROBDD
is obtained by identifying terminal nodes with the same value, identifying z-nodes with
the same successors and eliminating all inner nodes where the 0- and 1-successor agree.

π-ROBDDs yield a universal representation for switching functions. (This follows
from the fact that the above reduction procedure applied to the decision tree for a switch-
ing function with ordering π yields an π-ROBDD.) Moreover, the representation by π-
ROBDDs is canonical up to isomorphism because the node-set of a π-ROBDD stands
in one-to-one correspondence to the set of cofactors f |zi1 =b1,...,zik

=bk that can be ob-

tained from f by assigning values to the “first” variables of π 1. (Here, the range for k
is 0,1, . . . ,n, and b1, . . . ,bk ∈ {0,1}.)

ROBDDs yield a minimized OBDD-representation for a given switching function,
provided the variable ordering is viewed to be fixed. However, by varying the ordering
π the size of the BDD can be influenced. Figure 2 illustrates this observation by display-
ing two ROBDDs for the same switching function f = (x1 ∧ x2)∨ (y1 ∧ y2)∨ (z1 ∧ z2)
using different variable orderings. In the worst case, a ROBDD can have exponential
size according to the number of variables n. There are functions, e.g. the middle bit
of multiplication, whose ROBDD representation has exponential size for every variable
ordering. Other functions, e.g. the most significant bit of addition, can vary between lin-
ear and exponential size depending on the chosen variable ordering while the number
of any ROBDD for symmetric functions (e.g. n-ary disjunction or the parity function)
is at most quadratic. See [9] and e.g. the text books [33, 48] for a detailed discussion of
the complexity of ROBDDs.

Shared BDDs. Most BDD-packages follow the approach of [35] who suggested the si-
multaneous representation of several switching functions in one reduced graph (called

1 Some of these cofactors might agree in which case they are represented by the same node
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shared or multi-rooted BDD) where the ROBDDs of the represented functions are re-
alized as subgraphs and share the nodes for common cofactors. With several additional
implementation tricks (appropriate hash tables, the ITE-operator to treat all boolean
connectives, negated edges, etc.) the manipulation of switching functions and other
BDD-based calculations can be realized efficiently, such as checking equivalence of
switching functions in constant time or performing boolean combinations in time poly-
nomial in the sizes of the ROBDDs for the arguments.

Throughout the paper the term BDD will refer to a shared BDD with negative edges.
(This also applies for the number of BDD-nodes in the experimental results.)

The variable ordering problem. For the wide range of functions where the BDD-sizes
range from polynomial to exponential, the variable ordering has an immense importance
for BDD-applications, not only for reasons of memory requirement but also for the run-
time of BDD manipulation operations. Beside some heuristics that compute a variable
ordering from a given circuit description there is a wide range of dynamic reordering
algorithms that attempt to improve the given variable ordering. The problem of finding
an optimal variable ordering for a given BDD is known to be NP-complete [6, 45]. The
best known algorithm that determines an optimal variable ordering requires exponential
time [20]. However, there are several Greedy-heuristics that might return a suboptimal
ordering. All these reordering algorithms are based on sequentially exchanging pairs
of neighboring variables. This basic swap operation induces only local changes to the
involved variables and can be carried out in constant time for each node that has to be
handled. Thus, the running time of the operation swap(z,z′) on the BDD B with or-
dering π, where z and z′ are adjacent in π, is linear in the number of z-nodes and the
number of their incoming edges in B . Using appropriate sequences of swap operations,
any variable ordering can be transformed into another one.



6 Wolfgang Lenders and Christel Baier

One of the most commonly used deterministic heuristics for BDD minimization is
Rudell’s sifting algorithm [41] . The basic idea of sifting is to move each variable suc-
cessively through the whole variable ordering and eventually leave it at the position that
yields the best BDD size. This procedure can be repeated as long as the variable order-
ing changes (iterated sifting). Several additional heuristics can be used to improve the
efficiency of the sifting algorithm. Most popular is the use of a maximum growth factor
c which stops the movement of a variable in one direction if the BDD-size becomes c-
times larger than the original one. In our genetic algorithm, we shall use (non-iterated)
sifting as hybridization technique with small maximum growth factors c. With such a
choice for c, the sifting procedure is quite fast and searches the local optimum for any
variable in its neighborhood. In fact, we made good experience with a local search that
we obtain by choosing max growth factor c = 1.

Genetic algorithms for the variable ordering problem rely on a representation of the
variable orderings in permutation form. The main genetic operations used in the algo-
rithm proposed in [15] are (i) partially matched crossover (PMX) [22] which selects
a matching section between two cutpoints and uses exchange operations to make one
parent’s matching section assimilate the other’s, (ii) mutation which exchanges the po-
sitions of two variables, and (iii) inversion [26] which selects at random two cutpoints
and reverses the ordering in the enclosed segment. To improve the efficiency, [16, 46]
suggest to skip crossover techniques and use sifting as a “normal” operation instead2,
while [12] deals with a parallel genetic algorithms with PMX and mutation as main
operations. Other additional techniques to achieve a speed-up are proposed in e.g. [24].

Our approach where sifting serves as hybridization technique should be contrasted
to the approach of [16, 46] where sifting serves as a “normal” operation which is chosen
with a probability of 50% and executed with the maxgrowth factor c = 2. In our setting,
we deal with a minimized version of sifting that only serves for a local search in the
surrounding of an offspring generated by a crossover operation. In fact, by choosing
the maxgrowth factor c = 1 we only look for the nearest local optimum of any variable
which makes the sifting-phase much faster than with higher maxgrowth factors (such
as c = 2).

3 A Genetic Algorithm for the Variable Ordering Problem

In this section, we summarize the main features of our implementation of a genetic
algorithm for the BDD minimization problem. We realized the standard schema for
evolutionary algorithms with hybridization, sketched in Figure 3, using several genetic
operations. We adapted several techniques for evolutionary algorithms suggested some-
where else in the literature and developed a new crossover technique (see Section 4) as
well as a graph-algorithmic approach for the design of an efficient schema for the fitness
computation (see Section 5).

2 More precisely, the main “proper” genetic operation in [16, 46] is inversion, but they skip the
crossover techniques, and use mutation only if the offspring is equal to the parent element.
In [16] some additional problem-specific recombination and mutation operators have been
used for incompletely specified boolean functions. As we shrink our attention to completely
specified function these techniques are not applicable in our setting
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Genetic Algorithm with Hybridization
Input: Population p as a collection of individuals
Output: Individual i with “good” fitness
initialize(p)
evaluateFitness(p)
i = fittestElementOf(p)
REPEAT
selectParents(p)
recombination(p) (* crossover and inversion *)
mutation(p)
evaluateFitness(p) (* see section 5 *)
hybridization() (* sifting with maxgrowth c = 1 *)
i = fittestElementOf(p)

UNTIL(i was not improved)

Fig. 3. A hybrid genetic algorithm

The population size is parametric in our implementation. Even for large circuits, we
made good experience with small population sizes, such as 8 individuals per population
(see Section 6). The initial population is chosen at random. Techniques that derive a
promising ordering from the topology of a circuit description (e.g. the fanin heuristic
[30] or weight heuristic [35]) could be used in addition. Also an improvement of the
initial population with deterministic reordering algorithms (such as sifting or window
permutation) could be integrated, as e.g. in [15].

Recombination. Beside the partially matched crossover (PMX) [22], which is also
used in [15] and [12], we consider three other crossover techniques. Order crossover
[13] chooses n/2 pairwise different positions and copies the genes at the selected posi-
tions to the offspring, and finally, fills up the gaps using the missing genes in the order
they are found in the second parent. In general, the offspring under order crossover
assimilates the first parent more than the second. Another version of order crossover in-
corporates cutpoints instead of randomly selected positions. Every element between the
two cutpoints is copied from the first parent, the elements outside the cutpoints are filled
up with the missing elements, preserving the second parents’ order. This variant has the
benefit of being less disruptive. Cycle crossover [38] attempts to retain the original posi-
tion of genes in their parents. This is achieved by continuous copying of genes from one
parent until the end of a cycle is reached, then switching and continuing from the other
parent. In rare occasions the offspring can be equal to one of its parents. This case has
to be combined with forced mutation to achieve a modification in the next generation.
In addition, we implemented alternating crossover, that will be explained in Section 4,
and the inversion operator [26], which reverses the fragment of a given variable ordering
between randomly chosen cutpoints, as an asexual recombination technique.

Mutation. Mutation of a permutation means the exchange of the positions of two vari-
ables by appropriate swap-operations. The approach we have chosen in our implemen-
tation first takes a general decision whether a given offspring is to be mutated or not.



8 Wolfgang Lenders and Christel Baier

If so, a level of mutation is chosen and expressed as a number of variable exchanges
to be executed. The positions of the variables to be exchanged are picked randomly,
also multiple selection of the same variable is possible. This approach is efficient in
implementation and execution, and it resembles the original mutation scheme. A forced
mutation in case a crossover does not generate (enough) differences between offspring
and parents is available. For measuring “differences”, a distance is defined in Section 5.

Fitness scaling. Choosing the BDD size as a natural measure for the fitness of a vari-
able ordering seems straightforward. Nevertheless the fitness values will be “negated”,
conducted by setting fitness(π) = max_bdd_size_found − bdd_size(π), for implemen-
tation reasons, which also retains the comfort of speaking of a higher fitness as a better
one, whereas a higher BDD size would imply a worse variable ordering. In Section 5,
we will explain our new scheme to minimize the number of swaps necessary for fitness
calculation by a distance minimizing strategy.

To handle the problem of premature convergence3 or the problem of fitness values
that are too close to each other (which can happen in “late” populations, also in the
non-premature case, in particular for small population sizes), we adapt the approach
of Goldberg [23] and use a linear scaling mechanism. That is, we replace the original
fitness function f by the scaling function f ′ = a f +b by first fixing f ′ (avg) to f (avg),
which ensures that each not less than average individual obtains a scaled value ≥ 1
and is therefore guaranteed a mating opportunity in a subsequent remainder selection
scheme. Toward the end of a GA’s run, the population has largely converged. In this
environment, the maximum fitness is generally close to the average fitness, whereas
recombination may generate lethals, i.e. individuals with a far below average fitness.
These individuals are likely to be scaled to negative fitness values. These exceptions
are caught and the affected individuals set to zero fitness. The resulting fitness values
are sampled using stochastic universal sampling [3, 4] by default, while other sam-
pling methods, such as roulette wheel selection or remainder sampling with or without
replacement, are available upon selection.

A variant with the full sifting procedure. As pointed out in [16, 46], the efficiency
of evolutionary reordering algorithms as in Fig. 3 can be increased by using “ordinary”
sifting (with large maxgrowth factor, say c = 2) as an alternative in the recombination
phase. As mentioned before, the aim of our paper is to study the gain of the proper
genetic operators, and therefore, we do not consider this option here.

4 Alternating Crossover

We suggest a new crossover technique, called alternating crossover, which in combina-
tion with sifting as hybridization technique turned out to be very successful. Alternating
crossover generates offspring by copying genes alternately from the parents and inter-
leaves them this way. See Figure 4. This creates offspring in which genes that were ad-
jacent in one parent are generally separated by one or more genes from the other parent.

3 Premature convergence e.g. occurs if in the initial population one of the randomly selected
individuals represents a fairly good solution already which is far away from the other individ-
uals and if this “superhero” is chosen multiple times for mating and is going to spread its genes
throughout the population instantly
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Alternating Crossover
Input: Parents p1 and p2 of length n
Output: Offspring π
done = {}
candidate = p1.atPosition(0)
position_p1 = 0
position_p2 = 0
FOR (i = 0) TO (i = n−1) DO
WHILE (candidate ∈ done) DO
IF (i mod 2 = 0) THEN

candidate = p1.atPosition(position_p1)
position_p1 = position_p1 +1

ELSE
candidate = p2.atPosition(position_p2)
position_p2 = position_p2 +1

FI
OD
done∪{candidate}
π.atPosition(i) = candidate

OD
return π

Fig. 4. Alternating Crossover

Under normal circumstances this disruption of schemata would be considered harmful,
but in conjunction with sifting with maxgrowth factor c = 1 as hybridization algorithm
it bears good results. Sifting performs swaps of neighboring variables and retains the
exchange if it was beneficial. This way, every separation of genes introduced during the
application of alternate crossover can be revoked if necessary, while on the other hand
many genes are tested in the surroundings of their current position. Therefore, alter-
nating crossover in conjunction with sifting exploits the offspring’s local neighborhood
thoroughly.

Figure 5 depicts an example of an alternating crossover application and highlights
the genes in the offspring that were adjacent in a parent and are now in sifting distance,
i.e. their distance is less than 2. Thus even our minimized sifting procedure is able to
restore the original ordering if necessary. (Here, we identify variable zi with its index
i.) We call two genes a and b in sifting distance, when they can be made adjacent by no
more than two exchanges of neighboring genes, i.e. when there are at most two genes
between a and b. Our minimized sifting procedure moves each gene at least one step
in each direction and is therefore able to recover the original ordering should it have
been the most beneficial one. In the following example, let the original ordering with
adjacent genes a and b be better than the newly generated one:

original ordering: x a b y

newly generated by alternating crossover: a x y b

exchange neighboring variables a and x: x a y b

exchange neighboring variables b and y: x a b y
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Fig. 5. Example for the operation of Alternating Crossover

Since we said the original ordering to be the most beneficial one, sifting would have
executed exactly these two variable exchanges.

5 Fitness Calculation via an Optimized Visiting Order

Obtaining the actual fitness value for a variable ordering involves generating the cor-
responding binary decision diagram via an appropriate sequence of swap-operations.
This can be a costly procedure if the ordering differs clearly from the current order. To
minimize the number of swaps necessary for fitness calculation we suggest a strategy
that attempts to find an efficient visiting order of the individuals of the new population
(variable orderings) for which the fitness values (BDD-sizes) are still unknown.

In principle, fitness can be calculated at different times during the run of a genetic
algorithm. Calculating fitness for each individual directly after it has been generated has
the benefit of being able to decide about the individual’s fate at once. If, for example,
the offspring generated by a crossover is way worse than its parents it can be discarded
in favor of the better parent. On the other hand, this approach does not allow alterations
in the order the offspring is tested, which otherwise can be optimized. In the sequel, we
explain a strategy to optimize the visiting order of the individuals by providing a formal
definition for the distance between variable orderings.

A distance function for variable orderings. In the sequel, we identify any swap-
operation with the index of the variable to be swapped with its right neighbor. Thus,
for a variable set Z = {z1, . . . ,zn} of cardinality n, we denote any swap-operation by an
integer s ∈ {1, . . . ,n−1}. We write π �s π′ to denote that swap-operation s transforms
the variable ordering π into the variable ordering π′. By a swap sequence, we mean any
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finite sequence σ = (s1,s2, . . . ,sl) of swap-operations. We refer to |σ| = l as the length
of σ. σ is said to transform π into π′, denoted π �σ π′, if the sequential composition of
the swaps si transforms π to π′, i.e.,

π �σ π′ if π �s1 π1 �s2 π2 . . .�sl πl = π′.

σ is called a minimum swap sequence for (π,π′) if σ transforms π to π′ and if there
is no shorter swap sequence than σ that also transforms π to π′. The distance δ(π,π′)
between two variable orderings π and π′ is defined as the length of a minimum swap
sequence for (π,π′). That is, δ(π,π′) = min

{|σ| : π �σ π′}.

Proposition 1. δ is a metric on the the set of variable orderings. That is,

1. δ(π,π′) = 0 if π = π′
2. δ(π,π′) = δ(π′,π)
3. δ(π,π′) ≤ δ(π, π̂)+ δ(π̂,π′)

The proof of Proposition 1 is straightforward and omitted here. The orderings with
maximum distance between each other are the pairs

(
π,π−1

)
, were π−1 is the inverse

ordering of π.

Proposition 2. If π and π′ are variable orderings for a variable set of cardinality n
then

δ(π,π′) ≤ δ(π,π−1) =
n(n−1)

2

Proof. The fact that δ(π,π′) ≤ (n−1)+ (n−2)+ . . .+ 1 = n(n−1)
2 is clear as we may

consider the swap sequence which first moves the last variable of π′ with at most (n−1)
swaps at position n, then moves the variable at position n − 1 in π′ with at most n − 2
swaps at its final position n−1, and so on.

It remains to provide the argument why no swap sequence shorter than n(n−1)
2 trans-

forms π into π−1. Let π and π′ be arbitrary orderings for variables z1, . . . ,zn and ki the
number of variables z j such that i �= j and (i) zi occurs in π before z j and (ii) z j occurs
in π′ before π′. That is, π = (. . . ,zi, . . . ,z j, . . .) and π′ = (. . . ,z j, . . . ,zi, . . .). Then, any
swap sequence that transforms π into π′ has to perform at least ki swaps that exchange
zi with its right neighbor. Thus, δ(π,π′) ≥ k1 + . . .+ kn. In the case, π′ = π−1, we have
ki = n− i, Thus, δ(π,π−1) ≥ (n−1)+ (n−2)+ . . .+ 1 = n(n−1)/2. �

Deriving an efficient fitness calculation scheme from the distance graph. The above
proposition shows that inversion, a powerful genetic operation, requires a number of
swaps quadratic to the length of the inverted segment. This makes an immediate fitness
rating of the offspring less desirable in comparison to the opportunity to optimize the
order of visiting the individuals. Our strategy for reducing the number of variable swaps,
that have to be carried out for computing all fitness values by finding an advantageous
visiting order for the individuals, is based on a distance graph, a complete graph where
the individuals for which the fitness still has to be computed form the vertices, while the
edge between two vertices π1 and π2 is marked with their distance δ(π1,π2). (Because
of the symmetry of δ the distance graph can be viewed as an undirected graph.) An
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Fig. 6. A distance graph for orderings with three variables

example for a distance graph for three variables4 is provided in Figure 6. Usually, the
distance graph will not contain all possible vertices as suggested by the figure, but
only those vertices coding for members of the group of offspring whose fitness is still
unknown.

Now we could ask for an optimal visiting strategy for the individuals, i.e. a visiting
order that visits all nodes of the distance graph and which minimizes the sum of all
covered distances (the total number of swap operations which have to be carried out).
Since we are looking at an instance of the traveling salesperson problem, the question
for an optimal visiting order is computationally hard (NP-complete). Instead, we may
adapt any heuristic algorithms for the TSP to obtain an efficient, possibly sub-optimal
visiting order of the vertices in the distance graph. In our implementation, we employed
the nearest neighbor heuristic [34] to decide which individual is to be considered next
until all fitness values are computed. Our experiments showed that this procedure means
a major speed-up towards the regular visiting order, because the calculation of fitness
values is one of the most time-consuming but basic and irreplaceable parts of the mini-
mization algorithm.

A variant of the graph-based visiting schema. [16, 46] observed the problem that
variable orderings generated by the standard crossover techniques (PMX, OX or CX)
might lead to BDDs of unfeasible size. To avoid this problem, we suggest the following
variant of our visiting algorithm. If during the execution of a minimum swap sequence
from one vertex π to another vertex π′ of the distance graph the BDD-size is larger than
a certain threshold then we may discard π′ and, if necessary, generate a new variable or-
dering π′′ via genetic operations (recombination, mutation and sifting as hybridization
technique). In this case, of course, the visiting strategy has to be revised dynamically.
The threshold can either be a fixed upper bound for the BDD-size or can be determined

4 Again, we identify any variable with its index. E.g., node 123 stands for the ordering π =
(z1,z2,z3)
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by a function depending on the fitness values that are already known. Another alterna-
tive for the threshold is to use a maxgrowth factor (as it is standard for sifting) for the
swap sequences that are executed in the visiting strategy.

In addition, the best intermediate ordering π̂, obtained by executing the minimum
swap sequence from node π to node π′ in the distance graph, can be used as an additional
candidate for the next generation, provided it is better than π and π′.

Integration of other advanced techniques. Our graph-algorithmic approach for the
fitness computation can easily be modified to integrate the three methods suggested
by Günther and Drechsler [24] to accelerate evolutionary algorithms for sequencing
problems.

(1) For an approach where the BDDs for several variable orderings are stored to speed
up the fitness calculations (as proposed by [24]) we may also deal with a distance
graph, but now equipped with another weight function for the edges. Let π1, . . . ,πm

be the variable orderings for which corresponding BDDs are stored. Then, we may
use the weight function δ̂(π,π′) = min

{
δ(π,π′), δ(πi,π′) : i = 1, . . . ,m

}
which

captures the possibility to start the computation of the π′-BDD with one of the
stored BDDs rather than the π-BDD.

(2) Following [24], we may also use computed-tables that store the BDD-sizes for
already considered variable orderings. In our setting, this means a simplification of
the distance graph which only contains the orderings not considered so far.

(3) The third method suggested in [24] relies on the use of upper and lower bounds for
the BDD-sizes that will be obtained through local modifications of the ordering [7].
As shown in [24], this technique in combination with multiple representation as in
(1) and computed-tables as in (2) can lead to a speed-up around 80%. This idea can
be integrated in our graph-based approach as follows bu choosing a constant d and
modifying the visiting strategy as follows: If the current node is π then we use such
approximate fitness values rather than the precise BDD-sizes for all (possibly, but
one) orderings π′ with δ(π,π′) ≤ d.

6 Experimental Results

To evaluate the performance of the several recombination techniques (crossover, inver-
sion) and the influence of the parameter setting, we implemented the schema sketched
in Fig. 3. For all tests we used excerpts of the LGSynth93 benchmark suite (see Fig. 7),
obtainable from [31]. We carried out ten runs of our genetic algorithm and present the
average BDD size as well as the best result we obtained, in order to visualize the vari-
ation in the results. The indicated time shows CPU seconds on a Pentium IV 2.4 GHz
PC with 512 MB of RAM running the JJS-BDD package [27] on Linux.

Unless stated otherwise, in all tests the parameters of our genetic algorithm were
chosen as follows. The population size is 8, the maxgrowth factor for hybrid sifting
is c = 1. We carried out experiments with growth factors of 1.1 and 1.2 (not shown
here), which resulted in almost identical5 results, but bearing a longer runtime. For the

5 One benchmark resulted in a BDD two nodes smaller. sizeavg results were slightly better in
most benchmarks
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benchmark original inputs outputs
BDD size

apex1 6785 45 45
apex2 13418 38 3
apex3 53365 54 50
apex4 1040 9 19
apex5 3944 114 88
apex6 1993 135 99
apex7 1775 49 37
comp 203198 32 3
cps 1869 24 109
dalu 11178 75 16

benchmark original inputs outputs
BDD size

des 10771 256 245
duke2 596 22 29
e64 1500 65 65
ex4p 994 84 28

i5 1032 133 66
i6 388 138 67
i7 559 199 67
i8 10366 133 81

vg2 735 25 8

Fig. 7. Benchmarks

order partially matched alternating cycle inversion
Benchmark

size sizeavg time size sizeavg time size sizeavg time size sizeavg time size sizeavg time
apex1 1253 1255 40 1246 1258 52 1250 1253 39 1270 1270 33 1246 1253 101
apex2 354 372 32 318 327 54 328 338 22 321 345 23 392 395 22
apex3 841 841 20 839 841 28 839 841 23 841 841 20 840 841 30
apex4 889 889 2 889 889 2 889 889 2 889 889 2 889 889 2
apex5 1044 1044 85 1044 1050 113 1044 1044 72 1073 1082 50 1086 1092 68
apex6 523 532 58 513 527 89 510 531 55 524 531 78 575 587 81
apex7 214 214 6 214 214 6 214 214 6 216 217 5 214 214 6
comp 101 107 33 110 125 28 101 110 36 122 144 37 143 143 20
cps 971 971 18 971 972 12 971 974 13 977 976 10 1010 1010 14
dalu 785 798 157 689 689 248 689 701 138 689 689 205 699 711 192
des 2983 3012 988 2971 2977 723 2958 2974 756 2992 3015 601 2987 2992 953

duke2 336 336 3 336 336 4 336 336 4 336 352 3 336 336 4
e64 129 129 12 129 129 12 129 129 12 129 129 11 129 129 16
ex4p 463 468 16 466 471 26 459 470 16 460 481 17 465 468 21

i5 134 134 17 134 134 16 134 134 18 134 134 18 134 134 35
i6 209 209 14 209 209 15 209 209 15 209 209 14 209 209 14
i7 334 334 39 333 333 59 333 335 50 334 335 52 335 335 38
i8 1277 1280 163 1280 1281 196 1277 1281 149 1285 1344 150 1280 1281 206

vg2 80 80 2 80 80 2 80 80 2 84 84 2 84 84 3

Fig. 8. Comparison between five recombination operators

selection method, we used stochastic universal sampling and realized the concept of
elitarism for one individual.

Comparison of the crossover operators. To compare the types of crossover (OX,
PMX, CX and AX) and inversion, we restricted our algorithm to the use of a single
operator. An inspection of the results for the five operators in Fig. 8 yields that the
runtimes all assimilate each other. To compare the quality of the results we take only
the best BDD size achieved during the ten runs into account.

order partially matched alternating cycle inversion
11 14 17 7 7

The above table illustrates for how many benchmark circuits each crossover yielded a
best result. (If more than one crossover achieved the best result we awarded a point to
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each of them.) Thus, alternating crossover bears the best results, followed by partially
matched crossover. The combination of different crossover operators is, however, the
most promising approach, since the sequential application of different crossovers on the
same individual allows more possible outcomes than repetitive application of the same
operator. This can also be seen from the results shown in the left column of Fig. 10.
For several benchmarks the best result is obtained using a combination of crossovers,
in ex4p for example, the combination reaches a BDD size of 242 BDD nodes, while the
best result of a single operator, in this case alternating crossover, is 459 BDD nodes.
Other examples for the superiority of a combination of crossovers to the use of a single
operator are apex1, apex3, comp and des.

Given our results on the comparison of the recombination techniques (Fig. 8), we
argue that the restriction to inversion as the only proper genetic operation in the re-
combination phase as suggested in [16, 46] shrinks the gain of evolutionary reordering
techniques. The motivation given in [16, 46] for omitting crossover techniques was
their excessive runtime requirements. However, a comparison of the the time-columns
in Fig. 8 shows that – in combination with our graph-based fitness evaluation technique
– the crossover techniques are in average no worse than inversion. (Additionally, the
generation of too large BDDs can be prevented as described in Section 5.)

regular parameters alternative parametersBenchmark
size time size time pop. size

apex1 1246 31 1244 828 120
apex2 306 25 302 433 114
apex3 837 24 837 397 120
apex4 889 2 889 5 27
apex5 1044 62 1044 793 120
apex6 498 45 507 601 120
apex7 214 7 214 62 120
comp 95 33 125 221 96
cps 971 11 971 58 72
dalu 689 230 689 1733 120
des 2941 1173 2946 9229 120

duke2 336 4 336 19 66
e64 129 11 129 103 120
ex4p 242 27 460 182 120

i5 134 16 134 204 120
i6 209 15 209 143 120
i7 333 52 333 408 120
i8 1277 187 1277 4366 120

vg2 80 2 80 11 75

Fig. 9. Regular versus alternative parameters

Parameter setting. To illustrate the benefits of our parameter setting and graph-based
fitness evaluation technique, we performed tests where we used the parameter setting
used in [15]. Here, the population size is set to min{120,3 ·population size}. The max-
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genetic algorithm sifting siftingiterBenchmark
size sizeavg time size time size time

apex1 1246 1269 31 1381 0.5 1270 3
apex2 306 342 25 589 0.5 502 2
apex3 837 864 24 851 0.2 850 0.8
apex4 889 889 2 889 0.1 889 0.1
apex5 1044 1076 62 1076 0.7 1073 2
apex6 498 569 45 532 0.6 520 3
apex7 214 241 7 297 0.1 248 0.2
comp 95 112 33 95 56 95 68
cps 971 971 11 1010 0.2 1010 0.3
dalu 689 697 230 1552 478 1346 534
des 2941 2968 1173 3242 36 3051 39

duke2 336 340 4 395 0.1 360 0.3
e64 129 129 11 155 0.2 129 0.4
ex4p 242 242 27 512 0.2 507 0.6

i5 134 134 16 134 0.3 134 0.6
i6 209 209 15 215 0.3 209 2
i7 333 334 52 335 0.9 335 2
i8 1277 1280 187 2104 2 2092 5

vg2 80 80 2 157 0.1 152 0.9

Fig. 10. Comparison between our genetic algorithm and sifting

imum growth factor for hybrid sifting is set to c = 2. Elitarism is applied to the better
half of the population. The results in Figure 9 demonstrate that the alternative choice
of parameters rarely achieves a better result than our choice. The best result, obtained
for benchmark apex2, is only four nodes smaller than our result. On the other hand,
the alternative parameters results in a runtime which exceeds ours generally by factor
10 to 20. In summary, as Figure 9 shows, our genetic algorithm with crossover and the
graph-based visiting strategy performs very well, already with a small population size.

Comparison of our genetic algorithm with “pure sifting”. For a comparison of the
schema in Fig. 3 which only uses crossover (but no inversion) against deterministic re-
ordering heuristics, we assigned probability 0.6 to alternating crossover, and 0.2 to both
partially matched and cycle crossover. We obtained similar results when cycle crossover
is replaced with order crossover or when assigning the same weight to them. As before,
the maxgrowth factor for hybrid sifting is 1. On the other hand, we considered sifting
and iterated sifting with maxgrowth factor 1.3. Using our genetic algorithm, the result-
ing BDD in general is considerably smaller than it is after application of sifting. In
some examples like apex2 and dalu we even achieve a bisection of the BDD’s size. In
no case is the best result of ten GA runs worse then the result achieved by sifting. This
positive result is obtained at the expense of runtime, which in average is an order of
magnitude higher than it is for sifting, on the other hand for benchmarks comp and dalu
the runtimes for sifting even exceed those of our GA. In average, however, runtime for
our GA is longer, though it generates a substantially smaller BDD.
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In his diploma thesis [29], the first author also reports about experiments with the
window permutation algorithm [21]. The obtained results agree with the common obser-
vation that window permutation is fast but a rather weak minimization heuristic. Thus,
our genetic algorithm yields much better results in terms of quality, in some cases, like
comp, des and dalu for instance, the BDD-sizes were even only a fraction (< 1%) of
those returned by window permutation, on the price of a longer computation time.

7 Conclusion

The goal of the paper was to study in detail the gain of genetic operations in the context
of dynamic reordering algorithms for BDDs. We discussed several crossover variants
and suggested a new one, called alternating crossover, which turned out to be very useful
in combination with a “minimized version” of sifting as hybridization technique. In
addition, we proposed a graph-algorithmic approach to speed up the fitness evaluation
which, in case of the variable ordering problem for BDD, is a time-consuming step.
In contrast to the observations made by [16, 46] our experiments (see Section 6) show
that a random selection between crossover techniques and inversion yields better results
than the sparse use of “proper” genetic operations as in [16, 46].

Using the proposed techniques, runtime requirements for genetic reordering algo-
rithms were brought down to a reasonable level, although, concerning the computation
time, our techniques are still not competitive to deterministic reordering heuristics such
as sifting or window permutation. However, our approach nicely fits in the framework
of Drechsler et al. [16, 46] who pointed out that the mixture of genetic techniques
with ordinary sifting yields a good balance between speed and quality, as it captures
the advantages of both genetic algorithms and comparably fast deterministic reordering
algorithms. In addition, we explained that other methods that improve the efficiency,
e.g. those suggested in [24], can easily be integrated.

There are various directions in which our algorithm (and its implementation) could
be extended. Although we made good experience dealing with sifting and maxgrowth
factor 1 as hybridization technique, window permutation is another candidate. Another
direction is the consideration of a group-preserving variant of our algorithm. In fact,
there are several BDD-applications where not all variable permutations should be re-
garded as potential solutions, but only those that group together certain variables. One
example are switching functions with symmetric inputs where typically good orderings
put the variables of any symmetry group together. Group-preserving orderings play also
a crucial role for symbolic model checking where there are several good reasons (see
e.g. [19]) to group any state-variables and its copy (the corresponding next-state vari-
able) together. For such applications where we are given disjoint groups of variables,
such that for some application-dependent reasons6 the variables in either group should
be placed together, we suggest to apply the same genetic operations (crossover, muta-
tion, inversion) but with groups of variables rather than single variables. E.g., in case of
alternating crossover, we may apply the schema shown in Figure 4 with groups of vari-
ables rather than single variables. In a similar way, the other crossover techniques can

6 To treat symmetries, known methods from the literature to derive the symmetry groups auto-
matically from a given BDD can be applied here as well
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be modified to treat groups of variables. In the hybridization step, we may apply group
sifting [40] which relies on the same schema as sifting but moves groups of adjacent
variables rather than single variables.

Another future direction is to check whether the concepts of alternating crossover
and the graph-algorithmic approach for the fitness calculation are also useful for other
permutation-problems.
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Abstract. This paper looks at proofs concerning Gray codes and the locality
of local search; it is shown that in some cases such proofs can be generalized to
Binary and real valued encodings, while in other cases such proofs do not hold for
Binary encodings. The paper also looks at a modified form of Quad Search that is
proven to converge in under 2L evaluations to a global optimum on unimodal 1-D
bijective functions and to a local optimum on multimodal 1-D bijective functions.
Quad Search directly exploits the locality of the Gray code representation.

1 Introduction

There have been numerous debates about the relative advantages of search algorithms
that use Gray code representations compared to Binary and real-valued representations
[CS88] [Dav91]. Reflected Gray codes are characterized by a symmetric reflection
property, such that a point in one half of a 1-D space folds onto its neighbor in the
other half of the search space. This property allow the construction of relatively simple
recursive proofs related to the time required to convergence to a local optimum under
local search, as well as the convergence of a specialized search strategy called Quad
Search [WGW03]. The reflection properties of Gray code are also the foundation for
another (new) proof that counts the number of neighbors which in expectation are in the
same basin of attraction (or quasi-basin) as a given reference point; the proof assumes
one is provided with information about the size of the basin of attraction relative to the
size of the search space.

A modified form of Quad Search algorithm is introduced that allows it to provably
converge to a local optimum when run on 1-D multimodal functions. An example shows
that the original form of Quad Search does not always converge to a local optimum
when searching 1-D multimodal functions.

But do these proofs imply that similar proofs do not hold for Binary representations?
And what about real valued representations? When possible we constructs similar con-
vergence proofs for Binary and real-valued representations. This paper also compares
the assumptions and special purpose operators that are needed for the various conver-
gence proofs.

New proofs are also presented concerning the likelihood of neighbors falling into
the “quasi-basin” around the point currently visited under local search. The significance
of these results relate to the No Free Lunch theorem [WM95] and the Christensen and
Oppacher ”Submedian Seeker” algorithm [C01].

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 21–36, 2005.
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2 Gray and Binary Encoding and Quadrants

Gray codes have at least two important properties. First, for any 1-D function (and in
each 1-D slice of any multidimensional problem) adjacent neighbors in the real space
are also adjacent neighbors in the Gray code hypercube graph [RW97]. Second, the
“standard Binary reflected Gray code” folds the search space in each dimension, cre-
ating a symmetric reflected neighbor structure [BER76] [RWB04]. For any reference
point i, there is exactly one neighbor in the opposite half of the search space. For ex-
ample, in a 1-D search space of points indexed from 0 to 2L − 1, the points i and
(2L − 1 − i) are neighbors. In effect, these neighbors are found by folding or reflecting
the 1-D search space about the mid-point between 2L−1 and 2L−1 + 1.

There are also reflections between each quartile of the search space. Starting at point
i in the first quartile of the search space we can define a set of four integer values where
each integer falls in a different quartile, or “quadrant” of the search space. The four
points are as follows:

i = i
(2L−1 − 1) − i = i ⊕ (2L−1 − 1)
(2L − 1) − i) = i ⊕ (2L − 1)

(2L−1 + i) = i ⊕ (2L − 1) ⊕ (2L−1 − 1)

(1)

where ⊕ denotes exclusive-or on the Binary encoding of the integer. Both 2L − 1 and
2L−1 − 1 are Hamming distance 1 from the string of all zeros. Therefore, moving from
point i to one of the other 3 points involves flipping the first bit, the second bit, or both.
Because exclusive-or just applies a bit-flip mask, this indexing scheme works regardless
of the quadrant in which the point i actually appears.

2.1 Quad Search

Consider a unimodal function encoded using an L bit Gray code. Any given point has
two neighbors in quadrants outside of its own quadrant; they are the points generated
by flipping the two high order bits. The highest order unfixed bit is called the major bit.
The second highest order unfixed bit is called the minor bit. Flipping any other bit must
generate a neighbor inside the current quadrant.

Let BB denote the first two bits that map to an arbitrary quadrant. In effect, the pat-
tern BB∗∗ . . . ∗, defines a hyperplane that corresponds to a (hypothetically) continuous
quarter, or quadrant of the search space. Let NBB refer to a point in quadrant BB. We
can flip the major bit to generate the point at NBB and the minor bit to generate the
point at NBB . We flip both bits to reach the point at NBB . Each point is in a different
quadrant, each with its respective index.

In Figure 1 the point located at X is a neighbor of point NBB that is located in
quadrant BB. X can be left or right of NBB . One of the 4 quadrant neighbors is the
current point from which the search is being carried out.

A previously published paper introduces the original Quad Search algorithm and
proves its convergence time [WGW03]. The new algorithm (see Figure 2) and the proof
presented here have been modified to evaluate fewer points and to allow convergence
proofs for multimodal 1-D functions. We express the problem in terms of minimization.
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XN BBBBN BBN N BB

Fig. 1. The neighbor structure across and within quadrants

\************************************************\
\* BEGIN ONE-DIMENSIONAL QUAD SEARCH ALGORITHM *\
\************************************************\

Step 1: Randomly select point NBB . Evalute point NBB and
its reflected neighbors NBB , NBB and NBB .

Step 2: Without loss of generality, relabel the points so that NBB is the best of these four points.

Step 3: Flip the third unfixed bit in NBB to create point X, and evaluate.
If f(X) < f(NBB) set CASE = 1; else CASE = 2.

/* Samples a reflected neighbor in quadrant BB */
/* CASE refers to Case 1 and Case 2 of the proof */

Setp 4: Let b represent the third bit in the best-so-far solution.
If b = 0 fix the minor (second) bit.
If b = 1 fix the major (first) bit.

/* The current best must be in quadrant BB. The third bit determines if */
/* the local optima is bounded by the leftmost or rightmost quadrant of BB. */

Step 5: Relabel the points so that the new best-so-far is denoted NBB and its reflected
neighbors N

BB
, N

BB
and N

BB
. Three of these points have been evaluated.

/* This follows from the Quad Search convergence proof. */

Step 6: If CASE = 1, the unevaluated point is at N
BB

. Evaluate N
BB

.
/* If CASE = 2, the additional point is not evaluated. */

Setp 7: If there are more than 2 bits unfixed bits, goto Step 3. Otherwise, STOP.

\***********************\
\* END QUAD SEARCH *\
\***********************\

Fig. 2. The Quad Search algorithm. The proof uses an exclusive-or transform. This makes the
proof more direct, but is not needed for the algorithm. However, the algorithm in the untrans-
formed space behaves differently in terms of when the major and minor bits are fixed. Since only
the first 3 bits are involved in both algorithm and proof, these can be shown to behave the same
by enumeration of the 16 possible conditions (8 bit patterns, and CASE = 1 or CASE = 2)

Theorem 1: Quad Search converges to the global minimum on bijective unimodal 1-D
functions and to a local minimum on multimodal 1-D functions after at most 2L − 1
evaluations from an arbitrary starting point.
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Proof: The proof is recursive in nature. Assume the search space contains at least 8
points, so that there are at least 2 points in each quadrant. After initializing the search,
we show the search space can be cut in half after at most 2 new evaluations.

Sample a point NBB and its reflected neighbors NBB , NBB and NBB .
Without loss of generalization, let NBB be the current best solution. Let Z repre-

sent a string of zeros of arbitrary length. There exists a bit mask, m, which relabels
the points

{
NBB, NBB , NBB, NBB

}
using exclusive-or so that the minimal neigh-

bor is represented by the string 000Z . The neighborhood structure is unchanged under
exclusive-or. Transforming all the points yields:

NBB ⊕ m = 000Z, NBB ⊕ m = 100Z, NBB ⊕ m = 010Z, NBB ⊕ m = 110Z

where ⊕ denotes exclusive-or. We sample one additional point at 001Z in quadrant 00.
We first deal with unimodal functions: note the minimum cannot be in quadrant 11.

Case 1. If f(000Z) > f(001Z) < f(010Z), then the global optimum must re-
side in quadrant 00 or 01. The major bit is fixed to 0 and the search space is
reduced. The points 000Z, 001Z, 010Z , become the points 00Z, 01Z, 10Z
in the reduced space. Only 2 additional points are needed to continue the
search. First we evaluate 11Z . Then the space is remapped again so that the
minimum of these 4 points is at 00Z. Then we evaluate 001(Z − 1).

Case 2. If f(100Z) > f(000Z) < f(001Z), then the global optimum must re-
side in quadrant 00 or 10. The minor bit is fixed to 0 and the search space is
reduced. The points 000Z, 001Z, 100Z , become the points 00Z, 01Z, 10Z
in the reduced space. We do not evaluate 11Z since we know f(100Z) >
f(000Z) < f(001Z) and the minimum of these 3 points is already at 00Z.
We evaluate only 1 additional point at 001(Z − 1).

After the first 5 evaluations, the search space contains 2(L−1) points. At each itera-
tion, the search space is cut in half after at most 2 new evaluations. After (L-3) iterations
the search space is reduced to at most 4 points, since 2(L−1)/2(L−3) = 4. However, at
this point, we have already evaluated 00, 01 and 10 (remapped so that 00 is the best
solution so far); therefore we do not evaluate 11. The total number of evaluations is at
most 5 + 2(L − 3) = 2L − 1. This proves convergence for the unimodal case.

To prove convergence for the multimodal case, it suffices to show that as sections
of the search space are eliminated, the remaining space is a continuous interval; if the
remaining space is a continuous interval of the original function (where the original 1-D
function is defined to wrap around), then cases 1 and 2 above show that the remaining
space contains a local optimum of the original function.

The following are specific Subcases of Case 1 and Case 2 above when the best so-
lution so far is an arbitrary quadrant. In this case, we don’t care where the best solution
so far is located, only which quadrants are actually eliminated.

Subcase 1a. Fixing the major bit to 1 eliminates quadrants 00 and 01.
Subcase 1b. Fixing the major bit to 0 eliminates quadrants 10 and 11.
Subcase 2a. Fixing the minor bit to 1 eliminates quadrants 00 and 10.
Subcase 2b. Fixing the minor bit to 0 eliminates quadrants 01 and 11.
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Note that under Gray code, the quadrants are (in order) 00, 01, 11, 10. Fixing the
major bit (Subcases 1a and 1b) eliminated either the left half of the right half of the
space, so that the reduced search space is a continuous interval of the search space at
the previous iteration. Fixing the minor bit to 1 (Subcases 2a) eliminates the first and
last quadrant, so that again the reduced search space is a continuous interval of the
search space at the previous iteration.

Only Subcase 2b “fragments” the search space into two parts, except quadrants 00
(the first) and 10 (the last) are adjacent in the wrapped Gray encoding. Note that in
Case 2 above, when a minor bit is set, we automatically eliminate quadrant 11 at the
next iteration. Therefore, after Subcase 2b occurs only two possible alternatives exist:
Subcase 1b or Subcase 2b must occur.

If Subcase 1b holds, the last half of the search space is eliminated, and if the space
was previously fragmented into two parts, one of those parts is discarded, making the
search space a continuous interval again.

If Subcase 2b holds again, the space is not remapped (the best known is already in
quadrant 00). Therefore, eliminating quadrants 01 and 11 again means that the search
space remains in two parts but still adjacent in the wrapped sense.

This means that the search space is never fragmented into more than two parts, and
those two parts must always be adjacent in the wrapped sense. Cases 1 and 2 both insure
that a local optimum is contained within the interval still to be searched. ��
Obviously, many functions are not bijections. If ties in evaluation are not too com-
mon, the algorithm should still display linear time convergence. In general, convergence
times that are less than exponential cannot be guaranteed if the space is largely flat.

As bits are fixed, the high order bits used in the computation refer to the two highest
order bits which remain unfixed. The major bit is always the leftmost bit that has not
been fixed. The minor bit is always the second bit from the left that has not been fixed.

2.2 Observations on the Search Behavior of Quad Search

The original Quad Search algorithm provides a form of local search that hybridizes
extremely well with genetic algorithms [WGW03]. However, the original version of
Quad Search has different behavior in Case 2 which can be summarized as follows.

Previous Case 2. When f(100Z) > f(000Z) < f(001Z), the minor bit is fixed
to 0. The points 000Z, 001Z, 100Z , becomes the points 00Z, 01Z, 10Z in the reduced
space. Evaluate 11Z and 001(Z − 1) and continue.

Note that string 11Z is evaluated in this version, even though the local optimum
is known to be in the interval between f(10Z) > f(00Z) < f(01Z). If f(11Z) <
f(00Z) then the search will move to string 11Z , but there is no longer an interval
known to include a local optimum.

This can cause the original Quad Search to converge to a point that is not locally
optimal on a multimodal function. The following example shows one can be as many
as 2L−2 − 2 positions away from a local optimum.

Assume we have N points numbered from 0...2L − 1. The quadrants correspond to
the following intervals.

0 ... 2L−2 − 1; 2L−2 ... 2L−1 − 1; 2L−1 ... 3(2L−2) − 1; 3(2L−2) ... 2L−1 − 1
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Assume we test reflected points located at 0, 2L − 1, 2L−1, 2L−1 − 1 and find

f(2L − 1) > f(0) < f(2L−1 − 1)

We next sample at location 2L−2 −1 and find f(2L−1 −1) > f(0) < f(2L−2 −1).
We eliminate half of the space from point 2L−2 to 3(2L−2) − 1.

The original Quad Search next sampled at reflection point 3(2L−2). Note this is not
required, since a local optimum is isolated in the interval 2L−1 − 1 ... 2L−2 − 1.

Assume f(3(2L−2)) < f(0) and the search moves to this new best-so-far. It is
possible for the function to be monotonically decreasing from point 3(2L−2) to 2L−1 +
1; thus, there can man be as many as 2L−2 − 1 improving moves leading to a local
optimum located in an eliminated quadrant.

Of course, the original version of Quad Search was only designed to converge on
unimodal functions; the modified Quad Search converges to a local optimum on 1-
D multimodal bijective functions by only evaluating points in the interval known to
contain a local optimum. And the modification to the algorithm is minor.

Another important observation involves running Quad Search on multidimensional
bijective functions. Quad Search will iteratively converge to a local optimum in each
dimension, but the point where Quad Search terminates after exploring each dimension
once is only guaranteed to be locally optimal in the last dimension. In this regard, Quad
Search is like a line search algorithm. For example, on a 2-dimensional function, di-
mension 2 is initially fixed to some arbitrary value, while Quad Search locates a local
optimum in dimension 1; next the algorithm is run on dimension 2 while dimension
1 is fixed to the point which was found to be locally optimal. Of course, after a local
optimum is found in dimension 2, the current best solutions may no longer be locally
optimal in dimension 1. However, one can reapply Quad Search (as with line search)
until a local optimum has been reached.

It is also important to note that if Quad Search is run on a separable bijective mul-
timodal function, it will converge to a local optimum. And if the separable function is
unimodal (for example, as is the sphere function [B9̈6]), then Quad Search will find the
global optimum in at most 2L − 1 evaluations.

2.3 Simple Binary Search for Real Valued Encodings

A similar search can be done using real valued representation that also cuts the search
space in half after 2 evaluations. We again assume a 1-D bijective function.

Evaluate points at 0, N/4, N/2, 3N/4, N-1 (rounding if necessary). Note this explic-
itly divides the space into 4 regions. After the minimum is identified, an optimum must
lie in one of two quadrants. For example, let F be the evaluation function. If

F (0) > F (N/4) < F (N/2) < F (3N/4) < F (N − 1)

then the optimum must be between F (0) and F (N/2). This is both simple and ob-
vious. The process eliminates at least half (+/- 1 with rounding) of the search space
from further consideration, and is guaranteed to converge to an optimum in at most
2(log2(N) + 1) evaluations. This search is very similar to Quad Search, except the
resulting search does not search from an arbitrary point.
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2.4 Binary Encodings and Quadrants

One of the reasons that Quad Search works using a Gray encoding is because the quad-
rants themselves have bit prefixes that are also adjacent and wrap. Fixing the first bit
to 0 eliminates quadrants 3 and 4. Fixing the first bit to 1 eliminates quadrants 1 and
2. Fixing the second bit to 0 eliminates quadrants 2 and 3. Fixing the second bit to 1
eliminates quadrants 1 and 4. Thus, fixing one of the first two bits will eliminate two
adjacent quadrants (where 1 and 4 are adjacent in the wrapped Gray encoding).

This does not happen with Binary neighbors. Consider a unimodal function with
an optimum located at a Hamming cliff. One cannot fix bits and limit the search to
quadrants 2 and 3 because the points in quadrant 2 start with the prefix 01 under the
Binary encoding and the points in quadrant 3 start with the prefix 10. The first bit is
either 0 or 1, or the second bit is either 0 or 1. Nothing is resolved. Because of the
Hamming cliff, local search under a Binary encoding is not guaranteed to converge to
a local optimum. This is already clear from results reported by Whitley et al. [Whi99]
with regard to No Free Lunch: a Binary encoding can induce false local optima, even
in a 1-D unimodal bijective function.

Of course one can use special operators to force a Binary search. Given a unimodal
1-D bijective function, one can evaluate the two points that make up the dominant Ham-
ming cliff (complementary bit strings located at adjacent points), and determine the
gradient at the Hamming Cliff and therefore determine in which half of the space the
global optimum in located. The more important point, however, is that local neighbor-
hood search in the standard Binary encoding neighborhoods does not have the same
nice convergence properties as a reflected Gray code neighborhood.

3 Quasi-basins, Encodings and Locality

We formally define a quasi-basin for a 1-D function, f , with respect to a threshold
value, V, where V is a codomain value of f : a quasi-basin is a set of contiguous points
in f that are below value V. This in section, we present new proofs that outline sufficient
conditions to ensure that the majority of Hamming distance 1 neighbors under Gray and
Binary encodings are either in the same basin of attraction, or in the same quasi-basin.

Consider some reference point R in the search space. Whitley, Rowe and Bush
[WRB04] show that given a 1-D function, the number of neighbors that are <= D
points away from the reference point under Gray code is �logD�.

Expressed another way, consider a quasi-basin of size D and a search space of size
N where the quasi-basin spans 1/Q of the search space (i.e., D = 1

QN ): under a
Gray encoding at most �log(Q)� bits encode for points that are more than a distance
of D points away from R. Note that an increase in precision also increases the size
of the search space, so that the quantity N/Q becomes larger and thus log(N/Q) in-
creases. However Q and log(Q) remain constant. Thus, at higher precision, the number
of neighbors within a distance of N/Q points increases.

Whitley, Rowe and Bush [WRB04] also present the following result without a proof.

Given a quasi-basin that spans 1/Q of a 1-D function of size N = 2L and a ref-
erence point R inside the quasi-basin, the expected number of neighbors of R that fall
inside the quasi-basin under a reflected Gray code is greater than �log(N/Q)� − 1.
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In the current paper we provide a proof, but also prove a more general result that
allows us to make a similar statement about standard Binary encodings. We first present
the proof for the reflected Gray code case, then show that similar bounds hold for the
standard Binary encoding.

The significance of this result is that we can outline conditions that would allow
a steepest ascent local search bit climber to spend the majority of its time sampling
points that are contained in the same quasi-basin and therefore below threshold. This
makes it possible to outline sufficient conditions such that steepest ascent local search
is provably better than random search. We conjecture that these same conditions allow
next-ascent bit climbing as well as Quad Search to out perform random search.

To prove these results, a number of supporting concepts and lemmas are needed.

4 Locality and Neighborhoods

We first define Gray and Binary encoding recursively in order to define other concepts.
The Gray encoding is the Standard Binary Reflected Gray code. For strings of length 1,
Gray and Binary encodings are the same: the strings 0 and 1 represent integers 0 and 1.
We then recursively define either a Binary or Gray code as follows.

Let Bi denotes a Gray encoded string of length L representing integer i, where
0 ≤ i ≤ 2L − 1. Strings of length L + 1 are constructed by concatenation and have the
form 0Bi or 1Bi and are defined as follows:

0B0, 0B1, 0B2, ...0B2L−1, 1B2L−1, ..., 1B2, 1B1, 1B0

Let Bi denotes a Binary encoded string of length L representing integer i, where
0 ≤ i ≤ 2L − 1. Strings of length L + 1 are constructed by concatenation and have the
form 0Bi or 1Bi and are defined as follows:

0B0, 0B1, 0B2, ...0B2L−1, 1B0, 1B1, 1B2, ..., 1B2L−1

While these definitions are well known and obvious, we note that the Gray code
folds the search space around a reflection located between 0B2L−1, 1B2L−1. In the
Binary case, there is an analogous mid-point transition between 0B2L−1, 1B0 in the
recursive construction. We will refer to both of these as transition points; these points
are important when documenting the locality of Binary and Gray encodings.

The placement of any transition point automatically implies the location of other
transition points under the recursive definitions of both Binary and Gray code. We can
define an arbitrary key-transition around which neighborhoods can be defined.

We will define core neighborhoods as 2k adjacent points with k connections that
are fully contained within the core neighborhood. Core neighborhoods need not have
the same connectivity, but all members have the same number of core neighbors. Binary
and Gray codes have the same “core neighborhoods” for any set of 2k points that are
within the quasi-basin and adjacent to a transition point.

We will assume that a key-transition point could occur at any position within the
quasi-basin. We will count over all possible placements of transition points with the
quasi-basin, then characterize what neighborhood structures occur for each possible
transition point placement.
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For example, let | denote the placement of a key-transition point in a quasi-basin
made up of 7 points. The following represents the number of core neighbors under both
Gray and Binary and the key transition denoted by | shifted into each possible position.

0 1 1 2 2 2 2 |
1 1 2 2 2 2 | 0

1 2 2 2 2 | 1 1
2 2 2 2 | 1 1 0

0 1 1 | 2 2 2 2
1 1 | 2 2 2 2 0
0 | 2 2 2 2 1 1

| 2 2 2 2 1 1 0

All of this is obvious given the recursive definitions of Binary and Gray encodings.
However we are interested in how Binary and Gray encoding differ in the construction
of the non-core neighborhood connections.

4.1 The Matrix Mx

We define a lower triangle matrix Mx using a recursive definition such that M1 = [1].
For x > 1 the lower triangle matrix Mx can be decomposed into a 2x−1 by 2x−1

square matrix whose elements are all the integer x, plus 2 identical copies of lower
triangle matrix Mx−1. The square matrix occupies the first 2x−1 columns of the last
2x−1 rows of Mx. The first 2x−1 − 1 rows of Mx correspond to the recursively defined
matrix Mx−1. Finally, another copy of Mx−1 is appended to the last 2x−1 − 1 rows of
the square matrix.

The elements of every matrix Mx can also be reorganized into a 2x−1 by 2x − 1
rectangular matrix where all of the rows are identical, such that there are 2x−1 copies
of x, followed by 2x−2 copies of x − 1, ..., ending with 20 copies of 1. This directly
follows from the fact that each of the 2 Mx−1 recursive submatrices is 1/2 the size of
the square matrix associated with Mx. Thus the quantity∑x

i=1 i(2i−1)
2x − 1

=
2x(x − 1) + 1

2x − 1
=

2xx

2x − 1
− 1

is both the average over the last row of Mx, as well as the average over all of Mx.
The following represents the lower triangle matrix M3, as well as the corresponding

2x−1 by 2x − 1 (i.e., 4 by 7) rectangular matrix.

1
2 2
2 2 1
3 3 3 3 3 3 3 3 2 2 1
3 3 3 3 1 3 3 3 3 2 2 1
3 3 3 3 2 2 3 3 3 3 2 2 1
3 3 3 3 2 2 1 3 3 3 3 2 2 1
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We also note that the lower triangle matrix Mx has elements that are the same as
the core neighbor counts for a quasi-basin of 2x − 1 points under both Gray and Binary
that occur to the right of all possible placements of a key-transition, except the counts
are incremented by 1.

Lemma 1: Let F (x) compute the average value over the elements of matrix Mx:

x − 1 < F (x) =
2xx

2x − 1
− 1 ≤ x

Proof: From the recursive definition of Mx and simple induction

F (x) =
(2x−1)2 ∗ x + 2(F (x − 1)(2x−2)(2x−1 − 1)

(2x−1)(2x − 1)
=

2xx

2x − 1
− 1.

To show that the bounds hold note:

F (x) =
2xx

2x − 1
− 1 =

2x(x − 1) + 1
2x − 1

>
2x(x − 1)

2x
= x − 1

When x > 1 this implies x < 2x − 1 and F (x) = x2x−(2x−1)
2x−1 < x2x−x

2x−1 = x.
When x = 1 this implies x = 2x − 1 and F (x) = x = 1.

4.2 The Matrix Mx

We next define a new lower triangle matrix Mx using a constructive definition where
M1 = [0]. Informally, the lower triangle matrix Mx is the same as Mx except the
square portion of Mx is assigned the value x − 1 instead of x. Formally, the lower
triangle matrix Mx can be decomposed into a 2x−1 by 2x−1 square matrix whose
elements are all the integer x−1, plus 2 identical lower triangle matrices corresponding
to Mx−1. The square matrix occupies the first 2x−1 columns of the last 2x−1 rows of
Mx. The first 2x−1 − 1 rows of Mx correspond to the lower triangle matrix Mx−1;
Finally, another copy of Mx−1 is appended to the last 2x−1 − 1 rows of the square
matrix of M. The following is an example of M4.

1
2 2
2 2 1
3 3 3 3
3 3 3 3 1
3 3 3 3 2 2
3 3 3 3 2 2 1
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 1
3 3 3 3 3 3 3 3 2 2

-> 3 3 3 3 3 3 3 3 2 2 1
3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 1
3 3 3 3 3 3 3 3 3 3 3 3 2 2
3 3 3 3 3 3 3 3 3 3 3 3 2 2 1
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The arrow points to row 2x−1 + 2x−2 − 1 which has a special importance. The first
2x−2 elements have value x − 1, and the remaining elements are identical to the last
row of matrix Mx−1. Recall that the last row of matrix Mx−1 has the same average
value as the entire Mx−1 lower triangle matrix. Thus, we know the average value of the
elements of this row.

The average value over all of Mx is greater than F (x − 1) but less than x − 1,
since all of the square portion of Mx has value x − 1 while the submatrices of Mx

correspond to Mx−1 and therefore have average value x− 2 < F (x− 1) < x− 1. We
next show that the average value of the elements of every row of Mx numbered from
2x−1 to 2x − 1 is greater or equal to F (x − 1).

Lemma 2: Given a lower triangle matrix Mx, x ≥ 2 each row indexed from 2x − 1 to
2x − 1 has an average value greater than x − 2.

Proof: The proof is constructive. By construction row 2x−1 + 2x−2 is composed en-
tirely of element x− 1. The rows from 2x−1 + 1 to 2x−1 + 2x−2 − 2 of matrix Mx can
be constructed from row 2x−1+2x−2−1 by repeatedly deleting “blocks” entirely com-
posed of elements with value y, where y does not occur in the row under construction,
and y is less than or equal to x − 2.

The average value of row 2x−1 + 2x−2 − 1 can be bounded as follows

x − 1 >
(x − 1)2x−2 + F (x − 1)(2x−1 − 1)

2x−1 + 2x−2 − 1
> x − 2

because we can also regroup the elements and characterize row 2x−1 + 2x−2 − 1 as
having the value x − 1 in the first 2x−2 positions with the last 2x−1 − 1 elements
corresponding to the last row of matrix Mx−1.

In general, rows 2x−1 +1 to 2x−1 +2x−2 −1 have x−1 as the first 2x−1 elements.
The remaining elements corresponding to some row of the lower triangle matrix Mx−2.
This follows from the definition of M and the recursive construction M. Row 2x−1 +
2x−2 − 1 contains the last row of matrix Mx−2, and therefore contains all of the blocks
needed to construct all the other rows, since the last row is a slice of all the square
matrices used in the recursive construction of M. The largest value of Mx−2 is x − 2.

When we delete an element from row 2x−1 + 2x−2 − 1 to create any row from
2x−1 + 1 to 2x−1 + 2x−2 − 2 the average value of the elements in the new row must be
greater than

(x − 1)2x−2 + F (x − 1)(2x−1 − 1)
2x−1 + 2x−2 − 1

=
3(2x−2)(x − 1) − 2x−1 + 1

3(2x−2) − 1
> (x − 1) − 2

3

This follows from the fact that deleting a below average element from a set of numbers
increases the average value of the set.

Finally, the last 2x−2 rows Mx are identical to rows 2x−1 to 2x−1 + 2x−2 − 1
except the elements are shifted right and 2x − 2 additional copies of of x− 1 are added.
Therefore, the last 2x−2 rows of Mx also have an average value greater than x− 2. ��

4.3 Gray Codes and Quasi-basins

Consider a contiguous set of K points that form a quasi-basin in a 1-D function. Assume
these K points are intersected by a barrier. We consider all possible placements of the
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barrier relative to the set of points. We then compute a tight bound on the average
number of neighbors that exist when the barrier is a reflection point in a Gray encoding.

The following illustration represents a quasi-basin over 7 points. Each row repre-
sents the number of neighbors for each point, such that those neighbors fall inside the
quasi-basin under a Gray code, where the main reflection point of the Gray code is at
the location marked by the symbol |.

2 3 2 3 3 3 2 |
2 2 3 3 2 3 | 1

1 3 2 3 3 | 2 2
2 3 3 3 | 2 3 2
2 3 2 | 3 3 3 2

2 2 | 3 3 2 3 1
1 | 3 2 3 3 2 2

| 2 3 3 3 2 3 2

Theorem 2: Given a quasi-basin of size S in a 1-D function, the expected number of
neighbors that fall in the quasi-basin under Gray code is greater than �log2(S)� − 1.

Proof: For S = 2x−1 to 2x − 1 we note that �log2(S)� − 1 = x − 2.
We consider all possible placements of the Gray code reflection key-transition, and

average over all possible neighborhood arrangements. This means that all probabilities
in the expected value calculation are uniform. The neighborhood structure is symmet-
ric around the key-transition; we can therefore consider only the lower triangle matrix
which lies to the right of the key-transition.

When S = 2x − 1 we can use the matrix Mx to bound the expected number of
neighbors for every point in the quasi-basin on one side of the main barrier/reflection
for all possible placements of the reflection points.

Let S vary from 2x−1 to 2x − 1. A group of 2k points adjacent to a reflection must
have at least k core neighbors under Gray code; the square submatrix of Mx counts only
these core neighbors. The lower triangle submatrices corresponding to Mx−1 counts
core neighbors, plus 1 more in each position. Under Gray code, there is at least one
additional neighbor if there is another point in the space in a position symmetric around
a reflection. This is the case for all elements in the positions that correspond to the
two Mx−1 lower triangle matrices. There are at least 2x−1 points in the quasi-basin.
The square submatrix of Mx−1 has 2x−2 core neighbors, so there must be an additional
2x−2 neighbors that fall either to the left or right of a reflection to either side of the 2x−2

core neighbors; thus each point in the square submatrix has one additional neighbor.
The lower triangle submatrices of Mx−1 also have one additional neighbor across the
reflection that occurs immediately to the left of these lower triangle submatrices.

When 2x−1 ≤ S ≤ 2x −1 we compute a bound on the average over the first S rows
of matrix Mx. The submatrix of Mx−1 makes up the first 2x−2 − 1 rows of matrix
Mx; by lemma 1, the average value of the elements in Mx−1 is greater than x− 2. We
select the next S − (2x−2 − 1) rows that are needed from matrix Mx. From lemma 2,
the average value over each of these rows is greater than x − 2.

Thus, for any point in a quasi-basin of size S, the expected number of neighbors
that also fall in the quasi-basin is greater than �log2(S)� − 1. ��
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Corollary: Given a quasi-basin that spans 1/Q of the search space and a reference
point R that falls in the quasi-basin, the majority of the neighbors of R under a reflected
Gray code representation of a search space of size N = 2L will be subthreshold in
expectation when �log(N/Q)� − 1 > log(Q) + 1.

This result has strong implications for local search. It means that under the condi-
tions just outlined, we can expect a majority of the neighbors that are sampled under lo-
cal search using a Hamming distance-1 Gray encoded bit representation neighborhood
to also be below threshold when searching from a subthreshold point. It also follows
from these observations that the percentage of below threshold neighbors increases at
higher precision.

5 Binary Codes and Quasi-basins

We have already noted that Binary encodings have the same core neighborhood as Gray.
But what about additional, non-core neighbors?

We start with the special case where there are exactly 2x − 1 elements in the quasi-
basin. The number of neighbors when x = 3 and 2x − 1 = 7 is illustrated by the
following example.

1 2 3 2 3 3 3 |
2 2 2 2 3 3 | 0

1 2 2 2 3 | 1 1
2 2 2 2 | 2 1 1
1 1 2 | 2 2 2 2

1 1 | 3 2 2 2 1
0 | 3 3 2 2 2 2

| 3 3 3 2 3 2 1

We will again work with the lower triangle form of the matrix. This lower triangle
matrix can still be recursively decomposed but the elements in the topmost recursive
matrix and the rightmost recursive matrix differ by 1 in all positions. Furthermore, the
square matrix has the value x − 1 in all positions except in its own lower triangle:
the value x appears in the lower triangle of the square matrix. The reflected neighbors
are gone, which is why the topmost recursive matrix is 1 less in every position. Each
element corresponding to a position in the rightmost recursive lower triangle matrix has
a neighbor at distance 2x−1 in the lower minor triangle of the square matrix.

Lemma 4: For a quasi-basin of exactly 2x − 1 elements, the number of neighbors that
are in the quasi-basin is exactly x − 1 under a Binary encoding.

Proof: The proof is by induction. This is true by inspection for x = 1, 2 and 3.
We will again use a recursive lower triangle representation that decomposed into a

square matrix and two recursively defined lower triangle submatrices. These count the
core neighbors, plus those additional neighbors that occur due to the Binary encoding.

Assume the lemma is true for case x − 1. Then the topmost recursive matrix rep-
resents the lower triangle matrix associated with x − 1 and has an average value per
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element of exactly x − 2 by the inductive hypothesis; the topmost recursive matrix has
2x−2(2x−1 − 1) elements. The rightmost recursively defined lower triangle submatrix
has an average value per element of exactly x − 1. This includes the core neighbors,
plus one additional neighbor, since any point more than 2x−1 positions to the right of
the key transition must have a (non-core) neighbor in the square submatrix.

The square submatrix has 2x−12x−1 elements and 2x−2(2x−1 − 1) in its own lower
minor triangle, which connect to an element in the rightmost recursively defined lower
triangle submatrix. Adding these together yields.

2x−2(2x−1 −1)(x−2)+2x−2(2x−1−1)(x−1)+2x−12x−1(x−1)+2x−2(2x−1−1)

= [(2x−1)2 + 2x−1(2x−1 − 1)](x − 1)

Therefore, since the number of elements in the recursively defined matrix is
(2x−1)2 + 2x−1(2x−1 − 1) the average value per element is exactly x − 1. ��
Theorem 3: Given a quasi-basin of size S in a 1-D function, the expected number of
neighbors that fall in the quasi-basin under Binary code is greater than �log2(S)� − 1.

Proof: For S = 2x−1 to 2x − 1 we note that �log2(S)� − 1 = x − 2.
We again consider all possible positions in the quasi-basin for which the number of

neighbors is being computed, and all possible placements of the key-transition barrier.
Thus, all probabilities in the expected value calculation are uniform.

If S = 2x−1 − 1 (this is one element smaller than is allowed for S), the number of
neighbors is precisely x − 2 on average (lemma 4).

We will let S vary from 2x−1 to 2x − 1. A group of 2i points adjacent to a key-
transition must have at least i core neighbors; the square submatrix of Mx counts only
these core neighbors. For rows 2x−1 to 2x −1 the lower triangle submatrix correspond-
ing to Mx−1 which is right of the square submatrix is such that each element must have
one neighbor at a distance of 2x−1 to the right, since the square submatrix of Mx is of
size 2x−1.

When 2x−1 ≤ S ≤ 2x − 1 we select the S − 2x−2 − 1 rows that are needed from
matrix Mx; from lemmas 1 and 2, all of these rows have average value greater than
x − 2. ��
Corollary: Given a quasi-basin that spans 1/Q of the search space and a reference
point R that falls in the quasi-basin, the majority of the neighbors of R under a Binary
representation of a search space of size N = 2L will be subthreshold in expectation
when �log(N/Q)� − 1 > log(Q) + 1.

6 Discussion

A steepest ascent local search algorithm currently at a subthreshold point can only move
to an equal or better point which must also be subthreshold. And as precision increases,
the number of subthreshold neighbors also increases, since �log(N/Q)� − 1 increases
while Q remains constant. This assumes the quasi-basin is not divided by increasing the
precision.
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The above analysis would need to hold for each dimension of a multidimensional
search space, but these results suggest there are very general conditions where a steep-
est ascent bit-climbing algorithm using either a Binary or a Gray code representation
can display subthreshold-seeking behavior. This also assumes the search algorithm can
absorb the start-up costs of locating a subthreshold starting point.

Whitley, Rowe and Bush [WRB04] proposed a subthreshold bit climber called LS-
SubT that uses a Gray Code representation. LS-SubT first samples 1000 random points,
and then climbs from the 100 best of these points. In this way, LS-SubT estimates a
threshold value and attempts to spend a majority of its time in the best 10 percent of the
search space.

Experimental results on a number of benchmarks indicate that LS-SubT sometimes
produces statistically significant better solution quality compared to steepest ascent bit
climbing local search. LS-SubT never produces statistically significant worse perfor-
mance than steepest ascent bit climbing local search. The data suggests two additional
observations about subthreshold-seeking behavior [C01] [WRB04]. First, the sampling
used by LS-SubT results in a higher proportion of subthreshold points compared to
steepest ascent bit climbing local search. Second, a larger proportion of subthreshold
neighbors are sampled for searches using higher precision. At 10 bits of precision per
parameter, LS-SubT sampled subthreshold points more than 55 percent of the time.
At 10 bits of precision, LS-SubT also used statistically significanbt fewer evaluations
than steepest ascent local search. At 20 bits of precision per parameter, and at least 80
percent of the points samples by LS-SubT were subthreshold.

The locality results presented in this paper can perhaps be generalized to cover
both next ascent bit climbers such as Random Bit Climbing (RBC) as well as Quad
Search. While Quad Search looks different, it progressively looks closer and closer
to the current best solution. Consider that RBC looks at all L bit flips before testing
any bit again. Under RBC, checking the highest order bit samples a point in the other
“half” of Hamming space (note this point is not necessarily far away under Gray code).
Assuming that RBC does not find an improving move, the bits could be re-sorted so
that high-order bits are sampled first, in effect reducing the search space by half after
each bit flip. Under Quad Search, two points are checked in the other half of the space
before the search space is reduced by half. Again assuming that Quad Search does not
find an improving move, it checks at most 2L points while reducing the search space by
half after every 2 bit flips. From this perspective, RBC and Quad Search have similar
locality: the percentage of points that are close the the current best solutions should be
nearly identical in expectation (except the modified Quad Search will potentially skip
some evaluations.) This suggests that the only major adjustment needed to generalize
the locality results for steepest ascent is to account for the fact that the current solution
is changing location in both next ascent and Quad Search. We conjecture this makes no
difference in the expected number of neighbors that fall in the quasi-basin.

7 Conclusions

Experiments have shown that a hybridization of Quad Search with a steady state genetic
algorithm finds much better solutions on difficult benchmark problems than hybrid ge-
netic algorithms that are combined with steepest ascent local search or RBC (Random
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Bit Climbing). The apparent reason for this is that Quad Search very quickly converges
to good solutions.

The modified Quad Search iteratively optimizes in each dimension so that it is guar-
anteed to converge to a locally optimal solution in that dimension before it moves to the
next dimension. As with line search, one pass of the Quad Search is not guaranteed to
converge to a locally optimal solution. On the other hand, this may make Quad Search
more stochastic in its exploration of the search space compared to steepest ascent and
next ascent.

Quad Search exploits unique properties of Gray codes and there would appear to be
no direct analogy to Quad Search using Binary representations that provides the same
generality and flexibility.

This paper also looks at locality, showing that most neighbors samples under both
Gray and Binary representations are very close to the current reference point around
which the neighborhood is defined. If that reference point R is in a quasi-basin that
spans 1/Q of the search space then the majority of the neighbors of R under a reflected
Gray code representation or a Binary representation of a search space of size N = 2L

will be subthreshold in expectation when �log(N/Q)�− 1 > log(Q)+ 1. This outlines
conditions that will allow a steepest ascent bit climber to spend a majority of its time
below threshold, and thus out perform random search. We conjecture the same results
also hold for Quad Search.
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Abstract. Evolutionary algorithms belong to the class of general ran-
domized search heuristics. Theoretical investigations often concentrate
on simple instances like the well-known (1+1) EA. This EA is very simi-
lar to simulated annealing, another general randomized search heuristic.
These two algorithms are systematically compared under the perspec-
tive of the expected optimization time when optimizing pseudo-boolean
functions. It is investigated how well the algorithmic similarities can be
exploited to transfer analytical results from one algorithm to the other.
Limitations of such an approach are illustrated by the presentation of ex-
ample functions where the performance of the two algorithms differs in
an extreme way. Furthermore, an attempt is made to characterize classes
of functions where such a transfer of results is more successful.

1 Introduction

General randomized search heuristics are a popular tool for optimization when
the problem or objective function is not well-understood, no good problem-
specific algorithm is known, and there are not sufficient resources to develop
such an algorithm. A prominent member of this broad class of heuristics are evo-
lutionary algorithms. Of course, also other kinds of such algorithms are known:
simulated annealing, tabu search, and randomized hill-climbing are some exam-
ples. For evolutionary algorithms, there is not only an overwhelming amount
of reports on successful applications. There is also a growing body of serious
theoretical work.

The different randomized search heuristics have different origins. Yet they
share a lot of common properties. For evolutionary algorithms like genetic algo-
rithms, evolution strategies, and evolutionary programming, this is well-known
[1]. But this holds for other search heuristics, too.

Here, we consider two specific randomized search heuristics that have very
different origins and motivations and yet are very similar. They are both gen-
eral, not problem-specific randomized search heuristics, both can be applied for
problems that can be coded as maximization of a pseudo-boolean function, i. e.
a function f : {0, 1}n → IR. Adopting the perspective of the evolutionary algo-
rithm community, both can be described as using a population of size just 1 and
utilizing an offspring population that also consists of one individual, only. They
apply different random operators, called mutation in the context of evolutionary
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algorithms, in order to generate such an offspring. Then, based on different selec-
tion mechanism, it is decided whether this offspring replaces its parent. For the
analysis we ignore the problem of choosing some stopping criterion and consider
the number of mutation-selection-rounds (called generations) until some optimal
solution to the problem is found for the very first time. We call the expectation
of this random variable the expected optimization time.

The evolutionary algorithm uses standard bit-flip-mutations where each bit
is flipped independently of the other bits with some mutation probability pm.
We use pm = 1/n which is the most recommended static choice and do neither
discuss the use of other fixed mutation probabilities that may be beneficial [9] nor
the application of any dynamic or adaptive mechanism for changing the mutation
probability during a run. The selection mechanism applied is known as plus-
selection from evolution strategies: in the case of (1+1) selection, the offspring y
replaces its parents if and only if its fitness is not inferior to its parent’s fitness,
i. e., f(y) ≥ f(x). One may argue that (1+1) ES would be an appropriate name
for this evolutionary algorithm. However, due to its application in the binary
search space whereas evolution strategies traditionally work more often in IRn,
the name (1+1) EA is more common. This extremely simple EA may be the most
simple EA possible and it has been subject to numerous studies [5, 6, 14, 16, 20].
Using an even simpler mutation like single bit-flips would reduce it to a random
local search, using a less strict selection pushes it towards pure random search,
both search methods being essentially different from evolutionary algorithms.

The other search heuristics is very well known as simulated annealing [12].
The “mutation operator” applied utilizes single bit-flips. Of course, in general
simulated annealing works on a neighborhood that may be defined in almost
arbitrary ways. However, unless more is known about the objective function,
using single bit-flips is a reasonable and common choice. In order to escape
from local optima a less strict selection mechanism is needed. Here, the offspring
replaces its parent not only when its fitness is not inferior but also in other cases
with some probability that depends on the difference in fitness between parent
and offspring and a time dependent parameter called temperature. We give a
precise definition of the selection mechanism in the following section.

It is noteworthy that both algorithms find a global optimum for any objective
function with probability 1. This makes a crucial difference to simple local search
methods. For simulated annealing, however, this global convergence requires
that the temperature is set in an appropriate way. One may want to argue that
the freedom of choice with respect to temperature makes us compare a single
evolutionary algorithm with a whole class of simulated annealing algorithms.
We believe that the comparison made is nonetheless fair since in practice both
algorithms are sometimes applied in this way: the (1+1) EA as algorithm that
needs no tuning of parameters whereas simulated annealing requires appropriate
control of the temperature. Obviously, this makes simulated annealing more
powerful in some sense by the cost of increasing the effort of users needed.

Clearly, the (1+1) EA bears a very strong resemblance to simulated anneal-
ing. Therefore, it is natural to speculate that it might be possible to transfer
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analytical results concerning the (1+1) EA to simulated annealing and vice
versa. Clearly, this would be beneficial for the theoretical knowledge on both
algorithms. We investigate this possibility and try to understand what condi-
tions allow for a direct transfer of results. One direction of theoretical research
is the rigorous analysis of the performance of simple evolutionary algorithms on
well-structured or at least well-understood objective functions. We employ this
kind of approach to tackle the question of transfer of analytical results. We are
able to demonstrate by example that there are strong limitations to such an ap-
proach. It is an important subject to future research to carry over such analyses
to more realistic optimization problems. For simulated annealing some work in
this direction has been done [2, 11]. In particular, Wegener [19] has presented a
comparison of simulated annealing with its fixed-temperature counterpart, called
Metropolis algorithm, on the minimum spanning tree problem.

This is by no means the first attempt to compare evolutionary algorithms
with simulated annealing. However, such comparisons tend to be either purely
empiric [8, 18] or very general [7]. Here, we try to find a balance between the
attempt to be as general as possible and the wish to see concrete and meaningful
results that have consequences in practical settings. We do this by considering
concrete functions and function classes but presenting theoretical, not merely
empirical analyses.

In the next section we give precise definitions of both algorithms and explain
our analytical framework. In Section 3 we investigate the behavior of both algo-
rithms in some exemplifying situations. We demonstrate that the performance of
the two algorithms can differ in an extreme way and that each algorithm has the
potential to outperform the other by far. We use these results as motivation for
the search for classes of functions where the performance is similar in Section 4.
Finally, in Section 5, we conclude with a short summary and remarks on possible
future research.

2 Algorithms and Analytical Framework

We want to compare the (1+1) EA and simulated annealing. Both algorithms
operate on some objective function f : S → IR. In the context of evolutionary
algorithms, this function f is called a fitness function and the EA tries to find
points in the search space S with maximal f -value. In the context of simulated
annealing the function is described as an energy function and the algorithm tries
to find points that minimize f . We concentrate on pseudo-boolean functions, i. e.
functions f : {0, 1}n → IR. For the sake of notational simplicity we describe both
algorithms in such a way that they both maximize f . This is nothing more than
a notational change to simulated annealing. Both algorithms operate in rounds
which remain mostly unchanged. They both operate based on one current point
in the search space x ∈ {0, 1}n, which is called population in the case of the (1+1)
EA. In each round both algorithms generate one new point y ∈ {0, 1}n which is a
variation of x. Simulated annealing chooses one point uniformly at random from
a given neighborhood of x. We define this neighborhood to consist of all points
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with Hamming distance exactly 1 to x – this is a very common choice. The (1+1)
EA copies x but replaces each bit with probability 1/n by its complement in this
process, independently for each bit. Thus, on average x and y differ by exactly
one bit, too – but the Hamming distance may be arbitrarily large, although the
probability quickly decreases with increasing Hamming distance. After the new
point y is created, both algorithms decide whether the new point y replaces the
old point x. If f(y) ≥ f(x), both algorithms replace x by y. If f(y) < f(x),
only simulated annealing still replaces x by y with some positive probability.
This probability for accepting a decreasing step depends on f(y) − f(x) and
a time-dependent parameter which is called temperature. This temperature is
changed with time according to a fixed scheme which is called a cooling schedule.
Lower temperatures imply a lower probability to accept worsenings such that for
temperature 0 the probability decreases to 0. In our notation, we use a function
α : IN → [1;∞[ where 1/(α(t) − 1) is the temperature in the usual sense. Thus
increasing values of α imply a decreasing temperature. Note that, since simulated
annealing strictly searches within a small neighborhood of the current search
point, this accepting of worsenings is crucial for a proof of global convergence.

