

Advanced Information and Knowlegde Processing

Heiner Stuckenschmidt · Frank van Harmelen

123

With 51 Figures and 13 Tables

Information
Sharing on the
Semantic Web

Heiner Stuckenschmidt
Vrije Universiteit Amsterdam
de Boelelaan 1081a
1081HV Amsterdam
e-mail: heiner@cs.vu.nl

Frank van Harmelen
Vrije Universiteit Amsterdam
de Boelelaan 1081a
1081HV Amsterdam
e-mail: frank.van.harmelen@cs.vu.nl

ISBN 3-540-20594-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by the Authors
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

ACM Subject Classification (1998): H.3.3, H.2.5, I.2.4, D.2.12

Library of Congress Control Number: 2004112293

To absent friends.

Preface

About the book

The success of the information society

The rapid progress of the “information society” in the past decade has been
made possible by the removal of many technical barriers. Producing, storing,
and transporting information in large quantities are no longer significant
problems.

Producing on-line, digitized information is no longer a problem. Ever more of
our commercial, scientific and personal information exchanges happen on-line
in digital form. In the professional domain, near 100% of all office documents
are produced in digital form (even if afterwards they are distributed in paper
form), large parts of the scientific discourse are now taking place in digital
form (with physics, computer science and astronomy taking a leading role).
In the public domain, newspapers are available on-line, an increasing number
of radio and television stations offer their material on-line in streaming form
and e-government is an important theme for public administration. Even
in the personal area, information is rapidly moving on-line: sales of digital
cameras are now higher then for analogue cameras, e-mail and on-line chat
have become important channels for maintaining social relations and for
personal entertainment the digital DVD is rapidly replacing the analogue
video tape. Compact disk (itself already digital) is under serious pressure
from on-line music in MP3 format from a variety of sources. In short: pro-
duction of on-line information is now the norm in virtually all areas of our life.

Storing such information in the required volumes is also no longer a problem.
The drive of my laptop has truly become an on-line archive, both profes-
sionally and personally. As my professional archive, it stores the sources of
around 100 scientific papers I have written (and the full sources of three
books), all the Master theses of the dozens of students I have supervised, the

VIII Preface

slides for countless presentations I have given, all the e-mail I have sent in
the past 10 years plus all the e-mail I received in that period that I deemed
worth keeping. But it also acts as a personal archive: my laptop holds all
my favorite music, all the digital photographs I have ever taken, drawings
and songs by my children, all my bank transfers of the past 10 years, and
all my tax filings of the past 8 years. All of these data easily fit in a few
tens of gigabytes, and occupy only a part of the storage capacity of my laptop.

Transport. Once we have created and stored our information on-line in digital
form, it is also possible to move the information around in almost unlimited
fashion: The Internet has solved most wide-area networking problems with its
nearly universally supported TCP/IP protocol and its DNS host-addressing
scheme. This global connectivity is now routinely available not only in offices,
but also in households. Connectivity is also no longer a problem: a rapidly
increasing percentage of households is on 1 Mbit/sec permanent connectivity,
and connectivity at the workplace is typically at much higher bandwidth still.

The remaining problems

Given these nearly solved problems on production, storage and transport of
information, what are the main remaining problems, if any? In an ironic way,
it is exactly the above solutions that have created the most urgent remaining
problems:

• Information finding. The large-scale and near-universal availability as a
consequence of the successful technology mentioned above is as much a
curse as it is a blessing. The more information is available, the harder it
is to locate any particular piece of it.

• Information integration. Even when it is possible to find any particular
piece of information, it is very hard to combine this information with any
other piece of information we may already possess.

Typically, information is only meaningful in the context of other information,
but most mechanisms we have available for publishing, locating and retrieving
information deal with single, isolated instances of information, at the grain
size of a document, a Web page or a diagram, and do not help us at all in
integrating this information into what we already know.

Together, we call this problem with information finding and information
integration the problem of information sharing. This general problem
of information sharing occurs at many different levels, ranging from the
overcrowded hard disk of our own PC, to knowledge-management problems
in organizations, and to the sea of unstructured information on the World
Wide Web.

Preface IX

The main thesis of this book is that the problem of information sharing
(i.e. finding pieces of information and meaningfully relating them with other
pieces) is only solvable by giving the computer better access to the semantics
of the information. Thus, for a document, we do not only need to store such
obvious metadata as its author, title, creation date, etc, but we must also
make available in a machine-accessible way the important concepts that are
discussed in the document, the relation of these concepts with those in other
documents, relating these concepts to general background knowledge, etc.
Similarly, for digital images, we would not only want to store format and
size, but also that it is a satellite image of a specific area of land, where that
area is located (e.g. by referencing a vocabulary of geographic locations), etc.

If computers had access to such metadata about the information items, they
would be able to support us in finding relevant items, and in combining mul-
tiple items into a coherent answer to our questions. In this book we discuss
active research on exactly this topic:

• how can the semantics of our information items be made available in a
machine-accessible form?

• how can such metadata be exploited in retrieving and integrating infor-
mation?

Of course it is crucial that the intended meaning of the metadata is shared
between the different parties involved (e.g. those creating the metadata, and
those using it). It is here that ontologies play a crucial role: shared formalized
models of a particular domain, whose intended semantics is both shared be-
tween different parties and machine-interpretable (because it is “formalized”).

It has been argued that ontologies are a key technology for resolving the open
problem of meaningful information sharing. However, most approaches rely on
the existence of well-established data structures that can be used to analyze
and exchange information. This book investigates ontology-based approaches
for resolving semantic heterogeneity weakly structured environments, and in
particular the World Wide Web. In doing this, we have to provide solutions
for the following problems that arise from the nature of the Web:

Missing conceptual models: On the Web, we have no access to the con-
ceptual model of an information source or the resulting logical data
model. This lack of structure makes it difficult to refer to the context of
information items, which is necessary for stating context transformation rules.

Unclear system boundaries: On the Web, it is not possible to clearly determine
which information has to be taken into account, because information sources
are added, removed or changed frequently. Therefore, we cannot rely on a
fixed set of context-transformation rules.

X Preface

Heterogeneous representations: On the Web, we can also not assume that
ontologies are represented in a uniform way, because different representations
are being used. This means that we also have to perform an integration on
the ontology level.

Addressing these problems, this book contributes to a framework for ontology-
based information sharing in weakly structured environments such as the Se-
mantic Web.

Intended readership

This book is describing state-of-the-art research on these questions. As such
the book is of potential interest for practitioners and applied researchers in
the area of information systems, database technology and the Semantic Web.

For practitioners in areas such as e-commerce (exchange of product knowl-
edge) and knowledge management (in particular in large and distributed
enterprises), the book provides decision support for the use of novel technolo-
gies, information about potential problems and guidelines for the successful
application of existing technologies.

The book draws on a large number of techniques from very different areas,
such as terminological reasoning, inductive logic programming and query re-
writing. To researchers in these different areas, the book provides evidence for
the usefulness of various techniques from these different areas.

Organization of the Book

The topic of information sharing is a rather general one that stands for
many different problems and technologies. In this book we try to give an
overview of some of the most relevant technologies, restricting ourselves to the
ideas and the technologies of the so-called ”Semantic Web”. Consequently,
topics like ontologies, content metadata and reasoning about conceptual
knowledge re-occur at many different places. Different methods for creating,
maintaining and using ontologies and metadata are presented in the different
chapters. Some of these technologies build upon each other, others are rather
independent, but still contribute to the overall picture of technologies for
information sharing on the Semantic Web. We tried to reflect this depen-
dency in the overall organization of the book that is presented in the following.

The book is organized into four main parts.

Preface XI

Part I

introduces the general problem of information sharing and the need for ex-
plicit representations of information semantics in order to share information
in a meaningful way. Further, it introduces the notion of ontology as a way
of representing information semantics that has proven its value in different
application domains. We also introduce the Web Ontology Language OWL as
a standard for representing ontologies on the Semantic Web.

Part II

covers the creation of explicit representations of the information semantics.
This includes the development of ontology encoded in OWL based on a given
information sharing problem and the mostly automatic annotation of infor-
mation sources with metadata that uses terms from ontologies to describe
the content of an information source. We describe the basic methods for cre-
ating ontologies and metadata and describe experiments with real data and
integration problems.

Part III

describes the use of the representational infrastructure created using the meth-
ods described in Part II for the purpose of information sharing. We discuss
the semantic integration of terminologies used by different information sources
and the integrated retrieval of information from multiple sources based on the
result of the integration. Special attention is paid to the use of conjunctive
queries that contain terms from ontologies. After discussing basic notions,
we report the use of Semantic Web technologies for retrieving statistical in-
formation that revealed the need to take spatial relevance into account. We
summarize with a description of the functionality of existing systems for in-
formation sharing and explain how the different aspects discussed in this part
of the book are implemented in these systems.

Part IV

takes us back to some more fundamental questions concerning the use of
ontologies for information sharing in a distributed environment such as the
Semantic Web. In particular, we re-consider situations where the ontology
itself is distributed across the Web. We extend the import mechanism of
the Web Ontology Language by introducing the notion of modular ontology.
We define a non-standard semantics for modular ontologies and compare
the expressiveness of the model with OWL. We study the evolution of a
modular ontology, in particular the impact of changes in a modular ontology,
characterize changes according to their impact on other modules and define
an update strategy that guarantees consistency of the overall model.

XII Preface

The drawing below illustrates the dependency between the different sections
of the book. It is meant to guide readers only interested in particular aspects
of information sharing. The first three chapters contain the motivation for
the work and the introduction of central notions and representations such
as ontologies and the Web Ontology Language OWL. All other parts of the
book make use of these basic notions and can therefore only be completely
understood after reading Chap. 1 to 3. Readers already familiar with Semantic
Web technology, in particular ontologies and OWL might want to skip this
part and only use it as a reference. After having read part I, the reader can
decide to continue with part II or IV depending on the preferred focus.

Acknowledgements

Some of the content of this book has previously been published by organiza-
tions that are not part of the Springer Group. We thank these organizations
for the kind permission to use the material for this book, in particular

• AAAI Press
• Elsevier

Preface XIII

• IDEA Group Publishing

Some of the material reported here is the result of joint work with colleagues
not mentioned as authors. We would like to thank the following persons for
the fruitful cooperation in the past that led to the results reported in this
book, as well as their permission to use material of joint papers and tutorials:

• Grigoris Antoniou, ITC-FORTH, Greece (Chap. 1)
• Fausto Giunchiglia, DIT, University of Trento, Italy (Chap. 6)
• Jens Hartmann, AIFB, University of Karlsruhe, Germany (Chap. 5)
• Catholijn Jonker, Vrije Universiteit Amsterdam, the Netherlands (Chap.

7)
• Michel Klein, Vrije Universiteit Amsterdam, the Netherlands (Chap. 10

and 11)
• Eduardo Mena, University of Zaragoza, Spain (Chap. 9)
• Christoph Schlieder, University of Bamberg, Germany (Chap. 8)
• Tim Verwaart, LEI Wageningen, the Netherlands (Chap. 7)
• Ubbo Visser, TZI, University of Bremen, Germany (Chap. 1, 2, 8 and 9)
• Thomas Voegele, TZI, University of Bremen, Germany (Chap. 1, 2, 8 and

9)
• Holger Wache, TZI, University of Bremen, Germany (Chap. 2, 6 and 9)

Some of the work has been supported by the European Union under con-
tracts IST-2001-33052 (WonderWeb) and IST-2001-34103 (SWAP). A signif-
icant part of the work has been carried out by the first author during his
appointment at the Artificial Intelligence Group (Prof. Herzog) at the Uni-
versity of Bremen, Germany.

Amsterdam, Heiner Stuckenschmidt
January 2004 Frank van Harmelen

Contents

Part I Information sharing and ontologies

1 Semantic integration . 3
1.1 Syntactic standards . 4

1.1.1 HTML: visualizing information . 4
1.1.2 XML: exchanging information . 5
1.1.3 RDF: a data model for meta-information 6
1.1.4 The roles of XML and RDF . 8

1.2 The Problem of Heterogeneity . 10
1.2.1 Structural Conflicts . 10
1.2.2 Semantic Conflicts . 12

1.3 Handling information semantics . 14
1.3.1 Semantics from structure . 15
1.3.2 Semantics from text . 16
1.3.3 The need for explicit semantics . 17

1.4 Representing and comparing semantics . 19
1.4.1 Names and labels . 20
1.4.2 Term networks . 20
1.4.3 Concept lattices . 21
1.4.4 Features and constraints . 22

1.5 Conclusion . 23

2 Ontology-based information sharing . 25
2.1 Ontologies . 25

2.1.1 Shared vocabularies and conceptualizations 26
2.1.2 Specification of context knowledge 27
2.1.3 Beneficial applications . 29

2.2 Ontologies in information integration . 31
2.2.1 Content explication . 31
2.2.2 Additional roles of ontologies . 34

2.3 A framework for information sharing . 36

XVI Contents

2.4 A translation approach to ontology alignment 39
2.4.1 The translation process . 39
2.4.2 Required infrastructure . 40

2.5 Conclusions . 42

3 Ontology languages for the Semantic Web 45
3.1 An abstract view . 45
3.2 Two Semantic Web ontology languages . 47

3.2.1 RDF Schema . 49
3.2.2 OWL Lite . 50
3.2.3 OWL DL . 52
3.2.4 OWL Full . 53
3.2.5 Computational Complexity . 54
3.2.6 Simple relations between ontologies 54

3.3 Other Web-based ontology languages . 58
3.3.1 Languages for expressing ontology mappings 60

3.4 Conclusions . 61

Part II Creating ontologies and metadata

4 Ontology creation . 65
4.1 Ontological engineering . 66
4.2 Building an ontology infrastructure for Information sharing . . . 68
4.3 Applying the approach . 70

4.3.1 The task to be solved . 71
4.3.2 The Information Sources . 72
4.3.3 Sources of knowledge . 73

4.4 An example walkthrough . 76
4.5 Conclusions . 82

5 Metadata generation . 85
5.1 The role of metadata . 86

5.1.1 Use of metadata . 87
5.1.2 Problems with metadata management 88

5.2 The WebMaster approach . 90
5.2.1 BUISY: A Web based environmental information system 90
5.2.2 The WebMaster Workbench . 91
5.2.3 Applying WebMaster to the BUISY system 93

5.3 Learning classification rules . 97
5.3.1 Inductive logic programming . 98
5.3.2 Applying inductive logic programming 100
5.3.3 Learning experiments . 102
5.3.4 Extracted classification rules . 106

5.4 Ontology deployment . 110

Contents XVII

5.4.1 Generating ontology-based metadata 111
5.4.2 Using ontology-based metadata . 112

5.5 Conclusions . 114

Part III Retrieval, integration and querying

6 Retrieval and Integration . 119
6.1 Semantic integration . 120

6.1.1 Ontology heterogeneity . 120
6.1.2 Multiple systems and translatability 122
6.1.3 Approximate re-classification . 123

6.2 Concept-based filtering . 125
6.2.1 The idea of query-rewriting . 126
6.2.2 Boolean concept expressions . 127
6.2.3 Query re-writing . 129

6.3 Processing complex queries . 131
6.3.1 Queries as concepts . 132
6.3.2 Query relaxation . 134

6.4 Examples from a case study . 137
6.4.1 Concept approximations . 137
6.4.2 Query relaxation . 138

6.5 Conclusions . 140

7 Sharing statistical information . 143
7.1 The nature of statistical information . 144

7.1.1 Statistical metadata . 145
7.1.2 A basic ontology of statistics . 146

7.2 Modelling Statistics . 150
7.2.1 Statistics as views . 150
7.2.2 Connection with the domain . 151

7.3 Translation to Semantic Web languages . 155
7.3.1 Ontologies . 155
7.3.2 Description of information . 159

7.4 Retrieving statistical information . 162
7.5 Conclusions . 164

8 Spatially-related information . 167
8.1 Spatial representation and reasoning . 168

8.1.1 Levels of spatial abstraction . 168
8.1.2 Reasoning about spatial relations . 169

8.2 Ontologies and spatial relevance . 170
8.2.1 Defining Spatial Relevance . 171
8.2.2 Combined spatial and terminological matching 172
8.2.3 Limitations . 174

XVIII Contents

8.3 Graph-based reasoning about spatial relevance 175
8.3.1 Partonomies . 176
8.3.2 Topology . 178
8.3.3 Directions . 179
8.3.4 Distances . 180

8.4 Conclusions . 182

9 Integration and retrieval systems . 185
9.1 OntoBroker . 186

9.1.1 F-Logic and its relation to OWL . 187
9.1.2 Ontologies, sources and queries . 189
9.1.3 Context transformation . 191

9.2 OBSERVER . 192
9.2.1 Query Processing in OBSERVER . 193
9.2.2 Vocabulary integration . 195
9.2.3 Query plan generation and selection 197

9.3 The BUSTER system . 198
9.3.1 The use of shared vocabularies . 200
9.3.2 Retrieving accommodation information 201
9.3.3 Spatial and temporal information . 203

9.4 Conclusions . 207

Part IV Distributed ontologies

10 Modularization . 211
10.1 Motivation . 212

10.1.1 Requirements . 213
10.1.2 Our approach . 213
10.1.3 Related work . 214

10.2 Modular ontologies . 216
10.2.1 Syntax and architecture . 216
10.2.2 Semantics and logical consequence 217

10.3 Comparison with OWL. 220
10.3.1 Simulating OWL import . 220
10.3.2 Beyond OWL . 223

10.4 Reasoning in modular ontologies . 225
10.4.1 Atomic concepts and relations . 225
10.4.2 Preservation of Boolean operators 225
10.4.3 Compilation and integrity . 227

10.5 Conclusions . 228

Contents XIX

11 Evolution management . 231
11.1 Change detection and classification . 232

11.1.1 Determining harmless changes . 232
11.1.2 Characterizing changes . 233
11.1.3 Update management . 235

11.2 Application in a case study . 236
11.2.1 The WonderWeb case study . 236
11.2.2 Modularization in the case study . 238
11.2.3 Updating the models . 239

11.3 Conclusions . 240

Part V Conclusions

12 Conclusions . 245
12.1 Lessons learned . 245
12.2 Assumptions and Limitations . 248

12.2.1 Shared Vocabularies . 248
12.2.2 On demand translation . 249
12.2.3 Modular Ontologies . 250

12.3 Where are we now? . 251
12.4 Is that all there is? . 252

A Proofs of theorems . 255
A.1 Theorem 6.6 . 255
A.2 Theorem 6.11 . 255
A.3 Theorem 6.14 . 256
A.4 Theorem 10.9 . 256
A.5 Theorem 10.11 . 256
A.6 Lemma 11.1 . 259
A.7 Theorem 11.2 . 259

References . 261

Index . 275

Part I

Information sharing and ontologies

1

Semantic integration

Summary. The goal of this chapter is to give an extended motivation
for the problem of information sharing and the role of information
semantics in this context. We address the problem of heterogeneity
and argue that explicit representations of information semantics are
needed in a weakly structured environment. In order to support this
claim, we give a hypothetical application example illustrating the
benefits of explicit semantics.

The problem of providing access to information has been largely solved by
the invention of large-scale computer networks (i.e. the World Wide Web).
The problem of processing and interpreting retrieved information, however,
remains an important research topic called intelligent information integration
[Wiederhold, 1996, Fensel, 1999]. Problems that might arise due to hetero-
geneity of the data are already well known within the distributed database
systems community (e.g. [Kim and Seo, 1991, Kashyap and Sheth, 1997]). In
general, heterogeneity problems can be divided into three categories:

1. syntax (e.g. data format heterogeneity),
2. structure (e.g. homonyms, synonyms or different attributes in database

tables),
3. semantics (e.g. intended meaning of terms in a special context or applica-

tion).

Throughout this book we will focus on the problem of semantic integration
and content-based filtering, because sophisticated solutions to syntactic and
structural problems have been developed. On the syntactical level, standard-
ization is an important topic. Many standards have evolved that can be used
to integrate different information sources. Beside the classical database in-
terfaces like ODBC, Web standards like HTML [Ragget et al., 1999], XML
[Yergeau et al., 2004] and RDF [Manola and Miller, 2004] gain importance
(see http://www.w3c.org). As the World Wide Web offers the greatest poten-

4 1 Semantic integration

tial for sharing information, we will base our work on these evolving standards
that will be briefly introduced in the next section. We then discuss problems
that arise from the heterogeneity of information on a structural and semantic
level. We argue that these problems still occur when syntactic standards are
used and make it difficult to share information in a meaningful way. As this
book focusses on semantic problems in information sharing, we briefly review
common ways of dealing with information semantics. We argue for the need
of explicit representations of information semantics and discuss different ways
of representing and comparing semantics. We conclude with a small example
that sketches how explicit representations of information semantics can be
used to share ad reuse information.

1.1 Syntactic standards

Due to the extended use of computer networks, standard languages proposed
by the W3C committee are rapidly gaining importance. Some of these stan-
dards are reviewed in the context of information sharing. Our main focus is
on the extensible markup language XML and the Resource Description For-
mat RDF. However, we briefly discuss the hypertext markup language for
motivation.

1.1.1 HTML: visualizing information

Creating a web page on the Internet was the first, and currently the most fre-
quently and extensively used, technique for sharing information. These pages
contain information with both free and structured text, images and possibly
audio and video sequences. The hypertext markup language is used to create
these pages. The language provides primitives called tags that can be used
to annotate text or embedded files in order to determine the order in which
they should be visualized. The tags have a uniform syntax enabling browsers
to identify them as layout information when parsing a page and generating
the layout:

<tag-name> information (free text) </tag-name>

It is important to note that the markup provided by HTML does not refer
to the content of the information provided, but only covers the way it should
be structured and presented on the page. On one hand, this restriction of
visual features is a big advantage, because it enables us to share highly
heterogeneous knowledge, namely arbitrary compositions of natural-language
texts and digital media. On the other hand, it is a big disadvantage, because
the process of understanding the content and assessing its value for a given
task is mostly left to the user.

1.1 Syntactic standards 5

HTML was created to make information processable by machines, but not un-
derstandable. The conception of HTML, offering freedom of saying anything
about any subject, led to a wide acceptance of the new technology. However,
the Internet has a most challenging problem, its inherent heterogeneity. One
way to cope with this problem appears to be an extensive use of support tech-
nology for browsing, searching and filtering of information based on techniques
that do not rely on fixed structures. In order to build systems that support
access to this information we have to find ways to handle the heterogeneity
without reducing the “freedom” too much. This is accomplished by provid-
ing machine-readable and/or machine-understandable information about the
content of a Web page.

1.1.2 XML: exchanging information

In order to overcome the fixed annotation scheme provided by HTML
that does not allow us to define data structures, XML was proposed as
an extensible language allowing the user to define his own tags in order
to indicate the type of content annotated by the tag. First intended for
defining document structures in the spirit of the SGML document definition
language [ISO-8879, 1986] (XML is a subset of SGML), it turned out that
the main benefit of XML actually lies in the opportunity to exchange data
in a structured way. Recently, XML schemas were introduced [Fallside, 2001]
that could be seen as a definition language for data structures emphasizing
this idea. In the following we sketch the idea behind XML and describe XML
schema definitions and their potential use for data exchange.

A data object is said to be an XML document if it follows the guidelines
for well-formed documents provided by the W3C. The specification provides
a formal grammar used in well-formed documents. In addition to general
grammar, the user can impose further grammatical constraints on the
structure of a document using a Document Type Definition (DTD). An XML
document is then valid if it has an associated type definition and complies
with the grammatical constraints of that definition. A DTD specifies elements
that can be used within an XML document. In the document, the elements
are delimited by start and end tags. Furthermore, each element has a type
and may have a set of attribute specifications consisting of a name and a
value. The additional constraints in a DTD refer to the logical structure
of the document. This specifically includes the nesting of tags inside the
information body that is allowed and/or required. Further restrictions that
can be expressed in a document-type definition concern the types of attributes
and the default values to be used when no attribute value is provided. At
this point, we ignore the original way a DTD is defined, because XML
schemas, which are described next, provide a much more comprehensible way
of defining the structure of an XML document.

6 1 Semantic integration

An XML schema is itself an XML document defining the valid structure of an
XML document in the spirit of a DTD. The elements used in a schema defini-
tion are of the type “element” and have attributes that define the restrictions
already mentioned. The information within such an element is simply a list of
further element definitions that have to be nested inside the defined element:

<element name="value" type="value" ...>

<element name="value" minOccurs="value" ... />

...

</element>

Additionally, XML schemas have other features that are very useful for defin-
ing data structures:

• support for basic data types [Biron and Malhotra, 2001]
• constraints on attributes (e.g. occurrence constraints)
• sophisticated structures [Thompson et al., 2001] (e.g. definitions derived

by extending or restricting other definitions)
• a name space mechanism allowing the combination of different schemas

We will not be discussing these features in detail. However, it should be men-
tioned that the additional features make it possible to encode rather com-
plex data structures. This enables us to map the data models of applica-
tions, whose information we wish to share with others, on an XML schema
[Decker et al., 2000]. Once mapped, we can encode our information in terms
of an XML document and make it (combined with the XML schema docu-
ment) available over the Internet. The exchange of information is mediated
across different formats in the following way:

Application data model ↔ XML schema → XML document

This method has great potential for the actual exchange of data. However,
the user must commit to our data model in order to make use of the infor-
mation. As subsequently and previously mentioned, an XML schema defines
the structure of data and provides no information about the content or the
potential use of the data. Therefore, it lacks an important advantage of meta-
information, which is now discussed in the next section.

1.1.3 RDF: a data model for meta-information

Previously, we stated that XML is designed to provide an interchange format
for weakly structured data by defining the underlying data model in a schema
and using annotations from the schema in order to relate information items
to the schema specification. We have to notice that:

• XML is purely syntactic/structural in nature,

1.1 Syntactic standards 7

• XML describes data on the object level,
• XML often encodes an application-specific data model.

Consequently, we have to look for further approaches if we want to de-
scribe information on the meta-level and define its meaning. In order
to fill this gap, the RDF standard has been proposed as a data model for
representing metadata about Web pages and their content using XML syntax.

The basic model underlying RDF is very simple. Every type of information
about a resource, which may be a Web page or an XML element, is expressed
in terms of a triple:

(subject, predicate, object)

Thereby, the predicate (also called property) is a two-placed relation that
connects the subject (or resource) to a certain object. The object can be a
data type, another resource or an untyped value called literal. Additionally,
the value can be replaced by a variable representing a resource that is further
described by linking triples making assertions about the properties of the
resource that is represented by the variable:

(resource, property, X)

(X, property_1, value_1)

...

(X, property_n, value_n)

Another feature of RDF is its reification mechanism that makes it possible to
use an RDF triple as a value for the property of a resource. Using the reifica-
tion mechanism we can make statements about facts. Reification is expressed
by nesting triples:

(resource_1, property_1, placeholder)

(placeholder subject resource_2

(placeholder predicate property_2

(placeholder, object, value)

Further, RDF allows multiple values for single properties. For this purpose,
the model contains three built-in data types called collections, namely un-
ordered lists (bag), ordered lists (seq) and sets of alternatives (alt) providing
some kind of an aggregation mechanism.

A further problem arising from the nature of the Web is the need to avoid
name clashes that might occur when referring to different Web sites that might
use different RDF-models to annotate metadata. RDF uses name spaces that
are provided by XML in order to overcome this problem. They are defined
once by referring to a Unique Resourse Identifier (URI) that provides the
name and connects it to a source ID that is then used to annotate each name
in an RDF specification defining the origin of that particular name:

8 1 Semantic integration

source_id:name

A standard syntax has been defined to write down RDF statements, making it
possible to identify the statements as metadata, thereby providing a low level
language for expressing the intended meaning of information in a machine-
processable way.

1.1.4 The roles of XML and RDF

Both XML and RDF play an important role with respect to our aim of fa-
cilitating information sharing. XML is a universal meta-language for defining
markup. It provides a uniform framework, and a set of tools like parsers, for
interchange of data and metadata between applications. However, XML does
not provide any means of talking about the semantics (meaning) of data. For
example, there is no intended meaning associated with the nesting of tags; it
is up to each application to interpret the nesting. Let us illustrate this point
using an example. Suppose we want to express the following fact:

David Billington is a Lecturer of Discrete Mathematics.

There are various ways of representing this sentence in XML. Three possibil-
ities are

<course name="Discrete Mathematics">

<lecturer>David Billington</lecturer>

</course>

<lecturer name="David Billington">

<teaches>Discrete Mathematics</teaches>

</lecturer>

<teachingOffering>

<lecturer>David Billington</lecturer>

<course>Discrete Mathematics</course>

</teachingOffering>

Note that the first two formalizations include essentially an opposite nesting
although they represent the same information. So there is no standard way
of assigning meaning to tag nesting.

Although often called a “language”, RDF is essentially a data model. Its basic
building block is a statement. The preceding sentence about Billington is such
a statement. Of course, an abstract data model needs a concrete syntax in
order to be represented and transmitted, and RDF has been given a syntax
in XML. As a result, it inherits the benefits associated with XML. However,
it is important to understand that other syntactic representations of RDF,
not based on XML, are also possible; XML-based syntax is not a necessary

1.1 Syntactic standards 9

component of the RDF model. RDF is domain independent in that no assump-
tions about a particular domain of use are made. It is up to users to define
their own terminology in a schema language called RDF Schema (RDFS). The
name RDF Schema is now widely regarded as an unfortunate choice. It sug-
gests that RDF Schema has a similar relation to RDF as XML schema has to
XML, but in fact this is not the case. XML Schema constrains the structure of
XML documents, whereas RDF Schema defines the vocabulary used in RDF
data models. In RDFS we can define the vocabulary, specify which properties
apply to which kinds of objects and what values they can take, and describe
the relationships between objects. For example, we can write

Lecturer is a subclass of academic staff member.

This sentence means that all lecturers are also academic staff members. It
is important to understand that there is an intended meaning associated
with “is a subclass of”. It is not up to the application to interpret this term;
its intended meaning must be respected by all RDF processing software.
Through fixing the semantics of certain ingredients, RDF/RDFS enables us
to model particular domains.

We illustrate the importance of RDF Schema with an example. Consider the
following XML elements:

<academicStaffMember>Grigoris Antoniou</academicStaffMember>

<professor>Michael Maher</professor>

<course name="Discrete Mathematics">

<isTaughtBy>David Billington</isTaughtBy>

</course>

Suppose we want to collect all academic staff members. We can do this using
the Xpath language [Clark and DeRose, 1999]. A path expression in Xpath
might be

//academicStaffMember

The result is only Grigoris Antoniou. While correct from the XML viewpoint,
this answer is semantically unsatisfactory. Human readers would have also
included Michael Maher and David Billington in the answer because

• All professors are academic staff members (that is, professor is a subclass
of academicStaffMember).

• Courses are only taught by academic staff members.

This kind of information makes use of the semantic model of the particu-
lar domain, and cannot be represented in XML or in RDF but is typical of
knowledge written in RDF Schema. Thus RDFS makes semantic information

10 1 Semantic integration

machine accessible, in accordance with the Semantic Web vision. In the fol-
lowing, we discuss the problem of providing semantic descriptions in more
details.

1.2 The Problem of Heterogeneity

The existence of the syntactic standards mentioned in the last section enables
us to represent and structure information on the World Wide Web in a
uniform way. This uniformity makes it easier to automatically process not
only local but also information obtained from other sources. This syntactic
homogeneity is an important enabler of information sharing. Experiences
from the database area, however, have shown that the existence of syntactic
standards is not enough. Even in almost completely homogeneous environ-
ments such as relational databases, the exchange of information is a problem,
because heterogeneity in the way information is structured and interpreted
lead to conflicts when information from different sources makes it difficult to
combine the information.

Different attempts have been made to characterize this kind of heterogeneity in
terms of conflicts that can occur on the structural and the semantic level. One
of the latest and most complete classification of different kinds of conflicts can
be found in [Wache, 2003]. On the Semantic Web we are likely to be confronted
with many if not all of these conflicts. In the following, we summarize the
different kinds of conflicts mentioned by Wache. Thereby we assume that the
information to be integrated is represented in RDF.

1.2.1 Structural Conflicts

According to Wache, we can distinguish three general ways in which conflicts
can occur as a result of the way information is structured. These conflicts
amount to the fact that the same objects and facts in the world can be de-
scribed in different ways using the structures provided by RDF. We consider
an example from the tourism domain where different sources could provide
information about available accommodations. Consider the following repre-
sentation:

(http://www.hotels.com#42 name "Amstel Hotel")

(http://www.hotels.com#42 category luxury)

(http://www.hotels.com#42 location "Amsterdam, Netherlands")

(http://www.hotels.com#42 priceSingle 250)

(http://www.hotels.com#42 priceDouble 350)

Bilateral Conflicts

The first type of conflicts are conflicts that only involve one element in the
structures found in different information sources. Being concerned with RDF,

1.2 The Problem of Heterogeneity 11

these basic elements are resources, properties or data type, respectively. Other
representations of the same accommodation from the example above can lead
to bilateral conflicts with this representation in the following ways:

• Integrity Conflicts. In RDF resources are referred to by a unique ID
in terms of an URI that serves as a kind of key value for accessing
the resource. Different representations of the same object can be iden-
tified by a different key value, for example by a resource referred to as
http://www.vacation.org/hotels#666. The use of different identifiers for
the same objects makes it difficult to merge information about the object
from different sources.

• Data Type Conflicts. In its latest version, RDF supports the use of XML
schema datatypes for representing the values assigned to an object. This
provides hints for efficient computation with these values, but causes a
problem in cases where different datatypes are used for the same value.
The price of the accommodation above can for example be represented by
an integer, a real number or even by a string. If we want to compare this
data, for example to find the best offer, the use of different data types is
a problem, because comparison operators normally operate on two values
of the same type.

• Naming Conflicts. The type on conflicts referred to as naming conflicts
summarizes all cases where sources use different names for the same real
world objects. The typical case is the use of different names for attributes
in relational databases. Similar conflicts can occur in RDF. In our example,
other sources might use different refer to the category of a hotel. Instead
of the term category, properties called class or stars could be used. In the
case of RDF, naming conflicts are actually equivalent to a special kind
of integrity conflict as described above. The reason is that in RDF all
modelling elements (except for literals) are also resources with a unique
URI different names therefore amount to different keys.

Multilateral Conflicts

Besides conflicts that occur when trying to compare single elements in a rep-
resentation, structural heterogeneity can also lead to conflicts that involve
more than one element in each representation. In general, these conflicts oc-
cur when information represented in a single element in one source can only
partially be found in the other source when only looking at a single element.
So looking at a single statement from our example, the following multilateral
conflicts can occur when trying to combine with information from a different
source.

• Multilateral Attribute Correspondences. A multilateral attribute corre-
spondence is present if the same information that is linked to a resource
using a single property is liked using more than one property in another
source. In our example information about the city and the country the

12 1 Semantic integration

accommodation is located in is pointed to using the property location. We
can think of situations where two different properties city and country is
used. If we we are looking for accommodations in a certain place now, we
either have to split up the location information or combine the city and
country information to make them comparable.

• Multilateral Entity Correspondences. A similar situation can occur with
respect to the use of a single or multiple resources to model a certain piece
of information. In our example, information about the accommodation and
its location is clustered in the description of a single resource (the location
is given by a literal value). In other sources, special resources could be
used as unique representations of location such as cites or countries. We
might find statements like:

(http://www.locations.com/cities\#amsterdam lies_in

http://www.locations.com/countries\#netherlands)

(http://www.hotels.com#42 location

http://www.locations.com/cities\#amsterdam)

• Missing Values. In addition to problems caused by information being split
amongst different representation elements. There are also cases, where
parts of the information contained in one source is simply missing in the
other one. Our example contains information about prices for single and
for double rooms. Other sources might only give the price for a double
room. This might mean that there are no single rooms, that the price
of a single room is the same as for a double room, or simply that this
information has not been added to the representation. Thus if we want to
compare prices in this case we have to guess the price for a single room.

Meta-Level Conflicts

The last type of conflict on the structural level is concerned with the use of
different modelling elements to represent the same kind of information. In
conceptual data models these basic elements are entities, attributes and data.
The classification given by Wache uses this terminology to distinguish different
types of meta-level conflicts. The modelling elements we have in RDF are re-
sources, properties (actually a special kind of resource) and literals/datatypes
respectively. In the previous paragraph we already discussed the possibility
of representing the location information either as a literal or as a resource.
Further, we sometimes find the situation where equivalent information that
is encoded in explicit relations in one source (netherlands part-of Europe) are
implicitly modelled in the type of the resource in another source (netherland
type European Country).

1.2.2 Semantic Conflicts

The problem of structural heterogeneity has been addressed extensively in
the database literature (see for example references in Chap. 2) and solutions

1.2 The Problem of Heterogeneity 13

have been developed for dealing with these conflicts. A problem that is still
not completely solved is heterogeneity of the intended interpretation of in-
formation. In real world applications, we often have situations where systems
that work on data that has been integrated at the structural level produce
wrong or at least unexpected results, because the intended interpretation of
the representations differs across the sources. We can roughly distinguish con-
flicts on the semantic level into conflicts that occur due to the use of different
encodings and conflicts due to a different conceptualization of the domain.

Data Conflicts

In order to achieve compact and compact and comparable representations of
a domain, information sources often use special type value systems for talking
about the properties of an object. These are often based on abstractions of
the concrete value. Different choices with respect to these value systems lead
to the following data-related conflicts

• Different Scales. Especially numerical values like the price of an accom-
modation can be based on different scales. A popular example is the use
of different currencies for stating the price of a room. When we want to
compare prices it makes a difference whether we are talking about Euro,
Dollar or German Mark. In some cases, the relation between scales is fixed
(e.g. the exchange between Euro and German Mark), but sometimes the
relation changes like the exchange rate of Euro and Dollar.

• Different Value Ranges. In cases where abstractions from concrete values
are used we face the problem that different sources often introduce different
abstractions of the same underlying scale. An example is the encoding of
the quality of an accommodation. While in central Europe a scale of one to
five stars is used while in Spain for example, the notion of “keys” are used
to refer to the quality. The example of quality also illustrates the problem
of comparing these abstractions because often the underlying scale is not
known.

• Surjective Mappings. A specific problem with respect to the use of ab-
stractions of the same scale are cases where the two value systems used as
abstractions do not have the same number of values. In these cases, more
than one value of one source map to more than one value in the other
source. In our example, this problem might occur, because the accommo-
dation is classified as luxury which probably corresponds to five or four
stars in other sources. The most severe problem in this case is that it is
not possible to decide whether the classification should be interpreted as
five or as four stars.

Domain Conflicts

Usually, abstraction mechanisms are not only applied to data values but, ear-
lier in the design process, also to domain objects to be represented. Normally,

14 1 Semantic integration

objects are grouped into classes of objects that share some properties. As the
shared properties of these objects are normally not explicitly represented any
more (the purpose of this abstraction is to reduce the amount of informa-
tion to be considered), we again face the problem of having to find relations
between these categorizations.

• Subsumption. The term subsumption describes the situation where one
class of objects contains all the objects contained in another class. An
example are the classes accommodation that contains all accommodation
objects and the class hotels. It is clear that all hotels are accommodations
as well. Consequently, we want to find all members of that class when we
are looking for a place to stay. If we are not explicitly looking for hotels
as well, this information might not be found.

• Overlap. A more complicated case is the one where two classes partially
overlap each other. This is the case for the two classes hotels and hostels
as some hostels can also be seen as cheap hotels and vice versa while some
hotels are definitely not hotels and some hostels would hardly qualify as
a hotel. In these cases it is difficult to share the information, because
additional criteria are needed to decide which parts of the instances the
concepts share and which not.

• Inconsistency. Conversely, it is not only important for a meaningful ex-
change of information to know when two classes share members. Some-
times, classes of objects are disjoint by definition. An example from the
accommodation domain are the classes hotel and camp-site. This infor-
mation is important, because it can lead to unwanted results if not payed
attention to.

• Aggregation. Another potential conflict on the domain level is due to dif-
ferent levels of abstraction leading to a situation where data is present in
an aggregated form. One information source might group city according to
the country they lie in, another source according to the continent. We have
to note that in many cases, this situation is similar to the subsumption
case, because the class Dutch City is subsumed by the concept European
City.

Throughout this book we focus on the semantic conflicts discussed above
and more or less ignore structural conflicts that might occur when trying
to share information. We made this choice, because most structural conflicts
can be successfully solved using existing system like the Mecota Mediator
[Wache, 2003].

1.3 Handling information semantics

In the following, we use the term semantic integration or semantic translation
to denote the resolution of semantic conflicts that occur between heteroge-
neous information systems in order to achieve semantic interoperability . For

1.3 Handling information semantics 15

this purpose, the systems have to agree on the meaning of the information
that is interchanged. Semantic conflicts occur whenever two systems do not
use the same interpretation of the information. The simplest forms of dis-
agreement in the interpretation of information are homonymy (the use of the
same word with different meanings) and synonymy (the use of different words
with the same meaning). However, these problems can be solved by one-to-
one structural mappings. Therefore, most existing converter and mediator
systems are able to solve semantic conflicts of this type. More interesting are
conflicts where one-to-one mappings do not apply. In this case, the semantics
of information has to be taken into account in order to decide how different
information items relate to each other. Many attempts have been made in
order to access information semantics. We will discuss general approaches to
this problem with respect to information sharing.

1.3.1 Semantics from structure

A common approach to capture information semantics is in terms of its
structure. The use of conceptual models of stored information has a long
tradition in database research. The most well-known approach is the Entity
Relationship approach [Chen, 1976]. Such conceptual models normally have
a tight connection to the way the actual information is stored, because
they are mainly used to structure information about complex domains.
This connection has significant advantages for information sharing, because
the conceptual model helps to access and validate information. The access
to structured information resources can be provided by wrappers derived
from the conceptual model [Wiederhold, 1992]. In the presence of less
structured information sources, e.g. HTML pages on the Web, the problem
of accessing information is harder to solve. Recently, this problem has been
successfully tackled by approaches that use machine-learning techniques for
inducing wrappers for less structured information. One of the most prominent
approaches is reported in [Freitag and Kushmerick, 2000]. The result of the
learning process is a set of extraction rules that can be used to extract
information from Web resources and insert it into a newly created structure
that is used as a basis for further processing.

While wrapper induction provides a solution for the problem of extracting
information from weakly structured resources, the problem of integrating in-
formation from different sources remains largely unsolved because extraction
rules are solely defined on the structural level. In order to achieve an integra-
tion on the semantic level as well, a logical model has to be built on top of
the information structure. We find two different approaches in the literature.

Structure resemblance

A logical model is built that is a one-to-one copy of the conceptual structure
of the database and encoded in a language that makes automated reasoning

16 1 Semantic integration

possible. The integration is then performed on the copy of the model and can
easily be tracked back to the original data. This approach is implemented
in the SIMS mediator [Arens et al., 1993] and also by the TSIMMIS system
[Garcia-Molina et al., 1995]. A suitable encoding of the information structure
can already be used in order to generate hypotheses about semantically related
structures in two information sources.

Structure enrichment

A logical model is built that resembles the structure of the information
source and contains additional definitions of concepts. A detailed dis-
cussion of this kind of mapping is given in [Kashyap and Sheth, 1996].
Systems that use structure enrichment for information integration are OB-
SERVER [Kashyap and Sheth, 1997] , KRAFT [Preece et al., 1999], PICSEL
[Goasdoue and Reynaud, 1999] and DWQ [Calvanese et al., 1998b]. While
OBSERVER uses description logics for both structure resemblance and addi-
tional definitions, PICSEL and DWQ define the structure of the information
by (typed) horn rules. Additional definitions of concepts mentioned in these
rules are done by a description-logic model. KRAFT does not commit to a
specific definition scheme.

The approaches are based on the assumption that the structure of the infor-
mation already carries some semantics in terms of the domain knowledge of
the database designer. We therefore think that the derivation of semantics
from information structures is not applicable in an environment where weakly
structured information has to be handled, because in most cases a conceptual
model is not available.

1.3.2 Semantics from text

An alternative approach for extracting semantic information from the struc-
ture of information resources is the derivation of semantics from text. This
approach is attractive on the World Wide Web, because huge amounts of
free text resources are available. Substantial results in using natural-language
processing come from the area of information retrieval [Lewis, 1996]. Here
the task of finding relevant information on a specific topic is tackled by
indexing free-text documents with weighted terms that are related to their
contents. There are different methods for matching user queries against
these weighted terms. It has been shown that statistical methods outperform
discrete methods [Salton, 1986]. As in this approach the semantics of a
document is contained in the indexing terms, their choice and generation is
the crucial step in handling information semantics. Results of experiments
have shown that document retrieval using stemmed natural-language terms
taken from a document for indexing is comparable to the use of controlled
languages [Turtle and Croft, 1991]. However, it is argued that the use of

1.3 Handling information semantics 17

compound expressions or propositional statements (very similar to RDF) will
increase precision and recall [Lewis, 1996].

The crucial task in using natural language as a source of semantic information
is the analysis of documents and the generation of indexing descriptions
from the document text. Straightforward approaches based on the number
of occurrences of a term in the document suffer from the problem that the
same term may be used in different ways. The same word may be used as a
verb or as an adjective (fabricated units vs. they fabricated units) leading to
different degrees of relevance with respect to a user query. Recent work has
shown that retrieval results can be improved by making the role of a term in
a text explicit [Basili et al., 2001]. Further, the same natural language term
may have different meanings even within the same text. The task of deter-
mining the intended meaning is referred to as word-sense disambiguation. A
prominent approach is to analyze the context of a term under consideration
and decide between different possible interpretations based on the occurrence
of other words in this context that provide evidence for one meaning. The
exploitation of these implicit structures is referred to as latent semantic
indexing [Deerwester et al., 1990]. The decision for a possible sense is often
based on a general natural-language thesaurus (see e.g. [Yarowsky, 1992]).
In the case where specialized vocabularies are used in documents, explicit
representations of relations between terms have to be used. These are
provided by domain-specific thesauri [Maynard and Ananiadou, 1998] or
semantic networks [Gaizauskas and Humphreys, 1997]. Extracting more
complex indexing information such as propositional statements is mostly
unexplored. Ontologies, which will be discussed later, provide possibilities for
using such expressive annotations.

Despite the progress made in natural language processing and the its success-
ful application to information extraction and information retrieval, there are
still many limitations due to the lack of explicit semantic information. While
many ambiguities in natural language can be resolved by the use of contextual
information, artificially invented terms cause problems, because their meaning
can often not be deduced from everyday language, but depends on the specific
use of the information source. In this case we have to rely on the existence of
corresponding background information.

1.3.3 The need for explicit semantics

In the last section we reviewed approaches for capturing information se-
mantics. We concluded that the derivation of semantics from structures
does not easily apply to weakly structured information. The alternative of
using text-understanding techniques on the other hand works quite well for
textual information that contains terms from everyday language, for in this
case existing linguistic resources can be used to disambiguate the meaning

18 1 Semantic integration

of single words. The extraction of more complex indexing expressions is
less well investigated. Such indexing terms, however, can be easily derived
from explicit models of information semantics. A second shortcoming of
approaches that purely rely on the extraction of semantics from texts is the
ability to handle special terminology as it is used by scientific communities
or technical disciplines.

The problems of the approaches mentioned above all originated from the lack
of an explicit model of information semantics. Recently, the need for a partial
explication of information semantics has been recognized in connection with
the World Wide Web. Fensel identifies a three-level solution to the problem
of developing intelligent applications on the web [Fensel and Brodie, 2003]:

• Information extraction. In order to provide access to information resources,
information extraction techniques have to be applied providing wrapping
technology for a uniform access to information.

• Processable semantics. Formal languages have to be developed that are
able to capture information structures as well as meta-information about
the nature of information and the conceptual structure underlying an in-
formation source.

• Ontologies. The information sources have to be enriched with semantic
information using the languages mentioned in step two. This semantic
information has to be based on a vocabulary that reflects a consensual and
formal specification of the conceptualization of the domain, also called an
ontology.

The first layer directly corresponds to the approaches for accessing
information discussed at the beginning of this section. The second layer
partly corresponds to the use of the annotation languages XML and RDF
mentioned in connection with the syntactic and structural approaches. The
third layer, namely the enrichment of information sources with additional
semantic information and the use of shared term definitions, has already
been implemented in recent approaches for information sharing in terms of
meta-annotations and term definitions. We would like to emphasize that
the use of explicit semantics is no contradiction to the other approaches
mentioned above. Using explicit models of information semantics is rather a
technique to improve or enable the other approaches. However, we think that
large-scale information sharing requires explicit semantic models.

In information sources, specialized vocabularies often occur in terms of
classifications and assessments used to reduce the amount of data that has to
be stored in an information source. Instead of describing all characteristics
of an object represented by a dataset a single term is used that relates the
object to a class of objects that share a certain set of properties. This term
often corresponds to a classification that is specified outside the information
source. The use of product categories in electronic commerce or the relation

1.4 Representing and comparing semantics 19

to a standard land-use classification in geographic information systems are
examples for this phenomenon. A special kind of classification is the use
of terms that represent the result of an assessment of the object described
by the dataset. In e-commerce systems, for example, customers might
be assigned to different target groups, whereas the state of the environ-
ment is a typical kind of assessment stored in geographic information systems.

We believe that classifications and assessments, which can be seen as a special
case of a classification, play a central role in large-scale information sharing,
because their ability to reduce the information load by abstracting from details
provides means to handle very large information networks like the World
Wide Web. Web directories like Yahoo! (http://www.yahoo.com) or the Open
Directory project (http://dmoz.org) organize millions of web pages according
to a fixed classification hierarchy. Beyond this, significant success has been
reached in the area of document and Web-page classification (see [Pierre, 2001]
or [Boley et al., 1999]). Apart from the high relevance for information sharing
on the World Wide Web, being able to cope with heterogeneous classification
schemes is also relevant for information integration in general. In the following
we give two examples of the use of specific classifications in conventional
information systems and illustrate the role of explicit semantic models in
providing interoperability between systems.

1.4 Representing and comparing semantics

Being able to compare information on a semantic level is crucial for informa-
tion integration. More specifically, we need to be able to compare the meaning
of terms that are used as names of schema elements and as values for data en-
tries. Semantic correspondences between these terms are the basis for schema
integration and transformation of data values. As already mentioned in Sect.
1.3.2 this is complicated by the fact that there is no one-to-one relation be-
tween terms and intended meanings. This already becomes clear when we
look up the meaning of a term in a dictionary. The example below shows a
dictionary entry for the term “trip”.

trip n. 1. (659) trip -- (a journey for some purpose (usually

including the return);

"he took a trip to the shopping center")

2. (5) trip -- (a hallucinatory experience induced by drugs;

"an acid trip")

3. slip, trip -- (an accidental misstep threatening (or causing) a

fall;

"he blamed his slip on the ice";

"the jolt caused many slips and a few spills")

4. tripper, trip -- (a catch mechanism that acts as a switch;

"the pressure activates the tripper and releases the water")

20 1 Semantic integration

5. trip -- (a light or nimble tread;

"he heard the trip of women’s feet overhead")

6. trip, stumble, misstep -- (an unintentional but embarrassing

blunder;

"he recited the whole poem without a single trip";

"confusion caused his unfortunate misstep")

As we can see, the simple term “trip” has six different possible interpretations
depending on the context it is used in. Conversely, there are many different
words that have the same or at least a very similar meaning as “trip” such
as “journey” or “voyage”. Both effects have a negative impact on information
sharing. In the first case where a single term has different possible inter-
pretations (homonymy) we might receive irrelevant answers when asking for
information about trip. In the latter case where different terms have the same
meaning (synonymy), we will miss relevant information that is described us-
ing one of the other terms. In order to overcome these problems, a number
of approaches for describing and comparing the intended meanings of terms
have been developed. In the following, we give a brief overview of some basic
approaches.

1.4.1 Names and labels

Mostly in the area of information retrieval, a number of methods have
been developed that aim at providing more information about the intended
meaning of a term using other terms for clarifying the context. A well-known
approach is the use of synonym sets instead of single terms. A synonym set
contains all terms that share a particular meaning. In our example “trip”
and “journey” will be in a synonym set making clear that the meaning of the
term “trip” intended here is the first in the list above, while the synonym set
representing the second possible interpretation will contain the terms “trip”
and “hallucination”.

Rodriguez and Egenhofer [Rodriguez and Egenhofer, 2003] have shown that
synonym sets also provide a better basis for determining the similarity of terms
based on string matching. They propose a similarity measure that takes into
account all members of the synonym sets of two terms to be compared. This
leads to a higher chance of finding terms with a similar meaning because their
synonym sets will share some terms. It also avoids matches between terms
that do not have a similar meaning because their synonym sets will be largely
disjoint.

1.4.2 Term networks

The notion of synonym set only used a single relation between terms as a
means for describing intended meaning. In order to obtain a more precise

1.4 Representing and comparing semantics 21

and complete description, other kinds of relations to other terms can be used.
Examples of such relations are:

1. hypernyms (terms with a broader meaning),
2. hyponyms (terms with a narrower meaning),
3. holonyms (terms that describe a whole the term is part of),
4. mereonyms (terms describing parts of the term).

Together with the terms they connect, these relations form networks of
terms and their relations. In such a network, the intended meaning of a
term is described by its context (the terms it is linked to via the different
relations). The most common form of such networks are thesauri that mainly
use the broader term and narrower term relations to build up term hierarchies.

A number of methods have been proposed to determine the similarity of terms
in a term network. Hirst and St Onge [Hirst and St-Onge, 1998] use the length
of the path connecting two terms in the network as a basis for their similar-
ity measure. Leacock and Chodorow [Leacock and Chodorow, 1998] use the
length of the path consisting only of hypernym and hyponym relations and
normalize it by the height of the hierarchy. Other approaches also use sta-
tistical information about the probability of finding the most narrow broader
term of two terms [Resnik, 1995] or variations of this strategy.

1.4.3 Concept lattices

A problem with the use of term networks lies in the fact that there is
no formal principle the hierarchy is built upon. As a result, we still have
the situation where the different possible interpretations of a term share
a place in the hierarchy. Consequently, “trek” as well as “tumble” will be
narrower terms with respect to the term “trip”. In order to overcome this
problem, the notion of concept is used to refer to the intended meaning of
a term. Instead of using a hierarchy of terms for describing their meaning,
a hierarchy of concepts (intended meanings) is used. This hierarchy, also
referred to as a concept lattice is now based on the principle that every
concept in the hierarchy inherits and is defined by the properties of its
ancestors in the hierarchy. A prominent method following this principle is
formal concept analysis (FCA) [Ganter and Wille, 1999]. The idea of FCA
is to automatically construct a concept lattice based on a specification
of characteristic properties of the different concepts. The use of FCA for
semantic integration is reported in [Stumme and Maedche, 2001].

The advantage of this rigid interpretation of a hierarchy is the fact that
we can also use inherited definitions when comparing the meaning of two
concepts, which provides us with much richer and more accurate information.
Consider the two hierarchies in Fig. 1.1. Just looking at the labels “morning”

22 1 Semantic integration

Fig. 1.1. Matching with concept lattices

and “pictures” of the two concepts we want to match it seems that they are
completely different. When also taking into account the inherited information,
however, we see that we are actually comparing the concepts “images of the
sea in the morning” and “pictures of the sea”. We can find that images and
pictures actually have the same meaning by looking at their synonym sets
and then conclude that the former concept is a special case of the latter
(compare [Giunchiglia and Shvaiko, 2003]).

1.4.4 Features and constraints

The use of concept lattices is often combined with a description of features
or constraints the instances of a concept show or adhere to. In our example
we could for example define that each trip has certain attributes such as a
destination and a duration, that a trip may consist of different parts (stages,
legs) and that it may serve certain functions such as “visit”.

There are many different approaches for modelling features and constraints
that restrict the possible interpretation of a concept. The approaches range
from simple attribute–value pairs to complex axiomatizations in first order
logic. Besides these extreme cases, a number of specialized representation
formalisms have been developed that provide epistemological primitives for
defining concepts in terms of features of their instances. The most frequently
used ones are frame-based representations [Karp, 1993] and description
logics [Baader et al., 2002]. While frame-based systems define a rather fixed
structural framework for describing the properties of instances of certain
concepts, description logics provide a flexible logical language for defining
necessary and sufficient conditions for instances to belong to a concept.

All the mentioned approaches for describing semantics based on features of
instances can be used to compare the intended meaning of information. In

1.5 Conclusion 23

the area of case-based reasoning, similarity measures have been defined that
allow the comparison of concepts represented as “cases” based on attribute–
value pairs [Richter, 1995]. For frame-based languages, matching algorithms
have been proposed that exploit the structure of the concept expressions
to determine semantic correspondences [Noy and Musen, 2004]. In the case
of first-order axiomatizations, we can use logical reasoning to determine
whether one axiomatization implies another one or whether two axiomati-
zations are equivalent and therefore represent the same intended meaning.
As this kind of comparing semantics based on general deduction is often
intractable, description logics provide specialized reasoning services for de-
termining whether the definition of one concept is a special case of (is sub-
sumed by) another[Donini et al., 1996]. This possibility make description log-
ics a powerful tool for describing and comparing semantics with the goal of
information sharing. Its concrete use will be discussed in other parts of this
work.

1.5 Conclusion

Interoperability between different information sources is an important topic
with regard to the efficient sharing and use of information across different sys-
tems and applications. While many syntactical and structural problems of the
integration process that is essential for achieving interoperability have been
solved, the notion of semantic interoperability still bears serious problems.
Problems on the semantic level occur due to the inherent context dependency
of information that can only be understood in the context of their original
source and purpose. The main problem with context dependency with respect
to semantic interoperability is the fact that most of the contextual knowledge
that is necessary for understanding the information is hidden in the documen-
tation and specification of an information source: it remains implicit from the
view of the actual information. The only way to overcome this problem is the
use of an explicit context model that can be used to re-interpret information
in the context of a new information source and a new application.

Further Reading

A more detailed discussion of the role of XML and RDF in the Semantic
Web can be found in [Decker et al., 2000]. The related areas of informa-
tion integration and information retrieval are presented in [Wiederhold, 1996]
and [Frakes and Baeza-Yates, 1992], respectively. The idea of using explicit
semantics to support information sharing on the Web is discussed in
[Fensel and Brodie, 2003]. The leading approaches for an explicit represen-
tation of information semantics, namely frame-based systems and description
logics are presented in [Karp, 1993] and [Baader et al., 2002].

2

Ontology-based information sharing

Summary. In the last chapter we introduced the general problem
of information sharing in the presence of heterogeneous data. In
this chapter, we introduce ontologies as a means of dealing with
semantic heterogeneity. We discuss the nature and applications of
ontologies and review existing approaches that use ontologies for
dealing with heterogeneous data. We also identify the state of the art
in ontology-based information integration and identify open problems
that will be addressed in the remainder of the book.

As we have seen in the last chapter, intelligent information sharing needs
explicit representations of information semantics. We reviewed different ap-
proaches for capturing semantics that have been developed in different scien-
tific communities. In this section we discuss ontologies as a general mechanism
for representing information semantics that can be implemented using the ap-
proaches mentioned in Chap. 1. We start with a general introduction to the
notion of ontologies and argue for their benefits for information integration
and retrieval making them suitable as a tool for supporting information shar-
ing. We also review the use of ontologies in the information-integration liter-
ature identifying ontology-based architectures for information sharing. Based
on the review of integration architectures we present a general framework
for supporting information sharing on the semantic web that summarizes the
work reported in the remainder of the book. We relate the framework to ex-
isting work and give pointers to the different chapters of the book. Finally,
we describe the representational infrastructure that is the core feature of the
framework.

2.1 Ontologies

In this section we argue for ontologies as a technology for approaching the
problem of explicating semantic knowledge about information. We first give a

26 2 Ontology-based information sharing

general overview of the nature and purpose of ontologies that already reveals
a great potential with respect to our task. Afterwards we sketch the idea of
how ontologies could be used in order to support the semantic translation
process. The idea presented will be elaborated in the remainder of the book.

