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Preface

Biomimicry uses our scientific understanding of biological systems to exploit
ideas from nature in order to construct some technology. In this book, we focus
on how to use biomimicry of the functional operation of the “hardware and soft-
ware” of biological systems for the development of optimization algorithms and
feedback control systems that extend our capabilities to implement sophisticated
levels of automation. The primary focus is not on the modeling, emulation, or
analysis of some biological system. The focus is on using “bio-inspiration” to
inject new ideas, techniques, and perspective into the engineering of complex
automation systems.

There are many biological processes that, at some level of abstraction, can
be represented as optimization processes, many of which have as a basic purpose
automatic control, decision making, or automation. For instance, at the level
of everyday experience, we can view the actions of a human operator of some
process (e.g., the driver of a car) as being a series of the best choices he or she
makes in trying to achieve some goal (staying on the road); emulation of this
decision-making process amounts to modeling a type of biological optimization
and decision-making process, and implementation of the resulting algorithm
results in “human mimicry” for automation. There are clearer examples of bi-
ological optimization processes that are used for control and automation when
you consider nonhuman biological or behavioral processes, or the (internal) bi-
ology of the human and not the resulting external behavioral characteristics
(like driving a car). For instance, there are homeostasis processes where, for
instance, temperature is regulated in the human body. Another example is the
neural network for “motor control” that helps keep us standing (balancing). In
the cognitive process of planning in the brain, there is the evaluation of multiple
options (e.g., sequences of actions), and then the selection of the best one. The
behavior of attentional systems can be seen as trying to dynamically focus on
the most important entity in a changing environment. Learning can be seen as
gathering the most useful information from a complex noisy environment, or as
a process of constructing the best possible representation of some aspect of the
environment for use in decision making. Evolution can be viewed as a stochas-
tic process that designs optimal and robust organisms according to Darwin’s
principle of “survival of the fittest” (i.e., the best-suited organisms for the envi-
ronment survive to reproduce). Both learning and evolution can be viewed as
optimization processes that lead to adaptations, over short and long time scales,
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respectively. Foraging can be modeled as a sequential optimization process of
making the best choices about where to go to find nutrients so as to maximize
energy intake per time spent foraging, and how to avoid threats (e.g., getting
eaten) at the same time. In cooperative (“social”) foraging, animals work to-
gether to help the group find resources. Sometimes such social animals operate
in cohesive “swarms” to forage and avoid threats. In competitive foraging, the
forager must make the best decisions in the presence of its adversaries in order
to survive.

In this book, we will explain how to model such biological processes, and
how to use them to develop or implement methods for optimization, control,
and automation. We will be quite concerned with showing that our methods
are verifiably correct (e.g., so that, if we use them in an engineering applica-
tion, we know they will operate correctly and not necessarily have the same,
possibly high, error rate as their biological counterparts). This drives the de-
cision to include a significant amount of material on engineering methodology,
simulation-based evaluations, and modeling and mathematical verification of
properties of the systems we study (e.g., stability analysis and an emphasis on
robustness). The overall goal is to expand the horizons for optimization, control
and automation, but at the same time to be pragmatic and keep a firm founda-
tion in traditional engineering methods that have been consistently successful.
Generally, the focus is on achieving high levels of “autonomy” for systems,
not on the resulting “intelligence” of the system. It is hoped that this book
will show you that the synthesis of the biomimicry viewpoint with traditional
physics and mathematics-based engineering, offers a very broad and practically
useful perspective, especially for very complex automation problems.

For all these reasons, this book is likely to be primarily useful to persons
interested in the areas of “intelligent systems,” “intelligent automation,” or
what has been called “intelligent control” (essentially, the viewpoint here is
that “biomimicry for optimization, control, and automation,” the title of this
book, is the definition of the field of “intelligent control”). While this book will
likely be of most interest to engineers and computer scientists, it may also be
interesting to some in the biological sciences and mathematical biology.

A Quick Glance at Key Concepts and Topics

If you want to get a better sense of what this book is about, first scan the table
of contents, then go to the first few pages of each part and read the “Sequence of
Essential Concepts” (their concatenation tells the basic “story” of this book, and
it may be useful to reread that story as you progress through the book). This
gives a high-level view of what you can learn by reading this book, and help some
readers decide on which parts to focus on. For an even more detailed sequence
of key concepts, scan the “side notes” that are in the margins throughout the
entire book. These notes state in a concise way the important concepts.
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Overview of the Book

Part I serves as the introduction to the book and establishes the philosophy of
the general methodologies that are used. First, we provide a detailed overview
of the control engineering methodology for traditional feedback systems and
complex automation systems. Next, scientific foundations for biomimicry for
“intelligent control” are established. We overview some ideas from biology, neu-
roscience, psychology, behavioral/sensory ecology, foraging theory, and evolu-
tion that have been particularly useful in providing biologically inspired control
methods. Also, we explain how to exploit human expertise on how to control
systems (“human-mimicry”), and use this to achieve automation.

In Part II, we study methods to automate those biological control functions
and human expertise that do not involve learning. First, we introduce the
basics of neural networks and explain how they can serve as the “hard-wiring”
for implementing control functions in animals. Next, we introduce fuzzy and
expert control, and provide a design example to clarify how a heuristic rule-based
controller synthesis methodology works. We discuss how to perform Lyapunov
stability analysis of neural and fuzzy control systems. We show how autonomous
robots can perform path planning for obstacle avoidance, and how planning
concepts can be used in the closed-loop via model predictive control. Then we
introduce attentional systems, where animals seek to manage the complexity
of sensory information via focusing and filtering. We introduce a model of
an organism in a predator/prey environment that wants to “pay attention,”
so that it can keep track of predator/prey locations. We introduce several
attentional strategies (resource allocation methods), simulate their behavior,
discuss attentional strategy design, and perform stability analysis.

In Part III, we introduce learning. We overview the psychology and neu-
roscience of learning. We focus on incorporating aspects of learning that arise
from function approximation to improve performance in control systems while
they are in operation. We define several heuristic adaptive control (learning con-
trol) strategies that are based on the underlying neuroscience and psychology of
learning (e.g., reinforcement learning). We cover least squares, steepest descent,
Newton, conjugate gradient, Levenberg-Marquardt, and clustering methods for
training approximators. We study basic issues in learning related to generaliza-
tion, overtraining/overfitting, online and offline learning, and model validation.
Next, we show how the learning methods can be used to adapt the param-
eters of the controller (or estimator) structures, defined in Part II, to create
adaptive decision-making systems (i.e., ones that can learn to accommodate
problems that arise in the environment). We explain how least squares and
gradient optimization procedures can be used to tune approximators to achieve
adaptive control (i.e., automatic tuning of the controller in response to plant
uncertainties) for nonlinear discrete-time systems. Finally, we show how to de-
velop stable, continuous-time adaptive control systems that use fuzzy systems
or neural networks as approximators.

In Part IV, we explain how the genetic algorithm can be used to simulate
evolution and solve optimization problems. Next, we discuss general issues in
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stochastic optimization for design of control and automation systems. For this,
we first overview the relevant biology of learning and evolutionary theories, in-
cluding the concept of “highly optimized tolerance” and robustness trade-offs
for complex systems, and synergies between evolution and learning (e.g., evo-
lution of learning, the Baldwin effect, and evolved instinct-learning balance).
We show how the “response surface methodology” for nongradient optimiza-
tion and design can be used to understand robustness trade-offs in control and
learning system design. We show how nongradient and “set-based” stochastic
optimization methods can be used for robust design, and give an example of
evolution of instinct-learning balance. Moreover, we discuss the use of evolu-
tionary and stochastic optimization methods for “Darwinian design of physical
control systems.” Next, we show how online “set-based” stochastic optimiza-
tion algorithms can achieve a type of online evolution of controllers to achieve
real-time evolutionary adaptive control.

In Part V, after explaining the basics of foraging theory and foraging search
strategies, we show how “taxes” (motion) of populations of foraging E. coli
bacteria can achieve optimization, either as individuals or as groups (swarms).
We show how to simulate social foraging bacteria, and how they can work to-
gether cooperatively to solve an optimization problem. We discuss the basics of
the modeling and stability analysis of foraging swarms, and study an applica-
tion to cooperative control for multiple autonomous vehicles (robots). Next, we
discuss animal fighting behaviors and game theory models of cooperative and
competitive foraging. In the final section, we discuss intelligent foraging. This
section is designed to provide an integrated view of the methods studied in the
book, point to future research directions, and to provide several challenging de-
sign problems, where the student is asked to integrate the methods of the book
to develop and evaluate a group of social foraging vehicles or two competing
intelligent teams.

Topics Not Covered

It is impossible to cover all the relevant biomimicry topics in one book, even
with the relatively narrow focus of optimization, control, and automation. Here,
various choices have been made about what to include, choices which depend on
my energy level, my own expertise (or lack thereof), my experience with appli-
cations, the need to limit book length, the availability of other good books, and
level of topic maturity in the literature at the time of the writing of this book.
This led to little or no attention given to the following topics: (i) combinato-
rial optimization and dynamic or linear programming, and its use in intelligent
systems (e.g., in path planning, learning, and foraging); (ii) Bayesian belief
networks (e.g., their use in decision making); (iii) temporal difference learning
and “neuro-dynamic programming;” (iv) sensor management and multisensor
integration; (v) immune systems and networks (e.g., in learning and connec-
tions with evolution); (vi) construction or evolution of the structure of neural
and fuzzy systems (i.e., automated approximator structure construction); (vii)
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learning automata; (viii) evolutionary game theory and evolutionary dynamics;
and (ix) study of other control processes in biological systems (e.g., in morpho-
genesis, genetic networks, inside cells, motor control, and homeostasis). Some of
these topics are relatively easy to understand, once you understand this book,
while others would require a much more significant time investment. Consid-
ering (ix), this book is generally stronger for biomimicry of the “higher level”
functionalities of biological systems (e.g., we may study the motile behavior of a
bacterium during foraging, but ignore the control processes inside the cell that
are used to achieve the motile behavior). Regardless, for several of the above
topics, there are exercises or design problems that help introduce them to the
reader and show how they are relevant to the topics in this book. Also, refer-
ences are provided to the interested reader who wants to study the above topics
further.

Bibliographic References

To avoid distractions and produce a smooth flow of the text, citations and expla-
nations of, for example, what was done when and how each research contribution
built on and related to others, are generally not placed within the text. The
referencing style adopted here is more like the one used for a typical textbook,
rather than a research monograph. At the same time, however, each part ends
with a “For Further Study” section that is an annotated bibliography. For these
sections, note the following:

• The main sources used for each chapter, and some related ones, are in-
cluded. Sources that most significantly affected the content and approach
of this book are highlighted.

• There are recommendations on which books or papers to use to get in-
troductions to some topics, and more detailed treatments of others. In
particular, there are key references given in control theory and engineer-
ing, and in several of the foundational “bio” topics.

• Sources for applications of the methods are highlighted, as many of the
techniques in this book have been used successfully in a wide array of
problems, too many to reference here.

• There is recommended reading for topics that were not covered here (see
above list).

• There are many lists of references that would help support the pursuit of
research into the topics studied in this book.

• Connections among a variety of topics are highlighted in the context of
referencing research areas.

• A number of times the fuller lists of references for topics are found in the
references that are cited, not here. This helped to keep the bibliography
size here more manageable.
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A large number of researchers have contributed significantly, and over many
years, to the topics that are studied here. While it is impossible to succeed
in referencing every paper, the annotated bibliographies are meant to help and
encourage the reader to search for other sources and investigate in a scholarly
way the literature. Clearly, a danger of producing a book with a broad topical
scope such as this, is that it becomes impossible to give proper treatment to the
literature. The annotated bibliographies, however, try to remedy this problem
by highlighting connections to fields and providing key “gateway” references
that will lead the reader deeper into the literature. Finally, we must all accept
that the topics here are currently still being researched; hence, it is imperative
that the researcher use current modern searching and bibliographic aids to come
fully up to date on any topic discussed here. Putting this book on paper implies
it will age. As this book gets older, the quality of the bibliographic referencing
will inevitably degrade.

Relationships to Other Fields

This is not a book on biology, neuroscience, psychology, cognitive neuroscience,
behavioral/sensory ecology, or evolution. We simply borrow ideas from these
fields to solve optimization, control, and automation problems (and sometimes
we will take the freedom of significantly distorting basic biologically motivated
functionalities when they are employed to provide solutions to engineering prob-
lems). Moreover, we use the biological metaphor to provide a cohesive frame-
work to think about a wide variety of control and automation problems. How
much biology, neuroscience, psychology, etc., are covered here? The attempt is
to provide just enough to make a strong metaphor and form a scientific foun-
dation for existing methods. The interested reader is encouraged to study the
“bio” part of biomimicry for control and automation at greater depth in the
“For Further Study” sections at the end of each part.

This is not a book on computer science or “artificial intelligence” in the
traditional (classical) sense of what those fields have focused on. We do not
even bother to add the word “artificial” in front of the terms “neural network,”
“planning system,” or “attentional system,” as it is always clear from the context
whether we are talking about a biological system or a model of such a system
that we will implement on a computer. The primary goal here is generally not
to produce computer programs that perfectly emulate biological systems, as it
often is in the field of artificial intelligence and some other fields (e.g., mathe-
matical biology), where simulation of an organism is used to help understand
the underlying science. The goal is to produce control and decision-making algo-
rithms that operate reliably with high performance for high technology systems.
The background of the author is control science, theory, engineering, and prac-
tice (and hence, physics, differential equations, system theory, stability theory,
optimization theory, stochastic processes, etc.), and not, for example, object-
oriented programming and databases. The content of the book will naturally
reflect this.
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To the Systems and Control Engineer or Scientist

This is a book on engineering. It is not, however, a book on engineering technol-
ogy (e.g., we spend no time discussing the best available computer, sensing, and
actuation technologies to implement the methods). This is not a book on the
mathematics that form a foundation for control engineering and automation.
We do, however, provide an introduction to Lyapunov stability theory and dis-
cuss its use in neural, fuzzy, expert, and planning systems for control. We show
how to model and analyze stability for attentional systems. We study stable
adaptive fuzzy/neural control, but note that the interested reader should see the
“For Further Study” section of Part III for more references in this area, since
here we only introduce some basic ideas. We study stability analysis of swarms.
The more mathematically inclined reader should view this book as pointing to
many opportunities to formalize and prove that various control methods operate
in a reliable fashion, so that they are stable and robust (it is recognized that
many methods in this book are essentially in their infancy, and significant ad-
ditional work, some of which should be along the lines of mathematical studies,
should be performed).

This is not a “handbook” for a practicing control engineer, where immediate
solutions to practical problems are provided. An explicit decision was made not
to provide extensive practical case studies; instead the focus is on providing
an introduction to basic concepts and principles that will be useful in guiding
the design of practical systems and providing insights into solving challenging
control and automation problems. We do, however, take a somewhat pragmatic
approach in that code is provided and discussed for a wide variety of algorithms
(e.g., neural networks, fuzzy systems, planning systems, attentional systems,
learning, evolution, foraging, swarms, games, etc.); this code may certainly be
useful in speeding a practicing engineer toward a solution to an automation
problem.

The “intelligent control” community, both in academia and industry, should
find that this book will provide an up-to-date view of the field, show the major
approaches, provide good references for further study, and provide a nice outlook
for thinking about future research directions. It is hoped that this book will
provide a unified and balanced treatment of the topic of intelligent control (and
I apologize a priori for the inevitable appearances of my own biases that come
from my own research and experience with implementations and applications).
The goal is to make you aware of the many approaches, but to do so in a common
framework that helps you approach very complex automation problems.

For the conventional control engineering community, it is hoped that this
book will provide a different, and useful, perspective on the enterprise of control
engineering. The utility of the entire biomimicry approach is, however, open to
debate and ultimately will only show its value if it stands the test of time, or,
at least in the short term, provides effective solutions to current challenging
real-world problems.
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Organization, Prerequisites, and Usage

Each part includes an overview that summarizes the essential concepts to be
learned, and has a “For Further Study” section (see discussion above). Many
chapters include a set of both exercises and design problems. Exercises or design
problems that are particularly challenging (e.g., considering how far along you
are in the text), long (since they may require significant reading in the litera-
ture), or that require you to help define part of the problem are designated with
a star (“�”) after the title of the problem. Some of these topics could serve as
thesis research ideas; however, you would certainly want to evaluate the current
literature before pursuing any one of them. In addition to helping to solidify
the concepts discussed in the chapters, the problems at the ends of the chapters
are sometimes used to introduce new topics (e.g., immune networks, approxi-
mator structure construction, stability of planning systems, and other topics in
foraging). We require the use of computer-aided design (CAD) in many of the
design problems at the ends of the chapters (e.g., via the use of Matlab or some
high-level language). The reader will naturally find that it will be most conve-
nient to use Matlab, as there is a significant amount of Matlab code provided
at the Web site for the book. This code can be quite useful, since it is likely
easier to modify that code to suit your needs, rather than to completely rewrite
the code.

The necessary background for the book includes courses on differential equa-
tions and classical control. Courses on nonlinear stability theory, adaptive con-
trol, and game theory would be helpful but are not necessary. Hence, much of
the material here can be covered in an undergraduate course. For instance, one
could easily cover most of Part II in an undergraduate course, as it requires
very little background besides a basic understanding of signals and systems (in-
cluding Laplace and z-transform theory). Also, most of Part III can be covered
once a student has taken a first course in control (a course in nonlinear or
adaptive control would be helpful but is not necessary). One could cover the
basics of intelligent control by adding topics from this book to the end of a stan-
dard undergraduate or graduate course on control. Basically, however, the book
is appropriate for a first-level graduate course in biomimicry for optimization,
control, and automation (“intelligent control”).

This book has been used in a 10-week (quarter system) graduate-level course
on intelligent control and for undergraduate independent studies and design
projects. In addition, portions of the text have been used for short courses
and workshops on intelligent control at conferences, universities, and companies
(where the focus is particularly pragmatic).

World Wide Web Site: Matlab Code Available

You can access code used to develop most of the examples in this book and
partial solutions to a number of homework problems via the Web site:

http://www.ece.osu.edu/~passino/ICBook/ic index.html
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There, you will find Matlab code for neural networks, fuzzy systems, plan-
ning systems, attentional systems, least squares and gradient methods (includ-
ing data sets to work with), several types of direct and indirect adaptive con-
trollers, genetic algorithms, pattern search and stochastic nongradient optimiza-
tion methods, genetic adaptive controllers, foraging methods for optimization,
swarm simulation, games and game-theoretic modeling of foraging, and more.

It was not the objective of the author to provide code that is efficient, in
the sense that it minimizes the use of memory or computation time. In some
cases, simple changes will result in significant computational speed-up or savings
of memory. The objective is to provide code to help educate the reader on
the topics, and to help move students quickly toward doing useful simulations.
So the code is primarily designed to give the student a type of “hands-on”
experience with the methods. My experience in teaching these topics is that
if the students are required to code “from scratch,” they will not get as much
done or learn as much; hence, I could not cover as many topics. Of course,
the danger is that the student will simply use the code and not understand
it. The homework problems are, however, designed to try to make sure that
this problem is avoided (e.g., by asking for changes to the code that would
require the student to clearly understand the existing code). Regardless, the
instructor must be alerted to this problem and be diligent in assessing students’
true understanding of the methods and code.

Feedback on the Book

You are encouraged to provide a description of any errors you may find. For
this, please send e-mail to passino@ee.eng.ohio-state.edu or regular mail to:
Kevin M. Passino, Dept. of Electrical and Computer Engineering, The Ohio
State University, 2015 Neil Ave., Columbus, OH 43210. The author will keep
an errata for the book posted on the Web site.
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Sequence of Essential Concepts

• Conventional control systems engineering uses an iterative design method-
ology involving mathematical models, simulation, analysis, and experi-
mentation to construct controllers. The challenge is to produce control
systems that achieve verifiable high performance operation and are robust
in the sense that they can cope with uncertainty (e.g., disturbances, noise,
and inaccuracies in the mathematical models used to derive the control
laws that are implemented). Such challenges exist for single isolated con-
trol loops and for hierarchical and distributed feedback controls that exist
in complex automation problems.

• Intelligent control is based on two types of biomimicry. First, the areas
of biology, cognitive neuroscience, psychology, foraging, group behavior of
organisms, and evolution provide concepts that can be used to establish
the functionality of sophisticated decision-making systems for high tech-
nology automation. Second, there are often situations where humans, or
groups of humans, have significant expertise on how to solve an automation
problem and this knowledge can be automated in computer algorithms
to replace them (i.e., there is often an opportunity to mimic actions of
humans who solve control problems by distilling their knowledge into con-
trollers). Biomimicry represents a somewhat different route to control
system development, and hence to automation. However, in terms of end
functionality, the resulting “intelligent controllers” sometimes have certain
characteristics that are similar to controllers obtained with conventional
control engineering methods. Ultimately, the engineering goal is achieving
verifiable high levels of autonomy no matter what design path is taken to
get there.



Chapter 1

Challenges in Computer
Control and Automation



Chapter Contents

1.1 The Role of Traditional Feedback Control Systems in Automation 9

1.2 Design Objectives for Control Systems . . . . . . . . . . . . . . . . . 11

1.2.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Reducing Effects of Adverse Conditions . . . . . . . . . . . . . . . . . . 13

1.2.3 Behavior in Terms of Time Responses . . . . . . . . . . . . . . . . . . . 14

1.2.4 Engineering Goals for Control Systems . . . . . . . . . . . . . . . . . . . 16

1.3 Control System Design Methodology . . . . . . . . . . . . . . . . . . 18

1.3.1 Understand Plant and Specify Design Objectives . . . . . . . . . . . . . 18

1.3.2 Construct Models and Uncertainty Representations . . . . . . . . . . . . 19

1.3.3 Analyze Model Accuracy and System Properties . . . . . . . . . . . . . 21

1.3.4 Construct and Evaluate the Control System . . . . . . . . . . . . . . . . 23

1.3.5 Summary: The Iterative Design Procedure When Using Mathematical
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.6 Methodology Without Mathematical Models: The Use of Heuristics . . 28

1.4 Complex Hierarchical Control Systems for Automation . . . . . . . 31

1.4.1 Functional Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.2 Organizing the Controller Functional Architecture . . . . . . . . . . . . 35

1.4.3 Fundamental Operational Characteristics . . . . . . . . . . . . . . . . . 36

1.4.4 Example: Building Temperature Control . . . . . . . . . . . . . . . . . . 37

1.4.5 Example: Intelligent Transportation Systems . . . . . . . . . . . . . . . 39

1.5 Design Objectives for Automation . . . . . . . . . . . . . . . . . . . . 41

1.6 Software Engineering for Complex Control Systems . . . . . . . . . 43

1.6.1 Software Engineering Methods . . . . . . . . . . . . . . . . . . . . . . . 43

1.6.2 Software Vs. Control Engineering Methodologies . . . . . . . . . . . . . 47

1.6.3 Complex Control System Design Methodology . . . . . . . . . . . . . . 47

1.7 Implementing Complex Control Systems . . . . . . . . . . . . . . . . 50

1.8 Hybrid System Theory and Analysis . . . . . . . . . . . . . . . . . . . 51

1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



1.1 The Role of Traditional Feedback Control Systems in Automation 9

Automation has had, and will continue to have, a significant impact on soci-
ety. Starting with the industrial revolution, fueled by the computer revolution,
and continuing today in many roles in the commercial and industrial sectors,
automation has played a key role in business, industry, and national economies.
It has provided many benefits and associated problems (e.g., adverse environ-
mental impacts). In this book we focus on the use of computers to achieve
automation, with special emphasis on the development of computer programs
(algorithms) called “controllers” that take a central role in coordinating and
specifying the behavior and ordering of activities in automated systems. Con-
trollers currently play a key role in many automated systems such as modern
manufacturing systems (e.g., in fine positioning of robot arms and in sequenc-
ing operations on assembly lines), automotive systems (e.g., engine, transmis-
sion, and brake system controls), aircraft (e.g., engine and flight controls), au-
tonomous vehicles (e.g., land-based or underwater), and chemical processes (e.g.,
to control temperature of a batch of reacting chemicals), to mention a few.

“Control” is in fact a very generic term that is used in many ways in computer
automation, and in everyday life. For example, there are “micro-controllers”
that are multifunction computer chips used in a wide variety of industrial and
commercial applications (for us, these provide a way to implement the algo-
rithms we focus on developing). Sometimes, in computer systems, a “controller”
is part of the software or hardware that influences or guides the behavior of
other subsystems. For instance, there are “controllers” in various components
of operating systems or databases. Moreover, we encounter the operation of
controllers quite frequently in our daily lives. There are controllers for dispens-
ing soft drinks when enough money has been put in a machine, and there are
traffic controllers that decide how to switch traffic lights given information about
traffic loading conditions. Notice that in each case the controller is needed to
make the system function properly, it plays a central role in the implementation
of the system, and it provides some useful type of automation. We do not omit
from consideration all these types of controllers; however, you will see that we
will pay special attention to controllers for certain types of dynamical systems,
and ones that use information “fed back” from the system in order to make
decisions.

1.1 The Role of Traditional Feedback Control
Systems in Automation

Control plays a central role in automation. Here, we outline traditional feed-
back control systems, the “work horse” central to many automated processes.
Following that, we outline how controllers are increasingly becoming central to
the automation of complex industrial processes. As technology has progressed,
higher levels of automation have been achieved, and control is playing even more
complex roles in such systems.

In this book we shall be primarily concerned with “feedback control sys-
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tems,” where some variable of the process is sensed and a controller tries to
manipulate some input to the process (often called the “plant” by analogy with
the plant in chemical process control) so that the sensed variable is regulated
to some value. Some examples will serve to solidify the idea.

First, consider temperature control in a home as shown in Figure 1.1(a). For
this, there is a thermostat where you can set the desired temperature (sometimes
called the “set point” or “reference input”), and that normally holds a temper-
ature sensor that measures the actual temperature. Then, via furnace or air
conditioner controls (the “actuators,” i.e., the devices that carry out the action
specified by the control input), the control algorithm turns on the heat (turns
off the cooling) when the temperature gets below the specified temperature set-
point, and turns it off (in the case of cooling, turns it on) when the temperature
goes above the set point. It tries to maintain the sensed temperature as close to
the desired temperature as possible, even if there are significant “disturbances”
such as changes in the outside (ambient) temperature, the presence of people or
other heat sources such as appliances, or the opening and closing of doors and
windows. In older implementations of temperature controls, a mechanical or
other electrical system is used; however, in some modern systems the controller
is implemented in a computer algorithm. The computer algorithm that gath-
ers the sensed temperature information and sends signals to switch the furnace
(or air conditioner) on or off is a “controller,” or what is sometimes called a
“control algorithm.” The algorithm is the central element in the temperature
control system for your home. If designed properly, it will ensure comfort and
efficient operation (to keep your utility bills low and conserve energy). The use
of such temperature control systems in homes has relieved humans of the task
of continually regulating the temperature (e.g., by putting more logs on the fire
or opening a window) and provided for comfortable living spaces.

Feedback controllers are
decision-making systems
that gather information
from the environment to
decide how to change it
to achieve some goal.

Second, consider the cruise control system on an automobile as shown in Fig-
ure 1.1(b). For this, there is a way that the driver can input the desired speed,
typically, via a mechanism on the steering column. There is a speedometer that
can measure the speed of the vehicle. Then there is often a computer that au-
tomates the function of regulating the vehicle speed to the desired speed (early
implementations were entirely mechanical, or done with circuits, not comput-
ers). This computer takes the desired speed and sensed speed and decides what
throttle input to produce to ensure that the sensed speed “tracks” (follows) the
desired speed. A good cruise control system will succeed in regulating the speed
even if there are significant disturbances such as road grade variations, wind, or
“plant parameter variations” such as changes in the weight of the vehicle (via
the addition of cargo or passengers). A cruise control system provides a useful
automation service that relieves the driver of a tedious speed regulation task.

It is an interesting and important fact that while at first glance temperature
and speed control may appear to be very different problems, the two fit nicely
into the same sort of “functional block diagram” as shown in Figure 1.1, and at
a conceptual level, operate in a similar fashion.

The basic problem studied in this book is how to design the controller to
achieve certain “design objectives” for a given plant. While this may appear
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Figure 1.1: Example control systems: (a) temperature control in a home, and
(b) cruise control for an automobile.

to be a simple task in some cases, in practical applications there are many
complicating factors. In the next section we explain how the process to be
controlled can be quite complex, thereby dictating certain complexities in the
controller. In Section 1.2 we highlight the wide variety of design objectives
that arise for real-world applications. From these you will begin to see how
complicated the controller design task can be; challenging design objectives
typically create a challenging design problem. Next, in Section 1.3, we outline
the standard methodology that is used to design control systems. This will
further clarify the challenging nature of the design problem by pointing out
the issues involved in making sure that a control system will perform according
to the specifications while in operation, where it may be subjected to adverse
conditions and other unforeseen situations.

1.2 Design Objectives for Control Systems

Assuming you use feedback control, the design objectives (also called “closed-
loop specifications” or “performance objectives”), i.e., what you want the control
system to achieve, can involve the following factors, each explained via the
temperature or automobile cruise control examples of the previous section.
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1.2.1 Tracking

Often, one of the primary reasons for implementing a feedback control system
is to automate the process of “tracking” the reference input signal. Tracking
refers to the ability of the controller to manipulate the plant input so that the
plant output stays as close as possible to the reference input. For the examples
of temperature and cruise control in the last section, the controllers typically
try to achieve tracking of constant signals that are changed infrequently. For
instance, you will often set the desired temperature in your home and leave
it at that value for weeks or months. In your automobile you may drive to a
highway and then set your desired speed and leave it there for an hour or more.
However, this is still considered to be a tracking problem. There are typically
environmental effects that move the output from the set point, and the control
system must then manipulate the control input to move the output back to the
set point. For instance, in temperature control there can be doors and windows
that are opened and closed and also natural ambient temperature influences.
For the cruise control problem, while driving with a constant speed set point
you may encounter a hill so that the controller will have to increase the throttle
to keep the speed constant going up the hill, and then decrease it to maintain
constant speed going down the hill.

There are many other types of tracking problems, some that require con-
tinuous tracking of a dynamically changing reference signal. For instance, you
are engaged in a type of tracking problem right now! You have an objective
of reading these lines and to do so you have generated a type of reference in-
put to your eyes and the muscles there move your eyes to the desired point.
Humans perform many types of tracking activities (e.g., in baseball when the
hitter tries to “keep his eye on the ball”). In technological applications there
are many instances where we want to achieve tracking. For instance, in aircraft
flight control there may be a flight path that minimizes fuel consumption or
travel time, and the control system flies the plane to track this trajectory, even
if there are wind disturbances and air density changes. Similar examples exist
for autonomous vehicles and other applications.

Tracking, the ability to
produce inputs that guide
the plant to produce
desired outputs, is often
a central objective.

Finally, it is important to note that without feedback control, it is impos-
sible to achieve tracking, or at least it can be very difficult if there are certain
adverse conditions as we discuss below. When a feedback signal is not used, the
controller is called a “feedforward controller,” the resulting control system is
called an open-loop control system, and one such system for the cruise control
problem is shown in Figure 1.2. Here, we remove the feedback path, and hence
we can save the expense of implementing a speed sensor (yes, feedback control
generally costs money since you need to implement a sensor to provide the feed-
back information). There are times when such “open-loop” control systems are
useful, particularly when it is possible to specify sequences of inputs indepen-
dent of what happens in the plant. However, for the cruise control application,
if you start going up a hill and the desired speed is held constant, then without
a speed sensor (or other sensor) and feedback path, the controller cannot know
that the speed of the vehicle has decreased so it will not increase the throttle
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to counteract the road grade change and keep the velocity at the desired set
point (i.e., the desired speed cannot be tracked). With feedback control, when
we start going up a hill, the controller will slightly increase the throttle to try to
keep the vehicle at the desired speed. Also, if we start going down a hill and the
desired speed is held constant and the speed increases above the set point, then
the throttle input can be decreased to reduce the speed to the desired value.
Clearly, however, control system tracking abilities in this case will be limited by
the steepness of the hills the car encounters.
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Figure 1.2: Feedforward cruise controller for an automobile.

1.2.2 Reducing Effects of Adverse Conditions

One of the key features of a feedback control system is its ability to reduce
the effects of certain adverse conditions and uncertainty that can arise in the
plant and its environment. If a control system has such capabilities it is said to
be “robust” and a controller that acts to achieve these features is said to be a
“robust controller.” Consider the following properties that we typically want a
control system to achieve:

The ability to achieve
good performance, even
in the presence of
adverse plant conditions,
is often a central
objective.

• Disturbance rejection properties: For the cruise control problem, the abil-
ity to reject disturbances could mean that the control system will be able
to damp the effects of winds or road grade variations (which are “uncer-
tainties” since we normally do not measure these and use them in making
control decisions). Basically, the need for disturbance rejection demands
the use of feedback control. To achieve disturbance rejection, it is neces-
sary to take the appropriate steps during controller design to ensure that
this property is met.

• Insensitivity to plant parameter variations: For the cruise control problem,
insensitivity to plant parameter variations means, for instance, that the
control system will be able to compensate for changes in the total mass
of the vehicle that may result from varying the number of passengers or
the amount of cargo. Again, note that since we do not normally measure
the number of passengers and the weight of the cargo, we view them as
providing influences on the performance of the control system that are
“uncertain” in the sense that we do not know the timing or extent of their
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influence a priori. Typically, it is impossible to achieve an insensitivity to
plant parameter variations without using feedback information from the
plant.

To expand on our example, suppose that a person without cargo takes a
ride in a vehicle on a long stretch of flat land (e.g., western Kansas) and holds
the throttle input constant so that she is going exactly 75 mph, which is also
the desired speed set point. Next, suppose that she repeats the experiment
with everything the same (in particular, the throttle setting), but adds three
other people and their heavy luggage. Clearly, with the same throttle input, the
speed will be lower since the engine has to work harder to keep the same speed
with a heavier load (e.g., the tires will press more firmly on the road, making
them more difficult to turn). Moreover, this scenario can be used to emphasize
the ability of a feedback control system to reduce the effect of disturbances.
Notice that if she repeats the experiment but has a strong constant head wind
(common in Kansas) rather than a calm day, then clearly the speed will be lower
if the throttle remains the same. If we use a feedback controller in each of these
cases, the speed sensor would provide an indication that the speed decreased,
and then the controller would provide an increased throttle input to maintain
the desired speed.

1.2.3 Behavior in Terms of Time Responses

While the abilities to achieve tracking and reduce the effects of adverse con-
ditions are some of the key features of feedback control systems, the behavior
of the system, in terms of shapes of time responses of system signals, is usu-
ally used to specify how we want a closed-loop system to behave. Some of the
most important ways to characterize the behavior of systems are given in the
following, using the cruise control example discussed earlier:

Quality of system
behaviors is often
represented via
characteristics of its
dynamical operation.

• Stability: In the cruise control problem, having a stability property could
guarantee that on a level road the actual speed will converge to the desired
set point. There are, however, many ways to characterize stability, so that
in other contexts “stability” may simply mean that all the system variables
remain bounded by a fixed constant. Or, an oscillating signal could be
considered “unstable.” In the cruise control example, suppose that the
desired speed is 75 mph and consider Figure 1.3. In each of the four plots,
the solid thick line represents the desired speed we would like to track.
Then, in Figure 1.3(a), we show three types of responses that could be
considered to be “unstable.” In one, the actual speed does not converge
to the desired speed but to a different constant value. In another, the
speed oscillates between zero and about 90 mph, and in yet another, the
speed appears to quickly grow unbounded (obviously, in the actual system
there would be limits to how big it could get). We would normally want to
design our control system so that the closed-loop system does not exhibit
unstable behavior.
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(b) Rise-time and overshoot.
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Figure 1.3: Desired speed (thick solid line at 75 mph) and possible closed-loop
time responses resulting from different controller designs. The plots are of the
vehicle speed while the cruise control system is in operation.

• Rise-time: For example, in the cruise control problem, rise-time is a mea-
sure of how long it takes for the actual speed to get close to the desired
speed when there is a step change in the set point speed (e.g., the time
to go from 10% of the final value of 75 mph to 90% of the final value).
In Figure 1.3(b), we show three different responses with three different
rise-times, some longer than others. Clearly, a short rise-time would nor-
mally be considered to be the best; however, physical characteristics of
the vehicle (e.g., the size of the engine) will limit how short the rise-time
can be.

• Overshoot: For example, in the cruise control problem, when there is a
step change in the set point, overshoot is a quantification of how much the
speed will increase above the set point. In Figure 1.3(b), we show three
different responses with three different amounts of overshoot, some larger
than others, and one with no overshoot. Clearly, too much overshoot
is not good, as you could get a speeding ticket if it is too large. Note
that when we get a better (smaller) rise-time, we get a worse (larger)
overshoot. There is a “trade-off” between these two design objectives, and
such trade-offs are often encountered in control system design. Creating
a good control design often amounts to achieving an appropriate balance
between competing objectives.
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• Settling time: For example, in the cruise control problem, settling time is
the amount of time it takes for the speed to become within 1% of the set
point. In Figure 1.3(c), we show three different responses with three dif-
ferent settling times, some longer than others. Clearly, we would typically
like to have a short settling time; however, as shown in Figure 1.3(b), if
you get a short rise-time it can sometimes be more difficult to get a short
settling time.

• Steady-state error: For example, in the cruise control problem, if you
have a level road, can the error between the set point and actual speed
actually go to zero? Or, if there is a long positive road grade, can the
controller eventually achieve the set point? In Figure 1.3(d), we show
three different responses with three different steady state errors. Clearly,
we would typically like to have no steady state error, or at least a very
small one, independent of the desired speed. Special attention must be
paid to this performance objective in design to ensure that this property
holds.

Generally, when we begin the design process we may have in mind the many
possible time responses that we might get for different controller choices (e.g., all
the ones shown in Figure 1.3). In the design problem, we try to pick a controller
so that a response is obtained that meets the performance objectives; we design
the controller so that it provides a response in Figure 1.3 that represents that the
cruise control system will behave properly. It is important to note that it is not
sufficient to simply achieve a single adequate response for one set of conditions.
The actual objective is to achieve this response, or something close to it, even
if there are disturbances, plant parameter variations, or sensor noise. In other
words, we would like the performance, in terms of time responses, to be “robust”
to many different conditions, including adverse conditions. We also want to have
stability be robust under these same conditions. The problem of achieving such
performance and stability robustness goals significantly complicates the control
design problem; indeed, it is often the central issue to focus on in design.

Finally, note that in practical control systems there are many other design
objectives; we will discuss some of these for complex hierarchical control sys-
tems in Section 1.4. Moreover, in the next subsection we provide some general
engineering goals.

1.2.4 Engineering Goals for Control Systems

While the above factors are used to characterize the conditions that are typically
used to indicate whether or not a control system is performing properly, there
are other issues that must be considered that are often of equal or greater
importance when you develop control systems. These include the following:

There are many broader
engineering goals that
are critical to recognize
in practice.

• Cost: How much money will it take to implement the controller, or how
much time will it take to develop the controller? Costs of sensors, actua-
tors, the controller, and other interfaces must be taken into consideration.
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Also, the number of person-years needed for development, implementa-
tion, commissioning, and maintenance must be considered.

• Computational complexity: How much processor power and memory will
it take to implement the controller? In some practical applications, con-
trollers can quickly burden the available processors (e.g., in current auto-
motive applications, relatively simple inexpensive processors are used to
achieve a variety of control functions in the engine, transmission, etc.).
Clearly, in such situations, the concerns of computational complexity can
significantly impact how you design your controller.

• Manufacturability: Does your controller have any extraordinary require-
ments with regard to manufacturing the hardware that is to implement
it? It should be designed so that it is easy to manufacture.

• Reliability: Will the system always perform properly? What is its “mean
time between failures”? What causes these failures? Sensors, actuators,
communication links, or controller? How can you design the system so
that the number of failures is minimized? This can be particularly impor-
tant in safety-critical applications such as aircraft control where redun-
dant hardware is often used. Is your controller simply “too aggressive”?
Does it try to achieve the best possible time responses, without giving
enough attention to the need to be conservative to ensure that adverse
conditions will be adequately dealt with, even ones that you cannot envi-
sion at this time? Sometimes experienced control engineers express such
concerns when a new controller is developed and there are extraordinary
performance claims.

• Maintainability: Will it be easy to perform maintenance and routine ad-
justments to the controller? As we discussed earlier, extra code is often
added to the controller for a maintenance interface.

• Adaptability: Can the same design be adapted to similar applications so
that the cost of later designs can be reduced? For instance, for the cruise
control problem, will it be easy to modify the controller to fit on different
vehicles so that the development can be done just once (this is sometimes
called the “calibration problem”)? The control engineer then views her
task as that of designing one controller that fits all the plants in a certain
class (e.g., all mid-sized vehicles that they produce). In practice, the
design is sometimes provided with a set of instructions on how to tailor
the design to each particular application.

• Expandability: How much redesign work will we have to do to be able to
add new hardware or functionality to the control system? Will we have to
start over? Or, are the existing controller’s functions and code established
in a manner that makes it possible to easily add new functionality? Is the
control system easy to interface to other systems (is it open?)?
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• Understandability: Will the right people be able to understand the ap-
proach to control? For example, will the people who implement, maintain,
or test it be able to fully understand it? The importance of this character-
istic cannot be overstated for some applications. You may have the best
controller imaginable, but if it cannot be clearly explained to certain key
personnel, it will not be chosen for implementation.

• Politics: Is your boss biased against your approach? Can you sell your ap-
proach to your colleagues? Is your approach too novel and does it thereby
depart too much from standard company practice? Is your approach too
risky?

Not only must a particular approach to control satisfy the basic performance
objectives, but the above issues must also be taken into consideration; these can
often force the control engineer to make some very practical decisions that can
significantly affect how, for example, the ultimate cruise controller is designed.
It is important, then, that the engineer has these issues in mind early in the
design process to ensure that the best possible controller is delivered.

1.3 Control System Design Methodology

When confronted with a control problem, a control engineer generally follows a
relatively systematic design procedure. In this section we outline this procedure.

1.3.1 Understand Plant and Specify Design Objectives

For our simple example of automobile cruise control, the control engineer first
seeks to gain an intuitive understanding of the plant’s dynamics as shown in
Figure 1.4. This often occurs by having the control engineer involved in the
design of the plant, or at least she should talk to the designers or study the plant
specifications. Moreover, she may enhance her understanding by performing

Modeling forms the
foundation for control
design methodology. No
model is perfect;
however, even
uncertainties can be
represented so that they
may be considered in the
design process.

experiments with the plant, or by observing it while in operation, possibly
with an existing control system she is trying to improve the performance of.
After gaining a clear understanding of the plant’s operation, capabilities, and
limitations, the control engineer should establish the design objectives (and
sometimes there are iterations needed to come to a clear enough understanding
of the plant in order to make a reasonable statement of the control objectives).
Sometimes, this task is left entirely to the control engineer, and other times it
involves the customer and possibly management. The design objectives could
include many aspects, and many possibilities were discussed in the last section.
In some projects, the engineer may be able to request that improvements be
made to the plant (e.g., via improved or additional sensors or actuators) to
make sure that the design objectives can be met. Other times, the control
engineer may have to “soften” some design objectives, even late in the design
process, if it appears to be impossible to meet the objectives.
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Figure 1.4: Early steps in the control system design procedure.

1.3.2 Construct Models and Uncertainty Representations

The modeling steps that are used are depicted in Figure 1.5. We will discuss
these steps in the context of the automobile cruise control problem presented
earlier. Typically, the modeling process begins with the development of a “truth
model” of the automobile dynamics (which may model vehicle and power train
dynamics, the effect of road grade variations, wind effects, weight changes in
the automobile, etc.) that you generally try to make as accurate as possible (so
that it represents the truth). Generally, physical modeling principles, “system
identification” (see references in the “For Further Study” section at the end of
Part I) using data from the system, and approximations are used to specify the
truth model. The final form of the truth model may be a computer program
that simulates the system on a digital computer, an analog computer simulation,
a scaled-down hardware model, or a combination of these. Currently the most
common choice is the use of a simulation program on a digital computer.

It must be emphasized that the truth model cannot be made to be perfectly
accurate. It is a model, and even if actual plant data is used in its specification,
there will always be some characteristic of the plant that is being ignored in
the specification of the truth model. It is important to recognize that the
richness of possible behaviors of the plant can only typically be captured by
setting various parameters in the truth model and executing the model many
times (e.g., changing the wind effects on the automobile and considering all
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Figure 1.5: The modeling procedure.

the different effects that different wind speeds and directions can have). A
good truth model will model “adverse” conditions, disturbances, noise, plant
parameter variations, etc. We think of this as a model of the uncertainty in the
physical process. Finally, we note that there are certain applications where a
truth model is not produced, and this will be discussed more below. Basically,
you only produce the truth model if you will need it somewhere in the design
process.

One place where a truth model is sometimes used is in the process of pro-
ducing a “design model.” A design model is normally a simplified version of the
truth model and it is used in the controller synthesis procedure. It is simplified
by using approximation methods such as model order reduction or lineariza-
tion. Normally, it is simpler than the truth model since controller synthesis
procedures typically require certain forms of mathematical models (e.g., linear
or affine nonlinear models). Sometimes, the design model is produced directly
without the development of a truth model. Often, the design model may in-
clude some type of representation of uncertainty, but not as detailed as one
for the truth model. This “uncertainty model” may be a noise model, it may
incorporate certain unknown but bounded additive or multiplicative terms, or
other features. The uncertainty model that is used as a component of the de-
sign model should generally be simpler than the one in the truth model (e.g., it
may be linear), but still capture the truth model and plant uncertainties (but
of course this may not be possible since the plant is nonlinear, so uncertain-
ties often enter in a nonlinear fashion and can only be modeled accurately that
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way). Regardless, by incorporating representations of uncertainty into the truth
and design models, and thereby later taking the uncertainty into account in the
controller design process, it is hoped that a “more robust” control system is
realized. (Here by “more robust,” we mean that we can increase the size of
the disturbance or perturbation, or the amount of uncertainty, and it can be
tolerated in the sense that performance or stability will not significantly suffer.)

1.3.3 Analyze Model Accuracy and System Properties

The steps are illustrated in Figure 1.6. First, evaluation of model accuracy is
a very important step in the design process since if you design based on the
model(s), and the model(s) is (are) not sufficiently accurate, then the designed
controller is not likely to succeed. The typical approach to study model accu-
racy is to use analytical methods and also perform repeated simulations and
comparisons to actual plant data, especially under a variety of conditions to
study the accuracy of the uncertainty model. The problem is, however, that the
model cannot be perfect, and it is difficult to know how accurate it must be to
develop a good controller. For the truth model, we generally aim to create the
most accurate model possible. For the design model, we make explicit choices
to ignore certain aspects of the system dynamics in order to make the control
design procedure feasible. Ultimately, however, our inability to know how ac-
curate our model must be is one of the key reasons why iteration is needed in
the overall design process.

A model should be
simple, but accurate
enough to succeed in
control design.

Often, before starting the controller construction process, the control engi-
neer will analyze system properties to gain insights into how the plant behaves.
This analysis may be conducted on the truth model or the design model, and in
fact can lead to adjustments of the design model if it does not exhibit the same
essential properties as the truth model. Typical system properties studied for
the design model include the following:

Models help provide
intuition on how the
plant behaves.

• Stability: Is the plant stable? If you provide it a bounded input, will it
produce a bounded output? If you start its operation near an “equilib-
rium” (i.e., values of the system variables where the system will not move
from when placed there), will it stay close to the equilibrium (stability in
the sense of Lyapunov) and will it converge to the equilibrium (asymptotic
stability)? Unstable plants can present challenges for certain applications.

• Controllability: Are the “states” of the plant (certain system variables)
able to be steered by the control inputs to any location you would like
them? If you cannot steer the system state to certain places, you may not
be able to meet certain control objectives.

• Observability: Can we see where the states are, or have been, by observing
the plant inputs and outputs? If you cannot determine where a state is,
then it may be impossible to know how to steer it to where you want it, so
certain objectives may be impossible to achieve. Moreover, if some state
(system) variable can become unbounded without proper control and that
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Figure 1.6: Model evaluation and adjustment process.

variable is not observable, then it is clear that the control method cannot
be successful.

• Rate of operation: How fast can the system react to the inputs? What
types of transient behavior are expected?

This list is certainly not exhaustive (e.g., minimum phase characteristics, stochas-
tic effects, etc., are also important for some applications).

For most control methods to be applicable, some of the above properties must
hold (e.g., you may need a controllable system to be able to apply the synthesis
procedure). Understanding the above properties helps the designer know which
approach to use and what issues to pay special attention to. Moreover, it alerts
the engineer to the times when a plant redesign may be needed to be able to
achieve the control objectives. For instance, it may indicate that another sensor
must be purchased and implemented to make sure that some key variable is
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observable. Or, it may mean that we need to add an actuator to ensure that
we can properly steer the state. Other times, such analysis or simulation with
the truth model may indicate that we need a more accurate sensor or a faster
actuator. Sometimes such analysis can even indicate that the plant itself needs
to be redesigned to make it possible for the controller to achieve its objectives.

1.3.4 Construct and Evaluate the Control System

Next, the designer constructs a controller and evaluates it using mathematical
analysis, simulations, and experimentation. The overall procedure is outlined
in the flowchart in Figure 1.7, and is discussed next.

Control design /
redesign

Mathematical and simulation
studies of performance

Controller implementation
and evaluation

Control system

Truth and design models

Figure 1.7: Controller construction and evaluation process (for convenience, it
ignores the possibility of iterative improvement of models).

Controller Synthesis

At this step, we use the design model to construct the controller. Conventional
There are many
successful conventional
control design
methodologies, and some
control problems are
candidates for more than
one method.

control has provided numerous successful methods for constructing controllers
for dynamic systems from models. Some of these are listed below, and we
provide a list of references at the end of this part for the reader who is interested
in learning more about any of these topics. We highlight these methods here so
that the reader is aware of the rich body of concepts and methods that have been
used in the past and are currently being used to design control systems. The
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focus of this book is not on these methods, even though many of these methods
form a foundation for the intelligent control methods studied here. The popular
conventional control methods are the following:

• Proportional-integral-derivative (PID) control: A high percentage of the
controllers in operation today are PID controllers (or at least some form of
PID controller like a P or PI controller). This approach is often viewed as
simple, reliable, and easy to understand. Often, heuristics are used quite
effectively to tune PID controllers (e.g., the Zeigler-Nichols tuning rules).

• Classical control: Lead-lag compensation, Bode and Nyquist methods,
root-locus design, and so on.

• State-space methods: State feedback, observers, and so on.

• Optimal control: Linear quadratic regulator, use of Pontryagin’s minimum
principle or dynamic programming, and so on.