In practice, both algorithms are terminated when some stopping criterion is
fulfilled. Here, we describe the algorithms as infinite random processes without
stopping criterion. We are interested in the first point of time when a point with
maximal function value is found.

(1+1) EA Simulated Annealing

0. t := 1 0. t := 1
1. Choose xt ∈ {0, 1}n u. a. r. 1. Choose xt ∈ {0, 1}n u. a. r.
2. y := xt; Independently for each 2. y := xt; Choose i ∈ {1, . . . , n}

bit yi, with probability 1/n, uniformly at random and
set yi := 1 − yi. set yi := 1 − yi.

3. If f(y) ≥ f(xt), 3. With prob. min{1, α(t)f(y)−f(xt)},
set xt+1 := y, set xt+1 := y,
else xt+1 := xt. else xt+1 := xt.

4. t := t + 1 4. t := t + 1
5. Continue at line 2. 5. Continue at line 2.

Both algorithms find a global optimum of any pseudo-boolean function f
with probability 1 – given an unlimited number of steps and if, for simulated
annealing, α grows sufficiently slow. Thus the most interesting question to ask
is how long this takes. For both algorithms, we define a random variable that
we call TEA for the (1+1) EA and TSA for simulated annealing. Both variables
are defined by min{t ≥ 1 | xt = max{f(x′) | x′ ∈ {0, 1}n}}. We call TEA and
TSA the optimization time and are mostly interested in E (TEA) and E (TSA), the
expected optimization times.

For a comparison of the (1+1) EA and simulated annealing we consider
both algorithms on the same function f and compare the expected optimization
times E (TEA) and E (TSA). We use the well-known notations for the growth
of functions and describe both expected optimization times as functions of the
dimension of the search space n where n grows to infinity [3]. Thus, we obtain
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our results in the form of upper and lower bounds that are not exact but only
asymptotic. In the case that asymptotic upper and lower bounds are matching
we call this bound asymptotically tight.

Definition 1. Let f, g : IN → IR+ be two functions. We say f = O(g) iff ∃n0 ∈
IN, c ∈ IR+ : ∀n ≥ n0 : f(n) ≤ c · g(n). We say f = Ω(g) iff g = O(f). We say
f = Θ(g) iff f = O(g) and f = Ω(g). We say f = o(g) iff lim

n→∞ f(n)/g(n) = 0.

We say f = ω(g) iff g = o(f).

3 Limitations for Direct Transfers of Results

It is very difficult if not simply impossible to come up with a universal, fair, and
meaningful comparison of two general randomized search heuristics. In order to
come to any results a number of decisions have to be made. We compare the
(1+1) EA with simulated annealing. While the (1+1) EA can reach any point
in the search space in only one step simulated annealing has to make many
steps and may have to accept a lot of decreasing steps in order to do so. This
requires the choice of an appropriate cooling schedule. Sticking to the idea of
simulated annealing we only consider cooling schedules where the temperature
does not increase, i. e., non-decreasing functions α : IN → [1;∞[. It is known that
in some circumstances increasing the temperature can be beneficial [4]. However,
we consider such “cooling” schedules to be degenerated and inappropriate for
simulated annealing.

Still, the choice of a cooling schedule introduces a great degree of freedom
that is not present when using the (1+1) EA. We accept this difference here
without trying to find any balancing mechanisms for the (1+1) EA. For a con-
crete objective function f : {0, 1}n → IR, we consider simulated annealing to be
superior if we can find a cooling schedule such that simulated annealing clearly
outperforms the (1+1) EA by means of expected optimization time. On the
other hand, we consider the (1+1) EA to be superior if it outperforms simu-
lated annealing for any choice of a cooling schedule. Being more restrictive here
would not be appropriate: it is very easy to hinder simulated annealing to have
acceptable performance by choosing a bad cooling schedule.

If the cooling schedule α is a constant function, i. e., α(t) = α ∈ [1;∞[ for
all t, the resulting algorithm is known as Metropolis algorithm [13]. Obviously,
the analysis becomes much simpler in this case. Even though it is known that
non-static choices of α can be crucial for the success of simulated annealing
[4, 17], in many cases the Metropolis algorithm already shows good performance.
Furthermore, results for static α often yield upper or lower bounds for the non-
static case [4].

Often, functions of unitation (functions where the function value does only
depend on the number of ones in the input) are considered as example func-
tions since they are particularly simple to describe and understand. For such
functions, it is useful to introduce some additional notations. Assume that we
consider an objective function f : {0, 1}n → IR that is a function of unitation
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and that reaches its unique global optimum for x = 1n. Let T be the random
variable describing the optimization time. Let T (i) denote the random variable
that describes the optimization time when the initial bit string contains exactly
i ones. Applying the total probability theorem we see that

E (T ) =
n∑

i=0

(
n

i

)
· 2−n · E

(
T (i)

)
holds. Let T (i)+ denote the random variable describing the number of steps
until the number of ones in the current string x is increased for the first time,
given that the current string contains exactly i ones. Using these notions we cite
the following results from [4]. Note, that the analysis of simulated annealing as
presented here depends heavily on the particular choice of the neighborhood and
the specific properties of f .

Theorem 1. Consider simulated annealing with static α on an objective func-
tion f : {0, 1}n → IR that is a function of unitation and has its unique global
optimum at 1n. Let p+

i denote the probability to increase the number of ones in
the current string from i to i + 1. Let p−i denote the probability to decrease the
number of ones in the current string from i to i − 1. Using the notation from
above, the following holds for all i ∈ {1, . . . , n − 1}.

E
(
T

(i)+
SA

)
=

1
p+

i

+
p−i
p+

i

· E
(
T

(i−1)+
SA

)
E
(
T

(i)+
SA

)
=

i∑
k=0

(
1
p+

k

·
i∏

l=k+1

p−l
p+

l

)

Probably the best known example function in the context of evolutionary al-

gorithms is OneMax, given by OneMax(x) =
n∑

i=1

xi. It is known that E (TEA) =

Θ(n log n) holds for OneMax [5]. It will turn out to be helpful to have results
on E (TSA) for OneMax and some static choices of α.

Theorem 2. Consider simulated annealing with constant α on OneMax. For
any constant ε > 0 and any α ≥ ((1+ε)/2) · (n−2), E (TSA) = O(n log n) holds.

Proof. For OneMax, p+
i = (n − i)/n and p−i = i/(αn) hold. This yields

E
(
T

(i)+
SA

)
=

n

n − i
+

i

α(n − i)
· E

(
T

(i−1)+
SA

)
according to Theorem 1. If we had α ≥ ε · (i/n) · E

(
T

(i−1)+
SA

)
for all i, we had

E
(
T

(i)+
SA

)
≤ n

n − i
+

1
ε

· n

n − i
=
(

1 +
1
ε

)
n

n − i
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for all i. If we substitute this for E
(
T

(i−1)+
SA

)
in our condition on α, we see that

α ≥ (1 + ε) · i/(n− i) suffices. Since i/(n− i) with i ∈ {1, . . . , n− 2} is maximal
for i = n − 2, α ≥ (1 + ε) · (n − 2)/2 is sufficient. We have

E (TSA) ≤
n−1∑
i=0

E
(
T

(i)+
SA

)

and use E
(
T

(i)+
SA

)
≤ (1 + 1/ε) · n/(n − i). This yields

E (TSA) ≤
n−1∑
i=0

(
1 +

1
ε

)
n

n − i
<

(
1 +

1
ε

)
n(1 + lnn)

and we have E (TSA) = O(n log n) since ε > 0 is a constant. ��

Theorem 3. Consider simulated annealing with constant α on OneMax. For
any α ≤ (

√
n − 1)/2, E (TSA) = Ω(2

√
n · √

n) holds. For any α, E (TSA) =
Ω(n logn) holds.

Proof. On OneMax, we have

E
(
T

(i)+
SA

)
=

n

n − i
+

i

α(n − i)
· E

(
T

(i−1)+
SA

)
(1)

which yields

E
(
T

(i)+
SA

)
≥ n

n − i
+

2i
(
√
n − 1) · (n − i)

· E
(
T

(i−1)+
SA

)
due to the upper bound on α. For i ≥ n − √

n we have

E
(
T

(i)+
SA

)
≥ n

n − i
+

2(n − √
n)

(
√
n − 1) · √n

· E
(
T

(i−1)+
SA

)
=

n

n − i
+ 2E

(
T

(i−1)+
SA

)
Using E

(
T

(n−√
n)+

SA

)
≥ √

n we get E
(
T

(n−1)+
SA

)
≥ 2

√
n−2 ·√n. With probability

1 − 2−n the initial population differs from 1n. Since simulated annealing can
increase the number of ones in its population by at most 1 in each step, we know
that 1n can only be reached via some population with exactly n − 1 ones. This
yields E (TSA) ≥ (1 − 2−n) · E

(
T

(n−1)+
SA

)
. From this the desired result follows.

From Equation (1) we see that E
(
T

(i)+
SA

)
decreases with increasing values of

α. For α → ∞ we get E
(
T

(i)+
SA

)
= n/(n − i). Since we have E (TSA) ≥ (1/2) ·

n∑
i=�n/2�

E
(
T

(i)+
SA

)
, we get E (TSA) = Ω(n logn) as an immediate consequence.

��
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The results on OneMax seem to contradict our claim that a direct transfer
of results is not possible. The (1+1) EA and simulated annealing both optimize
OneMax on average in O(n log n) steps. But even this simple functions has the
potential to demonstrate the differences between the two optimization heuristics.

We define our first example function f1 : {0, 1}n → IR by

f1(x) :=

{
OneMax(x) if OneMax(x) �= n − 1
0 otherwise

for all x ∈ {0, 1}n. The only difference to OneMax, a sharp decrease in function
values for all strings with exactly n−1 ones, is no difficult obstacle to the (1+1)
EA but it is for simulated annealing.

Theorem 4. On f1, E (TEA) = Θ(n2) holds.

Proof. For the lower bound, it suffices to observe that the last step that leads to
the unique global optimum is a mutation of at least 2 specific bits, given that the
initial string contains at least two zero bits. Thus, we have (1−(n+1)2−n)·n2 as
a lower bound on the expected optimization time. For the upper bound we can
employ the method of fitness based partitions [5]. The probability to increase
the current function value by at least 1 is given by(

n − OneMax(x)
1

)
1
n

(
1 − 1

n

)n−1

≥ n − OneMax(x)
en

,

if OneMax(x) < n − 2,

1
n2

(
1 − 1

n

)n−2

≥ 1
en2

, if OneMax(x) = n − 2, and

1
n

(
1 − 1

n

)n−1

≥ 1
en

, if OneMax(x) = n − 1,

for all x ∈ {0, 1}n different from the unique global optimum. By adding up the
corresponding expected waiting times we get(

n−3∑
i=0

en

n − i

)
+ en2 + en = O

(
n2
)

as upper bound on the expected optimization time. ��
Theorem 5. On f1, E (TSA) = Ω

(
2
√

n · √n
)

holds for any non-increasing cool-
ing schedule, i. e., any non-decreasing function α : IN → [1;∞[.

Proof. We know from Theorem 3, that as long as α(t) ≤ (
√
n − 1)/2 holds, the

expected time needed to reach a current string with n−2 ones is bounded below
by Ω(2

√
n
√
n). In order to be faster, we need α(t) > (

√
n − 1)/2. Then, the

expected time until a step from a current string with n− 2 ones to a string with
n − 1 ones is accepted is bounded below by α(t)n−2. Together, this yields the
claimed lower bound. ��
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The difficulties of simulated annealing are easy to understand: In order to
reach the unique global optimum a temporary decrease in function value of
n − 2 has to be accepted. In order to do this, α(t) needs to be small; α(t) =
1 + O(log(n)/n) is needed for a polynomial expected waiting time. But any
α(t) ≤ (

√
n−1)/2 is too small to even come so far in expected polynomial time.

We recognize a clear advantage for the (1+1) EA due to is insensitivity towards
changes in function values and its ability to “jump” across small regions of low
function values.

Our next example function f2 will demonstrate a similarly drastic advantage
for simulated annealing over the (1+1) EA. The idea is simple: The (1+1) EA
can “jump” across regions of low function values in polynomial time only if the
jump needed is not too large. Simulated annealing can walk through such valleys
given that the decrease in function value is not too large – almost independently
of the size of the valley.

We define this example function f2 : {0, 1}n → IR by

f2(x) :=

⎧⎪⎨⎪⎩
2n · n + 1 if x = 0n

2n · n − (n − i) if x = 1i0n−i, i ∈ {1, . . . , n}
2n · OneMax(x) otherwise

for all x ∈ {0, 1}n.

Theorem 6. On f2, E (TEA) = Θ(nn) holds.

Proof. The upper bound is trivial, since for any string y the probability to reach
y from the current string x is bounded below by n−n. This yields nn as upper
bound on E (TEA) for any objective function. For the proof of the lower bound,
we note that the (1+1) EA reaches 1n on average in O(n logn) steps given that it
never encounters any string 1i0n−i. Then, a mutation of all n bits simultaneously
is needed in order to reach the unique global optimum 0n. This yields E (TEA) ≥
nn · p, if p is a lower bound on the probability of reaching 1n as current string
at some point of time. It is easy to see that p = Ω(1) holds: Consider levels of
strings Li = {y ∈ {0, 1}n | OneMax(y) = i}. With probability exponentially
close to 1, the (1+1) EA does not reach a level Li with i < n/3 before reaching
1n. For all i with n/3 ≤ i ≤ n − 3, the level Li contains Ω(n3) strings. On
average, the (1+1) EA spends O(n) generations on each level Li. For symmetry
reasons, we get that the (1+1) EA reaches a string 1j0n−j on such a level with
probability O(1/n2), only. For Ln−2, we get O(1/n) as bound for this probability.
For Ln−1 we take a closer look. The probability for a mutation that changes the
current population but stays within the level is Θ(1/n). Thus, on average only
O(1) strings are visited within this level before Ln is entered. Thus, we get
p = 1 − O(1/n) altogether. ��
Theorem 7. On f2, E (TSA) = O(n3) holds.

Proof. We choose α(t) := n4/2n

fixed and independent of t. We consider a run
of simulated annealing on f2 and partition it into two phases. The first phase
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starts with random initialization and ends when some string x = 1i0n−i with
i ∈ {1, 2, . . . , n} becomes current string. The second phase starts after the first
phase and ends when the unique global optimum is reached. Obviously, we get
an upper bound on E (TSA) if we add up upper bounds for the expected lengths
of the two phases.

On average, the first phase ends within O(n log n) steps. This follows from
Theorem 2: If we change the differences in function values of neighboring points
in the search space from d to s · d and change α to α1/s at the same time,
nothing changes for simulated annealing. Here, we increase the differences in
function values from 1 to 2n and have α = n4/2n

. Thus, this is equivalent to
having α = n4 in the scenario of Theorem 2.

Now we consider the second phase. We start with a string x = 1i0n−i for
some i ∈ {1, . . . , n}. The probability to accept some string that is neither of this
form nor the global optimum is in each step bounded above by α−2n

= 1/n4.
If this happens, we consider the second phase to be a failure and reconsider the
run, again with two phases. If we succeed to prove O(n3) as upper bound on
the average length of the second phase, then the probability of such a failure is
bounded above by O(1/n) and the expected number of such repetitions does not
harm our upper bound. Thus, we now have to deal with the situation that we
only have current strings of the form 1i0n−i.

We denote the probability to decrease the number of leading ones in x from
i to i−1 by p−i . Accordingly, p+

i denotes the probability to increase this number
from i to i+1. For i with 0 < i < n, p−i and p+

i are independent of i. Obviously,
p+

i = 1/n and p−i = 1/(αn) = 1/n1+4/2n

holds in this case. We consider cn3

steps where c is some constant sufficiently large. Application of Chernoff bounds
yields that with probability very close to 1 we have c′n2 steps where the value of
i changes within these cn3 steps (or the global optimum is reached). By choosing
c large we can get c′ as large as we want. We consider these T := c′n2 steps. Let
the conditional probability to increase or decrease i in such a step be denoted by
q+
i or q−i respectively. By definition, q+

i = p+
i /(p+

i +p−i ) and q−i = p−i /(p+
i +p−i )

holds. If we have at least (T + n)/2 decreasing events within these steps, the
global optimum must be reached. In order to estimate the probability for this
we note that q−i = 1

1+n4/2n holds. Using ex ≤ 1 + 2x for not too large positive
values of x we get

q−i =
1

1 + n4/2n ≥ 1
2 + (8 lnn)/2n

=
1
2

− (8 lnn)/2n

4 + (18 lnn)/2n
=

1
2

− 8 lnn

2n+2 + 18 lnn

and see that q−i ≈ 1/2 holds. For q−i = 1/2, the desired result would be clear.
Instead of T random experiments where we have success probability q−i we con-
sider T pairs of experiments, where each pair consists of one random experiment
with success probability 1/2 and another, independent random experiment with
success probability (16 lnn)/(2n+2 +18 lnn). We replace one success in the orig-
inal experiment with a pair of (success/no success) in the corresponding pair.
The probability for such an outcome in the pair equals
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1
2

·
(

1 − 16 lnn

2n+2 + 18 lnn

)
=

1
2

− 8 lnn

2n+2 + 18 lnn
= q−i ,

so the probability for at least (T +n)/2 successes is unchanged. Since we consider
only T = O(n2) random experiments, the probability to have at least one pair
with a success in the second part is exponentially small. Thus, we can work
under the assumption that this does not happen and have 1/2 as remaining
probability for a success. Let S denote the random number of total successes in
T experiments. We have Prob (S = �T/2�) ≥ Prob (S = j) for any j and know
that Prob (S = �T/2�) ≤ 2/

√
T holds. Thus, Prob (S ≥ (T + n)/2) ≥ 1/2 −

(n/2) · 2/√T = 1/2 − 1/
√
c′ holds. Choosing c such that c′ > 4 holds yields the

following result: With probability Ω(1) within O(n3) steps the global optimum is
reached. Therefore, the expected number of such “runs” of length O(n3) needed
to find the global optimum is O(1) and we get O(n3) in total as upper bound
on the expected optimization time of simulated annealing on f2. ��

Sometimes the expected optimization time can be a very misleading mea-
sure. There are example functions known where the expected optimization time
is exponential but with probability very close to 1 a global optimum is found
within a polynomial number of steps. In such cases independent restarts can de-
crease the expected optimization time drastically. We strengthen the differences
in performance between the (1+1) EA and simulated annealing we have seen so
far by discussing why restarts are not helpful here.

In the case of f1, the exponential lower bound for simulated annealing is
based on the fact that at some point of time a string with less than n−1 ones is
current string which holds with a probability exponentially close to 1. Then, a
worsening of n− 2 has to be accepted causing an exponential waiting time with
probability exponentially close to 1. Thus, restarts cannot change any of this.

In the case of f2, it seems to be the case that the expected optimization
time of the (1+1) EA decreases if we increase the chance of finding some string
1i0n−i with i < n as first point of this kind. This can in fact be achieved by
restarts as the probability to reach some point of this kind with n − i = O(1)
is not very small. But it is easy to see that this does not really help: Increasing
the number of leading ones (and thereby increasing the Hamming distance to
the global optimum) increases the function value. Such a step has probability
Ω(1/n). Thus, with probability exponentially close to 1 the (1+1) EA reaches 1n

as current string before reaching 0n – even if it reaches some arbitrary x = 1i0n−i

with i = Ω(n) before.
We have learned that there can be enormous differences in performance be-

tween the (1+1) EA and simulated annealing – even for very simply structured
functions. Such performance differences can occur with any of the two algorithms
being the superior one. This shows that a simple and direct transfer of results is
not possible. Both example functions are based on extreme changes in function
values of neighboring strings. We will use this observation in the next section as
motivation for a class of functions where we hope that a transfer of results may
be possible.
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4 Looking for Classes of Functions that Allow
for a Transfer of Results

When looking for classes of functions where the (1+1) EA and simulated anneal-
ing have similar performance, we have to rule out functions like the two example
functions from Section 3. Both functions, f1 and f2, have extreme differences
in function values for neighboring points in the search space. We can exclude
such functions by considering classes of functions where the fitness landscapes
are smooth in some way. But we have seen that it is not the absolute difference
in function values that matters: the interplay between this difference and the
current value of α(t) determines the behavior of simulated annealing. Arbitrary
scalings of the fitness differences can be compensated by an appropriate change
of the cooling schedule. The following definition takes this into account.

Definition 2. A pseudo-boolean function f : {0, 1}n → IR is called smooth in-
teger (s. i.), if f(x) ∈ ZZ for all x ∈ {0, 1}n and if |f(x) − f(y)| ≤ 1 for all
x, y ∈ {0, 1}n with H(x, y) ≤ 1, where H(x, y) denotes the Hamming distance
between x and y.

It is clear that smooth integer functions cannot separate simulated annealing
and the (1+1) EA in the way f1 or f2 do. What remains to be shown is that
they do not only hinder such constructs but do indeed imply similarities in the
way the (1+1) EA and simulated annealing optimize a function.

There are different known example functions that have the property to be
smooth integer: OneMax, the needle-in-the-haystack functions, and Prügel-
Bennett’s Fn [15] are such functions with very different properties otherwise.
Other known example functions can be changed so that they become s. i. with-
out losing their main properties. The function Jumpk [10] is an example.

We have seen that the (1+1) EA and simulated annealing perform very sim-
ilarly on OneMax. The same is known for needle-in-the-haystack functions [6].
Both functions have in common that there are no “valleys”: there is no need for
a mutation of several bits simultaneously for the (1+1) EA and there is no need
for simulated annealing to accept any worsenings. We will consider a very simple
class of functions, inspired by Jumpk [10], and show that this is not necessary
for similar performance.

Definition 3. For k ∈ {1, 2, . . . , �(n − 1)/2�} the function fk : {0, 1}n → IR is
defined by

fk(x) :=

⎧⎪⎨⎪⎩
2n − 4k − 2 − OneMax(x) if n − 2k ≤ OneMax(x) ≤ n − k − 1
OneMax(x) − 2k if n − k ≤ OneMax(x)
OneMax(x) otherwise

for all x ∈ {0, 1}n.

A function fk partitions the search space into three disjoint regions. In the
first region, where 0 ≤ OneMax(x) < n − 2k holds, the function value is given
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by OneMax(x). Then follows the second region, where n−2k ≤ OneMax(x) <
n − k holds; there the function values decrease with the number of ones in x.
Finally, in the last region, where OneMax(x) ≥ n−k holds, the function values
increase again until they reach the global maximum n−2k for x = 1n. A typical
example is f4 : {0, 1}20 → IR shown in Figure 1.

20

20−4

20−8−1 20−4−1

Fig. 1. The function f4 : {0, 1}20 → IR

It is interesting to note that fk is not only smooth integer but also a function
of unitation, just like OneMax is and like a needle-in-the-haystack function
can be. We will only deal with such functions here. It is clear that different
and interesting functions exist which are smooth integer but no functions of
unitation. However, we consider these functions to be out of the scope of this
paper.

Before investigating the behavior of the (1+1) EA and simulated annealing on
fk, we want to make a general remark on functions of unitation which are smooth
integer. As far as the performance of the (1+1) EA and simulated annealing are
concerned, we can partition all these functions into at most 3n disjoint sets, such
that both algorithms have identical behavior for all functions of one such set –
and this holds for each set. The reason is that the (1+1) EA is only sensitive
towards the ordering of the function values and simulated annealing only to the
difference between neighboring function values. Thus, we can choose f(0n) = z
with any value z ∈ ZZ and define the function f by a vector d = (d1, d2, . . . , dn) ∈
{−1, 0, 1}n with the following interpretation. We have

f(x) = z +
OneMax(x)∑

i=1

di

for all x ∈ {0, 1}n. Since the value of z does not matter, we can use z = 0 for
such functions. Using this notation, OneMax is defined by di = 1 for all i ∈
{1, . . . , n}, a needle-in-the-haystack function by di = 0 for all i ∈ {1, . . . , n − 1}
and dn = 1. We get fk by di = 1 for all i ∈ {1, . . . , n − 2k − 1}, di = −1 for all
i ∈ {n − 2k, . . . , n − k − 1} and di = 1 for all other i.
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Our idea of the function fk is that of Figure 1: a OneMax-like function with
a rather small valley just in front of the unique global optimum. This idea is
not realized by fk if k becomes so large that the valley occupies about half of
the search space or even more like it is the case for k ≥ n/4. Even though it is
not technically difficult to extend our formal analysis to fk for such values of k
we will not do so since it distracts us from our line of thought. Since the most
interesting cases are those where the algorithm used has polynomial expected
optimization time, we restrict ourselves to k = Θ(1) here.

Theorem 8. For fk with k = Θ(1), E (TEA) = Θ(n2k+1) holds.

Proof. Let p denote the probability that OneMax(x) = n − 2k − 1 holds
for the current string x at some point of time. In order to reach the unique
global optimum from there, a direct mutation to some y with OneMax(y) ≥
n − 1 is needed. We distinguish two cases. It may be the case that the unique
global optimum is reached via a direct mutation. Such a mutation has prob-
ability (1/n)2k+1(1 − 1/n)n−2k−1 = Θ(1/n2k+1). Otherwise, a string y with
OneMax(y) = n − 1 is reached. Such a mutation has probability

(
2k + 1

2k

)(
1
n

)2k (
1 − 1

n

)n−2k

+
(
n − 2k − 1

1

)(
1
n

)2k+2 (
1 − 1

n

)n−2k−2

= Θ

(
1

n2k

)
.

Given such a string y as current string x, the number of ones in the current
string may either increase, decrease, or remain unchanged. The probability to
increase it to n equals (1/n)(1− 1/n)n−1 = Θ(1/n). The probability to decrease
it is bounded below by(

n − 1
2k

)(
1
n

)2k (
1 − 1

n

)n−2k

= Θ(1).

We see that the probability to increase the number of ones from n − 2k − 1 to
n−1 and increase it to n before decreasing it to n−2k−1 or even smaller values
is Θ(1/n2k+1). Thus, E (TEA) = Ω(p · n2k+1) follows.

It is well known that the (1+1) EA optimizes OneMax on average in time
O(n log n) [14]. Thus, we can conclude that on average it finds a current string x
with OneMax(x) = n − 2k − 1 within O(n log n) steps. This implies E (TEA) =
O(n2k+1).

Now we need a lower bound on p. With probability exponentially close to 1,
we have OneMax(x0) < (3/5)n for the initial current x = x0. Thus, we are “left
of the valley” initially. The probability to have a mutation leading one step closer
to “the top of the hill”, i. e., a local maximum immediately to the left of the valley,
is always clearly larger than the probability for a mutation leading over the top
of that hill into the valley. Mutations leading to points left of a local minimum
in the bottom of the valley will, with high probability, lead back to the local
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maximum just in front of the valley. In particular, as long as we are in the valley
(not in a local maximum), the probability to reach the local maximum in front
of the valley before moving closer to the global maximum (including reaching
it) is always 1 − O(1/n). This is due to the facts that k = Θ(1), the probability
to move to the left is always Θ(1), and the probability to move to the right is
always O(1/n). We conclude that p = 1−O(1/n) and thus E (TEA) = Θ(n2k+1)
holds. ��

The performance of the (1+1) EA is governed by the time needed to jump
over the valley just before reaching the unique global optimum. Simulated an-
nealing will have to walk through this valley accepting k decreases in function
value consecutively. It is not surprising that this dominates the expected opti-
mization time of simulated annealing.

Theorem 9. For fk with k = Θ(1), E (TSA) = O(n2k+1) holds. For α ≥ (1 +
ε)n/2, where ε > 0 is a constant and α = O(n) holds, E (TSA) = Θ(n2k+1) holds
for fk with k = Θ(1).

Proof. The proof works for any cooling schedule which guarantees (1) α(t) ≥
(1 + ε)n/2 for all t ≥ t0, where ε > 0 is a constant and t0 = O(n2k+1), and
(2) α(t) = O(n) for all t. We choose α := n fixed for the sake of simplicity of
notation.

We begin with considering f1 and use

E
(
T+

i

)
=

1
p+

i

+
p−i
p+

i

· E (T+
i−1

)
from Theorem 1 in order to derive an upper bound on E (TSA) ≤

n−1∑
i=0

E
(
T+

i

)
.

For i ≤ n − 4, nothing is different from OneMax, so that E
(
T+

n−4

)
= Θ(n)

holds. For i = n−3, we are in a situation where each mutation leads to a decrease
in function value. We get

E
(
T+

n−3

)
=

n2

3
+

n2

3
· n − 3

n2
E
(
T+

n−4

)
= Θ

(
n2
)

as a consequence. For i = n−2, we are in a situation where each mutation leads
to an increase in function value. We get

E
(
T+

n−2

)
=

n

2
+

n

2
· n − 2

n
E
(
T+

n−3

)
= Θ

(
n3
)

as a consequence. Finally, for i = n − 1, we are again in the same situation as
for OneMax which implies

E
(
T+

n−1

)
= n + n · n − 1

n2
E
(
T+

n−2

)
= Θ

(
n3
)
.

This implies E (TSA) = Θ(n3) on f1, which is in accordance with the desired
result. We repeat the proof for f2 and look for differences and similarities. Since
the size of the “valley” changes with k, the absolute number of ones in the strings
cannot be compared directly.
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On f2, for i ≤ n − 6, everything is the same as for OneMax. We call i ∈
{0, 1, . . . , n − 6} type I levels here. This corresponds to i ∈ {0, 1, . . . , n − 4} on
f1. We get E

(
T+

n−6

)
= Θ(n) as a direct consequence.

For i = n − 5, we are in the situation where each mutation leads to a worse
offspring. This corresponds to i = n− 3 on f1. We call this level type II. We get
E
(
T+

n−5

)
= Θ(n2).

For i = n − 4, we are in a situation which is inverse to OneMax: increasing
the number of ones decreases the function value and vice versa. We call such
levels type III levels. Note that there is no type III level for f1. We get

E
(
T+

n−4

)
=

n2

4
+

n2

4
· n − 4

n
E
(
T+

n−5

)
= Θ

(
n4
)

here.
For i = n − 3 we are on f2 in the same situation as for i = n − 2 on f1: each

mutation implies an increase in function value. We get

E
(
T+

n−3

)
=

n

3
+

n

3
· n − 3

n
E
(
T+

n−4

)
= Θ

(
n5
)

as a consequence. We call this level type IV.
For i = n − 2 and i = n − 1 we are in a OneMax-like situation, again. We

conclude that E
(
T+

n−2

)
= O(n5) and E

(
T+

n−1

)
= O(n5) hold. These levels are

called type V levels.
We see that only type III levels are new for f2 in comparison to f1. For larger

values of k, no new situations occur. We summarize what we have for general,
yet constant values of k. Levels i ∈ {0, 1, . . . , n − 2k − 2} are type I levels
where E

(
T+

i

)
= Θ(n/(n − i)) holds. The only type II level is i = n − 2k − 1.

Here E
(
T+

n−2k−1

)
= Θ(n2) holds. After that we have the type III levels for

i ∈ {n − 2k, n − 2k, . . . , n − k − 2}, where E
(
T+

i

)
= Θ(n2(i−n+2k)+4) holds.

Note that for k = 1, n − 2k = n − 2 > n − 3 = n − k − 2 holds, so that there
is no type III level for f1. We see that the optimization time sharply increases
here with the required decrease in function values as could be expected. For
i = n − k − 1 we have the only type IV level, where E

(
T+

n−k−1

)
= Θ(n2k+1)

holds. The following levels i ∈ {n− k, n− k +1, . . . , n− 1} are of type V and we
have E

(
T+

i

)
= Θ(n2k+1) there. Since we have k = Θ(1), the results on E

(
T+

i

)
imply the desired result on E (TSA) for fk. ��

Theorem 9 contains a general upper bound, only. The possibility remains
that simulated annealing outperforms the (1+1) EA on fk using an appropriate
cooling schedule. We do not have a formal proof that this is not the case. But
we can offer some arguments that make this seem to be unlikely. First, we note
that switching from a fixed value of α to a non-increasing cooling schedule is not
helpful. In the beginning fk looks like OneMax. In this situation large values of
α are helpful. Only later, in the valley, smaller values for α can lead to a speed-
up. This is the opposite of a non-decreasing cooling schedule, thus a constant
value seems to be an appropriate choice.
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We can prove that for α ≤ (
√
n − 1)/2 simulated annealing has exponential

expected optimization time. We can prove a polynomial upper bound only for
α ≥ (1 + ε)n/2. If we had a proof that for α ≤ cn with some constant 0 < c <
1/2 the expected optimization time of simulated annealing on OneMax is not
polynomial, then we could actually prove that non-decreasing cooling schedules
cannot be helpful and that no other constant value for α can cause a substantial
speed-up.

The example functions fk show that “valleys” alone are not sufficient to sep-
arate the (1+1) EA from simulated annealing on s. i. functions. Neither regions
with increasing function values nor regions with constant function values (so
called plateaus) can cause a separation since both algorithms work in the same
way there. These arguments are far from a formal proof that the (1+1) EA and
simulated annealing necessarily show similar performance on s. i. functions. But
the results here seem to indicate that such a proof may exist.

However, a note of caution should be added. We seem to have reason to
believe that the performance of the (1+1) EA and simulated annealing on s. i.
functions which are functions of unitation are necessarily very similar. We present
another family of example functions which demonstrate that large (yet polyno-
mial) performance differences can occur. Due to the missing lower bound for a
range of possible fixed values of α on OneMax we cannot prove that simulated
annealing does perform worse for all cooling schedules. But for all cooling sched-
ules which enable us to prove polynomial upper bounds at all, the upper bound
for simulated annealing will be considerably worse than the one for the (1+1)
EA.

The idea of the example function gk (again k ∈ IN, k = Θ(1)) is to concate-
nate the valleys of fi with i ≤ k in ascending order in such a way that the peaks
at the end of the valleys grow. We have g1 = f1 and get different functions for
k > 1. One example, g3 : {0, 1}30 → IR, is visualized in Figure 2.

Fig. 2. The function g3 : {0, 1}30 → IR

A formal definition is somewhat involved. We choose to define the function
by a vector of differences between function values d = (d1, . . . , dn) ∈ {−1, 0, 1}n.
For the definition of this vector d it is convenient to define points of change
pj , first, where j ∈ {1, 2, . . . , 2k + 1}. Given these points of change, we define
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d1 = d2 = · · · = dp1 = 1, dp1+1 = · · · = dp2 = −1, dp2+1 = · · · = dp3 = 1, and so
on. For the points of change, we define p1 = n − k(k + 2), p2j = p2j−1 + j, and
p2j+1 = p2j + j + 1 for j ∈ {1, 2, . . . , k}. Using gk(0n) = 0 for all k and n this
completes the formal definition of gk. As an example, consider g3 for n = 30. We
get p1 = 15, p2 = 16, p3 = 18, p4 = 20, p5 = 23, p6 = 26, and p7 = 30, leading
to g3 as it can be seen in Figure 2.

It is not difficult to prove an acceptable upper bound on the optimization
time on gk for the (1+1) EA. The algorithm can “jump from hill top to hill top.”
This way, the expected optimization time is dominated by the final valley.

Theorem 10. For gk with k = Θ(1), E (TEA) = Θ(n2k+1) holds.

Proof. For the lower bound it suffices to note that the final valley has to be
crossed which is identical to the situation for fk. For the upper bound, we note
that for each valley a mutation of 2i + 1 specific bits is enough to cross it. This
yields

E (TEA) = O

(
k∑

i=1

n2i+1

)
= O

(
n2k+1

)
as upper bound. ��

For simulated annealing, the situation is similar to the situation for fk. We
can only prove an upper bound that is based on a special fixed value for α.
However, we have the same reasons as mentioned above to believe that the
upper bound given may be tight.

Theorem 11. For gk with k = Θ(1), E (TSA) = O(nk2+k+1) holds. For α ≥
(1+ε)n/2, where ε > 0 is a constant and α = O(n) holds, E (TSA) = Θ(nk2+k+1)
holds for fk with k = Θ(1).

Proof. Like in the proof of Theorem 9, this proof works for any cooling schedule
which guarantees (1) α(t) ≥ (1 + ε)n/2 for all t ≥ t0, where ε > 0 is a constant
and t0 = O(nk2+k+1), and (2) α(t) = O(n) for all t. Again, we choose α := n
fixed for the sake of simplicity of notation.

We partition the different levels of ones according to the types in the proof
of Theorem 9. We make the following observations. Type I levels only add a
term Θ(n) to the expected optimization time from the previous level. Type II
levels add a term Θ(n2) to the n-fold of the expected optimization time from the
previous level. Type III levels add a term Θ(n2) to the n2-fold of the expected
optimization time from the previous level. Type IV levels add a term Θ(n) to
the n-fold of the expected optimization time from the previous level. Finally,
type V levels just add a term Θ(n) to the expected optimization time of the
previous level.

We have k levels of type II and type IV each. This adds 2k to the exponent
of the expected optimization time. We have k valleys, the first without type III
level, all others with one type III level more than the previous valley. This
adds up to k(k − 1)/2 type III levels, adding k(k − 1) to the exponent of the
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expected optimization time. We add 1 for the first n − k(k + 2) levels and get
Θ(nk(k−1)+2k+1) = Θ(nk2+k+1) as bound as claimed. The linear and quadratic
terms added do not lead to an increase in the asymptotic notation since we have
k = O(1). ��

One may believe that increasing α in a way that α = ω(n) holds may decrease
the expected optimization time since it seems to decrease the influence of the
smaller valleys. However, this is not the case. At the type II level at the beginning
of a valley with depth j we have E

(
T+

i

)
= Ω(αn+n2) when we use an arbitrarily

fixed α. The choice of α has influence on the expected time until the bottom of the
valley is reached. We get E

(
T+

i+j

)
= Ω(αjnj+1 +αj−1nj+2) there. Indeed, when

climbing up the valley we get a factor Θ(n/α) that may diminish the influence
of the time spent before. This adds up to E

(
T+

i+2j

)
= Ω(n2j+1 + n2j+2/α) just

in front of the next hill top. We see that the α-independent term n2j+1 cannot
be avoided. And exactly this term dominates the expected optimization time in
the proof of Theorem 11.

When we consider the quotient of the upper bound for simulated annealing
and the expected optimization time for the (1+1) EA, we see that it is always
polynomially bounded for k = Θ(1). But simultaneously it can become arbitrar-
ily large. It is easy to extend the proofs to the case k = O(log n), which would
yield a super-polynomially growing quotient. However, neither the (1+1) EA nor
simulated annealing have polynomial expected optimization time in this case.
Therefore, we do not consider such a result to be interesting.

5 Conclusions

We have presented a systematic comparison of simulated annealing and the
(1+1) EA under the aspect of expected optimization time. The comparison is
inspired by the extreme similarities of these two randomized search heuristic. The
main hope is to find mechanisms to transfer analytical results from one of these
two algorithms to the other. This concrete study may be seen as an example
of an approach that tries to find a kind of taxonomy for general randomized
search heuristics. Having such a general goal in mind the steps taken here may
seem appear to be too timid. Despite its obvious desirability, we consider such a
general approach to be too ambitious given the current knowledge on the analysis
of randomized search heuristics.

By means of two example functions we learned that in spite of their similar-
ities the performances of simulated annealing and the (1+1) EA can be drasti-
cally different. This leads to a clearer formulation of our goal. We are looking for
classes of functions where both algorithms have similar expected optimization
times. For the two example functions which demonstrated extreme performance
differences extreme differences between neighboring points in the search space
are crucial. Therefore, the definition of smooth integer functions is motivated.
The absolute difference in function values between neighboring points is limited
to 1, scaling tricks are prohibited since the function values are restricted to be
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integers. The class of smooth integer functions, especially the sub-class of func-
tions which are smooth integer and functions of unitation, has been investigated
more closely. One family of example functions showed that a single valley in
the search space that needs to be crossed causes an obstacle that is of equal
difficulty to the (1+1) EA and simulated annealing. A second family of exam-
ple functions showed that simple concatenation of valleys is already sufficient to
demonstrate arbitrarily large, yet polynomial differences in performance between
the two randomized search heuristics.

It is still unclear whether the performance of simulated annealing and the
(1+1) EA on smooth integer functions or at least on smooth integer functions
which are functions of unitation is necessarily similar. We believe that this ques-
tion deserves some attention in the future. Learning how to identify classes of
functions where similar yet different randomized search heuristics may become a
valuable tool in order to classify objective functions as well as randomized search
heuristics.

There are two open problems that deserve to be stated explicitly. First, the
performance of simulated annealing with constant α, i. e., the Metropolis algo-
rithm, on OneMax needs to be determined asymptotically tight for all possible
values of α. The results here leave a gap for

√
n/2 ≤ α ≤ n/2. Second, either

an explicit definition of an example function that is smooth integer and causes
E (TA) to be exponential but causes E (TB) to be polynomial (with A = EA and
B = SA or the other way round) or a formal proof that such a function does not
exist is needed.
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Abstract. In previous work of the second author a rigorous mathematical foun-
dation for re-encoding one evolutionary search algorithm by another has been
developed. A natural issue to consider then is the complexity of deciding whether
or not a given evolutionary algorithm can be re-encoded by one of the standard
classical evolutionary algorithms such as a binary genetic algorithm. In the cur-
rent paper we prove that, in general, this decision problem is NP-complete.

1 Introduction

In recent years evolutionary algorithms have been widely exploited to solve various
complex optimization problems. In order to apply an evolutionary algorithm to attack a
specific optimization problem, one needs to model the algorithm in a suitable manner.
The importance of finding appropriate models is emphasized in much of the research
literature: see, for instance, the introduction to chapter 17 of [13], [14], [12] and [11].
The general methodology for how to construct the search space and the appropriate
recombination operators with the aim of applying the classical genetic algorithm first
appeared in [9]. However, there is a variety of different types of EAs which people use.
This might be, for example, nonlinear GP with homologous crossover introduced by
Poli (see [8] for a detailed description of how this algorithm works), or, even more so,
it might be a special type of an algorithm used to attack a specific problem. It is in
general interesting to know if it is possible to re-encode a given algorithm by a binary
genetic algorithm. In [6] and in [7] a rigorous mathematical framework was introduced,
allowing one to re-encode one evolutionary algorithm by another.

In particular, necessary and sufficient conditions for a given evolutionary search al-
gorithm to be embeddable into a binary genetic (or semi-genetic) algorithm have been
established. The aim of the current paper is to investigate the computational complex-
ity of deciding if a given evolutionary search algorithm can be re-encoded by another
(probably a more commonly used) evolutionary algorithm. The main results of the cur-
rent paper demonstrate that deciding if a given evolutionary algorithm can be embedded
into a binary semi-genetic algorithm can be done in polynomial time, while the more
useful, analogous decision problem pertaining to the classical genetic algorithm is, un-
fortunately, NP-complete.

� Partially supported by NSF grant DMS–0070723.

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 58–74, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



NP-Completeness of Deciding Binary Genetic Encodability 59

The paper is organized as follows: In the next two sections we introduce the basic
notation and framework used throughout the paper. Next, in Section 4 we demonstrate
how the classical types of algorithms fit into this framework. Section 5 is devoted to a
summary of the previous work which sets the foundation for the results of the current
paper. The main results are then presented in the final Section 6.

2 Notation

Ω is a finite set, called a search space.
f : Ω → (0,∞) is a function, called a fitness function. The goal is to find a maxi-

mum of the function f .
F is a collection of binary operations on Ω. Intuitively F can be thought of as

the collection of reproduction transformations: two parents produce one offspring. The
family of asexual reproductions or mutations (these are unary operations on Ω, i. e.
functions from Ω into itself) will be denoted by M. By a search system we mean a
search space Ω together with families F and M of reproduction transformations and
mutations. We shall denote a search system either by (Ω, F ,M) or simply by Ω; the
latter notation follows the convention, common in many parts of mathematics, of using
the same symbol, in this case Ω, for a mathematical structure, in this case a search
system, and for its underlying set.

Remark: In general there is no reason to assume that a child has exactly two parents.
All of the results in this paper are valid for families of q-ary operations on Ω. The
only reason F is assumed to be a family of binary transformations is to alleviate the
complexity of notation. In the general case, the definition of search system should, of
course, include all the reproduction transformations, regardless of the number of ar-
guments. Search systems were called “heuristic tuples” in earlier work of the second
author. They are almost the same as what are called “algebras” in universal algebra, but
the morphisms of search systems, defined in Section 5, are different from homomor-
phisms of algebras.

3 How Does an Evolutionary Algorithm Work?

A typical evolutionary algorithm works as follows: A population P =

⎛⎜⎜⎜⎝
x1

x2

...
x2m

⎞⎟⎟⎟⎠ with

xi ∈ Ω is selected randomly. The algorithm cycles through the following stages:

Evaluation
Individuals of P are evaluated: ⎛⎜⎜⎜⎝

x1

x2

...
x2m

⎞⎟⎟⎟⎠
→ f(x1)
→ f(x2)
...

...
→ f(x2m)
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Selection
A new population

P ′ =

⎛⎜⎜⎜⎝
y1

y2

...
y2m

⎞⎟⎟⎟⎠
is obtained by choosing each yi independently by the following random process. Choose

at random j in the range 1 ≤ j ≤ 2m, the probability of any j being
f(xj)

Σ2m
l=1f(xl)

. Then

set yi = xj .
Thus, all of the individuals of P ′ are among those of P , and the expectation of the

number of occurrences of any individual of P in P ′ is proportional to the number of
occurrences of that individual in P times the individual’s fitness value. In particular, the
fitter the individual is, the more copies of that individual are likely to be present in P ′.
On the other hand, the individuals having relatively small fitness value are not likely
to enter into P ′ at all. This is designed to imitate the natural “survival of the fittest”
principle.

Partition
The individuals of P ′ are partitioned into m pairwise disjoint couples for mating ac-
cording to some probabilistic rule: For instance the couples could be

Q1 =
(
yi11
yi12

)
Q2 =

(
yi21
yi22

)
. . . Qj =

(
yij

1

yij
2

)
. . . Qm =

(
yim

1

yim
2

)
Reproduction

Replace every one of the selected couples Qj =

(
yij

1

yij
2

)
with the couple

Q′ =

(
T1(yij

1
, yij

2
)

T2(yij
1
, yij

2
)

)
for some couple of transformations (T1, T2) ∈ F2. The couple (T1, T2) is selected
according to a fixed probability distribution on F2. This gives us a new population

P ′′ =

⎛⎜⎜⎜⎝
z1

z2

...
z2m

⎞⎟⎟⎟⎠
Mutation
Finally, with small probability we replace zi with F (zi) for some randomly chosen
F ∈ M. The choices for different i’s are independent. This, once again, gives us a new

population P ′′′ =

⎛⎜⎜⎜⎝
w1

w2

...
w2m

⎞⎟⎟⎟⎠
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Upon completion of mutation start all over with P ′′′ as the initial population. The
cycle is repeated a certain number of times depending on the problem. A more general
and extensive description is given in [13]. The importance of choosing a reasonable
representation for a specific problem is emphasized in some of the modern research.
See, for instance, [10]. A few special types of evolutionary algorithms are introduced
in the next section.

4 Special Evolutionary Algorithms

Classical Genetic Algorithm with Masked Crossover: Let Ω =
∏n

i=1 Ai. For every
subset M ⊆ {1, 2, . . . , n}, define a binary operation LM on Ω as follows:

LM (a,b) = (x1, x2, . . . , xi, . . . , xn)

where a = (a1, a2, . . . , an) and b = (b1, . . . , bn) ∈ Ω and xi =

{
ai if i ∈ M

bi otherwise.
This LM is a masked crossover operator with mask M . Let F = {LM | M ⊆
{1, 2, . . . , n}}. That is, F in this example is simply the family of masked crossover
transformations. The probability distribution on the set F2 is concentrated on the pairs
of the form (LM , LM̄ ) where M̄ denotes the complement of the set M in {1, 2, . . . , n}.

Example: Let n = 5 and Ai = {0, 1, . . . , i+1}. Suppose a given population P consists
of 6 individuals which are the rows of the matrix⎛⎜⎜⎜⎜⎜⎜⎝

2 3 4 5 6
0 1 2 3 4
1 2 3 4 5
0 0 1 2 3
1 1 0 1 2
1 2 1 5 4

⎞⎟⎟⎟⎟⎟⎟⎠
Say, after the selection stage is complete one obtains the following population

P ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
2 3 4 5 6
2 3 4 5 6
1 2 3 4 5
0 0 1 2 3
0 1 2 3 4
1 2 3 4 5

⎞⎟⎟⎟⎟⎟⎟⎠
Now the following individuals are paired for mating (masked crossover in this case):

Q1 =
(

2 3 4 5 6
0 0 1 2 3

)
, Q2 =

(
2 3 4 5 6
1 2 3 4 5

)
, and Q3 =

(
0 1 2 3 4
1 2 3 4 5

)
Suppose we have chosen the masks M1 = {1, 4, 5}, M2 = {1, 2} and M3 = {3, 4}
for the crossover of pairs Q1, Q2 and Q3 respectively. In the language of this paper it
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means we have chosen the pairs of transformations (LM1 , LM̄1
) for Q1, (LM2 , LM̄2

)
for Q2 and (LM3 , LM̄3

) for Q3 respectively. Upon applying these we obtain

Q1 →
(
LM1((2, 3, 4, 5, 6), (0, 0, 1, 2, 3))
LM̄1

((2, 3, 4, 5, 6), (0, 0, 1, 2, 3))

)
=
(

2 0 1 5 6
0 3 4 2 3

)
,

likewise

Q2 →
(
LM2((2, 3, 4, 5, 6), (1, 2, 3, 4, 5))
LM̄2

((2, 3, 4, 5, 6), (1, 2, 3, 4, 5))

)
=
(

2 3 3 4 5
1 2 4 5 6

)
,

and, finally,

Q3 →
(
LM3((0, 1, 2, 3, 4), (1, 2, 3, 4, 5))
LM̄2

((0, 1, 2, 3, 4), (1, 2, 3, 4, 5))

)
=
(

1 2 2 3 5
0 1 3 4 4

)
.

The family M of mutation transformations in this example (and in all of the following
ones) consists of the transformations Ma : Ω → Ω, where a ∈ ∏

i∈S Ai and S ⊆
{1, 2, . . . , n}. The transformation Ma sends any x = (x1, x2, . . . , xn) ∈ Ω to the

y = (y1, y2 . . . , yn) ∈ Ω whose components are yq =

{
aq if q ∈ S

xq otherwise.
In other

words, Ma simply replaces the qth coordinate of its argument with aq ∈ Aq whenever
q ∈ S.

Binary Genetic Algorithm with Masked Crossover
When every Ai = {0, 1} (which means that Ω = {0, 1}n) in the example above, one
obtains the classical binary genetic algorithm.

Random Respectful Recombination
Random Respectful Recombination first appeared in [9]. Here the search space Ω
and the family of mutation transformations, M, are exactly the same as in the ex-
ample of classical genetic algorithm, and the family of mating transformations is de-
scribed below. As in [5], we call these mating transformations Holland transforma-
tions because their corresponding family of fixed subsets is precisely the collection of
subsets of Ω determined by the classical Holland schemata together with the empty
set. (See examples following Corollary 8 in the next section.) For every given point
u = (u1, u2, . . . , un) ∈ Ω define a Holland transformation Tu : Ω2 → Ω as follows:
for every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Ω

Tu(a,b) = (x1, x2, . . . , xn)

where

xi =

{
ai if ai = bi

ui otherwise

In other words, if the ith coordinates of a and b coincide, then the ith coordinate of
Tu(a,b) also coincides with them. If, on the other hand, the ith coordinates of a and b
differ, then the ith coordinate of Tu(a,b) is that of u, namely, ui. Let F = {Tu | u ∈
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Ω} be the family of all Holland transformations. The probability distribution on F may
be chosen in different ways depending on the circumstances, but this is not relevant to
the objective of the current paper.

Every transformation in the pair (Tu, Tv) is chosen independently.

Binary Random Respectful Recombination
The search space Ω and the family of mating transformations F and the family of
mutations M are exactly the same as these for the binary genetic algorithm with masked
crossover described above. The only difference is that the probability distribution on
F2 is now completely uniform (rather than being concentrated on the diagonal-like
subset described in the classical genetic algorithm example). For instance, if n = 5,
M1 = {2, 3, 4}, M2 = {1, 3, 5} and the pair (TM1 , TM2) is selected for mating, we
have, for instance,(

1 0 0 1 1
1 1 0 0 1

)
�−→

(
TM1((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
TM2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=
(

1 0 0 1 1
1 1 0 0 1

)
The same definition could be applied in the non-binary case, but then it would not

agree with the random respectful recombination of [9] (as described above). The differ-
ence is that, when the two parents have different alleles of a certain gene, then random
respectful recombination allows the offspring to have any allele of that gene, while the
present definition only allows the offspring to have either of the two alleles present in
the parents. The two notions are equivalent just when there are only two possible alleles.

The following type of algorithm may seem useless at first. Its importance will be-
come clear in the next section when we present the binary embedding theorem which
shows that the binary semi-genetic algorithm possesses an interesting universal prop-
erty.

Binary Semi-genetic Algorithm
The search space Ω = {0, 1}n, just as in the case of the binary genetic algorithm.
The family of mating transformations F is defined as follows: Fix an individual u =
(u1, u2, . . . , un) ∈ Ω. Define a semi-crossover transformation Fu : Ω2 → Ω as fol-
lows: For any given pair (x, y) ∈ Ω2 with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . ,
yn) we have Fu(x, y) = z = (z1, z2, . . . zn) ∈ Ω where

zi =

{
1 if xi = yi = 1
ui otherwise

In other words, Fu preserves the ith gene if it is equal to 1 in both of the parents and
replaces it with ui otherwise. Let F = {Fu |u ∈ Ω} be the family of all semi-crossover
transformations. The family of mutation transformations M is exactly the same as in
the examples above.

Example: With n = 5 and u1 = (0, 1, 1, 0, 1), u2 = (0, 1, 0, 0, 1) we have(
1 0 0 1 1
1 1 0 0 1

)
�−→

(
Fu1((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
Fu2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=
(

1 1 1 0 1
1 1 0 0 1

)
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Notice that, if 1 is present in the ith position of both parents, then it remains in
the ith position of both offspring. There are absolutely no other restrictions, though.

In practice the choice of the search space Ω is primarily determined by the specific
problem and related circumstances. The general methodology for the construction of the
search spaces first appeared in the work of Radcliffe (see, for instance, [9]). Radcliffe
introduced the notion of a forma which captures the essential properties of the Holland
schemata in a representation independent setting. A forma is simply a partition of the
search space into equivalence classes. A given collection of forma with suitable prop-
erties (see [9]) is, in a sense, no different from the collection of the classical Holland
schemata provided that one encodes the search space using the “genetic representation
function” which is also introduced in [9]. The connection between all of the possible
families of mating transformations on a given search space Ω and the corresponding
families of invariant subsets established in [5] has been exploited in [6] and in [7] to
extend Radcliffe’s notion of the genetic representation function to compare various evo-
lutionary algorithms via possible encodings of their search spaces (see corollary 12 of
[6]). In particular, necessary and sufficient conditions, stated in terms of the internal
structure of the search space, for re-encoding a given algorithm by a search system cor-
responding to a binary genetic algorithm have been established (see Theorem 14 of [6]
or, more generally, Theorem 3.7 of [7]). These ideas will be summarized in the next
section.

5 Summary of Previous Work

As we have seen in the previous sections, a given evolutionary search algorithm is deter-
mined primarily by the ordered 4-tuple (Ω, F , M, f). In the current paper we shall be
primarily concerned with the search space Ω and the family of mating transformations
F . The family of mutations M is of less importance because it is ergodic, meaning that
the only invariant subsets under M are ∅ and the entire search space Ω. The notion of
an invariant subset is defined below. The reason why invariant subsets play a significant
role in the current paper is Theorem 8. We give the definition for a family Γ of opera-
tions of any number of arguments, but we shall use it in this paper only for the family
F of binary operations of a search system.

Definition 1 For a given family of m-ary operations Γ on a set Ω (that is, functions
from Ωm into Ω) a subset S ⊆ Ω is invariant under Γ if and only if for all T ∈ Γ we
have T (Sm) ⊆ S. We shall denote by ΛΓ the family of all invariant subsets of Ω under
Γ . In other words, ΛΓ = {S | S ⊆ Ω, T (Sm) ⊆ S ∀ T ∈ Γ}.

Below we list the families of invariant subsets for each of the examples of Section 4:

Classical Genetic Algorithm. In this case, the family of invariant subsets ΛF is {∏n
i=1

Ti | Ti ⊆ Ai}. This is precisely the family of subsets determined by Antonisse’s
schemata (see corollary 2.4 of [5]).

Random Respectful Recombination. ΛF = {∏n
i=1 Ti | Ti = {a} for some a ∈

Ai or Ti = Ai}∪{∅}. This is precisely the family of subsets determined by the Holland
schemata together with the empty set (see corollary 3.5 of [5]).
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Binary Semi-genetic Algorithm. It is not hard to verify that ΛF = {∏n
i=1 Ti | Ti =

{1} or Ti = {0, 1}} ∪ {∅}. This is precisely the family of subsets determined by Hol-
land schemata whose fixed positions can only equal 1 (can’t equal 0).

The mathematical properties of the family of invariant subsets, ΛΓ have been de-
scribed in detail in [5]. In the current presentation we just mention a few facts and
notions which will be of particular importance here.

It is easy to verify (see Proposition A1 of [5]) that the family ΛΓ is closed under
arbitrary intersections and contains Ω. It then follows that for every element x ∈ Ω
there is a unique smallest element of ΛΓ containing x (namely the intersection of all
the members of ΛΓ containing x).

Definition 2 Given a search system Ω = (Ω,F ,M), denote by SΩ
x the smallest ele-

ment of ΛF containing x. When the search system Ω is clear from the context we shall
just write Sx instead of SΩ

x .

The following definition is a natural extension of the notion of a genetic representation
function introduced in [9].

Definition 3 Given two search systems Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2,
M2), a morphism δ : Ω1 → Ω2 is just a function δ : Ω1 → Ω2 which respects
the reproduction transformations in the following sense: for each T ∈ F1 and each
x = (x, y) ∈ Ω2

1 there exists F(x, y) ∈ F2 such that δ(T (x, y)) = F(x, y)(δ(x), δ(y))
(see Figure 1). Analogously, we must have, for each M ∈ M1 and each x ∈ Ω some
Hx ∈ M2 such that δ(M(x)) = Hx(δ(x)).

Fig. 1. The morphism δ : Ω1 → Ω2

A morphism δ : Ω1 → Ω2 provides the means for encoding the search system Ω1 by
the search system Ω2. Unless the underlying function δ is one to one, there is some non-
trivial coarse graining involved. We therefore give a special name to those morphisms
whose underlying functions are injective.

Definition 4 We say that a morphism δ : Ω1 ↪→ Ω2 is an embedding if the underlying
function δ : Ω1 → Ω2 is one-to-one.
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search systems and the morphisms between them form a well-defined category (see [3]
for details about the notion of category). Some universal constructions on this category
have been studied in [7]. The central result of [6] is a connection between the fam-
ily of invariant subsets and the family of all possible re-encoding morphisms between
two given search systems. This connection is analogous to the corresponding connec-
tion between the family of open subsets and continuous maps in topology and between
sigma-algebras and measurable functions in analysis:

Proposition 5 Let δ : Ω1 → Ω2 be a morphism of search systems. Then S ∈ ΛF2 =⇒
δ−1(S) ∈ ΛF1 . In words, a preimage of an invariant set under a morphism is invariant.

The converse of Proposition 5 holds under the following technical requirement:

Definition 6 We say that a given family of m-ary operations Γ on a set Ω (that is a fam-
ily of functions from Ωm to Ω) is composition closed if the following two conditions
hold:

1. For all T0, T1, T2, . . . , Tm ∈ Γ , the composite operation T : Ωm → Ω defined
by T (x) = T0(T1(x), T2(x), . . . , Tm(x)) is also a member of Γ .

2. For all S ⊆ Ω, we have
⋃

T∈Γ T (Sm) ⊇ S.

It is fairly straightforward to verify that every one of the families of mating transfor-
mations involved in the examples of Section 4 is composition closed. In fact, it was
already shown in [5] that the families of masked crossover transformations and Holland
transformations (those which are used for modelling random respectful recombination)
are composition closed (see Proposition 2.1 and Theorem 3.6 of [5]). It was also shown
(see proposition 9 of [6]) that the family of binary semi-crossover transformations is
composition closed.

As noted before, for any family of m-ary operations on Ω the corresponding family
of invariant subsets ΛΓ is closed under arbitrary intersections. Moreover, for any func-
tion δ : Ω1 → Ω2, the inverse image of the intersection of two subsets of Ω2 is the
intersection of the inverse images of these subsets: δ−1(U ∩ V ) = δ−1(U) ∩ δ−1(V ).
This motivates the following definition:

Definition 7 Given a family of m-ary operations Γ on Ω, we say that a family of
subsets Λ̃Γ ⊆ ΛΓ is a base of ΛΓ if every set K ∈ ΛΓ is the intersection of some sets
in Λ̃Γ . (Equivalently, K =

⋂
S∈Λ̃Γ , S⊇K S).

We now continue with the examples following Definition 1 and list bases for each of
them:

Classical Genetic Algorithm. In this case a base for ΛF is the family Λ̃F = {∏n
i=1

Ti | Ti = Ai for all but one i}. The reader can see that |Λ̃F | = (
∑n

i=1 2|Ai|) − n + 1.

Every element of Λ̃F can be thought of as a union of subsets determined by Holland
schemata having exactly one fixed position at the same gene.

Random Respectful Recombination. In this case a base for ΛF is the family Λ̃F
consisting of all products

∏n
i=1 Ti where Ti is a one-element set for one value of i, and

Ti = Ai for all other values of i. This is precisely the family of subsets determined by
Holland schemata having exactly one fixed position.
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Binary Semi-genetic Algorithm. It is not hard to verify that in this case a base for
ΛF is the family Λ̃F consisting of all products

∏n
i=1 Ti where Ti = {1} for one value

of i, and Ti = Ai for all other values of i. Notice that Λ̃F is precisely the family of
subsets determined by Holland schemata having exactly one fixed position, and that
fixed position is equal to 1.

The following fact is the central result of [6]:

Theorem 8 Let Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2, M2) denote search systems
with F2 and M2 being composition closed, and let δ : Ω1 → Ω2 be a function. Then
the following are equivalent:

1. S ∈ Λ̃F2 =⇒ δ−1(S) ∈ ΛF1 .
2. S ∈ ΛF2 =⇒ δ−1(S) ∈ ΛF1 .
3. δ : Ω1 → Ω2 is a morphism of search systems.

In the current paper we shall be primarily concerned with the issue of whether or not
a given search system can be embedded into a search system representing the binary
semi-genetic or the binary genetic algorithm in the sense of Definition 4. We therefore
introduce the following definition.

Definition 9 We say that a given search system Ω = (Ω, F , M1) is semi-genetic
(genetic) if it can be embedded, in the sense of Definition 4, into the search system
({0, 1}n, FM , M) for some n where FM is the family of all semi-crossover transfor-
mations (the family of all masked crossover transformations) and M is the family of
mutations (the same in all of the examples) as introduced in Section 4.

In [6] necessary and sufficient conditions for a given search system to be semi-genetic
have been established1:

Theorem 10 Given a search system Ω = (Ω, F , M), the following are equivalent:

1. Ω can be embedded into an n-dimensional semi-genetic search system for some n.
2. ∀x, y ∈ Ω with x �= y we have either x /∈ SΩ

y (see Definition 2) or vice versa:
y /∈ SΩ

x .
3. ∀x, y ∈ Ω with x �= y we have SΩ

x �= SΩ
y . (Another way to say this is that the map

sending x to SΩ
x is one-to-one.)

Moreover, if an embedding exists for some n, then there exists one for n = |Ω|. We also
must have n ≥ �log2 |Ω|�.

Once we are equipped with Theorem 8, it is not hard to establish a criterion analogous
to Theorem 10 for a given search system to be genetic:

Theorem 11 A given search system Ω1 = (Ω1, F1, M1) is genetic if and only if for
each x �= y in Ω1 there exists a complementary pair of invariant subsets A and B
(A ∩ B = ∅ and A ∪ B = Ω1, and A, B ∈ ΛF ) with x ∈ A and y ∈ B.

1 In fact, a lot more has been accomplished in [6] and in [7]. A one-to-one correspondence
between all possible morphisms (re-encodings) of the search space by a binary semi-genetic
(genetic) algorithm and certain corresponding collections of ordered tuples of invariant subsets
of the search space has been established (see Theorems 14 and 20 of [6])
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Proof. Suppose first that Ω1 is genetic. Let δ : Ω1 → Ω be an embedding where
Ω = ({0, 1}n, FM , M) is the search system describing the binary genetic algorithm
with masked crossover as in Section 4. Fix x �= y ∈ Ω1. Then, since δ is an embedding,
δ(x) = (x1, x2, . . . , xn) �= δ(y) = (y1, y2, . . . , yn) ∈ {0, 1}n. But this means that
xi �= yi for some i. Consider the Holland schemata H1 = {0, 1}i−1×{xi}×{0, 1}n−i

and H2 = {0, 1}i−1 × {yi} × {0, 1}n−i. Notice that δ(x) ∈ H1 and δ(y) ∈ H2,
H1 ∩ H2 = ∅ and H1 ∪ H2 = {0, 1}n. Now simply let A = δ−1(H1) ∈ ΛF and
B = δ−1(H2) ∈ ΛF . Since δ is a morphism, A and B are as required.

Now suppose that for all x �= y ∈ Ω1 there exists a complementary pair of in-
variant subsets A and B with x ∈ A and y ∈ B. Then we can choose a sequence
of invariant sets A1, A2, . . . , An with invariant complements Ac

i such that each pair
x �= y ∈ Ω1 is separated by the chosen sets, i.e., there is i with x ∈ Ai and y ∈ Ac

i or
vice versa. Now consider the map δ : Ω1 → {0, 1}n defined as follows for all x ∈ Ω1:

δ(x) = (x1, x2, . . . , xn) where xi =

{
1 if x ∈ Ai

0 if x ∈ Ac
i

. We observe that δ is a mor-

phism: Indeed, according to examples following Theorem 8, Holland schemata with
one fixed position (subsets of the form H1

i = {0, 1}i−1 × {1} × {0, 1}n−i and H0
i =

{0, 1}i−1 ×{0}×{0, 1}n−i) form a base of ΛFM and we have δ−1(H1
i ) = Ai ∈ ΛF1

and δ−1(H0
i ) = Ac

i ∈ ΛF1 so that δ : Ω1 → Ω is a morphism of search systems thanks
to Theorem 8. It remains to show that δ is one-to-one: Fix x �= y ∈ Ω1. Then for at
least one i we have x ∈ Ai and y ∈ Ac

i or vice versa. But then we have xi �= yi and so,
according to the definition of δ, δ(x) �= δ(y), and the desired conclusion follows. We
deduce now that δ is an embedding so that Ω1 is, indeed, genetic. ��

6 Complexity of Deciding if a Given Search System Is Genetic

In the previous section we have summarized the results which establish some conditions
to tell us when a given algorithm can be re-encoded by a binary semi-genetic or by a
binary genetic algorithm. In the current section we shall investigate the complexity of
deciding whether or not condition 2 of Theorem 10 and the condition of Theorem 11
are satisfied. We shall see below that deciding whether or not a given algorithm is semi-
genetic (in the sense of Definition 9) can be done in polynomial time, while deciding
if a given algorithm is genetic (also in the sense of Definition 9) is an NP-complete
problem. Here both “polynomial time” and “NP” are with respect to the size of the
representation, i.e., |Ω| + |F|.

Theorem 12 The following problem can be solved in polynomial time with respect to
the size of the input provided that there exists a constant q such that for every F ∈ F
the computation of F (x, y) is done in O(nq) steps2.

Instance of the problem: A search system Ω=(Ω,F ,M) and individuals x, y ∈ Ω.
Question: Is it true that y /∈ Sx?

2 A very reasonable assumption since there would be little point in running such an evolutionary
search algorithm otherwise
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Proof. We construct a polynomial time procedure to answer this question: Accord-
ing to proposition A.4 of [5] we have a nested chain of inclusions {x} ⊆ F({x}) �

F(F({x})) � . . . � Fk({x}) = Fk+1({x}) = Sx. Moreover, it is clear that k ≤ |Ω|.
The following algorithm will therefore answer the question: “Is it true that y /∈ Sx?”

Step 1: Set K := {x} and l = 1
Step 2: For each (u, v) ∈ K2 and each T ∈ F compute T (u, v). If T (u, v) = y then
stop and return “no”. If not, let K := K ∪ {T (u, v) | (u, v) ∈ K and T ∈ F} and
l := l + 1. If l = |Ω| + 1 then stop and return “yes”. Otherwise repeat step 2.

It remains to show that the algorithm above solves the problem in O(nm) steps
where m is a fixed integer and n = |Ω| + |F|. But notice that the computational part
of step 2 takes no longer than |Ω|2 · |F| · O(nq) steps for the integer q such that for
every F ∈ F the computation of F (x, y) is done in O(nq) steps (see the assumption).
Moreover, step 2 is repeated at most |Ω| ≤ n times so that the total amount of time it
takes the algorithm to run is |Ω| · |Ω|2 · |F| ·O(nq) ≤ O(nq+4) steps and the argument
is complete. ��
Since the number of pairs of elements in a search space is quadratic (we only need
that it is bounded by a polynomial) with respect to the size of the search space itself,
Theorem 12 together with Theorem 10 immediately implies:

Corollary 13 Given a search system Ω = (Ω, F , M) the decision whether or not
Ω is semi-genetic can be made in polynomial time with respect to the size of the in-
put provided that computation of F (x, y) for all x, y can be done in polynomial time
uniformly (meaning that the time bound is independent of x and y).

The situation turns out to be less pleasant in the case of deciding whether or not a given
search system is genetic, i. e. whether the condition of Theorem 11 is satisfied, as the
following theorem shows:

Theorem 14 The following problem is NP-complete.
Instance of the problem: A search system Ω = (Ω, F , M) and individuals x, y ∈

Ω. We assume given a polynomial time algorithm for evaluating the functions in F on
arguments in Ω.

Question: Does there exist a subset A ⊆ Ω such that x ∈ A while y ∈ Ac and both
A and Ac ∈ ΛF?

Proof. It is easy to see that the problem is in NP; just guess an appropriate A and check
that it works. The challenging part is to build an appropriate polynomial time reduction.
We reduce from the “Not All Equal 3-SAT” problem (see section A9.1, page 259 of [2])
In order to state the “Not All Equal 3-SAT” problem, we need the notion of a literal and
of a clause:

Definition 15 Given a set U of boolean variables, a literal over U is either a variable,
say a, from U or the negation of the variable a ∈ U , denoted by ā. We sometimes use
a bar over a literal that is not a variable; then ¯̄a means simply a.

Definition 16 A 3-clause over a set U of boolean variables is a disjunction of some
three literals over U . If the literals involved in C are a, b and c then we shall write
C = a ∨ b ∨ c.
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The “Not All Equal 3-SAT” problem is given by:
Instance: A collection C of 3-clauses over a set U of variables.
Question: Does there exist a truth assignment such that every clause in C contains a

literal whose value is true and a literal whose value is false?
The “Not All Equal 3-SAT” problem is known to be NP-complete (see [2]). We now

proceed building the reduction. So fix an instance of the “Not All Equal 3-SAT”, i. e. a
collection C of 3-clauses over a set of variables U . Let the search space Ω consist of all
the literals involved in the clauses of C. We still have to define the family of reproduction
transformations F and the distinguished pair of points x and y. (M does not play any
role here since it is always assumed to be ergodic.) We define one such transformation
for every clause C ∈ C, say C = a ∨ b ∨ c, where a, b and c denote arbitrary literals.
We define the transformation TC : Ω2 → Ω as follows:

TC(a, b) = TC(b, a) = c̄

TC(a, c) = TC(c, a) = b̄

TC(b, c) = TC(c, b) = ā.

For all other pairs (u, v) ∈ Ω2 we define TC(u, v) = u. Now, for each w ∈ Ω define a
transformationFw : Ω2 → Ω as follows: For pairs of the form (a, ā) let Fw(a, ā) = w.
For all other pairs let Fw(u, v) = u. Finally let F = {TC |C ∈ C}∪{Fw |w ∈ Ω}. To
define the distinguished pair of points in Ω, fix a literal d ∈ Ω and let x = d and y = d̄.
We have now constructed an instance of the problem we are interested in. Clearly the
construction above is done in polynomial time with respect to the input size. It remains
to show that there exists a truth assignment such that every clause contains a literal
whose value is true and a literal whose value is false ⇐⇒ there exists a subset A ⊆ Ω
such that x ∈ A while y ∈ Ac and both A and Ac ∈ ΛF .

Proof (of the =⇒ direction). Fix a truth assignment f as in the assumption. Let A =
{u | f(u) = T }. Then Ac = {u | f(u) = F}. Since x = d and y = d̄, it must be
the case that either x ∈ A and y ∈ Ac or vice versa. It only remains to show that
both A and Ac are invariant under F . So, fix individuals (literals) u and v ∈ A (or
u and v ∈ Ac). Choose any transformation G ∈ F . Then G = Fw for some literal
w ∈ Ω or G = TC for some clause C = a ∨ b ∨ c. Now observe that we can’t have
(u, v) = (a, ā) for any a ∈ Ω since both u and v have the same truth value. Therefore,
every transformation of the form Fw maps (u, v) into u and, hence, leaves both A
and Ac invariant. Every TC does the same thing unless both u and v appear in some
clause C. Let z denote the remaining literal in the clause C. Since f(u) = f(v), we
must have f(z) �= f(u) (this was the assumption about the truth assignment). But then
f(TC(u, v)) = f(z̄) = f(u) = f(v) and so TC leaves both A and Ac invariant. This
shows that both A and Ac are invariant under F . ��
Proof (of the ⇐= direction). Now suppose there exist a complementary pair of subsets
of Ω invariant under F , say A and Ac, with x ∈ A and y ∈ Ac. We have to produce a
truth assignment f on Ω such that, for each clause C ∈ C, not all the literals have the
same truth value. Now for all literals u ∈ A let f(u) = T and for u ∈ Ac let f(u) = F .
We still have to show that f is a well-defined truth assignment, meaning that literals u
and ū are never assigned the same truth value, or, equivalently, it is not the case that both
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u and ū ∈ A or both u and ū ∈ Ac. This is precisely the purpose of the transformations
Fw: if, say, u and ū ∈ A, then for all z ∈ Ω we have Fz(u, ū) = z ∈ A and therefore
A = Ω, contradicting the fact that Ac �= ∅ since y ∈ Ac. Analogously, the assumption
that u and ū /∈ A leads to a contradiction. We conclude now that f is, indeed, a well-
defined truth assignment. It remains to show that, for each clause C ∈ C, not all the
literals have the same truth value. So fix a clause C ∈ C. Say C = a ∨ b ∨ c. Since
there are exactly three literals in C, some two of them must have the same truth value.
Without loss of generality assume these are a and b. Whichever of A and Ac contains
a and b must, since it is invariant, also contain TC(a, b) = c̄. By what we have already
proved, while checking that f is well-defined, this set cannot contain c. Thus, c does not
have the same truth value as a and b. The desired conclusion is now established. ��

We have shown now that “Not All Equal 3-SAT” problem can be reduced in poly-
nomial time to the problem in the statement of the theorem, and “Not All Equal 3-SAT”
is known to be NP-complete. The desired conclusion now follows. ��

Theorem 14 gives us the NP-completeness of testing whether, for a given Ω and
F , a given pair x �= y can be separated by complementary, invariant sets. To determine
whether (Ω,F ,M) is genetic, we would have to test whether every pair x �= y in Ω can
be separated. This problem is clearly also in NP, since it amounts to checking |Ω|2−|Ω|
instances of the question in Theorem 14. (In fact, by symmetry, it suffices to check only
|Ω|(|Ω| − 1)

2
instances.) But we cannot immediately conclude that it is NP-complete.

It seems harder than the problem in Theorem 14, since it involves many instances of that
problem, but it is conceivable that there could be a way to determine whether all pairs
are separable without checking each (or any) one individually. The following theorem
settles this question. For brevity, we say that two elements can be separated (in a given
search system) if there is a complementary pair of invariant sets, each containing one
of the two elements.

Theorem 17 The following problem is NP-complete.
Instance of the problem: A search system Ω = (Ω, F , M) with a polynomial time

algorithm for evaluating the functions in F on arguments in Ω.
Question: Can every pair of distinct elements of Ω be separated?

Proof. We have already observed that the problem in the theorem is in NP. To prove
completeness, we reduce the problem from Theorem 14 to the problem in the present
theorem. This will suffice, since the former problem is already known to be NP-com-
plete.

So let Ω, F , and x, y constitute an instance of the problem from Theorem 14. We
must convert it, by a polynomial time computation, into Ω′ and F ′ such that x and y
can be separated in Ω if and only if all pairs of distinct elements can be separated in
Ω′. Here we have simplified notation by ignoring the M component of search systems,
since it is irrelevant to the problem.

We may assume, when constructing Ω′ and F ′, that x �= y. Indeed, if x = y then
they obviously cannot be separated, so we need only produce some Ω′ and F ′ in which
not all pairs of distinct elements can be separated, and this task is trivial. We may further
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assume that F is nonempty. Indeed, if F = ∅, then all subsets of Ω are invariant, so x
and y (being distinct) can be separated, and we need only produce Ω′ and F ′ in which
all pairs can be separated; this too is trivial.

Henceforth, we therefore assume that F is nonempty and that x and y are distinct.
We define Ω′ to be the following set, consisting of four copies of Ω plus two additional
elements.

Ω′ = (Ω × {1, 2, 3, 4}) ∪ {5, 6}.
We abbreviate the ordered pairs 〈a, 1〉 in Ω′ as a1, and similarly with 2, 3, or 4 in place
of 1. The family F ′ contains, for each f ∈ F , an associated function f ′ : (Ω′)2 → Ω′

defined as follows.

f ′(a1, b2) = f(a, b)3
f ′(i, aj) = a4 for i ∈ {5, 6} and j ∈ {1, 2, 3}

f ′(x4, y4) = 5
f ′(y4, x4) = 6

f ′(u, v) = u for all u, v not covered by the previous lines.

We have used here the assumption that x �= y because otherwise the third and fourth
lines of the definition of f ′ would contradict each other. It is clear that Ω′ and F ′ can be
computed from Ω and F in polynomial time. We must verify that they have the required
separation properties, and we break this verification into two lemmas.

Lemma 18 In (Ω′,F ′), every two distinct elements, except possibly 5 and 6, can be
separated.

Proof. By inspecting the definition of f ′, we find that the following sets and their com-
plements (in Ω′) are invariant under F ′.

1. (Ω × {4}) ∪ {5, 6}
2. (Ω × {1, 4}) ∪ {5, 6}
3. (Ω × {2, 4}) ∪ {5, 6}
4. ((Ω − {a}) × {4}) ∪ {5, 6} for any a ∈ Ω.

These sets suffice to separate any two elements of Ω′ that come from different sets in
the following list, which partitions Ω′:

Ω × {1}, Ω × {2}, Ω × {3}, Ω × {4}, {5, 6}
It remains to separate any two distinct elements from the same block of this partition
except for 5 and 6.

If the two points come from Ω × {4}, then they can be separated by a set as in
item 4 of the list above. If they come from Ω × {1}, then, calling them a1 and b1, we
can separate them because the singleton {a1} and its complement are invariant. The
same argument applies if they come from Ω × {2}. Finally, if they are a3 and b3, then
they are separated by

(Ω × {1, 4}) ∪ {a3, 5, 6}
and its complement, both of which are invariant. ��
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Lemma 19 5 and 6 can be separated in (Ω′,F ′) if and only if x and y can be separated
in (Ω,F).

Proof. Suppose first that A and Ac are invariant and separate x and y in Ω. Then (A ×
{1, 2, 3, 4}) ∪ {5} and (Ac × {1, 2, 3, 4}) ∪ {6} are invariant and separate 5 and 6 in
Ω′.