The term “ontology” has been used in many ways and across different com-
munities [Guarino and Giaretta, 1995]. If we want to motivate the use of on-
tologies for geographic information processing we have to make clear what
we have in mind when we refer to ontologies. Thereby we mainly follow the
description given in [Uschold and Gruninger, 1996]. In the following sections
we will introduce ontologies as an explication of some shared vocabulary or
conceptualization of a specific subject matter. We will briefly describe the way
an ontology explicates concepts and their properties and argue for the benefit
of this explication in different typical application scenarios.

2.1.1 Shared vocabularies and conceptualizations

In general, each person has her individual views on the World and the
things she has to deal with every day. However, there is a common basis of
understanding in terms of the language we use to communicate with each
other. Terms from natural language can therefore be assumed to be a shared
vocabulary relying on a (mostly) common understanding of certain concepts
with only little variety. This common understanding relies on the idea of how
the World is organized. We often call this idea a “conceptualization” of the
World. Such conceptualizations provide a terminology that can be used for
communication.

The example of natural language already shows that a conceptualization
is never universally valid, but rather for a limited number of persons
committing to that conceptualization. This fact is reflected in the existence
of different languages which differ more or less. For example, Dutch and
German share many terms; however, Dutch contains far more terms for
describing bodies of water, due to the great importance of water in the life
of people. Things get even worse when we are not concerned with everyday
language but with terminologies developed for special areas. In these cases
we often find situations where the same term refers to different phenomena.
The use of the term “ontology” in philosophy and its use in computer science
may serve as an example. The consequence is a separation into different
groups that share a terminology and its conceptualization. These groups are
also called information communities [Kottmann, 1999] or ontology groups
[Fensel et al., 1997]. An example of such a community is the (KA)2 initiative
[Benjamins and Fensel, 1998].

The main problem with the use of a shared terminology according to a specific
conceptualization of the World is that much information remains implicit.

2.1 Ontologies 27

When a mathematician talks about the binomial
(
n
k

)
he has much more in

mind than just the formula itself. He will also think about its interpretation
(the number of subsets of a certain size) and its potential uses (e.g. estimating
the chance of winning in a lottery). Ontologies have set out to overcome the
problem of implicit and hidden knowledge by making the conceptualization of
a domain (e.g. mathematics) explicit. This corresponds to one of the defini-
tions of the term ontology most popular in computer science [Gruber, 1993]:

“An ontology is an explicit specification of a conceptualization.”

An ontology is used to make assumptions about the meaning of a term avail-
able. It can also be seen as an explication of the context a term is normally
used in. Lenat [Lenat, 1998] for example describes context in terms of 12 in-
dependent dimensions that have to be known in order to understand a piece
of knowledge completely and shows how these dimensions can be explicated
using the Cyc ontology.

2.1.2 Specification of context knowledge

There are many different ways in which an ontology may explicate a con-
ceptualization and the corresponding context knowledge. The possibilities
range from a purely informal natural-language description of a term corre-
sponding to a glossary up to strictly formal approaches with the expressive
power of full first-order predicate logic or even beyond (e.g. ONTOLINGUA
[Gruber, 1991]). Jasper and Uschold distinguish two ways in which the mech-
anisms for the specification of context knowledge by an ontology can be com-
pared [Jasper and Uschold, 1999]:

Level of formality

The specification of a conceptualization and its implicit context knowledge can
be done at different levels of formality. As already mentioned above, a glossary
of terms can also be seen as an ontology despite its purely informal character.
A first step to gain more formality is to prescribe a structure to be used for
the description. A good example for this approach is the new standard Web
annotation language XML [Yergeau et al., 2004]. XML offers the possibility to
define terms and organize them in a simple hierarchy according to the expected
structure of the Web document to be described in XML. However, the rather
informal character of XML encourages its misuse. While the hierarchy of an
XML specification was originally designed to describe layout it can also be
exploited to represent subtype hierarchies [van Harmelen and Fensel, 1999],
which may lead to confusion. This problem can be solved by assigning for-
mal semantics to the structures used for the description of the ontology. An
example is the conceptual modelling language CML [Schreiber et al., 1994].
CML offers primitives to describe a domain that can be given a formal se-
mantics in terms of first order logic [Aben, 1993]. However, a formalization is

28 2 Ontology-based information sharing

only available for the structural part of a specification. Assertions about terms
and the description of dynamic knowledge are not formalized, offering total
freedom for the description. On the other extreme there are also specification
languages which are completely formal. A prominent example is ONTOLIN-
GUA (see above), one of the first Ontology languages which is based on the
knowledge interchange format KIF [Genesereth and Fikes, 1992] which was
designed to enable different knowledge-based systems to exchange knowledge.

Extent of Explication

The other comparison criterion is the extent of explication that is reached
by the ontology. Jasper and Uschold [Jasper and Uschold, 1999] refer to
”lightweight” vs. ”heavyweight” ontologies to described differences in the
extend of explication. This criterion is strongly connected with the expressive
power of the specification language used. We can generalize this by saying
that the least expressive specification of an ontology consists of an organiza-
tion of terms in a network using two-placed relations. This idea goes back to
the use of semantic networks. Many extensions of the basic idea have been
proposed. One of the most influential was the use of roles that could be filled
out by entities showing a certain type [Brachman, 1977]. This kind of value
restriction can still be found in recent approaches. RDF Schema descriptions
[Brickley and Guha, 2004] (see Chap. 3 which is the new standard for the
semantic descriptions of Web pages, is an example. An RDF Schema contains
class definitions with associated properties that can be restricted by so-called
constraint-properties. However, default values and value-range descriptions
are not expressive enough to cover all possible conceptualizations. A greater
expressive power can be provided by allowing classes to be specified by logical
formulas. These formulas can be restricted to a decidable subset of first order
logic. This is the approach of so-called description logics [Donini et al., 1996].
This trade-off between expressiveness and decidability is also reflected in the
development of the Web Ontology Language OWL which is described in more
details in Chap. 3 where the language subset that corresponds to description
logics is explicitly distinguished. Nevertheless, there are also approaches
allowing for more expressive descriptions. In ONTOLINGUA, for example,
classes can be defined by arbitrary KIF expressions. Beyond the expressive-
ness of full first-order predicate logic there are also special purpose languages
that have an extended expressiveness to cover specific needs of their applica-
tion area. The latest example is OWL, where the complete language (OWL
full) is undecidable1 as it combines description logics with meta-level features.

1 undecidability still has to be proven formally, but there are no doubts about this
fact

2.1 Ontologies 29

2.1.3 Beneficial applications

Ontologies are useful for many different applications that can be classified into
several areas [Jasper and Uschold, 1999]. Each of these areas has different re-
quirements on the level of formality and the extent of explication provided by
the ontology. The common idea of all of these applications is to use ontologies
in order to reach a common understanding of a particular domain. In contrast
to syntactic standards, the understanding is not restricted to a common rep-
resentation or a common structure. The use of ontologies also helps to reach
a common understanding of the meaning of terms. Therefore, ontologies are
a promising candidate in order to support semantic interoperability. We will
shortly review some common application areas, namely the support of com-
munication processes, the specification of systems and information entities
and the interoperability of computer systems.

Communication

Information communities are useful, because they ease communication and
cooperation among their members by the use of a shared terminology with a
well-defined meaning. On the other hand, the formation of information com-
munities makes communication between members from different information
communities very difficult, because they do not agree on a common concep-
tualization. They may use the shared vocabulary of natural language. How-
ever, most of the vocabulary used in their information communities is highly
specialized and not shared with other communities. This situation demands
an explication and explanation of the terminology used. Informal ontologies
with a large extent of explication are a good choice to overcome these prob-
lems. While definitions have always played an important role in scientific
literature, conceptual models of certain domains are rather new. However,
nowadays systems analysis and related fields like software engineering rely
on conceptual modelling to communicate structure and details of a problem
domain as well as the proposed solution between domain experts and engi-
neers. Prominent examples of ontologies used for communication are entity-
relationship diagrams [Chen, 1976] and object-oriented modelling languages
like UML [Rumbaugh et al., 1998].

Systems engineering

Entity-relationship diagrams as well as UML are not only used for commu-
nication, they also serve as building plans for data and systems guiding the
process of building (engineering) the system. The use of ontologies for the de-
scription of information and systems has many benefits. The ontology can be
used to identify requirements as well as inconsistencies in a chosen design. It
can help to acquire or search for available information. Once a systems com-
ponent has been implemented its specification can be used for maintenance

30 2 Ontology-based information sharing

and extension purposes. Another very challenging application of ontology-
based specification is the re-use of existing software. In this case the speci-
fying ontology serves as a basis to decide if an existing component matches
the requirements of a given task [Motta, 1999]. Depending on the purpose
of the specification, ontologies of different formal strength and expressiveness
are to be used. While the process of communicating design decisions and the
acquisition of additional information normally benefit from rather informal
and expressive ontology representations (often graphical), the directed search
for information needs a rather strict specification with a limited vocabulary
to limit the computational effort. At the moment, the support of semi- auto-
matic software re-use seems to be one of the most challenging applications of
ontologies, because it requires expressive ontologies with a high level of formal
strength (see for example [van Heijst et al., 1997]).

Interoperability

The above considerations might provoke the impression that the benefits of
ontologies are limited to systems analysis and design. However, an impor-
tant application area of ontologies is the integration of existing systems. The
ability to exchange information at run time, also known as interoperability,
is an important topic. The attempt to provide interoperability suffers from
problems similar to those associated with the communication amongst differ-
ent information communities. The important difference is that the actors are
not persons able to perform abstraction and common sense reasoning about
the meaning of terms, but machines. In order to enable machines to under-
stand each other we also have to explicate the context of each system, but on a
much higher level of formality in order to make it machine understandable (the
KIF language was originally defined for the purpose of exchanging knowledge
models between different knowledge-based systems). Ontologies are often used
as interlinguas for providing interoperability [Uschold and Gruninger, 1996]:
they serve as a common format for data interchange. Each system that wants
to interoperate with other systems has to transfer its information into this
common framework.

Information Retrieval

Common information-retrieval techniques either rely on a specific encoding
of available information (e.g. fixed classification codes) or simple full-text
analysis. Both approaches suffer from severe shortcomings. First of all, both
completely rely on the input vocabulary of the user, which might not be
completely consistent with the vocabulary of the information. Second, a
specific encoding significantly reduces the recall of a query, because related
information with a slightly different encoding is not matched. Full-text
analysis on the other hand reduces precision, because the meaning of the
words might be ambiguous.

2.2 Ontologies in information integration 31

Using an ontology in order to explicate the vocabulary can help overcome
some of these problems. When used for the description of available informa-
tion as well as for query formulation, an ontology serves as a common basis
for matching queries against potential results on a semantic level. The use
of rather informal ontologies like WordNet [Fellbaum, 1998] increases the re-
call of a query by including synonyms in the search process. The use of more
formal representations like conceptual graphs [Sowa, 1999] further enhances
the retrieval process, because a formal representation can be used to increase
recall by reasoning about inheritance relationships and precision by matching
structures. To summarize, information retrieval benefits from the use of on-
tologies. Ontologies help to decouple description and query vocabularies and
increase precision as well as recall [Guarino et al., 1999].

2.2 Ontologies in information integration

We analyzed about 25 approaches to intelligent information integration
including SIMS [Arens et al., 1993], TSIMMIS [Garcia-Molina et al., 1995],
OBSERVER [Mena et al., 2000a] , CARNOT [Collet et al., 1991],
Infosleuth [Nodine et al., 1999], KRAFT [Preece et al., 1999], PIC-
SEL [Levy et al., 1996], DWQ [Calvanese et al., 1998b], Ontobroker
[Fensel et al., 1998] , SHOE [Heflin et al., 1999] and others with respect
to the role and use of ontologies. While all of the systems used ontologies to
describe the meaning of information, the role and use of these descriptions
differ between the approaches. In the following we discuss the different roles
ontologies can play in information integration.

2.2.1 Content explication

In nearly all ontology-based integration approaches ontologies are used for
the explicit description of the information-source semantics. But there are
different ways of how to employ the ontologies. In general, three different
directions can be identified: single-ontology approaches, multiple-ontology
approaches and hybrid approaches. Fig. 2.1 gives an overview of the three
main architectures.

The integration based on a single ontology seems to be the simplest approach
because it can be simulated by the other approaches. Some approaches pro-
vide a general framework where all three architectures can be implemented
(e.g. DWQ [Calvanese et al., 1998b]). The following paragraphs give a brief
overview of the three main ontology architectures.

Single-ontology approaches

Single-ontology approaches use one global ontology providing a shared vo-
cabulary for the specification of the semantics (see Fig. 2.1a). All information

32 2 Ontology-based information sharing

(a) Global ontology (b) Local ontologies

(c) Hybrid approach

Fig. 2.1. The three possible ways for using ontologies for content explication

sources are related to the one global ontology. A prominent approach of this
kind of ontology integration is SIMS [Arens et al., 1993]. SIMS model of the
application domain includes a hierarchical terminological knowledge base
with nodes representing objects, actions and states. An independent model of
each information source must be described for this system by relating the ob-
jects of each source to the global domain model. The relationships clarify the
semantics of the source objects and help to find semantically corresponding
objects. The global ontology can also be a combination of several specialized
ontologies. A reason for the combination of several ontologies can be the
modularization of a potentially large monolithic ontology. The combination
is supported by ontology-representation formalisms, i.e. importing other
ontology modules (cf. ONTOLINGUA [Gruber, 1991]).

2.2 Ontologies in information integration 33

Single-ontology approaches can be applied to integration problems where all
information sources to be integrated provide nearly the same view of a do-
main. But if one information source has a different view of a domain, e.g.
by providing another level of granularity, finding the minimal ontology com-
mitment [Gruber, 1995] becomes a difficult task. For example, if two informa-
tion sources provide product specifications but refer to absolute heterogeneous
product catalogues which categorize the products, the development of a global
ontology which combines the different product catalogues becomes very dif-
ficult. Information sources with reference to similar product catalogues are
much easier to integrate. Also, single-ontology approaches are susceptible to
changes in the information sources, which can affect the conceptualization
of the domain represented in the ontology. Depending on the nature of the
changes in one information source it can imply changes in the global ontology
and in the mappings to the other information sources. These disadvantages
led to the development of multiple-ontology approaches.

Multiple ontologies

In multiple-ontology approaches, each information source is described by its
own ontology (Fig. 2.1b). For example, in OBSERVER [Mena et al., 2000a],
the semantics of an information source is described by a separate ontology.
In principle, the “source ontology” can be a combination of several other
ontologies but it cannot be assumed that the different “source ontologies”
share the same vocabulary.

At a first glance, the advantage of multiple-ontology approaches seems to be
that no common and minimal ontology commitment [Gruber, 1995] about one
global ontology is needed. Each source ontology could be developed without
reference to the other sources or their ontologies, no common ontology with
the agreement of all sources is needed. This ontology architecture can simplify
the change, i.e. modifications in one information source or the adding and re-
moving of sources. But in reality the lack of a common vocabulary makes it
extremely difficult to compare different source ontologies. To overcome this
problem, an additional representation formalism defining the mapping is pro-
vided. The mapping identifies semantically corresponding terms of different
source ontologies, e.g. which terms are semantically equal or similar. But the
mapping also has to consider different views of a domain, e.g. different aggre-
gation and granularity of the ontology concepts. We believe that in practice
the mapping is very difficult to define, because of the many semantic hetero-
geneity problems which may occur.

Hybrid approaches

To overcome the drawbacks of the single- or multiple-ontology approaches,
hybrid approaches were developed (Fig. 2.1c). Similar to multiple-ontology
approaches the semantics of each source is described by its own ontology.

34 2 Ontology-based information sharing

But in order to make the source ontologies comparable to each other they
are built upon one global shared vocabulary [Wache et al., 1999, Goh, 1997].
The shared vocabulary contains basic terms (the primitives) of a domain.
In order to build complex terms of a source ontology the primitives are
combined by some operators. Because each term of a source ontology
is based on the primitives, the terms become easier comparable than in
multiple-ontology approaches. Sometimes the shared vocabulary is also an
ontology [Stuckenschmidt and Wache, 2000].

In hybrid approaches the interesting point is how the local ontologies are
described, i.e. how the terms of the source ontology are described by the
primitives of the shared vocabulary.

• In COIN [Goh, 1997], the local description of an information, the so-called
context, is simply an attribute value vector. The terms for the context
stems from the common shared vocabulary and the data itself.

• In MECOTA [Wache, 1999], each source information is annotated by a la-
bel which indicates the semantics of the information. The label combines
the primitive terms from the shared vocabulary. The combination opera-
tors are similar to the operators known from the description logics, but are
extended for the special requirements resulting from integration of sources,
e.g. by an operator which indicates that an information aggregates several
different information items (e.g. a street name together with a number).

• In BUSTER [Visser et al., 2002], the shared vocabulary is a (general) on-
tology, which covers all possible refinements. The general ontology may
define the attribute value ranges of its concepts. A source ontology is one
(partial) refinement of the general ontology, e.g. it restricts the value range
of some attributes. Since the source ontologies only use the vocabulary of
the general ontology, they remain comparable.

The advantage of a hybrid approach is that new sources can easily be added
without the need of modification in the mappings or in the shared vocabulary.
It also supports the acquisition and evolution of ontologies. The use of a
shared vocabulary makes the source ontologies comparable and avoids the
disadvantages of multiple-ontology approaches. The drawback of hybrid
approaches , however, is that existing ontologies cannot be re-used easily,
but have to be re-developed from scratch, because all source ontologies have
to refer to the shared vocabulary. Table 2.1 summarizes the benefits and
drawbacks of the different ontology approaches.

2.2.2 Additional roles of ontologies

Some approaches use ontologies not only for content explication, but also
either as a global query model or for the verification of the (user-defined or

2.2 Ontologies in information integration 35

Table 2.1. Comparison of ontology-based integration approaches

Single- Multiple- Hybrid
ontology ontology
approaches approaches approaches

Implementation Straight- Costly Reasonable
effort forward

Semantic Similar Supports Supports
heterogeneity views of a heterogen- heterogen-

domain eous views eous views

Adding/ Need for Providing a Providing a
removing some adap- new source new source
sources tion in the ontology; ontology

global relating
ontology to other

ontologies

Comparing — Difficult Simple
multiple because of because
ontologies the lack of ontologies

a common use a
vocabulary common

vocabulary

system-generated) integration description. In the following, these additional
roles of ontologies are considered in more detail.

Query model

Integrated information sources normally provide an integrated global view.
Some integration approaches use the ontology as the global query schema. For
example, in SIMS [Arens et al., 1996] the user formulates a query in terms of
the ontology. Then SIMS reformulates the global query into subqueries for
each appropriate source, collects and combines the query results and returns
the results. The use of ontologies as query models is independent of the use
of a global ontology. In OBSERVER, for example, the user can pose queries
using terms from the ontology of the local source.

Using an ontology as a query model has the advantage that the structure of
the query model should be more intuitive for the user because it corresponds
more to the user’s appreciation of the domain. But from a database point of
view this ontology only acts as a global query schema. If a user formulates
a query, he has to know the structure and the contents of the ontology; he
cannot formulate the query according to a schema he would prefer personally.
Therefore, it is questionable whether the global ontology is an appropriate
query model.

36 2 Ontology-based information sharing

Verification

During the integration process several mappings must be specified from a
global schema to the local source schema. The correctness of such mappings
can be considered ably improved if these can be verified automatically. A sub-
query is correct with respect to a global query if the local subquery provides a
part of the queried answers, i.e. the subqueries must be contained in the global
query (query containment) [Goasdoue et al., 2000, Calvanese et al., 1998a].
Since an ontology contains a (complete) specification of the conceptualiza-
tion, the mappings can be validated with respect to the ontologies. Query
containment means that the ontology concepts corresponding to the local
sub-queries are contained in the ontology concepts related to the global query.

In DWQ [Calvanese et al., 1998b], each source is assumed to be a collection
of relational tables. Each table is described in terms of its ontology with the
help of conjunctive queries. A global query and the decomposed subqueries
can be unfolded to their ontology concepts. The subqueries are correct, i.e.
are contained in the global query, if their ontology concepts are subsumed by
the global ontology concepts. The PICSEL project [Goasdoue et al., 2000]
can also verify the mapping, but in contrast to DWQ it can also generate
mapping hypotheses automatically which are validated with respect to a
global ontology.

The quality of the verification task strongly depends on the completeness of an
ontology. If the ontology is incomplete, the verification result can erroneously
imagine a correct query subsumption. Since in general the completeness can-
not be measured, it is impossible to make any statements about the quality
of the verification.

2.3 A framework for information sharing

In this book, we describe different components of a framework for information
sharing on the Semantic Web. The design of the framework is motivated by
the potential roles of ontologies in information integration. In particular, we
use ontologies to represent the intended interpretation of contents different
information sources. We adopt the hybrid approach because it provides a good
trade-off with respect to development costs and maintainability. We assume
that a shared vocabulary provides the foundation for query formulation, for
translations between the ontologies describing different information sources
and for the verification of metadata as well as mappings between sources.
Taking the hybrid approach as a starting point, our framework contains three
main components whose relations are sketched in Fig. 2.2. In the following,
we briefly describe the different components, their relations and related them
to parts of the book.

2.3 A framework for information sharing 37

Fig. 2.2. A framework for ontology-based information sharing

Representational Infrastructure

The representational infrastructure we use to facilitate information sharing
consists of three layers. On the lowest level, metadata describes the content
of information sources. We assume that this metadata is represented using
RDF as a common language. On the highest level, a common vocabulary de-
fines terms that are assumed to have the same meaning across all information
sources. This shared vocabulary mostly consists of concept hierarchies and
relations between concepts in these hierarchies. We use RDF Schema to rep-
resent this information. Unlike most current work in the semantic web area,
we do not directly layer RDF Schema models on top of the RDF metadata.
Instead we insert an additional layer consisting of ontologies that describe the
conceptualizations and structures specific to a certain source of information.
The definitions in these ontologies are built using terms from the shared vo-
cabulary. We encode these source-specific ontologies using the web ontology
language OWL. The expressive power of OWL allows us to accurately define
the intended meaning of the modelling elements and the data values used in
the different sources. After providing a more detailed description of this lay-
ering in the remainder of this chapter, we introduce RDF Schema and OWL
in Chap. 3. We also present an extension to OWL that allows the definition
of direct mappings between source ontologies in Chap. 10 and describe source
ontologies and metadata models for special data sources, more specifically for
statistical (Chap. 7) and for spatially-related information (Chap. 8).

Development and Maintenance

In order to be able to share information from different sources it is not enough
to described the representational infrastructure needed, we also have to ad-
dress the problem of creating the infrastructure. In particular, this includes
the selection of a shared vocabulary, the definition of source ontologies as well
as the generation of metadata description for the concrete information in a

38 2 Ontology-based information sharing

source. We envision this process to start with the analysis of the information
sources to be shared and the conceptual choices made therein. Based on the
these conceptualizations and the kind of information to be shared, candidates
for a shared vocabulary are selected and refined in an iterative process which
is supported by standard editing tools for OWL and RDF Schema. We fur-
ther assume that metadata for the different sources is created independently
of each other using the source ontology that has been build before. We devel-
oped tools for creating metadata by discovering patterns in the structure of
information sources and link them to concepts in the source ontology. Finally,
we describe a framework for managing the evolution of ontologies that are
linked by mappings in order to react to changes in the information. We dis-
cuss the creation of source ontologies and shared vocabulary along with the
detailed description of their connection in Chap. 4. The automatic creation of
metadata based on the result of this process is described in Chap. 5. Evolution
management for interrelated ontologies is the topic of Chap. 11.

Retrieval and Integration

The ultimate goal of our framework is to enable people to share information
across different sources in a meaningful way. The representational infrastruc-
ture for describing information semantics and the methods for building and
maintaining these representations are a necessary pre-condition for approach
this goal. Based on this infrastructure our framework provides two principled
mechanisms for supporting information sharing: Methods for content-based
retrieval of information from remote sources and methods for translating be-
tween the conceptualizations of different sources. The translation services, we
describe in this book are mainly concerned with domain conflicts by detecting
and resolving conflicts between the the definition of object classes. Our meth-
ods exploit the existence of a shared vocabulary and uses existing reasoning
systems for OWL and RDF schema to automatically compute subsumption
relations between from different ontologies. The translation and the retrieval
methods are tightly integrated as translation is needed during the retrieval
process in order to find relevant information and for actually translating re-
trieved data items into the terminology used by the user. The retrieval and
integration methods are described in Chap. 6. Large parts of these methods
have been implemented in the BUSTER system which follows the schema
in Fig. 2.2. On the other hand, similar methods are found in other existing
systems. Three of these systems that all more or less implement parts of the
framework are described in Chap. 9.

2.4 A translation approach to ontology alignment

The core idea of the information framework sketched above is the use of a
shared vocabulary as a basis for comparing the conceptualizations of different

2.4 A translation approach to ontology alignment 39

information sources. The existence of such a shared vocabulary makes it pos-
sible to translate between different information on a semantic level. On the
Semantic Web, it will frequently happen that information sources are added
or removed. Further, the number of information sources will be considerably
high. Based on these observations, we conclude that an on-demand translation
of information semantics is most adequate for our purposes. Therefore, we will
use the idea of integration by translation as a guideline for the remainder of
the book.

2.4.1 The translation process

The proposed translation process is sketched below describing actors, support-
ing tools and knowledge items (i.e. ontologies) involved. Notice that although
the approach described above translates only between two sources at a time,
it is not limited to bilateral integration.

Authoring of shared terminology

Our approach relies on the use of a shared terminology in terms of properties
used to define different concepts. This shared terminology has to be general
enough to be used across all information sources to be integrated but specific
enough to make meaningful definitions possible. Therefore the shared termi-
nology will normally be built by an independent domain expert who is familiar
with typical tasks and problems in a domain, but who is not concerned with
a specific information source. As building a domain ontology is a challeng-
ing task, sufficient tool support has to be provided to build that ontology. A
growing number of ontology editors exist [Duineveld et al., 1999]. The choice
of a tool has to be based on the special needs of the domain to be modelled
and the knowledge of the expert.

Annotation of information sources

Once a common vocabulary exists, it can be used to annotate different
information sources. In this case annotation means that the inherent concept
hierarchy of an information source is extracted and each concept is described
by necessary and sufficient conditions using the terminology built in step one.
The result of this annotation process is an ontology of the information source
to be integrated. The annotation will normally be done by the owner of an
information source who wants to provide better access to his or her informa-
tion. In order to enable the information owner to annotate his information
he has to know about the right vocabulary to use. It will also be beneficial
to provide tool support also for this step. We need an annotation tool with
different repositories of vocabularies according to different domains of interest.

40 2 Ontology-based information sharing

Semantic translation of information entities

The only purpose of the steps described above was to lay a base for the
actual translation step. The existence of ontologies for all information sources
to be integrated enables the translator to work on these ontologies instead of
treating real data. This way of using ontologies as surrogates for information
sources has already been investigated in the context of information retrieval
[Visser and Stuckenschmidt, 1999]. In that paper we showed that the search
for interesting information can be enhanced by ontologies. Concerning
semantic translation the use of ontologies as surrogates for information
sources enables us to restrict the translation to the transformation of type
information attached to an information entity by manipulating concept terms
indicating the type of the entity.

The new concept term describing the type of an information entity in the
target information source is determined automatically by an inference engine
that uses ontologies of source and target structures as classification knowl-
edge. This is possible, because both ontologies are based on the same basic
vocabulary that has been built in the first step of the integration approach.

2.4.2 Required infrastructure

In order to enable a terminological reasoning system to actually relate
concepts, we have to make assumptions about the knowledge represented.
These assumptions directly refer to the two solutions to the explication
dilemma mentioned above, because reasoning across ontologies requires a
shared basic vocabulary (reduction to syntax) and the description of concepts
in both ontologies in terms of logical expressions over these shared terms
(reduction to logic).

Fig. 2.3. Conceptual Architecture of the Translation Knowledge

2.4 A translation approach to ontology alignment 41

We distinguish between shared terminology and shared ontology. The shared
terminology consists of terms assumed to have a unique meaning across dif-
ferent classifications. These terms are structured by relations borrowed from
linguistics, i.e. synonym (equivalent term), hypernym (broader term) and hy-
ponym (more specialized term) relations. Formally, we define a shared termi-
nology as a set of words and a partial function over pairs of words:

Definition 2.1 (shared terminology). A shared terminology is a tuple
〈W, l〉, where W is a set of words and l : W × W → {syno, hyper, hypo} is
a partial function from the set of all pairs of terms into a set of identifiers
specifying whether the first term is a synonym, a hypernym or a hyponym of
the second.

This shared terminology is linked to the specific integration problem using
structural patterns. A structural pattern is a general specification of relations
between objects denoted by the words in the shared terminology. In order to be
able to apply these relations to information objects, the shared terminology is
encoded in a simple logical structure consisting of a set of terms corresponding
to words from the shared terminology relations between these terms and a set
of axioms. The axioms define the synonym, hypernym and hyponym relations
between terms in terms of the subsumption relation.

Definition 2.2 (shared ontology). A shared ontology is a tuple
〈ST, T, R, A〉, where ST = 〈WL, lL〉 is a shared terminology, T is a basic
set of terms, R is a set of relations R ⊆ T × T and A is a set of axioms of
the form Ti � Tj if the following conditions hold:

• T ⊆ WL,
• for each pair of words (Wi, Wj),

– if l((Wi, Wj)) = hyper then Wj � Wi is in A,
– if l((Wi, Wj)) = hypo then Wi � Wj is in A,
– if l((Wi, Wj)) = syno then Wi � Wj and Wj � Wi are in A.

From the point of expressiveness, this shared ontology is very similar to a
model in RDF Schema, because it defines a hierarchy of terms (classes in RDF
Schema) as well as a set of relations (properties) with corresponding range and
domain restrictions. This correspondence enables us to use RDF Schema in
order to encode shared ontologies as a basis for defining information semantics.

Shared ontologies provide us with a vocabulary we can use in order to specify
the semantics of information in different sources. This semantics, however, has
to be defined individually for different information sources. In order to capture
the semantics of types or assessments used in an information source, we need
a richer language, because their meaning almost never directly corresponds
to a term in the shared ontology. We therefore define a source ontology, an
ontology that defines the meaning of specific classifications used in the source,
to consist of a set of class definitions. These definitions are legal expressions

42 2 Ontology-based information sharing

over terms from the shared ontology built using a terminological language
that defines operators for the relations also defined in the shared ontology:

Definition 2.3 (source ontology). A source ontology is a tuple 〈S, C, d〉,
where S = 〈STS , TS , RS , AS〉 is a shared ontology, C is a set of class names
not from the set of terms in S, L is a terminological language and d is a
function that assigns expressions δi to class names Ci in C such that:

• δi only refers to relations in RS,
• L is defined over TS.

In the following we refer to δi as the definition of Ci, which is denoted by
d(Ci).

Given a source ontology we can perform terminological reasoning over the
definition of classes contained therein by considering the set of axioms from
the shared ontology, the definitions of relations and the set of class definitions.
Together, these elements form a terminological knowledge-base that can be
used by suitable description-logic reasoners in order to provide standard
inference services such as classification and retrieval. How these inference
services are used for retrieval and integration will be discussed in Chap. 6.

2.5 Conclusions

The use of ontologies is a straightforward and promising approach in order to
explicate contextual information and to make a semantics-preserving trans-
lation possible. Especially, ontologies could be used for the specification of a
source-independent shared vocabulary (domain ontology) whose concepts are
used to describe the specific contextual information of different information
sources to be integrated (application ontologies). The use of a common
vocabulary as a basis for the context specifications is assumed to enable us
to perform (semi-)automatic translations between different contexts that
preserve the intended meaning of the translated terms to a large extent.

The central question is how to actually capture information semantics in on-
tologies. A strategy is needed that determines what kinds of ontologies are
needed and how they can be built. This strategy has to trade-off globalized
representations that provide a common basis for defining and comparing in-
formation semantics and local representations that capture the specific con-
ceptual choices made in the design of individual information sources. In order
to be comparable, these local definitions should be based on terms defined
globally. Linguistic resources and top-level ontologies provide guidance in the
choice for a global vocabulary. The representational framework defined in the
first part of this book then provides operators for composing these basic terms
into more complex concept definitions and to perform terminological reason-
ing.

2.5 Conclusions 43

State of the research

The typical information-integration system uses ontologies to explicate the
contents of an information source, mainly by describing the intended meaning
of table- and data-field names. For this purpose, each information source is
supplemented by an ontology which resembles and extends the structure of
the information source. In a typical system, integration is done at the ontology
level using either a common ontology all source ontologies are related to or
fixed mappings between different ontologies. The ontology language of the
typical system is based on description logics, and subsumption reasoning is
used in order to compute relations between different information sources and
sometimes to validate the result of an integration. The process of building
and using ontologies in the typical system is supported by specialized tools in
terms of editors.

Open questions

The description of the typical integration system shows that reasonable results
have been achieved on the technical side of using ontologies for intelligent
information integration. Only the use of mappings is an exception. It seems
that most approaches still use ad hoc or arbitrary mappings especially for the
connection of different ontologies. There are approaches that try to provide
well-founded mappings, but they either rely on assumptions that cannot
always be guaranteed or they face technical problems. We conclude that
there is a need to investigate mappings on a theoretical and an empirical basis.

Beside the mapping problem, we found a striking lack of sophisticated method-
ologies supporting the development and use of ontologies. Most systems only
provide tools. If there is a methodology it often only covers the development of
ontologies for a specific purpose which is prescribed by the integration system.
The comparison of different approaches, however, revealed that requirements
concerning ontology language and structure depend on the kind of informa-
tion to be integrated and the intended use of the ontology. We therefore think
that there is a need to develop a more general methodology that includes
an analysis of the integration task and supports the process of defining the
role of ontologies with respect to these requirements. We think that such a
methodology has to be language independent, because the language should be
selected based on the requirements of the application and not the other way
round. A good methodology also has to cover the evaluation and verification
of the decisions made with respect to language and structure of the ontology.
The development of such a methodology will be a major step in the work on
ontology-based information integration because it will help to integrate results
already achieved on the technical side and to put these techniques to work in
real-life applications.

44 2 Ontology-based information sharing

Further reading

The first widely accepted definition of ontologies from a computer science
perspective is given by Gruber [Gruber, 1993] in his seminal work. Uschold
and Gruninger give excellent overview over the nature as use of ontolo-
gies [Uschold and Gruninger, 1996]. Guarino and Giaretta discuss the special
character of ontologies that distinguish them from other knowledge models
[Guarino and Giaretta, 1995]. We give an overview of ontology-based infor-
mation integration systems in [Wache et al., 2001]. An overview of the use
of ontologies at different levels of formality and extends of explication is
[McGuinness, 2002].

3

Ontology languages for the Semantic Web

Summary. The role of this chapter is to give a general introduction
to some of the ontology languages that play a prominent role on
the Semantic Web. These languages will be the main carriers of the
information that we will want to share and integrate.

We first give a general and abstract model of ontologies and the logical infer-
ences that they support (in section 3.1). We then describe a stack of ever more
expressive Web-based ontology languages: RDF Schema, OWL Lite, OWL DL
and OWL Full (sections 3.2.1–3.2.4). We conclude this chapter with a brief
comparison with other ontology languages (section 3.3).

3.1 An abstract view

In order to get a general notion of ontological knowledge, we define the general
structure of a terminological knowledge base (ontology) and its instantiation
independent of a concrete language.

Definition 3.1 (terminological knowledge base).
A terminological knowledge base T is a triple

T = 〈C,R,O〉,

where C is a set of class definitions, R is a set of relation definitions and O
is a set of object definitions.

Terminological knowledge usually groups objects of the World that have cer-
tain properties in common (e.g. cities or countries). A description of the
shared properties is called a class definition. Concepts can be arranged into a
subclass–superclass relation in order to be able to further discriminate objects
into subgroups (e.g. capitals or European countries). A class can be defined in

46 3 Ontology languages for the Semantic Web

two ways, by enumeration of its members or by stating that it is a refinement
of a complex logical expression. The specific logical operators to express such
logical definitions can vary between ontology languages; the general definitions
we give here abstract from these specific operators.

Definition 3.2 (class definitions). A class definition is an axiom of one of
the following forms:

• c ≡ (o1, ..., on) where c is a class definition and o1, ..., on are object defini-
tions.

• c1 � c2, where c1 and c2 are class definitions.

Further, there is the universal class denoted as �.

Objects of the same type normally occur in similar situations where they have
a certain relation to each other (cities lie in countries, countries have a capital).
These typical relations can often be specified in order to establish structures
between classes. Terminological knowledge considers binary relations that can
either be defined by restricting their domain and range or by declaring the
relation to be a subrelation of an existing one.

Definition 3.3 (relation definitions). A relation definition is an axiom of
one of the following forms:

• r � (c1, c2), where r is a role definition and c1 and c2 are class definitions.
• r1 � r2, where r1 and r2 are role definitions.

The universal role is defined as �×�.

Sometimes single objects (e.g. the continent of Europe) play a prominent role
in a domain of interest, or the membership of a concept is defined by the rela-
tion to a specific object (European countries are those contained in Europe).
For this purpose ontology languages often allow us to specify single objects,
also called instances. In our view of terminological knowledge, instances can
be defined by stating their membership in a class. Further, we can define
instances of binary relations by stating that two objects form such a pair.

Definition 3.4 (object definitions). An object definition is an axiom of
one of the following forms:

• o : c, where c is a class definition and o is an individual.
• (o1, o2) : r, where r is a relation definition and o1, o2 are object definitions.

In the following, we will consider terminological knowledge bases that consist
of such axioms. Of course, any specific ontology language will have to further
instantiate these definitions to specify logical operators between classes, etc
but for the purposes of this paper, these general definitions are sufficient.
Further, we define the signature of a terminological knowledge base to be a
triple 〈CN ,RN , IN〉, where CN is the set of all names of classes defined

3.2 Two Semantic Web ontology languages 47

in C, RN the set of all relation names and IN the set of all object names
occurring in the knowledge base.

We can define semantics and logical consequences of a terminological knowl-
edge base using an interpretation mapping .� into an abstract domain ∆ such
that:

• c� ⊆ ∆ for all class definitions c in the way defined above,
• r� ⊆ ∆ × ∆ for all relation definitions r,
• o� ∈ ∆ for all object definitions o.

This type of denotational semantics is inspired by description logics
[Donini et al., 1996]; however, we are not specific about operators that can
be used to build class definitions which are of central interest of these logics.
Using the interpretation mapping, we can define the notion of a model in the
following way:

Definition 3.5 (model of a terminological knowledge base). An inter-
pretation
 is a model for the knowledge base T if
 |= A for every axiom
A ∈ (C ∪ R ∪O), where |= is defined as follows.

•
 |= c ≡ (o1, ..., on), iff c� = {o�1 , ..., o�n}
•
 |= c1 � c2, iff c�1 ⊆ c�2
•
 |= r � (c1, c2), iff r� ⊆ c�1 × c�2
•
 |= r1 � r2, iff r�1 ⊆ r�2
•
 |= o : c, iff o� ∈ c�

•
 |= (o1, o2) : r, iff (o�1 , o�2) ∈ r�

These definitions enable us to perform reasoning across different ontologies
using the notion of logical consequence:

Definition 3.6 (logical consequence). An axiom A logically follows from
a set of axioms S if
 |= S implies
 |= A for every model
. We denote this
fact by S |= A.

In the following, we describe ontology languages in use on the semantic web
and give examples of how the notion of logical consequence is used in the
languages to derive implicit facts.

3.2 Two Semantic Web ontology languages

We now turn to a discussion of specific ontology languages that are based
on the abstract view from the previous version: RDF Schema and OWL.
Quite a few other sources already exist that give general introductions
to these languages. Some parts of the RDF and OWL specifications are
intended as such introductions (in particular [Manola and Miller, 2003],

48 3 Ontology languages for the Semantic Web

[McGuinness and van Harmelen, 2003] and [Smith et al., 2003]), and
also didactic material such as [Antoniou and van Harmelen, 2004] and
[Antoniou and van Harmelen, 2003].

Our presentation is structured along the layering of OWL: OWL Lite, OWL
DL and OWL Full. This layering is motivated by different requirements that
different users have for a Web ontology language:

• RDF(S) is intended for those users primarily needing a classification hier-
archy

• OWL Lite adds the possibility to express (in)equalities and and simple
constraints on such hierarchies

• OWL DL supports those users who want the maximum expressiveness
while retaining computational completeness (all conclusions are guaran-
teed to be computable) and decidability (all computations will finish in
finite time).

• OWL Full is meant for users who want maximum expressiveness and syn-
tactic freedom with no computational guarantees.

Before discussing the language primitives of OWL Lite, we first discuss lan-
guage elements from RDF and RDF Schema (RDF(S) for short). In order to
obtain a strict layering in our discussion, we will restrict our discussion of
RDF(S) to the case where the vocabulary is strictly partitioned, as described
in [Antoniou and van Harmelen, 2004]1:

“Any resource is allowed to be only a class, a data type, a data type
property, an object property, an individual, a data value, or part of
the built-in vocabulary, and not more than one of these. This means
that, for example, a class cannot at the same time be an individual,
[...]”

In terms of the abstract model of Sect. 3.1, this amounts to requiring that
the elements C,R and O that make up a terminological knowledge base T in
Definition 3.1 are pairwise disjoint.

Under this restriction, we have the following strict inclusion-relationship2:

RDF(S) ⊂ OWL Lite ⊂ OWL DL ⊂ OWL Full,

where ⊂ stands for both syntactic and semantic inclusion, in other words:
every syntactically correct RDF(S) statement is also a correct OWL Lite
statement, and every valid RDF(S) inference is also a valid OWL Lite
inference (and similarly for the other cases).

1 Also called “type separation” in [McGuinness and van Harmelen, 2003]
2 When dropping the restriction of a partitioned vocabulary for RDF(S), the first

inclusion relationship no longer holds

3.2 Two Semantic Web ontology languages 49

Before we discuss the different language primitives that we encounter along
this set of inclusions, we first list some of our notational conventions.

We use the normative abstract syntax for OWL as defined in
[Patel-Schneider et al., 2002b]. While this syntax in only meant for OWL it-
self, we use the same syntax for introducing RDF(S) in order to clarify the
relation between the languages3. We will use symbols ci for classes (i.e. cor-
responding to elements of C from Definition 3.1), ei for instances of classes
(i.e. corresponding to elements of O from Definition 3.1), pi for properties be-
tween ei (i.e. corresponding to elements of R from Definition 3.1) and oi for
ontologies. Whenever useful, we will prefix classes and instances with pseudo-
namespaces to indicate the ontology in which these symbols occur, e.g. o1 e1

and o2 e1 are two different instances, the first occurring in ontology o1, the
second in ontology o2.

3.2.1 RDF Schema

The most An elementary building block of RDF(S) is a class, which defines a
group of individuals that belong together because they share some properties.
The following states that an instance e belongs to a class c:

Individual(e type(c)) (“e is of type c”).

This corresponds to the first clause of Definition 3.4 of Sect. 3.1.

The second elementary statement of RDF(S) is the subsumption relation be-
tween classes: subClassOf (the second clause of Definition 3.2):

subClassOf(ci cj)

In RDF, instances are related to other instances through properties:

Individual(ei value(p ej))

(the second clause of Definition 3.4). Properties are characterized by their
domain and range:

ObjectProperty(p domain(ci)range(cj))

(the first clause of Definition 3.3).

Finally, just as with classes, properties are organized in a subsumption hier-
archy:

SubPropertyOf(o1 : pi o2 : pj)

(the second clause of Definition 3.3).
3 Note that the semantics of the same constructs in RDF(S) and OWL can differ

50 3 Ontology languages for the Semantic Web

3.2.2 OWL Lite

One of the significant limitations of RDF Schema was the inability to make
equality claims between individuals. Such equality claims are possible in OWL
Lite:

SameIndividual(ei ej)

Besides equality between instances, OWL Lite also introduces constructions
to state equality between classes and between properties. Although such equal-
ities could already be expressed in an indirect way in RDF(S) 4, this can be
done directly in OWL Lite:

EquivalentClasses(c1 cj)
EquivalentProperties(p1 pj)

Just as importantly, as making positive claims about equality or subsumption
relationships, is stating negative information about inequalities. A significant
limitation of RDF(S)5 is the inability to state such inequalities. Since OWL
does not make the unique name assumption, two instances ei and ej are not
automatically regarded as different. Such an inequality must be explicitly
stated, as:

DifferentIndividuals(ei ej)

Because inequality between individuals is an often occurring and important
statement (in many ontologies, all differently named individuals are assumed
to be different, i.e. they embrace the unique name assumption), OWL Lite
provides an abbreviated form:

DifferentIndividuals(e1 ... e4)

abbreviates the six DifferentIndividuals statements that would have been
required for this.

Whereas the above constructions are aimed at mapping instances and classes,
OWL Lite also has constructs specifically aimed at properties. An often oc-
curring phenomenon is that two a propety can be modelled in two directions.
Examples are ownerOf vs. ownedBy, contains vs. isContainedIn, childOf vs.
parentOf and countless others. The relationship between such pairs of prop-
erties is established by stating

ObjectProperty(pi inverseOf(pj))

Other vocabulary in OWL Lite (namely TransitiveProperty and
SymmetricProperty are modifying a single property, rather then establish-
ing a relation between two properties:
4 through a pair of mutual Subclassof or SubPropertyOf statements.
5 but motivated by a deliberate design decision concerning the computational and

conceptual complexity of the language

3.2 Two Semantic Web ontology languages 51

ObjectProperty(o1 : pi Transitive)
ObjectProperty(o1 : pi Symmetric)

Another significant limitation of RDF(S) is the inability to state whether a
property is optional or required (in other words: should it have at least one
value or not), and whether it is single- or multi-valued (in other words: is it al-
lowed to have more than one value or not). Technically, these restrictions con-
stitute 0/1-cardinality constraints on the property. The case where a property
is allowed to have at most one value for a given instance (i.e. a max-cardinality
of 1) has a special name: FunctionalProperty. The case where the value of a
property uniquely identifies the instance of which it is a value (i.e. the inverse
property has a max-cardinality of 1) is called InverseFunctionalProperty.
These two constructions allow for some interesting derivations under the OWL
semantics: If an ontology models that any object can only have a single “age”:

(ObjectProperty age Functional)

then different age-values for two instances ei and ej allow us to infer that

DifferentIndividuals(ei ej)

(if two objects ei and ej have a different age, they must be different objects).
Similarly, if an ontology states that social security numbers uniquely identify
individuals, i.e.

ObjectProperty(hasSSNInverseFunctional)

then the two facts

Individual(ei value(hasSSN 12345))
Individual(ej value(hasSSN 12345))

sanction the derivation of the fact

SameIndividuals(ei ej)

Although RDF(S) already allows to state domain and range restrictions, these
are very limited. OWL Lite allows more refined version of these:

Class(cirestriction(piallValuesFrom(cj)))

says that all pi-values for members of ci must be members of cj . This differs
from the RDF(S) range restriction

ObjectProperty(p range(cj))

which says that all pi-values must be members of cj , irrespective of whether
they are members of ci or not. This allows us to use the same property-name

52 3 Ontology languages for the Semantic Web

pi with different range restrictions cj depending on the class ci to which pi is
applied. For example, take for pi the property Parent. Then Parents of cats
are cats, while Parents of dogs are dogs. An RDF(S) range restriction would
not be able to capture this.

Similarly, although in RDF(S) we can define the range of a property, we cannot
enforce that properties actually do have a value: we can state the authors write
books:

ObjectProperty(write domain(author)range(book))

but we cannot enforce in RDF(S) that every author must have written at least
one book. This is possible in OWL Lite:

Class(authorrestriction(writesomeValuesFrom(book)))

Technically speaking, these are just special cases of the general cardinality
constraints allowed in OWL DL. The someValuesFrom corresponds to a min-
cardinality constraint with value 1, and the functional property constraint
mentioned above corresponds to a max-cardinality constraint with value 1.
These can also be stated directly:

Class(authorrestriction(writeminCardinality(1)))
Class(objectrestriction(agemaxCardinality(1)))

When a property has a minCardinality and maxCardinality constraints
with the same value, these can be summarised by a single exact Cardinality
constraint.

3.2.3 OWL DL

With the step from OWL Lite to OWL DL, we obtain a number of additional
language constructs. It is often useful to say that two classes are disjoint
(which is much stronger than saying they are merely not equal):

DisjointClasses(ci cj)

OWL DL allows arbitrary Boolean algebraic expressions on either side of an
equality of subsumption relation. For example

SubClassOf(ci unionOf(cj ck))

In other words: ci is not subsumed by either cj or ck, but is subsumed by their
union. Similarly

EquivalentClasses(ci intersectionOf(cjck))

in other words: although ci is subsumed by cj and ck (a statement already
expressible in RDF(S)), stating that ci is equivalent to their intersection is

3.2 Two Semantic Web ontology languages 53

much stronger. An obvious example to think of here is “old men”: “old men”
are not just both old and men, but they are exactly the intersection of these
two properties.

Of course, the unionOf and intersectionOf may be taken over more than
two classes, and may occur in arbitrary Boolean combinations.

Besides disjunction (unionOf) and conjunction (intersectionOf), OWL
DL completes the Boolean algebra by providing a construct for negation:
complementOf:

complementOf(ei ej)

In fact, arbitrary class expressions can be used on either side of subsumption
or equivalence axioms.
There are cases where it is not possible to define a class in terms of such
algebraic expressions. This can be either impossible in principle. In such cases
it is sometimes useful to simply enumerate sets of individuals to define a class.
This is done in OWL DL with the oneOf construct (corresponding to the first
clause of Definition 3.2):

EquivalentClasses(cj oneOf(e1 ... en))

Similar to defining a class by enumeration, we can define a property to have
a specific value by stating the value:

Class(cirestriction(pjhasValue ek)

The extension from OWL Lite to OWL DL also lifts the restriction on cardi-
nality constraints to have only 0/1 values.

3.2.4 OWL Full

As explained in Sect. 3.2, OWL Lite and DL are based on a strict segmen-
tation of the vocabulary: no term can be both an instance and a class, or
a class and a property, etc. A somewhat less strict proposal is RDFS(FA)
[Pan and Horrocks, 2003], which does allow a class to be an instance of
another class, as long as this is done in a stratified fashion. Full RDF(S) is
much more liberal still: a class c1 can have both a type and a subClassOf
relation to a class c2, and a class can even be an instance of itself. In fact,
the class Class is a member of itself. OWL Full inherits from RDF(S) this
liberal approach.

Schreiber [Schreiber, 2002] argues that this is exactly what is needed in many
cases of practical ontology integration. When integrating two ontologies,
opposite commitments have often been made in the two ontologies on whether
something is modelled as a class or an instance. This is less unlikely than it

54 3 Ontology languages for the Semantic Web

may sound: is “747” an instance of the class of all airplane-types made by
Boeing or is “747” a subclass of the class of all airplanes made by Boeing, and
are particular jet planes instances of this subclass? Both points of view are
defensible. In OWL Full, it is possible to have equality statements between a
class and an instance.

In fact, just as in RDF Schema, OWL Full allows us even to apply the construc-
tions of the language to themselves. It is perfectly legal to (say) apply a max-
cardinality constraint of 2 on the subClassOf relationship. Of course, building
any efficient reasoning tools that support this very liberal self-application of
the language is out of the question.

3.2.5 Computational Complexity

The layering in RDF(S), OWL Lite, OWL DL and OWL Full was motivated by
different criteria, such as user requirements, difficulty of building tool support,
and computational complexity. More recently, an interesting new “layer” in
the OWL hierarchy has been identified, called OWL-DLP [Grosof et al., 2003].
This collection of OWL primitives has been carefully identified so as so en-
able the use of “off the shelve” implementation technology for inferencing and
query-answering over OWL ontologies, in particular deductive database tech-
nology and Logic Programming6 [Motik et al., 2004]. In a nutshell, DLP is
the maximal fragment of OWL that can be converted to (disjunctive) logic
programs. DLP is of particular interest in semantic integration problems: In
Chap. 6 on semantic integration, we will make crucial use of the notion of a
“conjunctive query” the same holds for the definition of mappings between
distributed ontologies in Chap. 10. Such conjunctive queries can indeed be
expressed in terms of the DLP fragment, and can be given an efficient imple-
mentation, based on the results in [Motik et al., 2003].

3.2.6 Simple relations between ontologies

Since the prime interest of this work is not in ontologies per se, but in
ontologies for information sharing, we will illustrate how some of the lan-
guage constructions of RDF(S) and OWL can be used for expressing simple
mappings between different ontologies. This is of course somewhat uncon-
ventional: both RDF Schema and OWL are designed to express ontologies,
and not primarily to express mappings between ontologies. Nevertheless, it
will turn out that many useful mappings between OWL ontologies can be
expressed in RDF Schema and OWL.

The general setting will be that o1 and o2 are two ontologies between which
we want to establish mappings by writing a further set of OWL statements
6 which explains the name: Description Logic Programs

3.2 Two Semantic Web ontology languages 55

involving terms from both ontologies. We will write with oi : e to denote an
instance of ontology oi

Multiple namespaces

Since RDF(S) allows the use of terms from different namespaces in a single
RDF document, this can equally well be used to state the most elementary
form of ontology mapping:

Individual(o1 : e type(o2 : c))

In other words: an instance from o1 belongs (also) to a class from o2. This
allows us to state ontology mappings by simply enumerating such statements
for as many o1 : ei as possible.

SubclassOf

Although a trivial observation, even the simple mechanism of SubClassOf
has turned out to be enough to express the results of a significant case study
in ontology mapping: a mapping between significant subsets of Yahoo and
OpenDir was expressed entirely in statements of the above form.

Although RDF(S) does not contain an explicit equality construct, equality
of classes from two different ontologies can be expressed by adding the dual
subsumption statement:

subClassOf(o2 : cj o1 : ci)

Strangely enough, there is no way in RDF(S) to state equality between
individuals. Thus, given two instances o1 : ei and o2 : ej that both model the
same real-world entity, there is no way of stating this in RDF(S)7.

Properties

If a property o1 : p with domain o1 : ci is also applicable to elements from
another ontology, it would be nice to be able to state

ObjectProperty(o1 : p domain(o2 : ck))

but unfortunately the intersection semantics of domain and range do not
have the right effect here: the domain of p would be restricted to the
intersection of o1 : ci and o2 : ck, which is unlikely to be what is intended.

7 Some consider this to be the most important deficiency in the design of RDF(S)

56 3 Ontology languages for the Semantic Web

An alternative technique is to make no additional domain or range statements,
but instead to relate the domains and ranges of the properties in the different
ontologies to each other by subsumption statements:

ObjectProperty(p domain(o1 : ci)) (3.1)
SubClassOf(o1 : ci o2 : cj) (3.2)

Note that if we now have some instance o2 : e1 in the domain of the relation
p then the RDF(S) semantics of (3.1) implies

Individual(o2 : e1 type(o1 : ci))

This, together with the RDF(S) semantics of (3.2) implies that

Individual(o2 : e1 type(o2 : cj)

In other words, this behaves just as if p also has o2 : cj as its domain, which
is exactly what we intended8. Of course, a similar construction can be made
for the range of a property.

Again as with classes, it is possible to make equality claims between properties
with a pair of dual subPropertyOf statements.

Transitive properties

Stating transitivity, as in

ObjectProperty(o1 : pi Transitive)

does not establish any relationship between properties, but it does affect other
properties in the context of other mappings. For example, the statement

ObjectProperty(o1 : pi super(o2 : pj))

makes o2 : pj transitive on the domain of o1 : pi. Stating the converse:

ObjectProperty(o2 : pj super(o1 : pi))

extends the transitivity of o1 : pi to the domain of o2 : pj , but leaves o2 : pj

itself unchanged. Similar considerations hold for SymmetricProperty.

Disjointness

Disjointnes statements allow a strong partitioning of the classes both within
the separate ontologies and between classes from either ontology, and this is
very helpful in ontology mapping: knowing that o1 : ci is disjoint from a large
number of classes o2 : cj greatly reduces the search space when looking for
the o2 counterparts of instances of o1 : ci.
8 Also note that for this to work the subsumption relation in (3.2) should not be

the other way round

3.2 Two Semantic Web ontology languages 57

Boolean expressions

More often than not, classes in o1 do not have exact, named counterparts in
o2: for many o1 : ci there is no o2 : cj with

EquivalentClasses(o1 : ci o2 : cj)

or even
SubClassOf(o1 : ci o2 : cj)

In such cases, it is very useful to replace one or both halves of these state-
ments with a boolean expression. This allows us to state the correspondences
between combinations of classes, rather than only between single named
classes.

In fact, arbitrary class expressions can be used on either side of subsumption
or equivalence axioms. This allows for very strong mappings to be stated,
as follows. A class o1 : ci is in general defined as some expression over other
terms (classes and property restrictions) from o1. In general, there is no
named class in o2 that corresponds closely to o1 : ci. However, there might
be a class o2 : cj that is “close” to o1 : ci. OWL DL then allows arbitrary
complex expressions in o2 to be applied to o2 : cj until the result is equal to
o1 : ci. If necessary, such complex expressions can be applied on either side
of the equivalence relation.

However, it is important to realize that we have now arrived at the point where
indeed very powerful mapping relations between classes can be expressed, but
they are now so powerful that they are very hard to find or, more precisely,
useful versions of such mapping relations are very hard to find.

Enumerations

There are cases where it is not possible to define a class in terms of such
algebraic expressions. This can be either impossible in principle. In such cases
it is sometimes useful to simply enumerate sets of individuals from o1 that
correspond (either closely or exactly) to a given class in o2:

EquivalentClasses(o2 : cj oneOf(o1 : e1 ... o1 : en))

Interestingly enough, this statement does not tell us which instances of o2 : cj

correspond to which o1 : ei.

Complements

Sometimes two ontologies divide the universe into similar sections, but decide
to give a name to the opposite halves. An example is having a class in o1 for
all national citizens (say o1 : e), and in o2 a class for all foreigners (say o2 : e′).
A simple mapping statement in that case is:

complementOf(o1 : e o2 : e)

58 3 Ontology languages for the Semantic Web

3.3 Other Web-based ontology languages

Besides the two standards RDF Schema and OWL discussed above, a
number of other approaches for encoding ontologies on the World Wide
Web have been proposed. A comparison of these languages is reported in
[Gomez-Perez and Corcho, 2002]. We will now briefly review the results of
this comparison and discuss implications for our work.

Besides RDF Schema and OWL9, which have been introduced above, the
comparison reported in [Gomez-Perez and Corcho, 2002] includes the follow-
ing languages that have been selected on the basis of their aim of supporting
knowledge representation on the Web and their compatibility to the Web
standards XML or RDF.

• XOL (XML-based ontology language). XOL [Karp et al., 2002] has been
proposed as a language for exchanging formal knowledge models in the do-
main of bio-informatics. The development of XOL has been guided by the
representational needs of the domain and by existing frame-based knowl-
edge representation languages.

• SHOE (simple HTML ontology extension). SHOE[Luke and Hefflin, 2002]
was created as an extension of HTML for the purpose of defining machine-
readable semantic knowledge. The aim of SHOE is to enable intelligent
Web agents to retrieve and gather knowledge more precisely than it is
possible in the presence of plain HTML documents.

• OML: (ontology markup language). OML [Kent, 2002] is an ontology lan-
guage that has initially been developed as an XML serialization of SHOE.
Meanwhile, the language consists of different layers with increasing expres-
siveness. The semantics especially of the higher levels is largely based on
the notion of conceptual graphs. In the comparison, however, only a less
expressive subset of OML (simple OML) is considered.

• OIL (ontology inference layer). OIL [Fensel et al., 2001] is an attempt to
develop an ontology language for the Web that has a well defined seman-
tics and sophisticated reasoning support for ontology development and
use. The language is constructed in a layered way starting with core-OIL,
providing a formal semantics for RDF Schema, standard-OIL, which is
equivalent to an expressive description logic with reasoning support, and
Instance OIL that adds the possibility of defining instances.