• Robust control: H2 or H∞ methods, µ-synthesis, quantitative feedback
theory, loop shaping, and so on.

• Nonlinear methods: Feedback linearization, Lyapunov redesign, sliding
mode control, backstepping, and so on.

• Adaptive control: Model reference adaptive control, self-tuning regulators,
nonlinear adaptive control, and so on.

• Stochastic control: Minimum variance control, linear quadratic Gaussian
(LQG) control, stochastic adaptive control, and so on.

• Discrete event systems: Petri nets, automata, supervisory control, in-
finitesimal perturbation analysis, and so on.

• Hybrid systems: Control of systems that can most conveniently be rep-
resented by a combination of continuous time differential equations and
discrete event system models.

For some classes of design models, the construction procedure is entirely sys-
tematic (mechanical) and many computer-aided control system design software
packages are available, but most of the time the controller construction process
is iterative. The iterations begin by constructing a controller, then performing a
preliminary evaluation of whether some of the performance objectives are met.
Typically, even if the evaluation is only made with respect to the design model,
there is a need to tune the design by adjusting some design parameters, at least
to shape the transient response. Use of the truth model or experimentation may
indicate the need for additional tuning or redesign, as we discuss next.
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Analysis of Closed-Loop Control System Performance

When a controller that seems to be a viable candidate is constructed, it is
normally evaluated via mathematical and simulation-based analysis before im-
plementation. Normally, mathematical studies are conducted using the design
model, while simulation-based evaluations are done using the truth model.

Analysis entails the use
of mathematics,
simulations, and
experimentation; each
has its own advantages
and disadvantages.

Sometimes, the design procedure is guaranteed via mathematical proofs to
result in a stable control system. Other times, stability of the closed-loop system
must be studied after the controller is constructed. Many types of mathematical
nonlinear analysis can be used to verify the performance of the closed-loop
system, but its form is typically dictated by the form of the mathematical design
model used. For instance, if a linear design model is used, then there is a rich set
of tools for the analysis of system properties. When an affine nonlinear design
model that satisfies certain assumptions is used, there are generally fewer tools,
but several sorts of analysis are still possible (including stability analysis). Some
mathematical approaches can actually be used to show that the performance
of the system will be maintained even in the presence of uncertainty (using a
model of the uncertainty).

It is important to emphasize, however, that any conclusions you reach via
mathematical analysis are only for the mathematical model (e.g., stability is
a property of the model) and not necessarily for the physical system. If the
design model (perhaps including a model of uncertainty) you use in the math-
ematical analysis is a very accurate representation of the physical system, then
you can generally transfer your conclusions to the physical system (assuming,
of course, that a proper implementation of the controller is achieved). On the
other hand, as is typical in practical applications, if the design model has signif-
icant inaccuracies, then we cannot automatically expect that the properties we
find to hold for the design model will hold for the physical implementation of
the control system. This is why even though fewer analysis tools are available
when a nonlinear design model is used, it is generally a more accurate model, so
such analysis can certainly be valuable. Indeed, one main goal of the research
community is to develop modeling, analysis, and design tools for as general of a
class of nonlinear (and uncertain) models as possible (the research is considered
mostly complete for the linear plant case).

There is a similar problem in transferring conclusions of analysis via the
simulation-based study of performance with the truth model. The accuracy
of the truth model will dictate how valid it is to transfer our analysis conclu-
sions to the physical control system. If we have a very accurate truth model,
then the conclusions of the analysis will tend to transfer to the physical system;
however, if the model has inaccuracies, the conclusions may not be valid for
the physical system. Moreover, there is an additional complication. Simula-
tions are only conducted for a finite amount of computer time, and only a finite
number of simulations can be conducted. Hence, even if your truth model is
extremely accurate, it is impossible to completely evaluate the effects of dis-
turbances, noise, and adverse conditions on the performance of the closed-loop
system. Hence, while a complicated model of system uncertainties can be used
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in the truth model, it is typically impossible to fully exercise this model to com-
pletely evaluate the robustness of the closed-loop system. Generally, we use the
simulation-based analysis method simply to improve our confidence that the
closed-loop system will perform properly.

Experimental Evaluation of System Performance

Next, the control system is implemented and evaluated, and we try to design ex-
periments to test whether the closed-loop system meets the required objectives,
and whether it seems to be robust in achieving this performance. Given a finite
amount of resources and deadlines that the control engineer must meet, clearly
it is impossible to test every aspect of the control system, such as the influence
of every possible plant parameter variation or disturbance. This is where the
mathematical and simulation-based analysis done earlier can help to raise our
confidence that the physical control system will behave as expected.

Typically, at every stage of the process, and particularly at the implementa-
tion stage, problems may be uncovered that require us to return to some earlier
design stage and repeat design steps. There is an attempt to make the con-
trol design process completely systematic so that it will succeed the first time,
but due to model inaccuracies and unexpected adverse conditions, it is virtu-
ally always necessary to tune the implemented controller using clever heuristics
and insights gained earlier in the design process. We cannot overemphasize the
importance of understanding the plant very well, how various controllers have
operated on the plant in the past, and the conditions that can arise and result
in degraded performance.

Basically, the design procedure is concluded when the engineer has demon-
strated that the control objectives have been met, and the controller (the “prod-
uct”) is approved for manufacturing and distribution. Next, we summarize the
iterative design process.

1.3.5 Summary: The Iterative Design Procedure When
Using Mathematical Models

To summarize the controller design process, we provide the flowchart in Fig-
ure 1.8. This flowchart basically outlines the general steps used to construct
control systems. We start with a process (plant) for which we want to achieve
some type of automation. We gain an intuitive understanding of the plant and
establish the performance objectives. We model the plant, often producing both
truth and design models, but sometimes just one of these. We test the validity
of the model(s) and study properties of the system. Next, we use the design
model to construct a controller, but of course the truth model can be used in
simulation for controller tuning. We evaluate the control system using math-
ematical and simulation-based approaches, and if it is not possible to produce
an acceptable design, we may refine the control objectives (usually in consul-
tation with the customer and only after significant design efforts, and when
we gain some confidence that the current design objectives are impossible to
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meet), change the model(s) (e.g., by adding the representation of an additional
plant characteristic that the controller must accommodate for), or redesign the
controller (possibly with a different controller synthesis technique). Next, when
we have an acceptable design, we implement it and evaluate whether it works
properly for the actual physical system. If it does not, we may have to change
the design objectives or model(s), or redesign the controller. The final product
is the control system that provides the originally desired automation function.

Process in need of 
automation

(plant)

Modeling

Control design /
redesign

Mathematical and simulation
studies of performance

Controller implementation
and evaluation

Control system for automation

Gain intuitive understanding
of the plant

Specify design objectives

Figure 1.8: Flowchart of control system design steps.
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1.3.6 Methodology Without Mathematical Models: The
Use of Heuristics

Suppose that it is difficult, impossible, or undesirable to develop a mathematical
model of the process to be controlled. Difficulties in creating a model may arise

In many practical
control problems it is
difficult or impossible to
obtain a mathematical
model and in this case,
we rely on the use of
heuristics for control
design (e.g., in PID
control).

simply due to the time and expense required to develop a good model. Other
times, the process to be controlled is extremely complex and the physics of
various components of the process may not be well-understood, and this can
make it difficult to produce an accurate enough mathematical model (in control
engineering practice, this is a well-recognized problem). Still other times, the
performance requirements are not very demanding, and hence it is possible to
avoid the modeling process and heuristically construct a controller that will
perform “good enough.” In such a case, if a model is not needed to construct a
controller, there is simply no need to produce it. The plant may simply demand
some cleverly constructed rules on how to control it, and we may not need a
mathematical model to assist in the construction of such rules, or the later
evaluation of the resulting control system (for more discussion on this, see [2]).

Heuristic Control Design Methodology

How does the control design process change if you do not have (or use) a math-
ematical model? The design process for this case is shown in Figure 1.9. Typi-
cally, we need to gain an intuitive understanding of the plant before we can write
down the design objectives, but sometimes there is iteration between these two
stages. The step where we gain an intuitive understanding of the plant is quite
important, as it provides the information that allows us to construct a controller
in one of the two following ways:

• Sometimes there is a human operator who has been manually performing
the control task and who is considered an “expert” at conducting this
task. If there is such a person, then the control engineer can interview
him and code his knowledge into the controller to automate his control
task.

• Other times there is no such expert human operator, just the control
engineer who has insights into how to properly control the process. In
this case, the engineer simply writes down her intuitive ideas about how
to control the process, and directly implements these.

We evaluate the performance of the closed-loop system via implementation
studies, and iterate on the design process as needed. As for the conventional
control system design methodology where mathematical models are used, we
note that while the diagram indicates that you can change the design objectives
on every iteration, normally you would not do this until you have exhausted
many design possibilities and you gain some confidence that the stated design
objectives cannot be met (or can be modified to demand higher performance).
Typically, the iteration that is used the most is the one where we implement
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Control design /
redesign via heuristics

Controller implementation
and evaluation

Control system for automation

Process in need of 
automation

(plant)

Gain intuitive understanding
of the plant

Specify design objectives

Figure 1.9: Heuristic control design methodology.

the controller and then redesign using heuristics. The reason for this is that in
practice, most of the time we learn something from implementing and testing
some version of a controller, and this knowledge can then later be coded into the
controller to improve performance. We either learn via our own experimental
analyses, or via the assistance of a human operator who may help evaluate how
the controller emulates what she does when she controls it manually.

Now, notice that with no models, we clearly cannot conduct mathematical
or simulation-based analysis. The only way we can evaluate the performance
of the system is by implementing it on the actual system. Since we cannot
use mathematical or simulation-based analysis, we may not be as confident of
the performance of the resulting system; however, we must remember that such
analysis is only as valid as the model that was used to conduct it. Moreover, in
many practical applications, an implementation-based evaluation is sufficient to
convince us that we have a good design. Indeed, this is how PID controllers are
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typically designed in practice, and PID controllers account for a high percentage
of all controllers currently in operation! This methodology is certainly sound,
at least for some practical applications, even though it may not be acceptable
for some safety-critical applications.

Close Relationships With Traditional Design Methodology

It must be emphasized that the heuristic design methodology does not represent
a significant departure from standard control engineering methodology, where
mathematical models are used. What is different, is the explicit inclusion of

The heuristic design
methodology is quite
similar to one that relies
on the use of models.
After all, models are the
product of the use of
heuristics (“art”) and
science.

heuristics throughout the design process, not only at the end when you try to
implement and tune the controller on the physical process. (Of course, you
could view the use of models as equivalent to the use of heuristics because a
model can be viewed as a type of heuristic.) Even though we can use a heuristic
method for nonlinear controller construction, this does not in any way mean that
we are willing to ignore all the conventional control approaches discussed above.
While a heuristic method often provides a “first cut” at how to control a system,
and performs adequately for the first generation of the system, when more is
learned from how the controller operates on the actual physical plant, and more
time is dedicated improving the quality of the solution, it may be possible
to make incremental improvements, or perhaps a conventional approach may
emerge (e.g., importance of the problem may justify the expenditure needed
to develop a good model and a conventional method). Sometimes, however,
the opposite can occur: a crude mathematical model is used, a controller is
constructed, significant tuning/modifications are required to get a reasonable
level of performance, but ultimately the design is not satisfactory. Much is
learned in this process, and more heuristic ideas about how to achieve good
control are gathered, and then such ideas are used directly in a controller (e.g.,
in the form of rules).

Using a Truth Model in the Heuristic Control Design Methodology

Finally, we must highlight the following two important issues related to the
above design methodology, both of which highlight the fact that truth models
are sometimes used in the heuristic design methodology:

1. In practice, the above methodology is sometimes modified by producing
a truth model that can be used for simulation-based analysis and tuning
of the controller. Indeed, there are some applications for which significant
effort has been put into the development of truth models, and these models
are very accurate, but are sometimes not very useful in the conventional
control design process since determination of a useful design model is
difficult or impossible. Or, if it is possible, it only leads to controllers that
can provide a somewhat inferior level of performance (e.g., in this case, it
may be that design models that are compatible with controller synthesis
methods do not represent the essential characteristics of the system that
will lead to a successful controller design). Exercise 1.4 directs you to
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produce a flowchart describing the heuristic design methodology for the
case where a truth model is used.

2. In textbooks, it is convenient to present the design methodology when we
have a truth model, since then it is easy to assign homework problems,
and change plant conditions to illustrate various points about design that
would be difficult or impossible to illustrate for an actual experiment since
readers are not likely to have the same experiment at their disposal. Of
course, you could view our use of truth models as if we were working with
an actual experiment; however, it is certainly better to interpret them for
what they are, models, not the physical experiment, and remember that
upon implementation we can expect that we may uncover problems that
require us to iterate on the controller design.

1.4 Complex Hierarchical Control Systems for

Automation

In some practical applications, the plant is quite complex and hence, many addi-
tional functionalities are needed for automation beyond those used in traditional
single or even multiple loop or decentralized feedback control systems.

Experience has shown that it is often convenient to view the controller for
complex automation problems as being hierarchical as shown in Figure 1.10.
Each block in the figure represents a distinct function performed by the con-
troller and the arrows represent communication links, possibly between func-
tions implemented on computers in physically separated parts of the plant. For
illustration, we show three “levels” to the hierarchy, with higher levels generally
supervising the operation of the lower levels. The human interface here can be
quite complex. It could allow someone to monitor all aspects of operation of the

Computer
decision-making can be
very complex,
hierarchical, and
distributed, and be
designed to solve
complex automation
problems, even when the
“plant” contains
intelligent human
adversaries.

system via a graphical interface, provide the individual with information about
the overall health of the system, and work with the individual to specify rea-
sonable and achievable goals for automation. These goals are typically broken
down into subgoals, and the responsibility to meet these is then given to the
middle level. Then, the actions needed to meet the subgoals can often be broken
down and traditional control systems at the lowest level can be used to achieve
them, possibly with some coordination between the low level controls provided
by the middle level. Throughout the hierarchy there may be a need for a whole
variety of functions. For instance, there may be failure detection and identifica-
tion algorithms, estimators, pattern recognizers, optimization algorithms, etc.

Some examples of systems whose controllers can be viewed as hierarchical
are the following:

• Robots: For a robot that is modeled after a human, we have low level
algorithms at the robot extremities for force feedback functions in grasping
objects, higher level path planning functions for motions of the robot arms,
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Human

Process (plant)

Figure 1.10: Hierarchical control system.

and even higher level mission planning functions for setting overall goals,
coping with failures, and minimizing the use of resources.

• Autonomous vehicles (ground, air, or underwater): Here, there are the low
level control systems for vehicle guidance to keep the vehicle on the path
that is specified by a higher level route planner. There are subsystems for
failure handling, route optimization, multiple vehicle coordination, and
mission planning.

• Manufacturing and process control: Here, there are typically physically
distributed components of the overall process that require control systems
and signal processing. There is often a computer network that allows for
the coordination of plant-wide activities to meet overall system objectives.
Moreover, there is typically a well-developed user interface for the plant
operator.

• Networks of intelligent agents: The process that the hierarchical controller
interfaces to may not be just some piece of hardware; it could be composed
of hardware and some other intelligent (biological) agents. For instance,
there may be an adversary or adversaries that is part of the “process”
in Figure 1.10. In some cases, you may model them as being a type of
disturbance, while in other contexts, it is useful to represent them for
what they are: intelligent adversaries whose intent you may want to try
to model and counteract. In such formulations, “game theory” has proven
to be useful.

Next, we discuss architectures for hierarchical control systems and design method-
ology.
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1.4.1 Functional Architectures

This section serves as a general introduction on how to structure hierarchical
intelligent controllers. In several ways it is modeled on our treatment of tradi-
tional feedback control systems where we first explained the basics of control
systems, and how to draw the functional block diagram for those.

What Functions Are Needed for Control and Automation?

It turns out that in practical applications, it is often the case that components of
the overall automated process that are “traditional” feedback control systems
(e.g., the ones shown in Figure 1.1 on page 11) often comprise less than one
tenth of the overall code needed to implement the system. The remainder of
the code is used for a variety of functions, including the following:

• To interface to humans (e.g., for inputs to guide the operation of the
system, a graphical user interface, and perhaps a special mode of operation
for the maintenance or repairs person).

• To interface to other systems (and hence, there is a need to implement
communications interfaces). Some examples include the need to inter-
face to diagnostics equipment for routine maintenance, or interfaces to
databases for data logging, process monitoring, and data analysis.

• To control parts of the system by sequencing operations and guiding the
overall behavior of the system. For instance, many systems require discrete
actions to be taken to ensure proper sequencing of events in the plant (e.g.,
to sequence the ordering of assembly of a product).

• To handle exceptions to normal operation of the control system (e.g.,
start-up and shutdown of the process).

• To cope with special operating conditions. For example, it must be able to
cope with situations when the control should operate differently in order
to meet some user demand. Or, many systems operate in several different
“modes” of operation, and there may be the need to switch in different
controllers to cope with the special needs of these different modes.

• To provide a “safety net” in safety-critical applications to monitor the
process and take action to ensure that disasters can be avoided. When
there are system failures or plant changes, this may entail detecting and
diagnosing those problems, and subsequently trying to accommodate for
the problems, or at least switch to a controller that can maintain some
acceptable, although degraded, level of performance until the problem can
be fixed.

For instance, in aircraft jet engine control, the control loops needed for
regulation of fan speeds (that are roughly proportional to thrust) via fuel flow
comprise only a small part of the code needed for the overall jet engine control
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problem. There is a significant amount of code needed for controlling the special
situations of start-up and shutdown, and for switching or tuning controllers for
different modes of operation (e.g., for takeoff, climb, cruise, or energy-saving
cruise). There are also many rules that are implemented that disallow certain
control actions (e.g., use of too much or too little fuel at various operating
conditions). Moreover, there is a significant amount of code used to monitor
that the engine is within normal operating parameters and if it is not, this code
provides failure indications for the maintenance crews or pilot.

The jet engine control problem is often “centralized” in that there is one
controller and all the sensed information about the engine is available to this
controller (aside from, perhaps, low-level actuator controls). The fact that there
is a diversity of components to a real automation system is most clearly demon-
strated by studying hierarchical and “decentralized” (sometimes called “dis-
tributed”) control systems, as we do next. Such systems are distributed in the
sense that there may be different controllers implemented in physically sepa-
rated parts of the plant so that even if one sensed variable is available to one
portion of the system, it may not be available to another part of the system,
and decisions are made locally, not by one centralized controller that has all the
information available about the system.

Why Do Hierarchies and Distribution Arise?

There are a wide variety of hierarchical control systems that are implemented
in industrial applications (e.g., in process control and manufacturing systems),
robotics, and automated vehicles, to mention a few. Hierarchies naturally arise
in complex control systems due to the following issues:

• There is a need in the design of complex systems to split large tasks into
smaller, more manageable tasks (the principle of “divide and conquer”).

• Goals and priorities often split the performance of tasks into different
parts, where each “subtask” may have a different precedence, and per-
forming some tasks may necessitate that others are not completed. This
can set up a type of “behavioral hierarchy” where to succeed, the system
ranks and orders tasks according to whether they will help achieve the
ultimate goal.

• There are often components of the system that are physically distributed,
and there is a need for a local controller for high-rate tightly coupled
feedback control. Moreover, there is a need to coordinate the actions
of these local controllers to achieve overall objectives, and this naturally
gives rise to a hierarchy of controls, and the need for communications to
the remote controllers.

• Complexity of implementing the automation system often dictates the
need to spread the responsibilities for achieving various tasks across more
than one computer system and this then can give rise to a hierarchy and
distribution of functions.
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• Typically, the interface to a human is much different from the traditional
control system interface to components of the plant, so there tends to
be a natural split of functions. Moreover, since the desires of the human
operator are often considered paramount, the interface to the human tends
to supervise the traditional control system operation to meet those needs.
This creates a natural hierarchy, perhaps analogous to what one often
finds in a business management hierarchy with bosses and employees.

• Experts at control can typically “abstract” their reasoning dynamically
and reconsider and modify the approach they are taking to control. Hence,
even at the “software level,” there are natural hierarchies that seem to
arise.

In addition to all these reasons, sometimes there are cultural influences that
make us think of distributing tasks hierarchically. Generally, however, from
an engineering perspective, the formation of hierarchies seems to be a good
idea for managing complexity and organizing the controller’s development and
operation.

1.4.2 Organizing the Controller Functional Architecture

It is often convenient to organize a controller for a complex automation problem
into a hierarchical structure, such as the one shown in Figure 1.11. This is a
“functional architecture” for the controller since a different function is performed
in each box, and the arrows indicate the directions of communications between
the various subsystems. Even though it could be, it is not necessarily a “software
architecture” that indicates how the software for the controller will be separated,
or a “hardware architecture” that indicates how the computer hardware that
implements the system will be grouped and interconnected. What we specifically
mean by functions and communications should be clear from the examples that
we will give below.

At the top of the functional architecture in Figure 1.11 is the interface to
other systems and the user (e.g., human operator). At the bottom is the inter-
face to the plant to be controlled. In between, we split the functionalities into
three “levels” (sometimes called “layers”) simply for the purpose of illustration.
In some applications you may need to split the functions into a different number
of levels. The highest level is often called the “management level” (or sometimes
the “organization level”) since it interfaces to humans and other systems, and
dictates the overall operation of the lower levels of the controller (think of the
analogy with business management). The next level down is called the “coordi-
nation level,” and it is used to interface to the management level and coordinate
the actions of the lower level. The “execution level” contains the interfaces to
the plant, and low level control algorithms (e.g., traditional feedback control
systems such as the ones we discussed in the last section). Moreover, it may
also contain other signal processing and system monitoring functions.

The boxes at different levels may have different types of processing, of vary-
ing complexities. Note that at each level, we show a different configuration of
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Figure 1.11: A typical hierarchical distributed control system.

blocks and communications. At the management level we have all the functions
in one centralized system that interfaces to the user, and to the coordination
level. At the coordination level we have three blocks that communicate with
each other, and the management and execution levels. At the execution level
we have multiple subsystems that are supervised by the coordination level. Ul-
timately, the method for structuring the functional hierarchy arises from the
particular application domain, and constraints dictated by software and hard-
ware for implementation of the controller.

1.4.3 Fundamental Operational Characteristics

There are several fundamental characteristics that have been identified for com-
plex hierarchical distributed control systems. It is important to recognize these
as they help us understand the dynamical operation of these complex systems,
and sometimes offer ideas on how to design them. Some of the basic features
are the following:

• There is generally a successive delegation of duties from the higher to
lower levels, and the number of distinct tasks typically increases as we go
down the hierarchy.

• Higher levels are often concerned with slower aspects of the system’s be-
havior and with its larger portions, or broader aspects.

• There is then a smaller contextual horizon at lower levels—that is, the
control decisions are made by considering less information.

• Higher levels are typically concerned with longer time horizons than lower
levels.
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• At the higher levels there is typically a decrease in time-scale density,
a decrease in bandwidth or system rate, and a decrease in the decision
(control action) rate.

• There is typically a decrease in the granularity of models used—or, equiva-
lently, an increase in model abstractness at the higher levels. Such models
are used in system development, or in decision-making and estimation.

Next, we give two examples to help clarify how hierarchies arise, how to
create a functional architecture, and how the above fundamental characteristics
manifest themselves in actual applications. We will in particular expand the
temperature control problem discussed earlier (Figure 1.1(a)) by showing how
temperature control problems “scale up” for a large complex building. Moreover,
we will discuss the area of “intelligent transportation systems,” a much more
significant level of automation for automobiles than the cruise control discussed
earlier via Figure 1.1(b). This is a system that is currently under study, and
one that will incrementally be implemented over many years. We will, however,
show that a functional architecture can provide a way to show how a fully
operational system could be constructed.

Before discussing the examples, however, we would like to alert the reader
to an interesting and important fact: even though building temperature con-
trol and intelligent transportation systems are quite different, there are many
similarities in how we structure the controllers for these problems, and how we
think about their operation. Try to understand the fundamental relationships
between the two applications as you read about them. Also in the following
two sections it will become clear that at the conceptual level, there are many
similarities between the design objectives and design methodologies for these
systems.

1.4.4 Example: Building Temperature Control

As an example, note that temperature controls can be much more complex in
practice than the one described in Figure 1.1(a) since the complexity of the plant
will tend to dictate the need for more sophisticated controls. For instance, con-
sider the need to implement temperature controls for a large complex building.
For this, there may be a need to control both the heating and air conditioning, in
addition to humidity. Clearly, the effects of surrounding rooms and the outside
temperatures can affect different parts of the building in complex ways. More-
over, there may be rooms where very tight temperature regulation is required
(e.g., a computer room) and we may be able to incorporate certain schedules of
use of the building or ambient weather conditions into how the controls should
operate. Good controls are critical in such large applications, as significant sav-
ings can be realized if the system is properly designed (especially if the same
temperature control technology is used in many different buildings).

A candidate control system for a large building is shown in Figure 1.12. We
have a “local” temperature control system for each room, similar to the one
described in Figure 1.1(a), and these make up the execution level. Next, we
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have temperature controllers for “zones,” which are comprised of sets of rooms
(e.g., adjacent rooms). These zone controllers, at the coordination level, are
used to localize temperature control decisions to regions of the building (e.g.,
if an event is held in one part, or if there is a need for tighter regulation of
temperature elsewhere). At the management level, the master temperature
controller coordinates the control of temperature in the entire building. This
component serves as a supervisor to the lower level zone controllers by, for
example, fixing temperature set points. It accepts weather and event scheduling
information and massages it for use in the control system. For example, if a large
event is to be held in one part of the building when the ambient temperature
is hot, and many people will attend, it changes set points to cool the building
ahead of time so that the temperature is more comfortable during the event.
Or, if it knows that doors between several rooms will be open, one of these
rooms opens to the outside, and it is winter, it may choose to have the room
with the door to the outside at a higher temperature to ensure that the other
rooms are isolated from temperature fluctuations due to periodic opening of the
door. Clearly, the possibility of a diverse set of events, each requiring different
rooms, could demand that we dynamically change what is considered a “zone”
so the hierarchy itself could change over time (or at least the one we consider
here could be considered a special case of one that included all the possibilities).

Temperature
controller, 
Room 1

Temperature
controller, 
Room 2

Temperature
controller, 
Room N

. . . . . .

Zone 1, temperature controller Zone M, temperature controller

Master
temperature
controller

Weather 
information

Event
schedule
information

Maintenance
interface

Rooms in the building

Management level

Coordination level

Execution level

Figure 1.12: Temperature control system for a building.

Notice that the master temperature controller can also provide a “mainte-
nance interface” for diagnosing problems with the building temperature control
system. Such a task is included in the control functions since the temperature
sensors, and behavior of the various controllers, gives an indication of possible
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problems with the mechanical parts of the system. (For example, if a temper-
ature controller repeatedly turns on the heating in a room, and there are no
unusual circumstances, the temperature in the room should increase and if it
does not, there must be some failure in a certain part of the system.)

In summary, it is important to recognize that feedback control typically
lies at the center of the flow of information in complex automation systems.
Feedback control can provide additional information about process operation
since it tries to make changes to the system and it observes the responses of
the system to these changes, and this information can be useful for many other
functions (e.g., diagnosing the health of the automated process).

While a controller is central to the automation of temperature control in
a building, the algorithms needed in the “high level” master temperature con-
troller are quite different from the “low level” (numeric) control algorithms for
single-room temperature control. The decision-making systems needed for the
master and perhaps zone controllers are typically discrete in nature and must
be able to incorporate abstract (non-numeric) information and objectives. In
Part II we provide two approaches to design and implement such components:
the rule-based system and planning system. Ultimately, however, the problem
is a general one of how to program computers to achieve automation; the meth-
ods in this book are only intended to show a few methodologies to develop such
decision-making systems for automation. These should then serve to clarify how
other computer algorithms (in the latest most popular programming language,
or the one that the boss wants you to use) could solve the problems equally
well.

1.4.5 Example: Intelligent Transportation Systems

Next, let us examine an intelligent transportation system problem of automat-
ing a highway system (contrast this with traditional feedback control for speed
regulation in Figure 1.1(b)). One possible general functional architecture for
automated highway systems is shown in Figure 1.13. Here, suppose that we
have many vehicles operating on a large roadway system in the metropolitan
area of a large city. Each vehicle is equipped with a (1) vehicle control system
that can control the brakes, throttle, and steering to automate the driving task
(for normal operation or collision avoidance). In addition, suppose that there is
a (2) vehicle information system in each vehicle that provides information to the
driver (e.g., platoon lead vehicle information; vehicle health status; information
on traffic congestion, road construction, accidents, weather, road conditions,
lodging, and food; etc.) and information to the overall system about the ve-
hicle (e.g., if the vehicle has had an accident or if the vehicle’s brakes have
failed). For the roadway there are (3) the traffic signal controllers (e.g., for
intersections and ramp metering) and (4) the roadway information systems that
provide information to the driver and other subsystems (e.g., automatic signing
systems that provide rerouting information in case of congestion, road condition
warning systems, accident information, etc.). These four components form the
“execution level” in the hierarchical controller, and clearly these components
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will be physically distributed across many vehicles, roadways, and areas of the
metropolitan area.
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Figure 1.13: Hierarchical distributed controller for an intelligent transportation
system (figure taken from [406], c© IEEE, used with permission).

In the coordination level shown in Figure 1.13, there is a manager for vehicle
control that (1) may coordinate the control of vehicles that are in close proxim-
ity to form “platoons,” maneuver platoons, and avoid collisions; and (2) provide
information about such control activities to the rest of the system. In addition,
there is a manager for vehicle information that (1) makes sure that appropriate
vehicles get the correct information about road, travel, and traffic conditions;
and (2) manages and distributes the information that comes in from vehicles
on accidents and vehicle failures (e.g., so that the control manager can navigate
platoons to avoid collisions). The manager for traffic signal control could (1)
utilize information from the roadway information system (e.g., on accidents or
congestion) to adaptively change the traffic light sequences at several connected
intersections to reduce congestion; and (2) provide information to the other
subsystems about signal control changes (e.g., to the vehicle information sys-
tems). The manager for roadway information (1) provides information on road
conditions, accidents, and congestion to the other subsystems; and (2) provides
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information from the other subsystems to the roadway for changeable message
signs (e.g., rerouting information from the traffic signal control manager). As
indicated in Figure 1.13, there are multiple copies of each of the managers and
the entire coordination level as needed for different areas in the metropolitan
region.

There is a management level which provides for high-level management of
traffic flow. It provides an interface to other automated highway systems (per-
haps in rural areas or other nearby metropolitan areas) and to traffic authorities
(e.g., to provide information to police and emergency services on accidents and
to input information on construction, weather predictions, and other major
events that affect traffic flow). It can interact with traffic authorities to advise
them on the best way to avoid congestion given current weather conditions,
construction, and expected traffic loads. It can monitor the performance of all
the lower-level subsystems in the coordination and execution levels, and suggest
corrective actions if there are problems.

Notice that in terms of the fundamental characteristics, we find a successive
delegation of duties as we go down the hierarchy of the controller in Figure 1.13.
For example, high-level tasks at the management level may involve reconfigur-
ing traffic signaling due to construction and weather. The coordination-level
manager for roadway information and traffic signal control may develop a new
signaling strategy. This strategy would be implemented in the execution level
on the changeable message signs (to inform drivers) and the traffic signal control
strategy. The higher levels of the hierarchy are often concerned with slower and
broader aspects of the system behavior (of course, in an accident situation, the
traffic and vehicle management center would react as quickly as possible to alert
emergency vehicles). The lower levels of the system have a smaller “contextual
horizon” since they consider much less information in making decisions. Also,
the decision rate tends to be higher at the lower levels (e.g., the rate at which
control corrections are made as a vehicle automatically steers around a curve
may be on the order of milliseconds, while the decision rate at the management
level may be on the order of minutes or hours).

Clearly, there is the need for a significant amount of interdisciplinary activ-
ity to implement such a complex control system that involves a wide range of
technologies and falls beyond the traditional scope of control problems. There
is probably no single control technique that can be used to solve the diversity
of problems found in a complex automated highway system problem.

1.5 Design Objectives for Automation

This section and the next mirror those for traditional feedback control systems
where we defined design objectives for traditional control systems (e.g., stability,
rise-time, overshoot, disturbance rejection) and then defined the control system
design methodology. Here, we focus on design objectives for complex hierarchi-
cal control systems, and in the next section we discuss design methodologies for
complex automation systems.
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The quality of the response of a single loop feedback control system is rela-
tively easy to specify in terms of measures defined earlier. However, sometimes
the performance objectives are not so easily quantified for complex control sys-
tems, such as the building temperature control system in Figure 1.12, or the
intelligent transportation system in Figure 1.13. For such complex control sys-
tems, a multifaceted quantification of performance objectives is needed.

Design objectives for
general automation
systems typically include
a mixture of
requirements on
dynamics, leading to a
quantification of
“autonomy.”

The performance objectives for the higher levels of the control system may
include the following:

• Dynamically changing composition of the specifications of the traditional
control systems: One part of the specifications may indicate, using mea-
sures like those discussed above, how each low level control system should
behave. In some applications, however, this is not a simple conjunction
of the objectives of each control system, but may dictate that if one set
of low level control systems is perfectly meeting its objectives, another
set may not have to. Generally, higher level objectives may modify, even
dynamically over time, low level control objectives.

• Proper sequencing of events: Typically, correct operation of the higher
level depends on performing tasks in a specific order, and if it is not
performed in that order, performance of the overall system can degrade.

• Rate of operation: Often, we want to guarantee that decision making and
other activities at the higher level will occur at a rate that is fast enough
so that it will not keep the lower levels waiting. If it does delay the
lower levels, then it is possible that there will be many different negative
consequences (e.g., low level controllers that do not meet their local control
goals that are stated in terms of time responses).

• Proper parsing and use of information: The high level must properly use
the information that it gathers, either from the controlled system or from
the external interfaces, to ensure the highest possible performance levels.
It must parse the information and decide what information can be ignored
(a problem of what to pay attention to), and it must apply the proper
information at the proper points in the system, at the proper times.

• Orderly and efficient operation: The higher level system must conduct its
activities in an orderly and efficient manner. In actual systems, there is
often more than one way to perform a task, and generally the operation
should be more similar to that of an excellent symphony orchestra, rather
than a chaotic flurry of hastily conducted activities (yes, there is an art to
creating a complex control system, but this art must be conducted in the
context of the existing science of control, and it is constrained by available
technology).

• The ultimate goal—autonomy: For many systems our ultimate goal is
to achieve as much as possible with our automation system. Sometimes
this means automating as many tasks as possible so that the human is
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fully relieved of the task (e.g., in automated highway systems, the full
automation of the driving task). Other times the goal is simply to get
the system to perform its functions without any outside intervention by
another system or human, under conditions as broad as possible, and as
for as long as possible. Typically, for different systems there are different
“degrees of autonomy” that have been achieved.

While these are high level performance objectives, the general engineering
design goals for control systems of Section 1.2.4 apply here also.

1.6 Software Engineering for Complex Control
Systems

While the controller design procedure outlined for single-loop control systems
was largely developed for traditional low level feedback control systems, it is
stated in a general enough manner to be useful for relatively complex control
systems. In large computer automation projects, however, project management
and design methodology issues must be given special attention since the process
involves the construction of a large software program by teams of engineers
and scientists. In this section we briefly outline some basic ideas from software
engineering, and relate these to the enterprise of control engineering for complex
automation systems.

1.6.1 Software Engineering Methods

Probably the most popular software engineering methodologies are the “water-
fall” and “spiral” techniques (others include the “build and fix method,” the
“rapid prototype method,” and the “incremental method”). Software engineer-
ing methodologies are called “software processes” and hence the waterfall and
spiral methods are sometimes called “process models;” we will not use this ter-
minology since it conflicts with existing control systems terminology.

Waterfall Method

The waterfall method has been used for a variety of software design projects,
and some project managers even require certain documentation and reports
at the end of each stage. A version of the waterfall method is depicted in
Figure 1.14. Apparently, it is called the “waterfall” method simply based on
the shape of the functional block diagram where the arrows flow down and
to the right (note that in early versions of the diagram there were no dashed
arrows). The methodology starts with the software design team coming to an
understanding of the customer’s requirements for the software. Next, these are
converted into specifications for the software and the software project phases
are planned. Following this, you perform software design. Then, portions of
the code are implemented and tested. The various portions of the code are
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integrated and then further tests are done. Then, we reach the useful life of the
software where it is put into operation.

Requirements

Specification

Planning

Design

Implementation

Integration

Operation

Figure 1.14: Waterfall software engineering methodology.

Notice that we have also added dashed arrows to the diagram. These repre-
sent iterations that can occur. For instance, there is often an iteration between
two adjacent stages (e.g., we iterate between design and implementation to im-
prove on the design as problems are encountered in implementation). Moreover,
in the operations mode we learn more about whether the software is working
properly, and we may get new requests for changes to the requirements, and
hence, specifications from the customer. In this case, we repeat several parts of
the process. Of course, we will also return to redesign the software if normal
operations uncover a problem not previously found.

Clearly, there are relationships between this software engineering procedure
and that of the design of traditional feedback control systems. Indeed, the wa-
terfall method may be perfectly appropriate for the development of traditional
single-loop control systems (not surprising, since from one perspective control
engineering is software engineering, at least for digital controllers). More com-
plex automation systems that involve, for instance, hierarchical distributed con-
trol for industrial processes, however, demand a more sophisticated method.
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Spiral Method

The waterfall method is sometimes criticized for being too simple to represent
the methodology that is needed for the design of complex software systems.
This, and the rise of other methodologies like rapid prototyping, gave rise to
the “spiral model,” which we will call the spiral method (again, named by the
form of the diagram used to summarize the methodology). In many ways, other
methods, such as the waterfall or rapid prototyping methods, are a subset of
the spiral method.

The spiral method is depicted in Figure 1.15. First, note that the figure is
broken into four quadrants, labeled I, II, III, and IV. As you move out radially,
costs of software development (time and money) increase. The spiral provides
the path along which software development proceeds, and we will explain the
methodology by following it, starting at the black dot on the axis between the
second and third quadrants.

Requirements plan and
life cycle plan

Risk
analysis

Risk
analysis

Risk
analysis

Risk analysis
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Figure 1.15: Spiral software engineering methodology ([72], c© IEEE, used with
permission).

We start in the quadrant II to determine objectives, alternatives, and con-
straints each time we pass through that quadrant. When we start the project,
we work with the customer to establish project objectives. In the process of
setting up the objectives we may discuss several alternate solutions (and this
early in the process, we may not commit to a single alternative), and all the
constraints must be identified (e.g., the customer may want the project com-
pleted according to a certain schedule, the software designers may only be able
to commit certain resources to the project, or certain real-time constraints may
need to be met).

Next, moving into the quadrant I, we evaluate the alternatives, and identify
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and resolve risks (evaluation of constraints and risks is central to the spiral
method and so some call it a “risk-based” method). Risks can come in many
different forms in each phase of the project. Early in the process it may be
that the software development team feels that one alternative is “risky” since
it appears that it may require many resources of the company (e.g., employee
time, and possibly the purchase of additional support software). Risk may also
quantify concerns about whether members of the team have the expertise to
complete the project according to one of the alternative methods, or if a certain
software architecture, the given hardware, or computer language will measure
up to the task. If the risks for development of the project are seen as too
large, the project may be terminated at any point. Often, however, evaluation
of risks leads to the development of a prototype, which is roughly thought of
as a simple version of the software to be developed that has only a subset or
simplified version of the full desired functionality (it is a rapid prototype). This
prototype often helps to clarify the project objectives, uncover more constraints,
and identify other risks.

Moving into the quadrant IV, we evaluate the prototype using simulations,
models, and benchmarks. We try to assess the performance of the prototype
to clarify what will be needed later in development, and to solidify the overall
concept of how the system will operate. Next, moving into quadrant III, we
specify the requirements plan and life-cycle plan (i.e., what will be required
at different phases of the project, and what the overall plan for use of the
software, including maintenance, will be). Before passing into quadrant II for the
“second phase” of development (i.e., another loop around the spiral) we review
the project, and decide whether or not to commit resources to the development
project.

Starting the second phase, we determine objectives, alternatives, and con-
straints, but this time with the benefit of the use of the results of the last phase,
and in particular our previous analysis of constraints, risk, and the evaluation
of the prototype. We may refine the overall project objectives, sometimes by
working closely with the customer. We may decide that certain alternatives are
not viable, and we may develop more alternatives to solving new problems that
were uncovered in the last phase. We reevaluate our constraints, to make sure
that they are being met, and to create any new ones that are needed. We move
to quadrant II and perform risk analysis and develop a more detailed prototype
so that we move in the direction of trying to meet the overall project objectives.
We then evaluate the prototype, and try to establish software requirements and
validate that the requirements that we set are appropriate. Next, we solidify
a development plan since the overall objectives and constraints of the project
should be clear at this point.

We then start the third phase after a review. We again clarify objectives,
alternatives, and constraints, assess risks and build another more detailed proto-
type. We evaluate this more sophisticated prototype and establish the product
design, and verify and validate this design. Next, we produce a plan of how we
will integrate the various software components (often different parts of the soft-
ware are developed separately, possibly by different team members, or simply to
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divide and conquer large tasks), and how we will test the overall system. After
a review and consideration of near end-of-project objectives, alternatives, and
constraints, we perform a risk analysis and develop an operational prototype.
We evaluate the prototype using simulations, models, and benchmarks to try
to uncover any problems before we move toward implementation. In the final
steps we get into the details of low level design and coding. Next, we test the
various units (components) of the software, and integrate the software compo-
nents and test them. Next, we conduct tests that help us to decide if we should
accept the software as complete (this may involve the customer), and then we
implement the code. Following this, there will be a need for maintenance and
further improvements based on what we learn while the code is in operation.

1.6.2 Software Vs. Control Engineering Methodologies

It should be clear that there are many relations between the software engineering
process, viewed either as the waterfall or spiral methods, and the control design
process. The two are not, however, entirely the same. Notice that the software
engineering process sometimes ignores the use and differences between truth
and design models, dynamics, disturbances, noise, and even robustness. That
these issues are sometimes ignored is not surprising. The spiral method was
developed for use in general software development and these issues could be
considered to be details specific to a particular type of software development.

It is interesting to notice that the control engineering process sometimes
ignores practical issues in how to manage a large software engineering project,
broad issues such as use of financial and employee resources, certain issues in
how to structure the software so that it is easier to construct, maintain, and
extend, and issues related to integrating different pieces of software that were
developed separately and how these must be tested (i.e., integration and test).
Generally, we must recognize that for complex automation applications, software
development issues become very important and are not just an “implementation
detail.”

1.6.3 Complex Control System Design Methodology

Clearly, aspects of the conventional control design methodology and the soft-
ware engineering methodology are needed for the development of complex con-
trol systems for modern automation systems. The precise methodology to follow
is, however, ultimately tied to the application that you are focusing on. Below,
we provide a sample methodology for one class of problems, those that need a
hierarchy of distributed controls, such as the building temperature regulation
problem in Figure 1.12. This is provided simply to show one possible methodol-
ogy. Do not attach too much significance to this particular methodology. What
is important is that you understand the key elements of the control and software
engineering methodologies, the importance of having and following an agreed-
upon methodology, and the fact that the various elements can be rearranged
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to provide a design methodology for virtually any automation project that you
encounter.

Control and software
engineering methods can
be integrated for
automation system
development.

There are several issues that need special attention in the development of
hierarchical distributed control systems, and some of these are the following:

1. The need to establish, early in the design process, a hierarchy for the con-
trol system operation: The key factors influencing how this hierarchy is
structured are the physical layout of the plant, the functionalities of vari-
ous parts of the plant and how they are inter-related, the available com-
puting resources (hardware and software) and how they are distributed,
the available communication links, and the subsystem and overall perfor-
mance objectives.

2. The need to develop low level controls first: Sometimes, you would start by
using the standard control engineering design procedure to develop “local”
temperature controls for individual rooms. Other times, such development
may come later.

3. The need for communications: The issue of what information is available
and how it is transferred between components of the system and to the
human user must be confronted.

4. The need for coordination: Given information from a wide variety of
sources, and the wide variety of control objectives that exist, both for
local controllers and the overall automation objectives, you must estab-
lish a method to coordinate the operation of the low level parts of the
system to achieve overall goals.

5. The need for an (possibly complex) interface to the user: This will enable
the user to specify broad system objectives, obtain health information
about the system, and monitor the operation of the system.

How do we incorporate these features into the overall design process? We
could modify the flowchart for the design process for traditional feedback control
systems shown in Figure 1.8, modify the spiral diagram, or create an entirely new
diagram to represent the methodology. Here, we will simply modify the spiral
method to accommodate the aspects of control engineering for complex systems
(in Exercise 1.6, you are requested to provide a flowchart that incorporates the
spiral method and control design procedure steps). We will call the method the
“spiral method for control engineering.” It is pictured in Figure 1.16.

Here, in the first step where we determine objectives, alternatives, and con-
straints, we also define a vision of how the control functional hierarchy would
ultimately be implemented. Note that the wedge that is outlined with a dot-
ted line is significantly different from the corresponding portion of the spiral
method in Figure 1.15. Basically, after risk analysis, we conduct low level con-
trol designs according to the design steps outlined in Figure 1.8 (hence, the
conventional control design steps are incorporated into the spiral method to
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Figure 1.16: Spiral method for control engineering (edited version of [72],
c© IEEE, used with permission).

develop prototype 1, denoted in the figure by “P1”). Depending on the appli-
cation, we may do this for every low level control system. Note that we indicate
in quadrant IV the use of mathematical analysis, simulations, and experimen-
tation to evaluate (and perhaps iterate) on the design, and indeed, we consider
this to be an integral part of the corresponding part in quadrant I where the
prototypes are developed (i.e., there can be iteration between quadrants I and
IV before moving further around the spiral).

Next, combining our view of how the low level controls perform, and the
control functional hierarchy, we develop a concept of how the system is to op-
erate. We develop the requirements and life cycle plan and review the project
to decide whether to commit to another design phase. Next, we reevaluate
objectives, alternatives, and constraints and based on what we learned in the
first phase, we refine the control hierarchy, especially with a view towards incor-
porating communications and achieving coordination, which are implemented
next, after a risk analysis. The coordination level is evaluated both indepen-
dently, and in conjunction with the operation of the execution level. Then, after
establishing the overall software requirements, and validating the requirements,
we determine a development plan for the remainder of the project.

After review of the project we make further refinements to the hierarchy,
this time focusing on incorporation of the “third level,” which we will refer to
as the management level. After a risk analysis, we develop the user interface
and combine it with the coordination and execution levels. We evaluate the
overall design using mathematical analysis, simulations, and experimentation.
The remainder of the process is similar to the standard spiral method.

To summarize, in Figure 1.16 we add the need to define and refine the control



50 Challenges in Computer Control and Automation

hierarchy. We use prototypes (“P1,” “P2,” and “P3”) of increasing complexity
and propose that the first prototype only include the low level controls, the
second one include the communications and coordination level, and the third
one include the user interface and the entire management level. The portion of
the diagram contained in the wedge outlined with dotted lines incorporates the
control design steps in the first phase of the design. In the second and third
phases, it also incorporates those design steps, but now it may require different
analysis methods (e.g., ones for “discrete event systems”(DES) since the higher
levels may have such components).

Overall, we see that this provides a way to embed the control engineering
methodology into the software engineering methodology so that all the key issues
are addressed. Clearly, there are many other ways to structure the diagram that
represents the automation software development.

1.7 Implementing Complex Control Systems

There are many application-specific challenges you will encounter in trying to
implement a control system (e.g., interfacing issues with the plant and operator),
and these can be particularly numerous and difficult for hierarchical distributed
control systems such as the ones discussed in this part.

Some of the challenges that are typically encountered include:

• The various components of the control system may be implemented on
different computer platforms (e.g., a workstation or personal computer)
that use different operating systems.

• There is often the need to establish communications between the different
platforms that are efficient and flexible.

• There are system timing issues where different portions of the overall
system may be operating at different sampling times and in synchronous
or asynchronous modes.

• It must be easy to establish hierarchies in the controller.

• It must be easy to develop the complex control systems so that coding
and debugging can be implemented by teams of programmers (e.g., you
may need special monitoring, design, and code generation tools).

• Sometimes, for large projects, it is useful to use software engineering
methodologies (e.g., the spiral method).

Methodology and tools
are available for
decentralized networked
implementations of
control systems.

While these are some of the generic problems encountered, there are certainly
application-specific ones also.

The National Institute of Standards and Technology in the U.S. developed
a software package, called the real-time control system (RCS) library, that can
be quite useful in the development and implementation of hierarchical and dis-
tributed control systems. While we only briefly overview it here, and recommend
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that interested readers see the “For Further Study” section for a reference with
all the details, it is interesting to note that it is a free software package that
can be used to solve many of the problems listed above, and is well-developed
enough to use in practical industrial control and automation problems.

The RCS software tool allows for controller implementation on a wide vari-
ety of platforms, and it uses a “neutral message language” to ensure consistent
and flexible cross-platform communications between “modules” that implement
the various components of the system. Timing issues are easy to deal with
via the given timer functions. Hierarchies are simple to establish, especially
with the “design tool,” which is a graphical environment for creating hierar-
chical controllers. The controller operation can be monitored and directed by
a human operator at all its levels (and modules) via a graphical “diagnostics
tool.” Automatic code generation is provided, and tools are available to facili-
tate team-based development of a complex controller.

1.8 Hybrid System Theory and Analysis

A “hybrid system” is one that has components that are easiest to model with a
mix of different models. Recently, this has often come to mean a mix of conven-
tional differential equation models with discrete event system (DES) models.
For instance, a hybrid model would be one that is composed of an ordinary
differential equation and an automata model. There are many processes that
are actually hybrid in nature and, hence, dictate the need for hybrid models.
For example, the automated highway system has low-level steering, braking,
and throttle controls (all typically using differential equation models in design),
and high-level controls for platoon maneuvering, check-in, and check-out proce-
dures, and so on (which often require automata-type models). Moreover, there

Hybrid models arise in
biomimicry from
multiscale (spatial and
temporal) models in
biology.

are many times when it may be desirable to implement a hybrid controller for
a system that may be easily described by conventional differential equations.
In this case, the closed-loop system becomes hybrid, due to the presence of a
hybrid controller. We see that a system could be hybrid, due to the plant, the
controller, or both.

A hybrid control system is shown in Figure 1.17. Notice that there is a
continuous time system and DES component to the plant, with an “interface.”
This interface has a function φ, which maps conditions in the continuous time
system to events in the DES. It also has a function ψ that maps conditions
in the DES to changes to the continuous time system. The controller has two
components. There is Cd, the controller for the discrete event component of the
plant, and Cs, the controller for the continuous time component of the plant.
(This is only one way to set up the controller structure.) The controller has a

Modeling and analysis of
hybrid systems could
offer valuable
verification approaches
for automation systems.

similar interface to the plant model and a similarly structured model could be
used for the closed-loop system.