Conversely, suppose B and Bc are invariant in Ω′ and separate 5 and 6; say 5 ∈ B
and 6 ∈ Bc. By virtue of the second equation in the definition of f ′ (applied with
i = 5) and the invariance of B, we know that if B contains a1, a2, or a3, then it must
also contain a4 (for the same a ∈ Ω). (We have used here the assumption that F �= ∅,
because we need an f ′ to use in this invariance argument.) The same argument applies
to Bc if we use i = 6 instead of 5. As a result, for each a ∈ Ω, all four of a1, a2, a3,
and a4 lie in the same one of B and Bc. That is, there is an A ⊆ Ω such that

B = (A × {1, 2, 3, 4})∪ {5} and Bc = (Ac × {1, 2, 3, 4}) ∪ {6}.
By virtue of the first equation in the definition of f ′, the invariance of B and Bc under
f ′ implies the invariance of A and Ac under f . Furthermore, if x and y were in the
same one of A and Ac, then the last two equations in the definition of f ′ would force 5
and 6 into the same one of B and Bc, contrary to our assumption. Thus, A and Ac are
invariant subsets of Ω separating x and y, as required. ��

The two lemmas together tell us that we have a reduction of the problem in the
present theorem to the one in Theorem 14. ��

7 Conclusions

In the current paper it has been rigorously established that deciding whether or not a
given search algorithm can be re-encoded by a binary genetic algorithm is, in the very
general case, a complicated (NP-complete) problem. It should be pointed out though,
that many well-known types of algorithms, such as the non-linear genetic programming
with homologous crossover, can be easily embedded into a binary genetic algorithm.
The situation is somewhat analogous to that in analysis: according to the Brownian mo-
tion model, the path of a particle is continuous and nowhere differentiable with prob-
ability 1, while most continuous functions used in calculus (various combinations of
elementary functions, their integrals...) are at least piecewise differentiable.
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Abstract. The choice of genetic representation crucially determines the
capability of evolutionary processes to find complex solutions in which
many variables interact. The question is how good genetic representa-
tions can be found and how they can be adapted online to account for
what can be learned about the structure of the problem from previous
samples. We address these questions in a scenario that we term indi-
rect Estimation-of-Distribution: We consider a decorrelated search dis-
tribution (mutational variability) on a variable length genotype space.
A one-to-one encoding onto the phenotype space then needs to induce
an adapted phenotypic variability incorporating the dependencies be-
tween phenotypic variables that have been observed successful previ-
ously. Formalizing this in the framework of Estimation-of-Distribution
Algorithms, an adapted phenotypic variability can be characterized as
minimizing the Kullback-Leibler divergence to a population of previously
selected individuals (parents). Our core result is a relation between the
Kullback-Leibler divergence and the description length of the encoding
in the specific scenario, stating that compact codes provide a way to
minimize this divergence. A proposed class of Compression Evolutionary
Algorithms and preliminary experiments with an L-system compression
scheme illustrate the approach. We also discuss the implications for the
self-adaptive evolution of genetic representations on the basis of neutral-
ity (σ-evolution) towards compact codes.

1 Introduction

The complexity of a problem largely depends on the interactions between vari-
ables of a solution. A stochastic search process like evolution will perform well
on a complex problem only when the search distribution is adapted to these in-
teractions, i.e., when the search distribution obeys these dependencies between
variables. The ability of natural evolution to find highly complex structured or-
ganisms, in which many variables interact in determining the fitness, can only
be understood when acknowledging that evolution did not pursue an exhaustive
search but “learned” to shape the search distribution towards complex, highly
structured organisms (see also [25]).

In evolutionary processes the search distribution is determined by the vari-
ational operators (mutation and recombination) and, in the case of indirect en-
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codings, by the choice of genetic representation. The role of the genetic repre-
sentation seems to become particularly important when large and regularly or
hierarchically structured solutions need to be found. The eye-less gene [8] is an
impressive example of a genetic representation specifically designed to induce
modular structured variability in nature.

The general questions are how to find genetic representations that induce
the desired dependencies on the phenotype space, and how they can be adapted
online to account for what can be learned about the structure of the prob-
lem from previous samples. There have been various approaches to characterize
what a good representation is, considering, for example, all possible represen-
tations, Gray vs. binary codes, redundant representations, and recursive encod-
ings [4, 11, 12, 18, 27]. Theoretical approaches concerning the adaptation of the
representation based on the specific current population include, for example,
Estimation-Of-Distribution Algorithms [17], Walsh analysis [10], and Maximal
Entropy principles [28].

Our approach is to consider a specific scenario that we term indirect Estima-
tion-of-Distribution: We assume that the search distribution (mutational vari-
ability) on a variable length genotype space is decorrelated. A one-to-one en-
coding onto the phenotype space then needs to induce a properly structured
phenotypic variability. The idea of this scenario is that the encoding receives
all responsibilities to induce the structural properties of the phenotypic search
distribution, leaving a simple problem of unstructured (decorrelated) adaptation
on the genotype level.

We formalize the scenario within the framework of Estimation-of-Distribution
Algorithms, where an adapted phenotypic variability can be characterized as
minimizing the Kullback-Leibler divergence to a population of previously se-
lected individuals (parents). Our core result is a relation between the Kullback-
Leibler divergence and the description length of the encoding in the specific
scenario of indirect Estimation-of-Distribution based on a variable length geno-
type space. The result states that compact genetic codes provide a way to min-
imize this divergence – and may thus be seen as transferring similar results on
Minimum Description Length in the context of modeling, in particular model
selection, (e.g., [5, 24]) to the specific domain of evolutionary search based on
adaptive representations.

An intuitive way to grasp these results might be the following: Consider a
set of good (selected) individuals in the phenotype space. In this parent pop-
ulation there will generally exist dependencies between phenotypic variables of
the individuals, measurable as mutual information between them. This informa-
tion on the dependencies – that stem from selection and have their origin in the
structure of the problem – is what should be extracted and exploited for fur-
ther search. Assume we can map these individuals on variable size strings such
that the average string length is minimized. Before the compression there was
mutual information between the (phenotypic) variables. After the compression,
there should be no mutual information between the (genetic) symbols that de-
scribe the individuals because otherwise the mapping would not be a minimum
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description length compression. Thus, a compression is one way (among others)
to map on genotypic representations in which symbols are decoupled (i.e., to
map on a factorial code). A compression can also be considered as an implicit
analysis of the dependencies that have been present in the parent population
because it is able to dissolve them by introducing new symbols. Eventually, the
key idea is that inverting the compression is a mechanism to induce exactly these
dependencies. In other words, when there is noise (decorrelated mutational vari-
ability) on the genetic symbols, this should translate to a phenotypic variability
that obeys these dependencies.

The following two sections will introduce the theoretical framework, including
the indirect induction of a search distribution and the principle of Estimation-
of-Distribution Algorithms. Section 4 derives the main results on the relation
between compact codes and Estimation-of-Distribution. Section 5 aims to illus-
trate the approach by proposing a class of Compression Evolutionary Algorithms
and presenting preliminary experiments with a Compression GA based on a sim-
ple L-system compression scheme (similar to the ideas of Nevill-Manning and
Witten [13]). This leads to the discussion, summarizing the main results, but
also considering issues on the choice of compression technique, accumulative
versus each-time-step compression, and implications for understanding the fully
self-adaptive evolution of genetic representations on the basis of neutrality (σ-
evolution) towards compact codes.

2 Indirect Induction of Search Distributions

Let P be the search space. A heuristic search scheme is a process in the space
�LP of distributions over the search space in which a search distribution q ∈ �LP

is propagated iteratively. In each iteration, samples from q are drawn, evaluated,
and the outcome of evaluation is used to design, according to some heuristic, a
new search distribution in the next step.

For instance, in ordinary Evolutionary Algorithms (EAs) the search distri-
bution is given by a finite parent population and recombination and mutation
operators. This search distribution is sampled, leading to the finite offspring pop-
ulation, which is then evaluated, leading to the selection probability distribution
over these offspring. The heuristic to generate the new search distribution in
simple EAs is to sample the selection probability distribution, leading to a new
parent population which in turn induces a new search distribution. We do not
need to specify these operators here explicitly. We develop the theory on the
abstract level of search distributions.

In this paper we are interested in indirect codings of search points. In the
heuristic search framework, this means that a distribution q̃ ∈ �LG over another
search space G, the genotype space, is maintained. The search distribution q over
the actual search space P (phenotype space) is then given indirectly via a coding
φ : G → P ,

q(x) =
∑

g∈[x]φ

q̃(g) , where x ∈ P, g ∈ G, [x]φ = {g ∈ G | φ(g) = x} .
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We also use the short notation q = q̃ ◦ φ−1 for this projection of q̃ under φ. The
set [x]φ of all genotypes mapping to the same phenotype x is an equivalence
class under φ, also called neutral set of x.

Three additional constraints define the “indirect encoding case” considered
in this paper: First, we impose that φ : G → P shall be bijective (one-to-one).
We denote the space of all bijective codings G → P by Φ. The discussion of
self-adaptation in the case of non-injective codings in section 6 will clarify this
constraint.

Second, G is the space of variable length strings over some finite alphabet A,

G =
∞⋃

l=1

Al .

It is technically unclear how to define a marginal over the ith symbol (or mutual
information between symbols) directly for a variable length distribution q̃ ∈ �LG.
Thus we will consider the decomposition

q̃(g) = q̃(g|l) q̃(l) , where g ∈ G, l = length(g) ∈ N .

Here, q̃(l) is a distribution over the genotype length l ∈ N, and q̃(g|l) the con-
ditional distribution over a fixed length alphabet Al. We use the short notation
q̃l ≡ q̃(·|l) for this length-conditioned distribution. The marginal q̃i

l over the ith
symbol (i ≤ l) and the mutual information I(q̃l) =

∑
i H(q̃i

l ) − H(q̃l) can then
be defined as usual1.

As the third constraint we limit the space of possible search distributions
in a certain way: We impose that the length-conditioned distributions q̃l on
the genotype space have to factorize. We denote the set of feasible genotype
distributions by

Q̃ ⊆ {q̃ ∈ �LG | ∀l : I(q̃l) = 0} .

Putting both together, we have the space Q ⊆ �LP of feasible search distribution
over P as

Q = {q̃ ◦ φ−1 | φ ∈ Φ, q̃ ∈ Q̃} . (1)

In summary, indirect induction of the search distribution means that, in order
to design a search distribution q ∈ �LP we have to pick a bijective coding φ ∈ Φ
and a decorrelated distribution q̃ ∈ Q̃ on the genotype space. In other terms,
every feasible search distributions q correspond to a pair (φ, q̃).

1 For a distribution q over some product space A × · · · × A, we generally denote the
marginal over the ith variable by qi. The mutual information I(q) =

∑
i H(qi) −

H(q) measures all dependencies between variables of any order (not only pair-wise
dependencies)
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3 Estimation-of-Distribution

What is a reasonable heuristic to design a search distribution given the results of
evaluation of previous sample points? We will follow here the idea of Estimation-
Of-Distribution Algorithms [17] which can be described as follows.

We assume that the outcome of evaluation is given as a distribution p over P ,
typically the parent population2. Given that the space of feasible search distri-
butions is limited to Q, a simple heuristic to chose the new search distribution
is to pick the one that is most similar to p. Similarity can be measured by
the Kullback-Leibler divergence (KLD) D

(
p : q

)
= Ep

{
log p(x)

q(x)

}
between two

distributions, which also captures the structural similarity between two distri-
butions in the sense of the similarity of the different order dependencies (see
[1, 23], please note the relations between the KLD, log-likelihood, free energy,
and mean energy3). Thus, one heuristic to design the new search distribution q′

reads

q′ = argmin
q∈Q

D
(
p : q

)
. (2)

We term this specific kind of an EDA KL-search. In general, the crucial parame-
ter of KL-search is the choice of the set Q of feasible search distributions. On the
one hand, the choice of Q determines the computational cost of the minimization
(2) in every step. On the other hand, it determines the algorithm’s capability to
exploit the structure observable in p.

Some algorithms of the class of EDAs are exact instantiations of KL-search:
MIMIC [6] chooses Q to be the set of Markov chains, PBIL [2] chooses Q as the
set of factorized distributions. Other EDAs differ from KL-search in the choice
of the similarity measure (they use alternatives to the KLD, e.g., BOA [16] takes
a Bayesian Dirichlet Metric). But all of them can distinctly be characterized by
their choice of Q, which may also be the set of dependency trees [3], Bayesian
networks (BOA, [16]), or Bayesian networks with decision trees at each node
(hBOA, [15]).

Despite its conceptual simplicity, the minimization required in each iteration
of KL-search can be computationally very expensive, depending on the com-
plexity of the distributions in Q. When only simple distributions, like factorized
distributions (PBIL) or Markov chains (MIMIC) are allowed, the minimization
2 Generally, in this formalism p is meant to encode any information that we receive

from evaluations. Typically, p is non-vanishing only on a finite set of samples (the
offspring population) and the values of p might be (in a normalized way) the fitness
values of these offspring. Alternatively, p might represent a resampling of such a
“fitness distribution over offspring”, which corresponds to the parent population

3 With the definitions of the entropy H(p) = −Ep {log p(x)} and the log-likelihood
L(q) = Ep {log q(x)} we have D

(
p : q

)
= −H(p) − L(q). One could roughly

say, “minimizing the KLD means maximizing the log-likelihood and the entropy”.
Further, when defining an energy functional E(x) = − log q(x), the mean en-
ergy E = Ep {E(x)} = −L(q) is the negative log-likelihood while the free energy
F = E − H(p) is the KLD
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can be calculated directly. For more complex distributions (like Bayesian net-
works, BOA), the minimization itself requires an iterative procedure.

Finally note that distributions in Q should typically be constrained to have a
minimum entropy. In that way, a repeated cycle of entropy decrease (in the course
of evaluation) and entropy increase (when picking a new search distribution)
ensures exploration and prevents the algorithms from early convergence.

4 Indirect Estimation-of-Distribution via Compression

KL-search proposes how to pick a new search distribution out of Q incorporating
the knowledge on the evaluation of previous samples. In section 2 we specified a
specific Q that defines the indirect coding case, where a choice of q means to pick
a bijective coding φ and a factorized distribution q̃ on G. Putting this together,
KL-search amounts to a heuristic to pick a coding φ such that knowledge on
previous evaluations is incorporated. In this section we will derive results on
how this heuristic to pick a coding reads more explicitly. We first discuss the
simpler fixed length case before addressing the general one:

Fixed length case. Let us first assume that G contains only strings of fixed
length l, G = Al. Then the marginals q̃i are straight-forward to define and
I(q̃) =

∑
i H(q̃i)−H(q̃) = 0 constrains q̃ to vanishing dependencies (of arbitrary

order) between genes.
Combining (2) with the definition (1) of Q for the case of indirect codings,

we find

D
(
p : q

)
=
∑

x

p(x) ln
p(x)∑

g′∈[x]φ
q̃(g′)

=
∑

g

p̃(g) ln
p̃(g)
q̃(g)

. (3)

Here we defined p̃ as the back-projection of p onto the coding space G, p̃ =
p ◦ φ. The last step uses that φ is bijective such that there exists exactly
one g ∈ [x]φ. Next we use that q̃ has to factorize, q̃(g) = q̃(g1, g2, ..., gl) =
q̃1(g1) q̃2(g2) · · · q̃l(gl),

D
(
p : q

)
=
∑

g

p̃(g) ln
p̃(g)

p̃1(g1) · · · p̃l(gl)
+
∑

g

p̃(g) ln
p̃1(g1) · · · p̃l(gl)
q̃1(g1) · · · q̃l(gl)

= I(p̃) + D
(
p̃(1) : q̃

)
. (4)

Here we defined p̃(1)(g) = p̃1(g1) p̃2(g2) · · · p̃l(gl) as the “factorized reduction” of
p̃ (i.e, the product of its marginals, see also [1, 23] on how to generally define the
kth order reduction p̃(k) of p̃ containing all and only the dependencies of order
≤ k within p̃).

This result states that, in order to follow the KL-search scheme in the indirect
coding case, one should find a coding φ and a search distribution q̃ such that
I(p̃) + D

(
p̃(1) : q̃

)
is minimized.

Here, I would like to distinguish two cases. In the first case we assume that
Q̃ comprises all factorized distributions without a bound on the entropy. In this
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case, no matter which φ is chosen, one can always minimize D
(
p̃(1) : q̃

)
down

to zero by picking q̃ = p̃(1). Since I(p̃) is independent of q̃, the minimization (2)
can be realized by first optimizing φ and then picking q̃:

q′ = argmin
q∈Q

D
(
p : q

)
= (φ, q̃) , where φ = argmin

φ
I(p̃) and q̃ = p̃(1) .

We call this procedure (first optimizing φ, then picking q̃) the two step procedure.
Note that p̃(1) in the last equation depends on the φ chosen before.

However, in a realistic algorithm, Q̃ should not comprise all factorized distri-
butions but obey a lower bound on the entropy of these distributions to ensure
exploration. (Recall that for q̃ = p̃(1), and since φ is bijective, H(p) = H(p̃) =
H(p̃(1)) − I(PG) = H(q̃) − I(p̃) = H(q) − I(p̃). Therefore, the entropy of search
H(q) would only be greater than H(p) by the amount of I(p̃), which is min-
imized.) Hence, in the second case, when Q̃ is only a subset of all factorized
distributions, D

(
p̃(1) : q̃

)
can generally not be minimized to zero and the mini-

mization of (2) can not exactly be decomposed in the two steps of first minimizing
I(p̃) w.r.t. φ, and then, for a fixed φ, minimizing D

(
p̃(1) : q̃

)
w.r.t. q̃. The exact

minimization of (2) remains a coupled problem of finding a pair (φ, q̃).
For completeness, let us estimate a bound on the “error” made when still

adopting the two step procedure of minimization. Let (φ∗, q̃∗) be a coding and
genotype distribution that indeed minimize (2), and let (φ′, q̃′) be the result of
the two step procedure, i.e., φ′ minimizes I(p̃′) and q̃′ minimizes D

(
p̃′(1) : q̃′

)
for the given coding φ′. Here, p̃′ = p ◦φ′ and p̃∗ = p ◦φ∗. A rough bound for the
error made can be estimated as follows, to be explained in detail below,

D
(
p : q′

)− D
(
p : q∗

)
= D

(
p̃′(1) : q̃′

)− D
(
p̃∗(1) : q̃∗

)
+ I(p̃′) − I(p̃∗)

≤ D
(
p̃′(1) : q̃′

)− D
(
p̃∗(1) : q̃∗

) ≤ D
(
p̃′(1) : q̃′

)
=

l∑
i=1

D
(
p̃′i : q̃′i

)
≤ −l log q̃′i(ai) = − l log(1−α) ≤ l � .

The first inequality stems from the fact that φ′ minimizes I(p̃′) and thus I(p̃′) ≤
I(p̃∗). Since both, p̃′(1) and q̃′, are factorized distributions, their Kullback-Leibler
divergence decomposes into a sum. For each marginal, when there is a lower
bound � on the entropy of q̃′i, the divergence D

(
p̃′i : q̃′i

)
is particularly large

when p̃′i has very low entropy. In the worst case, p̃′i has zero entropy, i.e., is non-
zero only for a single symbol ai ∈ A. In that case D

(
p̃′i : q̃′i

)
= − log q̃′i(ai). In

order to minimize D
(
p̃′i : q̃′i

)
, q̃′i is chosen to have the form of the typical symbol

mutation distribution with mutation rate α, where q̃′i(a) = 1−α for a = ai and
q̃′i(a) = α

|A|−1 for a �= ai. Then, H(q̃i) = −(1−α) log(1−α) − α log α
|A|−1 . Given

the lower bound � on the entropy, the minimal mutation rate α can be chosen
to ensure H(q̃i) = � and D

(
p̃i : q̃i

)
= − log(1−α) ≤ �. Thus, in the worst

case, the “error” made when using the two step procedure instead of the exact
minimization of (2) is smaller than l �.
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Variable length case. Let us repeat the above derivations in the general case
when G =

⋃∞
l=1 Al comprises strings of any length over the alphabet A. The con-

straint of vanishing mutual information in q̃ now refers to the length-conditioned
distributions q̃l, i.e., we impose I(q̃l) = 0 while q̃(l) is unconstrained. (Recall
q̃(g) = q̃l(g) q̃(l) where l = length(g).) Equation (3) now leads to

D
(
p :q

)
=
∑

l

∑
g

p̃l(g)p̃(l) ln
p̃l(g)p̃(l)
q̃l(g)q̃(l)

=
∑

l

p̃(l)
∑

g

p̃l(g) ln
p̃l(g)
q̃l(g)

+
∑

l

p̃(l) ln
p̃(l)
q̃(l)

=
∑

l

p̃(l)
∑

g

p̃l(g) ln
p̃l(g)

p̃
(1)
l (g)

+
∑

l

p̃(l)
∑

g

p̃l(g) ln
p̃
(1)
l (g)
q̃l(g)

+ D
(
p̃(l) : q̃(l)

)
= El {I(p̃l)} + El

{
D
(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
, (5)

where we introduced El {·} as the expectation over p̃(l) (which depends on φ).
The entropy of p can be written as

H(p) = −
∑

g

p(g) ln p(g) = −
∑

l

p̃(l)
∑

g

p̃l(g) ln[p̃l(g) p̃(l)]

= −
∑

l

p̃(l)
[∑

g

p̃l(g) ln p̃l(g) +
∑

g

p̃l(g) ln p̃(l)
]

=
∑

l

p̃(l)H(p̃l(g)) + H(p̃(l))

=
∑

l

p̃(l)
[ l∑

i=1

H(p̃i
l) − I(p̃l)

]
+ H(p̃(l))

= El

{
l∑

i=1

H(p̃i
l)

}
− El {I(p̃l)} + H(p̃(l)) . (6)

Adding equations (5) and (6) we find

Lemma 1. In the indirect encoding case, for any p ∈ �LP , any bijective encoding
φ : G → P , and any factorized genotype distribution q̃ ∈ Q̃, we have

D
(
p :q

)
= El {I(p̃l)} + El

{
D
(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
(7)

= El

{
l∑

i=1

H(p̃i
l)

}
+ El

{
D
(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
+ H(p̃(l)) − H(p).

(8)

The second RHS term in equation (8) is a comparison of only the marginals
of p̃l and q̃l, the third term is a comparison of the length distributions, the
fourth term is the entropy of the genotype length, which depends on φ, and



Compact Genetic Codes as a Search Strategy of Evolutionary Processes 83

the last term depends only on p, not on φ or q̃. The first term in equation (8)
is of particular interest here. The following bounds show how it relates to the
description length. Note that log |A| is the maximal entropy of a marginal:

El

{
l∑

i=1

H(p̃i
l)

}
≤ log |A| El

{
l∑

i=1

1

}
= log |A| El {l} = Lp log |A| , (9)

where we introduce Lp = El {l} as the expected description length of samples of
p in the encoding φ. On the other hand, from (6), we get

El

{
l∑

i=1

H(p̃i
l)

}
≥ H(p) − H(p̃(l)) . (10)

Note that for an optimally compact coding Lp log |A| = H(p) − H(p̃(l)) 4, and
both bounds are exact.

We collect these findings in

Lemma 2. In the indirect encoding case, the expected description length Lp of
samples from p (parents) gives an upper bound on D

(
p : q

)
,

0 ≤ D
(
p : q

)− El

{
D
(
p̃
(1)
l : q̃l

)}− D
(
p̃(l) : q̃(l)

) ≤ Lp log |A| − H(p) + H(p̃(l)).

For an optimally compact encoding φ, these bounds are exact, i.e., we have

D
(
p : q

)
= El

{
D
(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
,

and D
(
p : q

)
can easily be minimized by adapting the genotype marginals q̃i

l and
the length distribution q̃(l) (which can be set equal to p̃(l)).

Let us briefly summarize and discuss these results by emphasizing certain
aspects:

1. Compression is doing “more than we need”: Reconsider the exact expressions
(7) and (8) of lemma 1. We related the term El

{∑
i H(p̃i

l)
}

to the description Lp

via the bound (9) and showed that this bound is exact for an optimal compres-
sion. One should note though that compression is not the only way to minimize
the term El

{∑
i H(p̃i

l)
}
; it can equally be minimized by reducing the marginal

entropies H(p̃i
l), which means not to exploit the expressional power of the al-

phabet. This can better be understood going back to expression (7) involving
the mutual information: Ultimately, what matters is to reduce El {I(p̃l)}, i.e.
finding a factorial code, which can also be done perfectly with very low marginal
4 Here is a slight difference to the usually considered case of channel capacity: In our

case, the length of a genome itself can carry information (even for A = {0}) of the
amount H(p̃(l)) such that the symbols only need to encode H(p)−H(p̃(l)) entropy.
In the channel capacity case, where a continuous stream of symbols is transmitted,
the exact bound is Lp log |A| = H(p), as for the Shannon-Fano code



84 Marc Toussaint

entropies, not exploiting the alphabet. By relating it to the description length
we showed that a compression is reducing El {I(p̃l)} while additionally trying to
exploit the alphabet optimally. Thus, compression is doing “more than we need”
from the strict point of view of minimizing D

(
p : q

)
. Clearly, this also means

that an optimally compact coding is not the only solution to minimize D
(
p : q

)
via indirect induction – but it is one.

2. If there are no further constraints on q̃ (e.g., no entropy bound) then q̃l

and q̃(l) can always be set equal to p̃
(1)
l and p̃(l), thus perfectly minimizing

El

{
D
(
p̃
(1)
l : q̃l

)}
+ D

(
p̃(l) : q̃(l)

)
. In this case, we have

D
(
p : q

)
= El {I(p̃l)} = El

{
l∑

i=1

H(p̃i
l)

}
+ H(p̃(l)) − H(p) ,

and the problem reduces to finding an encoding that extinguishes the mutual
information El {I(p̃l)} or, as discussed, an optimal compression.

3. The two step procedure: If Q̃ is additionally constrained by a bound on the
entropy, minimizing D

(
p : q

)
remains a coupled problem of reducing El {I(p̃l)}

by a proper choice of φ and reducing El

{
D
(
p̃
(1)
l : q̃l

)}
+D

(
p̃(l) : q̃(l)

)
by a proper

choice of q̃, which though depends on φ. We discussed this coupled problem
already in the fixed length case. The two step procedure of first finding a compact
coding φ of p and then adapting the marginals of q̃ to those of p ◦ φ is an
approximate method for this minimization. In the worst case one may miss a
reduction of D

(
p : q

)
by an amount ≤ Lp �, when � is the lower bound on the

entropy in each marginal q̃i
l . Note that a compact coding minimizes this worst

case error.

5 Compression EAs

This section aims to provide a perspective on how the ideas on compact codes
motivate the design of new Evolutionary Algorithms. We will propose a general
scheme to design such algorithms but can present preliminary results only for a
special case that is more in the line of conventional GAs rather than EDAs and
similar to algorithms proposed earlier. The results are promising. Most impor-
tantly though, the experiments exhibit what are crucial aspects to be discussed
when the aims are practical implementations of the principle of compact codes.

A straight-forward way to design a new Evolutionary Algorithm, exploiting
the idea of compact codes, is to combine any compression technique with any
standard EA. Such a Compression EA reads

1. Initialize a finite population p = {p1, .., pμ}.
2. Use a compression technique to find an encoding φ that (approximately)

minimizes Lp =
∑μ

i=1 length(φ−1(pi)).
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3. Apply standard operators (e.g., mixing or EDA-operators) to generate l
offspring genotypes from the μ compressed parent genotypes.

4. Map the l offspring genotypes from G back to P using φ.

5. Apply evaluation and selection on these offspring to generate the new
parent population p′ and repeat from step 2.

The operators in step 3 may be any standard operators used in Evolutionary
Algorithms. They have to be memory-less though, since the encoding will change
in each iteration step and thus integrating knowledge from previous time steps
becomes futile (cf. the discussion of cumulative compression as an alternative in
section 6).

For instance, a most direct implementation of KL-search calculates the length
and marginal distributions before resampling them (very similar to the PBIL
algorithm, but accounting for variable size strings). This leads to the following
Compression EDA:

3.a Calculate the length distributions p̃(l) and the symbol marginals p̃i
l for

each l from the compressed population p̃.

3.b Set q̃(l) = p̃(l) and add entropy by mixing the marginals with the uniform
symbol distribution U , q̃i

l = (1 − α) p̃i
l + αU .

3.c Take l samples from the distribution q̃ by recursively (i) picking an l from
q̃(l), (ii) ∀l

i=1 pick a symbol gi from q̃i
l , and (iii) store g = (g1, .., gl) as

a new offspring genotype.

We must leave it to future work to present results on this Compression EDA.
In the following we will investigate a concrete algorithm that is based on conven-
tional mutation operators rather than such an EDA and similar to algorithms
proposed earlier [7, 20]. The compression technique is based on L-systems, very
simple, but computationally expensive. It is inspired by the work of Nevill-
Manning and Witten [13]. Below we will briefly report on some experiences
when using Lempel-Ziv compression (i.e., the algorithm of gzip) instead.

5.1 A L-System Compression GA

The compression. Step 2 of a Compression EA requires to find an encoding φ
that minimizes the description length of individuals averaged over the current
parent population. A simple technique of compression is to recursively analyze
the parents for frequent pairs of neighboring symbols and replace such pairs by
new symbols (cf. [13]). We realize this scheme with an L-system:

A L-system is a sequence Π = 〈π1, .., πk〉 of k productions πi. Given the
alphabet A, each production π = 〈l : r1, .., rm〉 consists of a LHS symbol l ∈ A
and a sequence 〈r1, .., rm〉 of RHS symbols. The L-system Π defines a mapping
φ from one sequence s to another by applying all productions πi, in the given
order, on s. Applying a production 〈l : r1, .., rm〉 on s means to replace every l
that occurs in s by the sequence 〈r1, .., rm〉. For instance, if the L-system is Π =
〈e:cd, f:dc, c:ab, d:ba〉, then a sequence 〈ef〉 is mapped to φ(〈ef〉) = 〈abbabaab〉.
The mapping φ can easily be inverted by applying all productions, in reverse
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order, inversely on a sequence. Inverse application of a production 〈l :r1, .., rm〉−1

on s means to replace every subsequence 〈r1, .., rm〉 that occurs in s by l.
Let A be the non-negative integer numbers, A = N0. Starting with a pop-

ulation p = {s1, .., sμ} of {0, 1}-sequences, there is a straight-forward way to
construct an L-system that compresses the population by recursively extracting
and encapsulating pairs of symbols that occur frequently in the population. This
scheme reads

2.a Initialize the L-system as Π = 〈 〉 and the new -symbol as c = 2.

2.b Calculate the frequency of every symbol pair that occurs in the population.

2.c For every pair 〈r1, r2〉 of symbols that occurs more often than once, create
a new production 〈c :r1, r2〉, append it to the beginning of Π , and incre-
ment the new -symbol c ← c + 1. This is to be done in order, beginning
with the pair of highest frequencies, and random order between pairs of
same frequency. If there is no such pairs, exit the recursion.

2.d Recode the population p ← {φ−1(p1), .., φ−1(pμ)} (effectively, only the
new productions will result in replacements).

2.f Repeat from step 2.b.

The entropy. Following the general scheme of a Compression EA, we next need
to specify a mixing operator in step 3. This operator is supposed to induce the
necessary entropy in q̃. We discussed earlier that this entropy should exceed the
entropy H(p) of the parent population to ensure further exploration, and we han-
dled this issue theoretically by putting a lower bound on the entropy of feasible
search distributions in the minimization of the Kullback-Leibler divergence.

However, first experiments showed quickly that there is an interesting prob-
lem when using the above compression in a straight-forward manner. Actually,
the compression can be considered as too good and eventually violating the con-
straint of the lower bound on entropy: In the case of a finite population, the
compression scheme often leads to a full compression, where in the end every
individual is represented by a different single symbol. The compressed popula-
tion thus is only a set of μ different single symbols, and the description length
was minimized down to 1. The mutual information indeed vanishes for the full
compression. However, on this representation it is impossible to induce more
entropy than the parent population had (which is, if they are disjoint, logμ).
The parent population already has maximal entropy under all distributions over
only one symbol (since q̃(l) = p̃(l) is fixed) of the alphabet {1, .., μ}. Thus, the
full compression violates the constraint of the lower bound on entropy of q̃ and
is thus infeasible.

A solution to this problem with the above compression scheme would be to
stop compression at some level, maybe at the price that the mutual information
is not fully extinguished, but allowing for the addition of entropy. We follow this
approach by choosing the level of compression stochastically or, equivalently, to
add entropy on different levels of compression.

Concretely, the algorithm stochastically decides whether to apply one-point
mutations on each level of compression, i.e., in each recursion of the compression
scheme. We insert the following step in the compression recursion:
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2.e For each individual, decide with a probability α whether to apply a one-
point mutation. A one-point mutation randomly picks a location and, with
equal probabilities, deletes it, replaces it with a new symbol in {0, .., c−1},
or inserts such a new symbol.

This competes the description of the algorithm which omits an additional step 3.

The hierarchical XOR problem. The fitness function we consider is the Hier-
archical XOR (HXOR) function [7, 26]. For a string s ∈ {0, 1}n we first de-
fine a boolean function h(s) ∈ {0, 1}, determining whether s is “valid” or not:
Let n = length(s) be the string length, l ∈ N0 such that n/2 ≤ 2l < n
(l = �log2(n−1)�), and L = s1:2l and R = s2l+1:n the left and right parts of
the string when cut at location 2l. Then, for n ≥ 2, we define

h(s) = 1 ⇐⇒
[
n = 2l+1 ∧ h(L) = 1 ∧ h(R) = 1 ∧ L = R̄

]
,

and h(s) = 1 if n = 1. Here R̄ is the bit-wise negation of the right part. The last
condition means that the bit-wise xor between left and right part must be true
for each bit. For instance, the strings for which h(s) = 1 are, up to length 16,
〈0〉, 〈01〉, 〈0110〉, 〈0110 1001〉, 〈0110 1001 1001 0110〉, and their bit-wise negations.
Based on h, we define a fitness function H(s) ∈ N, for n ≥ 2,

H(s) = H(L) + H(R) +
{

n if h(s) = 1
0 else ,

and H(s) = 1 if n = 1. To normalize and put a limit on the string length, we
define the lth HXOR function Hl(s) ∈ [0, 1]: If s is longer than 2l, let s′ = s1:2l

and otherwise s′ = s. Then,

Hl(s) =
1

2l(l + 1)
H(s′) .

The normalization is given by the highest possible value 2l(1 + l) of H(s) for a
length 2l string. There exist two global optima of Hl, namely the two “valid”
strings of length l for which h(s) = 1.

Parameters. For the experiments, we use simple (μ,l)-selection with population
sizes μ = 30 and l = 100 and one elitist. The mutation probability (as indicated
in step 2.e of the algorithm) is α = 0.1. The population was initialized with all
〈01〉 individuals.

Results. We tested the algorithm on the HXOR problem. Figure 1A displays
the fitness trajectories for 20 runs on the 1024-bit HXOR problem. All runs
consistently found the optimal 1024-bit string. It took on average 519 generations
to reach this global optimum (with standard deviation ±168 generations).

Figure 1B displays the average first hitting generation and standard deviation
for different length HXOR problems, up to a problem size of 8192 bits. The



88 Marc Toussaint

Table 1. A L-system found to compress a population of identical solutions to the
1024-bit HXOR. The full L-system is composed of 27 productions and reads 〈C:10,
D:1C, E:0D, F:CD, G:0F, H:EG, I:CH, J:CG, K:EI, L:EJ, M:LI, N:JK, O:NM, P:JM, Q:KO,
R:PO, S:KR, T:QS, U:QP, V:UT, W:SV, X:US, Y:PT, Z:PW, a:XY, b:VZ, c:ba〉. In the
table, we expanded the RHS of these productions and, for brevity, only displayed the
first 15 productions

C:10
D:110
E:0110
F:1 0110
G:01 0110
H:01 1001 0110
I:1001 1001 0110
J:1001 0110

K:0110 1001 1001 0110
L:0110 1001 0110
M:0110 1001 0110 1001 1001 0110
N:1001 0110 0110 1001 1001 0110
O:1001 0110 0110 1001 1001 0110 0110 1001 0110 1001 1001 0110
P:1001 0110 0110 1001 0110 1001 1001 0110
etc...

algorithm found the optimum in all runs for all problem sizes and the variance of
the first hitting generation is relatively small for a stochastic search scheme. The
diagram also shows that the number of generations needed to find an optimum
seems to grow linearly with the problem size.

To give an impression on the codings developed by the L-system compression
scheme, table 1 displays an L-system found to compress a population of identical
solutions to the 1024-bit HXOR problem. As discussed above, this compression
implements a full compression such that eventually every individual is repre-
sented by a single symbol c. We find that some productions represent the typical
modules of HXOR solutions (like E:0110 or J:1001 0110) while others represent
parts of these modules. Recall that the order in which productions are added to
the L-system is stochastic (cf. step 2.c). Consequently, the coding is not strictly
hierarchical as a human might have designed it (or DevRep, see below) and the
L-system comprises more pair-productions than minimally necessary to encode
the sequence of length 1024 (the minimum would be 19 productions).

Generally, the performance of the algorithm – in terms of the generations
needed – is of the same order as the DevRep algorithm presented by de Jong
[7], which is the only previous algorithm we are aware of capable of solving large
HXOR problems. ([7] reported only on results for the 64-bit and 1024-bit HXOR
problem, where about 2.3·107 bit evaluations were needed in the single 1024-bit
run presented.) The DevRep algorithm is tailored to hierarchical problems,
where different hierarchy levels are explicitly distinguished and mutational vari-
ations allowed only within a specific hierarchy level. It should be clear that plain
variable length GAs perform extremely poorly on the HXOR problem because of
its complex deceptiveness when search is performed on an atomic representation
(see [7] for experiments).

Notes on gzip. The compression scheme used is computationally very expensive.
We argue below that a proper solution might be a cumulative approach to find
compressions which are not recalculated in each generation. Alternatively, one
might want to use efficient standard compression techniques, for example the
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Fig. 1. A. The trajectory of the best individual’s fitness for 20 runs on the 1024-bit
HXOR problem. One of the runs is drawn bold. B. First hitting generations, averaged
over 20 runs for each of the different HXOR problem sizes

Lempel-Ziv compression as used by gzip. We performed some experiments also
with this compression algorithm.

However, LZ-compression has some instructive practical drawbacks. Let us
first consider to compress a single sequence, mutate it, and decompress it. The
symbol mutations of the compressed string have to obey some constraints such
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Table 2. The first line is the original string, composed of 15×abcd. The lines below
show 20 variations, generated by compressing the string with LZ-compression, applying
a single one-point mutation, and decompressing again. Dots indicate that the symbol
has not varied compared to the original string

abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcd
.a...a...a...a...a...a...a...a...a...a...a...a...a...a...a..
..........................................d.ddabcdabcd
..............................................abdabcdabcd
........ddabcdabcddbcdd.dddbcddbcddbcddbcddbcdabcdabcd
.....................cabcdabcdac.caccdaccdaccdabcdabcd
......aabadabcdabaabcdab.dab.dabcdabcdab.aba..a...a...a.
........bcdabcdabcdbbcdbcdbcd.bcd.bcd.bcd.bcd.bcdabcdabcd
d...d...d...d...d...d...d...d...d...d...d...d...d...d...d...
......ab..a.......ab......a...a...........ab..ab..a...a...a.
............................................................
.................................cdacdaccdabcdabcdabcdabcd
......bc..b.......bc......b...b...........bc..bc..b...b...b.
........................cc.bcd.bcd.bcdabcdabcdabcdabcd
.............abcddaacdaabcd..........abcddaabcd..a...a...a..aacdaacd
...a...a...a...a...a...a...a...a...a...a...a...a...a...a...a
....dcd.cddbcddbcddbcddcdd..d...d...d...d...d...d...d...
...................................................bcdabcdab
.....................dabcabcdabcdadabca....adcdadcdadcdabcdabcd
............................................................
..................bcd.....................bcd.bcd.b...b...b.

that the compressed sequence remains a valid string that can be decompressed
by the LZ algorithm (the possible symbol range at each location is different).
Table 2 displays the result of 20 different one-point mutations on the compressed
representation. Here, a second issue about LZ-compression becomes apparent.
The mutations at the beginning of the string are less likely to be severe or
modular than at the end of the string. The reason is that LZ-compression is a 1-
pass scheme which builds up codes while parsing the string. In the beginning, no
codes have been build up yet and the string remains largely uncompressed. This
a priori asymmetry is undesirable in the context of evolutionary exploration.
A possible trick is to concatenate the same string several times, compress the
concatenation, mutate only the part which represents the last copy of the string,
and decompress.

When implementing an algorithm, we exploited this observation. To compress
and mutate a single individual, we concatenated all individuals of the population
and additionally appended the individual of interest into a long sequence and
compressed it. In this manner, LZ-compression first uses the whole population
sequence to build up codes that are then used to compress the last individ-
ual. Then we mutated the compressed representation of the last individual and
decompressed it. A computationally very expensive scheme, again.

Experiments with the HXOR problem showed a very high variance in per-
formance between runs. For the 128-bit HXOR problem it frequently occurred
that runs never find the optimum while others find it within a few hundred
generations. Generally, the experiments with LZ-compression gave some impor-
tant insight in the relevance of how the codes are build up. They do however
not support the practical use of conventional LZ-compression for evolutionary
algorithms.
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6 Discussion

Summary. The basis on which we developed the theoretical analysis was the
indirect Estimation-of-Distribution scenario, where a distribution over P is esti-
mated via a distribution over a variable length genotype space G and a bijective
encoding φ : G → P . The genotype distribution is restricted to factorize. Thus
the problem of estimating a distribution is split into “decoding” the structural
aspects of the distribution (via compression) and then estimating the remaining
structure-less factorized distribution. The main result are Lemmas 1 and 2 relat-
ing the KLD subject to minimization to the description length of the encoding.

The class of Compression EAs proposed in the last section are straight-
forward combinations of compression techniques with standard EA operators.
An algorithm based on a simple type of L-system compression performs reli-
ably well on the hierarchically deceptive HXOR function, which we tested up
to a problem size of 8192 bits. The number of generations needed to find an
optimum seems to grow linearly with the problem size.

However, the main aim of giving this explicit example for a Compression
EA was to introduce to the following discussion of two aspects that seem to be
important (i) when thinking about future, computationally efficient Compression
EAs and (ii) when considering the implications of the presented theory for the
understanding of natural evolution and the self-adaptive evolution of genetic
representations.

Compression techniques. Generally, to compress data one needs to analyze de-
pendencies in the data and introduce new symbols for dependent features. Stan-
dard string compression algorithms, such as LZ-compression as well as the L-
system compression we investigated, basically search for contiguous patterns
in the original or partly compressed string. This was successful for the HXOR
problem since the dependencies can (on various hierarchy levels) be described
in terms of contiguous patterns. For many other hard optimization problems
(e.g., MAXSAT) the dependencies will typically be between arbitrary variables
and hardly detectable for standard string compression techniques. The question
arises what kind of compression techniques are suitable for a specific class of
problems. In its generality, we must leave this unanswered. Theoretically, it is
straight-forward to design a specific factorial code for any distribution which is
explicitly given, e.g., by a graphical model. How to construct such codes from
data is yet an open issue.

Cumulative compression. The L-system compression we used has properties that
proved beneficial in the experiments: unlike LZ-compression it is unbiased w.r.t.
which modules are encapsulated and it can develop arbitrary hierarchies. To re-
compute the compression from scratch at every generation also has advantages:
the encoding is always adapted to the current population, i.e. the currently avail-
able information about the problem, and the stochasticity of the compression
scheme leads to more diversity in exploration at different generations.
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Clearly though, recomputing the compression at every generation is compu-
tationally very expensive. The general scheme of a Compression EA should thus
be modified to develop the compact encoding in a cumulative manner rather
than recomputing it at every generation. In the case of L-system compression,
cumulative could mean that the L-system is persistent over the generations and
at each generation only a single new production is added or an old, unused pro-
duction deleted. Assuming that the inherent structure of found solutions will
not evolve too fast, the cumulative scheme would still allow to provide a good
compression of the current population.

Besides being computationally much more effective, the cumulative approach
has another interesting perspective. Since the encoding is incrementally build up
during evolution, the encoding becomes a variable that integrates information
about the successful solutions over more than one generation. This is comparable
to strategy parameters in Evolution Strategies which, for instance, integrate the
average movement of the population over the recent history, assuming that this
search direction will also be profitable in the future [9]. Such schemes have hardly
been transferred to ordinary GAs because the notion of “proceeding in the same
direction” makes no sense on the hypercube. The notion does make sense though
on the more abstract level of “proceeding by incorporating the same structural
dependencies that have previously been successful” – where the notion of “search
direction” is replaced by the notion of “structural properties of search”. The
encoding becomes the variable which is capable to integrate such information.
The objective of compactness indicates how an adequate permanent adaptation
can be achieved.

Self-adaptive σ-evolution of compact representations. In this work we addressed
a bijective encoding φ that is adapted explicitly (externally) at each generation.
This approach is complementary to a formalism we proposed earlier to describe
the self-adaptive evolution of genetic representations [21, 22]. The proper way to
formalize the self-adaptive case is to consider a fixed but non-injective genotype-
phenotype mapping. In that case there exists a variety (neutral set) of different
genotypes that map to the same phenotype. The “choice of genetic represen-
tation” here means which genotype from the neutral set is chosen to encode
the phenotype. The specific example investigated in [20] clarifies the relation
between the two complementary frameworks: A genotype in the self-adaptive
scenario may be the tuple (g0, Π) of a (compact) string g0 (termed axiom, or
egg cell) and an L-system Π (termed genome). The global genotype-phenotype
mapping from the space of such tuples to phenotype is clearly fixed. But differ-
ent genotypes, involving different L-systems Π , may map to the same phenotype
and thus induce structurally completely different phenotypic variabilities. In this
scenario, the evolution of genetic representations can be understood as moves in
the neutral set, e.g., neutral reorganizations of the L-system Π .

In [22] it was show that the self-adaptive evolution of genetic representations
is driven by an implicit selection which discriminates phenotypically equivalent
genotypes by the quality of the phenotypic variability that they induce (which is
related to the effective fitness [14, 19]). More precisely, the selectional advantage
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of different genetic representations of the same phenotype is proportional to the
negative Kullback-Leibler divergence between the phenotypic variability and the
Boltzmann fitness distribution (assuming a lower bound on phenotypic entropy,
see [22] for details).

The objective of minimizing the Kullback-Leibler divergence is thus the key
to transfer the results we derived here to the self-adaptive scenario, now stat-
ing that there is an effective selection pressure on the description length of a
genetic representation. Indeed, a tendency towards compact representations was
observed in experiments on σ-evolution [20]. It was previously argued that its
origin is the advantage of mutational robustness when every genetic symbol
underlies a constant mutation rate. We can now add another origin, namely
that compact representations are structurally more favorable – meaning that
the phenotypic variability they induce allows us to reduce the Kullback-Leibler
divergence and follow the Estimation-of-Distribution principle. It is yet open to
which degree both effects contributed to the evolution of compact codes.
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Abstract. This paper presents the asymptotic convergence analysis of Simulated
Annealing, an Artificial Immune System and a General Evolutionary Algorithm
for multiobjective optimization problems. In the case of a General Evolutionary
Algorithm, we refer to any algorithm in which the transition probabilities use a
uniform mutation rule. We prove that these algorithms converge if elitism is used.

1 Introduction

In nature, most problems have several objectives which we aim to optimize simultane-
ously. Such problems are called “multiobjective”, and their solution requires a suitable
definition of optimality (usually called “Pareto optimality”). Such problems normally
have not one, but an infinite set of possible solutions, which represent possible trade-
offs among the objectives (such solutions constitute the so-called “Pareto optimal set”).

Diverse metaheuristics have been adopted to solve multiobjective optimization prob-
lems (MOP) [2]. In this paper, we study three of them: simulated annealing (SA) [10,
15], artificial immune systems (AIS) [14] and evolutionary algorithms (EA) [9, 6]. For
these metaheuristics that use a uniform mutation rule (see end of Section 3.1) we show
that the associated Markov chain converges geometrically to its stationary distribution,
but not necessarily to the optimal solution set of the multiobjective optimization prob-
lem. Convergence to the optimal solution set is ensured if elitism (whose definition is
provided in this paper) is used.
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Metaheuristics such as those indicated in this paper, have become a standard tool
to solve both single-objective and multiobjective optimization problems. In the single-
objective case, the convergence of a metaheuristic is reasonably well-understood [17].
However, when dealing with multiobjective optimization problems, there is not much
work available in the literature, except for extremely particular cases (see for example
[16]).

The remainder of this paper is organized as follows. Section 2 introduces the prob-
lem of our interest. The three specific algorithms studied in this paper are introduced
in Section 3. In Section 4 we present some basic definitions related to Markov chain
theory. Our main results (i.e., the corresponding proofs) are presented in Section 5.
Section 6 provides our conclusions and some possible paths of future research.

2 The Multiobjective Optimization Problem

Let X be a set and F : X −→ IRd a given vector function with components fi :
X −→ IR for each i ∈ {1, . . . , d}. The multiobjective optimization problem (MOP)
we are concerned with is to find x∗ ∈ X such that

F (x∗) = min
x∈X

F (x) = min
x∈X

[f1(x), . . . , fd(x)], (1)

where the minimum is understood in the sense of the standard Pareto order in which
two vectors in IRd are compared as follows.

If u = (u1, . . . , ud) and v = (v1, . . . , vd) are vectors in IRd, then

u % v ⇐⇒ ui ≤ vi ∀ i ∈ {1, . . . , d}.
This relation is a partial order. We also write u ≺ v ⇐⇒ u % v and u �= v.

Definition 1: A point x∗ ∈ X is called a Pareto optimal solution for the MOP (1) if
there is no x ∈ X such that F (x) ≺ F (x∗). The set

P∗ = {x ∈ X : x is a Pareto optimal solution}
is called the Pareto optimal set, and its image under F , i.e.

F (P∗) := {F (x) : x ∈ P∗} ,

is called Pareto front.
In the remainder of the paper we will use the following well–known “scalarization”

result.

Proposition 1: If x∗ ∈ X is a solution of the weighted problem:

min
x∈X

d∑
s=1

wsfs(x), where ws ≥ 0 ∀s ∈ {1, . . . , n} and
d∑

s=1

ws = 1,

then x∗ ∈ P∗.
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Proof. See, for instance, [13, p.78].

Now we introduce some notation that will be used later on. Let

Σopt := {x ∈ X :
∑d

s=1 fs(x) = Σm},
where

Σm := min
x∈X

d∑
s=1

fs(x). (2)

Then, by Proposition 1, the Pareto optimal set P∗ contains Σopt, i.e.

Σopt ⊂ P∗. (3)

As we are concerned with computational aspects, in the remainder of the paper we
will assume that the set X in (1) is finite. For an EA and the AIS, in which the elements
are represented by strings of length l with 0 or 1 at each entry, we take X = IBl, with
IB = {0, 1}. For SA we only assume that X is finite.

3 Algorithms

3.1 Evolutionary Algorithms

Evolutionary algorithms are techniques that use a population which evolves over time
(i.e., generations) applying some operations to the current population to obtain the next
one. Some of these operations are

– mutation
– selection
– crossover
– reordering

The type of EAs we are interested in are modeled as Markov chains with transition
probabilities that use uniform mutation and possibly other operations. This mutation is
applied with a certain parameter or probability pm, which is positive and less than 1/2,
i.e.

pm ∈ (0, 1/2) . (4)

Some examples of this type of EAs are the following:

– genetic algorithms (see [9]),
– evolution strategies (see [18]),
– evolutionary programming (see [8, 7]).

These types of algorithms can be modeled as a Markov chain {Xk : k ≥ 0} whose
state space S is the set of all possible populations of n individuals, each one represented
by a bit string of length l. Hence S = (IBl)n = IBnl, where IB = {0, 1} and so S is
the set of all possible vectors of n entries, each of which is a string of length l with 0 or
1 at each entry.

Let i ∈ S be a state, so that i can be represented as

i = (i1, i2, . . . , in),

where each is is a string of length l of 0’s and 1’s.
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The chain’s transition probability is given by

Pij = IP (Xk+1 = j | Xk = i).

Thus the transition matrix is of the form

P = (Pij) = LM, (5)

where M is the transition matrix corresponding to the mutation operation and L repre-
sents the other operations.

Note that these matrices are stochastic, i.e. Lij ≥ 0, Mij ≥ 0 for all i, j, and for
each i ∈ S ∑

j∈S

Lij = 1 and
∑
j∈S

Mij = 1. (6)

The Mutation Probability

The mutation probability is very important in the convergence analysis of the EA. To
calculate it from state i to state j we use that the individual is is transformed into the
individual js applying uniform mutation (i.e. a flip mutation, with probability pm, is
applied to each entry of is) then each entry of is is transformed into the corresponding
one of js with probability 1 − pm or pm depending on if the corresponding entries are
equal or different, as in the following scheme.

1 2 · · · n
i i1 i2 · · · in

mutation ↓ ↓ · · · ↓

j j1 j2 · · · jn

Thus, for each individual in the population the mutation probability can be calculated
as

pH(is,js)
m (1 − pm)l−H(is ,js) ∀s ∈ {1, . . . , n},

where H(is, js) is the Hamming distance between is and js. It follows that the mutation
probability from i to j is:

Mij =
n∏

s=1

pH(is,js)
m (1 − pm)l−H(is,js) (7)

3.2 The Simulated Annealing Algorithm

Kirkpatrick et al. [10] and Černy [15] proposed an optimization algorithm based on
some analogies with an annealing process in which a crystal is produced. This led to
the development of an algorithm called “Simulated Annealing” which is a heuristic
search technique that has been quite successful in combinatorial optimization problems
(see [1] and [11] for details).
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The simulated annealing algorithm generates a succession of possible solutions of
the optimization problem. These possible solutions are the states of a Markov chain and
the “energy” of a state is the evaluation of the possible solution that it represents.

The temperature is simulated with a sequence of positive control parameters ck. A
transition of the Markov chain occurs in two steps, given the value ck of the control
parameter. First, if the current state is i, a new state j is generated with a certain prob-
ability Gij(ck), defined below. Then an “acceptance rule” Aij(ck) is applied to j. Our
main result hinges on a suitable selection of the acceptance rule, which we now discuss.

The generation probability. For each state i, let Si be a subset of S \ {i} called the
neighborhood of i. We shall assume that the number of elements in Si is the same, say
Θ, for all i ∈ S, and also that the neighbor relation is symmetric, that is, j ∈ Si if and
only if i ∈ Sj . Then, denoting by χSi the indicator function of Si (i.e. χSi(j) := 1 if
j ∈ Si and 0 otherwise), we define the generation probability

Gij(ck) :=
χSi(j)

Θ
for all i, j ∈ S. (8)

The acceptance probability. This probability value is crucial for the behavior of the
simulated annealing algorithm.

The idea of this acceptance rule is that any new state that improves the actual state
will be accepted with probability 1 and the others are accepted with certain probability
that tends to zero as time goes to infinity.

When dealing with MOPs there are different options to define the acceptance rule.
For instance, Serafini [20] proposes to use the L∞–Tchebycheff norm given by

A′
ij(c) = min

{
1, exp

(
max

s∈{1,...,d}
λs(fs(i) − fs(j))

c

)}
,

where the λs are given positive parameters.
On the other hand, Ulungu and coworkers [21, 22, 24, 23] use

A′′
ij(c) := min

{
1, exp

(
d∑

s=1

λs(fs(i) − fs(j))
c

)}

= exp

⎧⎨⎩−
(

d∑
s=1

λs(fs(j) − fs(i))
c

)+
⎫⎬⎭ . (9)

where as usual, a+ denotes the positive part of a number a ∈ IR, namely

a+ :=
{

a if a > 0,
0 otherwise.

Here, we will use the acceptance probability presented in [20]:

Aij(c) :=
d∏

s=1

min
{

1, exp
(
fs(i) − fs(j)

c

)}
,
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which can be expressed in the simpler form

Aij(c) = exp

(
−
∑d

s=1(fs(j) − fs(i))+

c

)
. (10)

For the last two acceptance rules, we have shown somewhere else that the SA for
MOP converges (see [25]).

The transition probability. Having the generation and the acceptance probabilities, we
can now define the transition probability from i to j as

Pij(ck) :=

{
Gij(ck)Aij(ck) if i �= j,

1 −∑
l∈S,l�=i Pil(ck) if i = j,

(11)

where Aij is as in (10) (or as in (9)).

3.3 Artificial Immune System

The Artificial Immune System (AIS) algorithm is a technique that, as its name indi-
cates, simulates in a computer certain aspects of an immune system. When an antigen
enters our immune system, it is immediately detected and generates a response from the
immune system. As a consequence, antibodies are generated by the immune system.
Antibodies are molecules that play the main role in the immune response. They are ca-
pable of adhering to the antigens in order to neutralize and mark them for elimination
by other cells of the immune system. Successful antibodies are cloned and hypermu-
tated. This is called the clonal selection principle and has been the basis for developing
the algorithm on which we base the work reported in this paper [4].

For our mathematical model, we will consider the AIS (based on clonal selection
theory [4]) for multiobjective optimization proposed in [3]. From here on, we will refer
to this approach using the same name adopted by the authors of this algorithm: “Multi-
objective Immune System Algorithm” (MISA for short). Next, we will focus our dis-
cussion only on the aspects that are most relevant for its mathematical modelling. For a
detailed discussion on this algorithm, readers should refer to [3].

In MISA the antigens are simulated with a population of strings of 0’s and 1’s.
The population is divided in two parts, a primary set and a secondary set; the primary
set contains the “best” individuals (or elements) of the population. The transition of
one population to another is made by means of two mutation rules and a reordering
operation. First, the elements of the primary set are copied several times, then in each
of these copies a fixed number of bits are mutated, at random. Regarding the secondary
set, a uniform mutation with parameter pm is applied. This parameter is positive and
less than 1/2, i.e. pm ∈ (0, 1/2).

After that, the elements are reordered, moving the “best” individuals to the primary
set. MISA can be modeled with a Markov chain {Xk : k ≥ 0}, with state space S =
IBnl, where IB = {0, 1}. In this case a individual can be represented as:

i = (i1, i2) = (i1, i2, . . . , in1 ; in1+1, . . . , in),

i1 represents the primary set and i2 the secondary.
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3.4 Using Elitism

In our case, when dealing with MOPs, we say that we are using elitism in an algo-
rithm if we use an extra set, called the elite set, in which we put the “best” elements
(nondominated elements of the state in our case) found. This elite set usually does not
participate in the evolution (although, there are multi-objective evolutionary algorithms
that use the elite set in the selection process, such as the Strength Pareto Evolutionary
Algorithm [27]), since it is used only to store the nondominated elements.

After each transition we apply an elitism operation that accepts a new state if there
is an element in the population that improves some element in the elite set (i.e., if there
is an element in the population that dominates, in the Pareto sense, some element in the
elite set).

If we are using elitism, the representation of the states changes to the following
form:

î = (ie; i) = (ie1, · · · , ier; i1, · · · , in),

where ie1, · · · , ier are the members of the elite set of the state, r is the number of elements
in the elite set and we assume that the cardinality of P∗ is greater than or equal to r. In
addition we assume that r ≤ n.

Note that in general ie1, · · · , ier are not necessarily the “best” elements of the state î,
but after applying the elitism operation in ie they are the “best” elements of the state.

Let P̂ be the transition matrix associated with the new states. If all the elements in
the elite set of a state are Pareto optimal, then any state that contains an element in the
elite set that is not a Pareto optimal will not be accepted, i.e.

if {ie1, · · · , ier} ⊂ P∗ and {je
1 , · · · , je

r} �⊂ P∗ then P̂ij = 0. (12)

4 Markov Chain Theory

We provide here some standard definitions and results.
We first introduce the definition of convergence of an algorithm, which uses the

following notation: if V = (v1, v2, . . . , vn) is a vector, then {V } denotes the set of
entries of V , i.e.

{V } = {v1, v2, . . . , vn}.

Definition 2: Let {Xk : k ≥ 0} be the Markov chain associated to an algorithm. We
say that the algorithm converges with probability 1 if

IP ({Xk} ⊂ P∗) → 1 as k → ∞.

In the case in which we are using elitism we replace Xk by Xe
k , the elite set of the

state (i.e. if Xk = i then Xe
k = ie).

The next result gives an upper bound on the rate of convergence of P k as k → ∞.
We will use it to show the existence of the stationary distribution in Theorem 2.
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Lemma 1: Let N be the cardinality of S, and let P k
ij be the entry ij of P k. Suppose

that there exists an integer ν > 0 and a set J of N1 ≥ 1 values of j such that

min
1≤i≤N

j∈J

P ν
ij = δ > 0.

Then there are numbers π1, π2, . . . , πN1 such that

lim
k→∞

P k
ij = πj ∀i = 1, . . . , N, ∀ j ∈ J, with πj ≥ δ > 0,

and π1, π2, . . . , πN1 form a set of stationary probabilities. Moreover

|P k
ij − πj | ≤ (1 − N1δ)

k
ν −1 ∀ i = 1, . . . , N, ∀ j ∈ J, ∀ k = 1, 2, . . . .

Proof. See, for example, [5, p. 173].

We will need some properties of the limiting distribution, which we present next.
Recall that a probability distribution q is called the limiting distribution of a Markov
chain with transition probability P if

qi = lim
k→∞

IP (Xk = i|X0 = j) for all i, j ∈ S.

If such a limiting distribution q exists and ai(k) = IP (Xk = i), for i ∈ S, denotes the
distribution of Xk, then

lim
k → ∞

ai(k) = qi for all i ∈ S.

Moreover, q is an invariant (or stationary) distribution of the Markov chain, which
means that

q = q P ; (13)

that is, q is a left eigenvector of P with eigenvalue 1. A converse to this result (which
is true for finite Markov chains) is given in Lemma 2 below.

Observe that (13) trivially holds if q is a probability distribution satisfying

qiPij = qjPji ∀i, j ∈ S. (14)

This equation is called the detailed balance equation, and (13) is called the global
balance equation.

Lemma 2:[12, p.19] Let P be the transition matrix of a finite, irreducible and ape-
riodic Markov chain. Then the chain has a unique stationary distribution q (that is q
is the unique distribution that satisfies (13)) and, in addition, q is the chain’s limiting
distribution.

Definition 3: Let X be as in problem (1). We say that X is complete if for each x ∈
X \ P∗ there exists x∗ ∈ P∗ such that F (x∗) % F (x).

For instance, if X is finite then X is complete.
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Let i, j ∈ S be two arbitrary states, we say that i leads to j, and write i → j, if
there exists an integer k ≥ 1 such that P k

ij > 0. If i does not lead to j, then we write
i �→ j.

We call a state i inessential if there exists a state j such that i → j but j �→ i.
Otherwise the state i is called essential.

We denote the set of essential states by E and the set of inessential states by I .
Clearly,

S = E ∪ I.

We say that P is in canonical form if it can be written as

P =
(

P1 0
R Q

)
.

Observe that P can be put in this form by reordering the states, that is, the essen-
tial states at the beginning and the inessential states at the end. In this case, P1 is the
matrix associated with the transitions between essential states, R with transitions from
inessential to essential states, and Q with transitions between inessential states.

Note that P k has a Qk in the position of Q in P , i.e.

P k =
(

P k
1 0

Rk Qk

)
,

where Rk is a matrix that depends of P1, Q and R.
Now we present some results that will be essential in the proof of Theorem 3.

Lemma 3: Let P be a stochastic matrix, and let Q be the submatrix of P associated
with transitions between inessential states. Then, as k → ∞,

Qk → 0 elementwise geometrically fast.

Proof. See, for instance, [19, p.120].

As a consequence of Lemma 3 we have the following.

Corollary 1: For any initial distribution,

IP (Xk ∈ I) → 0 as k → ∞.

Proof. For any initial distribution vector p0, let p0(I) be the subvector that corresponds
to the inessential states. Then, by Lemma 3,

IP (Xk ∈ I) = p0(I)′Qk1 → 0 as k → ∞.

5 Main Results

In this section we present some recent results on the convergence of the algorithms
introduced in Section 3, for multiobjective optimization problems (MOPs).
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5.1 Convergence of Simulated Annealing

Following the ideas of Laarhoven, Aarts and Korst in [1, 11] we developed a conver-
gence proof of SA for MOPs, which is presented in the following Theorem.

Theorem 1: Let P (c) be the transition matrix associated with the SA algorithm defined
by (8), (10), (11) and, moreover, suppose that G(c) is irreducible. Then:

(a) The Markov chain has a stationary distribution q(c) whose components are given
by

qi(c) =
1

N0(c)
exp

(
−
∑d

s=1 fs(i)
c

)
, (15)

where

N0(c) =
∑
j∈S

exp

(
−
∑d

s=1 fs(j)
c

)
(16)

(b) For each i ∈ S

q∗i := lim
c↘0

qi(c) =
1

|Σopt|χΣopt(i),

where |Σopt| denotes the number of elements in Σopt.
(c) The SA algorithm converges with probability 1.

These results remain valid if (10) is replaced with (9).

Proof of Theorem 1.

(a) Since G is irreducible, using Lemma 2 it can be seen that the Markov chain is
irreducible and aperiodic (see [1, p.39]). Hence, by Lemma 2 there exists a unique
stationary distribution. We now use (8) and (11) to see that (14) holds for all i �= j.
First note that

qi(c)Pij(c) = qi(c)Gij(c)Aij(c)

=
{

1
Θ qi(c)Aij(c) if j ∈ Si

0 if j �∈ Si.

Similarly,

qj(c)Pji(c) = qj(c)Gji(c)Aji(c)

=
{

1
Θ qj(c)Aji(c) if i ∈ Sj

0 if i �∈ Sj .

Thus, since i ∈ Sj if and only if j ∈ Si, to obtain (14) we only have to prove that

qi(c)Aij(c) = qjAji(c).

But this follows from (10), (15) and using that for any real numbers a1, a2, . . . , an,
b1, b2, . . . , bn, we have
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n∑
k=1

(ak − bk) +

(
n∑

k=1

(bk − ak)

)+

=

(
n∑

k=1

(ak − bk)

)+

,

n∑
k=1

(ak − bk) +
n∑

k=1

(bk − ak)+ =
n∑

k=1

(ak − bk)+.

because

qi(c)Aij(c) =

=
1

N0(c)
exp

(
−
∑n

s=1 fs(i)
c

)
exp

(
−
∑n

s=1(fs(j) − fs(i))+

c

)
=

1
N0(c)

exp
(
−
∑n

s=1 fs(j)
c

)
exp

(
−
∑n

s=1(fs(i) − fs(j)) +
∑n

s=1(fs(j) − fs(i))+

c

)
=

1
N0(c)

exp
(
−
∑n

s=1 fs(j)
c

)
exp

(
−
∑n

s=1(fs(i) − fs(j))+

c

)
= qj(c)Aji(c).

This shows that (14) holds, which in turn yields part (a) in Theorem 1. (Note that
this proof, with obvious changes, remains valid if the acceptance probability is given
by (9) rather than (10)).

(b) Note that for each a ≤ 0

lim
x↘0

e
a
x =

{
1 if a = 0,
0 otherwise.

(17)

Now, by (2), (15) and (16)

qi(c) =
exp

(
−
∑n

s=1 fs(i)

c

)
∑

j∈S exp
(
−
∑n

s=1 fs(j)

c

)
=

exp
(

Σm−∑n
s=1 fs(i)

c

)
∑

j∈S exp
(

Σm−∑n
s=1 fs(j)

c

)
=

exp
(

Σm−∑n
s=1 fs(i)

c

)
∑

j∈S exp
(

Σm−∑n
s=1 fs(j)

c

) (χΣopt(i) + χS−Σopt(i)
)

=
1∑

j∈S exp
(

Σm−∑n
s=1 fs(j)

c

)χΣopt(i)

+
exp

(
Σm−∑n

s=1 fs(i)

c

)
∑

j∈S exp
(

Σm−∑n
s=1 fs(j)

c

)χS−Σopt(i).
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Now let c ↘ 0. Then, by (17), the second term of the latter sum goes to 0, whereas
the denominator of the first term goes to |Σopt|. Hence

lim
c↘0

qi(c) =
1

|Σopt|χΣopt(i) + 0 = q∗i ,

which completes the proof of part (b).
(c) By (b) and Lemma 2

lim
c↘0

lim
k→∞

IP{Xk = i} = lim
c↘0

qi(c) = q∗i ,

and so by (3)

lim
c↘0

lim
k→∞

IP{Xk ∈ P∗} ≥ lim
c↘0

lim
k→∞

IP{Xk ∈ Σopt} = 1. (18)

Thus
lim
c↘0

lim
k→∞

IP{Xk ∈ P∗} = 1,

and (c) follows.

5.2 Convergence of Evolutionary Algorithms

In this subsection we present convergence results for the EA for solving MOPs, in which
we show that the use of elitism is necessary to guarantee the convergence of this kind
of algorithms.

The first result is related to the existence of a stationary distribution for the Markov
chain of the EA.

Theorem 2: Let P be the transition matrix of an EA. Then P has a stationary distribu-
tion π such that

|P k
ij − πj | ≤

(
1 − 2nlpnl

m

)k−1 ∀i, j ∈ S ∀k = 1, 2, . . . . (19)

Moreover, π has all entries positive.

Theorem 2 states that P k converges geometrically to π. Nevertheless, in spite of
this result, the convergence of the EA to the Pareto optimal set cannot be guaranteed. In
fact, from Theorem 2 and using the fact that π has all entries positive, we immediately
deduce the following.

Corollary 2: The EA does not converge.

To ensure convergence of the EA we need to use elitism.

Theorem 3: The EA using elitism converges.

The next lemma will be used in the proof of Theorem 2.
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Lemma 4: Let P be the transition matrix of the EA. Then

min
i,j∈S

Pij = pnl
m > 0 ∀i, j ∈ S, (20)

and therefore P is primitive.

Proof. By (4) we have

pm <
1
2

< 1 − pm.

Thus, from (7),

Mij =
n∏

s=1

pH(is,js)
m (1 − pm)l−H(is ,js)

>

n∏
s=1

pH(is,js)
m pl−H(is,js)

m =
n∏

s=1

pl
m

= pnl
m

On the other hand, by (5) and (6)

Pij =
∑
s∈S

RisMsj

≥ pnl
m

∑
s∈S

Ris

= pnl
m > 0,

To verify (20), observe that Pij attains the minimum in (20) if i has 0 in all entries and
j has 1 in all entries.Thus the desired conclusion follows.

Proofs

Proof of Theorem 2. Because (20) holds for all j ∈ S we have that J = S, N1 = N =
2nl and ν = 1. Thus, by Lemma 1, P has a stationary distribution π with all entries
positive and we get (19).

Despite the fact that Theorem 3 is an extension of a result originally presented
by Rudolph [17], our proof is more general. Additionally, we do not have to make any
assumptions regarding the existence of a single optimal point (i.e., our proof is simpler),
due to the use of essential and inessential states.

Proof of Theorem 3. By Corollary 1, it suffices to show that the states that contain
elements in the elite set that are not Pareto optimal are inessential states. To this end,
first note that X = IBl is complete, because it is finite.

Now suppose that there is a state î = (ie; i) in which the elite set contains elements
ies1

, . . . , iesk
that are not Pareto optimal. Then, as X is complete, there are elements, say

je
s1
, . . . , je

sk
∈ P∗, that dominate ies1

, . . . , iesk
, respectively.
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Take ĵ = (je; j) such that all Pareto optimal points of ie are in je and replace the
other elements of ie with the corresponding je

s1
, . . . , je

sk
. Thus, all the elements in je

are Pareto optimal.
Now let

j = (je
1 , . . . , j

e
r , i

e
s1
, . . . , ies1︸ ︷︷ ︸

n−r copies

).

By Lemma 4 we have i → j. Hence, with positive probability we can pass from
(ie, i) to (ie, j), and then we apply the elitism operation to pass from (ie, j) to (je, j).
This implies that î → ĵ. On the other hand, using (12), ĵ �→ î and therefore î is an
inessential state.

Finally, from Corollary 1 we have

IP ({Xe
k} ⊂ P∗) = IP (Xk ∈ E) = 1 − IP (Xk ∈ I) → 1 − 0 = 1

as k → ∞.
This completes the proof of Theorem 3.

5.3 Convergence of an Artificial Immune System Algorithm

A previous proof for a version of MISA was presented in [26], in which some con-
straints were imposed on the way in which one could go from one state to another.
Here, we present a proof of a more general version of MISA. The idea is the same for
the EA, and is presented in the next lemma.

Lemma 5: If any state in MISA has in its elite set an element that is not a Pareto
optimal, this state is an inessential state.

Proof. Note that X = IBl is complete, because it is finite.
Let î = (ie; i1, i2) be a state in which the elite set contains elements that are not

Pareto optimal.

1. From i1, a set of clones is generated. Next, a fixed number of (randomly chosen)
string positions of these clones are mutated. Then we change the initial positions in
all the strings of the clones (there exists a positive probability of doing this). The
set obtained from this previous process is called ClonesM(i1).

2. Since a uniform mutation is applied to i2, we change whatever is necessary in all the
elements within this set, so that we can obtain the worst element of ClonesM(i1).
As before, there exists a positive probability of doing this, so that none of these
elements enters the primary set.

3. Then, all the elements are rearranged and we select the nondominated elements and
they are placed in j1. Now, let j2 contain a number of individuals of the remainder
of the elements available, until completing N (N is the population size).

4. When we apply elitism we obtain the set je.
5. To the clones of j1, we mutate the same initial string positions. Then

ClonesM(j1) ⊆ ClonesM(i1). Therefore, the best elements of ClonesM(j1)
will be in j1 again. When we apply elitism to the elements of j1, we do not modify
the set je.
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6. Let je
s1
, . . . , je

sk
be the elements of je that are not Pareto optimal. As X is complete,

there exist elements i�s1
, . . . , j�

sk
∈ P∗ that dominate je

s1
, . . . , je

sk
, respectively.

7. Now, since we apply uniform mutation to j2, we can obtain from j2
1 , . . . , j

2
k to

i�s1
, . . . , j�

sk
respectively, and the other elements of j2 are left as they were before.

8. Like ClonesM(j1) and {jk+1, . . . , jn2} had already been modified je when apply-
ing elitism, we will not modify again je. Thus, the only part of je that is modified
will be i�s1

, . . . , j�
sk

and they will replace the nondominated elements of je.
9. Finally, let i† be the resulting state of this process. Using the previous process, we

can go from î to i† (̂i → i†), but as in i†e there are only Pareto optimal solutions,
from (12) Pi† î = 0 (i.e i† �→ î). This proves that î is an inessential state.

From Lemma 5, the convergence of MISA is easily obtained as follows.

Theorem 4: The MISA algorithm using elitism converges.

Proof. From Lemma 5 and Corollary 1 we have

IP ({Xe
k} ⊂ P∗) = IP (Xk ∈ E) = 1 − IP (Xk ∈ I) → 1 − 0 = 1

as k → ∞. This completes the proof.

6 Conclusions and Future Work

We have presented the convergence proofs of three meta-heuristics that have been used
for solving MOPs: simulated annealing, an artificial immune system (based on clonal
selection theory), and a general evolutionary algorithm.

It is worth noting that in the case of the general EA, our convergence proof ex-
tends previous proofs of convergence presented for genetic algorithms used for single-
objective optimization (e.g., [17]). Actually, our proof is valid for a more general class
of evolutionary algorithms that use uniform mutation.

Regarding the artificial immune system, the proof included here, together with some
of our previous work [26], constitute the only attempts currently known to prove con-
vergence of such metaheuristic.

Finally, regarding simulated annealing, our proof relies on previous work by
Laarhoven, Aarts and Korst [1, 11], but it constitutes (to the best of our knowledge),
the first proof of convergence of simulated annealing in multiobjective optimization
problems.

As part of our future work, we intend to extend these results to a more general case
in which not even uniform mutation is required. We also plan to analyze other types
of heuristics used for multiobjective optimization, and to try to determine bounds of
convergence for such algorithms.
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Abstract. In this paper, we suggest a multiobjective evolutionary algorithm based
on a restricted mating pool (REMO) with a separate archive for storing the re-
maining population. Such archive based algorithms have been used for solving
real-world applications, however, no theoretical results are available. In this pa-
per, we present a rigorous running time complexity analysis for the algorithm on
two simple discrete pseudo boolean functions and on the multiobjective knap-
sack problem which is known to be NP-complete. We use two well known simple
functions LOTZ (Leading Zeros: Trailing Ones) and a quadratic function. For the
knapsack problem we formalize a (1 + ε)-approximation set under a constraint
on the weights of the items. We then generalize the idea by eliminating the con-
straints based on a principle of partitioning the items into blocks and analyze
REMO on it. We use a simple strategy based on partitioning of the decision space
into fitness layers for the analysis.

1 Introduction

Evolutionary algorithms are emerging as a powerful tool to solve NP-hard combina-
torial optimization problems. EAs use a randomized search technique with a popula-
tion of individuals. The genetic operators used by EAs do not apply, in general, any
problem-specific knowledge, however, special genetic operators may be designed by
incorporating domain knowledge to expedite the search for some applications. In the
multiobjective scenario, EAs often find effectively a set of diverse and mutually com-
petitive solutions. Some results for solving computationally hard problems [1, 2] using
multiobjective EAs are available in the literature – e.g., m-dimensional knapsack [3],
minimum spanning tree [4, 5], partitioning of high-dimensional patterns spaces [6],
code-book design [7], communication network topology design [8], and network de-
sign [9].

The EA operators like mutation and crossover imitate the process of natural evolu-
tion. The underlying principles of the operators are simple, but nevertheless, EAs ex-
hibit complex behavior which is difficult to analyze theoretically. Hence, though there
are numerous empirical reports on the application of EAs, work on their theoretical
analysis is rare. However, besides empirical findings, theoretical analysis is essential to
understand the performance and behavior of such heuristics. Some work, in this direc-
tion, has recently started, e.g., [10–12].

In case of single objective optimization, many results have been obtained on the
analysis of evolutionary algorithms. Results on the time bounds of algorithms in the

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 112–131, 2005.
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discrete search space [13] as well as continuous search space [14] are available. Some
analysis on special functions using (1 + 1) EA has been done - linear functions [15],
ONE-MAX function [16], unimodal function [13, 17], and pseudo-boolean quadratic
functions [18]. Most of the work above analyzed evolutionary algorithms with mutation
as the only genetic operator. However, a proof that crossover is essential is presented
in [19].

The analysis of the multiobjective case, however, is more difficult than its single
objective counterpart since it involves issues like the size of Pareto-set, diversity of the
obtained solutions and convergence to the Pareto-front [20, 21]. Consequently, results
on theoretical analysis of multiobjective evolutionary algorithms are few. Rudolph [22,
23] and Rudolph and Agapie [24] have studied multiobjective optimizers with respect
to their limit behavior. Laumanns et al. pioneered in deriving sharp asymptotic bounds
for two-objective toy functions [10, 11]. Recently, Giel [25] and Thierens [26] derived
bounds for another simple function.

Most of the work done earlier deals with analysis of simple problems. However,
analysis of a multiobjective evolutionary algorithm on a simple variant of the 0-1 knap-
sack problem was started by Laumanns et al. [12]. They analyzed the expected running
time of two multiobjective evolutionary algorithms ‘Simple Evolutionary Multiobjec-
tive Optimizer (SEMO)’ and ‘Fair Evolutionary Multiobjective Optimizer (FEMO)’ for
a simple instance of the multiobjective 0-1 knapsack problem. The considered problem
instance has two profit values per item and cannot be solved by one-bit mutations. In
the analysis, the authors make use of two general upper bound techniques, the decision
space partition method and the graph search method. The paper demonstrates how these
methods, which have previously only been applied to algorithms with one-bit mutations,
are equally applicable for mutation operators where each bit is flipped independently
with a certain probability. However, the work takes care of only a very special instance
of the knapsack and cannot be extended to any knapsack problem.

None of the work involves analysis of real-world combinatorial optimization prob-
lems using multiobjective EAs. In this work, we continue such an analysis for the well-
known bi-objective 0–1 knapsack problem [27–30]. In the most general case, the Pareto-
optimal set for the knapsack can be exponentially large in the input size. Therefore, we
first, formulate a (1 + ε)-approximate set for the 0 - 1 knapsack, followed by a rigorous
analysis of the expected time to find the solution-set. We also carry out the expected
running time analysis on two simple pseudo-boolean functions, namely the Leading
Zeros: Trailing Ones (LOTZ) [10] and Quadratic Function (QF) [25].

We suggest a simple multiobjective optimizer based on an archiving strategy which
is well adapted to work efficiently for problems where the Pareto-optimal points are
Hamming neighbors (i.e., having a Hamming distance of 1). We call our algorithm Re-
stricted Evolutionary Multiobjective Optimizer (REMO). The algorithm uses a special
archive of two individuals which are selected based on a special fitness function which
selects two individuals with the largest Hamming distance. Such a mechanism assures
that the individuals selected for mutation are more likely to produce new individuals.
However, this assumption holds for functions where the optimal set consists of individ-
uals which are Hamming neighbors of each other and the distribution of the optimal
points is fairly uniform.
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The rest of the paper is organized as follows. Section 2 describes the related work
in the field of theoretical analysis of evolutionary algorithms. Section 3 includes a few
definitions pertaining to multiobjective optimization. Section 4 describes our algorithm
REMO. Section 5 presents the analysis of the REMO on the LOTZ and the Quadratic
function. Section 6 formulates the linear functions, the knapsack problem and its (1+ε)-
approximate set. The analysis of the algorithm on the knapsack problem is given in
section 7. Finally, conclusions are drawn in section 8.

2 Related Work

2.1 Problems Analyzed

The work of Beyer et al. [31] revolves around how long a particular algorithm takes to
find the optimal solutions for a given class of functions. The motivation to start such
an analysis was to improve the knowledge of the randomized search heuristics on a
given class of functions. Rudolph [22, 23] and Rudolph and Agapie [24] studied multi-
objective optimizers with respect to their limit behavior. They aimed to find whether a
particular algorithm converges if the number of iterations goes to infinity.