We have to mention that there is a strong relationship between the OIL
language and RDF Schema as well as DAML+OIL. OIL extends RDF Schema
and has been the main influence in the development if DAML+OIL. The
9 Actually, [Gomez-Perez and Corcho, 2002] discuss DAML+OIL instead of OWL.

DAML+OIL [Patel-Schneider et al., 2002a] is the direct precursor of OWL, and
all of the conclusions from [Gomez-Perez and Corcho, 2002] about DAML+OIL
are also valid for OWL

3.3 Other Web-based ontology languages 59

main difference between OIL and DAML+OIL is an extended expressiveness
of DAML+OIL in terms of complex definitions of individuals and data types.
DAML+OIL in turn has been the basis for the development of OWL, which
carries the stamp of an official W3C recommendation. All observations on
DAML+OIL in this comparison also apply to OWL.

Table 3.1. Comparison of web ontology languages with respect to concepts and
taxonomies (taken from [Gomez-Perez and Corcho, 2002])

XOL SHOE OML RDS/S OIL DAML+OIL

Partitions – – + – + +

Attributes

Instance attr. + + + + + +
Class attr. + – + – + +
Local scope + + + + + +
Global scope + – + + + +

Facets

Default values + – – – – –
Type constr. + + + + + +
Cardinalities + – – – + +

Taxonomies

Subclass of + + + + + +
Exhaustive comp. – – + – + +
Disjoint comp. – – + – + +
Not subclass of – – – – + +

The comparison of the languages mentioned above was carried out on the basis
of the set of elements contained in the language and their ability to encode
semantic information about a domain in terms of the following aspects:

• Concepts and taxonomies. Ontologies usually group objects of the World
that have certain properties in common (e.g. cities or countries). A de-
scription of the shared properties is called a concept definition. Concepts
can be arranged into a subclass–superclass relation in order to be able
to further discriminate objects into subgroups (e.g. capitals or European
countries).

• Relations. Objects of the same type normally occur in similar situations
where they have a certain relation to each other (cities lie in countries,
countries have a capital). These typical relations can often be specified in
order to establish structures between groups of objects.

• Instances. Sometimes single objects (e.g. the continent of Europe) play a
prominent role in a domain of interest or the membership to a concept is
defined by the relation to a specific object (European countries are those

60 3 Ontology languages for the Semantic Web

contained in Europe). For this purpose ontology languages often allow to
specify single objects, also called instances.

• Axioms. Sometimes a domain follows certain rules that cannot be ex-
pressed with the elements discussed above (e.g. the fact that the number
of inhabitants of Europe equals the sum of the numbers of inhabitants of
European countries). In order to capture these rules some languages allow
us to specify axioms in a formal logic.

The comparison revealed significant differences in terms of expressiveness
of the different languages. An overview of the results with respect to class
definitions and taxonomies is given in Table 3.1. Gomez-Perez and Corcho
suggest that before choosing one of the languages, an analysis of the represen-
tational needs of a particular application has to be carried out. The result of
this analysis should guide the selection of one of the languages considered in
the comparison. Assuming that developers of Web-based information follow
this suggestion, we will have to be able to handle all of these languages in
order to support information sharing.

This observation appears to be quite discouraging. However, the comparison
also reveals that DAML+OIL, the predecessor of OWL, is the most expressive
language for encoding ontologies on the Web. Therefore we can assume that
if we are able to handle OWL models, we should in principle also be able to
understand and process models in the other languages, provided that we can
establish a formal framework for comparing and relating ontology languages.

3.3.1 Languages for expressing ontology mappings

OWL was of course primarily intended for expressing ontologies themselves,
and not for expressing mappings between them. Other mechanisms have been
designed specifically for this purpose. The PROMPT ontology-operation
tables are a good example [Noy and Musen, 2004], containing such operations
as adding, splitting and merging classes in order to transform one given
ontology into another. Another example is the proposal for an OWL rule
language10, where the rules can express much more complicated transforma-
tions between classes from the different ontologies than is possible in OWL.
The standard example is the mapping of the uncle relation in one ontology
to the composition of the brother and child relations of another ontology.
This can be trivially expressed in the OWL rule language, but cannot be
expressed in OWL itself. Another proposal is the proposed C-OWL extension
of OWL [Bouquet et al., 2003], where directional bridge rules are used to
express relations between different ontologies.

10 http://www.cs.man.ac.uk/∼horrocks/DAML/Rules/

3.4 Conclusions 61

It is not surprising that these purpose-designed mapping formalisms are more
expressive than (ab)using OWL itself for a goal it was not designed for. Nev-
ertheless, we have seen that OWL can be used to describe a substantial and
interesting set of relations between different ontologies.

3.4 Conclusions

We have seen in this chapter that a stack of languages is available for repre-
senting ontological information on the Semantic Web: RDF Schema and the
various OWL sublanguages. These languages offer an increasing degree of ex-
pressiveness. Their development is based on a history of different languages
which have all to some degree contributed to the final W3C standards that
now form a stable basis for Semantic Web development.

Further reading

Gomez-Perez and Corcho compare different proposals for web-based
ontology languages [Gomez-Perez, 2002]. The development of the cur-
rent language standard is documented in different publications, in
particular in [Fensel et al., 2001], [Patel-Schneider et al., 2002a] and
[Antoniou and van Harmelen, 2003]. A textbook introduction to Seman-
tic Web languages is [Antoniou and van Harmelen, 2004].

Part II

Creating ontologies and metadata

4

Ontology creation

Summary. In the last chapter we discussed languages for explicating
information semantics and argued for the need of an integration at
the language level. We now draw attention to the nature and the
content of ontologies needed to support information sharing. The goal
is to define an architecture combining the advantages of global and
local ontologies and to show how this infrastructure can be derived
from an information-sharing task.

The acquisition of semantic knowledge has been identified to be a major
bottleneck not only in information sharing but also in many other areas
going back to expert-system development. A whole scientific discipline
called knowledge engineering is devoted to the task of providing tools and
methods for supporting the knowledge acquisition and formalization process
[Studer et al., 1998]. In connection with the interest in ontologies as a key
technology in knowledge and information sharing, the term “ontological
engineering” has become popular [Farquhar and Gruninger, 1997] and
a number of methodologies for creating ontologies have been proposed
[Gomez-Perez and Juristo, 1997, Uschold, 1996]. However, these methods are
very general in nature as they aim at providing general guidelines for all
kinds of ontologies and purposes. We therefore propose a specialized strategy
for the explication of information semantics.

In this chapter, we first review existing work on ontology engineering. We re-
view existing methodologies and focus on approaches that have been proposed
in combination with the task of integrating and sharing information. We con-
clude that existing methodologies do not address the problem of building a
representational infrastructure like the one introduced in Chap. 2. We present
an iterative approach for building source ontologies and shared vocabularies
in a bottom-up fashion. We discuss the general process and useful resources
and illustrate the method using a real life integration task.

66 4 Ontology creation

4.1 Ontological engineering

The previous sections provided information about the use and importance
of ontologies. Hence, it is crucial to support the development process of
ontologies. In this section, we will describe how the systems provide support
for the ontological engineering process.

Recently, several articles about ontological developments have been published.
Jones and others [Jones et al., 1998] provide a short overview of existing
approaches (e.g. METHONTOLOGY [Gomez-Perez and Juristo, 1997] or
TOVE [Fox and Grninger, 1998]). Uschold [Uschold, 1996] and Gomez-Perez
and others [Gomez-Perez et al., 1996] propose methods with phases that are
independent of the domain of the ontology. These methods are of a good
standard and can be used for comparisons. In this section, we focus on the
proposed method from Uschold and Gruninger as a “thread” and discuss how
the integrated systems evaluated in this chapter are related to this approach.

Uschold defines four main phases:

1. Identifying a purpose and scope: specialization, intended use, scenarios,
set of terms including characteristics and granularity

2. Building the ontology:
(a) Ontology capture: knowledge acquisition, a phase interacting with re-

quirements of phase 1.
(b) Ontology coding: structuring of the domain knowledge in a conceptual

model.
(c) Integrating existing ontologies: re-use of existing ontologies to speed

up the development process of ontologies in the future.
3. Evaluation: verification and validation.
4. Guidelines for each phase.

In the following paragraphs we describe integration systems and their
methods for building an ontology. Further, we discuss systems without an
explicit method where the user is only provided with information in the
direction in question. The second type of systems can be distinguished from
others without any information about a methodology. This is due to the fact
that they assume that ontologies already exist.

Infosleuth

This system semi-automatically constructs ontologies from textual databases
[Hwang, 1999]. The methodology is as follows: first, human experts provide a
small number of seed words to represent high-level concepts. This can be seen
as the identification of purpose and scope (phase 1). The system then pro-
cesses the incoming documents, extracting phrases that involve seed words,

4.1 Ontological engineering 67

generates corresponding concept terms, and then classifies them into the
ontology. This can be seen as ontology capturing and part of coding (phases
2 and 2). During this process the system also collects seed word-candidates
for the next round of processing. This iteration can be completed for a
predefined number of rounds. A human expert verifies the classification after
each round (phase 3). As more documents arrive, the ontology expands and
the expert is confronted with the new concepts. This is a significant feature
of this system. Hwang calls this “discover-and-alert” and indicates that this
is a new feature of his methodology. This method is conceptually simple and
allows effective implementation. Prototype implementations have also shown
that the method works well. However, problems arise within the classification
of concepts and distinguishing between concepts and non-concepts.

Infosleuth requires an expert for the evaluation process. When we consider
that experts are rare and their time is costly this procedure is too expert-
dependent. Furthermore, the integration of existing ontologies is not men-
tioned. However, an automatic verification of this model by a reasoner would
be worthwhile considering.

KRAFT

This system offers two methods for building ontologies: the building of
shared ontologies [Jones et al., 1998] and extracting of source ontologies
[Pazzaglia and Embury, 1998].

The steps of the development of shared ontologies are (a) ontology scoping,
(b) domain analysis, (c) ontology formalization, (d) top-level ontology.
The minimal scope is a set of terms that is necessary to support the
communication within the KRAFT network. The domain analysis is based
on the idea that changes within ontologies are inevitable and the means
to handle changes should be provided. The authors pursue a domain-led
strategy [Patil et al., 1991], where the shared ontology fully characterizes the
area of knowledge in which the problem is situated. Within the ontology
formalization phase the fully characterized knowledge is defined formally in
classes, relations and functions. The top-level ontology is needed to introduce
predefined terms/primitives.

If we compare this to the method of Uschold and Gruninger we can conclude
that ontology scoping is weakly linked to phase 1. It appears that ontology
scoping is a set of terms fundamental for the communication within the
network and therefore can be seen as a vocabulary. On the other hand, the
authors say that this is a minimal set of terms, which implies that more terms
exist. The domain analysis refers to phases 1 and 2, whereas the ontology
formalization refers to phase 2. Existing ontologies are not considered.

68 4 Ontology creation

Pazzaglia and Embury [Pazzaglia and Embury, 1998] introduce a bottom-up
approach to extract an ontology from existing shared ontologies. This ex-
traction process consists of two steps. The first step is a syntactic translation
from the KRAFT exportable view (in a native language) of the resource
into the KRAFT schema. The second step is the ontological upgrade, a
semi-automatic translation plus knowledge-based enhancement, where local
ontology adds knowledge and further relationships between the entities in
the translated schema.

This approach can be compared to phase 2, the integration of existing
ontologies. In general, the KRAFT methodology lacks the evaluation of
ontologies and the general-purpose scope.

Most Information integration systems, such as PICSEL, OBSERVER,
BUSTER and COIN either have no methods or do not discuss them to cre-
ate ontologies. After reading papers about these various systems it becomes
obvious that there is a lack of a “real” methodology for the development of
ontologies. We believe that the systematic development of the ontology is
extremely important and therefore the tools supporting this process become
even more significant.

4.2 Building an ontology infrastructure for Information
sharing

The integration process sketched above relies on the existence of a shared
ontology suitable to define concepts from all terminologies to be integrated
in sufficient detail. This requirement is a challenge with respect to ontology
building. In order to support this difficult task, we propose a development
strategy that is tailored to the purpose of building shared ontologies. In this
section we give an overview of the development process.

The process

The proposed strategy is based on stepwise refinement. It consists of five steps
that are executed in an iterative process resulting in a partial specification of
the shared ontology. The last step of each run is an evaluation step that
triggers one of the previous steps in order to extend and refine the ontology
if necessary. Fig. 4.1 illustrates the process model; the individual steps are
briefly described below.

1. Finding common concepts. The first step is to examine the translation
task. Asking the question “what do I want to translate?” leads to a concept
that subsumes all classes from the source and destination systems. Because
this concept makes a semantic translation from one source into another

4.2 Building an ontology infrastructure for Information sharing 69

possible we call it a bridge concept. By defining its properties and attribute
values we achieve the needed shared vocabulary. The most general bridge
concept is “top”, a concept that subsumes every other possible concept.
For an exact classification it is recommended to choose the bridge concept
as concretely as possible. If needed, more than one bridge concept can be
defined to enable semantic translation.

2. Definition of properties. The next step is to define properties that describe
the chosen bridge concepts. A car, for instance, can be described through
its color, its brand, its price, etc.

3. Finding property values. Once we have defined the properties, we search
for values which can fill the attributes. These “fillers” are the main part
of the shared vocabulary.

4. Adapt ontology. The use of existing sources of information will not al-
ways be sufficient to describe all concepts of an information source. We
sometimes have to handle very specific distinctions made in a system that
hardly occur in standard terminologies. In order to capture these sub-
tle differences we have to invent application-specific terms as part of the
shared vocabulary.

5. Refine definitions. The introduced strategy follows the “evolving” life cy-
cle. It allows the engineer to step back all the time to modify, add and
remove ontology definitions, e.g. refining the bridge concept or integrating
further taxonomies into the shared vocabulary.

Each of the steps modifies a different aspect of the shared ontology. While
step 1 is concerned with the central concept definition, step 2 defines slots,
step 3 integrates existing taxonomies and step 4 generates application-specific
taxonomies. These facts are useful in order to determine where to go back to
if the evaluation step reveals the inability to describe a certain aspect of a
terminology to be integrated.

Fig. 4.1. Steps of the development process

70 4 Ontology creation

Sources of information

The use of the ontology to be built as a common basis for communication be-
tween systems makes it necessary to stay as closely as possible to a vocabulary
and conceptualization of the domain that is widely accepted as a standard. In
order to meet this requirement, we use several sources of information to build
upon. These information sources are existing ontologies and thesauri as well
as scientific classifications and data catalogues.

• Top-level ontologies are mainly used to find the bridge concept which acts
as a template for the definition of all terms to be translated. In most cases,
the bridge concept is obvious; however, the use of an upper level ontology
provides us with a vocabulary which is partly standardized.

• Scientific classifications are another form of standards describing the con-
ceptualization of a domain. Classifications like taxonomies of animals or
plants are common knowledge which can be used to specify concepts from
domain-specific ontologies.

• Domain thesauri contain typical terms used in an application domain;
therefore, they are a natural source for finding concept names for the
shared ontology. Further, many thesauri contain at least free-text defini-
tions of the terms included. These definitions provide guidance for the
definition of concepts.

• Linguistic thesauri are used to supplement information taken from domain-
specific thesauri. In contrast to the specialized vocabulary defined in
domain-specific thesauri, linguistic thesauri can be used to identify cor-
respondences between terms found in different information sources. Es-
pecially, we use linguistic thesauri to expand the search for definitions of
terms to their synonyms.

• Data catalogues finally contain the definitions of the terminology to be
modelled. Therefore, they define the concepts to be modelled and are the
basis for evaluating the expressiveness of the shared ontology at a specific
point in the modelling process.

In the course of the modelling process, we stick as closely as possible to
the information from the sources mentioned above. Therefore, the selection of
these sources, though not discussed in this book, is an important step when
building a shared ontology.

4.3 Applying the approach

We performed a case study in order to assess the general strategy described
above. In the following we will describe the task of this case study and give
an impression of how the strategy helps to build the models needed to solve
it.

4.3 Applying the approach 71

4.3.1 The task to be solved

Geographical information systems normally distinguish different types of
spatial objects. Different standards exist specifying these object types. These
standards are also called catalogues. Since there is more than one standard,
these catalogues compete with each other. To date, no satisfactory solution
has been found to integrate these catalogues. In our evaluation we concentrate
on different types of areas distinguished by the type of use.

In order to address the semantic translation problem we assume a scenario
where the existing land-administration database that is normally based on
the ATKIS catalogue, which is the official standard for most administra-
tions, should be updated with new information extracted from satellite images
of some area. Satellite images are normally analyzed using image-processing
techniques resulting in a segmentation of different areas which are classified
according to the CORINE landcover nomenclature, a standard for the seg-
mentation and classification of satellite images. The process of updating the
land-administration system with this new data faces two main problems:

1. The boundaries of the objects in the database might differ from the bound-
aries determined on the satellite image.

2. The class information attached to areas on the satellite image and the
type information in the land-administration system do not match.

The first problem is clearly beyond the scope of our investigation, but the
second is a perfect example of a semantic translation problem. A successful
integration of the two information sources will come with the following
benefits for the user of the systems: (a) integrated views and (b) verification.
An integrated view from the user’s perspective merges the data between the
catalogues. This process can be seen as two layers which lay on top of each
other. The second option gives users the opportunity to verify ATKIS-OK-250
data with CORINE landcover data or vice versa.

The basis for our experiment is a small CORINE landcover dataset containing
information about the town “Bad Nenndorf” in Lower Saxony. This dataset
is available from the German Environmental Agency in different formats and
classifications and can therefore be used to compare and evaluate results. In
our case study, we want to find out whether land-use classes from the CORINE
landcover dataset can be semantically translated into the classification used
by the ATKIS catalogue. Such a translation could be the basis for both the
generation of an integrated view of the information in both systems and for a
validation of ATKIS data with up-to-date satellite images. Fig. 4.3.1 illustrates
the integration problem.

72 4 Ontology creation

S
Class
Forests...

Theorem-
prover

map
ATKIS-

picture
Satellite-

ATKIS

CORINE
Landcover

Objecttype
Vegetation

ATKIS

Data structure Data structure

Solution ?

Ontology

CORINE

Ontology

domain ontologies, such as plants, soiltype etc

Fig. 4.2. Deductive integration of geographic information

4.3.2 The Information Sources

The ATKIS catalogue [AdV, 1998] is an official information system in Ger-
many. It is a project of the head surveying offices of all the German states.
The working group offers digital landscape models with different scales from
1:25000 up to 1:1000000 with a detailed documentation in corresponding
object catalogues. We use the large-scale catalogue OK-1000. This catalogue
offers several types of objects including definitions of different types of areas.
Fig. 4.3 shows the different types of areas defined in the catalogue.

CORINE landcover [European Environmental Agency, 1999a] is a result of
the CORINE programme the European Commission carried out from 1985
to 1990. The results are essentially of three types, corresponding to the
three aims of the programme: (a) an information system on the state of the
environment in the European Community has been created (the CORINE
system). It is composed of a series of databases describing the environment
in the European Community, as well as of databases with background infor-

4.3 Applying the approach 73

mation. (b) Nomenclatures and methodologies were developed for carrying
out the programme, which are now used as the reference at the Community
level. (c) A systematic effort was made to coordinate activities with all the
bodies involved in the production of environmental information especially at
international level. The nomenclature developed in the CORINE programme
can be seen as another catalogue, because it also defines a taxonomy of area
types (see Fig. 4.4) with a description of characteristic properties of the
different land types.

The task of this example is that the data of the CORINE database has to be
converted into the ATKIS database. Of course, this transformation can be
viewed as a special case of an integration task demonstrating all the problems
which can occur. Besides the obvious structural heterogeneity problems, the
main problem lies in the reconciliation of the semantic heterogeneity caused
by the use of different classification schemes.

The classification schemes of land-use types in Figs. 4.3 and 4.4 illustrate
this problem. The set of land types chosen for these catalogues are biased
by their intended use: while the ATKIS catalogue is used to administrate
human activities and their impact on land use in terms of buildings and
other installations, the focus of the CORINE catalogues is on the state of
the environment in terms of vegetation forms. Consequently, the ATKIS
catalogue contains fine-grained distinctions between different types of areas
used for human activities (i.e. different types of areas used for traffic and
transportation) while natural areas are only distinguished very roughly. The
CORINE taxonomy on the other hand contains many different kinds of
natural areas (i.e. different types of cultivated areas) which are not further
distinguished in the ATKIS catalogue. On the other hand, areas used for
commerce and traffic are summarized in one type.

Despite these differences in the conception of the catalogues the definition
of the land-use types can be reduced to some fundamental properties. We
identified six properties used to define the classes in the two catalogues.
Beside size and general type of use (e.g. production, transportation or
cultivation) the kinds of structures built on top of an area, the shape of
the ground and natural vegetation as well as kinds of cultivated plants are
discriminating characteristics.

4.3.3 Sources of knowledge

For this specific integration task we chose several sources of information to be
used for guiding the development process. We briefly describe these sources
in the following.

74 4 Ontology creation

Fig. 4.3. Taxonomy of land-use types in the ATKIS OK-1000 catalogue

UpperCyc ontology

Upper Cyc, developed by the CyCorp corporation [Lenat, 1995]
(http://www.cyc.com), is an upper-level ontology that captures approxi-
mately 3 000 terms of the most general concepts of human consensus reality.
There is also a full Cyc knowledge base (KB) including a vast structure of
more specific concepts descending below Upper Cyc, the so-called top-level
ontology. It contains millions of logical axioms – rules and other assertions –
which specify constraints on the individual objects and classes found in the
real world. Therefore the Upper Cyc ontology provides a sufficient common
ground for applications. We chose Cyc as a reference for selecting the bridge
concept, because it provide a large number of higher level concepts.

4.3 Applying the approach 75

Fig. 4.4. Taxonomy of land-use types in the CORINE landcover nomenclature

GEMET

The general multilingual environmental thesaurus GEMET
[European Environmental Agency, 1999b] is a poly-hierarchically struc-
tured thesaurus which covers approximately 5 400 terms and their definitions
organized by groups, themes and terms. GEMET has been created by merg-
ing different national and international thesauri. Analysis and evaluation
work of numerous international experts and organizations led to a core
terminology of generalized environmental terms and definitions. GEMET
ensures validated indexing and cataloguing of environmental information
all over Europe. Where available, synonyms or alternate terms can be
found likewise. We chose the GEMET thesaurus as a source for definitions
of concepts and to supplement the information obtained from Cyc with
domain-specific information. These definitions provide for example insight
into useful properties of classes.

WordNet

WordNet [Fellbaum, 1998], developed by the Cognitive Science Laboratory at
Princeton University, is an on-line lexical reference system whose design is

76 4 Ontology creation

inspired by current psycholinguistic theories of human lexical memory. En-
glish nouns, verbs, adjectives and adverbs are organized into synonym sets,
each representing one underlying lexical concept. Different relations link the
synonym sets. WordNet was mainly used as a source of synonymy information
needed to look up concepts across the other knowledge sources (e.g. to find the
equivalent of a concept from Cyc to look up the domain-specific defintion).

Standard taxonomies

Scientific taxonomies can be found in many sources, like books or
the Internet. For this example we looked at the Google Webdirectory
(http://directory.google.com/Top/Science/Biology/Flora and Fauna) to ob-
tain a classification of plant life. It is in no circumstances complete, but it
satisfies our needs in this case study. We chose the classification of plants to
determine possible fillers for the properties of a class as many land types are
mostly defined by the vegetation found (e.g. mixed forest).

4.4 An example walkthrough

Based on the information described above we built up a first version of a
shared ontology which should be used to solve the integration task mentioned
in the last section. In this section we sketch the first development cycle of this
ontology using concrete modelling activities to illustrate the different steps of
our strategy using modelling example from the CORINE classification. The
corresponding definitions of ATKIS concepts that will also be created in the
different steps discussed below are not shown.

Step 1: finding bridge concepts

Looking at the given example scenario as described in Sect. 4.2 it is quite
obvious to choose a concept like “area” or “region”, because all land-use classes
are some kind of special “regions” or, in other words, “region” subsumes all
land-use classes. We search for the term “region” in the Upper CYC and get
the following definition:

“GeographicalRegion: a collection of spatial regions that include
some piece of the surface of PlanetEarth. Each element of Geograph-
icalRegion is a PartiallyTangible entity that may be represented on a
map of the Earth. This includes both purely topographical regions like
mountains and underwater spaces, and those defined by demographics,
e.g. countries and cities [· · ·]”.

Fig. 4.5 shows the hierarchical classification of the concept in the Upper Cyc.
The definition fits very well, so finally we choose ”Geographical Region” as our
bridge concept. For further refinement we write it down in the OWL notation.

Class(Geographical-Region)

4.4 An example walkthrough 77

Fig. 4.5. Geographical region in Upper Cyc

Step 2: definition of properties

Now we have to find possible attributes for the bridge concept. We look for
“Geographical Region” in GEMET, but the search does not give any results.
In that case the decomposition of the search phrase may give better results.
For “Geography” and “Region” we get these definitions out of GEMET:

“Geography: The study of the natural features of the Earth’s
surface, comprising topography, climate, soil, vegetation, etc and
Man’s response to them.”

“Region: A designated area or an administrative division of a city,
county or larger geographical territory that is formulated according to
some biological, political, economic or demographic criteria.”

In the definition of “geography”, some attributes are clearly recognizable. For
example, climate, soil, vegetation and human activities. We use vegetation to
illustrate the next steps in our method. Vegetation is a biological criterion
that defines a region, and it is also part of the scientific field “geography”.
We update the bridge concept by defining a slot “vegetation” and adding it
to the bridge concept.

Class(Geographical-Region)

ObjectProperty(vegetation domain(Geographical-Region))

78 4 Ontology creation

Step 3: integration of standard taxonomies

To get possible “attribute values” or “fillers” for the slot “vegetation”, we
take another look at GEMET. Vegetation is defined as:

“The plants of an area considered in general or as communities
[· · ·]; the total plant cover in a particular area or on the Earth as a
whole.”

We also check the synonym “flora”, found in WordNet:

“The plant life characterizing a specific geographic region or envi-
ronment.”

The attribute “vegetation” or “flora”, can be filled with terms out of
plant life like “tree” or “rose” for instance. A good top concept is “plants”,
because many scientific taxonomies of plants exists. The Swedish botanist
Carlous Linaeus established in 1753 a classification of plants. His work is
considered the foundation of modern botanical nomenclature. In the Google
Webdirectory we can access the plant kingdom with more than 10 000 entries
on-line. We integrate this taxonomy into our vocabulary, because we need
concept from it to distinguish concepts in our information sources through
the reference to this hierarchy.

Fig. 4.6. Extract from scientific plant taxonomy

Now it is possible to describe classes from the land-use catalogues. The term
“coniferous forest” in the CORINE context is defined as:

“Vegetation formation composed principally of trees, including
shrub and bush understories, where coniferous species predominate.”

In our vocabulary we find the term “coniferophyta”, comprising the conifers,
which are trees or shrubs that bear their seeds in cones, without the protection
of a fruit, like angiosperms. This leads to the following OWL class:

4.4 An example walkthrough 79

SubClassOf(Coniferous-Forest interSectionOf(

Geographical-region

restriction(vegetation

allValuesFrom(Coniferophyta))))

The division magnoliophyta of the plant kingdom consists of those organisms
commonly called the flowering plants, or angiosperms. The flowering plants
are the source of all agricultural crops, cereal grains and grasses, garden and
road-side weeds, familiar broad-leaved shrubs and trees and most ornamentals.
So, it is easy to describe the next CORINE class “broad-leaved forest”:

SubClassOf(Broad-leaved_Forest intersectionOf(

Geographical-region

restriction(vegetation

allValuesFrom(Magnoliophyta))))

A “mixed forest” in the CORINE nomenclature consists of conifers and broad-
leaved trees.

SubClassOf(Mixed_Forest intersectionOf(

Geographical-region

restriction(vegetation

someValuesFrom(Magnoliophyta))

restriction(vegetation

someValuesFrom(Coniferophyta))))

Step 4: adapt vocabulary

A closer look at the definition of the CORINE forest classes reveals that the
classes are defined through the existence of trees and shrubs. Just using the
term “magnoliophyta” does not prevent the classification of a region covered
with orchids as a broad-leaved forest (orchidaceae is a subclass of magno-
liophyta). The mentioned taxonomy classifies plants according to their way
of reproduction, therefore distinguishing angiosperm and gymnosperm trees,
shrubs and flowers. To handle this problem we need a more general distinction.

Fig. 4.7. Supplementary plant classification

Fig. 4.7 shows a simple extension of the vocabulary that enables a more robust
definition of the CORINE forest classes.

80 4 Ontology creation

SubClassOf(Coniferous-Forest intersectionOf(

Geographical-region

restriction(vegetation

allValuesFrom(Coniferophyta))

restriction(vegetation

allValuesFrom(unionOf(trees shrubs)))))

SubClassOf(Broad-leaved_Forest intersectionOf(

Geographical-region

restriction(vegetation

allValuesFrom(Magnoliophyta))

restriction(vegetation

allValuesFrom(unionOf(trees shrubs)))))

SubClassOf(Mixed_Forest intersectionOf(

Geographical-region

restriction(vegetation

someValuesFrom(Magnoliophyta))

restriction(vegetation

someValuesFrom(Coniferophyta))

restriction(vegetation

allValuesFrom(unionOf(trees shrubs)))))

The shared vocabulary developed so far allows us to specify many different
vegetation areas found in the land-use catalogues:

SubClassOf(Pastures intersectionOf(

Geographical-region

restriction(vegetation allValuesFrom(Poaceae))))

SubClassOf(vineyards intersectionOf(

Geographical-region

restriction(vegetation allValuesFrom(Vitis))))

SubClassOf(Rice_fields intersectionOf(

Geographical-region

restriction(vegetation allValuesFrom(Oryza))))

This definition might seem to be too restrictive, because it does not allow any
other plants other than the dominant species. Our goal here is not, hewever,
to provide a complete description of the concepts in terms of all the vegetation
that might be found. Such a modelling approach would be much to big an effort
to make sense. We rather want to characterize a concept by the properties that
distinguishes it from the other concepts in the hierarchy. The definitions above
satisfy this requirements. In order to make this more explicit the vegetation
property can be read as ”dominant vegetation form”.

4.4 An example walkthrough 81

Step 5: evaluation and revision

Not all CORINE landcover classes can be described after this first process
cycle. “Mineral extraction sites”, for instance, are defined as:

“Areas with open-pit extraction of minerals (sandpits, quarries) or
other minerals (opencast mines). Includes flooded gravel pits, except
for river-bed extraction.”

No vegetation is mentioned, so the bridge concept must be refined. We go
back to step 2 “defining properties” and search for another attribute. The
definitions of “region” and “geography” show some anthropological aspects,
like “Man’s response” or economic criteria. So we define a new slot ’anthro-
posphere’ and add it to our bridge concept:

Class(Geographical-Region)

ObjectProperty(vegetation

domain(Geographical-Region))

ObjectProperty(anthroposphere

domain(Geographical-Region))

In the topic area “anthroposphere” of the GEMET thesaurus we find the
term “mining district”, a district where mineral exploitation is performed.
We integrate the partial taxonomy into the vocabulary (Fig. 4.8).

Fig. 4.8. Mining sites from the GEMET thesaurus

This special vocabulary can be used to simulate one-to-one mappings by us-
ing equality axioms. The CORINE class “mineral extraction sites” could be
described as follows.

SubClassOf(Mineral-extraction-sites intersectionOf(

Geographical-region

restriction(anthroposphere

allValuesFrom(mining-district)))))

In a similar way, we proceed by iterating the process cycle until all terms from
the two catalogue systems can be modelled as a specialization of the bridge
concept. A further advantage of this strategy is the fact that the same process
will be employed when additional terminologies are to be integrated as well.
We cannot guarantee that the shared ontology also covers a new terminology,
but our strategy already provides guidance for the adaption of the ontology.

82 4 Ontology creation

4.5 Conclusions

In real applications the most important question is often not how to arrange
ontologies, but how to actually build these ontologies. This problem has
been widely recognized and some methodologies have been developed to
support the development of ontologies. In most cases, these methodologies
are very general and only provide basic guidance for the development of an
ontology infrastructure. In our approach the notion of a shared vocabulary is
essential and the development of this vocabulary therefore deserves special
attention. We had good experiences with a strategy that follows a bottom-up
approach that takes the actual integration problem as a starting point and
consults general models like top-level ontologies and linguistic resources only
if necessary. The resulting vocabularies are general enough to cover at least
a certain class of integration problems. We think that this is more valuable
than a general top-down approach because it solves real world problems
without losing the connection to basic ontological principles.

The examples given above already show that the method leads to better results
than an early hands-on approach described in [Stuckenschmidt et al., 2000].
In this early case study, we developed the shared vocabulary solely by relying
on textual description of the two catalogues mentioned above. The devel-
opment strategy proposed here results in a shared model that uses mostly
standardized terms and is well integrated with existing higher-level ontologies.

We also managed to describe more concepts with fewer properties. The use of
the vegetation property for example turned out to be sufficient for describing
about half of all concepts from both information sources. We explain this
with the richer vocabularies for describing different vegetation types we got
from scientific classifications.

An interesting side effect of the more controlled development is a harmoniza-
tion of the structure of logical expressions used to define concepts. We explain
this by the fact that the strategy forces us not to describe a concept com-
pletely without comparing it to other definitions. The strategy rather forces
us to define restrictions for a particular property for many concepts in paral-
lel. This direct comparison makes it easier to capture the specific structure of
the logical expression required in contrast to the definition of other concepts.

Further reading

Further information about the information sources used for ontology de-
velopment can be found in the official documentation published, by the
German administration [AdV, 1998] and the European environment agency
[European Environmental Agency, 1999a]. The Cyc ontology, the WordNet

4.5 Conclusions 83

lexical database and the GEMET thesaurus used for identifying and charac-
terizing the bridge concept are described in [Lenat, 1995], [Fellbaum, 1998]
and [European Environmental Agency, 1999b], respectively. A detailed doc-
umentation of an earlier attempt to model the information sources with the
ontology language OIL is described in [Stuckenschmidt et al., 2000].

5

Metadata generation

Summary. In the previous chapter, we defined a general architecture
for describing information semantics in terms of ontologies that are
derived from shared terminologies of a domain and encoded using ter-
minological languages in order to give them a clean, model-theoretic
semantics. We also presented a strategy for building these ontologies.
What is still missing at the moment is a strategy of how to actually
relate information to its semantics encoded in source ontologies. In
this chapter, we will discuss how weakly structured information can
be linked to the ontology infrastructure described in the previous
chapters using metadata.

Kashyap and Sheth [Kashyap and Sheth, 1997] analyze so-called global
information systems where many different and possibly heterogeneous infor-
mation repositories have to be integrated. In order to achieve interoperability
between these repositories they propose to link the information repositories
to ontological terms using metadata (compare Fig. 5.1).

We refer to this view of global information systems, because it describes
a way of deploying the source ontologies described in the last chapter on
the Web. The notion of a source ontology developed in the last chapter
directly corresponds to the conceptual context described by Kashyap and
Sheth, because source ontologies define the meaning of terms used in an
information repository. Following Kashyap and Sheth we have to define
a metadata context for information repositories that uses terms from the
source ontologies in order to give an abstract description of the information
contained in an information repository.

In this chapter, we will develop a strategy for assigning ontological terms to
information items and resources using metadata models. We start by reca-
pitulating the role of metadata for information sharing and identify critical

86 5 Metadata generation

Fig. 5.1. Assigning semantics to information [Kashyap and Sheth, 1997]

problems. We then present an integrated approach for generating and man-
aging metadata that is based on source ontologies.

5.1 The role of metadata

A common approach to the problem of information heterogeneity is to provide
so-called metadata, i.e. data about the actual information. As this description
is very general and different scientific communities use very different notions
of metadata, we first have to define our view of metadata more clearly. For this
purpose we use the following distinctions made in [Kashyap and Sheth, 1997]:

• Content-independent metadata is data about information that does not
directly relate to the content of the information it describes. It rather
describes the context and the environment the information is created and
maintained in. Content-independent metadata includes the author of a
document or the date of its creation.

• Content-dependent metadata is data about information that is derived
from the information, but it does not describe the information content, but
rather additional property that directly follow from the content. Examples
for content-dependent metadata are the size of a document, the number
of words or pages or the language a document is written in.

• Content-based metadata directly reflects the content of an information
source, but it adds information or structure that helps to process the
original information more efficiently. Examples for content-based metadata
are document vectors or full-text indices.

• Content-descriptive metadata finally is data about information that pro-
vides an abstract description of the content of an information resource. It
helps to summarize the content of an information source and judge whether
it is suitable for a particular purpose. Examples of content-descriptive
metadata are keyword lists, glossaries or assignments to thematic cate-
gories.

5.1 The role of metadata 87

The different kinds of metadata cover many aspects of information: techni-
cal data about storage facilities and access methods co-exist with content
descriptions and information about intended uses, suitability and data qual-
ity. Concerning the problem of finding and accessing information, the role of
metadata is two-fold: on the side of information providers it serves as a means
of organizing, maintaining and cataloguing data; on the side of the informa-
tion users metadata helps to find, access and interpret information. We briefly
discuss this two-fold view in the following paragraphs.

5.1.1 Use of metadata

Organizing large information repositories is a difficult problem. While
standard databases provide sophisticated technology for data organization
and maintenance, heterogeneous repositories likes data warehouses, federated
databases, and especially the World Wide Web suffer from the problem
of heterogeneity that demands for sophisticated organization methods.
Concerning this problem, metadata can serve different purposes:

• Structuring. Metadata can be used to structure heterogeneous information
by specifying topic areas, keywords and relations to other information.
This kind of meta-information can be used to organize information along
different dimension like topic, date, author, etc.

• Maintenance. Metadata can help to maintain data by providing informa-
tion about authors, date of creation and expiry of the information. This
information helps to locate outdated information or to find the person who
is responsible for changes.

• Cataloguing. The bigger an information repository becomes the more im-
portant it is to have an overview of the information that is actually present.
This can be done by creating information systems based on metadata cat-
aloguing the information available.

Similar problems can be identified in connection with the use of information
on the World Wide Web. Standard databases are mostly homogeneous
systems with well-defined query languages that can be used to access infor-
mation available in the database. On the Web, a user first of all has to find
the information needed, before it can be used. Then the information may be
present in different kinds of data formats and structures. Last but not least,
information that seems to fit a user’s need can be tailored for a completely
different purpose and can therefore be hard to use. Again, metadata can be
used to tackle these problems:

• Search. By providing topic areas, keywords and content summaries, as
well as information about intended use, metadata can be used in order to
identify information sources on the Web without having to search every

88 5 Metadata generation

single Web page. Being confronted with the rapidly growing size of the
Internet, this ability can be predicted to be very important in the near
future.

• Access. Metadata related to technical properties of an information source
like format, encoding, links to tools or wrappers can significantly reduce
the effort required to process available information.

• Interpretation. Using information does not only require that information
can be accessed; the data also has to be interpreted by the remote system.
Information about the terminology used, assumptions made and knowledge
required to interpret the content can help both human users and intelligent
systems to really understand the content of an information source.

We conclude that the use of metadata is important in order to support
the handling and the use of information in heterogeneous environments like
the World Wide Web, because metadata helps to organize large information
repositories and access these repositories efficiently.

5.1.2 Problems with metadata management

The considerations made above clarify the need for metadata especially for
Web-based information systems. Therefore, it is not surprising that various
approaches for modelling and using metadata have been developed. Standards
evolved that cover different aspects of metadata, especially the syntax for
coding, the model structure and the content of a metadata model. Some of
these standards are:

• Syntactic standards. Features for encoding metadata are already included
in common HTML [Ragget et al., 1999]. Meta-tags can be used in order
to specify attributes and corresponding values of an HTML document.
Recently, RDF [Manola and Miller, 2004] has been proposed as an XML
application especially designed for the representation of meta-information
about information on the World Wide Web. However, these approaches
only define the encoding syntax in order to enable a Web browser to op-
erate on the metadata.

• Structural standards. In order to support the development of useful meta-
data models, a standardization of model structures is an important topic.
Structural standards have been defined on top of existing syntactic stan-
dards. RDF schema [Brickley and Guha, 2004], for example, defines model
structures similar to frame-based knowledge-representation systems. Topic
maps [Pepper and Moore, 2001] are another important approach prescrib-
ing representation elements to describe information about the contents of
information resources.

• Content standards. While approaches like RDF Schema or topic maps
define structural elements for representing metadata, there is still no guid-
ance with respect to the kind of data to be stored about information in

5.1 The role of metadata 89

order to organize and use information efficiently. As a consequence, content
standards for metadata have been proposed. One of the most important
content standards is the so-called Dublin Core [Weibel, 1999] that defines
a set of metadata elements for documents. These elements can be encoded
using different syntactic standards, e.g. HTML and RDF.

The standards mentioned above provide good guidance to design and encode
metadata for information resources on the World Wide Web. However, there
are still some severe problems that are addressed neither by structural nor by
content standards. These problems are concerned with the relation between
information and metadata about it. Some of the most important are:

• Completeness. In order to provide full access to an information source,
it has to be ensured that all the information is annotated with the corre-
sponding metadata. Otherwise, important or useful parts of an information
source may be missed by metadata driven search methods or cannot be
indexed correctly.

• Consistency. Metadata about the contents of available information is only
useful if it correctly describes these contents. In fact, metadata that is
not consistent with the actual information is an even bigger problem than
missing metadata, because mechanisms relying on metadata will produce
wrong results without warning. Typical cases of inconsistencies we found
are cases where a certain keyword is mentioned in the metadata (e.g.
surface water) but the content of the page was about a completely differ-
ent topic (e.g. energy conservation). On the contrary, important keywords
were missing (like “energy conservation”) in the corresponding pages. This
kind of inconsistencies often occur when web pages are created by copying
a page and modifying the content without also adapting the metadata.
The same situation can often be found with author information in Word
documents.

• Accessability. In order to be useful, metadata has to be accessible not only
by the information provider but especially for users that want to access
it. Therefore, an important question is how a comprehensive description
of an information source can be provided and accessed by potential users.

As metadata plays an important role in information sharing by enabling re-
mote programs to find, access and interpret information, we have to provide
solutions for the problems mentioned in order to be able to support infor-
mation sharing. When trying to provide partial solutions for these problems
we restrict ourselves to content-descriptive metadata, because this type of
metadata and especially the use of topic categories provide a very good basis
for connecting information with semantic descriptions. We will discuss the
process of establishing this connection in the remainder of this chapter.

90 5 Metadata generation

5.2 The WebMaster approach

In this section, we present an approach for intelligent metadata management
that partially solves the problems mentioned above. The starting point for
our presentation is BUISY, an existing Web-based information system that
serves as an example for the use and problems of metadata on the Web.
We will briefly describe this system and the role metadata plays in it. We
further present the WebMaster Workbench, a system for the knowledge-based
verification of Web sites, and show how it can be applied to the BUISY system
solving some of the problems mentioned. The results of this application will
be the basis for extensions of the WebMaster approach that will be presented
in the next section.

5.2.1 BUISY: A Web based environmental information system

The advent of Web-based information systems came with an attractive
solution to the problem of providing integrated access to environmental
information according to the duties and needs of modern environmental
protection. Many information systems were set up either on the Internet in
order to provide access to environmental information for everybody, or in
Intranets to support monitoring, assessment and exchange of information
within an organization. One of the most recent developments in Germany is
BUISY, an environmental information system for the city of Bremen that has
been developed by the Center for Computing Technologies of the University
of Bremen in cooperation with the public authorities. The development of the
system was aimed at providing unified access to the information existing in
the different organizational units for internal use as well as for the publication
of approved information on the Internet.

Metadata plays an important role in the BUISY system. It controls the access
to individual Web pages. Each page in the BUISY system holds a set of
metadata annotations reflecting its contents and status [Voegele et al., 2000].
The current version of BUISY supports a set of meta tags annotating
information about the data-object’s type, author, dates of creation and
expiration as well as relevant keywords and the topic area of the page. The
“Status” meta-tag indicates whether the data-object is part of the Internet
or the Intranet section of BUISY.

<meta name="Status" content="Freigegeben"/>

<meta name="Typ" content="Publikation"/>

<meta name="Author" content="TJV"/>

<meta name="Date" content="10-04-1999"/>

<meta name="Expires" content="31-12-2010"/>

<meta name="Keywords" content="Wasser, Gewaesserguete, Algen"/>

<meta name="Bereich" content="Wasser"/>

5.2 The WebMaster approach 91

Fig. 5.2. The metadata driven document search facility

At the moment, this metadata is used to provide an intelligent search
facility for publications of the administration concerned with environmental
protection. The user selects a document type and a topic area. Based on the
input, a list of available publications is generated (see Fig. 5.2).

5.2.2 The WebMaster Workbench

We have developed an approach to solve the problems of completeness, con-
sistency and accessibility of metadata identified above. This is done on the
basis of rules which must hold for the information found in the Web site,
both the actual information and the metadata (and possibly their relation-
ship) [van Harmelen and van der Meer, 1999]. This means that besides pro-
viding Web-site contents and metadata, an information provider also defines
classification rules (also called integrity constraints) for this information. An
inference engine then applies these integrity constraints to identify the places
in the Web site which violate these constraints. This approach has been imple-
mented in the WebMaster content-management tool, developed by the Dutch
company AIdministrator (www.aidministrator.nl). In this section, we will de-
scribe the different steps of using the WebMaster Workbench.

Step 1. Constructing a Web-site ontology

The first step in the approach to content-based verification and visualization
of Web pages is to define an ontology of the contents of the Web site.
Such an ontology identifies classes of objects on our Web site and defines
subclass relationships between these classes. For example, pages can be
about water. These can again be subdivided into new subclasses: Gewaesser

92 5 Metadata generation

(watercourses), Weser (a river in Bremen), Grundwasser (groundwater)
Abwasser (wastewater) and Anlagen (technical installations). Further, we
included some classes corresponding to types of documents that might appear
in the system. We chose Berichte (reports) and Verordnungen (legislations).
This leads to a hierarchy of pages that is based on page contents, such as the
example shown in Fig. 5.3.

Fig. 5.3. An example classification tree

A subtle point to emphasize is that the objects in this ontology are objects
in the Web site, and not objects in the real world which are described by
the Web site. For example, the elements in the class “river drainage” are
not (denotations of) different river-drainage systems in the environment of
Bremen, but are Web pages (in this case: Web pages talking about river-
drainage systems). As a result, any properties we can validate for these objects
are properties of the pages on the Web site, as desired for our validation
purposes.

Fig. 5.4. Example of a classification rule using metadata

5.2 The WebMaster approach 93

Step 2. Defining the classification criteria for the ontology

The first step only defines the classes of our ontology, but does not tell us
which instances belong to which class. In the second step, the user defines
rules determining which Web pages will be members of which class. In this
section, we will briefly illustrate these rules by means of three examples. Fig.
5.4 specifies that a Web page belongs to the class “water” if the keyword
“Wasser” appears in the meta-information of the page. The rule succeeds for
example when the following code appears in the Web page:

<meta name="Keywords" content="Wasser">

In the typical case, a page belongs to a class if the rule defined for that class
succeeds for the page. However, it is also possible to define classes by negation:
a page belongs to a class when the corresponding rule fails on that page. This
is indicated by a rectangle in the class hierarchy (instead of a rounded box).

Step 3. Classifying individual pages

Whereas the human user of the WebMaster Workbench performs the previous
steps, the next step is automatic. The definition of the hierarchy in step 1 and
the rules in step 2 allow an inference engine to automatically classify each page
in the class hierarchy. Notice that classes may overlap (a single page may be-
long to multiple classes). The rule format (adopted from [Rousset, 1997]) has
been defined in such a way as to provide sufficient expressive power while still
making it possible to perform such classification inference on large numbers
of pages (many thousands in human-acceptable response time). The rules cor-
respond to positive database updates, the rule format is shown in more detail
in equation 5.1. The above figures show graphical representations of this kind
of rules. After these three steps, we have a class hierarchy that is populated
with all the pages of a given site.

5.2.3 Applying WebMaster to the BUISY system

The ability of the WebMaster Workbench to classify Web pages according to
the metadata contained in every page enables us to use the system to per-
form the tasks we claimed to be necessary for metadata management on the
Internet, i.e. the validation, aggregation and visualization of the metadata
annotations in the BUISY system. In 2000, the BUISY system contained ap-
proximately 1500 pages which are not maintained centrally, but the different
topic areas of the systems had been supplemented by different persons after
the initial development phase that ended in 1998. Due to this fact, we ex-
pected to be faced with incomplete and inconsistent metadata annotations
in the different parts of the system. We performed some validation and some
aggregation experiments on this metadata which are reported in the next
sections.

94 5 Metadata generation

Validating metadata (consistency)

Checking meta-attributes and values

After extracting the pages that are actually supposed to contain information,
we can start to check the completeness of the annotated metadata. In our anal-
ysis, we focused on the meta-information assigning a page to a certain topic
area. In the BUISY system this information is stored in the meta-attribute
named “Bereich”. So the first task is to check whether all pages which passed
the preselection contain the meta-attribute “Bereich”. The result of this test
was rather negative. We found that about one hundred of the six hundred
and fifty contents pages do not contain the “Bereich” attribute. Another three
pages did contain the attribute but without a value. It is very likely that not
all pages which were included in the BUISY system are annotated yet. How-
ever, using the WebMaster Workbench, we are able to find these pages by
creating a corresponding class definition and classifying the web site. For the
pages classified into this class we have to decide whether metadata has to be
added or not.

Check for missing keywords (completeness)

The validation of the keyword annotations actually existing in the system
is the next step of our analysis. In order to judge the quality of the present
annotations we defined some keywords covering important aspects of the
information found in the system. We chose the keywords according to the
classes described in step 1. We used the keywords to compare the keyword
annotations with the contents of the page using a full-text search on the
whole page.

Fig. 5.5 shows a corresponding class-definition rule. The rule states that if
the Web page contains the word “Weser” (the main river in Bremen) then
there has to be a meta-tag where the value of the NAME attribute equals
“Keywords” and the value of the CONTENT attribute contains the word
“Weser”.

The validation revealed that most pages containing a keyword in the text
did not have this keyword in the metadata annotation. Using the WebMaster
Workbench, we were able to identify these pages and present them to the
systems administrator who has to decide if the keyword has to be added.

Aggregating metadata (accessability)

The validation of metadata discussed in the previous section is all done
on the <META>-tags, which are distributed across the 1500 pages of the
BUISY system. At construction time, such a distributed organization of
the metadata is rather attractive: each page can be maintained separately,

5.2 The WebMaster approach 95

Fig. 5.5. Classification rule for the detection of missing keywords

containing its own metadata. The authors of pages can directly update
the metadata annotations when updating a page, and no access to a
central metadata repository is needed. However, when we want to use the
metadata to create content-based navigation maps (as in the next section),
or as the basis for a metadata-based search engine, such a distributed
organization of the metadata is no longer attractive. We would prefer
having fast access to a central metadata repository instead of having to
make remote access to 1500 separate pages when looking for certain metadata.

Using the validation process described in Sect. 4.2 we analyzed the Web site
with respect to membership of pages to different topic areas. The result of
this step is a classification of pages into a number of classes, based on the
application of the classification rules to the <META>-tags in the pages. This
yields a populated class hierarchy of pages. Such a populated class hierarchy
can be stored in a combined RDF and RDF Schema format. The following
statements are taken from the RDF Schema encoding of the WebMaster
type hierarchy. The first three show how the types “water”, “Gewaesser”
and “Weser” and their subtype relationships are encoded in standard RDF
Schema.

Class(Water)

SubClassOf(Gewaesser Water)

SubClassOf(Weser Water)

...

The following is an example of an RDF encoding of instance information:
the page at the URL mentioned in the“about” attribute is declared to be a

96 5 Metadata generation

member of the class “water” (and consequently of all its supertypes, by virtue
of the RDF Schema semantics).

Instance(http://www.umwelt.bremen.de/buisy/scripts/buisy.asp?

doc=Badegewaesserguete+Bremen">

type(Gewaesser))

These automatically generated annotations constitute an aggregated descrip-
tion of a Web site that can be used to get an overview of its contents. The
annotations are machine readable, but they are hard to use by a human Web-
master. This is the reason why we do not only generate an aggregated meta-
data model, but also provide a condensed visualization on the basis of the
aggregated model.

Fig. 5.6. Cluster Map of the Water Subsystem

5.3 Learning classification rules 97

Given the natural evolution of the content and the metadata of a web site,
the aggregation process has to be repeated on a regular basis (e.g. overnight).
The required update frequency highly depends on the nature and the use of
the information and cannot be determined in general.

Metadata visualization

WebMaster supports the automatic generation of so-called cluster maps
about a Web site. A cluster map visualizes an instantiated hierarchy of pages
by grouping pages from the same class into a cluster. These clusters may
overlap if pages belong to more than one class.

The map generated from the classes described above (Fig. 5.6) shows some
interesting features. The first thing that attracts attention is the fact that
again most of the pages could not be classified into one of the keyword
classes. The better part of the approximately one thousand pages analyzed
do not even contain information about the topic area water. This can be
explained by the fact that a content map always contains all pages of a Web
site. However, there are also many pages which contain relevant contents, but
do not belong to one of the keyword classes (page cluster at the right-hand
side of the page). The interesting part of the content map is its left-hand side
where the pages from the different keyword classes and their membership
in these classes are displayed. We can clearly identify pages about technical
facilities and waste water as well as pages containing information about
legislation concerning one or both of these topics.

Automatically constructed figures such as Fig. 5.6 are compact enough to
display many hundreds of pages in a single small image (the map contains
340 pages). This should be compared with the output from traditional search
engines, where a set of more than 300 pages is typically presented as 15 pages
with 25 URLs each. The format of Fig. 5.6 is much more usable in practice.

5.3 Learning classification rules

We conducted experiments in using the WebMaster Workbench to classify the
Web pages in the BUISY system. In the course of this case study eight groups
of artificial intelligence students with some experience in knowledge repre-
sentation and knowledge-based systems independently specified classification
rules reflecting the conceptual structure of the system. This corresponds to
the second step in the process described above. It turned out that the cre-
ation of structural classification rules is still a difficult and error-prone task.
We identified the following reasons for the difficulties:

98 5 Metadata generation

1. People are not familiar with the structure of the pages
2. People are not familiar with the semantics of logical rules

We propose to address these problems directly by:

1. learning classification rules from examples;
2. using a learning approach that is based on logic.

In the following we describe an approach of using inductive logic programming
(ILP) in order to learn structural classification rules in the spirit of WebMas-
ter. The reason for using ILP instead of more widely used attribute-based
learning approaches is two-fold. First of all, the expressiveness of attribute-
based learners is mostly restricted to propositional logic while WebMaster
rules are first order. Especially, it is often the case that a rule contains a
number of binary predicates connected by common variables. In order to be
able to learn a large class of rules, we cannot rely on a propositional learner.
Secondly, ILP allows us to incorporate complex background knowledge in the
learning process, which is not possible with attribute-based learners. In the
current state of the work that is reported in the following sections, we did
not make much use of background knowledge; however, we want to keep that
option for future work. In the remainder of this section, we give a short intro-
duction to ILP. We relate the general definition to our application and present
some interesting results that have been achieved. A more detailed description
of the approach can be found in [Hartmann, 2002].

5.3.1 Inductive logic programming

Inductive logic programming (ILP) [Muggleton, 1999] is a technique that com-
bines inductive learning, the generation and validation of hypotheses from
observations with logic programming. The latter provides us with the possi-
bility to learn more complex logical formulas and to use complex background
knowledge for guiding the search for hypotheses. We will see later that these
possibilities are important with respect to learning structural classification
rules. The general inductive logic programming problem can be defined as
follows [Muggleton and de Raedt, 1994]:

Definition 5.1 (normal semantics of ILP). Let B, E and H be logical
theories where B is given background knowledge and E = E+ ∧ E− is given
evidence divided into positive and negative evidence. The aim of ILP is to find
a hypothesis H, such that the following conditions hold:

Prior satisfiability: B ∧ E− �|= ⊥
Prior necessity: B �|= E+

Posterior satisfiability: B ∧ H ∧ E− �|= ⊥
Posterior sufficiency: B ∧ H |= E+

5.3 Learning classification rules 99

This definition ensures that the learned hypothesis is complete in the sense
that it explains all positive evidence (posterior sufficiency) and that it is con-
sistent with negative evidence and background knowledge (posterior satisfi-
ability). Further, the definition excludes trivial results by claiming that the
positive examples are not already explained by the background knowledge
(prior necessity) and that the background knowledge is consistent with the
negative results, because this would enable a logical reasoner to deduce any
fact in the theory (prior consistency). Existing approaches implement this
general framework in different ways. They can be distinguished by the logical
language used to encode evidence, hypotheses and background knowledge and
by the learning strategy.

Representation language

Most ILP approaches use logic programs to describe evidence, hypotheses
and background knowledge. While background knowledge and hypotheses
can be an arbitrary logic program, evidence is normally given in terms of
ground facts. ILP systems can be separated between single-predicate and
multiple-predicate learners. All evidence given to a single-predicate learner
are instances of a single predicate, in contrast to a multiple-predicate learner
whose examples are instances of more than one predicate.

We used the PROGOL system [Muggleton, 1995]. PROGOL is a multi-
predicate learner that uses the logical programming language PROLOG for
representing knowledge. Any PROLOG program can serve as background
knowledge. Evidence can be encoded in terms of two sets of facts (positive and
negative evidence). The hypotheses generated by PROGOL are horn clauses
defining a single goal predicate.

Learning strategy:

ILP systems can use different strategies to search the hypothesis space.
The main operations to generate such a hypothesis are specialization and
generalization which are called top-down and bottom-up strategy, respec-
tively. Another distinction can be made on how the examples are given to
the learner. Given all examples at once, it is called batch learning. With
incremental learning examples are given one by one and the theory covers
the actual set of examples. If there is a possible interaction between the
teacher and the learner while learning is in progress, it is called an interactive
learner, otherwise it is a none-interactive learner.

PROGOL is a top-down, non-interactive batch learner. It uses inverse en-
tailment to generate only the most specific hypothesis. An A∗ like algorithm
is used to search through the hypothesis space. To restrict the hypothesis
space (bias), the teacher defines first-order expressions called mode declara-
tions. These models declarations restrict the combination of predicates that

100 5 Metadata generation

are considered in the process of finding hypotheses. We will discuss the use of
these declarations in the next section in more detail.

5.3.2 Applying inductive logic programming

In order to apply inductive logic programming to the problem of learning
structural classification rules, we have to answer several questions. These in-
clude the representation of the problem in the framework of ILP, the gener-
ation of this representation from a given dataset and the task of relating the
results produced by the induction step to classification rules used in WebMas-
ter. We will discuss these issues in the following sections.

Problem representation

In order to use the PROGOL system for generating hypotheses about classi-
fication rules for Web pages, we have to encode knowledge about Web pages
and their internal structure in PROLOG. For this purpose, we developed a
representation scheme consisting of the following set of predefined predicates:

• document(object): the constant “object” represents a document
• url(object, ADDRESS): the document represented by “object” has the

URL “ADDRESS”
• relation(doc1, doc2): there is a directed link between the documents

“doc1” and “doc2”
• structure(object, CLASS): the constant “object” represents an element

tag of type “CLASS”
• contains(doc, object): the document contains the tag “object” as a

top-level element.
• attribute(parent, object): the element tag “parent” contains the at-

tribute “object”
• contains(parent, object): the element “parent” contains the element

“object” as a child element
• value(object, ’VALUE’): “object” is an element or attribute and it has

the value “VALUE”
• text value(object, ‘TEXT’): “object” is an element or attribute and it

has the value “TEXT”

The distinction between values and text values is necessary, because free-text
content of texts is normalized and broken up into single words. A text value
predicate is created for every word in a free-text passage.