As for the other applications in this book, there is often the need to conduct
stability analysis of hybrid systems. It is an important research direction to
develop modeling, analysis, and design methodologies that will be guaranteed
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Figure 1.17: A hybrid controller for a hybrid plant.

to produce stable and high performance hybrid systems. If this problem can
be solved, then we will also know much more about how to conduct stability
analysis for complex hierarchical intelligent control systems. In the mean time,
it is interesting to point out that the techniques studied in this book provide
methods to heuristically construct controllers for hybrid systems and hence,
intelligent control is generally a viable approach for hybrid systems design (e.g.,
some of the methods outlined above for hybrid hierarchical intelligent control
system design could apply).

1.9 Exercises

Exercise 1.1 (Control System Components and Performance Objec-
tives):

(a) Define a functional block diagram for a control system for a system
that will automatically steer an automobile along a road. Define
your sensors, actuators, and plant. Define the reference input and
controller.

(b) For (a), define what could be meant by “this control system per-
forms well.” Include the following in your quantification of “good
performance”: tracking objectives, how the system should respond
to adverse conditions (that you will define), and what the time re-
sponses should look like.

Exercise 1.2 (Modeling Issues):

(a) Explain the difference between a truth model and a design model.
(b) Is a truth or design model ever a perfect representation of a physical

system? Why?
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(c) Explain the process needed to evaluate the accuracy of a model of a
physical system.

(d) Explain why (under what conditions) it is necessary to modify the
model that is used in the design of a control system.

Exercise 1.3 (Analysis Issues):

(a) Why are the conclusions that are reached via mathematical analysis
of system properties not necessarily valid for the physical control
system?

(b) Why are the conclusions that are reached via simulation-based anal-
ysis of system properties not necessarily valid for the physical control
system?

(c) Why are the conclusions that are reached via experimental analysis
of system properties not necessarily valid for the physical control
system? Hint: Take into consideration robustness issues.

Considering (a)-(c), we would conclude that there is no way to be abso-
lutely certain that the control system that you design will perform properly
when it is physically implemented. The analysis methods simply increase
our confidence that it will perform properly. At some point, however, we
can become certain enough that we can achieve successful implementation
of control systems. Indeed, there are many successful control systems in
operation today!

Exercise 1.4 (Heuristic Design Methodology): In this chapter, specif-
ically in Figure 1.9, we defined a heuristic design method for control sys-
tems where no models were used. Draw and explain a flowchart for a
heuristic design methodology that uses a truth model, but not a design
model. Develop your flowchart by modifying the earlier ones (e.g., Fig-
ure 1.8).

Exercise 1.5 (Hierarchical Intelligent Controller Functional Archi-
tectures): In this problem, design a functional hierarchy for an intelli-
gent autonomous controller for two different applications.

(a) Draw the block diagram for the functional architecture for a multi-
layer hierarchical controller for solving a robot control problem (one
where planning, learning, and low-level control is used). Provide a
description of each block in the functional architecture and clearly
explain the relationships between the various components of the con-
troller. Also, clearly explain how commands and information flow in
the controller, and between the controller and its environment (in-
cluding the plant, other systems, and human operators). To do this,
you will need to specify the type of robot you are considering and
the types of tasks and performance it is to achieve.
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(b) Repeat (a) but for an autonomous land or underwater vehicle prob-
lem (choose one).

Exercise 1.6 (Design Methodology for Complex Control Systems):
In this chapter, we defined a spiral method for control engineering to define
the methodology needed for designing complex control systems. Define,
using a flowchart diagram, a methodology for complex control systems
design. Be sure to include in your flowchart all the steps for conventional
control system design, and the essential steps used in the spiral method
for software engineering.

Exercise 1.7 (Alternative Architectures for Hierarchical Intelligent
Control)�: The meaning of the “�” is explained in the preface. Over the
years there have been many different architectures proposed for complex
intelligent control systems. Read about the ones in [21, 234, 520, 536, 20,
10, 489] and summarize the approaches in [520], [10], the one by Meystel
in [21], and [20]. What are the common features of the approaches? What
are the differences? Does each seem general enough to be suitable for most
applications, or do some of them (which ones?) have certain limitations
that will limit their applicability?

Exercise 1.8 (Design of Functional Architectures)�: In this problem,
design your own general functional hierarchy for an intelligent autonomous
controller and apply it to one problem.

(a) Complete Exercise 1.7 and then, using ideas from the common func-
tional architectures, create your own.

(b) Use the architecture that you design in (a) and apply it to the speci-
fication of an architecture for a robotic, manufacturing, or vehicular
system (choose one).

Exercise 1.9 (Mathematical Definition of Autonomy)�: There are sev-
eral reasons why a mathematical definition of autonomy can be useful.
First, since ultimately autonomy can be viewed as a type of performance
specification, a precise definition can help guide the specification of per-
formance requirements. Second, it can be useful to researchers trying to
compare the merits of different control methodologies, architecture de-
signs, and plant designs. Third, it may suggest methodologies for design
and analysis.

(a) Based on your reading of this book, and particularly this chapter,
provide a mathematical definition of autonomy. Include in this def-
inition the ideas that there are “degrees of autonomy” that depend
on the size of the regions of operation of the system, the robust-
ness of the system in that region, and the amount of communica-
tions/interactions needed between an “autonomous subsystem” and
other systems (and perhaps a human operator).
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(b) Use the method to compare the degrees of autonomy in the hierar-
chical intelligent controllers for the robot and autonomous ground
vehicle problems in Exercise 1.5.
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Scientific Foundations for
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“Intelligent control” is the study of how to achieve control automation via
the emulation of biological intelligent systems. Intelligent control comprises a set
of methods to exploit biomimicry for automation. The “biologically inspired”
methods can be classified according to natural cell, tissue, organ, organism,
and population hierarchies in biology. For instance, we may borrow ideas from
cells or organs (e.g., neurons and human brain functions), organisms (e.g., hu-
mans who are employed to solve a control problem at a chemical process control
plant), or from the coordinated group behavior of organisms (e.g., modeling au-
tonomous vehicle controls after those in microorganisms that dynamically seek
nourishment and avoid harmful environments). Moreover, there are evolution-
ary adaptations that occur in all biological systems and these can be useful in
improving control system performance via the long-term interaction with its
environment. With such biological foundations and motivations, in intelligent
control we will sometimes say that we are using “biomimicry” to construct our
controller or automation system.

Before discussing biologically inspired methods, it is important to recognize
that we are stepping outside the usual scientific foundations for control. Rather
than solely relying on the foundations of mathematics and physics (and per-
haps chemistry) as is done in traditional feedback control systems, in intelligent
control we expand our view to include other foundations of control science—
biology, physiology, psychology, neuroscience, and their related fields, as shown
in Figure 2.1.

Control science, engineering,
and technology

Mathematics
(modeling, analysis)

Physics
(modeling and understanding

physical systems)

Chemistry
(basis for modeling/understanding

systems)

Biology
(evolution, brains, organisms 
physiological control systems)

Computer science and engineering
(artificial intelligence, theory,

software, hardware)

Psychology
(cognitive and neuropsychology)

Neuroscience
(cognitive neuroscience)

Figure 2.1: Mathematical, physical, and social sciences that affect control sci-
ence, engineering, and technology.

It is also interesting to note that so far, as shown in the figure, control
technology has been driven by computer technology and science (and, e.g., ad-
vances in electromechanical systems); however, biology may also provide some
fundamental concepts and methods for improving computing technology (e.g.,
DNA computing or neural network-based integrated circuits) and hence, control
technology.
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2.1 Control Systems in Biology

To outline the sources for biological inspiration, it is best to first note that
biologists often view their field as being hierarchical as mentioned above (i.e.,
hierarchical with the lowest-to-highest level sequence being the cell, tissue, or-
gan, organism, and population levels). Indeed, the population level is sometimes
viewed as being hierarchical with the usually species-centric view that humans
are at the top.

In the remainder of this chapter we will generally organize our discussions
along the lines of a biological hierarchy. Some examples will serve to clarify
sources of biomimicry for control and automation. At the cellular and organ
levels, there are the following control functions:

There is a wealth of
complex control systems
in biological systems;
some of their aspects
seem familiar to a
control engineer while
others reach significantly
beyond current control
engineering practice, in
complexity and
robustness.

• In the (single-cell) E. coli (Escherichia coli) bacterium, there is sensing and
locomotion involved in seeking nourishment and avoiding harmful chemi-
cals. There is sensing via the recognition of chemicals (essentially a type
of shape recognition), internal decision-making, and actuation via locomo-
tion (swimming). This example is discussed in more detail in Section 2.4.2
later in this chapter.

• In many plants there is tracking of light and nutrient sources (e.g., many
plants turn toward light and roots grow towards nutrient sources) and
reactions to gravity where a type of control system is involved.

• In animals there is homeostasis, for instance, thermoregulation, where
the animal seeks to regulate its internal temperature to an optimal set
point where it will function best physiologically. There is also thyroid and
hormone regulation.

• Many animals have an “immune system” that has extraordinary abilities
to recognize foreign substances and take actions to help the animal survive
by controlling the density of antigens.

• In many animals, the pancreas is involved in the regulation of blood sugar
levels (e.g., a diabetic is a person whose control system for blood sugar
levels is not functioning properly).

• There are motor functions in two-legged animals that provide for balancing
while standing.

• In the human brain there is the supervision of motor control for voluntary
movement, supervision of the attentional system, and others.

You are asked to explore some of these characteristics further in Exercise 2.1.
At the organism and population levels of biology consider, for example, the

following:

• Perhaps the most relevant and important organism to our studies is the
human, since humans have been required to interface to the very tech-
nological control problems that we wish to solve (e.g., process operators
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manually perform control functions). We can also think of automating the
actions of groups of humans who are performing some control task, or in
some cases, emulating the actions of groups of microorganisms.

• At the population level we think of evolution as acting to shape every
biological system; hence, it can have a profound impact on the design of
control functions.

To date, the human nervous system (brain and motor functions), the use of
human control expertise (whether that comes from a single human or a group),
the emergent behaviors of groups of organisms, foraging, and evolution are the
areas that have provided the most inspiration for the development of intelligent
control methods, so each of these are discussed in more detail below.

2.2 Nervous Systems

The nervous system is the central command and control system of many organ-
isms. Many of its key functions lie in the “brain,” and we will be particularly
interested in how it operates so as to produce intelligent behavior. The ar-

The computer is a useful
metaphor for the brain.
Long-term memory is a
hard disk, and
short-term memory is
RAM. The computer
processes inputs and
generates outputs.

eas of psychology and cognitive science have studied human behavior for many
years. In addition, at the physiological level there has been significant progress
in neuroscience in determining the structure and functions of the brain of var-
ious animals and humans. Recently, these fields have been merging at several
points to form the fields of “neuropsychology” and “cognitive neuroscience,”
where clinicians and researchers are trying to take a wholistic view, and exploit
methods from many relevant areas, to shed light on how our brains operate and
determine our behavior.

2.2.1 Sensory, Motor, and Brain Processes

Many sophisticated forms of biological intelligent systems have evolved a brain
that has an ability to store, retrieve, and process information. For a human, the

Memory is essential for
learning. Attention helps
to manage complexity. It
“filters” to obtain
essential information to
meet our goals, and to
avoid overloading
memory with useless
information. It enables
learning of essential
information.

information comes in from the senses (sight, hearing, touch, smell, taste) and,
depending on what we pay attention to, some information is stored for later
use, while other information is discarded or soon forgotten. Broadly speaking,
we store information in memory (e.g., short- and long-term memory) and use
it to recognize patterns (e.g., visual or auditory), perform motor tasks, solve
problems, plan ahead, focus attention, and perform creative tasks, to mention a
few. Often, short-term memory is called “working memory” since it is where our
current mental operations take place (you may think of it as a kind of scratch
pad—the word “scratch” that you just read is there now). Working memory
seems to be distributed to several locations in the brain, and each seems to
serve a specific purpose. There is also “sensory memory” where we store, for
instance, visual and auditory information for a short amount of time (e.g., less
than one second) so that it can be preprocessed before being used (e.g., to help
select what to attend to). Rehearsal of the rote repetitive type, or where a
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memory is recalled and “elaborated” on so that you think more deeply about
it, results in transfer of information from short- to long-term memory. Our
ability to organize information via “chunking” and hierarchies, in addition to
our ability to visualize information, affects our ability to remember it. We have
an ability to perform deduction (e.g., deriving information from information we
have stored) or induction (e.g., learning general principles from examples we
have encountered). All these processes are colored by our emotions and are
affected by our motivations and goals, and taken as a whole, all these functions
(and others not mentioned here) operate together in sophisticated ways so that
“intelligent” behavior emerges.

Understanding brain physiology and function is one of the great frontiers of
science. To date, there is reasonably good agreement on how to split the brain
into its various functions (at least at an abstract level), and in fact, there are
general “maps” that indicate which type of processing occurs in each part of the
brain, and a fair amount is understood about lateralization (i.e., left-right brain
theories) and specialization of functions. For instance, in the left cerebral cortex
(the outer layer of the brain) there are four “lobes,” each with its own specialized
functions. The occipital lobe has components that are responsible for visual
information processing. Other areas are responsible for smelling, hearing, taste,
speech, reading, and auditory processing. There are several association areas
that are involved in processing, integrating, and interpreting sensory inputs.

The somatosensory cortex area is for touch, and the primary motor cortex is
for motor control (e.g., voluntary movement of the limbs and face, such as when
you look over at your coffee cup and reach out to get a drink), and these two
are split by the central sulcus. These areas are nicely visualized by the use of a
“homunculus” of the body surface that can be obtained by systematic electrical
stimulation to the motor and somatosensory cortices, and then by plotting the
movements and sensations. This provides regions of the brain associated with
senses and motor outputs. Then, it is interesting to note that in the motor
cortex, there seems to be more cortex “real estate” dedicated to fine motor
control (e.g., the fingers) and highly sensitive touch (e.g., the lips).

Accurate sensing and
fine motor skills often
require a greater
quantity of neurons than
do low resolution sensing
and gross motor skills.

The frontal lobes are for inhibitory control of behavior and higher intelligence
(e.g., at least some aspects of planning are implemented via the frontal lobes).
Some think of the brain as being hierarchical with low level sensory processing,
motor control, or instinctual components, intermediate processing (e.g., object
recognition), and “high-level” processing in the cerebral cortex, especially in the
frontal lobes. It is not, however, fully understood how the individual components
operate, let alone how they dynamically function together to achieve complex
cognitive reasoning.

2.2.2 Functional Operation of the Brain

For the purposes of this book, we will view the brain as an information pro-
cessing system that takes inputs, processes them, and generates outputs. This
does not imply that we literally think of the brain as a piece of silicon with
electrical activity implementing software. We are interested in the connections
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to the neuroscience and what it has to offer. To explain this view in additional
detail, consider Figure 2.2, where a functional block diagram of certain brain
functions is shown. You should view this diagram in two ways. First, it shows
basic functions of the bioelectrochemical processes. Second, it shows a type of
connection to psychology and commonly observed human behaviors.

Vision
Auditory
Touch
Taste
Smell

Mental processes

- Perception/association
- Deduction
- Planning
- Attention
- Learning/induction

Memory

Short term

Long term

Recall Rehearsal

- Facts
- Relations
- Rules
- Associations

- Concepts
- Motion
- Dynamic
  models

Limbs,
body

Speech

Sensory input
processing

Actuation
processes

Figure 2.2: Functional block diagram of some brain functions.

The sensory input processing block brings information into the brain, and
the actuation processes take actions on the environment. Many types of mental
processes occur in between. For instance, if some visual information is gathered,
certain perceptual processes are activated for association to classify or identify
objects. Then, a deductive process may be invoked that considers what has
been observed, and decides what to do about it. For instance, it may decide to
say “apple” since that is what it has identified the object as, or it may decide
to pick up the apple via the right hand. This is just one example of the type
of information processing that can occur. In more complex situations, many
different types of sensory information may be integrated, and the human may
plan what to do about the current situation. To do this, a model stored in long-
term memory may be used to predict (simulate into the future) how different
strategies will help the human achieve her goal. Then, it may select the best ap-
proach, and take the subsequent actions. Such mental processes are significantly

From a control
perspective, perception,
deduction, planning,
attention, and learning
are key candidates for
physiological
biomimicry.

affected by what we are currently paying attention to, because our current fo-
cus actually helps to select what is sensed (one reason for the arrow from the
“mental processes” box to the “sensory input processing” box), will make sure
that only the most relevant information from memory is used (we all seem to
have innate and learned prioritizations of information), and, if planning is used,
may “prune” the tree of possibilities that we may need to consider in predicting
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the future. Attention affects many cognitive processes, as does learning; hence,
they are central to how we function as humans. While engaged in many mental
activities, we seem to have an ability to abstract and observe those processes,
how effective they are, and decide if a different strategy could be better. This
gives us the opportunity not only to store information in memory, but also to
store and update reasoning strategies (and even learning strategies). This gen-
eral abstraction capability is one of humans’ greatest intellectual distinguishing
features.

Clearly, we are ignoring many mental activities that we are engaged in every
day (e.g., emotions); however, Figure 2.2 is useful in pointing out how to view
the brain as a computer, a practice that winds its way through much of the lit-
erature, even though it is vigorously opposed by some philosophers. Engineers,
however, often feel comfortable with the metaphor of the brain as a computer,
and here we will use it, if for no other reason than to help teach the the various
approaches to intelligent control.

2.2.3 The Neurophysiological Level

At the cellular level, the neurons are the cells responsible for information pro-
cessing in the brain. There are several different types of neurons in the brain,

A network of neurons
provides for information
processing, and
generating responses for
specific patterns of
stimuli.

and many “glial” cells whose role seems to be to support the processing of
the neurons. There are other cells responsible for waste removal and to do
“housekeeping,” for instance, by removing dead neurons. There are many neu-
rons, and many interconnections between these neurons, and they communicate
chemically and via electrical impulses. An example of a neuron is shown in
Figure 2.3(a), along with a scanning electron micrograph of a neuron shown in
Figure 2.3(b). The neuron is composed of “dendrites” that allow for connec-
tions to the “cell body” and an “axon” (when mature it is normally covered
with Schwann cells, and it can be relatively long—in some organisms up to one
meter) that allows for connections to other neurons via the terminal branches.
The connection points are called the “synapses.” Signals from other neurons
are gathered on the dendrites, and under proper conditions, electrical impulses
travel along the axon towards the terminal branches.

For some neurons it seems that the functions of the cell change with repeated
use, thereby providing the ability to store information (i.e., memory via what is
sometimes call “Hebbian learning”). The neurons interface via special cells to
the sensory inputs (e.g., the rods and cones in your eyes) and are also connected
to the motor system so that we can move our arms and legs via the neuronal
control of muscle contraction and expansion. In fact, it seems that some of

Motor control is a type
of neural hierarchical
distributed learning
control system.

our motor functions are hierarchical and distributed: (i) in structure involving
portions of the brain (premotor area, motor cortex, cerebellum, basal ganglia,
brain stem, spinal cord, etc.); (ii) in generating action sequences (a sequence of
actions will be implemented by a string of subsequences of actions, each possibly
implemented in a different part of the body); and (iii) in motor learning (it seems
that learning takes place at multiple levels of a hierarchy). Moreover, it seems
that for the motor system, experts at a motor task adjust responses during an
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(a)

(b)

Figure 2.3: The neuron (nerve cell). In (a), a vertebrate motor neuron is shown,
and in (b), a scanning electron micrograph of a neuron is shown (figure taken
from [91], c© 1987, 1990, 1993, 1996, and 1999, Benjamin/Cummings Pub. Co.
Inc., and reprinted by permission of Addison Wesley Longman Publishers Inc.).

action, while novices do not, and experts tend to learn some type of model so
that they do not rely on feedback as much.

There are many complex neurophysiological issues that are not very well
understood in the brain. For example, evidence suggests that language is an
instinct (i.e., we are somewhat “hard-wired” for language), but how is this
“wiring” done, how much of it is there, and how can it be modified by education
and experience? How many and to what extent are other functions hard-wired?
It seems that our abilities to learn and plan are instinctual, at least to some
extent (we do not need to learn how to learn or plan, but we may learn over
our lifetime how to do these tasks better). However, is our sense of morality
hard-wired? In life-span development of the brain (in the womb, as an infant,
child, adolescent, and young adult), many interconnections between neurons are
formed and, for example, if the connections are not used, then they may later
disconnect (and hence, neurons are essentially “pruned”). There is evidence

Learning takes place via
modifications to
individual neurons, and
changes to
interconnectivity of a
neural network.

that the brain has a type of “functional plasticity” where if you lose a finger, the
neurons for sensing adjust to dedicate themselves to the adjacent intact finger.
This provides heightened sensitivity in the adjacent finger to help compensate for
the lost finger; the very structure of the brain seems to be able to adapt. Neural
connections in the brain are actually influenced by our environment, and even
up to the age of 20, the structure of the neural connections (i.e., how neurons are
interconnected) is adaptive. The interconnectivity is influenced by education,
and what activities we are exposed to. Clearly, our nervous system is a type
of very complex adaptive control system; properties of existing interconnections
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can change to implement memory, and the very interconnections can change
depending on our environment.

2.2.4 Hierarchical Neural Organization

While it is not always the case, at times it is useful (and accurate) to view
a biological neural network as being arranged in a hierarchical fashion. For
instance, in traditional studies of the brain many viewed parts as being “old”
(e.g., motor functions) and other parts as being “new” (e.g., the cortex where
higher functions such as planning take place). Old and new refer to evolutionary
time, and it has been hypothesized that the older “worker functions” must have
been placed in our ancestors well before higher level executive functions evolved.
Here, we will not seek to explain the various hierarchical views of the human
brain. Instead, we simply briefly discuss one part of a nervous system that is
clearly hierarchical: the human motor system.

Neural network
structures are sometimes
organized in a
hierarchical fashion.

The human motor control system is a hierarchical and distributed control
system. It has local control functions for movement and higher level controllers
that control gross motion. As shown in Figure 2.4 it is connected to many other
parts of the brain, so that we can plan, learn, and execute motions. Motor
learning, is in fact, quite interesting as it involves a type of adaptive model
building in attaining skilled coordination of motion (e.g., in Olympic-caliber
athletes).

Figure 2.4: Hierarchy of motor control (figure taken from [223], c© 1991, 1994,
and 1999 by Worth Publishers Inc., and used with permission).
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2.2.5 Brain Science: An Expanding Frontier

Although much progress has been made, the neuron itself is not yet completely
understood. Moreover, the complex pattern of electrical pulses and chemical
reactions that occur to achieve thought is not well understood. This is partly
due to the fact that while we have an ability to probe the electrical activities
of a single neuron or a few neurons, and via sophisticated scanning methods
we can “see” how entire regions of the brain are used at various times (e.g.,
via metabolism), we cannot yet directly monitor many important and complex
multiregion brain activities so that they can be studied in detail. The main
barrier is the immense complexity of the brain (clearly, however, obtaining hu-
man subjects to study is problematic). Moreover, there are issues such as how
evolution has shaped our brain, and what is the nature of consciousness, that
are not likely to be well understood for a long time.

The main point is that we do not yet understand everything about how the
brain operates. This, coupled with the fact that only crude models of cognitive
and neural processing are used in the field of intelligent control, should make the
reader hesitate to attribute a very strong connection between the systems that
we will study in this book and cognitive neuroscience. You may, however, be
comfortable with referring to the methods as “biologically inspired” or perhaps
loosely based on some type of biomimicry. Regardless of the strength of the
connections to biology, it seems likely that they will become more numerous
and significant as research in intelligent control advances. In the meantime, it is
interesting to learn about connections between systems and control theory and
cognitive neuroscience, since it provides a different perspective on automation—
after all, it could be argued that a human is the most complex automated system
and it may pay to follow the human example to lead us to better solutions to
automation problems (e.g., see Exercise 2.2, where you are asked to further
explore the connections between cognitive neuroscience and control). For now,
let us ask the following question: What basic ideas does cognitive neuroscience
offer to the development of control systems?

2.2.6 Biomimicry for Automation: Cognition

In this book we will use simple models of neurons and show how they can
be interconnected and adjusted to perform adaptive estimation and control.
Moreover, in addition to the neurophysiological components (the “hardware
level,” if you subscribe to the computational theory of mind philosophy), we use
ideas from the cognitive level (“software level”) of the human brain as studied
by cognitive neuroscience and psychology, particularly in rule-based inference,
planning, attention, and learning.

The types of questions we study are as follows:

• Neural networks: Can neural networks that have no learning abilities still
be profitably employed in control? What are some examples of neural
networks that can be used in this way, and how would you specify (design)
such a neural network? (In nature, evolution is employed for this design.)
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Can such neural networks achieve orderly behavior (e.g., provably stable
operation under a variety of conditions), such as is achieved by many
neural (or biochemical) stabilization mechanisms in nature?

• Deduction: What deductive strategies are useful in control? In the rel-
atively simple deductive strategy employed by rule-based control (e.g.,
via fuzzy or expert systems), how do we design the information used by
the controller (the “rule-base”) and the “inference mechanism” in order
to achieve good closed-loop performance? How do we guarantee that a
heuristic nonlinear controller synthesis approach will result in a stable
closed-loop system?

• Planning: What types of models can be used in planning? How accurate
must such models be? How do model errors affect prediction quality? How
far ahead in time should predication take place? What is the best way to
choose a plan? What criteria should be used for plan selection? Can we
show that a planning strategy can successfully operate in a dynamic and
uncertain environment? Can it successfully achieve a whole sequence of
goals? How much uncertainty can it cope with?

• Attention: What is important to attend to? Which information can be
safely ignored? What should the attentional strategy be for dynamic re-
focusing? What are the inputs to such a strategy (controller)? How do
aspects of the environment (e.g., characteristics of predators/prey that the
organism wants to attend to) affect how attention should be dynamically
focused? What is the best way to design an attentional strategy so that
an organism is maximally aware of its environment? What constraints
exist on how much information can be attended to by an organism with
fixed physiology? How does the filtering, selection, and refocusing in at-
tentional systems help an organism cope with “information overload” and
when does an organism with a fixed attentional strategy experience infor-
mation overload? Can we prove that an attentional strategy will be able
to maintain a certain accuracy in keeping track of stimuli in its environ-
ment? Does planning have a useful role in attentional strategies (e.g., via
planning what to attend to)? On the other hand, do attentional strategies
have useful roles for deductive and planning strategies? For example, how
can attentional characteristics be integrated into deduction for focusing
on what to plan for?

• Learning: How can information (e.g., data) gathered a priori or “online”
be stored and later recalled in order to enhance performance? How do
neural networks learn from examples? What types of “examples” are best
to help enhance the quality of learning? Can we control which examples
are presented to the learning system? What are the trade-offs between
learning substrate flexibility, complexity, and tunability? For example,
what is the minimal size neural network needed to learn some relationship
to a certain degree of accuracy? What types of information can be learned
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by neural networks? What is the role of forgetting? How do we measure
how much is learned and the accuracy of the learned information? How
accurate must the learning be in order to achieve good performance? Can
the information used by a deductive strategy be learned and profitably
employed to adapt the strategy to achieve or maintain performance? Can
our deductive strategies be adapted over short periods of time to cope
with problems presented by the environment? Can we prove that online
learning strategies lead to control decisions that result in stable closed-
loop behavior? Can the learning of models during operation of a planning
strategy enhance performance? Can it learn new planning strategies?
Can a model be learned and profitably employed in an attentional strategy
(e.g., via learning a model that is used to plan how to pay attention)? Can
the very structure of the storage and learning strategy also be learned?
For example, can we learn how to learn?

It is these and other such questions that will be discussed in this book. In
the next section we provide a different perspective on these questions: If we
consider a human who is controlling some process, can we profitably emulate
the deductive, planning, attentive, and learning strategies he might use in order
to automate control of that process? Hence, we consider biomimicry in more
detail, but where the “bio” is typically a human who employs a range of cognitive
skills to solve a control problem.

2.3 Organisms

Another major approach to intelligent control is to use a computer and other
hardware to automate control tasks that have traditionally been solved by ani-
mals or humans. We think of observing how an organism solves a control prob-
lem, then use this as the inspiration for construction of a computer algorithm
for control.

2.3.1 Organisms Vs. Computers for Control

We begin with what may seem to a control engineer to be odd questions. Why
even use a computer and other hardware to try to achieve automation? Why not
just use a human to perform a task? Or, why not employ some other biological
organism to perform the task? These are not ridiculous questions. Biological
organisms are introduced in some ecosystems to try to remove hazardous waste
(i.e., to control the level of concentration of some noxious chemical). How far can
the idea of employing biological systems for control go? Humans are currently
employed in performing many control tasks (e.g., driving a truck, controlling
nuclear power plants, etc.).

Consider the following reasons to replace humans (or other animals) with
computers and other hardware for automation:
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• There is a desire to remove the need for humans to perform simple, often
repetitive, boring tasks so that they can pursue more enjoyable employ-
ment. (At least, that is the objective, and it is not to simply raise the
unemployment rate.)

• Properly designed monitoring and control systems may be more reliable
and less expensive. Machines typically perform more consistently than
humans do. The energy supply can typically be electricity, which is often
relatively easy to supply to the automation system. Animals and humans
require nutrient sources that are likely to be more difficult to deliver,
especially if the control task is to be performed over a long period of time.
In addition, humans need rest and sleep, while machines do not (but they
may need maintenance and replacement).

• Computer and other hardware is often not subject to some of the same
constraints as humans are in performing control tasks. For example, hu-
mans cannot process many types of events at a rate that a computer can.
Mechanical systems can be designed to provide greater forces and to be
faster than humans.

• When it comes to verifying that the overall system will operate properly,
with the human “in-the-loop,” it then becomes necessary to analyze hu-
man responses in complex dynamical situations, and this is very difficult
(human behavior is not very well understood and is certainly unpredictable
to a certain extent).

• It may be a significant safety risk for a human to perform some con-
trol task; hence, this may necessitate computer automation (e.g., in some
robotic applications, for the cleanup of hazardous waste or the clearing of
land mines).

There are, however, reasons why it could be better to use a human to per-
form a control task. Humans have extraordinary visual and pattern matching
capabilities for moving objects, can often be creative in solving problems, and
can often successfully reason about control strategies in an abstract manner.
For example, automated collision avoidance for automatically driven vehicles is
currently quite a difficult problem, yet humans perform this task quite well.

To solidify the above advantages and disadvantages in employing a living
organism for control, we next consider one possible application.

2.3.2 Example: Skinner’s Pigeons for Missile Guidance

The famous behaviorist psychologist B.F. Skinner was given funding by the U.S.
government in 1943 to try to determine the feasibility of using trained pigeons
to guide a missile that was to be dropped from an aircraft to hit targets on the
ocean (e.g., enemy ships). Figure 2.5 shows a pigeon being placed in the nose
cone of the Pelican missile that Skinner was to test the pigeons on. The system
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in fact employed three pigeons and a majority voting scheme to combine their
actions and guide the missile.

Figure 2.5: Pigeon being placed in nose cone of the Pelican missile test bed
(figure taken from [106], c© IEEE, used with permission).

First, the pigeons were trained to respond only to a particular type of target.
This was done by projecting aerial photographs of targets on a screen, crossing
beams of light at the centers of the targets, and then when a pigeon struck the
center of the two beams, a signal was generated that rewarded the pigeons by
swinging a tray of grain in front of them so they could eat. Several pigeons
were trained in this fashion. Next, the pigeons would be deployed to provide
real-time guidance of the missile as it descended towards its target. To do this,
the pigeons were to peck at a movable screen (on gimbal bearings) that was
connected to the missile guidance system, so that pecking at specific target
locations on the screen would redirect the missile toward the target.

It turns out that when the project was evaluated for further funding, even
though the pigeons performed perfectly, the project was discontinued. Some be-
lieve the reason had more to do with electrical and mechanical engineers (who
were working on what we would now think of as more conventional designs)
having difficulties changing their viewpoint. There must have been, however,
serious concerns about the reliability of the pigeons (even though Skinner found
them to work faster, in total darkness, or with loud sounds nearby when they
were fed marijuana seeds), the expenses of training, and the problems with man-
aging the animals en route (e.g., feeding, reactions to relatively high altitudes).

It is not difficult to speculate, however, that at least part of the reason that
Skinner was funded in the first place must have been that at that time we
did not have good sensors and pattern matching algorithms, and the pigeons’
visual and cognitive systems were the key to their success. Hence, perhaps the
objective was to try to exploit some of the things that pigeons could do well,
that the current technology could not. Now, however, with the rise of radar
and “automatic target recognition” technology, we can design computer-based
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electromechanical systems for missile guidance. Perhaps there is a fundamental
principle here. We use humans or animals in places where our current technology
is not very successful, but once the technology is improved to the point where
its success and other advantages outweigh those of a human (or some animal)
we replace the human with the technology. (Clearly, however, there are human
factors and cultural aspects we are not considering.)

Assume that we decide to automate some control task that has typically been
performed by a human (we ignore the case where an animal is used since it is
much less common). How do we go about this? We could take the conventional
approach to control design as explained in Section 1.3. This approach, however,
has a critical dependence on the existence of a mathematical model for the
plant. Most often, however, a human does not use an explicit mathematical
model of the process to decide what control inputs to apply to the process;
hence, when the control task has traditionally been performed by a human, it is
often the case that a mathematical model for the plant does not exist (typically
all that exists is a description of how the human goes about solving the control
problem). It is then important to discuss in more detail why we may not have
a model and what to do in order to design a control system in this case.

2.3.3 Human Control Expertise: “Human-Mimicry”

If we wish to emulate the control expertise of humans, it is useful to categorize
the types of expertise that they may have, both to recognize the range of possi-
bilities and to provide indications on how to implement the behavior. In broad
terms, the general types of control expertise are the following:

Perception, deduction,
planning, attention, and
learning drive the
behavior of the human
control expertise we seek
to emulate.

• Rules: Often human operators have “rules of thumb” about how to control
a process. These are often in the form of, “If certain events and conditions
occur, then take these corrective actions.” For example, human operators
often use this type of approach in making corrections when the process is
in steady-state operation.

• Deduction over more complex representations: Humans often represent
information in sophisticated “semantic networks,” where similar informa-
tion is stored nearby and where there seem to be links (some hierarchical)
between related concepts and objects. In controlling some processes, hu-
mans may reason over such a representation to decide how to act, and not
just use simple rules as described above. Moreover, expert human opera-
tors tend to have a better ability to move between more and less abstract
levels of reasoning.

• Planning using mental models: In certain control problems, a human will
build a mental model of how the process will react to actions, and will
use this model to plan which actions to take. (This normally involves
predicting into the future with the mental model how the process will
respond to various actions, and then picking the input that will be best.)
An expert human operator is also capable of anticipating future goals, and
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as discussed below, is able to learn better mental models of the process
during operation of the system.

• Attention to salient behaviors of the process: Humans typically focus on
the most important aspects of the behavior of the plant and make decisions
based on these. This helps to manage the complexity of the vast amount
of information that is dynamically gathered to indicate how a process is
operating. We think of this as the human having “selective perception.”

• Learning how to control: It is important to recognize that for each of the
above types of expertise, there is the possibility that the expertise can be
improved via learning. Humans initially learn how to control a process
and if the process changes, they can learn how to control it so as to
maintain performance. For instance, humans can learn new control rules
or other mental representations of plant behavior that could be used in
planning, or they could learn how to pay attention to the most important
features of the plant’s behavior. Moreover, expert human operators are
said to resort to open-loop control more often than are novices who rely on
closed-loop operation more frequently. Why? Experts do this since they
have learned a very good mental model of the process and taking control
actions in advance of certain anticipated events is often the best strategy
in processes that have delays.

Clearly, there are strong connections between our understanding of cognitive
neuroscience and what aspects of human operator behavior may be relevant to
generating control actions. Next, we discuss the fact that while human operators
may be quite creative in solving a control problem, there may also be situations
where they may not perform very well. This provides a cautionary note about
the value of perfect emulation of human behavior.

2.3.4 Human Operator Control Expertise: Quantity and
Quality

While the use of human operator knowledge is sometimes a good source for
the heuristic construction of a controller, there are two issues that need special
attention. First, operator expertise varies, especially with the process that
is controlled, and for some processes their control expertise may not be very
useful. For instance, the human operator is typically balancing several different
objectives, including productivity and company profits vs. safety. If given too
high of a work load, the operator can fail to achieve a correct balance. Second,
we certainly only seek to model human operators when they are doing their
best, not when they make mistakes or are performing poorly (e.g., since they
are “having a bad day”).

Do Humans Always Have the Needed Control Expertise?

No, not always. There are control tasks that humans can currently do much
better than a computer (e.g., obstacle avoidance while driving) and this may
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be due to, for instance, our unique visual processing capabilities or complex
cognitive processing. For such applications it makes sense to first try to em-
ulate and then automate what a human would do. This approach has been
successful in several applications, especially for “first generation” automation.
Often, however, in further refinements of the controller, improvements can be
made that result in higher performance operation, and these improvements do
not necessarily represent more accurate representations of what a human would
do in performing the control task. In essence, over time, the system evolves
independent of the original motivation to replace the human by emulating and
automating his actions.

On the other hand, there are other processes where a computer can perform
much better than a human (e.g., balancing a double inverted pendulum, or in
damping the effects of wind currents on aircraft turbulence). These controllers

Computers may be able
to perform better than
humans in some cases,
but in others humans
may do better.

perform better since detailed information about the system to be controlled
(e.g., a mathematical model that has been shown to be reasonably accurate in
predicting how the system will behave) is used to construct the controller, and
since a computer (in concert with sensors and actuators) can act much faster
than a human for many processes. It is important to realize that there are
physiological delays in sensing, cognitive processing, and actuation that make
it very difficult for a human to control some processes. Evolution has shaped us
to be good at only certain survival tasks, some of which include control tasks.
It is possible, however, for an engineer to come to a good understanding of the
physical process (e.g., via physical modeling and system identification) and to
then imagine how to control the process as if they could act very quickly. In this
case we can still think of automating human control expertise (some of which
may have come from modeling), and such an approach has proven to be useful
in several applications.

It must be acknowledged, however, that there are some nonlinear processes
that are very difficult to control, whose complexities, time delays, nonminimum
phase behavior, and stochastic characteristics tax humans beyond their capa-
bilities (e.g., the “working memory” in humans is only a finite size so that even
with the most intelligent manipulations, human performance is constrained by
this limitation). Indeed, such processes have perhaps benefited most from the
methodology of producing a mathematical model and using this to specify a
controller. In this book we firmly acknowledge the existence of such systems
and emphasize that the conventional approach of using mathematical models
to represent the plant and construct controllers has significant value for this
type of system. However, we also highlight the fact that there are times when
a mathematical model is very difficult, impossible, or undesirable to produce,
and hence there is a need or desire to rely solely on human control expertise in
constructing controllers.

Do You Want to Emulate What a Human Would Do?

No, not always. As mentioned above, evolution has not shaped us to solve all
the possible control problems that we can encounter in a modern technological
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world. Moreover, humans often make mistakes in solving control problems, or
are unreliable, or inconsistent in their performance.

In this book we have no interest in developing controllers that emulate hu-
mans who do not do a good job in solving a control problem. Our intent is

The goal is not
emulation of substandard
human behavior; it is to
design the best control
system possible.

not to model human behavior, but to solve the control problem. Ultimately, we
often want an automatic system that replaces the human and performs better
than any human ever could. Computers have a significant advantage over hu-
mans because they can be quite consistent in how they perform a task. Hence,
we emphasize that we do not always want to emulate what a human would do
in solving a control problem. We simply want to do good control engineering
to get the best possible system.

2.4 Groups of Organisms

We can think of two broad approaches to derive biological inspiration from
group behavior of organisms. First, we will consider the case where there are
simple control systems that are used on organisms, and how when they are
together as a group and may communicate with each other and perhaps coordi-
nate their actions, certain types of intelligent behavior seem to “emerge” (e.g.,
swarm patterns that emerge when groups of animals forage and avoid preda-
tors). Some call this the study of self-organization in distributed autonomous
multiagent systems, and think of it as illustrating how intelligence manifests
itself in a “bottom-up” fashion from many simple interacting systems. Often,
the system is “flat” or “horizontal” in the sense that there is no special agent
that supervises the actions of others. Second, we will consider the case where we
emulate a group of organisms organized in a hierarchical fashion that performs
a control task via the coordination of their actions. There are layers of bosses
and workers, and intelligence is “top-down” and arranged in a vertical fashion
with higher levels associated with more abstract thinking, and hence higher lev-
els of intelligence. In either case, we think of the intelligence as emerging from
the group’s interactions; some say that “the whole is more than the sum of its
parts.”

2.4.1 Social Foraging and Emergent Swarm Behavior

Some animals search for and obtain nutrients in a way that maximizes

E

T

where E is energy obtained, and T is time spent foraging (or, they maximize
long-term average rate of energy intake). Evolution optimizes foraging strategies

Foraging is an optimal
decision-making process
that has been fine-tuned
via evolution.

since animals that have relatively poor foraging performance do not survive.
Foraging could involve finding a “patch” of food (e.g., group of bushes with

berries), deciding whether to enter it and search for food (do you expect a
better one?), and when to leave the patch. Alternatively, foraging could involve
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selecting which prey to include in a diet, taking into consideration the relative
abundance of the prey types and the expected time it takes to search for them.
There are predators and risks, energy required for travel, and physiological
constraints (sensing, memory, cognitive capabilities). Foraging scenarios can
be modeled and optimal policies can be found using, for instance, dynamic
programming. Search and optimal decision-making of animals for foraging can
be broken into three basic types: cruise (e.g., tunafish, hawks), saltatory (e.g.,
birds, fish, lizards, and insects), and ambush (e.g., snakes, lions). In cruise
search the animal searches the perimeter of a region, and in ambush it sits and
waits. In saltatory search, an animal typically moves in some direction, stops (or
slows down), looks around, and then changes direction. It searches throughout
a whole region.

Some animals forage as individuals and others forage as groups. While to
perform “social foraging” an animal needs communication capabilities, it can
gain advantages in that it can essentially exploit the sensing capabilities of the
group, the group can “gang up” on large prey, individuals can obtain protection
from predators while in a group, and in a certain sense, the group can forage
with a type of collective intelligence (it is sometimes said that the group “self-
organizes” and intelligence seems to emerge). For instance, some of the following
animals exhibit this characteristic:

• Birds, Bees, Fish: Flocks of birds, swarms of bees, and schools of fish
exhibit complex dynamical spatial patterns of behavior that emerge when
each animal in the group follows a simple set of rules (e.g., if each organism
tries to move to the center of the group, tries to avoid collision with its
neighbors, and tries to continue to move in the same general direction of
the group, simulations have shown that emergent swarm behaviors arise
that are reminiscent of how this occurs in nature). Also, other “herds”
of animals (e.g., horses) have similar group behavior. Basically, via inter-
organism communications, in social foraging animals cooperatively forage
and protect each other from predators and risks and thereby increase
energy intake per unit time spent foraging, or perhaps they reduce variance
in intake.

• Ants: Groups of ants seem to have purposeful behavior when in fact it
has been shown that there is not a management hierarchy as in human
organizations; ants follow simple rules in locally coordinating their actions,
and colony-level goal-seeking behaviors emerge. In particular, their social
foraging behavior leads to more efficient acquisition of food.

Simple organisms in
colonies that obey simple
rules can sometimes
achieve a type of
collective intelligent
behavior.

Note that there is a type of “cognitive spectrum” where some foragers have
little cognitive capability, and other higher life forms have significant capabilities
(e.g., compare the capabilities of a single ant with those of a human). Generally,
endowing each forager with more capabilities can help them succeed in foraging,
both as an individual and as a group.

Why is this relevant to control? First, it is often the case that control
functions are being performed by each member of a group, and the “additive
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effect” of the local control and coordination is what results in an emergent
group behavioral pattern. Second, there is an inherent distributed optimization
process that results in the emergent behavior, and ideas from this optimization
process can be used for control systems.

To clarify the types of behavior that can emerge when many “agents” with
resident control systems act together, we will not now consider birds, bees, fish,
herds, or ants; instead, in the next subsection we will consider a much simpler
microorganism as an example: E. coli bacteria.

2.4.2 Example: Bacterial Chemotaxis

Here, we consider the foraging behavior of E. coli, which is a common type of
bacteria (it lives in your gut) with a diameter of 1µm and a length of about 2µm,
and which under appropriate conditions can reproduce (split) in 20 minutes. Its
ability to move comes from a set of up to six rigid 100-200 rps spinning flagella,
each driven by a biological “motor.” An E. coli bacterium alternates between
running (at 10-20 µmeters/sec, but they cannot swim straight) and tumbling
(changing direction). When the flagella rotate clockwise (counterclockwise),
they unbundle (bundle into a “propeller”) and hence tumble (run).

Chemotactic actions:

1. If in a neutral medium, alternate tumbles and runs ⇒ Search

2. If swimming up a nutrient gradient (or out of noxious substances), swim
longer (climb up nutrient gradient or down noxious gradient) ⇒ Seek
increasingly favorable environments

3. If swimming down a nutrient gradient (or up noxious substance gradient),
then search ⇒ Avoid unfavorable environments

In this way it can climb up nutrient “hills” and at the same time avoid
noxious substances. The sensors it uses are receptor proteins which are very
sensitive, and overall there is a “high gain” (i.e., a small change in concentration
of nutrients can cause a significant change in behavior). The sensor averages
sensed concentrations and computes a derivative. This is probably the best
understood sensory and decision-making system in biology (it is understood
and simulated at the molecular level).

What is the resulting emergent pattern of behavior for a whole group of E.
coli bacteria? Generally, as a group they will try to find food and avoid harmful
phenomena, and when viewed under a microscope, you will get a sense that a
type of intelligent behavior has emerged since they will seem to intentionally
move as a group.

Bacteria are often killed and dispersed and this can be viewed as part of
their motility. Mutations in E. coli affect reproductive efficiency at different
temperatures, and occur at a rate of about 10−7 per gene, per generation. E.
coli occasionally engage in a type of “sex” called “conjugation” that affects
characteristics of a population of bacteria. There are many other types of taxes
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that are used by other bacteria. For instance, some bacteria are attracted to
oxygen (aerotaxis), light (phototaxis), temperature (thermotaxis), or magnetic
lines of flux (magnetotaxis). Some bacteria can change their shape and number
of flagella based on the medium to reconfigure to ensure efficient foraging in a
variety of media.

E. coli and S. typhimurium can form intricate stable spatiotemporal patterns
in certain semisolid nutrient media. They can radially eat their way through
a medium if placed together initially at its center. Moreover, under certain
conditions they will secrete cell-to-cell attractant signals so that they will group
and protect each other. These bacteria can “swarm.”

2.4.3 Emulation of Coordinated Behavior of Humans

In an analogous way to how we sought to emulate human control expertise so
that we could automate the control functions that they are employed to per-
form, we can take a similar approach for groups of humans (e.g., as in business
management shown in Figure 2.6). For instance, there may be groups of human

Groups of humans may
be able to coordinate
their actions to manage
and control some
enterprise; it can be
useful to mimic their
collective behavior for
automation.

operators (“workers”) employed to coordinate the control of a chemical process
control plant. In such a situation we could interview the group of process op-
erators to gather their control expertise, and pay special attention to how they
coordinate their actions (e.g., how they communicate with other operators, and
how that information influences the decisions that they make). In such situa-
tions there is often a hierarchical nature to the management and execution of
tasks. For instance, there may be humans with very little autonomy (workers),
who have skills in certain areas, and who repetitively apply these. Their su-
pervisors (bosses) try to coordinate their actions so that they are effective in
achieving broader goals, and so that, for instance, if one worker learns how to
perform a task better, this information can be shared with others. They must
plan some of the worker’s tasks, and try to make sure that these plans achieve
broader objectives. It is the responsibility of the supervisors to make sure that
the workers are efficient, and this can be viewed as the supervisor doing the right
things to make sure that the workers can do well, or perhaps they might be more
authoritarian and simply dictate to the workers what the workers must achieve.
The supervisors could be viewed as “middle management” and this group will
also have bosses, sometimes called “upper management.” Upper management,
which is sometimes just one person, is responsible for high-level oversight, try-
ing to optimize the performance of the overall process, setting high-level goals,
planning future actions of the lower levels of management and workers, and
interfacing to the customer and other systems.

Proper design of groups of humans to achieve hierarchical, distributed, co-
ordinated control involves many issues that we will not discuss in this book.
Clearly, management science, organizational/industrial psychology, economics,
business practices and other areas can play especially important roles.
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Figure 2.6: Hypothetical organization chart for business management.

2.4.4 Biomimicry for Automation

In this book we will use simple models of social foraging groups of organisms
for distributed optimization and to provide ideas for how to achieve cooperative
control. We can study hierarchies in each of the approaches. The types of
questions we study are as follows:

• Hierarchical biological/cognitive structures and organizations: Can fixed
neural networks that are arranged in a hierarchical fashion be used in
control? Can a hierarchical deductive strategy, where there is reasoning
over how to supervise a lower-level deductive strategy, be used for con-
trol? Can we conduct high-level planning that generates plans that are
then implemented by multiple low-level planners that seek to achieve each
task or goal in the plan specified by the higher-level planning system?
Can attentional strategies that employ abstraction and focusing of a set
of attentional strategies be useful? Can a hierarchical structure (e.g., hier-
archical neural network) learn from examples? If we think of each human
in an organization as an intelligent decision-maker endowed with deduc-
tive, planning, attentional, and learning capabilities, how do we design
the hierarchical structure and individual strategies to ensure success by
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the whole enterprise (possibly at the expense of some individuals in the
organization who may be more successful outside the organization)?

• Intelligent social foraging: Can foraging teach us how to design guidance
strategies for vehicles (e.g., if we think of a goal position as providing nu-
trients, and obstacles in its environment as noxious substances that are to
be avoided)? Can foraging strategies be used to choose inputs to a plant
(e.g., if we define nutrients to be good performance, and noxious sub-
stances to be bad performance)? If we consider “good information” to be
food for the foraging organism, can we design foraging strategies that can
learn (e.g., learn models that are then used in adaptive deduction, plan-
ning, or attention)? Can social foraging strategies be useful for designing
cooperative control strategies for groups of autonomous vehicles? What
type of command and control hierarchy should be used by such a group
(e.g., “flat,” where every individual is the same as every other one, or hi-
erarchical with a “leader” who tells each vehicle what to do)? What types
of communications should be used? What quality of communications is
needed in order for the group to be successful? For example, can success
be obtained with noisy, band limited, and range limited strategies? What
level of intelligence is needed by each individual to ensure group success?
Is simple rule-based behavior sufficient, or do they need planning, atten-
tion, and learning capabilities? How do the designs change if there are
two adversarial teams of foragers operating in the same environment?