In the single objective case, the working of EAs have been analyzed for many an-
alytical functions - linear functions [15]; unimodal functions [13]; and quadratic func-
tions [18]. Some recent work has been done on sorting and shortest-path problems by
recasting them as combinatorial problems [32]. A study is done to evaluate the black-
box complexity of problems too [33].

All the above work used a base-line simple (1 + 1) EA. The analysis of (1 + 1) EA
was done using the method of partitioning of the decision space in accordance with the
complexity of the problem into fitness layers as one of the methods [15]. For all such
work, the only genetic operator used was mutation. However, Jansen and Wegener [19]
analyzed the effectiveness of crossover operator, and showed that crossover does help
for a class of problems.

For multiobjective optimization, the analysis of the asymptotic expected optimiza-
tion time has been started by Laumanns et al. [10]. They presented the analysis of
population-based EAs (SEMO and FEMO) on a bi-objective problem (LOTZ) with
conflicting objectives. They extended this work by introducing another pseudo-boolean
problem (Count Ones Count Zeros: COCZ), another algorithm Greedy Evolutionary
Multiobjective Optimizer (GEMO), and scaling the LOTZ and COCZ problems to
larger number of decision variables and of objectives [11]. A similar analysis was per-
formed by Giel [25] and Thierens [26] on another bi-objective problem (Multiobjective
Count Ones: MOCO) and the quadratic function that we use for our algorithm. These
authors designed simple toy functions to understand the behavior of simple EAs for
multiobjective problems. In [12] the authors solve a special instance of the multiobjec-
tive knapsack problem.

2.2 Algorithms Analyzed

The single objective optimizer basically yields a single optimal solution so (1 + 1)
EAs have been successfully used and analyzed for different functions. However, in the
multiobjective case, an optimizer should return a set of incomparable or equivalent
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solutions. Hence a population-based EA is preferred. For this purpose, Laumanns et al.
proposed a base-line population based EA called Simple Evolutionary Multiobjective
Optimizer (SEMO). Another strategy used is a multi-start variant of (1 + 1) EA [11].

These algorithms have an unbounded population. Individuals are added or removed
from the population based on some selection criterion. Laumanns et al. introduced two
other variants of SEMO called FEMO (Fair EMO) and GEMO (Greedy EMO) which
differ in their selection schemes. The algorithms do not have any defined stopping cri-
terion and are run till the desired representative approximate set of the Pareto-front is
in the population [11].

There is another group of algorithms which use an explicit or implicit archiving
strategy to store the best individuals obtained so far. This approach has proven to be
very effective in finding the optimal Pareto-front at much reduced computational cost,
e.g., NSGA-II [34], PAES [35], PCGA [36] and SPEA2 [37]. Also, many real-world
problems have effectively been solved using such a strategy. However, there exists no
analysis of such algorithms. In this work, we propose and use an archive-based EA.

Another issue in archive-based EAs is the size of the archive and the mating pool.
If we restrict the number of individuals used for mating in the population to a constant,
the expected waiting time till the desired individual is selected for mutation, is consid-
erably reduced. But, for such an algorithm an efficient selection strategy to choose the
proper individuals from the archive to the population needs to be devised. This is further
discussed while formulating and analyzing the REMO algorithm

3 Basic Definitions

In the multiobjective optimization scenario there are m incommensurable and often
conflicting objectives that need to be optimized simultaneously. We formally define
some terms below which are important from the perspective of MOEAs. We follow
[3, 23–25, 36, 38] for some of the definitions.

Definition 1. Multiobjective Optimization Problem (MOP): A general Multiobjec-
tive Optimization problem includes a set of n decision variables x = (x1, x2, ..., xn),
a set of m objective functions F = {f1, f2, ..., fm} and a set of k constraints C =
{c1, c2, ..., ck}. The objectives and the constraints are functions of the decision vari-
ables. The goal is to:

Maximize/Minimize: F (x) = {f1(x), f2(x), ..., fm(x)}
subject to satisfaction of the constraints:
C(x) = {c1(x), c2(x), ..., ck(x)} ≤ 0 for
X = (x1, x2, ..., xn) ∈ Y
F = (f1, f2, ..., fm) ∈ G

where X is the decision vector, F is the objective vector, Y denotes the decision space
and G is a function space.

The m objectives may be mutually conflicting in nature. In some formalizations the
k constraints defined above are treated as objective functions, thus, making the problem
constraint-free, and vice-versa the objectives may be treated as constraints to reduce the
dimensionality of the objective-space.
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Definition 2. Quasi Order, Partial Order: A binary relation % on a set F is called
a quasi order if it is both reflexive and transitive. The pair (F ,% ) is called a partially
ordered set if it is an antisymmetric quasi order.

The Pareto dominance relationship in multiobjective evolutionary algorithms are
partial orders (posets). The reason for the Pareto dominance relation to be a partial
order is that there might be a number of individuals in the population which are mutually
incomparable or equivalent to each other. An ordering is not defined for them.

Definition 3. �q: Let Y be the decision space and let (G,%) be a poset of objective
values. Let f : Y → G be a mapping. Then f induces a quasi-order %q on Y (a set of
binary vectors) by the following definitions for a minimization problem:

x ≺q y iff f(x) ≺ f(y)
x =q y iff f(x) = f(y)
x %q y iff x ≺q y ∨ x =q y .

The above definition introduces the concept of Pareto-dominance and Pareto opti-
mality. Pareto-dominance can be defined as follows:

In a maximization problem of m objectives o1, o2, ..., om, an individual objective
vector Fi is partially less than another individual objective vector Fj (symbolically
represented by Fi ≺ Fj) iff (∀oi)(f

oi

i ≤ foi

j ) ∧ (∃oj )(f
oj

i < f
oj

j ), where foi

i and f
oj

i

are components of Fi and Fj respectively.

Then Fj is said to dominate Fi. If an individual is not dominated by any other
individual, it is said to be non-dominated. We use the notion of Pareto-optimality if
F = (f1, ..., fm) is a vector-valued objective function. Pareto dominance is formally
defined in the next definition.

Definition 4. Pareto Dominance: A vector fm = {fm
1 , ..., fm

k } is said to dominate a
vector fn = {fn

1 , ..., fn
j } (denoted by fm ≺ fn) iff fn is partially

less than fm, i.e., ∀i ∈ {1, ..., k}, f i
m ≤ f i

n ∧ ∃i ∈ {1, ..., k} : fm
i < fn

i .

Definition 5. Pareto Optimal Set: A set A ⊆ Y (where Y denotes the entire decision
space) is called a Pareto optimal set iff

∀ a ∈A: there does not exist x ∈ Y : a ≺ x .

In most practical cases it is not possible to generate the entire Pareto-optimal set.
This might be the case when the size of the set is exponentially large in the input size.
Thus, we confine our goal to attain an approximate set. This approximate set is usu-
ally polynomial in size. Since in most cases the objective functions are not bijective,
there are a number of individuals in the decision space which are mapped to the same
objective function. Hence, one might define an approximate set by selecting only one
individual corresponding to an objective function. This is usually done in the case of
single objective optimization problem.

Definition 6. Approximate Set: A set Ap ⊆ A (Pareto-optimal Set) is called an ap-
proximate set if there is no individual in Ap which is weakly dominated by any other
member of Ap.
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Another strategy that might be used to attain an approximate set is to try and obtain
an inferior Pareto front. Such a front may be inferior with respect to the distance from
the actual front in the decision space or the objective space. If the front differs from
the actual optimal front by a distance of ε in the objective space, then, the dominance
relation is called a (1 + ε)-dominance.

Definition 7. (1 + ε)-Domination: For decision vectors X1, X2 ∈ X where X1 =
(x11, x12, ..., x1i) and X2 = (x21, x22, ..., x2i), we say that X2 (1 + ε)-dominates X1,
denoted by X1 %1+ε X2, if f(x1i) ≤ (1+ε) ·f(x2i) for all objectives to be maximized,
and f(x2i) ≤ (1 + ε) · f(x1i) for all objectives to be minimized.

The (1 + ε)-dominance is transitive. The optimal set created by applying the above
dominance relation is called a (1 + ε)-approximate set.

Definition 8. (1+ε)-Approximate Set: A set A1+ε is called a (1+ε)-approximate set
of the Pareto set if for all elements ap in the Pareto-set there exists an element a′ ∈ A1+ε

such that ap %1+ε a′.

Definition 9. δ-Sampling of the Pareto-Set: If P denotes the Pareto-optimal set,
then a δ-sampling of P is a set P ′ ⊂ P , such that no two individuals in P ′ is within a
distance of δ units in the objective space (assuming some metric in the objective space).

One might also attain an approximate set by taking a proper subset of the Pareto-
optimal set. A strategy used to get such a subset is called sampling. A δ-sampling is a
special form of sampling in which no two individuals are within a distance of δ in the
objective space. The reason is to reduce the output length of the algorithm and reduce
the problem to P -space.

Definition 10. Running Time of an EA: The running time of an EA searching for an
approximate set is defined as the number of iterations of the EA loop until the population
is an approximate set for the considered problem.

4 Algorithm

The algorithm suggested in this paper uses a restricted mating pool or population P
of only two individuals and a separate archive A for storing all other points that are
likely to be produced during a run of the algorithm. The two individuals to be chosen
are selected based on a special function called Handler. With a probability of 1

2 a
function Fit(x, P ∪ A) = H(x) is evaluated where H(x) is the number of hamming
neighbors of x in P ∪ A. The two individuals with the smallest Fit-values are selected
into the population P and the rest are transferred to the archive A. Such a selection
strategy assures that we select an individual for mating that has a higher probability of
producing a new offspring in the next run of the algorithm. Such a selection strategy has
been found to improve the expected running time for simple functions like LOTZ. The
intuition behind such a selection scheme is that for simple functions whose optimal set
is uniformly distributed over the front and whose individuals are Hamming neighbors of
each other. However, for the other half of the cases the handler function selects the two
individuals at random. This is similar to the selection mechanism in SEMO [10]. This
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is done because in certain functions it is probable that if the two individuals selected
are always those with the largest hamming distance, the algorithm might not be able
to explore all the bit vectors in the optimal set. This happens for harder problems like
the 0 - 1 knapsack. The algorithm takes ε (ε ≥ 0) as an input parameter and produces
as its output a (1 + ε)-approximate set of the Pareto-optimal set. The algorithms in its
main loop creates an individual uniformly at random and adds the individual into the
population if it is not weakly dominated by any other individual in the population and it
is not dominated by any other individual. All those individuals which are dominated by
the new individual and if the new individual does not dominate the individual in the P
and A are removed from P and A. Such a strategy is adopted so that if any individual
from the (1 + ε)-set is created it is never removed from the population. Note that if
ε = 0 and we aim to find the entire Pareto set then we only need to check whether there
is some individual which is dominated by the newly created individual and remove it
from P and A.

Restricted Evolutionary Multiobjective Optimizer (REMO)

1. Input Parameter: ε, ε ≥ 0, if we desire a(1 + ε)-approximate set of the Pareto-
optimal set.

2. Initialize two sets P = φ and A = φ, where P is the mating pool and A is an
archive.

3. Choose an individual x uniformly at random from Y = {0, 1}n.
4. P = {x}.
5. loop
6. Select an individual y from P at random.
7. Apply mutation operator on y by flipping a single randomly chosen bit and create

y′.
8. P = P \ {l ∈ P | l ≺ y′ ∧ l does not (1 + ε)-dominate y′ }.
9. A = A \ {l ∈ A | l ≺ y′ ∧ l does not (1 + ε)-dominate y′ }.

10. if there does not exist z ∈ P ∪ A such that y′ ≺ z or f(z) = f(y′) then P =
P ∪ {y′}.

11. end if.
12. if cardinality of P is greater than 2 then
13. Handler Function
14. end if.
15. end loop.

Handler Function

1. Generate a random number R in the interval (0, 1).
2. if R > 1

2 then Step 3 else Step 5.
3. For all the members of P ∪ A calculate a fitness function Fit(x, P ∪ A) = H(x)

where H(x) denotes the number of hamming neighbors of x in P ∪ A.
4. Select two individuals with the minimum Fit(x, P ∪ A) values into P and put the

rest of the individuals in the archive A. In case of equal Fit(x, P ∪ A) values the
selection is made at random.

5. Select two individuals at random from P ∪ A.
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5 Analysis of REMO on Simple Functions

5.1 Leading Ones Trailing Zeros

The Leading Ones (LO), Trailing Zeros (TZ) and the LOTZ problems can be defined as
follows where the aim is to maximize both the objectives:

LO : {0, 1}n → N LO(x) =
∑n

i=1

∏i
j=1 xj

TZ : {0, 1}n → N TZ(x) =
∑n

i=1

∏n
j=i (1 − xj)

LOTZ : {0, 1}n → N2 LOTZ(x) = (LO(x), TZ(x))

Proposition 1. The Pareto front (optimal set of points in the objective space) for LOTZ
can be represented as a set S = {(i, n − i) | 0 ≤ i ≤ n} and the Pareto set consists of
all bit vectors belonging to the set P = { 1i0n−i | 0 ≤ i ≤ n }[10].

Proof. The proof is the same as given in [10].

Analysis: The analysis of the function above is divided into two distinct phases. Phase
1 ends with the first Pareto-optimal point in the population P , and Phase 2 ends with
the entire Pareto-optimal set in P ∪ A. We assume ε = 0, thus, we aim to find the entire
Pareto-optimal set.

Theorem 2. The expected running time of REMO on LOTZ is O(n2) with a probability
of 1 − e−Ω(n).

Proof. We partition the decision space into fitness layers defined as (i, j), (0 ≤ i, j ≤
n) where i refers to the number of Leading-ones and j is the number of Trailing-zeros
in a chromosome. The individuals in one particular fitness layer are incomparable to
each other. A parent is considered to climb up a fitness layer if it produces a child
which dominates it. In Phase 1 a mutation event is considered a success if we climb
up a fitness layer. If the probability of a success S, denoted by P (S) ≥ pi then the
expected waiting time for a success E(S) ≤ 1

pi
.

For LOTZ, in Phase 1 the population cannot contain more than one individual for
REMO because a single bit flip will create a child that is either dominating or is dom-
inated by its parent and the algorithm does not accept weakly dominated individuals.
The decision space is partitioned into fitness layers as defined above. Phase 1 begins
with a initial random bit vector in P . Let us assume that after T iterations in Phase 1
the individual A(i, j) is in the population P . The individual can climb up a fitness layer
(i, j) by a single bit mutation if it produces the child (i + 1, j) or (i, j + 1). The prob-
ability of flipping any particular bit in the parent is 1

n , thus the probability associated
with such a transition is 2

n . The factor of 2 is multiplied because we could either flip
the leftmost 0 or the rightmost 1 for a success. Therefore, the expected waiting time for
such a successful bit flip is at most n

2 . If we assume that Phase 1 begins with the worst
individual (0, 0) in the population then algorithm would require at most n successful
mutation steps till the first Pareto-optimal point is found. Thus, it takes

∑i=n
i=1

n
2 = n2

2
expected number of steps for the completion of Phase 1.
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To prove that the above bound holds with an overwhelming probability let us con-
sider that the algorithm is run for n2 steps. The expected number of successes for these
n2 steps is at least 2n. If S denotes the number of successes, then by Chernoff’s bounds:

P [S ≤ (1 − 1
2 ) · 2n] = P [S ≤ n] ≤ e−

n
4 = e−Ω(n)

Hence, the above bound for Phase 1 holds with a probability of 1 − e−Ω(n) which is
exponentially close to 1.

Phase 2 begins with an individual of the form I = (i, n−i) in P . A success in Phase
2 is defined as the production of another Pareto-optimal individual. The first successful
mutation in Phase 2 leads to production of the individual I+1 = (i + 1, n − i − 1) or
I−1 = (i−1, n− i+1)) in the population P . The probability of such a step is given by
2
n . Thus, the waiting time till the first success occurs is given by n

2 . If we assume that
after the first success I and I−1 are in P (without loss of generality), then the Pareto-
optimal front can be described as two paths from 1i−10n−i+1 to 0n and 1i0n−i to 1n.
At any instance of time T , let the individuals in P be represented by L = (l, n− l) and
K = (k, n − k) where 0 ≤ k < l ≤ n. As the algorithm would have followed the path
from (i − 1, n − i + 1) to (k, n − k) and (i, n − i) to (l, n − l) to reach to the points
L and K , it is clear that at time T all the individuals of the form S = (j, n − j) with
l < j < k have already been found and form a part of the archive A. Moreover, the
handler function, assures that L and K are farthest apart as far as Hamming distance
is concerned. At time T the probability of choosing any one individual for mutation is
1
2 . Let us assume, without loss of generality, that the individual selected is (k, n − k).
The flipping of the left most 0 produces the individual K+1 = (k + 1, n − k − 1) and
the flipping of the rightmost 1 produces the individual K−1 = (k − 1, n − k + 1).
Since, the algorithm does not accept weakly dominated individuals and K+1 is already
in A, the production of K−1 can only be considered as a success. Thus the probability
of producing another Pareto-optimal individual at time T is 1

2n . Thus, the expected
waiting time of producing another Pareto-optimal individual is at most 2n. Since, no
solutions on the Pareto-optimal front is revisited in Phase 2, it takes a maximum of
n + 1 steps for its completion. The special case hold when the individual 0n or 1n

appears in the population. Such individuals represent the end points of the Pareto-front
and their mutation do not produce any individual that can be accepted. Moreover, such
individuals always form a part of the population P since they have to be a part of the
pair of individuals which have the maximum Hamming distance. However, if such an
individual is a part of P the probability bound still holds as the probability of choosing
the right individual (the individual which is not 0n or 1n) for mutation is still 1

2 and
the probability of successful mutation is 1

2n and expected running time bound holds.
Therefore, REMO takes O(n2) for Phase 2.

Now, we consider Phase 2 with 4n2 steps. By arguments similar to Phase 1, it can
be shown by Chernoff’s bounds that the probability of the number of successes in Phase
2 being less than n, is e−Ω(n).

Altogether considering both the Phases, REMO takes n2 steps to find the entire
Pareto-optimal set for LOTZ.

For the bound on the expected time we have not assumed anything about the initial
population. Thus, we notice that the above bound on the probability holds for the next
n2 steps. Since the lower bound on the probability that the algorithm will find the entire
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Pareto set is more than 1
2 (in fact exponentially close to 1) the expected number of times

the algorithm has to run is bounded by 2.
Combining the results of both the phases 1 and 2 yields the bounds in the theorem.

��

Comments: The above bound only considers the number of iterations that the algo-
rithm needs to find the Pareto set. However, if all the evaluations of the loop is consid-
ered, the handler function can take a time O(n2) to find the pair of individuals with the
least Fit value and hence, the entire algorithm may take time of O(n4).

5.2 Quadratic Function

We use a continuous quadratic function which has been widely used in empirical anal-
ysis of multiobjective evolutionary optimizers and adapt it to the discrete boolean de-
cision space exactly as done in [25]. The function in the continuous decision space
is ((x − a)2, (x − b)2) where the aim is the minimization of both the objectives. The
function in the discrete boolean decision space is described in the following manner
exactly as in [25]:

QF : {0, 1}n → N2.
if ‖x‖ =

∑n
i=1 xi

QF : (‖x‖ − a)2, (‖x‖ − b)2)

The idea is to just test the efficiency of REMO in solving problems like those of QF
and in fact the analysis follows a line similar to that of [25].

Proposition 2. Without loss of generality we assume that a > b. The Pareto-optimal
front of QF can be represented by the set F = {(i2, (i − (b − a))2) | a ≤ i ≤ b}. The
Pareto-optimal points of QF are those bit vectors where a ≤ ‖x‖ ≤ b .

Proof. The proof is the same as given in [25].

Theorem 2. The running time of REMO on QF is O(n log n) for any value of a and b.
(We assume ε = 0 , thus we aim to find the entire Pareto-optimal set.)

Proof. We partition the analysis into two phases. The analysis turns out to be very
similar to that done in [25] but it is much simpler due to the local mutation operator
used in REMO. Phase 1 ends with the first Pareto-optimal point in P and the second
phase continues till all the Pareto-optimal bit vectors are in P ∪ A.

It can be proven that in Phase 1 there can be a maximum of 1 (similar to [25]
individuals in P ∪A. Thus, the archive A is empty. This is because a single bit mutation
of a parent with ‖x‖ < a or ‖x‖ > b will produce an individual which is dominated
by or dominates its parent. We partition the decision space into sets with individuals
having the same number of ones. Let us consider a bit vector represented as Id where d
represents the number of ones in the individual. A single bit mutation of Id is considered
to be a success if the number of ones increases (decreases) when d < a(d > b).
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Therefore, a success S requires the flipping of any one of the d 1-bits (n− d 0-bits)
when d < a (d > b). The probability of a successful mutation P (S) = d

n (orn−d
n ). The

expected waiting time of S, given by E(S) ≤ n
d (or n

n−d). Hence, the total expected
time till the first Pareto optimal point arrives in the population is at most

∑n
d=1

n
d =

nHn = n logn+Θ(2n) = O(n logn) (where Hn is the nth Harmonic number) by the
linearity of expectations.

Phase 2 starts with the assumption that b − a > 1 or else there would be no sec-
ond phase. The number of individuals in the population is bounded by 2. The selection
mechanism ensures that they are the bit vectors that are most capable of producing new
individuals. The Pareto-front can be visualized as a path of individuals with number of
ones varying from a to b or b to a. Let us represent any individual with a < ‖x‖ < b
as Ik where k represents the number of ones in the bit vector. Such a bit vector can be
produced either by an individual with k + 1 ones or k − 1 ones. The associated prob-
ability for such a successful mutation is at least k+1

2n and n−k+1
2n respectively. Hence,

the expected waiting time till the Ith
k Pareto optimal point is in the population (assum-

ing that its parent is in the population) is E(Ik) ≤ 2n
k+1 and 2n

n−k+1 for the two cases
above. Thus, the total expected time till all the Pareto points are in P ∪ A is at most∑b

k=a E(Ik) ≤∑b
k=a

2n
k+1 ≤∑b−a

k=0
2n

k+1 = 2nHb−a where Hn stands for the nth har-
monic number.

Therefore, the expected time for Phase 2 is at most 2ne log(b − a) + θ(2ne) =
O(n log(b − a)).

Altogether both Phases take a total of O(n logn+n log(b−a)) time. Since a and b
can have a maximum value of n the running time for REMO on QF is O(n log n) which
is the same as proven in [25]. ��

6 Linear Functions and Knapsack Problem

6.1 Linear Functions

A bi-objective linear function is:

F (x) = (f1(x) =
∑n

i=1 wixi, f2(x) =
∑n

i=1 w′
ixi)

where wi > 0, w′
i > 0

The aim of a bi-objective problem may be to maximize or minimize both the ob-
jectives; in such a case the problem reduces to a single objective one. In our study,
therefore, we take the case of simultaneously maximizing f1 and minimizing f2. Thus,
the problem is formulated with two mutually conflicting objectives.

In this section, we show that for the function F (x) the number of Pareto-optimal
points can range from n+1 to 2n. Thus, for any arbitrary values of the weights w and w

′

the Pareto-optimal set can be exponential in n. Throughout this section we investigate
the case where the bits of the individuals are arranged in their decreasing value of w

w′ .
Thus, w1

w′
1

≥ w2
w′

2
≥ ... ≥ wn

w′
n

.

Lemma 1. For any bi-objective linear function F (x) = (f1, f2) the set A1 = {1i0n−i}
where 0 ≤ i ≤ n represents a set of Pareto-optimal points.
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Proof. Let us consider an individual K∗ in the decision space (which does not belong
to A1) and an individual K ∈ A1 which is of the form (1k0n−k) for 0 ≤ k ≤ n. If the
set of 1-bits of K∗ is a subset of the set of 1-bits in K it is clear that K and K∗ are
incomparable.

However, if the set of 1-bits of K∗ is not a subset of K , let S denote the set of
common bit positions that are set to one in both K∗ and K with x1 =

∑
i∈S wi. Let S1

denote the set of bit positions that are set to one in K but not in K∗ and y1 =
∑

i∈S1
w′

i.
If the individual K∗ has to dominate K , in the best case f2(K∗) is at most f2(K). Since
all the bits are arranged in the decreasing order of wi

w′
i
, f1(K∗) is at most x1 + wk+1

w′
k+1

y1≤
x1 + wk

w′
k
y1. Now, f1(K) is at least x1 + wk

w′
k
y1. Hence, f1(K) > f1(K∗). Therefore,

K∗ cannot dominate K .
Now we need to prove that two individuals in A1 are mutually incomparable to

each other. Let us consider another individual I = 1i0n−i in A1 where 0 ≤ i ≤ n. If
i < k, f1(I) < f1(K) and f2(I) < f2(K), implying that I and K are incomparable
(by definition 2). A similar argument holds for i > k, hence proving the lemma. ��

Example 1. Let us consider a linear function with three weights. The w of the com-
ponents are W = {20, 15, 19} and the weights W ′ are W ′ = {8, 7, 12}. Clearly
W1
W ′

1
> W2

W ′
2

> W3
W ′

3
. Let us consider the bit vector 110. This individual has the first

and second weights set to 1. Individuals whose bits set to 1 are a subset of the above
individuals, for example 100, will have both w and w′ less than 110, and hence is in-
comparable to it. Individuals which are not a subset of 110, like for example 101 will
be dominated by 110 or is incomparable to it. As an example, w(110) = 35, w′(110)
=15 and w(101) = 39, w′(101) = 20, these two individuals are incomparable. This hold
for any individual which is not a subset of 110.

Proposition 3. The size of the Pareto-optimal set for the most general case of a linear
function F (x) lies between n + 1 and 2n.

Proof. It is clear from lemma 1 that the lower bound on the number of Pareto-optimal
individuals for F (x) is n + 1. Moreover, the upper bound holds for cases where all the
bit vectors are Pareto-optimal. We next show that there are examples which fit into the
above bounds.

Case 1: Let us consider a linear function such that w1 > w2 > w3 > ... > wn and
w′

1 < w′
2 < w′

3 < ... < w′
n. Each Pareto-optimal point is of the form X = 1i0n−i

where 0 ≤ i ≤ n. It is clear that individuals of the form X represent a Pareto-optimal
solution because it contains the i largest weights of f1 and the i smallest weights of f2.
Flipping the left-most 0-bit of X to 1 or the right-most 1-bit to 0 creates an individual
which is incomparable to X . Moreover, any individual with a 0 followed by a 1 cannot
be Pareto-optimal as it can be improved in both objectives by simply swapping the bits.
The Pareto-optimal set of such a function thus contains n + 1 individuals.

Case 2: For the other extreme case, let us consider a linear function for which w1
w′

1
=

w2
w′

2
= w3

w′
3

= ... = wn

w′
n

and w1 > w2 > w3 > ... > wn. It is clear that for such a
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function all the points in the decision space {0, 1}n are Pareto-optimal. Thus, the total
number of Pareto points for this case is 2n. ��

Consequently, for any randomized algorithm the expected runtime to find the entire
Pareto-optimal set for the above case of bi-objective linear functions is Ω(2n).

6.2 Knapsack Problem

Next, we show that the above problem of the conflicting objectives for a linear function
can be interpreted as the 0 - 1 Knapsack problem.

Definition 11. 0–1 Knapsack Problem: The knapsack problem with n items is de-
scribed by the knapsack of size b and three sets of variables related to the items: decision
variables x1, x2, ..., xn; positive weights W1,W2, ...,Wn; and profits P1, P2, ..., Pn;
where, for each 1 ≤ i ≤ n, xi is either 0 or 1. The Wi and Pi represent the weight and
profit, as integers, of the ith item respectively.

The single-objective knapsack problem can be formally stated as:

Maximize P =
∑n

i=1 Pixi

subject to
∑n

i=1 Wixi ≤ b,
where xi = 0 or 1

In order to recast the above single-objective problem along with one constraint on
weights of the items into a bi-objective problem, we use the formulation similar to the
linear function described above. Thus, a bi-objective knapsack problem of n items with
two conflicting objectives (maximizing profits and minimizing weights) is formulated
as:

Maximize P =
∑n

j=1 Pjxj and Minimize W =
∑n

j=1 Wjxj

Therefore, if the set of items is denoted by I , the aim is to find all sets Ii ⊆ I ,
such that for each Ij there is no other set which has a larger profit than profit (Ij) for
the given weight bound W (Ij). Thus, it is equivalent to finding the collections of items
with the maximum profit in a knapsack with capacity W (Ij).

The 0 − 1 knapsack problem, in the optimization form above is NP-complete.

In the following section we formalize a (1 + ε)- approximate set for the above
knapsack problem. We work under the assumption that the items are arranged in a
strictly decreasing value of P

W .

Lemma 2. Let us define a set X i
j as the set of i most efficient items (efficiency defined

by P
W ) among the j smallest weight items if the sum of the weights of the j items is less

than the (j + 1)st item. Let A1 be the set of all such X i
j and the following constraint

be imposed on weights of the items: ∀X i
j , if {Ij

1 , ..., I
j
i } represents the set of items in

X i
j , then WIi+1 < ε · ∑k=i

k=1 WIk
for i < j. Now, if A2 represents a singleton set,

{0i10n−(i+1)} where the 1 is set at the position of the lightest item. Then, A1 ∪ A2

represents a(1 + ε)-approximation of the Pareto-optimal set for the knapsack problem.
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Example 2. Let us consider a knapsack with three items. The profits of the items is
given by P = {40, 20, 10} and the weights by W = {20, 11, 6}. The knapsack satisfies
the constraint on the weights (given in Lemma 2) for ε = 0.6. X1 is a trivial case as
it contains the lightest item. For X i

2 ,1 ≤ i ≤ 2, we consider the second and the third
items. Clearly W3 < ε · W2 and hence it satisfies the constraint. For X i

3, 1 ≤ i ≤ 3 we
have all the items. Since, W2 < ε ·W1 and W3 < ε · (W1 +W2), the knapsack weights
satisfy the given constraint.

Proof. Let (P o,W o) represent any arbitrary Pareto-optimal solution for the knapsack
problem. We need to prove, that corresponding to such a solution we can always find
a solution (P ′,W ′) in A1 ∪ A2 such that (P o,W o) ≺1+ε (P ′,W ′). If W o is the item
with the smallest weight then the element in set A2 weakly dominates (P o,W o) and
hence (1 + ε)-dominates (P o,W o). Now, let us consider a more general case. Let π
define the permutation of the items which reorders them according to their weights.
Corresponding to any W o, we aim to find an item Iπ(j) such that Wπ(j) ≤ (1+ε)·W o <
Wπ(j+1). If such an item cannot be found then j = n + 1. It is clear that for this

j + 1, an X i
j+1 ∈ A1, a set of items Ij+1

1 , Ij+1
2 , ..., Ij+1

i (i can be equal to j), can

always be found such that
∑k=i

k=1 WIk
≤ (1 + ε) · W o <

∑k=i+1
k=1 WIk

. We claim that
W o ≤ ∑k=i

k=1 WIk
≤ (1 + ε) ·W o. This holds because of the constraint on the weights

imposed in the lemma. It is clear from the constraint that if WIi+1 ≤ ε · ∑i
k=1 WIk

and adding of the (i+ 1)st item into the knapsack increases the weight of the knapsack
above (1+ε)·W o, the sum of the weights of the items in X i

j+1 is at least W o. Since, the
sum of the weights in the set X i

j+1 obeys the weight bound (1+ ε) ·W o, with respect to
the weights, (P o,W o) %1+ε (P ′,W ′). Now, we know that W ′ ≥ W o. Let Sc denote
the items common in both the solution (P ′,W ′) and (P o,W o) and Sun denote the set
of items in the solution (P ′,W ′) and not in (P o,W o). Let A =

∑
Im∈Sc

PIm and
B =

∑
Im∈Suc

WIm . Now, W o < Wπ(j+1), therefore (P o,W o)
contains items in the set Xj+1 (which is the set of the first j + 1 lightest items).

Since X i
j+1 is the set of the i most efficient items in Xj+1 (efficiency defined as P

W ),

P o ≤ A + B · Pi+1
Wi+1

≤ A + B · Pi

Wi
≤ P ′, thus proving that (P o,W o) %1+ε (P ′,W ′),

hence the lemma. ��
In the next lemma, we extend the results obtained in lemma 2 to formalize a (1+ε)-

approximate set for any knapsack.

Lemma 3. Let I = {I1, I2, ..., In} represent the set of items of the knapsack. We
partition the set I into m blocks (1 ≤ m ≤ n), B1, B2, ..., Bm which satisfy the
following conditions:

1. Each block consists of a set of items and all pairs of blocks are mutually disjoint.
However, B1 ∪ B2... ∪ Bm = I .

2. The items in each block satisfy the weight constraint described in lemma 3 and are
arranged in their strictly decreasing Pi

Wi
ratio in the block.

Sets A1 and A2, similar to those defined in lemma 2 are defined for every block Bm.
Let Am = Am

1 ∪ Am
2 for the mth block. If S denotes the set of items formed by taking
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one set from every Am, then, the collection of all such S sets, represented by Scomp,
denotes a (1+ ε)-approximation of the Pareto-optimal set for any knapsack problem. If
m = n the set reduces to a power set of the item-set.

Example 3. Let us consider a knapsack of four items, {I1, I2, I3, I4}. The profits
of the items are given by P = {40, 20, 10, 15} and the weights are given by W =
{20, 11, 6, 40}. The items of the above knapsack can be divided into blocks B1 =
{I1, I2, I3} and B2 = {I4}. The block B1 satisfies the constraint as it is the same set
of items described in example 2 and block B2 satisfies the constraint trivially as it has
only one item. Hence, the blocks describe a valid partitioning.

Proof. Let us consider any Pareto-optimal collection of items U with objective values
(P o,W o). We aim to prove that corresponding to every U we can find a solution V of
the form S (defined above) which (1 + ε)-dominates U .

We partition both solutions U and V into blocks of items as defined above. Let
us consider a particular block of items Bi, and denote the set of items in U and V in
the block as BU

i and BV
i respectively. Since, the block consists of items which sat-

isfy all the conditions of lemma 3, the solution represented by BU
i (1 + ε)-dominates

BV
i (irrespective of whether BU

i represents a Pareto-optimal solution for the items in
Bi). It is clear that the above argument holds for every block. Now, weight(U ) =∑m

i=1 W (Bi) and profit(U ) =
∑m

i=1 P (Bi). Since, for every block Bi, weight(Bi(V ))
< (1 + ε) · weight(Bi(U)) and (1 + ε) · profit(Bi(V )) > profit(Bi(U)), weight(V ) <
(1 + ε) · weight(U ) and (1 + ε) · profit(V ) > profit(U ) by a simple summation of the
profits and weights of items in every block. Therefore, U %1+ε V , proving the lemma.

��

Lemma 4. The total number of individuals in the (1 + ε)-approximate set (defined in
Lemma 3) is upper bounded by ( n

m )2m, where m is the number of blocks (m defined
in lemma 3) and n is the number of items in the knapsack, if n �= m.

Proof. Let the number of individuals in the kth block be nk. The number of sets of
the form X i

j in the kth block is of the order O(n2
k). Thus, the total number of sets

possible for all the blocks is upper bounded by (n1 · n2 · ... · nm)2 if m is not a constant.

Now, (n1 · n2 · ... · nm)
1
m ≤

∑
m

i=1
ni

m (Arithmetic mean ≥ Geometric Mean). Thus,

(n1 · n2 · ... · nm)2 ≤ (
∑

m

i=1
ni

m )
2m

= O(( n
m )2m), if m �= n. However, if n = m,

by the partitioning described in Lemma 3, all the bit vectors represent the (1 + ε)-
approximate set for the knapsack. Hence, in such a case the total number of individuals
in the set is 2n. ��

7 Analysis of REMO on Knapsack Problem

Lemma 5. If Pknap is the sum of all the profits of the items in the knapsack, then the
total number of individuals in the population and archive is at most Pknap + 1.
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Proof. It is clear that at any time the population and archive consists of individuals
which are incomparable to each other as in the case of SEMO. We aim to prove that
any two individuals of the population and archive will have distinct profit values. We
try to prove the claim by contradiction. Let us assume that there are two individuals a
and b in P ∪A which have the same profit values. As the algorithm does not accept any
weakly dominated individuals either weight(a) > weight (b) or weight(a) < weight(b) .
However, this contradicts our initial assumption that the population consists of individ-
uals which are incomparable to each other. Hence, a and b have distinct profit values.
As all the items have integer profits and the total profit can be zero, the total number of
individuals are bounded by the sum of the profits Pknap + 1. ��

Theorem 1. The expected running time for REMO to find a (1 + ε)-approximate set
of the Pareto-front (formalization given in lemma 3) for any instance of the knapsack

problem with n items is O(n2m+1Pknap

m2m+1 ) where m is the number of blocks into which
the items can be divided (blocks are defined in lemma 3) and Pknap refers to the sum
of the profits of the items in the knapsack and n �= m. Moreover, the above bound
holds with an overwhelming probability. It is worth noting that the expected waiting
time is a polynomial in n if the sum of the profits and the number of partitions m
is a polynomial in n, which in turn depends on the ε value. It is difficult to derive
any general relationship between ε and m, since it depends on the distribution of the
weights. However, if the ε is large then the number of items in a particular block is
likely to be large and hence the number of blocks will be small and the running time
can be polynomial in n.

Proof. We divide the analysis into two phases. The first phase continues till 0n is in the
population or the archive. Phase 2 continues till all the vectors in set S is in P ∪A. (We
take ε as an input.) In the first phase, the aim is to have a all 0s string in the population.
We partition the decision space into fitness layers. A fitness layer i is defined as a
solution which has the i smallest weight items in the knapsack. At any point of time
in phase 1, there is a maximum of one solution Z which has the i smallest weights
in the knapsack. Removal of any one of these items from Z reduces the weight of the
knapsack and hence produces a solution which is accepted. With a probability of 1

2 (as
in the handler function), an individual is selected from the archive at random. Therefore,
the probability of selection of Z for mutation is 1

4(Pknap+1) (Pknap + 1) is the bound
on the population size, by lemma 5). If we flip the 1-bit corresponding to the heaviest
item in Z (which occurs with a probability of 1

n ), the mutated individual is accepted.
Thus, the probability of producing an accepted individual is 1

4n(Pknap+1) . Therefore,

the expected waiting time till a successful mutation occurs is at most 4n(Pknap + 1).
Since, a maximum of n successes in Phase 1 assures that 0n is in the population, the
expected time for completion of Phase 1 is 4n2(Pknap + 1). Therefore, Phase 1 ends
in O(n2Pknap) time. If we consider 8n2(Pknap + 1) steps the expected number of
successes is at least 2n. By Chernoff’s bound the probability of number of successes
being less than n is at most e−Ω(n).

The second phase starts with the individual 0n in the population. An individual that
is required to be produced can be described as a collection of items Icoll = C1 ∪ C2 ∪
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...∪Cm, where, Ck is either X i
j or one item (of the smallest weight) in the kth block. If

X i
j
k

refers to the set X i
j in the kth block, it is clear to see that H(0n, X1

j
k) = 1, where

H refers to the Hamming distance. Thus, by a single bit flip of 0n we can produce a new
desired point. Since, the algorithm accepts bit vectors which are (1+ε)-approximations
of the Pareto-optimal points, the point generated will be taken into the population and

will never be removed. It is also clear that H(X i−1
j

k
, X i

j
k) = 1. Hence, corresponding

to every bit vector R which belongs to the (1 + ε)-approximate set of the Pareto front
there is a bit vector in the population or the archive which by a single bit flip can pro-
duce R. Thus, from individuals like Icoll, we can produce another desired individual
(which belongs to the (1+ε)-approximate set) by a single bit flip. With a probability of
1
2 (Handler function), two individuals in the population are chosen at random. There-
fore, the probability of the individual like Icoll being chosen into the population is

1
2(Pknap+1) (Pknap + 1 is the bound on the population size, proven in lemma 5). The

probability of Icoll being chosen for mutation is thus 1
4(Pknap+1) . Flipping a desired 1-

bit or 0-bit in any of the m blocks of Icoll will produce another desired individual. Thus,
the probability that Icoll will produce another desired individual is m

4n(Pknap+1) . The ex-

pected number of waiting steps for a successful mutation is thus, at most 4n(Pknap+1)
m .

If R′ is the new individual produced, since, no items have equal Pi

Wi
, there cannot be

any individual in the population or the archive which weakly dominates R′. Hence, R′

will always be accepted. As every individual in the (1 + ε)-approximate set can be pro-
duced from some individual in the population or the archive by a single bit mutation,
the total time taken to produce the entire (1 + ε)-approximate set is upper bounded by
4n2m+1(Pknap+1)

m2m+1 (total size of the (1+ ε)-approximate set is bounded by O(( n
m )2m) by

lemma 5).

If we consider a phase of 8(Pknap+1)n2m+1

m2m+1 steps, then by Chernoff’s bounds, the

probability of there being less than n2m

m2m successes is bounded by e−Ω(n). Altogether

both the phases take a total of O(Pknapn2m+1

m2m+1 ) for finding the entire (1+ε)- approximate
set.

For the bound on the expected time we have not assumed anything about the initial
population. Thus, we notice that the above bound on the probability holds for the next
Pknapn2m+1

m2m+1 steps. Since the lower bound on the probability that the algorithm will find
the entire (1 + ε)-approximate set is more than 1

2 (in fact exponentially close to 1) the
expected number of runs is bounded by 2.

Combining the results of both the phases yields the bound in the theorem. It is worth
noting that for cases when the value of the number of partitions into which the set of
items have to be partitioned is a constant the expected running time is a polynomial in
n. ��

Comments: An important point to note in the analysis of the algorithm is that for the
knapsack problem the selection of the individual in the Handler function is done at ran-
dom. However, this occurs with a probability of 0.5. It is likely that the specialized Fit
function is able to find individual which is a subset of the approximate set in time which
is faster than the random selection. Note that 1i0n−i is a subset of the approximate so-
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lution which can be efficiently found by the algorithm as in the case of LOTZ. Thus,
though we find a worst case upper bound by considering a total random selection, the
actual running time bound may be much better with the Fit selection scheme. More-
over, it is also worth noting that the algorithm is adapted to get a (1 + ε) as well as an
optimal set for with ε = 0.

8 Conclusions

In this paper, an archive based multiobjective evolutionary optimizer (REMO) is pre-
sented and a rigorous runtime complexity analysis is carried out of the algorithm on
simple discrete boolean functions (the LOTZ function [11] and quadratic function [25])
and a NP-Complete problem (0 - 1 knapsack problem). The key feature of REMO is its
special restricted population for mating and a separate archive. Such algorithms have
been widely used in solving real world applications. The idea is to restrict the mating
pool to a constant c. The value of 2 for c is sufficient for most simple functions. In
case of certain functions a single individual population with a similar selection scheme
as REMO may suffice. However, two bit vectors may be required for functions where
the Pareto front can be reached via two paths as is the case of the quadratic function.
However, for more complicated functions like the knapsack it is better to use a more
random selection mechanism since the specialized selection may lead to the algorithm
getting trapped in a local optima.
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Abstract. Tournament selection performs tournaments by first sam-
pling individuals uniformly at random from the population and then se-
lecting the best of the sample for some genetic operation. This sampling
process needs to be repeated many times when creating a new genera-
tion. However, even upon iteration, it may happen not to sample some of
the individuals in the population. These individuals can therefore play no
role in future generations. Under conditions of low selection pressure, the
fraction of individuals not involved in any way in the selection process
may be substantial. In this paper we investigate how we can model this
process and we explore the possibility, methods and consequences of not
generating and evaluating those individuals with the aim of increasing
the efficiency of evolutionary algorithms based on tournament selection.
In some conditions, considerable savings in terms of fitness evaluations
are easily achievable, without altering in any way the expected behaviour
of such algorithms.

1 Introduction

Tournament selection is one of the most popular forms of selection in evolution-
ary algorithms (EAs). In its simplest form, a group of n individuals is chosen
randomly uniformly from the current population, and the one with the best
fitness is selected (e.g., see (Bäck et al., 2000)). The parameter n is called the
tournament size and can be used to vary the selection pressure exerted by this
method (the higher n the higher the pressure to select above average quality
individuals).

Different selection methods, including tournament selection, have been anal-
ysed mathematically in depth in (Blickle and Thiele, 1995, 1997; Motoki, 2002).
The main emphasis of previous research has been the evaluation of the changes
produced by selection on the fitness distribution of the population. The propor-
tion of individuals of a population that is not selected during the selection phase
is one of the quantities that have been used to characterise the behaviour of selec-
tion algorithms. This quantity is called the loss of (fitness) diversity. Under the
implicit assumption that the population is wholly diverse (each individual has

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 132–155, 2005.
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a unique rank), the loss of diversity pd for tournament selection was estimated
in (Blickle and Thiele, 1995, 1997) as

pd = n− 1
n−1 − n− n

n−1 ,

and later calculated exactly in (Motoki, 2002) as

pd =
1
M

M∑
k=1

(
1 − kn − (k − 1)n

Mn

)M

,

where M is the population size.
If one assumed that selection only is used or that we use selection to form a

mating pool1, the creation of a new generation would require exactly M selection
steps. These are exactly the conditions assumed in the work mentioned above.
However, in this paper we do not make this assumption. Instead, we consider
the case where each genetic operator directly invokes the selection procedure
to provide a sufficient number of parents for its application (e.g., twice in case
of crossover). So, there are situations where more than M selection steps are
required to form a new generation. More precisely, in a generational selecto-
recombinative algorithm, where crossover is performed with probability pc and
reproduction is performed with probability 1− pc, the number of selection steps
required to form a new generation is a stochastic variable with mean

M(1 − pc) + ρMpc = M [1 + (ρ − 1)pc],

where ρ = 1 for a crossover operator which returns two offspring after each
application, and ρ = 2 if only one offspring is returned2. The two-offspring
version of crossover is more efficient in terms of tournaments required, and also,
since ρ = 1, the number of selection steps required to form a new generation
is not stochastic and is simply M . For brevity in the following we will use the
definition α = [1 + (ρ − 1)pc].

So, because in each tournament we need n individuals, tournament selection
requires drawing nαM individuals uniformly at random (with resampling) from
the current population. An interesting side effect of this process is that not all
individuals in a particular generation are necessarily sampled within the nαM
draws, and this is particularly true for small values of the tournament size n.

1 The mating pool is an intermediate population which gets created by using selection
only and from which other operations, such as reproduction and crossing over, draw
individuals uniformly at random

2 In the following we will ignore the (potential) stochasticity of the number of selection
steps required to create a new generation. This is justifiable for various reasons: a)
it simplifies the analysis (but without significant loss in terms of accuracy of the
results obtained, as empirically verified), b) when ρ = 1 (two-offspring crossover or
mutation only algorithm) there is no stochasticity (and so the analysis is exact),
c) even with ρ = 2 (one-offspring crossover) it is possible to slightly modify the
evolutionary algorithm in such a way that there is no stochasticity
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For example, let us imagine to run an evolutionary algorithm starting from a
random population containing 4 individuals, which we will denote as 1, 2, 3 and
4. Let us assume that we are creating the next generation using tournament
selection with tournament size 2 and mutation only. Then, the creation of the
first individual will require randomly picking two individuals from the current
population (say individuals 1 and 4) and selecting the best for mutation. We
repeat the processes to create the second, third and fourth new individuals. It
is not unconceivable that in so doing maybe individual 3 was never involved in
any tournament.

It is absolutely crucial, at this stage, to stress the difference between not
sampling and not selecting an individual in a particular generation. The latter
refers to an individual which was involved in one or more tournaments, but did
not win any, and this is exactly what previous work on tournament selection
has concentrated on. The former, instead, refers to an individual which did
not participate in any tournament at all, simply because it was not sampled
during the creation of the required αM tournament sets. It is individuals such
as this that are the focus of this paper. Therefore, the results in this paper are
orthogonal to those appeared in the previous work mentioned above and are not
limited by uniqueness assumptions.

Continuing with our argument, in general, how many individuals should we
expect not to take part in any of αM tournaments? As will be shown in the next
section, an answer comes straight from the literature on the coupon collector
problem. However, before we explain the connection in more detail, we may
want to reflect briefly on why this effect is important.

In general those individuals that do not get sampled by the selection process
have no influence whatsoever on future generations. However, these individuals
use up resources, e.g., memory, but also, and more importantly, CPU time for
their creation and evaluation. For instance, individual 3 in the previous example
was randomly generated and had its fitness evaluated in preparation for selection,
but neither its fitness nor its genetic make up could have any influence on future
generations. So, one might ask, why did we generate such an individual in the first
place? And what about generations following the first two? It is entirely possible
that an individual in generation two got created and evaluated, but was then
neglected by tournament selection, so it had no effect whatsoever on generations
3, 4, etc. Did we really need to generate and evaluate such an individual? If not,
what about the parents of such an individual: did we need them? What sort of
saving could we obtain by not creating unnecessary individuals in a run?

In this paper we intend to analyse the relationship between tournament se-
lection and the coupon collector’s problem, and attempt to answer all of the
questions above and more. In particular, we want to rethink the way evolu-
tionary algorithms are run for the purpose of making best use of the available
resources without altering in any way the expected behaviour of such algorithms.
As will become clear in the next sections, in some conditions, saving of 20%
fitness evaluations or, in fact, even more are easily achievable.
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2 Coupon Collection and Tournament Selection

In the coupon collector problem, every time a collector buys a certain product, a
coupon is given to him. The coupon is equally likely to be any one of N types.
In order to win a prize, the collector must have at least one coupon of each type.
The question is: how many products will the collector have to buy on average
before he can expect to have a full set of coupons? The answer (Feller, 1971)
is obtained by considering that the probability of obtaining a first coupon in
one trial is 1 (so the expected waiting time is just 1 trial), the probability of
obtaining a second coupon (distinct from the first one) is N−1

N (so the expected
waiting time is N

N−1), the probability of obtaining a third coupon (distinct from
the first two) is N−2

N (so the expected waiting time is N
N−2 ), and so on. So, the

expected number of trials to obtain a full set of coupons is

EN = 1+
N

N − 1
+

N

N − 2
+· · ·N = N×

(
1
N

+
1

N − 1
+ · · · 1

)
= N logN+O(N).

It is well known that the N logN limit is sharp. For example, if X is a random
variable representing the number of coupons collected, for any constant c

lim
N→∞

Pr{X > N logN + cN} = 1 − e−e−c

.

So, for c ≈ 3 this probability is less than 5%.
How is the process of tournament selection related to the coupon collection

problem? We can imagine that the M individuals in the current population are
N = M distinct coupons and that tournament selection will draw (with re-
placement) nαM times from this pool of coupons. Because of the sharpness of
the coupon-collector limit mentioned above, if M logM + cM < nαM , i.e., if
nα > logM+c for some suitable positive constant c, then we should expect tour-
nament selection to sample all individuals in the population most of the time.
However, for sufficiently small tournament sizes or for sufficiently large popu-
lations the probability that there will be individuals not sampled by selection
becomes significant.

So, how many different coupons (individuals) should we expect to have sam-
pled at the end of the nαM trials? In the coupon collection problem, the expected
number of trials necessary to obtain a set of x distinct coupons is

Ex = 1 +
N

N − 1
+

N

N − 2
+ · · · N

N − x + 1
= N log

N

N − x
+ O(N).

By setting Ex = nαM , N = M and ignoring terms of order O(N), from this we
obtain an estimate for the number of distinct individuals sampled by selection

x ≈ M
(
1 − e−nα

)
. (1)

This indicates that the expected proportion of individuals not sampled in the
current population varies approximately like a negative exponential of the tour-
nament size.
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This approximation is quite accurate. However, we can calculate the expected
number of individuals neglected after performing nαM trials directly. We first
calculate the probability that one individual is not involved in one trial as 1 −
1/M . Then the expected number of individuals not involved in any tournaments
is simply

M(1 − 1/M)nαM = M

(
M

M − 1

)−nαM

,

which also varies like a negative exponential of the tournament size.
As shown in Figure 1 for α = 1 (two-offspring crossover or no crossover),

typically for n = 2 over 13% of the population is neglected, for n = 3 this drops
to 5%, for n = 4 this is 2%, and becomes negligible for bigger values of n.
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Fig. 1. Proportion of individuals not sampled in one generation by tournament selec-
tion for different tournament and population sizes assuming two-offspring crossover or
mutation only are used

This simple analysis suggests that saving computational resources by avoid-
ing the creation and evaluation of individuals which will not be sampled by the
tournament selection process appears to be possible only for relatively low selec-
tion pressures. However, tournament sizes in the range 2–5 are quite common in
practice, particularly when attacking hard, multi-modal problems which require
extensive exploration of the search space before zooming the search onto any
particular region. By rethinking how we perform selection, in this paper we will
show how we can achieve substantial computational savings in any evolutionary
algorithm based on tournament selection on any problem where low selection
pressure is appropriate without changing in any way the course of a run! We will
start exploring how we can achieve all this in the next section.
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3 Iterated Coupon Collector Problem

Now, let us consider a new game, that we will call the iterated coupon collection
problem, where the coupon set changes at regular intervals, but the number of
coupons available, N , remains constant. Initially the collector is given a (possibly
incomplete) set of m(0) old coupons. Each old coupon allows the collector to draw
n new coupons. So, he can perform a total of nm(0) trials, which will produce
a set of m(1) distinct coupons from the new set. The coupon set now changes,
and the player performs nm(1) trials to gather as many as possible new distinct
coupons. And so on. Interesting questions here are: what happens to m(t) as t
grows? Will it reach a limit? Will it oscillate? In which way will the values of n,
m(0) and N influence its behaviour?

Before we answer these questions let us motivate our analysis a bit. How is
this new problem related to evolutionary algorithms and tournament selection?
The connection is simple (we will assume α = 1 for the sake of clarity). Suppose
an oracle told us which individuals in a particular generation, G, are not in-
volved in any way in future generations, because selection will not sample them.
Then we could concentrate on the other individuals in the population, creating
and evaluating only them. Let m(0) be the number of such individuals (these
are like the initial set of old coupons given to the player). Clearly, in order to
create such individuals, we will need to know who their parent(s) were. This will
require running m(0) tournaments to select such parents. In each tournament
we randomly pick n individuals from generation G − 1 (each distinct individ-
ual in that generation is equivalent to a coupon in the new coupon set). After,
nm(0) such trials we will be in a position to determine (without the need for
an oracle) which individuals in generation G− 1 will contribute to future gener-
ations, we can count them and denote this number with m(1) 3. So, again, we
can concentrate on these individuals only. They are the equivalent of the new
set of coupons the collector has gathered. We can now perform nm(1) trials to
determine (again without the need for an oracle) which individuals in generation
G − 2 (the new coupon set) will contribute to future generations, we can count
them and denote this number with m(2) and so on until we reach the initial
random generation. There the game stops. So, effectively, the iterated coupon
collector problem is a model for the sampling behaviour of tournament selection
over multiple generations in a generational evolutionary algorithm.

Knowing the sequence m(t) for a particular evolutionary algorithm would
tell us how much we could save by not creating and evaluating individuals which
will not be sampled by selection. Naturally, we will not have an oracle to help us
choose G and to give us m(0). For now, while we concentrate on understanding
more about the iterated coupon collector problem, we could think of G as the

3 Because at this stage we are only interested in knowing the number of individuals
playing an active role in generation G−1, there is no need to determine the winners
of the tournaments: we just need to know who was involved in which tournament.
So, we do not even need to evaluate fitness, and, therefore, we do not need to know
the genetic makeup of any individual



138 Riccardo Poli

number of generations we are prepared to run our evolutionary algorithm for,
and we might imagine that m(0) = M (the whole population).

In the classical coupon collection problem, the shopper will typically perform
as many trials as necessary to gather a full collection of coupons. As we have
seen before, however, it is quite easy to estimate how many distinct coupons one
should expect at the end of any given fixed number of trials. Because the iterated
coupon collection game starts with a known number of trials, we can calculate
the expected value of m(1). However, we cannot directly apply the theory in the
previous section to gather information about m(2). This is because m(1) is a
stochastic variable, so in order to estimate m(2) we would need to know the
probability distribution of m(1) not just its expected value.

Exact probabilistic modelling can be obtained by considering the coupon
collection game as a Markov chain (Feller, 1971), where the state of the chain
is the number of distinct coupons collected. The transition matrix for the chain
can easily be constructed by noticing that the chain can be in state k (i.e., the
collector has k distinct coupons) at the next time step only if either it was already
in state k and a new coupon has been acquired that is a duplicate (which happens
with probability k−1

N ) or it was in state k − 1 and the coupon just acquired is a
new one (which, of course, happens with probability N−k+1

N ). So, the number of
distinct individuals in the previous generation sampled when randomly picking
individuals for tournament selection can be described by the following Markov
transition matrix:

A =
1
M

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0
M 1 0 0 · · · 0
0 M − 1 2 0 · · · 0
0 0 M − 2 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · M

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The process always starts from state 0, which can be represented using the state
probability vector e0 = (1 0 0 0 · · · 0 )T . So, the probability distribution over
the states after x time steps (i.e., coupon draws or random samples from the
population) is given by Axe0, which is simply the first column of the matrix Ax.

So, if we are interested only in m(0) individuals in generation G, the proba-
bility distribution of m(1) (the number of distinct individuals we need to know
from generation G − 1) is given by Anαm(0)e0

4. For example, if the population
size is M = 3, the tournament size is n = 2, we use a two-offspring version of
crossover (α = 1) and we are interested in m(0) = 1 individuals, then the prob-
ability distribution of m(1) is represented by the following probability vector

4 This, of course, gives us also the probability distribution over the number of draws,
nαm(1), we will need to make from generation G− 2 in order to fully determine the
m(1) individuals we want to know at generation G − 1
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(
1
3

)2

⎛⎜⎜⎝
0 0 0 0
3 1 0 0
0 2 2 0
0 0 1 3

⎞⎟⎟⎠
2⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠ =
1
3

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ .

If we were interested in m(0) = 2 individuals at generation G, the probabil-
ity distribution over the number m(1) of unique individuals sampled would be
A4e0 = (0.0 0.0370 0.5185 0.4444)T . Finally, if we were interested in the whole
population (m(1) = M = 3), the distribution would be A6e0 = (0 0.0041 0.2551
0.7407)T , which reveals that, in these conditions, even when building a whole
generation there are still more than 1 in 4 chances of not sampling the whole
population at the previous generation. Of course, if m(0) = 0, the probability
vector for m(1) is e0, i.e., m(1) = 0.

Although this example is trivial, it reveals that for any given m(0) we can
compute a distribution over m(1). That is, we can define a new Markov chain
to model the iterated coupon collector problem. In this chain a state is exactly
the same as in the coupon-collector chain (i.e., the number of distinct coupons
sampled), except that now a time step corresponds to a complete set of draws
from the new coupon set rather than just the draw of one coupon. The transition
matrix B for this new chain can be obtained very simply: column i of B is Aαie0.
That is

B =
(
e0 Aαe0 A2αe0 · · · AMαe0

)
.

For instance, for the case M = 3, n = 2 and α = 1 considered above

B =

⎛⎜⎜⎝
1 0 0 0
0 0.3333 0.0370 0.0041
0 0.6667 0.5185 0.2551
0 0 0.4444 0.7407

⎞⎟⎟⎠ .

Of course, once the transition matrix is defined, the chain can be iterated to com-
pute the probability distributions of m(2), m(3) and so on, as back as necessary
to reach generation 0.

In general B is block diagonal of the form

B =
(

1 0T

0 C

)
,

where 0 is a column vector containing M zeros and C is a M × M stochastic
matrix. Clearly B is not ergodic (from state 0 we cannot reach any state other
than 0 itself), so we cannot expect a unique limit distribution for m(t). However,
because B is block diagonal, we have

Bx =
(

1 0T

0 Cx

)
.

So, if we ensured that the probability of the chain initially being in state 0
is 0 (that is Pr{m(0) = 0} = 0), the chain could never visit such a state at
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any future time. Because of this property, and because, objectively, state 0 is
totally uninteresting (of course we already know that if we are interested in no
individual at generation G, we do not need to know any individual at previous
generations!) we can declare such a state of the iterated coupon-collection chain
as invalid, and reduce the state set to {1, 2, . . . ,M}. In this situation C is the
state transition matrix for the chain, and to model the sampling behaviour of
tournament selection over multiple generations we just need to concentrate on
the properties of C.

The transition matrix C is ergodic if nα > 1 as can be easily seen by the
following argument. If nα > 1 then each old coupon gives us the right to draw
more than one new coupon in the iterated coupon-collection problem. So, if the
state of the chain is k (k < M), it is always possible to reach state k + 1 in one
stage of the game with non-zero probability. From there it is then, of course,
possible to reach state k + 2 and so on up to M . So, from any lower state it
is always possible to reach any higher state in repeated iterations of the game.
But, of course, the converse is always true: irrespective of the value of nα there
is always a chance of getting fewer coupons than we had before in an iteration
of the game, due to resampling. So, from any higher state we can also reach any
lower state (in fact, unlike the reverse, we can achieve this in just one iteration
of the game).

Since, α ≥ 1 and n ≥ 2 for any practical applications, the condition nα > 1
is virtually always satisfied and C is ergodic. So, the Perron-Frobenius theorem
guarantees that the probability over the states of the chain converges towards
a limit distribution which is independent from the initial conditions (see (Nix
and Vose, 1992; Davis and Principe, 1993; De Jong et al., 1995; Rudolph, 1994;
Poli et al., 2001) for other applications of this result to genetic algorithms and
genetic programming). This distribution is given by the (normalised) eigenvector
corresponding to the largest eigenvalue of C (λ1 = 1), while the speed at which
the chain converges towards such a distribution is determined by the magnitude
of the second largest eigenvalue λ2 (the relaxation time of an ergodic Markov
chain is 1/(1 − |λ2|)). Naturally, this infinite-time limit behaviour of the chain
is particularly important if G is sufficiently big that m(t) settles into the limit
distribution well before we iterate back to generation 0. Otherwise the transient
behaviour is what one needs to focus on. Both are provided by the theory.

Because the transition matrices we are talking about are relatively small
(M × M), they are amenable to numerical manipulation. We can, for example,
find the eigenvalues and eigenvectors of C for quite respectable population sizes,
certainly well in the range of those used in most applications of evolutionary
algorithms, thereby determining the limit distribution and the speed at which
this is approached.

If x(t) is a probability vector representing the probability distribution over
m(t), then the expected value of m(t) is

E[m(t)] =
(
1 2 · · · M ) · x(t) =

(
1 2 · · · M ) · Ctx(0). (2)

Typically m(0) will be deterministic and so x(0) = em(0) (where el is a base
vector containing all zeros except for element l which is 1).
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If x∗ denotes the limit distribution for x(t), then for large enough G, the
average number γ of individuals (in generations 0 through to G−1) that have no
effect whatsoever on a designated set of m(0) individuals of interest at generation
G is approximately γ = M−(1 2 · · · M )·x∗. So, a question that naturally springs
to mind is whether we could run an evolutionary algorithm without creating and
evaluating these unnecessary individuals.

If we could do this, because of the ergodicity of the selection process, for
large enough G, it is almost irrelevant whether m(0) is as small as 1 or as large
as M , and so we might want to know the entire makeup of generation G and
still have a saving of approximately G× γ individual creations and evaluations.

In the next two sections we will consider two different ways in which we could
modify our evolutionary algorithm to achieve this kind of saving.

4 Running Evolutionary Algorithms Efficiently

Normally, in each generation of an evolutionary algorithm we iterate the follow-
ing phases:

a) the choice of genetic operator to use to create a new individual,
b) the creation of a random pool of individuals for the application of tournament

selection,
c) the identification of the winner of the tournament (parent) based on fitness,
d) the execution of the chosen genetic operator,
e) the evaluation of the fitness of the resulting offspring.

Naturally, phases (b) and (c) are iterated as many times as the arity of the
genetic operator chosen in phase (a), and the whole process needs to be repeated
as many times as there are individuals in the new population.

Interestingly, the genetic makeup of the individuals involved in these opera-
tions is of interest only in phase (d) (we need to know the parents in order to
produce offspring) and phases (c) and (e) (we must know the genetic makeup
of individuals in order to evaluate their fitness). However, phases (a) and (b) do
not require any knowledge about the actual individuals involved in the creation
of a new individual. In most implementations these phases are just performed by
properly manipulating numbers drawn from a pseudo-random number generator.

So, there is really no reason why we could not first iterate phases (a) and
(b) as many times as needed to create a full new generation (of course, mem-
orising all the decisions taken), and then iterate phases (c)–(e). This idea was
first used in (Teller and Andre, 1997) for the purposed on speeding up genetic
programming fitness evaluation5.
5 The main idea in (Teller and Andre, 1997) was to estimate the fitness of the individ-

uals involved in the tournaments by evaluating them on a subset of the fitness cases
available. On the basis of this estimate, for most tournaments it was often possible
to determine with a small error probability which individual would win. These tour-
naments could therefore be decided quickly, while only in a subset of tournaments
individuals ended up being evaluated using all fitness cases. This is what produced
the speed up
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In fact, we could go even further. In many practical applications of evolution-
ary algorithms, people fix a maximum number of generations they are prepared
to run their algorithm for6. Let this number be G. So, at the cost of some mem-
ory space, we could iterate phases (a) and (b) not just for one generation but for
a whole run from the first generation to generation G and then iterate phases
(c)–(e) as required (that is, either until generation G or until any other stopping
criterion is satisfied).

Because the decisions as to which operator to adopt to create a new individ-
ual and which elements of the population to use for a tournament are random,
statistically speaking this version of the algorithm is exactly the same as the
original. In fact, if the same seed is used for the random number generator in
both algorithms, they are indistinguishable! However, the version of the algo-
rithm we propose (let us call it an EA with macro-selection) makes it possible to
avoid wasting the computation involved in generating and evaluating the indi-
viduals “neglected” by tournament selection: after macro-selection (the iteration
of phases (a) and (b) up until generation G) is completed we analyse the infor-
mation stored during that phase and identify which population members were
not involved in any tournament in each generation, we mark them, and we avoid
calculating and evaluating them when iterating phases (c)–(e). We will call this
algorithm the EA with efficient macro-selection (EA-EMS).

Irrespective of the problem being solved and the parameter settings used, the
behaviours of the standard algorithm and the efficient version proposed above
will have to be on average identical. So, what are the differences between the
two evolutionary algorithms?

Obviously, the standard algorithm requires more fitness evaluations and cre-
ations of individuals while the one proposed above requires more bookkeeping
and use of memory. Also, clearly, in any particular run, the plots of average
fitness and max fitness in each generation may differ (since in EA-EMS not all
individuals are considered in calculating these statistics). However, when aver-
aged over multiple runs the average fitness plots would have to coincide.

A more important difference derives from the fact that most practitioners
keep track of the best individual seen so far in a run of an EA and designate
that as the result of the run. In EA-EMS we can either return the best individual
in generation G or the best individual seen in a run out of those that have been
sampled by tournament selection. Because the fast algorithm does not create and
evaluate individuals that did not get sampled, the end-of-run results may differ
in the two algorithms. Of course, quite often the best individual seen in a run is
actually a member of the population at the last generation. So, if one creates and
evaluates all individuals in generation G (which leads to only a minor inefficiency
in the EA with efficient macro-selection), most of the time the two algorithms
will behave identically from this point of view too.

One remaining inefficiency in EA-EMS derives from the fact that there may
be individuals which were sampled by selection when creating a particular indi-

6 This is a limit that is virtually always present, even if another stopping criterion,
e.g., based on fitness, is present
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vidual in a new generation which in turn, however, was not sampled by selection.
If the first individual was involved only in the creation of the second, further
computational savings could be achieved by not creating and evaluating the first
individual at all. This is just an example of a more general issue: it is possible
that some of the “ancestors” of the individuals neglected by selection were un-
necessarily created and evaluated. How could we improve our algorithm to get
rid of these individuals too?

Clearly the iteration of phases (a) and (b) over multiple generations induces
a graph structure containing (G + 1)M nodes representing all the individuals
evolved during a run and where edges connect each individual to the individuals
which were involved in the tournaments necessary to select the parents of such
an individual. If we are interested in calculating and evaluating all the individ-
uals in the population at generation G, maximum efficiency would be achieved
by considering (marking for evaluation) only the individuals which are directly
or indirectly connected with the M individuals in generation G. So, the problem
can be solved with a trivial connected-component algorithm. Let us call the re-
sulting algorithm an EA with efficient macro-selection and connected-component
detection (EA-EMS-CCD).

This would appear to be the best we can get from our EA: it saves on fitness
evaluations and it is really as close as we can get to the original in terms of
behaviour. However, the recursive nature of connected-component detection and
the similarity between the mechanics of EAs and that of rule-based systems give
us suggestions on how to make further substantial improvements, as will be
discussed in the next section.

5 Backward-Chaining Evolutionary Algorithms

Running evolutionary algorithms from generation 0, to generation 1, to genera-
tion 2, and so on is the norm: this is what happens in nature, and this is certainly
what has been done for decades in the field of evolutionary computation. This
is similar to running a rule-based system in forward-chaining mode (Russell and
Norvig, 2003). In these systems, we start with a working memory containing
some premises, we apply a set of IF-THEN inference rules which modify the
working memory by adding or removing facts, and we iterate this process until
a certain condition is satisfied (e.g., a fact which we consider to be a conclusion
is asserted). The rules in the knowledge base are a bit like the genetic operators
in an evolutionary algorithm, the working memory is a bit like a population and
the facts in it are a bit like individuals in an evolutionary algorithm.

This loose analogy between rule-based systems and evolutionary algorithms
is not, in itself, terribly useful, except for one thing: it suggests the possibility of
running an evolutionary algorithm in backward chaining mode, like one can do
with a rule-based system. Broadly speaking, when a rule-based system is run in
backward chaining, the system focuses on one particular conclusion that it wants
to prove and operates as follows: a) it looks for all the rules which have such a
conclusion as a consequent (i.e. a term following the “THEN” part of a rule), b)
it analyses the antecedent (the “IF” part) of each such rule, c) if the antecedent
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is a fact (in other words, it is already in the working memory) then the original
conclusion is proven and can be placed in the working memory, otherwise the
system saves the state of the inference and recursively restarts the process with
the antecedent as a new conclusion to prove (if there is no rule which has this
term as a consequent, the recursion is stopped and another way of proving the
original conclusion is attempted). If a rule has more than one condition (which
is quite common), the system attempts to prove the truth of all the conditions,
one at a time, and will assert the conclusion of the rule only if all conditions are
satisfied. In this modality only the rules that can contribute to determining the
truth or falsity of the target conclusion are ever considered, which of course can
lead to major efficiency gains.

So, how would we run an evolutionary algorithm in backward-chaining mode?
Let us suppose we are interested in knowing the makeup of the population at
generation G and let us start by focusing on the first individual in the population.
Let r be such an individual. Effectively r plays the role of a conclusion we want
to prove. In order to generate r we only need to know what operator to apply to
produce it and what parents to use. In turn, in order to know which parents to
use, we need to perform tournaments to select them7. In each such tournaments
we will need to know the makeup of n (the tournament size) individuals from the
previous generation (which of course, at this stage we may still not know). Let us
call S = {s1, s2, . . .} the set of the individuals that we need to know in generation
G − 1 in order to determine r. Clearly, s1, s2, . . . are like the premises in a rule
which, if applied, would allowed us to work out r (this would require evaluating
the fitness of each element of S, deciding the winners of the tournament(s) and
applying the chosen genetic operator to generate r). Normally we will not know
the makeup of these individuals. However, we can recursively consider each of
them as a subgoal. So, we determine which operator should be used to compute
s1, we determine which set of individuals at generation G − 2 is needed to do
so, and we continue with the recursion. When we emerge from it, we repeat the
process for s2, etc. The recursion can terminate in one of two ways: a) we reach
generation 0, in which case we can directly instantiate the individual in question
by invoking the initialisation procedure for the particular EA we are considering,
or b) the individual for which we need to know the genetic makeup has already
been constructed and evaluated. Clearly the individuals in generation 0 have a
role similar to that of the initial contents of the working memory in a rule-based
system. Once we have finished with r we repeat the process with all the other
individuals in the population at generation G, one by one.

Clearly, at its top-level, the algorithm just described is a recursive depth-first
traversal of the graph mentioned at the end of the previous section. While we
traverse the graph (more precisely, when we re-emerge from the recursion), we
are in a position to know the genetic makeup of all the nodes encountered and
so we can invoke the fitness evaluation procedure for each of them. Thus, we

7 Decisions regarding operator choice and tournaments are trivial and can be made
on the spot by drawing random numbers or can be all made in advance as in the
EA with macro-selection
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can label each node with the genetic makeup and fitness of the individual repre-
sented by such a node. Recursion stops when we reach a node without incoming
links (a generation-0 individual, which gets immediately labelled randomly and
evaluated) or when we reach a node that has been previously labelled. We will
call an EA running in this mode a Backward-Chaining EA (BC-EA).

Statistically a BC-EA is fully equivalent to the EA-EMS-CCD, and so it
presents the same level of equivalence to an ordinary EA. In particular, if the
same seed is used for the random number generators and all decisions regarding
operators and tournaments are performed in a batch before the graph traversal,
generations G of a BC-EA and an EA are indistinguishable.

So, if there are no differences why bother with a BC-EA instead of using a
simpler “forward-chaining” version of the algorithm? One important difference
between the two modes of operation is the order in which individuals in the pop-
ulation are evaluated. Let us consider an example where we have a population
of M = 5 individuals which we run for G = 3 generations using tournament
selection with n = 2 and we use crossover with 50% probability. Let us further
suppose that, in the first instance, we are interested in knowing the first individ-
ual in the last generation. The ancestors of this individual might form a graph
like the one in Figure 2.

Generation

In
di

vi
du

al

Fig. 2. Ancestors of the first individual in generation 3

Let us denote the nodes in row i (for individual) and column g (for genera-
tion) in the graph with the notation rig . In a forward chaining EA, even if we
knew which individuals are unnecessary to define our target individual r13 (e.g.,
individuals r50, r31, r61, and so on), we would evaluate individuals column by
column from the left to the right in the following sequence: r10, r20, r30, r40,
r60, r11, r21, r41, r51, r12, r32, and finally r13. That is, generation 0 individuals
are computed before generation 1 individuals, which in turn are computed be-
fore generation 2 individuals, and so on. A backward chaining EA would instead
evaluate nodes in a different order. For example, it might do it according to the
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sequence: r10, r30, r40, r11, r20, r21, r12, r60, r41,r51, r32, and finally r13. So, the
algorithm would move back and forth evaluating nodes at different generations.

Why is this important? Typically, in an EA the average fitness of the popula-
tion and the maximum fitness in each generation grow as the generation number
grows. In our forward chaining EA the first 3 individuals evaluated have an ex-
pected average fitness equal to the average fitness of the individuals at generation
0, and the same is true for the BC-EA. However, unlike for the forward-chaining
EA, the fourth individual created and evaluated by BC-EA belongs to generation
1, so its fitness is expected to be higher than that of the previous individuals.
Individuals 5 and 6 have same expected fitness in the two algorithms. However,
the seventh individual drawn by BC-EA is a generation 2 individual, while the
forward EA draws a generation 1 individual. So, again the BC-EA is expected
to produce a higher fitness sample than the other EA. Of course, this process is
not going to continue indefinitely, and at some point the individuals evaluated
by BC-EA start being on average inferior. This is unavoidable since the sets of
individuals sampled by the two algorithms are identical.

This behaviour is typical: for problems where fitness tends to increase gen-
eration after generation a BC-EA will converge faster than an ordinary EA in
the first part of a run and slower in the second part. So, if one restricts oneself
to that first phase, the BC-EA is not just faster than an ordinary EA because
it avoids evaluating individuals neglected by tournament selection, BC-EA is
also a faster converging algorithm. How can we make sure we work in the region
where the BC-EA is superior to the corresponding forward EA? Simple: like in
any ordinary EA, in a BC-EA one does not need to continue evolution until all
the individuals in generation G are known and evaluated, e.g., we can stop the
algorithm whenever the best fitness seen so far reaches a suitably high value.
In this way we can avoid at least a part of the phase where BC-EA is slower
converging than the forward EA.

It is worth noting that this faster convergence behaviour is present in a BC-
EA irrespective of the value of the tournament size, although, of course, the
differences in behaviour between the two algorithms depend on it.

6 Experimental Results

We have implemented a backward chaining version of genetic algorithm (BC-
GA) and run a variety of experiments on the counting ones problem. The choice
of algorithm and problem was simply dictated by simplicity, since the notion of
BC-EA is completely general.

Let us start by corroborating experimentally the expected faster convergence
behaviour of BC-EA. To assess this we performed 100 independent runs of both
a backward and a forward chaining version of the algorithm applied to a 100-bit
problem. In these runs the maximum number of generations G was set to 99 (i.e,
we did 100 generations). The population size M was 100. Only tournament selec-
tion and mutation (mutation rate pm = 0.01) were used. To make a comparison
between the algorithms possible, in our BC-GA we computed maximum fitness
and average fitness every 100 fitness evaluations, and we treated this interval as
a generation. In the BC-GA we computed all the individuals at generation G.
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Figure 3 shows the fitness vs. generation plots for the two algorithms when
the tournament size n is 2. It is clear from the figure that BC-GA performs about
20% fewer fitness evaluations than the standard EA, reaching, however, the same
average and maximum fitness values. So, as predicted in the previous sections
this significant computational saving comes without altering in any substantial
way the behaviour of the EA.

Figure 4 shows the fitness vs. generation plots for the two algorithms when
the tournament size n is 3. With this tournament size, there is still a saving
of about 6% which is definitely worth having, but clearly for higher selection
pressures the disadvantages of using a BC-GA in terms of memory use and
bookkeeping become quickly preponderant.

Similar results should be expected when using a two-offspring version of
crossover, although, of course, higher fitness values would be observed.

These experiments illustrate how a BC-EA typically converges faster than
the traditional version of the algorithm. However, the most important question
about BC-EA is how the expected number of fitness evaluations changes as a
function of M , n, and G. We investigate this in the remainder of this section.

In order to assess the impact of both the transient and the limit-distribution
behaviour of BC-EA, we performed a series of experiments where the task was
to evaluate just one individual at generation G (that is m(0) = 1). In these
experiments, we set G to be big enough so that all transients had finished well
before generation 0, thereby revealing also the limit-distribution sampling be-
haviour. In the experiments we used populations of size M = 10, M = 1000
and M = 100 000. We set G = 49 (i.e., we performed exactly 50 generations, 0
through to 49), so forward runs required exactly 500, 50 000 and 5 000 000 fitness
evaluations to complete, respectively. For each setting we did 100 independent
runs.

Figure 5 shows the average proportion of individuals evaluated by BC-EA
when mutation only is used (α = 1) for tournaments sizes n = 2 and n = 3 as a
function of the population size M , while Figure 6 shows the average proportion
of individuals evaluated by BC-EA when one-offspring crossover with pc = 0.5
is used (α = 1.5) for the same tournaments sizes8.

From these figures we can see that, as expected, the limit-distribution saving
is largely independent from the size of the population. E.g., for n = 2, after
the transient about 80% of the population is an “ancestor” of the individual
of interest in generation G if mutation only is used, while this goes up to 94%
when α = 1.5. For EAs where long runs are used, these percentages provide an
approximate estimation of the total proportion of fitness evaluations required by
a backward chaining version of the algorithm w.r.t. the standard algorithm.

The figures also show that during most of the transient the number of in-
dividuals sampled by tournament selection grows very quickly (backward from
generation 49). As clearly shown in Figure 7, the growth is exponential. The
reasons for this are quite simple: when only a few samples are drawn from a

8 Plots for crossovers producing two offspring in each application would show the same
behaviour as the mutation only case
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Fig. 3. Comparison between BC-GA and standard GA when a tournament size of 2 is
used. Means over 100 independent runs
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when mutation only is used (α = 1) for tournaments sizes n = 2–5 and a population
size M = 100 000

population, resampling is very unlikely, and, so, the ancestors of the individual
of interest will tend to form a tree rather than a graph for at least some gen-
erations before the last. The branching factor of the tree is nα. So, for small
enough g, generation G − g will include (nα)g ancestors of the individual of in-
terest in generation G. Naturally, this exponential growth continues only until
(nα)g becomes comparable with the expected number of individuals processed
in the limit distribution case.

For small populations or high selective pressures the transient is short. How-
ever, there are cases where the transient lasts for many generations. For exam-
ple, in a population of M = 100 000 individuals and α = 1 (i.e., in the case
of mutation only or two-offspring crossover), the transient lasts for almost 20
generations (although it is exponential only for around 16 or 17). This popula-
tion size may appear very big and these generation numbers may appear quite
small. However, big populations and short runs are actually typical of at least
one important class of EAs: genetic programming. So, it is worth evaluating the
impact of the transient on the total number of fitness evaluations.