The predicates form the building blocks for representing background knowl-
edge, hypotheses and evidence. Positive and negative evidence is provided in
terms of two sets of document predicates, indicating that certain constants
represent documents of a certain class or not. The PROLOG representation of

5.3 Learning classification rules 101

the structure of all of these documents is provided as background knowledge.
The system then creates hypotheses in terms of rules that have the document
predicate on the left-hand side and a conjunction of the predicates described
above on the right-hand side.

Generating the representation

In order to be able to use an ILP learner for the acquisition of syntactic
classification rules, the structures of the documents serving as positive and
negative examples have to be translated into the representation described
above. We assume that documents are present in XML or XHTML format.
Unfortunately, most of the documents came in less standardized form,
partly containing syntactic errors. Therefore, all training examples were
semi-automatically cleaned and tidied up. We used HTML Tidy1 and its
Java version JTidy2 for this task. In cases where heavy syntactic errors were
found by the software we fixed them manually.

The next step to obtain a usable training set is the syntactical translation of
the training examples. A Web document like a HTML or an XML document
contains predefined tags which describe structure (in particular relations in-
side a document or between other documents) and layout of documents. The
complete translation process is described here in a very abstract way: (i) Ev-
ery document is parsed into a DOM tree. We used Apache JXERCES 2.0 for
this task. (ii) Our written Java program then walks through the DOM tree.
Depending on a predefined translation scheme all desired tags are translated
into PROLOG clauses. (iii) The positive and negative examples are written
into a file which represents the training set. (iv) In order to enable the system
to perform a restricted kind of learning on the text of a page, simple normal-
ization techniques are applied that convert the words of a text into lower-case
letters, remove special symbols as well as words from a stop list and insert a
list of the remaining words in the PROLOG notation.

Relation to WebMaster rules

Rules used in WebMaster have the following general logical form for our rules
and constraints, also known as positive database update constraints in the
database area. A rule for characterizing a class C has the following structure:

C ←

⎛
⎝∀x[∃y

∧
i

Pi(xk, yl)] =⇒ [∃z
∧
j

Qj(xk, zm)]

⎞
⎠ (5.1)

1 http://www.w3.org/People/Raggett/tidy/
2 http://lempinen.net/sami/jtidy/

102 5 Metadata generation

Here x, y and z are sets of variables, and each of the Pi and Qj are binary
predicates. Furthermore, the classification rules are always hierarchical (i.e.
recursion-free) and also free from negation. This class of formulas is less
expressive than full first order logic over the predicates Pi and Qj (because of
the limited nesting of the quantifiers), but is more expressive than horn logic
(because of the existential quantifier in the right-hand side of the implication).

If we restrict this general rule format, and we drop the existential quantifi-
cation in the right-hand side, we are left with a very restricted form of logic
programs: hierarchical normal programs over binary predicates.

This correspondence to logic programs can be used to translate hypotheses
generated by PROGOL into the WebMaster rule format. Looking at the gen-
eral rule format we see that PROLOG clauses are a special case of the rules
where all predicates Pi are assumed to be true and omitted. Therefore a Web-
Master rule generated by PROGOL has the following format:

C ←

⎛
⎝∀x, [∃z

∧
j

Qj(xk, zm)]

⎞
⎠ (5.2)

In this case the predicates Qj describe necessary structures for pages of class
C. These predicates are taken from the set of predicates described above.

5.3.3 Learning experiments

Our aim is to identify obvious structural regularities within classes of Web
pages. The PROGOL system allows us to use background knowledge for
focusing the learning process on different kinds of such regularities that are
likely to discriminate between classes of Web pages. These regularities have
to be specified in terms of goal predicates that can be specified by a horn
clause.

In order to assess the quality of our learning approach, we determine the
accuracy of the learned rules in terms of the ratio of correctly classified pages.
We use the following notation to refer to classification results:

P(A)): correct positive (pages from the class covered by the rule)
¬ P(A): false negative (pages from the class not covered by the rule)
¬ P(¬ A): correct negative (pages not from the class that are not covered by

the rule)
P(¬ A): false positive (pages not from the class that are covered by the rule)

Using these definitions, we use the following definition of accuracy:

Accuracy =
P (A) + ¬P (¬A)

P (A) + ¬P (A) + ¬P (¬A) + P (¬A)
∗ 100. (5.3)

5.3 Learning classification rules 103

The accuracy is determined by splitting the set of all Web pages into a training
set and a test set, where 70% of all pages belong to the training and 30% to
the test set. Further, we used a ratio of 1:2 between positive and negatives
examples (for each positive example there are two negative ones) Below, we
give accuracy measures for our experiments based on this ratio.

Tested criteria

As mentioned above, the PROGOL system allows us to focus the search for
hypotheses on parts of the overall knowledge available. This possibility, im-
plemented in so-called mode declarations, can be used to define classification
criteria to be used in generated classification rules. In our case, we can use
mode declarations to prescribe what kinds of Web-page structures should be
tested by the system. For this purpose, we first invent the new predicate de-
scendant as a transitive closure of the contains predicate mentioned above.

descendant(A, B) ← contains(A, B)
descendant(A, C) ← contains(A, B) ∧ descendant(B, C)

A mode declaration is a definition of a new predicate that should be used on
the right-hand side of classification rules. In order to enable the learner to
generate hypotheses containing this new predicate it has to be related to the
knowledge provided by the reasoner. We do this by defining new predicates
in terms of the basic set of predicates used to describe page structures. In the
following, we briefly present the mode declarations we used for the generation
of structural classification rules.

Document titles:

Document titles often contain information about the type of the page. A
personal home page for example will in most cases contain the phrase “home
page” in its title. We therefore use the predicate doctitle that relates a page
words occurring in its title as a first criterion. The corresponding predicate is
defined as follows:

doctitle(D, Ti) ← descendant(D, Q) ∧ structure(Q, ‘title′) ∧
contains(Q, W) ∧ text value(W, Ti)

In the following we refer to this mode declaration as H1.

Metadata

Existing metadata annotations on a Web page are an obvious choice for defin-
ing classification criteria. We use HTML meta-tags as a search criterion. As

104 5 Metadata generation

different Web sites may use different metadata attributes, we do not further
restrict the search to specific metadata such as keywords or authors. The cor-
responding predicate that locates HTML metadata on a Web page in a general
way is the following:

metatag(I, N, C) ← descendant(D, I) ∧ structure(I, meta) ∧
attribute(I, Q) ∧ attribute(I, W) ∧

structure(Q, x) ∧ value(Q, N) ∧
structure(W, y) ∧ value(W, C)

In the following we refer to this mode declaration as H2.

E-mail addresses

More complex Web sites often contain links to a special contact e-mail. Assum-
ing that different persons are responsible for different topic areas according to
their field of expertise, we can exploit the occurrence of a certain mail address
on a page for defining classification criteria. The corresponding predicate is
defined as follows:

mail(D, Q, W) ← descendant(D, S) ∧ structure(S,′ a′) ∧ attribute(S, R) ∧
structure(R,′ href ′) ∧ value(R,′ mailto :′ +Q +′ @′ + W).

In the following we refer to this mode declaration as H3.

Links

Web sites are often organized in a hierarchical way. Different topic areas are
often accessed via a top-level page containing a table of content or an intro-
ductory page. In order to exploit these common access points for classification,
we use links to other pages as another classification criterion. These links are
identified by an anchor tag with an href attribute. The corresponding predi-
cate is the following:

relation(D1, D2) ← descendant(D1, Q) ∧ structure(Q, a) ∧ attribute(Q, W) ∧
structure(W, href) ∧ value(W, Z) ∧ url(D2, Z).

In the following we refer to this mode declaration as H4.

An example of using mode declarations

We illustrate the impact of the search guidance using results we achieved
on classifying the Web site of the University of Bremen. The goal was to

5.3 Learning classification rules 105

learn classification rules that uniquely identify pages of the research group
on theoretical computer science. For this purpose we used about 150 pages of
that group as positive and about 300 other pages from the University Web
site as negative examples. Table 5.1 shows generated rules for the different
mode declarations and the accuracy of the rules.

Table 5.1. An Example of the criteria

Experiment A1-0 TrainingSet0
TZI – Theorie

Mode Dec. Hypotheses Acc.

H 1 document(A) :- doctitle(A,research). 100

H 2 document(A) :- metatag(A,keywords,
theoretical). 100

H 3 document(A) :- relation(A,B), relation(B,C),
mail(C,helga,’informatik.uni-bremen.de’). 86.82

H 4 document(A) :- relation(A,B),
url(B,’[URL]/cs/ref.num.html’).

document(A) :- relation(A,B), relation(A,C),
url(B,’[URL]/projects.html’). 86.82

document(A) :- relation(A,B), relation(A,C),
url(B,’[URL]/cs/ref.num.html’).

URL: http://www.tzi.de/theorie

The results show the different kinds of classification rules we get when using
different mode declarations for guiding the search process. Using the page
title as a criterion, we find that the pages of the theoretical computer science
group are exactly those that contain the word “research” in their title. An
analysis of metadata shows that the keyword “theoretical” uniquely identifies
the pages we are interested in. We get more surprising results that still have
an accuracy of more than 85% when analyzing e-mail addresses and links to
other pages. For the case of e-mail addresses we find out that most pages are
linked over steps with a page that contains the mail address of the secretary
of the group. If we only consider links, we see that most pages are linked to
pages containing references and to a page listing projects of the group.

The real benefit of the learning approach, however, is its ability to find clas-
sification criteria that are not obvious. In order to discover such unexpected
patterns as well, we defined a learning strategy on top of the PROGOL sys-
tem. Once a valid hypothesis is found, it is stored in a separate solution file.
Then all occurrences of the defining structures are deleted from the training
data and the learner is run on the data again. This process is repeated un-

106 5 Metadata generation

til no more valid hypotheses are found. As a result of this strategy we get
alternative definitions of the different classes.

Summary of results

We conducted an experiment in learning classification rules by assigning the
Web pages of the Web-based environmental information systems of the fol-
lowing cities or federal states, respectively:

• Bremen: www.umwelt.bremen.de
• Vienna: www.ubavie.gv.at
• Bavaria: www.umweltministerium.bayern.de

We applied our learning approach in order to sort pages in these systems
into the topic areas waste, soil, air, nature and water. In the following,
we present the results we achieved for the BUISY system (see Sect. 5.2.1).
The complete experiment including the two other systems is reported in
[Hartmann and Stuckenschmidt, 2002].

Table 5.2. Summary of the learning results for the BUISY systems

BUISY summary

Class P(A) ¬P (A) ¬P (¬A) P (¬A) Acc.

Abfall 13 0 26 0 100

Boden 11 0 22 0 100

Luft 28 0 56 0 100

Natur 20 1 42 0 98.41

Wasser 58 0 116 0 100

Table 5.2 shows that we achieved an accuracy of almost 100%. The reason for
this is the existence of metadata annotations on almost all pages that directly
link the pages to the topic areas. Some of the more interesting results are
discussed in the next section.

5.3.4 Extracted classification rules

Beside the rather trivial results we achieved in classifying metadata based on
pre-existing classifications encoded in meta-tags, we were also able to extract
some more surprising classification rules. This section gives an overview of the
rules with more than 50% accuracy that have been found by the learner.

5.3 Learning classification rules 107

Class “Abfall”

The first class of Web pages is concerned with waste management. We used
a sample of 45 positive and 90 negative examples. The resulting rules for the
different mode declarations are shown in Table 5.3.

Table 5.3. Experiment B1-0: BUISY – Abfall

Experiment B1-0 TrainingSet0
BUISY – Abfall

Mode Dec. Hypotheses Acc.

H 1 document(A) :- doctitle(A,abf). 74,36

H 2 document(A) :- metatag(A,bereich,abfall). 100

H 3 – –

H 4 – –

H 1-4 document(A) :- metatag(A,bereich,abfall). 100

We can see that the main classification criterion was the predefined classifica-
tion encoded in the “Bereich” attribute. Besides this, about 75% of all pages
of this class had the acronym “abf” in their title.

Class “Boden”

The second class of pages is concerned with soil protection. For the generation
of classification rules for this class we used a sample of 37 positive and 74
negative examples. Table 5.4 shows the results of the learning process.

Table 5.4. Experiment B2-0: BUISY – Boden

Experiment B2-0 TrainingSet0
BUISY – Boden

MD Hypotheses Acc.

H 1 document(A) :- doctitle(A,bodenschutz).
document(A) :- doctitle(A, boden). 90.91
document(A) :- doctitle(A, bo).

H 2 document(A) :- metatag(A,keywords,bodenschutz). 100
document(A) :- metatag(A,keywords,boden).

H 3 – –

H 4 – –

H 1-4 document(A) :- metatag(A,keywords,bodenschutz).
document(A) :- metatag(A,keywords,boden). 100

108 5 Metadata generation

The results for this class are similar to the one before. Beside the pre-defined
classification, only the analysis of the page title produced results. This time,
the learner found more than one words frequently occurring page titles. The
combination of these word leads to a higher classification accuracy of about
90%.

Class “Luft”

The third class considered contains pages about air pollution. We used a
sample of 94 positive and 184 negative examples to learn classification rules
for this class of Web pages. The results are shown in Table 5.5.

Table 5.5. Experiment B3-0: BUISY – Luft

Experiment B3-0 TrainingSet0
BUISY – Luft

MD Hypotheses Acc.

H 1 document(A) :- doctitle(A,karte).
document(A) :- doctitle(A,blues).
document(A) :- doctitle(A,ost).
document(A) :- doctitle(A,so2diagramm).
document(A) :- doctitle(A,lu).
document(A) :- doctitle(A,stickstoffoxiddiagramm). 95.24

document(A) :- doctitle(A,aktuelle).
document(A) :- doctitle(A,verkehr).
document(A) :- doctitle(A,ozondiagramm).
document(A) :- doctitle(A,staubdiagramm).
document(A) :- doctitle(A,stickstoffoxid).

H 2 document(A) :- metatag(A,expires,thu).
document(A) :- metatag(A,bereich,luft). 100

H 3 – –

H 4 document(A) :- relation(A,B),
url(B,‘[URL]/p strassensuche’). 69,05

H 1-4 document(A) :- metatag(A,expires,thu).
document(A) :- metatag(A,bereich,luft). 100

URL: http://www.bremen.de/Web/owa

For this class of Web pages we did not only get results on metadata and page
titles, but also for relations between documents. It turned out that about 70%
of all pages of this class are linked to a special search page, where users can
access air pollution information for their particular area. Another interesting
point is the fact that the rules learned for page titles associate the page s with
words that are not obvious but rather refer to specialized terms from the area.

5.3 Learning classification rules 109

Class “Natur”

The fourth class consists of pages about the protection of plants and animals.
The sample for this class consisted of 71 positive and 142 negative examples.
We were able to generate rules based on titles and metadata of the pages.
The corresponding rules are shown in Table 5.6.

Experiment B4-0 TrainingSet0
BUISY – Natur

MD Hypotheses Acc.

H 1 document(A) :- doctitle(A,naturschutzgebiete).
document(A) :- doctitle(A,nsg).

document(A) :- doctitle(A,richtlinie).
document(A) :- doctitle(A,vogelschutzgehoelz). 92.06
document(A) :- doctitle(A,naturschutzgebiet).
document(A) :- doctitle(A,vogelschutzgebiet).

H 2 document(A) :- metatag(A,author,’zdl30-13’).
document(A) :- metatag(A,author,brendel). 98.41

document(A) :- metatag(A,bereich,naturschutz).

H 3 – –

H 4 – –

H 1-4 document(A) :- doctitle(A,richtlinie).
document(A) :- metatag(A,author,’zdl30-13’). 98.41

document(A) :- metatag(A,bereich,naturschutz).

Table 5.6. Experiment B4-0: BUISY – Natur

Beside the page title that again contained some rather specialized terms like
“vogelschutzgebiet”, we found rules that linked the pages to a specific author.
In this case ”zdl30-13” identifies a special position in the organization of the
environmental administration. We can conclude that this position includes
the obligation to create and maintain the information on this specific topic
area.

Class “Wasser”

The last class considered in our case study is concerned with water pol-
lution. This part is the largest topic area of the BUISY system. We were
able to use a sample consisting of 194 positive and 388 negative examples.
The results for the class of water protection pages are summarized in table 5.7.

The results for this class also contained some surprises. First of all, most char-
acteristic words in the document titles have no connection at all with the topic
of water protection. The combined use of all mode declaration also produced

110 5 Metadata generation

Experiment B5-0 TrainingSet0,1
BUISY – Wasser

MD Hypotheses Acc.

H 1 document(A) :- doctitle(A,wa).
document(A) :- doctitle(A,landes). 94.25

document(A) :- doctitle(A,von).

H 2 document(A) :- metatag(A,bereich,wasser). 100

H 3 – –

H 4 – –

H 1-4 document(A) :- metatag(A,bereich,wasser).
document(A) :- doctitle(A,fuer), 100
metatag(A,generator,microsoft).

Table 5.7. Experiment B5-0: BUISY - Wasser

a rule that identifies the pages of this class in terms of the tool used for their
creation. In this case, the meta-tag “generator” that is automatically added
to Web pages by the tool Microsoft “Frontpage” is found to be characteristic
for the class of pages.

Conclusions

The experiments showed that our learning approach can be successfully
applied to the problem of checking the completeness and consistency of
the metadata of existing information systems on the web. In particular
we were able to identify topic areas with correct and complete meta-
data and such topic where the metadata has top be improved (compare
[Hartmann and Stuckenschmidt, 2002]).

The system produced very good results on the identification of existing meta-
data, which already helps to classify unknown systems. In the absence of
metadata, the approach is able to find various other classification criteria like
words occurring in page titles or links to other Web pages. In this case the
average accuracy is significantly lower, but still we managed to achieve results
that are comparable to other work reported in the literature. A good example
is the dataset used in the WebKB project [Craven et al., 2000]. We reached
an accuracy of about 65% by just applying our approach without customizing
it to the task.

5.4 Ontology deployment

In the last section, we described a mostly automated approach for assigning
Web pages to classes in a hierarchy. We used the WebMaster Workbench to

5.4 Ontology deployment 111

classify pages based on structural classification rules and showed that these
rules can be learned from examples. If we compare this approach to the on-
tology infrastructure proposed in Chap. 4, we face the problem, that the
notion of ontology used by WebMaster differs from our view on source ontolo-
gies. WebMaster operates on a very simple form of ontology consisting only
of a hierarchy of classes while source ontologies as defined in Chap. 4 con-
sist of complex logical definitions. In this section, we show that despite the
difference between the notions on ontologies used, we can use the metadata-
generation approach in order to deploy source ontologies by assigning Web
pages to classes in the ontology in a mostly automatic way.

5.4.1 Generating ontology-based metadata

Our approach for connecting information resources with ontologies relies on
the definition of a source ontology to consist of a plain class hierarchy that
is connected to logical definitions by a corresponding mapping (compare
Definition 2.3). This definition enables us to use the class hierarchy indepen-
dently from the logical definition of the classes in the hierarchy and use it
in the WebMaster Workbench. Further, we can use the mapping to logical
definitions to perform reasoning on class hierarchy and instances.

Fig. 5.7. Deployment strategy for source ontologies

Fig. 5.7 illustrates the process of generating metadata in terms of Web-page
categorization from pre-existing source ontologies having been built in the
way described in Chap. 4. Assuming that a complete source ontology exists,
the steps of this process are the following:

1. In the first step, we export the class hierarchy of the source ontology as
an RDF schema definition as input for the rule-learning and Web page
categorization process.

112 5 Metadata generation

2. The exported classification is used for determining goal classes for the ILP
system. Based on the class hierarchy, the user determines examples for the
learning process.

3. After the generated classification rules have been validated by the user,
they are transformed into the WebMaster format and imported into the
Workbench.

4. Using the generated classification rules, the WebMaster Workbench as-
signs the pages of the Web site to classes from the hierarchy and exports
the assignment by extending the RDF Schema model of the hierarchy.

5. In the ontology editor, the RDF Schema model that has been extended by
instance information is linked to the complete definition of the ontology
that includes logical definitions of classes.

6. The complete ontology that now includes instance information in terms of
classified individuals representing Web pages is exported as a DAML+OIL
model for further processing.

7. On the basis of the class names defined in the ontology a Web-site index
is created in terms of a dynamic data structure that can be queried by
other systems.

8. The complete DAML+OIL model is shipped to a description logic rea-
soner. The reasoner is used to verify the ontology and the instance infor-
mation. Further implicit subclass and membership relations are derived.

9. The membership relations that have been found by the reasoner (including
those already created by WebMaster) are used to insert the information
about Web pages in the index structure.

This process can mostly be implemented with existing technologies. Besides
PROGOL and WebMaster, we used the OILed Editor [Bechhofer et al., 2001]
to create source ontologies. The editor supports the export of ontologies in
both RDF Schema and DAML+OIL. The editor is directly integrated with
the description-logic reasoner FaCT [Bechofer et al., 1999] that can be used
for perform terminological reasoning on the exported ontology. The use of
these reasoning services is described in the next section.

5.4.2 Using ontology-based metadata

One of the major benefits of basing metadata on source ontologies is the
already mentioned reasoning support for a limited number of tasks concerned
with ontology management.

• Consistency checking. The reasoner is able to check the satisfiability of the
logical model of the ontology. In particular, inconsistent concept definitions
are detected. If we, for example, defined animals to have four legs and we
try to include an instance of the class animal with five legs, the reasoner
will find the contradiction.

5.4 Ontology deployment 113

• Computation of subclass relations. an ontology normally contains two dif-
ferent kinds of subclass relations: explicitly defined relations from the class
hierarchy and implicit subclass relations implied by the logical definitions
of concepts. The latter can be detected using a reasoner for terminological
languages and included in the ontology thus completing it.

• Deriving class membership. A special case of the computation of subclass
relation is the automatic classification of individuals. Terminological lan-
guages normally allow us to describe an individual by its relation to other
individuals without naming all classes it belongs to. The reasoner will find
the classes we omitted in the definition. An example would be if we had
defined our dummy page to be about the “Sodenmattsee” without assign-
ing it to a special topic area. However, we stated that the domain of the
“about” relation is the class topic area and we defined water-pollution-
control to be concerned with watercourses. This information and the fact
that the “Sodenmattsee” is a lake and therefore a watercourse enable the
reasoner to decide that our dummy page should be classified as belonging
to the topic area “water pollution control”.

Making use of these reasoning services, we can check the result of the
metadata generation for consistency. This is necessary because the criteria
used to describe classes in the systems only refer to syntactic structures of
the page contents. Especially, the WebMaster Workbench has no possibility
to check whether the classification of a page makes sense from a logical point
of view. For example, we can include a description of the administrative units
in our ontology and classify pages according to the unit which is concerned
with the specific topic of the page. We will define the units to be mutually
disjoint because the competency is strictly separated. If we now classify one
page to belong to both units we get a clash in the logical model. In this case,
we have to check the page and assign the right administrative unit by hand.
Thus the logical model helps us to find shortcomings of the generated model.

The second benefit of the logical grounding of the metadata model is the pos-
sibility to derive hidden membership relations. This is important because the
RDF metadata schema makes some assumptions about implicit knowledge.
Examples of these assumptions can be found in [Champin, 2000]. We use the
following axiom as an example:

T (r , rdf : type, c1) ∧ T (c1, rdfs : subClassOf, c2)
T (r , rdf : type, c2)

.

The equation states that every resource r (i.e. Web page) that is member a of
class c1 (indicated by the triple T (r , rdf : type, c1)) is also a member of class
c2 (T (r , rdf : type, c2)) if c1 is a subclass of c2 (T (c1, rdfs : subClassOf, c2)).
This correlation can easily be computed using the FaCT reasoner by querying
all super-concepts of a given concept. The result of this query can be used to

114 5 Metadata generation

supplement the description of a page. The description of the page referred to
above, for example, will be extended with the following statement:

type(watercourse)

Using this mechanism, we are able to build a site index that provides efficient
access to Web pages by the topic class they belong to.

5.5 Conclusions

Metadata plays a central role in information sharing and in information
processing in general. It establishes the connection between information
sources and ontologies that explicate the meaning of their content. In
weakly structured environments this is harder than in structured ones. XML
documents, for example, can be directly linked to an ontology on the basis of
the tags used in the documents by relating the tags to classes or relations in
the ontology. In the absence of a real data structure the connection either has
to be loose or we have to spend much more effort on the task of establishing
the connection.

We claim that the assignment of individual Web pages to classes in an
ontology provides a good tradeoff between the strength of the connection and
the effort of establishing it. We show that Web-page classification can be done
using classification rules that refer to the structure of HTML documents. The
resulting classification can be used for content-based navigation and search.
We also demonstrated that structural classification rules can be generated
in a mostly automatic way using techniques from machine learning. Though
using a very limited learning approach we achieved classification results with
an accuracy of ninety percent and more. Our results show that the approach
is successful though there is still potential for improving the learning method.

In principle, Web-page classification can be done without relating to an on-
tology, but using a source ontology as a starting point for the classification
enables us to benefit from its formal semantics. Especially, we can use ter-
minological reasoning to support the metadata-creation process by verifying
classification results against the definitions of the classes involved and by de-
riving implicit classifications that are implied by the semantics of the ontology.

Further reading

The metadata model of the BUISY system is presented in
[Voegele et al., 2000]. The idea and some other applications of the Web-
Master system are described in [van Harmelen and van der Meer, 1999],

5.5 Conclusions 115

the use of cluster maps for visualizing ontologies and their instances in
[Fluit et al., 2003]. The theory and applications of inductive logic pro-
gramming can be found in [Muggleton, 1999]. A similar approach using
inductive logic programming for learning from Web structures is reported in
[Craven et al., 2000].

Part III

Retrieval, integration and querying

6

Retrieval and Integration

Summary. In the last part, we discussed how information sources
can be semi-automatically enriched by semantic information. In this
chapter, we show how information can be retrieved and transformed
between different systems based on their semantic descriptions. We
show that translations between different ontologies can be approxi-
mated using a minimal shared terminology. We further describe how
this transformation can be exploited for content-based information
filtering across different systems.

In order to benefit from having access to different information systems, we
have to provide sophisticated methods to separate relevant from irrelevant
information. This problem is also referred to as information filtering, which is
characterized as the task of removing irrelevant information from an incoming
stream of unstructured textual information according to user preferences
[Belkin and Croft, 1992]. A different perspective on the same problem is that
of information retrieval [Salton and McGill, 1983]. In information retrieval,
a collection of information represented by surrogates in terms of content
descriptions is searched on the basis of a user query, and those documents
whose descriptions match the query are returned to the user. Many systems
support the Boolean query model [Frakes and Baeza-Yates, 1992] that allows
us to state queries as Boolean expressions over keywords.

The use of background knowledge has been discussed in classical information
retrieval [Yarowsky, 1992, Gaizauskas and Humphreys, 1997] in order to
increase the precision and recall of free-text queries. Corresponding knowl-
edge models often define relationships between words, such as the synonym
relation. Using the infrastructure described in Chap. 2, we cannot only use
such relationships that are encoded in the shared terminology (Definition
2.1). Our infrastructure transfers these relations into a logical framework, the
shared ontology (Definition 2.2) that can be used to define specialized terms

120 6 Retrieval and Integration

in different information systems (source ontology, see Definition 2.3). This
background information is linked to information items by the assignment of
Web pages to classes in the source ontology. The assignment to a certain
ontological class provides us with a unique interpretation of the meaning of
a resource. Using the concepts of a specific ontology, we can state Boolean
queries over concept names with maximal precision and recall with respect
to the semantics of their definition if all relevant information resources have
been assigned to the right ontological categories.

In this chapter, we provide a detailed discussion of methods for retrieving and
integrating information from different sources within the general framework
presented in Chap. 2. We start with a didactic example that illustrates our
approach before providing a formal definition of approximate re-classification
which is the basis for our approach. We discuss the use of the method for
retrieving information items based on their type and extend this simple ting to
the problem of retrieving information using conjunctive queries. We conclude
with a discussion of a small case study of applying these methods in the
tourism domain.

6.1 Semantic integration

In this section we adopt the notion of translatability introduced by Ciocoiu
and Nau for the problem of handling multiple classification systems. An-
alyzing the requirements for performing translations, we will see that the
approach for explicating information semantics described in section 2.4.2
largely fulfills these requirements. The sentences to be translated are class
names in the different classifications, the logical rendering is achieved through
the use of a terminological language and the interpretation is given by the
definition d(Ci) of a class name Ci. The shared ontology corresponds to Ω.
These analogies imply that we can use logical deduction in order to perform
translations.

In the following, we first define the translation task with respect to information
systems and classifications. We then show how reasoning in a terminological
language can be used in order to perform partial translations from one system
into the other. Based on these transformations, we introduce an approach
for information filtering that is based on re-writing Boolean queries across
heterogeneous classifications.

6.1.1 Ontology heterogeneity

Ontologies can differ in many ways [Visser et al., 1997]. We will not try
to discuss them in general. We will rather give an example of ontologies
that even though they describe the same domain of interest represent very

6.1 Semantic integration 121

different conceptualizations of that domain. We start with a simple ontology
that discriminates animals into domestic, foreign and production animals
and contains some kinds of animals that fall under one or more of these
categories (compare Fig. 6.1).

Fig. 6.1. An ontology of animals

Now consider an ontology that describes classes of animals in the way a child
would possibly categorize them (compare Fig. 6.2). The main distinctions
made in this ontology are pets, farm animals and zoo animals. These
distinction are based on the experience of a child that some animals are kept
at home, at farms or in zoos.

Fig. 6.2. A “childish” ontology of animals

While both ontologies do not share any class except for the general class
animal, it should be possible to establish a relation between the two. Using
common World knowledge and the informal descriptions of the classes in
Fig. 6.2 we can conclude that “Pet” should be a subclass of “Domestic
Animal” and include “Cat” and “Dog”. “Farm Animal” should be a subclass

122 6 Retrieval and Integration

of “Domestic Anima” and include “Cow” and “Pig”. Finally, “Zoo Animal”
should be subsumed by “Foreign Animal” and contain all the subclasses of
“Foreign Animal” shown in Fig. 6.1.

In this example, we only show the hierarchy of the ontologies, because the
methods described in this section can be explained solely using the notion of
subsumption of concepts. The connection to the use of a shared vocabulary as
described before lies in the fact, that we need the shared vocabulary in order to
compute subsumption relations between concepts from different hierarchies.
So actually the concepts in the example ontologies would be specified by their
characteristic properties (e.g. habitat, use, etc.) which are defined using terms
from a shared vocabulary that has been constructed beforehand.

6.1.2 Multiple systems and translatability

In order to get a clearer notion of the problem to be solved, we give an
abstract definition of an information source in terms of a set of information
items that are classified according to a source ontology. This general notion
of an information source covers Web-based information system like the one
discussed in the last chapter. An information item corresponds to a single
Web page that has been classified according to a source ontology. In the case
of a conventional database, we can think of single rows in a database table
as an information item. The connection to a source ontology can be given by
a corresponding reference in the data dictionary that may also contain the
ontology itself.

Definition 6.1 (information source). An information source is a tuple
〈O, I, M〉, where O = 〈S, C, d〉 is a source ontology with shared ontology S,
a set of class names C and a mapping d that assigns a class definition over
terms from S to every class name from C, I is a set of information items and
M : I × C is a membership relation that relates information items to classes
of the source ontology.

Building on this abstract view of an information source, we can define the
problem of integrating the classifications employed in two different systems.
Roughly speaking the task is to extend the membership relation M1 of an
information source IS1 by an additional relation M ′ that relates the informa-
tion items of a second information source IS2 according to the source ontology
of IS1. In order to be able to reason about instances of classes as well, we
extend the semantics of a terminological language in a straightforward way,
by assuming that the assignment mapping A does not only apply to class
names but also to instances. We define that:

xI ∈ W for every x ∈ I (6.1)

6.1 Semantic integration 123

The notion of an interpretation of individuals allows us to reason about the
membership of instances to classes, denoted as x : C. We define membership
as follows:

x : C ⇐⇒ x� ∈ C� (6.2)

Using this definition of the semantics of individuals with respect to an ontol-
ogy, we can define the translation problem. we have to solve as follows:

Definition 6.2 (integration problem). Let IS1 = 〈〈S1, C1, d1〉, I1, M1〉
and IS2 = 〈〈S2, C2, d2〉, I2, M2〉 be information sources; then a bilateral inte-
gration problem is equivalent to finding a membership relation M : I1∪I2×C1

such that for all x ∈ I2 ∪ I2 and ci ∈ C1:

(x, ci) ∈ M iff x : d1(ci)

In order to generate this new relation M ′ we have to rely on the semantics of
both information sources that are given by their source ontologies. In general,
we cannot assume that both information sources use the same source ontology.
We cannot even assume that the source ontologies of both information sources
are comparable at all. If we want to make assertions about the relation of the
ontologies of two information sources, we have to ensure that we can perform
terminological reasoning across these ontologies. This in turn is given, if both
ontologies share the interpretation
 of concept terms. We can ensure this if
both source ontologies are based on the same shared ontology.

6.1.3 Approximate re-classification

The comparability criterion given above allows us to reason across source
ontologies; however, the definitions included in the different ontologies will
often be similar but not equivalent. This might lead to a situation where we
are not able to decide whether an instance really belongs to a certain class
in a different system or not. However, we can identify cases where we are
able to decide whether an instance from a remote information source defi-
nitely belongs to a certain class or definitely does not belong to a certain class.

Consider the situation where we want to classify an information item from
an information source IS2 into the local ontology of IS1 by computing M .
The only information we have about x is its classification M2 with respect to
the source ontology of IS2. In order to make use of this information, we have
to determine the relation between possible classifications of x in IS1 and the
source ontology of IS2. In this context, we can use subsumption testing in
order to determine hypotheses for M with respect to IS2 by computing the
class hierarchy for C1∪C2 using the definitions of individual classes (provided
that the encoding languages belong to the same family of languages).

124 6 Retrieval and Integration

As the classes in the hierarchy form a partial order, we will always have a set
of direct superclasses and a set of direct subclasses of c1. We can use these
classes as upper and lower approximations for c1 in IS2:

Definition 6.3 (upper approximation). Let IS1 = 〈〈S1, C1, d1〉, I1, M1〉
and IS2 = 〈〈S2, C2, d2〉, I2, M2〉 be information sources and c ∈ C1 a class
from IS1; then a class club ∈ C2 is called a least upper bound of c in IS2, if
the following assertions hold:

• d1(c) � d2(club)
• (∃c′ ∈ C2 such that d1(c) � d2(c′)) =⇒ (d2(club) � d2(c′))

The upper approximation lubIS2(c) is the set of all least upper bounds of c in
IS2.

Definition 6.4 (Lower Approximation). Let IS1 = 〈〈S1, C1, d1〉, I1, M1〉
and IS2 = 〈〈S2, C2, d2〉, I2, M2〉 be information sources and c ∈ C1 a class
from IS1; then a class cglb ∈ C2 is called a greatest lower bound of c in IS2,
if the following assertions hold:

• d2(cglb) � d1(c)
• (∃c′ ∈ C2 such that d2(c′) � d1(c)) =⇒ (d2(c′) � d2(cglb))

The lower approximation glbIS2(c) denotes the set of all greatest lower bounds
of c in IS2.

The rationale of using these approximations is that we can decide whether x
is a member of the classes involved based on the relation M2. This decision
in turn provides us with an approximate result on deciding whether x is a
member of c1, based on the following observations:

• If x is a member of a lower bound of c1 then it is also in c1

• If x is not a member of all upper bounds of c1 then it is not in c1

In [Selman and Kautz, 1996] Selman and Kautz propose to use this observa-
tion about upper and lower boundaries for theory approximation. We adapt
the proposal for defining an approximate classifier M ′ : I2 ×C1 → {0, 1, ?} in
the following way:

Definition 6.5 (approximate re-classification). Let IS1 =
〈〈S, C1, d1〉, I1, M1〉 and IS2 = 〈〈S, C2, d2〉, I2, M2〉 be information sources
and x ∈ I2; then for every c1 ∈ C1 we define M ′ such that:

• M ′(x, c1) = 1 if x :

(∨
c∈glbIS2 (c1)

d2(c)

)

• M ′(x, c1) = 0 if x : ¬
(∧

c∈lubIS2 (c1)

d2(c)

)

• M ′(x, c1) = ?, otherwise

6.2 Concept-based filtering 125

where the semantics of disjunction and conjunction is defined in the obvious
way using set union and intersection.

Based on the observation about the upper and lower bounds, we can make
the following assertion about the correctness of the proposed approximate
classification:

Theorem 6.6 (correctness of the approximation). The approximation
from Definition 6.5 is correct in the sense that:

• If M ′(x, c1) = 1 then x� ∈ d1(c1)�

• If M ′(x, c1) = 0 then x� �∈ d1(c1)�

Using the definition of upper and lower bounds the correctness of the
classification can be proven in a straightforward way (see Appendix).

This result provides us with the possibility to include many of the information
items from remote systems into an information source in such a way that we
get a semantic description of the item we can use for information management.
Another interesting application of this approach, namely information filtering,
is described in the next section.

6.2 Concept-based filtering

The translation approach described in the last section allows us to include
arbitrary information items into our own system, provided that we are able
to re-classify them using the approximate method we introduced. However,
in most cases we are not interested in the whole information of a remote
system, but only in information about a specific topic. The approach of first
trying to translate the whole information source in most cases leads to a
significant overhead, especially when we consider the amount of information
available on the World Wide Web. We therefore strive for methods that allow
us to preselect relevant information from remote systems by posing specific
queries to these systems.

As the major structuring method we use in this work is the classification of
information entities according to the source ontology, we want to use the
semantics defined in the ontology also as a basis for selecting information
from remote systems. For this purpose we propose to use Boolean queries
over concept names from the classification hierarchy. However, if we want to
use the vocabulary provided by the ontology of our information source, we
again face the problem of heterogeneity with respect to the ontologies used
in other systems. We show how we can use approximate re-classification in
order to translate the queries we want to post to remote systems in such a

126 6 Retrieval and Integration

way that we can guarantee that all returned information items indeed satisfy
the query expression.

Due to the approximate nature of the re-classification, we will not be able
to guarantee that all interesting information items are actually returned on
a query, because we just do not have an appropriate vocabulary for stating
queries in such a way that they cover all information items from the remote
system. So our approach, while not being able to provide maximal recall, it
guarantees maximal precision with respect to the semantics of the query.

6.2.1 The idea of query-rewriting

Assume that we want to post a query formulated using the ontology from
Fig. 6.2 to an information source that has been classified according to the
ontology in Fig. 6.1. In order to answer this query, we have to resolve the
heterogeneity discussed above. The use of a shared ontology in combination
with a definition of the classes in both ontologies enables us to do this. As
an example we take the following query (Animal ∧ ¬(Farm Animal)). This
query cannot be directly answered, because the term “Farm Animal” is not
understood, but we know what are the characteristic properties of “Zoo
Animal” and can compare them with the definitions of classes in the other
ontology.

As described in the introduction, the idea of our approach is to re-write this
query in such a way that it covers the same set of answers using terms from
the other ontology. In general, an exact re-writing is not possible because
the concepts of our ontology do not have corresponding concepts. In this
case, we have to look for re-writings that approximate the query as closely
as possible. Re-writings that are an upper approximation of the original
query are know from the database area as minimal subsuming mappings
[Chang and Garcia-Molina, 2001]. Whereas in the area of databases upper
approximations are often used in combination with an additional filter that
removes irrelevant results, our approach aims for correctness rather than for
completeness and therefore uses a lower approximation.

The idea of the re-writing is the following. Based on the formal definitions
of the classes in both ontologies, we can find those concepts in the ontology
of Fig. 6.1 that are most closely related to a query concept. Taking a
concepts from our query, we can for example decide that “Domestic Animal”
and “Production Animal” are upper approximations for “Farm Animal”
while “Cow” and “Pig” are lower approximations. Using these concepts, we
can define lower boundaries for “Farm Animal” (Cow ∨ Pig) and use this
expression instead of the original concept still getting correct results. In
our example, however, the concept occurred in a negated form. In order to
return a correct result, we therefore cannot use the lower bound because

6.2 Concept-based filtering 127

not all irrelevant resources might be excluded. Based on the considerations
made above we can replace the concept ”Farm Animal” within the scope of
the negation by its upper bound (Domestic Animal ∧ Production Animal).
Using this rewriting, we get the following query that can be shown to re-
turn only correct results: (Animal∧¬(Domestic Animal∧Production Animal).

The situation becomes slightly more complicated if complex expressions
occur in the scope of a negation. An example is the following query:
¬(Pet ∨ Farm Animal). In this case we first have to convert the query
into negation normal form where negation only applies to atomic con-
cepts. In negation normal form the above query will be of the form
(¬Pet∧¬Farm Animal). Using upper and lower bounds this query translates
to ¬Domestic Animal ∧ ¬(Domestic-Animal ∧ Production Animal). This
query normalizes to (¬Domestic Animal ∧ ¬Production Animal), which in
our example only includes the classes “Lion” and “Tiger”.

6.2.2 Boolean concept expressions

In order to apply the idea of approximate re-classification to information filter-
ing, we first have to define the type of filtering expressions we want to use. As
mentioned in the introduction, we use the Boolean query model widely used
in information retrieval and filtering. In information retrieval, Boolean queries
consist of keywords that are combined by Boolean operators. The assignment
of information items to concepts of an ontology as proposed in the last chapter
enables us to use concept names instead of keywords. The resulting notion of
a Boolean concept query is defined as follows:

Definition 6.7 (Boolean concept query). Let IS = 〈〈S, C, D〉, I, M〉 be an
information source; then a Boolean query is formed by a legal query expression
that is defined in the following way:

• every c ∈ C is a legal query expression,
• if e is a legal query expression then ¬e is also a legal query expression,
• if e1 and e2 are legal query expressions, then e1 ∧ e2 and e1 ∨ e2 are also

legal query expressions.

The advantage of using concept names instead of keywords is the possibility
of defining a clear semantics of a query that makes it possible to reason about
the query result in the framework of terminological languages. By defining
the semantics of a Boolean concept query on the basis of the semantics of
the concept contained therein, we get a direct connection between queries
and the underlying ontology. This is of particular interest for the case where
queries are not posed by human users, but by computer programs, because the
semantics of the queries enables the system to precisely interpret the returned
result.

128 6 Retrieval and Integration

Definition 6.8 (query semantics). Let IS = 〈O, I, M〉 be an information
source. The semantics QI of a query Q is defined by an interpretation mapping
I into the abstract description model of O in the following way:

• cI = d(c)�

• (¬e)I = W − eI

• (e1 ∧ e2)I = eI1 ∩ eI2
• (e1 ∨ e2)I = eI1 ∪ eI2

The reason for relating queries to ontologies on a semantic level is the pos-
sibility to use terminological reasoning for determining the query result. We
can treat the query as a concept expression in the ontology and classify it
with respect to the other concepts therein. Especially, we can determine those
concepts in the ontology that are subsumed by the query:

Definition 6.9 (subsumed concepts). A concept C is said to be subsumed
by a query q if d(C)� ⊆ QI . We denote this fact by C � Q.

On the other hand, what we are interested in are those information items that
are members of the concept expression that is equivalent to the query. These
items that we refer to as the query result are formally defined as follows:

Definition 6.10 (query result). Let IS = 〈〈S, C, D〉, I, M〉 be an informa-
tion source and Q be a Boolean query over IS then the result of Q is given
by:

{x ∈ I | x� ∈ QI}

We denote the fact that an instance x belongs to the result of a query Q by
x : Q.

Subsumed concepts directly provide us with the result to a terminological
query, because the union of their members is exactly the query result we are
looking for. As information items are explicitly assigned to concepts in the
ontology, the task of computing the query results reduces to looking up the
members of the subsumed classes.

Theorem 6.11. An information item x is in the result of a query Q if

M2(x, C) ∧ d(C) � Q

This theorem directly follows from the definitions of subsumption and mem-
bership. Though being trivial, we include it for the sake of completeness.
These considerations justify the use of description logic reasoners for answer-
ing Boolean concept queries.

6.2 Concept-based filtering 129

6.2.3 Query re-writing

In the last section we described how information filtering with Boolean
queries can be implemented using terminological reasoning. We showed
that in our framework the problem of filtering relevant information can be
reduced to subsumption reasoning. However, the approach assumed that the
concept names used in the Boolean query are taken from the ontology of the
information source that is queried, because the definitions of those concepts
have to be known in order to determine subsumption relations. At this point,
the re-classification results given in the last section come into play. The idea
is to approximate the meaning of concepts in a query by its re-classification,
i.e. by the upper and lower bounds in the other system (compare Sect. 6.1.3).

The adaption of a query to remote systems can be done in a three step process:

1. Normalization: the original query is transformed into negation normal
form (see Definition 6.12).

2. Re-writing: the concept names in the query are replaced by their ap-
proximations in the remote source (this is done for each remote source
individually).

3. Classification: the re-written query is classified into the ontology of the
remote source and instances of subsumed concepts are returned as the
result.

The transformation to negation normal form is necessary in order to decide
whether a concept name has to be replaced by its lower or its upper bound.
As argued in the first section of this chapter, negated concepts have to be
replaced by their upper bound and non-negated ones by their lower bound
in order to ensure the correctness of the query result. The negation normal
form supports this process by revealing which concept names are negated and
which not.

Definition 6.12 (negation normal form). A query is said to be in negation
normal form if negations only apply to concept names c ∈ C and not to
compound expressions.

Every Boolean query can easily be transformed into negation normal form
using the following equalities:

¬(e1 ∧ e2) ≡ ¬e1 ∨ ¬e2 (6.3)
¬(e1 ∨ e2) ≡ ¬e1 ∧ ¬e2 (6.4)

Once we have transformed the query, re-writing can be done locally on the
concept names using the least upper and greatest lower bounds that have
already been discussed in the last section:

130 6 Retrieval and Integration

Definition 6.13 (query re-writing). The re-writing of a query Q in nega-
tion normal form over concepts ci from an information source IS1 to a query
Q′ over concepts from another information source IS2 is carried out as fol-
lows:

• replace every negated concept name c by:
∧

c′∈lubIS2 (c)

c′

• replace every non negated concept name c by:
∨

c′∈glbIS2 (c)

c′

The re-writing and execution of a query can easily be implemented using exist-
ing description logic reasoners. We have implemented the basic approximate-
reclassification algorithm using RACER [Haarslev and Moeller, 2001]. The
implementation is used in the BUSTER system (compare section 9.3). We can
compute the re-writing using Algorithm 1 below. The input for the algorithm
is the query to be re-written, the class names in C2 and a terminological
knowledge base including the definitions of the concepts in C1 and C2 as well
as the shared ontology.

Algorithm 1 rewrite-query

Require: A Boolean query in negation normal form: Q
Require: A list of class names: N
Require: A terminological knowledge base T

racer.in-tbox(T)
for all t is an atomic term in Q do

if t is negated then
B[t] := racer.directSupers(t)
B′[t] := B[t] ∩ N
Q(t) := (c1 ∧ · · · ∧ cn) for ci ∈ B′[t]

else
B[t] := racer.directSubs(t)
B′[t] := B[t] ∩ N
Q(t) := (c1 ∨ · · · ∨ cn) for ci ∈ B′[t]

end if
r(Q) := proc Replace t in Q by Q(t)

end for
return r(Q)

As the re-writing builds upon the approximations discussed in the last section
we can guarantee that the result of the query is correct. Moreover, we can use
subsumption reasoning in order to determine this result. To be more specific,
a resource x is indeed a member of the query concept if membership can be
proved for the re-written query.

6.3 Processing complex queries 131

Theorem 6.14 (correctness of re-writing). The notion of query re-
writing defined above is correct in the sense that:

x : Q′ =⇒ x� ∈ QI

The results proven in this section provide us with a tool to filter information
items according to Boolean expressions across heterogeneous information
sources provided that they use the architecture described in the second part
of this book. We consider this a great advantages because the search for
interesting information no longer has to be based on plain keywords, whose
meaning is not precisely defined leading to problems concerning precision
and recall.

Unfortunately, proving the correctness of the approximation says nothing
about the quality of the approximation. In the worst case, the upper and
lower boundaries of concepts in the other hierarchy are always � and ⊥, re-
spectively. In this case the translated query always returns the empty set as
result. We were not able to investigate the quality of approximations on a
theoretical level; however, we can provide some rules of thumb that can be
used to predict the quality of an approximation:

• Depths of hierarchies. The first rule of thumb we can state is that deeper
class hierarchies lead to better approximations. For hierarchies of depth
one it is easy to see that we will not be able to find good upper and
lower bounds. We can also assume that deeper hierarchies provide finer-
grained distinctions between concepts that in turn often produce closer
approximations.

• Degree of overlap. our approach assumes a shared vocabulary for building
class definitions; however, we cannot guarantee that different systems in-
deed use the same parts of this shared vocabulary. Therefore, the actual
overlap of terms used in the existing definitions that are compared is im-
portant for predicting the quality of approximations. In general, we can
assume that a high degree of overlap leads to better approximations.

Both criteria used in the rules of thumb above strongly depend on the ap-
plication and on the creator of the corresponding models. At least for the
degree of overlap, we can assume that hierarchies that are concerned with the
same domain of interest will share a significant part of the vocabulary, thus
enabling us to compute reasonable approximations.

6.3 Processing complex queries

The results of the last section provide us with the possibility to compute a
set of objects that are definitely members of a concept expression and a set of
objects that are possibly members of a concept. This approach can directly be

132 6 Retrieval and Integration

used to answer Boolean queries. This corresponds to an expressiveness similar
to the capabilities of existing search engines. One of the main advantages of
using semantic technology, however, is the ability to make use of semantic
relations between objects. Using such relations in queries provides an expres-
siveness that clearly goes beyond the abilities of free-text querying. In this
section, we show how the approach for approximate information filtering can
be applied to more complex queries that also use relations between query
variables. In particular, we consider conjunctive queries over ontologies.

6.3.1 Queries as concepts

In order to compute (approximate) answers for ontology-based conjunctive
queries, however, we also have to deal with unary and binary predicates in the
query expression that correspond to classes and relations from the ontology.
Using the general notion of terminological knowledge provided in Sect. 3.1 we
define complex queries in the following way.

Definition 6.15 (terminological queries). Let V be a set of variables dis-
joint from IN ; then a terminological query Q over a knowledge base T is an
expression of the form

q1i
∧ · · · ∧ qmi

where qi are query terms of the form x : c or (x, y) : r such that x, y ∈ V ∪ IN ,
C ∈ CN and R ∈ RN .

The following query is an example from the case study reported later in this
chapter. The query asks for an accommodation of type hotel that lies in city
in Mecklenburg (a part of Germany). Further it has to be located in a castle
and have less than 25 rooms:

Q(X) ← Hotel(X) ∧ liegt − in − Ort(X, V) ∧ liegt − in − land(X, W) ∧(6.5)
hat − Zimmer(X, Y) ∧ liegt − in − schloss(X, Z) ∧
W = meckelnburg ∧ Y ≤ 25 ∧ Z = ja

In order to cope with terminological queries as defined above, we use a method
for translating conjunctive queries into concept expressions that has been
proposed by Horrocks and Tessaris [Horrocks and Tessaris, 2000]. The idea
of the approach of Horrocks and Tessaris is to translate the query into an
equivalent concept expression, classify this new concept and use standard
inference methods to check whether an object is an instance of the query
expression. This approach makes use of the fact that binary relations in a
conjunctive query can be translated into an existential restriction in such a
way that logical consequence is preserved after a minor modification of the
A-box. Details are given in the following theorem.

6.3 Processing complex queries 133

Theorem 6.16 (Role Roll-Up (Horrocks and Tessaris 2000)). Let
〈C],R,A〉 be a description-logic knowledge base with concept definitions C,
relation definitions R and assertions A. Let further R be a role, CI concept
names in T and a, b individual names in A. Given a new concept name Pb

not appearing in T , then

〈C,R,A〉 |= (a, b) : R ∧ b : C1 ∧ · · · ∧ b : Ck

if and only if

〈C,R,A ∪ {b : Pb}〉 |= a : ∃R(Pb � C1 � · · · � Ck)

The transformation of a complete query is more difficult due to the dependen-
cies between the variables that occur in the query expression. In order to keep
track of these dependencies during the transformation Horrocks and Tessaris
introduce the notion of a query graph.

Definition 6.17 (query graph (Horrocks and Tessaris 2000)). The
graph induced by a query is a directed graph with a node for every variable
and individual name in the query and a directed edge from node x to node y
for every role term (x, y) : R in the query.

The correct transformation of a query into a concept expression depends on
the kinds of dependencies between the variables in the query, which is reflected
in the structure of the query graph. While the approach of Horrocks and
Tessaris is more general, we restrict ourselves to queries where the query
graph is a (directed) tree and its root node corresponds to the variable we are
interested in. Especially, this requires that none of the roles used in the query
is declared to be functional and that each constant only appears once in a
query. While using this simplification, we would like to emphasize that the
translation can be done for unions of conjunctive queries with an arbitrary
number of result variables and a very expressive logical language for defining
class expressions. Our simplifying assumptions lead to a simple method for
transforming a query graph into a concept expression.

Definition 6.18 (query roll-up (Horrocks and Tessaris 2000)). The
roll-up of a query Q with query tree G is a concept expression derived from Q
by successively applying the following rule:

• If G contains a leaf node y then the role term (x,y):R is rolled up according
to definition 6.16. The edge (x,y) is removed from G.

The result of applying this translation technique to an example query could be
the following expression asking for hotels in Mecklenburg-Vorpommern that
are located in a castle and have less than 25 rooms:

134 6 Retrieval and Integration

(Hotel � (∃ liegt − in − Ort .(∃ liegt − in − Land .{mecklenburg})) �
(∃ hat − Zimmer .(≤ 25)) �
(∃ ist − in − Schloss.{ja})) (6.6)

As this expression defines a new concept in the overall ontology we can now
apply the approximation techniques described in the last section in order to
compute the sets of possible and the set of definite answers to the query.

6.3.2 Query relaxation

In the presence of sparse mappings, we face a situation where the descriptions
of different peers referring to the same real-world object can be significantly
different. In most cases, the descriptions are different in the sense that different
relations are used to relate the same object to other objects in the domain.
These relations may refer to the same properties of the object that cannot be
matched due to a missing mapping or the set of properties itself used might
be different. As a consequence, real-world objects that are meant to be an
answer to a query are not returned because their description does not match
the query that is formulated using terms from a different ontology. We address
this problem by relaxing the query, i.e. by weakening those constraints from
the query expression that are responsible for the failure. In order to be useful,
this weakening process has to fulfill certain formal properties. Especially, we
want to make sure that we do not lose any answers when modifying the query.
We can guarantee this using the notion of query subsumption as described by
Halevy:

Definition 6.19 (query containment and equivalence (Halevy 2001)).
Let T = 〈C,R,O〉 and let Q1, Q2 be conjunctive queries over T . Q1 is said to
be contained in another query Q2, denoted by Q1 � Q2, if for all possible sets
of object definitions of a terminological knowledge base the answer for Q1 is a
subset of the answer for Q2 : (∀O : res(Q1) ⊆ res(Q2)). The two queries are
said to be equivalent, denoted as Q1 ≡ Q2, iff Q1 � Q2 and Q2 � Q1.

Based on these notions we compute a sequence of queries Q0, ..., Qn such that
the following properties hold:

1. Q0 ≡ Q
2. i < j =⇒ Qi � Qj

The intuition behind this approach is to start with the original query and
generate queries where each is more general than the one before, i.e. each
query following in the sequence returns all results of the previous one, but
might return more results. Our hope is that these new results contain the
description of some real-world objects that should be answers, but were not
found due to their description.

6.3 Processing complex queries 135

There are many different ways of making a query more general in order to
increase the chance of matching a potential answer. In the following we discuss
relaxation heuristics we consider useful for the purpose of query processing in
a peer-to-peer setting.

Variable elimination

The first heuristic is based on the fact that each variable in a conjunctive
query might fail to match a specific object if the object does not satisfy
the constraints. Therefore, a way of increasing the chance of matching the
target object in the head of the query is to successively eliminate non-answer
variables from the query. In the example query in Equation 6.6 for example,
we have the variables V, W, X, Y and Z, where X is the answer variable.
Therefore we can weaken query by eliminating the variables V, W, Y and Z.
This can be done by removing all conjuncts containing a specific variable from
the query expression. It is easy to see that successively removing conjuncts
from the query leads to a sequence of queries with the desired properties.

The main question that arises when adopting the variable-elimination ap-
proach is the order in which the variables should be removed from the query.
This order is partially constrained by the dependencies between the different
variables. Removing the wrong variable first can break these dependencies
and make the remaining conjuncts useless. Looking at the example query this
would happen if we first removed the variable Y. In this case the conjunct
V = mecklenburg would be isolated, because the variable V only occurred in
the removed conjuncts that connected it to the answer variable. In order to
avoid breaking dependencies when removing conjuncts, we can use the query
graph of the query to be relaxed (compare Definition 6.17) as it explicates
existing dependencies. In the query graph dependencies between variables are
represented by arcs between nodes. Therefore, we have to ensure that the
query graphs remains connected when removing the node that represents the
variable we want to eliminate. Obviously, this is only the case if we eliminate
variables that correspond to leaf nodes in the graph. Fig. 6.3 illustrates the
successive elimination of the variables V, Y, Z and W from the example query,
showing the corresponding sequence of query graphs.

Guided elimination

The major drawback of the variable-elimination heuristic as explained so far is
the high number of arbitrary choices that still exist in the order of elimination.
More specifically, whenever the query tree has more than one leaf node, we
have no strategy yet to decide which one to eliminate. In general, there are
many possibilities for defining ordering heuristics, based on:

1. The nature of the domain.

136 6 Retrieval and Integration

(a)

(b) (c)

(d) (e)

Fig. 6.3. A possible sequence of query graphs

2. The preferences of the user.
3. The task to be solved.

As our approach does not aim at a specific domain, user or task, we will have to
rely on rather general heuristics being aware that they will never be optimal.
In our case, the only information we can use to decide on an elimination order
is the existence of local mappings that relate the query vocabulary to the
shared one that is actually used to compute the answer. The general idea
is that we would rather drop conjuncts that represent concepts or relations
without a suitable mapping into the shared ontology, because they can never

6.4 Examples from a case study 137

be satisfied by any object classified according to that ontology. We have seen
that for the case of concepts, we can often find a suitable approximation even
if there is no direct counterpart in the shared ontology. Therefore, we focus
on conjuncts representing relations and eliminate such variables first that are
constrained by a relational conjunct that has no direct mapping to the shared
ontology. The effect of this strategy is illustrated in the next section where we
describe some experiments with approximating concepts and relaxing queries
in a case study.

6.4 Examples from a case study

We performed a case study in order to validate the methods described above.
The case study is based on three different ontologies in the domain of tourism.
The ontologies are available in the DAML ontology library (www.daml.org)
and have been created by independent groups of students at the University
of Karlsruhe. All ontologies aim at describing the conceptualization of
an Internet site that is advertising tourism in north-east Germany. All
ontologies contain information about accommodation, tourist attractions
and transportation facilities. While sharing these general topics, the different
ontologies describe them in a very different way focusing on different parts
of the overall domain. We chose these ontologies, because they very closely
resemble the situation we expect in a peer-to-peer network, where peers
model information about the same domain in different ways.

In the course of our case study, we imported the ontologies, each containing
about 300 concepts and 50 to 70 relations, into an ontology editor using some
syntactic transformations. We then analyzed the ontologies and created about
150 obvious mappings using simple string matching. In this way we created
mappings mostly between concepts that have exactly the same name and
between concepts where one name is the plural form of the other. Based on
these mappings we computed two overlapping concept hierarchies consisting of
about 600 concepts each. These hierarchies served as the basis for evaluating
our concept approximation and query relaxation techniques. In the following,
we describe examples of concept-approximation and of query-relaxation with
respect to this hierarchy.

6.4.1 Concept approximations

As an example of concept approximation we use the concept “Ferien-
Wohnung” (a flat used as accommodation during holidays). The relevant
part of the overall hierarchy can be seen in Fig. 6.4. We can see that concepts
from private and shared ontologies occur in this part of the hierarchy (The
private concepts are shaded).