2.5 Evolution

Evolution provides a unifying theme for, and affects virtually every aspect of
biology, from E. coli bacteria to human physiology and cognition. D. Dennett
appropriately points out that “biology is engineering” since evolution essentially
incrementally designs organisms [139]. Clearly, there should be a strong role for
evolution in intelligent control since it has shaped both our ability to manually
control a process and the very biological systems that we mimic.

2.5.1 The Evolutionary Process

Darwin’s theories have been strengthened and extended over time (resulting
in “neo-Darwinism” or the “modern synthesis”) but are still basically intact.
Darwin observed that species have great potential fertility, population sizes are

Evolution is a type of
incremental adaptive
process that persistently
redesigns biological
systems to be best-suited
to reproduce in their
environment.

largely fixed, but do change with climate changes, and that resources are limited.
This leads to a struggle for life so that only a relatively few offspring survive.
Moreover, Darwin observed that individuals in a population vary extensively
and that the variation is heritable. This led him to conclude that individuals
who possess characteristics that allow them to survive to reproduce leave more
offspring than less fit individuals. Also, he concluded that this will then lead
to a gradual change in a population, and that the favorable characteristics will
tend to accumulate in the population over many generations.
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As an example of the results of evolution, consider the polar bear. Polar
bears have white fur. Why? Evolution has designed them this way. Polar bears
live in cold climates, yet need to maintain a body temperature and white fur
is not good for that. A dark fur would tend to keep them warmer. On the
other hand, a polar bear is more fit for its environment with white fur since its
prey cannot detect it as easily against a white (snow) background. Apparently,
as they evolved from their ancestors with dark fur, parents that bore children
that had slightly lighter colored fur tended to survive to reproduce (they had
more food, so they were able to survive to produce more offspring). After many
generations the fur turned white. Also, in this process the hairs that make up
the fur coat evolved to become hollow! This helps with insulating the polar bear
and in this way, evolution created an “optimal design” for its environment. This,
of course, assumes that the evolution has converged on a design, but clearly it
is very difficult to determine this.

Evolution is what glues biology together since it affects all living organisms.
It is then important to have an abstract understanding of the evolutionary pro-
cess. The general evolutionary process is abstractly depicted in Figure 2.7.
Here, suppose that climate and population size are relatively fixed and that
resources are limited. At the top of the figure, there is an oval that represents
the population at generation k. In this population there are two dots that are
representative of the frequency of occurrence of a certain type of trait of the or-
ganisms in the population at time k. The lines coming out of the bottom of the
oval represent the offspring of the population. Here, there are different line types
representing different inherited characteristics (note the heavier and lighter line
thicknesses, solid, dash, and dash-dot types, ones with arrowheads, and ones
with arrowheads and shaded circles on them; view each of these as a differ-
ent offspring in the same species). Due to the struggle with limited resources,
suppose that only the lines with black arrowheads represent the offspring that
survive. Here, there is one arrow representing an individual who does not hold
the “dot characteristic” but who survived anyway. The lines without arrows
at the end represent organisms that had inherited characteristics that did not
help them survive, so they died before reproducing. Clearly, having the dot
characteristic was helpful for survival, so that at generation k + 1, the popu-
lation has a higher frequency of the dot characteristic. The process repeats in
the same general way at generation k + 1. Clearly, individuals with the dot
characteristic will, over many generations, tend to be more numerous in the
population; in this way we think of the whole population as adapting to survive
in its environment. Finally, it should be highlighted that there seems to be
a persistent temptation to assume that every organism in existence is “highly
evolved” or “optimized” for its environment (i.e., that it is at an evolutionary
equilibrium). Evolution is an ongoing process so there is little reason to think
that any particular organism’s design is at an equilibrium. Evolution does not
occur instantaneously, and its associated “inertia” makes it difficult to know if
an equilibrium is achieved. In addition, it is difficult to know what “noise” in
the environment is driving the evolution, so the notion of a single equilibrium
is likely inaccurate. Experimental verification that an organism is optimized is
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certainly difficult. Moreover, viewing evolution as being modeled by a stochas-
tic nonlinear optimization process, there is no reason to think that long-term
behavior is not oscillatory. Hence, you should be careful in drawing conclusions
about the ultimate results of biological evolution.

Population, generation k

Population, generation k+1

Figure 2.7: Graphical depiction of the biological evolutionary process.

2.5.2 Evolution of Behavior

Evolution also determines components of the behavior of animals, but ultimately
animal behavior is certainly a combination of genetic and learned responses.
Focus for a moment on what seem to be clear genetic influences on behavior.
For instance, there seem to be species-typical behaviors where different mem-
bers of the same species produce identical responses to the same environmental
stimuli (these are called “fixed action patterns” in response to “sign stimuli”).
For example, certain aggressive behaviors in animals, such as guarding their
nests, follow such a pattern. Also, it seems that human emotional expressions
are species-specific (e.g., given a picture of anyone in the world who is happy,
almost anyone else in the world would identify the subject as such). Evolved
behaviors seem to have a component of biological preparedness, but there is also
a component where learning during a lifetime can change the natural tendency
to respond in some way.

In addition, various characteristics of animals and their behavior are thought
to undergo “coevolution,” where their evolution is linked to that of another or-
ganism because they are in competition with that organism. The field of evolu-
tionary game theory has provided models and explanations of how behavioral
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survival strategies evolve in animals. The behaviors that are most successful
propagate; actually, the genes that propagate are the ones that lead to the
types of behavior that result in survival and reproduction. It is interesting to
note that the game-theoretic approach to the study of evolution is closely re-
lated to control systems since we can view organisms as a type of controller that
is interacting with its environment, trying to generate inputs (behavior) that
allows it to survive. The organism with the best strategy (control algorithm)
wins and propagates its DNA through time.

Evolution has shaped
biology at all levels, from
cells to organisms,
behavior, and
intelligence.

2.5.3 Evolution of Intelligence

The evidence for evolution is as conclusive as any scientific theory, and has been
shown in many forms, from laboratory experiments with bacteria and fruit flies,
to fish and birds in their natural habitats. We can think of evolution as a
type of adaptation over long periods of time. Higher level cognitive functions
evolved since they gave us a differential advantage in survival. For instance,
language capabilities evolved so we can pass information to our descendants and
other individuals (e.g., via spoken language, books, and the library). Planning
has evolved to give us an ability to build models in our minds of portions
of our environment and to use these to predict and pick the best actions to
ensure our survival (what portion of this environmental model is instinctual?).
Attention evolved to provide us with ways to cope with the complexity of sensed
information about our environment and to allow us to concentrate on a sequence
of activities without distraction. Memory is adapted so that it stores and does
not forget information that is likely to be useful for reproductive survival in
the environment the human lives in. Learning allows us to be flexible (it gives
us “plasticity,” as does planning when it involves model building) in how to
best cope with our environment over the span of our lives. Learning can give
us a differential advantage for survival, so it is clear why this capability has
evolved in humans. Overall, in terms of the relationships between learning and
evolution, it seems that evolution has produced a type of trade-off in what is
passed through the genes (and hence what becomes instinctual), and what must
be learned via the organism interacting with its environment. An appropriate
amount of learning has evolved to help ensure reproductive success.

Evolution designs and
tunes learning processes.
Learning can accelerate
evolution; there are
“synergistic” effects
between these two
adaptive processes.

Moreover, there is an additional effect due to our ability to learn called
the “Baldwin effect” that hypothesizes that because learning capabilities are
heritable, organisms able to learn can survive certain effects of their environment
for a long enough period of time so that they can actually (via a mutation or
incremental improvements) gain a genetic coding of the ability to survive these
effects (it is better to have the instinct or natural resistance since it is on average
more reliable than having to learn to avoid something that adversely affects our
ability to survive). Learning then is not needed so the capability could be lost,
or perhaps it could be adapted for use in other survival tasks. Overall, the
Baldwin effect characterizes how learning can tend to accelerate evolution since
over a single life span it raises the reproductive fitness that evolution operates
on.
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2.5.4 Example: Selective Breeding for Intelligence?

“Selective breeding,” a practice used for thousands of years by plant and an-
imal breeders, involves repeatedly (over several generations) mating animals
that have a desired characteristic. After several generations, the effects of this
strategy tend to accumulate and hence can affect behavior or intelligence, in-
dependent of environment and learning. For instance, even in one generation,
for some animals, researchers have shown that a single gene controls certain be-
havioral aspects (e.g., it seems that a single heritable gene controls fearfulness
in some dogs). Generally, however, for other behavioral characteristics it seems
that many genes affect behavior and intelligence, and hence these are sometimes
referred to as “polygenic characteristics.”

While for plants, breeders select for bigger grain, or ears and kernels of corn,
in animals they may select for docility and milk production in cows, or speed
or work capabilities in horses. In controlled laboratory conditions scientists
have bred fruit flies so that they will move toward or away from a light source,
mice to be more or less inclined to fight, and rats to prefer alcohol or water.
Clearly, such selective breeding could be used for many types of behavior and
intelligence.

Perhaps the most interesting goal, however, is to try to breed for some aspect
of intelligence such as an ability to learn or an ability to plan. A classic study
of selective breeding for intelligence was conducted beginning in the 1920s by
Robert Tryon, where he conducted an experiment to evolve rats to be better
at learning how to navigate a maze. To do this, he started with a genetically
diverse group of rats and tested them for their ability to learn a particular maze
(the same maze was always used). For his test he scored each rat via the number
of errors that they made in trying to find their way through the maze. Ones with
many errors were called “dull” and ones with fewer errors were called “bright.”
Next, he mated the males and females that scored the best with each other and
those who scored the worst with each other. In this way he sought to selectively
breed to obtain a bright strain of rats and a dull strain. Some of his results are
shown in Figure 2.8, where you can see that after only the seventh generation,
there is a clear separation between the two strains of rats. He evolved a bright
strain of rats! To control for the possibility that the offspring were learning how
to be bright or dull from their mothers, he “cross-fostered” the rats by having
some rats raised by a foster mother from another strain. Then he discovered
that how the rats were raised did not affect their performance; bright rats raised
by dull mothers still performed well, showing that the environment and lifetime
learning did not corrupt the conclusions.

Some have raised concerns about this study since it is not clear what was
selected for since the maze learning task also depends on sensory, motor, and
motivational processes. The “bright” ones could have simply had better vision!
Or, the “dull” ones may not have liked the taste of the food at the end of the
maze. In fact, others have found that if you simply change the learning task, the
dull ones may do just as well or better. Clearly, it is quite difficult to definitively
show that you have evolved a more intelligent strain since there is such a wide
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Figure 2.8: Results of selective breeding in rats for learning capability (figure
taken from [223], c© 1991, 1994, and 1999 by Worth Publishers Inc., and used
with permission).

diversity of factors that characterize intelligence. Tryon’s study is, however,
quite interesting since no matter what characteristics actually evolved, some of
them were characteristics that contribute to improved learning, which is a key
aspect of intelligence.

2.5.5 Biomimicry for Automation: Evolution

Evolution shapes all biological organisms and hence can be used in many bio-
inspired methods. Above, from the basic principles of evolution it should be
clear that there are adaptive and optimization processes in evolution that may
offer ideas to the design of components of control and automation systems. The
notion that evolution provides for a biological version of a type of (stochastic)
optimization process is especially fundamental. The types of questions we study
are as follows:
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• “Darwinian” design: Can an evolutionary strategy be used in computer-
aided control system design to construct a controller (or estimator) to meet
some specified performance objectives that are quantified with a fitness
function? Could evolutionary principles be used in tuning parameters
of a control strategy (e.g., tuning a planning strategy)? Could such an
evolutionary design approach be used in a massively parallel experiment
where each controller is thought of as an individual and each plant as its
environment to obtain a novel approach to robust control system design?

• Evolution and learning: Can we evolve appropriate learning capabilities
for a controller that fit what is needed for the aspects of the plant that are
not known a priori and hence need to be learned online? Can evolution
create a balance in a controller between what “instincts” are needed and
what learning is needed? What are the effects of learning on evolution?

• Evolution for online adaptation: Can evolutionary strategies be used in
online optimization approaches that result in evolution of good models
or controllers for a plant (e.g., ones used in a planning strategy)? Can
evolutionary and learning principles be used in tandem to achieve good
performance?

• Evolution of hierarchies and foragers: Can we evolve the best command,
communication, and control structure for a hierarchy of intelligent agents?
Can we evolve “cognitive” and “physiological” characteristics (e.g., plan-
ning and learning algorithms, and vehicular hardware) of a social foraging
swarm of vehicles?

2.5.6 Evolution of Control Technology: Global Perspec-
tive

Most people think of evolution as operating at the level of the individual or-
ganism, but others have proposed that it operates at the population level (i.e.,
adaptation occurs so that the whole population can survive, possibly via altruis-
tic behavior that results in an individual’s sacrifice), species level, or ecosystem
level. Stretching these ideas even further, the control engineer who reads the
literature on evolution will perhaps be tempted to view the development of the
entire field of control systems engineering that has occurred over the past 50
years as a type of evolutionary process (from this view you may conclude that if
you draw an analogy with evolution of life, we are perhaps at an early Cambrian
period in the evolution of control systems). You may develop this view by using
Dawkin’s “memes” that are ideas that can survive and propagate (i.e., they
are hypothesized to be analogous to genes in biological systems). For example,
the most successful controllers or approaches to develop controllers “survive”
in the sense that they are used more, and then are propagated since they are
successful. Or, you may apply this to analysis methods for control systems (e.g.,
Lyapunov theory and related methods have grown and improved incrementally,
and have survived the test of time due to their high fitness).
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However, one must be careful with this sort of thinking since evolution in
such a domain can certainly be quite different from that in living systems such
as bacteria. There are many other influences on the field of control, including
textbooks, education, computing technology, economics, politics, “hype” of new
technology, and so on. While a full explanation of how the field of control has
evolved is useful, we will leave this to historians and philosophers (or to the
interested reader in Exercise 2.3).

2.6 A Control Engineering Viewpoint

While the connections to biology are interesting, and sometimes provide useful
ideas for controller development, the focus here is firmly on control engineering
for practical systems. In this section we seek to refocus our discussion back to
control and automation engineering since this is the central focus of this book.

2.6.1 Why All the Biology? Do I Need It?

Some control engineers would complain that much of what is done in control
engineering and automation and even the field of intelligent control is quite
independent of the fields of neuroscience, psychology, foraging, evolution, or
any other of the social or life sciences. Are these other areas just a distraction
to the central focus of engineering control and automation systems? The answer
is “no” for the following reasons:

Exploit biomimicry for
functionalities and a
cohesive view, get your
hands dirty with
simulations and
implementations, and
use disciplined
mathematical
approaches.

• Biomimicry provides a cohesive framework to think about the development
of (complex) control and automation systems.

• Biological systems provide another viewpoint on the dynamics, function-
ality, design, and operation of high technology control systems for au-
tomation. Alternative perspectives are generally valuable in engineering
to gain new insights on how to improve approaches and to deepen our
understanding, especially for complex automation systems.

• Some of the concepts from biology seem more familiar to us, and hence
help to teach the engineering methods.

• Intelligent control methods were originally inspired by biological systems,
and while they may have departed over time from their original forms (or
may never have been accurate models of their biological counterparts),
researchers and practitioners can often return to the original biological
system and use analogies (or more accurate models) to get ideas for how
to improve the methods.

• By tracking the advancements in the foundational sciences, we may gain
more ideas about how to engineer control and automation systems. Na-
ture has things to teach us. The most complex and robust control and
automation systems in existence are those in living organisms.
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• The foundational sciences can sometimes provide a tool by which you can
explain what you are doing to nonengineers (explanation via analogy is
used very effectively by some people).

• The analogies are found to be fun by many students and control engineers!
It is best to take this type of perspective as you learn the methods in
this book. We all learn in different ways; some learn much more quickly
and gain much deeper insights via the analogies with the foundational
sciences. You must be cautioned on this, however. The treatment of and
connections to biology are rather shallow at this point for several of the
topics. This is true both in this book and in most of the field of intelligent
control, so the analogies sometimes tend to break down if they are taken
too far. However, by seeing how they break down you may get other
research ideas.

• Strictly speaking, however, you do not need to know much about the
foundational sciences to be able to work in this field, or apply the methods.
(Try not to let the biology hinder your understanding rather than enrich
it.) There are many ways to view the methods as being quite conventional;
these will be pointed out below and throughout the book.

2.6.2 The Focus Is Engineering and Not the Foundational
Sciences

As we emphasized above, we do not care if the neural, fuzzy, expert, planning,
attentive, learning, or genetic systems model their biological counterparts—
we are simply trying to get ideas from how they work to solve engineering
problems. We do not care if the biofunctions are for control in the biological
system (although they often tend to be); we will massage them into forms for
control. We will not strictly adhere to the biological system analogy in the
development of our control systems. In other words, we seek inspiration from
biological systems, but when it is convenient we will not follow the functionalities
or ideas that are suggested by biology. To give some firm examples to illustrate
this point, we will use least squares methods to train neural networks or fuzzy
systems, even though it is not likely that we learn from examples precisely in
this manner. We may design a control system that uses a genetic algorithm
with parameters set to values that are likely to be far different from how nature
would have them. Basically, our focus is not on contributing to the sciences that
are foundational to control. Our focus is on control engineering. We recognize
the potential value of what we do to the underlying sciences (via analogies,
methods, etc.), but we leave it to others to exploit this.

Finally, we note that our focus is quite different from many parts of the field
of artificial intelligence (AI) and cognitive psychology. Often, AI researchers
are actually concerned with modeling how humans think and act, along with
the peculiarities and mistakes that they make (there is good reason to do this
as it can be useful in understanding human behavior and can have applications
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in, for example, human-machine interface design). Here, we take a pragmatic
engineering approach where the focus is always on trying to construct the best
controller possible, and in particular we will focus on how to prove that it will
deliver good performance under many different conditions so that it is robust.
(Put another way, we use inspirations from biology, but we do not want “bugs”
in our algorithms that implement our controllers—pun intended.) We take a
conventional control engineering approach in doing this.

2.6.3 Close Relationships To Conventional Control

Since human cognition is used in conventional control system design, intelli-
gence is embedded in conventional controllers and many of the methods devel-
oped prior to the introduction of the field of intelligent control actually emu-
late the way that humans would solve control problems if they were to do it
themselves (e.g., consider the analogy between “model predictive control” and
human planning functions in the frontal lobes). Due to this, there are actually
close relationships between many of the methods in this book and others in the
conventional control literature (e.g., there are close relationships between the
methods of learning and adaptive control in this book and those in conventional
adaptive control theory).

Figure 2.9 shows many relationships between conventional and intelligent
control. For each part of the book, after the introduction, the biological mo-
tivation is provided, then the intelligent control methods, then some related
conventional optimization and control methods. This figure shows the basic
layout of the book.

It is useful to understand the basic science, and the corresponding field in
conventional control, to understand the methods and ideas in intelligent control.
This can help to show where the intelligent control methods offer advantages,
and where a conventional approach may work better. Moreover, for researchers
it is essential to know the corresponding methods in conventional control, oth-
erwise there is the danger of producing solutions to problems that have already
been adequately solved with conventional control methods. For example, if PID
control works quite well for a certain class of problems, you probably should not
waste the time to try to come up with some (possibly sophisticated) intelligent
control (or advanced conventional) method to solve that type of problem.

2.6.4 Themes: Optimization, Adaptation, and Decision-
Making

There are three central themes in this book: optimization, adaptation, and
decision-making. There are several connections between these:

Optimization is a
fundamental unifying
concept in
decision-making,
adaptation, and design.

• Automation is achieved via control, often feedback control.

• From the biomimicry perspective, control can be thought of as a decision-
making process.
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Elements of Decision Making

Learning
Neuroscience of learning, classical and operant conditioning, place 

and observational learning, development and plasticity

Evolution
Darwinism (modern synthesis), genetics, populations

Genetic algorithms, evolutionary programming, learning/evolution synergy,
genetic adaptive estimation and control strategies

Nongradient and stochastic optimization/search, design, stochastic adaptive control

Foraging
Foraging theory, foraging search strategies, social foraging, swarms,

cooperative and competitive foraging, coevolution

Distributed optimization and search, stochastic and nongradient optimization,
distributed control via learning and planning, cooperative control, game theory

Part V

Part III

Part IV

Part II

Introduction
Control system design: the problem, solution methodology

Complex hierarchical and distributed control systems

Scientific foundations for intelligent control:
biology, neuroscience, psychology, foraging, evolution

Part I

Distributed coordination and control for autonomous teams of agents

Neural control, adaptive fuzzy control, adaptive planning and attention
Online approximation based adaptive estimation and control

Stable adaptive fuzzy/neural control

Heuristic methods for adaptive control of nonlinear systems
Least squares and gradient optimization, interpolator construction

Stable adaptive estimation and control for nonlinear systems

Networks of neurons, deduction, planning, attention

Instinctual neural control, rule-based (fuzzy/expert) control, 
planning systems for control, attentional systems

Heuristic construction of nonlinear controllers, nonlinear model predictive control,
complexity management, resource allocation

Figure 2.9: Relations among biological systems, intelligent control, and conven-
tional control for each part of the book.

• Optimization is a fundamental process that operates to achieve learning
(e.g., we try to find the best information) and hence adaptation.

• Optimization and adaptation are key features of many decision-making
strategies (e.g., optimization can be used for learning a model that is used
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in a planning or control strategy).

• Foraging is an optimization process where food is sought and predators
are avoided. Optimization, learning, and decision-making are all used by
an intelligent forager.

• Evolution is a design strategy, an optimization process, and an adaptation
method. We can evolve optimization methods (e.g., a foraging strategy),
adaptation methods (e.g., a learning strategy for control), and decision-
making processes.

It is for these reasons that optimization is an especially important topic for
this book. We will see that there are many types of biological optimization
processes. There are gradient-type methods used in organisms for learning,
methods for selecting the best plan, strategies for picking which object to pay
attention to, foraging strategies, and the mother of all these: evolution.

The significant focus on optimization and adaptation, along with the concern
for stability and adherence to conventional design methodology, will provide
the control engineer with a firm connection to conventional control engineering
methodology.

2.6.5 Intelligent Vs. Conventional Control? No Actual
Conflict!

Note that while historically there have been times when the methodologies of
conventional and intelligent controller synthesis were thought to be diametrically
opposed to each other, the discussion here should convince you that they are
not. The approaches complement one another at times, overlap at times and are
very similar, or, other times, are most appropriate for very different application
domains. Generally, too much time has been wasted on focusing on conflict,
rather than how to exploit the best of both areas.

Regardless, when used for the same application, it is often very difficult to
determine which is the best approach to control a system (whether comparing
conventional methods with each other or to intelligent control methods) since
such a determination is highly application dependent and involves many fac-
tors such as cost, understandability of the method, reliability, which offers the
quickest solution that performs reasonably well, and others—not just the tradi-
tional measures of closed-loop system performance such as stability, robustness,
rise-time, and overshoot. This fact has been ignored too many times.

2.6.6 The Goal is Not “Intelligence,” It Is Autonomy

Finally, we briefly discuss the sometimes troublesome use of the word “intelli-
gent” in intelligent control. We justify its use due to the fact that we automate
human control intelligence or mimic how an intelligent biological system oper-
ates in order to solve a control problem. However, we must also highlight the
fact that what we mean by “intelligence” is always in a state of flux, not just
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due to the fact that there is no precise definition of intelligence that is univer-
sally accepted (indeed, this is a research problem that is still receiving attention
in psychology), but due to the continual influences of advances in automation
technology and perceptions of the public.

As an example, while it may be difficult to imagine, years ago an automatic
temperature regulation system for the home was considered “smart” since it
performed a task that was usually performed by humans. For the first auto-
mobiles we had to regulate the speed manually, but as new technologies and
innovations were introduced, the cruise controller was introduced and in its
early days it certainly seemed “intelligent,” at least to a certain degree. More
recently, algorithms and sensors for what is called “intelligent cruise control”
have been introduced and these will also slow the vehicle when it approaches
another vehicle. Notice that even today designers are willing to add the word
“intelligent” simply because it is performing what is considered a more advanced
function, one that in the past a human had to perform. The marketing and sales
department may even be enthusiastic about adding this word!

While a noble goal, we
are not concerned with
whether we achieve
“intelligence.” We only
seek verifiably correct
highly automated
systems.

In many products, one can find this willingness by engineers and the general
public to call something “intelligent” that was once performed by a human and
is now performed by a computer control algorithm. Generally, we seem more
willing to use the word “intelligent” if the algorithms and tasks seem relatively
complex in relation to current automation capabilities. For instance, today
people are hesitant to call their thermostat intelligent but are willing to refer to
a system that automatically drives a vehicle from San Francisco to New York as
intelligent, especially if it traveled east to west. It seems that this trend is not
likely to end. We call the latest technologies intelligent, and old technologies
seem boring and algorithmic.

Moreover, there is a tendency to view some systems as having a high degree
of intelligence and others as having a low degree of intelligence. Perhaps this
comes from how we view various biological organisms, but generally the more
functions that a system has automated that were recently performed by humans,
and the more “autonomous” the system is thus made, the more we are willing
to attribute a high degree of intelligence to it. Clearly, the system we may be
willing to call “highly intelligent” today, might not be considered as such ten
years from now. It all depends on how much technology has advanced, and in
particular, what is considered to be the state-of-the-art in automation at that
time. Hence, our views of degrees of intelligence of systems changes over time.

Due to this apparent time-varying nature of “intelligence,” the essential goal
in this book is not to produce an “intelligent” controller. The goal is simply
to do a good job in control design and the construction of reliable and highly
efficient fully automated systems.

2.7 Exercises

Exercise 2.1 (Control Systems in Biology)�: Using [91] (or another ap-
propriate reference) in an analogous manner to Exercise 1.1, draw a block
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diagram representing the control systems for the following components of
biological systems. Be sure to properly label the block diagram.

(a) Homeostasis in the human body, specifically, thermoregulation.

(b) How plants can track light sources.

(c) How two-legged animals can balance while standing.

(d) The human immune system.

Exercise 2.2 (Systems and Control Theoretic Views on Cognitive
Neuroscience)�: For background on stability theory, see Section 4.6 on
page 141.

(a) Read the chapters in [206, 91, 268] on the human motor system.
Draw a functional block diagram of the human motor system as a
hierarchical control system. Clearly identify low level controls, com-
munication links, and high level controls. Explain the role of learning
in the system and discuss effects of evolution on the structuring of
the system.

(b) Using [206, 404] as references specify a functional block diagram that
views the “supervisory attentional system” in the human brain as a
hierarchical control system.

(c) Using [206, 404] as a reference, and possibly other sources that you
find in the library, explain how what psychologists call “attention
deficit disorder” (ADD) could perhaps be explained as a type of in-
stability that results from the improper functioning of the attentional
system of the human brain. In your discussion consider the definitions
of bounded-input bounded-output stability, stability in the sense of
Lyapunov, and asymptotic stability. Typical drugs that are used to
treat this condition are actually stimulants. Why would a stimulant
help reduce the effects of ADD (e.g., improve concentration)?

Exercise 2.3 (Systems and Control Theoretic Views on Evolution)�:

(a) Read [139] and explain the “Baldwin effect,” which focuses on some
interactions between learning and evolution. For more details on
this effect you may consider the discussion in [363] or some of the
references there. Explain how this effect could be useful in control
systems.

(b) Read [273, 272], focusing on the parts where stability is discussed
([272] is the “light” version of [273] and is very readable, so even
though you may not finish [273], you should read all of [272]). Explain
what the author believes the role of stability is in evolution. What
role does he imply stability has in morphology? A continuation of
this problem is given in Exercise 16.8 on page 752.
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(c) Read [126]. Consider the global enterprise of control systems devel-
opment and implementation. It began over 50 years ago and has
“evolved” over the years to its present form today. Define a “meme”
for and mechanisms of evolution that drive the development of (evo-
lution of) control systems. For this, do not focus on the develop-
ment of a specific control system or even a class of control systems.
Consider the development of control systems by the worldwide en-
gineering community. Discuss the effects of education, textbooks,
computing technology, sciences, conferences, and journals. Can you
use this type of evolutionary thinking to explain why PID controllers
are in such widespread use? What are the essential factors that have
led to this situation?

(d) This is a continuation of part (c). Read [220]. Now, using Gould’s
ideas about the success of simple organisms, expand your discussion
on the success of PID controllers. Also, what are the “walls” that will
ultimately limit the attainment of excellence in control engineering?
Have we hit any of these walls?



Chapter 3

For Further Study

To deepen your knowledge of hierarchical intelligent control, its connections
to cognitive neuroscience, and complex applications (e.g., vehicular or robotic)
where the methods of this part are used, see [11, 78]. For more discussion on
autonomy, see [22] and for a philosophical discussion on the advantages and
disadvantages of biomimicry, physics, and mathematics in control and automa-
tion system development see [407]. To gain a better understanding of cognitive
neuroscience, a good place to start is to read [421] and then to deepen your
knowledge, read [206, 268]. There are many good books on general psychology
(see, e.g., [223]) and you may want to pursue several of the topics you find
there in more detail (e.g., in learning theory). To deepen your understanding
of evolution, you could start with [537] and then read [185].

Conventional Control: The more that you understand about conventional
control, the more you will be able to appreciate some of the finer details of
the operation of intelligent control systems. We realize that all readers may
not be familiar with all areas of control, so next we provide a list of books
from which the major topics can be learned. There are many good texts on
classical control [183, 292, 184, 153, 131, 29]. State-space methods and opti-
mal and multivariable control can be studied in several of these texts and also
in [187, 100, 15, 32, 341]. Robust control is treated in [398, 154, 557]. Control
of infinite dimensional systems is covered in [181, 111]. Nonlinear control is
covered in [277, 526, 33, 470, 518, 519, 257, 289]; stability analysis in [360, 357];
and adaptive control in [254, 289, 448, 30, 219, 376]. System identification is
treated in [331] (and in the adaptive control texts), and optimal estimation and
stochastic control are covered in [291, 315, 314, 228]. A relatively complete
treatment of the field of control is in [311] and there are many further references
there.

Hierarchical Intelligent Control: For a general introduction to the issues
in hierarchical intelligent and autonomous control, see the books [21, 234, 520,
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536, 517, 11] or articles [22, 20, 10, 489, 77, 78]. The general areas in conven-
tional control of “large scale systems” (or “interconnected” or “decentralized”
systems) [357] and game theory [47] are particularly relevant to the study of hier-
archical intelligent control. There has probably been more applications-directed
research activity in the use of hierarchical distributed controllers, and intelli-
gent autonomous control, in the area of robotic systems (and “swarm robotics”)
[76, 77, 78, 44, 258, 23, 520, 144, 156, 73, 11, 483, 135] than any other applica-
tion area. Connected to this research are studies on intelligent manufacturing
systems [294, 11]. For an introduction to control system problems in intelligent
vehicle and highway systems, see [177].

Planning systems are also discussed in [444, 387, 136, 11] (a nice discussion
on hierarchical and adaptive planning is in [136]) and in [137]. Agents are dis-
cussed in [444, 535] and elsewhere. For some examples of distributed multiagent
systems, see [409] where the FMS and computer network load balancing prob-
lems discussed in the section on multiagent systems are discussed in more detail.
Another example of a distributed multiagent system is given in [17], where the
authors study distributed adaptive fuzzy control for an FMS.

For more details on design and software implementation of complex hierar-
chical and distributed control systems, see [197] or the introductory article [365]
(where other software packages are also discussed). A relevant study of software
for real-time control (the “open control platform”) is in [446].

Computer Science and Engineering: There are many subfields in electri-
cal engineering and computer science that contribute to aspects of computer
software and hardware development, concepts, and methodology that are rele-
vant to the development of control systems. For instance, the area of computer
languages, structured programming, and processor technologies has a significant
impact. The emerging area of software architectures [465] can have an impact
on how we structure large complex control system software. The important area
of software engineering has a significant impact on the methodologies we use to
develop and maintain computer software that is employed in large automation
systems [475, 449] (the discussion here is based on [449, 72]). Moreover, of
course, ideas from theoretical computer science (e.g., some work in automata
theory) and AI [444, 387, 136] are sometimes used in the field of control systems
development, and the relationship to AI was discussed in this chapter.

Discrete Event and Hybrid System Analysis: For an introduction to
stability analysis of discrete event systems, see [409]. For more information
on hybrid systems, see the special issue of the journal [18], the book [19], or
[416, 415, 551, 75, 150, 149, 340, 151, 405]. The importance of providing a
mathematical definition of autonomy (see Exercise 1.9), and some initial ideas
on such a characterization, was first presented by the author in a panel discussion
on autonomy at the 1998 IEEE Int. Symp. on Intelligent Control. Note that this
definition would be useful in a hybrid systems analysis context, but significant
future research is needed in autonomous control systems analysis via hybrid
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system methods to determine exactly how (for fun, in Exercise 1.9 you are
asked to mathematically define autonomy).

Biological and Robot Intelligence: Questions about whether we will be
able to implement high levels of human intelligence with computers have been
discussed in many contexts and bodies of literature, including psychology, arti-
ficial intelligence, and robotics. Some of these discussions get rather philosoph-
ical. Others, such as the ones in [368, 11], have an engineering flavor where
the focus is on raw computing capabilities, technological progress in automa-
tion, and how this is envisioned to rival intelligent human behavior in the future
based on current progress for specific highly automated systems. The impor-
tant conclusion that many reach from these types of studies is that levels of
intelligence will be achieved in the near future that compete with humans along
many dimensions so “intelligence” can be thought of as a goal, rather than some
mystical unachievable functionality that is specific only to human behavior.

Cognitive Neuroscience and Evolution: A good introduction to biology
is contained in [91] and introductory ideas in human physiology are given in
[346]. Other areas that use biomimicry are discussed in [59]. There, the part
on the use of DNA for computing is particularly interesting; however, for even
more details on molecular computing, see [13, 195].

Under the heading of “cognitive neuroscience,” for convenience, we will group
the areas of cognitive psychology, neuroscience, neurobiology, neurophysiology,
neuropsychology [318], the psychology of learning, cognitive science, cognitive
neuroscience, and others. There is a huge literature in each of these areas. One
place that has a nice synthesis of the ideas in these areas that are relevant to the
area of intelligent control is in [206, 268]. A detailed treatment of the neuron is
given in [312, 268]. There is also a popular literature on how the brain operates,
and along these lines the reader may want to consider [421, 122]. To learn more
about neuroscience, learning, and evolution of language, see [420].

Skinner’s pigeon example was taken from [106]. More information on the
capabilities of humans in performing control tasks, including some discussion on
the advantages and disadvantages of using humans or computers and hardware
to achieve automation, is given in [538].

Group behavior of organisms is discussed in the areas of swarm intelligence
and artificial life [73, 6, 434, 313]. The authors in [73] give a particularly in-
triguing view of how ant colonies provide the inspiration for the solution to
engineering problems. The description of the biology of the E. coli bacteria was
taken from [342, 384, 8, 87].

Evolution is a field in biology that has a long and rich history. Scientific
introductions to evolutionary biology are given in [185, 436] and a brief tutorial
introduction is given in [91] and part of the writing in this part was based on that
and [348]. For more details on evolutionary game theory, which has close ties to
control theory, see [472, 473, 245, 534] (see also the “For Further Study” section
at the end of Part V). For an introduction to ideas on how the human brain
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evolved, see [206, 162]. Evolutionary impacts of human memory are discussed
in [16, 450]. For a readable introduction to the area of evolution, see [139], and
the Baldwin effect is discussed there and also in [243, 53, 363].

There is, in fact, a significant amount of popular literature on the topic
and much of this is referenced in [139]. Some interesting books include [126,
220] (which are discussed in Exercise 2.3), [127, 128, 129], and other books by
Gould mentioned in [220]. A recent interesting perspective, one that is likely
to resonate with a system/stability theorist, is provided in [273, 272]. If you
are interested in the debate between creationism and evolution, [359] provides
a recent study.

This book has its roots in the cybernetic tradition. Early references in
cybernetics by Weiner and others are given in [421]. In cybernetics, in addition
to the work of Weiner, the book [26] about the brain and the origins of adaptive
behavior (e.g., learning) will likely be quite interesting to a system/stability
theorist.

Finally, it is interesting to note that the fields of mathematical psychol-
ogy and mathematical biology sometimes offer interesting perspectives and use-
ful research to bridge the gap between biological systems and engineering (the
mathematical models and analysis help build the bridge).
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Sequence of Essential Concepts

• Networks of neurons for motor control used in many animals (e.g., for
swimming or walking) are “hard-wired” (i.e., they do not support learn-
ing) and hence can be viewed as “instinctual neural controllers.” Com-
puter models of such neural networks can provide sophisticated stimulus-
response characteristics that allow them to serve as general-purpose con-
trollers. In biology, the “design methodology” for such hard-wired neural
controllers is provided by evolution, while in engineering, we are con-
fronted with the often complicated task of choosing the types and inter-
connections of the neurons so that they provide appropriate controller
functions; this will later motivate the need for automatically learning or
evolving neural network parameter values.

• Humans are employed to solve a wide array of feedback control tasks.
The fuzzy and expert control methodologies provide two “rule-based con-
trol” methods to distill human control expertise into computers (e.g., rules
about what actions to take in different situations); they provide methods
for “human mimicry.” From a control-theoretic perspective, they provide
a heuristic construction procedure for nonlinear controllers. From a biolog-
ical perspective, they provide a way to overcome the design difficulties for
instinctual neural controllers via a convenient vehicle for the exploitation
of domain-specific heuristics. They emulate the “software level” of deduc-
tion (or “behavioral level” of control tasks) while the neural networks we
study emulate the physiological level.

• Humans who perform control tasks often use “mental models” of the en-
vironment (problem domain) to plan ahead and to select actions that
appear to best lead to achieving their current goals. Controllers that use
such planning rely on the use of a model of the plant (e.g., a design model)
to predict how the plant will react to different inputs. Then, optimiza-
tion methods are used to pick the sequence of inputs that best leads to
achievement of goals. Finally, the first input (action) from that sequence
is input to the plant and the process repeats. Model inaccuracies lead to
poor predictions and hence, inputs that may not lead to achievement of
goals; however, properly designed controllers use feedback to compensate
for the model inaccuracies. Planning strategies provide for very general
and widely applicable control and automation methods.

• Attentional systems allow an organism to focus on important information,
allocate cognitive resources, and manage information complexity. There
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are elements of planning (learning) in attention and vice versa: an atten-
tional system may plan (learn) what to pay attention to, and an atten-
tional system can be used to decide what to plan (learn, respectively).
Attentional mechanisms are a foundational component of intelligent sys-
tems and they can be employed in neural, fuzzy, expert, planning, and
learning systems for control.
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We first provide examples of how biological neural networks help to imple-
ment instinctual control functionalities in some simple organisms. Then, depart-
ing somewhat from biology, we introduce two types of neural network models
that ignore many details of real neurons and their interconnections (e.g., volt-
age spikes and dynamics) to produce “firing rate models” with specific forms
for “tuning curves.” In this chapter we also ignore learning and evolution and
thereby only model a special type of control instinct with limited functional
capabilities (e.g., the functions and parameters of our models will not change
over time). Also, we only model functionality of the neural network, and not the
many other sensory and actuation functions needed for an organism to achieve
control.

Next, we explain how our neuron models can be viewed as building blocks
(sets of tuning curves) for creating a neural network that can implement a
complex input-output mapping. To do this, we show how to take the map-
pings implemented by neurons and build by hand (“design”) a controller for
a specific engineering application. In biological systems, over long time peri-
ods, this “design” is a task of evolution; over short time periods such as a life
time, it is the task of learning. Aside from ignoring learning and evolution,
this design approach will at the same time represent an even more significant
departure from biology as we ignore whether it has a biological basis (e.g., in
development) and whether the constructed neural networks bear any similarity
to those in any biological system. We only concern ourselves with construct-
ing input-output mappings that will lead to the performance objectives being
met. Biology provides building blocks with basic functionalities, and we pay no
respect to whether we use these building blocks as biology would.

For specific engineering applications, we show how to simulate the neural
network controlling the plant and evaluate whether the closed-loop system meets
performance objectives. This will provide insights into neural network stimulus-
response characteristics and their effect on closed-loop behavior. Moreover, it
will serve as an introduction on how to evaluate control systems in simulation.
Ultimately, however, certain difficulties in the design process, and the need for
controllers with more sophisticated functionalities that will be highlighted in the
simulations, will motivate the need to study learning in Part III and evolutionary
methods in Part IV that automate the construction of neural networks.

4.1 Biological Neural Networks and Their Role
in Control

First, we briefly outline some basics of how biological neural networks operate,
specifically in controlling functions of a few simple organisms.

4.1.1 Neurons and Neural Networks

An invertebrate motor neuron was shown in Figure 2.3. There are, however,
many different types of neurons, with, for example, the cell body at different
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locations. The “multipolar” configuration shown in Figure 2.3(a) is the one that
There are massively
interconnected networks
of neurons of many
forms in organisms;
engineering models often
use the invertebrate
motor neuron connected
in special topologies.

is often modeled and then used in control engineering (and indeed, it underlies
many other studies of neural networks in other engineering areas). Each neuron
is composed of “dendrites” which allow for connections to the cell body, an
“axon” which allows for connections to other neurons, and the connection points
are called the “synapses.” Generally, the cell body performs a type of summing
and thresholding operation on signals obtained via the dendrites and provides
an electrical signal (actually it is typically a sequence of pulses that are often
called “spikes”) that travels along the axon to other neurons. When such a
signal is transmitted on the axon, the neuron is said to “fire.” The inputs to
the neuron on the dendrites can be “excitatory” (having a tendency to cause
the neuron to fire) or “inhibitory” (having the tendency to restrict the firing of
the neuron).

The human brain is composed of a large, massively interconnected biolog-
ical network of about 1011 neurons, each of which may have as many as 103

or 104 connections to other neurons (for a total of up to 100, 000 miles of neu-
ron connections). These neurons dynamically interact with each other, change

It is via the massive
neural interconnectivity
that complex reasoning
and intelligence
emerges.

their properties over time (e.g., via learning), and even grow new connections
to each other (e.g., during fetal development), to act as a sophisticated bio-
electrical “computer” of sorts. While the interconnection of neurons in humans
is extremely sophisticated (see Figure 4.1), here we only consider simple inter-
connections. For instance, the three neurons in Figure 4.2 are connected in
a “feedforward” fashion (i.e., without connecting an axon of one neuron back
to another neuron that has a path to that neuron), since this is a common
interconnection strategy used in engineering applications.

Processing
characteristics of
individual neurons and
network
interconnections, and
hence topology of the
network, change via
learning.

Figure 4.1: Network of motor neurons in the spinal cord, photograph taken
through a microscope (figure taken from [223], c© 1991, 1994, and 1999 by
Worth Publishers Inc., and used with permission).

There are a number of neurons in our body and in other organisms that are
“hard-wired” in the sense that their properties are fixed in a specific manner
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Dendrites

Synapse

Cell body

Axon

Figure 4.2: Three connected neurons, a simple biological neural network.

such that they have no ability to learn. For example, certain motor reflexes are
implemented this way, and the functions that they implement are then some-
times said to be “instinctual” (i.e., they do not need to be learned). While there
are a variety of functions in a human (or other organisms) that are instinctual
or automatic, a perhaps more interesting case is when a neural network devel-
ops and neurons have an ability to learn. For instance, when humans are born
they have very low neural network connectivity in their brain. As they develop
and learn, the brain forms interconnections between different neurons and the
resulting network defines the functional properties of the brain (yes, the envi-
ronment does affect the actual connection structure in our brain). Moreover, to
memorize information it is said that the interconnections between the neurons
are modified and then fixed so that the information can later be recalled. This
learning capability will be more fully investigated in Part III; here, the focus is
on “instinctual” control functions, examples of which are given next.

4.1.2 Example: Instinctual Neural Control Functions in
Simple Organisms

“Command systems” of neurons are used in biological systems for a variety
of tasks, such as control of motion, locomotion, digestion, etc. Many animal
behaviors, such as walking or swimming, result from a network of neurons called
a “central pattern generator” that produces a pattern of signals that results in
a rhythmic contraction and relaxation of muscles. More generally, instinctive
responses are sometimes called “fixed action patterns” that are evoked by a
“sign stimulus.” Such behaviors can be quite complex, but are thought of as
being rigidly evoked by a certain type of stimulus (i.e., the animal does not learn
these responses, or forget them).

In this section we will show how in one organism, neurons can control move-
ment and in another organism, how the neural network can respond to stimuli
to produce movement. The goal here is simply to show neurons and neural
networks “at work” in acting as controllers in biological systems.
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Neurons That Control Swimming in a Clione

A simple neural “circuit” (interconnection of neurons) that can produce alter-
nating contraction and relaxation in two different muscles that move “wing-like”
structures called parapodia in the Clione (a small marine mollusc), is shown in
Figure 4.3. There are two neurons for moving each wing, one for “upswing” and
the other for “downswing.” Each neuron has an inhibitory effect on the other
so that when one is active, the other is not (i.e., it is inhibited by the other).
The signals on the right show the basic electrical pattern between the neurons
where when the voltage in the upswing neuron spikes (and actuates a muscle for
moving the wing up), it inhibits the other neuron. However, after the upswing
spike has decreased, the downswing neuron voltage increases and then spikes,
which signals the muscle to move the wing down. The firing of one neuron to
actuate the upswing inhibits the firing of the downswing neuron, and vice versa.
This is called “reciprocal inhibition” and it is the key feature that allows the
command system of neurons to generate rhythmic movement.

Neural networks with
only a few neurons can
control movements in
simple organisms that
are very useful for
survival (e.g.,
locomotion for foraging
or predator avoidance).

Figure 4.3: Command system of neurons (neural controller) for swimming in
a Clione (figure taken from [312], c© Oxford University Press, reproduced by
permission).

Neuron Stimulus-Response Actions to Achieve Control in a Swim-
ming Leech

The medicinal leech Hirudo medicinalis swims by making undulating motions
The pulse-type voltage
patterns (“spikes”) in
Figures 4.3 and 4.4 are
typical for neurons;
however, most
engineering models do
not represent neuron
behavior to this level of
detail.

with its body, somewhat like a snake or some fish (see Figure 4.4). The move-
ments result from alternating contraction and relaxation of muscles that are
located in the body wall of the leech. When it swims, there are rhythmic bursts
from a central pattern generator that produce a “wave” of contraction that
travels from the front to the rear of the leech. Reciprocal inhibition is used to
produce the rhythmic motion in the leech, just as it was in the clione discussed
in the last subsection.

The leech will start swimming if there is a brief strong mechanical stimulus
applied to the body of the animal as shown in Figure 4.4. There, a sensory
neuron detects the stimulus and starts firing (in the figure the “firing” is char-
acterized by the spikes in the signal voltage of the sensory neuron). This sets off
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Figure 4.4: Neuron signaling connecting stimulus to swimming response in a
medicinal leech Hirudo medicinalis (figure taken from [312], c© Oxford Univer-
sity Press, reproduced by permission).

a “trigger neuron” that in turn starts a “gating neuron” to fire, and the firing
of that gating neuron persists even when the stimulus is removed. When the
gating neuron is active (i.e., when it fires), it sustains the rhythmic activity of
the central pattern generator. The gating neuron makes a motor neuron active
at regular one second intervals and these signal the muscle for swimming.

4.2 Multilayer Perceptrons

Next, we will explain how we model the physiological system of the neural
network. It must be emphasized that the models here are not meant to be
precise models of parts of a biological brain or neurons in any other organism.
Essentially, they are “firing rate models” since they do not model voltage spikes,
but have outputs that are thought of as being proportional to the frequency of
the spikes. Moreover, they are “static” since they do not include, for example,
dynamic systems to represent that currents or voltages in a neuron cannot
change instantaneously. First, we consider a multilayer perceptron which is
a feedforward neural network (e.g., it does not use past values of its outputs
to compute its current output). It is composed of an interconnection of basic
neuron processing units.
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4.2.1 The Neuron

For a single neuron, suppose that we use xi, i = 1, 2, . . . , n, to denote its inputs
and suppose that it has a single output y. Figure 4.5 shows the neuron. Such a
neuron first forms a weighted sum of the inputs

x̄ =

(
n∑

i=1

wixi

)
+ b

where wi are the interconnection “weights” and b is the “bias” for the neuron.
The signal xi is the input to the ith dendrite and wi > 0 represents an excitatory
connection with larger wi values representing dendrites that “amplify” their
input signals more. Conversely, wi < 0 represents an inhibitory input. The
signal x̄ represents a signal in the biological neuron that represents the combined
effects of all the inputs from the dendrites.

The processing that the neuron performs on this x̄ signal is represented with
The stimulus-response
characteristics of a
neuron can be changed
by adjusting the weights
wi, bias b, or by using
different types of
activation functions f .

an “activation function.” This activation function is represented with a function
f , and the output that it computes is

y = f(x̄) = f

((
n∑

i=1

wixi

)
+ b

)
(4.1)

Basically, the neuron model represents the biological neuron that “fires” (turns
on and passes an electrical signal down the axon so that it can go to other
neurons as shown in Figure 4.2) when its inputs are significantly excited (i.e., x̄
is big enough). Normally, Equation 4.1 is represented as shown in Figure 4.5.

f(x)
yx

x

x

x

Activation function

w

w

w

1

1

2

n

2

n
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b

Figure 4.5: Single neuron model.

The manner in which the neuron fires is defined by the activation function
f . There are many ways to define the activation function:

• Threshold function: For this type of activation function, we have

f(x̄) =
{

1 if x̄ ≥ 0
0 if x̄ < 0
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so that once the input signal x̄ is above zero the neuron turns on (see
Figure 4.6).

• Linear function: For this type of activation function, we simply have

f(x̄) = x̄

and we think of the neuron being on when f(x̄) > 0 and off when f(x̄) ≤ 0
(see Figure 4.6).

• Logistic function: For this type of activation function, which is a type of
“sigmoid function,” we have

f(x̄) =
1

1 + exp(−x̄)
(4.2)

so that the input signal x̄ continuously turns on the neuron an increasing
amount as the input increases as shown in Figure 4.6 (note that for the
logistic function f(0) = 0.5 �= 0 but f(0) − 0.5 = 0 where 0.5 can be
modeled by another bias so that you can think of the logistic function as
“turning on” in a similar way to how the other functions in Figure 4.6
turn on).

• Hyperbolic tangent function: There are many functions that take on a
shape that is sigmoidal. For instance, one that is often used in neural
networks is the hyperbolic tangent function

f(x̄) = tanh(x̄) =
1 − exp(−2x̄)
1 + exp(−2x̄)

which is shown in Figure 4.6.