Let us assume G−ge is the last generation in which the transient is effectively
exponential. (E.g., for n = 2, α = 1, a population of size M and, of course,
m(0) = 1, we have an exponential transient of ge ≈ log2 M generations.) Then
the number of individuals evaluated during the last ge generations of a run is

F =
(αn)ge+1 − 1

αn − 1
.
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Because by definition (αn)ge ≤ M , we have the following simple upper bound
for the number of individuals required in the exponential transient:

F <

(
αn

αn − 1

)
M

Then, based on the previous equation, if we ran our BC-EA for G = ge gen-
erations, whatever α and n the total number of fitness evaluations F is upper
bounded by 2M – i.e., F is less than the effort required to initialise a population
and create one generation in the standard version of the EA!

Even when runs last for more than ge generations, the effects of the expo-
nential transient are marked. To illustrate this, Table 1 reports the mean total
number of fitness evaluations recorded in the experiments shown in Figures 5
and 6. Taking, for example, the case of n = 2 and no mutation, where the limit
distribution effort would be around 80%, we can see that efforts of as low as
53.4% of those required by a forward EA are achieved.

Table 1. Mean number of fitness evaluations recorded during 50 generations in the
experiments shown in Figures 5 and 6. Forward EA fitness evaluations are also reported
for reference

M BC-EA with mutation BC-EA with two-offspring crossover Forward EA
n = 2 n = 3 n = 2 n = 3

10 384 454 452 476 500
1 000 31 980 40 967 40 895 44 615 50 000

100 000 2 671 667 3 702 667 3 692 295 4 160 496 5 000 000

7 Discussion

In the previous sections we have developed a deeper understanding of the sam-
pling behaviour of tournament selection, in particular focusing on a source of
inefficiency: the creation and evaluation of individuals that cannot influence fu-
ture generations. We have then proposed general methods to remove this source
of inefficiency and speed up evolutionary algorithms based on tournament se-
lection. One of these methods, the backward chaining evolutionary algorithm,
provides the additional benefit of converging faster that a standard (forward)
algorithm due to its constructing and evaluating individuals belonging to later
generations sooner.

The implementation of a backward chaining evolutionary algorithm is not
very complex and the added book keeping required is quite limited. However,
there is no doubt that BC-EAs require more memory than their forward coun-
terparts. So, if one did not want to leave the well known and safe terrain of
forward chaining evolutionary algorithms, what could one do to mitigate the
effects of the potential sampling inefficiency of tournament selection? One possi-
bility is to modify the manner in which the “random samples” are taken for the
tournaments: instead of using uniform random samples, which can sometimes



152 Riccardo Poli

fail to select a subset of the total sample domain, we could use “super-uniform”
random samples, which mimic the expected behaviour of the uniform random
sample.

In the context of tournament selection, and for the case of α = 1 (e.g., in
a mutation-only algorithm) the following method would capture the spirit of
tournament selection while more uniformly distributing a subset of the samples
used in its calculation. For the i-th tournament of size n, choose the first sample
as the i-th member of the previous population, and choose the remaining n − 1
samples uniformly at random. Effectively, this amounts to choosing the first
samples with a super-uniform distribution, since exactly M tournaments are
required when α = 1 9. Clearly it would be easy to adapt this scheme for the
case α > 1. For example, one could use the scheme just described for M of
the required tournaments and then use standard tournament selection for the
remaining M(α−1). With this revised version of tournament selection all samples
would be used in the calculation of the next generation. So, this method is elitist,
in that it is guaranteed to keep the best individual. As a result, the method may
also present stronger selection pressure than the original. Future research will
be needed to fully understand the properties of the proposed method.

If one, however, is prepared to adopt the ideas behind BC-EA, the computa-
tional savings can be very big. These are achievable not only when we exploit the
transient behaviour of the algorithm (as we illustrated in the previous section),
but also in the limit-distribution behaviour, as will be illustrated below.

Maximum savings are achieved when αn is minimum. The smallest value
α can take is 1 and with standard tournament selection the minimum for n is
2. So, we already know that the best we can do is saving around 20% fitness
evaluations. However, a form of tournament selection exists (e.g., see (Mitchell,
1996)) that we can modify to obtain even more spectacular savings.

In this form of tournament selection, one picks up two individuals at random
and then chooses the one with the higher fitness with probability p, the other
with probability 1− p. For p = 1 this form of selection is equivalent to standard
tournament selection with n = 2, while it is a form of random selection for
p = 0.5. By acting on p it is possible to vary the selection pressure of the
method continuously between these two extremes. An alternative description of
the method is that we choose the higher fitness individual with probability q and
randomly between the two with probability 1− q (naturally p = q + (1 − q)/2 =
(1 + q)/2). In this case q can be varied in the interval [0, 1].

This second version of the algorithm can be modified for our purposes. In-
stead of first choosing a pair of individuals and then deciding whether we select
the best or we pick one at random, we first decide which selection strategy we
are going to use, and then, based on this, we randomly draw individuals from
the population. If we decide to go for the best in the tournament, then we must
draw two individuals from the population. However, if we decide to choose ran-
domly between the two members of the tournament, then we can just draw one

9 Effectively, this method stands to standard tournament selection as stochastic uni-
versal selection stands to roulette wheel selection
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random individual from the population (instead of drawing two individuals and
then randomly discarding one).

With this method, the expected number of individuals drawn in each tour-
nament is n = 2 × q + 1 × (1 − q) = q + 1 ≤ 2. So, clearly the smaller q the
bigger the saving we should expect in a BC-EA. Just to get a feel for the order
of magnitude of these savings, let us assume α = 1 and let us use Equation 1
to estimate the expected proportion of individuals not sampled. This is approx-
imately e−(1+q). So, for very low selection pressures saving of over 35% fitness
evaluations are possible.

Naturally, much more substantial savings can be obtained when exploiting
the transient behaviour of BC-EAs. In the previous section we showed that when
running a BC-EA with m(0) = 1, the effort is of the order of the population
size. However, the reader will probably wonder about the usefulness of evaluating
just one individual in the last generation. Normally we would want to have the
whole generation. However, we need to remember that the individual provided by
a BC-EA (with m(0) = 1) at generation G is effectively a random sample drawn
from the population at that generation. Although we expect one individual to be
insufficient, one important question is whether we really need to have the whole
of generation G in order to solve a problem. Elsewhere (Poli and Langdon,
2005) we have experimented with a backward-chaining genetic programming
implementation showing that even when run with m(0) = 1 BC-GP can solve
problems well. So, the answer to the above mentioned question appears to be
that, at least is some cases, we do not need the whole population. To get a more
complete and satisfactory answer, future work on BC-EAs will need to include
a thorough investigation of the best way to choose m(0) and G.

As we already noted, BC-EAs are based on changing the order of various
operations on an EA, which requires memorising choices and individuals over
multiple generations. Let us evaluate the space complexity of BC-EA and com-
pare it to the space complexity of a standard EA. For simplicity, we consider EAs
where the representation of each individual requires a fixed amount of memory:
b bytes. The space complexity of a forward generational EA is

CF = 2 × (b + 4) × M

where we assumed that we store both the current and the new generation and
that fitness values are stored in a vector of floats (4 byte each). So, for b + 1,
CF ≈ 2bM . In BC-EA, instead, the space complexity is

CB = G × M × (b + 4 +
1
8
)

since we need to store one array of individuals, one of floats, and one bit array,
all of size G × M 10. So, for b + 1, CB ≈ GbM . So, the difference in space
10 This calculation is based on an implementation where the graph structure induced

by tournament selection on the population is not explicitly stored. Instead, it is
created dynamically and recursively. The bit array is used to flag the individuals
that have been constructed and evaluated in a previous recursions. The calculation
ignores the small amount of memory required in the stack during recursion
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complexity between the two algorithms is

ΔC = CB − CF = (G − 2) × M × (b + 4) +
GM

8
,

which indicates that in most conditions the use of BC-EA carries a significant
memory overhead. However, this does not prevent the use of BC-EAs. For ex-
ample, if the representation of an individual requires b = 100 bytes, and we run
a population of M = 1000 individuals for G = 100 generations, BC-EA requires
only around 9.6MB of memory to run.

8 Conclusions

In this paper we have analysed the sampling behaviour of tournament selection
over multiple generations and exploited this analysis to come up with more effi-
cient implementations of evolutionary algorithms based on this selection method.
In particular we have proposed a new way of running evolutionary algorithms,
the BC-EA, which offers a combination of fast convergence, increased efficiency
in terms of fitness evaluations, complete statistical equivalence to a standard
EA and broad applicability. Because of these interesting properties we think the
class of BC-EAs is an area worthy of further investigation.
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Abstract. Geiringer’s theorem is a statement which tells us something about the
limiting frequency of occurrence of a certain individual when a classical genetic
algorithm is executed in the absence of selection and mutation. Recently Poli,
Stephens, Wright and Rowe extended the original theorem of Geiringer to include
the case of variable length genetic algorithms and linear genetic programming. In
the current paper a rather powerful version of Geiringer’s theorem which has been
established recently by Mitavskiy is used to derive a schema-based version of the
theorem for nonlinear genetic programming with homologous crossover.

1 Introduction

Geiringer’s classical theorem (see [3]) is an important part of GA theory. It has been
cited in a number of papers: see, for instance, [9], [10], [16] and [17]. It deals with
the limit of the sequence of population vectors obtained by repeatedly applying the
crossover operator C(p)k =

∑
i,j pipjr(i, j→k) where r(i, j→k) denotes the probability

of obtaining the individual k from the parents i and j after crossover. In other words,
it speaks to the limit of repeated crossover in the case of an infinite population. In [6],
a new version of this result was proved for finite populations, addressing the limiting
distribution of the associated Markov chain, as follows. Let Ω =

∏n
i=1 Ai denote the

search space of a given genetic algorithm (intuitively Ai is the set of alleles correspond-
ing to the ith gene and n is the chromosome length). Fix a population P consisting of
m individuals with m being an even number. P can be thought of as an m by n matrix
whose rows are the individuals of the population P . Write

P =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎞⎟⎟⎟⎠ .

Notice that the elements of the ith column of P are members of Ai. Continuing with
the notation used in [9], denote by Φ(h, P, i) where h ∈ Ai the proportion of rows, say
j, of P for which aji = h. In other words, let Rh = {j | 1 ≤ j ≤ m and aji = h}.

Now simply let Φ(h, P, i) = |Rh|
m . The classical Geiringer theorem (see [3] or, [9] for

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 156–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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modern notation) says that if one starts with a population P of individuals and runs
a genetic algorithm (GA) in the absence of selection and mutation (crossover being
the only operator involved) then, in the “long run”, the frequency of occurrence of
the individual (h1, h2, . . . , hn) before time t, call it Φ(h1, h2, . . . , hn, t), approaches
independence:

lim
t→∞Φ(h1, h2, . . . , hn, t) =

n∏
i=1

Φ(h, P, i).

Thereby, Geiringer’s theorem tells us something about the limiting frequency with
which certain elements of the search space are sampled in the long run, provided one
uses crossover alone. In [9] this theorem has been generalized to cover the cases of
variable-length GA’s and homologous linear genetic programming (GP) crossover. The
limiting distributions of the frequency of occurrence of individuals belonging to a cer-
tain schema under these algorithms have been computed. The special conditions under
which such a limiting distribution exists for linear GP under homologous crossover
have been established (see theorem 9 and section 4.2.1 of [9]). In [6] a rather powerful
extension of the finite population version of Geiringer’s theorem has been established.
It was also shown how the finite population versions of these results given in [3] and in
[9] are special cases of the generalized Geiringer theorem proved in [6]. In the current
paper we shall use the recipe described in [6] to derive a version of Geiringer’s theo-
rem for nonlinear GP with homologous crossover (see section 3 or [7] for a detailed
description of how nonlinear GP with homologous crossover works) which is based on
Poli’s hyperschemata (see section 3 or [7]). The first step in this procedure is to describe
the search space and the appropriate family of reproduction transformations so that the
resulting GP algorithm is bijective and self-transient in the sense of definition 5.2 of
[6]. Then the generalized Geiringer theorem (theorem 5.2 of [6]) as well as corollaries
6.1 and 6.2 of [6] apply. A simplified version of the necessary details is presented in the
next section.

2 General Framework

In this section we introduce the necessary framework needed to state the schema-based
version of Geiringer theorem for GP 1. First, we describe how a general evolution-
ary search algorithm works. Let Ω denote a set, which we shall refer to as a search
space. Denote by F a family of functions on Ω2 (every F ∈ F is simply a function
F : Ω2 → Ω2). Intuitively, F is the family of reproduction transformations. A typical
evolutionary search algorithm works by cycling through a sequence of steps such as
selection, reproduction (crossover) and asexual reproduction (mutation). Geiringer the-
orem deals only with the reproduction steps. In the current paper we shall concentrate
only on the bisexual reproduction step which is described in a general setting below (for
a more detailed description see [6] and [5]):

A given population P = (x1, x2, . . . , xm) with xi ∈ Ω is taken as an input. The
individuals in P are partitioned into pairs according to some probability distribution ℘

1 The theorem presented in this section is a special case of the extended Geiringer theorem
established in [6], yet it is general enough for most applications
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on the set of all partitions of the set {1, 2, . . . ,m} into 2-element subsets. (For simplic-
ity of presentation we assume that m is an even integer. This assumption can be safely
ignored and all of the results would still hold. See [6] for the details.) We shall assume
that ℘ assigns a positive probability to every possible partition. Although this assump-
tion can be weakened, we shall not bother in the current presentation. For instance, the
couples could be

Q1 = (xi11
, xi12

), Q2 = (xi21
, xi22

), . . . , Qj = (xij
1
, xij

2
), . . . , Qm

2
= (x

i
m
2

1

, x
i

m
2

2

).

Transformations Tj ∈ F are chosen independently according to some probability dis-
tribution p on the family F . (The general result holds even under the assumption that
the probability distributions are different for every j. However, in practice, this distri-
bution is usually fixed.) Once the choices are made, replace the pairs Qj with the pairs
Tj(yij

1
, yij

2
). This way a new population P ′ = (y1, y2, . . . , ym) is obtained.

Remark 1 Given some pair of individuals (x, y) ∈ Ω2, it is quite possible that there
are two or more transformations, let’s say for the sake of concreteness F1 and F2 ∈ F ,
with F1 �= F2 but F1(x, y) = F2(x, y).

We now consider the following Markov chain: The states of this Markov chain are
all populations2. For two populations x and y the transition probability of going from x
to y, px→y is the probability that population y is obtained from the population x after a
single reproduction step. (Evidently px→y depends on F , p, and ℘) Denote by pn

x,y the
probability that population y is obtained from x upon the completion of n reproduction
steps (this is the nth power of the Markov transition matrix defined above).

Definition 2 We say that a given algorithm is bijective and self-transient if the follow-
ing conditions hold:

1. Every transformation T ∈ F is bijective (i. e. one-to-one and onto).
2. 1 ∈ F and p(1) > 0 3 (Here 1 : Ω2 → Ω2 denotes the identity map.)

We shall consider the following relation on the set of all populations:

Definition 3 Fix an evolutionary algorithm A with a reproduction step as described

above. Fix populations x and y. We shall write x A−→ y if pn
x,y > 0 for some n.

The following facts have been established in [6]. Appendix A of [6] reveals the mathe-
matics behind all of the facts listed in the remainder of this section.

Proposition 4 If a given algorithm A is bijective and self-transient then
A−→ is an

equivalence relation.

Definition 5 Given a population P ∈ Ωm denote by [P ]A the equivalence class of the

population P under the equivalence relation
A−→.

2 In the current presentation a population is an ordered m-tuple, i. e. an element of Ωm. Lothar
Schmitt used this representation in some of his work (see [14] and [15])

3 This condition may be weakened but we want to make the presentation as simple as possible
to follow
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When a given algorithm A starts running with the initial population P and reproduction
is the only step performed, thanks to proposition 4, only the populations in [P ]A may
occur with nonzero probability. It makes sense, therefore, to restrict the state space
of our Markov chain to include only the elements of the equivalence class [P ]A. We
shall call such a Markov process “the Markov chain initiated at P ”. The generalized
Geiringer theorem of [6] tells us something nice about this Markov chain:

Theorem 6 Let A denote a bijective and self-transient algorithm. Then the Markov
chain initiated at some population P ∈ Ωm is irreducible and its unique stationary
distribution is the uniform distribution on [P ]A.

The classical versions of Geiringer theorem, such as the ones established in [3] and in
[9] are stated in terms of the “limiting frequency of occurrence” of a certain element
of the search space. The following definitions, which also appear in [6], make these
notions precise in the general setting:

Definition 7 We define the characteristic function X : Ωm × P(Ω) → N ∪ {0} as
follows: X (P, S) = the number of individuals of P which are the elements of S.
(Recall that P ∈ Ωm is a population consisting of m individuals and S ∈ P(Ω) simply
means that S ⊆ Ω.)

Example 8 For instance, suppose Ω = {0, 1}n, P =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 1 0
0 1 0 1 0
1 0 1 0 1
0 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and S ⊆ Ω =

{0, 1}n is determined by the Holland schema (∗, 1, ∗, 1, ∗). Then X (P, S) = 3 be-
cause exactly three rows of P , the 1st, the 2nd, and the 5th are in S.

Definition 9 Fix an evolutionary algorithm A and an initial population P ∈ Ωm. Let
P (t) denote the population obtained upon the completion of t reproduction steps of the
algorithm A in the absence of selection and mutation. For instance, P (0) = P . Denote
by Φ(S, P, t) the proportion of individuals from the set S which occur before time

t. That is, Φ(S, P, t) =
∑ t

s=1 X (P (s), S)

tm . (Notice that tm is simply the total number
of individuals encountered before time t. The same individual may be repeated more
than once and the multiplicity contributes to Φ.) Denote by X (�, S) : Ωm → N the
restriction of the function X when the set S is fixed (the notation suggests that one
plugs a population P into the box).

Intuitively, Φ(S, P, t) is the frequency of encountering the individuals in S before time
t when we run the algorithm starting with the initial population P .

3 Nonlinear Genetic Programming (GP)
with Homologous Crossover

In genetic programming, the search space, Ω, consists of the parse trees which usually
represent various computer programs.
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Example 10 A typical parse tree representing the program (+(sin(x), ∗(x, y))) is
drawn below:

Since computers have only a finite amount of memory, it is reasonable to assume that
there are finitely many basic operations which can be used to construct programs and
that every program tree has depth less than or equal to some integer L. Under these
assumptions Ω is a finite set. We may then define the search space as follows:

Definition 11 Fix a signature Σ = (Σ0, Σ1, Σ2, . . . , ΣN ) where Σi’s are finite sets4.
We assume that Σi �= ∅ for some i and |Σj | �= 1 ∀ j 5. The search space Ω consists of
all parse trees having depth at most L. Interior nodes having i children are labelled by
the elements of Σi. The leaf nodes are labelled by the elements of Σ0.

In order to study the appropriate family of reproduction (crossover) transformations
with the aim of applying the generalized Geiringer theorem, it is most convenient to
exploit Poli’s hyperschemata ([7] for a more detailed description).

Definition 12 A Poli’s hyperschema is a rooted parse tree which may have two addi-
tional labels for the nodes, namely # and = signs (it is assumed, of course, that neither
one of these denotes an operation). = sign may label any interior node v of the tree.
Since v does occur in the tree, we must have |Σi| > 0.) The # sign can only label a leaf
node. A given Poli’s hyperschema represents the set of all programs whose parse tree
can be obtained by replacing the = signs with any operation of the appropriate arities
and attaching any program trees in place of the # signs. Different occurrences of # or
= may be replaced differently. We shall denote by St the set of programs represented
by a hyperschema t.

A couple of programs fitting the hyperschema (+(= (#, x), ∗(sin(y),#)) are shown
below:

4 Intuitively Σi is the set consisting of i-ary operations and Σ0 consists of the input variables.
Formally this does not have to be the case though

5 The assumption that |Σj | �= 1∀ j does not cause any problems since we are free to select any
elements from the search space that we want. On the other hand, this assumption helps us to
avoid unnecessary complications when dealing with the poset of Poli’s hyperschemata later
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In order to model the family of reproduction (crossover) transformation in a way which
makes it obvious that GP is a bijective and self-transient algorithm, we shall introduce a
partial order on the set of all Poli’s hyperschema which will make it into a complete lat-
tice (every two elements have a least upper bound). The notion of the least upper bound
will be also used to define the common region (see [8] for an alternative description of
the notion of a common region).

Definition 13 Denote by O the set of all basic operations which can be used to con-
struct the programs and by V the set of all variables. Put the following partial order, %,
on the set O ∪ V ∪ {=, #}:

1. ∀ a, b ∈ O ∪ V we have a % b ⇐⇒ a = b.
2. ∀ a ∈ O we have a %=.
3. ∀ a ∈ O ∪ V we have a % #.
4. =%=, # % # and =% #.

It is easy to see that % is, indeed a partial order. Moreover, every collection of elements
of O ∪ V ∪ {=, #} has the least upper bound under %. We are now ready to define the
partial order relation on the set of all Poli’s hyperschemata:

Definition 14 Let t1 and t2 denote two Poli’s hyperschemata. We say that t1 ≥ t2 if
and only if the following two conditions are satisfied:

1. the tree corresponding to t1 when all of the labels are deleted is a subtree of the
tree corresponding to t2 with all of the labels deleted.

2. Every one of the labels (which represents an operation or a variable) of t1 is ,
the label of the node in the corresponding position of t2.

Example 15 For instance, the hyperschema t1 = (+(= (#, x)), ∗(sin(y), #)) ≥
t2 = (+(+(∗(sin(x), y), x)), ∗(sin(y), = (#))). Indeed, the parse trees of t1 and t2
appear on the picture below:

When all the labels in the dashed subtree of the parse tree of t2 are deleted one gets the
tree isomorphic to that obtained from t1 by deleting all the labels. Thus condition 1 of
definition 14 is satisfied. To see that condition 2 is fulfilled as well, we notice that the
labels of t1 are % to the corresponding labels of the dashed subtree of t2: Indeed, we
have + , +, =, +, ∗ , ∗, # , ∗, x , x, sin , sin, # ,= and y , y.

Again it is easy to check that ≥ is, indeed, a partial order relation on the collection of
Poli’s hyperschemata. Proposition 16 below tells us even more:
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Proposition 16 Any given collection of Poli’s hyperschemata has the least upper bound
under ≥.

Proof. Denote by S a given collection of Poli’s hyperschemata. We provide an algo-
rithm to construct the least upper bound of S as follows: Copies of all the trees in S are
recursively jointly traversed starting from the root nodes to identify the parts with the
same shape, i. e. the same arity in the nodes visited. Recursion is stopped as soon as
an arity mismatch between corresponding nodes in some two trees from S is present.
All the nodes and links encountered are stored. This way we obtain a tree. It remains to
stick in the labels. Each one of the interior nodes is labeled by the least upper bound of
the corresponding labels of the trees in S. The label of a leaf node is a variable, say x, if
all the labels of the corresponding nodes of the trees in S are x (which implies that they
are leaf nodes themselves). In all other cases the label of the leaf node is the # sign. It
is not hard to see that this produces the least upper bound of the collection S of parse
trees.

It was pointed out before, that programs themselves are Poli’s hyperschemata. The fol-
lowing fact is almost immediate from the explicit construction of the least upper bound
carried out in the proof of proposition 16:

Proposition 17 A given Poli’s hyperschema t is the least upper bound of the set St of
programs determined by t.

From proposition 17 it follows easily that ≥ is order isomorphic to the collection of
subsets determined by the Poli’s hyperschemata:

Proposition 18 Let t and s denote Poli’s hyperschemata. Denote by St and Ss the
subsets of the search space determined by the hyperschemata t and s respectively. Then
t ≥ s ⇐⇒ St ⊇ Ss.

There is another type of schemata which is useful to introduce in order to define the
family of reproduction (crossover) transformations:

Definition 19 A shape schema is just a rooted ordered tree. If t̃ is a given shape schema
then St̃ is just the set of all programs whose underlying tree when all the labels are
deleted is precisely t̃. Given a Poli’s hyperschema s, we shall denote by s̃ the underlying
shape schema of s, i. e. the tree obtained by deleting all the labels in s.

The notion of a common region which is equivalent to the one defined below also ap-
pears in [8]:

Definition 20 Given two Poli’s hyperschemata t and s we define their common region
to be the underlying shape schema of the least upper bound of t and s.

Definition 21 Fix a shape schema t̃. We shall say that the set Ct̃ = {(a, b) | a, b are
program trees and t̃ is the common region of a and b} is a component corresponding to
the shape t̃.

Notice that sets determined by the shape schemata partition the search space:
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Remark 22 Notice that Ω2 =
⋃

t̃ is a shape Ct̃. Moreover, Ct̃ ∩ Cs̃ = ∅ for t �= s. (This
is so because least upper bounds in a poset are uniquely determined and so the function
sending (a, b) → sup(a, b) → the underlying shape of sup(a, b) is well defined. But
then the sets Ct̃ are simply the pre-images under a function of singleton subsets of the
set of all shapes and, hence, form a partition of Ω2.)

We now proceed to define the family of reproduction transformations. Our goal is to in-
troduce a family of functions on Ω2 in such a way that each one of them is easily seen to
be bijective (see theorem 6 and definition 2). The idea is to define these transformations
on each of the components first:

Definition 23 Fix a shape schema t̃. Fix a node, v of t̃. A one-point partial homologous
crossover transformation Tv : Ct̃ → Ct̃ is defined as follows: For given (a, b) ∈ Ct̃

let Tv(a, b) = (c, d) where c and d are obtained from the program trees of a and b
as follows: First identify the node v in the parse trees of a and b respectively. Now
obtain the pair (c, d) by swapping the subtrees of a and b rooted at v. (This procedure
is described in detail in [8] and it is also illustrated in the example below). Let Ft̃ =
{Tv | v is a node of t̃} denote the family of all partial homologous one-point crossover
transformations associated to the shape t̃.

The following example illustrates the concepts in definitions 19, 20 and 23:

Example 24 In the upper left part of the picture parse trees of the two sample programs
a and b are shown. Then on the upper right one can see the least upper bound of a and
b. On the lower right the underlying tree of the least upper bound of a and b is drawn.
According to definition 20, this tree is precisely the common region of the programs a
and b. The isomorphic subtrees inside both, a and b, are emphasized inside the dashed
areas:

A node v is selected inside the common region. The pair of children (c, d) = Tv(a, b)
appear on the lower left of the picture above. The subtrees rooted at v which are
swapped during crossover are emphasized inside the dashed area.

Remark 25 One does need to show that for (a, b) ∈ Ct̃ we have Tv(a, b) ∈ Ct̃.
A rigorous argument can be given as follows: Clearly Tv : Ct̃ → ⋃

t̃ is a shape Ct̃ is a
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well-defined map. Moreover, since v is a node of the least upper bound of a and b and
the pair (c, d) is obtained simply by swapping the corresponding subtrees rooted at v,
we get s = sup{c, d} ≤ sup{a, b}. Now consider the transformation Fv : Cs̃ →⋃

t̃ is a shape Ct̃ and notice that, by definition, we have Fv(c, d) = (a, b). But then,
according to the reasoning above, we have sup{c, d} ≤ sup{a, b}. Thereby, we get
sup{c, d} ≤ sup{a, b} ≤ sup{c, d} =⇒ sup{c, d} = sup{a, b} =⇒ t̃ = s̃. This
shows that Tv does, indeed, map into Cṽ. Moreover, in the process, we have also ob-
served a couple of very important facts:

1. Tv ◦ Tv = 1Ct̃
where 1Ct̃

denotes the identity map on Ct̃. This shows, in partic-
ular, that Tv is a bijection.

2. Tv preserves the least upper bounds: sup{a, b} = supTv(a, b).

We are finally ready to define the family of reproduction transformations on the search
space Ω of all programs:

Definition 26 For every shape schema t̃ fix a node vt̃ of t̃. Define a one point crossover
transformation T{vt̃}t̃ is a shape schema

: Ω2 → Ω2 to be the set-theoretic union of all partial
crossover transformations of the form Tvt̃

. More explicitly, this means that whenever
a given pair (a, b) ∈ Ω2 we must have (a, b) ∈ Cs̃ for a unique shape schema s̃
(since, according to remark 22, Ω2 is a disjoint union of components corresponding to
various shapes). But then T{vt̃}t̃ is a shape schema

(a, b) = Tvs̃(a, b). Denote by F the family
of all crossover transformations together with the identity map on Ω2. For simplicity of
notation we shall denote the transformations in F by plain English letters: T , F etc.,
keeping in mind that every such transformation is determined by making choices of
partial crossover transformations on every one of the components.

Remark 27 Thanks to remark 25, everyone of the crossover transformations in the
family F is bijective (since it is a union of bijections on the pieces of a partition). It
follows now that the generalized Geiringer theorem (theorem 6) applies to the case of
homologous GP.

Remark 28 It is also possible to model uniform GP crossover (this type of crossover
is examined in detail in [8]) in the analogous manner. All of the results established in
the current paper apply to this case without any modification.

4 The Statement of the Schema-Based Version of Geiringer’s
Theorem for Non-linear GP Under Homologous Crossover

As mentioned before, the schema-based version of Geiringer’s theorem for non-linear
GP is stated in terms of Poli’s hyperschemata.

Definition 29 A Poli’s hyperschema of order i is a Poli’s hyperschema which has ex-
actly i nodes whose label is not a # or an = sign.

A configuration schema is a 0-order Poli’s hyperschema (i.e a hyperschema which
has only the equal signs in the interior nodes and # signs in the leaf nodes.)

An operation schema is a Poli’s hyperschema of order 1 (i. e. a hyperschema which
has exactly one node whose label is not a # or an = sign).
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Fix an individual (a parse tree) u ∈ Ω. Let v denote any node of u. Let B(v)
denote the branch of the shape schema of u from the root down to the node v. Let
B+(v) = B(v)∪{w |w is a child of some node z of B with z �= v}. Now define cs(v)
to be the configuration schema whose underlying shape schema is B+(v). Let o denote
an operation or a variable (an element of Σi for some i between 0 and N ). Now obtain
the operation schema oso from cs(v) by attaching the node labelled by o in place of the
# sign at the node corresponding to v of cs(v). Unless v is the leaf node of u, all the
children of this new node are the leaf nodes of oso labelled by the # sign. When o is
the operation (or the variable) labelling the node v of u, we shall write os(v) instead of
oso.

Notice that if v is a root node then cs(v) is just the schema which determines the entire
search space, i. e. the parse tree consisting of a single node labelled by the # sign.
Example 30 illustrates definition 29.

Example 30 Below we list all of the configuration schemata and operation schemata
for the individual of example 10:

Recall from definition 7 that X (P, S) denotes the number of individuals in the popu-
lation P which are the elements of S ⊆ Ω. The following definition makes it more
convenient to state the schema-based version of Geiringer’s theorem:
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Definition 31 Given a Poli’s hyperschema H , we shall write |H(P )| instead of X (P,
SH) (see definition 12) to denote the number of individuals (counting repetitions) in the
population P fitting the hyperschema H .

We can now finally state the Geiringer’s theorem for non-linear GP under homologous
crossover:

Theorem 32 Fix an initial population P ∈ Ωm and an individual u ∈ Ω. Suppose
every pair of individuals has a positive probability to be paired up for crossover and
every transformation in F has a positive probability of being chosen6. Then the limiting
frequency of occurrence of a given individual u,

lim
t→∞Φ(u, P, t) =

∏
v is a node of u

|os(v)(P )|
|cs(v)(P )| .

Example 33 To illustrate how theorem 32 can be applied in practice, suppose we are in-
terested in computing the frequency of encountering the individual u from examples 10
and 30 when the initial population of 6 individuals pictured below is chosen:

The number of individuals in P fitting the operation schema os(v1) is 2 (these are
x1 and x5) while every individual fits the configuration schema cs(v1). Therefore
|os(v1)(P )|
|cs(v1)(P )| = 2

6 = 1
3 . 4 individuals, namely x1, x3, x4 and x5 fit cs(v2) = cs(v3),

among these only 2 individuals, namely x3 and x5, fit os(v2) and 2 individuals, x4 and
x5 fit os(v3) so that |os(v2)(P )|

|cs(v2)(P )| = |os(v3)(P )|
|cs(v3)(P )| = 2

4 = 1
2 . Individuals x3, x4 and x5 fit

the configuration schema cs(v4) while only x4 fits the operation schema os(v4) so that
|os(v4)(P )|
|cs(v4)(P )| = 1

3 . x1, x3, x4 and x5 fit cs(v5) = cs(v6). Among these only x3 and x4

fit os(v5) while only x4 fits os(v6) so that |os(v5)(P )|
|cs(v5)(P )| = 2

4 = 1
2 and |os(v6)(P )|

|cs(v6)(P )| = 1
4 .

Thereby, according to theorem 32, we obtain:

lim
t→∞Φ(u, P, t) =

6∏
i=1

|os(vi)(P )|
|cs(vi)(P )| =

6 These conditions can be slightly relaxed, but we try to present the main idea only
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=
1
3

· 1
2

· 1
2

· 1
3

· 1
2

· 1
4

=
1

288
.

Roughly speaking, this means that if we run GP starting with the population P pictured
above, in the absence of mutation and selection (crossover being the only step) for an
infinitely long time, the individual u will be encountered on average 1 out of 288 times.

Example 34 Notice that linear GP (or, equivalently, variable length GA) as described
in [9] is a special case of nonlinear GP when ∀ i > 1 Σi = ∅ and Σ0 and Σ1 �= ∅.
Indeed, the elements of such a search space are parse trees such that every interior node
has exactly one child and the depth of the tree is bounded by some integer N . One can
think of such a tree as a sequence of labels (a1, a2, . . . , an), the first label affiliated
with the root node, second label with the child of the root node and so on. The label
an is affiliated with the leaf node. This gives us a one-to-one correspondence, call it φ
between the search space for nonlinear GP in our specific case when ∀ i > 1 Σi = ∅
while Σ0 and Σ1 �= ∅ and the search space for linear GP which preserves crossover.
The following types of schemata have been introduced in [9]:

Definition 35 The schema H = (∗i−1, hi, #) represents the subset SH = {x =
(x1, x2, . . . , xl) | l > i and xi = hi}. In words, SH is simply the set of all individuals
whose length is at least i + 1 and whose ith allele is hi.

Definition 36 The schema H = (∗i, #) represents the subset

SH = {x = (x1, x2, . . . , xl) | l > i}.
In words, SH is simply the subset of all individuals whose length is at least i + 1.

Definition 37 The schema H = (∗i−1, hi) represents the subset

SH = {x = (x1, x2, . . . , xi) |xi = hi}
of the search space which is simply the set of all individuals of length exactly equal to
i whose ith (last) allele is hi.

The reader may check that under the correspondence φ the configuration schemata cor-
respond to the schemata Hi = (∗i, #) for i ≥ 1, operation schemata correspond to the
schemata of the form H = (∗i−1, hi, #) and of the form H = (∗i−1, hi) for i > 1.
Finally, the hyperschema t(1, 1) corresponds to the schema H = (h1, #). Fix a popula-
tion P ∈ Ωm. Recall that we denote by |H | the number of individuals in P which fit the
schema H counting repetitions. Also recall from definition 9 that Φ(SH , P, 1) = |H|

m
denotes the fraction of the number of individuals of P which fit the schema H . To abbre-
viate the notation we shall write Φ(H, P, 1) instead of Φ(SH , P, 1). Fix an individual
u = (h1, h2, . . . , hn) ∈ Ω. Theorem 32 tells us that

lim
t→∞Φ(u, P, t) =

|(h1, #)|
m

· (
n−2∏
i=1

|(∗i, hi+1, #)|
|(∗i, #)| ) · |(∗n−1, hn)|

|(∗n−1, #)| =

=
|(h1, #)|

m
· (

n−2∏
i=1

|(∗i, hi+1, #)|
m

|(∗i, #)|
m

) ·
|(∗n−1, hn)|

m
|(∗n−1, #)|

m

=
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Φ(h1, #) · (
n−2∏
i=1

Φ(∗i, hi+1, #)
Φ(∗i, #)

) · Φ(∗n−1, hn)
Φ(∗n−1, #)

=

= Φ(∗n−1, hn) ·
∏0

i=n−2 Φ(∗i, hi+1, #)∏1
i=n−1 Φ(∗i, #)

= Φ(∗n−1, hn) ·
i=1∏

i=n−1

Φ(∗i−1, hi, #)
Φ(∗i, #)

which is precisely the formula obtained in [9].

5 How Do We Obtain Theorem 32 from Theorem 6?

The following couple of corollaries from [6] are useful in obtaining the schema-based
versions of Geiringer theorem for various evolutionary algorithms. Throughout, we
shall denote by �[P ]A the uniform probability distribution on the set [P ]A (see defi-
nition 5).

Corollary 38 Fix a bijective and self-transient algorithm A and an initial popula-
tion P ∈ Ωm. Fix a set S of individuals in Ω (S ⊆ Ω). Then limt→∞ Φ(S, P, t) =
1
mE[P ]A

(X (�, S)) (here E[P ]A
(f) denotes the expectation of the random variable f

with respect to the uniform distribution on the set [P ]A) 7.

To state the next corollary which brings us one step closer to deriving results similar
in flavor to Geiringer’s original theorem we need one more, purely formal, assumption
about the algorithm:

Definition 39 We say that a given algorithm A is regular if the following is true:
for every population P = (x1, x2, . . . , xm) ∈ Ωm and for every permutation π ∈
Sm, the population obtained by permuting the elements of P by π, namely π(P ) =
(xπ(1), xπ(2), . . . , xπ(m)) ∈ [P ]A. In words this says that the equivalence classes [P ]A
are permutation invariant.

Remark 40 Definition 39 is only needed because our description of an evolution-
ary search algorithm uses the ordered multi-set model. This makes the generalized
Geiringer theorem (theorem 6) look nice (the stationary distribution is uniform on
[P ]A). A disadvantage of the multi-set model is that it allows algorithms which are not
regular. If we were to use the model of [17] where the order of elements in a population
is not taken into account (a reasonable assumption since most evolutionary algorithms
used in practice are, indeed, regular) then the Generalized Geiringer theorem would
have to be modified accordingly since the stationary distribution of the corresponding
Markov process would be different from uniform (it is not difficult to compute it though
since the corresponding Markov chain is just a “projection” of the one used in the cur-
rent paper).

Corollary 41 Fix a regular bijective and self-transient algorithm A and an initial pop-
ulation P ∈ Ωm. Denote by �[P ]A the uniform probability distribution on [P ]A (see

7 Throughout the paper, whenever a limit is involved, the equality is meant to hold for almost
every infinite sequence of trials
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definition 5). Fix a set S of individuals in Ω (S ⊆ Ω). Then limt→∞ Φ(S, P, t) =
�[P ]A(VS) where

VS = {P |P ∈ [P ]A and the 1st individual of P is an element of S}.

Corollaries 38 and 41 are proved in section 6 of [6]. When deriving schema-based
versions of Geiringer theorem for a specific algorithm the following strategy may be
implemented: Continuing with the notation in corollaries 38 and 41, suppose we are
given a nested sequence of subsets of the search space: S1 ⊇ S2 ⊇ . . . ⊇ Sn. According
to corollary 41,

lim
t→∞Φ(Sn, P, t) = �[P ]A(VSn) =

|VSn |
|[P ]A| =

|VSn |
|VSn−1|

· |VSn−1 |
|[P ]A| =

=
|VSn |

|VSn−1|
· |VSn−1 |
|VSn−2 |

· . . . · |VS2 |
|VS1 |

· |VS1 |
|[P ]A| =

= �[P ]A(VS1) ·
n−2∏
j=0

|VSn−j |
|VSn−j−1 |

=
1
m

E[P ]A
(X (�, S)) ·

n−2∏
j=0

|VSn−j |
|VSn−j−1 |

Notice that
|VSj

|
|VSj−1 | is just the proportion of populations in [P ]A whose first individual is

a member of Sj inside the set of populations in [P ]A whose first individual is a member
of Sj−1.

Corollary 42 Fix a regular, bijective and self-transient algorithm A and an initial pop-
ulation P ∈ Ωm. Fix a nested sequence of subsets S1 ⊇ S2 ⊇ . . . ⊇ Sn of individuals

in Ω (S1 ⊆ Ω). Then limt→∞ Φ(Sn, P, t) = 1
mE[P ]A

(X (�, S)) · ∏n−2
j=0

|VSn−j
|

|VSn−j−1 |
where, as before, VS denotes the set of all populations whose first individual is a mem-
ber of S for a given subset S ⊆ Ω.

Denote by A a given GP algorithm. Fix an individual x ∈ Ω. In order to apply corol-
lary 42, we may choose a descending chain of Poli’s hyperschemata t1 ≥ t2 ≥ . . . ≥
tn = x. Fix an initial population P . To avoid putting many subscripts, we shall write
Vt instead of VSt for the set of all populations in [P ]A (see definition 3) whose 1st

individual is a member of St (the set of individuals determined by the hyperschema
t). Now fix an individual x ∈ Ω. In order to construct the desired sequence of nested
hyperschemata, we assign the following numerical labelling to the nodes of the parse
tree of u: The nodes are labelled by the pairs of integer coordinates. The first coordi-
nate shows the depth of the tree and the second coordinate shows how far to the right a
given node at the depth specified by the first coordinate is located. Notice, for instance,
that the root node is labelled by the coordinates (1, 1). We also introduce the following
lexicographic linear ordering on the set of coordinate pairs:

Definition 43 (a, b) ≤ (c, d) if and only if either a ≤ c or (a = c and b ≤ d).

It is well known and easy to verify that this defines a linear ordering.
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Definition 44 Given a pair of coordinates (i, j), denote by ↑ (i, j) the immediate suc-
cessor of (i, j) under the lexicographic ordering defined above. Explicitly,

↑ (i, j) =

{
(i + 1, 1) if (i, j) labels the rightmost node of u at depth i

(i, j + 1) otherwise

We obtain the desired nested sequence of hyperschemata for the given individual u
recursively in the following manner:

Definition 45 Define t(1,1) to be the hyperschema whose root node has the same label
(operation) and arity as that of the root node of u. All children of the root node are the
leaf nodes labelled by the # sign. Once the hyperschema t(i,j) has been constructed,
we obtain the hyperschema t↑(i,j) by attaching the node of u with coordinate ↑ (i, j)
in place of the # sign at coordinate ↑ (i, j) to the parse tree of t(i,j). Unless this node,
call it v, is a leaf node of u, all children of this new node are the leaf nodes of t↑(i,j)
labelled by the # sign.

We illustrate the construction with an explicit example:

Example 46 Below, the nested sequence t(1, 1) ≥ t(2, 1) ≥ t(2, 2) ≥ t(3, 1),≥ t(3, 2) ≥
t(3, 3) corresponding to the program of example 10 is drawn explicitly:

The formula for the limiting frequency of occurrence of a given program u in corol-

lary 42 involves the ratios of the form
Vt↑(i, j)

Vt(i, j)
. It turns out that these ratios can be ex-

pressed nicely in terms of the presence of certain configuration and operation schemata
in the initial population P :

Definition 47 Given a program tree u and the corresponding nested sequence t(1, 1) ≥
t(2, 1) ≥ . . . ≥ t(i, j) ≥ t↑(i, j),≥ . . . ≥ t(l, k) = u of hyperschemata as in definition 45,
for every (i, j) �= (l, k), denote by cs(i, j) (os(i, j)) the configuration schema cs(v)
(operation schema os(v)) where v is the node of u with coordinate ↑ (i, j).

Example 48 Continuing with examples 10 and 30 notice that for the individual in these
examples we have cs(1,1) = cs(2,1) = cs(v2) = cs(v3) while os(1,1) = os(v2) and
os(2,1) = os(v3) (see example 30), cs(2,2) = cs(v4) while os(2,2) = os(v4) and
cs(3,1) = cs(3,2) = cs(v5) = cs(v6) while os(3,1) = os(v5) and os(3,2) = os(v6).
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The following “orbit description” lemma is the reason for introducing configuration and
operation schemata: We prove the lemma under the following special assumption:

Definition 49 We say that a population P is special with respect to the individual u if
for every node v of u and for every operation (or variable) o we have |oso(P )| ≤ 1
where oso is obtained from cs(v) by means of attaching the operation o at the leaf node
of cs(v) corresponding to v as described in definition 29.

Definition 49 basically requires that no 2 operations (or variables) occurring in P at
the specified location are the same. It turns out that the orbit description lemma stated
below is a lot more convenient to prove under this special assumption. The general case
will then follow by introducing enough extra labels for the operations and variables
involved and then deleting the extra labels.

Lemma 50 Fix an initial population P and a program u ∈ Ω Assume that the popu-
lation P is special with respect to the individual u. Suppose every pair of individuals
has a positive probability to be paired up for crossover and every transformation in F
has a positive probability of being chosen8. Consider the sequences of hyperschemata
t(1, 1) ≥ t(2, 1) ≥ . . . ≥ t(i, j) ≥ t↑(i, j),≥ . . . ≥ t(l, k) = u, {cs(i, j) | (i, j) is a
coordinate of u, (i, j) is not the maximal coordinate } and {os(i, j) | (i, j) is a co-
ordinate of u, (i, j) is not the maximal coordinate } corresponding to the individ-
ual u. For a given hyperschema t, denote by |t(P )| the number of individuals in P
which fit the hyperschema t counting repetitions. Suppose ∀ non-maximal pairs of co-
ordinates (i, j) we have |os(i, j)(P )| �= 0 and |t(1, 1)(P )| �= 0. Then it is true that

∀ (i, j)
Vt↑(i, j)

Vt(i, j)
= 1

|cs(i, j)(P )| .

Proof. The key idea is to observe the following fact:

Claim: Fix a coordinate (i, j). Fix any two operation schemata os1 and os2 which
are obtained from cs(i, j) by attaching either a variable or an operation at the node
(i, j). Suppose ∃ individuals in P fitting both, os1 and os2. Then |Vt(i, j) ∩ Vos1 | =
|Vt(i, j) ∩ Vos2 |.
Proof. Consider the map F : [P ]A → [P ]A defined as follows: Given a population,
say Q ∈ [P ]A, notice that ∃ an individual, say x1, in Q fitting the operation schema
os1 (due to the way crossover is defined, the number of individuals fitting the operation
schema os1(Q) is the same in every population Q ∈ [P ]A). Moreover, such an indi-
vidual is unique since we assumed that all operations appearing in the individuals of
P are distinct. Likewise, ∃ unique individual in Q, say x2 fitting the operation schema
os2. Pair up individuals x1 and x2 and pair up the rest of the individuals arbitrarily for
crossover. Select the crossover transformation Tv where v is the node with coordinate
(i, j) for the pair (x1, x2) and choose the identity transformation for the rest of the
pairs. Now let F (Q) be the population obtained upon the completion of the reproduc-
tion step described above (notice that F (Q) ∈ [P ]A by definition of [P ]A). Notice also
that F is its own inverse (i. e. F ◦ F = 1[P ]A). This tells us, in particular, that F is bi-
jective. Moreover, it is clear from the definitions that F (Vt(i, j) ∩Vos1) ⊆ Vt(i, j) ∩Vos2

8 These conditions can be slightly relaxed, but we try to present the main idea only
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and, likewise, F (Vt(i, j) ∩ Vos2) ⊆ Vt(i, j) ∩ Vos1 . The desired conclusion follows at
once.

Now observe that t↑(i, j) = t(i, j) ∩ os(i, j) so that Vt↑(i, j) = Vt(i, j) ∩ Vos(i, j) and
t(i, j) =

⋃
o is an operation or a variable(t(i, j) ∩ oso) where oso is obtained from cs(i, j) by

attaching the operation (or variable) o at the node ↑ (i, j). Therefore we also have
Vt(i, j) =

⋃
o is an operation or a variable, (Vt(i, j) ∩ Voso). Since operations can not appear or

disappear from a population during crossover, Voso �= ∅ =⇒ ∃ an individual in P
fitting the operation schema oso. Thus the only sets of the form Vt(i, j) ∩ Voso which
may possibly contribute to the union above are these for which ∃ an individual in P
fitting the operation schema oso. According to the claim above, all such sets contribute
exactly the same amount. Moreover, by assumption os(i, j)(P ) �= ∅, and so we have

|Vt(i, j) | = n · |Vt(i, j) ∩Vos(i, j) | = n · |Vt(i, j)∩os(i, j) | = n · |Vt↑(i, j) | =⇒ |Vt↑(i, j)
|

|Vt(i, j) |
= 1

n

where n is the number of operation schemata of the form oso for which ∃ an individual
in P fitting the operation schema oso and the last implication holds under the condition
that |Vt(i, j) | �= 0. This condition is, indeed satisfied. (Suppose not. Let (a, b) denote the
smallest coordinate such that |Vt(a, b) | = 0. Notice that (a, b) �= (1, 1) since |Vt(1, 1) | �=
0. (By assumption ∃ an individual, say x, in P fitting the hyperschema t(1, 1). Even if
x is not the 1st individual of P , by performing crossover of x with the 1st individual
of P at the root node one gets a population Q ∈ Vt(1, 1) .) But then (a, b) =↑ (i, j)
for some coordinate (i, j) and according to the equation above we have |Vt(i, j) | =
n · |Vt↑(i, j) | = n · |Vt(a, b) | = 0 which contradicts the minimality of the coordinate

(a, b). So we conclude that |Vt(i, j) | �= 0) Thereby we have
|Vt↑(i, j) |
|Vt(i, j) |

= 1
n . But cs(i, j) =⋃

o is an operation or a variable oso =⇒ cs(i, j)(P ) =
⋃

o is an operation or a variable oso(P ). Since
we assumed that all of the operations and variables are distinct, ∃ at most one individual
in P fitting the operation schema oso and it now follows that |cs(i, j)(P )| = the number
of operation schemata of the form oso such that oso(P ) �= ∅ which is precisely the

number n. We finally obtain
|Vt↑(i, j) |
|Vt(i, j) |

= 1
|cs(i, j)| which is precisely the conclusion of

the lemma.

Remark 51 Given an individual u and a population P consisting of m individuals,
observe that the number of individuals fitting the hyperschema t(1, 1) is the same in
every population from [P ]A, i. e. ∀Q ∈ [P ]A we have |t(1, 1)(Q)| = |t(1, 1)(P )| = 1.
It follows immediately now that 1

mE[P ]A
(X (�, St(1, 1))) = 1

m .

We now combine corollary 42, remark 51 and lemma 50 to obtain the following special
case of Geiringer theorem for nonlinear GP under homologous crossover in case when
all of the operations appearing in the individuals of the initial population P are distinct:

lim
t→∞Φ(u, P, t) =

1
m

·
∏

(i, j) is not the maximal coordinate of u

1
|cs(i, j)(P )| =

=
∏

v is a node of u

1
|cs(v)(P )|
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(recall that when v is the root node of u, cs(v) determines the entire search space, and
so 1

|cs(v)(P )| = 1
m ) To obtain the general case, suppose we are given an initial popula-

tion P . Fix a node v of u and consider the set of operations O(v) = {o | |oso(P )| ≥
1 where oso is obtained from cs(v) as in definition 29}. For every node v of u and for
every operation (or variable) o ∈ O(v) fix an enumeration xo

1, xo
2, . . . ,x

o
|oso(P )| of the

individuals in P fitting the operation schema oso(P ). Relabel the operation o occurring
in the node v of xo

i by the formally different operation (o, i) (i. e. by the ordered pair
(o, i) whose first element is the operation o itself and the second element is the index
telling us in which individual of P the operation o labels the node v). After all of the
relabelling is complete we obtain a new population P ′ which is special with respect to
the individual u in the sense of definition 49. Formally speaking, we expand our sig-
nature Σ = (Σ1, Σ2, . . . , ΣN ) as in definition 11 by adding the operations (variables)
(o, i) into Σj where j is the arity of the operation o. This gives us a new signature
Σ∗ = (Σ∗

1 , Σ
∗
2 , . . . , Σ

∗
N) where

Σ∗
j = {o | o ∈ Σj and o /∈

⋃
v is a node of u

O(v)}∪

∪{(o, i) | o ∈ O(v) for some v and 1 ≤ i ≤ |oso(P )|}.
Denote by Ω∗ the search space induced by the signature Σ∗. The natural projection
maps pj : Σ∗

j → Σj sending 0 → o when o /∈ ⋃
v is a node of u O(v) and (o, i) → o

when o ∈ O(v) for some node v of u, induce the natural “deletion of the extra labels”
projection of the search spaces ϕ : Ω∗ → Ω where the individual ϕ(w) ∈ Ω is
obtained from the individual w ∈ Ω∗ by replacing the label of every node w of w with
pj(w) where j is the arity of the node w. It is easily seen that the natural projection
ϕ commutes with the crossover transformations in the sense that for any individuals
x, y ∈ Ω∗ and for any crossover transformation T ∈ F (see definition 26) we have
ϕ(T (x, y)) = T (ϕ(x), ϕ(y)) 9. Notice also that the population P can be obtained
from the population P ′ by applying the natural projection ϕ to every individual of P ′.
Therefore, running the algorithm with the initial population P is the same thing as
running the algorithm with the initial population P ′ and reading the output by applying
the natural projection ϕ. The special case does apply to the population P ′, as mentioned
above, and so we have

lim
t→∞Φ(u, P, t) =

∑
w∈ϕ−1(u)

lim
t→∞Φ(w, P, t) =

∑
w∈ϕ−1(u)

∏
v is a node of w

1
|cs(v)(P )| .

Notice that w ∈ ϕ−1(u) precisely when the underlying shape schema of w is the same
as that of u, call this shape schema tu, and the label of every node v of w is (o, i)
where o is the label of the node v of u. According to the way the population P ′ was
introduced, there are precisely |os(v)(P )| such labels (see also definition 29). We can

9 Of course, formally speaking, the two transformations T involved in the equation above are
distinct, as they have different domains (Ω∗ and Ω respectively), but they are determined by
the same set of shape schemata and the same choice of nodes for crossover so we denote them
by the same symbol
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then identify the preimage ϕ−1(u) with the set
∏K

j=1{i | 1 ≤ i ≤ |os(vj)|} of ordered
K-tuples of integers where K is the number of nodes in the parse tree of u and v1,
v2, . . . , vK is any fixed enumeration of the nodes of u, in the following manner: The
identification map ı :

∏K
j=1{i | 1 ≤ i ≤ |os(vj)(P )|} → ϕ−1(u) sends a given ordered

K-tuple (i1, i2, . . . , iK) into the tree w = ı((i1, i2, . . . , iK)) whose underlying shape
schema is tu and the label of a node vj of w is (oj , ij) where oj is the label of the node
vj in the parse tree of u. We finally obtain:

lim
t→∞Φ(u, P, t) =

∑
w∈ϕ−1(u)

∏
v is a node of w

1
|cs(v)(P )| =

=
∑

(i1, i2,...iK)∈∏K
j=1{i | 1≤i≤|os(vj)|}

∏
v is a node of u

1
|cs(v)(P )| =

=
|os(v1)(P )|∑

i1=1

|os(v2)(P )|∑
i2=1

. . .

|os(vK)(P )|∑
iK=1

∏
v is a node of u

1
|cs(v)(P )|

=
K∏

j=1

|os(vj)(P )|∑
ij=1

1
|cs(vj)(P )| =

∏
v is a node of u

|os(v)(P )|
|cs(v)(P )|

which is precisely the assertion of theorem 32.

6 Conclusions

In the current paper we applied the methods developed in [6] to obtain a schema-based
version of Geiringer’s theorem for non-linear GP with homologous crossover. The re-
sult enables us to calculate exactly the limiting distribution of the Markov chain asso-
ciated with the evolution of a finite (fixed size) population under the action of repeated
crossover. This is an extension of the results for fixed and variable length strings given
in [6] for finite populations. The infinite population versions are given by the classical
Geiringer theorem (in the case of fixed length strings) and the generalization given in [9]
(for variable length strings). The corresponding infinite population result for non-linear
GP is not yet established, although it seems to follow from the embedding theorems of
[5] together with the corresponding result of [9] for linear GP. We are currently working
on this issue. What is not known, is under which general conditions does the finite pop-
ulation result imply a corresponding limit in the infinite population case. This remains
an open question.
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Abstract. Coarse graining is defined in terms of a commutative dia-
gram. Necessary and sufficient conditions are given in the continuously
differentiable case. The theory is applied to linear coarse grainings aris-
ing from partitioning the population space of a simple Genetic Algorithm
(GA). Cases considered include proportional selection, binary tourna-
ment selection, and mutation. A nonlinear coarse graining for ranking
selection is also presented. Within the context of GAs, the primary con-
tribution made is the introduction and illustration of a technique by
which the possibility for coarse grainings may be analyzed. A secondary
contribution is that a number of new coarse graining results are obtained.

1 Introduction

Managing complexity involves quotients (or some generalization thereof) if by
“managing complexity” one intends to reduce complexity while simultaneously
maintaining important aspects of fidelity. The following diagram is an abstrac-
tion of the general scheme being considered. In that illustration, x ∈ X rep-
resents state and h : X → X transforms state. Complexity is managed by Ξ,
which maps state into a simpler form, and by h̃ which has reduced complexity
by virtue of transforming simplified state.

x
h−−−−→ h(x)

Ξ

⏐⏐/ ⏐⏐/Ξ

Ξ x
h̃−−−−→ Ξh(x)

Maintaining important aspects of fidelity is interpreted to mean the diagram
commutes; both paths from x to Ξh(x) yield identical results. Thus Ξ can be
regarded as defining what aspects of fidelity are maintained – if leeway exists
in choosing it – or what aspects of fidelity are capable of preservation – if there
is virtually no leeway. The reduced complexity model h̃ is the quotient of h
corresponding to the coarse graining Ξ.

Whereas modeling h in an approximate fashion (by relaxing commutativity
of the diagram) is interesting, the central question this paper is concerned with

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 176–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Coarse Graining Selection and Mutation 177

is whether one can do better than approximation, and if so, then how? Moreover,
knowledge of what it is that can be exact may identify a useful starting point
for what it is that later will be approximated or perturbed from.

This abstract framework may provide a useful context in which to consider
systems comprised of large collections of components interacting with each other
(and with possibly some background environment). Assuming practical limita-
tions to exact computation of the dynamics x, h(x), h◦h(x), . . ., approximation
may be the best one can do. One would like to know, however, if that was the case
or whether useful quotients did exist. It is natural to ask whether the underlying
components could somehow be partitioned into a collection of disjoint subsets
which could be considered as units in their own right. If obtaining a description
of the dynamics of the subsets – in terms of the subsets alone – is possible, then
the original system might be coarse grained into higher level units (the subsets)
having dynamics compatible with the dynamics of the original system.

This scenario will be made concrete by taking the system to be a Genetic
Algorithm (GA). In that case the underlying components comprise the search
space, the environment is modeled by the fitness function (which determines
competition between population members), and the state space is the set of pos-
sible populations. The primary contribution made by this paper is to introduce
and illustrate a technique by which the possibility for coarse grainings may be
analyzed. We are concerned with analytical tools rather than establishing par-
ticular results about any specific fitness function. The potential utility of those
tools is demonstrated by obtaining a number of new coarse graining results.

This paper is organized as follows. First, some conceptual examples of quo-
tients are discussed. Second, a necessary and sufficient condition characterizing
quotients is described (assuming h is continuously differentiable, X is an open
subset of a finite dimensional Euclidean space, . . . ), followed by a reduction
to special cases. Third, aspects of the theory of the Simple Genetic Algorithm
(Vose, 1999) are reviewed, followed by an application of the necessary and suf-
ficient condition (characterizing quotients) to investigate coarse grainings of se-
lection and mutation. The paper concludes with a summary of results.

2 Conceptual Overview

A few real world examples are briefly mentioned to make the framework intro-
duced above less abstract and to illustrate that in practice complex systems are
frequently managed and understood with the aid of coarse grainings. It should
be kept in mind that we must necessarily coarse grain some model of the real
world, because the state space X and the transformation h are mathematical
abstractions.

1. Modeling the motion of a body by assuming it is rigid leads to the typical
coarse-graining (of that rigid model) where Ξ(x) is the center of gravity.

Examples of this sort employ coarse grainings to transfer the domain of
analysis to a simplified setting (namely, h̃ acting on ΞX).
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2. Conservation laws assert that the dynamics h (of some model of a physical
system) is compatible with a coarse graining under which the quotient h̃ is
the identity map. For instance, E = mc2 corresponds to the coarse graining
Ξ(x) = E(x) − m(x)c2.

Examples of this sort show the existence of coarse grainings may be used to
constrain the analysis (in the original setting X) by invariants.

3. The quantum mechanics describing the hardware of a computer is usually
modeled by digital logic. A familiar coarse-graining (of that gate-level digital
model) is the high level gnu/linux interface seen by the C programmer.

Examples of this sort suggest that the quotient h̃ may be the primary object
of concern; commutativity of the coarse graining (Ξ ◦ h = h̃ ◦ Ξ) may serve
as a proof of correctness for the implementation h.

The quotient in the last example above is obtained only if the state transition
x �→ h(x) corresponds to a number of micro cycles which depends on x (namely,
that number required for completion of the high level service/command corre-
sponding to x). This point is made to clarify the general phenomenon that even
though a desirable quotient of a system’s trajectory

x �→ h(x) �→ h2(x) �→ · · · (1)

might not exist (think of h as being analogous to a single micro cycle), it never-
theless could be the case that the trajectory

x �→ hp(x)(x) �→ hp(hp(x)(x))(x) �→ · · · (2)

does admit useful quotients. The applications to genetic algorithms presented in
sections 4 through 6, however, are limited to scenario (1) – where h corresponds
to a single generation – rather than the more general situation (2).

Because models are coarse grained, an exact coarse graining (of a model) can
be an approximation (to reality) if the model itself is an approximate one. This
points to another reason why quotients are significant; they may aid in identify-
ing tractable approximate models (i.e., models which have useful quotients). The
applications to genetic algorithms presented in sections 4 through 7, however,
are not concerned with approximation since the models being coarse grained are
themselves exact.

3 Differentiable Coarse Graining

The following expands upon the account given at Dagstuhl (Vose, 2004). Rather
than immediately beginning with Ξ, a coarse graining is instead obtained as
a byproduct of a continuously differentiable map Ψ . A reason for this is to
constrain the context of the general framework for coarse graining to a more
specific setting wherein differential calculus may be brought to bear (most coarse
graings appearing in the Evolutionary Computation literature correspond to
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equivalence relations obtainable as a byproduct of linear – and thus trivially
differentiable – maps). The hope is that this may facilitate the computation of
coarse grainings in some circumstances. That possibility is in fact achieved and
is demonstrated in subsequent sections.

Let Ψ : V −→ W be a continuously differentiable function between open
subsets of finite dimensional Euclidean spaces. A path with respect to Ψ (called
simply a path, when Ψ is understood) is a smooth function1 ρ : [0, 1] −→ V such
that Ψ ◦ ρ is constant. The path ρ is said to be from u to v provided ρ(0) = u
and ρ(1) = v. Let the equivalence relation ≡ on V be defined by

u ≡ v ⇐⇒ there exists a path ρ from u to v

and let Ξ : V −→ V/≡ map element v to its equivalence class ṽ. Equivalence
classes are path connected components of level sets of Ψ . It follows that the
image of any path is contained in some equivalence class.

A continuously differentiable function h : V −→ V is said to be compati-
ble with ≡ provided there exists a function h̃ for which the following diagram
commutes,

V
h−−−−→ V

Ξ

⏐⏐/ ⏐⏐/Ξ

V/≡ h̃−−−−→ V/≡
In that case h̃ is called the quotient of h (with respect to Ξ),

Ξ(u) = Ξ(v) =⇒ Ξ ◦ h(u) = Ξ ◦ h(v) (3)

and h̃ is well defined by h̃ ◦ Ξ(u) = Ξ ◦ h(u).
By restricting h to the equivalence class Vw = Ξ−1(w̃) , compatibility of h

with ≡ implies that for each w ∈ V ,

Vw
h−−−−→ h(Vw) Ψ−−−−→ {Ψ(h(w))}

since Ξ(u) = Ξ(v) = w̃ for all u, v ∈ Vw , and so by (3)

Ξ ◦ h(u) = Ξ ◦ h(v) =⇒ h(u) ≡ h(v) =⇒ Ψ ◦ h(u) = Ψ ◦ h(v)

Thus on Vw, the composition of Ψ with h is the constant function

ĥ = Ψ ◦ h (4)

Let Tw be the tangent space of the equivalence class Vw at w defined by

Tw = L{ dρ0(1) : ρ is a path from w to v, for some v}
1 We call a continuous function smooth if it’s differential (over the interior of the

domain) has a continuous extension to the entire domain
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where L{· · · } denotes the linear span of {· · · } and, for any function f differen-
tiable at x, the differential dfx of f at x is the linear function of z

dfx(z) = lim
t→0

f(x + tz) − f(x)
t

Note that dρ0(1) occurring in the definition of Tw is the tangent at w of the path
ρ from w to v,

dρ0(1) = lim
t↓0

ρ(t) − w

t

Assuming compatibility (of h with ≡ ), ĥ is constant (on equivalence classes)
and so by equation (4)

Ψ ◦ h ◦ ρ

is also constant, for every path ρ (since the image of a path is comprised of
equivalent elements). Moreover, it follows from the chain rule that

dΨh◦ρ(t)dhρ(t)dρt(1) = 0 (5)

for 0 < t < 1.
Therefore, choosing x = ρ(0) and t ↓ 0 in (5),

dhx : Tx −→ KdΨh(x) (6)

where, for any linear function L, the kernel of L is denoted by KL.
Condition (6) is therefore necessary (for all x) in order that h be compatible

with ≡. It will also be shown sufficient. Note first, however, that because Ψ ◦ ρ
is constant (for any path ρ), the chain rule yields

dΨρ(t)dρt(1) = 0

Hence Tx is a subspace of KdΨx
2. A condition which implies (6) is therefore

dhx : KdΨx −→ KdΨh(x)

Conversely, suppose (6) holds for all x ∈ V . Since the compatibility of h with
≡ is implied by condition (3), suppose u, v ∈ Vw and let ρ be a path from u to
v (i.e., assume Ξ(u) = Ξ(v)). Define the function f by

f(t) = Ψ ◦ h ◦ ρ(t)

and note that

Ψ ◦ h ◦ ρ(y) − Ψ ◦ h(u) =
∫ y−

0+
dft(1) dt =

∫ y−

0+
dΨh◦ρ(t)dhρ(t)dρt(1) dt

2 They need not coincide; at an extrema or saddle point (for instance) there may exist
dimensions orthogonal to the level set along which dΨx vanishes
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If (5) held (for 0 < t < 1), then the integral would be zero, establishing that
h ◦ ρ is a path from h(u) to h(v), hence Ξ ◦ h(u) = Ξ ◦ h(v), and thus condition
(3) would hold, implying compatibility of h with ≡. Choosing x = ρ(t) shows
that condition (5) is a consequence of (6), provided dρt(1) ∈ Tx. Let � be the
path from x to v defined by

�(s) = ρ(t(1 − s) + s)

Note that d�0(1) ∈ Tx (by definition of tangent space), and

dρt(1 − t) = lim
s↓0

ρ(t + (1 − t)s) − ρ(t)
s

= lim
s↓0

ρ(t(1 − s) + s) − x

s

= lim
s↓0

�(s) − x

s

= d�0(1)

Hence dρt(1) = d�0(1)/(1−t) ∈ Tx. The following theorem has been established.

Theorem 1. A necessary and sufficient condition for h to be compatible with
≡ is that for all x ∈ V ,

dhx : Tx −→ KdΨh(x)

Moreover, Tx is a subspace of KdΨx.

In the special case where Ψ is linear, the necessary and sufficient condition
reduces to

dhx : KΨ −→ KΨ

since a linear function is its own differential, and for x ∈ KΨ the path ρ(t) =
x(1 − t) + 2tx shows x ∈ Tx (the tangent to ρ is x), hence KΨ ⊂ Tx ⊂ KΨ .

If both h and Ψ are linear, then the situation reduces to the case considered
in Rowe, Vose, Wright (2004); the kernel of Ψ is an invariant subspace of h.

4 Proportional Selection + Mutation

A brief summary of relevant background (Vose, 1999) is given, followed by an
application of theorem 1 to proportional selection + mutation.

Let τ denote the stochastic transition function for a finite population GA
over the search space Ω = {0, . . . , n−1}, and let G be the corresponding infinite
population model. The transition matrix Q of the GA’s Markov chain is defined
by the probability that τ(p) = q and satisfies

Qp,q = r!
∏ (G(p)j)rqj

(rqj)!
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where r is the population size, and where the the population represented by the
n dimensional vector p contains r pj instances of j.

Let ≡ be an arbitrary equivalence relation over Ω, and let {0∗, . . . , (k − 1)∗}
be equivalence class representatives. The linear operator with k × n matrix Ξ
defined by

Ξi,j = [i∗ ≡ j]

(where [expression ] denotes 1 if expression is true, and 0 otherwise) lifts ≡ to
populations by

p ≡ p′ ⇐⇒ Ξp = Ξp′ (7)

Compatibility in the stochastic case generalizes the definition given in the
previous section; τ is said to be compatible with ≡ iff

p ≡ p′ =⇒ ∀q .Prob {τ(p) ≡ q} = Prob {τ(p′) ≡ q}
In that case, τ̃ defined by τ̃(Ξx) = Ξτ(x) is referred to as the quotient of τ .
It is known that τ̃ exists if and only if a corresponding quotient G̃ of G exists.
Moreover, the transition matrix for τ̃ is obtained from the formula for Qp,q above
by replacing G by G̃, p by Ξp, and q by Ξq (Vose, 1999).

The “selection + mutation” case refers to the simple GA with (proportional)
fitness and mutation, but no crossover. There the infinite population model takes
the form

G(p) =
Gp

1TGp

where G = MF is a n×n matrix and 1 is the vector of all 1 s. Here M is a column
stochastic mutation matrix (1TM = 1T ) where Mi,j = Prob {j mutates to i},
and F is a diagonal fitness matrix where Fi,i = fi is the fitness of i (the vector
f is referred to as the fitness function). In particular, 1TGp = fT p. The domain
of immediate interest is

p ∈ Λ = {〈x0, . . . , xn−1〉 : xi ≥ 0, 1Tx = 1}
since that is the completion of the population representation space. Note that
1TGp does not vanish on Λ provided fitness is positive. Positive fitness will be
assumed throughout the remainder of this paper. The results of the previous
section will be applied with h = G and V a neighborhood of Λ.

The situation is particularly simple, since choosing Ψ = Ξ yields the equiva-
lence relation above; it follows from (7) that p ≡ p′ iff p and p′ are contained in a
level set of Ψ (i.e., a translate of KΞ). Moreover, the coarse graining (as defined
in sections 1 and 3) is also Ξ (which is a fortunate happenstance for notation),
since Ψp can be regarded as representing the equivalence class p̃ of p. As noted
after theorem 1, compatibility reduces to

dGx : KΞ −→ KΞ

The differential of G at x is

dGx =
1TGxG − Gx1TG

(1TGx)2
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Compatibility is therefore the condition that for all x ∈ V , and for all v ∈ KΞ ,

Ξ1TGxGv = ΞGx1TGv (8)

Assume compatibility, and let v ∈ KΞ . Choosing x = ei, where ei is the i th
column of the n×n identity matrix (indices begin with zero) and solving (8) for
ΞGv yields

ΞGv = 1TGvΞ
Gei

1TGei
(9)

Replacing ei with ej in the right hand side of (9) – the left hand side is invariant
under that replacement – and equating the right hand side before replacement
with after yields

1TGvΞ(
Gei

1TGei
− Gej

1TGej
) = 0 (10)

If 1TGv = 0, then it follows from (9) that ΞGv = 0. Otherwise, it follows from
(10) that

Gei

1TGei
≡ Gej

1TGej

Taking into account G = MF , these alternatives simplify to

fT v = 0 (11)

Mei ≡ Mej (12)

First suppose there exist y, z ∈ Ω such that y ≡ z and fy �= fz. Note that
v = ey − ez ∈ KΞ and fT v �= 0. Since condition (11) does not hold, condition
(12) must.

Next suppose no such y, z exist. Then all equivalent population members
have identical fitness. Note that v ∈ KΞ is equivalent to the condition that for
all equivalence class representatives c∗,∑

i≡ c∗
vi = 0 (13)

(in particular, v ∈ KΞ =⇒ 1T v = 0, i.e., v ∈ 1⊥). Since fitness is constant over
equivalence classes, ∑

i≡ c∗
fivi = 0

It follows that F : KΞ → KΞ (F is compatible with ≡) and 1TGv = fT v = 0
for all v ∈ KΞ . As observed after (10),

ΞGv = 0 (14)

Moreover, since F is invertible (fitness is positive) quantification over v ∈ KΞ

is equivalent to quantification over v ∈ {F−1w : w ∈ KΞ} (an injective linear
map on a finite dimensional space is surjective). Replacing v by F−1w in (14)
yields

w ∈ KΞ =⇒ ΞMw = 0

Hence M is compatible with ≡.
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Theorem 2. Suppose positive fitness and zero crossover. Equivalent population
members have identical fitness if and only if F is compatible with Ξ. When F
is compatible with Ξ, a necessary and sufficient condition for τ to be compatible
with ≡ is that M is. If F is not compatible with Ξ, then a necessary and sufficient
condition for τ to be compatible with ≡ is that the columns of M are equivalent.

Proof. It was shown above that F is compatible (with Ξ) when all equivalent
population members have identical fitness. Conversely,

ΞFv = 0 =⇒ 1TΞFv = 1TFv = fT v = 0

so F cannot be compatible if there exists v ∈ KΞ such that fT v �= 0. But if
y ≡ z and fy �= fz, then v = ey − ez ∈ KΞ and fT v �= 0.

It was shown above that if all equivalent population members have identical
fitness (i.e., F is compatible), then compatibility of G – which is equivalent to
the compatibility of τ (Vose, 1999) – implies M is compatible. Conversely, if
KΞ is invariant under both M and F , then it is invariant under G = MF , and
1TGv = 1TΞGv = 0 for all v ∈ KΞ . Therefore, the compatibility condition (8)
reduces to the identity

1TGxΞGv = 0

It was shown above that if F is not compatible with Ξ (all equivalent pop-
ulation members do not have identical fitness), then compatibility of τ – which
is equivalent to the compatibility of τ (Vose, 1999) – implies the columns of M
are equivalent (12). Conversely, if ΞM has the form c1T (columns of M are
equivalent), then ΞG = cfT and the compatibility condition (8) reduces to the
identity

fTxcfT v = cfTxfT v ��
Theorem 2 is put into sharper focus by the following result (recall that ei is

the i th column of the n × n identity matrix, indices begin with zero).

Theorem 3. A necessary and sufficient condition for M to be compatible with
≡ is that for all i, j,

i ≡ j =⇒ Mei ≡ Mej

Proof. If i ≡ j, then v = ei − ej ∈ KΞ . Therefore if M is compatible, then

ΞM(ei − ej) = 0

Hence Mei ≡ Mej. Conversely, if i ≡ j =⇒ Mei ≡ Mej, then ΞM has the form

k−1∑
h=0

Ch

∑
l≡h∗

eT
l

where Ch = ΞMei for i ≡ h∗ (the choice of i does not matter; ΞMei = ΞMej

when i ≡ j). If v ∈ KΞ , then

ΞMv =
k−1∑
h=0

Ch

∑
l≡h∗

eT
l v =

k−1∑
h=0

Ch

∑
l≡h∗

vl = 0
��
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Theorem 3 provides a method by which a mutation operator can be con-
structed compatible with a given equivalence relation; whenever i ≡ j, choose
columns i and j of M to differ by an element of KΞ . Moreover, since KΞ ⊂ 1⊥,
obtaining column i by adding an element v ∈ KΞ to the j th column will not
disturb the column stochasticity of M , provided v + Mej is non negative.

5 Binary Tournament Selection

A zero mutation, zero crossover, tournament selection GA with tournament size
t and fitness function f has corresponding infinite population model (Vose, 1999)

G(p)i = t!
∑

v∈Xt
n

∫ ∑
[fj≤fi](v/t)j

∑
[fj<fi](v/t)j

�(y) dy
∏
j<n

p
vj

j

vj !

where
Xt

n = {〈x0, . . . xn−1〉 : xi ∈ Z≥0, 1Tx = t}
and � is any continuous increasing probability density over [0, 1]. Binary tour-
nament selection refers to the result of choosing t = 2 and taking the limit as �
tends to point mass at 1. Assuming injective fitness (which will be assumed for
the remainder of this paper), the result is

G(p)i = p2
i + 2pi

∑
j

pj [fj < fi]

It follows that

(dGxv)i = 2vixi + 2
∑

l

[fl < fi](vixl + xivl) (15)

Note that (15) is a symmetric expression in x and v, and therefore dGxv = dGvx
is linear in both x and v. In view of this, the compatibility condition is that for
all x ∈ V , and for all v ∈ KΞ ,

dGxv =
∑

h

xhdGeh
v ∈ KΞ

Since KΞ is a subspace, compatibility is therefore equivalent to the condition
that for all h,

v ∈ KΞ =⇒ dGeh
v ∈ KΞ

Moreover, the i th component of the differential above simplifies (from 15) to

(dGeh
v)i = 2vi[fh < fi] + 2[h = i]

∑
l

[fl ≤ fi]vl (16)

This equality constrains what equivalence relations are possible. Consider the
case where there exist nonequivalent elements a and b. Choosing h = a in (16)
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and applying condition (13) for membership in KΞ , compatibility requires the
following implication

0 =
∑
i≡b

vi

=⇒ 0 =
∑
i≡b

(
vi[fa < fi] + [a = i]

∑
l

[fl ≤ fi]vl

)
=
∑
i≡b

vi[fa < fi]

Therefore (by suitable choice of v), either every i equivalent to b must satisfy
[fa < fi] or else no i equivalent to b can satisfy [fa < fi]. In other words,
equivalence classes are “fitness-contiguous” as defined below.

Let θ be a permutation of {0, . . . , n − 1} such that i < j ⇐⇒ fθ(i) < fθ(j)

and let ≡ be any equivalence relation on Ω for which the equivalence classes are
fitness-contiguous, meaning they are

{θ(0), . . . , θ(z0)}, {θ(z0 + 1), . . . , θ(z1)}, . . . , {θ(zk−2 + 1), . . . , θ(zk−1)}

for some 0 ≤ z0 < · · · < zk−1 = n − 1. Let the equivalence class representative
of the c th class be c∗ = θ(zc). It follows that if b < c then everything equivalent
to b∗ has fitness less than everything equivalent to c∗.

Lemma 1. If the equivalence classes of ≡ are fitness-contiguous and v ∈ KΞ ,
then for all l, ∑

i≡j

[fl ≤ fi]vi = [l ≡ j]
∑

i

[fl ≤ fi]vi

Proof. If l �≡ j, then fl is either less than everything equivalent to j or else it is
greater than everything equivalent to j. In the latter case, both sides above are
zero. In the former case, both sides are also zero since then the left hand size
vanishes due to (13). By what has been shown so far,

∑
i

[fl ≤ fi]vi =
k−1∑
c=1

∑
i≡c∗

[fl ≤ fi]vi =
k−1∑
c=1

[l ≡ c∗]
∑
i≡c∗

[fl ≤ fi]vi =
∑
i≡l

[fl ≤ fi]vi

which completes the proof for the remaining case l ≡ j. ��

Theorem 4. Binary tournament selection is compatible with ≡ if and only if
the equivalence relation is fitness-contiguous.
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Proof. The “only if” part has already been established. Let v ∈ KΞ . By (16)
and what has been established above, the “if” part follows from

1
2

∑
i≡j

(dGeh
v)i =

∑
i≡j

(
vi[fh < fi] + [h = i]

∑
l

[fl ≤ fi]vl

)
=
∑
i≡j

vi[fh < fi] + [h ≡ j]
∑

l

[fl ≤ fh]vl

= [h ≡ j]
(∑

i

vi[fh < fi] +
∑

l

[fl ≤ fh]vl

)
= [h ≡ j]

∑
i

vi

= 0 ��
For “binary tournament selection + mutation” to be made compatible with a

fitness-contiguous equivalence relation, mutation may be chosen as in theorem 3.

6 Ranking Selection

A zero mutation, zero crossover, ranking selection GA with parameter � and
fitness function f has corresponding infinite population model

G(x)i =
∫ ∑

[fj≤fi]xj

∑
[fj<fi]xj

�(y) dy

where � is any continuous increasing probability density over [0, 1] (Vose, 1999).
Define η by

ηθ(0) = 0
ηθ(i+1) = ηθ(i) + xθ(i)

(recall that i < j ⇐⇒ fθ(i) < fθ(j)). It follows that

G(x)i = ϕ(xi + ηi) − ϕ(ηi) (17)

dGxv =
∑

i

ei

∑
k

(�(xi + ηi)[fk ≤ fi] − �(ηi)[fk < fi]) vk (18)

where ϕ is an anti-derivative of � (Vose, 1999). Choosing x = eh, the last ex-
pression above simplifies to yield

(dGeh
v)i = �([fi ≥ fh])vi + [i = h](�(1) − �(0))

∑
k

[fk < fi]vk

Compatibility requires that for all c∗, and all v satisfying (13),

0 =
∑
i≡c∗

(
�([fi ≥ fh])vi + [i = h](�(1) − �(0))

∑
k

[fk < fi]vk

)
=
∑
i≡c∗

�([fi ≥ fh])vi + [h ≡ c∗](�(1) − �(0))
∑

k

[fk < fh]vk (19)
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Assuming the equivalence relation is nontrivial, choose h �≡ c∗ to obtain

0 =
∑
i≡c∗

�([fi ≥ fh])vi = �(0)
∑
i≡c∗

[fi < fh]vi + �(1)
∑
j≡c∗

[fj ≥ fh]vj (20)

As seen in the previous section, this implies ≡ must be fitness-contiguous (it
follows from �(1) > �(0) and choosing v to have exactly two nonzero components;
either every j equivalent to c must satisfy [fj < fh] or else every i equivalent to
c must satisfy [fi ≥ fh] since otherwise vi = −vj �= 0 contradicts 20).