138 6 Retrieval and Integration

The approximations we are interested in are the direct sub- and superclasses
of tourism example concept that are not from the same ontology. We can see
in the figure that these are: “Bungalow” and “Appartment”. If we look at
the view of Peer B on the World we see also that the concept “Ferienhaus”
(house used during holiday) would fall under this category. While this result
is not completely true, because houses are not flats, it still serves the purpose
very well, because all of the concepts describe accommodations that are
reasonable replacements in the case that no flat is available.

If we determine the upper approximation of the example concept, we get the
general concept “Unterkunft” (accommodation). Our method now determines
all instances of this general concept to be potential members of the example
concept. Besides the members of the already mentioned concepts, this also
includes objects that are members of the concepts “Hotel” and “Camping-
platz” (camp site) in the view of the answering peer B. We see, that these
results are still closely related to the example concept, because they are all
accommodations mainly used during holidays; however, hotels and camp sites
are not really the kind of answer the user would assume to get when asking
for a flat. Still, returning hotels and camp sites as answers to a query for a
flat is still better than not returning any result, because the user might want
to change her choice in favor of other preferences (e.g. the location).

6.4.2 Query relaxation

As an example for query relaxation, we take the example query. If we
transform this query into a concept expression (Equation 6.6) and classify it
into the overall concept hierarchy of the case study, it end up as a subconcept
of “Schlosshotel” (castle acting as a hotel). Computing the answer to the
query we get an empty set, because there are no instances of “Schlosshotel”
satisfying all properties of the query concept. Using the upper bound,
however, we already get the members of the concept “Schlosshotel”. If we do
not want to rely on this result, we have to analyze the reason for the failure
of returning definite answers. Looking at the ontologies in the case study,
we see that none of the ontologies except for the one the query is based on
contains information about the number of rooms of a hotel, which makes
it impossible to prove that a specific hotel is an answer to the query. As a
response to this observation, we relax the query by removing the restriction
on the number of rooms. This leads to a situation where we already get some
definite results, namely those members of the concept “Schlosshotel” that
satisfy the requirement of being in the federal state of Mecklenburg. Note that
this provides us with a better result than the use of the upper bound, because
we already have a preselection of results according to the geographic criterion.

The ability to retrieve relevant information using this second query relied
on the fact that the ontology describing the information defines the concept

6.4 Examples from a case study 139

(a) Peer A

(b) Peer B

Fig. 6.4. The views of two different peers of the same domain

“Schlosshotel” as the set of all hotels for which the property “liegt-in-Schloss”
(is located in a castle) is true. We were able to use this implicit information
about the specific relation in order to retrieve information without having
an explicit assertion stating that a hotel has this specific property. In a case
where the ontology does not contain the necessary information, we would still
get no results for the relaxed query, because the property “liegt-in-Schloss” is
not satisfied by any information item. In this case we can again use the up-
per bound for answering the query, which would now be the concept “Hotel”.

140 6 Retrieval and Integration

Consequently, we would get all hotels as potential answers. Again, this result
is too general, as we want to preserve at least the geographic constraint. A
solution is to further relax the query by removing the “liegt-in-Schloss” prop-
erty from the query. The resulting query will match all hotels in the federal
estate of Mecklenburg. Admittedly, this result is not a very good one; how-
ever, it resembles the functionality of many current Web-based information
systems, where lists of hotels can be accessed by selecting a specific area. We
would like to stress that our approach leads to more precise answers in most
cases, especially if the queries are not too complicated, and we only have to
fall back on very imprecise results if all other attempts fail.

6.5 Conclusions

While the idea of maximizing precision and recall by using concept expres-
sions in Boolean queries is appealing, the practical application in information
sharing suffers from the fact that there will not be “the one” ontology that
is used to classify information. We will rather face a situation, where a
multitude of classification hierarchies organize different or even the same
information according to different discrimination principles. A successful
information-filtering approach will have to make use of as many of these
ontologies as possible. This claim raises the problem of comparing different
ontologies.

While description logics allow us to reason about the relation between con-
cepts a problem that still persists is the fact that different source ontologies
will almost never contain concepts with exactly the same meaning. Therefore,
we cannot exactly map concepts from two information sources on each other.
However, following the idea of theory approximation we can use upper and
lower bounds to get mapping results that can be proven to be correct in the
sense that they provide maximal precision, but not completeness (i.e. the
recall cannot be guaranteed to be maximal).

This approximate mapping approach can also be used to contribute to the
problem of finding relevant information in different information sources.
We can answer Boolean queries over concept names by replacing unknown
concept names by their lower bound in the corresponding source ontology.
The resulting query can be processed in the context of the remote infor-
mation source, delivering a query result that can be proven to be a correct
approximation of the intended result.

We conclude that approximation techniques for processing queries and for
logical reasoning in general are important in weakly structured and heteroge-
neous environments such as the World Wide Web, because they can be used
to partly overcome semantic heterogeneity that is omnipresent.

6.5 Conclusions 141

Further reading

Visser and others [Visser et al., 1998] discuss the problem of ontol-
ogy heterogeneity and classify different kinds of mismatch. Beeri and
others [Beeri et al., 1997] show that the problem of re-writing queries
over terminological knowledge is undecidable in the general case.
The idea of using upper and lower approximations for logical the-
ories is presented in [Selman and Kautz, 1996]. Horrocks and Tessaris
[Horrocks and Tessaris, 2000] describe a method for reducing query answer-
ing to concept classification. An approach similar to the one presented here is
reported in [Mena et al., 2000b].

7

Sharing statistical information

Summary. In the last chapter, we introduced a number of basic
techniques for retrieving and integrating heterogeneous information
sources. In this chapter, we report an application of some of these
techniques in a project on the integration of European fishery statis-
tics. We identify the special characteristics of statistical information
and focus on the use of the Web Ontology Language for representing
statistical information and for retrieving information based on a
semantic description.

Statistics are indispensable for political decision making. Economic, de-
mographic and environmental statistics are used for monitoring social
and physical processes and for measuring policy effectiveness. National
governments usually have organized statistical services in order to fulfill their
demand for decision support. At supranational level, and even at national
level, homogeneous statistics are often not available. So, for supranational
economic research and policy evaluation, heterogeneous statistics from a
variety of independent sources must be integrated. In integration of statistics,
all general problems known from other areas of information integration occur,
such as ontological and notational differences and differences in units of
measurement and typology. In addition there are some specific problems in
the integration of statistics. The first class of problems specific for statistics
are differences in the population, e.g. differences in the threshold for inclusion
of objects. For example, does a boat with engine power less than 20 hp count
as a fishing vessel? A second class of problems are differences in reported
statistics, e.g. sum vs. average. Further, there are classification differences,
e.g. age classes bounded by 20, 35, 50 and 65 years vs. 15, 35 and 55 year;
length vs. gross register tonnage as vessel size indicator; differences in nomen-
clature. In order to overcome these heterogeneities, we often need background
information like the correlation between the membership in different classes.
In order to find and compare such statistics with needed information, we need

144 7 Sharing statistical information

to be able to formally describe the domain ontology underlying a statistic and
the statistical information itself. For these purposes we need an ontology of
statistical terms and a framework for describing, comparing and translating
the domain ontologies of heterogeneous statistical tables. Fig. 7.1 shows an
example of a statistical table that will be used in the remainder of this chapter.

Table 7.1. Summary of the German fleet’s catch in 2000

Zone Grosse Hoch- Ab 20m 10 bis Bis Gesamte kleine Gesamte Kutter
seefischerei 19,99m 9,99m Hochsee und und

Kuestenfischerei Hochseefischerei

EG 93.932,0 53.258,2 30.222,0 6.268,3 89.748,5 183.680,5
A 7.966,5 0,2 0,8 0,0 1,0 7.967,5

FAR 0,0 213,4 0,0 0,0 213,4 213,4
NF 2.995,3 0,0 0,0 0,0 0,0 2995,3

NFGD 1.924,5 0,0 0,0 0,0 0,0 1.924,5
GD 5.005,6 0,0 0,0 0,0 0,0 5.005,6
IS 0,0 659,6 0,0 0,0 659,6 659,5

EST 0,0 0,0
LET 0,0 0,0
LIT 0,0 0,0
NN 2.564,1 0,0 0,0 0,0 0,0 2.564,1
NSP 2.206,0 0,0 0,0 0,0 0,0 2.206,0
MAU 0,0 0,0 0,0 0,0 0,0 0,0

Gesamt: 116.594,0 54.131,4 30.222,8 6.268,3 90.622,5 207.216,5

In this chapter, we first discuss the special nature of statistical information
that has to be taken into account when trying to integrate and share it and
present a core ontology os statistical information. We then introduce a frame-
work for modelling statistical information using OWL for capturing the on-
tology of statistics and combining it with domain concepts as well as data
items to be shared. We explain the different features of the representation
using the example of European fishery statistics and show the benefits of this
representation with respect to the retrieval of information using conjunctive
queries.

7.1 The nature of statistical information

Before we can define a representation for statistical data, we first have to get
a better understanding of the nature of the information we have to capture.
For this purpose we adopt the abstract model of statistical data described in
[Sundgren, 1995]. Following this model, we first have to distinguish statistical
microdata and macrodata. The former refers to the actual observations that

7.1 The nature of statistical information 145

have been made about single objects in the World (statistical units) and their
properties at a certain point in time (e.g. the salary of a person in a certain
month). It can be modelled as a list of quadruples: object, property, value,
time point or interval. Each of these quadruples forms an elementary message.
A number of messages form a statistical register of observations about some
phenomenon of interest. A register is the basis for generating aggregated in-
formation about a population of objects, also called macrodata. Note that a
register is intended to represent a population, but that it is not identical: the
register may be a sample or some other incomplete selection. The generated
macrodata are estimates of the actual values of population properties. At large
the process of statistics involves the following activities: (1) identify the ob-
jects to be included in the register; (2) observe the objects and enter observed
values into the register and (3) process register data to obtain estimates for
the population or cross classifications. The first two activities result in the
production of microdata. The third activity results in macrodata. Models for
describing statistical information systems are given by [Catarci et al., 1998]
and [De Giacomo and Naggar, 1996].

7.1.1 Statistical metadata

When we talk about statistical tables, we always refer to aggregated informa-
tion. Therefore, a general model of macrodata is needed as a foundation for
modelling these statistics. Because microdata are in most cases not available
for end users, from the user’s perspective the model should abstractly describe
the table contents, in stead of the statistical information system that produced
them. Such a general model has four components that will be discussed in the
following.

The reference population

Macrodata always refers to the characteristics of a set of objects. This set
of objects, called a population, is important in order to draw conclusions
about the relevance for a specific question. Statistics are often used in or-
der to compare two different populations without having to compare single
objects. Further, correlation between the values of two properties can only
be established if the statistics refer to the same population. The population
of statistical macro-data is described by a set of criteria that hold for all
objects in the population. These criteria include the type of objects under
consideration (e.g. employed persons). Often the type criterion is combined
with other criteria, in particular geographic constraints (employed persons in
central Europe) or combinations of different type constraints (e.g. employed
females).

Aggregation criteria

(Cross-classifications) In most cases statistics do not consider a population as
a whole, but define additional aggregation criteria that split the underlying

146 7 Sharing statistical information

population into a number of disjoint, exhaustive subgroups. The values for
each of the subgroups are determined independently and can be compared
in order to make assertions about the specific group. Aggregation criteria
again can be very different, the only restriction is that they cross-classify the
population. We find aggregation criteria related to the type of objects (male
vs. female employees, age groups), the geographic location (inhabitants of
different federal states) or time (months of a year). The aggregation criteria
are especially important when the statistic is intended to be used to answer a
particular question (e.g. are female employees discriminated with respect to
their salary ?).

Aggregation operator

The next important aspect is the method used in order to aggregate the values
of the observed property in the different subgroups. Its function is to abstract
from the properties of individual objects. It serves as a means for normalizing
and abstracting the observations contained in the microdata. This method can
range from a simple count of the objects in a subgroup to complex aggregation
functions. The concrete function depends on the nature of the observed prop-
erty. Often, the values of a considered property is a numerical value. In this
case the aggregation function can be defined by any mathematical formulas
mapping a set of numbers onto a single one. Typical examples of aggregation
functions beside the count are the sum, the average and the median of a set
of values.

The time frame

Properties of objects often change over time. Therefore, it is important to
consider the time frame in which the microdata a statistic is based on has
been acquired. It is also relevant for comparing the properties of different
populations on the basis of the same time frame or the same population in
different periods of time. There are two different aspects in the definition of the
time frame. The first is the beginning and the end of the observation period
and the second is the frequency and the time points for which data has been
acquired (once, monthly, yearly,...). Both aspects are relevant when trying to
compare two statistics. In the case of different frequencies, the results of the
statistic that is based on more frequent observations can still be aggregated
to match the other given that the other aspects are the same.

7.1.2 A basic ontology of statistics

The general data model of statistical data is the data matrix, the rows rep-
resenting objects of interest, the columns representing attributes (properties)
of the objects. For microdata, the rows represent statistical units and the
columns represent observed variables. For macrodata, the rows represent
classes of statistical units and the columns represent estimators of population

7.1 The nature of statistical information 147

properties. Statistical methods are generic. They map data matrices to data
matrices. The semantics of the data matrices is in the meaning we give to the
rows and the columns, and in the definition of the represented population.
For reasoning about statistics, we need an ontology of statistical terms –
referring to the generic properties of data matrices and statistical operators
– and an ontology of the domain described by the statistics. The statistical
ontology should provide the framework for relating statistical knowledge to
the domain ontology by giving definitions of reference populations, their
properties and cross-classifications (compare [Grossmann, 2002]). Statistical
metadata literature emphasizes three main properties that describe statistical
tables: the population represented by the table, the population characteristics
represented by the data content and the variables used to cross-classify the
population. Some models have an explicit notion of time ([Sundgren, 1995],
[Grossmann, 2002]), while others ([Catarci et al., 1998]) rely on explicit
modelling of time as a cross-classifying variable. Where temporal awareness
is included in the model, it has two roles: (1) as a validity label of metadata
definitions and (2) as a time-coverage label for the data. In some models there
is a more or less formal definition of the classes used for cross-classifying the
data, but the population is taken as primitive in most models: there is a
slot for specifying a textual definition, but no formal definition of population
constraints. For integration purposes a formal specification is necessary
because we need to reason about populations and differences between them,
in contrast with the statistical production process where the population is
given. Denk and Froeschl [Denk and Froeschl, 2000] treat temporal as well
as geographic coverage as a special variable category. They define a request
template for a table to be mediated from heterogeneous macrodata sources,
with clauses for specification of: the mediated source table, the estimator
to report, geographical constraint, temporal constraint, cross classification,
and additional constraints. The template does not explicitly specify the
population or the type of statistical units. The definition of the population
to report about is hidden in the constraints part of the request specification
and is implicitly bounded by the available sources.

While the general aspects are assumed to be the same for any source of sta-
tistical information, the domain-specific aspects may be different. This corre-
sponds to the basic distinction between ontology (a shared conceptualization
of a specific subject matter) and context (a subjective view of a domain). In
this section, we concentrate on those aspects of statistical information that
are the same across different domains and define a basic ontology of statistical
information. This ontology will provide the backbone for modelling statistical
information in different contexts.

Statistical Units and Attributes

The basis of statistical information is the notion of a “statistical unit” which
refers to an individual object in the domain of discourse. These objects

148 7 Sharing statistical information

have certain “attributes” that provide input to the generation of aggregated
information. The value of a specific attribute of a statistical unit is referred
to as an “observation”. Observations are further defined by the unit and the
scale they are measured in. Both, unit and scale are defined in the particular
context the statistic has to be interpreted in.

We can further distinguish between different types of attributes that demand
a different treatment due to their conceptual nature. A basic distinction is
between qualitative and quantitative attributes. Quantitative attributes of-
ten contain the information that is presented in an aggregated way by the
statistics. Qualitative attributes are often used as a grouping criterion for sta-
tistical units. Specific types of qualitative attributes are classifications and
spatial attributes further defined in the context of the statistics.

Classes and estimates

A fundamental property of statistics is that they do not provide informa-
tion about individual objects, but abstracted information about groups of
objects sharing some common property. In our basic ontology of statis-
tics, such groups of objects are referred to as “classes”. We distinguish
interval classes and nominal classes. Mutually exclusive lists of classes, used
for discriminating and grouping of statistical units, are called “classifications”.

Classes can have a special role in statistical datasets, namely as a “refer-
ence population”, the set of all statistical units that are described by the
statistics. In a register a population is normally represented by a subset
of statistical units – e.g. a random sample – whose attribute values have
actually been observed. A register may contain special attributes for identi-
fication of the statistical units, that will never be included in statistical tables.

The actual numbers contained in a statistical table represent the result of
applying a certain statistical “operator” to the values of one or more particular
attribute of all members of the population. The particular attribute that is
observed for a complete population or subclass of it is called a statistical
indicator. The result of aggregating the observations is called an estimate.
The connection between an estimate and a particular context is established
via the definition of the classes involved and via the statistical indicator that
is based on attributes of objects in the domain.

The ontology

Based on the terminology used in the statistical domain explained above,
we formalized a basic ontology of statistics that is shown in Fig. 7.1. We
start from the basic idea of a data source as a data matrix. Correspondingly,
we describe information sources by the three elements of a data matrix:
the statistical attributes it describes (the columns), the classification used

7.1 The nature of statistical information 149

to aggregate information (the rows) and the observation it contains (the
actual entries of the matrix). The corresponding classes of the ontology are
connected to the classes of information sources using the relations contains
for the observations, based-on for the classification and describes for the
statistical attribute. Further, each information source refers to a class of
objects that act as a population.

Fig. 7.1. A basic ontology of statistics

We distinguish registers and tables as special types of data sources. While
registers contain information about individual objects (the classification
consists of one class per object), tables contain aggregated information for
classes of objects. Entries containing this aggregated information are special
observations called estimators. They refer to a class of objects and describe a
statistical indicator rather than a statistical attribute. Indicators are special
kinds of attributes that include the notion of an aggregation operator (e.g.
total income or average age).

This ontology is not meant to provide a complete conceptual model of all
phenomena in statistics. It is rather a core model with the specific purpose to
support the process of sharing statistical information. In the following section,
we will show how the ontology can be used to provide a general structure for
modelling and finding statistical data.

150 7 Sharing statistical information

7.2 Modelling Statistics

The basic statistics ontology described above provides us with a domain-
independent vocabulary for describing information in statistical tables. In
particular, the different elements of a table correspond to the terms intro-
duced. The columns of a table correspond to statistical indicators, the rows
to classes and the actual numbers in the table are estimators of a certain in-
dicator with respect to a class of statistical units. The union of all classes in
a table is assumed to cover the underlying population. Further, the classes in
the rows of a table are defined by a common observation of a certain attribute.
A question that remains open is an appropriate structure to combine these
elements into a description of a statistical table.

7.2.1 Statistics as views

A promising approach is to interpret the estimator in a statistical table as the
answer to a query to a virtual database of observations about statistical units
(compare [De Giacomo and Naggar, 1996]). The main problem we face in the
integration of these query answers is that we do not have access to the under-
lying virtual database. Nevertheless, research in database systems has shown
that under certain circumstances it is sufficient to compare queries in order to
make assertions about the relation of two result sets [Calvanese et al., 1998a].
The ontology described in the last section provides us with a vocabulary for
defining such queries. Using the terms defined in the ontology the most gen-
eral description of an entry in a statistical table can be formulated as follows
using an SQL-like syntax:

SELECT

indicator

FROM

population

WHERE

class = ...

An example of how this pattern describes different values would be: select
the total catch of the German fishing fleet in 2000 where the size class is
20 to 50 meters and the fishing are is the Irish Sea. In this example, total
catch is the indicator that is estimated. The population consists of all fishing
vessels of German nationality that had been registered in the year 2000. The
size class and the fishing area define classes that have been used to aggregate
objects and estimate the value for the indicator.

We can immediately see that the initial format for describing estimators needs
to be refined. In particular, the description of the population and the classes
can be refined as they are defined using restrictions on the observation of
a certain statistical attribute such as the nationality. The actual description
would therefore rather look as follows:

7.2 Modelling Statistics 151

SELECT total-catch

FROM

nationality = German

year = 2000

WHERE

size-class = [10m, 20m]

fishing-area = is

Another thing we notice is that the SELECT and the FROM part of the view
are the same for an information source in most cases. In the unlikely case
that a table contains more than one indicator, we can easily see it as being
two information sources with the same population and cross-classification. In
order to reduce the modelling effort necessary to describe a set of information
sources, we also model the complete data source and explicitly connect the de-
scription of single estimators to the description of the table they are contained
in. We further include information about the classification in the description
of the source. A corresponding description has the following format:

Source1:

SELECT indicator

FROM

population

GROUP-BY

class_1, class_2, ...

Estimator1:

SELECT *

FROM

Source1

Where

class = class_n

This way of modelling assumes a number of constraints that must hold
amongst the descriptions of information sources and their content. The classes
named in the descriptions of the information sources are assumed to com-
pletely cross-classify the population; therefore, all classes must describe strict
subsets of the population. Further, the estimator is indirectly typed by the
select statement of the source description. Finally, the classes mentioned in
the description of the estimators have to correspond with the classes men-
tioned in the grouping, and their descriptions have to be consistent with the
cross-classification constraint mentioned above. We will come back to these
constraints when describing how to formalize and reason about descriptions
in the next section.

7.2.2 Connection with the domain

As mentioned above, a complete description of statistical information has
to combine statistical and domain-specific terminology and background

152 7 Sharing statistical information

knowledge. As the statistical part of the terminology has already been
covered, we now turn our attention to domain-modelling aspects and their
combination with the notions introduced above.

Fig. 7.2. Combined use of statistical and domain ontology

The general strategy for connecting the statistics ontology with the domain is
by means of the view definitions above. In particular, the statistics ontology
provides the general schema for describing data; the domain ontology is used
to describe the concrete definitions of the population and classifications.
Another point of connection is the definition of indicators as they mix domain
vocabulary (e.g. catch) with general statistical terms (e.g. average or total)
thereby connecting the ontologies. Fig. 7.2 sketches the combined use of
statistical and domain ontologies in modelling statistics.

As indicated in Fig. 7.2, the domain ontology mainly provides the definitions
of classes used in the different tables. Here we assume that a general domain
ontology provides a shared vocabulary and the different classifications
use terms from this general domain ontology. This enables us to use the
techniques described in Chap. 6 to translate between different classification
thus guaranteeing interoperability of data sources. Elements in the different
data sources are linked to the domain specific classifications. At the same
time they are linked to the general ontology of statistics (bold arrows). The
link to the domain is mainly established through the notion of a statistical
attribute which normally refers to a property of domain objects specified in

7.2 Modelling Statistics 153

the domain ontology. In our model this connection is made by the definition
of a hierarchy of indicators linking domain relations to concepts in the
statistical model. In order to clarify the connection between the models we
use the ontology of the fishery displayed in Fig. 7.3.

Fig. 7.3. Domain ontology of the fishery domain

In the ontology we see that the two central concepts we are concerned with
in the fishery domain are fishing vessels and catch. The two concepts are
connected by the caught-by relation. Further, each of the concepts has a
number of attributes that describe the individual objects of the domain.
In principle, each of these attributes can also act as a statistical variable
and can therefore be the basis for defining classes and for indicators and
corresponding estimates. In the example used to introduce the modelling
notation for estimates, for example, the attribute length is used to define
a class of vessels while the attribute volume is the basis for the statistical
variable total catch.

In order to link domain relations to statistical indicators, we introduce a hier-
archy of indicators rooted at the statistical concept has-indicator. Certain ob-
jects in the domain can be linked to certain indicators using the has-indicator
relation. In the fishery domain, fishing vessels are the domain objects that are
linked to indicators. As vessels are often aggregated based on size classes, size
indicators are of central interest here. We can also define special size indicators
such as length, power and weight. These specific indicators can now directly
be linked to domain relations. We do this using mapping rules from domain
relations to indicators. For our example, these mappings look as follows:

154 7 Sharing statistical information

has − indicator(x, length) ← length − over − all(x, y)
has − indicator(x, power) ← engine − power(x, y)
has − indicator(x, weight) ← grt(x, y)

In order to be able to make use of these mapping rules, we have to design the
description of data sources in such a way that we actually derive the existence
of indicators in a source. In particular, this means that the rule bodies have
to be derivable from the descriptions of tables and observations. At the same
time, we have to make sure that the descriptions are expressive enough to
capture the domain semantics implicitly contained in the information.

It turns out that for describing the data sources from a domain point of view,
we can stay inside the metaphor of statistics as views by using conjunctive
queries for describing object classes. More specifically, we describe the popu-
lation of a data source as well as the classes used for aggregating information
in terms of a query over the domain ontology that would return all members
of the population or the class if we had access to a database with all objects
in the domain. The corresponding definitions for the example table above are
the following:

population(source1, X) ← nationality(X, german),
caught − by(Y, X), period(Y, 2000)

for − class(estimator1, X) ← length − over − all(X, Y), Y > 10, Y < 20,

caught − by(Z, X), area(Z, ire)

This way of describing has several advantages. First of all conjunctive queries
are a natural formalism for defining queries, as it is the underlying model for
languages like SQL. Therefore, it fits naturally in our modelling syntax. The
corresponding description of our example would look as follows:

Source1:

SELECT total-catch of X

FROM

nationality(X,german),

caught-by(Y,X), period(Y,2000)

Estimator1:

SELECT X

FROM

Source1

Where

length-over-all,

Y > 10, Y < 20,

caught-by(Z,X),

area(Z,is)

7.3 Translation to Semantic Web languages 155

By restricting the predicates allowed in the queries to a domain ontology,
we can provide guidance for modelling populations and classes. The corre-
sponding ontology can also provide additional background knowledge about
the intended meaning of classes and hidden dependencies like the one between
domain relations and indicators described above. Finally, as we have seen in
Sect. 6.3.1, we can translate conjunctive queries over ontologies into concept
expressions and use existing description-logic reasoners to retrieve answers.
In the following section we will describe how the description of complete ta-
bles can be translated into OWL. Based on this translation we can provide
a number of reasoning services for information integration and retrieval that
will be described afterwards.

7.3 Translation to Semantic Web languages

There are at least two reasons for translating the semantic descriptions of
statistical data sources into Semantic Web languages. The first reason is
the ability to publish these semantic descriptions on the Web. This enables
other people to locate them and decide whether the information contained
in a source is relevant for them. This does not only save the overhead
of downloading and checking large amounts of data, it also supports the
commercial exploitation of statistical data. Companies whose business is
to sell statistical data can make all relevant information available without
actually publishing data they want to sell. Potential customers of such
companies get the possibility to better check whether an information source
meets their information needs without having to buy it. The second reason
is the availability of reasoning services for Semantic Web languages that we
can use for retrieving and integrating statistical information based on their
semantic description.

While an actual online version of the semantic description would be in the
RDF-based version of the OWL syntax, we use the abstract syntax defined in
[Patel-Schneider et al., 2002b] to illustrate the way our modelling framework
can be encoded in OWL. This encoding basically consists of two parts. The
first is the representation of the underlying ontologies. It can be done in a
straightforward way as OWL is intended to capture this kind of knowledge.
The second part is the representation of the statistical information itself. Here
we use complex typing axioms that are rather untypical for Web ontologies
in order to capture the underlying domain constructs. Both parts of the de-
scription will be explained in the following.

7.3.1 Ontologies

As mentioned before, the ontological knowledge used to model statistical infor-
mation consists of two parts. The first one is the generic ontology of statistics

156 7 Sharing statistical information

described in Sect. 7.1.2. The other part is an ontology of the domain that is
used to give the information contained in a table a domain-related semantics.

Statistical ontology

The core notions of the statistical ontology can be described by a set of con-
cepts representing datasets and their content (compare Fig. 7.1). We model
these concepts as OWL classes:

Class(DataSet)

Class(Observation}

Class(StatisticalAttribute)

Class(Classification)

Class(Class)

The basic relations between these classes that link for example a dataset to its
population are modelled as properties that link dataset objects to population
objects. The latter fact is captured by restrictions on the range and domain of
the properties. Further, we capture the fact that the population of a dataset
is unique by declaring the corresponding property to be functional.

ObjectProperty(population

domain(DataSet)

range(Class)

Functional)

The same is done for the other basic relation in Fig. 7.1. The fact that
there are special cases of the general notion of datasources, observations and
statistical attributes can be captured by the SubClassOf relation. The corre-
sponding subclass relations shown in Fig. 7.1 are represented as follows.

SubClassOf(Table DataSet) SubClassOf(Register DataSet)

SubClassOf(DiscreteAttribute StatisticalAttribute)

SubClassOf(NominalAttribute StatisticalAttribute)

SubClassOf(StatisticalIndicator StatisticalAttribute)

SubClassOf(Estimator Observation)

In the concrete modelling of statistics, we are often interested in these sub-
classes as they represent the concrete cases we find in the data. The same
holds for relations defined between the more concrete classes. In particular,
the following two relations are used because they establish a connection to the
domain ontology by relating estimators to indicators and classes of objects.

ObjectProperty(forIndicator

domain(Estimator)

range(StatisticalIndicator)

Functional)

ObjectProperty(forClass

7.3 Translation to Semantic Web languages 157

domain(Estimator)

range(Class)

Functional)

Before showing how the connection is made, we first introduce the represen-
tation of the fishery domain ontology used in our example.

The fishery domain

The basic objects we talk about in the fishery domain are fishing vessels and
their properties. In order to be able to do so we introduce the class of fishing
vessels and datatype properties for capturing relevant properties of vessels
such as length, engine power and gross registry tonnage, etc.

Class(FishingVessel)

ObjectProperty(nationality

domain(FishingVessel)

range(Country))

DatatypeProperty(lengthOverAll

domain(FishingVessel))

DatatypeProperty(enginePower

domain(FishingVessel))

DatatypeProperty(grt domain(FishingVessel))

The second central part is the information about the amount of fish caught by
fishing vessels. This information cannot be represented in a single number (it
depends for example on a period of time and the fishing area). We therefore
introduce catch as a class which enables us to talk about catch object related
to vessels and having certain properties, the volume of catch being amongst
them.

ObjectProperty(caughtIn

domain(Catch)

range(fishingArea))

ObjectProperty(caughtBy

domain(Catch)

range(fishingVessel)

InverseOf(caught))

DatatypeProperty(volume

domain(Catch))

158 7 Sharing statistical information

Vessel classes

While classes are atomic objects from the point of view of the statistical
ontology, they actually have a deeper meaning in terms of domain objects
and their properties. The use of OWL enables us to make this meaning
explicit in terms of class definitions. These definitions can also be used for
semantic integration and filtering as described in Sects. 6.1.3 and 6.2.

Fig. 7.4. Classification hierarchy of German fishing vessels

The German fishery statistics is a good example for the existence of domain-
related semantics of object classes. German vessels are organized in a hierarchy
of classes shown in Fig. 7.4. The names of the classes at the bottom of the
hierarchy already indicate that the classification of vessels is based on the
length. Using the lengthOverAll property of vessels defined in the domain
we can formally express the intended meaning of the classes using property
restrictions on the length property:

Datatype(<10)

Datatype(10-20)

Datatype(20-50)

Datatype(>50)

EquivalentClasses(grosseHochseeFischerei

restriction(lengthOverAll

someValuesFrom(>50)))

SubClassOf(restriction(lengthOverAll

someValuesFrom(20-50))

kleineHochseeUndKuestenfischerei)

SubClassOf(restriction(lengthOverAll

someValuesFrom(10-20))

kleineHochseeUndKuestenfischerei)

7.3 Translation to Semantic Web languages 159

SubClassOf(restriction(lengthOverAll

someValuesFrom(<10))

kleineHochseeUndKuestenfischerei)

Together with a straightforward encoding of the hierarchy from Fig. 7.4 in
terms of subclass statements, we get a formal model of the classification of
German fishing vessels.

Indicator classes

As described in the last section, domain relations such as the length of vessels
are also used to link domain objects to statistical indicators. For this purpose,
we encode the hierarchy of indicators shown in Fig. 7.3 in OWL and some
concrete indicators as instances of the indicator classes in the hierarchy. Total
catch for example would be an instance of the indicator class catch. Further,
we can encode the mapping rules from domain properties to indicators using
subclass axioms between general class expressions in OWL. The mapping rules
mentioned above can be encoded as follows:

SubClassOf(restriction(grt someValuesFrom(integer))

restriction(hasIndicator someValuesFrom Weight))

SubClassOf(restriction(lengthOverAll someValuesFrom(integer))

restriction(hasIndicator someValuesFrom Length))

SubClassOf(restriction(enginePower someValuesFrom(integer))

restriction(hasIndicator someValuesFrom Power))

Here, each property restriction represents a predicate in the mappings. The
implication is simulated by the subclass statement itself. In the case of more
complex rules, the OWL operators intersectionOf, unionOf and disjointFrom
can be used to model conjunction, disjunction and negation in the rules.

7.3.2 Description of information

The descriptions introduced so far represent background knowledge that helps
to interpret statistical information. An OWL-based representation of the ac-
tual description of statistical data sources in terms of views as introduced in
the last section will be discussed in this section. In short, we model a statis-
tical data source as a set of objects that belong to classes in the statistical as
well as the domain ontology. The distinction between these two ontologies is
necessary due to the dual nature of classes as atomic objects and as complex
definitions. In the following, we first describe how data sources and their con-
tent are translated into objects. Afterwards, we discuss how these objects are
linked to definitions in the ontologies.

160 7 Sharing statistical information

Instance information

The most straightforward way of giving a semantic description of statistical
information is in terms of instances of the statistics ontology presented above.
We can derive the type of an object with respect to the statistical ontology
from its position in the view definition that describes a table or an observation.
The FROM clause of a view definition contains information about population
objects. We directly encode them as instances of the Class concept, which is
the range of the population property. We define three example classes repre-
senting fishing vessels of the German fleet in 1998 and 2000 as well as of the
Danish fleet in 2000.

Instance(germanFleet2000 type(Class))

Instance(germanFleet1998 type(Class))

Instance(danishFleet2000 type(Class))

In the same way, we introduce instances for the other parts of the description
of an information source and represent concrete sources as an instance that is
related to these objects by the corresponding relations. In particular, we look
for definitions of observations contained in a table, introduce objects for each
observation found and link them to the names of the class of objects they
describe. The following definition corresponds to the example view definition
given on page 150.

Instance(germanCatch2000 type(Table)

value(population germanFleet2000)

value(describes TotalCatch)

value(contains sumG1))

Instance(sumG1 value(for-class ’10-20m’)

value(for-class ’is’)

This basic way of encoding view definitions in OWL already helps to share sta-
tistical information, because the reference to the statistical ontology provides
a common vocabulary for heterogeneous information. This shared vocabulary
can be used to query certain kinds of information across information sources.
We could for example ask for the populations of all registers available.

Typing information

We have argued above that an important part of the semantics of infor-
mation is encoded in the definition of the population and the classification
of a source. We chose to capture these definitions by conjunctive queries
over the domain ontology. One of the rationales for choosing this kind of
representation was that they can be translated into OWL class definitions
[Horrocks and Tessaris, 2000]. When translating view definitions to OWL, the
corresponding class objects are modelled as instances of the resulting class ex-
pression. This, however, is not done directly but by means of declaring the

7.3 Translation to Semantic Web languages 161

corresponding data-source objects to be members of the class of things that
have a population of a certain type, where this type is defined by the transla-
tion of the conjunctive query defining it. The following definition corresponds
to the refined view definition shown on page 154.

Instance(germanCatch2000 type(

intersectionOf(

restriction(population allValuesFrom(

restriction(nationality

value(Germany))))

restriction(caught allValuesFrom(

restriction(period

value(2000)))))))

The indirect description allows us to explicitly state that the observation is
about objects in the intersection of the two classes:

Instance(sumG1 type(

intersectionOf(

restriction(for-class allValuesFrom(

restriction(lengthOverAll

someValuesFrom(10-20))))

restriction(for-class allValuesFrom(

restriction(caught allValuesFrom(

restriction(area

value(’is’

)))))))))

The best argument for an indirect description of classes is the possibility to
generalize from the description of individual observations in the table. This is
necessary for very large data sources. Typical examples in the fishery domain
are fleet registers that contain thousands of entries each containing the same
information about different objects in the domain. Instead of introducing an
observation object for each of these entries, we can use the indirect description
of the population represented by the register to provide information about the
aspects represented in the data. A corresponding description of the register
containing data about the German fleet in the year 2000 is shown below:

Instance(germanRegister1998 type(

intersectionOf(

restriction(population allValuesFrom(

restriction(nationality value(Germany))))

restriction(contains someValuesFrom(

restriction(for-class someValuesFrom(

intersectionOf(

restriction(lengthOverAll

someValuesFrom(integer))

restriction(enginePower

someValuesFrom(integer))

162 7 Sharing statistical information

restriction(grt

someValuesFrom(integer))

))))))))

The definition states that the corresponding data-source object belongs to the
class of objects that have a population of a certain type (the same as in the
example above) and that it contains some information about the length, the
power, and the weight of the objects it represents. Note the compactness of the
representation as compared to an explicit modelling of thousands of register
entries. Depending on the requirements on the retrieval of information, this
kind of indirect description of the content of an information source can be
used for all data sources if there is no need to retrieve individual entries in a
table.

7.4 Retrieving statistical information

The logical interpretation of view definitions allows us to reason about avail-
able information on a conceptual level. In particular, we can use the logical
model to check whether a piece of information matches our information needs
and to retrieve all available information that matches our requirements. In
principle, the encoding above allows us to answer any conjunctive query that
uses the vocabulary defined by the statistical and the domain ontologies. In
the following we discuss some typical kinds of queries users often want to ask
about information.

Classes of objects

When asking about statistical information, the user always has a class of ob-
jects in mind that is described by the information. In the fishery domain, these
are almost always classes of fishing vessels that fulfill certain requirements that
act as the population of an information source. As we encoded populations
explicitly as instances of the statistical ontology, we can retrieve populations
present in the information by asking for vessels with certain properties. We
could for example ask for object classes that describe German vessels using
the following query:

Q(X) ← FishingV essel(X), nationality(X, Germany) (7.1)

This query will return a set of objects representing different populations that
underly information sources known to the system. The result will be a list
of populations that consist of German fishing vessels in different years. We
assume that the user is interested in information from the year 2000. As the
names of objects returned do not necessarily provide some information about
the year, we explicitly have to ask for classes of vessels that are relevant to
the catch in the year 2000. This can be done by the following query:

7.4 Retrieving statistical information 163

Q(X) ← FishingV essel(X), caught(X, Y), period(Y, 2000) (7.2)

For this query, the result will be classes of fishing vessels from different coun-
tries that are related to the catch in the year 2000. If we combine these two
queries, we get the German fleet in the year 2000 as an example.

Data sources

Once we have retrieved a class of objects, we can use the name of this class
in queries in order to find out more about information related to that class of
objects. We can for example ask for registers that contain information about
the members of this class using the following query:

Q(X) ← register(X), population(X, german − fleet − 2000) (7.3)

Normally, a user is not interested in any kind of information about a pop-
ulation, but in a specific aspect of that population in terms of a statistical
indicator. This requirement can easily be formulated by asking for data sources
that contain observations for a specific indicator using the query below:

Q(X) ← contains(X, Y), for − indicator(Y, total − catch) (7.4)

Directly referring to a specific indicator like the total catch might sometimes
be too restrictive, because we can also derive that information from the aver-
age catch if we know the number of vessels. Using the indicator hierarchy, we
can ask for data sources that contain information about certain types of indi-
cators. We might for example be interested in some indicator for the capacity
of vessels. Specific instances of this general aspect are length, engine power
or gross registry tons. The following query will return all those data sources
that contain information on one of these aspects:

Q(X) ← contains(X, Y), for − unit(Y, Z),
has − indicator(Y, Z), capacity − indicator(Z) (7.5)

The possibility to ask for a wider range of aspects leaves space for an in-
teraction with a human expert knowing about ways to combine and process
information in order to get the required result.

Observations

Depending on the level of detail we chose in modelling the information, we
can even ask more specific questions concerning individual values in tables.

164 7 Sharing statistical information

Retrieving specific entries in a table can be done based on explicit relations of
entries to other objects in the semantic model or based on the class of objects
it describes. An example for retrieving information based on explicit relations
is the following:

Q(X, Y) ← contains(german − catch − 2000, X), for − class(X, Y) (7.6)

The query returns pairs containing observations found in the table german-
catch-2000 and the vessel class the observation is assigned to. In this way, we
can get more detailed information about the content of a data source. The real
benefit of the semantic description, however, only becomes clear when asking
for specific information about a certain class of objects based on an abstract
description of that class. The following query is an example of a simple case
of looking for statistics based on a description of a set of objects.

Q(X) ← for − class(X, Y), kleineHochseeUndKuestenFischerei(Y) (7.7)

The query asks for all observations made about the vessel class “kleine
Hochsee- und Kuestenfischerei” (compare Fig. 7.4). The answer to this query
will not only contain the observations that are directly made about this class,
but also observations about subclasses of this class, in our example all vessels
with a length of less than 50 meters, independent of the name of the class
they are explicitly assigned to.

7.5 Conclusions

Literature study reveals that the results of intelligent information integration
do not cover the specific problems of statistical information integration. An
exception is [Klinkert et al., 2000], in which an overall model was proposed
that is dedicated to the statistical integration process used to support the
European Common Fisheries Policy. That model does not use either a generic
ontology of statistics or generic models of statistical methods. Furthermore,
the problem of possible classification differences was solved in an ad hoc
manner for specific data sources.

Statistical techniques that are an obvious source of inspiration are not gen-
erally applicable. This is caused by the inaccessibility of data and by lack of
domain specific statistical models. Formalization of human expert knowledge
did not solve these problems. However, the acquired heuristic knowledge did
enable the formalization and implementation of a model that can be used
to explicitly represent the domain-related semantics of statistical information.

7.5 Conclusions 165

The model supports selection of datasets based on an abstract description
of their expected content and has been found useful for selecting primary
sources, weight matrices and registers. The structure of the model is set up
in such a way that it allows easy extension with other methods such as the
following that are not supported in the current system:

• An explicit model of space: we have to able to define the geographic region
in which the population and the classes of objects used for aggregation are
located. Further, we need to be able to analyze and reason about the
relation between the locations of objects in two different statistics.

• An explicit model of time: we have to able to define the time frame in
which information about a population has been acquired. We need to be
able to analyze and reason about the relation between the time frames of
two data sources.

• An explicit model of statistical operators: we need the possibility to de-
scribe a variety of statistical operators that might occur in a statistical ta-
ble. We need the possibility to identify and define possible transformations
between values that are the result of these operators and the background
information needed for the transformation.

While the last point is currently mainly unexplored, work on extending
semantic descriptions of information with explicit notions of space and time
exist. We address spatial aspects of information sharing in the following chap-
ter.

Further reading

Sundgren [Sundgren, 1995] proposed a unifying model for modelling statisti-
cal metadata that is based on the different components considered here. The
use of description logics for formalizing descriptions of statistical informa-
tion is described in [Catarci et al., 1998] and [De Giacomo and Naggar, 1996],
who also introduce the use of views for modelling statistics. Earlier work on
a knowledge-based approach to integrating fishery statistics is reported in
[Klinkert et al., 2000] and [Jonker and Verwaart, 2003].

8

Spatially-related information

Summary. In the last chapters we described techniques for retrieving
information based on a semantic description of the content. As the
application described in the last chapter illustrates, the relevance
of information often not only depends on their content but also
on their spatial context. In this chapter, we discuss the problem of
representing the spatial context of information and of using it to
determine relevance with respect to a certain request.

Many real-life applications such of information sharing as the one described
in the last chapter have to deal with some notion of geographic space. In
the field of environmental science, for example, most documents and other
data sources have some sort of spatial connotation. Obviously all geospatial
data, i.e. data which are typically handled by GISs (geographic information
systems), refer to a specific geographic area. But also for non-spatial data
sources, such as reports, documents and databases, references to geographic
locations are typically important attributes. For example, a report about
the installation of new groundwater-monitoring wells very likely refers to
a specific (geographic) investigation area. Consequently, spatial attributes
are important for both information retrieval and the description and man-
agement of data sources with the help of metadata catalogues. However,
most online systems, like metadata catalogues and other browser-based
information-retrieval systems, offer only very little to represent and query
the complex relations of data sources and their respective locations in space.

In this chapter, we first give a brief summary of different paradigms for rep-
resenting and reasoning about spatial information and discuss they benefits
and drawbacks. We then discuss limitations of languages like OWL when used
to reason about spatia information providing some examples of the possible
use as well as by reviewing theoretical work on the combination of termino-
logical and spatial reasoning that clearly states the limits of this combination.

168 8 Spatially-related information

We conclude by sketching an alternative approach for spatial information re-
trieval that treads terminological and spatial aspects independently and uses a
graph-based representation to abstract from spatial information and supports
efficient reasoning about spatial relevance.

8.1 Spatial representation and reasoning

The representation and reasoning of spatial knowledge is an important aspect
of commonsense reasoning. This special attention is justified by the impor-
tance of space in human cognition and the special properties that have to
be taken into account in order to draw expected conclusions. A number of
approaches for spatial reasoning have been been proposed that differ with re-
spect to the level of formalization and the conceptualization of space. In this
section, we give an overview of different aspects of spatial representations and
different formalizations used. This overview provides the basis for a discussion
of representations suitable for supporting the exchange of spatially-related in-
formation.

8.1.1 Levels of spatial abstraction

Techniques for representing spatial information have been studied thoroughly
by AI research on qualitative spatial reasoning (see [Cohn, 1997] for an
overview). A basic insight from this line of research is that efficient spatial
problem solving relies on abstracting from spatial detail. Three levels of spa-
tial abstraction can be distinguished according to the degree by which the
spatial position is determined: topological, ordinal and metrical information.

Topological information

Spatial properties that stay invariant under the most general group of spa-
tial transformations, namely homomorphisms (intuitively: rubber-sheet dis-
tortions), convey topological information. A connected region, for instance,
remains connected under these transformations. In other words: connected-
ness constitutes a topological property of regions. Among the different systems
of spatial relations proposed for encoding topological information, the most
widely used in GIS applications is a system of eight relations which was de-
scribed in [Egenhofer, 1991] and given a logical formalization by Randell et
al. [Randell et al., 1992]. It is known as the region-connection calculus RCC-8
and can express facts such as “region A touches region B” or “region A lies
within region B”.

Ordinal information

The fact that a region is convex constitutes a piece of ordinal informa-
tion about the region’s shape. Convexity is neither preserved under topo-
logical transformations nor does it imply any metrical properties. In other

8.1 Spatial representation and reasoning 169

words, ordinal information provides an intermediate level of abstraction be-
tween topological and metrical information. Systems of ordinal relations
describe the locations of points with respect to reference systems consist-
ing of directed lines. A typical example is the system of cardinal direc-
tions north, west, south and east which locates a point with respect to
another point by means of an absolute reference system [Frank, 1992]. Of-
ten, a relative reference system is needed which yields descriptions of spa-
tial positions that are rotation invariant. Examples of such systems are the
line-segment relations [Schlieder et al., 2001] or the panorama representation
[De Rougemont and Schlieder, 1997].

Metrical information

Distances or angles are metrical invariants. Generally, metrical invariants are
measures, i.e. they can be expressed by real numbers that obey certain math-
ematical criteria. Nevertheless, it is often necessary to abstract qualitatively
even from metrical information. In natural language, adverbs such as “close”
or “far” are frequently used to express distance information. Several systems
of qualitative distance relations have been proposed which can be used to rep-
resent the semantics of linguistic expressions (e.g. [Clementini et al., 1997]).

8.1.2 Reasoning about spatial relations

A crucial design decision for any spatial information system is the choice of an
adequate reasoning mechanism. There exist several alternative approaches to
spatial inference which all show a trade-off between genericity and efficiency.
In other words, the generic approaches are less efficient and the efficient ones
are less generic. We briefly describe the four major classes of approaches to
spatial reasoning in order of increasing specificity.

Geometric theorem proving

[Kapur and Mundy, 1988] First-order logic can be used to express spatial
problems which are then solved by applying a theorem prover. Several special-
ized proof techniques for geometrical reasoning have been proposed. From the
user’s point of view, a theorem-proving approach is very convenient. It allows
him to simply state the problem not having to worry about how to solve it.
Unfortunately, due to the computational complexity of the proof procedures,
only small problem instances can be approached this way.

Constraint-based spatial reasoning

[Marriott and Stuckey, 1998] Most problems studied in the field of qualitative
spatial reasoning are solved with constraint solvers. Inferences consist in de-
termining some relational terms, i.e. spatial relations holding between objects,

170 8 Spatially-related information

given some other relational terms. If, for example, it is known that regions
A, B, C, and D are arranged in such a way that “A inside B”, “B inside
C”, and “C disjoint from D”, we can infer that “A disjoint from D” and “B
disjoint from D”. Such an inference problem can be mapped onto the prob-
lem of finding an instantiation for a constraint satisfaction system. Although
this type of instantiation problem cannot be solved efficiently, instantiations
can be computed by means of efficient approximative algorithms. Typically,
polynomial constraint propagation methods (e.g. path consistency) are used
for that purpose. For GIS-related problems, the trade-off that is realized by
the constraint-based approaches has turned out to be most effective.

Computational geometry

[de Berg et al., 2000] For specific geometric problems (e.g. intersection of
polygons) asymptotically optimal algorithmic solutions are known. Almost
all efficient algorithms rely on some explicit problem representation in a dy-
namic data structure. Although the approaches from computational geometry
are the most efficient, they are very specific. Variants of a problem may re-
quire the use of entirely different data structures, used to avoid inconsistency
problems. The locations of all other spatial objects in the spatial model are
represented using relations that ultimately refer to a set of landmarks. This
principle of relative locations also allows an easy integration of new spatial
objects. It suffices to describe the new object by spatial relations to already
existing points, i.e. landmarks.

Diagrammatic reasoning

[Glasgow et al., 1995] Classical theorem provers and constraint solvers do not
use an explicit spatial problem representation. The advantage of such a repre-
sentation consists in providing information for guiding the flow of control to
make spatial inference more efficient. Diagrammatic reasoning uses map-like
representations in analogy to mental images that play a prominent role in
human spatial problem solving.

8.2 Ontologies and spatial relevance

If we want to include spatial criteria in the process of retrieving relevant infor-
mation, we have to include explicit representations of space as well as notions
of spatial relevance in the semantic descriptions of the information. In this
section, we explore the use of OWL ontologies for encoding spatial relevance.
As we will see, we can indeed represent geographic regions as instances of
some concepts and describe their relations using special properties. Further,
we can define notions of spatial relevance based on these relations and use
these notions in combined spatial and terminological queries. As we will dis-
cuss at the end of the section, however, a proper treatment of geographic space

8.2 Ontologies and spatial relevance 171

in terms of being able to reason about complex spatial arrangements quickly
encounters serious limitations.

8.2.1 Defining Spatial Relevance

We use the spatial configuration depicted in Fig. 8.1 to illustrate the
determination of spatial relevance on the basis of topological relations. In our
example, we are concerned with different project areas in a city. The project
areas are spatially associated with specific districts using topological relations.

Fig. 8.1. An example arrangement of spatial regions

The first relation we use to refer to project areas is spatial containment.
Project Area 1, for example, is contained in District 1, while Project Area 3 is
contained in District 2. We further declare that every area which is contained
in another area is automatically spatially relevant with respect to the including
area. This can be achieved by defining a relation contained-in as a special case
of a relation definitely-spatially-relevant. Using the OWL language, we can
define contained-in as well as its mathematical properties (i.e. transitivity) in
the following way:

ObjectProperty(contained-in

supers = definitely-spatially-relevant

InverseOf(contains)

Transitive)

We can now use the relevance relation to retrieve areas which are spatially
relevant to District 1. Using the FaCT reasoner interface, we can formulate a
query Q1 for areas spatially relevant to District 1 in the following way:

172 8 Spatially-related information

Q1(X) ← area(X) ∧
definitely − spatially − relevant(X, district1) (8.1)

Not surprisingly, the result of this query is Project Area 1, because it is con-
tained in District 1. However, Project Area 2 may also be of interest when
querying areas related to District 1, because it is at least partially contained
in District 1. We cover this kind of relevance by using another topological rela-
tion, namely partial overlap. As we are not absolutely sure that Project Area
2 is really relevant, we use a relation probably-spatially-relevant to describe
a weaker level of relevance. Again, we define relevance in terms of topological
relations by stating that partial overlap is a special kind of spatial relevance.
The OWL definition of the relation partially-overlapping is the following:

ObjectProperty(partially-overlapping

supers = probably-spatially-relevant

SymmetricProperty)

We further define that, because of its weaker character, our previous
notion of relevance also falls under this new relation. The result of a
query searching for areas probably-spatially-relevant to District 1 consists of
Project Area 1 and Project Area 2, because the latter overlaps with District 1.

As mentioned above, areas in the neighborhood may also be of interest. We
therefore include a further level of spatial relevance based on neighborhood
defined by the relation connected-to. We assume that this third level of
spatial relevance is even weaker than the ones introduced above, because our
notion of connectedness implies that there is no overlap.

ObjectProperty(connected-to

supers = might-be-spatially-relevant

SymmetricProperty)

Using this notion of spatial relevance, we still find Project Areas 1 and 2.
Additionally, we get District 2 as an area spatially relevant to District 1.
However, using OWL it is not possible to derive the spatial relevance of Project
Area 2, which is contained in the relevant area District 2, in a straightforward
way because we cannot chain relations in order to determine spatial relevance.

8.2.2 Combined spatial and terminological matching

Type information about information items to be retrieved can be organized
using structured concept hierarchies like thesauri and ontologies. Above,
we argued that description logics are very well suited for the formalization
of such concept hierarchies as well as for concepts of spatial relevance.
Therefore, using description logics to encode both spatial relations and type

8.2 Ontologies and spatial relevance 173

Fig. 8.2. Results of Matching Process

information allows for the specification and fine tuning of integrated queries.

In order to include terminological information in queries, we further describe
the project areas using class definitions and defining the areas to be instances
of these classes. We might for example know that Project Area 1 has solid
ground and its vegetation consists of oaks. Using OWL we can capture this
knowledge in the following class definition.

Equivalent(MyClass1 intersectionOf(

Area

restriction(ground allValuesFrom(land))

restriction(vegetation someValuesFrom(oak))))

Using the FaCT reasoner, we can automatically determine the super-class of
this definition and therefore the terminological category that Project Area 1
belongs to. In our case we derive that Project Area 1 is a forest because its
class definition constitutes a special case of the following general definition of
a “forest area”:

Equivalent(forest-area intersectionOf(

vegetation-area

restriction(ground allValuesFrom(land))

restriction(vegetation someValuesFrom(

unionOf(trees shrubs)))))

In the same way, we model the class of Project Area 2 in such a way that it
can be derived to belong to the category “lake” (see Fig. 8.2 for a complete
class hierarchy of the example). We can use this terminological information to
find answers to more sophisticated queries. The first possibility is to restrict

174 8 Spatially-related information

the type of areas we are interested in. For example, we can ask for “forest
areas” that might be spatially relevant to District 1:

Q(X) ← forest − area(X) ∧
might − be − spatially − relevant(X, district1)) (8.2)

Using this additional type restricting, the result of the query is reduced to
Project Area 1, because the other areas also relevant to District 1 are not of
type forest area.

Another application of terminological information is not to seek areas that are
relevant to a specific area, but rather to a specific class of areas. For example,
we can ask for areas that are spatially relevant to “lakes” in general. The
corresponding query is the following:

Q(X) ← area(X) ∧ lake(Y) ∧
might − be − spatially − relevant(X, Y) (8.3)

Because the logic reasoner is able to infer that Project Area 2 is a “lake”, we
retrieve all areas that are spatially related to Project Area 2. In our case these
are Districts 1 and 2 because they overlap with Project Area 2 and, because
of its connectedness to Project Area 2, also Project Area 3.

8.2.3 Limitations

The examples above illustrate the naive use of ontology representation
languages such as OWL for representing relations between spatial objects. A
closer look reveals that the possibilities of this approach are rather limited. In
particular, the ability to draw inferences related to spatial relations such as
“if region A is a tangential part of B and B is part of C then A is connected
to C” are not supported. Inference capabilities are restricted to the use of
built-in features of OWL relations such as defining relations to be transitive
(part-of) or symmetric (connected). Further, we can use property hierarchies
to capture some of the semantics of the relations (compare Fig. 8.3).

In order to benefit from more complete reasoning about topological rela-
tions, terminological models have to be connected to specialized reason-
ing services for spatial knowledge. In early approaches this was done us-
ing functional extensions of concept languages such as LOOM (compare
[Haarslev et al., 1994]). A tighter integration of terminological and spatial rea-
soning can be achieved by defining spatial regions as special datatypes with a
special set of predicates that correspond to relations between spatial regions.
Using special data-type properties, class definitions can be linked to spatial

8.3 Graph-based reasoning about spatial relevance 175

Fig. 8.3. Hierarchy of spatial relations (from [Haarslev and Moeller, 1997])

regions defined by applying a predicate on a set of region names. While this
approach allows us to define and reason about spatial properties of instances
of a class, a tighter integration of spatial relations into the concept language
requires an extension of the formal semantics that turns out to be undecidable
even for much simpler languages than OWL [Haarslev et al., 1998].

The complexity problems that arise from a tight connection of terminologi-
cal and spatial representations make combined representations unsuitable for
large scale information sharing. We conclude that we need to treat spatial as-
pects separately from terminological ones. This means that queries will contain
conceptual and spatial criteria that are evaluated separately. In the following,
we sketch an approach that separates the evaluation of spatial criteria from
conceptual ones and uses diagrammatic techniques for efficient determination
of spatial relevance.

8.3 Graph-based reasoning about spatial relevance

In order to build truly expressive spatial queries as well as to annotate data
sources in an intuitive way, we need constructs to describe

• partonomic relations,
• topological relations,
• relations of direction,
• relations of distance

between spatial objects as well as Boolean combinations over these relations.
In the following we introduce an approach to reasoning about these concepts.
We evaluate our approach using the following example query in an imaginary
query language that could be stated in connection with the planning of a
holiday trip:

(and capital historic-place)

@

(and (part-of western-europe)

176 8 Spatially-related information

(or (connected-to mediterranean-sea)

(connected-to north-sea))

(not (north-of belgium))

(next-to germany))

Intuitively, we search for information about historically interesting places that
are capitals of a country. We further claim that these places have to be in a
location (i.e. a country) that is part of western Europe either connected to the
Atlantic Ocean or the North Sea. Further, the location should not be north of
Belgium. Of all these objects, we want to have the one that is next to Germany.

The conceptual part of the query can already be handled by the BUSTER
system. Using a small ontology of cities and their attractions, we retrieve the
following five cities: Amsterdam, Madrid, Paris, Rome and Lisbon. We have
different options for implementing the retrieval process for the spatial part. A
straightforward approach would be to encode spatial relations in the ontology
and use a reasoner for the spatial part. However, the language supported by
this reasoner is not expressive enough to cover even the axioms of a rather
theory of space such as RCC-8 [Egenhofer, 1991]. In particular, it can only
reason about general subset-relations without a notion of connectedness. The
use of a more expressive logic, on the other hand, will lead to a reasoning
complexity that is not acceptable for the retrieval process. Constraint-based
approaches that are prominent in spatial reasoning also have problems with
respect to this specific application. We argued [Schlieder et al., 2001] that
RCC-8 fails to capture relevant two-dimensional inferences, because the for-
malism does not encode spatial dimensions. We concluded that a diagram-
matic reasoning approach [Glasgow et al., 1995] is the most suitable for this
kind of reasoning task. We therefore use a graph-based representation of space
that can be derived from actual polygon data using computational geometry
and apply graph algorithms for selecting interesting locations. In the follow-
ing we present representation for the relations mentioned above and describe
the reasoning process. Thereby we follow and extend the ideas described in
[Schlieder et al., 2001].