Equation (4.1), with one of the above activation functions, represents the
“computations” made by one neuron in a neural network. Notice that the
input-output characteristics of a neuron in a multilayer perceptron are quite
different from the biological neurons discussed in the last section. Along with
the assumption that the weights, a bias, and a summing operation represent part
of what happens in the dendrites and cell body, the activation function output
(and hence firing of the neuron) is not represented as a voltage spike that travels
down the axon, or a sequence of such spikes (such as in Figure 4.4) that might
be frequency modulated by the overall activation level of the neuron (e.g., have
higher frequency spikes for greater activation levels as is sometimes found in a
biological neuron). Essentially, a larger input to the activation function here
(for a sigmoid function) simply turns the neuron on to a greater extent; the
neuron here is a very simple (abstract) model of the behavior of some biological
neurons called a “firing rate model.” It is interesting to note, however, that the
specific shapes for the above activation functions (and some others) have been
experimentally demonstrated for firing rate models of real neurons, so there is
some biological justification for the form or the model we use here. The specific
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Figure 4.6: Activation functions for neurons.

shapes of the mappings produced by individual neurons are sometimes called
“tuning curves” or “tuning functions” (they show how the neuron is “tuned” to
a stimulus by showing for a whole range of stimulus inputs what the firing rate
output of the neuron will be). Some neurons have tuning curves in the shape of
sigmoids so that for some stimuli they are not on but as the stimulus changes,
the neuron starts firing at a high rate above some threshold, if the slope of the
sigmoid near the threshold is steep. Other neurons to be modeled in Section 4.4
have tuning curves in the shape of Gaussian functions so that they are “on” the
most for a specific range of stimuli. See the “For Further Study” section at the
end of this part.

Next, we define how we interconnect neurons to form a neural network—in
particular, the feedforward multilayer perceptron.

4.2.2 Feedforward Network of Neurons

The basic structure for the multilayer perceptron is shown in Figure 4.7. There,
the circles represent the neurons (weights, bias, and activation function) and the
lines represent the connections between the inputs and neurons, and between
the neurons in one layer and those in the next layer. This is a three-layer
perceptron since there are three stages of neural processing between the inputs
and outputs. The layer connected to the output is called the “output layer,”
and all the other ones are called “hidden” layers since they do not connect to
the output.
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The multilayer perceptron has inputs xi, i = 1, 2, . . . , n, and outputs yj ,
j = 1, 2, . . . , m. The number of neurons in the first hidden layer (see Figure 4.7)
is n1. In the second hidden layer there are n2 neurons, and in the output layer
there are m neurons. Hence, in an N layer perceptron there are ni neurons in
the ith hidden layer, i = 1, 2, . . . , N − 1.

(1)

x 1

x 2

xn
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x 1

x 2
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.
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Figure 4.7: Multilayer perceptron model.

The neurons in the first layer of the multilayer perceptron perform compu-
tations, and the outputs of these neurons are given by

x
(1)
j = f

(1)
j

((
n∑

i=1

w
(1)
ij xi

)
+ b

(1)
j

)

with j = 1, 2, . . . , n1. The neurons in the second layer of the multilayer percep-
tron perform computations, and the outputs of these neurons are given by

x
(2)
j = f

(2)
j

((
n1∑
i=1

w
(2)
ij x

(1)
i

)
+ b

(2)
j

)

with j = 1, 2, . . . , n2. The neurons in the third layer of the multilayer perceptron
perform computations, and the outputs of these neurons are given by

yj = fj

((
n2∑
i=1

wijx
(2)
i

)
+ bj

)

with j = 1, 2, . . . , m.
The parameters (scalar real numbers) w

(1)
ij are called the weights of the first

hidden layer. The w
(2)
ij are called the weights of the second hidden layer. The
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wij are called the weights of the output layer. The parameters b
(1)
j are called

the biases of the first hidden layer. The parameters b
(2)
j are called the biases

of the second hidden layer, and the bj are the biases of the output layer. The
functions fj (for the output layer), f

(2)
j (for the second hidden layer), and f

(1)
j

(for the first hidden layer) represent the activation functions. The activation
functions can be different for each neuron in the multilayer perceptron (e.g., the
first layer could have one type of sigmoid, while the next two layers could have
different sigmoid functions or threshold functions).

The simulus-response
characteristics of a
neural network can be
changed via neuron
parameters or their
interconnections.

For convenience, we sometimes use

y = Fmlp(x, θ)

to denote the multilayer perceptron where θ is a parameter vector that holds
all the tunable weights and biases of the multilayer perceptron.

This completes the definition of the multilayer perceptron. Next, we will
show how a multilayer perceptron’s stimulus-response characteristics can be
designed so that it can be used to regulate the heading of a ship.

4.3 Design Example: Multilayer Perceptron for

Tanker Ship Steering

Here, we show how a neural network can be used to steer a ship that is traveling
on the ocean. To do this, we first define the ship model and heading regula-
tion problem. Next, we define the neural network, design its stimulus-response
characteristics, and then evaluate how it performs in its ship steering task.

4.3.1 Tanker Ship Model and Heading Regulation

Our tanker ship heading regulation problem is shown in Figure 4.8. Here, the
ship is moving forward in the indicated x direction at a nominal speed u, ψ
denotes the heading angle (in radians), and δ is the rudder input (in radians).
We will use ψr to denote the desired ship heading that is specified, for instance,
by the captain (or route planner). The goal is to develop a control system that
will ensure that ψ tracks ψr.

It is very important to achieve good heading regulation for ships since this
reduces consumption of fuel. Steering performance can be affected by a variety of
variables. It is known that the ship can travel at different speeds and this affects
how the ship is steered (the rudder becomes less effective at very low speeds),
that in general the ship weighs different on different trips (and heavy ships turn
slower), that wind can be encountered on some trips and when wind hits the side
of the tanker this can affect heading regulation, that water currents can affect
steering, and that the sensor for ship steering provides a noisy measurement.
Also, the rudder will only move between ±80 degrees and this affects our ability
to steer the ship.
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Figure 4.8: Tanker ship steering problem.

Ship Model

In order to study the behavior of the system, we will simulate it on a digital
computer. To do this, we need to develop a computer program that is based
on a nonlinear model of the ship; we will develop this model next. Often, ship
dynamics are obtained by applying Newton’s laws of motion to the ship. For
very large ships, the motion in the vertical plane may be neglected since the
“bobbing” or “bouncing” effects of the ship are small for large vessels. The
motion of the ship is generally described by a coordinate system that is fixed to
the ship [30] as shown in Figure 4.8.

A simple model of the ship’s motion is given by

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1τ2

)
ψ̇(t) =

K

τ1τ2

(
τ3δ̇(t) + δ(t)

)
(4.3)

where ψ is the heading of the ship and δ is the rudder angle. Assuming zero
initial conditions, we can write Equation (4.3) as

ψ(s)
δ(s)

=
K(sτ3 + 1)

s(sτ1 + 1)(sτ2 + 1)
(4.4)

where K, τ1, τ2, and τ3 are parameters that are a function of the ship’s constant
forward velocity u and its length l. In particular,

K = K0

(u

l

)
τi = τi0

(
l

u

)
i = 1, 2, 3

where we assume that for a tanker ship under “ballast” conditions (a very
heavy ship), K0 = 5.88, τ10 = −16.91, τ20 = 0.45, τ30 = 1.43, and l = 350
meters [30]. For “full” conditions (a lighter ship), K0 = 0.83, τ10 = −2.88,
τ20 = 0.38, τ30 = 1.07. If we do not say otherwise, we will simulate the tanker
ship under ballast conditions. Also, we will assume that nominally the tanker
ship is traveling in the x direction at a velocity of u = 5 m/s.
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In normal steering, a ship often makes only small deviations from a straight-
line path. Therefore, the model in Equation (4.3) was obtained by linearizing
the equations of motion around the zero rudder angle (δ = 0). As a result, the
rudder angle should not exceed approximately 5 degrees, otherwise the model
will be inaccurate. For our purposes, we need a model suited for rudder angles
that are larger than 5 degrees; hence, we use the model proposed in [51]. This
extended model is given by

...

ψ (t) +
(

1
τ1

+
1
τ2

)
ψ̈(t) +

(
1

τ1 τ2

)
H(ψ̇(t)) =

K

τ1 τ2

(
τ3 δ̇(t) + δ(t)

)
(4.5)

where H(ψ̇) is a nonlinear function of ψ̇(t). The function H(ψ̇) can be found
from the relationship between δ and ψ̇ in steady state such that

...

ψ= ψ̈ = δ̇ =
0. An experiment known as the “spiral test” has shown that H(ψ̇) can be
approximated by

H(ψ̇) = āψ̇3 + b̄ψ̇

where ā and b̄ are real-valued constants and ā is always positive. We choose the
values ā = b̄ = 1. Also, we assume that the maximum deviation of the rudder
angle is ±80 degrees (or 80π/180 radians).

Simulation of Nonlinear Systems

The ship model is nonlinear; hence, in order to simulate its behavior on a
digital computer we need to discuss how to simulate nonlinear systems. In
this subsection we give a brief overview of how to simulate general nonlinear
systems. In the next subsection, we will return to the ship example and show
how to develop a simulation for its behavior.

Suppose that the system to be simulated can be represented by the ordinary
differential equation

ẋ(t) = f(x(t), r(t), t) (4.6)
y = g(x(t), r(t), t)

where x = [x1, x2, . . . , xn]� is a state vector, f = [f1, f2, . . . , fn]� is a vector of
nonlinear functions, g is a nonlinear function that maps the states and reference
input to the output of the system, and x(0) is the initial state. Note that f
and g are, in general, time-varying functions due to the explicit dependence on
the time variable t. To simulate a nonlinear system, we will assume that the
nonlinear ordinary differential equations are put into the form in Equation (4.6).

Euler’s Method: Now, to simulate Equation (4.6), we could simply use Eu-
ler’s method to approximate the derivative ẋ in Equation (4.6) as

x(kh + h) − x(kh)
h

= f(x(kh), r(kh), kh) (4.7)

y = g(x(kh), r(kh), kh)
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Here, h is a parameter that is referred to as the “integration step size.” Notice
that any element of the vector

x(kh + h) − x(kh)
h

is simply an approximation of the slope of the corresponding element in the
time varying vector x(t) at t = kh (i.e., an approximation of the derivative).
For small values of h, the approximation will be accurate provided that all the
functions and variables are continuous. Equation (4.7) can be rewritten as

x(kh + h) = x(kh) + hf(x(kh), r(kh), kh)
y = g(x(kh), r(kh), kh)

for k = 0, 1, 2, . . . . The value of the vector x(0) is the initial condition and is
assumed to be given. Simulation of the nonlinear system proceeds recursively
by computing x(h), x(2h), x(3h), and so on, to generate the response of the
system for the reference input r(kh).

Note that by choosing h small, we are trying to simulate the continuous-
time nonlinear system. If we want to simulate the way that a digital control
system would be implemented on a computer in the laboratory, we can simulate
a controller that only samples its inputs every T seconds (T is not the same as
h; it is the “sampling interval” for the computer in the laboratory) and only
updates its control outputs every T seconds (and it would hold them constant
in between). Normally, you would choose T = αh where α > 0 is some positive
integer. In this way, we simulate the plant as a continuous-time system that
interacts with a controller that is implemented on a digital computer.

The Runge-Kutta Method: While Euler’s method is easy to understand
and implement in code, sometimes to get good accuracy the value of h must
be chosen to be very small. Most often, to get good simulation accuracy, more
sophisticated methods are used, such as the Runge-Kutta method with adap-
tive step size or predictor-corrector methods. In the fourth-order Runge-Kutta
method, we begin with Equation (4.6) and a given x(0) and let

x(kh + h) = x(kh) +
1
6

(k1 + 2k2 + 2k3 + k4) (4.8)

where the four vectors

k1 = hf(x(kh), r(kh), kh)

k2 = hf

(
x(kh) +

k1

2
, r

(
kh +

h

2

)
, kh +

h

2

)

k3 = hf

(
x(kh) +

k2

2
, r

(
kh +

h

2

)
, kh +

h

2

)
k4 = hf (x(kh) + k3, r(kh + h), kh + h)
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These extra calculations are used to achieve a better accuracy than the Euler
method. We see that the Runge-Kutta method is very easy to use; it simply
involves computing the four vectors k1 to k4, and plugging them into Equa-
tion (4.8). Suppose that you write a computer subroutine to compute the output
of a fuzzy controller given its inputs (in some cases these inputs could include
a state of the closed-loop system). In this case, to calculate the four vectors, k1

to k4, you will need to use the subroutine four times, once for the calculation of
each of the vectors, and this can increase the computational complexity of the
simulation. The complexity is reduced, however, if you can simulate the fuzzy
controller as if it were implemented on a digital computer in the laboratory with
a sampling interval of T = αh (see the discussion above). Also, sometimes r(kh)
is used in place of r(kh + h/2) and r(kh + h) in the above equations; this can
be a reasonable approximation if r is constant most of the time and f and g are
not time-varying functions (i.e., they do not have t as one of their arguments).

Generally, if the Runge-Kutta method has a small enough value of h, it
is sufficiently accurate for the simulation of most control systems (and if an
adaptive step size method is used, then even more accuracy can be obtained if
it is needed). For more details on numerical simulation of nonlinear differential
equations, see [332, 217, 508].

Simulating the Ship and a Digital Controller

Next, we need to convert the nth-order nonlinear ordinary differential equa-
tions representing the ship to n first-order ordinary differential equations; for
convenience, let

a =
(

1
τ1

+
1
τ2

)

b =
(

1
τ1τ2

)

c =
Kτ3

τ1τ2

and
d =

K

τ1τ2

We would like the model in the form

ẋ(t) = f(x(t), δ(t))
y(t) = g(x(t), δ(t))

where x(t) = [x1(t), x2(t), x3(t)]� and f = [f1, f2, f3]� for use in a nonlinear
simulation program. We need to choose ẋi so that fi depends only on xi and δ
for i = 1, 2, 3. We have

...

ψ (t) = −aψ̈(t) − bH(ψ̇(t)) + cδ̇(t) + dδ(t) (4.9)
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Choose
ẋ3(t) =

...

ψ (t) − cδ̇(t)

so that f3 will not depend on cδ̇(t) and

x3(t) = ψ̈(t) − cδ(t)

Choose ẋ2(t) = ψ̈(t) so that x2(t) = ψ̇(t). Finally, choose x1(t) = ψ. This gives
us

ẋ1(t) = x2(t) = f1(x(t), δ(t))
ẋ2(t) = x3(t) + cδ(t) = f2(x(t), δ(t))
ẋ3(t) = −aψ̈(t) − bH(ψ̇(t)) + dδ(t)

But, ψ̈(t) = x3(t) + cδ(t), ψ̇(t) = x2(t), and H(x2) = x3
2(t) + x2(t) so

ẋ3(t) = −a (x3(t) + cδ(t)) − b
(
x3

2(t) + x2(t)
)

+ dδ(t) = f3(x(t), δ(t))

Also, we have ψ = g(x, ψr) = x1. This provides the proper equations for
the simulation. Next, suppose that the initial conditions are ψ(0) = ψ̇(0) =
ψ̈(0) = 0. This implies that x1(0) = x2(0) = 0 and x3(0) = ψ̈(0) − cδ(0) or
x3(0) = −cδ(0).

For the ship steering problem, we let the integration step size be h = 1 sec.
and α = 10 so that T = αh = 10 sec. (i.e., the controller is implemented on
a digital computer with a sampling period of T = 10 sec. so that a new plant
input is calculated every 10 sec. and applied to the rudder). We will use this
same approach for all the simulations for the tanker ship in this book.

4.3.2 Construction of a Multilayer Perceptron for Ship
Steering

Here, we construct a simple multilayer perceptron for steering the ship. To do
this, we must first choose the controller inputs and outputs. We will assume
that the only input for steering is the rudder angle δ (we will not consider
the speed u to be an input; it will be fixed). Hence, δ is the only output of
the multilayer perceptron. The choice of inputs to the multilayer perceptron
depends on what variables of the tanker can be sensed. It is assumed that the
reference input ψr is given (e.g., if you use a neurophysiological view you may
think of it as being provided by the frontal lobes in the brain that perform
route planning functions). To keep things simple we will assume that we can
only sense the ship heading ψ (if you took a neurophysiological view, this would
then have to be provided by visual processing or some other sensory input that
is then connected to the neurons that make the steering decisions). With these
choices, the control system block diagram for the ship steering problem is shown
in Figure 4.9.
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Figure 4.9: Control system for using a multilayer perceptron for tanker ship
steering.

Structure Choice and The First Hidden Layer

From Figure 4.9, we see that the multilayer perceptron is a mapping from ψr

and ψ to δ, the input to the ship. Suppose we denote the multilayer perceptron
as δ = Fmlp(ψr, ψ) (note that for convenience we omit the arguments indicating
the dependence on the parameters of the network). Our objective is to specify
the mapping Fmlp(ψr, ψ) by picking the number of layers of neurons, the number
of neurons in each layer, and the specific weights, biases, and activation func-
tions for all the neurons (from a neurophysiological view, it is evolution that
specifies this mapping and we will simply construct one that we hypothesize
evolution could have constructed). To do this, we will simply show one possible
choice for the multilayer perceptron and explain some of the reasoning behind
its construction. Consider Figure 4.10. There, we use a four layer perceptron
with both linear and logistic sigmoidal activation functions. First, consider the
first hidden layer. For this we choose w

(1)
11 = 1, w

(1)
21 = −1, and b

(1)
1 = 0. Hence,

we see that the output of the first layer is the heading error
A neural network can be
designed to compare
signals for use in
“decision-making” (e.g.,
comparing a desired
value to a sensed one).

e = ψr − ψ

To a control engineer this may seem to be an odd approach to implement a
simple summing junction to provide the heading error; however, it is interesting
that a neuron can provide a method to compare two signals, something that
is certainly of fundamental importance in making control decisions for tracking
and regulation.

Choosing Weights and Biases: Building Nonlinearities with Smooth
Step Functions

Next, we explain how to pick the weights and biases for the remaining layers. To
do this, view the perceptron in Figure 4.10 as having two “paths” of processing
from the signal e that is the output of the first hidden layer to the output δ.
Imagine that you remove the path on the bottom and first focus on constructing
the path on the top. We will think of the top path as being used to regulate
the ship heading when

e = ψr − ψ ≥ 0

In this case, we want to have a negative rudder input. To see this, consider
Figure 4.8 where you can see that a positive rudder input results in a decrease
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Figure 4.10: A multilayer perceptron for tanker ship steering.

in the heading ψ and a negative rudder input results in an increase in the
heading ψ. Hence, if ψr − ψ ≥ 0, we have ψr ≥ ψ so that we want to increase
the size of ψ, so we use a negative rudder input δ. Next, note that for larger
values of |e| = |ψr − ψ|, we will generally want larger values of δ since larger
heading errors generally require larger rudder inputs to reduce them quickly.
How do we choose the weights and biases in the top path to implement this

Neural network
construction can be
viewed as “building”
stimulus-response
characteristics from
basic neuron building
blocks that are
deformable via their
parameters (here, we
build functions from
“smooth steps”).

type of control action?
To specify values for the weights and biases, we think of each neuron as

providing a type of “smooth switching” (a smooth step function as shown in
Figure 4.6, e.g., for the logistic function) and tune the weights and biases to
adjust these and build nonlinear control mappings. Note that when only the
top path is considered, we have

δ = w11

(
w

(3)
11

1 + exp(−x̄)
+ b

(3)
1

)
+ b1

where
x̄ = b

(2)
1 + w

(2)
11 e

The parameters in these equations affect the shape of the nonlinearity from e
to δ in the following manner:

• b1, b
(3)
1 : Shift the mapping up and down.

• w11, w
(3)
11 : Scale the vertical axis.

• b
(2)
1 : Shifts the smooth step (logistic function) horizontally, with b

(2)
1 > 0

shifting it to the left.
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• w
(2)
11 : Scale the horizontal axis (you may think of this as a type of gain for

the function, at least locally).

Using these ideas, choose

b1 = b
(3)
1 = 0

w11 = 1

w
(3)
11 = −80π

180

b
(2)
1 = −200π

180
w

(2)
11 = 10

With these choices we get the nonlinear mapping shown in the top plot of Fig-
ure 4.11. The general shape of the function is appropriate to use as a controller
for e > 0 since it provides negative rudder input values for positive values of
error, and it provides a type of proportionality between the size of e and the size
of δ. Notice that the choice of w

(3)
11 results in the perceptron providing a maxi-

mum negative rudder deflection of −80 degrees. The choice of b
(2)
1 simply shifts

the function to the right, so that the value of the function near e = 0 provides
δ ≈ 0. The value of w

(2)
11 affects the slope of the function as e > 0 increases in

size; if w
(2)
11 were chosen to be larger, then it would reach the maximum nega-

tive value of −80 degrees quicker as the size of e increases. This completes the
construction of the perceptron for the top path, which is dedicated to control
for the case where e ≥ 0.

Next, consider the bottom path of Figure 4.10 (imagine disconnecting the
top path) which is dedicated to the case e < 0. Using the same ideas for the
choice of the parameters above, select

b
(3)
2 =

80π

180
w21 = 1

w
(3)
22 = −80π

180

b
(2)
2 =

200π

180
w

(2)
12 = 10

The resulting nonlinearity implemented by the bottom path is shown in the
middle plot of Figure 4.11. First, note that its general shape is appropriate to
use as a controller for the case where e < 0; as the size of e increases in the
negative direction, increasingly positive values of a rudder input δ are provided
to try to decrease the value of ψ to the given ψr. The values of w

(3)
22 , b

(2)
2 ,

and w
(2)
12 were chosen in a similar way as the corresponding values for the top

path were chosen. The value of b
(3)
2 was chosen to shift the nonlinearity up
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Figure 4.11: Multilayer perceptron mappings, top plot is for the top path of the
perceptron from e to δ, middle plot is for the bottom path of the perceptron
from e to δ, bottom plot is for the entire perceptron from e to δ.

by 80 degrees. The choice for w21 completes the specification of the output
layer, which simply sums the functions generated by the top and bottom paths,
and results in the overall mapping from e to δ shown in the bottom plot of
Figure 4.11 (i.e., when both the top and the bottom paths in Figure 4.10 are
used). Notice that due to the symmetry in our choices, e = 0 implies that
δ = 0 so that if the ship is going in the right direction, the rudder does not
try to correct for the heading direction. This completes the construction of the
multilayer perceptron for regulating the ship heading.

4.3.3 Multilayer Perceptron Stimulus-Response Charac-
teristics

The multilayer perceptron construction procedure in the last subsection showed
how to construct the controller

δ = Fmlp(ψr , ψ)

Given a stimulus represented by particular values of ψr and ψ, the perceptron
will react and provide a response δ according to how the function Fmlp(ψr, ψ) is
shaped. In this way the Fmlp(ψr, ψ) nonlinearity implements a “control surface,”
which in this case has the shape shown in Figure 4.12.
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Figure 4.12: Control surface implemented by the multilayer perceptron for
tanker ship steering.

Figure 4.12 summarizes the input-output behavior of the multilayer percep-
tron. Consider some examples of how it behaves. Notice that if e = ψr −ψ = 0,

The neural network
stimulus-response
mapping is generally
nonlinear so it
implements a nonlinear
controller. To
understand how this
nonlinear controller
might affect closed-loop
behavior, it is important
to have insights into the
shape of the
nonlinearity.

the ship is heading in the correct direction, and the mapping in Figure 4.12
shows that the perceptron chooses δ = 0 (i.e., it does not make any course cor-
rections); this is due to the symmetry in our parameter choices for the top and
bottom paths. If, on the other hand,

ψr = 50

degrees and
ψ = −50

degrees, then δ is at its maximum negative deflection so that it is trying to
increase the heading angle ψ to get it pointed in the direction specified by
ψr. Other combinations of values for ψr and ψ can be viewed in an analogous
manner.

4.3.4 Behavior of the Ship Controlled by the Multilayer
Perceptron

To evaluate how a neural network can regulate the ship heading, we will use
simulation studies for a variety of operating conditions for the ship.
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Closed-Loop Response, Nominal Conditions

If we use “nominal conditions,” where we have “ballast” conditions, no wind,
no sensor noise, and a speed of 5 meters/sec., we get a closed-loop response
shown in Figure 4.13. For this, we use the multilayer perceptron in Figure 4.10
in the control system in Figure 4.9. Notice that the reference input ψr is set
to zero for 100 sec. and then 45 degrees until t = 2000 sec. when it returns
to a zero value. The actual ship heading responds quickly, but there is some
overshoot past the desired value, some oscillations, and then the heading settles
to the desired value. Note that the result of using a digital controller that only
updates the control input every 10 sec. manifests itself as the “staircase” signal
in the bottom plot of Figure 4.13. The middle plot also has a staircase form
since we only stored and plotted one of every 10 values. The top plot appears
smooth since we plot values each second.

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50

100
Ship heading (solid) and desired ship heading (dashed), deg.

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
Ship heading error between ship heading and desired heading, deg.

0 500 1000 1500 2000 2500 3000 3500 4000
-100

-50

0

50

100

Time (sec)

Rudder angle (δ), deg.

Figure 4.13: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering.

This response may not be considered to be very good; however, for a first
design it is reasonable. How do you improve the response? You tune the shape
of the nonlinearity pictured in Figure 4.12 by tuning the weights and biases of
the network, and possibly its structure (e.g., the number of layers, neurons, and
types of activation functions). Another option would be to use more inputs to
the controller, but we will consider this option when we study the use of a radial
basis function neural network for this same application in Section 4.5.

For now, we will assume that this is a reasonably good design, at least for
illustration purposes, and test its performance for other conditions.
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Effects of Wind on Heading Regulation

Next, consider the effects of a wind disturbance on the ship. Suppose that the
Simulation-based
evaluations of control
systems should consider
effects of a variety of
adverse influences.

wind is gusting. It hits the side of the ship and moves the ship a bit, which then
pushes the rudder against the water which induces a torque to move the rudder.
To model this, we add a disturbance onto the rudder angle input by adding

0.5
( π

180

)
sin (2π(0.001)t)

to what the multilayer perceptron controller commands as an input to the tanker
ship (this is an additive sinusoid disturbance with an amplitude of 0.5 degrees
and a period of 1000 sec.). In this case, we get the response in Figure 4.14. We
see that the wind affects our ability to achieve very good regulation of the ship
heading. In particular, it adversely affects the “steady-state behavior” of the
control system (i.e., when the value of ψr is held constant for a long period of
time, such as the times leading up to t = 2000 sec.) since the heading ψ does
not properly converge to the desired heading ψr.
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Figure 4.14: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering, with wind.

Effects of Speed Changes on Heading Regulation

Next, consider the effect of a speed change on our ability to steer the ship.
Generally, if you speed up the ship it is easier to steer, while if you slow it down,
it becomes more difficult to steer because the rudder becomes less effective. If
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we use a speed of u = 3 meters/sec. (i.e., a decreased speed compared to the
previous simulations), then we get the response in Figure 4.15. We see that the
speed decrease causes a general slowing of the response since the rudder is not
as effective in influencing the ship heading.
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Figure 4.15: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering with speed of 3 meters/sec.

Effects of Sensor Noise and Weight Changes on Heading Regulation

If you use an additive sensor noise uniformly distributed on [−0.01, 0.01], there
is little effect on the response so we do not show the plot. Of course, if you use
a sensor with worse performance characteristics, then you will expect tracking
errors to arise in an analogous manner to results for the wind.

Note that on different journeys, ships will weigh different amounts and the
Careful evaluations may
uncover conditions for
which the control system
performs poorly.

amount a ship weighs affects your ability to steer it. For the simulations up till
now we have studied the case for “ballast” conditions. Next, we will consider
the case of how the ship steers when it is under “full” conditions. In this case,
when we use the multilayer perceptron that we tuned for ballast conditions on
the full ship, we get the response in Figure 4.16. This shows how the multilayer
perceptron controller, which was tuned for ballast conditions, performs quite
poorly for full conditions. Why does it fail? It responds with too large of inputs
for errors in the heading. In the beginning of the simulation when ψr first
switches to 45 degrees at t = 100 sec. there is suddenly a positive error of e = 45
degrees, and the multilayer perceptron quickly reacts by putting in a maximum
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negative value for the rudder to try to get it moving in the right direction.
After a time it succeeds, but in doing this it has the ship heading moving too
fast and it overshoots in the opposite direction. The multilayer perceptron then
responds by putting a maximum positive value into the plant, which after an
even longer period of time than in the case where the ψ value swung too far
positive, it manages to move the ship heading in the opposite direction. This
process repeats with the controller inducing a growing heading oscillation that
results in the heading growing excessively large (which we intuitively think of as
going “unstable,” but of course strictly speaking, a simulation cannot generally
prove instability since simulations run for a finite length of time while stability
is an asymptotic property).
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Figure 4.16: Closed-loop response resulting from using the multilayer perceptron
for tanker ship steering, full rather than ballast conditions.

Clearly, the multilayer perceptron is not equipped for this condition. From
a neurophysiological view, we could say that evolution has not encountered this
situation frequently enough to result in a good design for the stimulus-response
characteristics of the perceptron. From a control engineering perspective, we
see that we need to reshape the nonlinearity Fmlp(ψr , ψ) in Figure 4.12 so that
the closed-loop response is adequate for all the possible conditions. For now, we
will not consider performing such a design iteration. Instead, we will show how
to use a different type of neural controller to regulate the ship heading using a
different strategy.
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4.4 Radial Basis Function Neural Networks

A locally tuned overlapping receptive field is found in parts of the cerebral
cortex, in the visual cortex, and in other parts of the brain. The radial basis
function neural network model is based on these biological systems (but once
again, the model is not necessarily accurate, just inspired by its biological coun-
terpart).

A radial basis function neural network is shown in Figure 4.17. There,
the inputs are xi, i = 1, 2, . . . , n, and the output is y = Frbf (x) where Frbf

represents the processing by the entire radial basis function neural network. Let
x = [x1, x2, . . . , xn]�. The input to the ith receptive field unit (sometimes called
a radial basis function) is x, and its output is denoted with Ri(x). The receptive
field unit has what is called a “strength” which we denote by bi. Assume that
there are nR receptive field units. Hence, from Figure 4.17,

y = Frbf (x, θ) =
nR∑
i=1

biRi(x) (4.10)

is the output of the radial basis function neural network, and θ holds the bi

parameters and possibly the parameters of the receptive field units.
Stimulus-response
characteristics of the
radial basis function
neural network are tuned
by changing the bi, Ri

parameters, or the
structure (e.g., Ri

definitions and how they
are combined).

x 1

x2

xn

.

.

.

n   receptive

y

field units
R

Figure 4.17: Radial basis function neural network model.

There are several possible choices for the “receptive field units” Ri(x):

1. We could choose

Ri(x) = exp
(
−|x − ci|2

(σi)2

)
(4.11)

where ci = [ci
1, c

i
2, . . . , c

i
n]�, σi is a scalar, and if z is a vector then |z| =√

z�z. For the case where n = 1, c1 = [c1
1] = [2], and σ1 = 0.1, R1(x) is

shown in Figure 4.18(a). As x moves away from c1
1, R1(x) decreases with

the rate of decrease dictated by the size of σ1 (a smaller value of σ1 results
in a steeper slope on the function, and so its value will decrease quicker
as x moves away from c1

1).
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2. We could choose
Ri(x) =

1

1 + exp
(
− |x−ci|2

(σi)2

)
where ci and σi are defined in choice 1. For the case where n = 1, c1 =
[c1

1] = [2], and σ1 = 0.1, R1(x) is shown in Figure 4.18(b). Here, we see
that the receptive field unit values are small where the values for choice 1
above are large, and vice versa.

3. In each of the above cases you can choose to make the σi also depend
on the input dimension (which makes sense if the input dimensions are
scaled differently). In this case for 1 above, for example, we would have
σi = [σi

1, σ
i
2, . . . , σ

i
n]� and

Ri(x) = exp

⎛
⎝−

n∑
j=1

(xj − ci
j)

2

(σi
j)2

⎞
⎠

where σi
j is the spread for the jth input for the ith receptive field unit.

This is the approach that we will use in the example in the next section.
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Figure 4.18: Example receptive field units.

There are also alternatives to how to compute the output of the radial basis
function neural network. For instance, rather than computing the simple sum
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as in Equation (4.10), you could compute a weighted average

y = Frbf (x, θ) =
∑nR

i=1 biRi(x)∑nR

i=1 Ri(x)
(4.12)

It is also possible to define multilayer radial basis function neural networks.
Finally, note that our radial basis function neural network model is developed

in an analogous way to what our multilayer perceptron was, relative to biological
neurons. It is a “firing rate model” that has had the receptive field unit function
shapes experimentally validated by finding the “tuning curve” for an individual
neuron (e.g., in the visual cortex). See the “For Further Study” section at the
end of this part for more details.

4.5 Design Example: Radial Basis Function Neu-

ral Network for Ship Steering

This section parallels Section 4.3, but we will design a radial basis function
neural network for ship heading regulation.

4.5.1 A Radial Basis Function Neural Network for Ship
Steering

We will design the radial basis function neural network, study its stimulus re-
sponse characteristics, and then show via simulations how it regulates the tanker
ship heading.

Controller Input Choice and Control System Structure

Note that for the multilayer perceptron, we used ψr and ψ as inputs to the
controller and then in the first layer, we formed the error e that served as an
input to the second layer. Here, taking a more standard control engineering
approach, we will use the error e as one input to the radial basis function neural
network, and we will also use the derivative of that error. Hence, our inputs to
the radial basis function neural network will be

e = ψr − ψ

and
ė = ψ̇r − ψ̇

We will, however, use a backward difference approximation to the derivative
which we will denote by c(kT ),

ė ≈ e(kT ) − e(kT − T )
T

= c(kT )

where T = 10 sec. and k is an index for the time step (this is an Euler approx-
imation of the derivative and T is the sampling period of the digital controller
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on which we will implement the controller). As is standard in discrete-time
systems, for convenience we will often use “k” rather than “kT” as the argu-
ment for the signals. With this, we can denote the radial basis function neural
network for the ship by

δ(k) = Frbf (e(k), c(k))

(we omit parameter vector argument for convenience) and use it in the control
system shown in Figure 4.19.

Tanker
shipd

dt

Σ
r e

Radial basis
function neural
controller

+

δ ψ
ψ

Replace with backward difference and 
denote controller input as c(k)

Figure 4.19: Radial basis function neural network used as a controller for ship
heading.

Design of a Radial Basis Function Neural Network for Steering

Next, we construct a radial basis function neural network of Equation (4.10)
with n = 2 inputs, and nR = 121 so we will have to pick 121 strengths bi,
i = 1, 2, . . . , 121. For the Ri(e(k), c(k)) we use Equation (4.11) and create
a uniform grid for the ci centers, i = 1, 2, . . . , 121. To pick the grid points,
assume that e(k) lies in the range

e(k) ∈ [−π

2
,
π

2
]

(which will hold if we do good regulation and do not get fast changes in ψr).
Via simulations of the ship, the angular rate of movement is often such that

c(k) ∈ [−0.01, 0.01]

so we will make that assumption to guide our design choices. For convenience,
we simply create a uniform grid with its four outer corners at (−π

2 ,−0.01),
The parameters of
receptive field units are
often chosen via
“gridding” the input
space; this ensures that
the controller will have a
response for each input.

(−π
2 , 0.01), (π

2 , 0.01), and (π
2 ,−0.01) with nR = 121 centers uniformly placed at

the grid points (i.e., with 11 points along each input dimension). We show the
centers of the receptive field units in Figure 4.20.

For the receptive field units we use spreads σi
j (i.e., so that the size of the

spread depends on which input dimension is used) with

σi
1 = 0.7

π√
nR
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Figure 4.20: Receptive field unit centers.

and
σi

2 = 0.7
0.02√

nR

for i = 1, 2, . . . , 121. For σi
1, the π

11 factor makes the spread size depend on the
number of grid points along the e input dimension (similarly for σi

2), and the
0.7 factor was chosen to get a smooth interpolation between adjacent receptive
field units (see more discussion on this point below). With these choices, as an
example, consider the shape of receptive field unit R73(e, c) shown in Figure 4.21
(note that the receptive field unit index is found by starting in the lower left-
hand corner of Figure 4.20 with 1, and counting up for the point directly above
it, then when you reach the top of the first column, you go to the bottom of
the next column). Notice that it simply has the shape of a Gaussian function.
The center of this particular receptive field unit is the upper right-hand darkly
shaded circle in Figure 4.20. (When comparing Figures 4.20 and 4.21, be careful
to mentally rotate Figure 4.20 so that the plane appropriately aligns with the
R73(0, 0) = 0 plane in Figure 4.21.)

We can view
construction of a radial
basis function neural
network as building a
stimulus-response
characteristic from
tunable “spatially local”
functions (e.g.,
Gaussian functions).

Next, we will consider how the input-output mapping of the radial basis
function neural network is shaped by the choice of the scaling parameters bi.
For instance, note that b73 would simply scale the height of the receptive field
unit in Figure 4.21. Consider the scaling and summation of the receptive field
units with centers at the four darkly shaded circles in Figure 4.20 (the indices
for these are 61, 62, 72, and 73). In particular, we compute

2R61(e, c) + R62(e, c) + 2R72(e, c) + R73(e, c)
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Figure 4.21: Mapping implemented by receptive field unit R73(e, c).

and plot it vs. e and c in Figure 4.22. Note that we scaled two of the receptive
field units by 2 and in this way, we obtain a small region (near the center of
the four darkly shaded circles in the (e, c) plane) that has a slope fixed by the
parameters that we have chosen. In essence, we have designed a neural controller
for this small region.

To design a radial basis function neural network for the ship steering prob-
lem, we simply need to choose the bi, i = 1, 2, . . . , 121, parameters to shape the
mapping in the appropriate way. Suppose that we view the parameters as being
loaded in a matrix⎡

⎢⎢⎢⎣
b1 b12 b23 b34 b45 b56 b67 b78 b89 b100 b111

b2 · · · b112

... · · · ...
b11 b22 b33 b44 b55 b66 b77 b88 b99 b110 b121

⎤
⎥⎥⎥⎦

and then choose this matrix to be

Columns 1 through 7

1.3963 1.3963 1.3963 1.3963 1.3963 1.3963 1.3963

1.3963 1.3963 1.3963 1.3963 1.3963 1.3963 1.0472

1.3963 1.3963 1.3963 1.3963 1.3963 1.0472 0.6981

1.3963 1.3963 1.3963 1.3963 1.0472 0.6981 0.3491

1.3963 1.3963 1.3963 1.0472 0.6981 0.3491 0

1.3963 1.3963 1.0472 0.6981 0.3491 0 -0.3491
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Figure 4.22: Scaling and addition of several receptive field units (i.e., 2R61(e, c)+
R62(e, c) + 2R72(e, c) + R73(e, c)).

1.3963 1.0472 0.6981 0.3491 0 -0.3491 -0.6981

1.0472 0.6981 0.3491 0 -0.3491 -0.6981 -1.0472

0.6981 0.3491 0 -0.3491 -0.6981 -1.0472 -1.3963

0.3491 0 -0.3491 -0.6981 -1.0472 -1.3963 -1.3963

0 -0.3491 -0.6981 -1.0472 -1.3963 -1.3963 -1.3963

Columns 8 through 11

1.0472 0.6981 0.3491 0

0.6981 0.3491 0 -0.3491

0.3491 0 -0.3491 -0.6981

0 -0.3491 -0.6981 -1.0472

-0.3491 -0.6981 -1.0472 -1.3963

-0.6981 -1.0472 -1.3963 -1.3963

-1.0472 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

-1.3963 -1.3963 -1.3963 -1.3963

Notice the pattern of elements in the matrix. For instance, for R61, the
receptive field unit in the center of the grid, we have a strength b61 = 0. Why?
Because at this point e = c = 0 so the ship is on the proper heading and it
is not deviating from that heading; hence, we do not make any corrections to
the rudder angle. It is a useful exercise for you to consider another element in
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the above matrix and convince yourself that it is a good choice via relating its
choice to what the controller should do for a particular (e, c) combination.

4.5.2 Stimulus-Response Characteristics

The stimulus-response characteristics of the radial basis function neural network
Frbf (e, c) that we just designed are shown in Figure 4.23 in the form of a control
surface, similar to how we illustrated the mapping for the multilayer perceptron
(note that here the inputs are different).

Different inputs and
neural networks lead to
different
stimulus-response
characteristics for the
controller.
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Figure 4.23: Stimulus-response characteristics of the radial basis function neural
network for tanker ship heading regulation.

Note that the plot nicely summarizes the “decisions” that the neural network
will make. Notice that if e = c = 0, the ship is heading in the proper direction
and it is not deviating from that direction; hence, the controller sets δ = 0.
If, however, the ship heading error e is near 90 deg., with positive values of ψ
and ψr, we know that the heading ψ is pointed about 90 deg. counterclockwise
of the desired heading ψr. If along with this condition for e, we have that c
is positive and near a value of 0.5 deg./sec., then the heading is moving to
become even worse than it currently is. In this situation, the neural network
will choose the largest possible negative rudder angle so that the heading will
move clockwise towards the desired heading, counteracting the effects of having
a rate of rotation in the wrong direction. For practice, it would be useful for
you to consider other (e, c) values and explain why the decisions made by the
neural controller are appropriate.
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4.5.3 Behavior of the Ship Controlled by the Radial Basis
Function Neural Network

To study how a radial basis function neural network can operate to regulate the
ship heading, we will use simulation studies for a variety of operating conditions,
the same ones as used in Section 4.3.

Closed-Loop Response, Nominal Conditions

If we use “nominal conditions,” where we have “ballast” conditions, no wind, no
sensor noise, and a speed of 5 meters/sec., we get a closed-loop response shown
in Figures 4.24 and 4.25 when we use the radial basis function neural network
developed in the last section in the control system in Figure 4.19. The ship
heading ψ responds quickly, and while there is some overshoot past the desired
value, the response settles to the proper value relatively quickly.
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Figure 4.24: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering.

While the response is generally superior to what we found for the multilayer
perceptron, it is not appropriate to compare the two approaches. Why? Differ-
ent inputs are used for the neural networks, there are far fewer parameters in
the multilayer perceptron (how many were used in each case?), and we may have
simply gotten lucky in our tuning for the radial basis function neural network.
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Figure 4.25: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering.

Effects of Wind, Speed Changes, Sensor Noise, and Weight Changes
on Heading Regulation

Next, consider the effects of a wind disturbance on the ship. In this case, we get
the response in Figure 4.26. We see that the wind affects our ability to achieve
very good steady-state regulation of the ship heading.

Next, consider the effect of a speed change on our ability to steer the ship.
If we use a speed of u = 3 meters/sec. (i.e., a decreased speed compared to the

Using different inputs
and a different neural
network
stimulus-response
characteristic, we
generally obtain different
closed-loop responses.

previous simulations), then we get the response in Figure 4.27. We see that
compared to the nominal conditions, the speed decrease causes more overshoot
of the response since the rudder is not as effective in influencing the ship heading.

As before, the sensor noise has little effect on the response. When there is a
weight change and the ship is now full, we get the response in Figure 4.28. Notice
that we get more overshoot than we did for nominal conditions; this is because
a lighter ship is easier to steer so that the actions taken are too extreme and
this results in the overshoot (you can think of the rudder as being more effective
at steering for a light ship; hence, it generally needs smaller rudder inputs for
a full ship). While the multilayer perceptron performed quite poorly for this
condition, the radial basis function neural network performs reasonably well;
however, just like for the nominal conditions above, it would be inappropriate
to draw many conclusions from a comparison without more study. It would be
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Figure 4.26: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering, with wind.

especially inappropriate to try to conclude that the radial basis function neural
network is generally superior to the multilayer perceptron.

4.6 Stability Analysis

For some applications, the designer is first concerned about investigating the
stability properties of a control system, since it is often the case that if the
system is unstable, there is no chance that any other performance specifications

Lyapunov stability
analysis is an approach
to verifying the correct
operation of a control
system.

will hold. For example, if the control system for ship steering is unstable,
you would be more concerned with the possibility of unsafe operation than
with how well it regulates the heading to the desired angle. Fortunately, there
has been significant attention given to the mathematical analysis of stability
of nonlinear control systems, and certain results from that theory apply here.
Here, we overview Lyapunov’s direct method. For more complete introductions
to stability analysis, see the “For Further Study” section at the end of this part.

4.6.1 Differential Equations and Equilibria

Suppose that a dynamic system is represented with

ẋ(t) = f(x(t)) (4.13)
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Figure 4.27: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering, speed of 3 meters/sec.

where x ∈ 	n is an n vector and f : D → 	n with D = 	n or D = B(h) for
some h > 0 (h here is not to be confused with the integration step size used in
the Runge-Kutta method) where

B(h) = {x ∈ 	n : |x| < h}
is a ball centered at the origin with a radius of h and | · | is a norm on 	n (e.g.,
|x| =

√
(x�x)). If D = 	n, then we say that the dynamics of the system are

defined globally, while if D = B(h), they are only defined locally. Assume that
for every x0, the initial value problem

ẋ(t) = f(x(0)), x(0) = x0 (4.14)

possesses a unique solution φ̄(t, x0) that depends continuously on x0 (φ̄(t, x0) is
a “solution” of Equation (4.13) if ˙̄φ(t, x0) = f(φ̄(t, x0)) where φ̄(0, x0) = x0). A
point xe ∈ 	n is called an “equilibrium point” of Equation (4.13) if f(xe) = 0
for all t ≥ 0. An equilibrium point xe is an “isolated equilibrium point” if there
is an h′ > 0 such that the ball around xe,

B(xe, h
′) = {x ∈ 	n : |x − xe| < h′}

contains no other equilibrium points besides xe. As is standard, we will assume
that the equilibrium of interest is an isolated equilibrium located at the origin
of 	n. This assumption results in no loss of generality since if xe �= 0 is an
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Figure 4.28: Closed-loop response resulting from using the radial basis function
neural network for tanker ship steering, full rather than ballast conditions.

equilibrium of Equation (4.13) and we let x̄(t) = x(t) − xe, then x̄ = 0 is an
equilibrium of the transformed system

˙̄x(t) = f̄(x̄(t)) = f(x̄(t) + xe)

To illustrate how to transform the equilibrium, we use a simple model of the
pendulum shown in Figure 4.29 that is given by

ẋ1 = x2

ẋ2 = − g
� sin(x1) − k

mx2 + 1
m�2 T

(4.15)

where g = 9.81, � = 1.0, m = 1.0, k = 0.5, x1 is the angle (in radians) shown
in Figure 4.29, x2 is the angular velocity (in radians per second), and T is the
control input.

If we assume that T = 0, then there are two distinct isolated equilibrium
points, one in the downward position [0, 0]� and one in the inverted position
[π, 0]�. Suppose we are interested in the control of the pendulum about the
inverted position; hence, we need to translate the equilibrium by letting x̄ =
x − [π, 0]�. From this we obtain

˙̄x1 = x̄2 = f̄1(x̄)
˙̄x2 = g

� sin(x̄1) − k
m x̄2 + 1

m�2 T = f̄2(x̄)
(4.16)

where if T = 0, then x̄ = 0 corresponds to the equilibrium [π, 0]� in the original
system in Equation (4.15), so studying the stability of x̄ = 0 corresponds to
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Figure 4.29: Pendulum.

studying the stability of the control system about the inverted position. Now,
it is traditional to omit the cumbersome bar notation in Equation (4.16) and
study the stability of x = 0 for the system

ẋ1 = x2 = f1(x)
ẋ2 = g

� sin(x1) − k
mx2 + 1

m�2 T = f2(x)
(4.17)

with the understanding that we are actually studying the stability of Equa-
tion (4.16).

4.6.2 Stability Definitions

The equilibrium xe = 0 of Equation (4.13) is “stable” (in the sense of Lyapunov)
if for every ε > 0 there exists a δ(ε) > 0 such that |φ̄(t, x0)| < ε for all t ≥ 0
whenever |x0| < δ(ε) (i.e., it is stable if when it starts close to the equilibrium,
it will stay close to it). The notation δ(ε) means that δ depends on ε. A system
that is not stable is called “unstable.”

The equilibrium xe = 0 of Equation (4.13) is said to be “asymptotically
stable” if it is stable and there exists η > 0 such that limt→∞ φ̄(t, x0) = 0
whenever |x0| < η (i.e., it is asymptotically stable, if when it starts close to the
equilibrium, it will converge to it).

The set Xd ⊂ 	n of all x0 ∈ 	n such that φ̄(t, x0) → 0 as t → ∞ is called
the “domain of attraction” of the equilibrium xe = 0 of Equation (4.13). The
equilibrium xe = 0 is said to be “globally asymptotically stable” if Xd = 	n

(i.e., if no matter where the system starts, its state converges to the equilibrium
asymptotically).

As an example, consider the scalar differential equation

ẋ(t) = −2x(t)
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which is in the form of Equation (4.14). For this system, D = 	1 (i.e., the
dynamics are defined on the entire real line, not just some region around zero).
We have xe = 0 as an equilibrium point of this system since 0 = −2xe. Notice
that for any x0, we have the solution

φ̄(t, x0) = x0e
−2t → 0

as t → ∞ so that the equilibrium xe = 0 is stable since, if you are given any
ε > 0, there exists a δ > 0 such that if |x0| < δ, |φ̄(t, x0)| < ε. To see this,
simply choose δ = ε for any ε > 0 that you choose. Also note that since for
any x0 ∈ 	n, φ̄(t, x0) → 0, the system is globally asymptotically stable. While
determining if this system possesses certain stability properties is very simple
since the system is so simple, for complex nonlinear systems it is not so easy. One
reason why is that for complex nonlinear systems, it is difficult to even solve the
ordinary differential equations (i.e., to find φ̄(t, x0) for all t and x0). However,
Lyapunov’s direct method provides a technique that allows you to determine
stability properties without solving the ordinary differential equations.

4.6.3 Lyapunov’s Direct Method for Stability Analysis

The stability results for an equilibrium xe = 0 of Equation (4.13) that we provide
next depend on the existence of an appropriate “Lyapunov function”

V : D → 	

where D = 	n for global results (e.g., global asymptotic stability) and D = B(h)
for some h > 0, for local results (e.g., stability in the sense of Lyapunov or
asymptotic stability). If V is continuously differentiable with respect to its
arguments, then the derivative of V with respect to t along the solutions of
Equation (4.13) is

V̇(4.13)(x(t)) = ∇V (x(t))�f(x(t))

where

∇V (x(t)) =
[

∂V

∂x1
,

∂V

∂x2
, . . . ,

∂V

∂xn

]�
is the gradient of V with respect to x. Using the subscript on V̇ is sometimes
cumbersome, so we will at times omit it with the understanding that the deriva-
tive of V is taken along the solutions of the differential equation.