Theorem 5. Ranking selection is compatible with ≡ if and only if the equiva-
lence relation is fitness-contiguous.

Proof. The “only if” part has already been established. Let v ∈ KΞ . Appealing
to (18) and the fact that ≡ is fitness-contiguous, the “if” part follows from∑

i≡c∗

∑
k

(�(xi + ηi)[fk ≤ fi] − �(ηi)[fk < fi]) vk

=
∑

k≡i≡c∗
(�(xi + ηi)[fk ≤ fi] − �(ηi)[fk < fi])vk +

∑
k �≡c∗

vk

∑
i≡c∗

�(xi + ηi) − �(ηi)

=
∑

zc−1< u,v ≤zc

(�(xθ(v) + ηθ(v))[fθ(u) ≤ fθ(v)] − �(ηθ(v))[fθ(u) < fθ(v)])vθ(u)

=
∑

zc−1<u≤zc

vθ(u)

∑
zc−1<v≤zc

�(ηθ(v+1))[u ≤ v] − �(ηθ(v))[u < v]

=
∑

zc−1<u≤zc

vθ(u)

( ∑
u≤v≤zc

�(ηθ(v+1)) −
∑

u<v≤zc

�(ηθ(v))
)

= �(ηθ(zc+1))
∑

zc−1<u≤zc

vθ(u)

= 0 ��

7 Nonlinear Coarse Graining

Applications have so far involved linear coarse grainings corresponding to an
equivalence relation over Ω. A nonlinear coarse graining is derived below for
ranking selection. To simplify analysis, let ϕ(x) = xγ (where γ is a parameter),
and let m and M denote the minimal fitness and maximal fitness elements of
Ω, respectively. We seek a coarse graining where Ψ is real valued, independent
of γ, and depends on xm and xM .

The derivation of Ψ is simplified by exploiting the invariant 1 = xM + ηM , so
we choose to work with Ψ(x) = ψ(xm, ηM ) for some function ψ. Let ψ1 and ψ2

denote the partial derivative of ψ with respect to its first and second argument,
respectively. It follows that

∂Ψ

∂xj
=

⎧⎨⎩
ψ1 + ψ2 if j = m
ψ2 if j �= m and j �= M
0 if j = M
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The condition v ∈ KdΨx can therefore be expressed as

0 =
∑

j

vj
∂Ψ

∂xj
= vmψ1(xm, ηM ) + ψ2(xm, ηM )

∑
j �=M

vj (21)

Hence ∑
j �=M

vj = −vmψ1(xm, ηM )/ψ2(xm, ηM ) (22)

In view of (17), and using the form of (21) with v ← dGxv and x ← G(x), the
sufficient condition for compatibility (namely, v ∈ KdΨx =⇒ dGxv ∈ KdΨG(x))
requires

0 = (dGxv)mψ1(z0, z1) + ψ2(z0, z1)
∑
j �=M

(dGxv)j (23)

where
z0 = xγ

m, z1 =
∑
i�=M

(xi + ηi)γ − ηγ
i

According to (18),

1
γ

∑
j �=M

(dGxv)j

=
∑
j �=M

∑
k

((xj + ηj)γ−1[fk ≤ fj] − ηγ−1
j [fk < fj ]) vk

=
∑
j �=M

(
(xj + ηj)γ−1

∑
k

[fk ≤ fj ]vk − ηγ−1
j

∑
k

[fk < fj ] vk

)
= ηγ−1

M

∑
k �=M

vk

since the sum telescopes. Combining the last expression above with (22), the
compatibility condition (23) becomes

0 = xγ−1
m vmψ1(z0, z1) − ψ2(z0, z1)η

γ−1
M vmψ1(xm, ηM )/ψ2(xm, ηM )

Since Ψ is to be independent of γ, let γ ↓ 0 and note that z0 → 1 and z1 → 1.
After simplifying and rearranging the equation above, the result as γ ↓ 0 is

ψ2(xm, ηM )
ψ1(xm, ηM )

=
xm

ηM

ψ2(1, 1)
ψ1(1, 1)

(24)

Focusing attention on an equivalence class – which makes xm a function of ηM

– consider the relation
ψ(xm, ηM ) = c

(for some constant c). Applying the implicit function theorem,

ψ2

ψ1
= − d

dηM
xm



190 Jonathan E. Rowe, Michael D. Vose, and Alden H. Wright

and therefore (24) becomes the differential equation

d

dηM
xm = β

xm

ηM

(for some constant β). Solving the differential equation yields

xm = cηβ
M

and
ψ(xm, ηM ) =

xm

ηβ
M

Using the invariant 1 = xM + ηM , this may be rephrased in terms of xM by
redefining ψ as

ψ(xm, xM ) =
xm

(1 − xM )β

8 Conclusion

Coarse graining is a pervasive concept in science, but has so far not been sys-
tematically investigated within the field of Genetic Algorithms. Whereas the
phrase “coarse graining” has previously been used by other researchers in con-
nection with GAs (most notably by Chris Stephens) that use typically ascribes
a different meaning to the phrase than considered here.

Previous examples of coarse grainings (in the sense used here) include the
papers by Rabinovich and Wigderson, and by Muhlenbein and Voigt. Rather
than considering specific fitness functions or operators (as they do), our intent
is to develop methods which may discover, characterize, and elucidate general
invariants of the mathematical objects by which genetic search is formalized.

The principal contribution made by this paper is the introduction and illus-
tration of techniques which facilitate the analysis of coarse graining within the
context of GAs. Most remarkable is the manner in which coarse gainings are
dealt with. They are not guessed or noticed, to be pointed out and subsequently
verified. Instead, they are derived.

The potential utility of the methods presented has been demonstrated by
obtaining a number of new coarse graining results. In several cases, the coarse
grainings derived were characterized as being the only ones possible (within the
class of linear coarse grainings corresponding to partitions of the search space).
In one case (section 7), a non linear coarse graining was computed by solving a
differential equation.
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Abstract. Although much progress has been made in recent years in the
theory of GAs and GP, there is still a conspicuous lack of tools with which
to derive systematic, approximate solutions to their dynamics. In this
article we propose and study perturbation theory as a potential tool to fill
this gap. We concentrate mainly on selection-mutation systems, showing
different implementations of the perturbative framework, developing, for
example, perturbative expansions for the eigenvalues and eigenvectors
of the transition matrix. The main focus however, is on diagrammatic
methods, taken from physics, where we show how approximations can
be built up using a pictorial representation generated by a simple set of
rules, and how the renormalization group can be used to systematically
improve the perturbation theory.

1 Introduction

Although much progress has been made in recent years in furthering our theo-
retical understanding of Genetic Algorithms (GAs) and Genetic Programming
(GP) using coarse-grained formulations (see, for instance, [1–5]), most of this
progress has been either at the formal level, for instance in the derivation of
exact Schema Theorems, or at the qualitative level where, for example, a deeper
understanding of the role of recombination has been gained. Such coarse-grained
formulations have also led to a unified theoretical framework for both GAs and
GP. However, there remains a conspicuous absence of tools by which the dynam-
ics of evolutionary algorithms (EAs) may be systematically approximated.

The Statistical Mechanics approach [6] offers one possibility but, as empha-
sised in [7] – “...it is not a mechanical, procedural method. Some insight about
what is important and what is inessential is required”. Instead of passing directly
to a “macroscopic” view, as is done in the statistical mechanics approach, one
may wonder if any progress can be made at a more microscopic level? Common
wisdom is almost uniformly pessimistic as to whether microscopic formulations
can offer a way forward. In this paper we try to argue that perhaps the situation
is not as bleak as it first seems, proposing perturbative methods in their vari-
ous guises as a potential way forward. Of course, perturbation theory appears

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 192–214, 2005.
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ubiquitously throughout the physical sciences, as well as in pure and applied
mathematics and engineering.

In biology it has been used, for instance, by Eigen and collaborators [8] to
analyse the quasi-species model. It has frequently been utilised at a formal level
(see, for example [9]) to determine the stability or convergence properties of
fixed points of the dynamics. More recently [10], it was used to consider the
evolution of the cumulants of a mutation-selection system. The analysis there
however, was restricted to a single elementary landscape. As far as we are aware,
perturbative techniques have not been considered in the context of Evolutionary
Computation (EC). Furthermore, they have not been considered in conjunction
with the renormalization group in either biology or EC.

In this paper, as perturbative methods can be implemented in a myriad of
different ways, we will give only a simple introduction to a few aspects of the
general methodology. Sticking mainly to mutation-selection systems, we briefly
discuss the perturbative construction of the eigenvalues and eigenvectors of the
transition matrix. However, we concentrate most of our attention on generat-
ing perturbative expansions diagrammatically. This has the advantage of being
transparent and intuitive, as it concentrates on constructing the different routes
by which a given physical process may be realized. Although we use a one-bit
system to make a concrete illustration we also consider multi-locus systems on
a range of fitness landscapes in order to show that the methodology is not re-
stricted purely to the standard “toy” models. Note that, in standard fashion,
we will consider the population dynamics in the infinite population limit. How-
ever, as our main interest is in the transition matrix that determines the Markov
chain that describes the dynamics, the results herein can be straightforwardly
taken over to the finite population model, where a sampling of the multinomial
distribution based on this transition matrix is carried out (see [11] Chapters 5
and 6 for a nice introduction to this).

2 An Introduction to Genetic Dynamics

We begin with the fundamental equations that describe the dynamics of a large
class of EAs. We consider the three basic genetic operators – mutation, M, se-
lection, F , and recombination, R – and, without loss of generality, will consider
them acting in the causal order MRF on a population vector P(t), whose co-
variant components, PI(t), represent the probability to find an object – string,
tree etc. – I at time t. For fixed length strings of length N and alleles of cardinal-
ity n, I = i1 . . . iN is a multi-index with i1 . . . iN ∈ [0, n − 1]. M and F in their
turn are naturally represented as matrices, M J

I and F J
I , with the latter gener-

ally being a diagonal matrix with elements proportional to δ J
I , where δ J

I = 1
for I = J and 0 otherwise. In the case of proportional selection for instance,
F J

I = (fI/f̄(t))δ J
I , where fI is the fitness of string I and f̄(t) the average

population fitness. M J
I is the probability that string J mutates to string I, the

matrix elements being given by pdIJ (1 − p)N−dIJ , with dIJ being the Hamming
distance between strings I and J and p the mutation probability.
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Mathematically, as matrices, M and F are linear machines1 which take as
input (co-/contra)-variant vectors (row/column vectors in the case of matrix
algebra) and give as output (contra-/co)-variant vectors. The intuitive interpre-
tation is that each element of these matrices acts on a component of P as input
to give another, possibly the same, component, as output. Recombination, on
the other hand, naturally takes as input a pair of strings and gives as output a
string2. Mathematically, it is therefore represented naturally as a mixed tensor,
R JK

I , with two contra- and one co-variant indices, which is a linear machine
that takes as input two co-variant (row) vectors and gives as output a single
contra-variant (column) vector. The dynamics can then be written in the covari-
ant form (covariant here meaning that it is written such that its transformation
properties under a coordinate transformation are manifest and follow from the
simple linear rule of equation (3) below)

PI(t + 1) =
∑
JK

H JK
I PJ(t)PK(t) (1)

where H JK
I =

∑
LMN M L

I R MN
L F J

M F K
N .

The reader may wonder: Why this particular interpretation of the mathe-
matical nature of the dynamics? The answer is that using tensors is the most
natural way to represent the geometrical properties of the fundamental objects in
a theory under coordinate transformations. The next question is: why are the co-
ordinate transformation properties of interest? The answer is that the dynamics
can be greatly simplified when written in the most appropriate coordinate sys-
tem providing greater insight and facilitating quantitative analysis. Additionally,
writing equations in covariant form ensures that any statement valid in one co-
ordinate system will be valid in any. A coordinate transformation is understood
here as a linear map between bases and is explicitly realized by a matrix Λ. One
may then enquire as to what is the most appropriate basis [13]? For instance, for
binary strings the standard basis in the configuration space is the δ-basis, Bδ.
The δ-basis is the set of 2N characteristic functions defined on the hypercube,
CN , embedded in RN – N -dimensional Euclidean space – one function for each
of the 2N vertices of CN . Each characteristic functions is “delta-like”, having
non-zero values only at the corresponding vertex of the cube. For example, the
basis function at the origin is x̄1x̄2 . . . x̄N and so

Bδ = {x̄1x̄2 . . . x̄N , x̄1x̄2 . . . xN , . . . , x1x2 . . . xN} . (2)

If we restrict all the basis functions to the vertices of CN , each xi, 1 ≤ i ≤ N ,
takes the values 0 and 1 and x̄i ≡ e − xi, where e takes the value 1 at each
corner of the unit cube. Arranging the basis elements in columns to form the
vector xδ = (x̄1 . . . x̄1, . . . , x1 . . . xN )T , one implements a transformation to a

1 We will here use the language of tensor analysis. Readers unfamiliar with this may
consult an introductory text such as [12]

2 Although the output is really a pair of strings, determination of the first child com-
pletely fixes the second
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new basis xδ′ via xδ′ = Λxδ. A tensor T J1...Js

I1...Ir
transforms under a basis

transformation between δ and δ′ as

T
J′
1...J′

s

I′
1...I′

r
=
∑

I1...Ir
J1...Js

Λ
I1

I′
1

. . . Λ
Ir

I′
r

T
J1...Js

I1...Ir
(Λ−1) J′

1
J1

. . . (Λ−1) J′
s

Js
(3)

Further insight into the dynamics can be obtained by explicitly subtracting
out the linear “cloning” term from the recombination operator to obtain

PI(t + 1) =
∑

J

M J
I

(
(1 − pc)P ′

J + pc

∑
KLm

1
2
(
p(m) + p(m̄)

)
λ KL

J (m)P ′
KP ′

L

)
(4)

where P ′
I(t) =

∑
J F J

I PJ(t) is the probability to select string I, pc is the prob-
ability that recombination takes place and p(m) is the probability to implement
the recombination mask m, m̄ denoting the conjugate mask. Finally, λ JK

I (m) is
an interaction term between strings I, J and K and represents the conditional
probability that, given the selection of parent strings J and K, a child string of
type I is produced when recombination is implemented using a mask m. It takes
values 0 and 1. Equation (4) has a straightforward intuitive interpretation. The
first term in brackets represents the probability that a string is “cloned”, while
the second term represents the probability that a string is created via recombi-
nation. An analogous functional form also holds for the case of GP [2, 14].

Despite the covariance of (1), the facility of its analysis and its physical
interpretation are basis-dependent. The dynamics is governed by the mutation
matrix M J

I , the tensor λ JK
I (m), the mask probability distribution p(m) and

the fitness values fI , hidden inside P ′
I or F J

I . In this sense the EA is a “black
box” whose output depends on a large set of parameters. It therefore behoves
us to look for symmetries and regularities that may be exploited in order to
effect a coarse graining which makes manifest the effective degrees of freedom
of the dynamics in terms of which the dynamics looks simplest. However, this
in its turn depends on choosing an appropriate coordinate system wherein a
particular regularity is more clearly seen. For instance, in a selection dominated
regime, the string basis is the most appropriate one, as the selection matrix F
is diagonal in this basis, i.e. the strings themselves are the appropriate effective
degrees of freedom. However, when mutation is the dominant operator, a basis
transformation to the Walsh basis, x̂, using the transformation matrix

Λw ≡ 2−N/2

(
1 1
1 −1

)⊗N

(5)

is useful, where ⊗N is the Nth tensor power of the matrix. The power of the
Walsh transform is that it diagonalizes the mutation matrix M so that its matrix
elements are (1 − 2p)|I|δ J

I , |I| being the order of the Walsh mode I. Similarly,
when recombination is the dominant operator a basis transformation to the
Building Block or monomial basis [13, 15], xBB , is appropriate using

ΛBB ≡
(

1 1
0 1

)⊗N

(6)
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The advantage of this transformation is that the tensor λ JK
I becomes skew-

diagonal on the indices J and K for any string I [13, 15], thus showing that
recombination builds strings by explicitly combining the Building Blocks of that
string.

3 Exact Solutions of the Dynamics

As the key element of a perturbative approach is the development of a power
series expansion around a known exact limit, it is important to have a good
understanding of the different limits in which an exact solution for the dynamics
may be found. There are no known exact solutions of equation (4) in the presence
of all three genetic operators3. However, solutions in the absence of one or more
of the operators may be found4.

3.1 Explicit Solutions

Selection Only. In the case of selection only the evolution equations (4) are un-
coupled and essentially linear in the variables PI(t), the apparent non-linearity
in f̄(t) having as its origin nothing more than the normalisation of the proba-
bilities,

∑
I PI(t) = 1. Passing to unnormalised variables xI(t), defined via

PI(t) =
xI(t)∑
I xI(t)

(7)

leads to an explicit solution

PI(t) =
f t

IPI(0)∑
I f t

IPI(0)
(8)

In general, an exponential number of fitness values must be specified. However,
in many cases the map will be many-to-one and the phenotypic dynamics may
simplify accordingly. The fixed point of (8) is P ∗

I = limt→∞ PI(t) → 1 ⇐⇒
fI > fJ ∀ J such that PJ (0) �= 0. Note that this fixed point depends on
the initial conditions and hence is not universal. In the case where all strings
are represented however, the fixed point is the global maximum of the fitness
landscape in the case where this maximum is unique.

Mutation Only. In the case of mutation only, the equations (4) remain linear,
but are coupled in the string basis. Passing to the Walsh basis using the basis
transformation (5) one finds the solution

P̂I(t) = (1 − 2p)|I|tP̂I(0) (9)

each eigenvalue denoted by |I| being associated with NC|I| degenerate eigenvec-
tors. Thus, just as the exact solution for selection only is diagonal in the string
3 Note however, that exact solutions may be found [16] for the case of modified re-

combination operators, such as genepool recombination, and certain specific fitness
landscapes, such as functions of unitation

4 A more leisurely derivation of many of the results in this section can be found in [11]
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basis the exact solution for mutation only is diagonal in the Walsh basis. The
fixed point of the dynamics is given by limt→∞ P̂I(t) = 2−N/2δ 0

I and corre-
sponds to the centre of the simplex, i.e. equal proportions of every genotype.
The bigger is |I|, the faster the decay of the associated transient to the fixed
point.

Recombination Only. Finally, in the case of recombination only, although an
exact solution is not known for discrete time and arbitrary crossover, a solution
is known in the continuous time limit for one-point crossover [3]. The solution is

PI(t) =
N−1∑
n=0

e
−npc
N−1 (1 − e

−pc
N−1 )N−nP(n + 1) (10)

where P(n+ 1) =
∑

i Π
N−n
ni=1Pni(0). Each Pni(0) is the initial probability for the

Building Block ni which crossover could combine to give genotype I. The product
is over the different numbers, ni, of Building Blocks and the sum is over the
different possible permutations for a given number. For example, for N = 3, for
I = 111 P(1) = P1∗∗(0)P∗1∗(0)P∗∗1(0), P(2) = P11∗(0)P∗∗1(0) + P1∗∗(0)P∗11(0)
(two permutations) and P(3) = P111(0).

3.2 Formal Solutions
Above we considered explicit exact solutions. One can also get useful information
by considering formal, or implicit, exact solutions. An example of this is the
case of mutation and selection where the problem is linear and so the trick
of passing to unnormalised variables, xI(t), remains valid. In this setting the
equation xI(t+1) =

∑
K W K

I xK(t), where the matrix W has elements W K
I =∑

J M J
I fJδ

K
J , can be simply iterated to obtain the formal solution

PI(t) =
∑

J(W t) J
I PJ(0)∑

IJ(W t) J
I PJ(0)

(11)

The solution is formal in that (W t) is the t-th power of an exponentially large
matrix. If W can be diagonalized via a similarity transformation, which we
assume, then we may interpret this as a basis transformation x̃ = Λ̃xδ, where
the x̃ are the normalised eigenvectors of W . Under this transformation PI(t) →
P̃I(t) =

∑
J Λ̃ J

I PJ(t) and W → W̃ , where W̃ is diagonal with elements λIδ
J

I

and λI is the eigenvalue corresponding to eigenvector I. One thus finds

P̃I(t) =
λt

I P̃I(0)∑
I λt

I P̃I(0)
(12)

The general solution in the original string basis can be found by inverting the
basis transformation using Λ̃ to find

PI(t) =
∑

JK Λ̃ J
I λt

J (Λ̃−1) K
J PK(0)∑

IK λt
I(Λ̃−1) K

I PK(0)
(13)

Note the functional form as a sum of exponentials, where, as W has only positive
entries, at least the biggest eigenvalue is positive. For example, for one-bit
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P0(t) = N
(
A00λ

t
0 + A01λ

t
1

)
(14)

where A00 = (Λ̃ 0
0 (Λ̃−1) 0

0 P0(0) + Λ̃ 0
0 (Λ̃−1) 1

0 P1(0)) and A01 = (Λ̃ 1
0 (Λ̃−1) 0

1

P0(0) + Λ̃ 1
0 (Λ̃−1) 1

1 P1(0)) are the amplitudes of the different exponents and
where N =

∑
IK λt

I(Λ̃
−1) K

I PK(0) is a normalisation constant. The asymptotic
behaviour is dominated by the largest eigenvalue, λmax, associated with a cor-
responding eigenvector x̃max. The corresponding component of P in this basis
is P̃ ∗

max. In terms of the original string basis the fixed point is P ∗
I = Λ̃ max

I ,
independent of the initial population.

4 Perturbation Theory

Perturbation theory is an ubiquitous tool in the physical sciences. However, in
all its guises its conceptual basis is the same – finding approximate solutions as
power series expansions with respect to a “small” parameter, ε, around a known
solution. Conceptually, the methodology is simple. In the context at hand one
writes PI (or the unnormalised variable xI) as a power series in ε

PI(t) =
∞∑

n=0

εnP
(n)
I (t) (15)

where the expansion coefficients P
(n)
I are to be determined. One assumes that the

operator H JK
I can be written in the form H JK

I = D JK
I +εO JK

I , where O JK
I

is the perturbation operator and the solution of PI(t + 1) =
∑

JK D JK
I PJ(t)

PK(t) is known. One subsequently substitutes the ansatz (15) into equation (1)
and matches powers of εn from both sides of the equation. For instance, to O(1)
and O(ε) one finds

P
(0)
I (t + 1) =

∑
JK

D JK
I P

(0)
J (t)P (0)

K (t) (16)

P
(1)
I (t + 1) =

∑
JK

(
D JK

I P
(1)
J (t)P (0)

K (t)+

D JK
I P

(1)
J (t)P (0)

K (t) + O JK
I P

(0)
J (t)P (0)

K (t)
)

(17)

The solution of (16) is assumed known. Once P
(0)
I has been determined then

equation (17) is a linear inhomogeneous difference equation for P
(1)
I where the

inhomogeneity is a known function of P
(0)
I . This equation can be solved using

as initial condition P
(1)
I (0) = 0 5. The solution to O(ε) is thus PI(t) = P

(0)
I (t) +

εP
(1)
I (t) + O(ε2). The formal expansion parameter ε can now be put to one6.

5 We can naturally set P
(n)
I (0) = 0 ∀ n �= 0. This is intuitive, in that ε gauges the

effect of the perturbation which perturbs the initial population after t = 0
6 ε is only taken to be small in a formal sense here in order to generate systematic power

series expansions. Physically, the relevant small parameter for mutation-selection
systems is the mutation rate, or the deviation from a flat fitness landscape, and it
is these parameters that will govern the accuracy of the approximation
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5 Perturbation Theory for Mutation-Selection Systems

To illustrate the general methodology we restrict attention to the case of muta-
tion and selection. This problem is, in principle, straightforward, requiring only
the eigenvalues and eigenvectors of the matrix MF . However, computationally
this is extremely difficult for large matrices.

First, we transform to the unnormalised variables defined in (7), xI(t), re-
membering that we can consider them in either the string or the Walsh basis.
The equation to be solved is

xI(t + 1) =
∑
JK

M J
I F K

J xK(t) (18)

where, without change of notation, we now take F to have elements F J
I = fIδ

J
I ,

the scalar f̄(t) having been removed by the change to unnormalised variables.
The idea now is to solve this approximately by some perturbative expansion
around some known exact limit. From section 3, two natural limits are the limits
M J

I → δ J
I and F J

I → δ J
I , associated with zero mutation and zero selection

gradient respectively. In this case one writes

M J
I = (δ J

I + εdM J
I ) (19)

F J
I = (δ J

I + εdF J
I ) (20)

where dM and dF are the perturbation operators and contain the deviations of
M and F from the unit matrix. Thus, in the case of selection we are using dF
to measure deviations from a constant fitness value, which we take to be one.
For example, for one bit, in the string basis the deviations are given by

dM =
(−p p

p −p

)
and dF =

(
f0 0
0 f1

)
(21)

with f0 and f1 measuring deviations from flat fitness, while in the Walsh basis

d̂M =
(

0 0
0 −2p

)
and d̂F =

1
2

(
(f0 + f1) (f0 − f1)
(f0 − f1) (f0 + f1)

)
(22)

Alternatively, given that (18) is exactly solvable when W = MF is any diagonal
matrix, we could divide W into a diagonal part, D, and an off-diagonal part, O,
and write W = D + εO.

5.1 Perturbative Construction of Eigenvalues and Eigenvectors

There are several alternatives for constructing a perturbation theory depending
on what quantities one wishes to construct. In EC the string proportions, PI(t),
are of direct interest. Hence, it is natural to implement a formalism that focuses
directly on them. However, there is another implementation that focuses more
on the perturbative construction of the eigenvalues and eigenvectors of W .
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We assume, as in section 3.2, that W can be diagonalized via a basis trans-
formation W → W̃ = Λ̃WΛ̃−1. In distinction to section 3.2 though, where it
was assumed that Λ̃ could be determined exactly, we will here construct the
transformation perturbatively. As the eigenfunctions of the unperturbed prob-
lem form a complete set of basis functions – string or Walsh basis functions –
one may consider the basis transformation x̃ = Λ̃x as an expansion of the exact
eigenfunctions of W in terms of the unperturbed ones (i.e. of M or F alone),
where x will refer to the unperturbed eigenfunctions. One now seeks perturba-
tive solutions by writing power series expansions for the eigenvalues, λi and the
expansion coefficients, Λ̃ j

i

λi =
∞∑

n=0

εnλ
(n)
i ; Λ̃ i

i =
∞∑

n=0

εnΛ̃
i(n)

i ; Λ̃ j
i =

∞∑
n=1

εnΛ̃
j(n)

i (23)

where we are using lower case letters i and j to index the eigenvectors and
eigenvalues. Note that the expansion of the non-diagonal elements of Λ̃ starts at
O(ε), in distinction to the diagonal ones. This recognises the fact that only the
presence of the perturbation can induce such non-diagonal terms. In the basis
where W̃ is diagonal, an eigenvector x̃i with components x̃i

I is a solution of∑
J

W̃ J
I x̃i

J = λix̃
i
I (24)

Substituting the ansatz (23) into (24), matching coefficients of εn and using the
fact that the unperturbed eigenfunctions are orthogonal, i.e.

∑
J xJ

i x
j
J = 0 for

i �= j, one finds to O(ε)

λi = λ
(0)
i + ε

∑
JK

xJ
i O

K
J xi

K (25)

where O is the perturbation operator. To be more concrete, consider the example
of one-bit with perturbation operator O J

I = dF J
I . In this case it is appropriate

to work in the Walsh basis using equation (22). In this basis, as M̂ is diagonal,
the unperturbed eigenvalues, λ+ = 1 and λ− = (1− 2p), can be read off directly
from it. The corresponding eigenvectors are x+ = (1 0)T and x− = (0 1)T . The
O(ε) contribution to λ+, λ(1)

+ , is

λ
(1)
+ =

1
2
(1 0)

(
(f0 + f1) (f0 − f1)

(1 − 2p)(f0 + f1) (1 − 2p)(f0 − f1)

)(
1
0

)
=

(f0 + f1)
2

(26)

where, once again, f0 and f1 refer to deviations from flat fitness. The analogous
expression for λ− is found by substituting (1 0) for (0 1) in (26) to find λ

(1)
− =

(1 − 2p)(f0 + f1)/2. Thus, to O(ε) the two eigenvalues are

λ+ =
(

1 +
ε(f0 + f1)

2

)
(27)

λ− = (1 − 2p)
(

1 +
ε(f0 + f1)

2

)
(28)
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In order to construct a solution of the form (13), as well as the eigenvalues we
also need the basis transformation matrix Λ̃ that relates the exact basis to the
string or Walsh basis. The columns of the transformation matrix are, in fact,
just the eigenvectors of W . Hence, a perturbative calculation of the eigenvectors
is equivalent to an expansion of the elements of Λ̃. For our example one-bit case,
as we are working in the Walsh basis, it is the eigenvectors of Ŵ . Explicitly,
for the coefficients of the transformation between unperturbed and perturbed
eigenstates, to O(ε) one finds Λ̃

i(1)
i = 0 and for j �= i

Λ̃
j(1)

i =
∑

IJ xI
i O

J
I xj

J

(λ(0)
i − λ

(0)
j )

(29)

For one bit, for the case Ô J
I = d̂F

J

I

Λ̃
−(1)

+ =
1
4p

(1 0)
(

(f0 + f1) (f0 − f1)
(1 − 2p)(f0 + f1) (1 − 2p)(f0 − f1)

)(
0
1

)
=

(f0 − f1)
4p

(30)
With the expansion coefficients in hand the exact eigenvectors x̃ may be calcu-
lated, which are then used to compute the basis transformation matrix Λ̃. As
seen in section 3.2 it is in fact this matrix which provides important information,
such as the fixed points of the dynamics, the eigenvalues merely governing the
approach to the fixed point.

5.2 Diagrammatic Perturbative Construction of PI

Although conceptually straightforward and well known, the above methodology
for calculating eigenvalues and eigenvectors is complicated to implement beyond
leading order, especially in terms of calculating the expansions of the eigenvec-
tors, and these are essential if one wishes to construct expressions for the PI(t)
and, in particular, if the asymptotic behaviour in the vicinity of any fixed point
is required. Additionally, when there are several eigenvectors that correspond
to the same eigenvalue, orthogonal combinations of the associated eigenvectors
must be found. We thus consider now how to calculate the xI(t) directly. Ini-
tially, we will consider a general fitness landscape and arbitrary string length
and population, as a great deal of useful information can be gleaned from the
general case without having to specialise to a particular problem.

We will illustrate the methodology in the context of an expansion around the
no selection limit (the corresponding expansion around zero mutation is very
similar). In this case it is appropriate to first do a coordinate transformation
to the Walsh basis. In the Walsh basis, the solution of the unperturbed (i.e. no
selection and no crossover) system is

x̂I(t) = (1 − 2p)|I|tx̂I(0) (31)

One can interpret (31) and, in particular, a factor (1 − 2p)|I|(t−t′) as describing
the propagation in time, between t′ and t, of an elementary “excitation” of
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J

I

n2

n 1

n J

I

K

(a) (b) (c)

I
dF J

dF

dF

J
K

I
J

Fig. 1. Diagrammatic representation of the O(1), O(ε) and O(ε2) perturbative terms
[(a), (b) and (c) respectively]

type I7 which can be represented diagrammatically as a straight line, as shown
in Figure 1(a). As (1 − 2p) < 1 the excitation decays exponentially, the rate
of decay depending on the order of the Walsh coefficient. The only excitation
that does not decay is the zeroth order one which corresponds to the uniform
population limit in the string basis. The presence of the perturbation, in this
case selection, can be interpreted as an interaction between the excitation and
some external operator and can be represented diagrammatically by a wavy line
as shown in Figure 1(b). These diagrams are a simple, intuitive mnemonic for
the algebraic expression

x̂I(t) = (1 − 2p)|I|tx̂I(0) + ε
∑
J

t−1∑
n=0

(1 − 2p)|I|(t−n)d̂F
J

I (1 − 2p)|J|nx̂J (0), (32)

The two terms represent the different physical processes that can contribute to
O(ε) to the appearance of a Walsh mode I at time t. The first term, correspond-
ing to Figure1(a), represents the process where the mode I was present at t = 0
and propagates forward to t. The second term, corresponding to Figure 1(b)
however, represents the probability that it is produced by first starting with a
mode J at t = 0, which then propagates to time t = n. At t = n it interacts

with the Walsh-transformed perturbation selection operator, d̂F
J

I to produce
the mode I, which then propagates from t = n to t.

∑
J represents the fact that

one must consider all possible initial starting states as potential contributions,
while

∑t−1
n=0 represents the possibility that the interaction may take place at any

one of the t time steps of the evolution.
One may sum the second term (32) to find

x̂I(t) = (1−2p)|I|tx̂I(0)+ε(1−2p)|I|t
∑

J

(
1 − (1 − 2p)(|J|−|I|)t)
1 − (1 − 2p)(|J|−|I|) d̂F

J

I x̂J (0) (33)

There are three distinct cases to take into account: |I| < |J |, |I| > |J | and
|I| = |J |. In the first case the contribution from the corresponding interactions
7 In the Walsh basis this excitation is analogous to a normal mode, while in the string

basis these elementary excitations are obviously the strings themselves
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only modifies the amplitude of the zeroth-order transient behaviour, associated

with (1 − 2p)|I|t, from 1 to 1 +
∑

|J|>|I| d̂F
J

I x̂J(0)/(1 − (1 − 2p)(|J|−|I|)), where
the sum is over those Walsh modes for which |J | > |I|. When |I| > |J | the
contribution from the interaction dominates, leading to a decay for x̂I(t) of
the form (1 − 2p)|J|t, which is slower than (1 − 2p)|I|t. Finally, in the limit
|J | → |I| there is an apparent singularity in the dynamical factor. However,
lim|J|→|I|(1 − (1 − 2p)(|J|−|I|)t)/(1 − (1 − 2p)(|J|−|I|)) = t. This term is the
analog of a secular term as found in perturbative solutions of ordinary differential
equations [17]. At first glance it invalidates perturbation theory, as it leads to
a linearly growing perturbation in time. However, as this term is suppressed by
the exponential decay, (1−2p)|I|t, it does not affect the value found for the fixed
point except, at first glance, for the zeroth mode. That this is not a problem can
be seen by returning to the normalised variables PI via equation (7). First we
pass to the normalised Walsh variables, P̂I , which are related to the x̂I via

P̂I(t) =
1

2
N
2

x̂I(t)
x̂0(t)

(34)

with P̂0(t) = 1/2N/2 just the Walsh transformed constraint
∑

I PI(t) = 1. Sub-
stituting (33) into (34) and expanding the denominator in ε one finds to O(ε)

P̂I(t) = (1 − 2p)|I|tP̂I(0) + ε(1 − 2p)|I|t
∑

J

(
1 − (1 − 2p)(|J|−|I|)t)
1 − (1 − 2p)(|J|−|I|) d̂F

J

I P̂J (0)

− ε(1 − 2p)|I|t2
N
2 P̂I(0)

∑
J

(
1 − (1 − 2p)|J|t)
1 − (1 − 2p)|J| d̂F

J

0 P̂J (0) (35)

Taking the limit t → ∞ one finds the fixed point for |I| �= 0

P̂ ∗
I =

ε

2
N
2

d̂F
0

I

((1 − 2p)−|I| − 1)
(36)

Thus, we see that the fixed point associated with the centre of the simplex is
modified by selection and is independent of the initial conditions. This is intuitive
given that the non-zero modes are associated with exponentially decaying exci-
tations. We also see that the biggest contribution to the asymptotic behaviour
will come from the most important Walsh components of the fitness landscape.
For instance, for a unitation type landscape only the O(1) Walsh coefficients of
the landscape are non-zero and hence P̂ ∗

I = 0 for |I| �= 1.
To O(ε2) the corresponding diagram is Figure 1(c) and represents the pro-

duction of a Walsh mode I by starting with a Walsh mode K which propagates

to t = n1, interacts with the perturbation selection operator d̂F
K

J to produce a
Walsh mode J , which in its turn propagates from t = n1 to t = n2. This Walsh

mode then interacts with the perturbation selection operator d̂F
J

I at t = n2

to produce a Walsh mode I, which finally propagates from t = n2 to t. The
corresponding algebraic expression for this second order process is
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ε2
∑
JK

t−1∑
n2=1

n2−1∑
n1=0

(1 − 2p)|I|(t−n2)d̂F J
I (1 − 2p)|J|(n2−n1)d̂F K

J (1 − 2p)|K|n1 x̂K(0)

(37)
Once again, one must sum over different possible initial and intermediate states,
J and K, and sum over the different possibilities for the times at which the
excitations interact with the selection operator. Note that causally the second
interaction with the selection operator must come after the first one, hence the
sum over n2 begins at t = 1 not t = 0. Evaluating (37) and adding to (32) one
obtains to second order

x̂I(t) = (1 − 2p)|I|tx̂I(0) + ε(1 − 2p)|I|t
∑

J

(
1 − (1 − 2p)(|J|−|I|)t)
1 − (1 − 2p)(|J|−|I|) d̂F

J

I x̂J(0)

+ε2(1 − 2p)|I|t
∑
JK

(
(1 − 2p)(|J|−|I|)(1 − (1 − 2p)(|J|−|I|)(t−1))

(1 − (1 − 2p)(|K|−|J|))(1 − (1 − 2p)(|J|−|I|))
(38)

− (1 − 2p)(|K|−|I|)(1 − (1 − 2p)(|K|−|I|)(t−1))
(1 − (1 − 2p)(|K|−|J|))(1 − (1 − 2p)(|K|−|I|))

)
d̂F

J

I d̂F
K

J x̂K(0)

As at O(ε), one must take care over the limits |I| = |J |, |J | = |K|, |I| = |K| or
|I| = |J = |K|. Note that this expression is valid for an arbitrary fitness land-
scape as long as the selection pressure is weak. To get back to the probabilities
PI(t) from the x̂I(t) is straightforward. One first passes to the variables P̂I(t)
using equation (34). One is then faced with a choice – to expand the denomina-
tor, x̂0, as a power series in ε into the numerator, or to evaluate it numerically
without this last expansion. Schematically, it is the difference between writing
at O(ε): P̂I = (1/2N/2)(x̂I/x̂0) = (aI + εbI)(a0 + εb0)−1, where both numerator
and denominator are now evaluated numerically for a given landscape, or writing
(a0 + εb0)−1 ≈ (a0 − εb0) and then evaluating the expression numerically. The
true spirit of perturbation theory is to do the latter and we shall follow that
procedure here. However, under certain circumstances it is possible to envision
the former. Finally, one passes to the PI(t) using the inverse Walsh transform
from (5).

This diagrammatic formulation gives a powerful pictorial representation of
the underlying problem, wherein the different diagrams represent the different
ways in which a process may occur – for instance, production of a particu-
lar string. The problem then may be turned around to be associated with the
specification of the rules8 by which the diagrams that represent the different
possibilities may be constructed. In fact, one may take these rules as being a
definition of the theory, as their particular form depends on the theory in ques-
tion, e.g. selection only, selection and mutation etc.. In the case at hand, for
mutation and selection with an expansion around the zero selection limit, the
rules for constructing a solution to a given perturbative order are:

1. Draw all possible topologically distinct diagrams contributing to the process
under study to the desired perturbative order

8 In physics, in quantum field theory, these rules are known as Feynman rules
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2. To each internal line attach a propagator (1 − 2p)|I|(t−t′)

3. At each interaction vertex insert a factor εd̂F
J

I

4. Sum over all internal times associated with the interaction vertices
5. Sum over intermediate states on internal lines

These rules are also valid when expanding around the zero mutation limit

if the propagator is replaced by f
(t−t′)
I and the vertex factor by εd̂M

J

I . Note
that in calculating xI(t) we summed over all possible initial states as we were
interested ultimately in PI(t) not in the conditional probability P (I, t|J, t′). One
may, of course, always revert to the algebraic formulation if there is any doubt
or ambiguity over constructing the diagrams and their associated algebraic ex-
pressions.

In order to give a feeling for the capabilities of the method we present some
results for the case of N = 7 and with various fitness landscapes. We use a
mutation probability p = 0.1 which, it is worth noting given that we are formally
in the “high” mutation perturbation limit, is not much different from typically
used rates. The three fitness landscapes we consider are representative of different
classes of landscape – consisting of the Eigen model (“needle-in-a-haystack”),
counting ones (unitation models) and a model where fitnesses are assigned to
strings randomly (akin to a Kauffman NK-model with N = K). Specifically: for
the Eigen landscape f1111111 = 1.5 and fI = 1.0 for I �= 1111111; for counting
ones fI = 1+(0.5/7)

∑
i 1i; and finally for the random landscape fI ∈ [1, 1+R],

where R is a random number chosen with uniform probability from the interval
[0, 0.5]. In all three cases the parameters have been chosen so that the maximum
deviation from fitness value 1 is 0.5, corresponding to a 50% difference in fitness
between the fittest string and the least fit string, i.e. a 50% “planarity deviation”,
i.e. the deviation from the no-selection limit. As ε is set to one this is a good
test of the approximations as the corresponding perturbation is really not then
particularly “small” at all. In all cases a random initial population was chosen.

In Figures 2-4 we compare the perturbative approximations of f̄(t) to O(ε)
and O(ε2) with the exact solution, obtained by explicitly integrating equation
(18). Notice that the O(ε2) approximation gives uniformly better results (by
a factor of between 2 for the Eigen model and 10 for counting ones) in the
asymptotic regime but not necessarily for the transients. This is due to the
presence of secular terms, which are also responsible for artefacts like the peak
in the second order curve in Figure 4.
Note that even at O(ε) the results are asymptotically very accurate with devia-
tions from the exact answer being less than about 0.1%. The population fitness
in this sense is quite robust in terms of approximations.

A more sensitive object is the proportion of optimal strings in the population
as a function of time. In Figures 5-7 we see graphs of precisely this quantity. For
the Eigen model the optimal sequence is the “master sequence”, i.e. the needle –
arbitrarily chosen to be the sequence 1111111. For the counting ones landsacpe
the optimu is also the string 1111111. For the random landscape the optimal
sequence was found by examining all 128 strings. Note that asymptotically the
quality of the approximation is quite sensitive to the landscape considered. At
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Fig. 2. Average fitness for 7-bit Eigen model with 50% deviation from flat fitness limit
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Fig. 3. Average fitness for 7-bit counting ones model with 50% deviation from flat
fitness limit

O(ε) the error for the Eigen model is about 28% whereas it is only about 2% for
the counting ones landscape. The O(ε2) results are better than the O(ε) results,
as one might expect, except in the case of the counting ones landscape which is
both interesting, somewhat counterintuitive and worthy of further investigation.
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Fig. 4. Average fitness for 7-bit random landscape model with 50% deviation from flat
fitness limit

We also repeated the experiments for N = 3 with very similar results, the
approximation being generally somewhat worse for this shorter string length.
This is to be expected as for shorter strings the neglect of mutation events
where a higher proportion of bits change is less valid.

6 Perturbation Theory for Mutation-Selection Systems –
A Simple Example

This section gives a fairly complete analysis of the case of one bit. Naturally,
this is meant only to illustrate the general techniques and the relationship be-
tween the different methodologies in a transparent context. In this case a state

is represented by the two-component vector
(
x1(t + 1)
x0(t + 1)

)
and F =

(
f0 0
0 f1

)
6.1 The Exact Solution

The exact solution is determined by calculating the eigenvalues and eigenvectors
of W = MF . The eigenvalues are the solutions of the 2N -dimensional charac-
teristic equation, which in this case is quadratic with solutions

λ± =
1
2

[(1 − p)(f1 + f0) ± β0] , (39)

where β0 = [(1−p)2(f1+f0)2−4(1−2p)f1f0]1/2. The corresponding eigenvectors
are

λ+ →
(

α
bα

)
, λ− →

(
β
aβ

)
, (40)
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Fig. 5. Proportion of optimal strings for 7-bit Eigen model with 50% deviation from
flat fitness limit
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Fig. 6. Proportion of optimal strings for 7-bit counting ones model with 50% deviation
from flat fitness limit

where a =
−(1 − p)f1 + λ−

pf0
and b =

−(1 − p)f1 + λ+

pf0
and the normalisation

factors are α = (1 + b2)−1/2 and β = (1 + a2)−1/2. The transformation that
diagonalizes W is implemented using the similarity-transformation matrix
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Λ̃ =
1

αβ(b − a)

(−α bα
β −aβ

)
, (41)

which relates the eigenvector basis, x̃I and the string basis xI via x̃I = Λ̃ J
I xJ .

The solution in the eigenvector basis is x̃I(t) = λt
I x̃I(0) which, changing basis

back to the string basis, gives the solution

xI(t) = AI−λt
− + AI+λt

+ (42)

which is of the general form posited in equation (14). Explicitly, the four ampli-
tudes, Aij , i = 0, 1 and j = ±, are

A1− =
(

(λ− − (1 − p)f0)x1(0) + pf0x0(0)
λ− − λ+

)
(43)

A1+ =
(

(−λ+ + (1 − p)f0)x1(0) − pf0x0(0)
λ− − λ+

)
(44)

A0− =
(

(λ− − (1 − p)f1)x0(0) + pf1x1(0)
λ− − λ+

)
(45)

A0+ =
(

(−λ+ + (1 − p)f1)x0(0) − pf1x1(0)
λ− − λ+

)
(46)

If we consider weak selection, i.e. fI → (1 + εfI), or weak mutation, i.e. M J
I →

δ J
I + εdM J

I , then the eigenvalues (42) can be perturbatively expanded in ε. To
O(ε) for weak mutation

λ− = f0(1 − p) λ+ = f1(1 − p) (47)
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While for weak selection, with fI → 1 + fI ,

λ− = (1 − 2p)
(

1 +
(f0 + f1)

2

)
λ+ =

(
1 +

(f0 + f1)
2

)
(48)

where we have put ε = 1. The corresponding amplitudes for the case of weak
selection can be found by expanding (43-46) to this order.

6.2 Diagrammatic Perturbation Theory

In this case one evaluates explicitly equations (33) or (38), corresponding to the
diagrams in Figure 1, depending on the order of perturbation theory required.
To O(ε) the solutions for the case of weak selection are

x̂0(t) =
(
1 + εd̂F

0

0 t
)
x̂0(0) + ε

(
1 − (1 − 2p)t

2p

)
d̂F

1

0 x̂1(0) (49)

x̂1(t)=(1 − 2p)t
(
1 + εd̂F

1

1 t
)
x̂1(0) + ε

(
1 − (1 − 2p)t

2p

)
(1 − 2p)d̂F

0

1 x̂0(0) (50)

which agree with the expressions derived from the exact solution after expanding
in powers of ε both the amplitudes (43-46) and the factors λt, where the eigenval-
ues are given by (39), when expanded to O(ε). Notice the secular term linear in t.
Schematically, this arises from expanding λt = (a+εb+ε2c+...)t ≈ at(1+ε(b/a)t)
to O(ε). Passing to the variables P̂I(t), one finds P̂0(t) = 1/21/2 and

P̂1(t) =
(1 − 2p)t

2
1
2

(
P̂1(0) + εd̂F

1

1

(
1 − (1 − 2p)−t

1 − (1 − 2p)−1

)
−εd̂F

0

1 P̂ 2
1 (0)

(
1 − (1 − 2p)t

1 − (1 − 2p)

))
(51)

Thus, we see that the secular terms cancel out of the P̂I and hence out of the
probabilities PI . This however, is a property only of the one-bit case. For N > 1,
generically they will remain. Although they do not destroy the validity of the
perturbation expansion entirely, due to the presence of exponential suppression
factors (1 − 2p)|I|t, they do remain somewhat problematic, as we know that
the exact functional form is a sum of pure exponentials. A polynomial times
an exponential does not fit this pattern. This can be further understood by
considering the contributions from O(ε2).

x̂0(t) = 1t

[(
1 + εtd̂F

0

0 +
ε2

2
d̂F

0

0 d̂F
0

0 t(t − 1)

+ε2d̂F
1

0 d̂F
1

0

(1 − 2p)
2p

(t − 1)
)

x̂0(0)

+
(

ε

2p
d̂F

1

0 +
ε2

2p
d̂F

0

0 d̂F
1

0 (t − 1)
)

x̂1(0)
]
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+(1 − 2p)t

[(
− ε

2p
d̂F

1

0 − ε2

2p
d̂F

1

0 d̂F
1

1 (t − 1)
)

x̂1(0)

+ε2d̂F
1

0 d̂F
1

0

(1 − 2p)
4p2

x̂0(0)
]

(52)

which agree with the expressions derived from the exact solution when expanded
to O(ε2).

Now, from (13), we know on general grounds the functional form of x̂I(t), i.e.
a sum of exponentials with different time independent amplitudes. In (52) there
are exponentials, however, the exponents are what one would expect from the
mutation only system as the perturbative expansions contain a part whose origin
was the expansion of the eigenvalues of the exact expression. The question arises
then – is it possible to restore the general functional form of equation (13)? and
thereby improve the approximation, and is it possible to separate out amplitudes
from exponents? The answer to both these questions is yes and requires a tool
known in physics as the renormalization group.

7 Perturbation Theory and the Renormalization Group

The solution to the two questions just posed begins with the observation that the
secular terms invalidate perturbative expressions for x̂I(t) when, for example,

εd̂F
0

0 t is no longer small. Notice for instance though, the first three coefficients of
x̂0(0) in the amplitude of the exponent of the leading eigenvalue – 1 – are the first

three terms in an expansion of (1 + εd̂F
0

0 )t, i.e. an exponential. Notice further
that from the exact answer (39) and its expansion to O(ε) for weak selection,
as given in (27), that this posited exponential is the same as the perturbative
expansion of the exact one. Thus, it would seem that a resummation of the
perturbative series in (52) is required. However, given that we only have the first
two terms in the equations how can we determine what the series should sum
to? and how do we determine what should be summed and what shouldn’t? At
the heart of the problem is the fact that we are trying to be too greedy with
the perturbative approximation. In the regime εdF t / 1 there is no problem.
However, we wish to investigate the dynamics well away from the initial starting
point at t = 0. To circumvent this difficulty we will introduce a new initial
condition, x̂I(τ), at some arbitrary time τ and demand that the parameters
x̂I(τ) are related to the physical initial conditions x̂I(0) via

x̂I(0) =
∑

J

Ẑ J
I (τ)x̂J (τ) (53)

and posit a perturbative expansion for the coefficients Z J
I

Ẑ J
I (τ) = 1 +

∞∑
n=1

εnδ J
I aI (54)
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The idea now is to “renormalize” (essentially reparameterize) (52) by replacing
the x̂I(0) using (53). It is important to note that the latter is an identity and so
we are not changing anything by doing so. However, the coefficients aI remain
to be determined and at our disposal. We use the freedom in their definition to
eliminate the secular terms in (52) at the particular time t = τ . We will here carry
this out to O(ε), the O(ε2) and higher calculations being fairly straightforward
(though eventually complicated) extensions. To O(ε) one finds

a0 = a1 = −ετ d̂F
0

0 (55)

Now, from (53), as x̂I(0) is independent of τ so must be
∑

J Ẑ J
I (τ)x̂J (τ) which

therefore must satisfy∑
J

Ẑ J
I (τ + 1)x̂J(τ + 1) =

∑
J

Ẑ J
I (τ)x̂J (τ) (56)

Substituting in Ẑ J
I to O(ε) using (55) one finds

x̂I(τ + 1) = (1 + εd̂F
I

I )x̂I(τ) (57)

which can be iterated to yield

x̂I(τ) = (1 + εd̂F
I

I )τ x̂I(0) (58)

using as initial condition x̂I(0). Substituting this expression into (52) and using
our freedom to choose τ , we set τ = t to find

x̂0(t) = (1 + εF 0
0 )t(x̂0(0) + ε

d̂F
1

0

2p
x̂1(0)) − (1 − 2p)t(1 + εF 0

0 )tε
d̂F

1

0

2p
x̂1(0)(59)

x̂1(t) = (1 − 2p)t(1 + εF 1
1 )t(x̂1(0) − ε

d̂F
1

0

2p
(1 − 2p)

2p
x̂0(0))

+(1 + εF 0
0 )tε

(1 − 2p)d̂F
1

0

2p
x̂0(0) (60)

These expressions are equivalent to the exact solution (42), where the eigenval-
ues λ± and the amplitudes AI− and AI+ have been expanded to O(ε). Thus,
the renormalization group has resummed the diagrammatic perturbation theory
and thereby gives a better approximation than the latter. These statements are
true for any N , although we are only illustrating the one-bit problem. In the
latter case, when considering the P̂I or PI , because to O(ε) the approximate
eigenvalues are of the form λ

(0)
i (1 + εF 0

0 ) for i = + or −, and because in the
non-renormalization group resummed perturbation theory of section 6.2 the sec-
ular terms cancel, the RG and non-RG resummed answers are the same. This is
not true beyond lowest order or for N > 1.
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8 Conclusions

We have introduced and proposed perturbation theory as a candidate tool for
analysing the dynamics of EAs. We showed that within the umbrella of per-
turbative methods there are many different implementations. In the context of
mutation-selection EAs we briefly discussed one of the most familiar ones, where
the eigenvalues and eigenvectors of the transition matrix are computed perturba-
tively. This methodology has various drawbacks. In particular, the computation
of the perturbed eigenvectors beyond leading order is complicated. Additionally,
it lacks intuitive transparency. To ameliorate some of these defects we consid-
ered a perturbative calculation of the population variables themselves (really
we are computing the transition matrix of the Markov chain G J

I (t, t′), which is
then used to compute the PI(t) via PI(t) =

∑
J G J

I (t, t′)PJ (t′)), using diagram-
matic methods familiar from field theory, showing how a pictorial representation
of the processes that contribute to the production of a given string could be
systematically constructed using a simple set of rules.

As a simple illustration of the results one might expect we showed how the
approximate solutions were close to the exact solutions for a variety of landscapes
and for strings of length 7, even when the perturbation was quite large, the ap-
proximation systematically improving as different orders in ε were considered.
To make transparent exactly how the methodology works we also considered a
simple one-bit example. We showed that a defect of the direct diagrammatic
expansion is the existence of “secular” terms and then introduced the renormal-
ization group, which was seen to eliminate these secular terms to give uniform
approximations for all t.

We emphasise that this paper is merely an introduction to these techniques
and, given the lack of space, a brief one at that. Although we used a toy one bit
example to illustrate in as simple a context as possible how the different per-
turbative implementations work and how they approximate the exact solution,
we also showed that using diagrammatic methods one could push on to more
realistic problems. How simple it is to implement the renormalization group in
that context remains to be seen, as when there exist degenerate unperturbed
eigenvectors a non-diagonal matrix renormalization is necessary. As at heart we
are calculating the transition matrix for the Markov chain it should be relatively
straightforward to include in finite population effects. All in all, we believe there
to be a huge space in which further work may be carried out to check to what
extent perturbative methods can help narrow the expectation gap between the-
oreticians and practitioners.
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Abstract. Weighted recombination is a means for improving the lo-
cal search performance of evolution strategies. It aims to make effective
use of the information available, without significantly increasing com-
putational costs per time step. In this paper, the potential speed-up
resulting from using rank-based weighted recombination is investigated.
Optimal weights are computed for the sphere model, and comparisons
with the performance of strategies that do not make use of weighted
recombination are presented. It is seen that unlike strategies that rely
on unweighted recombination and truncation selection, weighted mul-
tirecombination evolution strategies are able to improve on the serial
efficiency of the (1 + 1)-ES on the sphere. The implications of the use
of weighted recombination for noisy optimization are studied, and par-
allels to the use of rescaled mutations are drawn. The cumulative step
length adaptation mechanism is formulated for the case of an optimally
weighted evolution strategy, and its performance is analyzed.

1 Introduction

In his seminal book Rechenberg [18] in 1973 presented the derivation of a law
describing the progress rate of the (1 + 1)-ES on the high-dimensional sphere
model. From that law, it can be seen numerically that for optimally adapted
mutation strength, the normalized rate at which the optimum is approached
equals 0.202. In the years that followed, evolution strategies evolved. The single-
parent strategy was replaced by population-based strategies, and recombination
was introduced. In 1996, Beyer [9] studied the performance on the sphere model
of the (μ/μ, λ)-ES – a population-based strategy that uses multi-recombination.
He made the surprising discovery that the serial efficiency of the (μ/μ, λ)-ES
for optimally chosen population size parameters asymptotically approaches the
same value of 0.202 that the (1 + 1)-ES had achieved more than two decades
earlier. Moreover, while few theoretical results exist, there is evidence that none
of the (μ/ρ +, λ)-ES achieve a serial efficiency on the sphere model that exceeds
that of the simple (1 + 1)-ES. Needless to say, this is not to imply that no
progress had been made. Population-based strategies allow for parallelization,
have greater adaptation capabilities, and are much superior when applied to
noisy optimization problems. Nonetheless, the (1+1)-ES sets the benchmark for
serial efficiency on the simple sphere model.

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 215–237, 2005.
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Key to achieving a serial efficiency that exceeds that of the (1 + 1)-ES is
to recognize that generally, all (μ/ρ +, λ)-ES discard information. Truncation
selection leads to all of the selected offspring having the same influence on the
progress of the strategy, irrespective of their relative ranks within the population.
For example, for the (μ/μ, λ)-ES the influence of the best candidate solution
equals that of the μth best. Similarly, all relative rank information from those
offspring that are not selected to survive is discarded. Those candidate solutions
are without influence on the step taken by the strategy, no matter whether they
narrowly missed the cut or they missed it by a wide margin.

More complete use of the information gained by evaluating offspring candi-
date solutions can be made by weighting their influence in the recombination
and selection process. Weights can be chosen such that they more carefully dis-
criminate between good and bad candidate solutions than truncation selection
does. The choice of weights can be based either on function values or on rank
within the set of offspring generated. A strategy that uses function values to
determine weights is the evolutionary gradient search strategy (EGS) proposed
by Salomon [21]. EGS differs from evolution strategies not only in its reliance
on function values rather than ordinal data, but also in its use of “negative in-
formation”. The weight assigned to a candidate solution is proportional to the
difference between that candidate solution’s fitness and the fitness of the search
point that it has been generated from. As a consequence, those offspring that
improve on the previous time step’s fitness receive positive weights, and offspring
that are inferior to their parent receive negative weights and thus result in the
strategy moving in the opposite direction. An investigation in [2] has shown that
EGS is indeed capable of achieving serial efficiencies on the sphere model that
exceed those of the (1 + 1)-ES. However, it has also been seen that the explicit
rescaling of progress vectors that EGS performs hampers genetic repair, and
that as a result EGS is generally inferior to the (μ/μ, λ)-ES in the presence of
noise as well as if implemented on parallel computers.

Rank-based weighted recombination has been employed by Hansen and Os-
termeier [15] in connection with their covariance matrix adaptation evolution
strategy (CMA-ES), and it has also been used in the comparative review of evo-
lutionary algorithms by Kern et al. [16]. In both references, it is suggested to
assign positive weights of different magnitudes to the better 50 percent of the
candidate solutions generated. A heuristic rule for choosing those weights is pro-
posed. Without a reason being given, but probably in realization of the fact that
the opposite of a bad direction is not always a good direction, the use of negative
weights is discouraged. Zero weights are assigned to the inferior 50 percent of
candidate solutions generated. In [15] it is noted that speed-up factors of less
than two are observed compared to the (μ/μ, λ)-ES. A direct and systematic
comparison between weighted and unweighted recombination is not performed.

The only attempt made so far to explore the consequences of the choice of
weights analytically has been made by Rudolph [20]. For a weighted strategy that
generates offspring by placing them on a sphere shell rather than by Gaussian
mutations, Rudolph computes expressions for the progress rate on the sphere
model. Those expressions involve expectations of joint beta order statistics and
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are difficult to determine in the general case. For that reason, Rudolph explores
consequences of his results only for the case that the search space dimension-
ality equals three. Even for this special case the resulting expressions are too
complicated to determine optimal weights. Rudolph does observe that the use of
negative weights can have effects beneficial for the progress rate of the strategy,
and that the serial efficiency of a strategy using unweighted recombination in
connection with truncation selection can be exceeded by strategies that make
use of weighted recombination.

It is the goal of this paper to obtain an improved understanding of the inter-
play of mutation, recombination, and selection in evolution strategies, and of the
potential that weighted recombination has to speed up local search. In contrast
to the aforementioned paper by Rudolph, focus here is on Gaussian mutations
and the case that the search space dimensionality is high. This situation has
the advantage of being comparatively well understood, and of allowing an an-
alytical treatment. The results obtained are exact only in the limit of infinite
search space dimensionality, but they do contribute to the understanding of the
evolutionary processes in sufficiently high-dimensional spaces.

The remainder of this paper is organized as follows. The sphere model as an
important environment for studying local search properties of direct optimiza-
tion strategies as well as weighted multirecombination evolution strategies are
introduced in Sect. 2. In Sect. 3, the quality gain of weighted multirecombination
evolution strategies is computed and optimal weights are determined. Section 4
addresses the issue of how the performance of evolution strategies with opti-
mally weighted multirecombination is affected by noise. It is seen that the issue
of rescaled mutations raised by Rechenberg [19] and studied by Beyer [10, 11]
arises naturally in connection with the choice of weights and the issue of ge-
netic repair in multirecombination strategies. In Sect. 5, the cumulative step
length adaptation mechanism is formulated for the case of the optimally weighted
multirecombination evolution strategy, and its performance is analyzed. Finally,
Sect. 6 concludes with a brief summary and directions for future research.

2 Preliminaries

In this section evolution strategies using weighted multirecombination for the
minimization of functions f : IRN → IR are formally introduced. Then the sphere
model is briefly discussed as an important environment for learning about the
behavior of local search algorithms.

2.1 Weighted Multirecombination Evolution Strategies
Weighted multirecombination evolution strategies repeatedly update a search
point x ∈ IRN using the following four steps:

1. Generate λ offspring candidate solutions y(i) = x + σz(i), i = 1, . . . , λ. The
z(i) are vectors consisting of N independent, standard normally distributed
components and are referred to as mutation vectors. The nonnegative quan-
tity σ is referred to as the mutation strength and determines the step length
of the strategy.
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2. Determine the objective function values f(y(i)) of the offspring candidate
solutions and order the y(i) according to those values. After ordering, index
k;λ refers to the kth best of the λ offspring (the kth smallest for minimiza-
tion; the kth largest for maximization).

3. Compute the weighted average

z(avg) =
λ∑

k=1

wk;λz(k;λ) (1)

of the z(i) vectors. The wk;λ are weights that depend on the rank of the
corresponding candidate solution in the set of all offspring.

4. Replace the search point x by x + σz(avg).

The vector z(avg) defined in Eq. (1) is referred to as the progress vector. Clearly,
σz(avg) connects consecutive search points. Notice that for the particular choice
of weights

wk;λ =

{
1/μ if 1 ≤ k ≤ μ

0 otherwise
, (2)

the weighted multirecombination evolution strategy simply is the (μ/μ, λ)-ES.
In that case, the search point x is the centroid of the population that consists
of the μ best of the λ offspring candidate solutions generated. Also notice that
the evolutionary gradient search strategy introduced in [21] does not entirely fit
into the framework of rank-based weighted multirecombination as weights are
chosen proportional to f(x) − f(y(i)) rather than based on rank. Moreover, a
normalization step is required between the averaging of mutation vectors and
the update of the search point.

2.2 The Sphere Model

Since the early work of Rechenberg [18], the local performance of evolution
strategies has commonly been studied on the quadratic sphere given by objective
function

f(x) = (x̂ − x)T(x̂ − x), x ∈ IRN ,

where the task is minimization and where x̂ ∈ IRN is the optimizer. The sphere
serves as a model for objective functions in the vicinity of well-behaved local
optima. See [5] for a justification of the usefulness of such considerations and
for possible generalizations. Possibly most important among the arguments pre-
sented is that strategies such as the CMA-ES described in [15] have been found to
effectively transform a wide range of convex quadratic functions into the sphere,
opening up the possibility that findings made for the sphere model have much
wider-ranging significance.

In order to quantify the local performance of search strategies on the sphere,
consider the effect of adding a vector σz to the current search point x. Multire-
combination evolution strategies do so both when generating offspring candidate
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R

r
x

y

x̂

σz

σzA

σzB

Fig. 1. Decomposition of a vector z into central component zA and lateral compo-
nent zB . Vector zA is parallel to x̂−x, vector zB is in the hyperplane perpendicular to
that. The starting and end points, x and y = x + σz, of vector σz are at distances R
and r from the optimizer x̂, respectively

solutions and when updating the search point at the end of an iteration. Denot-
ing the respective distances of x and y = x+σz from the optimizer by R and r,
the difference δ(z) = R2 − r2 between objective function values f(x) = R2 and
f(y) = r2 is referred to as the fitness advantage associated with vector z 1. The
fitness advantage associated with mutation vectors determines the ordering of
the candidate solutions and thus the weights with which those mutation vectors
enter recombination. The fitness advantage associated with the progress vector
can be used for defining a performance measure for evolution strategies as seen
below.

The commonly used approach to determining δ(z) on the sphere model relies
on a decomposition of vector z that has been used in [12, 19] and that is illus-
trated in Fig. 1. A vector z originating at search space location x can be written
as the sum of two vectors zA and zB, where zA is parallel to x̂ − x and zB is
in the (N − 1)-dimensional hyperplane perpendicular to that. The vectors zA

and zB are referred to as the central and lateral components of vector z, respec-
tively. The signed length zA of the central component of vector z is defined to
equal ‖zA‖ if zA points towards the optimizer and to equal −‖zA‖ if it points
away from it. Using elementary geometry, it can easily be seen that

r2 = (R − σzA)2 + σ2‖zB‖2,

and therefore, rearranging terms and noticing that ‖z‖2 = z2
A + ‖zB‖2, that

δ(z) = R2 − r2

= 2RσzA − σ2‖z‖2.

1 While the notation adopted here is deliberately brief and does not reflect that ex-
plicitly, it is important to keep in mind that the fitness advantage δ(z) depends not
only on vector z but also on the mutation strength σ
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Introducing normalized quantities

σ∗ = σ
N

R
and δ∗ = δ

N

2R2
,

it follows

δ∗(z) = σ∗zA − σ∗2

2N
‖z‖2 (3)

for the normalized fitness advantage associated with vector z.
In order to compute the normalized fitness advantage associated with vec-

tor z using Eq. (3), both the squared length and the signed length of the central
component of that vector need to be determined. For the case that z is a muta-
tion vector, it is well known from [12] that zA is standard normally distributed,
and that ‖z‖2 is χ2

N -distributed. As for large N the χ2
N -distribution tends to a

normal distribution with mean N and with standard deviation
√

2N , it follows
that the variance of ‖z‖2/N is of order 1/N and therefore that ‖z‖2/N can be
approximated with unity provided that N is sufficiently large. In what follows,
we will write A

N→∞= B when B is obtained from A by making the simplifica-
tion of replacing ‖z‖2/N by unity. Until step length adaptation is considered in
Sect. 5, no further simplifications are required. The normalized fitness advantage
associated with a mutation vector

δ∗(z) N→∞= σ∗zA − σ∗2

2
(4)

is asymptotically normally distributed with mean −σ∗2/2 and with variance σ∗2.
A commonly used performance measure for local search strategies is the

quality gain which measures the rate at which the optimum is approached in the
space of fitness values. It is defined as the expectation of the normalized fitness
advantage associated with the progress vector and is thus

Δ∗ = E
[
δ∗
(
z(avg)

)]
= σ∗E

[
z
(avg)
A

]
− σ∗2

2N
E
[
‖z(avg)‖2

]
. (5)

With z(avg) being a linear combination of mutation vectors, the considerations
with regard to the scaling of the central and lateral components of mutation
vectors made above ensure us that both summands on the right hand side of
Eq. (5) remain finite as N approaches infinity.

Another common performance measure – the progress rate – measures the
rate at which the optimizer is approached in search space and is known from [12]
to agree asymptotically with the quality gain on the sphere model for high
search space dimensionality provided that appropriate normalizations are used.
Moreover, as a performance measure that takes computational costs into account,
it is commonplace to define the serial efficiency η of evolution strategies as the
maximal quality gain per evaluation of the objective function. As the number
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of objective function evaluations per time step is λ, the serial efficiency of an
evolution strategy is

η =
1
λ

max
σ∗ Δ∗. (6)

Inherent in this definition are the assumptions that computational costs are
dominated by the cost of evaluating the fitness function, and that evaluations
need to be performed one after the other on a single processor.

3 Optimal Weighted Recombination

In this section an expression for the quality gain of the weighted multirecom-
bination evolution strategy on the sphere model is derived that generalizes the
corresponding result for the (μ/μ, λ)-ES obtained in [12, 19]. Then, optimal set-
tings for the mutation strength and the recombination weights are computed,
and consequences for the quality gain of the strategy are discussed.

3.1 Determining the Quality Gain

In order to determine the quality gain of the weighted multirecombination evo-
lution strategy using Eq. (5), expected values of the squared length and of the
signed length of the central component of the progress vector defined in Eq. (1)
need to be computed. The progress vector’s squared length is

‖z(avg)‖2 =
N∑

i=1

(
λ∑

k=1

wk;λz
(k;λ)
i

)2

=
N∑

i=1

λ∑
k=1

w2
k;λz

(k;λ)
i

2
+

N∑
i=1

λ∑
k=1

λ∑
l=1
l �=k

wk;λwl;λz
(k;λ)
i z

(l;λ)
i , (7)

where the z
(j)
i are the components of the mutation vectors and as such standard

normally distributed. The second term on the right hand side is a crosstalk term
with mean zero. Thus, taking the expectation and exchanging the order of the
summations in the first term it follows that

E
[‖z(avg)‖2

]
N

=
λ∑

k=1

w2
k;λ

E
[‖z(k;λ)‖2

]
N

N→∞=
λ∑

k=1

w2
k;λ, (8)

where in the second step we have made use of the important fact noted in Sect. 2
that asymptotically, E[‖z‖2]/N → 1 for mutation vector z.



222 Dirk V. Arnold

As for the expected signed length of the central component of the progress
vector, it follows from the definition of that vector in Eq. (1) that

E
[
z
(avg)
A

]
=

λ∑
k=1

wk;λE
[
z
(k;λ)
A

]
,

where of course z
(k;λ)
A is the signed length of the central component of the mu-

tation vector that corresponds to the kth best offspring candidate solution. In
order to compute the expectations, it is important to recall from Sect. 2 that the
z
(i)
A are standard normally distributed. From Eq. (4) it follows that the signed

lengths of the central components of the mutation vectors determine the fitness
of the corresponding offspring candidate solutions in that the offspring with the
kth largest value of zA is the kth fittest. Thus, in the limit of infinite search
space dimensionality, z

(k;λ)
A is the (λ + 1 − k)th order statistic of a sample of

λ independent realizations of a standard normally distributed random variate.
According to [7], the probability density function of z(k;λ)

A is

pk;λ(x) =
1√
2π

λ!
(λ − k)!(k − 1)!

e−
1
2 x2

[Φ(x)]λ−k [1 − Φ(x)]k−1, (9)

where Φ(x) denotes the cumulative distribution function of the standardized
normal distribution. It thus follows that the expected value of the signed length
of the central component of the progress vector is

E
[
z
(avg)
A

]
N→∞=

λ∑
k=1

wk;λEk;λ, (10)

where

Ek;λ = E
[
z
(k;λ)
A

]
=
∫ ∞

−∞
xpk;λ(x)dx

denotes the expectation of the (λ + 1 − k)th order statistic and can easily be
obtained by numerical integration.

Using Eqs. (8) and (10) in Eq. (5), it follows that the quality gain of the
weighted multirecombination evolution strategy is

Δ∗ N→∞= σ∗
λ∑

k=1

wk;λEk;λ − σ∗2

2

λ∑
k=1

w2
k;λ. (11)

Note that for the choice of weights in Eq. (2), Eq. (11) agrees with the quality
gain law for the (μ/μ, λ)-ES derived in [12, 19]. Figure 2 compares predictions
made using Eq. (11) with measurements obtained in runs in finite-dimensional
search spaces of a (3/3, 10)-ES and a weighted evolution strategy for which the
choice of weights is motivated in Sect. 3.2. It can be seen that the agreement
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Fig. 2. Quality gain Δ∗ of a (10)opt-ES and of a (3/3, 10)-ES plotted against the
mutation strength σ∗. The solid and dashed curves have been obtained from Eq. (11) for
the choices of weights in Eqs. (2) and (15), respectively. The crosses mark measurements
obtained in runs of the strategies in search spaces with N = 40 (+) and N = 400 (×)

between predictions and measurements is good provided that the search space
dimensionality is sufficiently high2.

3.2 Optimal Parameter Settings

Of course, it is desirable to choose the strategy’s parameters such that the quality
gain is maximized. Demanding that the derivative of Eq. (11) with respect to
σ∗ equals zero yields optimal normalized mutation strength

σ∗ N→∞=
∑λ

k=1 wk;λEk;λ∑λ
k=1 w2

k;λ

. (12)

Reinserting this result into Eq. (11), the quality gain of the strategy for optimally
adapted mutation strength is

Δ∗ N→∞=
1
2

(∑λ
k=1 wk;λEk;λ

)2

∑λ
k=1 w2

k;λ

. (13)

2 In Fig. 2 as well in the figures below, the quality gain has been measured using
definition

Δ∗ = −N

2
log

r2

R2

rather than that in Eq. (5). Both definitions agree in the limit N → ∞, and the
difference is small for large enough N . While mathematically not as convenient, the
definition used for the measurements is more useful for describing the progress of
evolution strategies on the sphere model over many time steps
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Fig. 3. Optimal weights wk;λ = Ek;λ plotted against the rank k of a candidate solution
in the set of offspring for several values of λ. The ranks have been scaled linearly to
fall in the range from zero to one. Note that only the points, not the connecting lines,
are of practical significance

Optimal weights wk;λ can now be determined by computing the derivatives of
Eq. (13) with respect to wk;λ for k = 1, . . . , λ. Demanding that all derivatives
be zero yields the system of equations

Ek;λ

λ∑
l=1

w2
l;λ = wk;λ

λ∑
l=1

wl;λEl;λ, k = 1, . . . , λ. (14)

Clearly, the system can be solved by setting

wk;λ = Ek;λ for k = 1, . . . , λ, (15)

and it is easily seen that the corresponding extremum really is a maximum.
Therefore, optimal weights of the multirecombination evolution strategy on the
infinite-dimensional sphere model are given by the first moments of the order
statistics of the standardized normal distribution. We will refer to the strategy
with optimally chosen weights as (λ)opt-ES.

The dependence of the optimal weights on the rank within the set of can-
didate solutions is illustrated in Fig. 3. It can be seen that in order to achieve
maximal progress on the sphere model, half of the offspring should enter recom-
bination with positive weights, the other half should receive negative weights.
Optimal weights are symmetric in that for every positive weight, there is a neg-
ative weight of equal value. This is in contrast to the behavior of EGS that
assigns negative weights to the majority of the offspring generated as in convex
environments, most will be inferior to their parent. Also note that the curves in
Fig. 3 differ strongly from the step curves defined by Eq. (2) that describe the



Optimal Weighted Recombination 225

choice of weights characterizing the (μ/μ, λ)-ES. Finally, it is worth mentioning
the good correspondence between the left half of the curves in Fig. 3 and the
(presumably empirically based) recommendations with regard to the choice of
weights made in [15].

Inserting the optimal weights given in Eq. (14) into Eq. (13), it follows that
the maximal quality gain of the (λ)opt-ES is

Δ∗ N→∞=
1
2

λ∑
k=1

E2
k;λ. (16)

Defining

Wλ =
λ∑

k=1

E2
k;λ

and using results on properties of order statistics from [7], it can be seen that
Wλ/λ asymptotically approaches unity as λ increases. Thus, the serial efficiency
of the (λ)opt-ES defined in Eq. (6) asymptotically approaches a value of 0.5,
nearly two and a half times that of both the (μ/μ, λ)-ES and the (1 + 1)-ES.
Figure 2 illustrates that that performance advantage can indeed be observed in
runs of evolution strategies. The curve for the (10)opt-ES peaks at a value about
2.3 times as large as that of the (3/3, 10)-ES, and most of that performance ad-
vantage is present in the measurements for N = 40 and N = 400 as well. Finally,
the dependence of the serial efficiency on the number of offspring generated per
time step is illustrated in Fig. 4. It can be seen that the (λ)opt-ES solidly out-
performs not only the (μ/μ, λ)-ES, but it also has a higher serial efficiency than
EGS for all but the smallest values of λ.

4 Noise

As many real-world optimization problems are plagued by noise, the assumption
that the fitness of a candidate solution can be determined exactly often is an
idealization. In order to study the effects of noisy fitness evaluations on the
performance of optimization strategies, it is frequently assumed that noise can
be modeled by means of an additive Gaussian term. That is, it is assumed
that the evaluation of a candidate solution y yields a value that is normally
distributed with mean f(y) and with variance σε

2, where σε is referred to as
the noise strength and may vary with the location in search space. See [1] for
comprehensive results with regard to the effects of noise on various (μ/ρ +, λ)-ES.

An evolution strategy that has been found to be particularly robust with
regard to the effects of noise is the (μ/μ, λ)-ES. In [3] it has been seen that
this robustness is to be attributed to the genetic repair effect. The term “ge-
netic repair” has been introduced by Beyer [8, 12] and refers to statistical error
correction properties inherent in the multirecombination procedure. Typically,
genetic repair affords the ability to operate with mutation strengths that in-
crease (for the sphere model roughly linearly) with the number of candidate
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Fig. 4. Serial efficiency η of strategies on the sphere model in the limit N → ∞ plotted
against the number of offspring λ generated per time step. The curves represent results
for the (λ)opt-ES described by Eq. (16), the (μ/μ, λ)-ES analyzed in [12], and EGS
studied in [2]

solutions generated per time step. The accompanying increase in quality gain is
also roughly linear in λ, opening up the possibility of linear speed-up in a parallel
implementation. In the presence of noise, the increased mutation strengths have
been found to yield the additional benefit of reducing the noise-to-signal ratio
ϑ = σ∗

ε /σ
∗ that the strategy operates under. As seen in a comparison with other

direct search strategies in [5], that benefit can be very substantial.
In the light of the results from the previous section, it seems interesting to

ask whether the (λ)opt-ES is capable of outperforming the (μ/μ, λ)-ES in the
presence of noise as it does in its absence. At first sight, it appears that the
(λ)opt-ES is not able to benefit from genetic repair the way the (μ/μ, λ)-ES
does. From Eq. (12) with the choice of weights wk;λ = Ek;λ, it follows that the
optimal normalized mutation strength of the (λ)opt-ES in the absence of noise is
unity and thus does not increase with increasing λ. Indeed, optimal performance
of the (10)opt-ES in Fig. 2 is achieved at much smaller mutation strengths than
for the (3/3, 10)-ES. However, the system of equations (14) is solved not only by
the choice of weights in Eq. (15), but also by the assignment

wk;λ =
Ek;λ

κ
, k = 1, . . . , λ, (17)

for any κ > 0 3. With this modified choice of weights, it follows from Eq. (13)
that the optimal quality gain in the absence of noise according to Eq. (16) is

3 Negative κ also solve the system of equations, but correspond to extrema of the
quality gain that are minima rather than maxima



Optimal Weighted Recombination 227

unchanged. However, considering Eq. (12), it is clear that the mutation strength
at which this quality gain is attained is κ and can thus be large if κ is chosen to
be large.

The effect of the scaling of the weights in Eq. (17) is reminiscent of the use
of rescaled mutations in the (1, λ)-ES proposed in [19] and analyzed in [10, 11].
The idea behind using rescaled mutations is to generate offspring using a high
mutation strength, but to update the search point using a much smaller step
length. A large mutation strength has the advantage of affording a strong signal
component for selection that can outweigh any noise that is present, and to thus
yield a good search direction. However, it is also likely to lead to a set of offspring
all of which are inferior to the parent they are generated from. It is thus only the
direction, not the length of the step that is used by the strategy. An evolution
strategy using rescaled mutations updates the search point by using a progress
vector that is reduced by some factor compared to the mutation vectors.

It has been seen in [3] that the genetic repair effect resulting from multirecom-
bination has the effect of providing an implicit rescaling. For mutation vectors,
‖z‖2/N asymptotically tends to unity. For the (μ/μ, λ)-ES, ‖z(avg)‖2/N asymp-
totically approaches 1/μ. Similarly, for (λ)opt-ES with the choice of weights in
Eq. (17), ‖z(avg)‖2/N according to Eq. (8) asymptotically approaches Wλ/κ

2.
The choice of κ for the (λ)opt-ES is thus similar to the choice of μ for the (μ/μ, λ)-
ES in that it affords control over the amount of implicit rescaling inherent in
the multirecombination process. Generally, larger values of κ can be expected to
afford greater robustness in the presence of noise as they allow operating with
a larger mutation strength, thus strengthening the signal and thereby reducing
the noise-to-signal ratio.