8.3.1 Partonomies

In order to find a type of abstraction for describing partonomies, we take
a look at different geometrical arrangements of polygons. In the following,
polygons are closed sets of points, i.e. edges and vertices belong to the polygon.

We consider polygons P1, . . . , Pn that are contained in a part of the plane
bounded by a polygon P . Some special types of arrangements of the polygons
within the containing polygon P can be distinguished:

• In a polygonal covering P1∪. . .∪Pn = P . The polygons cover the containing
polygon. In general, they will overlap.

8.3 Graph-based reasoning about spatial relevance 177

• In a polygonal patchwork for all i �= j from {1, . . . , n} interior(Pi∩Pj) = ∅.
The polygons are either disjoint or intersect only in edges and/or vertices.

• A polygonal tessellation is a polygonal covering which also forms a polyg-
onal patchwork.

Polygonal tessellations occur frequently: in a map of Germany, for instance,
the federal states constitute a tessellation. Because of their importance, we
will pay more attention to tessellations than to any other arrangement of
spatial parts.

Partonomies are the result of recursively applying the standard part-of
relation to describe parts of parts. Similarly, the polygons of a cover-
ing, patchwork or tessellation can contain other polygons. In analogy to
partonomies we introduce decompositions, which are defined recursively as
hierarchical data structures for encoding the spatial part-of relation together
with the type of arrangement of the parts.

By abstraction from the type of spatial arrangement one obtains the
partonomy that underlies a decomposition. This partonomy is encoded by
the decomposition tree, which has the same nodes as the decomposition and
whose edges denote the binary part-of relation between polygons (compare
Fig. 8.4).

In order to process the first part of the spatial expression, we have to check
which of the cities that match the concept expressions lies in countries that
belong to western Europe. We decide this by consulting the decomposition
graph which represents the tessellation. Fig. 8.4 shows such a decomposition
tree that shows the distinction between countries assumed to belong to
western Europe: Portugal (P), Spain (E), France (F), Luxembourg (L),
Belgium (B) and the Netherlands (N). The other countries on the map
belong to central Europe: Germany (G), Switzerland (S), Austria (A),
Denmark (D) and Italy (I).

Fig. 8.4. A decomposition tree for the tessellation

178 8 Spatially-related information

By simply following the arcs in the tree downwards starting at the node repre-
senting western Europe, we find all countries that fulfill the requirements. As
Rome lies in Italy that is defined to belong to central Europe, we can exclude
this city from the collection of possible solutions.

8.3.2 Topology

A common way of representing the topology of a collection of polygons
in a tessellation is a neighborhood graph. The neighborhood graph of a
homogeneous decomposition by tessellation is a graph N = (V, E) with
the set of un-decomposed polygons as nodes V and all pairs of neighboring
polygons as edges E. If only the neighborhood graph is used, then the two
arrangements of polygons shown below cannot be distinguished (Fig. 8.5).
Both have the same neighboring graph but they differ fundamentally with
respect to neighborhood: neighbors of P1 and P3 can never be neighbors of P2

if the polygons are arranged as in (a) while they can be in the arrangement
(b). The problem is linked to multiple neighborhoods, that is, the fact that
in (a) P1 and P3 have two disconnected edges in common. Therefore, the
qualitative representation of the decomposition should be able to encode
multiple neighborhood relations between two polygons.

(a) (b) (c)

Fig. 8.5. Multiple neighborhood relations

As a solution to the problem of finding an adequate abstraction for a decom-
position we propose to represent it by a connection graph. Fig. 8.6 shows the
connection graph C of a homogeneous decomposition by a tessellation . Each
polygon from the tessellation is represented by a vertex from C. In addition
there is the node 1 representing the external polygonal region. The edges
from C which are incident with a vertex are easily obtained together with
their circular ordering by scanning the contour of the corresponding polygon.
As the example shows, the connection graph is a multi-graph in which several
edges can join the same pair of vertices, i.e. Spain has two connections with

8.3 Graph-based reasoning about spatial relevance 179

the Atlantic Ocean.

Fig. 8.6. Connection-graph representation of a decomposition by tessellation

The connection graph can be used to process the second part of the spatial
expression stating that the polygons we are looking for have either to be
connected with the Mediterranean or to the North Sea. Again, this can
easily be decided by following all edges in the connection graph starting
at the nodes that represent the Mediterranean and the North Sea, respectively.

Looking at the connection graph in Fig. 8.6, we can see that this criterion is
met by the cities Madrid, Paris and Amsterdam, because the countries they lie
in, i.e. Spain, France and the Netherlands, are connected to one of these seas.
Lisbon is excluded from the collection of possible solutions, because Portugal
does not have this connection.

8.3.3 Directions

We argued that the representation of a tessellation in terms of a connection
graph preserves the topological relations. The problem with this representa-
tion concerning directional information is the fact that topological information
is rotation invariant by nature. Therefore it is not possible to encode directions
in the connection graph. In order to include directions, we assign special direc-
tion labels to edges in the graph. These labels are described by the following
function:

DIR : E → 2{N,NO,O,SO,S,SW,W,NW}

The function assigns a set of qualitative directions according to points of
the compass. We use the qualitative description N to refer to directions
between 315 and 45, NW for 0 to 90, W for 45 to 115 degree and so on.
An edge is labelled with a set of these descriptions because connected

180 8 Spatially-related information

polygons often fall into more than one of these angle sections due to
their spatial extension. Fig. 8.7 shows the connection graph of the exam-
ple together with the labelling for the edges between France and its neighbors.

Fig. 8.7. Direction labels used to describe direction of France’s neighbors

This kind of labelling allows us to reason directly about directional informa-
tion of connected polygons. Reasoning about directions of polygons which are
not directly connected, however, is more complicated. In this case, we have to
extract labels of the transitive closure of the connection graph. The advantage
of this approach is the ability to refer to complete directional information
in the course of the reasoning process. However, a larger representation that
contains redundant information is needed in this case because we know that
directional relations are transitive. Another approach is to use an additional
calculus on direction labels. This approach preserves the minimality of the
representation, but we cannot assume that such a calculus will be correct
and complete.

In the example query, we restricted interesting locations to those that are not
north of Belgium. This means that the labels NW, N and NO must not be
contained in the label of the edge between Belgium and the location we seek.
Applying this criterion to the locations of the remaining cities (Amsterdam,
Paris and Madrid) we can decide that the Netherlands do not meet this cri-
terion because they are directly connected to Belgium and the edge contains
all three forbidden labels. France (directly) and Spain (by transitivity) can be
proven to meet the criterion. Therefore, Amsterdam is excluded from the set
of possible solutions.

8.3.4 Distances

Concerning distance information, we find a situation similar to the one we
observed concerning directions. The connection graph only implies a very

8.3 Graph-based reasoning about spatial relevance 181

weak notion of distance. It allows to compute the shortest path between
two nodes (i.e. the graph-theoretic distance) but it does not capture the
real distances between polygons. Fig. 8.8 shows an example that illustrates
the problems that occur if only the connection graph is used. We consider
the distance between Luxembourg and the Netherlands on one hand, and
Luxembourg and Spain on the other hand. While the graph-theoretic distance
is the same, Fig. 8.8 clearly shows that Spain is much further away from
Luxembourg than the Netherlands.

Fig. 8.8. Using distance information

In order to overcome this problem we use additional distance labels for edges.
Again we have to decide whether to choose a local or a global assignment
of distances. In order to avoid redundant information, we prefer a local
assignment. There are many options for defining these labels. First of all,
we have to decide whether to use a qualitative or a quantitative notion of
distance. A quantitative approach again requires a suitable calculus while a
quantitative measure allows the application of standard algebra. The next
problem is how to derive distance information from the actual data. Again
there are various options. The mean distance between connected polygons
should be a good approximation. A possibility of computing this distance is
to determine the centroids of two polygons and use the Eucledian distance
between them.

Regardless of the kind of distance measure we choose, we get a result for
our example query, because France lies on the shortest path from Germany
to Spain. This implies that Madrid which lies in Spain is definitely further
away from Germany than Paris which lies in France. As a consequence, this
last criterion restricts the set of solutions for our query to exactly one city,
namely Paris. Looking at the actual situation, we see that the result meets

182 8 Spatially-related information

the intuitive expectations. In the general case it might happen, that the
result is not completely correct as a result of the level of spatial abstraction
chosen. In cases of oddly shaped areas, the abstraction might lead to errors,
e.g. when an area is completely surrounded by another one (an example
would be Italy and the vatican). In most relevant cases, however, we can
assume that the abstraction produce relevant results.

Reasoning methods that use these kinds of representations for determining
spatial relevance have been developed and integrated into the BUSTER sys-
tem (compare section 9.3). Details about the corresponding methods can be
found in [Voegele et al., 2003] and [Voegele, 2004].

8.4 Conclusions

Spatial relevance is an important issue with respect to information sharing in
many areas. Spatially related information can be found in many application
areas such as environmental information, in the geosciences and in political
decision making. In order to address the needs of these areas, we have to rep-
resent and reason about the spatial relevance of information items. There is
a variety of different approaches to the problem of spatial representation and
reasoning that differ in the level of spatial abstraction and the way space and
spatial relations are represented. We argued that spatial information sharing
benefits from the ability to enhance queries by spatial criteria on different
levels of abstraction that have to be combined with terminological parts of a
query. Theoretical work has shown that a tight integration of terminological
and spatial reasoning suffers from serious problems. In order to be decidable,
the expressiveness of either the terminological or the spatial part of a query
has to be reduced significantly. Even in the case of representations supporting
decidable reasoning the complexity of combined reasoning puts strong restric-
tions on the scalability. In order to include spatial aspects in query processing
for information sharing, we therefore have to treat terminological and spatial
parts of a query separately. We sketched a graph-based approach that covers
different levels of spatial abstraction when determining spatial relevance. A
limited form of this approach has been implemented in the BUSTER system
described in Sect. 9.3 showing the practical benefit of the approach. Unfor-
tunately, the separation on the computational level suffers from the lack of
a unifying theory of spatio-terminological reasoning. A promising area for
providing such a formal foundation is the area of hybrid logics that investi-
gate integrated reasoning with different logical systems. Recently, Lutz et al.
[Kutz et al., 2002] proposed a formal model based on so-called E-connections
for combining terminological and spatial logics without losing decidability of
the overall framework. Using this notion to provide a formal foundation for
spatial information retrieval is an interesting topic for further investigations.

8.4 Conclusions 183

Further reading

Cohn [Cohn, 1997] provides an overview of the field of qualitative spatial
reasoning. Techniques of diagrammatical reasoning that are the motivation
for our approach are described in [Glasgow et al., 1995]. The integration of
spatial and terminological reasoning in a specialized description logic is dis-
cussed in [Haarslev et al., 1998], who also show that the logic is undecidable
for expressive class definitions. More sophisticated methods for modelling and
reasoning about spatial relevance can be found in [Schlieder et al., 2001] and
[Voegele et al., 2003].

9

Integration and retrieval systems

Summary. The goal of this chapter is to give evidence for the
practical applicability of the models and methods presented. Af-
ter having proposed a logical framework and an architecture for
representing information semantics as well as the possibility to
generate metadata based on this framework and methods to reason
about information contents, we now present existing systems that
implement some of the methods discussed. We focus on these meth-
ods and explain the specific implementation using a common example.

In this section we will discuss some existing systems for retrieving and
integrating information on the Web. Rather than giving an overview of
the variety of systems available, we select three systems that address the
issues discussed in the last chapters. We start our discussion with the
OntoBroker system, which implements the basic functionality of a single
ontology information integration and retrieval system. Further OntoBroker
provides support for rule-based context transformation. As a second system,
we look at OBSERVER, a multiple-ontology system. We will focus on the
use of more than one ontology in the system and describe how ontologies
are integrated in OBSERVER. Further, OBSERVER uses a query re-writing
technique to translate between different ontologies that is based on the same
ideas as the approach discussed in Chap. 6. Finally, we turn our attention to
the BUSTER system, which uses the hybrid approach. Here we focus on the
use of the shared terminology in query formulation and processing. Further,
the BUSTER system implements functionality for querying spatially related
information similar to the ideas described in Sect. 8.3. We describe these
techniques and their use in information retrieval.

In order to give a better impression of the systems, their differences and
similarities, we use a simple example from the travel domain and describe how
the systems solve this specific integration problem. The task of the example

186 9 Integration and retrieval systems

is to retrieve hotels with a room rate that is under a certain threshold from
different information sources with accommodations. Table 9.1 shows the part
of the available information we will focus on.

Table 9.1. Data from the example problem

Name Location Category Price

Radisson Copenhagen Congress Hotel 580

Mercure Hamburg Four star 190

Ritz London First Class 130

...

This small set of information already contains a number of very relevant
integration problems that arise in many practical applications. First of all,
we have to decide, whether all of information items are actually representing
hotels. This is a problem in particular if the categories mentioned in the table
are defined in different ontologies. As the hotels are in different countries,
the room rates are given in different currencies that have to be normalized
and finally the questions of spatial relevance with respect to the users needs
arises. In the following we will see that the different systems differ in the way
they focus on a specific problem.

In the following, we first discuss the use of the Ontobroker system that uses
a global ontology and flexible transformation functions for comparing hotel
types and prices. In the following session, the use of multiple ontologies in the
OBSERVER system is presented. We show how OBSERVER uses semantic
relationships between classes from different ontologies to compare data in the
different sources and to select an optimal translation. Finally, we discuss the
BUSTER system and explain the use of a shared vocabulary for describing
features of accommodations as well as the determination of spatial relevance
as a part of the information sharing process.

9.1 OntoBroker

The OntoBroker system [Decker et al., 1999] has been developed for support-
ing the access to distributed sources of digital information such as document
repositories or Web sites. OntoBroker mediates between the different formats
and structures that might be present in these sources by encoding the avail-
able information in a pivot format and relating it to a domain ontology that
is shared across all sources. Consequently, the domain ontology is the central
part of the OntoBroker architecture. As a successful use of OntoBroker relies
on the existence of the shared ontology, OntoBroker comes with an editor

9.1 OntoBroker 187

that supports the creation of domain-specific ontologies [Sure et al., 2002].
In order to link information to the ontology, available information items have
to be modelled as instances of the ontology. In the case of well-structured in-
formation sources such as databases and spreadsheets, this step is done using
specialized wrappers that extract information from the sources and assign it
to classes and relations in the ontology. For less structured information like
text documents and web pages, OntoBroker relies on an annotation tool that
supports the user in adding special markup to the available information,
thereby explicitly linking it to the ontology [Staab et al., 2001].

Fig. 9.1. The general architecture of the OntoBroker system

The ontology together with the instance information extracted from the differ-
ent information sources behave like a deductive database. The actual broker
system provides the corresponding reasoning facilities in terms of providing
answers to complex queries concerning information items, their properties
and relations. The broker makes this query-answering functionality available
to client applications which may be rather generic query interfaces for ar-
bitrary information or specialized applications relying on a specific domain
ontology and a fixed set of information sources. Fig. 9.1 gives an overview of
the OntoBroker architecture and its different components. In the following,
we will have a closer look at the way OntoBroker represents information and
ontologies and the use of rules for implementing functional context transfor-
mation.

9.1.1 F-Logic and its relation to OWL

The representation formalism for ontologies and information used in OntoBro-
ker is F-Logic. Unlike the Web Ontology Language that us based on Descrip-

188 9 Integration and retrieval systems

tion Logics, F-logic has its foundation in logic programming languages. More
specifically, F-logic extends horn-logic language with constructs of frame lan-
guages supporting the straightforward representation of class-based knowledge
representation. The OntoBroker inference engine translates these constructs
back into horn logic and uses standard logic programming techniques for an-
swering queries. The use of horn logic has some implications for the expressive
power of F-logic as compared to OWL that we will briefly summarize in the
following.

Correspondences with OWL

Focusing on a frame-based representation of knowledge, F-logic has a number
of commonalities with OWL, in particular with OWL Lite. We summarize
these common features in the following.

• Classes. F-logic can be used to express class membership and subclassing.
Assigning an instance I to a class C is denoted as I:C, which corresponds
to the OWL expression Instance(I type(C)). Further, a class C can be
declared to be a subclass of another class D using the axiom C::D. This
corresponds to the OWL expression SubClassOf(C D).

• Range Restrictions. F-Logic can express a special type of property
restriction. In particular, we can restrict the types of values that are
allowed to be in the range of an attribute A that is assigned to a particular
class C to some other class D. The corresponding F-Logic expression
C[A =>> D] has the same effect as the OWL statement SubClassOf(C
restriction(A allValuesFrom(D))).

• Facts. Finally, we can express information about actual instances of an
ontology in a frame-like fashion. For stating that an object O is of type
C and shows a value V in the attribute A we write O:C[A->V]. In OWL
we would express the same information using the following statement:
Instance(O type(C) value(A V)).

We see that the direct overlap between F-Logic and OWL is a fragment
of OWL that allows us to state simple schema information. In particular, the
fragment always exactly corresponds to the OWL part of RDF Schema. We
will see, however, that F-logic offers other means for defining the meaning
of information mainly in terms of its rule language. In contrast to the origi-
nal proposal , the variant on F-Logic implemented in Ontobroker is based on
a semantics that borrows from logic programming rather than the standard
semantics of first order logic. In fact, the DLP fragment discussed briefly in
Chap. 3 also corresponds to the largest segment on which the different seman-
tics of OWL and F-Logic intersect, adding further interest to this fragment.

9.1 OntoBroker 189

Differences from OWL

Being based on logic programming rather than description logics, F-Logic
offers some features that go beyond the expressive power of OWL. These
additional features can be used to capture some of the build in modelling
primitives of OWL using special axioms.

• General relations. An often criticized limitation of OWL is the restriction
to binary relations between objects. F-logic does not have this restriction
and is able of representing predicates of arbitrary arity for capturing com-
plex relations between multiple objects.

• Parameterized attributes. A special case of the use of general relations in
F-Logic is the ability to parameterize the attributes of a class. We denote
that V is the value of an attribute A of object O with respect to a certain
parameter P (e.g. the length in inches) as O[A@(P) ->> V]. This feature
is useful for describing different scales and measures.

• Rules and queries. The main difference between OWL and F-Logic is the
axiom and rule language. F-Logic offers the possibility to state general
implication axioms that act as rules and queries. The general form of a
rule is FORALL V, H <- B, where V is a list of goal variables, H is the head
and B the body of the rule. The body of a rule consists of an arbitrary
F-Logic formula containing the operators AND, OR, NOT, <-, -> or <-> and
quantifiers FORALL and EXISTS. Queries are rules with an empty head.

F-Logic rules can be used to model OWL features like the disjointness of
classes, transitivity and inverses of relations and others. Beyond that, rules
provide a powerful mechanism for encoding other features such as relational
algebra and domain-specific knowledge about relations. In the following we
will see how this can be used to mediate between different information sources
in our example problem.

9.1.2 Ontologies, sources and queries

The OntoBroker strategy of using F-logic as a uniform language for informa-
tion items and ontological background knowledge leads to a very flexible way
of managing knowledge and information sources in the system. In particular,
arbitrary F-logic files can be loaded into the OntoBroker system regardless
of whether they contain information, ontological information or both. The
corresponding interface of the standard client is shown in Fig. 9.2a. Here the
user can also choose to compile out the rule base in order to increase run-time
performance. The specifications in the different files loaded to the system are
treated as one big knowledge base that can be used to answer queries about
information and background knowledge. In particular, all schema information
is considered as representing one ontology common to all information sources.
Fig. 9.2b shows the ontology interface of the OntoBroker client that allows

190 9 Integration and retrieval systems

(a) Source management (b) Ontology browser

Fig. 9.2. The OntoBroker client

the user to browse the ontological knowledge of the system.

Applying OntoBroker to our example problem first of all requires us to wrap
the different information sources into a common F-logic representation and
load the corresponding knowledge to the system. Each row in Table 9.1 is
translated into an object with certain values for the relevant attributes corre-
sponding to the columns of the table. The F-logic representations of the three
example entries in the table are the following:

radisson:congresshotel[location->denmark; price->580].

mercure:four-star[location->germany; price->210].

ritz:first-class[location->england; price->130].

The first heterogeneity problem mentioned in the problem statement is the
use of different categories of hotels. This problem can be addressed by a com-
mon ontology that relates the different types mentioned in the data to the
more general concept hotel that can be used to query objects belonging to
the different special types of hotels. The corresponding part of the F-logic
definition is the following:

congresshotel::hotel

four-star::hotel

first-class::hotel

Using this ontology, we can query the system for all hotels that have a price
of less than 200 using the following query:

FORALL Y,X <- Y:hotel[price->X] AND lessorequal(X,200).

The system returns the ritz as the answers to the query, because it can be
shown to belong to the class of hotels and to have a price of less that 200.
Fig. 9.3 summarizes the situation.

9.1 OntoBroker 191

Fig. 9.3. Example of ontology-based retrieval

Using the rule language allows us to retrieve objects and their values based
on complex criteria and background knowledge. In that OntoBroker behaves
like a knowledge-based system capable of deriving new facts from given ones.

9.1.3 Context transformation

The use of an ontology of different types of hotels helps us to cope with the
different hotel categories mentioned in the information sources. It cannot,
however, solve the problem of differences in units and scales used in the de-
scription of attribute values. In our example, the prices for a room are given
in different local currencies, which are Euros, UK Pounds and Danish Crowns.
In order to make these prices comparable to each other and to the criteria
given in the query, we have to normalize them to a common currency, say
US Dollars. This problem corresponds to the notion of context transforma-
tion used before. In order to be able to transform from one context (in this
case currency) to another, we first have to make the context of a piece of
information explicit. Parameterized attributes are an elegant and flexible way
of doing this. We therefore extend the description of information items by a
currency parameter for the price attribute:

radisson:congresshotel[price@(dkcrowns)->580].

mercure:four-star[price@(euro)->210].

ritz:first-class[price@(ukpounds)->130].

The actual transformation between different contexts can be specified using
complex F-logic rules that specify the value of an attribute in one context
in terms of its value in other contexts. The translation can either be point-
wise, from one specific context to another, or general. In the case of different

192 9 Integration and retrieval systems

currencies, we can formulate a general rule for currency conversion that refers
to an exchange rate.

FORALL X,Y,Z,A,B,C X[price@(A)->Y] <-

X[price@(B)->Z] AND

(Y is (Z*C)/100) AND

A[exchangerate@(B)->C].

The rule above specifies a general transformation rule between arbitrary cur-
rencies by referring to currency objects that have the exchange rate to different
other currencies as a parameterized attribute. When performing the transfor-
mation, the inference engine binds the object representing the goal currency
to the variable in the rule, reads its exchange rate with respect to the currency
mentioned in the description of the hotel and calculates the price in the goal
currency, which is returned as the result. For the case of US Dollars, we use
the following definitions of the currency object usdollar.

usdollar[exchangerate@(euro)->90].

usdollar[exchangerate@(ukpounds)->173].

usdollar[exchangerate@(dkcrowns)->27].

The currency transformation is now triggered by explicitly mentioning a goal
currency in the query. In our case, we now look for hotels that have a price of
less than 200 US Dollars:

FORALL Y,X <- Y:hotel[price@(usdollar)->X] AND lessorequal(X,200).

As summarized in Fig. 9.4, the result is no longer the ritz, but the two other
hotels, because the price of 130 UK pounds corresponds a a much higher
price in US Dollar while the prices denoted in Euro and Danish Crowns are
actually lower than 200 if measured in Dollars.

The application of this kind of context transformation is of course not limited
to measures and scales. We can also formulate rules that establish between
different classes of hotels (for example first class and four star hotels). These
rules, however, will always depend on the specific domain. We will turn our at-
tention to systems that offer generic solutions for translating between different
classifications in the following section.

9.2 OBSERVER

The OntoBroker approach described above can be seen as a good example
of the core functionality an ontology-based information-integration system
provides. In practice, however, some of the design decisions made for
OntoBroker turn out to be unrealistic. The first is the restriction to a single
ontology that covers all sources of data. As mentioned before, the restriction
to a single ontology leads to significant maintenance problems when new

9.2 OBSERVER 193

Fig. 9.4. Example context transformation

information sources are added. The other problematic aspect is the need
to create and maintain a logical representation of information items as
instances of the ontology. In the presence of large information sources the
logical representation becomes the bottleneck of the system. In this section
we will discuss the OBSERVER system, which provides solutions for the
two problems mentioned above: the system allows the existence of multiple
ontologies, including the use of different ontologies to represent different
views on the same domain, and provides and uses the semantic information
to generate plans of how to query the different sources rather than including
individual information items into the reasoning process.

In the following, we describe how OBSERVER addresses the example integra-
tion problem focusing on these two aspects.

9.2.1 Query Processing in OBSERVER

The OBSERVER system implements a special query-processing strategy
for dealing with multiple information sources that are based on different
ontologies. This strategy consists of three basic steps shown in Fig. 9.5. The
strategy is incremental in the sense that the system first tries to answer a
query only using data that is linked to the user’s ontology and establishes
connection to other information sources one by one in case the user is not
satisfied with the result so far. In the following, we briefly discuss the different
steps shown in Fig. 9.5.

• Query Formulation. in the first step the user selects one of the existing on-
tologies in the system as source for the query vocabulary. In the following,

194 9 Integration and retrieval systems

Fig. 9.5. Incremental query extension in OBSERVER

we call this ontology the user ontology. After having decided on a partic-
ular ontology, a query to the system can be formulated using the terms
of the ontology that can be combined using operators of the CLASSIC
description logic [Borgida et al., 1989].

• Data access. in OBSERVER an ontology is associated with a number of
information sources. In this step, the system retrieves answers to the user
query from the data sources associated with the ontology chosen in the
first step. The user query is processed by expanding the query into an
extended relational algebra expression. This expression is evaluated on
the information source using special wrappers and the results are passed
to the user as a partial answer to the query.

• Query expansion. if the user is not satisfied with the answer given by the
system, the user query is incrementally expanded to other information
sources. As these sources use different ontologies, the user query has to
be re-written into the terminology used by the additional source (target
ontology). For this purpose, OBSERVER uses semantic relations between
the different ontologies in the system. These semantic relations include
synonym, hypernym and hyponym relations as well as overlap, disjointness
and coverage. These relations that are stored in a central repository can be
interpreted as equivalence and subsumption in the description logic used
to represent knowledge in the system. When re-formulating the query,
OBSERVER distinguishes two cases:
– In some cases, all terms in the query can be replaced by synonym terms

in the target ontology. In this case, the re-formulated query is equiv-
alent to the original one and there is no loss of information resulting
from the translation (referred to as full translation).

9.2 OBSERVER 195

– Often, not all the terms in a user query have synonym terms in the
target ontology. In this case, OBSERVER performs a partial transla-
tion of these terms using a similar approach to the one described in
Sect. 6.2. In particular, the terms are replaced by unions of hyponym
or intersections of hyperym terms and the corresponding query is used
to retrieve data accepting a certain loss of information. This case is
referred to as partial translation.

In the case of a partial translation, there are different possibilities of com-
bining replacements of terms in the query. For each of these possible trans-
lations, OBSERVER estimates the loss of information and selects the ap-
proach that can be assumed to have the smallest loss.

As shown in Fig. 9.5 steps two and three are repeated iteratively incorporating
more and more information sources until the user is satisfied with the result.
After the first iteration, the second step also includes a re-formulation of the
retrieved information into the user ontology.

9.2.2 Vocabulary integration

We consider an extension of our example integration problem, where the
information shown in Table 9.1 is taken from two different sources of
information. Each of these information sources uses a different ontology that
provides the terms used to describe the category of the accommodation. We
assume that the information sources use the ontologies shown in Fig. 9.6. The
hierarchy on the left-hand side is the user ontology that is used to formulate
the query.

Fig. 9.6. The ontology integration problem

Using this ontology the user states the query for hotels with a price of less
than 200. In the following, we focus our attention on the type information

196 9 Integration and retrieval systems

contained in the query. The restriction on the price and the necessary cur-
rency conversion are assumed to be handled by information-source wrappers.

Looking at the information in Table 9.1, we see that consulting the in-
formation source associated with the user ontology will only produce the
first item in the table as a result. The other two information items are
classified according to the ontology on the right-hand side of Fig. 9.6. In
order to decide whether this information is an answer to the query for hotels,
the user ontology has to be integrated with this ontology using informa-
tion about semantic relations between terms in the two models. We use
the set of semantic relations shown in Table 9.2 to combine the two ontologies.

Table 9.2. Data from the example problem

IAO.APARTMENT is a synonym of SAO.apartment

IAO.HOTEL is a hyponym of SAO.hotel

IAO.HOTEL is a hypernym of SAO.4StarHotel

IAO.HOTEL is a hypernym of SAO.5StarsHotel

<IAO.HOTEL,80% > overlaps <SAO.Hotel,50%>

IAO.PRICE is a synonym of SAO.price

The semantic relations in Table 9.2 indicate that the terms apartment, hotel
and price used in both models are synonyms. Further, we find the information
that 4StarHotel and 5StarHotel are hyponyms of hotel and that the term
hotel in the user ontology refers to a more specific concept than the term
accommodation in the ontology of the additional information. In addition to
the semantic relations, the system uses semantic descriptions of the different
concepts in the ontologies. Consider the following definition of the term first
class hotel in the user ontology:

(define-concept FirstClassHotel

(AND Hotel

(ALL Stars (> 3)))

It defines a first-class hotel to be a hotel with at least 4 stars. Using the seman-
tic relations and the semantics of the description language, we can determine
the relation of the term first class hotel to the terms 4 star hotel and 5 star
hotel from the target ontology that have the following definition:

(define-concept 4StarHotel

(AND Hotel

(ALL Stars (= 4))))

(define-concept 5StarHotel

9.2 OBSERVER 197

(AND Hotel

(ALL Stars (= 5))))

Using a description-logic reasoner we can compute semantic relations between
all the terms in the user and the target ontology. The resulting integrated
model (Fig. 9.7) provides the basis for re-formulating user queries that do not
have a full translation.

Fig. 9.7. Combined view on the ontologies

9.2.3 Query plan generation and selection

The integrated ontology now provides a basis for re-formulating queries across
the different ontologies present in the system. While terms that have a direct
synonym in the target ontology are just replaced by this synonym, terms
without a direct correspondence have to be approximated by a combination
of similar terms. This can be done in different ways, leading to a situation
where one query can be translated in different ways. We will illustrate this
using our example problem.

In order to answer our example query we will state a query in terms of a
concept expression describing hotels with a price of less than 200. Using the
logic provided in OBSERVER, this concept expression is the following:

(AND Hotel (ALL price (<200)))

Here, the terms Hotel and price are both taken from the user ontology. As we
can see from the semantic relations, the term price has a corresponding term
in the target ontology and can therefore be directly replaced. Although there is
also a term “hotel” in the target ontology, it is not a synonym. We therefore

198 9 Integration and retrieval systems

have to consider different approximation of this term. The approximation
approach taken in OBSERVER is similar to the one described in Sect. 6.2.
In particular, each term that does not have a synonym is either replaced by
the conjunction of its parents or the union of its children in the integrated
concept hierarchy. In our example this results in two possible translations of
the query:

1. (AND Hotel (ALL price (<200))
2. (AND (OR 4StarHotel 5StarHotel) (ALL price (<200)))

The first alternative corresponds to using the upper, the second to using the
lower approximation.

As OBSERVER allows us to use both kinds of approximations and even to
mix them in cases where more than one term has to be approximated, we
need a criterion to choose the best combination of these approximations. In
OBSERVER this is done by estimating the loss of information for each possi-
ble translation based on statistics about the information sources. The notion
of loss of information is based on upper and lower bounds on the expected
precision and recall of a query, where precision and recall are defined in the
usual way [Mena et al., 2000b]. As the following example shows, the estima-
tion of loss of information is also useful in cases where we only replace one
term as in the example above, as it helps us to choose between the upper and
the lower approximations. Using the measures defined in [Mena et al., 2000b]
we get the following figures:

Replacement Hotel (OR 4StarHotel 5StarHotel)

Precision (23%, 30%) (100%, 100%)

Recall (100%, 100%) (22%, 50%)

Loss (53%, 62%) (33%, 63%)

As the figures show, in contrast to our expectation, replacing the term hotel
from the user ontology by the term hotel from the target ontology is not
the best choice in our case. While it has about the same maximal possible
loss of information, replacing the term by its lower approximation leads to
a better lower bound in the loss (one-third as opposed to one-half of the
information). In our example, OBSERVER will therefore decide to use the
lower approximation for the term hotel and return all four and five star hotels
from the information sources classified by the target ontology.

9.3 The BUSTER system

While the OBSERVER approach to information integration is quite similar
to the techniques described in this part of the book (in particular Chap.

9.3 The BUSTER system 199

6), the need to create and maintain sematic relations between multiple
ontologies in the system is a drawback. In order to cope with this problem
OBSERVER is able to deduce new semantic relations from combinations
of existing ones using canonical terms. This can be seen as a step in the
direction of the hybrid integration approach mentioned in Chap. 2. The
BUSTER system [Visser and Schuster, 2002], developed at the University
of Bremen, is an example of a system that more explicitly uses the hybrid
approach, implementing the methods described in this book. In the following
we will briefly describe the BUSTER system focusing on those features dis-
tinguishing it from systems like OBSERVER, in particular the extensive use
of a shared base vocabulary and methods for retrieval based on spatial criteria.

Fig. 9.8. BUSTER – Intelligent middleware for information sharing

BUSTER is meant to provide an intelligent middleware for information
sharing. We envision that the BUSTER system is used by many different
applications like search engines, e-commerce platforms or corporate memories
in order to access heterogeneous and distributed information resources.
For this purpose, the BUSTER system provides two subsystems, one for

200 9 Integration and retrieval systems

information filtering and one for information integration. These subsystems
are mainly independent of each other and can be accessed by clients over the
World Wide Web (compare Fig. 9.8).

Fig. 9.9 shows the interaction of the two subsystems in a typical integration
scenario. In a first step, relevant information sources are selected based on the
user’s information need. This is done by a broker component were information
sources register and provide access information. The decision whether a source
is relevant is based on source metadata provided by a metadata server. A user
request is matched against the metadata of an information source that, same
as the user query, is based on a shared vocabulary. The actual decision step
uses an external OWL reasoner for deductive matching.

Fig. 9.9. Information Filtering and Integration in BUSTER [Neumann et al., 2001]

After an information source has been chosen, its content is translated into
the user’s format by the integration component. This structural and syn-
tactic integration is performed by a classical mediator–wrapper architecture.
The core of this part is the MECOTA system, a rule based mediator that
uses abductive reasoning to translate between different information contexts
[Wache, 1999, Wache, 2003].

9.3.1 The use of shared vocabularies

In principle, the query processing in BUSTER works quite similarly to the
OBSERVER system: user queries are translated into the vocabulary provided
by the ontologies assigned to different sources. The main difference lies in
the fact that the user does not commit to a user ontology representing his

9.3 The BUSTER system 201

personal view of the domain but rather to a basic vocabulary that is used to
define concepts in all the source ontologies (compare Sect. 2.4.2).

Fig. 9.10. The role of shared vocabularies in BUSTER

By formulating the user query in terms of this basic vocabulary we ensure
that the query can interpreted with respect to all source ontologies in
the system. In particular, we can determine these concepts in a source
ontology that are most similar to the concept we asked for. Here, being
similar means the direct parents and children of the query concept after we
have classified it into the source ontology. After translating the query into
the terminology provided by a source ontology – this is done as described
in Sect. 6.2, we can match the query against metadata provided for the
information source. The metadata for an information source is comparable to
the descriptions used in the OntoBroker system. In particular, information
items contained in the source and their properties are described using terms
from the shared vocabulary. This again guarantees that we can determine
those items that are an answer to the translated query by logical deduction.
Finally, the descriptions of matching information items are returned to
the user and a short explanation is given why the item has been matched
– currently this explanation points to the concept in the source ontology
that has been used for matching. Fig. 9.10 provides an overview of the process.

9.3.2 Retrieving accommodation information

For our example problem we use a shared vocabulary containing basic
relations and terms from the accommodation domain that can be used
to specify different types of accommodations as well as to describe actual
accommodations. In the initial interaction with the system the user will be

202 9 Integration and retrieval systems

asked to select a domain and the corresponding vocabulary (see Fig. 9.11).

Fig. 9.11. Selection of shared models

After having selected a query the user is asked to formulate a query us-
ing the shared vocabulary. The query formulation is supported by a query-
construction interface which is dynamically generated from the chosen vocab-
ulary. As shown in Fig. 9.12 the vocabulary for the accommodation domain
specifies five properties for the concept accommodation that can be further
specified:

• Meals. Information about available meals for example used to distinguish
full-pension, half-pension and bed and breakfast.

• Facilities. Information about available facilities including fixed installation
such as TV-sets as well as services offered.

• Stars. Number of stars assigned to the accommodation. This can also be
used describe other kinds of distinctions received by the accommodation.

• Building. Information about the type of building, e.g. apartments vs. one
single complex.

For each of these properties, the vocabulary also defines a set or even a
hierarchy of possible values. In Fig. 9.12 we see parts of the fillers for the
facility property.

Units: the size of the accommodation in terms of number of units.

9.3 The BUSTER system 203

Fig. 9.12. Query construction based on shared terminology

Based on the query formulated by the user the system now searches the dif-
ferent information sources and returns relevant results. Fig. 9.13 shows a sit-
uation where the user is looking for a sports hotel. The results are shown
as a list on the left-hand side of the screen. The right-hand side contains an
explanation for the currently selected result. The explanation consists of the
actual query being asked by the user, the matching concept from the source
ontology – in this case “golf hotel” – and the metadata describing the result.

9.3.3 Spatial and temporal information

The systems we have discussed so far – and this observation also holds for
information integration systems in general – are mainly focusing on the inte-
gration of conceptual information. We have seen how the systems deal with
different classifications of information items and differences in underlying mea-
sures and scales. If we look at our example problem, however, it is quite obvi-
ous that there is not only a conceptual side to the integration problem. When
looking for a certain accommodation, we also have to take care of spatial and
temporal aspects of the information:

• Is the accommodation close enough to the place we really want to go to,
e.g. the location of a conference?

• Is the accommodation available at the respective time we need to be at
the place, e.g. the duration of the conference?

204 9 Integration and retrieval systems

Fig. 9.13. Presentation and Explanation of the Result Set

Currently, these aspects are not well supported by many systems, because
they require different kinds of reasoning mechanisms. While many systems
rely on reasoning about class hierarchies, in particular about the subclass
relation, reasoning about spatial relevance of a piece of information needs
inferences over part-of hierarchies and neighborhood graphs. The BUSTER
system tries to close this gap by distinguishing between conceptual, spatial
and temporal aspects of an information request. Each of these components
is evaluated separately and only information meeting all of the criteria is
returned. In the following, we briefly describe the processing of spatial queries
in the BUSTER system.

The idea behind processing spatial queries in BUSTER is the use of names of
spatial locations. These names can include the names of cities and countries,
but also less well-defined locations such as regions or landscapes. A problem
that arises with the use of place names is the fact that different information
sources will often use different place names. This might be due to the
fact that the same place has different names (e.g. Chemnitz vs. Karl-Marx
Stadt), to differences in the granularity of the information (countries vs.
federal states) or the use of special names that do not have a counterpart
in other terminologies (sales regions of a certain company). Fig. 9.14 shows
the query interface of the system that allows the user to specify spatial criteria.

9.3 The BUSTER system 205

Fig. 9.14. Query interface for conceptual, spatial and temporal criteria

Once such a name appears in a user query, the system has to determine
which part of the information that satisfies the conceptual part of the query
is also relevant with respect to the place name in the query. In order to deal
with this problem, the BUSTER system uses so called place-name structures
[Voegele et al., 2003]. Place-name structures consist of a combination of a
partonomy of spatial regions each connected with a name. In our example,
this partonomy would for example contain the path: Europe, Scandinavia,
Denmark. Depending on the spatial region chosen by the user, different
answers will be returned. If the user selects the name Europe, all three hotels
will be returned as they are all located in cities that are part of Europe. If the
user narrows down the requested region to Scandinavia, only the Radisson
in Copenhagen will be returned, because the other cities are not considered
to belong to Scandinavia. The upper-left part of Fig. 9.15 shows a similar
partonomy related to federal states in Germany.

Besides clearly defined regions such as countries, a place-name structure may
also contain names of less well-defined regions such as mountain ranges or
seas. The upper right part of Fig. 9.15 shows an example of a mountain
range (square box in the hierarchy) inserted into the partonomy by relating
its spatial extension to federal states. In the case of our example, the user
might ask for a hotel on the Baltic Sea. Clearly none of the hotels are part of
the Baltic Sea, making clear that a partonomy alone is not enough to process
spatial queries. For this purpose, BUSTER combines the partonomy with a

206 9 Integration and retrieval systems

Fig. 9.15. Representation of spatial knowledge (from [Voegele et al., 2003])

connection graph for an underlying tessellation of spatial regions with well
defined boundaries (compare the lower part of Fig. 9.15). In our example this
connection graph provides the knowledge that Denmark as well as Germany
are connected to the Baltic Sea and are therefore more relevant than the UK.
Therefore, the Radisson in Copenhagen and the Mercure in Hamburg are
returned as results.

Another function of the tessellations underlying the place-name structures
is the integration of spatial information during query answering. It allows
different information sources to use different partonomies of place names.

9.4 Conclusions 207

As long as they are based on the same underlying tessellation, the spatial
relevance can still be determined based on this shared model.

9.4 Conclusions

The systems discussed in this chapter address various aspects of identifying
and integrating heterogeneous and distributed information sources of related
topics. The integration problem is addressed on different levels including syn-
tax, structure and semantic integration. The systems have successfully been
applied in different domains such as database integration, experience man-
agement in large companies and geographic information processing. These
applications show that the models and methods described in this book are not
only of theoretical interest, but that they contribute to a practical solution for
information-sharing problems. Especially, we conclude that the general frame-
work described in this book can be put to work using existing Web technolo-
gies: shared ontologies can be encoded in RDF Schema, OWL can be used to
build source ontologies. Information sources in terms of collections of HTML
documents can be linked to these ontologies using specialized wrappers and
annotation tools. Finally, mapping and filtering methods can be implemented
on top of existing subsumption reasoners that can be accessed over the Web.
This tight coupling with existing technologies makes us optimistic about the
potential contribution of the framework to a more intelligent Semantic Web.
We also have to notice, however, that currently successful applications are
only reported in rather restricted application domains rather than an open
Semantic Web environment. Issues such as scalability and automatic gener-
ation of mappings still need investigation before systems are ready to move
out to the Web.

Further reading

The OntoBroker system is presented in [Decker et al., 1999] in more de-
tail. Frame-logic, the logical formalism used in OntoBroker is introduced in
[Kifer et al., 1995]. The most complete description of the OBSERVER system
is in [Mena and Illarramendi, 2001]. The methods for query planning based on
approximate re-writing is discussed in [Mena et al., 2000b]. A description of
the BUSTER system can be found in [Visser and Schuster, 2002]. The meth-
ods for determining spatial relevance in the BUSTER system are described in
[Schlieder et al., 2001] and [Voegele et al., 2003].

Part IV

Distributed ontologies

10

Modularization

Summary. In Chap. 3 we introduced the Web Ontology Language
as a suitable way of describing information on the Semantic Web. We
described the use of the language for integrating different information
sources. In this context, we always considered ontologies as monolithic
entities. In particular, we assumed that reasoning is performed on
the complete set of consistent definitions from all relevant ontologies.
On the Web it is much more likely, however, that the ontologies
themselves are distributed and describe the same domain in different,
potentially mutually inconsistent ways. In this chapter, we propose
an extension of OWL that deals with distributed ontologies and show
its benefits compared to direct use of OWL.

Throughout this book we have considered distributed information sources
and semantic descriptions of the information contained therein. One of the
principles of our approach is the use of source ontologies that formalize
the conceptualization of a single information source. Being based on the
representations found in the particular source, these ontologies will be
distributed and will often describe the same domain of interest in dif-
ferent ways. Most existing tools, however, treat ontologies as monolithic
entities and provide little support for specifying, storing and accessing
ontologies in a modular manner. Existing proposals trying to fill this
gap lack a formal underpinning. Examples can be found with respect to
ontology editors [Noy et al., 2000, Bechhofer et al., 2001], reasoning systems
[Haarslev and Moeller, 2001, Horrocks, 1998] and more recently storage and
query systems (e.g. [Broekstra et al., 2002]). We think that the distributed
nature of ontologies used for information sharing on the Semantic Web
requires an adequate treatment of distributed ontologies. In particular,
there is a need for a formal foundation and an appropriate infrastructure
for representing and managing distributed ontologies. In this chapter,
we propose a formal foundation for distributed ontology modules that

212 10 Modularization

are connected by specialized mappings. We show that the expressiveness
of our model goes beyond the import mechanism provided by OWL and
analyze the model with respect to formal properties and supported inferences.

In this chapter, we first motivate and explain our approach for defining and
reasoning with modular ontologies. After a brief review of related work on
modular representation, we propose and architecture and semantics for mod-
ular ontologies. The definition of our model is followed by a comparison with
OWL and its possibility to modularize and to link representations. Aferwards,
the problem of reasoning with and about modular ontologies is discussed.

10.1 Motivation

Beyond the use of ontologies as local descriptions of information sources there
are many reasons for thinking about ontology modularization. Our work is
mainly driven by three arguments. These also bias the solution we propose,
as it is aimed at improving the current situation with respect to the following
aspects.

• Distributed systems. In distributed environments like the Semantic Web,
the question for modularization arises naturally. Ontologies in different
places are built independent of each other and can be assumed to be
highly heterogeneous. Unrestricted referencing to concepts in a remote
ontology can therefore lead to serious semantic problems as the domain
of interpretation may differ even if concepts appear to be the same on a
conceptual level. The introduction of modules with local semantics and
clearly specified interfaces can help to overcome this problem.

• Large ontologies. Modularization is not only desirable in distributed envi-
ronments, it also helps to manage very large ontologies we find for example
in medicine or biology. These ontologies that sometimes contain more than
a hundred thousand concepts are hard to maintain as changes are not con-
tained locally but can affect large parts of the model. Another argument
for modularization in the presence of large ontologies is reuse as, in most
cases, we are not interested in the complete ontology when building a new
system, but only in a specific part. Experiences from software engineering
show that modules provide a good level of abstraction to support mainte-
nance and re-use.

• Efficient reasoning. A specific problem that occurs in the case of dis-
tributed ontologies as well as very large models is the problem of efficient
reasoning. While the pure size of the ontologies causes problems in the lat-
ter case, in a distributed setting hidden dependencies and cyclic references
can cause serious problems. The introduction of modules with local seman-
tics and clear interfaces will help us to analyze distributed systems and
provides a basis for the development of methods for localizing inference.

10.1 Motivation 213

10.1.1 Requirements

There are a couple of requirements a modular ontology architecture has to
fulfill in order to improve ontology maintenance and reasoning in the way
suggested above. The requirements will be the main guidelines for the design
of our solution proposed in this work.

• Loose coupling. In general, we cannot assume that two ontology modules
have anything in common. This refers to the conceptualization as well as
the specific logical language used for the interpretation of objects, classes
or relations. Our architecture has to reflect this by providing an extremely
loose coupling of modules. Especially, we have to prevent unwanted in-
teractions between modules. For this purpose, mappings between modules
have to be distinguished from local definitions on the semantic as well as
the conceptual level.

• Self-containment. In order to facilitate the re-use of individual modules
from a larger, possibly interconnected system, we have to make sure that
modules are self-contained. In especially, the result of certain reasoning
tasks such as subsumption or query answering within a single module
has to be possible without having to access other modules. This is also
important if we want to provide efficient reasoning. Further, we have to
ensure correctness and, whenever possible, completeness of local reasoning
for obvious reasons.

10.1.2 Our approach

In the following, we describe our approach to ontology modularization on an
abstract level. We emphasize the main design decisions and motivate them
on the basis of the requirements defined above. The technical details of the
approach will be given in the following sections.

• View-based mappings. The first design decision made concerns the way
different ontology modules are connected. In our work, we adopt the ap-
proach of view-based information integration. Ontology modules are con-
nected by conjunctive queries. Especially, the extension of a concept in one
module can be claimed to be equivalent to the (intentional) answer set of
a conjunctive query over the vocabulary of another module. This way of
connecting modules is more expressive than simple one-to-one mappings
between concept names. Further, the same technique can be used to de-
fine relations of any arity based on other modules. Compared to the use
of arbitrary axioms, our approach is less expressive. We decide to sacrifice
a higher expressiveness for the sake of conceptual simplicity and desirable
semantic properties such as directedness of the mapping. Especially, the
definition of a query mapping does not influence the interpretation of the
queried ontology.

214 10 Modularization

• Interface compilation. The use of conjunctive queries guarantees a loose
coupling on a conceptual and semantic level. However, it does not provide
self-containment, because reasoning in an ontology module depends on the
answer sets of the queries used to connect it to other modules. These an-
swer sets have to be determined by actually querying the other ontology
module. In order to make local reasoning independent from other mod-
ules, we use a knowledge-compilation approach. The idea is to compute
the result of each mapping query off-line and add the result as an axiom
to the ontology module using the result. During reasoning, these axioms
replace the query thus enabling local reasoning. As the results of queries
are considered to be defined intentionally rather than extensionally, the
result of the compilation of a query is not a set of instances retrieved from
other modules, but a concept expression that contains all the information
necessary to perform local reasoning. In our case this expression is the
conjunction of all concepts of the other ontology module that subsume the
query expression.

10.1.3 Related work

Our work relates to two main areas of research on representing and
reasoning about ontological knowledge. The first area is concerned with
distributed and modular knowledge representation where we use ideas from
theorem proving and knowledge engineering. The second area of related
work is concerned with managing knowledge models. Here previous work ex-
ists in knowledge engineering as well as in databases and information systems.

While the principle of modularity has widely been adopted in software
engineering it has got less attention in the area of knowledge representation
and reasoning. Some fundamental work on the modularization of represen-
tations can be found in the area of theorem proving. Farmer and colleagues
promote the use of combinations of “little theories”, representations of a
specific mathematical structure in order to reason about complex problems
[Farmer et al., 1992]. They show the advantages of this modular approach in
terms of reusability and reduced modelling effort.

The idea of reusing and combining chunks of knowledge rather than building
knowledge bases from scratch has later been adopted by the knowledge
engineering community for building real-world knowledge bases (see e.g.
[Clark et al., 2001]). McIlraith and Amir argue that a modularization of
knowledge bases also has advantages for reasoning, even if the modularization
is done a posteriori. They present algorithms for breaking down existing
representations into a set of modules with minimal interaction and define
reasoning procedures for propositional [Amir and McIlraith, 2000] and first-
order logic [McIlraith and Amir, 2001]. The work reported is motivated by
well-established techniques from uncertain reasoning, where an a posteriori

10.1 Motivation 215

modularization of large theories is a common way to reduce run time
complexity (see e.g. [Lauritzen and Spiegelhalter, 1988]).

As we are interested in representations of ontological knowledge, approaches
from the area of logics for representing terminologies, so-called description
logics, are of special interest for our work. In this area, we find the same
arguments for a modularized representation as in the area of theorem proving.
Rector proposes a strategy for modular implementation of ontologies using
description logics [Rector, 2003]. The approach is based on a set of orthogonal
taxonomies that provide a basis for defining more complex concepts. Rector
argues for the benefits of this strategy in terms of easier creation and reuse
of ontological knowledge. Buchheit and others propose a similar structuring
on the language level by dividing the terminological part of a knowledge
base into a schema part that corresponds to the basic taxonomies and a view
part [Buchheit et al., 1994]. They show that this distinction can be used to
achieve better run-time behavior for complex view languages. While these
approaches still assume the overall model to be a single ontology providing
a coherent conceptualization of the World, Giunchiglia and others propose a
more radical approach to distributed representations. They propose the local
model semantics as an extension of the standard semantics of first-order logics
[Ghidini and Giunchiglia, 2001]. This semantics allows different modules to
represent different views of the same part of the World and the definition
of directed partial mappings between different modules. Recently, Borgida
and Serafini defined a distributed version of description logics based on local
model semantics that has all advantages of the contextual representations
[Borgida and Serafini, 2002].

The problem of combining and reasoning with ontological modules is has
become of central importance in research on knowledge representation and
reasoning on the so-called Semantic Web. Current proposals for languages
to encode ontological knowledge on the World Wide Web, i.e. the RDF
Schema [Brickley and Guha, 2004] and the Web Ontology Language OWL
[McGuinness and van Harmelen, 2003], provide some basic mechanisms for
combining modular representations. The abilities for combining different mod-
els are restricted to the import of complete models and to the use of elements
from a different model in definitions by direct reference. It is assumed that
references to external statements are only made for statements from imported
models; however, this is strictly speaking not required. In first case the com-
plete semantics of the external ontology is adopted. In the latter case, the
external elements are treated as atomic elements with no further definition.
As a consequence, mappings rather implicitly exist in terms of mutual use of
statements across models. Volz and colleagues discuss different interpretations
of the import statement that range from purely syntactic to schema-aware
interpretations of the imported knowledge [Volz et al., 2002a]. An alternative
way of relating different RDF models to each others that is much closer to our

216 10 Modularization

ideas is discussed by Oberle [Volz et al., 2003], who defines a view language
for RDF and defines some consistency constraints for the resulting model.

10.2 Modular ontologies

In order to put a higher-level modularization infrastructure for ontologies
into place, extensions of existing technologies are necessary at different levels.
On the syntactic level, we have to extend existing language standards like
OWL with a language for defining module interfaces and mappings between
different modules. On the semantic level, we have to define the interpretation
of mappings as well as the relation between definitions in different modules
in such a way that we achieve independence between modules. In this section
we will present a framework for representing modular ontologies. In Sect.
10.2.1 we define a syntax for representing modular ontologies and provide
an intuitive description of its meaning. Section 10.2.2 underpins the syntax
with a model-theoretic semantics for modular ontologies that uses the notion
of a distributed interpretation across different abstract domains to define an
novel notion of logical consequence that better fits the intuition of distributed
models than the standard notion used by languages like OWL.

10.2.1 Syntax and architecture

What makes up a modular ontology is the possibility to use ontology-based
queries in order to define concepts in one module in terms of a query over an-
other module. For this purpose, we divide the set of concepts in a module into
internally defined concepts CI and externally defined concepts CE , resulting
in the following definition of C:

C = CI ∪ CE , CI ∩ CE = ∅ (10.1)

Internally defined concepts are specified by using concept expressions in the
spirit of description logics [Baader et al., 2002]. We do not require a particular
logic to be used.

Definition 10.1 (internal concept definition). An internal concept def-
inition is an axiom of one of the following forms C � D, C ≡ D, where
C ∈ CN and D is a concept expression of the form f(t1, ..., tn), where the
terms ti are either concept names or concept expressions and f is an n-ary
concept-building operator.

Besides this standard way of defining concepts, we consider externally defined
concepts that are assumed to be equivalent to the result of a query posed
to another module in the modular ontology. This way of connecting modules
is very much in the spirit of view-based information integration, which is
a standard technique in the area of database systems [Halevy, 2001]. The

10.2 Modular ontologies 217

choice of conjunctive queries for connecting different modules is motivated by
the trade-off between expressiveness of the mapping and conceptual as well
as computational simplicity. Our approach is more expressive than simple
one-to-one mappings; having more complex mappings would contradict the
principle of loose coupling of different modules. We now use the notion of an
ontology-based query in order to define concepts using queries over a different
ontology (module) that have exactly one free variable.

Definition 10.2 (external concept definition). An external concept defi-
nition is an axiom of the form: C ≡ M : Q, where M is a module and Q is an
ontology-based query over the signature of M with exactly one free variable.

Further, we allow relations to be defined in terms of query expressions with
two free variables. By convention, we call these variables x and y where x
always denotes the variable in the first and y the variable in the second place
of the binary relation. Analogously to external concept definitions, we get the
following definition for externally defined relations RE .

Definition 10.3 (External Relation Definition). An external relation
definition is an axiom of the form: R ≡ M : Q Where M is a module and
Q is an ontology-based query over the signature of M with exactly two free
variable. We denote the set of all external relations RE .

A modular ontology is now simply defined as a set of modules that are con-
nected by external concept and relation definitions. In particular we require
that all external definitions are contained in the modular system.

Definition 10.4 (modular ontology). A modular ontology M =
{M1, ..., Mm} is a set of modules such that, for each externally defined concept
C ≡ Mi : Q and each external relation definition R ≡ Mi : Q, Mi is also a
member of M.

We will use this notion of a modular ontology in the following to investigate
the problem of integrity of logical reasoning across modules.

10.2.2 Semantics and logical consequence

After having defined a representation syntax for modular ontologies, we now
have to define how a modular ontology should be interpreted. Such a semantic
underpinning in necessary to define the notion of logical consequence which
serves as a basis for any kind of reasoning. Further, having a formal semantics
makes it easier to compare our model to existing proposals for ontologies on
the Web as well as to investigate the formal properties of the kind of mapping
relations chosen.

218 10 Modularization

When defining the semantics of our model, we have to find a trade-off between
backward compatibility with existing standards and new ways of defining log-
ical semantics that better fit the distributed nature of a modular ontology. In
order to meet both requirements, we define a local semantics that applies to
individual modules and a distributed semantics that defines how the relations
between elements in different modules are interpreted. The local semantics
directly corresponds to the Tarskian-style semantics of description logics and
is therefore very close to the semantics of OWL-DL, which can be seen as
a special kind of description logics. The distributed semantics borrows from
the notion of distributed first-order logics and more specifically distributed
description logics defining the interaction between different local models re-
ferring to the local semantics.

Local semantics

We can define semantics and logical consequence of a terminological knowledge
base using an interpretation mapping (.)� into an abstract domain ∆ such
that:

• c� ⊆ ∆ for all class definitions c in the way defined above,
• r� ⊆ ∆ × ∆ for all relation definitions r,
• o� ∈ ∆ for all object definitions o.

This type of denotational semantics is inspired by description logics
[Donini et al., 1996]; however, we are not specific about operators that can
be used to build class definitions which are of central interest of these logics.
Using the interpretation mapping, we can define the notion of a model in the
following way:

Definition 10.5 (Model of a terminological knowledge base). An in-
terpretation
 is a model for the knowledge base T if
 |= A for every axiom
A ∈ (C ∪ R ∪O), where |= is defined as follows.

•
 |= c ≡ (o1, ..., on), iff c� = {o�1 , ..., o�n}
•
 |= c1 � c2, iff c�1 ⊆ c�2
•
 |= r � (c1, c2), iff r� ⊆ c�1 × c�2
•
 |= r1 � r2, iff r�1 ⊆ r�2
•
 |= o : c, iff o� ∈ c�

•
 |= (o1, o2) : r, iff (o�1 , o�2) ∈ r�

These definitions enable us to perform reasoning using the notion of logical
consequence:

Definition 10.6 (logical consequence). An axiom A logically follows from
a set of axioms S if
 |= S implies
 |= A for every model
. We denote this
fact by S |= A.

10.2 Modular ontologies 219

Global semantics

We define a model-based semantics for modular ontologies using the notion
of a distributed interpretation proposed in [Borgida and Serafini, 2002] in the
context of distributed description logics:

Definition 10.7 (distributed interpretation). A distributed interpreta-
tion
 = 〈{
i}i∈Index, r〉 of a modular ontology M consists of interpretations

i for the individual module Mi over domains ∆i, such that:

• C�
i ⊆ ∆i for all concept definitions C ∈ Ci,

• R�
i ⊆ ∆i × ∆i for all relation definition R ∈ Ri,

• O�
i ∈ ∆i for all object definitions O ∈ Oi

and functions bk associating to each pair of indices i, j binary relations bk
ij ⊆

∆k
i × ∆k

j . bk
ij(d) denotes the set {d′ ∈ ∆k

j | (d, d′) ∈ bk
ij}; for every D ⊆ ∆k

i

bk
ij(D) denotes

⋃
d∈D bk

ij(d).