Lyapunov’s direct method is given by the following:

1. Let xe = 0 be an equilibrium for Equation (4.13). Let V : B(h) → 	
be a continuously differentiable function on B(h) such that V (0) = 0 and
V (x) > 0 in B(h)−{0}, and V̇(4.13)(x) ≤ 0 in B(h). Then xe = 0 is stable.
If, in addition, V̇(4.13)(x) < 0 in B(h)−{0}, then xe = 0 is asymptotically
stable.
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2. Let xe = 0 be an equilibrium for Equation (4.13). Let V : 	n → 	 be
a continuously differentiable function such that V (0) = 0 and V (x) > 0
for all x �= 0, |x| → ∞ implies that V (x) → ∞, and V̇(4.13)(x) < 0 for all
x �= 0. Then xe = 0 is globally asymptotically stable.

As an example, consider the scalar dynamical system

ẋ = −2x3

that has an equilibrium xe = 0. Choose

V (x) =
1
2
x2

With this choice we have

V̇ =
∂V

∂x

dx

dt
= xẋ = −2x4

so that clearly if x �= 0, then −2x4 < 0, so that by Lyapunov’s direct method
xe = 0 is asymptotically stable. Notice that xe = 0 is in fact globally asymp-
totically stable.

While Lyapunov’s direct method has found wide application in conventional
control, it is important to note that it is not always easy to find the “Lyapunov
function” V that will have the above properties so that we can guarantee that
the system is stable.

4.6.4 Stability of Discrete Time Systems

Consider the nonlinear discrete time system

x(k + 1) = f(x(k)) (4.18)

where k is the discrete time index, x ∈ 	n is an n vector and f : D → 	n (with
D = 	n or D = B(h) for some h > 0), and the equilibrium xe ∈ 	n is defined
the same as in the continuous time case. Let φ̄(k, x0) denote a solution to the
nonlinear discrete time system where x0 = x(0).

Stability in the sense of Lyapunov, (global) asymptotic stability, and regions
of asymptotic stability are defined the same as in the continuous time case,
except the time index “t” is replaced with the index “k.”

Stability conditions for the discrete-time direct method of Lyapunov are
slightly different from the continuous time case. We will only discuss asymptotic
stability, as that property will be the one we are most interested in for our
applications. According to Lyapunov’s direct method, the equilibrium xe = 0
of the system in Equation (4.18) is globally asymptotically stable if there exists
a function V (x) such that the following hold for all x ∈ 	n:

1. V (x) ≥ 0 except at x = 0 where V (x) = 0,

2. V (x) → ∞ if |x| → ∞, and
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3. V (x(k + 1)) − V (x(k)) < 0.

If these conditions only hold locally, then we only obtain asymptotic stability.
If they only hold on a region, that region is the region of asymptotic stability.
Also, if xe is an invariant set (i.e., where if we let x0 ∈ xe, f(x0) ∈ xe), then
the same types of results hold (we will give an example of how to perform such
analysis in the examples to follow).

As an example, consider

x(k + 1) = ax(k)

where a is a fixed scalar and x(k) is a scalar also. Notice that xe = 0 is
an isolated equilibrium. Suppose we want to find the conditions under which
xe = 0 is a globally asymptotically stable equilibrium. Choose V = x2. Notice
that the first two conditions above are satisfied for this choice. Next, notice
that

V (x(k + 1)) − V (x(k)) = x2(k + 1) − x2(k) = a2x2 − x2 = (a2 − 1)x2

Hence, if a2 − 1 < 0, we have V (x(k + 1)) − V (x(k)) < 0. In other words,
if a2 < 1, or if a ∈ (−1, 1), then xe = 0 is a globally asymptotically stable
equilibrium.

4.6.5 Example: Stable Instinctual Neural Control

Suppose you are given the differential equation

ẋ = f(x) + gu

where x(t) is a scalar, g > 0 is an unknown but fixed scalar (the following
Lyapunov stability
analysis is useful to
verify the correct
operation of a control
system using an
instinctual neural
controller.

analysis works in a similar way if we know that g < 0), f is smooth (so solutions
to the differential equation exist and are unique), and f(0) = 0. We will assume
that while we do not know the exact form of f(x), we do suppose that for some
α > 0,

|f(x)| < α|x|
We emphasize, however, that there is uncertainty present in this control problem
in the sense that we do not know the value of g and we do not know the specific
form of the nonlinearity f , just that it satisfies the above inequality.

We seek to design a neural controller

u = F (x)

so that the equilibrium xe = 0 is globally asymptotically stable. First, pick

V (x) =
1
2
x2

so that
V̇ = xẋ
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and so
V̇ = xf(x) + gxu = xf(x) + gxF (x)

Notice that
V̇ ≤ |x||f(x)| + gxF (x) ≤ αx2 + gxF (x)

We want to design the neural controller F (x) so that the second term in the
above V̇ equation is negative since then we will have V̇ < 0 for x �= 0 and then
xe = 0 will be a globally asymptotically stable equilibrium. To do this, suppose
that we design the controller so that F (0) = 0, F (x) is smooth, and for some
scalar β > 0,

F (x) > −βx, x < 0 (4.19)
F (x) < −βx, x > 0

which simply constrains the nonlinear surface of the neural controller. Now, if
x > 0, F (x) < −βx, so

V̇ ≤ αx2 + gx(−βx) = (α − gβ)x2

Also, if x < 0, F (x) > −βx, so once again

V̇ ≤ αx2 − gβx2 = (α − gβ)x2

Hence, if we have α − gβ < 0 or β > α/g, then xe = 0 will be globally asymp-
totically stable.

So, intuitively, why does our neural controller stabilize this uncertain non-
linear plant? Basically, when x > 0, F (x) < 0 so the neural controller seeks to
make the derivative ẋ negative to get the state x to move toward xe = 0. Simi-
larly, if x < 0, F (x) > 0 so the neural controller seeks to make the derivative ẋ
positive to get the state to move toward xe = 0. It should be clear that it is not
necessary for F (x) to be a neural controller to achieve the stabilization task;
any controller that satisfies the conditions in Equation (4.19) (and the other
constraints) will adequately perform the task.

All of this analysis is based on our ability to synthesize a neural controller so
that Equation (4.19) is met. To do this, you would need to write out the mathe-
matical form of F (x) and prove that it satisfies Equation (4.19); perhaps in this
simple case, you could use a somewhat heuristic graphical technique where you
construct the neural controller and plot its surface to check Equation (4.19).
Notice that for many neural controllers, the output saturates for some large
magnitude values of x so that Equation (4.19) will often not be satisfied glob-
ally. In this case, the analysis is not global, but only for an interval of the x axis,
so we can only conclude that xe is asymptotically stable (i.e., a local property)
or that there is some region of asymptotic stability.

4.7 Hierarchical Neural Networks

There are a variety of methods that can be employed to construct hierarchical
neural networks. Here, we provide an example of how such hierarchies occur in
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nature, then discuss how multilayer perceptrons and radial basis function neural
networks can be organized in a hierarchical fashion.

It is natural to view
some neural networks as
hierarchical.4.7.1 Example: Marine Mollusc

In the marine mollusc, Pleurobranchaea, behaviors are organized hierarchically
as dictated by the cellular arrangement of their neurons [312]. The arrangement
(see Figure 472 in [312]), shows that the “swimming escape response” inhibits
the other behaviors. Also, egg laying inhibits feeding, which in turn takes
precedence over mating. The actual neural “circuitry” has been traced in these
molluscs and this research has shown that when activated, command systems
of neurons that are responsible for feeding and egg laying inhibit the neural
networks dedicated to mating and locomotion.

The behavior of the mollusc is directly dictated by the underlying hierar-
chical organization of its neural network. Evolution has shaped a hierarchical
arrangement in the neural network so that the behaviors that are exhibited
increase the reproductive success of the mollusc.

4.7.2 Hierarchical Neural Structures

Here, we simply provide some ideas on how to structure neural networks in
a hierarchical fashion. First, you could use a multilayer perceptron to turn on
and off different parts of another multilayer perceptron. For example, the higher
layer could simply output zeros and ones and these could multiply activation
function outputs so that the lower level perceptron is reconfigurable based on
different conditions.

For radial basis functions you may have a two-level hierarchical network
with the higher layer defined on a coarse grid and the lower layer on a fine
grid. Then, when a region is activated in the higher level network, that could
activate a radial basis function neural network that is defined on a fine grid.
This provides a type of “nesting” and focusing, and at times can provide for
savings in computational complexity since only those radial basis functions with
fine grids that are activated need to be stored in memory and computed.

4.8 Exercises and Design Problems

Exercise 4.1 (Building Multilayer Perceptrons): In this problem you
will focus on constructing, “by hand,” multilayer perceptrons to match
certain functions.

(a) Construct two different multilayer perceptrons that try to match (ap-
proximate) the input-output properties of y = f(x) = 2x where x
and y are scalars over the range x ∈ [−10, 10]. In the first case you
may use a linear activation function, and any combination of other
neurons. In the second case, use a linear activation function in the
output layer and a single hidden layer of no more than five logistic
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activation functions. Try to tune the parameters of the network by
hand to make the mapping that is implemented by the neural network
as close as possible to f over its entire domain. Do not use the neural
network training methods that are introduced later in the book. Plot
f vs. x and the mapping implemented by the neural network on the
same plot in order to illustrate how close the network approximates
the function.

(b) Repeat (a) but for y = f(x) = 2x2. You may use any type of
multilayer perceptron, with any number of neurons you would like.

(c) Repeat (a) but for y = f(x) = 2 sin(x). You may use any type of
multilayer perceptron, with any number of neurons you would like.

Exercise 4.2 (Building Radial Basis Function Neural Networks):

(a) Repeat Exercise 4.1 (a), but only construct one radial basis function
neural network with no more than five receptive field units.

(b) Repeat Exercise 4.1 (b), but only construct one radial basis function
neural network with no more than five receptive field units.

(c) Repeat Exercise 4.1 (c), but only construct one radial basis function
neural network and you may use any number of receptive field units
for it.

Exercise 4.3 (Lyapunov’s Direct Method): Suppose that you are given
the plant

ẋ = ax + bu

where b > 0 and a < 0 (so the system is stable) and x is a scalar. Suppose
that you design an instinctual neural controller F that generates the input
to the plant given the state of the plant (i.e., u = F (x)). Assume that you
design the controller so that F (0) = 0 (so that x = 0 is an equilibrium)
and so that F (x) is continuous in x (so that a unique solution exists to
the differential equation describing the closed-loop system).

(a) Use Lyapunov’s direct method to show that if x and F (x) always
have opposite signs, then x = 0 is stable.

(b) What types of stability does x = 0 of the control system possess for
part (a)? List all types of stability that it possesses.

(c) Design a (SISO) instinctual neural controller that satisfies the con-
dition stated in (a) (and so that F (0) = 0 and F (x) is continuous)
and simulate the closed-loop system to help illustrate the stability
of the neural control system. Choose the initial condition x(0) = 1,
a = −2, and b = 2. Of course, the simulation does not prove that
the closed-loop system is stable—it only shows that for one initial
condition, the state appears to converge but cannot prove that it
converges since the simulation is only for a finite amount of time.
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Exercise 4.4 (Multilayer Perceptron for Tanker Ship Steering): Pro-
duce simulations to reproduce the results where we used a multilayer per-
ceptron for tanker ship steering in the chapter (all the conditions). Add
more comments to the code and produce a flowchart to demonstrate that
you understand its operation.

Exercise 4.5 (Radial Basis Function Neural Network for Tanker Ship
Steering): Produce simulations to reproduce the results where we used a
radial basis function neural network for tanker ship steering in the chapter
(all the conditions). Add more comments to the code and produce a
flowchart to demonstrate that you understand its operation.

Design Problem 4.1 (Design of a Multilayer Perceptron for Tanker
Ship Steering):

(a) Redesign the multilayer perceptron from Exercise (4.4) to improve
performance of the closed-loop system for nominal conditions. Con-
strain the way that you perform the redesign to simply tuning of
parameters, not changing the number of layers or neurons. Show
plots to support your conclusions.

(b) Repeat (a) but design a multilayer perceptron that has two inputs,
e and ė (that you may approximate using an Euler approximation
to the derivative), and one output δ. Hint: Build on the multilayer
perceptron that was used in (a). Tune the multilayer perceptron
so that it obtains “better” performance (you define precisely what
this means for your study) than in (a). Plot the three-dimensional
input-output map of the resulting tuned controller.

(c) Repeat (a) but you may use any type of multilayer perceptron (i.e.,
you choose the inputs, number of layers, and neurons). Try to achieve
the best possible performance for all the different conditions consid-
ered in the chapter. You define what you mean by good performance,
and you decide what an appropriate balance is in the quality of the
results between the different conditions.

Design Problem 4.2 (Design of a Radial Basis Function Neural Net-
work for Tanker Ship Steering):

(a) Redesign the radial basis function neural network from Exercise (4.5)
to improve performance of the closed-loop system for nominal con-
ditions. Constrain the way that you perform the redesign to simply
tuning of parameters, not changing the number of receptive field
units. Show plots to illustrate better performance. Plot the three-
dimensional input-output map of the resulting tuned controller.

(b) Repeat (a), but you may use any radial basis function neural network
(i.e., you choose the inputs and number of receptive field units).
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(c) Repeat (a) with the modification in (b), but try to achieve the best
possible performance for all the different conditions considered in the
chapter. You define what you mean by good performance, and you
decide what an appropriate balance is in the quality of the results
between the different conditions.



Chapter 5

Rule-Based Control
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One relatively complex task that humans can perform is a feedback control
task. For instance, driving an automobile is a control task that humans regularly
perform. There, the driver senses lane markers, vehicles, obstacles, and other
cues to control the direction of travel by steering, and velocity via actuating the
throttle and brakes. Humans perform many other control tasks when employed
at, for example, chemical processing plants, manufacturing facilities, and in
vehicular applications. In this chapter, we study rule-based control by studying
the use of fuzzy and expert systems for control. These are probably the most
popular intelligent control methods for automating feedback control tasks that
have often been performed by humans in the past. The biomimicry here should
be thought of as “human-mimicry” as it was explained in Part I, but clearly
an accurate model of human reasoning and decision-making processes is neither
sought, nor obtained.

The design example for the tanker ship serves to illustrate the heuristic non-
linear control design methodology that fuzzy and expert control allows. Here,
there is a particularly important focus on design methodology for fuzzy con-
trollers, as there have been certain problems in the literature with proper design
methodology. We discuss effects of disturbances, noise, plant changes, stability,
and limit cycles. It is emphasized that sound control engineering methodology,
as outlined in Part I, should not be ignored.

5.1 Fuzzy Control

A block diagram of a fuzzy control system is shown in Figure 5.1. The fuzzy
controller is composed of the following four elements:

1. A rule base (a set of If-Then rules), which contains a fuzzy logic quantifi-
cation of the expert’s linguistic description of how to achieve good control.

2. An inference mechanism (also called an “inference engine” or “fuzzy in-
ference” module), which emulates the expert’s decision-making in inter-
preting and applying knowledge about how best to control the plant.

3. A fuzzification interface, which converts controller inputs into information
that the inference mechanism can easily use to activate and apply rules.

4. A defuzzification interface, which converts the conclusions of the inference
mechanism into actual inputs for the process.

We introduce each of the components of the fuzzy controller for the simple
problem of tanker ship heading regulation, as was shown in Figure 4.8.

5.1.1 Choosing Fuzzy Controller Inputs and Outputs

Consider a human-in-the-loop whose responsibility is to control the tanker ship
(i.e., the ship captain), as shown in Figure 5.2. The fuzzy controller is to be
designed to automate how a captain would control the system. First, the captain
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Figure 5.1: Fuzzy controller.

tells us (the designers of the fuzzy controller) what information she or he will
use as inputs to the decision-making process. Suppose that for the tanker ship,
the expert (this could be you, if you do not have the captain available) says that
she or he will use

e(t) = ψr(t) − ψ(t)

and
de(t)
dt

= ė(t)

as the variables on which to base decisions. Certainly, there are many other
choices (e.g., the integral of the error e could also be used) but this choice
makes good intuitive sense. Next, we must identify the controlled variable. For

Fuzzy controller
input/output choice
depends on what
variables the expert uses
and broadly affects the
design of the controller.

the tanker ship, it is assumed that we are only allowed to control the rudder so
the input is δ (i.e., we do not consider the use of the ship speed for helping with
steering).

Tanker
ship

δψ ψr Ship
captain

Figure 5.2: Human controlling a tanker ship.

For more complex applications, the choice of the inputs to the controller and
outputs of the controller (inputs to the plant) can be more difficult. Essentially,
you want to make sure that the controller will have the proper information
available to be able to make good decisions and have proper control inputs
to be able to move the system in the directions needed to be able to achieve
high-performance operation. Practically speaking, access to information and
the ability to effectively control the system often cost money. If the designer
believes that proper information is not available for making control decisions,
he or she may have to invest in another sensor that can provide a measurement
of another system variable. Alternatively, the designer may implement some
filtering or other processing of the plant outputs. In addition, if the designer
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determines that the current actuators will not allow for the precise control of
the process, he or she may need to invest in designing and implementing an
actuator that can properly affect the process. Hence, while in some academic
problems you may be given the plant inputs and outputs, in many practical
situations you may have some flexibility in their choice. These choices affect
what information is available for making online decisions about the control of
a process and hence affect how we design a fuzzy controller. Once the fuzzy
controller inputs and outputs are chosen, you must determine the reference
inputs. For the tanker ship, we will simply use step changes in ship heading. In
general, the specification and generation of the reference input(s) can be more
challenging.

After all the inputs and outputs are defined for the fuzzy controller, we can
specify the fuzzy control system. The fuzzy control system for the tanker ship,
with our choice of inputs and outputs, is shown in Figure 5.3. Now, within this
framework we seek to obtain a description of how to control the process. We see
then that the choice of the inputs and outputs of the controller places certain
constraints on the remainder of the fuzzy control design process. If the proper
information is not provided to the fuzzy controller, there will be little hope for
being able to design a good rule base or inference mechanism. Moreover, even if
the proper information is available to make control decisions, this will be of little
use if the controller is not able to properly affect the process variables via the
process inputs. It must be understood that the choice of the controller inputs
and outputs is a fundamentally important part of the control design process for
many practical applications.

Tanker
shipd

dt

Σ
r e

Fuzzy
controller

+
δ ψ

ψ

Figure 5.3: Fuzzy controller for a tanker ship steering problem.

5.1.2 Putting Control Knowledge into Rule Bases

Suppose that the human expert (captain) shown in Figure 5.2 provides a descrip-
tion of how best to control the plant in some natural language (e.g., English).
Next, we characterize the expert’s description with “linguistics.”

Linguistic Descriptions

The linguistic description provided by the expert can generally be broken into
several parts. There will be “linguistic variables” that describe each of the
time-varying fuzzy controller inputs and outputs. For the tanker ship,
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“error” describes e(t)
“change-in-error” describes de(t)

dt
“rudder-input” describes δ(t)

Note that we use quotes to emphasize that certain words or phrases are linguis-
tic descriptions, but emphasize that these variables do change over time. There
are many possible choices for the linguistic descriptions for variables. Some de-
signers like to choose them so that they are quite descriptive for documentation
purposes. However, this can sometimes lead to long descriptions. Others seek
to keep the linguistic descriptions as short as possible (e.g., using “e(t)” as the
linguistic variable for e(t)), yet accurate enough so that they adequately repre-
sent the variables. Regardless, the choice of the linguistic variable has no effect
on the way that the fuzzy controller operates; it is simply a notation that helps
to facilitate the construction of the fuzzy controller via fuzzy logic.

Just as e(t) takes on a value of, for example, 0.1 at t = 2 (e(2) = 0.1),
linguistic variables assume “linguistic values.” That is, the values that linguistic

Linguistic variables
represent the key
variables that the expert
uses to make decisions.

variables take on over time change dynamically. Suppose for the tanker ship ex-
ample that “error,” “change-in-error,” and “rudder-input” take on the following
values:

“neghuge”
“neglarge”
“negbig”
“negmed”
“negsmall”

“zero”
“possmall”
“posmed”
“posbig”

“poslarge”
“poshuge”

Note that we are using “negsmall” as an abbreviation for “negative small in size”
and so on for the other variables. Such abbreviations help keep the linguistic
descriptions short yet precise. For an even shorter description we could use
integers:

“−5” to represent “neghuge”
“−4” to represent “neglarge”
“−3” to represent “negbig”
“−2” to represent “negmed”
“−1” to represent “negsmall”

“0” to represent “zero”
“1” to represent “possmall”
“2” to represent “posmed”
“3” to represent “posbig”

“4” to represent “poslarge”
“5” to represent “poshuge”
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This is a particularly appealing choice for the linguistic values since the descrip-
tions are short and nicely represent that the variable we are concerned with has
a numeric quality. We are not, for example, associating “−1” with any particu-
lar number of radians of error; the use of the numbers for linguistic descriptions
simply quantifies the sign of the error (in the usual way) and indicates the size
in relation to the other linguistic values. We shall find the use of this type of
linguistic value quite convenient when it comes to writing computer programs
to simulate or implement fuzzy control systems and hence will give it the special
name, “linguistic-numeric value.”

The linguistic variables and values provide a language for the expert to ex-
press her or his ideas about the control decision-making process, in the context
of the framework established by our choice of fuzzy controller inputs and out-
puts. Suppose that for the tanker ship ψr(t) = 45 deg. (ψr(t) = 45π

180 rad.) and
e = r − y so that

e =
45π

180
− ψ

and
de

dt
= −dψ

dt

since dψr

dt = 0. First, we will study how we can quantify certain dynamic
behaviors with linguistics. In the next subsection we will study how to quantify
knowledge about how to control the tanker ship using linguistic rules.

For the tanker ship, each of the following statements quantifies a different
configuration of the ship (refer back to Figure 4.8 on page 117):

Linguistic statements
characterize the status
of the plant.

• The statement “error is poslarge” can represent the situation where the
ship heading is at a significant angle counterclockwise to where it should
be heading.

• The statement “error is negsmall” can represent the situation where the
ship heading is just slightly clockwise of where it should be heading, but
not too close to the reference heading ψr to justify quantifying it as “zero”
and not too far away to justify quantifying it as “negmed.”

• The statement “error is zero” can represent the situation where the ship
heading is very near the desired heading (a linguistic quantification is
not precise, hence we are willing to accept any value of the error around
e(t) = 0 as being quantified linguistically by “zero” since this can be
considered a better quantification than “possmall” or “negsmall”).

• The statement “error is poslarge and change-in-error is possmall” can rep-
resent the situation where the ship heading is counterclockwise to where
it should be and, since dψ

dt < 0, the ship heading is moving away from the
desired heading (note that in this case, the ship is moving counterclock-
wise).

• The statement “error is negsmall and change-in-error is possmall” can
represent the situation where the ship heading is slightly clockwise of
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where it should be heading and, since dψ
dt < 0, the ship heading is moving

toward the desired heading (note that in this case, the ship is moving
counterclockwise).

It is important for the reader to study each of the cases above to understand
how the expert’s linguistics quantify the current situation the ship is in (actually,
each partially quantifies the ship’s state).

Overall, we see that to quantify the dynamics of the process, we need to
have a good understanding of the physics of the underlying process we are
trying to control. While for the ship steering problem, the task of coming to a
good understanding of the dynamics is relatively easy, this is not the case for
many physical processes. Quantifying the process dynamics with linguistics is
not always easy, and certainly a better understanding of the process dynamics
generally leads to a better linguistic quantification. Often, this will naturally
lead to a better fuzzy controller provided that you can adequately measure the
system dynamics so that the fuzzy controller can make the right decisions at
the proper time.

Rules

Next, we will use the above linguistic quantification to specify a set of rules (a
rule base) that captures the expert’s knowledge about how to control the plant.
In particular, for the tanker ship in the three positions shown in Figure 5.4, we
have the following rules (notice that we drop the quotes since the whole rule is
linguistic):

Linguistic rules
represent a description
of the rules that the
expert uses in control.

1. If error is negsmall and change-in-error is negsmall Then rudder-input is
posmed

This rule quantifies the situation in Figure 5.4(a) where the ship has a
heading angle that is clockwise of the desired heading and is moving clock-
wise; hence, it is clear that we should apply a medium positive rudder angle
so that we can get the ship moving in the proper direction.

2. If error is zero and change-in-error is possmall Then rudder-input is
negsmall

This rule quantifies the situation in Figure 5.4(b) where the ship is nearly
moving in the proper direction (a linguistic quantification of zero does not
imply that e(t) = 0 exactly) and is moving counterclockwise; hence, we
should apply a small negative rudder angle to counteract the movement
so that it moves toward zero (a positive rudder angle could result in the
ship heading overshooting the desired angle).

3. If error is possmall and change-in-error is negsmall Then rudder-input is
zero

This rule quantifies the situation in Figure 5.4(c) where the ship is coun-
terclockwise of the desired heading and is moving clockwise; hence, we
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apply a near zero rudder angle since the ship is already moving in the
proper direction.

Specification of
increasingly good rules
generally requires
increasingly good
insights into the physics
of the plant.

ψr = desired ship heading is 45 deg., the dotted lines
ψ = ship heading, thin solid lines with arrow at end indicating direction of ship travel

Gray arrows indicate angular direction the ship is moving
Rudder angles shown are approximate

(a) (b) (c)

Figure 5.4: Tanker ship in various positions.

Each of the three rules listed above is a “linguistic rule” since it is formed
solely from linguistic variables and values. Since linguistic values are not precise
representations of the underlying quantities that they describe, linguistic rules
are not precise either. They are simply abstract ideas about how to achieve
good control that could mean somewhat different things to different people.
They are, however, at a level of abstraction that humans are often comfortable
with in terms of specifying how to control a process.

The general form of the linguistic rules listed above is

If premise Then consequent

As you can see from the three rules listed above, the premises (which are some-
times called “antecedents”) are associated with the fuzzy controller inputs and
are on the left-hand side of the rules. The consequents (sometimes called “ac-
tions”) are associated with the fuzzy controller outputs and are on the right-
hand side of the rules. Notice that each premise (or consequent) can be com-
posed of the conjunction of several “terms” (e.g., in rule 3 above, “error is
possmall and change-in-error is negsmall” is a premise that is the conjunction
of two terms). The number of fuzzy controller inputs and outputs places an up-
per limit on the number of elements in the premises and consequents. Note that
there does not need to be a premise (consequent) term for each input (output)
in each rule, although often there is.

Rule Bases

Using the above approach, we could continue to write down rules for the ship
steering problem for all possible cases (the reader should do this for practice, at
least for a few more rules). Note that since we only specify a finite number of
linguistic variables and linguistic values, there is only a finite number of possible
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rules. For the ship steering problem, with two inputs and eleven linguistic
values for each of these, there are at most 112 = 121 possible rules (all possible
combinations of premise linguistic values for two inputs).

A convenient way to list all possible rules for the case where there are not
too many inputs to the fuzzy controller (less than or equal to two or three) is
to use a tabular representation. A tabular representation of one possible set
of rules for the fuzzy controller for the ship is shown in Table 5.1. Notice that
the body of the table lists the linguistic-numeric consequents of the rules, and
the left column and top row of the table contain the linguistic-numeric premise
terms. Then, for instance, the (+1,−1) position (where the “+1” represents
the row having “+1” for a numeric-linguistic value and the “−1” represents the
column having “−1” for a numeric-linguistic value) has a 0 (“zero”) in the body
of the table and represents the rule

If error is possmall and change-in-error is negsmall Then rudder-input is zero

which is rule 3 above. Table 5.1 represents abstract knowledge that the expert
has about how to control the tanker ship given the error and its derivative as
inputs.

Table 5.1: Rule Table for the Tanker Ship

ė
δ −5 −4 −3 −2 −1 0 1 2 3 4 5
−5 5 5 5 5 5 5 4 3 2 1 0
−4 5 5 5 5 5 4 3 2 1 0 −1
−3 5 5 5 5 4 3 2 1 0 −1 −2
−2 5 5 5 4 3 2 1 0 −1 −2 −3
−1 5 5 4 3 2 1 0 −1 −2 −3 −4

e 0 5 4 3 2 1 0 −1 −2 −3 −4 −5
1 4 3 2 1 0 −1 −2 −3 −4 −5 −5
2 3 2 1 0 −1 −2 −3 −4 −5 −5 −5
3 2 1 0 −1 −2 −3 −4 −5 −5 −5 −5
4 1 0 −1 −2 −3 −4 −5 −5 −5 −5 −5
5 0 −1 −2 −3 −4 −5 −5 −5 −5 −5 −5

Note that the other rules are also valid and take special note of the pattern
of rule consequents that appears in the body of the table. Notice the diagonal
of zeros. Viewing the body of the table as a matrix, we see that it has a certain
symmetry to it. This symmetry that emerges when the rules are tabulated is
no accident and is actually a representation of abstract knowledge about how to
control the ship heading; it arises due to a symmetry in the system’s dynamics.
Similar patterns will often be found when constructing rule bases for other
applications.
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5.1.3 Fuzzy Quantification of Knowledge

Up to this point we have only quantified, in an abstract way, the knowledge
that the human expert has about how to control the plant. Next, we will show
how to use fuzzy logic to fully quantify the meaning of linguistic descriptions
so that we may automate, in the fuzzy controller, the control rules specified by
the expert.

Membership Functions

First, we quantify the meaning of the linguistic values using “membership func-
tions.” Consider, for example, Figure 5.5. This is a plot of a function µ versus
e(t) that takes on special meaning. The function µ quantifies the certainty
that e(t) can be classified linguistically as “possmall.” In our discussion in this
chapter, do not confuse the term “certainty” with “probability” or “likelihood.”
The membership function is not a probability density function, and there is no
underlying probability space. By “certainty” we mean “degree of truth.” The
membership function does not quantify random behavior; it simply makes more
accurate (less fuzzy) the meaning of linguistic descriptions.

To understand the way that a membership function works, it is best to
perform a case analysis where we show how to interpret it for various values of
e(t):

Membership functions
numerically quantify the
meaning of linguistic
statements by the expert.

• If e(t) = − 4π
10 , then µ(− 4π

10 ) = 0, indicating that we are certain that
e(t) = − 4π

10 is not “possmall” (indeed, it is negative).

• If e(t) = 2π
20 , then µ(2π

20 ) = 0.5, indicating that we are halfway certain that
e(t) = 2π

20 is “possmall” (we are only halfway certain since it could also
be “zero” with some degree of certainty—this value is in a “gray area” in
terms of linguistic interpretation).

• If e(t) = 2π
10 , then µ(2π

10 ) = 1.0, indicating that we are absolutely certain
that e(t) = 2π

10 is what we mean by “possmall.”

• If e(t) = 8π
10 , then µ(8π

10 ) = 0, indicating that we are certain that e(t) = 8π
10

is not “possmall” (actually, we will soon see that we will quantify it as
“poslarge”).

1.0

0.5

µ

e(t), (rad.)

“possmall”

π
10

π
10

2 4

Figure 5.5: Membership function for linguistic value “possmall.”
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The membership function quantifies, in a continuous manner, whether values
of e(t) belong to (are members of) the set of values that are “possmall,” and
hence it quantifies the meaning of the linguistic statement “error is possmall.”
This is why it is called a membership function. It is important to recognize
that the membership function in Figure 5.5 is only one possible definition of
the meaning of “error is possmall;” you could use a bell-shaped function, a
trapezoid, or many others, depending on what the expert means by “possmall.”

For instance, consider the membership functions shown in Figure 5.6. For
some applications someone may be able to argue that we are absolutely cer-
tain that any value of e(t) near 2π

10 is still “possmall” and only when you get
sufficiently far from 2π

10 do we lose our confidence that it is “possmall.” One
way to characterize this understanding of the meaning of “possmall” is via the
trapezoid-shaped membership function in Figure 5.6(a). For other applications,
you may think of membership in the set of “possmall” values as being dic-
tated by the Gaussian-shaped membership function (not to be confused with
the Gaussian probability density function) shown in Figure 5.6(b). For still
other applications, you may not readily accept values far away from 2π

10 as be-
ing “possmall,” so you may use the membership function in Figure 5.6(c) to
represent this. Finally, while we often think of symmetric characterizations of
the meaning of linguistic values, we are not restricted to these symmetric rep-
resentations. For instance, in Figure 5.6(d) we represent that we believe that
as e(t) moves to the left of 2π

10 , we are very quick to reduce our confidence that
it is “possmall,” but if we move to the right of 2π

10 , our confidence that e(t) is
“possmall” diminishes at a slower rate.

1.0

0.5

µ

e(t), (rad.)

“possmall”

1.0

0.5

µ

e(t), (rad.)

“possmall”
1.0

0.5

µ

e(t), (rad.)

“possmall”

1.0

0.5

µ

e(t), (rad.)

“possmall”

(a) Trapezoid (b) Gaussian

(c) Sharp peak (d) Skewed triangle

π
10

π
10

2 4 π
10

π
10

2 4

π
10

π
10

2 4 π
10

π
10

2 4 π
10
6

Figure 5.6: Some example membership function choices for representing “error
is possmall.”

Each of the membership functions in Figure 5.6 has a mathematical repre-
sentation and these are useful in simulation and implementation of fuzzy con-
trollers. For example, interval checking plus equations for lines can be used to
implement the membership function in Figure 5.6(a) and a Gaussian function
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with an appropriate center, spread, and scale factor can implement the one in
Figure 5.6(b).

In summary, we see that depending on the application and the designer
(expert), many different choices of membership functions are possible. It is
important to note here, however, that for the most part, the definition of a
membership function is subjective rather than objective. That is, we simply
quantify it in a manner that makes sense to us, but others may quantify it in a
different manner.

The set of values that is described by µ as being “positive small” is called
a “fuzzy set.” Let A denote this fuzzy set. Notice that from Figure 5.5 we are
absolutely certain that e(t) = 2π

10 is an element of A, but we are less certain
that e(t) = 2π

40 is an element of A. Membership in the set, as specified by the
membership function, is fuzzy; hence we use the term “fuzzy set.” A “crisp” (as
contrasted to “fuzzy”) quantification of “possmall” can also be specified, but
via the membership function shown in Figure 5.7. This membership function
is simply an alternative representation for the interval on the real line 2π

20 ≤
e(t) ≤ 6π

20 , and it indicates that this interval of numbers represents “possmall.”
Clearly, this characterization of crisp sets is simply another way to represent a
normal interval (set) of real numbers.

1.0

0.5

µ

e(t), (rad.)π
10

π
10

2 4

Figure 5.7: Membership function for a crisp set.

While the vertical axis in Figure 5.5 represents certainty, the horizontal
axis is also given a special name. It is called the “universe of discourse” for the
input e(t) since it provides the range of values of e(t) that can be quantified with
linguistics and fuzzy sets. In conventional terminology, a universe of discourse
for an input or output of a fuzzy system is simply the range of values the inputs
and outputs can take on.

Now that we know how to specify the meaning of a linguistic value via a
membership function (and hence a fuzzy set), we can easily specify the mem-
bership functions for all 33 linguistic values (eleven for each input and eleven
for the output) of our ship steering example. See Figure 5.8 for one choice of
membership functions.

For our later convenience, we list both the linguistic and linguistic-numeric
values associated with each membership function. Hence, we see that the mem-
bership function in Figure 5.5 for “possmall” on the “error” universe of discourse
is embedded among several others that describe other sizes of values (so that, for
instance, the membership function to the right of the one for “possmall” is the
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Figure 5.8: Membership functions for a ship steering example.

one that represents “error is posmed”). Note that other similarly shaped mem-
bership functions make sense (e.g., bell-shaped membership functions). The
scale for the axis was chosen since |e(t)| can be at most π radians since it is the
difference between two angles and we use this fact to help define the relative
sizes in our membership quantification of our linguistics. Notice that for the ė
universe of discourse, we use a set of membership functions similar to the ones
on the e universe of discourse, but that the scale of the ė axis is different. This
scale was chosen since our expert captain felt that |ė(t)| ≥ 0.01 radians per
second (0.57 degrees per second) was a fast change in the ship heading. Notice
then that the meaning of the linguistics on the ė universe of discourse is different
from those on the e universe of discourse.

The membership functions at the outer edges of the e and ė universes of
discourse in Figure 5.8 deserve special attention. For the inputs e(t) and ė,
we see that the outermost membership functions “saturate” at a value of one.
This makes intuitive sense, as at some point the human expert would just
group all large values together in a linguistic description such as “poshuge”
(or “neghuge”). The membership functions at the outermost edges appropri-
ately characterize this phenomenon since they characterize “greater than” (for
the right side) and “less than” (for the left side). Study Figure 5.8 and convince
yourself of this.

It is important to have a clear picture in your mind of how the values of the
membership functions change as, for example, e(t) changes its value over time.
For instance, as e(t) changes from −π to π, we see that various membership
functions will take on zero and nonzero values indicating the degree to which the
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corresponding linguistic value appropriately describes the current value of e(t).
For example, at e(t) = −π we are certain that the error is “neghuge,” and as the
value of e(t) moves toward −8π/10, we become less certain that it is “neghuge”
and more certain that it is “neglarge.” We see that the membership functions
quantify the meaning of linguistic statements that describe time-varying signals.

Finally, note that often we will draw all the membership functions for one
input or output variable on one graph; hence, we often omit the label for the
vertical axis with the understanding that the plotted functions are membership
functions describing the meaning of their associated linguistic values. Also, we
will use the notation µzero to represent the membership function associated with
the linguistic value “zero” and a similar notation for the others.

Next, consider the choice of membership functions for the “rudder-input”
δ(t) universe of discourse in Figure 5.8. The horizontal scale was chosen since,
as you may recall, the rudder input can only be moved between ±80 degrees.
Converting to radians, this means that it moves between ±8π/18 radians and
this gives us the center values for the membership functions on the outer edges
for the δ universe of discourse. Next, note that for the output δ, the membership
functions at the outermost edges cannot be saturated for the fuzzy system to
be properly defined (more details on this point will be provided at the end of
Section 5.1.6 that starts on page 178). The basic reason for this is that in
decision-making processes of the type we study, we seek to take actions that
specify an exact value for the process input. We do not generally indicate to a
process actuator, “any value bigger than, say, ±8π/18, is acceptable.”

The Meaning of Membership Functions and Rules

Notice that the pattern of center positions (i.e., where the triangles peak at one)
for the output membership functions in Figure 5.8 is not uniform as it is for the
input universes of discourse. A uniform distribution (which with proper tuning
can work for this ship steering example also) would imply that the captain would
roughly make the rudder angle proportional to the error between the heading
and desired heading, and the change in the heading error (except when the error
and change in error are too big in magnitude, then she or he will simply move
the rudder to its maximum deflection). To get a uniform distribution of output
membership function centers you can choose the center values, which we denote
by bi where i is the linguistic-numeric index for the corresponding membership
function, as

bi =
8π

18

(
i

5

)
where i = −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5 (and then use the same base widths
and rule base). For practice, draw the resulting membership functions on the
output universe of discourse.

The choice of having nonuniformly distributed membership functions in Fig-
ure 5.8 represents that for small heading errors, when the change in error is small
also, the captain will not put in as big a rudder angle. Why? Through expe-
rience the captain has found that if the heading is close to where it should be
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and it is not moving away from where it should be fast, then small corrections
are more effective in heading regulation. While the captain may have learned
this through experience (or training), the basic reason for this arises from the
physics of the process. For example, since the heading sensor measurement is
noisy, for small heading errors this noise can have a relatively large impact on
the error so that for small errors the noise can make it appear that there is
a heading error when there is not. Now, for the case where, say, the error is
“poshuge” but the change in error ė is “neghuge” the captain also puts in a
zero rudder angle input (see Table 5.1). The expert captain specified this rule
since, while the heading is far from where it should be, the heading is moving
very fast to correct this condition. If the error is “poshuge” and the change in
error ė is “neglarge,” then the rudder input is “negsmall” and by Figure 5.8
this is only a small correction since the captain does not want to expend more
rudder movement than necessary; the ship is moving to correct its own error in
heading, why expend control energy (and wear out the rudder actuator) trying
to do something that is already in the process of happening?

It is important to gain
insights into the fuzzy
logic quantification of
the rule base to clearly
understand what control
expertise is being
implemented by the fuzzy
controller.

Next, note that from the pattern of output membership functions in the
body of Table 5.1, we see that the captain will saturate the rudder either positive
(upper left corner of the rule base) or negative (lower right corner of the rule
base) if the error and change in error are too big in magnitude. The choice
of when to saturate the rudder (i.e., to move it to its maximum deflection) is
made through the captain’s experience in heading regulation. If she or he is
not willing to saturate it soon enough, larger heading deviations may occur.
However, if the captain is too quick to saturate the rudder input, for example,
even for relatively small errors, she or he will wear out the rudder actuator faster
and will be continually moving the rudder.

With this discussion, it is important to note that the meaning of the lin-
guistic rule base is not clear until the membership functions for the linguistic
variables are all defined. The membership function definitions fully specify the
meaning of the linguistics. Note that while on the e and ė universes of dis-
course the meaning of the linguistics is similar, it is different by a scale factor
on the horizontal axes (scaling the horizontal axis changes the meaning of the
linguistics). Moreover, the meaning of the linguistics on the output universe of
discourse is quite different from meaning of the linguistics on the input universes
of discourse (e.g., for the membership functions at the outermost edges and in
the nonuniform spacing of the output membership function centers).

Due to the lack of clarity of the meaning of control rules in the linguistic
rule base shown in Table 5.1, schemes are often used which include membership
function information in the rule base table. While many schemes are possible, a
common one is shown in Table 5.2 where rather than listing the indices for the
output membership functions, the centers of the appropriate output membership
functions are listed, up to a scale factor, which in this case is 8π/18 (i.e., to get
the actual center from the rule base table you take the entry and multiply it by
8π/18).

Coupled with our understanding of the meaning of the linguistic-numeric in-
dices for the error and change in error, all the major components of the captain’s
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Table 5.2: Rule Table for the Tanker Ship (body of table holds the output mem-
bership function centers where each element should be multiplied by 8π/18).

ė
−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .3 .1 0
−4 1 1 1 1 1 .8 .6 .3 .1 0 −.1
−3 1 1 1 1 .8 .6 .3 .1 0 −.1 −.3
−2 1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6
−1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8

e 0 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1
1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1
2 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1
3 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1
4 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1
5 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1 −1

knowledge of ship steering are directly evident from Table 5.2 in the following
manner:

One good way to gain
insights is to
characterize the abstract
patterns that often
emerge when a rule base
is constructed.

1. If the heading error and change in error are both too big (upper left and
lower right corners of the rule base shown in Table 5.2), then use the
appropriate maximum rudder input.

2. For zero e and ė, the rudder angle should be zero, but if e and ė move
positive, then the rudder should move negative (where if ė moves signifi-
cantly positive, then the rudder should move even more negative). Similar
reasoning is used for e and ė negative, where we then make the rudder
angle positive. For the case where e and ė have opposite signs and de-
pending on the magnitude of the signals, we will make the rudder input
either positive or negative.

3. For small e and ė, be conservative in making changes to the rudder position
since such corrections may cause heading deviations instead (i.e., lower the
“gain” of the controller near zero so that noise is not amplified). Also, if
the ship’s angular position is moving sufficiently fast to remove the heading
error, then be conservative in using the rudder to help move it since this
can require unnecessary control energy.

This provides a summary of the captain’s knowledge about ship steering.
The above three points can be thought of as “meta-rules,” that is, abstract
representations of control rules. Some designers use rules that are more abstract
in the sense that they describe what control actions should occur whenever e(t)
and ė(t) lie in a certain region. For example, the rule
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If (error is neghuge and change-in-error is neghuge)
or (error is neghuge and change-in-error is neglarge)
or (error is neglarge and change-in-error is neghuge)

Then rudder-input is poshuge

represents what action should be taken if e(t) and ė(t) take on values such that
any of the three rules in the upper left corner of the rule base in Table 5.2 are on.
In this sense, the above rule represents three of the rules of the form discussed
earlier. It achieves this apparently more compact representation via the use of
the “disjunction” (or) in the premise of the above rule. If you were to use the
above rule in the implementation you would use “maximum” to represent the
disjunction; however, if you are concerned with implementation complexity, you
must be careful to determine whether this approach is more or less complex
than simply treating each rule separately.

Returning to our discussion on the tanker ship, we must emphasize that
it is important in rule base construction that the control system designer can
clearly list the expertise that is represented in the rule base. Lack of a clear
understanding of the rule base is an indication that there is likely to be a later
problem in simulation or implementation. Fuzzy control is not a methodology
where you can haphazardly construct a rule base and expect in all cases for it
to work well; you must put good control knowledge in to get good closed-loop
system performance (it is not very often that you can get lucky and get good
performance from a poorly constructed rule base).

In summary, the rule base of the fuzzy controller holds the linguistic vari-
ables, linguistic values, their associated membership functions, and the set of
all linguistic rules (shown in Table 5.1 on page 162), so we have completed the
description of the rule base for the ship steering problem. Next we describe the
fuzzification process.

Fuzzification

It is actually the case that for most fuzzy controllers the fuzzification block in
Figure 5.1 on page 156 can be ignored since this process is so simple. The reader
should simply think of the fuzzification process as the act of obtaining a value of
an input variable (e.g., e(t)) and finding the numeric values of the membership
function(s) that are defined for that variable. For example, if e(t) = 2π/10 and
ė(t) = 0.001, the fuzzification process amounts to finding the values of the input
membership functions for these. In this case

µpossmall(e(t)) = 1

(with all others zero) and

µzero (ė(t)) = µpossmall (ė(t)) = 0.5

Some think of the membership function values as an “encoding” of the fuzzy
controller numeric input values. The encoded information is then used in the
fuzzy inference process that starts with “matching.”
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5.1.4 Matching: Determining Which Rules to Use

Next, we seek to explain how the inference mechanism in Figure 5.1 on page 156
operates. The inference process generally involves two steps:

1. The premises of all the rules are compared to the controller inputs to deter-
mine which rules apply to the current situation. This “matching” process
involves determining the certainty that each rule applies, and typically we
will more strongly take into account the recommendations of rules that
we are more certain apply to the current situation.

2. The conclusions (what control actions to take) are determined using the
rules that have been determined to apply at the current time. The con-
clusions are characterized with a fuzzy set (or sets) that represents the
certainty that the input to the plant should take on various values.

We will cover step 1 in this subsection and step 2 in the next.

Premise Quantification via Fuzzy Logic

To perform inference we must first quantify each of the rules with fuzzy logic.
To do this, we first quantify the meaning of the premises of the rules that
are composed of several terms, each of which involves a fuzzy controller input.
Consider Figure 5.9, where we list two terms from the premise of the rule

If error is zero and change-in-error is possmall Then rudder-input is negsmall

Above, we had quantified the meaning of the linguistic terms “error is zero” and
“change-in-error is possmall” via the membership functions shown in Figure 5.8.
Now we seek to quantify the linguistic premise “error is zero and change-in-error
is possmall.” Hence, the main item to focus on is how to quantify the logical
“and” operation that combines the meaning of two linguistic terms. While we
could use standard Boolean logic to combine these linguistic terms, since we have
quantified them more precisely with fuzzy sets (i.e., the membership functions),
we can use these.

e(t), (rad.)
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0

zeroµ

, (rad/sec)

“possmall”
1

dt
de

possmallµ

quantified with quantified with

and“error is zero change-in-error is possmall”
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Figure 5.9: Membership functions of premise terms.
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To see how to quantify the “and” operation, begin by supposing that e(t) =
π/10 and ė(t) = 0.0005, so that using Figure 5.8 (or Figure 5.9) we see that

µzero(e(t)) = 0.5

and
µpossmall (ė(t)) = 0.25

What, for these values of e(t) and ė(t), is the certainty of the statement

“error is zero and change-in-error is possmall”

that is the premise from the above rule? We will denote this certainty by
µpremise. There are actually several ways to define it:

• Minimum: Define µpremise = min{0.5, 0.25} = 0.25, that is, using the
minimum of the two membership values.

• Product: Define µpremise = (0.5)(0.25) = 0.125, that is, using the product
of the two membership values.

Do these quantifications make sense? Notice that both ways of quantifying
The premise of a rule is
true to a certain degree
and we think of rules
that are “more true” as
being more relevant to
the current plant
situation.

the “and” operation in the premise indicate that you can be no more certain
about the conjunction of two statements than you are about the individual terms
that make them up (note that 0 ≤ µpremise ≤ 1 for either case). If we are not
very certain about the truth of one statement, how can we be any more certain
about the truth of that statement “and” the other statement? It is important
that you convince yourself that the above quantifications make sense. To do so,
we recommend that you consider other examples of “anding” linguistic terms
that have associated membership functions.

While we have simply shown how to quantify the “and” operation for one
value of e(t) and ė(t), if we consider all possible e(t) and ė(t) values, we will ob-
tain a multidimensional membership function µpremise (e(t), ė(t)) that is a func-
tion of e(t) and ė(t) for each rule. For our example, if we choose the minimum
operation to represent the “and” in the premise, then we get the multidimen-
sional membership function µpremise (e(t), ė(t)) shown in Figure 5.10 (and if we
use product to represent the premise we get the premise membership function
shown in Figure 5.11). Suppose that we use minimum to represent the conjunc-
tion in the premise. Notice that if we pick values for e(t) and ė(t), the value of
the premise certainty µpremise (e(t), ė(t)) represents how certain we are that the
rule

If error is zero and change-in-error is possmall Then rudder-input is negsmall

is applicable for specifying the rudder input to the plant. As e(t) and ė(t)
change, the value of µpremise (e(t), ė(t)) changes according to Figure 5.10 (or
Figure 5.11 if we use product to represent the rule), and we become less or more
certain of the applicability of this rule.

In general we will have a different premise membership function for each of
the rules in the rule base, and each of these will be a function of e(t) and ė(t)
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Figure 5.10: Membership function of the premise for a single rule using minimum
to represent the conjunction.

Figure 5.11: Membership function of the premise for a single rule using product
to represent the conjunction.
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so that given specific values of e(t) and ė(t), we obtain a quantification of the
certainty that each rule in the rule base applies to the current situation. It is
important you picture in your mind the situation where e(t) and ė(t) change
dynamically over time. When this occurs, the values of µpremise (e(t), ė(t)) for
each rule change, and hence the applicability of each rule in the rule base for
specifying the rudder input to the ship, changes with time.

Determining Which Rules Are On

Determining the applicability of each rule is called “matching.” We say that a
rule is “on at time t” if its premise membership function µpremise(e(t), ė(t)) > 0.
Hence, the inference mechanism seeks to determine which rules are on to find
out which rules are relevant to the current situation. In the next step, the
inference mechanism will seek to combine the recommendations of all the rules
to come up with a single conclusion.

Generally, only a few
rules are relevant to
choosing the plant input
at any one time.