In order to derive a quality gain law for the (λ)opt-ES in the presence of
noise from Eq. (5), expected values of the overall squared length and of the
signed length of the central component of the progress vector need to be com-
puted in a fashion analogous to Sect. 3. Equation (8) for the squared length of
the progress vector still holds as its derivation is unaffected by the presence of
noise. The computation of the expected signed length of the progress vector’s
central component is less straightforward. For the purpose of selection, the can-
didate solutions are ordered according to their noisy fitness values. However, it
is the true fitness values that determine the signed lengths of the central com-
ponents of the respective mutation vectors. Technically, those signed lengths are
concomitants of the order statistics. See [13] for an introduction to the topic
and see [1, 3, 12] for the application to the problem of selection under Gaussian
fitness noise. In the latter references it is shown that the probability density
function of the concomitant z

(k;λ)
A of the (λ + 1 − k)th order statistic is

pk;λ(x) =
1

2πϑ
λ!

(λ − k)!(k − 1)!
e−

1
2 x2

∫ ∞

−∞
exp

(
−1

2

(
y − x

ϑ

)2
)

[
Φ

(
y√

1 + ϑ2

)]λ−k [
1 − Φ

(
y√

1 + ϑ2

)]k−1

dy,
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Fig. 5. Optimal mutation strength and corresponding quality gain of the (λ)opt-ES
plotted against the noise strength σ∗

ε . Due to the scaling of the axes, the curves are
independent of the choice of λ and κ

where ϑ = σ∗
ε /σ

∗ denotes the noise-to-signal ratio that the strategy operates
under, and where σ∗

ε = σεN/2R2 is the normalized noise strength. Note that
no assumptions with regard to the dependence of the noise strength on the
location in search space need to be made as long as only individual time steps are
considered. Using this density to replace Eq. (9), simple calculations analogous
to those in [3] show that

E
[
z
(k;λ)
A

]
N→∞=

Ek;λ√
1 + ϑ2

,

and therefore that in generalization of Eq. (10),

E
[
z
(avg)
A

]
N→∞=

1√
1 + (σ∗

ε /σ
∗)2

λ∑
k=1

wk;λEk;λ. (18)

Thus, using Eqs. (8) and (18) in Eq. (5) and choosing the weights according to
Eq. (17) it follows that the quality gain of the (λ)opt-ES on the sphere model in
the presence of Gaussian noise is

Δ∗ N→∞=
Wλ

κ

[
σ∗2√

σ∗2 + σ∗
ε
2

− σ∗2

2κ

]
. (19)

The dependence of the optimal mutation strength and of the resulting quality
gain on the noise strength is illustrated in Fig. 5. The graphs look the same as the
corresponding graphs for the (μ/μ, λ)-ES in [3] except for the different scaling of
the axes. It can be inferred from the figures that while the (μ/μ, λ)-ES is capable
of achieving positive quality gain up to a noise strength of σ∗

ε = 2μcμ/μ,λ, where
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Fig. 6. Quality gain Δ∗ of the (10)opt-ES plotted against the mutation strength σ∗

for noise strengths σ∗
ε = 0.0 (solid curves) and σ∗

ε = 1.0 (dashed curves). The curves
have been obtained from Eq. (19) and represent results for the limit case N → ∞. The
narrower curves on the left assume κ = 1.0 whereas the wider ones on the right reflect
results for κ = 4.0. The crosses mark measurements obtained in runs of the strategies
in search spaces with N = 40 (+) and N = 400 (×)

cμ/μ,λ is the (μ/μ, λ)-ES progress coefficient defined in [12], the (λ)opt-ES does
not need to stagnate up to a noise strength of σ∗

ε = 2κ.
It is important to note however that practically, finite search space dimen-

sionalities set limits on the useful parameter values in both cases. As the degree
of accuracy of the quality gain law of the (μ/μ, λ)-ES in [3] decreases with in-
creasing μ and λ, so does that of the (λ)opt-ES in Eq. (19) when λ and κ are
increased. Figure 6 illustrates the dependence of the quality gain on the mu-
tation strength for the (10)opt-ES with two settings of the parameter κ and
noise strengths σ∗

ε = 0.0 and σ∗
ε = 1.0. While the accuracy of the predictions

clearly decreases with increasing κ, it can also be seen that the larger choice of
κ is indeed strongly preferable for the case of nonzero noise strength even for
N = 40.

5 Cumulative Step Length Adaptation

In the considerations so far, the mutation strength has always been treated as
an external parameter. In practice, of course, it needs to be adapted continually
by the strategy, making the evolutionary algorithm together with the fitness
environment it operates in a dynamic system. One mechanism for the adaptation
of the mutation strength is the cumulative step length adaptation procedure
introduced by Ostermeier et al. [17]. In this section, that procedure is formulated
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for the (λ)opt-ES with the choice of weights from Eq. (17) and then studied for
the sphere model.

The goal of cumulative step length adaptation is to minimize correlations
between successive steps. For that purpose, an exponentially fading record of the
most recently taken steps is kept by accumulating progress vectors. Specifically,
N -dimensional vector s is defined by s(0) = 0 and

s(t+1) = (1 − c)s(t) + κ

√
c(2 − c)

Wλ
z(avg), (20)

where t indicates time. The cumulation parameter c is set to 1/
√
N according

to a recommendation made in [14]. The above definition differs from that in [14]
(but parallels that in [15] for the case of weighted recombination) in that a
different coefficient is used to weight z(avg). This is necessary in order to account
for the differences between the (μ/μ, λ)-ES and the (λ)opt-ES. Recall from Sect. 3
that for the (λ)opt-ES, ‖z(avg)‖2/N asymptotically tends to Wλ/κ

2. It is easy
to verify that the choice of coefficient in Eq. (20) ensures that the distribution
of the components of the accumulated progress vector s tends to standardized
normality if the ordering of candidate solutions according to fitness values is
random (as is the case in flat fitness landscapes, as well as in the presence of
excessive amounts of noise).

As in [6] (and in a minor variation from [14, 15]), the mutation strength is
then adapted according to

σ(t+1) = σ(t) exp
(‖s(t+1)‖2 − N

2DN

)
, (21)

where the damping parameter D is set to 1/c as suggested in [14]. As a result of
Eq. (21), the mutation strength is increased if the squared length of s exceeds N ,
which is a sign of positive correlations in the sequence of most recently taken
steps. Conversely, the mutation strength is decreased if the squared length of s
is less than N , which indicates negative correlations. It is important to realize
that Eq. (21) is a prescription for modifying mutation strengths rather than
normalized mutation strengths, and that no knowledge of the current location
in search space is required in order to apply it.

As an evolution strategy with cumulative step length adaptation together
with the environment it operates in forms a stochastic dynamic system, an
analysis of its performance is substantially more complicated than the analy-
ses presented in earlier sections that consider individual time steps only. While
the only simplification made so far is to replace terms of the form χ2

N/N with
unity, stronger assumptions need to be made in what follows. In particular, it
will be assumed that fluctuations of the state variables, such as the normalized
mutation strength or the squared length of the accumulated progress vector, can
be ignored, and that the dynamic equations can be written in terms of average
values (thus effectively eliminating stochastic aspects). Rather than attempting
to identify probability distributions of the state variables, we will set out to de-
termine a fixed point in the deterministic mapping of average values. Moreover,
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at several points, terms that become increasingly irrelevant as the search space
dimensionality increases are dropped. Identifying such terms is not always trivial
and indeed sometimes relies on the (unproven) assumption that fluctuations of
the state variables can be ignored. Any results that are obtained will therefore
need to be confirmed in computer experiments.

A further aspect that we had been able to ignore up to now is the depen-
dence of the noise strength on the location in search space. As long as only
individual time steps are considered, all candidate solutions are sufficiently close
to each other in order to tacitly assume that they are subjected to the same
amount of noise. If the performance of the strategy is to be characterized over
extended periods of time, this is no longer possible. The considerations below as-
sume constant normalized noise strength σ∗

ε = σεN/2R2 and thus that the noise
strength decreases as the optimizer is approached. While not always reasonable,
that assumption captures the important case of a relative error of measurement
that occurs for example when using measurement devices that are accurate to
a certain fixed percentage of the quantity they measure. Other forms of the de-
pendency of noise on the location in search space do not lead to behavior that
can be characterized by a fixed point and thus require different approaches for
their analysis.

As a result of assuming that the normalized noise strength is constant, the
environment is scale-invariant in that the distance R from the optimizer does not
appear in the equations that describe the evolution of the system. The following
analysis closely parallels that presented in [1, 6] for the case of the (μ/μ, λ)-ES
and proceeds in three steps:

1. The accumulated progress vector s is decomposed into its central and lateral
components, and Eq. (20) is used to derive recursive equations for the overall
squared length ‖s‖2 and for the signed length sA of the central component
of that vector.

2. Expectations are taken in order to arrive at average values and terms that
become irrelevant in the limit N → ∞ are dropped.

3. It is made use of the scale-invariance properties of the quantities considered
by demanding that their average values do not change from one time step
to the next.

The result of that procedure are two equations that can be used to determine
(approximate) average values of ‖s‖2 and sA. The derivation occupies a consid-
erable amount of space without adding any important insights. As it is closely
analogous to the derivation for the (μ/μ, λ)-ES in [1, 6], we refrain from present-
ing detailed calculations here. The resulting equations read

‖s‖2 = (1 − c)2‖s‖2 + 2(1 − c)κ

√
c(2 − c)

Wλ
sAz

(avg)
A + c(2 − c)

κ2

Wλ
‖z(avg)‖2 (22)

and

sA = (1 − c)sA + κ

√
c(2 − c)

Wλ

(
z
(avg)
A − σ∗ ‖z(avg)‖2

N

)
. (23)
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It is understood that in these equations, equality is merely approximate, and
that all quantities stand for their respective average values. They differ from
their respective equivalents for the (μ/μ, λ)-ES only in the coefficients. Using
the relationships z

(avg)
A = Wλ/(

√
1 + ϑ2κ) and ‖z(avg)‖2/N = Wλ/κ

2 that follow
from Eqs. (18) and (8) with Eq. (17), it follows that solving Eq. (23) for the
expected signed length of the central component of the accumulated progress
vector yields

sA =

√
Wλ(2 − c)

c

(
1√

1 + ϑ2
− σ∗

κ

)
.

Inserting this result in Eq. (22) and rearranging terms yields

‖s‖2 = N +
2(1 − c)

c

Wλ√
1 + ϑ2

(
1√

1 + ϑ2
− σ∗

κ

)
(24)

for the expected squared length of the accumulated progress vector.
With the characterization of the accumulated progress vector thus obtained,

Eq. (21) can now be used to determine the average mutation strength that
the strategy seeks to attain. The target mutation strength of the strategy is
the mutation strength that cumulative step length adaptation does not affect
a change for. For the (λ)opt-ES with cumulative step length adaptation, the
target mutation strength is the mutation strength for which the argument to
the exponential function in Eq. (21) equals zero. Using Eq. (24) and the fact
that ϑ = σ∗

ε /σ
∗, it follows that that mutation strength is

σ∗ = κ

√
1 −

(
σ∗

ε

κ

)2

. (25)

The dependence of the target mutation strength on the noise strength is illus-
trated and compared with the optimal mutation strength derived in Sect. 4 in
the left hand graph of Fig. 7. While the shape of the curves is the same as in
the corresponding graph for the (μ/μ, λ)-ES in [6], it is important to note that
the scaling of the axes is different. In both cases, the target mutation strength
agrees with the optimal mutation strength only in the case of no noise being
present. This is the case that cumulative step length adaptation was designed
and its coefficients were chosen for. For nonzero noise strengths, target mutation
strengths are consistently below optimal mutation strengths. However, it is also
clear that due to the scaling of the horizontal axis, by increasing κ it is possi-
ble to move closer to the left hand edge of the graph, thereby operating in a
regime where there is a good agreement between target mutation strength and
optimal mutation strength. The same effect can be achieved for the (μ/μ, λ)-ES
by increasing both μ and λ in equal proportions.

Finally, it is important to emphasize that as the (μ/μ, λ)-ES, the (λ)opt-ES
never actually attains its target mutation strength. As adaptation is gradual
rather than instantaneous, and as the distance to the optimizer continually de-
creases, the strategy will always be “behind” its target. Expanding the expo-
nential function in Eq. (21) into a Taylor series, taking the decrease in distance
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Fig. 7. Mutation strength σ∗ and resulting quality gain Δ∗ plotted against the noise
strength σ∗

ε . In both graphs, the solid curves represent the optimal values from Fig. 5
and the dotted curves correspond to the values realized by the strategy and described
by Eqs. (26) and (27), respectively. The dashed curve in the left hand graph is the
target mutation strength given in Eq. (25)

to the optimizer into account, dropping all but the first terms, and demanding
stationarity in the sense that the normalized mutation strength does not change
yields equation

σ∗ = σ∗
(

1 +
Δ∗

N
+

‖s‖2 − N

2DN

)
.

Inserting Eqs. (19) and (24) and solving for σ∗, it follows that the average mu-
tation strength actually realized by the strategy is

σ∗ = κ

√
2 −

(
σ∗

ε

κ

)2

(26)

if σ∗
ε ≤ √

2κ, and it is zero if σ∗
ε >

√
2κ. Inserting this result in Eq. (19) it

follows that the resulting average quality gain of the (λ)opt-ES with cumulative
step length adaptation is

Δ∗ =
√

2 − 1
2

Wλ

(
2 −

(
σ∗

ε

κ

)2
)

(27)

for σ∗
ε ≤ √

2κ, and it is zero for σ∗
ε >

√
2κ. Figure 8 illustrates for the case of

a (10)opt-ES that the accuracy of the predictions afforded by Eq. (26) is quite
good even for small values of N while good agreement of the measurements of
the quality gain with Eq. (27) requires very high search space dimensionalities.
Similar results had been observed for the (μ/μ, λ)-ES in [1], and better agreement
had been achieved by taking some N -dependent terms into account.



234 Dirk V. Arnold

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0

N=40
N=400

N=4000

noise strength σ∗
ε

av
er

a
g
e

m
u
ta

ti
o
n

st
re

n
g
th

σ
∗

0.0

1.0

2.0

3.0

4.0

0.0 2.0 4.0 6.0

N=40
N=400

N=4000

noise strength σ∗
ε

av
er

a
g
e

q
u
a
li
ty

g
a
in

Δ
∗

Fig. 8. Average mutation strength σ∗ and average quality gain Δ∗ of the (10)opt-ES
with cumulative step length adaptation plotted against the noise strength σ∗

ε . The
solid lines have been obtained from Eqs. (26) and (27) for κ = 1.0, the dashed lines for
κ = 4.0. The crosses mark measurements obtained in runs of the strategies in search
spaces with N = 40 (+), N = 400 (×), and N = 4000 (�)

Both the mutation strength and the corresponding quality gain according to
Eqs. (26) and (27) are illustrated in Fig. 7. While the mutation strength realized
by the strategy generally differs from the optimal mutation strength, the right
hand graph shows that the loss in quality gain is quite acceptable provided that
the strategy operates not too close to the right hand edge of the graphs. For
the (μ/μ, λ)-ES, the recipe for achieving this is to increase μ and λ; for the
(λ)opt-ES, it is to increase κ.

6 Summary and Conclusions

In this paper, the behavior of weighted multirecombination evolution strategies
has been studied on the infinite-dimensional sphere model. Optimal rank-based
weights have been computed, and it has been found that optimal performance is
achieved if those weights are set to equal the expected values of the order statis-
tics of the standardized normal distribution. The performance of the resulting
strategy – referred to as (λ)opt-ES – has been analyzed, and it was seen that
unlike the (μ/μ, λ)-ES, the (λ)opt-ES is capable of exceeding the serial efficiency
of the (1 + 1)-ES by a factor of roughly two and a half. It has then been found
that the (λ)opt-ES in its original form does not benefit from genetic repair in
the sense that a larger number of offspring generated per time step allows it to
operate with larger mutation strengths. However, the strategy can be modified
by scaling all weights using a common factor κ. While that factor is without
influence on the performance of the strategy if there is no noise present, it has
been found to be able to contribute positively to the strategy’s robustness in the
presence of Gaussian fitness noise. The scaling of weights has been likened to the
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Table 1. Comparison of properties of (μ/μ, λ)-ES and (λ)opt-ES on the infinite-di-
mensional sphere model

(μ/μ, λ)-ES (λ)opt-ES

quality gain Δ∗ σ∗2cμ/μ,λ√
σ∗2 + σ∗

ε
2
− σ∗2

2μ

Wλ

κ

(
σ∗2√

σ∗2 + σ∗
ε
2
− σ∗2

2κ

)
optimal σ∗ (no noise) μcμ/μ,λ κ

optimal Δ∗ (no noise) μc2
μ/μ,λ/2 (

λ→∞−→ 0.202λ) Wλ/2 (
λ→∞−→ 0.5λ)

maximal σ∗
ε 2μcμ/μ,λ 2κ

idea of using rescaled mutations to which it is similar in effect, but from which it
differs in that no explicit rescaling is required. Rather, the possibility of making
large trial steps and at the same time small search steps is an implicit result
of weighted multirecombination in combination with an appropriate choice of
weights. Finally, it has been seen that by virtue of a simple modification, the
cumulative step length adaptation mechanism works for the (λ)opt-ES as well
as it does for the (μ/μ, λ)-ES, and that good mutation strength settings can be
arrived at by choosing κ sufficiently large. Table 1 summarizes some of the most
important findings with regard to the performance of the (λ)opt-ES on the sphere
model and contrasts them with the corresponding results for the (μ/μ, λ)-ES.

Finally, it is important to emphasize that all results in this paper have been
derived under the assumption of infinite search space dimensionality. The find-
ings help provide a good intuitive understanding of the influence of the pa-
rameters λ and κ, of the issues involved in the choice of weights, and of the
consequences of that choice for genetic repair and the performance of multi-
recombination evolution strategies. However, it has also been seen in computer
experiments that the accuracy of the predictions can decrease with increasing κ,
and that the recommendation to work with a large κ in the presence of noise
has limits in finite-dimensional search spaces. Similar findings have been made
for the choice of μ and λ in the (μ/μ, λ)-ES, and an improved approximation for
the noisy case has been derived in [4]. That approximation replaces χ2

N/N not
with unity but instead with a normally distributed term with mean 1 and with
variance 2/N . A similar investigation for the (λ)opt-ES would help determine
optimal settings for λ and κ in finite-dimensional search spaces, and it could be
used for verifying to what degree the performance advantages predicted can be
realized.
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Abstract. Noise is a common problem encountered in real-world opti-
mization. Although it is folklore that evolution strategies perform well
in the presence of noise, even their performance is degraded. One effect
on which we will focus in this paper is the reaching of a steady state that
deviates from the actual optimal solution.
The quality gain is a local progress measure, describing the expected
one-generation change of the fitness of the population. It can be used
to derive evolution criteria and steady state conditions which can be
utilized as a starting point to determine the final fitness error, i.e. the
expected difference between the actual optimal fitness value and that of
the steady state. We will demonstrate the approach by determining the
final solution quality for two fitness functions.

1 Introduction

Noise is often encountered in real-world optimization situations. The sources
can be manifold. Noise can stem from the use of stochastic simulation tools,
measurement errors, or can be due to the fact that it is not possible to sample
data from the entire space. Sometimes it is also introduced as a means to obtain
more robust solutions [10, 12, 20].

We will consider the effects of noise on evolution strategies (ES). These
nature-inspired search strategies aim at optimizing the objective or fitness func-
tion F by applying the evolutionary principles of recombination, mutation, and
selection. Although ES and other evolutionary algorithms are generally assumed
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to be robust against the effects of noise [2, 10, 11, 15, 16], even their performance
can be degraded. The convergence velocity is reduced and the evolution strategy
is unable to get arbitrarily close to the actual optimum ending up in a steady
state at some distance, instead. Therefore, a final fitness error, defined as the
expected distance of the actual optimal value and the steady state fitness, is
encountered.

There are two local progress measures describing the course of the evolution
process. The first (not considered in this paper) is the progress rate describing
the expected one-generation change in the space of the object parameters. The
second, the quality gain, operates on the fitness space instead. Both progress
measures can be used to derive evolution criteria that have to be met if progress
towards the optimum is to be guaranteed. On the other hand, these criteria also
lead to a description of the steady state since no further changes on average are
expected there.

We will present an approach to determine the final fitness error based on
stationarity conditions gained from the quality gain. For quadratic functions and
the progress rate, the final fitness error was already obtained in [5]. An important
point in the derivation was the introduction of the equipartition assumption.
Once the ES has reached the steady state, the weighted components appear to
contribute on average the same to the final fitness error. Using this assumption
it was possible to attain a simple formula for the final solution quality.

This paper is organized as follows. In the next paragraph, we will introduce
the quality gain for (1, λ)-ES maximizing a fitness function under noisy fitness
evaluations. Using the quality gain, we will derive a necessary evolution criterion
that ensures progress towards the optimum – finally obtaining a stationarity
condition for the steady state. Afterwards, we will show how this condition can
be used to determine the final fitness error.

To illustrate the general approach, we will finally consider two fitness func-
tions as examples – biquadratic fitness functions of the form F1(y) = −∑N

i=1 ciy
4
i

and a variant of the L1-norm with F2(y) = −∑N
i=1 |yi|. The biquadratic func-

tion class might be considered as a local continuous plateau model whereas F2 is
of interest because its isometric plot equals a rotated N -dimensional hypercube
with a closed success region and with exceedingly low success probabilities close
to the corners.

2 Evolution Criteria and Steady State

In the following, we consider (1, λ)-ES trying to maximize the fitness function
F under noisy fitness evaluations. Since the parent population consists of one
member, only the mutation and selection processes have to be taken into account.
Based on the parent, λ offspring are created by adding normally distributed
mutation vectors to the parental object vector. In general, all components of the
mutation vector have the same standard deviation σ also called the mutation
strength. The offspring with the seemingly best fitness value is then selected as
the parent of the next generation.
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Considering an object vector y, the quality change Q(x) induced by a muta-
tion vector x is Q(x) = F (y + x) − F (y). But since the fitness evaluations are
disturbed by noise, only the perceived fitness values F̃ (x) = F (x) + ε can be
observed. The noise term ε is assumed to be normally distributed with E[ε] = 0
and σε as standard deviation, which is also called the noise strength.

Under these conditions, it can be shown [6] that the quality gain, i.e. the
expected one-generation change of the fitness, becomes

ΔQ1,λ 0 S2
Q√

S2
Q + σ2

ε

c1,λ + MQ, (1)

provided that the dimension N of the search space is sufficiently large and
that the higher order cumulants of the mutation-induced fitness distribution
do asymptotically vanish. The parameter c1,λ is the so-called progress coeffi-
cient [4, p.72] and is defined as the expected value of the λth order statistic of a
standard normally distributed variable, i.e. c1,λ := λ√

2π

∫∞
−∞ ue−

u2
2 Φλ−1(u) du.

The variables S2
Q and MQ are the variance and the expected value, respectively,

of the local quality change.
A positive quality gain guarantees progress towards the optimum since the

quality increases from one generation to the next. Therefore, the condition
ΔQ1,λ ≥ 0 constitutes a sufficient evolution criterion.

Let us assume that MQ ≤ 0 which is a typical characteristic of many test func-

tions. The sufficient evolution criterion is therefore satisfied for S2
Q/
√

S2
Q + σ2

ε ≥
|MQ|/c1,λ. The inequality can be solved for S2

Q leading to

S2
Q ≥ M2

Q

2c21,λ

⎛⎝1 +

√
1 +

(
2c1,λσε

MQ

)2
⎞⎠ . (2)

Since
(

1 +
√

1 + (2c1,λσε/MQ)2
)

> 2c1,λσε/|MQ|, a necessary evolution crite-

rion can be obtained as

S2
Q ≥ |MQ|

c1,λ
σε. (3)

Only if (3) is fulfilled, progress towards the optimal value is possible. On the
other hand, the case ”=” in (3) leads to the stationarity condition ΔQ1,λ = 0,
provided that S2

Q / σ2
ε . In this case, S2

Q can be neglected in the square root in
(1) and the condition ΔQ1,λ = 0 simplifies to (S2

Q/σε)c1,λ + MQ = 0. Thus, we
obtain

S2
Q 0 |MQ|

c1,λ
σε (4)

as steady state condition. Equation (4) can serve as a starting point to derive
the final fitness error E[ΔF ] if the noise strength is sufficiently large or – since
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the variance S2
Q generally strongly depends on the mutation strength – σ is

sufficiently small.

3 How to Calculate the Final Fitness Error

The final fitness error is defined as the residual fitness error E[ΔF ] = F̂ − E[F ],
where F̂ = maxy F (y). In general, an expression for E[F ] has to be found. Con-
sidering separable functions of the form F (y) =

∑N
i=1 fi(yi), the task simplifies

to determining expressions for E[fi(yi)]. As a starting point, the stationarity con-
dition (4), S2

Q = |MQ|σε/c1,λ, can be used. Since the local quality is of the form
Q(x,y) =

∑N
i=1 qi(xi, yi), the expected value and the variance are functions of

type MQ =
∑N

i=1 E[qi(xi, yi)] and S2
Q =

∑N
i=1 E[q2

i (xi, yi)] − E2[qi(xi, yi)]. The
expectation is taken over the normally distributed variable xi. Therefore, the
expected values are functions of yi and the mutation strength σ, i.e. MQ =∑N

i=1 mi(yi, σ) and S2
Q =

∑N
i=1 si(yi, σ).

The main task is now to relate
∑N

i=1 E[fi(yi)] with
∑N

i=1 E[mi(yi, σ)] and∑N
i=1 E[si(yi, σ)] by means of the stationarity condition (4) and to eliminate the

mutation strength in the equation. The tractability of this approach depends on
the fitness function considered.

So far, we were able to determine the final fitness error for quadratic, bi-
quadratic functions, the variant of the L1-norm, and to test the ranges of the
applicability for the bit-counting function OneMax.

As mentioned before, the final fitness error was already derived for quadratic
fitness functions in [5] using a stationarity condition obtained by considering the
progress rate. Therefore, we will only give a short outline of the determination
of the final solution quality for this function type.

The fitness function is given by F (y) = bTy − yTQy where y and b are N -
dimensional real-valued vectors and Q is a positive definite (symmetric) matrix.
After performing a principal axis transformation [5], the final fitness error E[ΔF ]
can be expressed as E[ΔF ] =

∑N
i=1 qiE[(yi − ŷi)2] , where ŷ = arg max F (y), qi

is the ith eigenvalue of Q, and yi = eT
i y with ei the ith eigenvector.

The local quality Q(x) = F (y+x)−F (y) is given by Q(x) = (2Q(ŷ − y))Tx−
xTQx. The expected value and variance of Q were obtained in [4, p.122f] as
MQ = −σ2Tr[Q] and S2

Q = 4σ2||Q(ŷ − y)||2 + 2σ4Tr[Q2]. Inserting these ex-
pressions into (4), we get –assuming smallness of the mutation strength σ at the
steady state

||Q(ŷ − y)||2 0 Tr[Q]
4c1,λ

σε. (5)

This agrees with the result found in [5]. Following the same assumptions used
there, we can give an approximation for the expected final fitness error by relating
(5) with E[ΔF ] =

∑N
i=1 qiE[(yi − ŷi)2] as

E[ΔF ] =
σεN

4c1,λ
. (6)
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Equation (6) is surprisingly simple and does not depend on the specific form
of F . The validity of (6) was already tested in [5], yielding good results. One of the
most important assumptions in the derivation of (6) is the so-called equipartition
assumption stating that the weighted contribution of all components to the final
fitness error can be supposed to be the same on average. In nearly all derivations
of the final solution quality, this assumption is a crucial point simplifying the
calculations. In the following, we will illustrate the general approach by two
further examples.

3.1 The Biquadratic Case

In this section, we consider functions of the type F1(y) = −∑N
i=1 ciy

4
i , yielding

the local quality Q(x) =
∑N

i=1(−4ci)y3
i xi − 6ciy

2
i x

2
i − 4ciyix

3
i − cix

4
i . The final

fitness error is given by E[ΔF ] =
∑N

i=1 ciE[y4
i ]. Thus, we need to find expressions

for the fourth moment of yi using the steady state condition (4). To calculate
(4) in the biquadratic case, we need the expected value and the variance of the
local quality which are given as [7]

MQ = −3σ2
N∑

i=1

ci(2y2
i + σ2) (7)

S2
Q =

N∑
i=1

16c2i y
6
i σ

2 + 168c2i y
4
i σ

4 + 384c2iy
2σ6 + 96c2iσ

8. (8)

Considering only small mutation strengths, the variance simplifies to S2
Q 0

σ2
∑N

i=1 16c2i y
6
i . Thus, the steady state condition (4), S2

Q 0 |MQ|σε/c1,λ, reads

N∑
i=1

16c2i y
6
i 0 3σε

c1,λ

N∑
i=1

ci(2y2
i + σ2). (9)

We will consider the limit case of σ → 0. Therefore, the addends containing the
mutation strength will be neglected

N∑
i=1

16c2i y
6
i 0 6σε

c1,λ

N∑
i=1

ciy
2
i . (10)

This resulting condition contains the yi-variates which obey certain (unknown)
steady state distributions. Assuming statistical independence of the yi at the
steady state, there still remains the determination of the pi(yi) steady state
density functions. The approach presented here does not allow for a derivation
of the pi from first principles. Instead, we will use an ansatz: As a first approx-
imation, we assume that the yi are normally distributed with zero mean and
standard deviation σi

yi ∼ N (0, σ2
i ). (11)
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In order to obtain σi, we make reference to our equipartion principle. That is,
we again assume that the components Δfi in the fitness sum

ΔF =
N∑

i=1

Δfi =
N∑

i=1

ciy
4
i (12)

obey the same distribution and, therefore,

∀i = 1, . . . , N : E[Δfi] = ciy4
i = K. (13)

Thus, we get with (11), E[Δfi] ≈ 3ciσ
4
i ≈ K and

σ2
i ≈

√
K

3ci
, (14)

where K is a constant to be determined using the steady state condition (10).
Taking the expected value in (10), we get

N∑
i=1

16 · 15c2iσ
6
i ≈ 6σε

c1,λ

N∑
i=1

ciσ
2
i . (15)

and plugging (14) into (15) results in

N∑
i=1

16 · 5√ciK ≈ 6σε

c1,λ

N∑
i=1

√
ci. (16)

This condition must hold for all choices of ci and therefore it must hold for each
single addend in (16). Thus, we get

K ≈ 3σε

40c1,λ
. (17)

Now, consider the expected value of (12) which is the final fitness error we are
interested in E[ΔF ] :=

∑N
1=1 ciy4

i . Using (13), we see that E[ΔF ] = NK and
inserting (11) we finally end up with

E[ΔF ] ≈ 3Nσε

40c1,λ
. (18)

Equation (18) was obtained by applying an equipartition assumption stating
that the contribution of the weighted fitness components to the final fitness error
can be supposed to be the same once the steady state is reached. Furthermore,
the limit case σ → 0 was considered. As in the quadratic case, (18) does not
depend on any terms of F1(y) = −∑N

i=1 ciy
4
i , that is, the final fitness error is

independent of the specific ci-values.
In the following, we will examine the predictive quality of (18). Although it

was developed for (1, λ)-ES, we will extend it to (μ/μI , λ)-ES by replacing c1,λ
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with μcμ/μ,λ. The progress coefficient cμ/μ,λ is defined as the expectation of the
average over the μ largest samples of a population of λ random samples which are
chosen according to the standard normal distribution [4, p.216]. The expectation
E[ΔF ] then corresponds to the final fitness error of the centroid of the parental
population. As test functions, F1.1(y) = −∑N

i=1 y4
i , F1.2(y) = −∑N

i=1 iy4
i , and

F1.3(y) = −∑N
i=1 i2y4

i were chosen.
The plots in Fig. 1 show the dependency of the final fitness error E[ΔF ] on

the number of parents μ for some (μ/μI , 60)-ES runs. Depicted are the values
predicted by (18) and the actually measured ones. The experimental values were
obtained by averaging over 500,000 (N = 30) and 900,000 (N = 100) generations
in the steady state region. The values for μ = 58 and μ = 59 are not shown
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Fig. 1. Final fitness error for biquadratic functions. Shown are the calculated and
experimental values for E[ΔF ] of (μ/μI , 60)-ES with μ =1, 2, 4, 6, 8, 10, 15, 20, 25,
30, 35, 40, 45, 50, 52, 54, 56. The vertical bars indicate the ± standard deviations. The
noise strength is σε = 1.
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because of convergence problems for these ES. The standard mutative σ self-
adaptation (σSA, [3, 9, 18, 19]) was used as σ-control rule in all experiments.

The overall agreement between equation and experiment is rather good al-
though some deviations can be observed. The experimentally found final fitness
error of the (1, 60) evolution strategy is significantly higher than the theoreti-
cally obtained lower bound. A similar case was already observed in [5] in the
case of quadratic test functions. (1, λ) evolution strategies using σSA tend to
premature stagnation which is the consequence of a very fast reduction of the
mutation strength.

This can also be observed in Fig. 2 showing exemplary runs of an (1, 60)-
ES and of a (30/30I, 60)-ES optimizing test function F1.2. In the case of the
second ES, σ is reduced to a value around 0.03, where it starts to fluctuate. As a
consequence, ΔF also approaches its steady state a short time later. In contrast
to this, the mutation strength is reduced faster and further in the case of the
(1, 60)-ES reaching values that are much closer to zero. Therefore, ΔF stagnates
very soon. For shorter periods, σ can attain higher values though being unable
to stabilize at this level. The reasons for this behavior are not fully understood.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  2000  4000  6000  8000  10000

g

ΔF

σ

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  2000  4000  6000  8000  10000

g

ΔF

σ

a) (1, 60)-ES on function F1.2 b) (30/30I , 60)-ES on function F1.2

Fig. 2. ΔF and σ-dynamics of an (1, 60) and a (30/30I , 60) ES using σSA. The noise
strength is σε = 1.

The following Fig. 3 shows the average value of the weighted fitness compo-
nents 〈Δfi〉 for the functions F1.1-F1.3. The experimental values were obtained
by averaging over a total of 15, 000, 000 generations with 30 restarts. The plots
for F1.2 and F1.3 show a trend in the data with decreasing values from the lower
weighted components to the higher weighted ones which does not actually seem
to support the equipartion assumption. Therefore, the equipartion assumption
for the biquadratic functions F (y) =

∑N
i=1 ciy

4
i will have to be investigated

more closely in the future. Possible reasons might be a very slow convergence
of the single components or numerical instabilities due to the fourth power of
the yi that appears in the fitness functions. We also investigated the weighted
fitness components obtained by (1, 60)-ES runs, where a minimal value for the
mutation strength (σmin = 0.01) was introduced. The values were obtained by
sampling over 40, 000, 000 generations with 80 restarts. As one can see in Fig. 4,
there is a good agreement with our equipartition assumption in the case of the
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Fig. 3. Average value of the weighted fitness contributions 〈Δfi〉 of the functions F1.1-
F1.3 for N = 30. The values were obtained by sampling over 15, 000, 000 generations
with 30 restarts. Shown as lines are the estimates 1

N

∑N
i=1〈Δfi〉.

(1, λ)-ES. This is in contrast to the μ > 1 cases and raises the question why the
intermediate recombination destroys the equipartition of the fitness components.

It is interesting to see, though, that the average value over all components
resembles the estimate of F1.1. Therefore, the error introduced by assuming that
the contributions of components are the same seems to be small.

Figure 5 shows histograms for (30/30I, 60)-σSA-ES on the functions F1.1-
F1.3. Shown are the values of the first, 15th, and the 30th fitness component. The
values were obtained by sampling over a total of 20, 000, 000 generations with 40
restarts and grouped in 1000 intervals from 0-0.005. In general, all fitness com-
ponents lead to skew distributions with a distinctive tail. Again differences can
be observed in the cases of F1.2 and F1.3, where the higher weighted components
tend more towards smaller values.
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Fig. 4. Average value of the weighted fitness contributions 〈Δfi〉 of the functions F1.1-
F1.3 for N = 30. The values were obtained by sampling over 40, 000, 000 generations
with 80 restarts. Shown as lines are the estimates 1
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Fig. 5. Histograms of the first, 15th, and 30th fitness component. The noise strength
is σε = 1. The histograms comprise 1000 classes between 0 and 0.005. Shown is the
section up to 0.0001.
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3.2 L1-Norm Case

We will now consider the function F2(y) = −∑N
i=1 |yi|. In order to obtain an

expression for the final fitness error which is given as E[ΔF ] =
∑N

i=1 E[|yi|], we
will follow a similar approach as before. First, we have to derive the specific
steady state criterion S2

Q = |MQ|σε/c1,λ. The required expected value MQ and
the variance S2

Q can be given after some straightforward calculations [7] as

MQ =
N∑

i=1

|yi| − yi(2Φ0,σ2 (yi) − 1) − 2σ2φ0,σ2 (yi) and (19)

S2
Q = Nσ2 + 4

N∑
i=1

y2
i Φ0,σ2 (yi)[1 − Φ0,σ2(yi)]

−4σ2
N∑

i=1

φ0,σ2(yi)yi[2Φ0,σ2(yi) − 1] − 4σ4
N∑

i=1

φ2
0,σ2 (yi), (20)

where φ0,σ2 (xi) := 1√
2πσ

e−
x2

i
2σ2 and Φ0,σ2 is the corresponding distribution func-

tion. The steady state criterion requires the absolute value |MQ| which is ob-
tained as |MQ| =

∑N
i=1 yi(2Φ0,σ2(yi) − 1) + 2σ2φ0,σ2(yi) − |yi| (see Appendix

5.1). To simplify the calculations, we introduce an upper bound for S2
Q noting

that S2
Q ≤ Nσ2 − 4σ4

∑N
i=1 φ2

0,σ2(yi)(see Appendix 5.1). Considering the steady
state criterion S2

Q = |MQ|σε/c1,λ, it follows that

Nσ2 − 4σ4
N∑

i=1

φ2
0,σ2(yi) ≥ σε

c1,λ

N∑
i=1

yi(2Φ0,σ2 (yi) − 1)

+2σ2φ0,σ2(yi) − |yi|. (21)

In the following let zi = yi/σ. Equation (21) thus simplifies to

Nσ − 2σ
π

N∑
i=1

e−z2
i ≥ σε

c1,λ
(

N∑
i=1

zi(2Φ(zi) − 1) +
2√
2π

e−
z2

i
2 − |zi|), (22)

where Φ(zi) = Φ0,1(zi). Applying the equipartition assumption to F2(y) =
−∑N

i=1 |yi|, we postulate E[|yi|] = E[|yk|] for k �= i or E[|zi|] = E[|zk|] for
zi = yi/σ, respectively. In addition, we assume E[h(zi)] = E[h(zk)], where i �= k
and h is one of the functions in (22). Furthermore, since our approach again does
not allow for a determination of the densities of the zi from first principles, we
assume the zi to be normally distributed with expected value zero and variance
σ2

z . In this context, the final fitness error E[ΔF ] =
∑N

i=1 E[|yi|] = σ
∑N

i=1 E[|zi|]
is given as E[ΔF ] = NσE[|z|] ≈ Nσσz

√
2/π and the expected values of the

terms of (22) become
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E[|z|] ≈
√

2
π
σz ,

E[z(2Φ(z) − 1)] ≈
√

2
π

σ2
z√

σ2
z + 1

,

2√
2π

E[e−
z2
2 ] ≈

√
2
π

1√
σ2

z + 1
, and

2σ
π

E[e−z2
] ≈ 2

π
√

2σ2
z + 1

σz. (23)

Thus, assuming that the inequality still holds, we obtain for the expected value
of (22)

Nσ

(
1 − 2

π
√

2σ2
z + 1

)
� σε

c1,λ
N

(√
2
π

√
σ2

z + 1 − σz

√
2
π

)
, (24)

from which a relationship between the mutation strength in the steady state and
the variance of zi, i.e.

σ � σε

c1,λ

√
2
π

⎛⎝ √
σ2

z + 1 − σz

(1 − 2

π
√

2σ2
z+1

)

⎞⎠ , (25)

can be derived. Inequality (25) can be used to determine a lower bound for the
final fitness error since

E[ΔF ] ≈ N

√
2
π
σzσ � N

2σε

c1,λπ

⎛⎝σz

√
σ2

z + 1 − σz

(1 − 2

π
√

2σ2
z+1

)

⎞⎠ . (26)

The standard deviation σz is unknown. In order to proceed, we consider (25)
noting that its right hand side is a monotonically decreasing function of σz .
Assuming smallness of the mutation strength in the steady state, σz has to be
sufficiently high. Especially, we assume σz ≥ 1.

Hence, we are interested in finding a lower bound for h(x) = (
√
x4 + x2 −

x2)/(1 − 2
π
√

2x2+1
) for x ≥ 1. As one can easily see, h(x) → 0.5 for x → ∞

since the denominator 1 − 2
π
√

2x2+1
approaches 1 and the numerator is given by√

x4 + x2 − x2 = (
√
x4 + x2 − x2)(

√
x4 + x2 + x2)/(

√
x4 + x2 + x2) = 1/(1 +√

1 + 1/x2) which goes to 0.5. As it can be shown in Appendix 5.1, we have
h(x) ≥ 0.5 for all x ≥ 1. Therefore, we can give a lower bound for the final
fitness error as

E[ΔF ] � σε

πc1,λ
N. (27)

To derive (27), we used again a variant of the equipartition assumption, first
introduced in [5]. Furthermore, we had to assume that the variables yi or stan-
dardized variables zi = yi/σ, respectively, obey a normal distribution. Under this



250 Hans-Georg Beyer and Silja Meyer-Nieberg

assumption we could derive (25), which gives a function of the noise strength
and the standard deviation of z as a lower bound for the mutation strength.
Equation (25) can further be used to obtain an estimate for the final inequality
(27). Assuming that σz ≥ 1, h(σz) is always higher than its limit value which
can then be used to derive the lower bound.

As it has been done for biquadratic functions, the final fitness error can be
easily extended to (μ/μI , λ)-ES by substituting c1,λ with μcμ/μ,λ. The applicabil-
ity of the resulting lower bound, i.e. E[ΔF ] ≥ Nσε/(πμcμ/μI ,λ), was investigated
by conducting experiments with (μ/μI , 60)-ES for a noise strength of 1 using a
100-, 200-, and a 300-dimensional search space. Unless stated otherwise, the ex-
perimental values were obtained by sampling over 900, 000 generations in the
steady state. As σ control rules, σSA and CSA (cumulative step-length adap-
tation [1, 13, 14]) were used. In the latter case, a σmin value was introduced in
order to prevent premature convergence.

As one can see in Fig. 6, the lower bound is not violated and seems to be
a reasonable approximation of the real final fitness error. In the case of the ES
using σSA, the approximation error decreases from around 40-50% for N = 100
to 30-40% for N = 200. The approximation error for higher-dimensional search
spaces is generally smaller. Again (1, λ)-ES show premature convergence and
their results are therefore not always depicted.

In general, the CSA-algorithm seems to lead towards smaller values especially
for higher parental numbers where the deviation of the ES using σSA increases.

Since we assumed the zi = yi/σ to be normally distributed with the same
variance σ2

z , we also investigated the validity of this assumption. Figure 7 shows
relative frequencies for some (μ/μI , λ)-ES using σSA for N = 100 and N = 200.
The values were obtained by sampling over a total of 800, 000 generations in the
steady state with eight restarts grouping the values in 509 (N = 100) and 209
(N = 200) intervals ranging from −15.5 to 15.5. Also shown are the relative fre-
quencies gained by sampling from normal distributions with the experimentally
found σz-values.

The normal distribution seems to be only a rough approximation of the
actual distribution function since the curves are generally steeper and narrower.
Therefore, we introduce the double exponential distribution with the density
function p(zi) = 1/(2α)e−|zi|/α as a more appropriate choice. To obtain an
estimate of the final fitness error, we start again with Equation (22), i.e.

Nσ − 2σ
π

N∑
i=1

e−z2
i ≥

(
N∑

i=1

zi(2Φ(zi) − 1) +
2√
2π

e−
z2

i
2 − |zi|

)
σε

c1,λ
.

In order to continue, we need to determine the expected values of the terms in
(22) which are obtained after some calculations as

E[|zi|] ≈ α,

E[zi(2Φ(zi) − 1)] ≈ 2(α − 1
α

)Φ(− 1
α

)e
1

2α2 +

√
2
π
,
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g0 = 4, 000, 000 (σmin = 0.0025), g0 = 4, 000, 000

Fig. 6. E[ΔF ] for some (μ/μI , 60)-ES optimizing function F2. The equation for the
final fitness error was gained using the normal distribution in the derivation. Shown
are the results obtained by (27) (solid curves) and the experimentally obtained values.
As control rules for the mutation strength adaptation, σSA and CSA were used. The
vertical bars indicate the ± standard deviations.

2√
2π

E[e−
z2

i
2 ] ≈ 2

α
Φ(− 1

α
)e

1
2α2 , and

2σ
π

E[e−z2
i ] ≈ 2√

πα
σΦ(− 1√

2α
)e

1
4α2 . (28)

Therefore, the expected value of (22) becomes

σ

(
1 − 2√

πα
Φ(− 1√

2α
)e

1
4α2

)
� σε

c1,λ

(
2(α − 1

α
)Φ(− 1

α
)e

1
2α2 +

√
2
π

)
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Fig. 7. Relative frequencies for function F2 for some (μ/μI , 60)-ES using σSA for N =
100 and N = 200. Also included are the corresponding relative frequencies si drawn
from normal distributions using the experimentally found standard deviations.

+
σε

c1,λ

(
2
α
Φ(− 1

α
)e

1
2α2 − α

)

⇒ σ � σε

c1,λ

⎛⎝2αΦ(− 1
α )e

1
2α2 +

√
2
π − α

1 − 2√
πα

Φ(− 1√
2α

)e
1

4α2

⎞⎠ . (29)

The final fitness error E[ΔF ] =
∑N

i=1 E[|yi|] is given as E[ΔF ] ≈ Nσα. There-
fore, we obtain the inequality

E[ΔF ] � N
σε

c1,λ

⎛⎝α2(2Φ(− 1
α )e

1
2α2 − 1) +

√
2
πα

1 − 2√
πα

Φ(− 1√
2α

)e
1

4α2

⎞⎠ . (30)

This lower bound for the final fitness error depends on the parameter α which
is unknown. Therefore, we consider the function

h(x) =
x2(2Φ(− 1

x )e
1

2x2 − 1) +
√

2
πx

1 − 2√
πx

Φ(− 1√
2x

)e
1

4x2
. (31)

The plot of h(x) is shown in Fig. 8. We have h(x) → 0.5 for x → ∞ which
can be easily shown by applying l’Hospital’s Rule [7]. When using the normal
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Fig. 8. The function h(α) (31) which appears in the derivation of the alternative fi-
nal fitness error (32) for function F2 using the double exponential distribution. It
approaches 0.5 for α → ∞.

distribution, we assumed σz ≥ 1. Since the variance of a double exponentially
distributed variable z is given as Var[z] = 2α2, we use α ≥ 1/

√
2 as an equivalent

assumption. Since h(x) ≥ h(1/
√

2) ≥ 0.47715 for all x ≥ 1/
√

2 (see Appendix
5.1), we obtain the lower bound

E[ΔF ] � 0.47715N
σε

c1,λ
. (32)

To obtain (32), we made analog assumptions as in the derivation of (27). That
is, we introduced the same equipartition assumption for the zi and tried to
determine an estimation for the final fitness error by finding a lower bound for
(31). The only difference is the assumption of a different distribution function.

The predictive quality of (32) will be assessed in the following. Figure 9 shows
the results obtained by E[ΔF ] � 0.47715Nσε/(μcμ/μ,λ) (32) using the double
exponential distribution instead of the normal distribution in the derivation.
Generally, the approximation quality seems to be better compared with (27),
although the lower bound is violated for N = 200 and N = 300. This might be
a hint that the double exponential distribution is not an appropriate choice for
higher-dimensional search spaces although the predictions of (32) do not show a
further decrease when switching from N = 200 to N = 300.

4 Conclusions and Outlook

In this paper, we considered the final solution quality of evolution strategies that
are disturbed by fitness noise of constant variance. As a starting point for the
derivation, the quality gain, a local performance measure, was chosen. As in the
case of the progress rate [5], it can be used to derive evolution criteria and to
characterize the steady state. Assuming a sufficiently large noise strength or a
sufficiently small mutation strength, respectively, the steady state condition (4),
i.e. S2

Q = |MQ|σε/c1,λ, can be obtained. Equation (4) can be utilized in turn for
the determination of the final solution quality, i.e. final fitness error.
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Fig. 9. E[ΔF ] for some (μ/μI , 60)-ES optimizing function F2. The equation for the final
fitness error was gained using the double exponential distribution in the derivation.
Shown are the results obtained by (32) (solid curves) and the experimentally obtained
values. As control rules for the mutation strength adaptation, σSA and CSA were used.
The vertical bars indicate the ± standard deviations.

In this paper two examples – the biquadratic functions and the L1-norm –
were considered. For these two function types and the class of quadratic functions
the final fitness error can be given as E[ΔF ] = σεN/(Cc1,λ). The constant C
depends only on the fitness function type but not on the specific function itself.
Although the formula is surprisingly simple, the prediction quality is reasonably
good. Since the predictions of the final fitness error are so similar, optimal values
of the final solution quality are attained for a μ/λ-ratio of around 1/2. This is
not the optimal choice as to the convergence velocity for which μ/λ ≈ 0.27 is
usually recommended [5]. But since the curve of the final fitness error is quite
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flat in the interval μ/λ = 1/3 to μ/λ = 2/3, one of these values can also be used
without expecting a serious increase of the final fitness error.

The equations for the final fitness error were derived for (1, λ) evolution
strategies. We considered the (μ/μI , λ) variants by a simple modification of the
respective equations. Although the prediction quality is generally quite good as
we have seen, a formal derivation of the final fitness error for (μ/μI , λ)-ES still
needs to be developed.

We applied the standard noise model assuming that the noise can be modeled
simply by adding a normally distributed random variable to the fitness function.
While this model is used in most publications, there are several cases where it
might not be applicable and other forms of modeling will have to be used. As
an example, we refer to the optimization of aerodynamic structures [17], where
the noise has to be modeled inside the fitness function. The investigations will
have to be extended to develop equations for these cases, which will require the
application of novel techniques like the ones which were developed in [8].

A central and crucial point in the determination of the final fitness error
was the equipartition assumption first introduced in [5]. Variants of it have been
applied for nearly all test functions considered so far. An open problem remains
in the case of the biquadratic functions, where different contributions of the
weighted fitness components have been observed. This might be due to setting
μ > 1, since (1, λ)-ES do not show the same trend on the data as (μ/μI , λ)-ES.
The exact reasons for this behavior will have to be investigated.

5 Appendix

5.1 Final Fitness Error of Function F2(y) = −∑N
i=1 |yi|

Inequality 1: S2
Q ≤ Nσ2 − 4σ4

∑N
i=1 φ2

0,σ2(yi)
In order to prove the first inequality, we consider a single addend of S2

Q, i.e.
σ2+4y2Φ0,σ2(y)[1−Φ0,σ2 (y)]−4σ2φ0,σ2(y)y[2Φ0,σ2(y)−1]−4σ4φ2

0,σ2 (y), and show
that

y2Φ0,σ2(y)[1 − Φ0,σ2 (y)] ≤ σ2φ0,σ2(y)y[2Φ0,σ2(y) − 1]. (33)

Since the terms on both sides of the inequality are symmetric, it suffices to show
the validity of (33) for y ≥ 0. Since (33) is fulfilled for y = 0, we consider y > 0
in the following. Using the transformation z = σy, (33) simplifies to

zΦ(z)(1 − Φ(z)) = zΦ(z)Φ(−z) ≤ φ(z)(2Φ(z) − 1), (34)

where Φ(z) = Φ0,1(z) and φ(z) = φ0,1(z). Considering f(z) := zΦ(z)Φ(−z) −
φ(z)(2Φ(z) − 1), we see that f(0) = 0 and that f(z) → 0 for z → ∞.

We need to show that f(z) ≤ 0 for all z > 0. If f has only a minimum on
(0,∞), the inequality is proven.

The first derivative of f is given as f ′(z) = Φ(z)Φ(−z)−2φ2(z) := h(z)−g(z)
with f ′(0) < 0 and limz→∞ f ′(z) = 0.
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The second derivative is given by f ′′(z) = h′′(z) − g′′(z) = −φ(z)(2Φ(z) −
1) + 4zφ2(z).

We will first consider the zero points of f ′′(z), i.e. the solutions of

h′′(z) = g′′(z) ⇐⇒ 2Φ(z) − 1 = 4zφ(z).

Naturally, we have f ′′(0) = 0. Setting k(z) = 2Φ(z) − 1 and l(z) = 4zφ(z), we
note that k with k′(z) = 2φ(z) is monotonically increasing and approaches one.
In contrast to this, l with l′(z) = 4φ(z)(1 − z2) grows until z = 1 and then
decreases monotonically approaching zero. We also note that l′(z) ≥ k′(z) for
z ≤ 1/

√
2 whereas l′(z) ≤ k′(z) for z ≥ 1/

√
2. Therefore, there is exactly one

z0 > 1/
√

2, with l(z0) = k(z0) or f ′′(z0) = 0. Since f ′′(z) ≥ 0 for z ≤ z0 and
f ′′(z) ≤ 0 for z0 ≤ z, f ′(z) has its only maximum in z0.

We know that f ′(z0) > 0, because f ′ decreases monotonically towards zero
for z ≥ z0. Since f ′(0) < 0, there is exactly one zl ∈ (0, z0) with f ′(zl) = 0.
Therefore, f has only one extremum (minimum) in (0,∞) which is necessarily
smaller than zero.

Equation 2: |MQ| =
∑N

i=1 yi(2Φ0,σ2(yi) − 1) + 2σ2φ0,σ2(yi) − |yi|
To show the validity of this equation, it suffices to prove y(2Φ0,σ2(y) − 1) +
2σ2φ0,σ2 (y) ≥ |y|. Since all terms are symmetric, we will only consider y ≥ 0.

Using the transformation z = σy again, the inequality is given as 2zΦ(z) +
2φ(z) ≥ 2z. Considering the function f(z) := zΦ(z) + φ(z) − z = z(Φ(z) − 1) +
φ(z), we see that f(0) > 0 and f(z) → 0 for z → ∞. The derivative is given
by f ′(z) = Φ(z) − 1 ≤ 0. The function f is therefore monotonically decreasing
approaching zero in the limit case which shows f(z) ≥ 0 for all z ≥ 0.

Inequality 3: h(x) =
√

x4+x2−x2

1− 2
π
√

2x2+1

≥ 0.5 for x ≥ 1 which can be shown as follows.

√
x4 + x2 − x2 ≥ 1

2
(1 − 2

π
√

2x2 + 1
)

⇐⇒
√

2x2 + 1(
√

x4 + x2 − x2) ≥ 1
2
(
√

2x2 + 1 − 2
π

)

⇐⇒ 2
√

2x6 + 3x4 + x2 − (2x2 + 1)
√

2x2 + 1 ≥ − 2
π

⇐⇒
√

(2x2 + 1)3 − (2x2 + 1) −
√

(2x2 + 1)3 ≥ − 2
π

(35)

Setting t = 2x2 + 1, we consider g(t) =
√
t3 − t − √

t3, t ≥ 3. We will show
that g is a monotonically increasing function. Since g(3) > −2/π, this will prove
h(x) ≥ 0.5 for all x ≥ 1. The derivative is given as g′(t) = 3t2−1

2
√

t3−t
− 3t2

2
√

t3
. Setting

g′(t) = 0 leads to

3t2 − 1√
t3 − t

=
3t2√
t3

⇒ (3t2 − 1)
√
t3 = 3t2

√
t3 − t
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⇐⇒ (9t4 − 6t2 + 1)t3 = 9t4(t3 − t)
⇐⇒ 9t4 − 6t2 + 1 = 9t4 − 9t2 since t ≥ 3
⇒ 3t2 + 1 = 0 (36)

Therefore, g′(t) �= 0 for all t ≥ 3. Since g′(3) ≥ 0, the function g is monotonically
increasing which proves h(x) ≥ 0.5 for all x ≥ 1.

Alternative distribution for F5: The function h(x) = (x2(2Φ(− 1
x )e

1
2x2 − 1) +√

2
πx)/(1 − 2√

πx
Φ(− 1√

2x
)e

1
4x2 )(31) will be considered in the following.

It is to be shown that h(x) ≥ 0.47715 for all x ≥ 1/
√

2. Setting f(x) =
x2(2Φ(−1/x)e

1
2x2 − 1) +

√
2/πx and g(x) = 1 − 2/(

√
πx)Φ(−1/(

√
2x))e

1
4x2 , we

know that h(x) ≥ f(x).
Setting c = 0.47715, let us consider l(x) = f(x) − cg(x) for x ∈ (1/

√
2,∞).

l(x) = x2(2Φ(− 1
x

)e
1

2x2 − 1) +

√
2
π
x − c + c

2√
πx

Φ(− 1√
2x

)e
1

4x2 ≥ 0

⇐⇒ (2Φ(− 1
x

)e
1

2x2 − 1) +
√

2√
πx

− c

x2
+ c

2√
πx3

Φ(− 1√
2x

)e
1

4x2 ≥ 0 (37)

Setting s = 1/x, we now consider h(s) = 2Φ(−s)e
s2
2 −1+ s

√
2√
π

−s2c+c 2s3√
π
Φ(− s√

2
)

e
s2
4 on I = (0,

√
2). We decompose I into smaller intervals, i.e. I =

⋃
k Ik

and show that h(s) ≥ 0 for all s ∈ Ik = [bk, bk+1]. Since h(s) is given by
h(s) = h(bk) +

∫ s

bk
h′(t) dt, we will derive a lower bound for h′(t) which can be

determined as h′(t) = t(2Φ(−t)e
t2
2 + c√

π
Φ(− t√

2
)e

t2
4 (6t+ t3)− 2c− c

π t2) = tu(t).

Since Φ(−t)e
t2
2 is a decreasing function, we have Φ(−t)e

t2
2 ≥ Φ(−bk+1)e

b2k+1
2 =

wk+1 and Φ(− t√
2
)e

t2
4 ≥ Φ(− bk+1√

2
)e

b2k+1
4 = vk+1. Thus, we obtain u(t) ≥ 2wk+1+

c√
π
vk+1(6t+t3)−2c− c

π t2 as a lower bound for u on Ik. In order to find a minimal
value for that lower bound ũ in Ik, we consider the possible zero points of ũ′(t) =

c√
π
vk+1(6+3t2)− 2c

π t which are given by t1,2 = 1
3
√

πvk+1
±
√

1
9πv2

k+1
− 2. The root

is only a real number if 1/(9πv2
k+1) ≥ 2 or 1/(18π) ≥ v2

k+1. The smallest possible
value for vk+1 is Φ(−1)

√
e which is greater than 1/

√
18π. Therefore, ũ′ does not

have any zero points on Ik and ũ is a monotone function. Depending on the sign
of ũ′, ũ assumes its minimum either at bk or at bk+1. Setting ck = mint∈Ik

ũ(t),
a lower bound for h(s) is thus given by

h(s) ≥ h(bk) +
∫ s

bk

tck dt = h(bk) +
ck

2
(s2 − b2k). (38)

Depending on the sign of ck, we finally obtain the lower bound

h(s) ≥ hk =
{

h(bk) if ck > 0
h(bk) + ck

2 (b2k+1 − b2k) if ck < 0 . (39)
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Table 1. The lower bounds hk for the interval decomposition considered. Also shown
are the values for the derivative of ũ and the ck-values.

bk bk+1 ũ′(bk + (bk+1 − bk)/2) ck hk

0. 0.05 0.777974 0.00702329 0.

0.05 0.1 0.743357 0.0084933 0.0000573665

0.1 0.15 0.7114 0.00939039 0.00022919

0.15 0.2 0.681914 0.00976756 0.000512478

0.2 0.25 0.654726 0.00967363 0.00090116

0.25 0.3 0.629675 0.00915364 0.0013865

0.3 0.35 0.606612 0.00824899 0.00195748

0.35 0.4 0.585401 0.00699779 0.00260111

0.4 0.45 0.565914 0.00543505 0.00330276

0.45 0.5 0.548037 0.00359291 0.00404641

0.5 0.55 0.531658 0.00150086 0.00481491

0.55 0.6 0.51668 -0.000814083 0.00556674

0.6 0.65 0.503009 -0.00332715 0.00624933

0.65 0.7 0.490558 -0.00601568 0.00688195

0.7 0.75 0.479249 -0.00885894 0.00744421

0.75 0.8 0.469008 -0.011838 0.00791558

0.8 0.85 0.459764 -0.0149355 0.00827546

0.85 0.9 0.451456 -0.0181358 0.00850329

0.9 0.95 0.444023 -0.0214243 0.00857861

0.95 1 0.437411 -0.0247881 0.00848115

1 1.05 0.431568 -0.0282151 0.00819085

1.05 1.1 0.426447 -0.0316945 0.00768791

1.1 1.05 0.422003 -0.0352165 0.00695286

1.15 1.2 0.418195 -0.038772 0.00596657

1.2 1.25 0.414985 -0.0423531 0.00471029

1.25 1.3 0.412336 -0.0459523 0.00316564

1.3 1.35 0.410214 -0.049563 0.00131466

1.35 1.37 0.413664 -0.038805 0.0017404

1.37 1.39 0.413097 -0.0402718 0.00087403

1.39 1.4 0.41428 -0.0368903 0.000607786

1.4 1.41 0.414053 -0.0376248 0.000142087

1.41 1.414 0.414844 -0.03543814214607244 5.27635490428548 ∗ 10−6

1.414
√

2 0.415395 -0.0338832 5.246888030107535 ∗ 10−6

The intervals chosen and the values of hk are given in Table 1. All values were
obtained by using Mathematica. As one can see, hk ≥ 0 for all k which shows
h(s) ≥ 0 on I.
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Abstract. We consider the (1+1) Evolution Strategy, a simple evolu-
tionary algorithm for continuous optimization problems, using so-called
Gaussian mutations and the 1/5-rule for the adaptation of the mutation
strength. Here, the function f : Rn → R to be minimized is given by a
quadratic form f(x) = x�Qx, where Q ∈ Rn×n is a positive definite
diagonal matrix and x denotes the current search point. This is a natural
extension of the well-known Sphere-function (Q = I). Thus, very simple
unconstrained quadratic programs are investigated, and the question is
addressed how Q effects the runtime. For this purpose, quadratic forms

f(x) = ξ · (x1
2 + · · · + xn/2

2
)

+ xn/2+1
2 + · · · + xn

2

with ξ = ω(1), i. e. 1/ξ → 0 as n → ∞, and ξ = poly(n) are investigated
exemplarily. It is proved that the optimization very quickly stabilizes and
that, subsequently, the runtime (defined as the number of f -evaluations)
to halve the approximation error is Θ(ξ ·n). Though ξ ·n = poly(n), this
result actually shows that the evolving search point indeed creeps along
the “gentlest descent” of the ellipsoidal fitness landscape.

1 Introduction

Finding – or at least approximating – an optimum of a given function f : S → R

is one of the fundamental problems – in theory as well as in practice. Methods for
solving continuous optimization problems, e. g. S = Rn, are usually classified into
first-order, second-order, and zeroth-order methods depending on whether they
utilize the gradient (the first derivative) of the objective function, the gradient
and the Hessian (the second derivative), or neither of the two.

Note that here “continuous” relates to the search space rather than to f , and
that, unlike in math programming, throughout this paper “n” denotes the
number of dimensions of the search space and not the number of optimization
steps; “d ” generally denotes a distance in the n-dimensional search space.

A zeroth-order method is also called derivative-free or direct search method.
Newton’s method is the example of a second-order method; first-order methods
� Supported by the German Research Foundation (DFG) as part of the research center

“Computational Intelligence” (SFB 531)

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 260–281, 2005.
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can be (sub)classified into Quasi-Newton, steepest descent, and conjugate gradi-
ent methods. Classical zeroth-order methods try to approximate the gradient in
order to plug this estimate into a first-order method. Finally, amongst the “mod-
ern” zeroth-order methods, evolutionary algorithms (EAs) come into play. EAs
for continuous optimization, however, are usually subsumed under the term evo-
lution(ary) strategies (ESs). Obviously, in general we cannot expect zeroth-order
methods to out-perform first-order methods or even second-order methods.

However, when information about the gradient is not available, for instance
if f relates to a property of some workpiece and is given by simulations or
even by real-world experiments, first-order (and also second-order) methods just
cannot by applied. As the approximation of the gradient usually involves Ω(n)
f -evaluations, a single optimization step of a classical zeroth order-method is
computationally intensive, especially if f is given implicitly by simulations. In
practical optimization, especially in mechanical engineering, this is often the
case, and particularly in this field EAs become more and more widely used.
However, the enthusiasm in practical EAs has led to an unclear variety of very
sophisticated and problem-specific EAs. Unfortunately, from a theoretical point
of view, the development of such EAs is solely driven by practical success and
the aspect of a theoretical analysis is left aside. In other words, – concerning
EAs – theory has not kept up with practice, and thus, we should not try to
analyze the algorithmic runtime of the most sophisticated EA en vogue, but
concentrate on very basic, or call them “simple”, EAs in order to build a sound
and solid basis for EA-theory.

For discrete search spaces, essentially {0, 1}n, such a theory has been de-
veloped successfully since the mid-1990s (cf. Wegener (2001) and Droste et al.
(2002)). Recently, first results for non-artificial but well-known problems have
been obtained (namely for the maximum matching problem by Giel and Wegener
(2003), for sorting and the shortest-path problem by Scharnow et al. (2002), and
for the minimum-spanning tree by Neumann and Wegener (2004)).

The situation for continuous evolutionary optimization is different. Here,
the vast majority of the results are based on empiricism, i. e., experiments are
performed and their outcomes are interpreted, which leads to a theory in the
sense of physics rather than computer science. Also convergence properties of
EAs have been studied to a considerable extent (e. g. Rudolph (1997), Greenwood
and Zhu (2001), Bienvenue and Francois (2003)). A lot of results have been
obtained by analyzing a simplifying model of the stochastic process induced
by the EA, for instance by letting the number of dimensions approach infinity.
Unfortunately, such results rely on experimental validation as a justification
for the simplifications/inaccuracies introduced by the modeling. In particular
Beyer has obtained numerous results that focus on local performance measures
(progress rate, fitness gain; cf. Beyer (2001b)), i. e., the effect of a single mutation
(or, more generally, of a single transition from one generation to the next) is
investigated. Best-case assumptions concerning the mutation adaptation in this
single step then provide estimates of the maximum gain a single step may yield.
However, when one aims at analyzing the (1+1)ES as an algorithm, rather
than a model of the stochastic process induced, a different, more algorithmic
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approach is needed. In 2003 a first theoretical analysis of the expected runtime,
given by the number of function evaluations, of the (1+1)ES using the 1/5-rule
was presented (Jägersküpper, 2003). The function/fitness landscape considered
therein is the well-know Sphere-function, given by Sphere(x) :=

∑n
i=1 x2

i =
x�Ix, and the multi-step behavior that the (1+1)ES bears when using the
1/5-rule for the adaptation of the mutation strength is rigorously analyzed. As
mentioned in the abstract, the present paper will extend this result to a broader
class of functions. One may guess that an ellipsoidal landscape is similar to the
ridge-function scenario (especially to the parabolic ridge). Beyer (2001a) focuses
on local measures for this fitness landscape. However, since ridge functions are
unbounded, i. e. there is no optimum, and there is no need for adaptation, from
an algorithmic point of view – when one is interested in adaptation mechanisms
and how they work – ellipsoidal fitness landscapes are more challenging.

Finally note that, regarding the approximation error, for unconstrained opti-
mization it is generally not clear how the runtime can be measured (solely) with
respect to the absolute error of the approximation. In contrast to discrete and fi-
nite problems, the initial error is generally not bounded, and hence, the question
how many steps it takes to get into the ε-ball around an optimum does not make
sense without specifying the starting conditions. Hence, we must consider the
runtime with respect to the relative improvement of the approximation. Given
that the (relative) progress that a step yields becomes steady-state, considering
the number of steps/f -evaluations to halve the approximation error is a natural
choice. For the Sphere-function, Jägersküpper (2003) gives a proof that the
1/5-rule makes the (1+1)ES perform Θ(n) steps to halve the distance from the
optimum and, in addition, that this is asymptotically the best possible w. r. t.
isotropically distributed mutation vectors, i. e., for any adaptation of isotropic
mutations, the expected number of f -evaluations is Ω(n) (moreover, for any
constant ε > 0, O(n1−ε) f -evaluations suffice only with an exponentially small
probability).

The Algorithm

We will concentrate on the (1+1) evolution strategy ((1+1) ES), which dates
back to the mid 1960s (cf. Rechenberg (1973) and Schwefel (1995)). This sim-
ple EA uses solely mutation due to a single-individual population, where here
“individual” is just a synonym for “search point”. Let c ∈ Rn denote the cur-
rent individual. Given a starting point, i. e. an initialization of c, the (1+1)ES
performs the following evolution loop:

1. Choose a random mutation vector m ∈ Rn, where the distribution
of m may depend on the course of the optimization process.

2. Generate the mutant c′ ∈ Rn by c′ := c + m.
3. IF f(c′) ≤ f(c) THEN c′ becomes the current individual (c := c′)

ELSE c′ is discarded (c unchanged).
4. IF the stopping criterion is met THEN output c ELSE goto 1.
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Since a worse mutant (with respect to the function to be minimized) is always
discarded, the (1+1)ES is a randomized hill climber, and the selection rule is
called elitist selection. Fortunately, for the type of results we are after we need not
define a reasonable stopping criterion. How the mutation vectors are generated
must be specified, though. Originally, the mutation vector m ∈ Rn is generated
by firstly generating a Gaussian mutation vector m̃ ∈ Rn each component of
which is independently standard normal distributed; subsequently, this vector is
scaled by the multiplication with a scalar s ∈ R>0, i. e. m = s · m̃. Gaussian
mutations are the most common type of mutations (for the search space Rn) and,
therefore, will be considered here. The crucial property of a Gaussian mutation
is that m̃, and with it m, is isotropically distributed, i. e., m/ |m| is uniformly
distributed upon the unit hypersphere and the length of the mutation, namely
the random variable |m|, is independent of the direction m/ |m|.

The state of the art in mutation adaptation seems to be the covariance matrix
adaptation (CMA) (Hansen and Ostermeier, 1996) where s · B · m̃ makes up
the mutation vector with a matrix B ∈ Rn×n which is also adapted. Unlike
B = t · I for some scalar t, the mutation vector is not isotropically distributed.

The question that naturally arises is how the scaling factor s is to be chosen. Ob-
viously, the smaller the approximation error, i. e., the closer c is to an optimum,
the shorter m needs to be for a further improvement of the approximation to
be possible. Unfortunately, the algorithm does not know about the current ap-
proximation error, but can utilize only the knowledge obtained by f -evaluations.
Based on experiments and rough calculations for two function scenarios (namely
Sphere and a corridor function), Rechenberg proposed the 1/5-(success-)rule.
The idea behind this adaptation mechanism is that in a step of the (1+1)ES the
mutant should be accepted with probability 1/5. Hereinafter, a mutation that
results in f(c′) ≤ f(c) is called successful, and hence, when talking about a mu-
tation, success probability denotes the probability that the mutant c′ = c + m
is at least as good as c. Obviously, when elitist selection is used, the success
probability of a step equals the probability that the mutation is accepted in this
step. If every step was successful with probability 1/5, we would observe that on
the average one fifth of the mutations are successful. Thus, the 1/5-rule works
as follows: the optimization process is observed for n steps without changing s;
if more than one fifth of the steps in this observation phase have been successful,
s is doubled, otherwise, s is halved.

Various implementations of the 1/5-rule can be found in the literature, yet
in fact, one result of (Jägersküpper, 2003) is that the order of the runtime is
indeed not affected as long as the observation lasts Θ(n) steps and the scaling
factor s is multiplied by a constant greater than 1 resp. by a positive constant
smaller than 1.

The Function Scenario

In this section we will have a closer look at the fitness landscape under con-
sideration and preview isotropic mutations in this scenario. Note that, as min-
imization is considered, “function value” (“f -value”) will be used rather than
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“fitness”. Since the optimum function value is 0, the current approximation er-
ror is defined as f(c), the f -value of the current individual. As mentioned in
the abstract, we are going to consider the fitness landscapes induced by certain
positive definite quadratic forms.

At first glance, one might guess that mixed terms like 3x1x2 may crucially
affect the fitness landscape induced by a positive definite quadratic form x�Qx.
However, this is not the case. First note that w. l. o. g. we may assume Q to
be symmetric (by balancing Qij with Qji for i �= j). Furthermore, any sym-
metric matrix can by diagonalized since it has n eigen vectors. Namely, eigen-
decomposition yields Q = RDR−1 for a diagonal matrix D and an orthogonal
matrix R.

Note that an orthogonal matrix R corresponds to a orthonormal transforma-
tion, which is merely a (possibly improper) rotation; then R−1 is the corre-
sponding “anti-rotation”.

Thus, the quadratic form equals x�RDR−1x, and since x�R = (R�x)�, we
have (R�x)�D(R−1x). As R� = R−1 for an orthogonal matrix, the quadratic
form equals (R−1x)�D(R−1x). Thus, investigating x�Qx using the standard
basis for Rn (given by I) is the same as investigating x�Dx using the or-
thonormal basis given by R. Finally note that the inner product is independent
of the orthonormal basis that we use (because (Rx)�(Rx) = x�R�Rx =
x�R−1Rx = x�Ix = x�x). Consequently, we may assume that Q is a diago-
nal matrix each entry of which is positive. In other words, when talking about
positive definite quadratic forms we are in fact talking about functions of the
form fn(x) =

∑n
i=1 ξi · xi

2 with ξi > 0, and we may even assume ξn ≥ · · · ≥ ξ1.
As mentioned in the abstract, we exemplarily restrict ourselves to the fol-

lowing class of (sequences of) quadratic forms, where n ∈ 2N and 1/ξ → 0 as
n → ∞:

fn(x) := ξ · (x1
2 + · · · + xn/2

2
)

+ xn/2+1
2 + · · · + xn

2

Hence, fn(x) = ξ ·Spheren/2(y)+Spheren/2(z) where y := (x1, . . . , xn/2) and
z := (xn/2+1, . . . , xn). Thus, the aim is to minimize the sum of two separate
sphere functions, in S1 = Rn/2 resp. S2 = Rn/2, having weight ξ resp. 1, i. e.,
f(x) = ξ · |y|2 + |z|2, where |·| denotes the length of a vector in Euclidean
space (Euclidean norm). Recall that the mutation vector m equals s · m̃ . As
each component of m̃ is independently standard normal distributed, m1 :=
(m1, . . . ,mn/2) and m2 := (mn/2+1, . . . ,mn) are two independent (n/2)-dimen-
sional Gaussian mutations which are respectively scaled by the same factor s.
Obviously, m1 only affects y, whereas m2 only affects z, and thus, the f -value
of the mutant equals ξ · |y + m1|2 + |z + m2|2.
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x1

Ê

Ŝ

M̂

xn Let d1 := |y| and d2 := |z| denote the distance from the
origin/optimum in S1 resp. S2. Since Gaussian mutations as
well as Sphere are invariant with respect to rotations of the
coordinate system, we may rotate S1 and S2 such that we
are located at (d1, 0, . . . , 0) ∈ S1 resp. (0, . . . , 0, d2) ∈ S2. In
other words, we may assume w. l. o. g. that the current search
point is located at (d1, 0, . . . , 0, d2) ∈ Rn, i. e., that it lies
in the x1-xn-plane. In fact, we have just described a projec-
tion ̂ : Rn → R2. Note that due to the properties of f and
Gaussian mutations this projection only conceals irrelevant
information, i. e., all information relevant to the analysis is

preserved. Thus, we can concentrate on the 2D-projection as depicted in the
figure. For some arguments, however, it is crucial to keep in mind that this pro-
jection is based on the fact that the current search point, and also its mutant,
can be assumed to lie in the x1-xn-plane w. l. o. g. (obviously, for the mutant to
lie in this plane, S1 and S2 must almost surely (a. s.) be re-rotated).

In the next section some of the results presented in (Jägersküpper, 2003),
which will be used here, will be shortly restated. In Section 3 the crucial prop-
erties of a single mutation in the considered fitness landscape are discussed, and
in the subsequent section we will have a closer look at the adaptation, i. e., the
multi-step behavior of the (1+1)ES will be analyzed for the considered function
class/fitness landscape. We end with some concluding remarks in Section 5.

2 Preliminaries

In this section some notions and notations are introduced. Furthermore, the
results obtained for the Sphere-scenario in (Jägersküpper, 2003) that we will
use are recapitulated; for more details cf. (Jägersküpper, 2002).

Definition 1. A probability p(n) is exponentially small in n if for a con-
stant ε > 0, p(n) = exp(−Ω(nε)). An event A(n) happens with overwhelming
probability (w. o. p.) with respect to n if P{¬A(n)} is exponentially small in n.

A statement Z(n) holds for n large enough if (∃n0 ∈ N)(∀n ≥ n0)Z(n).

Recall the following asymptotics: g(n) = O(h(n)) iff there exists a positive
constant κ such that g(n) ≤ κ · h(n) for n large enough; g(n) = Ω(h(n)) iff
h(n) = O(g(n)); g(n) = Θ(h(n)) iff g(n) is both O(h(n)) and Ω(h(n)); for
h(n), g(n) > 0, we have g(n) = o(h(n)) iff g(n)/h(n) → 0 as n → ∞ and
g(n) = ω(h(n)) iff h(n) = o(g(n)). As we are interested in how the runtime
depends on n, the dimensionality of the search space, all asymptotics are w. r. t.
to this parameter (unless stated differently).

Let c ∈ Rn − {0} denote a search point and m a scaled Gauss mutation.
Note that Sphere(c) = |c|2 (recall that |c| is the L2-norm (Euclidian length) of
c). The analysis of the (1+1)ES for Sphere has shown that for n large enough

P{|c + m| ≤ |c| ||| |m| = �} ≥ ε for a constant ε ∈ (0, 1
2 ) ⇐⇒ � = O(|c| /√n),
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i. e., the mutant of c is closer to a predefined point, here the origin, with proba-
bility Ω(1) iff the length of the isotropic mutation vector is at most an O(1/

√
n)-

fraction of the distance between c and this point. On the other hand,

P{|c + m| ≤ |c| ||| |m| = �} ≤ ε for a constant ε ∈ (0, 1
2 ) ⇐⇒ � = Ω(|c| /√n),

in other words, the mutant obtained by an isotropic mutation of c is closer to
a predefined point, here again the origin, with a constant probability strictly
smaller than 1/2 iff the length of the mutation vector is at least an Ω(1/

√
n)-

fraction of the distance between c and this point. (The actual constant ε respec-
tively correlates with the constant in the O-notation resp. in the Ω-notation.)

The expected length of m equals s ·E[|m̃|] = s ·√n · (1−Θ(1/n)) since |m̃| is
χ-distributed (with n degrees of freedom). Moreover, with �̄ := E[|m|] we have
P
{∣∣|m| − �̄

∣∣ ≥ δ · �̄} ≤ δ−2/(2n − 1) for δ > 0, in other words, there is only
small deviation in the length of a mutation; e. g., with probability 1 − O(1/n)
the mutation vector’s actual length differs from its expected length by no more
than ±1%.

Concerning the mutation adaptation by the 1/5-rule for Sphere, we know
that there exists a constant ph ∈ (0, 1/5) such that if the success probability of
the mutation in the first step of an observation phase is smaller than ph, then
w. o. p. less than 1/5 of the steps in this phase are successful so that the scaling
factor is halved. Analogously, a constant pd ∈ (1/5, 1/2) exists such that if the
first step of a phase is successful with probability at least pd, then w. o. p. more
than 1/5 of the steps in this phase are successful so that s is doubled. This can
be used to show that the 1/5-rule in fact ensures that each step is successful
with a probability in [a, b] ⊂ (0, 1/2) for two constants a, b.

Let Δ := |c| − |c′| denote the spatial gain towards the origin, the optimum
of Sphere, in a step. For Sphere, a mutation is accepted (by elitist selection)
iff Δ ≥ 0. Consequently, negative gains are zeroed out so that the expected
spatial gain of a step is E

[
Δ · 1{Δ≥0}

]
. We know that E

[
Δ · 1{Δ≥0}

]
is O(�̄/

√
n)

and – however the scaling factor is chosen/adapted – also O(|c| /n). Further-
more, E

[
Δ · 1{Δ≥0} | s = Θ(|c| /n)

]
is Ω(�̄/

√
n) and Ω(|c| /n), i. e., the distance

from the optimum is expected to decrease by an Θ(1/n)-fraction if s is cho-
sen/adapted appropriately. Furthermore, in this situation for any constant κ > 0
the distance decreases (at least) by an κ/n-fraction with probability Ω(1).