The assumption of disjoint interpretation domains again reflects the prin-
ciple of loose coupling underlying our approach. Based on the notion of a
distributed interpretation we can define a model of a modular ontology as an
interpretation that satisfies the constraints imposed by internal and external
concept definitions. In contrast to [Borgida and Serafini, 2002] , we do not in-
troduce special operators for defining the relations between different domains,
we rather interpret external concept definitions as constraints on the relation
between the domains:

Definition 10.8 (Logical consequence). A distributed interpretation
 is
a model for a modular ontology M if for every module Mi we have
 |= X
for every concept or relation definition X in Mi, where |= is defined using
Definition 10.5 for internal definitions and the following equations:

•
 |= C ≡ Mj : Q, iff C�i = b1
ji(Q

�j),
•
 |= R ≡ Mj : Q, iff R�i = b2

ji(Q
�j).

Here Q�j denotes the interpretation of the set of answers to query Q. An
axiom A logically follows from a set of axioms S if
 |= S implies
 |= A for
every model
. We denote this fact by S |= A.

The actual definitions of concepts impose further constraints on the inter-
pretation of a modular ontology. For the case of internally defined concepts,
these constraints are provided by the definition of concept-building operators
of description logics. For the case of externally defined concepts, the situation
is more complicated and will be discussed in more detail in the next section.

220 10 Modularization

10.3 Comparison with OWL

Different from the mainstream work on distributed ontology definitions, our
approach uses a mapping language that is different from the logical language
used to specify the local ontologies themselves. In particular, we use conjunc-
tive queries over concepts and binary relations. At first glance this seems to
be a serious restriction of the expressiveness of our language as mappings
contain no negation, disjunction or other terminological operators. A careful
investigation of the semantics of our model, however, reveals that the use of
conjunctive queries actually leads to a higher expressiveness as opposed to
the standard approach of linking ontologies by directly referring to elements
of remote models in a local specification (compare [Dean et al., 2002]). In this
section we show that the direct reference scheme used in languages like OWL
can be simulated using a trivial mapping scheme; further, we argue that our
model is more expressive than the direct use of elements, because it allows us
to specify relations in terms of complex expressions. Finally, we sketch how
our model can be extended in a straightforward way to also capture relations
of arbitrary arity.

10.3.1 Simulating OWL import

Aiming at the Semantic Web, the language we have to compare ourselves to
is the Web Ontology Language OWL. In the current proposals for OWL, the
notion of mapping is not explicitly contained in the language. The abilities
for combining different models are restricted to the import of complete mod-
els and to the use of elements from a different model in definitions by direct
reference. It is assumed that references to external statements are only made
for statements from imported models; however, this is strictly speaking not
required. As a consequence, mappings rather implicitly exist in terms of mu-
tual use of statements across models. While being quite simple, this way of
connecting ontologies is quite flexible and allows for complex arrangements of
elements from different models into one expression. In this section, we show
that this ability can easily be encoded in our model using examples from
the OWL language guide. The basic idea is the following: we create a local
copy C of each external concept E involved using a trivial mapping of the
form C(X) ≡ M : E(X) and then combine these local copies in a complex
definition using OWL class building operators.

Simple references

The most basic kind of reference to other ontologies mentioned in the
OWL documentation is to state the equivalence of two classes using the
owl:equivalentClass statement. The following example is taken from the
OWL language guide:

10.3 Comparison with OWL 221

Class(Wine)

Equivalent(Wine wine:Wine)

Assuming that the external ontology, described by the prefix wine is imported
by the local ontology, this statements claims that the extensions of the two
concepts are actually the same. We can model this constraint on the interpre-
tation of the local ontology using the following trivial definition of the external
concept Wine:

Wine(X) ≡ Mvin : Wine(X)

In this case, we could directly encode the OWL reference mechanism in terms
of our model. Having restricted the definitions of external concepts to equiva-
lence statements, however, we cannot directly encode the weaker subclassOf
relation to external concepts like the one in the example below:

Class(WineGrape)

SubClassOf(WineGrape food:Grape)

At this point, we have to apply the modelling trick mentioned above: We
create a local copy of the concept “Grape” using the same trivial mapping
as above and declare the local concept “WineGrape” to be a subclass of this
local copy:

C ≡ Mfood : Grape(X)
WineGrape(X) � C (10.2)

Combining internal and external definitions

The simple strategy of creating local copies of external concepts allows us
to easily combine external and local definitions into more complex concepts.
Again, we use an example from the OWL language guide, where Wine is
defined as a subclass of the intersection of potable liquids and things made
from grapes. Here, potable liquids are defined elsewhere, whereas the restricted
relation “madeFromGrape” is contained in the local ontology:

Class(Wine)

SubClassOf(Wine intersectionOf(

food:PotableLiquid

restriction(madeFromGrape

minCardinality(1))))

Using the same strategy as before, we create a copy of the externally defined
concept “potableLiquid”. Using this copy, we simply define the concept Wine
locally using the description-logic counterparts of the OWL operations used
in the example:

222 10 Modularization

C(X) ≡ Mfood : PotableLiquid(X)
Wine � C � (≤ 1 madeFromGrape) (10.3)

Complex external references

The ability to make complex assertions about local copies from (maybe differ-
ent) models also helps us to overcome the restricted expressiveness of our map-
ping language. Having restricted external definitions to conjunctive queries,
we cannot directly express conjunction or negation in the definitions. How-
ever, we can use disjunction, negation and other OWL operators locally in
order to define complex concepts on the basis of local copies of concepts from
other ontologies. In order to illustrate this possibility, we use the following
concept definition that uses concepts from three different external models:

Class(LiquidPoison)

SubClassOf(LiquidPoison intersectionOf(

physics:LiquidSubstance

unionOf(

medicine:Drug

food:PotableLiquid)))

In order to directly capture this definition in terms of an external concept defi-
nition, the mapping language would have to contain disjunction (for expressing
owl:unionOf) and negation (for expressing owl:complementOf). Instead, we
can encode the above concept expression in the following way that leads us to
an internal concept expression with the same meaning as the example above.

C1(X) ≡ Mphysics : LiquidSubstance(X)
C2(X) ≡ Mmedicine : Drug(X)
C3(X) ≡ Mfood : PotableLiquid(X)

LiquidPoison � C1 � (C2 � ¬C3) (10.4)

Relation definitions

Concerning the definition of relations, the abilities of OWL are quite limited.
Most of the assertions that can be made about relations do not depend on
other elements of the ontologies but solely address the mathematical proper-
ties of a relation (such as transitivity or functionality). Assertions than can be
made about a relation and its dependence on elements from other ontologies
are subPropertyOf, inverseOf as well as domain and range restrictions. A
slightly modified example from the OWL documentation is the following:

ObjectProperty(madeFromGrape

InverseOf(wine:usedFor)

domain(wine:Wine)

10.3 Comparison with OWL 223

range(wine:WineGrape)

super(physical:madeOf))

In order to capture this definition in our mapping framework, we can combine
the direct use of our mapping language and the use of local copies. Defining
a relation to be the inverse of an external one can directly be done using a
mapping query and inverting the order of the return variables:

madeFromGrapes(X, Y) ≡ Mwine : usedFor(Y, X)

For the domain and range restrictions, we create local copies and define the
relation to range over these local copies (compare the section on axioms for
defining ontological knowledge). As both kinds of restrictions, the mapping on
the inverse of an external relation and the local restriction of the domain and
range apply to the definition of the “madeFromGrape” relation, the semantics
of its definition is the same as for the example definition.

C1(X) ≡ Mwine : Wine(X)
C2(X) ≡ Mwine : WineGrape(X)

madeFromGrapes � (C1 × C2) (10.5)

The representation of subproperty relationship can be done analogously to
the subclass relation described above. We introduce a new relation R, define
it to be equivalent to the “madeOf” relation and add an axiom stating that
“madeFromGrape” is a subproperty of R.

R(X, Y) ≡ Mphysical : madeOf(X, Y)
madeFromGrape(X, Y) � R(X, Y) (10.6)

10.3.2 Beyond OWL

The examples given above raise the question of the advantages of a mapping
language based on conjunctive queries. In this section, we argue that our map-
ping language extends the expressiveness of existing ontology languages that
are solely based on description logics, and in particular OWL, by adding more
possibilities for defining properties. In contrast to existing approaches for com-
bining description logics with rule languages such as [Levy and Rousset, 1996]
or [Donini et al., 1998], our approach only allows us to use rules in a very
specific way, namely to define relations between disjoint interpretation do-
mains, and therefore does not suffer from the technical problems of many
other approaches. As a consequence, we can allow for complex terminological
definitions such as the ones described above. In addition, we can define local
relations by complex expressions over predicates in another model. Examples
of such definitions that go beyond the expressiveness of OWL are given below.

224 10 Modularization

Combining relations

The major advance of our approach over the abilities of OWL is the possibility
to intentionally define relations using concepts, relations and also instances
of a remote model. Based on these definitions, our model allows to derive
subsumption relations between externally defined relations, while OWL only
allows us to explicitly state subsumption relations between relations and use
them to derive subsumption between relations. The example below describes
the relation between employees and the companies they were employed by in
a particular year:

employedIn2003(X, Y) ≡ M : employmentContract(Z) ∧ employee(Z, X)
∧year(Z, 2003) ∧ employer(Z, Y) (10.7)

We now consider the more general relation of legal partners defined by
the more general concepts of contract and beneficiary without reference to
a particular year. Assuming that the model M provides the correspond-
ing background knowledge employmentContract � contract, employee �
beneficiary and employer � beneficiary we can, based on the notion of logi-
cal consequence, derive that the following relation subsumes the one described
above:

legalpartner(X, Y) ≡ M : contract(Z)∧beneficiary(Z, X)∧beneficiary(Z, Y)
(10.8)

n-ary Relations

A more ambitious extension to OWL expressiveness, that is supported by our
model (though it is not worked out in this chapter) is the ability to express
relations of an arbitrary arity. This is supported by the mapping language as
well as the formal semantics of our approach. In our model, an n-ary relation
can be defined using a query expression with n free variables. An example
for a tertiary relation that connects an employee with his or her employer
depending on a certain year is given below:

employed(X, P, Y) ≡ M : employmentContract(Z) ∧ beneficiary(Z, X)
∧year(Z, P) ∧ employer(Z, Y) (10.9)

On the semantic level, relations of higher arity are supported by the use of
the relations bk

ij that connect the different interpretation domains. Up to now
we are only using these relations with the arity parameter k set to 1 for
concepts and 2 for relations. The semantics of the tertiary relation above can
be defined using the relation b3

ij . Reasoning about these relations is equivalent
to the problem of query containment under constraints, which is known to be
decidable for many interesting cases [Calvanese et al., 1998a].

10.4 Reasoning in modular ontologies 225

10.4 Reasoning in modular ontologies

Using the notion of logical consequence defined above, we now turn our atten-
tion to the issue of reasoning in modular ontologies. For the sake of simplicity,
we only consider the interaction between two modules in order to clarify the
basic principles. Further, we assume that only one of the two modules con-
tains externally defined concepts in terms of queries to the other module.
As mentioned in the introduction, we are interested in the possibility of per-
forming local reasoning. For the case of ontological reasoning, we focus on
the task of deriving implied subsumption relations between concepts within
a single module. For the case of internally defined concepts this can be done
using well-established reasoning methods [Donini et al., 1996]. Externally de-
fined concepts, however, cause problems: being defined in terms of a query
to the other module, a local reasoning procedure will often fail to recog-
nize an implied subsumption relation between these concepts. Consequently,
subsumption between externally defined concepts requires reasoning in the
external module as the following theorem shows. We define the notion of im-
plied subsumption starting with subsumption between atomic concepts before
extending the results to arbitrarily complex concept expressions

10.4.1 Atomic concepts and relations

The most simple case of implied subsumption is the case where we want to
decide whether two externally defined concepts subsume each other. Assuming
that these concepts are solely defined in terms of their mapping to another
ontology, we can define when these concepts subsume each other on the basis
of query subsumption in the external ontology:

Theorem 10.9 (implied subsumption). Let E1 and E2 be two concepts (or
relations) in module Mi that are externally defined in module Mj by queries
Q1 and Q2; then
 |= E1 � E2 if
j |= Q1 � Q2.

The result presented above implies the necessity to decide subsumption be-
tween conjunctive queries in order to identify implied subsumption relations
between externally defined concepts. In order to decide subsumption between
queries, we translate them into internally defined concepts in the module
they refer to. A corresponding sound and complete translation is described
in [Horrocks and Tessaris, 2000]. Using the resulting concept definition,
to which we refer as query concepts, we can decide subsumption between
externally defined concepts by local reasoning in the external ontology.

10.4.2 Preservation of Boolean operators

Things become a bit more complicated when we consider the case where ex-
ternally defined concepts are further used to define complex concepts. What

226 10 Modularization

is needed is a general result on the preservation of subsumption relationships
between concept expressions in different modules that are defined in the same
way. In the following we will call these expressions isomorphic.

Definition 10.10 (isomorphic concepts). Let Mi : C and Mj : D be two
concepts defined in modules Mi and Mj, respectively, then Mi : C and Mj : D
are said to be isomorphic if

• Mi : C(x) ≡ Mj : D(x) or
• Mi : C ≡ f(E1, ..., En), Mj : D ≡ f(F1, ..., Fn), Ei and Fi are isomorphic.

We can use the notion of isomorphic concepts we presented above in order
to extend Theorem 10.9. While the theorem only makes assertions about
concepts that are directly defined by external mappings, we saw above
that under certain assumptions there is also a semantic connection between
concepts that are not directly connected but built from other connected
concepts (see Equation A.2). The table below summarizes these results:

b1
ji Atomic Concepts Disjunction Conjunction Negation

Relation X
Function X X
Injective function X X X
Bijective function X X X X

We see that there is a semantic relation between isomorphic concepts defined
using only disjunction is provided if the semantic mapping is functional. If
conjunction is used as well, the semantic mapping has to be an injective func-
tion in order to guarantee that a semantic relation exists between isomorphic
concepts. If negation is used to define concepts, only a semantic mapping,
which is a bijective function implies Equation A.2. Based on this observation,
we formulate the following extension of Theorem 10.9.

Theorem 10.11 (Implied Subsumption (extended)). Let E1 and E2 be
two concepts in module Mi and
i �|= E1 � E2. Let further be F1andF2 be
concepts in module Mj with
j |= F1 � F2. We have
 |= E1 � E2 if:

• Theorem 10.9 applies.
• E1, F1 and E2, F2 are isomorphic, b1

ji is a function and only disjunction
is used to define concepts.

• E1, F1 and E2, F2 are isomorphic, b1
ji is an injective function and only

disjunction and conjunction are used to define concepts.
• E1, F1 and E2, F2 are isomorphic, b1

ji is a bijective function and only dis-
junction, conjunction and negation are used to define concepts.

The crucial question connected to these technical results is about the
suitability of the assumptions we make about the semantic relation. In order
to get an idea about these assumptions, we will take a look at the formal

10.4 Reasoning in modular ontologies 227

properties of the semantic relation and discuss the intuition connected with
these properties.

In the most general case, bji is just a general relation with no further
restrictions. As a result it provides a high flexibility with respect to the links
that exist between modules. This general relation allows us for example to
connect models with different levels of granularity as one element in the
domain of one module may correspond to several elements in the domain of
the other module. This flexibility leads to a very loose coupling of different
modules as no operators are preserved. In principle, we only know connections
between modules that are explicitly stated. This changes when we assume
that the semantic relation is functional. In this case every element in the
domain of Mi corresponds to exactly one element in Mj . This means that the
goal module is at least as fine grained (or exact) as the target. Still, it can be
the case that the target is an abstraction, because more than one element of
the goal domain corresponds to one element in the target domain. Choosing
an injective bji that establishes a one-to-one mapping between elements of
different domains means that we only allow domains of the same level of
abstraction. While being at the same level of detail, an injective semantic
relation does not restrict the coverage of the two domains. They may overlap
because we neither require bji to be non-partial nor do we assume that it
covers all of the target domain. The latter is required if we want to preserve
negation. In a logic where negation is defined by set difference with respect
to the complete domain it is clear that negation will only have the same ef-
fect if the domains are comparable, which is only given in case of a bijective bji.

From a practical point of view, some of the assumptions are more likely to
hold for modular ontologies than others. While we can often assume that
different modules are at the same level of abstraction, their coverage may
vary as sometimes one module will just be a different view of exactly the
same set of objects and sometimes they will cover completely different aspects
of a domain, being only related by a few concepts. Therefore, we think that
defining the semantic relation to be an injective function is a good compromise
between flexibility of coupling and preservation of operator semantics.

10.4.3 Compilation and integrity

The bottom line of the investigations above is that in order to completely
determine the subsumption relations in an ontology module that contains
externally defined concepts, we might also have to perform subsumption
reasoning in the modules the external concepts are mapped to. This fact
contradicts the requirement of local reasoning stated in the motivation as
subsumption reasoning in the external module may in turn require reasoning
in modules this one is linked to, and so on. In order to reach the goal of local
reasoning, we therefore have to find a way to avoid the need to look beyond

228 10 Modularization

the border of a module at run time.

We can avoid the need to perform reasoning in external modules each time we
perform reasoning in a local module using the idea of knowledge compilation
[Cadoli and Donini, 1997]. The idea of compilation is to perform the external
reasoning once and add the derived subsumption relations as axioms to the
local module. These new axioms can then be used for reasoning instead of
the external definitions of concepts. This set of additional axioms can be
computed using Algorithm 2.

Algorithm 2 Compile
Require: the module M = 〈CI ∪ CE , R, O〉
Require: the external module Mj = 〈Cj , Rj , Oj〉

for all E ≡ Mj : Q ∈ CE do
C′

E := C′
E ∪ {E 	 C|C ∈ Cj ,
j |= E 	 Q}

end for
return C′

E

If we want to use the compiled axioms instead of external definitions, we have
to make sure that this will not invalidate the correctness of reasoning results.
We call this situation, where the compiled results are correct, integrity. We
formally define integrity as follows:

Definition 10.12 (Integrity). We consider integrity of two ontology mod-
ules M, Mj to be present if M, Mj |= M c where M c is the result of replacing
the set of external concept definitions in M by compile(M, Mj).

At the time of applying the compilation this is guaranteed by Theorem 10.9;
however, integrity cannot be guaranteed over the complete life-cycle of the
modular ontology. The problem is that changes to the external ontology mod-
ule can invalidate the compiled subsumption relationships. In this case, we
have to perform an update of the compiled knowledge. This problem is dis-
cussed in more detail in the next section.

10.5 Conclusions

In this chapter, we discussed an infrastructure for representation and reason-
ing with modular ontologies. The intent was to enhance the existing Semantic
Web infrastructure with notions of modularization that have been proven use-
ful in other areas of computer science, in particular in software engineering.
We defined a set of requirements for modular ontologies that arise from ex-
pected benefits such as enhanced reuse and more efficient reasoning. Taking

10.5 Conclusions 229

the requirements of loose coupling, self-containment and integrity as a starting
point, we defined a framework for modular ontologies providing the follow-
ing contributions to the state of the art in ontology representation for the
Semantic Web:

1. We presented a formal model for describing dependencies between dif-
ferent ontologies. We proposed conjunctive queries for defining concepts
using elements from another ontology and presented a model-based se-
mantics in the spirit of distributed description logics that provides us
with a notion of logical consequence across different ontologies.

2. We compared our model with existing standards, in particular the Web
Ontology Language OWL, and showed that the OWL import facilities can
easily be captured as a special case in our model. We further showed that
our model provides additional expressiveness in particular with respect
to modelling relations. In order to get a better idea of the improvements
of our model over OWL, we investigated the formal properties of inter-
module mappings, their impact on reasoning and their intuition.

In summary, this chapter covered the representation of modular ontologies on
a syntactic and semantic level as well as the notion of logical consequence as a
basis for inferencing. The notions defined here can be exploited by knowledge
engineers to design newly created ontologies in a modular fashion. What is still
missing in order to support a wide adoption of this infrastructure are methods
that support the process of migrating existing ontologies to this new infras-
tructure. As the way of defining concepts we propose is equivalent to OWL,
the missing part is a set of methods that analyze ontologies and split them
up into modules according to the principles of maximal internal cohesion and
maximal external independence. A number of such methods are known from
the area of object-oriented databases, where so-called fragmentation methods
are used to determine an optimal distribution of object definitions over dif-
ferent object bases. Further, in the area of parallel processing algorithms for
partitioning graphs into a set of subgraphs have been developed that could
be applied to ontologies when regarding the RDF encoding of the ontology
as a graph that has to be split up. Such methods for identifying modules are
not only interesting for splitting up existing ontologies; they can also be used
as a design tool to help knowledge engineers to come up with a useful set of
modules.

Further reading

Early work on a modular representation of logical theories and their benefits is
[Farmer et al., 1992]. Halevy gives a survey of the use of view-based mappings
in the area of database systems [Halevy, 2001]. The use of knowledge compila-
tion techniques for improving the efficiency of logical reasoning is surveyed in

230 10 Modularization

[Cadoli and Donini, 1997]. Borgida and Serafini introduce the notion of dis-
tributed interpretation that is also used to define the semantics of modular on-
tologies in this chapter [Borgida and Serafini, 2002]. In [Bouquet et al., 2003]
we introduce an extension of OWL for representing ontologies in a distributed
and modular way.

11

Evolution management

Summary. In the last chapter we introduced modular ontologies
as a natural way of representing terminological information on
the Semantic Web. We proposed to use compilation techniques for
improving the efficiency of reasoning. In this section we address
the problem of maintaining modular ontologies. In particular, we
present an update strategy that guarantees the integrity of compiled
knowledge in a modular ontology.

The advantages of having self-contained ontology modules as described in
the last chapter have their price in terms of potential inconsistencies that
arise from changes in other ontology modules. While being independent
from accessing other modules at reasoning time, the correctness of reasoning
within a self-contained module may still depend on knowledge in other
ontologies. If this knowledge changes, reasoning results in a self-contained
module may become incorrect with respect to the overall system, and we
will not even notice it. We have to provide mechanisms for checking whether
relevant knowledge in other systems has changed and for adapting the
reasoning process if needed to ensure correctness. Our approach of compiling
mappings and adding the result to the ontology models is very sensitive
against changes in ontology modules. Once a query has been compiled,
the correctness of reasoning can only be guaranteed as long as the class
hierarchy of the queried ontology module does not change. On the other
hand, not every change in the hierarchy really influences the compiled result.
Problems only arise if concepts used in the query change or if the set of
classes subsuming the query is changed. In the second case, we will have to
compile the interface again. In the first case we might even have to consider
a re-definition of the query. In order to decide whether the compiled axiom
is still valid, we propose a change-detection mechanism that is based on
a taxonomy of ontological changes and their impact of the class hierarchy
in combination with the position of the affected class in that hierarchy.

232 11 Evolution management

We further exploit an explicit representation of the dependencies between
ontology modules in order to propagate changes in the system when necessary.

In this chapter, we first discuss the possibility of detecting and analyzing
changes in an ontology module with respect to the integrity of s modular on-
tology as defined in the last chapter. For this purpose the notion of a harmless
change is defined and methods for classifying changes as harmless or harm-
ful are preseted. After discussing the application of these methods in a small
case study, we define an update procedure for modular ontologies that ensures
integrity in the presence of changes.

11.1 Change detection and classification

In principle, testing integrity might be very costly as it requires reasoning
within the external ontology. In order to avoid this, we propose a heuristic
change-detection procedure that analyzes changes with respect to their im-
pact on compiled subsumption relations. Work on determining the impact of
changes on a whole ontology is reported in [Heflin and Hendler, 2000]. As our
goal is to determine whether changes in the external ontology invalidate com-
piled knowledge, we have to analyze the actual impact of changes on individual
concept definitions. We want to classify these changes as either harmless or
harmful with respect to compiled knowledge.

11.1.1 Determining harmless changes

As compiled knowledge reflects subsumption relations between query con-
cepts, a harmless change is a set of modifications to an ontology that does not
change these subsumption relations. Finding harmless changes is therefore a
matter of deciding whether the modifications affect the subsumption relation
between query concepts. We first look at the effect of a set of modifications
on individual concepts:

Assuming that C represents the concept under consideration before and C ′

the concept after the change, there are four ways in which the old version C
may relate to the new version C ′:

1. the meaning of a concept is not changed: C ≡ C ′ (e.g. because the change
was in another part of the ontology, or because it was only syntactical);

2. the meaning of a concept is changed in such a way that concept becomes
more general: C � C ′;

3. the meaning of a concept is changed in such a way that concept becomes
more specific: C ′ � C;

4. the meaning of a concept is changed in such a way that there is no sub-
sumption relationship between C and C ′.

11.1 Change detection and classification 233

The same observations can be made for relations before and after a change,
denoted as R and R′, respectively. The next question is how these different
types of changes influence the interpretation of query concepts. We take ad-
vantage of the fact that there is a very tight relation between changes in
concepts of the external ontology and implied changes to the query concepts
using these concepts:

Lemma 11.1 (monotonicity of effect). Let c(Q) be the set of all concept
names and r(Q) the set of all relation names occurring in query Q; let further
C ∈ c(Q) and R ∈ r(Q). Then changing C has the same impact on the
interpretation of Q as it has on the interpretation of C; in particular, we have
C � C ′ =⇒ Q � Q′ and C ′ � C =⇒ Q′ � Q, where Q′ is the query as being
interpreted after changing C. Analogously, a change of R has the same effect
on the complete query.

We can exploit this relation between the interpretation of concepts and queries
in order to identify the effect of changes in the external ontology on the
subsumption relations between different query concepts. First of all, the above
result directly generalizes to multiple changes with the same effect, i.e. a query
Q becomes more general (specific) or stays the same if none of the elements in
c(Q)∪r(Q) become more specific(general). Further, the subsumption relation
between two query concepts does not change if the more general (specific)
query becomes even more general (specific) or stays the same. Combining
these two observations, we derive the following characterization of harmless
change.

Theorem 11.2 (harmless change). A change is harmless with respect to
compiled knowledge (i.e. Q1 � Q2 =⇒ Q′

1 � Q′
2) if for all compiled subsump-

tion relations C1 � C2, where Ci is defined by query Qi, we have:

• X ′ � X for all X ∈ c(Q1) ∪ r(Q1),
• X � X ′ for all X ∈ c(Q2) ∪ r(Q2).

The theorem provides us with a correct but incomplete method for deciding
whether a change is harmless. This basic method can be refined by analyzing
the overlap of c(Q1) and c(Q2) in combination with the relations they restrict.
This more accurate method is not topic of this chapter, but it relies on the
same idea as the theorem given above.

11.1.2 Characterizing changes

Now that we are able to determine the consequence of changes in the con-
cept hierarchy on the integrity of the mapping, we still need to know what
the effect of specific modifications on the interpretation of a concept is (i.e.
whether it becomes more general or more specific). As our goal is to deter-
mine the integrity of mappings without having to do classification, we describe

234 11 Evolution management

what theoretically could happen to a concept as result of a modification in
the ontology. To to so, we have listed all possible change operations to an
ontology according to the OWL Lite1 knowledge model in the same style as
done in [Banerjee et al., 1987]. The list of operations is extendable to other
knowledge models; we have chosen the OWL Lite model because of its simplic-
ity and its expected important role on the Semantic Web. Apart from atomic
change operations to an ontology – like add range restriction or delete subclass
relation – the list also contains some complex change operations, which consist
of multiple atomic operations and/or incorporate some additional knowledge.
The complex changes are often more useful to specify effects than the ba-
sic changes. For example, for operations like concept moved up, or domain
enlarged, we can specify the effect more accurately than for the atomic oper-
ations subclass relation changed and domain modified2. Atomic changes can
be detected without using the knowledge in the ontology itself, only using
the knowledge of the knowledge model, i.e. the language. These changes are
detected at a structural level. To identify complex changes, we also need to
use the content of the ontology itself. We are currently working on rules and
heuristics to distill complex changes from sets of atomic changes. Table 11.1
contains some examples of operations and their effect on the classification of
concepts. The table only shows a few examples, although our full ontology of
change operations contains around 120 operations. This number is still grow-
ing as new complex changes are defined. A snapshot of the change ontology
can be found online3.

Table 11.1. Some modifications to an ontology and their effects on the classification
of concepts in the hierarchy.

Operation Effect

Attach a relation to concept C C: Specialized

Complex: change the superclass of concept C to a concept lower
in the hierarchy

C: Specialized

Complex: restrict the range of a relation R (effect on all C that
have a restriction on R)

R: Specialized, C:
Specialized

Remove a superclass relation of a concept C C: Generalized

Change the concept definition of C from primitive to defined C: Generalized

Add a concept definition A C: Unknown

Complex: add a (not further specified) subclass A of C C: No effect

Define a relation R as functional R: Specialized

The specification of effects is not complete, in the sense that it describes
“worst-case” scenarios, and that for some operations the effect is “unknown”
1 See http://www.w3.org/TR/owl-features/
2 For a complete list, see http://wonderweb.man.ac.uk/deliverables/D20.shtml
3 http://ontoview.org/changes/1/3/

11.1 Change detection and classification 235

(i.e. unpredictable). In contrast to [Franconi et al., 2000] who provide com-
plete semantics of changes, we prefer to use heuristics in order to avoid ex-
pensive reasoning about the impact of changes.

11.1.3 Update management

With the elements that we described in this section, we now have a complete
procedure to determine whether compiled knowledge in other modules is still
valid when the external ontology is changed. The complete procedure is as
follows:

1. create a list of concepts and relations that are part of the “subsuming”
query of any compiled axiom;

2. create another list of concepts and relations that are part of the “sub-
sumed” query of any compiled axiom;

3. achieve the modifications that are performed in the external ontology;
4. use the modifications to determine the effect on the interpretation of the

concepts and relations;
5. check whether there are concepts or relations in the first, “subsuming”,

list that became more specific, or concepts or relations in the second,
“subsumed”, list that became more general, or concepts or relations in
either of the lists with an unknown effect; if not, the integrity of the
mapping is preserved.

In cases where we cannot guarantee that integrity is preserved, we recompute
and re-compile the implied subsumption statements. We thus restore integrity
and make correct local reasoning possible.

Algorithm 3 Update
Require: Ontology Module M
Require: Ontology Module Mj

for all compiled axioms C1 	 C2 in Mc do
for all X ∈ c(Q1) ∪ r(Q1) do

if effect on C is ’generalized’ or ’unknown’ then
Mc := Compile(M, Mj)

end if
end for
for all X ∈ c(Q2) ∪ r(Q2) do

if effect on X is ’specialized’ or ’unknown’ then
Mc := Compile(M, Mj)

end if
end for

end for

We describe the procedure in a more structured way in Algorithm 3. The
algorithm triggers a (re-)compilation step only if it is required in order to re-

236 11 Evolution management

sume integrity. Otherwise no action is taken, because the previously compiled
knowledge is still valid. All the steps can be automated. A tool that helps to
automate steps 3 and 4 is described in [Klein et al., 2002]. This tool will com-
pare two versions of an ontology and derive the list of change operations that
is necessary to transform the one into the other. It will also be able to detect
some of the complex operations. The tool will also annotate the definitions in
an ontology with the effect that the change has on its place in the hierarchy.

11.2 Application in a case study

In order to support the claims made about the advantage of modular on-
tologies, we applied our model in a case study that has been carried out in
the course of the WonderWeb project. Our main intention was to show that
the update-management procedure presented in the last section can be used
to avoid the computation of subsumption relations in many cases. For this
purpose, we defined a small example ontology using mappings to a Human
Resource ontology that was developed stepwise in the case study. We used the
changes that occurred in the human resource ontology during the different
steps of the case study and determined the impact on our example ontology.
Besides this, the case study provides us with examples of implied subsumption
some of which are non-trivial but likely to occur in real-life situations.

11.2.1 The WonderWeb case study

The WonderWeb case study assumes that an existing database schema is
used as the basis for an ontology that should function on the Semantic Web.
A database in the human resource (HR) domain is used as an example. The
first version of the ontology is created by a tool that automatically converts
a schema into an ontology [Volz et al., 2002b]. In the next phase, the quality
of the ontology is improved by relating this ontology to the foundational on-
tology DOLCE [Gangemi et al., 2002]. First, the HR ontology is aligned with
the DOLCE ontology, and in several successive steps the resulting ontology is
further refined. During this process, the ontology changes continuously, which
causes problems when other ontologies refer to definitions in the evolving
ontology. Therefore, in our case study, evolution management is important
during the entire life-cycle of the ontology-development process. Besides
this DOLCE+HR ontology, we assume that we have another ontology (we
call it the local ontology) that uses terms and definitions from the evolving
DOLCE+HR ontology (the external ontology). As an example, we define a
very simple ontology about employees (see Fig. 11.1). Our example ontology
introduces the concept FulltimeEmployee and defines a superclass Employee
and two subclasses DepartmentMember and HeadOfDepartment using terms
from the DOLCE+HR ontology.

11.2 Application in a case study 237

Fig. 11.1. A simple ontology (left) with some concepts (dashed ovals) that are
defined using terms from the DOLCE+HR ontology (schematically represented by
a large oval).

The specific problem in our case is that the changes in the DOLCE+HR
ontology could affect the reasoning in the local ontology. We want to be able
to predict whether or not the reasoning in the local ontology is still valid for
specific changes in the external ontology.

The evolution of the DOLCE+HR ontology consisted of several steps. Each
of these steps involves some typical changes. We will briefly summarize them
and show some changes that are typical for a specific step.

• In the first step, the extracted HR ontology is aligned with the DOLCE
foundational ontology, i.e. the concepts and properties in the HR ontology
are connected to concepts and properties in the DOLCE ontology via sub-
sumption relations. For example, the concept Departments from the HR
ontology is made a subclass of Social-Unit in DOLCE.

• The refinement step involves a lot of changes. Some property restric-
tions are added, and some additional concepts and properties are cre-
ated to define the HR concepts more precisely. For example, the concept
Administrative-Unit is introduced as a new subclass of Social-Unit, and the
concept Departments is made a subclass of it. Also, the range of the prop-
erty email is restricted from Abstract-Region to its new subclass Email.

• In the next step, a number of concepts and properties are renamed to
names that better reflect their meaning. For example, Departments is re-
named to Department (singular), and the two different variants of the
relation manager-id are renamed to employee-manager and department-
manager.

• In the final step, the tidying step, all properties and concepts that are not
necessary any more are removed and transformed into property restric-
tions. For example, the property employee-email is deleted and replaced
by an existential restriction in the class Employee on the property abstract-
location to the class Email.

238 11 Evolution management

11.2.2 Modularization in the case study

If we now consider the problem statement from the case study, we have a local
ontology with a concept hierarchy that is built up by the following explicitly
stated subsumption relations (see Fig. 11.1 again):

FulltimeEmployee � Employee

DepartmentMember � FulltimeEmployee

HeadOfDepartment � FulltimeEmployee

This ontology introduces FulltimeEmployee as a new concept, not present in
the case study ontology. Consequently, this concept is only defined in terms
of its relation to other concepts in the local ontology.

All other concepts are externally defined in terms of ontology based queries
over the case study ontology. The first external definition concerns the concept
Employee that is equivalent to the “Employee” concept in the case study
ontology. This can be defined by the following trivial view:

Employee ≡ HR : Employee(x)

Another concept that is externally defined is the “head of department” con-
cept. We define it to be the set of all instances that are in the range of the
“department manager” relation. The definition of this view given below shows
that our approach is flexible enough to define concepts in terms of relations.

HeadOfDepartment ≡ HR : ∃y[departmentManager(y, x)]

An example of a more complex external concept definition is the concept
DepartmentMember, which is defined using a query that consists of three
conjuncts, claiming that a department member is an employee that is in the
has-member relation with a department.

DepartmentMember ≡ HR : ∃y [Department(y) ∧
hasmember(y, x) ∧
Employee(x)] (11.1)

Implied subsumption relations

If we now consider logical reasoning about these external definitions, we im-
mediately see that the definition of employee subsumes the definition of De-
partmentMember, as the former occurs as part of the definition of the latter.

|= DepartmentMember � Employee (11.2)

11.2 Application in a case study 239

At a first glance, there is no relation between the definition of a head of de-
partment and the other two statements as it does not use any of the concept
or relation names. However, when we use the background knowledge provided
by the case study ontology we can derive some implied subsumption relations.
The reasoning is as follows. Because the range of “department manager” is
set to “department” and the domain to “employee”, the definition of “Head-
ofDepartment” is equivalent to:

∃y[Department(y) ∧ departmentManager(y, x) ∧ Employee(x)]

As we further know that manager is a subclass of employee and “depart-
mentManager” is a subrelation of “has-member”, we can derive the following
subsumption relation between the externally defined concepts:

|= HeadOfDepartment � Employee (11.3)
|= HeadOfDepartment � DepartmentMember (11.4)

When the relations 11.2–11.4 are added to the local ontology, it possible to do
subsumption reasoning without having to access the DOLCE+HR ontology
any more.

11.2.3 Updating the models

We will now illustrate that the conclusions of the procedure are correct by
studying the impact of changes mentioned in the problem statement.

Example 1: the employee concept

The first change we observed is the removal of properties from the employee
concept. Our rules tell us that this change makes the new version more general
compared to its old version:

Employee � Employee′

According to our procedure, this should not be a problem because employee
is in the “subsuming list”.

When we analyze this change, we see that it has an impact on the definition of
the concept “DepartmentMember” as it enlarges the set of objects allowed to
take the first place in the has-member relation. This leads to a new definition
of DepartmentMember′ with DepartmentMember � DepartmentMember′.
As “DepartmentMember” was already more general than “HeadOfDepart-
ment” and the employee concept is not used in the definition of the latter the,
implied subsumption relation indeed still holds.

240 11 Evolution management

Example 2: the department-manager relation

The second example, we have to deal with a change affecting a relation that is
used in en external definition. The relation department-manager is specialized
by restricting its range to the concept “manager” (which is a subclass of
employee) making it a subrelation of its previous version:

department − manager � department − manager′

Again, this is harmless according to our procedure, as department manager
is in the ”subsumed list”.

The analysis show that this change has an impact on the definition of the
concept “HeadOfDepartment” as it restricts the allowed objects to the more
specific Class “Manager”. The new definition HeadOfDepartment′ is more
specific that the old one: HeadOfDepartment′ � HeadOfDepartment. As
the old version was already more specific than the definition of “Depart-
mentMember” and the “department-manager” relation is not used in the
definition of the latter the implied subsumption is indeed still valid.

The situation is different if the range of the “department-manager” relation
is changed to the concept “person” which is more general than “employee”.
In this case the definition of the concept “department-manager” also becomes
more general. This means that we cannot guarantee that it is still subsumed
by “DepartmentMember”. In this case we have to recompute and compile the
implied subsumption relations in order to guarantee integrity.

Example 4: the department concept

The different changes of the definition of the “department” concept left us
with no clear idea of the relation between the old and the new versions. In
this specific case, however, we can still make assertions about the impact on
implied subsumption relations. The reason is that the concept occurs in both
definitions. Moreover, it plays the same role, namely restricting the domain
of the relation that connects an organizational unit with the set of objects
that make up the externally defined concept. As a consequence, the changes
have the same impact on both definitions, thus not invalidating the implied
subsumption relation.

11.3 Conclusions

We described a method for detecting changes in an ontology and for assessing
their impact. The main feature of this method is the derivation of concep-
tual changes from purely syntactic criteria. These conceptual changes in turn
provide input for a semantic analysis of the effect on dependent ontologies,

11.3 Conclusions 241

in particular, on the validity of implied subsumption relations. We applied
heuristics to determine the impact of changes without logical reasoning. How-
ever, many relevant questions occurring in practical information management
are not captured by the model. In particular, these questions relate to the
impact of changes of concrete information that is connected to the ontologies
that are subject to the impact of the changes. Some key questions are the
following:

• What parts of the information are affected? The fact that the content of
an information source has changed may or may not have influence on a
task like answering a query for objects with certain properties. Deciding
whether the result of such a task is affected by a change in the background
knowledge depends on the set of objects and the specific properties that
are affected by the change.

• What is the effect on that information? Often, it is important to know
about the nature of the effect on certain objects in the information source.
Are new properties derivable for an object, or have some disappeared?
Has the classification of the object changed to a more general or a more
specific class? Answers to question like these are valuable for evolution
management as we obtain the possibility to react to these changed more
specifically.

• What part of the ontology caused it? In order to be able to repair harmful
or include beneficial changes to background knowledge, we have to be able
to identify which portion of the background knowledge actually caused
a specific change of the information content in a particular source. The
ability to locate the cause of changes also helps to more precisely define
relevant background knowledge and isolate it from the portion that is not
relevant for a given set of information.

Preliminary work on the diagnosis of ontologies exists
[Schlobach and Cornet, 2003] but the problem is far from being solved.
We consider the development of a comprehensive framework for managing
ontological changes in the context of information management as a major
challenge for future research on information sharing on the Semantic Web.

Further reading

The idea of describing model evolution in terms of change operations is
described in [Banerjee et al., 1987]. The use of this idea for detecting, an-
alyzing and modelling ontology evolution is discussed in [Klein, 2004] and
[Heflin and Hendler, 2000]. A formal characterization of schema evolution us-
ing description logics is described in [Franconi et al., 2000]. A detailed descrip-
tion of the Wonderweb case study can be found in [Bechofer et al., 2003].

Part V

Conclusions

12

Conclusions

After extensive work on information sharing on the Semantic Web, most of
which is reported in this book, we can draw some general conclusions about
successful ways of using Semantic Web technology. These conclusions consider
the choice of representations as well as methodologies for creating semantic
descriptions and methods for using them. In the following, we present our main
conclusions and discuss the state of the art of the Semantic Web technology
with respect to these conclusions.

12.1 Lessons learned

The first condition for a successful application of ontologies to information
sharing is the existence of a representational infrastructure. This infrastruc-
ture has to ensure that the potential benefits of ontologies can be exploited.

Semantics and reasoning

On a logical level, the representational infrastructure has to have a clear log-
ical semantics that supports reasoning about contextual information. Having
reasoning support is important, because the possibility to reason about the
meaning of information is one of the major benefits of using ontologies in
systems and not only for communication between people. Semantics and rea-
soning can be used at ontology-development time for consistency checking or
at run time for classifying individuals or performing semantic mappings. In
our approach, the Web Ontology Language OWL is used to represent and
reason about ontologies.

Shared and Contextual Meaning

On the content level, the benefits of ontologies can be that they define a
common understanding of specific terms. Thus, the reference to a term in

246 12 Conclusions

such a shared ontology makes it possible to communicate between systems
on a semantic level. On the other hand, ontologies can be used to explicate
background knowledge by defining what a certain term means in the context
of the corresponding source. In order to make use of both of these benefits
of ontologies the representational infrastructure has to consist of a mixture
of shared and non-shared representations. In our framework non-shared rep-
resentations define the meanings of classes in a specific information source
using only terms from a shared ontology. This ensures that we can capture
the contextual information of every information source but still have a basic
understanding of terms that are shared between systems.

Content Metadata

In order to be useful, definitions of contextual interpretations have to be
directly connected with concrete information, because we use ontologies as a
tool for information sharing. The connection has to be tight enough to make
the transfer of reasoning results from the logical level to the information. On
the other hand, the connection must be flexible enough to be applicable to
weakly structured information without having to build these structures from
scratch. In our framework, we use an assignment of complete Web pages to
ontological classes with RDF Schema metadata. This assignment is easy to
establish by means of machine-learning techniques and it supports many
useful methods like validation, querying and content-based browsing of Web
resources.

Another important point is that it is not sufficient to define an infrastruc-
ture for information sharing. Providing methodologies and tools for support-
ing the development of this infrastructure is at least equally important since
knowledge acquisition is well known to be one of the main bottlenecks in the
application of knowledge-based technology.

Ontology construction

The success of ontology-based information sharing heavily depends on the
quality of the ontologies used. Building them in an ad hoc way leads to se-
rious shortcomings. In an early case study on semantic matching we encoun-
tered huge problems that were mostly caused by sloppy ontology develop-
ment. It clearly displayed the need for modelling guidance. Existing ontology-
engineering approaches are often very general; they state general principles
but only provide limited support for a more concrete modelling task. We found
out that for the case of building source ontologies and shared vocabularies,
a bottom-up approach is suitable that takes the actual integration problem
as a starting point and consults general models like top-level ontologies and
linguistic resources only if necessary. The resulting vocabularies are general
enough to cover at least a certain class of integration problems. We think that
this is more valuable than a general top-down approach because it solves real-
world problems without losing the connection to basic ontological principles.

12.1 Lessons learned 247

Metadata generation

Metadata plays an important role especially in weakly structured envi-
ronments. At the same time, the creation of such metadata is harder the
less structure is present to refer to. Despite these problems we think that
successful approaches to applying ontologies in these environments will have
to live with the existing structures, in our case HTML documents, because
the freedom from the need to encode sophisticated data structures is one
of the secrets behind the success of the World Wide Web. We therefore
proposed an approach for mostly automatically generating metadata that
links information to ontologies. We claim that the assignment of individual
Web pages to classes in an ontology provides a good trade-off between the
strength of the connection and the effort of establishing it. We show that
Web-page classification can be done using classification rules that refer
to the structure of HTML documents. The resulting classification can be
used for content-based navigation and search. We also demonstrated that
structural classification rules can be generated in a mostly automatic way
using techniques from machine learning.

The final important condition for the successful application of ontologies for
information sharing is that the approach chosen scales up to real-life problems.
This claim raises new questions with respect to compatibility with existing
technology and with tolerance for imperfect data and knowledge.

Compatibility

Solutions developed in science often fail to make their way into real appli-
cations due to a lack of compatibility with industrial standards. Considering
the World Wide Web as a target application area, the World Wide Web Con-
sortium provides a platform where science and industry make an effort for
the development of joint standards. We therefore think that any approach to
ontology-based information sharing on the World Wide Web should be com-
patible with W3C standards. The general framework described in this book
can be put to work using existing Web technologies: shared ontologies can be
encoded in RDF Schema, OWL can be used to build source ontologies. Infor-
mation sources in terms of collections of HTML documents can be classified
using the WebMaster system. Finally, mapping and filtering methods can be
implemented on top of existing subsumption reasoners that can be accessed
over the Web.

Robust methods

Unlike conventional approaches to knowledge representation and reasoning,
the application of ontologies in weakly structured and heterogeneous environ-
ments can in principle make no assumption about the quality of the informa-
tion that has to be handled. As argued above, we can provide methodological

248 12 Conclusions

guidance for the development of ontologies and the generation of metadata,
but we still may have to face inconsistencies or incompleteness when trying
to perform reasoning across different systems. We claim that there is a need
for developing new reasoning techniques that are more flexible and fault tol-
erant than classical deduction systems in order to cope with the nature of
the application environment. The approximate mapping approach proposed
in Chap. 7 is an example of such a more flexible method. We can answer
Boolean queries over concept names by replacing unknown concept names by
their lower bound in the corresponding source ontology. The resulting query
can be processed in the context of the remote information source delivering a
query result that can be proven to be a correct approximation of the intended
result.

Evolution and maintenance

In a distributed environment without a central authority, changes in the infor-
mation to be shared as well as in the representations of information semantics
are a big problem. Successful approaches for information sharing have to be
able to deal with changes. This requires sophisticated methods for detect-
ing changes, analyzing their impact and reacting to the changes. In order to
support these mechanisms, the underlying languages and storage structures
should provide support for evolution and maintenance. Change logs and rep-
resentations of histories are as important as stable interfaces.

12.2 Assumptions and Limitations

In the previous section we discussed the lessons learned from developing and
testing a framework for information sharing on the Semantic Web. We in par-
ticular, we discussed the role and the benefits of the different methods and
design decisions. Most of these decisions that were made to make information
sharing possible, however, also introduce some assumptions and limitations
that have to be taken into account when designing information sharing solu-
tions. In the following, we discuss assumptions and limitations of the three
main aspects of our framework: the use of shared vocabularies as a basis for
specifying information semantics and the process of semantic translation as
introduced in this book.

12.2.1 Shared Vocabularies

The main aspect that distinguishes our approach from related work in the
area of information integration is the use of a shared vocabulary as a basis
for the integration of information, while other approaches either rely on a
completely shared ontology or on mappings between different ontologies.

12.2 Assumptions and Limitations 249

The use of such a shared model requires a certain degree of agreement
amongst the sources on both the representations used and the conceptual-
ization of the domain of interest. The development of the shared vocabulary
can only be done if all sources are known and the conceptualization of each
source is accessible. Consequently, the approach is not really feasible in a
completely open environment, but is suitable for a particular domain (e.g.
tourism) where relevant sources can be determined. A typical example of
such a setting are online marketplaces. In this case the market place provides
the organizational instance needed to establish and maintain the agreement
encoded in the shared vocabulary.

Another limitation of the approach is the fact that establishing the repre-
sentational infrastructure needed to support information sharing requires an
somewhat high initial investment. The effort of creating shared vocabularies
and source ontologies is only justified in terms of benefits achieved from
being able to share information over a longer period to amortize the initial
investment. This is normally connected with a commercial interest. We
therefore cannot assume that the methods for information sharing described
in this book are adopted on the same scale as other Web technologies with
low start-up costs such as HTML.

As with every ontology-based approach, the performance heavily relies on the
quality of the ontologies used. We provided some guidelines for the creating
of ontologies that are suited for the purpose of our approach, but we can-
not guarantee that the definitions in the source ontologies actually reflect the
intended meaning of the information. From our point of view this is a fun-
damental problem and the quality of models can only be determined for a
concrete task to be solved.

12.2.2 On demand translation

The second choice we made is to integrate the ontologies of different infor-
mation sources at run time by approximating concepts in a joint concept
hierarchy. This choice was made in order to better respond to the dynamic
nature of the World Wide Web, as sources can be integrated only if needed.

The choice of an on-demand translation of information between different
sources has the disadvantage of a high computational complexity compared
to approaches, where the alignment of different conceptualizations is done
off-line. In particular, our approach relies on terminological reasoning over
OWL representations. While modern reasoners perform quite efficiently on
most reasoning problems that do not involve large instance sets, it is well
known that there are cases where even small ontologies cannot be reasoned
about efficiently. The approach also does not really allow to restrict the use
of OWL to a subset of constructs with better computational complexity

250 12 Conclusions

because the approach relies on an accurate description of local semantics that
requires a high expressiveness. As a consequence, we were forced to reduce
for example the expressiveness of queries for retrieving information and to
abandon the idea of a tight integration of terminological and spatial reasoning.

the use of approximation techniques allows us to compare different ontologies,
it also introduces a certain error in the translation. As shown in Chap. 6, we
can give certain guarantees concerning the logical properties of the approxima-
tion (e.g. correctness), but we cannot quantify the degree of error induced by
the approximation. This is a serious drawback, because the ability to provide
users with feedback on the rationales and the quality of the approximation
and a ranking of results are important techniques to improve the retrieval
performance. A particular problem is associated with the techniques of query
relaxation, because it is often hard to decide what kinds of relaxations are
acceptable and which not. This highly depends on the preferences and restric-
tions of the user and often remain implicit during query processing. What is
needed is a mechanism that enables the user to indicate which parts of a query
can be relaxed without leading to unacceptable results thereby reducing the
precision of the query.

12.2.3 Modular Ontologies

The other of our main contributions in this work is a proposal for the
representation of distributed ontologies based on a non-standard semantics
that allows us to represent and reason about complex mappings between
different models. We argued for the benefits of this alternative representation
in terms of expressive power and maintainability. Not surprisingly, these
advantages obtained by the use of distributed description logics only comes
with a number of limitations. As a result of the non-standard semantics we
actually use the a number of inferences that could have been drawn in a
more traditional setting. As shown in Chap. 10, certain logical operators
such as conjunction and disjunction are only preserved if we make additional
assumptions. In particular, the straightforward use of distributed description
logics does not preserve negation. As a consequence, we lose the ability to
verify our local ontology by referring to a standard definition. A typical
scenario would be the alignment of a domain ontology with an upper
level ontology that defines some basic distinctions of a domain, e.g. that
entities and processes are disjoint concepts. Ideally, if we link all classes
that describe entities to the entity class all process-related concepts to the
process concept in the upper level ontology, we would like our ontology to
become inconsistent in cases where we mixed up entities and processes in
the domain ontology. As negation is not preserved this is not possible. Even
though it can be argued that on the Semantic Web, we often prefer this
kind of behavior there are still cases, where the weak semantics is a limitation.

12.3 Where are we now? 251

The second major limitation of the current framework is that it is limited to
the terminological knowledge and to the basic reasoning service connected to
terminological knowledge which is subsumption. When talking about infor-
mation sharing, however, we are mostly interested in the actual information
represented as instances of the ontologies. Therefore future work on evolution
management will have to focus on extending the framework towards assessing
the impact of changes on the information that is to be shared.

12.3 Where are we now?

The final question we want to address now is whether the current state of the
art in Semantic Web technology addresses the points raised in the general
conclusions above.

Our first point was concerned with a representational infrastructure for
ontologies and metadata. Looking at the developments on the Semantic Web,
we see that this point has been addressed from the beginning, resulting in
language standards like RDF and OWL that have been proven useful not
only in our work. These languages provide us with the expressive power
and the semantics needed to represent and reason about the meaning of
information. An increasing set of software tools is available to support the
use of these languages. From this point of view we are doing fine. A problem
that still exists, however, is the strong focus on shared conceptualizations
we can observe especially with respect to the Web Ontology Language.
In [Bouquet et al., 2003], we argue for an extension of the Web Ontology
Language by mechanisms for also representing contextual information.
The proposed language C-OWL is currently under development and will
provide a flexible framework for representing ontologies as well as contextual
information in the spirit of modular ontologies described in Chap. 10. More
specifically, C-OWL is based on the same semantic model (distributed de-
scription logics), but has a more flexible language architecture. In particular
C-OWL treats mappings as first-class citizen that are specified in a separate
model. This makes it possible to have multiple different mappings between
the same ontologies. Further, in C-OWL mappings can be defined between
arbitrary concept expressions rather than just between atomic concept names
and expressions corresponding to conjunctive queries.

Concerning the existence of support for building up a representational infras-
tructure, an increasing number of software tools is available supporting the
complete life cycle of RDF models. Editors and converters are available for
the generation of RDF Schema representations from scratch or for extracting
such descriptions from database schemas or software design documents.
Storage and retrieval systems have been developed that can deal with RDF
models containing millions of statements, and provide query engines for a

252 12 Conclusions

number of RDF query languages. Annotation tools support the user in the
task of attaching RDF descriptions to Web pages and other information
sources either manually or semi-automatically using techniques from natural
language processing. Finally, special purpose tools support the maintenance
of RDF models in terms of change detection and validation of models. A
problem that still remains is the interoperability of these tools. Despite the
standardization of RDF, the different tools often use different conventions
for representing knowledge and data that makes it hard to exchange models
between them. Recently, this problem is being addressed by standardizing
interfaces for particular types of tools (a first standard interface exists for
OWL reasoners) and by the development of middleware components that
mediate between different tools.

Concerning the use of Semantic Web infrastructure for information sharing,
we see more and more researchers trying to apply or relate their technology
to Semantic Web languages in order to be compatible with the emerging stan-
dards. This is a first step towards successful information sharing as a large set
of useful techniques and tools become available. As already mentioned above,
compatibility of the different tools and representations is still a problem. In
particular, different strategies in the use of name spaces and the influence of
legacy data models cause problems. Concerning the methods themselves, we
often miss the robustness and flexibility needed to deal with real life data.
Especially, tools for dealing with ontologies are in most cases based on classi-
cal logic and fail to produce any reasonable result in the case of inconsistency
or incompleteness of information. Some work on robust methods exists in the
area of query processing, but we think that there is a large potential for the
development of robust methods that could significantly improve the quality
of information sharing on the Semantic Web.

12.4 Is that all there is?

Have we, at the end of this book, really dealt with all the questions regarding
information sharing that we identified in the introductory chapter? By no
means. At the end of this book we briefly list a number of issues which are
still very much under investigation in the research community.

Degree of automation

The main thesis of this book is that the problem of information sharing can
only be solved by attaching semantic meta-data to information items, and by
relating these metadata to each other through background knowledge in the
form of ontologies. We have shown in Chap. 5 how some of the meta-data
can be generated automatically, by exploiting machine-learning techniques.
In contrast, Chap. 4, which discussed the creation of the ontologies, relied

12.4 Is that all there is? 253

entirely on manual construction of the ontology. Not only was ontology con-
struction a manual process, but it also requires considerable skill in knowledge
modelling. Will it be possible to provide more automated support for the pro-
cess of ontology modelling? Given that an ontology is supposed to encode the
shared interpretation of concepts and relations between different parties, and
given that such sharing is by definition a social process, is it even possible in
principle to entirely automate this process? And even if human involvement
in the loop remains necessary, to which extent can machines be exploited to
support the human effort? Current research on concept extraction, using ei-
ther statistical or natural-language analysis techniques, is aiming to do exactly
this.

Degree of centralization

Contrary to its original motivation, the current Web has an almost client–
server architecture: the number of information-providing servers is an order
of magnitude smaller than the number of information-consuming clients and,
even among the servers, the information streams are dominated by a very
small number of very large servers. Also, in this book, most if not all of
the example systems we discussed were centralized information servers, and
many of our techniques relied on this.

The advantages of more distributed systems such as peer-to-peer architec-
tures are by now widely recognized, both in research and in industry. To
what extent can the techniques discussed in this book also be applied to such
peer-to-peer architectures?

The Semantic Web community is already working on these questions, for ex-
ample, the SWAP research project [Ehrig et al., 2003], the FOAF initiative1,
and the Edutella project [Nejdl et al., 2002].

Semantic weight of the metadata

The term “ontology” is applied to a very wide variety of structures, with
very different semantic weight. A structures such as the Open Directory topic
hierarchy2 is only a very loosely organized hierarchy of terms, without any
clear semantic definitions. A hierarchy such as Computers -- Artificial
Intelligence -- People has a very unclear semantics (it is certainly not a
subclass-hierarchy). Yet, even with such lightweight content, the hierarchy
has turned out to be very useful for many different purposes, including
structuring of results from Google.

1 http://www.foaf-project.org/
2 http://dmoz.org

254 12 Conclusions

On the other end of the spectrum we have such heavyweight semantic
structures as Cyc3, with hundreds of thousands of carefully engineered logical
axioms.

Will the main benefit of ontologies come from a small number of heavily
axiomatized ontologies, or instead from a large number of semantically
lightweight ontologies?

This dichotomy between lightweight and heavyweight ontologies is also visible
in the design of the Semantic Web languages: while RDF Schema is sufficient
to capture the Open Directory hierarchy, even OWL Full is not powerful
enough (by far) to capture the richness of Cyc.

And, if the future is with large numbers of lightweight ontologies (as many of
us believe), then the problem of ontology mapping which was so extensively
discussed in this book, becomes even more urgent. Unfortunately, most of
these mapping techniques work best on heavily axiomatized ontologies, so
many problems remain to be solved in this area.

We have hardly touched on many of these questions in this book. All of these
questions are still very much under investigation in the research community,
and other books remain to be written regarding their answers.

3 http://cyc.com

A

Proofs of theorems

A.1 Theorem 6.6

The approximation from Definition 6.5 is correct in the sense that:

• If M ′(x, c1) = 1 then x� ∈ d1(c1)�

• If M ′(x, c1) = 0 then x� �∈ d1(c1)�

Proof. (1) If the classification returns M ′(x, c1) = 1 then x :
(

∨
c∈glbIS2 (c1)

d2(c)). Using Definition 6.4 we get that for all c we have

d2(c) � d1(c1) and therefore also (
∨

c∈glbIS2 (c1)

d2(c)) � d1(c1) (by set theory).

Using the definition of subsumption we can conclude that x�,A ∈ d1(c1)�,A.

(2) Using Definition 6.3 we deduce that for all c we have d1(c1) � d2(c)
and therefore d1(c1) �

∧
c∈lubIS2 (c1)

d2(c). This means that x�,A ∈ d1(c1)�,A

only if x�,A ∈ (
∧

c∈lubIS2 (c1)

d2(c))�,A. However, if the classification returns

M ′(x, c1) = 0 then x : ¬(
∧

c∈lubIS2 (c1)

d2(c)), which is equivalent to x�,A �∈

(
∧

c∈lubIS2 (c1)

d2(c))�,A. Therefore, we also have x�,A �∈ d1(c1)�,A.