Consider, for the ship steering example, how we compute the rules that are
on. Suppose that

e(t) = 0

and
ė(t) = 0.0015

Figure 5.12 shows the membership functions for the inputs and indicates, with
thick black vertical lines, the e(t) and ė(t) values. Notice that µzero(e(t)) = 1
but that the other membership functions for the e(t) input are all “off” (i.e.,
their values are zero). For the ė(t) input we see that µzero (ė(t)) = 0.25 and
µpossmall (ė(t)) = 0.75 and that all the other membership functions are off. This
implies that rules that have the premise terms

“error is zero”
“change-in-error is zero”

“change-in-error is possmall”

are on (all other rules have µpremise (e(t), ė(t)) = 0). So, which rules are these?
Using Table 5.1 on page 162, we find that the following rules are on:

1. If error is zero and change-in-error is zero Then rudder-input is zero

2. If error is zero and change-in-error is possmall Then rudder-input is
negsmall

Note that since for the ship steering example we have at most two membership
functions overlapping, we will never have more than four rules on at one time
(this concept generalizes to many inputs). Actually, for this system we will
either have one, two, or four rules on at any one time. To get only one rule on
choose, for example, e(t) = 0 and ė(t) = 0.002. In this example, only rule 2
above is on. What values would you choose for e(t) and ė(t) to get four rules
on? Why is it impossible, for this system, to have exactly three rules on?
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Figure 5.12: Input membership functions with input values.

It is useful to consider pictorially which rules are on. Consider Table 5.3,
which is a copy of Table 5.2 on page 169 with boxes drawn around the conse-
quents of the rules that are on (notice that these are the same two rules listed
above). Notice that since e(t) = 0 (e(t) is directly in the middle between the
membership functions for “possmall” and “negsmall”), both of these member-
ship functions are off. If we perturbed e(t) slightly positive (negative), then
we would have the two rules below (above) the two highlighted ones on also.
With this, you should picture in your mind how a region of rules that are on
(that involves no more than four cells in the body of Table 5.3, due to how we
define the input membership functions) will dynamically move around in the
table as the values of e(t) and ė(t) change. This completes our description of
the “matching” phase of the inference mechanism.

5.1.5 Inference Step: Determining Conclusions

Next, we consider how to determine which conclusions should be reached when
the rules that are on are applied to deciding what the rudder input to the ship
should be. To do this, we will first consider the recommendations of each rule
independently. Then later we will combine all the recommendations from all
the rules to determine the rudder input to the tanker ship.

Recommendation from One Rule

Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then rudder-input is zero
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Table 5.3: Rule Table for the Tanker Ship with Rules That Are “On” (high-
lighted). (Body of table holds the output membership function centers where
each element should be multiplied by 8π/18.)

ė
−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .3 .1 0
−4 1 1 1 1 1 .8 .6 .3 .1 0 −.1
−3 1 1 1 1 .8 .6 .3 .1 0 −.1 −.3
−2 1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6
−1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8

e 0 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1
1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1
2 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1
3 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1
4 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1
5 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1 −1

which for convenience we will refer to as “rule (1).” Using the minimum to
represent the premise, we have

µpremise(1) = min{1, 0.25} = 0.25

(the notation µpremise(1) represents µpremise for rule (1)) so that we are 0.25
certain that this rule applies to the current situation. The rule indicates that if
its premise is true, then the action indicated by its consequent should be taken.
For rule (1) the consequent is “rudder-input is zero” (this makes sense, for here
the ship is headed in the proper direction, so we should not apply a rudder
input that is different from zero since this would tend to move the ship heading
away from the desired heading). The membership function for this consequent
is shown in Figure 5.13(a). The membership function for the conclusion reached
by rule (1), which we denote by µ(1), is shown in Figure 5.13(b) and is given by

µ(1)(δ) = min{µpremise(1) , µzero(δ)}

(where µpremise(1) = 0.25 as determined above). This membership function de-
fines the “implied fuzzy set”1 for rule (1) (i.e., it is the conclusion that is implied
by rule (1)). The justification for the use of the minimum operator to represent
the implication is that we can be no more certain about our consequent than our

1This term has been used in the literature for a long time; however, there is no standard
terminology for this fuzzy set. Others have called it, for example, a “consequent fuzzy set” or
an “output fuzzy set” (which can be confused with the fuzzy sets that quantify the consequents
of the rules).
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premise. You should convince yourself that we could use the product operation
to represent the implication also (in Section 5.1.6 we will do an example where
we use the product).
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0

(a)
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0
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16π
180
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Figure 5.13: (a) Consequent membership function and (b) implied fuzzy set
with membership function µ(1)(δ) for rule (1).

Notice that the membership function µ(1)(δ) is a function of δ and that the
minimum operation will generally “chop off the top” of the µzero(δ) membership
function to produce µ(1)(δ). For different values of e(t) and ė(t) there will be
different values of the premise certainty µpremise(1) (e(t), ė(t)) for rule (1) and
hence different functions µ(1)(δ) obtained (i.e., it will chop off the top at different
points).

We see that µ(1)(δ) is in general a time-varying function that quantifies
how certain rule (1) is that the force input δ should take on certain values.
It is most certain that the force input should lie in a region around zero (see
Figure 5.13(b)), and it indicates that it is certain that the force input should not
be too large in either the positive or negative direction—this makes sense if you
consider the linguistic meaning of the rule. The membership function µ(1)(δ)
quantifies the conclusion reached by only rule (1) and only for the current e(t)
and ė(t). It is important that the reader be able to picture how the shape of
the implied fuzzy set changes as the rule’s premise certainty changes over time.

Recommendation from Another Rule

Next, consider the conclusion reached by the other rule that is on:

If error is zero and change-in-error is possmall Then rudder-input is negsmall

which, for convenience, we will refer to as “rule (2).” Using the minimum to
Fuzzy control is
“democratic” in that in
deciding what input to
put into the plant, it
listens to the
recommendation from
each rule, to a degree
specified by “how true”
the premise of that rule
is.

represent the premise, we have

µpremise(2) = min{1, 0.75} = 0.75

so that we are 0.75 certain that this rule applies to the current situation. Notice
that we are much more certain that rule (2) applies to the current situation than
rule (1) does. For rule (2) the consequent is “rudder-input is negsmall” (this
makes sense, for here the ship is heading in the proper direction but is moving
in the counterclockwise direction with a small velocity). The membership func-
tion for this consequent is shown in Figure 5.14(a). The membership function
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for the conclusion reached by rule (2), which we denote by µ(2), is shown in
Figure 5.14(b) (the shaded region) and is given by

µ(2)(δ) = min{µpremise(2) , µnegsmall(δ)}

(where µpremise(2) = 0.75 as determined above). This membership function de-
fines the implied fuzzy set for rule (2) (i.e., it is the conclusion that is reached
by rule (2)). Once again, for different values of e(t) and ė(t) there will be dif-
ferent values of µpremise(2) (e(t), ė(t)) for rule (2) and hence different functions
µ(2)(δ) obtained. The reader should carefully consider the meaning of the im-
plied fuzzy set µ(2)(δ). Rule (2) is quite certain that the control output (process
input) should be a small negative value. This makes sense since if the ship has
some counterclockwise velocity, then we would want to apply a negative rudder
angle input. As rule (2) has a premise membership function that has higher
certainty than for rule (1), we see that we are more certain of the conclusion
reached by rule (2).

“negsmall”
-1

(a)

“negsmall”
-1

(b)

0.75

δ(t), (rad.) δ(t), (rad.)8π
180

24π
180

8π
180

24π
180

8π
180

8π
180

Figure 5.14: (a) Consequent membership function and (b) implied fuzzy set
with membership function µ(2)(δ) for rule (2).

This completes the operations of the inference mechanism in Figure 5.1 on
page 156. While the input to the inference process is the set of rules that are on,
its output is the set of implied fuzzy sets that represent the conclusions reached
by all the rules that are on. For our example, there are at most four conclusions
reached since there are at most four rules on at any one time (and even some

Converting decisions to
actions entails
combining the
recommendations of all
the relevant rules.

of these implied fuzzy sets may have a membership function that is zero for all
values of δ so that we may ignore it).

5.1.6 Converting Decisions into Actions

Next, we consider the defuzzification operation, which is the final component of
the fuzzy controller shown in Figure 5.1 on page 156. Defuzzification operates on
the implied fuzzy sets produced by the inference mechanism and combines their
effects to provide the “most certain” controller output (plant input). Some
think of defuzzification as “decoding” the fuzzy set information produced by
the inference process (i.e., the implied fuzzy sets) into numeric fuzzy controller
outputs.
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To understand defuzzification, it is best to first draw all the implied fuzzy
sets on one axis as shown in Figure 5.15. We want to find the one output,
which we denote by “δcrisp,” that best represents the conclusions of the fuzzy
controller that are represented with the implied fuzzy sets. There are actually
many approaches to defuzzification. We will consider two here.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

Figure 5.15: Implied fuzzy sets.

Combining Recommendations

Due to its popularity, we will first consider the “center of gravity” (COG) de-
fuzzification method for combining the recommendations represented by the im-
plied fuzzy sets from all the rules. Let bi denote the center of the membership
function for the implied fuzzy set for the ith rule (i.e., where the membership
function for the ith rule reaches its peak for our example since the output fuzzy
sets are all symmetric about their peaks). For our example we have

b1 = 0.0

and

b2 = −0.1
(

8π

18

)
as shown in Figure 5.15. Let ∫

µ(i)

denote the area under the membership function µ(i). The COG method com-
putes δcrisp to be

δcrisp =
∑

i bi

∫
µ(i)∑

i

∫
µ(i)

(5.1)

This is the classical formula for computing the center of gravity. In this case
it is for computing the center of gravity of the implied fuzzy sets. Three items
about Equation (5.1) are important to note:

1. Practically, we cannot have output membership functions that have infi-
nite area since even though they may be “chopped off” in the minimum
operation for the implication (or scaled for the product operation), they
can still end up with infinite area. This is the reason we do not allow
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infinite area membership functions for the linguistic values for the con-
troller output (e.g., we did not allow the saturated membership functions
at the outermost edges as we had for the inputs shown in Figure 5.8 on
page 166).

2. You must be careful to define the input and output membership functions
so that the sum in the denominator of Equation (5.1) is not equal to zero
no matter what the inputs to the fuzzy controller are. Essentially, this
means that we must have some sort of conclusion for all possible control
situations we may encounter.

3. While at first glance it may not appear so,
∫

µ(i) is easy to compute
for our example. For the case where we have symmetric triangular output
membership functions that peak at one and have a base width of w, simple
geometry can be used to show that the area under a triangle “chopped
off” at a height of h (such as the ones in Figures 5.13 and 5.14) is equal
to

w

(
h − h2

2

)
Given this, the computations needed to compute δcrisp are not too signif-
icant (note that if w is the same for every output membership function,
then it cancels in Equation (5.1)).

We see that the property of membership functions being symmetric for the
output is important since in this case no matter whether the minimum or prod-
uct is used to represent the implication, it will be the case that the center of the
implied fuzzy set will be the same as the center of the consequent fuzzy set from
which it is computed. If the output membership functions are not symmetric,
then their centers, which are needed in the computation of the COG, will change
depending on the membership value of the premise. This will result in the need
to recompute the center at each time instant.

Using Equation (5.1) with Figure 5.15, we have

δcrisp =
(0)
(
0.25 − (0.25)2

2

)
+
(−0.1 8π

18

) (
0.75 − (0.75)2

2

)
(
0.25 − (0.25)2

2

)
+
(
0.75 − (0.75)2

2

) = −0.0952

as the input to the ship for the given e(t) and ė(t).
Does this value for a force input (i.e., −5.4545 degrees) make sense? Consider

Figure 5.16, where we have taken the implied fuzzy sets from Figure 5.15 and
simply added an indication of what number COG defuzzification says is the best
representation of the conclusions reached by the rules that are on. Notice that
the value of δcrisp is roughly in the middle of where the implied fuzzy sets say
they are most certain about the value for the force input. In fact, recall that
we had

e(t) = 0
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and
ė(t) = 0.0015

so the ship is at the desired heading at this time instant but is moving counter-
clockwise with a small velocity; hence, it makes sense to apply a small negative
rudder input, and the fuzzy controller does this.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

δ
crisp

= -0.0952 rad.

= 0.2793 rad.

Figure 5.16: Implied fuzzy sets.

It is interesting to note that for our example it will be the case that

−8π

18
≤ δcrisp ≤ 8π

18

To see this, consider Figure 5.17, where we have drawn the output membership
functions. Notice that even though we have extended the membership functions
at the outermost edges past −8π/18 and +8π/18 (see the shaded regions), the
COG method will never compute a value outside this range.

“possmall”

“zero”

“negsmall”
“neglarge” -1
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“poslarge”“posmed”
“posbig” “poshuge”
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Figure 5.17: Output membership functions.

The reason for this comes directly from the definition of the COG method
in Equation (5.1). The center of gravity for these shapes simply cannot extend
beyond −8π/18 and +8π/18. Practically speaking, this ability to limit the
range of inputs to the plant is useful in real applications since all real plant
inputs are limited to lie in a specific range. The other conclusion that we would
reach from this discussion is that in defining the membership functions for the
fuzzy controller, we must take into account what method is going to be used for
defuzzification.
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Other Ways to Compute and Combine Recommendations

As another example, it is interesting to consider how to compute, by hand, the
operations that the fuzzy controller takes when we use the product to represent
the implication or the “center-average” defuzzification method.

First, consider the use of the product. Consider Figure 5.18, where we have
drawn the output membership functions for “negsmall” and “zero” as dotted
lines. The implied fuzzy set from rule (1) is given by the membership function

µ(1)(δ) = 0.25µzero(δ)

shown in Figure 5.18 as the shaded triangle; the implied fuzzy set for rule (2)
is given by the membership function

µ(2)(δ) = 0.75µnegsmall(δ)

shown in Figure 5.18 as the dark triangle. The computation of the COG is easy
since we can use 1

2wh as the area for a triangle with base width w and height h
(and the factor 1

2w cancels in Equation 5.1). When we use product to represent
the implication, we obtain

δcrisp =
(0)(0.25) +

(−0.1 8π
18

)
(0.75)

0.25 + 0.75
= −0.1047

which also makes sense.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

0.75

0.25

Figure 5.18: Implied fuzzy sets when the product is used to represent the im-
plication.

Next, as another example of how to combine recommendations, we will in-
troduce the “center-average” method for defuzzification. For this method we
let

δcrisp =

∑
i biµpremise(i)∑
i µpremise(i)

(5.2)

where bi once again denotes the center of the membership function for the im-
plied fuzzy set for the ith rule (i.e., where the membership function for the
ith rule reaches its peak for our example since the output fuzzy sets are all
symmetric about their peaks). To compute the µpremise(i) we use, for exam-
ple, minimum. We call it the “center-average” method since Equation (5.2)
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is a weighted average of the center values of the membership functions of the
implied fuzzy sets (and output membership function centers). Basically, the
center-average method replaces the areas of the implied fuzzy sets that are used
in COG with the values of µpremise(i) . This is a valid replacement since the area
of the implied fuzzy set is generally proportional to µpremise(i) since µpremise(i)

is used to chop the top off (minimum) or scale (product) the triangular out-
put membership function when COG is used for our example. For the above
example, we have

δcrisp =
(0)(0.25) +

(−0.1 8π
18

)
(0.75)

0.25 + 0.75
= −0.1047

which is the same value as above (for this special case). Some like the center-
average defuzzification method because the computations needed are generally
simpler than for COG because when the output membership functions are sym-
metric (the usual case), they are easy to store since the only relevant information
they provide is their center values (bi) (i.e., their shape does not matter, just
their center value, so this is all that needs to be stored). Moreover, the areas of
the implied fuzzy sets do not have to be computed.

Notice that while both values computed for the different inference and de-
fuzzification methods provide reasonable command inputs to the plant, it is
difficult to say which is best without further investigations (e.g., simulations
or implementation). This ambiguity about how to define the fuzzy controller
actually extends to the general case and also arises in the specification of all the
other fuzzy controller components, as we discuss below. Some would call this
“ambiguity” a design flexibility, but unfortunately there are not too many guide-
lines on how best to choose the inference strategy and defuzzification method,
so such flexibility is of questionable value.

Graphical Depiction of Fuzzy Decision Making

For convenience, we summarize the procedure that the fuzzy controller uses to
compute its outputs given its inputs in Figure 5.19. Here, we use the minimum
operator to represent the “and” in the premise and the implication and COG
defuzzification. The reader is advised to study each step in this diagram to
gain a fuller understanding of the operation of the fuzzy controller. To do this,
develop a similar diagram for the case where the product operator is used to
represent the “and” in the premise and the implication, and choose values of e(t)
and ė(t) that will result in four rules being on. Then, repeat the process when
center-average defuzzification is used with either minimum or product used for
the premise. Also, learn how to picture in your mind how the parameters of this
graphical representation of the fuzzy controller operations change as the fuzzy
controller inputs change.
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If   error is zero and  change-in-error is zero Then           rudder-input is zero

If error is zero and  change-in-error is possmall Then  rudder-input is negsmall
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Figure 5.19: Graphical representation of fuzzy controller operations.

5.2 General Fuzzy Systems

In this section we introduce multi-input multi-output fuzzy systems, Takagi-
Sugeno fuzzy systems, and then show how to develop mathematical representa-
tions for these.

5.2.1 Multiple Input Multiple Output Fuzzy Systems

A fuzzy system is a static nonlinear mapping between its inputs and outputs
(i.e., it is not a dynamic system). Some people include the preprocessing of the
inputs to the fuzzy system (e.g., differentiators or integrators) in the definition
of the fuzzy system and thereby obtain a “fuzzy system” that is dynamic. In
this book, we adopt the convention that such preprocessing is not part of the
fuzzy system, and hence the fuzzy system will always be a memoryless nonlinear
map.

A general multiple input multiple output (MIMO) fuzzy system with inputs
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ui, i = 1, 2, . . . , n and outputs yj, j = 1, 2, . . . , m is shown in Figure 5.20.
The inputs and outputs are “crisp;” that is, they are numeric values. The
fuzzification block converts the crisp inputs to fuzzy sets (i.e., it converts them
to “singleton” fuzzy sets, ones that have membership functions with zero width
and a unit pulse at the value of the input; an example singleton membership
function is shown in Figure 5.21). The inference mechanism uses the fuzzy rules
in the rule base to produce fuzzy conclusions (e.g., the implied fuzzy sets), and
the defuzzification block converts these fuzzy conclusions into the crisp outputs.
In this subsection we explain how to define a MIMO fuzzy controller.
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Figure 5.20: Fuzzy system (controller).

First, note that to define a MIMO fuzzy system you simply specify m multi-
ple input single output (MISO) fuzzy systems, where the output of the jth fuzzy
system is yj , j = 1, 2, . . . , m. We already know how to specify a MISO fuzzy
system with n = 2 inputs so all we need to do is explain how to define a MISO
fuzzy system with n > 2 inputs (then the case for n = 1 will be clear). To do
this, note that for each input we define membership functions as we did for the
e and ė universes of discourse for the ship example. You form rules using the n
inputs in n premise terms. Next, fuzzification is the same as earlier—you just
compute the membership values on all the input universes of discourse. Next,
we need to compute the fuzzy logic quantification of the conjunction between
n premise terms rather than just two. To do this we take the same approach
as before, but take the minimum (or product) of n membership function values
to represent the conjunction of n premise terms. This will give us µpremise(i)

for the ith rule and we will compute this for all the rules. From this point on
the process is exactly the same as the two-input case since after the matching
process, the inference mechanism computations of the implied fuzzy sets and
the defuzzification computations only depend on µpremise(i) . Therefore, the ef-
fect of additional inputs to the fuzzy system is on the premise and hence the
computations needed to find µpremise(i) for all the rules.

The computations necessary for MISO fuzzy systems will be reviewed in
Section 5.2.3 where we explain how to develop mathematical representations of
fuzzy systems for n input MISO fuzzy systems.
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5.2.2 Takagi-Sugeno Fuzzy Systems

The fuzzy systems discussed in the previous sections will be referred to as a
“standard fuzzy system,” regardless of the particular choices for premise rep-
resentation, inference, defuzzification, etc. In this subsection we will define a
“functional fuzzy system,” of which the Takagi-Sugeno fuzzy system is a special
case. For the functional fuzzy system, we use singleton fuzzification and the
premise is defined the same as it is for the rule for the standard fuzzy system.
The consequents of the rules are different, however. Instead of a linguistic term
with an associated membership function, in the consequent we use a function
bi = gi(·) (hence the name “functional fuzzy system”) that does not have an
associated membership function (or you can think of it as a singleton member-
ship function whose position changes as specified by the function gi for the ith

rule). Notice that often the argument of gi contains the fuzzy system inputs
that are used in the premise of the rule, but other variables may also be used.
The choice of the function depends on the application being considered. Below,
we will discuss linear and affine functions but many others are possible. For
instance, you may want to choose

bi = gi(·) = ai,0 + ai,1(u1)2 + · · · + ai,n(un)2

or
bi = gi(·) = exp [ai,1sin(u1) + · · · + ai,nsin(un)]

Virtually any function can be used (e.g., a neural network mapping or another
fuzzy system), which makes the functional fuzzy system very general.

Let R denote the number of rules. For the functional fuzzy system we can
use an appropriate operation for representing the premise (e.g., minimum or
product), and defuzzification may be obtained using

y =
∑R

i=1 biµi(z)∑R
i=1 µi(z)

(5.3)

where µi(z) is the premise membership function (rather than µpremise(i) which
was used in our earlier discussion). It is assumed that the functional fuzzy
system is defined so that no matter what its inputs are, we have

∑R
i=1 µi(z) �= 0.

The vector z can be chosen in several ways. One common choice is to use
z = [u1, u2, . . . , un]�; however, sometimes z might hold other variables, or only
a subset of the ui values (with only a subset of the values, complexity of the
mapping generally decreases since the computations needed to find µi(z) are
simplified).

A Takagi-Sugeno fuzzy
system is an interpolator
between linear mappings.

In the special case where

bi = gi(·) = ai,0 + ai,1u1 + · · · + ai,nun

(where the ai,j are fixed real numbers) the functional fuzzy system is referred
to as a “Takagi-Sugeno fuzzy system.”
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If ai,0 = 0, then the gi(·) mapping is a linear mapping and if ai,0 �= 0,
then the mapping is called “affine.” Often, however, as is standard, we will
refer to the affine mapping as a linear mapping for convenience. Overall, we see
that the Takagi-Sugeno fuzzy system performs a nonlinear interpolation between
linear mappings. In control applications, the linear mappings can each represent
a different linear controller and the Takagi-Sugeno fuzzy system interpolates
between these and applies combinations of the linear controller outputs (similar
in some cases to what is called “gain scheduled control” in conventional control).

5.2.3 Mathematical Representations of Fuzzy Systems

Notice that each formula for defuzzification in the previous sections provides a
mathematical description of a fuzzy system. There are many ways to represent
the operations of a fuzzy system with mathematical formulas. Next, we clarify
how to construct and interpret such mathematical formulas for the case where
center-average defuzzification is used for n-input MISO fuzzy systems. Simi-
lar ideas apply for other defuzzification strategies, MIMO fuzzy systems, and
Takagi-Sugeno fuzzy systems.

Two Different Approaches

Rules and Membership Functions: To represent linguistic rules, let ũi, i =
1, 2, . . . , n, and ỹ denote the linguistic variables that describe ui, i = 1, 2, . . . , n,
and y, respectively. Let Ãj

i denote the jth linguistic value for the ith input
universe of discourse (here, suppose that i = 1, 2, . . . , n, but that j can, for
instance, take on values that are equal to the linguistic-numeric values). Simi-
larly, let B̃p denote the pth linguistic value on the output universe of discourse
that has linguistic variable ỹ. With this, a linguistic rule may be described
mathematically by

If ũ1 is Ãj
1

and ũ2 is Ãk
2

and · · ·
and ũn is Ãl

n

Then ỹ is B̃p

Suppose that there are R such rules.
Next, consider the mathematical quantification of membership functions.

Clearly, many other choices for the shape of the membership function are possi-
ble than the ones discussed so far, and these will each provide a different mean-
ing for the linguistic values that they quantify. See Figure 5.21 for a graphical
illustration of a variety of membership functions and Tables 5.4 and 5.5 for a
mathematical characterization of the triangular and Gaussian membership func-
tions, including the membership functions that are often used at the outermost
edges of the input universe of discourse when the “center” membership func-
tions are used at various positions along the input universe of discourse (other
membership functions can be characterized with mathematics using a similar
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approach). For practice, you should sketch the membership functions that are
described in Tables 5.4 and 5.5. Notice that for Table 5.4, cL specifies the “sat-
uration point” and wL specifies the slope of the nonunity and nonzero part of
µL. Similarly, for µR. For µC notice that c is the center of the triangle and w is
the base width. Analogous definitions are used for the parameters in Table 5.5.
In Table 5.5, for the “centers” case note that this is the traditional definition
for the Gaussian membership function. This definition is clearly different from
a standard Gaussian probability density function, in both the meaning of c and
σ, and in the scaling of the exponential function. Recall that it is possible that
a Gaussian probability density function has a maximum value at a value other
than one; the standard Gaussian membership function always has its peak value
at one.

µ

ui

Figure 5.21: Some typical membership functions.

Table 5.4: Mathematical Characterization of Triangular Membership Functions

Triangular and related membership functions

Left µL(u) =

{
1 if u ≤ cL

max
{
0, 1 + cL−u

0.5wL

}
otherwise

Centers µC(u) =
{

max
{
0, 1 + u−c

0.5w

}
if u ≤ c

max
{
0, 1 + c−u

0.5w

}
otherwise

Right µR(u) =

{
max

{
0, 1 + u−cR

0.5wR

}
if u ≤ cR

1 otherwise

Approach 1: Given Membership Functions, All Possible Rules: As-
sume that we use center-average defuzzification so that the formula describing
how to compute the output is

y =
∑R

i=1 biµi∑R
i=1 µi

(5.4)

where for convenience we use µi to represent the premise certainty for the ith rule
(rather than µpremise(i) which was more descriptive for our earlier discussion,
but a bit cumbersome).
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Table 5.5: Mathematical Characterization of Gaussian Membership Functions

Gaussian and related membership functions

Left µL(u) =

⎧⎨
⎩

1 if u ≤ cL

exp
(
− 1

2

(
u−cL

σL

)2
)

otherwise

Centers µC(u) = exp
(
− 1

2

(
u−c

σ

)2)
Right µR(u) =

⎧⎨
⎩ exp

(
− 1

2

(
u−cR

σR

)2
)

if u ≤ cR

1 otherwise

To be more explicit in Equation (5.4), we need to first define the premise
membership functions µi in terms of the individual membership functions that
describe each of the premise terms. Suppose that we use product to represent
the conjunctions in the premise of each rule. Suppose that we use the triangular
membership functions in Table 5.4 where we suppose that µL

j (uj) (µR
j (uj)) is

the “left-” (“right-”) most membership function on the jth input universe of
discourse. In addition, let µCi

j (uj) be the ith “center” membership function for
the jth input universe of discourse. In this case, to define µL

j (uj) we simply
add a “j” subscript to the parameters of the “left” membership function from
Table 5.4. In particular, we use cL

j and wL
j to denote the jth values of these

parameters. We take a similar approach for the µR
j (uj), j = 1, 2, . . . , n. For

µCi

j (uj) we use ci
j (wi

j) to denote the ith triangle center (triangle base width)
on the jth input universe of discourse.

Suppose that we use all possible combinations of input membership functions
to form the rules, and that each premise has a term associated with each and
every input universe of discourse. A more detailed description of the fuzzy
system in Equation (5.4) is given by

y =
b1

∏n
j=1 µL

j (uj) + b2µ
C1
1 (u1)

∏n
j=2 µL

j (uj) + · · ·∏n
j=1 µL

j (uj) + µC1
1 (u1)

∏n
j=2 µL

j (uj) + · · ·

The first term in the numerator is b1µ1 in Equation (5.4). Here, we have called
the “first rule” the one that has premise terms all described by the membership
functions µL

j (uj), j = 1, 2, . . . , n. The second term in the numerator is b2µ2

and it uses µC1
1 (u1) on the first universe of discourse and the leftmost ones on

the other universes of discourse (i.e., j = 2, 3, . . . , n). Continuing in a similar
manner, the sum in the numerator (and denominator) extends to include all
possible combinations of products of the input membership functions, and this
fully defines the µi in Equation (5.4).

Overall, we see that because we need to define rules resulting from all possible
combinations of given input membership functions, of which there are three
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kinds (left, center, right), the explicit mathematical representation of the fuzzy
system is somewhat complicated. To avoid some of the complications, we first
specify a single function that represents all three types of input membership
functions. Suppose that on the jth input universe of discourse we number the
input membership functions from left to right as 1, 2, . . . , Nj , where Nj is the
number of input membership functions on the jth input universe of discourse.
A single membership function that represents all three in Table 5.4 is

µi
j(uj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (uj ≤ c1
j , i = 1) or (uj ≥ c

Nj

j , i = Nj)

max
{

0, 1 +
uj−ci

j

0.5wi
j

}
if uj ≤ ci

j and (uj > c1
j and uj < c

Nj

j )

max
{

0, 1 +
ci

j−uj

0.5wi
j

}
if uj > ci

j and (uj > c1
j and uj < c

Nj

j )

A similar approach can be used for the Gaussian case in Table 5.5.
Suppose we use the shorthand notation

(j, k, . . . , l; p)i

to denote the ith rule shown above. In this notation, suppose the indices in
(the “tuple”) (j, k, . . . , l) range over 1 ≤ j ≤ N1, 1 ≤ k ≤ N2, . . ., 1 ≤ l ≤ Nn,
and specify which linguistic value is used on each input universe of discourse.
Correspondingly, each index in the tuple (j, k, . . . , l) also specifies the linguistic-
numeric value of the input membership function used on each input universe of
discourse.

Let
b(j,k,...,l;p)i

denote the output membership function (a singleton) center for the ith rule.
Note that we use “i” in the notation (j, k, . . . , l; p)i simply as a label for each
rule (i.e., we number the rules in the rule base from 1 to R, and i is this number).
Hence, when we are given i, we know the values of j, k, . . ., l, and p. Because
of this, an explicit description of the fuzzy system in Equation (5.4) is given by

y =
∑R

i=1 b(j,k,...,l;p)iµj
1µ

k
2 · · ·µl

n∑R
i=1 µj

1µ
k
2 · · ·µl

n

(5.5)

This formula clearly shows the use of the product to represent the premise.
Notice that since we use all possible combinations of input membership functions
to form the rules there are

R =
n∏

j=1

Nj

rules, and hence it takes
n∑

j=1

2Nj +
n∏

j=1

Nj (5.6)

parameters to describe the fuzzy system since there are two parameters for
each input membership function and R output membership function centers.
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For some applications, however, all the output membership functions are not
distinct. For example, consider the ship steering example where eleven output
membership function centers are defined, and there are R = 121 rules. To define
the center positions b(j,k,...,l;p)i so that they take on only a fixed number of given
values, that is less than R, one approach is to specify them as a function of the
indices of the input membership functions. What is this function for the ship
steering example?

Approach 2: Parameterization in Terms of Rules: A different approach
to avoiding some of the complications encountered in specifying a fuzzy system
mathematically is to use a different notation, and hence a different definition for
the fuzzy system. For this alternative approach, for the sake of variety, we will
use Gaussian input membership functions. In particular, for simplicity, suppose
that for the input universes of discourse we only use membership functions of
the “center” Gaussian form shown in Table 5.5. For the ith rule, suppose that
the input membership function is

exp

⎛
⎝−1

2

(
uj − ci

j

σi
j

)2
⎞
⎠

for the jth input universe of discourse. Hence, even though we use the same
notation for the membership function, these centers ci

j are different from those
used above, both because we are using Gaussian membership functions here, and
because the “i” in ci

j is the index for the rules, not the membership function
on the jth input universe of discourse. Similar comments can be made about
the σi

j , i = 1, 2, . . . , R, j = 1, 2, . . . , n. If we let bi, i = 1, 2, . . . , R, denote the
center of the output membership function for the ith rule, use center-average
defuzzification, and product to represent the conjunctions in the premise, then

y =

∑R
i=1 bi

∏n
j=1 exp

(
− 1

2

(
uj−ci

j

σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
− 1

2

(
uj−ci

j

σi
j

)2
) (5.7)

is an explicit representation of a fuzzy system. Note that we do not use the
“left” and “right” versions of the Gaussian membership functions in Table 5.5
as this complicates the notation.

It is possible to write
down the complete
mathematical description
of the mapping between
the input and output of
the fuzzy system.

There are nR input membership function centers, nR input membership
function spreads, and R output membership function centers. Hence, we need
a total of

R(2n + 1)

parameters to describe this fuzzy system.
Now, while the fuzzy systems in Equations (5.5) and (5.7) are in general

different, it is interesting to compare the number of parameters needed to de-
scribe a fuzzy system using each approach. In practical situations, we often
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have Nj ≥ 3 for each j = 1, 2, . . . , n, and sometimes the number of member-
ship functions on each input universe of discourse can be 10 or more. From
Equation (5.6) we can clearly see that large values of n will result in a fuzzy
system with many parameters (there is an exponential increase in the number
of rules). On the other hand, using the fuzzy system in Equation (5.7), the
user specifies the number of rules. This, coupled with the number of inputs n,
specifies the total number of parameters. There is not an exponential growth in
the number of parameters in Equation (5.7) in the same way as there is in the
fuzzy system in Equation (5.5), so you may be tempted to view the definition
in Equation (5.7) as a better one. Such a conclusion, can, however be erroneous
for several reasons.

First, the type of fuzzy system defined by Equation (5.5) is sometimes more
natural in control design when you use triangular membership functions since
you often need to make sure that there will be no point on any input universe of
discourse where there is no membership function with a nonzero value (why?).
Of course, if you are careful, you can avoid this problem with the fuzzy system
also represented by Equation (5.7). Second, suppose that the number of rules
for Equation (5.7) is the same as that for Equation (5.5). In this case, the
number of parameters needed to describe the fuzzy system in Equation (5.7) is⎛

⎝ n∏
j=1

Nj

⎞
⎠ (2n + 1)

Now, comparing this to Equation (5.6) you see that for many values of Nj ,
j = 1, 2, . . . , n, and number of inputs n, it is possible that the fuzzy system
in Equation (5.7) will require many more parameters to specify it than the
fuzzy system in Equation (5.5). Hence, the inefficiency in the representation in
Equation (5.5) lies in having all possible combinations of output membership
function centers, which results in exponential growth in the number of param-
eters needed to specify the fuzzy system. The inefficiency in the representation
in Equation (5.7) lies in the fact that, in a sense, membership functions on the
input universes of discourse are not reused by each rule. There are new input
membership functions for every rule.

Generally, it is difficult to know which is the best fuzzy system for a par-
ticular problem. In this book, we will sometimes use the mathematical rep-
resentation in Equation (5.7) because it is somewhat simpler, and possesses
some properties that we will exploit. At other times we will be implicitly using
the representation in Equation (5.5) because it will lend to the development of
certain techniques.

Finally, we would like to recommend that you practice creating mathematical
representations of fuzzy systems. For instance, it is good practice to create
a mathematical representation of the fuzzy controller for ship steering of the
form of Equation (5.5), and then also use Equation (5.7) to specify the same
fuzzy system. Comparing these two approaches, and resolving the issues in
specifying the output centers for the Equation (5.5) case, will help clarify the
issues discussed in this section.
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5.2.4 Relationships Between Neural and Fuzzy Systems

There are two ways in which there are relationships between fuzzy systems and
neural networks. First, techniques from one area can be used in the other.
Second, in some cases the functionality (i.e., the nonlinear function that they
implement) is identical. Some label the intersection between fuzzy systems and
neural networks with the term “fuzzy-neural” or “neuro-fuzzy” to highlight that
techniques from both fields are being used. Here, we avoid this terminology and
simply highlight the basic relationships between the two fields.

The multilayer perceptron should be viewed as a nonlinear network whose
nonlinearity can be tuned by changing the weights and biases. The fuzzy sys-
tem is also a tunable nonlinearity whose shape can be changed by tuning, for
example, the membership functions. Since both are tunable nonlinearities, it is
possible to use the methods of Part III to train either one (e.g., least squares, or
gradient methods can be used to train both fuzzy and neural systems). While
multilayer perceptron networks can take on a similar role to that of a fuzzy
system in performing the function of being a tunable nonlinearity, an advantage
that the fuzzy system may have, however, is that it often facilitates the incor-
poration of heuristic knowledge into the solution to the problem, which can, at
times, have a significant impact on the quality of the solution.

Some radial basis function neural networks are equivalent to some standard
fuzzy systems in the sense that they are functionally equivalent (i.e., given the
same inputs, they will produce the same outputs). To see this, suppose that in
Equation (4.12) we let nR = R (i.e., the number of receptive field units equal
to the number of rules), let the receptive field unit strengths be equal to the
output membership function centers, and choose the receptive field units as

Ri(x) = µi(x)

(i.e., choose the receptive field units to be the same as the premise membership
functions). In this case we see that the radial basis function neural network is
identical to a certain fuzzy system that uses center-average defuzzification. This
fuzzy system is then given by

y = Frbf (x, θ) = Ffs(x, θ) =
∑R

i=1 biµi(x)∑R
i=1 µi(x)

where θ holds the membership function parameters for the fuzzy system or
strengths and receptive field unit parameters for the radial basis function neural
network.

The equivalence between this type of fuzzy system and a radial basis function
neural network shows that all the techniques in this book for the above type of
fuzzy system work in the same way for the above type of radial basis function
neural network.

Due to the above relationships between fuzzy systems and neural networks,
some would like to view fuzzy systems and neural networks as identical areas.
This is, however, not the case for the following reasons:
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• There are classes of neural networks (e.g., dynamic neural networks) that
may have a fuzzy system analog, but if so, it would have to include not
only standard fuzzy components but some form of a differential equation
component.

• There are certain fuzzy systems that have no clear neural analog. Con-
sider, for example, certain “fuzzy dynamic systems.” We can, however,
envision how you could go about designing a neural analog to such fuzzy
systems.

• The neural network has traditionally been a “black box” approach where
the weights and biases are trained (e.g., using gradient methods like back-
propagation) using data, often without using extra heuristic knowledge
we often have. In fuzzy systems you can incorporate heuristic information
and use data to train them. This last difference is often quoted as being
one of the advantages of fuzzy systems over neural networks, at least for
some applications.

In Part III we will show how to train both neural networks and fuzzy systems
and will try to provide some insights into which is best to use for a particular
application.

5.3 Design Example: Fuzzy Control for Tanker
Ship Steering

As there is no general systematic procedure for the design of fuzzy controllers
that will definitely produce a high-performance fuzzy control system for a wide
variety of applications, it is necessary to learn about fuzzy controller design
via examples. Here, we continue with the ship steering example to provide an
introduction to the typical procedures used in the design (and redesign) of a
fuzzy controller. First, however, we discuss how to code the fuzzy controller for
the tanker ship.

5.3.1 Simulation of a Fuzzy Controller

Often, before you implement a fuzzy controller, there is a need to perform a
simulation-based evaluation of its performance. To perform a simulation, we
will need a model of the plant and a computer program that will simulate the
fuzzy control system (i.e., a program to simulate a nonlinear dynamic system).
We explained in the last chapter how to simulate a nonlinear system; hence, all
we need to do here is explain how to simulate the fuzzy controller.

Fuzzy Controller Arrays and Subroutines

The fuzzy controller can be programmed in C, Fortran, Matlab, or virtually
any other programming language. There may be some advantage to program-
ming it in C since it is then sometimes easier to transfer the code directly to
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an experimental setting for use in real-time control. At other times it may
be advantageous to program it in Matlab since plotting capabilities and other
control computations may be easier to perform there. Here, rather than dis-
cussing the syntax and characteristics of the multitude of languages that we
could use to simulate the fuzzy controller, we will develop a computer program
“pseudocode” that will be useful in developing the computer program in vir-
tually any language. For readers who are not interested in learning how to
write a program to simulate the fuzzy controller, this section will provide a nice
overview of the steps used by the fuzzy controller to compute its outputs given
some inputs.

Normalization and Scaling: We will use the ship steering example to illus-
trate the basic concepts on how to program the fuzzy controller. In particular,
we will explain how to simulate the fuzzy control system shown in Figure 5.22.
Notice that here we have added the gains g1 and g2 at the inputs to the fuzzy
controller and g0 at the output of the fuzzy controller. The reason for adding
these is that they are often useful in tuning since they scale the horizontal input
and output axes of the fuzzy controller. Hence, to simulate the fuzzy control
system developed in the last section, we first “normalize” the input and output
universes of discourse. For this example, this means that we simply change
the membership functions to those shown in Figure 5.23 (i.e., normalize to an
interval ±1). With the indicated scaling gains in Figure 5.23 (i.e., the ones in
the boxes) that are implemented as shown in Figure 5.22, we implement the
membership functions shown in Figure 5.8.

Tanker
shipd

dt

Σ
r e

δ ψ
Fuzzy controller g

0

g1

ψ

g2

Figure 5.22: Fuzzy controller for tanker ship with scaling gains g0, g1, and g2.

It is important to notice that a scaling gain g1 on the input is equivalent to
scaling the horizontal axis of the e universe of discourse by 1/g1 (yes, it is 1/g1;
think about the fact that increasing g1 changes, for instance, the meaning of
“possmall” so that it quantifies smaller values of the error input that is passed
through the gain g1). In more detail, the scaling gain g1 has the following effects:

• If g1 = 1, there is no effect on the membership functions and there is no
effect on the meaning of the linguistic values.

• If g1 < 1, the membership functions are uniformly “spread out” by a fac-
tor of 1/g1 (notice that multiplication of each number on the e universe
of discourse of Figure 5.23 by π which is 1/g1, gives you Figure 5.8 on
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Figure 5.23: Normalized universes of discourse for fuzzy controller for tanker
ship (and boxed values of the scaling gains give the original membership func-
tions shown in Figure 5.8).

page 166). This changes the meaning of the linguistics so that, for ex-
ample, “poslarge” is now characterized by a membership function that
represents larger numbers.

• If g1 > 1, the membership functions are uniformly “contracted.” This
changes the meaning of the linguistics so that, for example, “poslarge”
is now characterized by a membership function that represents smaller
numbers.

The scaling gain g2 has similar effects, but for the ė universe of discourse. How-
ever, for the output universe of discourse, the scaling is such that multiplying
the output by the gain g0 is the same as multiplying the horizontal δ axis by g0.

Here, we will implement the membership functions in Figure 5.23 with the
understanding that to get the membership functions in Figure 5.8 on page 166,
all we need to do is multiply by scaling gains

g1 =
1
π

, g2 = 100, g0 =
8π

18

We will use the minimum operation to represent both the “and” in the premise
and the implication (it will be obvious how to switch to using, for example, the
product). We will use center of gravity defuzzification. At first we will make
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no attempt to code the fuzzy controller so that it will minimize execution time
or minimize the use of memory. However, after introducing the pseudocode, we
will address these issues.

Subroutines: First, suppose that for convenience we use a different set of
linguistic-numeric descriptions for the input and output membership functions
than we used up till now. Rather than numbering them

−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5

we will renumber them as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

so that we can use these as indices for arrays in the program. Suppose that we
let the computer variable x1 denote (notice that a different typeface is used for
all computer variables) e(t), which we will call the first input, and x2 denote
ė(t), which we will call the second input. Next, we define the following arrays
and functions:

• Let mf1[i] (mf2[j]) denote the value of the membership function associ-
ated with input 1 (2) and linguistic-numeric value i (j). In the computer
program, mf1[i] could be a subroutine that computes the membership
value for the ith membership function given a numeric value for the first
input x1 (note that in the subroutine we can use simple equations for lines
to represent triangular membership functions). Similarly for mf2[j].

• Let rule[i,j] denote the center of the consequent membership function
of the rule that has linguistic-numeric value “i” as the first term in its
premise and “j” as the second term in its premise. Hence rule[i,j] is
essentially a matrix that holds the body of the rule base table shown in
Table 5.2. In particular, for the tanker ship we have rule[i,j] as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0.8 0.6 0.3 0.1 0
1 1 1 1 1 0.8 0.6 0.3 0.1 0 −0.1
1 1 1 1 0.8 0.6 0.3 0.1 0 −0.1 −0.3
1 1 1 0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6
1 1 0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8
1 0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1

0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1
0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1
0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1 −1
0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1 −1 −1
0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(recall that we will scale this matrix of centers by g0 = 8π
18 after we compute

the output of the fuzzy controller).

• Let prem[i,j] denote the certainty of the premise of the rule that has
linguistic-numeric value “i” as the first term in its premise and “j” as the
second term in its premise given the inputs x1 and x2.
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• Let areaimp[c,h] denote the area under the output membership function
with center c that has been chopped off at a height of h by the minimum
operator. Hence, we can think of areaimp[c,h] as a subroutine that is
used to compute areas under the membership functions for the implied
fuzzy sets.

Fuzzy Controller Pseudocode

Using these definitions, consider the pseudocode for a simple fuzzy controller
that is used to compute the fuzzy controller output given its two inputs:

1. Obtain x1 and x2 values
(Get inputs to fuzzy controller)

2. Compute mf1[i] and mf2[j] for all i, j
(Find the values of all membership functions given the values
for x1 and x2)

3. Let num=0, den=0
(Initialize the COG numerator and denominator values)

4. For i=1 to 11, For j=1 to 11,
(Cycle through all areas to determine COG)

prem[i,j]=min[mf1[i],mf2[j]]

num=num+rule[i,j]*areaimp[rule[i,j],prem[i,j]]
(Compute numerator for COG)

den=den+areaimp[rule[i,j],prem[i,j]]
(Compute denominator for COG)

5. Next i, Next j

6. Output ucrisp=num/den
(Output the value computed by the fuzzy controller)

7. Go to Step 1.

To learn how this code operates, define each of the functions and arrays
for the ship steering example and show how to compute the fuzzy controller
output for the same (and some different) inputs used in the previous section.
Following this, develop the computer code to simulate the fuzzy controller for the
ship steering problem and verify that the computations made by the computer
match the ones made by hand.2

We do not normally recommend that initially you use only the computer-
aided design (CAD) packages for fuzzy systems since these tend to remove you
from understanding the real details behind the operation of the fuzzy controller.

2One way to start with the coding of the fuzzy controller is to start with the code that is
available for downloading at the Web site described in the Preface.
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However, after you have developed your own code and fully understand the
details of fuzzy control, we do advise that you use (or develop) the tools you
believe are necessary to automate the process of constructing fuzzy controllers.

Aside from the effort that you must put into writing the code for the fuzzy
controller, there are the additional efforts that you must take to initially type in
the rule base and membership functions and possibly modify them later (which
might be necessary if you need to perform redesigns of the fuzzy controller). For
large rule bases, this effort could be considerable, especially for initially typing
the rule base into the computer. While some CAD packages may help solve this
problem, it is not hard to write a computer program to generate the rule base,
because there are often certain regular patterns in the rule base.

Also notice that since there is a proportional correspondence between the
input linguistic-numeric values and the values of the inputs, you will often find it
easy to express the input membership functions as a nonlinear function of their
linguistic-numeric values. Another trick that is used to make the adjustment of
rule bases easier is to make the centers of the output membership functions a
function of their linguistic-numeric indices.

Real-Time Implementation Issues

When it comes to implementing a fuzzy controller, you often want to try to
minimize the amount of memory used and the time that it takes to compute the
fuzzy controller outputs given some inputs. The pseudocode in the last section
was not written to exploit certain characteristics of the fuzzy controller that
we had developed for the ship; hence, if we were to actually implement this
fuzzy controller and we had severe implementation constraints, we could try to
optimize the code with respect to memory and computation time.

Computation Time: First, we will focus on reducing the amount of time it
takes to compute the outputs for some given inputs. Notice the following about
the pseudocode:

• We compute prem[i,j] for all values of i and j (121 values) when for
our fuzzy controller for the ship, since there are never more than two
membership functions overlapping, there will be at most four values of
prem[i,j] needed (the rest will have zero values and hence will have no
impact on the ultimate computation of the output).

• In a similar manner, while we compute areaimp[rule[i,j],prem[i,j]]
for all i and j, we only need four of these values.

• If we compute only four values for areaimp[rule[i,j],prem[i,j]], we
will have at most four values to sum up in the numerator and denominator
of the COG computation (and not 121 for each).

At this point, from the view of computational complexity, the reader may won-
der why we even bothered with the pseudocode of the last section since it
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appears to be so inefficient. However, the code is only inefficient for the chosen
form for the fuzzy controller. If we had chosen Gaussian-shaped (i.e., or some
other bell-shaped) membership functions for the input membership functions,
then no matter what the input was to the fuzzy controller, all the rules would
be on so all the computations shown in the pseudocode were necessary and not
too much could be done to improve on the computation time needed. Hence, if
you are concerned with real-time implementation of your fuzzy controller, you
may want to put constraints on the type of fuzzy controller (e.g., membership
functions) you construct.

It is important to note that the problems with the efficiency of the pseu-
docode highlighted above become particularly acute when there are many inputs
to the fuzzy controller and many membership functions for each input, since the
number of rules increases exponentially with an increase in the number of inputs
(assuming all possible rules are used, which is often the case). For example, if
you have a two-input fuzzy controller with 21 membership functions for each
input, you will have 212 = 441 rules, and you can see that if you increase the
number of inputs, this number will quickly increase.

How do we overcome this problem? Assume that you have defined your
To reduce computation
time, most of which is
used for finding which
rules are on, it is
important to recognize
that only a few rules
“near each other” are on
at any one time.

fuzzy controller so that at most two input membership functions overlap at any
one point, as we had for the ship example. The trick is to modify your code so
that it will compute only four values for the premise membership functions, only
four values for areas of implied fuzzy sets, and hence, have only four additions
in the numerator and denominator of the COG computation. There are many
ways to do this. For instance, you can have the program scan mf1[i] beginning
at position zero until a nonzero membership value is obtained. Call the index
of the first nonzero membership value “istar.” Repeat this process for mf2[j]
to find a corresponding “jstar.” The rules that are on are the following:

rule[istar,jstar]
rule[istar,jstar+1]
rule[istar+1,jstar]

rule[istar+1,jstar+1]

provided that the indicated indices are not out of range. If only the rules iden-
tified by the indices of the premises of these rules are used in the computations,
then we will reduce the number of required computations significantly, because
we will not be computing values that will be zero anyway (notice that for the
ship example, there will be one, two, or four rules on at any one time, so there
could still be a few wasted computations). Notice that even in the case where
there are many inputs to the fuzzy controller the problem of how to code effi-
ciently reduces to a problem of how to determine the set of indices for the rules
that are on. So that you may fully understand the issues in coding the controller
in an efficient manner, we challenge you to develop the code for an n-input fuzzy
controller that will exploit the fact that only a hypercubical block of 2n rules will
be on at any one time (provided that at most two input membership functions
overlap at any one point).
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Memory Requirements: Next, we consider methods for reducing memory
requirements. Basically, this can be done by recognizing that it may be possible
to compute the rule base at each time instant rather than using a stored one.
Notice that there is a regular pattern to the rule base for the ship; since there
are at most four rules on at any one time, it would not be hard to write the
code so that it would actually generate the rules while it computes the controller
outputs. It may also be possible to use a memory-saving scheme for the output
membership functions. Rather than storing their positions, there may be a
way to specify their spacing with a function so that it can be computed in
real-time. For large rule bases, these approaches can bring a huge savings in
memory (however, if you are working with adaptive fuzzy systems where you
automatically tune membership functions, then it may not be possible to use
this memory-saving scheme). We are, however, gaining this savings in memory
at the expense of possibly increasing computation time.