Recall that �̄ = s·√n·(1−Θ(1/n)). Thus, when scaled Gaussian mutations are
used, “s = Θ(|c| /n)” is equivalent to “�̄ = Θ(|c| /√n)” which is again equivalent
to “ ∃ constant ε > 0 such that for n large enough P{Δ ≥ 0} ∈ [ε, 1/2−ε]” since
P
{|m| = Θ(�̄)

}
= 1 −O(1/n). The equivalance of these three events/conditions

will be of great help in the argumentation.

3 Gain in a Single Step

In this section we now take a closer look at the properties of a Gaussian mutation
in the ellipsoidal fitness landscape under consideration. Since ξ = ω(1), ξ > 1 for
n large enough, and therefore, we assume ξ > 1 in the following. Furthermore,
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“f ” will also be used as an abbreviation of the f -value of the current individual
and “f ′ ” stands for the mutant’s f -value.

Recall that f = ξ d 2
1 + d 2

2 (for the current search point) and f ′ = ξ d′ 21 + d′ 22
(for its mutant), where d′1 := |y + m1| and d′2 := |z + m2|. The crucial point
to the analysis is the answer to the question how d1, d2 and the scaling fac-
tor s – and with it |m| – relate when the success probability of a step, i. e.
the probability that the mutant is accepted, is about 1/5. In other words, how
does the length of the mutation vector depend on d1 and d2, and how do d1

and d2 relate. Since ∇f̂(d1, d2) = (ξ 2 d1, 2 d2)�, for a search point satisfying
d1/d2 = 1/ξ an infinitesimal change of d1 has the same effect on f as an in-
finitesimal change of d2. Though the length of a mutation is not infinitesimal,
this may be taken as an indicator that the ratio d1/d2 will stabilize when using
isotropic mutations, and indeed, it turns out that the process stabilizes w. r. t.
d1/d2 = Θ(1/ξ). In this section, we will see that near the gentlest descent in our
ellipsoidal fitness landscape, namely for d1/d2 = O(1/ξ), a mutation succeeds
with a constant probability greater than 0 but smaller than 1/2 iff the scaling
factor s is Θ((

√
f/n)/ξ). Furthermore, asymptotically tight bounds on the ex-

pected f -gain of a single step in such a situation will be obtained. Therefore, we
will show that a mutation of a search point c for which d1/d2 = O(1/ξ) with a
mutation using a scaling factor s = Θ((

√
f/n)/ξ) in the ellipsoidal fitness land-

scape is “similar” to the mutation of a search point x in the Sphere scenario
with Sphere(x) = Θ(f/ξ2) (using the same scaling factor).

We start our analysis at a point c with ĉ = (0, φ), i. e. d1 = 0 and d2 = φ, so
that f = φ2. Consequently, ĉ is located at a point with gentlest descent w. r. t.
all points with f -value φ2, and hence, the curvature of the 2D-curve given by the
projection Ê of the n-ellipsoid E := {x | f(x) = f(c)} ⊂ Rn, is maximum at ĉ.
By a simple application of differential geometry, we get that the curvature of this
2D-curve at ĉ equals ξ/φ. Consequently, the radius of the osculating circle (Ŝ in
the figure) equals φ/ξ. As this circle Ŝ actually lies in the x1-xn-plane, it is the
equator of an n-sphere S with radius φ/ξ (the center of which lies on the xn-axis,
just like the current search point c). Note that this sphere lies completely inside
E such that S ∩E = {c}. Thus, the probability that a mutation hits inside S is
a lower bound on the probability that f ′ ≤ f , i. e.,

P{f ′ ≤ f} = P{c + m lies inside E}
≥ P{c + m lies inside S}
= P

{
|x + m| ≤ |x| for some x with |x| = radius of Ŝ = φ/ξ

}
= P

{
Sphere(x + m) ≤ Sphere(x) | Sphere(x) = (φ/ξ)2

}
.

In fact, our argumentation yields that the above (in)equalities hold for any
fixed length � of the mutation vector m, i. e., if the probabilities are conditioned
on the event {|m| = �}, respectively. Since � is arbitrary here and the radius
of S is independent of �, they remain valid when this condition is dropped.

For an upper bound on the probability that a mutation hits inside E, consider
a mutation (vector) having length � < 2φ (since for � ≥ 2φ, E lies inside M).
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Let M = {x ||| |c − x| = �} ⊂ Rn denote the mutation sphere consisting of all
potential mutants. Then M̂ is a circle (cf. the figure above) with radius � centered
at ĉ. (Note that, though c′ = c + m, given |m| = �, is uniformly distributed
upon M , ĉ′ is not uniformly distributed upon M̂). Now consider the curvature
at a point in Ê ∩ M̂ = {z1, z2} (there are exactly two points of intersection
since 0 < � < 2φ). Simple differential geometry shows that the curvature at zi is
κ� = Θ(ξ/φ) if � = O(φ/ξ). As the curvature at any point of Ê that lies inside
M̂ is greater than κ� (since ξ > 1), ĉ as well as zi lie inside the osculating circle
at z3−i which has radius r� := 1/κ� = Θ(φ/ξ) if � = O(φ/ξ). Thus, there is
also a circle with radius r� passing through ĉ such that z1 and z2 lie inside this
circle. Therefore, the circle passing through z1, z2, and ĉ has a radius smaller
than r�, and again, this circle actually lies in the x1-xn-plane of the search space
and is the image of the n-sphere having this circle as an equator. Hence,

P{f ′ ≤ f ||| |m| = �}
≤ P

{
Sphere(x + m) ≤ Sphere(x) | Sphere(x) = (αφ/ξ)2, |m| = �

}
where α = Θ(1) if � = O(φ/ξ). (Besides, α↘ 1, i. e. r� ↘φ/ξ, as �↘ 0.)

Recall that we assumed ĉ = (0, φ) ∈ R2, i. e. d1 = 0 and d2 = φ, in the above
argumentation. The estimates we have made for the bounds on the probability
of a mutation hitting inside the n-ellipsoid E, however, remain valid as long as
d1/d2 = O(1/ξ): Since ξ/φ is the maximum curvature of Ê, there is always a
circle Ŝ with radius φ/ξ lying inside Ê such that Ŝ ∩ Ê = {ĉ}, and since Ŝ
is in fact an equator of an n-sphere S, S lies completely inside E such that
S ∩E = {c}. For the upper bound, we must merely consider the zi at which the
curvature is smaller, and indeed, it turns out that as long as d1/d2 = O(1/ξ)
and � = O(φ/ξ), κ� remains Θ(ξ/φ).

Hence, when f(c) = φ2 such that c satisfies d1/d2 = O(1/ξ), we are in
a situation resembling (w. r. t. the success probability of a mutation) the mini-
mization of Sphere at a point having distance Θ(φ/ξ) from the optimum/origin.
Concerning the 1/5-rule, we then know (cf. Section 2) that

∃ constant ε > 0 such that for n large enough P{f ′ ≤ f} ∈ [ε, 1/2 − ε]
⇐⇒ s = Θ((φ/ξ)/n) ⇐⇒ �̄ = Θ((φ/ξ)/

√
n)

where ε correlates with the two multiplicative constants within the Θ-notation.
Thus, we are now going to investigate the gain of a step when f = φ2 and

s = Θ((φ/ξ)/n). As we have seen above, there exists an n-sphere S with radius
r = φ/ξ lying completely in E such that S ∩ E = {c}. Again owing to the
results for Sphere, we know that a mutation having length � = Θ(r/

√
n) hits

with probability Ω(1) a hyperspherical cap C ⊂ M containing all points of
M that are at least Ω(r/n) closer to the center of S than c. Consequently,
with probability Ω(1) the mutant lies inside E such that its distance from E
is Θ(r/n), i. e. Θ((φ/ξ)/n). If we pessimistically assume that this spatial gain
were realized along the gentlest descent of f , i. e. d1 = 0 and d′1 = 0 so that
d′2 = d2 − Θ((φ/ξ)/n), we obtain that with probability Ω(1)
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f ′ ≤ (φ − Θ((φ/ξ)/n) )2

= φ2 − 2αφ2/(ξn) + α2φ2/(ξn)2 for some α = Θ(1)
= φ2 − α(2 − α/(ξn))︸ ︷︷ ︸φ2/(ξn)

= φ2 − Θ(1) φ2/(ξn)
= f − Θ(f/(ξn)).

Let c′′ := argmin{f(c) , f(c′)} denote the search point that gets selected by
elitist selection. Since mutants with a larger f -value are rejected, i. e. f ′′ ≤ f ,
this implies for the expected f -gain of a step

E
[
f ′′ ||| s = Θ((

√
f/n)/ξ)

]
= f − Ω(f/(ξn)).

Due to the pessimistic assumptions, this lower bound on the f -gain just derived is
valid only for s = Θ((

√
f/n)/ξ)), yet it holds independently of the ratio d1/d2. A

spatial gain of Θ(f/(ξn)) could result in a much larger f -gain, though. If d1/d2 =
O(1/ξ), however, the f -gain is also O(f/(ξn)) as we will see. Therefore, let d1 =
α ·φ/ξ with α = O(1) and still f = ξ ·d2

1 +d2
2 = φ2. Owing to the argumentation

for the upper bound on the success probability of a step, we know that there is
an n-sphere S with radius r = Θ(φ/ξ) such that c ∈ S and I := M ∩ E ∈ S,
where I is the boundary of the hyperspherical cap C ⊂ M lying inside E. Owing
to the results for Sphere, we know that E

[
dist(c′, I) · 1{c′∈C}

]
= O(r/n) for any

choice of the scaling factor, i. e., even if the length of the mutation vector were
magically chosen such that the expected distance of the selected search point c′′

from the center of S is minimized. In other words, we know that if a mutation
hits inside E, its expected distance from E is O(r/n) = O((φ/ξ)/n) anyway.
Thus, if we optimistically assume that the spatial gain were realized completely
in S1, i. e. completely on the ξ-weighted Spheren/2, (so that d′2 = d2, implying
d′′2 = d2), we obtain

E
[
ξ d′′21 + d′′22 | d1/d2 = O(1/ξ)

] ≥ ξ
(
d1 − O((φ/ξ)/n)

)2 + d2
2

= ξ
(
αφ/ξ − O((φ/ξ)/n)

)2 + d2
2

≥ ξ
(
(αφ/ξ)2 − 2α(φ/ξ) · O((φ/ξ)/n)

)
+ d2

2

= ξ d2
1 − O(φ2/(ξn)) + d2

2

and hence,

E[f ′′ | d1/d2 = O(1/ξ)] = φ2 − O(φ2/(ξn)) = f − O(f/(ξn)).

This upper bound on the expected f -gain of a step holds only for d1/d2 = O(1/ξ),
yet independently of (the distribution of) |m|, which is converse to the lower
bound. However, altogether we have proved the following:

Lemma 1. Consider a step of the (1+1) ES. If d1/d2 = O(1/ξ) in this step, then
there exists a constant ε > 0 such that for n large enough P{f ′ ≤ f} ∈ [ε, 1/2−ε]
iff s = Θ((

√
f/n)/ξ).

If d1/d2 = O(1/ξ) and s = Θ((
√
f/n)/ξ) in this step, then E[f − f ′′] =

Θ((f/n)/ξ), and furthermore, f − f ′′ = Ω((f/n)/ξ) with probability Ω(1).
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4 Multi-step Behavior

The results just obtained imply that if d1/d2 = O(1/ξ) during a phase of
n steps (an observation phase of the 1/5-rule) and s = Θ((

√
f/n)/ξ), i. e.

P{f ′ ≤ f} ∈ [ε, 1/2 − ε] for a constant ε > 0, at the beginning of this phase,
then we expect Θ(n) steps each of which reduces the f -value by Θ(f/(ξn)). By
Chernoff bounds, there are Ω(n) such steps w. o. p., and thus, the f -value, and
with it the approximation error, is reduced w. o. p. by an Θ(1/ξ)-fraction in this
phase. Consequently, after Θ(ξ) consecutive phases, w. o. p. the approximation
error is halved – if during all these phases d1/d2 = O(1/ξ). Since, up to now,
the argumentation completely bases on the results for Sphere, even the argu-
mentation on the 1/5-rule can be adopted, which directly yields the following
result (cf. Theorem 2 in (Jägersküpper, 2003) or Theorem 3 in (Jägersküpper,
2002)):

Theorem 1. If d1/d2 = O(1/ξ) in the complete optimization process and the
initialization satisfies s = Θ((

√
f(c)/n)/ξ), then w. o. p. the number of steps/

f -evaluations to reduce the initial f -value/approximation error to a 2−t-fraction,
t = poly(n), is Θ(t · ξ · n).

Obviously, the assumption “d1/d2 = O(1/ξ) in the complete optimization pro-
cess” lacks any justification and is, therefore, objectionable. It must be replaced
by a much weaker assumption on the starting conditions only. Thus, the crucial
point in the analysis is the question why should the ratio d1/d2 remain O(1/ξ)
(once this is the case). This crucial question will be tackled in the remainder of
this paper.

Let Δ1 := d1 − d′1 and Δ2 := d2 − d′2 denote the spatial gain of the mutant
towards the origin in S1 resp. S2. Then d′1/d

′
2 for the mutant is smaller than

d1/d2 for its parent iff Δ1/d1 > Δ2/d2. Unfortunately, Δ1 and Δ2 correlate
because m1 and m2 use the same scaling factor s, and furthermore, we must
take selection into account since only certain combinations of Δ1 and Δ2 will be
accepted. To see which combinations become accepted note that

f ′ = ξ (d1 − Δ1)2 + (d2 − Δ2)2 = ξd2
1 − ξ2d1Δ1 + ξΔ2

1 + d2
2 − 2d2Δ2 + Δ2

2 ,

and hence,

f ′ ≤ f ⇐⇒ f ′ − f ≤ 0 ⇐⇒ −ξ2d1Δ1 + ξΔ2
1 − 2d2Δ2 + Δ2

2 ≤ 0.

Let α be defined by α/ξ = d1/d2. Then the latter inequality is equivalent to

−2αd2Δ1 + ξΔ2
1 − 2d2Δ2 + Δ2

2 ≤ 0 ⇐⇒ −αΔ1 +
ξΔ2

1

2d2
≤ Δ2 − Δ2

2

2d2

⇐⇒ −αΔ1

(
1 − Δ1

2d1

)
≤ Δ2

(
1 − Δ2

2d2

)
(using d2 = ξ · d1/α)

Thus, when using elitist selection, the mutant is accepted iff the last inequality
holds. Note that whenever a mutation satisfying −αΔ1 > Δ2 is accepted, then

1 − Δ1

2d1
< 1 − Δ2

2d2
⇔ Δ1

d1
>

Δ2

d2
⇔ Δ1 >

d1

d2
Δ2 ⇔ Δ1 >

α

ξ
Δ2,
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implying that Δ1 > 0 and Δ2 < 0, and consequently, such a step surely results
in d′′1/d

′′
2 < d1/d2, i. e. α′′ < α. Hence, in the following we may concentrate on

the accepted mutations for which −αΔ1 ≤ Δ2.
So, let us assume for a moment that the mutant replaces/becomes the current

individual iff −αΔ1 ≤ Δ2. As Δ3−i, i ∈ {1, 2}, is random, E
[
Δi · 1{−αΔ1≤Δ2}

]
is a random variable taking the value E

[
Δi · 1{−αΔ1≤x}

]
whenever Δ2 happens

to take the value x. We are interested in E
[
E
[
Δi · 1{−αΔ1≤Δ2}

]]
= E[di − d′′i ],

the expected reduction of the distance from the optimum in Si in a step, and
E[d′′1 ]/E[d′′2 ] ≤ d1/d2, i. e. we “expect” α′′ ≤ α, iff

E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]]
/d1 ≥ E

[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]]
/d2

⇐⇒ ξ · E[E[Δ1 · 1{−αΔ1≤Δ2}
]] ≥ α · E[E[Δ2 · 1{−αΔ1≤Δ2}

]]
.

In order to prove that this inequality holds for α = O(1), we aim at a lower bound
on E

[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]]
and an upper bound on E

[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]]
in

the following. Note that

E
[
E
[
Δi · 1{−αΔ1≤Δ2}

]]
= E

[
E
[
Δi · 1{−αΔ1≤Δ2} · 1{Δi<0}

] · 1{Δ3−i<0}
]
+

E
[
E
[
Δi · 1{−αΔ1≤Δ2} · 1{Δi<0}

] · 1{Δ3−i≥0}
]
+

E
[
E
[
Δi · 1{−αΔ1≤Δ2} · 1{Δi≥0}

] · 1{Δ3−i<0}
]
+

E
[
E
[
Δi · 1{−αΔ1≤Δ2} · 1{Δi≥0}

] · 1{Δ3−i≥0}
]

and that E
[
E
[
Δi · 1{−αΔ1≤Δ2} · 1{Δi<0}

] · 1{Δ3−i<0}
]

= 0 since the three indi-
cator inequalities describe the empty set. Since Δ1, Δ2 ≥ 0 implies −αΔ1 ≤ Δ2,

E
[
E
[
Δi 1{−αΔ1≤Δ2} 1{Δi≥0}

]
1{Δ3−i≥0}

]
= E

[
E
[
Δi 1{Δi≥0}

] · 1{Δ3−i≥0}
]

= E
[
Δi 1{Δi≥0}

] · P{Δ3−i ≥ 0}.

As we need a lower bound on E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]]
, we may pessimistically

assume that Δ1 = −x/α whenever Δ2 happens to equal x. By this assumption,

E
[
E
[
Δ1 · 1{−αΔ1≤Δ2} · 1{Δ1<0}

] · 1{Δ2≥0}
]

≥ −E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2≥0}

] · 1{Δ1<0}
]/

α,

E
[
E
[
Δ1 · 1{−αΔ1≤Δ2} · 1{Δ1≥0}

] · 1{Δ2<0}
]

≥ −E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2<0}

] · 1{Δ1≥0}
]/

α.

All in all, we have

E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]] ≥ E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0}
−E

[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2≥0}

] · 1{Δ1<0}
]/

α

−E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2<0}

] · 1{Δ1≥0}
]/

α,
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E
[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]]
= E

[
Δ2 · 1{Δ2≥0}

] · P{Δ1 ≥ 0}
+E

[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2≥0}

] · 1{Δ1<0}
]

+E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2<0}

] · 1{Δ1≥0}
]
.

Recall that we want to show that for some α = O(1)

ξ · E[E[Δ1 · 1{−αΔ1≤Δ2}
]] ≥ α · E[E[Δ2 · 1{−αΔ1≤Δ2}

]]
,

and note that E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0} and E
[
Δ2 · 1{Δ2≥0}

] · P{Δ1 ≥ 0}
are of the same order when P{Δ2 ≥ 0} and P{Δ1 ≥ 0} are Ω(1), respectively.
Consequently, since ξ = ω(1), for the above inequality to hold for n large enough,
it would be sufficient that

E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2≥0}

] · 1{Δ1<0}
]

+ E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2<0}

] · 1{Δ1≥0}
] ≤ 0 (1)

because then we would have

E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]] ≥ E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0} and

E
[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]] ≤ E
[
Δ2 · 1{Δ2≥0}

] · P{Δ1 ≥ 0}.
Concerning the expected spatial gain in S2, however, we are going to use the
trivial upper bound E

[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]] ≤ E
[
Δ2 · 1{Δ2≥0}

]
, and thus, we

concentrate on a lower bound on the expected spatial gain in S1 in the following.
Therefore, we prove next that inequality (1) holds for α = O(1) at least if the
actual length of m2 differs by no more than a constant factor from �̄1, the
expected length of m1.

Lemma 2. If P{Δ1 ≥ 0} = Ω(1) and |m2| = Θ(�̄1), there exists a constant α∗

such that for n large enough inequality (1) on this page holds for all α ≥ α∗.

The proof can be found in Appendix A. Note that �̄1 = �̄2 in our scenario. We
know (cf. Section 2) that

P
{∣∣|m2| − �̄2

∣∣ ≥ (
√

3 − 1) · �̄2
}

≤
(
(
√

3 − 1)2 · 2 · (n − 1)
)−1

< (n − 1)−1,

and thus, the condition “|m2| = Θ(�̄1)” is not met only with probability O(1/n).
Whether or not this condition is met, trivially Δ1 ≥ − |m1|, and consequently,
E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]] ≥ −�̄1. Applying this rough bound only in the case of∣∣|m2| − �̄1
∣∣ > (

√
3−1)· �̄1 and (Δ1, Δ2) ∈ R<0×R≥0∪R≥0×R<0, the preceding

lemma reads: if P{Δ1 ≥ 0} = Ω(1) then for α ≥ α∗

E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]] ≥ E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0} − �̄1
n − 1

.

Next we will see that this additive error term vanishes in situations that arise
due to the 1/5-rule.
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Lemma 3. If P{Δ1 ≥ 0} and P{Δ2 ≥ 0} are Ω(1), respectively, there exists a
constant α∗ such that for α ≥ α∗ and n large enough

E
[
E
[
Δ1 · 1{f ′≤f}

]] ≥ E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0}/ 2.

Proof. Recall that f ′ ≤ f ∧ −αΔ1 > Δ2 implies Δ1 > 0 > Δ2. Conse-
quently, all (Δ1, Δ2)-tuples zeroed out by 1{−αΔ1≤Δ2}, but kept by 1{f ′≤f}
are in R>0 ×R<0. Analogously, f ′ > f ∧ −αΔ1 ≤ Δ2 implies Δ1 < 0 < Δ2 so
that all (Δ1, Δ2)-tuples kept by 1{−αΔ1≤Δ2}, but zeroed out by 1{f ′≤f} are in
R<0 ×R>0. Hence,

E
[
E
[
Δ1 · 1{f ′≤f}

]] ≥ E
[
E
[
Δ1 · 1{−αΔ1≤Δ2}

]](
and E

[
E
[
Δ2 · 1{f ′≤f}

]] ≤ E
[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]] )
.

As P{Δ1 ≥ 0} = Ω(1) implies E
[
Δ1 · 1{Δ1≥0}

]
= Ω(�̄1/

√
n) (cf. the results

restated in Section 2), the error term �̄1/(n−1) is by an O(1/
√
n)-factor smaller

than E
[
Δ1 · 1{Δ1≥0}

] ·P{Δ2 ≥ 0} = Ω(�̄1/
√
n) ·Ω(1). Finally, for n large enough

1 − O(1/
√
n) ≥ 1/2. ��

Recall: we expect α′′ = α iff ξ · E
[
E
[
Δ1 · 1{f ′≤f}

]]
= α · E

[
E
[
Δ2 · 1{f ′≤f}

]]
or, equivalently, iff E

[
E
[
Δ1 · 1{f ′≤f}

]]
/d1 = E

[
E
[
Δ2 · 1{f ′≤f}

]]
/d2. Thus there

exists a distinct α0 such that there is no drift w. r. t. the ratio d1/d2, i. e., this
ratio becomes steady-state. Then for α < α0, α is more likely to increase than
to decrease, and for α > α0, α is more likely to decrease than to increase.

Since E
[
E
[
Δ2 · 1{f ′≤f}

]] ≤ E
[
E
[
Δ2 · 1{−αΔ1≤Δ2}

]] ≤ E
[
Δ2 · 1{Δ2≥0}

]
and

ξ = ω(1), we have ξ ·P{Δ2 ≥ 0}/2 ≥ α∗ for n large enough if P{Δ2 ≥ 0} = Ω(1),
and hence, α0 ≤ α∗ = O(1) under the conditions of Lemma 3. Besides, the 1/5-
rule just ensures these conditions as long as d1 = O(d2). For the same reasons,
there exists α↓ > α0 such that ξ · E[E[Δ1 · 1{f ′≤f}

]] ≥ 2 · α · E[E[Δ2 · 1{f ′≤f}
]]

(for n large enough) and α↓ = O(1) again under the conditions of Lemma 3.
Thus, when α ≥ α↓ there is a drift towards smaller α; more formally:

Lemma 4. Let the scaling factor s be fixed. If P{Δ1 ≥ 0} and P{Δ2 ≥ 0} are
Ω(1), respectively, there exists a constant α↓ such that for n large enough, if in
the ith step α[i] ≥ α↓ (yet α[i] = O(ξ)), then w. o. p. after at most n0.3 steps
the search is located at a point for which α < α[i], and furthermore, w. o. p.
α ≤ α[i] + O(α[i]/n0.6) in all intermediate steps.

The proof can be found in Appendix B. Since the 1/5-rule keeps the scaling
factor unchanged for n steps, we can virtually partition each such observation
phase in n/n0.3 = n0.7 sub-phases to each of which this lemma applies. Since
O(α[i]/n0.6) ≤ α[i] for n large enough, the preceding lemma tells us that, when
starting at a point with α[0] = O(1), i. e. d

[0]
1 /d

[0]
2 = O(1/ξ), then α will be

upper bounded by 2 · max{α[0], α↓} = O(1) w. o. p. for any polynomial number
of steps. Incorporating these new insights into the argumentation for the 1/5-rule
known from the analysis of Sphere finally enables us to replace the objectionable
condition “d1/d2 = O(1/ξ) in the complete optimization process” in Theorem 1
by “d1/d2 = O(1/ξ) for the initial search point” – yielding the main result on
the rutime of the (1+1)ES on the quadratic forms considered:
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Theorem 2. If the initialization satisfies s = Θ((
√

f(c)/n)/ξ) and d1/d2 =
O(1/ξ), then w. o. p. the number of steps/f -evaluations to reduce the initial ap-
proximation error/f -value to a 2−t-fraction, t = poly(n), is Θ(t · ξ · n).

Naturally, one might ask what happens if the optimization starts at a point for
which d1 is not O(d2/ξ). A closer look at the argumentation in the proof of the
preceding lemma reveals that the same argumentation results in the proof of the
existence of another constant α⇓ > α↓ such that the drift towards smaller α is
that strong when α ≥ α⇓ that w. o. p. α drops by a constant fraction within at
most n steps:

Lemma 5. Let the scaling factor s be fixed. If P{Δ1 ≥ 0}, 1/2 − P{Δ1 ≥ 0},
P{Δ2 ≥ 0} are Ω(1), respectively, then there exists a constant α⇓ such that for n
large enough: if in the ith step α[i] ≥ α⇓ (yet α[i] = O(ξ), i. e. d1 = O(d2)), then
w. o. p. after at most n steps the search is located at a point with α ≤ α[i]−Ω(α[i]).

See Appendix C for the proof. Finally, this lemma shows that α drops very
quickly if the lemma’s conditions are met. Again utilizing the results for Sphere,
it is simple to check that these conditions are met when d1 is O(d2) (and Ω(d2/ξ),
of course). If d1 is not O(d2), for instance if we start at a point of steepest
descent (w. r. t. all points of a fixed f -value), i. e. d2 = 0 so that f = ξd2

1, then a
simple argumentation using rough bounds on Δ1 and Δ2 yields that d1/d2 drops
even faster than in situations covered by the preceding lemma – which is hardly
surprising since the (expected) spatial gain of a step in S1 (on the ξ-weighted
Spheren/2) is negative whereas the one in S2 is positive.

5 Conclusion

Based on the results on how the (1+1)ES minimizes the well-known Sphere-
function, we have extended these results to a broader class of functions consist-
ing of certain positive definite quadratic forms. The main insight of the results
presented is that Gaussian mutations adapted by the 1/5-rule result in the opti-
mization process to stabilize such that the trajectory of the evolving search point
takes course very close to the gentlest descent of the ellipsoidal fitness landscape.
However, more insight into how EAs for continuous optimization work is gained,
contributing to building an algorithmic EA-theory for continuous search spaces.

Naturally, the results carry over to functions that are translations of the
considered functions. Furthermore, the argumentation presented here yields that
for arbitrary positive definite quadratic forms – which we may assume to be of
the form fn(x) =

∑n
i=1 ξi · xi

2 with ξn ≥ · · · ≥ ξ1 > 0 as we have seen – the
number of steps to halve the function value is O(n · ξn/ξ1). This is due to the
maximum curvature being upper bounded by (ξn/ξ1)/

√
f so that the radius of

the hypersphere S is at least
√
f · ξ1/ξn. As a direct consequence, we obtain a

Θ(n)-bound for functions where all the ξis are of the same order, i. e. ξn = Θ(ξ1).
This is the reason why ξ was chosen to be ω(1).
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A Proof of Lemma 2

“If P{Δ1 ≥ 0} = Ω(1) and |m2| = Θ(�̄1), there exists a constant α∗ such
that for n large enough inequality (1) on page 272 holds for all α ≥ α∗.”

Let us assume for a moment that the distribution of |m2| were concentrated at
a certain �2, and let “D{·}” denote the density of an event. Then

E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2≥0}

] · 1{Δ1<0}
]

=
∫ �2

0

x · D{Δ2 = x} · P{−x/α ≤ Δ1 < 0}dx and

E
[
E
[
Δ2 · 1{−αΔ1≤Δ2} · 1{Δ2<0}

] · 1{Δ1≥0}
]

=
∫ 0

−�2

y · D{Δ2 = y} · P{Δ1 ≥ −y/α}dy

=
∫ �2

0

−x · D{Δ2 = −x} · P{Δ1 ≥ x/α} dx .

We know from the analysis of Sphere that for x ∈ [0, �2)

D{Δ2 = x} <
Ψn

�2
· (1 − (x/�2)2)(n−3)/2 < D{Δ2 = −x}

(with Ψn := π−1/2 · Γ(n/2) /Γ(n/2 − 1/2) = Θ(
√
n), where “Γ ” denotes the

well-known Gamma function).
Thus, the LHS of (1) on page 272 is smaller than∫ �2

0

x · Ψn

�2
· (1 − (x/�2)2)(n−3)/2 · P{−x/α ≤ Δ1 < 0}dx

−
∫ �2

0

x · Ψn

�2
· (1 − (x/�2)2)(n−3)/2 · P{Δ1 ≥ x/α} dx

=
∫ �2

0

x
Ψn

�2
(1 − (x/�2)2)(n−3)/2

(
P{−x/α ≤ Δ1 < 0} − P{Δ1 ≥ x/α}) dx.

Let Φ : [0, �2] → [−1, 1] be defined by Φ(y) := P{−y ≤ Δ1 < 0} − P{Δ1 ≥ y}.
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Hence, ∫ �2

0

x · Ψn

�2
· (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx ≤ 0

implies the inequality (1). Note that, obviously, P{−0 ≤ Δ1 < 0} = 0 and,
by assumption, P{Δ1 ≥ 0} = Ω(1). Since, P{Δ1 ≥ y} decreases monotonically,
whereas P{−y ≤ Δ1 < 0} increases monotonically when y grows, Φ(y) is mono-
tone increasing for 0 ≤ y ≤ min{�1, �2} and equals P{Δ1 < 0} for y ≥ �1.
Furthermore, if ε denotes an arbitrary constant with 0 < ε < P{Δ1 ≥ 0}, then
P{Δ1 ≥ y} = ε implies y = Θ(�̄1/

√
n). Analogously, if 0 < ε < P{Δ1 < 0}, then

P{−y ≤ Δ1 < 0} = ε implies y = Θ(�̄1/
√
n). Thus, there exists y̌ = κ·�̄1/

√
n − 1

with κ = Θ(1) such that P{Δ1 ≥ y̌} = P{−y̌ ≤ Δ1 < 0}, i. e., Φ(y̌) = 0, and
hence, the inequality to be shown reads

− Ψn

�2

∫ α·y̌

0

x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx

≥ Ψn

�2

∫ �2

α·y̌
x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx. (2)

For the RHS we have, using (1−a/(n−1))(n−1)/2 ≤ e−a/2 for n−1 > a > 0,∫ �2

α·y̌
x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx

≤
∫ �2

α·y̌
x · (1 − (x/�2)2)(n−3)/2 · 1 dx

=
[−�22

2
· (1 − (x/�2)2)(n−1)/2

(n − 1)/2

]�2

α·y̌

= 0 −
( −�22
n − 1

· (1 − (α · y̌/�2)2)(n−1)/2

)
=

�22
n − 1

· (1 − (α · y̌/�2)2)(n−1)/2

≤ �22
n − 1

· (1 − (α · κ · �̄1/�2)2/(n − 1)
)(n−1)/2

≤ �22
n − 1

· e−(α·κ·�̄1/�2)
2/2 if n − 1 >

(
α · κ · �̄1

�2

)2

.

For the LHS of (2) note that, by the same arguments, there exists ÿ = τ ·
�̄1/

√
n − 1 with τ = Θ(1) such that P{Δ1 ≥ ÿ} = 2 ·P{−ÿ ≤ Δ1 < 0}, and thus,

for 0 ≤ y ≤ ÿ we have P{Δ1 ≥ y} ≥ 2 · P{−y ≤ Δ1 < 0}, i. e., −Φ(y) ≥ p :=
P{Δ1 ≥ ÿ}/2 = Ω(1). Hence,
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−
∫ α·y̌

0

x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx

≥
∫ α·ÿ

0

x · (1 − (x/�2)2)(n−3)/2 · p dx

= p ·
[−�22

2
· (1 − (x/�2)2)(n−1)/2

(n − 1)/2

]α·ÿ

0

= p · −�22
n − 1

·
((

1 − (α · ÿ/�2)2
)(n−1)/2 − 1

)
= p · �22

n − 1
·
(

1 −
(

1 − (α · τ · �̄1/�2)2
n − 1

)(n−1)/2
)

≥ p · �22
n − 1

·
(
1 − e−(α·τ ·�̄1/�2)

2/2
)

if n − 1 >

(
α · τ · �̄1

�2

)2

.

All in all, we have broken it down into the inequality

p · �22
n − 1

·
(
1 − e−(α·τ ·�̄1/�2)

2/2
)

≥ �22
n − 1

· e−(α·κ·�̄1/�2)
2/2.

Since p, τ , and κ are Θ(1), it is finally obvious that α = O(1) can be chosen
large enough for this inequality to hold for n large enough if �̄1/�2 = Θ(1), i. e.
�2 = Θ(�̄1).

B Proof of Lemma 4

“Let the scaling factor s be fixed. If P{Δ1 ≥ 0} and P{Δ2 ≥ 0} are Ω(1),
respectively, there exists a constant α↓ such that for n large enough, if
in the ith step α[i] ≥ α↓ (yet α[i] = O(ξ)), then w. o. p. after at most n0.3

steps the search is located at a point for which α < α[i], and furthermore,
w. o. p. α ≤ α[i] + O(α[i]/n0.6) in all intermediate steps.”

We begin by proving the second claim. Let us assume that, starting with the ith

step, α ≥ α[i] for k ≤ n0.3 steps. Recall that, due to elitist selection, the f -value
is non-increasing. As d2 > d

[i]
2 and f ≤ f [i] implies d1 < d

[i]
1 , which again implies

α/ξ = d1/d2 < d
[i]
1 /d

[i]
2 = α[i]/ξ, we have just proved that (surely) d2 ≤ d

[i]
2 in

these k steps, respectively. Since, irrespective of the adaptation of the length of
an isotropic mutation, in a step w. o. p. Δ2 = O(d2/n

0.9), in all k ≤ n0.3 steps
w. o. p. d2 ≥ d

[i]
2 − k · O(d[i]

2 /n0.9) ≥ d
[i]
2 − O(d[i]

2 /n0.6), i. e., d2 = d
[i]
2 (1 − ψ) for

some ψ = O(n−0.6), respectively. Concerning an upper bound on d1, we have

f = ξd2
1 + d2

2 = ξd2
1 +

(
d
[i]
2 − ψd

[i]
2

)2

≤ f [i] = ξd
[i]
1

2
+ d

[i]
2

2
,
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and hence

ξd2
1 ≤ ξd

[i]
1

2
+ (2ψ − ψ2)d[i]

2

2

⇔ d2
1 ≤ d

[i]
1

2
+ (2ψ − ψ2)

d
[i]
2

2

ξ
= d

[i]
1

2
+ (2ψ − ψ2)

d
[i]
1

2

α[i]

= d
[i]
1

2
(

1 +
ψ(2 − ψ)

α[i]

)
Since ψ(2 − ψ)/α[i] is O(ψ), i. e. O(n−0.6), we finally get that in all k steps

α

ξ
=

d1

d2
≤ d

[i]
1

d
[i]
2

·
√

1 + O(n−0.6)
1 − O(n−0.6)

=
α[i]

ξ
· (1 + O(n−0.6)).

Now we are ready for the proof of the lemma’s first claim. Therefore, assume
that α ≥ α[i] ≥ α↓ for n0.3 + 1 steps. We are going to show that the probability
of observing such a sequence of steps is exponentially small. Note that, since
w. o. p. d2 ≥ d

[i]
2 (1−ψ) as we have seen, our assumption implies that also w. o. p.

d1 ≥ d
[i]
1 (1 − ψ), i. e., w. o. p. d1 = d

[i]
1 − O(d[i]

1 /n0.6) in all n0.3 steps. Let X
[k]
j ,

j ∈ {1, 2}, denote the RV Δj · 1{f ′≤f} in the (i− 1 + k)th step (so that E[Xj] =
E
[
E
[
Δj · 1{f ′≤f}

]]
). Then, according to the arguments preceding the lemma, for

1 ≤ k ≤ n0.3, E
[
X

[k]
1

]
/d

[k]
1 ≥ 2 · E

[
X

[k]
2

]
/d

[k]
2 , i. e.,

ξ · E
[
X

[k]
1

]
≥ 2 · α[k] · E

[
X

[k]
2

]
≥ 2 · α[i] · E

[
X

[k]
2

]
.

Let S
[k]
j := X

[1]
j + · · · + X

[k]
j denote the total gain of k steps w. r. t. to dj . By

linearity of expectation, E
[
S

[k]
1

]
/d

[i]
1 ≥ 2 · E

[
S

[k]
2

]
/d

[i]
2 for 1 ≤ k ≤ n0.3; however,

the goal is to show that P
{
S

[k]
1 /d

[i]
1 ≤ S

[k]
2 /d

[i]
2 for 1 ≤ k ≤ n0.3

}
is exponentially

small.
Therefore, we will assume the worst case (w. r. t. to the analysis, i. e. the

best case w. r. t. the chance of observing such a sequence) that E
[
X

[k]
1

]
/d

[i]
1 =

2 · E
[
X

[k]
2

]
/d

[i]
2 in each step. To see that this is in fact the worst case consider

a search point x for which α ≥ α[i], i. e. d1/d2 > d
[i]
1 /d

[i]
2 , so that ξ · E[X1] >

2 · α · E[X2]. Now consider a search point x̃ with f(x̃) = f(x) but α̃ < α, i. e.,
d̃1 < d1 and d̃2 > d2. Owing to the results on Sphere we know that, for an
isotropic mutation of an arbitrary fixed length �j , for any fixed g ∈ (−�j, �j),
P{Δj ≥ g} strictly increases with dj (when dj > �j). Consequently, (indepen-
dently of the distribution of |m|) Δ̃1 is stochastically dominated by Δ1, whereas
Δ̃2 stochastically dominates Δ2. This implies that X1 dominates X̃1, whereas X2

is dominated by X̃2 (in particular, we have E[X1] < E
[
X̃2

]
and E[X2] > E

[
X̃2

]
).

As we have just seen, we may pessimistically assume that in each step the
search is located at a point for which ξ ·E[X1] = 2·α·E[X2]. Hence, E

[
S

[k]
1

]
/d

[i]
1 =
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2 · E
[
S

[k]
2

]
/d

[i]
2 . Let Sj := S

[n0.3]
j . Since 1.2/0.8 = 1.5 < 2, it is sufficient to show

that w. o. p. S1 ≥ 0.8 · E[S1] and w. o. p. S2 ≤ 1.2 · E[S2]. The Hoeffding bounds
(1963) (cf. Section 2.6.2 of (Hofri, 1987)) state that, for X

[k]
j ∈ [aj , bj] and tj > 0,

P
{
S1 − E[S1] ≤ −n0.3 · t1

} ≤ exp
(−2 · n0.3 · t 2

1

(b1 − a1)2

)
and

P
{
S2 − E[S2] ≥ n0.3 · t2

} ≤ exp
(−2 · n0.3 · t 2

2

(b2 − a2)2

)
.

For tj = 0.2 · E[Sj ]/n0.3, both exponents equal

−0.08 · n−0.3 · E[Sj ]
2
/(bj − aj)2 = −Ω(n−0.3) ·

(
E[Sj ]
bj − aj

)2

,

respectively. Therefore, our goal is to show that E[Sj ]/(bj − aj) = Ω(n0.2).
First we concentrate on E[S1]. Since S1 is the sum of n0.3 RVs X

[k]
1 , it suffices

to show that E
[
X

[k]
1

]
/(b1 − a1) = Ω(n−0.1) for 1 ≤ k ≤ n0.3. In the following we

assume that d1 = d
[i]
1 ± O(d[i]

1 /n0.6) and d2 ∈
[
d
[i]
2 − O(d[i]

2 /n0.6), d[i]
2

]
since we

have seen (in the preceding proof of the second claim) that this happens w. o. p.
Owing to the results for Sphere, we know that P{Δj ≥ 0} = Ω(1) implies that
the scaling factor s is O(dj/n), which results in �̄j = O(dj/

√
n), and that, under

these conditions, w. o. p. |Δj | = O(�̄j/n
0.4). Recall that E

[
Δ1 · 1{f ′≤f}

]
is at

least E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0}/2. Since P{Δ2 ≥ 0} = Ω(1) in ith step and
d2 ≥ d

[i]
2 (1 − O(n−0.6)) in all n0.3 steps, in each of these steps P{Δ2 ≥ 0} =

Ω(1). Hence, E[X1] = Ω(E
[
Δ1 · 1{Δ1≥0}

]
) in each of the n0.3 steps. Owing to

the results for Sphere, we know that (since �̄1 = O(d1/
√
n) as we have seen)

E
[
Δ1 · 1{Δ1≥0}

]
= Θ(�̄1/

√
n) so that E[X1] = Ω(�̄1/

√
n). Thus, E[S1] = n0.3 ·

Ω(�̄1/
√
n) = Ω(�̄1/n0.2) and b1−a1 = O(�̄1/n0.4), i. e., E[S1]/(b1−a1) = Ω(n0.2).

Concerning a lower bound on E[S2], recall that E[S1]/d
[i]
1 = 2 · E[S2]/d

[i]
2 ,

i. e., E[S2] = E[S1] · d[i]
2 /(2 · d[i]

1 ) = Ω(�̄1/n0.2) · Ω(ξ/α[i]). As �̄1 = �̄2 and (by
assumption) α[i] = O(ξ), we have E[S2] = Ω(�̄2/n0.2). Since b2−a2 = O(�̄2/n0.4)
(see above), E[S2]/(b2 − a2) = Ω(�̄2/n0.2)/O(�̄2/n0.4) is also Ω(n0.2).

All in all, our initial assumption that α ≥ α[i] ≥ α↓ for n0.3 + 1 steps implies
that w. o. p. for the first n0.3 steps S1/S2 > α[i]/ξ, i. e., that w. o. p. after at most
n0.3 steps α drops below α[i] – showing that the sequence of steps we assumed
to be observed happens only with an exponentially small probability.

C Proof of Lemma 5

“Let the scaling factor s be fixed. If P{Δ1 ≥ 0}, 1/2 − P{Δ1 ≥ 0},
P{Δ2 ≥ 0} are Ω(1), respectively, then there exists a constant α⇓ such
that for n large enough: if in the ith step α[i] ≥ α⇓ (yet α[i] = O(ξ), i. e.
d1 = O(d2)), then w. o. p. after at most n steps the search is located at
a point with α ≤ α[i] − Ω(α[i]).”
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By the same arguments used before, under the given assumptions there ex-
ists α′ = O(1) such that for n large enough ξ · E

[
E
[
Δ1 · 1{f ′≤f}

]] ≥ 3 · α ·
E
[
E
[
Δ2 · 1{f ′≤f}

]]
. Let α⇓ := 2 · α′. Assume that α[i] ≥ α⇓ and α ≥ α⇓/2 = α′

for n steps (if α drops below α⇓/2 within one of these n steps, there is nothing
to show). Following the same argumentation used in the proof of the preceding
lemma (except for Sj now being the sum of n (instead of n0.3) RVs), we get that
w. o. p. S1/S2 > 2 · α[i]/ξ, and hence, after these n steps w. o. p.

d1

d2
=

d
[i]
1 − S1

d
[i]
2 − S2

<
d
[i]
1 − S1

d
[i]
2 − S1 · ξ/(2 · α[i])

=
d
[i]
1 − S1

d
[i]
1 · ξ/α[i] − S1 · ξ/(2 · α[i])

=
d
[i]
1 − S1

d
[i]
1 − S1/2

· α
[i]

ξ
=

(
1 − S1/2

d
[i]
1 − S1/2

)
· d

[i]
1

d
[i]
2

.

Thus, we must finally show that S1 = Ω(d[i]
1 ). Recall that S1 is the sum of n

RVs X
[k]
1 (Δ1 · 1{f ′≤f} in the (i − 1 + k)th step, respectively). In the follow-

ing we consider the ith step. Our argumentation just bases on the fact that
E
[
Δ1 · 1{f ′≤f}

] ≥ E
[
Δ1 · 1{Δ1≥0}

] · P{Δ2 ≥ 0}/2 as we have seen, and since
P{Δ2 ≥ 0} = Ω(1) by assumption, E

[
Δ1 · 1{f ′≤f}

]
= Ω(E

[
Δ1 · 1{Δ1≥0}

]
). Fur-

thermore, since P{Δ1 ≥ 0} as well as 1/2−P{Δ1 ≥ 0} are Ω(1) by assumption,
we know that E

[
Δ1 · 1{Δ1≥0}

]
= Θ(d1/n) (cf. Section 2). Thus, the assumptions

ensure E
[
Δ1 · 1{f ′≤f}

]
= Ω(d1/n), and hence, E[S1] = n · Ω(d1/n) = Ω(d1).

Applying Hoeffding’s bound just as in the proof of the preceding lemma, we
immediately get that S1 is Ω(E[S1]), i. e. Ω(d[i]

1 ), w. o. p.
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Abstract. Recently, the linkage problem has attracted attention from
researchers and users of genetic algorithms and many efforts have been
undertaken to learn linkage. Especially, (1) perturbation methods (PMs)
and (2) estimation of distribution algorithms (EDAs) are well known
and frequently employed for linkage identification. In our previous work
[TMA04], we have proposed a novel approach called Dependency Detec-
tion for Distribution Derived from df (D5) which inherits characteristics
from both EDAs and PMs. It detects dependencies of loci by estimating
the distributions of strings classified according to fitness differences and
can solve EDA difficult problems requiring a smaller number of fitness
evaluations. In this paper, we estimate population size for the D5 and its
computation cost. The computation cost slightly exceeds O(l), which is
less than the PMs and some of EDAs.

1 Introduction

A set of loci tightly linked to form a building block is called a linkage set and
encoding such loci loosely results building block disruptions. Several efforts have
been undertaken to ensure appropriate building block processing without prior
knowledge of problem. Two major methods of them are follows:

1. Perturbation Methods (PMs)
2. Estimation of Distribution Algorithms (EDAs)

PMs examine fitness differences by perturbations at loci to detect interde-
pendency among them. They can recognize building blocks with lower marginal
fitness contributions, but require a large number of extra fitness evaluations in
addition to the usual fitness evaluations which are performed to select strings.
For example, the LINC [MG99] requires O(l2) fitness evaluations for its linkage
identification where l is string length. Heckendorn et al.[HW03] shows algorithm
which uses the Walsh coefficients. This algorithm behaves similar to the LINC
when it considers order-2 dependencies. But while the LINC guesses order-3
or more dependencies, it introduces higher-order perturbations (probes). EDAs
like the BOA [PGCP99] employ probabilistic modeling of promising solutions to
generate new solutions instead of the crossover and mutation operators of simple
GAs. Some of EDAs are based on conditional probabilities to model dependency

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 282–299, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of variables. They can construct their models without additional fitness evalua-
tions, however, it is difficult for EDAs to recognize low scaling building blocks.
For such problems, EDAs need more strings and generations, therefore, the total
number of evaluations increases to that of the PMs.

If a problem is composed of variously scaled sub-problems, fitness of the prob-
lem is dominated by solutions of highly scaled sub-problems (i.e. important build-
ing blocks) and GAs should focus only on the sub-problems. The scale of sub-
problems means the amount of contribution of each sub-problems. The highly
scaled sub-problems gives large contribution to fitness, while lowly scaled sub-
problems gives small contribution to fitness. Therefore, GAs solve sub-problems
sequentially from those scaled larger to those scaled smaller, and sometimes, the
low scaled building blocks are lost while they are on a waiting list. For exam-
ple, consider maximizing a problem of 4 variables, f(s1, s2, s3, s4) = g(s1, s3) +
h(s2, s4) where s1, · · · s4 are variables. If gmax(s1, s3) = 5 and hmax(s2, s4) = 5,
h(s3, s2) and g(s2, s4) are searched in parallel. On the other hand, if gmax(s1,
s3) = 7 and hmax(s2, s4) = 3, GAs focus on larger scaled sub-problem, g(s1, s3)
first and then give their eyes to h(s2, s4). This sequential search procedure is
referred as domino convergence [TGP98,LGP00].

In our previous work [TMA04], we have proposed another approach called
the Dependency Detection for Distribution Derived from df (D5) which com-
bines both features of the previous methods. It detects dependencies of loci by
estimating the distributions of strings classified according to fitness differences.
Generally, EDAs estimate bias in selected sub-population and such bias come
naturally from selection according to fitness. On the other hand, the D5 makes
sub-population biased artificially by perturbations. Therefore, the D5 can solve
EDA difficult problems using less computation cost than the PMs. The experi-
ments showed that it reduces computation cost considerably and the number of
evaluations is approximately O(l) where l is string length.

In this paper, we estimate the growth of the required population size for the
D5 theoretically in order to understand scalability of the D5. The number of
strings is an important factor for linkage identification quality and computation
cost. Resulting number of evaluations exceeds O(l) slightly but still far less than
PMs and even some of EDAs.

This paper is organized as follows. First, we show a brief introduction to
the D5. And its population sizing is discussed in section 4. After theoretical
estimation of population size, some numerical experiments are performed to
confirm the result in section 5 and finally this paper is concluded in section 7.

2 Background

Decomposability is one of the grounds for the advantage of genetic algorithm over
random search. Additively decomposable functions are one of representations of
the decomposable problem. An additively decomposable function is defined as
follows:

f(s) =
∑
∀v∈V

fv(s) (1)
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where s is a string, v is a set of loci that composing a sub-function (i.e a linkage
set), fv(s) is a sub-function defined over v, and V is a set of disjoint sets of loci
(i.e. a set of linkage sets). We consider only bit string as s. We consider only bit
string as s. In addition, we assume that the sub-functions do not overlap each
other, i.e. v ∩ v′ = ∅ (v, v′ ∈ V ). The length of s is denoted by l and sum of the
number of loci in each v is equal to l:∑

v∈V

|v| = l (2)

We limit maximum size of a linkage set v to k.

|v| ≤ k ∀v ∈ V (3)

k is known as order of (sub-)problem or order of building block. The additively
decomposable functions are known as order k delineable problems defined by
Kargupta [Kar95]. In this paper, we consider the linkage set is the set of loci
which are linked and are not separable. If a building blocks can be constructed
by crossover, these loci should be separable that can be optimized separately.

3 Dependency Detection by Fitness Differences

In this section, we show a brief explanation of the Dependency Detection for
Distribution Derived from df (D5). The D5 combines PMs and EDAs in or-
der to obtain bias of sub-population to be estimated rapidly even if there are
some low scaling sub-problems. It detects dependencies of loci by estimating the
distributions of strings classified according to fitness differences.

EDAs learn problem structure from bias of sub-population and such bias is
given by selection pressure based on fitness. Therefore, if problem is composed of
variously scaled sub-problems, then modeling processes in EDAs focus only on
highly-scaled sub-problems. On the other hand, the D5 makes sub-population to
be estimated biased artificially by perturbations. Therefore, the D5 can detect
such EDA-difficult sub-problems. Moreover, although the D5 requires additional
fitness evaluations due to calculate fitness differences, the number of evaluation
is less than the PMs which generally perform pairwise perturbations because the
D5 employs estimation instead of higher order perturbations.

3.1 Algorithm

Genetic algorithm using the D5 is composed of two parts (1) detecting linkage
sets and (2) generating, increasing and combining building blocks. In this paper,
we concentrate on the first part because if we know problem structures we can
perform subsequent optimization processes easily and efficiently.

Fig. 1 shows the algorithm of the D5. The algorithm consists of three parts:
(1) calculating of fitness differences, (2) classifying of strings according to the
differences and (3) estimating of the classified strings. After initializing popu-
lation, following procedures are repeated for each locus i: At first, locus i in
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1. initialize population with n strings
2. for each locus i

(a) calculate fitness difference dfi(s
p) by a perturbation at locus i in string

sp (p = 1, 2, · · · , n).
(b) classify strings according to their fitness differences into sub-

populations.
(c) estimate sub-populations and construct linkage sets (see Fig. 2 for

detail).

Fig. 1. Overall Algorithm of linkage identification in the D5

1. for each sub-population p classified by the Classification Algorithm
(a) initialize set of loci v1 = {1, 2, · · · , i − 1, i + 1, · · · , l} and v2 = {i}
(b) while |v2| < K, where K is pre-defined problem complexity

i. calculate a entropy Ej = E(v2 ∪ {j}) for all locus j ∈ v1

ii. h = arg minj∈v1
Ej

iii. update v1 = v1 − {h} and v2 = v2 ∪ {h}
(c) vp = v2 and Ep = E(v2)

2. select vp with the smallest Ep as the linkage set for locus i

Fig. 2. Construct Linkage Set

each string sp is perturbed and then fitness difference for the perturbation is
calculated as follows:

dfi(sp) = f(sp) − f(sp
i ) (4)

In the above equation, sp
i is a string perturbed at locus i. Then, strings are

classified into sub-populations according to their fitness differences dfi(sp). We
employed a simple centroid method for classification, but other approaches like k-
means can also be applied. In this method, the centroid of a cluster is determined
by averaging dfi(sp) of all strings within that cluster. The distance between
two clusters is defined as the distance between the centroids of the clusters.
The pair of clusters with the smallest distance is merged until a termination
criteria is satisfied. If the smallest distance of all the rest exceeds a threshold,
the classification is terminated. The threshold should be small for problems
which consist of independent sub-problems, while it should be large for those
with interacted sub-problems.

Finally, the sub-populations are estimated in order to detect loci which de-
pend on locus i.

Fig. 2 is the algorithm to construct a linkage set for locus i. First, a set v2

is initialized as {i}. The locus j which gives the smallest entropy E(v2 ∪ {j})
is merged repeatedly until the size of linkage set exceeds problem complexity k.
This defines the order of a sub-problem and is given by algorithm users. The
order of a building block is equal to k because we assume the building block is
the optimal solution of the sub-problem. The entropy measure is defined as
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E(v2) = −
2|v2|∑
x=1

px log2 px, (5)

where px is the appearance ratio of each schema x and 2|v2| is the number of all
possible schema defined by v2. This procedure is applied to all sub-populations
except those including small number of strings. The sub-populations having small
number of strings are ignored because estimating distribution of small samples
has risk of unreliable result. The population sizing in section 4 will give the
threshold for the sampling size. After the estimation of all sub-populations, the
linkage set v2 which gives the smallest entropy E(v2) is selected as linkage set
vi of locus i.

3.2 Example

As example, we use sum of the order 3 deceptive problem which was used as an
opponent of the messy GA[GKD89] and defined as follows:

f(s) =
∑
∀v∈V

fv(s) (6)

fv(s) = 30 if 111, 0 if 110, 101, 011,
14 if 100, 22 if 010, 26 if 001, 28 if 000

where V = {{1, 2, 3}, {4, 5, 6}} and fv(s) is defined by each schema of {1, 2, 3}
and {4, 5, 6}. Fig. 3 shows the perturbation in the 1st locus. In this figure, strings
having df1 = 30 are belong to a sub-population. In the sub-population, linkage
set {1, 2, 3} has only schema 011 and E({1, 2, 3}) should be zero. On the other
hand, linkage set {1, 4, 5} has schemata 010, 001, 010, 011 and E({1, 4, 5}) should
be relatively large. Therefore the algorithm evaluates that a relationship between
locus 1, 2, and 3 take place more likely than a relationship between locus 1, 4,
and 5.

s f(s) s1 f(s1) bias df1(s)

011100 14 111100 44 011*** 30
011010 27 111010 57 011*** 30
011101 0 111101 30 011*** 30
011110 0 111110 30 011*** 30
011110 0 111110 30 011*** 30

· · ·

s f(s) s1 f(s1) bias df1(s)

110101 0 010101 27 110*** 27
110011 0 010011 27 110*** 27
110001 26 010001 53 110*** 27

101100 14 001100 40 101*** 26
101101 0 001101 26 101*** 26

· · ·

Fig. 3. Strings classified according to df1

If problems are (quasi-)decomposable like f(s) =
∑

v∈V fv(s) then fitness
differences for perturbation in locus i are calculated as

dfi(s) = f(s) − f(si)
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= [fv̂(s) +
∑

v �=v̂,v∈V

fv(s)] − [fv̂(si) +
∑

v �=v̂,v∈V

fv(si)]

= fv̂(s) − fv̂(si).

where v̂ is the sub-problem including locus i. It is clear that fitness differences
depend only on the linkage set v̂ and independent on loci j ∈/ v̂. Therefore, we
can obtain bias in sub-populations classified according to fitness differences and
detecting such bias by minimizing the entropy measure we can learn the linkage
set for locus i.

Our greedy search shown in Fig. 2 sometimes can not find k bit dependencies,
because in some problems entropies for lower order linkage sets shows random-
ness even if those for higher order sets distribute unevenly. However, it is clear
that strings can be divided into at least two sub-populations and there should be
2k−1 schemata for loci v̂ in these sub-populations. On the other hand, loci j ∈/ v̂
distribute perfectly random and for any k-bit combination of such loci, there
should be all possible schemata (2k schemata). For example, for v̂ of 3-bit prob-
lem, a sub-population have schemata{111, 100, 010, 001}. In this sub-population,
all order 1 and 2 loci have all possible schemata and only the order 3 loci has half
of all. Such dependency can not be found by the greedy search. But if more so-
phisticated method is applied, it is not impossible. The refinement should require
larger computation cost, but is worthy of consideration when fitness evaluation
of a problem takes huge time.

4 Population Sizing

In this section, we calculate the number of strings required to detect correct
dependencies by the D5. This consists of two stages: sub-population sizing and
overall population sizing. The above case defines the size enough to distinguish
biased distribution of dependent loci and random distribution of independent
loci in a sub-population. The overall population size must ensure the sufficient
sub-population size when it is divided.

We calculate sub-population size and then define overall population size. But,
first of all, we should simplify the problem to make population sizing easy.

4.1 Simplification

Sub-population should have enough number of strings to distinguish biased dis-
tribution of dependent loci and random distribution.

The level of bias changes with each fitness landscape of a sub-problem. Some
of them give strong bias, others give weak bias. The strong bias makes distinction
easy, while the weak bias makes it difficult. The former case means that the sub-
population has a few unique schemata. Therefore, the D5 can exploit a small part
of original population. In the later case, the sub-population should have more
schemata and it can use a larger part of the population. To make calculation
easy, we consider the first case only. The resulting population size should not be
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upper bounds or precise predictions of population size, as a consequence of this
simplicity. But it will help to understand how the number of strings grows as
string length gets longer.

As mentioned in section 2, we consider additively decomposable functions
only. In this type of functions, there are 2k schemata for each sub function
fv(s). One bit perturbation gives 2k schemata changes such as

df1(000...) = f(000...) − f(100...)
df1(001...) = f(001...) − f(101...)
df1(010...) = f(010...) − f(110...)

· · · · · · · · · · · ·
df1(111...) = f(111...) − f(011...)

It is clear that dfi(s) = −dfi(si). For example,

df1(000) = f(000...) − f(100...), df1(100) = f(100...) − f(000...).

Then
df1(000) = f(000...) − f(100...) = −df1(100).

We denote fitness difference of h-th schema by perturbation of i-th loci as
dfh

i (i = 1, 2, · · · , l. h = 1, 2, · · · , 2k).
The number of unique fitness differences by the perturbations in locus i varies

from 2 to 2k. The upper bound, 2k, comes in the case where fitness changes of
all schemata differ:

dfh
i �= dfh′

i (∀h �= h′) (7)

The lower bound, 2, takes place if the amount of fitness increase and decrease
are always same:

|dfh
i | = |dfh′

i | (∀(h, h′)) (8)

In order to make calculation easy, we consider the first case. In this case, all
2k schemata should be classified into different classes. One class has one schema
for a linkage set. Loci in the linkage set of all strings in the class have same value.
The number of strings must be enough to ensure that no single unlinked locus
takes a same value in the class. To this end all classes does not have to have
exactly one schema, but at least one of them must have exactly one schema.
Therefore, we relax the equation (7) as follows:

∃dfh′
i ∈ {df1

i , · · ·df2k

i } that satisfies dfh′
i �= dfh

i (h �= h′) (9)

If this condition is satisfied, the sub-population of dfh′
i has only one unique

schema. The entropy of the set of loci that depend on locus i should be zero. On
the other hand, the entropy of the set of loci that do not depend on locus i is
close to the number of loci in the set. Therefore, if there are enough strings in
the sub-population, it is easy to identify linkage set correctly.
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Despite such simplicity of linkage identification over a sub-population, whole
population size for the function that satisfies the condition (9) should be large.
The reason comes from the fact that we can exploit only a small part of whole
population for the sub-population of dfh′

i because h′-th schema should have n/2k

copies where n is whole population size.
If fitness function does not satisfy (9), by contrast, there are two or more

schemata in sub-populations. Consequently, entropies in the sub-populations
should be larger than zero. However, they should be still smaller than that
for random distributions. For example, the lower bound of fitness differences are
2, as mentioned earlier. In the case, there are 2k−1 unique schemata in each
sub-population. Then the entropy should be less or equal to k − 1. The signal
difference of entropy increase from the above case, but the half part of original
population can be used.

The precise population size for the D5 is defined from both the string uti-
lization ratio of original population and the signal difference of entropy between
v̂ and v. Both of those differ with respect to fitness functions. In the followings,
to make population sizing easy, we consider the extremely biased case, the func-
tions that satisfy (9) only. Although it does not give the precise population size,
it at least should give how it grows with problem size.

After theoretical population sizing, we perform experiments with some classes
of problems including the problem that does not satisfy the condition (9).

4.2 Sub-population Sizing

Let Cdfh′
i

a sub-population of dfh′
i in (9), let n1 size of the Cdfh′

i
.

Locus j ∈/v̂ must have less certain distribution than locus j ∈ v̂ to detect
correct dependency for locus i.

If (9) is satisfied for additively decomposable functions (1), then there is only
one unique schema of v̂ in sub-population Cdfh′

i
. Therefore, each locus of v̂ takes

the same gene value in the sub-population.
On the other hand, loci in V − {v̂} take 0 or 1 at random. If a locus j ∈/v̂

takes the same gene value in Cdfh′
i

accidentally, the dependency detection will
fail. Therefore, we should employ enough sub-population size n1 to avoid such
undesirable coincidence for all j ∈/v̂.

The probability that every gene value of a locus j ∈/v̂ is same is

(
1
2

)n1

. (10)

The probability that it does not occur in all loci j ∈ V − {v̂} is

(
1 −

(
1
2

)n1
)l−k

. (11)
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The probability P1 that the previous condition hold true for all dependency
detections for loci i = 1, 2, · · · , l is

P1 =

((
1 −

(
1
2

)n1)l−k
)l

=
(

1 −
(

1
2

)n1)l(l−k)

. (12)

Randomly generated gene value in j ∈/v̂ can have same value in size n1 sub-
population Cdfh′

i
with probability

(
1
2

)n1 and it can not occur with probability(
1 − (

1
2

)n1). This hold true for all j ∈/v̂ with probability
(
1 − (

1
2

)n1)l−k
because

|v̂| = k and then |V − v̂| = l − k. Therefore the probability that we can avoid
the undesirable biases for all j ∈ v̂ in all l times perturbations is equation (12).

Rewriting (12), we can obtain sub-population size for expected success ratio
P1

n1 = − log(1 − P
1

l(l−k)
1 ). (13)

Therefore, if an appropriate distribution is required with probability P1, then

sub-population must have more than − log(1 − P
1

l(l−k)
1 ) strings.

The resulting sub-population size n1 is also used as threshold for the estima-
tion phase in the D5. If a sub-populations has less than n1 strings, it should not
be used for dependency detection.

4.3 Overall Population Sizing

Now, we consider overall population size, n. It must be enough to obtain ap-
propriate sub-population size, n1. From (9), sub-population Cdfh′

i
has only one

schema of possible 2k schemata in v̂. Because the original population is initialized
by random coin toss, the distribution of the schema in the original population
is the binomial distribution with the mean n

2k and the variance n 1
2k

(
1 − 1

2k

)
.

Therefore, the lower bound of expected sub-population size n1 for large n is
estimated as follows:

n1 ≥ n

2k
−
√

n
1
2k

(
1 − 1

2k

)
(14)

Let p = 1/2k and q = 1 − p, we rewrite above equation as

n1 ≤ np − √
npq. (15)

Rewriting the inequality, required population size n is as follows:

n ≥ (2n1p + pq) +
√

(2n1p + pq)2 − 4p2n2
1

2p2
. (16)

=
1
p
n1 +

q

2p
+

√
q

p
n1 +

q2

4p2
. (17)
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Because p is constant if k is constant, the term 1
pn1 is dominate for population

sizing, thus

n = O

(
1
p
n1

)
(18)

= O(−2k log(1 − P
1

l(l−k)
1 )). (19)

Using L’Hopital’s rule,

lim
l→∞

1 − P
1/l2

1

1/l2
= 1. (20)

lim
l→∞

ln(1 − P
1/l2

1 )
ln l2

= lim
l→∞

ln(1 − P
1/l2

1 )
2 ln l

= lim
l→∞

−P
1/l2

1 lnP1

(1 − P
1/l2

1 )/(1/l2))
. (21)

The limit of the denominator is 1 from the equation (20), the limit of the nu-
merator is − lnP1. Thus,

lim
l→∞

ln(1 − P
1/l2

1 )
2 ln l

= − lnP1 (22)

Therefore, approximating log(1 − P
1

l(l−k)
1 ) to log(1 − P

1
l2
1 )

O(−2k log(1 − P
1

l(l−k)
1 )) ≈ O(2k log l) (23)

for large l.

4.4 Overall Complexity

In this section, we show the number of fitness evaluations for the D5. Opti-
mization using it consists of the dependency detection stage and the building
block combination stage. However, if problem structure is revealed, the following
evolution should be success using relatively small cost. Therefore, we consider
computation cost for dependency detection is approximately equal to overall
computation cost.

In dependency detection by the D5, we should know original fitness of all
strings and those after perturbations in all l loci of all strings. Therefore, the
number of evaluations required to obtain appropriate linkage sets is nl+n where
l is string length and n is population size. substituting (16), the number of
evaluations is

nl + n =
(2n1p + pq) +

√
(2n1p + pq)2 − 4p2n2

1

2p2
(l + 1). (24)

If the order of problem k is fixed, then p = 1/2k and q = 1 − p are also fixed.
From the (16) and (24), the number of evaluations is roughly

O(n1l) = O(−l log(1 − P
1

l(l−k)
1 )) (25)

for string length l.
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Fig. 4. Accuracy of linkage identification for trap function for various population size
and string length

Fig. 5. Contours of fig. 4 and theoretical estimation in equation (16). In index, numbers
like 0.95 or 0.90 mean contour levels, e or t means experimental result or theoretical
result respectively

5 Experiments: Population Size, String Length
and Success Ratio

In this section, we compare theoretical estimations in section 4 and experimental
results.

Trap Function

Experiments in this section are performed on a deceptive trap function as follows:

f(s) =
m∑

i=1

trap(ui) (26)

trap(ui) =
{

k (u = k)
k − 1 − u (otherwise) (27)
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Fig. 6. Example of Trap Function Fig. 7. Example of Valley Function

where m is the number of sub-functions and k is the order of a sub-function, ui

is the number of ones in each k-bit sub-string. This sub-function is called trap
function.

Fig.6 shows the function. The x-axis of the figure shows the number of ones
in a sub-string and y-axis is the contribution of each sub-string. The left side
of the figure shows the contribution of all zeros sub-string and the right side
shows that of all ones. From this function, it is clear that the fitness difference
for 1-bit perturbation takes one of {k, 1,−1,−k}. Only all ones gives −k ( when
u = k to k − 1 for perturbation , 11111 → 01111) and only sub-strings to be
all ones by the perturbation gives k ( when u = k − 1 to k for perturbation
, 01111 → 11111). All the other 2k−1 sub-strings give −1 or 1 by 0 → 1 or
1 → 0 respectively. This function satisfies the assumption 1 because there are
two schemata, all ones and that to be all ones, whose fitness differences differ
from all the other fitness differences.

In these experiments, we try various string length l = k ×m and population
size n. The order of problem is fixed to k = 5. We record percent of linkage
correctly identified for several (l, n) pairs. We perform 10 runs for each (l, n)
pair and average success ratio of linkage identification.

Figure 4 shows the experimental result of accuracy of linkage identification for
5-bit trap function in various population size and string length. Figure 5 shows
contours of the accuracy of experimental results and theoretical estimations in
equation (16).

Because our theoretical population sizing is conservative – we assume one
unique fitness difference but there are two unique fitness differences in the trap
function –, the experimental result can archive a certain success ratio with
smaller number of strings than the theoretical result. However traces of con-
tour in experiments are follows that in experiment very well.

Valley Function

In this experiment, we employ a test function which does not satisfy (9). The
function is defined as follows:

f(s) =
m∑

i=1

valley(ui) (28)
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Fig. 8. D5 for 4-bit valley function and 4-bit trap function. The lines mean threshold
sizes for linkage identification with probability 0.95 for each string length. For reference,
c × n where n c-s are constants and vary from 0.2 to 1.0 are added

valley(u) = |u − k

2
| (29)

where k is the order of a sub-function, m is the number of sub-functions, and
u is the number of ones in each k-bit sub-string. Figure 7 shows this function.
The valley function has no peak or needle like the optimal solution of the trap
function. For all perturbations it gives only two types of fitness difference {−1, 1}
if k is even.

We fix k to 4 and try various (l, n) pairs to record ratio of correctly identified
linkage sets. We perform 10 runs for each (l, n) pair and average success ratio of
linkage identification.

Figure 8 shows contours of the accuracy of experimental results and the-
oretical estimations in equation (16). We also perform 4-bit trap function for
comparison. And for reference, c × n where c-s are constants and vary from
0.2 to 1.0 are added. In this equation, n is the theoretical estimation and
n = −l log(1 − 0.951/l(l−4))).

If many schemata have a same fitness difference, then all of them are classified
into one sub-population. The entropy of linkage set in such sub-population is
larger and closer to the entropy of random set of loci than the entropy of linkage
set of a function which has various fitness differences like a trap function. On
the other hand, because original population is divided into a few groups in this
kind of problems, each sub-population size should be large and enough to detect
the small signal difference of entropy.

For the 4-bit functions, there are nt
1 = nt/24 = nt/16 strings for the trap

function and there are nv
1 = nv/2 strings for the valley function where nt is

population size for trap function and nv is population size for valley function.
Because nv ≈ nt/2 from the experiment, the sub-population size in valley func-
tion is nv

1 = nt/4 = 4nt
1. Sub-population sizes nv

1 and nt
1 are defined from the

signal difference of entropy and population sizes nv and nt are defined to ensure
sub-population sizes.
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Although the number of strings for the valley function is smaller than for
the trap function, the slope for the valley function is similar to that for the trap
function. In fact, the population size for the valley function is similar to the
0.4 × n and that for the trap function is similar to the 0.8 × n. These results
show that the theoretical population size guides population sizings for problems
which do not satisfy the condition (9).

6 Comparisons with Other Methods

In this section, we compare population sizings in existing literatures of GAs,
PMs and EDAs. Depending on the strategies of each algorithm, their way of
sizing differs. Please not that these population sizings do not address the same
problem and the same purpose. However, they have some things in common and
other things in contrast.

6.1 Population Sizing of Simple GAs

Various efforts have been focused on sizing population of genetic algorithms. One
of the most accurate population size was calculated by Harik et al. [HCPGM97].

They estimated population size considering an initial supply of building
blocks and a good decision making between competing building blocks using
the gambler’s ruin model. Resulting population size n that is enough for an
optimal solution to take over population after several generations is

n = −2k−1 ln(α)
σbb

√
π(m − 1)
d

(30)

where k is the order of a building block, α is the probability of failure convergence
in a sub-problem, σbb is the standard deviation (the square root of variance) of
fitness of the building block, m is the number of building blocks (sub-problems)
in a string, and d is the difference between the mean fitness of the best and
the second building blocks. The term 2k−1 is required for the initial supply
of building blocks and the other terms are for the decision making. The last
term shows that if the population size increases as the average variance of the
building blocks increases, as the problem size is grows and as the signal difference
decreases.

If we assume that string length is approximately proportional to the number
of building blocks, we obtain following result from equation (30):

n = O(2k−1
√
l) (31)

In their analysis, they assumed tight linkage and building block disruption
was not considered. If such tight linkage is not ensured, SGA performs as random
search and needs O(l2) strings for the worst case. In addition, some approxima-
tions are used in their calculation.
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6.2 Population Sizing of PMs

For the LINC, the number of strings required to obtain correct linkage set was
calculated by Munetomo et al [MG99]. The LINC identifies linkage by detecting
the second order nonlinearity. It assumes that nonlinearity must exist within loci
to form a building block.

This population sizing is differ from the population sizing of simple GAs
because they do not concern the number of strings for optimal population con-
vergence but for correct linkage identifications. However, if correct linkage sets
are obtained it becomes easy to combine building blocks to find an optimal
solution.

Their population sizing is based on the supply of building blocks in a linkage
set because they assume that there is at least one schema which violates linear
condition along the perturbations for the pair of loci belonging a same sub-
problem. They showed that if there are n strings then correct linkage sets is
obtained with probability P as follows:

P = 1 −
(

1 −
(

1
2k

))n

(32)

where k is the order of a sub-problem. Therefore the population size required
for a certain success probability P is

n =
log(1 − P )

log(1 − 1/2k)
0 −2k log(1 − P ). (33)

From equation (33), the population size for the LINC depends only on the order
of sub-problem.

Munetomo et al [MG99] calculate the number of strings which is enough
to obtain pairs of loci that are linked with a given probability, P . Whereas,
the population size in the D5 is sized enough to obtain all sets of loci that
linked. In addition, Heckendorn et al [HW03] define the number of strings to
find all pairs of loci that linked with a global probability of success. The pop-
ulation size of their algorithm (the number of iterations in their algorithm) is
−2k ln(1 − δ1/J) for order-2 linkage detection where δ is the probability of suc-
cess and J is the number of order-2 relationships between loci (hyperedges).
For the non-overlapping additively decomposable functions composed of order-
k sub functions, J = l/k ×k C2 = l(k − 1)/2. Then the population size is
−2k ln(1 − δ2/l(k−1)).

6.3 Population Sizing of EDAs

As an example of population sizing in EDAs, we show the population sizing
for the BOA calculated by Pelikan et al.[PSG02] The BOA [PGCP99] exploits
Bayesian network to represent conditional probabilities in order to encode de-
pendency of variables in their models.

For uniformly scaled problem, the most important factor for population siz-
ing is that the BIC metric can distinguish between the appropriate and the
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Table 1. Comparison of population size and number of evaluations

method population size number of evaluations

D5 O(−2k log(1 − P
1

l(l−k))
1 ) O(−2kl log(1 − P

1
l(l−k)

1 ))

SGA O(2k−1
√

l) ∼ O(2l) O(2k−1l) ∼ O(2k−1l log l) ∼ O(2k−1l2)

LINC O(2k) O(2kl2)

BOA O(2kl1.05) O(2kl1.55)

inappropriate dependencies and decision making between to add or to not add
an edge from a variance to another variance. From the viewpoint, the required
number of strings is

n = O(l1.05). (34)

This result is obtained using some approximations, however, it matches exper-
imental results. The detail about this equation is available in the literature
[PSG02].

Above equations were obtained for two bit dependency, but it can be extended
for multiple dependencies as follows:

n = O(2kl1.05) (35)

The term 2k comes from the number of possible schemata and l1.05 is the re-
quirement for noise avoidance from contributions of other sub-solutions.

6.4 Discussions

Table 1 shows the comparison of population size in the D5, SGA, the LINC
and the BOA. Please note that the population size of SGA O(2k−1

√
l) is for

tight encoding strings. If such tight encoding is not ensured SGA requires an
exhaustive search which needs exponential number of strings. In addition, the
comparison is not completely fair because the population sizings for the LINC
and the D5 does not concern evolution of population and decision-making during
the evolution. However, it should be true that if we know problem structure, then
we can make decision easier than without such explicit information of problems.

The required number of evaluations is also shown in Table 1. Again, the
numbers of the D5 and the LINC are only for dependency detection and they
need other evaluations for evolution phase but these are not dominant for overall
computation cost. The number of evaluations for SGA and the BOA is simple
multiply of population size and the number of generations for convergence. The
numbers of evaluations for SGA are varied with respect to the selection methods
[GD91] and is also an ideal case that tight linkage can be ensured from previous
information of problems.

Streeter [Str04] improves the LINC from a traditional algorithm perspective.
It uses binary search to detect specific loci j which depend on i. Therefore, it
requires O(2kl log l) fitness evaluations where l log l comes from binary search
for each locus i = 1, 2, · · · , l and O(2k) is population size required to guarantee
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a certain success probability. This computation cost is similar to our result,
O(−2kl log(1 − P

1/l(l−k)
1 )). The main difference is that the log term of the D5

comes from population size, O(−2k log(1 − P
1/l(l−k)
1 ), while the Streeter’s one

comes from binary search.
All of population sizings have the factors from possible number of schemata,

2k or 2k−1 = 2−1×2k. This number, 2k, is number of all possible schemata of or-
der k. It should guarantee existence optimal schema which will be produced with
probability 1/2k. SGA and BOA consider the effect from other sub-functions
by

√
l and l1.05 respectively. The D5 has also the term log(1 − P

1/l(l−k)
1 ) for

population sizing. This comes from requirement to avoid undesirable bias for
all loci which do not belong a sub-problem including a perturbed locus. This
requirement is approximately equal to the requirement that initial population
should distribute enough randomly. The LINC and Streeter’s algorithm, which
are uses perturbations only for their dependency detections, have no term for
string length in population sizing.

7 Conclusion

In this paper, we estimate the number of strings required for the D5 under

some assumptions. Estimated population size is O(−2k log(1 − P
1

l(l−k)
1 ) where

l is string length and k is the order of the sub-problem. This result shows the
number of strings required to obtain correct linkage sets is defined mainly by the
order of sub-problem and the D5 can be scalable to large problem size. Validity
of the population is also verified in experiments. The experimental population

sizes follow c × −2k log(1 − P
1

l(l−k)
1 ) where c is a constant.
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Jägersküpper, Jens 260
Jansen, Thomas 37

Kumar, Rajeev 112

Lenders, Wolfgang 1
Li, Yun-qiang 300

Meyer-Nieberg, Silja 238
Mitavskiy, Boris 58, 156
Munetomo, Masaharu 282

Poli, Riccardo 132

Rowe, Jonathan E. 21, 156, 176

Stephens, Christopher R. 192

Toussaint, Marc 75
Tsuji, Miwako 282

Villalobos-Arias, Mario 95
Vose, Michael D. 176

Whitley, Darrell 21
Wright, Alden H. 176, 192

Zamora, Adolfo 192


	Frontmatter
	Genetic Algorithms for the Variable Ordering Problem of Binary Decision Diagrams
	Gray, Binary and Real Valued Encodings: Quad Search and Locality Proofs
	A Comparison of Simulated Annealing with a Simple Evolutionary Algorithm
	NP-Completeness of Deciding Binary Genetic Encodability
	Compact Genetic Codes as a Search Strategy of Evolutionary Processes
	Asymptotic Convergence of Some Metaheuristics Used for Multiobjective Optimization
	Running Time Analysis of a Multiobjective Evolutionary Algorithm on Simple and Hard Problems
	Tournament Selection, Iterated Coupon-Collection Problem, and Backward-Chaining Evolutionary Algorithms
	A Schema-Based Version of Geiringer's Theorem for Nonlinear Genetic Programming with Homologous Crossover
	Coarse Graining Selection and Mutation
	Perturbation Theory and the Renormalization Group in Genetic Dynamics
	Optimal Weighted Recombination
	On the Prediction of the Solution Quality in Noisy Optimization
	Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes
	Population Sizing of Dependency Detection by Fitness Difference Classification
	The Deceptive Degree of the Objective Function
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