A.2 Theorem 6.11

An information item x is in the result of a query Q if

M2(x, C) ∧ d(C) � Q

Proof. By definition we have x�,A ∈ d(C)�,A. From Theorem 6.11 we get
that x�,A ∈ QI , because d(C) � Q and therefore d(M(x))�,A ⊆ QI .

256 A Proofs of theorems

A.3 Theorem 6.14

The notion of query re-writing defined above is correct in the sense that:

x : Q′ =⇒ x� ∈ QI

Proof. From Theorem 6.6 we get that x : (
∧

c′∈lubIS2 (c)

c′) implies x�,A ∈ c�,A

and that x : ¬(
∨

c′∈glbIS2 (c)

c′) implies x�,A �∈ c�,A. This establishes the

correctness of re-writing for atomic queries, i.e. non-negated and negated
concept names. Assuming queries in negation normal form, it remains to be
shown that the correctness is preserved for conjunctions and disjunctions of
negated and non-negated concept names.

We prove the overall correctness by induction over the definition of legal
query expressions. By the induction hypothesis (established above) we have
x ∈ e′1I =⇒ x
,A ∈ eI1 and x : e′2 =⇒ x�,A ∈ eI2 . For the induction step
we have to distinguish the following cases:

(case 1: q = e1 ∧ e2) as x
,A is in eI1 and eI2 by the induction hypothesis
it is also in eI1 ∩ eI2 and therefore in qI .

(case 2: q = e1 ∨ e2) as x
,A is in eI1 or in eI2 by induction hypothesis it
is also in eI1 ∪ eI2 and therefore in qI .

A.4 Theorem 10.9

Let E1 and E2 be two concepts (or relations) in module Mi that are externally
defined in module Mj by queries Q1 and Q2; then
 |= E1 � E2 if
j |= Q1 �
Q2.

Proof. For a ∈ {1, 2} we have:

j |= Q1 � Q2 ⇒ Q
�j

1 ⊆ Q
�j

1

⇒ ba
ji(Q

�j

1) ⊆ ba
ji(Q

�j

1)

⇒ E�i
1 ⊆ E�i

1

⇒
 |= E1 � E2 (A.1)

A.5 Theorem 10.11

Let E1 and E2 be two concepts in module Mi and
i �|= E1 � E2. Let
further be F1andF2 be concepts in module Mj with
j |= F1 � F2. We have

 |= E1 � E2 if:

A.5 Theorem 10.11 257

• Theorem 10.9 applies.
• E1, F1 and E2, F2 are isomorphic, b1

ji is a function and only disjunction is
used to define concepts.

• E1, F1 and E2, F2 are isomorphic, b1
ji is an injective function and only

disjunction and conjunction are used to define concepts.
• E1, F1 and E2, F2 are isomorphic, b1

ji is a bijective function and only dis-
junction, conjunction and negation are used to define concepts.

Proof. We formulate the following hypothesis about isomorphic concepts: For
every pair of isomorphic concepts C and D we have

C�i = b1
ji(D

�
i) (A.2)

We try to prove the hypothesis by induction over the definition of isomor-
phic concepts. The induction hypothesis is directly established by Definition
10.8. We therefore consider case 2 in Definition 10.10. From the induction
hypothesis, we know that E�i

i = b1
ji(F

�j

j). As

C�i = b1
ji(D

�
i) ⇐ C�i = b1

ji(f(F1, ..., Fn)�j)

in order to prove the lemma we have to show that b1
ji distributes over f ; in

particular, that

b1
ji(f(F1, ..., Fn)�j) = f(b1

ji(F
�j

1), ..., b1
ji(F

�j
n))�i

because in this case, we can use the induction hypothesis to replace the
arguments of f resulting in C�i = f(E�j

i , ..., E
�j
n)�i , which directly follows

from the definition.

We investigate the above statement with respect to the Boolean operators
over class names. For the sake of readability, we use b instead of b1

ji to denote
the semantic relation between Mj and Mi.

Disjunction

Disjunction is defined in terms of the union of the extensions of concepts. We
have to show that: b(C�j ∪ D�j) = b(C�j) ∪ b(D�j).

(⊆) For each element x ∈ b(C� ∪ D�) there is an element y ∈ (C� ∪ D�)
with b(y, x). For this y we know that either y ∈ C� or y ∈ C�. As b is
defined for y, we also have an object x′ with b(y, x′) and either x′ ∈ b(C�j)
or x′ = b(D�j) and therefore x′ ∈ b(C� ∪ D�). What is left to be shown is
that x′ = x. This actually is only given if b is a function, which we have to
take as a premise.

(⊇) For each element x ∈ b(C�) ∪ b(C�) we know that x ∈ b(C�) or
x ∈ b(D�). Therefore, there is an element y with b(y, x) and either y ∈ C�

258 A Proofs of theorems

or y ∈ D�. We conclude that y ∈ (C� ∪ D�). As b is defined for y there is
an element x′ with b(y, x′) and x′ ∈ b(C� ∪D�). As above, what is left to be
shown is x = x′, which is the case if b is a function.

Conjunction

Conjunction is defined in terms of the intersection of the extensions of
concepts. We have to show that: b(C�j ∩ D�j) = b(C�j) ∩ b(D�j).

(⊆) For each element x ∈ b(C� ∩ D�) there is an element y ∈ (C� ∩ D�)
with b(y, x). For this y we know that y ∈ C� and y ∈ D�. We conclude (as
b is defined for y) that there is an x′ with b(y, x′) and x′ ∈ b(C�) ∩ b(C�).
What is left to be shown is that x′ = x. This actually is only given if b is a
function, which we have to take as a premise.

(⊇) For each element x ∈ b(C�) ∩ b(C�) we know that x ∈ b(C�) and
x ∈ b(D�). Therefore, there are elements y1, y2 with y1 ∈ C�, b(y, x) and
y2 ∈ D�, b(y′, x). What we are looking for is an element y with y ∈ (C� ∩
D�), b(y, x). In this case we could use the same argument as above to show
that the subset equation holds if b is a function. Actually, we have such an
element y if we could show that y1 = y2. This is actually the case if b is an
injective function which is another premise.

Negation

OWL uses negation in terms of the owl:complementOf operator. Its semantics
is defined in terms of set complement with respect to the domain of interpreta-
tion, i.e. (¬C)�i = ∆i−C�i . We have to show that b(∆j −C�) = ∆i−b(C�).

(⊆) For every x ∈ b(∆j − C�) we know that there is an element y with
b(y, x) and y �∈ C�. As we know that b is defined for y, there is an x′

with b(y, x′). Two things need to shown for this x′. That it is not in b(C�)
and that x = x′. The latter is given if b is a function. The former can be
guaranteed if b is injective since for each element x′′ ∈ b(C�) there is an
element y′ ∈ C�. From the injectivity of b it would follow that y′ = y, which
results in a conflict as we know that y �∈ C�.

(⊇) Let x ∈ ∆i−b(C�). We assume that there is an element y with b(y, x)
and y �∈ C�. We assume that y ∈ C�. Therefore there exists an element x′

with x′ ∈ b(C�). For the case that b is a function, we can derive a conflict,
because in this case x = x′ and x �∈ b(C�). If follows that y ∈ ∆j −C�. As b is
defined for y there is an element x′′ with b(y, x′′) such that x′′ ∈ b(∆j −C�).
Again, if b is a function, we have x = x′′, which establishes the result under
the assumption that we can find a suitable y. This, however, can only be
guaranteed if b is also surjective, as otherwise it might be the case that x is
not in the image of b. Summarizing, we can say that the set inclusion only
holds if b is a bijective function.

A.7 Theorem 11.2 259

A.6 Lemma 11.1

Let c(Q) be the set of all concept names and r(Q) the set of all relation names
occurring in query Q; let further C ∈ c(Q) and R ∈ r(Q). Then changing C
has the same impact on the interpretation of Q as it has on the interpretation
of C; in particular, we have C � C ′ =⇒ Q � Q′ and C ′ � C =⇒ Q′ � Q,
where Q′ is the query as being interpreted after changing C. Analogously, a
change of R has the same effect on the complete query.

Proof (sketch). The idea of the proof is the following: queries contain con-
juncts of the form C(x) or R(x, y). Conjuncts of the first form are interpreted
as {x|x ∈ C�}. It directly follows that changing the interpretation of the
concept C referred to in a conjunct of this type leads to the same change in
the interpretation of the conjunct and, because conjunction is interpreted as
set intersection, the whole query. Conjuncts of the second type are interpreted
as {x|∃ y : (x, y) ∈ R�}. The variable y can be further constrained by a
conjunct of the first type. Again changes in the interpretation of the concept
that further restrict y have the same effect on possible interpretations of y
and therefore also on the interpretation of conjuncts of the second type. Using
the same argument, we see that making R more general/specific (allowing
more/fewer tuples in the relation) makes conjuncts of the second form more
general/specific. Using these basic conclusions, we can prove the lemma by
induction over the lengths of the path in the dependency graph of the query,
where nodes represent conjuncts and arcs co-occurrence of variables.

The theorem is proven in the same way as Theorem 10.9 where the third
step of the derivation is justified by Equation (A.2), which has been shown in
the last section.

A.7 Theorem 11.2

A change is harmless with respect to compiled knowledge (i.e. Q1 � Q2 =⇒
Q′

1 � Q′
2) if for all compiled subsumption relations C1 � C2, where Ci is

defined by query Qi, we have:

• X ′ � X for all X ∈ c(Q1) ∪ r(Q1),
• X � X ′ for all X ∈ c(Q2) ∪ r(Q2).

Proof. We assume that X ′ � X for all X ∈ c(Q1) ∪ r(Q1). Applying Lemma
11.1 with respect to all X ∈ c(Q1) ∪ r(Q1) we derive Q′

1 � Q1. We further
assume that X � X ′ for all X ∈ c(Q2) ∪ r(Q2). Using lemma 1 we get that
Q2 � Q′

2. This leads us to Q′
1 � Q1 � Q2 � Q′

2. Theorem 11.2 is established
by transitivity of the subsumption relation.

References

[Aben, 1993] Aben, M. (1993). Formally specifying re-usable knowledge model com-
ponents. Knowledge Acquisition Journal, 5:119–141.

[AdV, 1998] AdV (1998). Amtliches Topographisch Kartographisches Information-
ssystem ATKIS. Technical report, Landesvermessungsamt NRW, Bonn.

[Amir and McIlraith, 2000] Amir, E. and McIlraith, S. (2000). Partition-based log-
ical reasoning. In 7th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’2000).

[Antoniou and van Harmelen, 2003] Antoniou, G. and van Harmelen, F. (2003).
Web ontology language: Owl. In Staab, S. and Studer, R., editors, Handbook
on Ontologies in Information Systems, Berlin. Springer.

[Antoniou and van Harmelen, 2004] Antoniou, G. and van Harmelen, F. (2004).
The Semantic Web: A Primer. MIT Press, Cambridge, MA.

[Arens et al., 1993] Arens, Y., Chee, C. Y., Hsu, C.-N., and Knoblock, C. A. (1993).
Retrieving and integrating data from multiple information sources. International
Journal of Intelligent and Cooperative Information Systems, 2(2):127–158.

[Arens et al., 1996] Arens, Y., Hsu, C.-N., and Knoblock, C. A. (1996). Query pro-
cessing in the sims information mediator. In Advanced Planning Technology. AAAI
Press, Menlo Park, CA.

[Baader et al., 2002] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., editors (2002). The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press.

[Banerjee et al., 1987] Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F.
(1987). Semantics and Implementation of Schema Evolution in Object-Oriented
Databases. SIGMOD Record, 16(3):311–322.

[Basili et al., 2001] Basili, R., Moschitti, A., and Pazienza, M. T. (2001). NLP-
driven IR: Evaluating performances over a text classification task. In Nebel, B.,
editor, Proceedings of the 13th International Joint Conference on Artificial Intel-
ligence (IJCAI-01), pages 1286–1294.

[Bechhofer et al., 2001] Bechhofer, S., Horrocks, I., Goble, C., and Stevens, R.
(2001). OilEd: A reason-able ontology editor for the semantic web. In Baader, F.,
Brewka, G., and Eiter, T., editors, KI 2001: Advances in Artificial Intelligence,
pages 396–408. Springer.

[Bechofer et al., 2003] Bechofer, S., Gangemi, A., Guarino, N., van Harmelen, F.,
Horrocks, I., Klein, M., Masolo, C., Oberle, D., Staab, S., Stuckenschmidt, H., and

262 References

Volz, R. (2003). Tackling the ontology acquisition bottleneck: An experiment in
ontology re-engineering. Technical Report, Computer Science Department, Uni-
versity of Manchester.

[Bechofer et al., 1999] Bechofer, S., Horrocks, I., Patel-Schneider, P. F., and Tes-
saris, S. (1999). A proposal for a description logic interface. In Proceedings of the
Description Logic Workshop DL’99, pages 33–36.

[Beeri et al., 1997] Beeri, C., Levy, A., and Rousset, M.-C. (1997). Rewriting queries
using views in description logics. In Proceedings of the 16th ACM SIGACT SIG-
MOD SIGART Symposium on Principles of Database Systems (PODS-97), pages
99–108.

[Belkin and Croft, 1992] Belkin, N. and Croft, B. (1992). Information filtering and
information retrieval: two sides of the same coin? Communications of the ACM,
35(12):29–38.

[Benjamins and Fensel, 1998] Benjamins, V. and Fensel, D. (1998). The ontological
engineering initiative (KA)2. In Guarino, N., editor, Proceedings of the Interna-
tional Conference on Formal Ontologies in Information Systems (FOIS-98), pages
287–301. IOS Press, Trento, Italy.

[Biron and Malhotra, 2001] Biron, P. V. and Malhotra, A. (2001). Xml schema
part 2: Datatypes. Recommendation, W3C. http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/.

[Boley et al., 1999] Boley, D., Gini, M., Gross, R., Han, E.-H. S., Hastings, K.,
Karypis, G., Kumar, V., Mobasher, B., and Moor, J. (1999). Document cate-
gorization and query generation on the world wide web using webace. AI Review,
13(5–6):365–391.

[Borgida et al., 1989] Borgida, A., Brachman, R. J., McGuinness, D. L., and
Resnick, L. A. (1989). CLASSIC: a structural data model for objects. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 58–67, Portland OR.

[Borgida and Serafini, 2002] Borgida, A. and Serafini, L. (2002). Distributed
description logics: Directed domain correspondences in federated information
sources. In Meersman, R. and Tari, Z., editors, On The Move to Meaningful
Internet Systems 2002: CoopIS, Doa, and ODBase, volume 2519 of Lecture Notes
in Computer Science, pages 36–53, Berlin. Springer.

[Bouquet et al., 2003] Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L.,
and Stuckenschmidt, H. (2003). C-OWL: Contextualizing ontologies. In Sekara, K.
and Mylopoulis, J., editors, Proceedings of the Second International Semantic Web
Conference, volume 2870 of Lecture Notes in Computer Science, pages 164–179,
Berlin. Springer.

[Brachman, 1977] Brachman, R. (1977). What’s in a concept: Structural founda-
tions for semantic nets. International Journal of Man–Machine Studies, 9(2):127–
152.

[Brickley and Guha, 2004] Brickley, D. and Guha, R. (2004). Rdf vocab-
ulary description language 1.0: Rdf schema. Recommendation, W3C.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A generic architecture for storing and querying rdf and rdf schema. In The
Semantic Web – ISWC 2002, volume 2342 of Lecture Notes in Computer Science,
pages 54–68. Springer.

References 263

[Buchheit et al., 1994] Buchheit, M., Nutt, F. D. W., and Schaerf, A. (1994). Ter-
minological systems revisited: Terminology = schema + views. In Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI-94).

[Cadoli and Donini, 1997] Cadoli, M. and Donini, F. (1997). A survey on knowledge
compilation. AI Communications, 10(3–4):137–150.

[Calvanese et al., 1998a] Calvanese, D., Giacomo, G. D., and Lenzerini, M. (1998a).
On the decidability of query containment under constraints. In Proc. 17th ACM
Symposium on Principles of Database Systems (PODS-98), pages 149–158.

[Calvanese et al., 1998b] Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D.,
and Rosati, R. (1998b). Description logic framework for information integration.
In Proceedings of the International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR-98, pages 2–13.

[Catarci et al., 1998] Catarci, T., D’Angiolini, G., and Lenzerini, M. (1998). Con-
cept description language for statistical data modelling. In Proceedings of the
VLDB Conference.

[Champin, 2000] Champin, P.-A. (2000). RDF tutorial. Available at
http://www710.univ-lyon1.fr/ champin/rdf-tutorial/.

[Chang and Garcia-Molina, 2001] Chang, K.-C. and Garcia-Molina, H. (2001). Ap-
proximate query mapping: Accounting for translation closeness. The VLDB Jour-
nal, 10:155–181.

[Chen, 1976] Chen, P.-S. (1976). The entity relationship model - towards a unified
view of data. ACM Transactions on Database Systems, 1(1):9–36.

[Clark and DeRose, 1999] Clark, J. and DeRose, S. (1999). Xml path language
(xpath) version 1.0. Recommendation, W3C. http://www.w3.org/TR/1999/REC-
xpath-19991116.

[Clark et al., 2001] Clark, P., Thompson, J., Barker, K., Porter, B., Chaudhri, V.,
Rodriguez, A., Thomere, J., Mishra, S., Gil, Y., Hayes, P., and Reichherzer, T.
(2001). Knowledge entry as the graphical assembly of components. In Proceedings
of the 1st International Conference on Knowledge Capture (K-Cap’01).

[Clementini et al., 1997] Clementini, E., Felice, P. D., and Hernandez, D. (1997).
Qualitative representation of positional information. Artificial Intelligence,
95:317–356.

[Cohn, 1997] Cohn, A. (1997). Qualitative spatial representation and reasoning
techniques. In Brewka, G., editor, KI-97 Advances in Artificial Intelligence, pages
1–30, Berlin. Springer.

[Collet et al., 1991] Collet, C., Huhns, M. N., and Shen, W.-M. (1991). Resource
integration using a large knowledge base in carnot. IEEE Computer, 24(12):55–62.

[Craven et al., 2000] Craven, M., DiPasquo, D., Freitag, D., McCallum, A.,
Mitchell, T., Nigam, K., and Slattery, S. (2000). Learning to construct knowl-
edge bases from the world wide web. Artificial Intelligence, 118(1–2):69–113.

[de Berg et al., 2000] de Berg, M., van Kreveld, M., Overmars, M., and
Schwarzkopf, O. (2000). Computational Geometry: Algorithms and Applications.
Springer, Berlin.

[De Giacomo and Naggar, 1996] De Giacomo, G. and Naggar, P. (1996). Concep-
tual data model with structured objects for statistical databases. In Proceedings
of the 8th International Conference on Scientific and Statistical Data Base Man-
agement, pages 168–175, Stockholm, Sweden.

[De Rougemont and Schlieder, 1997] De Rougemont, M. and Schlieder, C. (1997).
Spatial navigation with uncertain deviations. In Proceedings of the 14th National
Conference on Artificial Intelligence (AAAI’97), pages 649–654.

264 References

[Dean et al., 2002] Dean, M., Connolly, D., van Harmelen, F., Hendler, J.,
Horrocks, I., McGuinness, D., Patel-Schneider, P., and Stein, L. (2002).
Web ontology language (owl) reference version 1.0. Working draft, W3C.
http://www.w3.org/TR/owl-ref/.

[Decker et al., 1999] Decker, S., Erdmann, M., Fensel, D., and Studer, R. (1999).
Ontobroker: Ontology based access to distributed and semi-structured informa-
tion. In R. Meersman et al., editor, Semantic Issues in Multimedia Systems.
Proceedings of DS-8, pages 351–369. Kluwer, Boston, MA.

[Decker et al., 2000] Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.,
Broekstra, J., Erdmann, M., and Horrocks, I. (2000). The semantic web: The roles
of XML and RDF. IEEE Expert, 15(3):63–74.

[Deerwester et al., 1990] Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., and Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal
of the American Society of Information Science, 41(6):391–407.

[Denk and Froeschl, 2000] Denk, M. and Froeschl, K. (2000). The idaresa data
mediation architecture for statistical aggregates. Research in Official Statistics,
3(1):7–38.

[Donini et al., 1996] Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A. (1996).
Reasoning in description logics. In Brewka, G., editor, Principles of Knowledge
Representation, pages 191–236. CSLI Publications, Stanford, California.

[Donini et al., 1998] Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A. (1998).
AL-log: Integrating datalog and description logics. Journal of Intelligent Informa-
tion Systems, 10(3):227–252.

[Duineveld et al., 1999] Duineveld, A., Stoter, R., Weiden, M., Kenepa, B., and Ben-
jamins, V. (1999). Wondertools? A comparative study of ontological engineering
tools. In [Gaines et al., 1999].

[Egenhofer, 1991] Egenhofer, M. J. (1991). Reasoning about binary topological re-
lations. In Günther, O. and Schek, H.-J., editors, Advances in Spatial Databases,
Second International Symposium, (SSD’91), volume 525 of Lecture Notes in Com-
puter Science, pages 143–160, Zürich, Switzerland. Springer.

[Ehrig et al., 2003] Ehrig, M., Tempich, C., Broekstra, J., van Harmelen, F., Sabou,
M., Siebes, R., Staab, S., and Stuckenschmidt, H. (2003). A metadata model for
semantics-based peer-to-peer systems. In Proceedings of the Second Konferenz
Professionelles Wissensmanagement, Lucern.

[European Environmental Agency, 1999a] European Environmental Agency
(1999a). Corine land cover, technical guide. Technical report, European
Environmental Agency. ETC/LC, European Topic Centre on Land Cover.

[European Environmental Agency, 1999b] European Environmental Agency
(1999b). GEMET – general multilingual environmental thesaurus. Technical
report, European Topic Centre on Catalogue of Data Sources (ETC/CDS).
European Environmental Agency. Version 2.0.

[Fallside, 2001] Fallside, D. (2001). Xml schema part 0: Primer. Recommendation,
W3C. http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[Farmer et al., 1992] Farmer, W., Guttman, J., and Thayer, F. (1992). Little theo-
ries. In Kapur, D., editor, Proceedings of the Eleventh International Conference on
Automated Deduction, volume 607 of Lecture Notes in Computer Science, pages
567–581, Berlin. Springer.

[Farquhar and Gruninger, 1997] Farquhar, A. and Gruninger, M. (1997). Proceed-
ings of the AAAI spring symposium on ontological engineering. Technical report,
AAAI, Stanford, CA.

References 265

[Fellbaum, 1998] Fellbaum, C., editor (1998). WordNet: An Electronic Lexical
Database. Language, Speech, and Communication Series. MIT Press, Cambridge,
MA.

[Fensel, 1999] Fensel, D., editor (1999). Proceedings of the IJCAI-99 Workshop on
Intelligent Information Integration, volume 23 of CEUR Workshop Proceedings.
CEUR Publications and AIFB Karlsruhe.

[Fensel and Brodie, 2003] Fensel, D. and Brodie, M. (2003). Ontologies: A Silver
Bullet for Knowledge Management and Electronic Commerce. Springer-Verlag,
Berlin, 2nd edition.

[Fensel et al., 1998] Fensel, D., Decker, S., Erdmann, M., and Studer, R. (1998).
Ontobroker: The very high idea. In 11th International Flairs Conference (FLAIRS-
98), pages 131–135, Sanibal Island, USA.

[Fensel et al., 1997] Fensel, D., Erdmann, M., and Studer, R. (1997). Ontology
groups: Semantically enriched subnets of the WWW. In Proceedings of the Inter-
national Workshop on Intelligent Information Integration during the 21st German
Annual Conference on Artificial Intelligence, Freiburg, Germany.

[Fensel et al., 2001] Fensel, D., Horrocks, I., van Harmelen, F., McGuinness, D. L.,
and Patel-Schneider, P. F. (2001). OIL: An ontology infrastructure for the semantic
web. IEEE Intelligent Systems, 16(2):38–44.

[Fluit et al., 2003] Fluit, C., Sabou, M., and van Harmelen, F. (2003). Ontology-
based information visualisation. In Geroimenko, V. and Chen, C., editors, Visu-
alizing the Semantic Web, Berline. Springer.

[Fox and Grninger, 1998] Fox, M. S. and Grninger, M. (1998). Enterprise modelling.
AI Magazine, 19(3):109–121.

[Frakes and Baeza-Yates, 1992] Frakes, W. B. and Baeza-Yates, R. (1992). Informa-
tion Retrieval: Data Structures and Algorithms. Prentice-HALL, North Virginia.

[Franconi et al., 2000] Franconi, E., Grandi, F., and Mandreoli, F. (2000). A se-
mantic approach to schema evolution and versioning in object-oriented databases.
In Proceesing of CL 2000, volume 1861 of Lecture Notes in Artificial Intelligence,
pages 1048–1062. Springer Verlag.

[Frank, 1992] Frank, A. (1992). Qualitative spatial reasoning about distances and
directions in geographic space. Journal of Visual Languages and Computing,
3:343–371.

[Freitag and Kushmerick, 2000] Freitag, D. and Kushmerick, N. (2000). Boosted
wrapper induction. In Proceedings of AAAI-00, pages 577–583, Austin, TX.

[Gaines et al., 1999] Gaines, B., Kremer, R., and Musen, M. (1999). Proceedings
of the 12th Banff knowledge acquisition for knowledge-based systems workshop.
Technical report, University of Calgary/Stanford University.

[Gaizauskas and Humphreys, 1997] Gaizauskas, R. and Humphreys, K. (1997). Us-
ing a semantic network for information extraction. Journal of Natural Language
Engineering, 3(2–3):147–169.

[Gangemi et al., 2002] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and
Schneider, L. (2002). Sweetening ontologies with DOLCE. In 13th International
Conference on Knowledge Engineering and Knowledge Management (EKAW02),
volume 2473 of Lecture Notes in Computer Science, page 166 ff, Sigüenza, Spain.
Springer.

[Ganter and Wille, 1999] Ganter, B. and Wille, R. (1999). Formal Concept Analysis
- Mathematical Foundations. Springer.

266 References

[Garcia-Molina et al., 1995] Garcia-Molina, H., Papakonstantinou, Y., Quass, D.,
Rajaraman, A., Sagiv, Y., Ullman, J., and Widom, J. (1995). The TSIMMIS ap-
proach to mediation: Data models and languages. In Next Generation Information
Technologies and Systems (NGITS-95), Naharia, Israel. Extended Abstract.

[Genesereth and Fikes, 1992] Genesereth, M. and Fikes, R. (1992). Knowledge in-
terchange format version 3.0 reference manual. Report of the Knowledge Systems
Laboratory KSL 91-1, Stanford University.

[Ghidini and Giunchiglia, 2001] Ghidini, C. and Giunchiglia, F. (2001). Local mod-
els semantics, or contextual reasoning = locality + compatibility. Artificial Intel-
ligence, 127(2):221–259.

[Giunchiglia and Shvaiko, 2003] Giunchiglia, F. and Shvaiko, P. (2003). Semantic
matching. In Proceedings of the IJCAI-03 Workshop on Ontologies and Distributed
Systems, volume 71 of CEUR Workshop Proceedings.

[Glasgow et al., 1995] Glasgow, J., Narayanan, H., and Chandrasekaran, B. (1995).
Diagrammatic Reasoning: Cognitive and Computational Perspectives. MIT Press,
Cambridge, MA.

[Goasdoue et al., 2000] Goasdoue, F., Lattes, V., and Rousset, M.-C. (2000). The
use of CARIN language and algorithms for information integration: The PICSEL
system. International Journal of Cooperative Information Systems, 9(4):383–401.

[Goasdoue and Reynaud, 1999] Goasdoue, F. and Reynaud, C. (1999). Modeling
information sources for information integration. In Fensel, D. and Studer, R., ed-
itors, Knowledge Acquisition, Modeling and Management, volume 1621 of Lecture
Notes in Artificial Intelligence, pages 121–138, Berlin. Springer.

[Goh, 1997] Goh, C. H. (1997). Representing and Reasoning about Semantic Con-
flicts in Heterogeneous Information Sources. Phd thesis, MIT.

[Gomez-Perez, 2002] Gomez-Perez, A. (2002). A survey on ontology tools. Deliver-
able 1.3 of the OntoWeb Thematic Network. Available at http://www.ontoweb.

org.
[Gomez-Perez and Corcho, 2002] Gomez-Perez, A. and Corcho, O. (2002). Ontology

languages for the semantic web. IEEE Intelligent Systems, January/February:54–
60.

[Gomez-Perez et al., 1996] Gomez-Perez, A., Fernandez, M., and de Vicente, A.
(1996). Towards a method to conceptualize domain ontologies. In Workshop
on Ontological Engineering, ECAI ’96, pages 41–52, Budapest, Hungary.

[Gomez-Perez and Juristo, 1997] Gomez-Perez, M. F. A. and Juristo, N. (1997).
Methontology: From ontological arts towards ontological engineering. In
[Farquhar and Gruninger, 1997], pages 33–40.

[Grosof et al., 2003] Grosof, B., Horrocks, I., Volz, R., and Decker, S. (2003). De-
scription logic programs: combining logic programs with description logic. In
Proceedings of the twelfth international World Wide Web Conference, pages 48 –
57, Budapest, Hungary.

[Grossmann, 2002] Grossmann, W. (2002). Structures for metadata. In Kent, J.-P.,
editor, Work Package 1: Methodology and Tools. MetaNet Project.

[Gruber, 1991] Gruber, T. (1991). Ontolingua: A mechanism to support portable
ontologies. KSL Report KSL-91-66, Stanford University.

[Gruber, 1993] Gruber, T. (1993). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–220.

[Gruber, 1995] Gruber, T. (1995). Toward principles for the design of ontologies
used for knowledge sharing. International Journal of Human–Computer Studies,
43:907–928.

References 267

[Guarino and Giaretta, 1995] Guarino, N. and Giaretta, P. (1995). Ontologies and
knowledge bases: Towards a terminological clarification. In Mars, N., editor, To-
wards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing,
pages 25–32, Amsterdam. IOS Press.

[Guarino et al., 1999] Guarino, N., Masolo, C., and Vetere, G. (1999). Ontoseek:
Content-based access to the web. IEEE Intelligent Systems, 14(3):70–80.

[Haarslev et al., 1998] Haarslev, V., Lutz, C., and Moeller, R. (1998). Foundations
of spatioterminological reasoning with description logics. In Principles of Knowl-
edge Representation and Reasoning, pages 112–123.

[Haarslev and Moeller, 1997] Haarslev, V. and Moeller, R. (1997). Spatiotermino-
logical reasoning: Subsumption based on geometrical inferences. In Proceedings of
the International Workshop on Description Logics.

[Haarslev and Moeller, 2001] Haarslev, V. and Moeller, R. (2001). Description of
the RACER system and its applications. In Proceedings of the Description Logics
Workshop DL-2001, pages 132–142, Stanford, CA.

[Haarslev et al., 1994] Haarslev, V., Moeller, R., and Schroeder, C. (1994). Combin-
ing spatial and terminological reasoning. In Nebel, B. and Dreschler-Fischer, L.,
editors, KI-94: Advances in Artificial Intelligence – Proceedings of the 18th Ger-
man Annual Conference on Artificial Intelligence, volume 861 of Lecture Notes in
Artificial Intelligence, pages 142–153, Berlin. Springer Verlag.

[Halevy, 2001] Halevy, A. (2001). Answering queries using views – a survey. The
VLDB Journal, 10(4):270–294.

[Hartmann, 2002] Hartmann, J. (2002). Lernen struktureller Regeln zur Klassifika-
tion von Web Dokumenten. Master’s thesis, University of Bremen.

[Hartmann and Stuckenschmidt, 2002] Hartmann, J. and Stuckenschmidt, H.
(2002). Automatic metadata analysis for environmental information systems. In
Proceedings of the International Symposium on Environmental Informatics.

[Heflin and Hendler, 2000] Heflin, J. and Hendler, J. (2000). Dynamic ontologies
on the web. In Proceedings of American Association for Artificial Intelligence
Conference (AAAI-2000), Menlo Park, CA. AAAI Press.

[Heflin et al., 1999] Heflin, J., Hendler, J., and Luke, S. (1999). SHOE: A knowledge
representation language for internet applications. Technical Report CS-TR-4078,
Institute for Advanced Computer Studies, University of Maryland.

[Hirst and St-Onge, 1998] Hirst, G. and St-Onge, D. (1998). Lexical chains as rep-
resentations of context for the detection and correction of malapropisms. In
[Fellbaum, 1998], pages 305–332.

[Horrocks, 1998] Horrocks, I. (1998). The FaCT system. In de Swart, H., editor,
Automated Reasoning with Analytic Tableaux and Related Methods: International
Conference Tableaux’98, volume 1397 of Lecture Notes in Artificial Intelligence,
pages 307–312. Springer-Verlag, Berlin.

[Horrocks and Tessaris, 2000] Horrocks, I. and Tessaris, S. (2000). A conjunctive
query language for description logic aboxes. In Proceedings of the National Con-
ference on Artificial Intelligence AAAI/IAAI 2000.

[Hwang, 1999] Hwang, C. H. (1999). Incompletely and imprecisely speaking: Using
dynamic ontologies for representing and retrieving information. In Franconi, E.
and Kifer, M., editors, Proceedings of the 6th International Workshop on Knowl-
edge Representation meets Databases (KRDB’99), pages 14–20.

[ISO-8879, 1986] ISO-8879 (1986). Information processing – text and office systems
– standard generalized markup language (SGML). Standard by the International
Organization for Standardization.

268 References

[Jasper and Uschold, 1999] Jasper, R. and Uschold, M. (1999). A framework for
understanding and classifying ontology applications. In [Gaines et al., 1999].

[Jones et al., 1998] Jones, D. M., Bench-Capon, T., and Visser, P. (1998). Method-
ologies for ontology development. In Cuena, J., editor, Proceedings of the
IT&KNOWS Conference of the 15th IFIP World Computer Congress, Budapest.
Chapman-Hall.

[Jonker and Verwaart, 2003] Jonker, C. and Verwaart, D. (2003). Intelligent sup-
port for solving classification differences in statistical information integration. In
Procedings of IEA/AEI 2003.

[Kapur and Mundy, 1988] Kapur, D. and Mundy, J. (1988). Geometric reasoning
and artificial intelligence. Artificial Intelligence, 37(1-3):1–11.

[Karp et al., 2002] Karp, P., Chaudri, V., and Thomere, J. (2002). An XML-based
ontology exchange language. Available at http://www.ai.sri.com/ pkarp/xol.

[Karp, 1993] Karp, P. D. (1993). The design space of frame knowledge represen-
tation systems. Technical Note 520, AI Center SRI International, Menlo Park,
CA.

[Kashyap and Sheth, 1996] Kashyap, V. and Sheth, A. (1996). Schematic and se-
mantic similarities between database objects: A context-based approach. The
International Journal on Very Large Data Bases, 5(4):276–304.

[Kashyap and Sheth, 1997] Kashyap, V. and Sheth, A. (1997). Semantic hetero-
geneity in global information systems: The role of metadata, context and ontolo-
gies. In Papazoglou, M. P. and Schlageter, G., editors, Cooperative Information
Systems, pages 139–178. Academic Press, San Diego.

[Kent, 2002] Kent, R. (2002). Conceptual knowledge modelling language. Available
at http://www.ontologos.org/CKML/.

[Kifer et al., 1995] Kifer, M., Lausen, G., and Wu, J. (1995). Logical foundations
of object-oriented and frame-based systems. Journal of the ACM, 42:741–84.

[Kim and Seo, 1991] Kim, W. and Seo, J. (1991). Classifying schematic and data
heterogeneity in multidatabase systems. IEEE Computer, 24(12):12–18.

[Klein, 2004] Klein, M. (2004). Change Management for Distributed Ontologies.
PhD thesis, Vrije Universiteit Amsterdam.

[Klein et al., 2002] Klein, M., Fensel, D., Kiryakov, A., and Ognyanov, D. (2002).
Ontology versioning and change detection on the web. In 13th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW02), vol-
ume 2473 of Lecture Notes in Computer Science, page 197 ff, Sigüenza, Spain.
Springer.

[Klinkert et al., 2000] Klinkert, M., Treur, J., and Verwaart, D. (2000). Knowledge-
intensive gathering and integration of statistical information on European fisheries.
In Loganantharaj, R., Palm, G., and Ali, M., editors, Proceedings IEA/AIE 2000,
volume 1821 of Lecture Notes in Artificial Intelligence. Springer.

[Kottmann, 1999] Kottmann, C. (1999). Semantics and information communities.
OGC Abstract Specification Topic 14, The Open GIS Consortium.

[Kutz et al., 2002] Kutz, O., Wolter, F., and Zakharyaschev, M. (2002). Connecting
abstract description systems. In Fensel, D., Giunchiglia, F., McGuinness, D., and
Williams, M., editors, Proceedings of the 8th International Conference of Knowl-
edge Representation and Reasoning (KR-2002), pages 215–227, San Mateo, CA.
Morgan Kaufmann.

[Lauritzen and Spiegelhalter, 1988] Lauritzen, S. and Spiegelhalter, D. (1988). Lo-
cal computations with probabilities on graphical structures and their application
to expert systems. Journal of the Royal Statistical Society, 50:157–224.

References 269

[Leacock and Chodorow, 1998] Leacock, C. and Chodorow, M. (1998). Combin-
ing local context and wordnet similarity for word sense identification. In
[Fellbaum, 1998].

[Lenat, 1998] Lenat, D. (1998). The dimensions of context space. Available on the
Web site of the Cycorp Corporation. (http://www.cyc.com/publications).

[Lenat, 1995] Lenat, D. B. (1995). Cyc: A large-scale investment in knowledge
infrastructure. Communications of the ACM, 38(11):33–38.

[Levy et al., 1996] Levy, A., Rajaraman, A., and Ordille, J. J. (1996). Querying
heterogeneous information sources using source descriptions. In Proceedings of the
22nd International Conference on Very Large Databases, VLDB-96, pages 251–
262, Bombay, India.

[Levy and Rousset, 1996] Levy, A. and Rousset, M.-C. (1996). Carin: A represen-
tation language combining horn rules and description logics. In Proceedings of the
12th European Conference on Artificial Intelligence (ECAI-96), pages 323–327.

[Lewis, 1996] Lewis, D. D. (1996). Natural language processing for information
retrieval. Communcations of the ACM, 39(1):92–101.

[Luke and Hefflin, 2002] Luke, S. and Hefflin, J. (2002). SHOE 1.01 proposal spec-
ification. Available at http://www.cs.umd.edu/projects/plus/SHOE.

[Manola and Miller, 2003] Manola, F. and Miller, E. (2003). RDF primer. Proposed
recommendation, W3C.

[Manola and Miller, 2004] Manola, F. and Miller, E. (2004). Rdf primer. Recom-
mendation, W3C. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[Marriott and Stuckey, 1998] Marriott, K. and Stuckey, P. (1998). Programming
with Constraints. MIT Press, Cambridge, MA.

[Maynard and Ananiadou, 1998] Maynard, D. and Ananiadou, S. (1998). Term
sense disambiguation using a domain-specific thesaurus. In Proceedings of 1st In-
ternational Conference on Language Resources and Evaluation (LREC), Granada,
Spain.

[McGuinness, 2002] McGuinness, D. (2002). Ontologies come of age. In Fensel,
D., Hendler, J., Lieberman, H., and Wahlster, W., editors, Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential, page 171ff. MIT Press,
Cambridge, MA.

[McGuinness and van Harmelen, 2003] McGuinness, D. and van Harmelen, F.
(2003). Owl web ontology language overview. Proposed recommendation, W3C.
http://www.w3.org/TR/owl-features/.

[McIlraith and Amir, 2001] McIlraith, S. and Amir, E. (2001). Theorem proving
with structured theories. In Nebel, B., editor, Proceedings of IJCAI’01, pages
624–634, San Mateo. Morgan Kaufmann.

[Mena and Illarramendi, 2001] Mena, E. and Illarramendi, A. (2001). Ontology-
Based Query Processing for Global Information Systems. Kluwer.

[Mena et al., 2000a] Mena, E., Illarramendi, A., Kashyap, V., and Sheth, A.
(2000a). OBSERVER: An approach for query processing in global information sys-
tems based on interoperation across pre-existing ontologies. International journal
of Distributed And Parallel Databases (DAPD), 8(2):223–272.

[Mena et al., 2000b] Mena, E., Kashyap, V., Illarramendi, A., and Sheth, A.
(2000b). Imprecise answers in distributed environments: Estimation of information
loss for multi-ontology based query processing. IJCIS, 9(4):403–425.

[Motik et al., 2004] Motik, B., Stattler, U., and Hustadt, U. (2004). Reducing shiq-
description logic to disjunctive datalog programs. In Proceedings of the Ninth In-

270 References

ternational Conference on Principles of Knowledge Representation and Reasoning
(KR2004).

[Motik et al., 2003] Motik, B., Volz, R., and Maedche, A. (2003). Optimizing query
answering in description logics using disjunctive deductive databases. In Pro-
ceedings of the 10th International Workshop on Knowledge Representation meets
Databases (KRDB-2003), pages 39–50, Hamburg.

[Motta, 1999] Motta, E. (1999). Reusable Components for Knowledge Models: Case
Studies in Parametric Design Problem Solving, volume 53 of Frontiers in Artificial
Intelligence and Applications. IOS Press, Amsterdam.

[Muggleton, 1995] Muggleton, S. (1995). Inverse entailment and Progol. New Gen-
eration Computing, Special Issue on Inductive Logic Programming, 13(3-4):245–
286.

[Muggleton, 1999] Muggleton, S. (1999). Inductive logic programming: issues, re-
sults and the LLL challenge. Artificial Intelligence, 114(1–2):283–296.

[Muggleton and de Raedt, 1994] Muggleton, S. and de Raedt, L. (1994). Inductive
logic programming: Theory and methods. Journal of Logic Programming, 19–
20:629–679.

[Nejdl et al., 2002] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A.,
Nilsson, M., Palmer, M., and Risch, T. (2002). Edutella: A p2p networking infras-
tructure based on RDF. In Proceedings of the Eleventh International World Wide
Web Conference, Honolulu, Hawaii.

[Neumann et al., 2001] Neumann, H., Schuster, G., Stuckenschmidt, H., Visser, U.,
Voegele, T., and Wache, H. (2001). Intelligent brokering of environmental infor-
mation with the buster system. In Hilty, L. and Gilgen, P., editors, Sustainability
in the Information Society – 15th International Symposium on Informatics for
Environmental Protection, pages 505–512, Marburg. Metropolis.

[Nodine et al., 1999] Nodine, M., Bohrer, W., and Ngu, A. H. H. (1999). Semantic
brokering over dynamic heterogeneous data sources in infosleuth. In Proceedings
of the International Conference on Data Engineering.

[Noy et al., 2000] Noy, N., Fergerson, R., and Musen, M. (2000). The knowledge
model of protege-2000: Combining interoperability and flexibility. In Proceedings
of EKAW 2000.

[Noy and Musen, 2004] Noy, N. and Musen, M. (2004). The prompt suite: Interac-
tive tools for ontology merging and mapping. International Journal of Human-
Computer Studies, 59(6):983–1024.

[Pan and Horrocks, 2003] Pan, J. and Horrocks, I. (2003). RDFS(FA) and RDF
MT: Two semantics for RDFS. In Fensel, D., Sycara, K., and Mylopoulos, J.,
editors, Proceedings of the 2003 International Semantic Web Conference (ISWC
2003), volume 2870 of Lecture Notes in Computer Science, pages 30–46. Springer.

[Patel-Schneider et al., 2002a] Patel-Schneider, P., Horrocks, I., and van Harmelen,
F. (2002a). Reviewing the design of daml+oil: An ontology language for the
semantic web. In Dechter, R., Kearns, M., and Sutton, R., editors, Proceedings of
the Eighteenth National Conference on Artificial Intelligence.

[Patel-Schneider et al., 2002b] Patel-Schneider, P. F., Hayes, P., Horrocks, I., and
van Harmelen, F. (2002b). Web ontology language (owl) abstract syntax and
semantics. Working draft, W3C.

[Patil et al., 1991] Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T.,
Gruber, T., and Neches, R. (1991). The DARPA knowledge sharing effort: Progress
report. In Rich, C., Nebel, B., and Swartout, W., editors, Principles of Knowledge

References 271

Representation and Reasoning: Proceedings of the Third International Conference,
Cambridge, MA.

[Pazzaglia and Embury, 1998] Pazzaglia, J.-C. and Embury, S. (1998). Bottom-up
integration of ontologies in a database context. In KRDB’98 Workshop on Inno-
vative Application Programming and Query Interfaces, Seattle, WA.

[Pepper and Moore, 2001] Pepper, S. and Moore, G. (2001). XML
topic maps (XTM) 1.0. Xtm specification, topicmaps.org.
http://www.topicmaps.org/xtm/1.0/.

[Pierre, 2001] Pierre, J. M. (2001). On the automated classification
of web sites. Electronic Transactions on Artificial Intelligence, 6.
http://www.ida.liu.se/ext/etai/ra/seweb/002/.

[Preece et al., 1999] Preece, A., Hui, K.-Y., Gray, W., Marti, P., Bench-Capon, T.,
Jones, D., and Cui, Z. (1999). KRAFT architecture for knowledge fusion and
transformation. In 19th SGES International Conference on Knowledge-based Sys-
tems and Applied Artificial Intelligence (ES’99), Berlin. Springer.

[Ragget et al., 1999] Ragget, D., Le Hors, A., and Jacobs, I. (1999). HTML
4.01 specification. Recommendation, W3C. http://www.w3.org/TR/1999/REC-
html401-19991224.

[Randell et al., 1992] Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic
based on regions and connection. In Proceedings of the Conference on Knowledge
Representation and Reasoning (KR-92), pages 165–176.

[Rector, 2003] Rector, A. (2003). Modularisation of domain ontologies implemented
in description logics and related formalisms including OWL. In Proceedings of the
16th International FLAIRS Conference, Menlo Park, CA. AAAI.

[Resnik, 1995] Resnik, P. (1995). Using information content to evaluate semantic
similarity in a taxonomy. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI).

[Richter, 1995] Richter, M. (1995). On the notion of similarity in case-based rea-
soning. In della Riccia, G., Kruse, R., and Viertl, R., editors, Mathematical and
Statistical Methods in Artificial Intelligence, pages 171–184. Springer, Berlin.

[Rodriguez and Egenhofer, 2003] Rodriguez, A. and Egenhofer, M. (2003). Deter-
mining semantic similarity among entity classes from different ontologies. IEEE
Transactions on Knowledge and Data Engineering, 15(2):442–456.

[Rousset, 1997] Rousset, M.-C. (1997). Verifying the world wide web: a position
statement. In van Harmelen, F. and J. van Thienen, editors, Proceedings of
the Fourth European Symposium on the Validation and Verification of Knowledge
Based Systems (EUROVAV97).

[Rumbaugh et al., 1998] Rumbaugh, J., Jacobson, I., and Booch, G. (1998). The
Unified Modeling Language Reference Manual. Addison-Wesley.

[Salton, 1986] Salton, G. (1986). Another look at automatic text-retrieval systems.
Communications of the ACM, 29(7):648–656.

[Salton and McGill, 1983] Salton, G. and McGill, M. (1983). Introduction to Mod-
ern Information Retrieval. McGraw-Hill, New York, NY.

[Schlieder et al., 2001] Schlieder, C., Voegele, T., and Visser, U. (2001). Qualitative
spatial representation for information retreival by gazeteers. In Proceedings of the
International Conference on Spatial Information Theory (COSIT 2001).

[Schlobach and Cornet, 2003] Schlobach, S. and Cornet, R. (2003). Non-standard
reasoning services for debugging of description logic terminologies. In Proceed-
ings of the 18th International Conference on Artificial Intelligence (IJCAI 2003),
Acapulco, Mexico.

272 References

[Schreiber et al., 1994] Schreiber, A., Wielinga, B., Akkermans, H., van der Velde,
W., and Anjewierden, A. (1994). CML the CommonKADS conceptual modeling
language. In Steels, L., Schreiber, G., and van de Velde, W., editors, A Future
of Knowledge Acquisition, Proceedings of the 8th European Knowledge Acquisition
Workshop (EKAW 94), pages 1–25. Springer, Berlin.

[Schreiber, 2002] Schreiber, G. (2002). The web is not well-formed. IEEE Intelligent
Systems, 17(2). Contribution to the section Trends and Controversies: Ontologies
KISSES in Standardization.

[Selman and Kautz, 1996] Selman, B. and Kautz, H. (1996). Knowledge compila-
tion and theory approximation. Journal of the ACM, 43(2):193–224.

[Smith et al., 2003] Smith, M., Welty, C., and McGuinness, D. (2003).
Owl web ontology language guide. Proposed recommendation, W3C.
http://www.w3.org/TR/owl-guide/.

[Sowa, 1999] Sowa, J. F. (1999). Knowledge Representation: Logical, Philosophical,
and Computational Foundations. Thomson Learning.

[Staab et al., 2001] Staab, S., Maedche, A., and Handschuh, S. (2001). An anno-
tation framework for the semantic web. In Proceedings of the First Workshop on
Multimedia Annotation, Tokyo, Japan.

[Stuckenschmidt et al., 2000] Stuckenschmidt, H., Broekstra, J., Fensel, D., van
Harmelen, F., Klein, M., and Horrocks, I. (2000). Catalogue integration – a case
study in ontology-based semantic translation. FEW Report R-474, Vrije Univer-
siteit Amsterdam.

[Stuckenschmidt and Wache, 2000] Stuckenschmidt, H. and Wache, H. (2000). Con-
text modeling and transformation for semantic interoperability. In Proceedings
of the workshop ’Knowledge Representation Meets Databases’ KRDB-2000, num-
ber 29 in CEUR Workshop proceedings, pages 115–126.

[Studer et al., 1998] Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge
engineering: Principles and methods. Data Knowledge Engineering, 25(1-2):161–
197.

[Stumme and Maedche, 2001] Stumme, G. and Maedche, A. (2001). FCA-MERGE:
Bottom-up merging of ontologies. In Proceedings of the 17th International Con-
ference on Artifical Intelligence IJCAI 2001, pages 225–234, Seattle, WA.

[Sundgren, 1995] Sundgren, B. (1995). Guidelines for the modeling of statstical data
and metadata. Technical report, Conference of European Statisticians of the UN
Economic Commission for Europe.

[Sure et al., 2002] Sure, Y., Staab, S., and Angele, J. (2002). OntoEdit: Guiding
ontology development by methodology and inferencing. In Proceedings of the
International Conference on Ontologies, Databases and Applications of SEman-
tics ODBASE 2002, Lecture Notes in Computer Science, University of California,
Irvine, CA. Springer.

[Thompson et al., 2001] Thompson, H., Beech, D., Maloney, M., and Mendel-
sohn, N. (2001). Xml schema part 1: Structures. Recommendation, W3C.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[Turtle and Croft, 1991] Turtle, H. and Croft, W. (1991). Evaluation of inference
network-based retrieval methods. ACM Transactions on Information Systems,
9(3):187–222.

[Uschold, 1996] Uschold, M. (1996). Building ontologies: Towards a unified method-
ology. In 16th Annual Conference of the British Computer Society Specialist Group
on Expert Systems, Cambridge, UK.

References 273

[Uschold and Gruninger, 1996] Uschold, M. and Gruninger, M. (1996). Ontologies:
Principles, methods and applications. Knowledge Engineering Review, 11(2):93–
155.

[van Harmelen and Fensel, 1999] van Harmelen, F. and Fensel, D. (1999). Practical
knowledge representation for the web. In Fensel, D., editor, Proceedings of the
IJCAI’99 Workshop on Intelligent Information Integration.

[van Harmelen and van der Meer, 1999] van Harmelen, F. and van der Meer, J.
(1999). Webmaster: Knowledge-based verification of web-pages. In Ali, M. and
Imam, I., editors, Proceedings of IEA/AEI99, Lecture Notes in Artificial Intelli-
gence, pages 147–166, Berlin. Springer.

[van Heijst et al., 1997] van Heijst, G., Schreiber, A., and Wielinga, B. (1997). Us-
ing explicit ontologies for KBS development. International Journal of Human-
Computer Studies, 46(2–3):183–292.

[Visser et al., 1998] Visser, P., Jones, D., Bench-Capon, T., and Shave, M. (1998).
Assessing heterogeneity by classifying ontology mismatch. In N. Guarino et al,
editor, Formal Ontology in Information Systems (Proceedings of FOIS’98). IOS
Press, Trento, Italy.

[Visser et al., 1997] Visser, P. R. S., Jones, D. M., Bench-Capon, T. J. M., and
Shave, M. J. R. (1997). An analysis of ontological mismatches: Heterogeneity ver-
sus interoperability. In AAAI 1997 Spring Symposium on Ontological Engineering,
Stanford, CA.

[Visser and Schuster, 2002] Visser, U. and Schuster, G. (2002). Finding and inte-
gration of information – a practical solution for the semantic web. In Proceedings
of the ECAI 02, Workshop on Ontologies and Semantic Interoperability.

[Visser and Stuckenschmidt, 1999] Visser, U. and Stuckenschmidt, H. (1999). Intel-
ligent, location-dependent acquisition and retrieval of environmental information.
In Rumor, M., editor, Information Technology in the Service of Local Government
Planning and Management. The Urban Data Management Society, Venice, Italy.

[Visser et al., 2002] Visser, U., Stuckenschmidt, H., Schuster, G., and Voegele, T.
(2002). Ontologies for geographic information processing. Computers in Geo-
sciences, 28:103–117.

[Voegele, 2004] Voegele, T. (2004). Spatial Information Retrieval with Place Names.
PhD thesis, Department of Mathematics and Computer Science, University of
Bremen.

[Voegele et al., 2003] Voegele, T., Schlieder, C., and Visser, U. (2003). Intuitive
modelling of place name regions for spatial information retrieval. In Proceedings
of the Conference on Spatial Information Theory (COSIT’03), Lecture Notes in
Computer Science, page Springer.

[Voegele et al., 2000] Voegele, T., Stuckenschmidt, H., and Visser, U. (2000).
BUISY - using brokered data objects for environmental information systems. In
Tochtermann, K. and Riekert, W.-F., editors, Hypermedia im Umweltschutz, pages
68–73, Marburg. Metropolis.

[Volz et al., 2002a] Volz, R., Maedche, A., and Oberle, D. (2002a). Towards a mod-
ularized semantic web. In Proceedings of the ECAI’02 Workshop on Ontologies
and Semantic Interoperability.

[Volz et al., 2002b] Volz, R., Oberle, D., Staab, S., and Studer, R. (2002b). Ontolift
prototype. Deliverable D11, EU/IST Project WonderWeb.

[Volz et al., 2003] Volz, R., Oberle, D., and Studer, R. (2003). Views for light-weight
web ontologies. In Proceedings of the ACM Symposium on Applied Computing
(SAC 2003).

274 References

[Wache, 1999] Wache, H. (1999). A rule-based mediator for the integration of het-
erogeneous sources (extended version). TZI-Berichte, University of Bremen.

[Wache, 2003] Wache, H. (2003). Semantic Mediation for Heterogeneous Informa-
tion Sources. Phd thesis, University of Bremen. In German.

[Wache et al., 1999] Wache, H., Scholz, T., Stieghahn, H., and König-Ries, B.
(1999). An integration method for the specification of rule-oriented mediators. In
Kambayashi, Y. and Takakura, H., editors, Proceedings of the International Sym-
posium on Database Applications in Non-Traditional Environments (DANTE’99),
pages 109–112, Kyoto, Japan.

[Wache et al., 2001] Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schus-
ter, G., and S.Huebner, H. N. (2001). Ontology-based integration of information - a
survey of existing approaches. In Ontologies and Information Sharing, number 47,
pages 108–117, Seattle, WA.

[Weibel, 1999] Weibel, S. (1999). The state of the Dublin Core metadata initiative.
D-Lib Magazine, 5(4).

[Wiederhold, 1992] Wiederhold, G. (1992). Mediators in the architecture of future
information systems. IEEE Computer, March:38–49.

[Wiederhold, 1996] Wiederhold, G., editor (1996). Intelligent Integration of Infor-
mation. Kluwer, Boston, MA.

[Yarowsky, 1992] Yarowsky, D. (1992). Word-sense disambiguation using statistical
models of Roget’s categories trained on large corpora. In Proceedings of COLING-
92, pages 454–460, Nantes, France.

[Yergeau et al., 2004] Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C., and
Maler, E. (2004). Extensible markup language (xml) 1.0. Recommendation, W3C.
http://www.w3.org/TR/2004/REC-xml-20040204.

Index

annotation, 39
approximation

lower, 124
of queries, 198
theory, 124
upper, 124

ATKIS, 72

BUSTER, 34, 182, 198–207

change
classification of, 233
harmless, 233
ontological, 232

classes
of objects, 148

classification, 19, 93, 152, 158
approximate, 123–125, 137
cross, 145
rules, 93, 106

compilation, 214
of implied subsumptions, 227

concept, 59
bridge, 69
bridge-, 76
definition

external, 217
internal, 216

lattice, 21
context, 27

transformation, 191
CORINE landcover, 72

DLP, 54

engineering
ontological, 66

frame-based systems, 22

heterogeneity, 3
semantic, 33, 120

heuristics, 136
HTML, 4

inductive logic programming, 98
for metadata generation, 100

information
integration, 31
retrieval, 16, 30
statistical, 143

integrity, 228, 232
interoperability, 14, 30

semantic, 23

logic
description logics, 22, 43

distributed, 219
F-logic, 187

mapping, 33
semantic, 196

mappings
view-based, 213

metadata, 85–114
generation, 94
ontology-based, 111
statistical, 145
the role of, 86
use, 87

276 Index

validation, 94
visualization, 97

methodology, 66, 76

OBSERVER, 16, 31, 192–198
OntoBroker, 31, 186–192
ontologies, 18, 25–31, 155, 170

applications of, 29–31
creation, 65
deployment, 110
evolution, 81, 231–241
in F-logic, 189
languages, 45–61
modular, 216
shared, 41

ontology
of statistics, 146–149, 156

OWL, 76, 155, 188, 220
DL, 52–53
DLP Fragment, 54
Full, 53–54
import, 220
Lite, 50–52

owl:allDifferent, 50
owl:differentFrom, 50
owl:disjointWith, 52
owl:equivalentClass, 50
owl:equivalentProperty, 50
owl:FunctionalProperty, 51
owl:InverseFunctionalProperty, 51
owl:inverseOf, 50
owl:maxcardinality, 51
owl:oneOf, 53, 57
owl:sameAs, 50
owl:SymmetricProperty, 50
owl:TransitiveProperty, 50

queries
as concepts, 132
complex, 131
containment, 134
expansion, 194
in F-logic, 189
ontology-based, 35, 132
re-writing, 126
relaxation, 134, 138

query
Boolean, 127
re-writing, 131

query graph, 133

query plan, 197

RDF, 6, 8
Schema, 49

rdf:domain, 49
rdf:range, 49
rdf:subPropertyOf, 49
rdf:type, 49
rdfs:subClassOf, 49
reasoning

diagrammatic, 170
in modular ontologies, 225
spatial, 168, 169
spatioterminological, 172, 175
subsumption, 23

retrieval
of statistical information, 162

semantics, 14–23
explicit, 17
global, 219
local, 218

source ontology, 42
space, 165

representation of, 168
direction, 179
distance, 180
partonomies, 176, 205
place name structures, 205
topology, 178

spatial relevance, 170, 203
standards, 4

metadata, 88

terminology
shared, 26, 32, 39, 40, 43, 200

thesauri, 17, 21, 70
time, 146, 165
translation

semantic, 39

views
statistics as, 150

WordNet, 31, 75
wrapper, 15

XML, 5, 8
DTD, 5
schema, 6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