Finally, note that while we focus here on the real-time implementation issues
by discussing the optimization of software, you could consider redesigning the
hardware to make real-time implementation possible. Implementation prospects
could improve by using a better microprocessor or signal processing chip. An
alternative would be to investigate the advantages and disadvantages of using a
“fuzzy processor” (i.e., a processor designed specifically for implementing fuzzy
controllers). Of course, many additional issues must be taken into consideration
when trying to decide if a switch in computing technology is needed. Not the
least among these are cost, durability, and reliability.

5.3.2 Fuzzy Controller Tuning for the Tanker Ship

We will start out with the controller that we developed earlier and illustrate
some basic ideas (from conventional control) that are often used to tune fuzzy
controllers. In particular, note that increasing g1 is analogous to increasing
the proportional gain in a PD controller (i.e., it will often make the system
respond faster, but may cause overshoot). Increasing the gain g2 is analogous
to increasing the derivative gain in a PD controller which tends to give the
controller a better predictive capability and hence helps it avoid overshooting
constant reference set points. Notice, also, that increasing g0 has an effect of
increasing the “gain in the loop” so it can be used to speed up the response.

Performance for the First Guess

First, consider the implementation of the fuzzy controller for ship steering de-
veloped in the previous sections which we will refer to as our “first guess.” The
closed-loop response, using the ship model specified in the previous section, is
shown in Figure 5.24 (note that we use g0 = 8π

18 , g1 = 1
π , and g2 = 100 as scaling

gains for our membership functions, which were normalized to the interval ±1,
to implement the membership functions in Figure 5.8). Note that while the
response is at least tracking the step changes eventually, there is a significant
amount of overshoot.
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Figure 5.24: Response of fuzzy controller for tanker ship steering, g0 = 8π
18 ,

g1 = 1
π , and g2 = 100.

Tuning the Derivative Gain to Reduce Overshoot

Using standard ideas from tuning of conventional controllers (e.g., proportional-
integral-derivative (PID) controllers), to reduce the overshoot, we should in-
crease the gain on the derivative term (so that the controller gets more capa-
bility to “predict where the response is going”). To do this we choose g0 = 8π

18 ,
We often use standard
heuristic ideas from
tuning conventional
controllers for tuning
fuzzy controllers.

g1 = 1
π , and g2 = 200 and get the response in Figure 5.25, where we see that we

have indeed reduced the overshoot. Unfortunately, however, this also reduced
the response time of the system (i.e., it “slowed” the system).

Tuning the Proportional Gain to Decrease the Response Time: Find-
ing “Good” Scaling Gains

Next, we seek to choose a good set of scaling gains by speeding up the response
from the previous case. To do this we increase the gain on the proportional term
so that we increase the speed of the response and hence reduce the response time.
When we do this, however, this can cause some overshoot, so we also increase
the gain on the derivative term to avoid that. In particular, choose g0 = 8π

18 ,
g1 = 2

π , and g2 = 250 to get a faster response with very little overshoot as seen
in Figure 5.26. We take this set of gains as “good” values in that we consider
the response that results from them to be good. Notice that we achieved all
our tuning via the scaling gains, although this is certainly not possible in all
applications.
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Figure 5.25: Response of fuzzy controller for tanker ship steering, g0 = 8π
18 ,

g1 = 1
π , and g2 = 200.

The Resulting Nonlinear Control Surface

To achieve this performance, the fuzzy controller implements a nonlinearity
that is shown in Figure 5.27. Notice that this surface is another way to view the

The fuzzy controller
implements a nonlinear
input-output map. Rule
construction and tuning
shapes this map.

captain’s expertise in ship steering (compare the list of the captain’s steering
expertise developed earlier to the shape of the surface; for instance, explain why
the slope of the surface changes in the way it does).

Note that the control surface for a simple proportional-derivative (PD) con-
troller is a plane in three dimensions. With the proper choice of the PD gains,
the linear PD controller can be made to have basically the same shape as the
fuzzy controller near the origin. Hence, in this case the fuzzy controller will
behave similarly to the PD controller provided its inputs are small. However,
notice that there is no way that the linear PD controller can achieve a non-
linear control surface of the shape shown in Figure 5.27 (this is not surprising
considering the complexity difference of the two controllers).

It is useful to notice that there is a type of interpolation that is performed
by the fuzzy controller that is nicely illustrated in Figure 5.27. If you study the
plot carefully, you will notice that the rippled surface is created by the rules and
membership functions. For instance, if we kept a similar nonuniform distribu-
tion of membership functions for the input and outputs of the fuzzy system, but
increased the number of membership functions, the ripples would correspond-
ingly increase in number and the amplitude of the ripple would decrease. What
is happening is that there is an interpolation between the rules. The output is



204 Rule-Based Control

0 500 1000 1500 2000 2500 3000 3500 4000
-10

0

10

20

30

40

50

Time (sec)

Ship heading (solid) and desired ship heading (dashed), deg.

0 500 1000 1500 2000 2500 3000 3500 4000
-100

-50

0

50

100

Time (sec)

Rudder angle (δ), deg.

Figure 5.26: Response of fuzzy controller for tanker ship steering, g0 = 8π
18 ,

g1 = 2
π , and g2 = 250.

Figure 5.27: Nonlinear control surface implemented by the fuzzy controller,
g0 = 8π
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an interpolation of the effects of the four rules that are on for the ship’s fuzzy
controller. For more general fuzzy controllers, it is important to keep in mind
that this sort of interpolation is often occurring (but not always—it depends on
your choice of the membership functions).

5.3.3 Design Concerns

While designing fuzzy controllers for practical problems you will encounter a
whole variety of problems, not the least of which could be pragmatic issues in
interfacing and communicating with the plant. In this section we outline some
of these and offer ideas on how to solve them. Several of the design concerns we
list are not specific to fuzzy control, but apply to any control system, including
the ones considered later in this chapter. To illustrate several points we will use
the tanker ship steering problem studied in the last section.

Understand the Control Problem

One key to developing a good solution to any problem is to make sure that you
clearly understand the problem so that you are sure that you are solving the
right problem! For control problems this means that you must do the following:

• Obtain a good understanding of the plant: It is critical that you gain
a good understanding of the plant you are to control. Yes, this means
understanding the physics of the problem and this may demand that you
step outside your main area of expertise (e.g., to study thermodynamics,
fluid mechanics, mechanics, circuit theory, etc.). Aside from returning to
first principles, it may be beneficial to consult others who have operated
the plant in the past or who have already developed a controller for it. It
may be helpful to develop a simulation of the plant and study the effects
of, for example, some inputs or disturbances on the output variables. Now,
clearly one of the main advantages of fuzzy and expert control is that you
do not explicitly need a mathematical model of a specific form to develop
the controller; however, for some plants it is not too hard to develop an
approximate mathematical model that can be very helpful in gaining an
understanding of how to control the plant. Experience has shown that to
develop good control systems you must use all the information you have
about how to achieve good control. Some of this information may come
in the form of rules from a human operator (or engineer) but other useful
information can come from a mathematical model and this should not
be ignored. Indeed, such a mathematical model will be needed for the
implementation of a planning system.

• Pay attention to plant constraints: A particularly important part of the
problem of obtaining a good understanding of the plant is to understand
those plant characteristics that limit your ability to achieve high perfor-
mance operation. Some typical limitations include the following:
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– Actuator saturation limits: All actuators have limits in which they
can perform and these constrain the ways in which you can affect
plant behavior. These limits come in the form of saturation limits on
the magnitude of the input, limits on the rate of change of the input,
etc.

– Sensor noise: There is no perfect sensor. Better sensors cost more
money. Noise on sensors limits the quality of information you can
obtain about the plant and hence your ability to control the plant.

– Plant dynamics: Unstable, highly nonlinear, nonminimum phase, and
highly uncertain plants (i.e., those with significant noise and plant
parameter variations), or plants with delays all provide unique chal-
lenges in control. The way each of these problems is manifested
changes for different applications.

• Develop appropriate specifications: Sometimes the boss or customer is the
one to provide the specifications of what they want in terms of perfor-
mance. It is important to have a very clear understanding of the expec-
tations for the plant in terms of typical measures of performance like the
following:

– Rise-time (amount of time for the output to get from 10% of the
final value to 90% of the final value when there is a step input),
overshoot (the amount the output increases above the final value of
a step reference input), steady-state error (error between the plant
output and commanded input as time goes to infinity).

– Stability (e.g., for the ship steering problem, if you start the ship
heading near a desired constant heading, will it move toward the
reference heading and ultimately reduce the heading error to zero?),
limit cycles (oscillations).

– Performance robustness (e.g., how much can the plant be allowed to
change before control system performance degrades significantly?),
and stability robustness (e.g., how much can the plant be allowed to
change before the system goes unstable?).

If the requirements are unreasonable, you may have to return to the boss
or customer and negotiate a reasonable set of specifications. If you find
that more is possible than is being asked, then your company may have a
competitive edge with the customer.

• Consider if it is possible to redesign the plant: For some control problems
(e.g., aircraft control) there are significant efforts to design the plant so
that it is easy to control. If you study the control problem (plant dynamics
and control specifications) and find that the specifications cannot be met,
another option may be to go back and redesign the plant so that the
specifications can be met. This may entail adding a sensor, purchasing a
better actuator, or even making structural changes to the plant to remove
challenging nonlinearities.
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• Study similar problems: There is an ever-expanding literature on the de-
velopment of control systems and there may be some similar work done
that is in the public domain that could be useful to you.

• Try the simplest thing: Trying the simplest thing first is good engineer-
ing practice and it may teach you something about the control problem.
Fuzzy, expert, or planning systems-based control is probably not the first
thing to try when implementing a control system. Even if you do not have
a model, it is simple to develop a PID controller, or indeed a P controller
(proportional controller), that can be tuned manually. The computations
for simple proportional control involve, for instance, forming a difference
between the reference input and plant output, and multiplying this differ-
ence by a gain. The numerical operations to implement a fuzzy controller
are clearly more complex (although it is not always the case that they are
more complex than a conventional controller).

Proper Rule Base Construction

Assuming that you are using fuzzy control, one of the most critical steps in the
design process is the choice of the rule base. It is therefore very important to
pay significant attention to this problem. The main sources of information for
rule base construction are the following:

• Interviews of human plant operators (or learning how to operate the plant
yourself).

• A good understanding of the plant, the constraints imposed by it, and the
closed-loop specifications that you are trying to achieve.

• Modeling and simulation studies.

• Past development of controllers for the same plant (or similar ones).

• Controller implementation studies for controllers that ultimately do not
adequately achieve the specifications (e.g., the controller that you are try-
ing to replace in updating a control system to achieve higher performance).

There are several issues to pay attention to in rule base construction, includ-
ing the following:

• Conflicting rules: Most often (but not always), the rules in the rule base
should not conflict with one another (e.g., there should not be two rules
that apply in the same situation that say to do two very different things).
Note, however, that conflicting rules can be used in a fuzzy controller
since, depending on how you define the inference mechanism, it will simply
interpolate between the two different conclusions (e.g., in the ship steering
fuzzy controller four different rules may come on that say to do somewhat
different things and defuzzification combines the recommendations that
are in a sense conflicting, if only mildly).
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• Completeness: You must define the rule base so that there is at least one
rule that is “on” at each time (and if there is, we will call it a “complete
rule base”). This means that there is a sort of complete coverage of the
input space of the fuzzy controller so that there is a premise membership
function with nonzero certainty for all possible values of the inputs. For
an expert controller, it must be the case that there is at least one rule with
a premise term that evaluates to true at each time instant. Note that in
the ship steering example, no matter what the values of e and ė are, there
is a premise membership function that has nonzero certainty so that there
is always at least one rule on. If you do not have a complete rule base
then, depending on how you define the fuzzy controller, it can be that the
denominator in the defuzzification formula will have a zero value so that
you will not be able to compute an explicit output (and your software will
return a “divide by zero” error).

Reducing Controller Complexity

For simple academic problems, the complexity of the fuzzy controller is rarely a
problem, especially when only simulation examples are considered. The problem
is, however, that for real applications there are often limitations on computing
power (memory and “throughput”), so it is important to carefully consider
how to reduce the computations necessary for implementations. There are two
fundamental reasons why complexity arises in fuzzy and expert controllers:

• Complex nonlinear maps: For challenging applications where you have
spent a significant amount of time tuning the rule base, it is likely that
the resulting controller surface has a very interesting and complex shape,
and that this shape is critical in meeting the performance specifications.
Complex nonlinear maps take significant computations to implement, so
to get higher performance control you have to pay for it in controller
complexity (you do not get something for nothing).

• Exponential increase in number of rules: Recall that in Section 5.2.3, we
analyzed the number of parameters needed to define a fuzzy system for
a given number of inputs and membership functions. We found that if
you define rules for all possible combinations of linguistic values in the
premises, then there is an exponential number of rules (similar analy-
ses hold for expert controllers also). For example, for our ship steering
problem with two inputs and eleven membership functions on each input
universe of discourse there are 112 = 121 possible rules. Hence, increas-
ing the number of linguistic values or inputs causes large increases in the
number of rules and hence the complexity of the fuzzy controller (e.g.,
going from using e and ė as inputs to also using

∫ t

0
e(τ)dτ , with eleven

membership functions on the
∫ t

0
e(τ)dτ universe of discourse, would result

in 113 = 1331 rules).
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Methods to reduce complexity are as numerous as there are applications since
each is a special case and there are often methods to simplify the computations.
There are, however, some general approaches to reducing complexity and these
are listed next:

1. In some cases, upon further study, you may be able to determine that rule
base completeness can be achieved with fewer rules simply because it may
be the case that certain combinations of the inputs are not possible. In
this case the corresponding rules can be removed since they will never be
used anyway.

2. You can simply try to reduce the number of linguistic values so that the
total number of possible rules is reduced. For example, for the tanker ship
it is possible to get reasonably good performance (at least for nominal
conditions) using only nine rules (three membership functions on each of
the two input universes of discourse). Realize, however, that additional
rules allow for the implementation of more complex nonlinear control sur-
faces, that can then result in higher performance operation. The key is
to determine the minimum number of rules that still allows for the imple-
mentation of a control surface that can achieve adequate performance. In
some cases you may have to go back to the customer and indicate that if
you are only allowed a certain amount of computing power, then only a
certain performance level is possible.

3. For the case of MIMO fuzzy controllers, study the problem carefully to de-
termine if you truly need all the inputs for each of the fuzzy controllers for
each plant input. Elimination of one input, for even one MISO controller,
can result in significant savings.

4. Sometimes you may want to use some type of “multi-stage” fuzzy con-
troller where, for example, there are two inputs to each of two controllers
and their outputs are combined by a third fuzzy system that provides the
input to the plant. In this case we will implement three two-input fuzzy
controllers rather than one four-input fuzzy controller (which for some ap-
plications can make a big difference). This approach tends to be highly
application specific but the principle is valid: try to reduce the number of
inputs by cascading fuzzy controllers.

5. Another approach to reduction is to use one fuzzy controller to specify
parameters in another. For instance, if you were to develop a controller
for the ship that also took as an input the ship speed u, one approach would
be to simply use a three-input fuzzy controller (where the rule base would
indicate that for faster ship speeds a smaller rudder angle input is needed
since the ship is easier to steer when it is moving fast). Another approach,
one that avoids the implementation of a three-input fuzzy controller, is
to use the two-input fuzzy controller we already developed for the ship
but add another single-input single-output fuzzy controller with the ship
speed as an input that specifies the amount of correction to the rudder
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angle for different ship speeds. Now, this approach does not allow one
to make coordinated control actions (e.g., different rudder corrections for
different e and ė and ship speeds), but it may be sufficient to solve the
problem. Again, there are many approaches to reducing complexity using
this approach since they are application-dependent.

Effects of Disturbances and Plant Changes

Plant parameter variations, disturbances, speed changes, and sensor noise all
affect our ability to achieve good control. In this section we will use the ship

It is important to
evaluate the performance
of the fuzzy control
system under adverse
conditions.

example to illustrate their effect on heading regulation performance when a fuzzy
controller is used (this section parallels the simulation studies for the multilayer
perceptron and radial basis function controllers for the ship in Sections 4.3
and 4.5; here, we use the same types of variations as we did in those sections).
Our intent, however, is to alert the reader to these issues so that they can be
taken into account in the design process.

First, we will consider the performance of the fuzzy controller when the ship
is under “full” conditions. Figure 5.28 shows how the fuzzy control system,
which was tuned for ballast conditions, performs for full conditions. We see
that there now is a bit of overshoot in the ship heading since a lighter boat
steers easier. We see that plant parameter variations can affect performance.
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Figure 5.28: Response of fuzzy controller for tanker ship steering, “full” condi-
tions, g0 = 8π

18 , g1 = 2
π , and g2 = 250.

Next, consider the effect of a wind disturbance on the ship. If we use g0 = 8π
18 ,
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g1 = 2
π , and g2 = 250 (i.e., the good tuned values), we get the response in

Figure 5.29. We see that the wind affects our ability to achieve very good
regulation of the ship heading since it causes a 1 to 2 degree variation in the
tracking of the desired heading.

Adverse conditions
generally degrade
performance; however,
good controller designs
minimize such
performance
degradations.
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Figure 5.29: Response of fuzzy controller for tanker ship steering, wind distur-
bance, g0 = 8π

18 , g1 = 2
π , and g2 = 250.

If you use, for instance, an additive sensor noise uniformly distributed on
[−0.01, 0.01], there is little effect on the response so we do not show the plot (of
course, if you get sensors with worse performance characteristics, then you will
expect tracking errors to arise in an analogous manner to results for the wind).

Next, consider the effect of a speed change on our ability to steer the ship.
If we use g0 = 8π

18 , g1 = 2
π , and g2 = 250 (i.e., the good tuned values), we get

the response in Figure 5.30. We see that the speed decrease causes a significant
overshoot in the response since the rudder is not as effective.

Tracking Error

Steady-state tracking error is the value

lim
t→∞ e(t)

and for most control problems we would like this to be as small as possible
or zero when the reference input is, for example, a step change. Adding an
integrator to the control loop is one approach that is often successful at reducing
or eliminating steady-state error (since if the error is nonzero, the integrator’s
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Figure 5.30: Response of fuzzy controller for tanker ship steering, speed de-
crease, g0 = 8π

18 , g1 = 2
π , and g2 = 250.

value gets larger, thus causing a larger control input to force the plant to move
to reduce the error). In this ship example we did not need to add an integrator
to the control loop by putting one in the controller since there is already an
integration effect in the plant (note that if you hold the rudder angle input
constant, the ship heading will tend off to infinity).

For fuzzy control design, since the plant and controller are nonlinear (you
should not be trying to control a linear plant with a fuzzy controller since if the
plant is truly linear all that is needed to succeed is a linear controller), we cannot
be guaranteed that the addition of an integrator will help reduce steady-state
error, but often it does. There are basically two ways to add an integrator to
a fuzzy controller: as an input (to achieve, for instance, “PID fuzzy control,”
i.e., a fuzzy controller with P, I, and D inputs), or by adding an integrator
to the output of the plant (which in some discrete time implementations some
engineers do inherently by specifying that the output should be a change in the
control variable, not an absolute value).

5.4 Stability Analysis

Here, we will be brief by simply providing some examples of how you can en-
counter limit cycles and instabilities for the tanker ship and a brief explanation
of how to conduct stability analysis for fuzzy control systems.
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5.4.1 Example: Stability and Limit Cycles in Ship Steer-
ing

Stability is often viewed as a fundamental property of a control system since
if the system is unstable it is possible that the output response, and hence the
tracking error (assuming a bounded reference input), grows without bound. For
example, for the ship if you choose g0 = −8π

18 , g1 = 2
π , and g2 = 250 (notice

minus sign), you can get an unstable response. (In this case, the controller moves
the rudder in the wrong direction to try to reduce a heading error and each time
it does this, it creates a bigger error.) This is a rather simple mechanism that

Improper choices for the
rule base can result in a
closed-loop system with
limit cycles and
instability.

provides instability but there can be very complex ones.
Another type of tracking error that can result (that is often considered to be

a type of instability) is when e(t) is oscillating, for example, when the reference
input is a constant and the output of the plant is a sinusoid. In many applica-
tions this is an undesirable characteristic. If you pick the wrong values of the
scaling gains in the ship steering problem, you can get such oscillatory behavior.
For example, if you pick g0 = 2000π

18 , g1 = 2
π , and g2 = 0.000001 for the ship,

you get the response shown in Figure 5.31 where we see that the oscillation
characteristics are dependent on the magnitude of the reference input.

0 500 1000 1500 2000 2500 3000 3500 4000
-40

-20

0

20

40

60

80

Time (sec)

Ship heading (solid) and desired ship heading (dashed), deg.

0 500 1000 1500 2000 2500 3000 3500 4000
-100

-50

0

50

100

Time (sec)

Rudder angle (δ), deg.

Figure 5.31: Response of fuzzy controller for tanker ship steering, g0 = 2000π
18 ,

g1 = 2
π , and g2 = 0.000001.

What is happening in the fuzzy control system to achieve this type of be-
havior? Usually, it is because some gains are set too large (or small) and the
input or output signals are oscillating between their maximum values, forcing
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the plant to oscillate also (i.e., this is a “controller-induced oscillation” in this
case). Clearly, the designer must be alerted to this possibility and try to avoid
it. Methods to avoid this problem typically involve careful choice of rule bases
and scaling gains.

5.4.2 Discussion: Lyapunov Stability Analysis of Fuzzy
Control Systems

The central issue in fuzzy controller design is to obtain good insights into how
the plant behaves in order to determine how to shape the nonlinear function
that is implemented by the fuzzy controller. Of course, this nonlinear function

Lyapunov stability
analysis can be useful
for verification of fuzzy
control systems.

then affects the closed-loop dynamics. To characterize and analyze exactly
how the nonlinearity affects the closed-loop stability properties, you can use
mathematical stability analysis just as we did for the neural controller in the last
chapter. Moreover, the reader may be interested to know that Lyapunov’s first
method (via linearization), absolute stability, and describing function analysis
can be performed (see the “For Further Study” section at the end of this part
for more information).

How exactly do you perform stability analysis via Lyapunov’s direct method?
Consider the simple example in Section 4.6.5 on page 147. Note that

u = F (x)

could be specified as a fuzzy controller so that F (0) = 0, F (x) is smooth, and
for some scalar β > 0,

F (x) > −βx, x < 0
F (x) < −βx, x > 0

How do we construct a rule base so that this is the case? We will provide a
problem of this type to the reader in Exercise 5.8. Basically, however, when
you get familiar with the types of input-output mappings that are generated
for certain choices of rule bases and membership functions, you will see how to
construct nonlinear control surfaces with different shapes.

5.5 Expert Control

An expert system is a computer program that is designed to emulate a human’s
skills in a specific problem domain. If it is designed to emulate the expertise of a
human in performing control activities, it is called an “expert controller.” When
the expert controller is connected to a plant, the closed-loop system is called an
expert control system (see Figure 5.32). Traditionally, the expert system has
been split into two components: the knowledge base and inference mechanism.
The knowledge base is simply a generalization of the rule base in a fuzzy system
where more general types of information can be characterized. Correspondingly,
the inference mechanism is a generalization of the inference mechanism in a fuzzy



5.5 Expert Control 215

controller that can incorporate other reasoning strategies. Hence, conceptually
the expert controller is closely related to the fuzzy controller in its structure
and function. Moreover, the design philosophy used to construct the expert

General representations
of knowledge and
inference can be used for
emulating sophisticated
control strategies.

controller is similar to that of the fuzzy controller. The main differences between
the two approaches lie in the details of how the knowledge base and inference
mechanism are constructed.
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Figure 5.32: Expert control system.

5.5.1 General Knowledge Representations

The knowledge base in the expert controller could be a rule base, but is not nec-
essarily so. It could be developed using other knowledge-representation struc-
tures, such as frames, semantic nets, causal diagrams, and so on (see the “For
Further Study” section at the end of this part for information on these). Here,
we will simply show how the form of the rules used in fuzzy controllers can be
generalized and used in expert control.

The rule premises can be defined in much more general ways. For instance,
any type of predicate logic can be used that can include any kind of Boolean
logic, functions, relations, and existential quantifiers (“for all,” and “there ex-
ists”). For example, a rule may have the form:

If e(t) > 2 or there exists a time over the last
10 sec. where de(t)

dt ≤ 0.5
Then u(t) = 2.

Testing the validity of the premise can be defined in many ways, but normally the
standard rules of logic are used (similar to how the premise part of a standard
computer “if-then” statement is tested). Moreover, degrees of matching the
premises to the current situation can be used in an analogous way to how it is
in fuzzy systems.

The specific types of rules needed for control depend on the application being
considered and often it requires significant expertise with the plant to develop
an effective set of rules. Indeed, for practical applications this is typically an
iterative trial-and-error process and may involve a team of process experts to
test and develop the rule base. Conceptually, however, the synthesis of the rule
base proceeds in basically the same way as for the fuzzy control methodology.
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Finally, it is interesting to note that in practical control systems there are
often rules used for “exception handling” and special situations. These rules
sometimes override a currently operating controller (e.g., a PID controller) to
take appropriate actions under special situations. The inclusion of such rules
in controllers should not be viewed as a rare occurrence in the development of
a practical control system; control rules are often present, and sometimes are
significantly more difficult to develop than the “conventional” (e.g., PID) part
of the overall control system.

5.5.2 General Inference Mechanisms

The inference mechanism in the expert controller is more general than that
of the fuzzy controller. It can use more sophisticated matching strategies to
determine which rules should be allowed to fire. Also, it can use more elaborate
inference strategies. For instance, some expert systems use

• “Refraction,” where if a rule has fired recently, it may not be allowed back
into the “conflict set” (i.e., the set of rules that are allowed to fire).

• “Recency,” where rules that were fired most recently are given priority
in being fired again (sometimes a valid approach since such rules may be
most relevant to the current situation).

• “Priority schemes” where certain rules are a priori given higher priority to
fire if they are both in the conflict set. It is also possible to dynamically
assign priority.

Verification of correct
behavior of general
reasoning systems used
as feedback controllers is
important and
challenging.

It is in fact the case that an expert system is in a sense more general than a
fuzzy system since it can be shown that a single rule in an expert controller can
be used to represent an entire fuzzy controller. To see this, note that a single
fuzzy controller can be represented with a single static input-output map. Then,
a single rule in an expert controller can represent that mapping. If an entire
set of fuzzy controllers is represented as a set of such rules, then the resulting
expert controller will reason about how to successively apply fuzzy controllers
at each time step.

5.5.3 Stability Analysis of Expert Control Systems

Just as for neural and fuzzy control systems, it is possible to analyze qualitative
properties of expert control systems. For instance, a discrete time formulation
can be used to study the following properties:

• Stability in the sense of Lyapunov that may characterize how well the ex-
pert system can stay focused on (attend to) a control task, or boundedness
of plant variables in the closed-loop when an expert controller is used.

• “Reachability” properties where, for instance, search algorithms can be
used to test if the expert controller can drive the plant into some state
(e.g., the goal state).
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• Cyclic properties where the expert system may get stuck in an infinite
loop (circular reasoning) and hence not be able to achieve its goal.

Here, we will not develop the mathematical models and show explicitly how
to conduct stability analysis for expert control systems since it basically follows
the same conceptual approach as for neural or fuzzy control systems. We do,
however, provide more references in the “For Further Study” section at the end
of this part for the interested reader, and Design Problem 5.3 where the reader
is asked to conduct stability analysis of a simple expert control system.

5.6 Hierarchical Rule-Based Control Systems

There are a variety of ways to construct hierarchical fuzzy or expert control
systems. For instance, you could use the following approaches:

Knowledge and inference
are sometimes
conveniently represented
via hierarchies.

• You could use a rule-based (fuzzy or expert) system as a supervisor for
the operation of a rule-based controller. This supervisor could monitor
certain plant conditions and modify the rules to try to maintain good
performance. It may be more convenient to implement the system as two
rule-based systems, rather than a single one that takes in all the inputs
that the two systems do, and outputs the input to the plant (e.g., it may
be more computationally efficient, or this may be the way that the human
operator thinks about controlling the plant).

• You could use a rule-based system to supervise the operation of an adap-
tive control system. This possibility will be discussed in more detail in
Section 9.4.5.

• Sometimes multiple layers of such supervision could be needed.

There are still other possibilities. For instance, you can think of the hierarchy
in Figure 1.11 and suppose that each block is a fuzzy or expert system. The
blocks at the low level may be standard fuzzy controllers. The blocks at the
coordination level may contain fuzzy systems with rules about how to coordinate
the operation of the fuzzy controllers at the execution level, and an expert
system at the management level could supervise both the levels below it. In this
context you may think of using rules at the higher levels to turn on appropriate
rules at the low levels (some would think of this as pruning the rules at the
lower levels).

5.7 Exercises and Design Problems

Exercise 5.1 (Defining Membership Functions: Single Universe of
Discourse): In this problem you will study how to represent various
concepts and quantify various relations with membership functions. For
each part below, there is more than one correct answer. Provide one of
these and justify your choice in each case.
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(a) Draw a membership function (and hence define a fuzzy set) that
quantifies the set of all people of medium height.

(b) Draw a membership function that quantifies the statement “the num-
ber x is near 10.”

(c) Draw a membership function that quantifies the statement “the num-
ber x is less than 10.”

Exercise 5.2 (Defining Membership Functions: Multiple Universes
of Discourse): In this problem you will study how to represent various
concepts and quantify various relations with membership functions when
there is more than one universe of discourse. Use minimum to quantify
the “and.” For each part below, there is more than one correct answer.
Provide one of these and justify your choice in each case. Also, in each
case, provide the three-dimensional plot of the membership function.

(a) Draw a membership function (and hence define a fuzzy set) that
quantifies the set of all people of medium height who are “tan” in
color (i.e., tan and medium-height people). Think of peoples’ colors
being on a spectrum from white to black.

(b) Draw a membership function that quantifies the statement “the num-
ber x is near 10 and the number y is near 2.”

Exercise 5.3 (Fuzzy Sets): There are many concepts that are used in fuzzy
sets that sometimes become useful when studying fuzzy control. The
following problems introduce some of the more popular fuzzy set concepts
that were not treated earlier in the chapter.

(a) The “support” of a fuzzy set with membership function µ(x) is the
(crisp) set of all points x on the universe of discourse such that µ(x) >
0 and the “α-cut” is the (crisp) set of all points on the universe of
discourse such that µ(x) > α. What is the support and 0.5-cut for
the fuzzy set shown in Figure 5.5 on page 163?

(b) The “height” of a fuzzy set with membership function µ(x) is the
highest value that µ(x) reaches on the universe of discourse on which
it is defined. A fuzzy set is said to be “normal” if its height is equal
to one. What is the height of the fuzzy set shown in Figure 5.5 on
page 163? Is it normal? Give an example of a fuzzy set that is not
normal.

(c) A fuzzy set with membership function µ(x) where the universe of
discourse is the set of real numbers is said to be “convex” if and only
if

µ(λx1 + (1 − λ)x2) ≥ min{µ(x1), µ(x2)} (5.8)

for all x1 and x2 and all λ ∈ [0, 1]. Note that just because a fuzzy
set is said to be convex does not mean that its membership function
is a convex function in the usual sense. Prove that the fuzzy set
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shown in Figure 5.5 on page 163 is convex. Prove that the Gaussian
membership function is convex. Give an example of a fuzzy set that
is not convex.

(d) A linguistic “hedge” is a modifier to a linguistic value such as “very”
or “more or less.” When we use linguistic hedges for linguistic val-
ues that already have membership functions, we can simply modify
these membership functions so that they represent the modified lin-
guistic values. Consider the membership function in Figure 5.5 on
page 163. Suppose that we obtain the membership function for “error
is very possmall” from the one for “possmall” by squaring the mem-
bership values (i.e., µverypossmall = (µpossmall)2). Sketch the mem-
bership function for “error is very possmall.” For “error is more or
less possmall” we could use µmoreorlesspossmall = √

µpossmall. Sketch
the membership function for “error is more or less possmall.”

Exercise 5.4 (Fuzzy Logic): There are many concepts that are used in
fuzzy logic that sometimes become useful when studying fuzzy control.
The following problems introduce some of the more popular fuzzy logic
concepts that were not treated earlier in the chapter or were treated only
briefly.

(a) The complement (“not”) of a fuzzy set with a membership function
µ has a membership function given by µ̄(x) = 1 − µ(x). Sketch the
complement of the fuzzy set shown in Figure 5.5 on page 163.

(b) There are other ways to represent the conjunction “and” using fuzzy
sets, different from the minimum and product that were introduced in
the chapter. Let µ1 and µ2 denote two specific membership function
values. Then, to represent “and,” we could use the “bounded differ-
ence” (i.e., max{0, µ1 + µ2 − 1}) and “drastic intersection” (where
its value is µ1 when µ2 = 1, µ2 when µ1 = 1, and zero otherwise).
Consider the membership functions shown in Figure 5.8 on page 166.
Sketch the membership function for the premise “error is zero and
change-in-error is possmall” when the bounded difference is used to
represent this conjunction (premise). Do the same for the case when
we use the drastic intersection. Compare these to the case where the
minimum operation and the product were used (i.e., plot these also
and compare all four).

(c) Fuzzy logic can be used to represent the disjunction (“or”) of, for
example, two premise terms. While there are many ways to represent
“or” in fuzzy logic, the most popular one seems to be to simply use
the maximum of the membership values. Consider the membership
functions shown in Figure 5.8 on page 166. Sketch the membership
function for “error is zero or change-in-error is possmall” when the
maximum is used to represent this disjunction.

Exercise 5.5 (Matching, Inference, and Defuzzification: Hand Cal-
culations): Suppose that for the tanker ship you use the membership
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functions in Figure 5.8 on page 166 and the rule base in Table 5.1 on
page 162. Also, suppose that we have

e(t) =
π

2

and
ė(t) = −0.0045

at some time t. Assume that we use the rule base shown in Table 5.1 on
page 162 and minimum to represent both the premise and implication.

(a) On Table 5.1, draw boxes around the centers of the output member-
ship functions in the body of the table that correspond to the rules
that are on.

(b) Draw all the implied fuzzy sets on the output universe of discourse.
(c) Find the output of the fuzzy controller using center-average defuzzi-

fication.
(d) Find the output of the fuzzy controller using COG defuzzification.
(e) Assume that we use the product to represent both the premise and

implication. Repeat (b)–(d).
(f) Write a computer program to solve (b) and (c).

Exercise 5.6 (Graphical Depiction of Fuzzy Decision Making): De-
velop a graphical depiction of the operation of the fuzzy controller for the
tanker ship similar to the one given in Figure 5.19 on page 184. For this,
choose e(t) = π

2 and ė(t) = −0.0045, which will result in four rules being
on. Be sure to show all parts of the graphical depiction, including an
indication of the values for e(t) and ė(t), the implied fuzzy sets, and the
final defuzzified value.

(a) Use minimum for the premise and implication and COG defuzzifica-
tion.

(b) Use product for the premise and implication and center-average de-
fuzzification.

Exercise 5.7 (Takagi-Sugeno Fuzzy Systems): In this problem you will
study the way that a Takagi-Sugeno fuzzy system interpolates between
linear mappings. In particular, as an example, suppose that n = 1, R = 2,
and that we have rules

If ũ1 is Ã1
1 Then b1 = 2 + u1

If ũ1 is Ã2
1 Then b2 = 1 + u1

with the universe of discourse for u1 given in Figure 5.33 so that µ1 rep-
resents Ã1

1 and µ2 represents Ã2
1. We have

y =
b1µ1 + b2µ2

µ1 + µ2
= b1µ1 + b2µ2
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We see that for u1 > 1, µ1 = 0, so y = 1 + u1, which is a line. If u1 < −1,
µ2 = 0, so y = 2 + u1, which is a different line. In between −1 ≤ u1 ≤ 1,
the output y is an interpolation between the two lines.

-1 1 u1

µ µ1 2
1

"negative" "positive"

Figure 5.33: Membership functions for Takagi-Sugeno fuzzy system example.

(a) Show that the nonlinear mapping induced by this Takagi-Sugeno
fuzzy system is given by

y =

⎧⎨
⎩

1 + u1 if u1 > 1
0.5u1 + 1.5 if − 1 ≤ u1 ≤ 1
2 + u1 u1 < −1

(Hint: The Takagi-Sugeno fuzzy system represents three lines, two in
the consequents of the rules and one that interpolates between these
two.)

(b) Plot y versus u1 over a sufficient range of u1 to illustrate the nonlinear
mapping implemented by the Takagi-Sugeno fuzzy system.

Exercise 5.8 (Lyapunov’s Direct Method for Fuzzy Control Systems):
Consider Exercise 4.3 but now suppose that you design F (x) to be a fuzzy
controller.

(a) Repeat parts (a)-(c) in Exercise 4.3.
(b) From the perspective of stability analysis, for this simple example,

do you see any advantage of neural control over fuzzy control, or vice
versa?

Design Problem 5.1 (Design of a Fuzzy Controller for Cargo Ship
Steering): In this problem we study the development of fuzzy controllers
for a cargo ship steering problem. Use the nonlinear model of the tanker
ship provided in Equation (4.5) but with K0 = −3.86, τ10 = 5.66, τ20 =
0.38, τ30 = 0.89, and l = 161 meters [30]. Assume the rudder is saturated
at ±80 degrees as in the tanker case. Also, we will assume that the cargo
ship is traveling in the x direction at a velocity of 5 meters/sec. Similar
to the tanker ship, you should seek to get as good a steering response as
possible.

(a) Develop a fuzzy controller for the cargo ship steering problem and
simulate the closed-loop system to demonstrate its performance. Test
the cases where there is a wind disturbance (assume it is modeled in
the same way as for the tanker ship) and speed change.
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(b) Develop a proportional-derivative (PD) controller for the cargo ship
and test it under the same conditions as in (a).

(c) Compare the results in (a) and (b). Discuss.

Design Problem 5.2 (Design of a Fuzzy Controller that Balances an
Inverted Pendulum): Consider the simple problem of balancing an
inverted pendulum on a cart, as shown in Figure 5.34. Here, y denotes
the angle that the pendulum makes with the vertical (in radians), l is the
half-pendulum length (in meters), and u is the force input that moves the
cart (in Newtons). We will use r to denote the desired angular position of
the pendulum. The goal is to balance the pendulum in the upright position
(i.e., r = 0) when it initially starts with some nonzero angle off the vertical
(i.e., y �= 0). This is a very simple and academic nonlinear control problem,
and many good techniques already exist for its solution. Indeed, for this
standard configuration, a simple PID controller works quite well, even in
implementation. Here, you will develop a fuzzy controller for the inverted
pendulum simply to gain practice in fuzzy control design.

y

2l

u

Figure 5.34: Inverted pendulum on a cart.

One model for the inverted pendulum shown in Figure 5.34 is given by

ÿ =
9.8 sin(y) + cos(y)

[
−ū−0.25ẏ2 sin(y)

1.5

]
0.5
[
4
3 − 1

3 cos2(y)
] (5.9)

˙̄u = −100ū + 100u.

The first order filter on u to produce ū represents an actuator. In the
simulations of the fuzzy control system for balancing the inverted pendu-
lum, be sure to use an appropriate numerical simulation technique for the
nonlinear system and a small enough integration step size (e.g., a fourth-
order Runge-Kutta method with an integration step size of h = 0.001).
In your simulations, let the initial condition be y(0) = 0.1 radians (= 5.73
deg.), ẏ(0) = 0, and ÿ(0) = 0 (this translates into an initial condition on
the actuator state).
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(a) Develop a fuzzy controller that uses e = r − y and ė as inputs, the
minimum operator to represent both the “and” in the premise and
the implication, and COG defuzzification. Simulate the closed-loop
system and plot the output y and input u to demonstrate that your
fuzzy controller can balance the pendulum. You should add scaling
gains and tune the fuzzy controller as we did for the tanker ship
steering problem.

(b) Repeat (a) for the case where you use product to represent the
premise and implication and center-average defuzzification.

(c) Study the performance of the controllers in (a) and (b) for different
initial conditions.

Design Problem 5.3 (Design and Stability Analysis of Expert Con-
trol Systems)�: This problem is based on a chapter in [410] that you
should first obtain and read carefully before answering the following ques-
tions. You may also want to consult [338] for a related study.

(a) First, for the model of the tank provide a state transition diagram
(circles for states, directed arrows between circles to represent plant
changes for certain inputs) that represents the dynamics of the plant.
Next, specify the state-transition diagram for the closed-loop system
when the “seven-rule controller” is used. Also, draw the diagram for
the case where the “three-rule” controller is used.

(b) Simulate the closed-loop system. In simulation, demonstrate that for
each initial condition in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (initial liquid
height) that the liquid level will converge to an appropriate set of
values.

(c) Explain what “reachability” is, provide a mathematical definition
for it, and analyze a reachability property of the tank system via
simulation.

(d) Repeat the stability analysis shown in the chapter, providing full
explanations at every step of the derivation, to illustrate mathemat-
ically that the closed-loop system processes the indicated stability
properties (do this for both the seven-rule and three-rule controllers).
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In the second chapter of this part we studied how fuzzy or expert systems
could be used to represent human knowledge about how to perform control tasks.
Essentially, they represent control software by emulating cognitive functional-
ities. Here, we focus on how to emulate the “software” functionality of more
sophisticated reasoning strategies that use planning in order to decide how to
control a plant. Since planning requires an ability to form representations (mod-
els) in the brain, exercise these representations to generate predictions about
how the environment will react to various plans, choose among alternative plans,
and execute a sequence of actions, it is only found in higher organisms (e.g.,
humans). While it certainly requires a neural network for implementation we
do not focus on that; our focus here is on the functionalities basic to planning
systems, and in particular, planning capabilities of humans as understood by
psychologists.

Why is planning useful for control? Essentially, it is one approach that al-
lows for more than simple reactions to what is sensed. It utilizes information
about the problem and environment, often in the form of some type of model,
and considers many options and chooses the best one to achieve the closed-loop
control objectives. Planning provides for a very general and broadly applica-
ble methodology and it has been exploited extensively in conventional control
(e.g., in receding horizon control and model predictive control). As compared
to the fuzzy and expert system approaches, it exploits the use of an explicit
model to help it decide what actions to take. Like the fuzzy and expert sys-
tem approaches, it is still, however, possible to incorporate heuristics that help
to specify what control actions are the best to use. Hence, in a broad sense,
planning approaches attempt to use both heuristic knowledge and model-based
knowledge to make control decisions; this may be the fundamental reason for
selecting a planning strategy over a simple rule-based one. It is often bad engi-
neering practice to only favor the use of heuristics and ignore the information
provided by a good mathematical model; planning strategies provide a way to
incorporate this information.

6.1 Psychology of Planning

At an intuitive level, via introspection, you already understand what planning
is. We plan our activities for the weekend, we plan a shopping trip, or plan how
to solve a problem. A plan is a sequence of steps to achieve a goal, perhaps by
performing tasks to achieve subgoals that then lead to the achievement of an
overall goal.

Plans are typically
hierarchical in that each
task in sequence can
often be viewed as a goal
with a sequence of tasks
to achieve it.

6.1.1 Essential Features of Planning

We often form “action plans” to try to achieve specific goals. For instance,
consider Figure 6.1 where an “action hierarchy” is given as one type of action
plan. Here, at the highest level there is the goal “eat lunch.” Suppose that the
person who is hungry, a professor who just got a job teaching at a university,
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develops a plan for how to achieve the goal to eat as the lunch hour approaches.
The goal motivates the professor to pay attention to his hunger and pay attention
to, and construct, a plan to meet his goal. This plan is formed using his past
knowledge of what was successful for him when he was in graduate school,
but modified somewhat due to his new role as a faculty member in a different
university. In order to achieve his goal of eating lunch, he decides that he should
consult the telephone directory given to him when he arrived since this may give
him an idea of what restaurants are nearby. Next, since he is not familiar with
any of the restaurants he found in the phone book, he asks some students and
colleagues which restaurants have good food, are inexpensive, and yet have
fast service. Notice then that some blocks in Figure 6.1 can be thought of as
goals and tasks. Also, some of the blocks may need to be broken down further
into tasks and goals. Next, the professor must pick a restaurant (based on
personal tastes and priorities), find directions, choose a mode of transportation
and route, and then travel to the restaurant. Hence, while a plan hierarchy may
be conceptual, and as it is executed you may abstractly traverse the hierarchy,
it may be that a subplan involves executing movements over a route that itself
may be thought of as a planned path (e.g., the route to the restaurant). Clearly,

Learning and use of
models for prediction is
central to the activity of
planning.

there also may be a need for replanning, for example, if the planned route is
unexpectedly blocked, or if the initial plan was in error due to someone providing
bad directions. After arriving at the restaurant, the professor may execute a
standard plan (a “script” available from his experience of eating at restaurants
before) where he orders, eats, pays, and then returns to his office.

Eat lunch

Consult phonebook
Ask students

and colleagues
Choose restaurant

Get directions
Choose route and

transportation
Go to restaurant

Order food, drink Eat Pay Return to office

Figure 6.1: Action plan as an action hierarchy, an example.

Notice that the next day the professor’s high-level goal may be the same
near noon when he gets hungry, but he is likely to modify the plan based on
his experience from the previous day. He may be inclined to return to the
same restaurant if it was good, but may also want to sample others in order
to learn whether others may be better (i.e., he may plan to try to learn more).
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Clearly learning influences how we plan, and hence how the action hierarchy is
formed and executed. For instance, as we learn the various routes to different
restaurants, we essentially develop a “cognitive map” of the streets to get to
the restaurants, and we use this map in the future (e.g., we plan over that map
to minimize our travel time). We think of this “map” as a type of model that
we learned that allows us to predict how a variety of plans will work, and hence
it allows us to optimally achieve our goals by choosing the plan that minimizes
travel time. This feature of exploiting past knowledge to predict (plan) ahead,
and the process of choosing the “best plan,” are essential features of successful
planning, and flexible intelligent behavior. Moreover, the focus of attention is

Optimization is essential
to choose which plan is
best.

essential to planning, both the “internal focus” on traversing the action hier-
archy, and the focus during execution of the plan to detect plan failures (e.g.,
observing a blocked street). Due to the hierarchical nature of the process, it
seems that both planning and attention have hierarchical characteristics, and
there is neurophysiological evidence of this intuition.

6.1.2 Generic Planning Steps

While the above example serves to illustrate some of the essential features of
how a human plans in one situation, it is useful to consider the following generic
planning steps:

1. Represent the problem (“planning domain”): In order to plan, you must
have some type of representation (model) of the problem that must be
solved. This model could be in the form of a road map if you are trying to
plan a route to get somewhere, or it could be a more conceptual map of the
structural-functional characteristics of a problem. We generally think of
these models as being acquired via experience (i.e., via learning), however,
it is certainly the case that instincts (models passed to us via evolution)
affect planning. For instance, we have certain “hard-wired” knowledge
that can be thought of as aspects of models that influence planning (e.g.,
tendency to have a fear of snakes and some insects). Our performance
in planning is critically dependent on our model of the problem. A poor
model will generally lead to a bad plan, or at least to one that soon fails,
thus requiring replanning. A high quality model that allows us to project
far into the future (or down a hierarchy of tasks and subgoals), may lead to
better plans. However, characteristics of the problem domain may make
it impossible to specify a good model. For instance, time varying and
stochastic features of some problem domains may make it impossible to
predict into the future with any accuracy, and hence make it a waste of
time to predict too far into the future. The difficulties in developing or
generating a model include many of the same ones discussed in Part I for
design and truth models. Differences arise however, since in planning we
often learn the model as we plan.

2. Set goal: Setting goals is essential to planning, since without goals there
is no purposeful behavior. Goals can be very different for different people,



230 Planning Systems

environments, and times. Goals are driven by evolutionary characteristics
(e.g., the goal of survival, the goal of reproduction), but in humans such
goals can also be significantly affected by our values and ideals (e.g., ones
set by culture). Goals can be learned, and can consist of a time-varying
hierarchy or sequence of subgoals.

3. Decide to plan: Sometimes humans simply react to situations without con-
sidering the consequences of their actions. Other people decide to develop
a plan since they may think that this will allow them to more successfully
reach their goals. There are many issues that affect the decision of whether
or not to plan (e.g., physiological and cultural). Many lower animals (e.g.,
some bacteria) cannot plan; they simply react to stimuli.

4. Build a plan (select a strategy): Normally the selection of a plan first
involves projecting into the future using a model (e.g., in path planning
on streets), and often involves considering a variety of sequences of tasks
and subgoals to be executed (as in the action plan discussed above). In
terms of a graph-theoretic view, you may think of this as a “tree” of plans
where the nodes of the tree are tasks or subgoals, and links between these
indicate plans (a path in the tree is a candidate plan). See Figure 6.2. How
“deep” a tree to generate (e.g., how far to plan into the future) depends
on the quality of the model, characteristics of the environment, and how
much time or resources you have to plan. The second key component of
selecting a plan is the solution of an optimization problem. For instance,
suppose that the links on the “tree” that represents the set of possible
plans are each labeled with integer values that represent the “cost” of
performing the task represented by going in that direction in the tree.
For instance, the cost may represent distance traveled or time to execute

It is useful to view plan
generation as forming a
“tree” of possible
behaviors for each plan.
Plan selection involves
ranking the quality of the
behaviors and choosing
the plan that produces
the best behavior
according to the model.

the task, and the characteristics of the cost are typically dictated by the
goal. Next, suppose that the tree represents a finite number of possible
plans, and that the cost of a plan is represented by summing the costs
of each link that represents a step in the plan. We can then order the
plans according to cost and perform minimization by picking the lowest
cost plan (the “best” plan). Again, see Figure 6.2. For example, this may
be the shortest route to the restaurant in the above example, if we are
solving the subtask of route planning to the restaurant.

5. Execute plan, monitor, and repair/replan: After selecting a plan you must
decide how to execute that plan. While we execute the plan, we monitor
it by detecting deviations from what is expected to make sure that all is
going well. Then, especially in an uncertain problem domain, it could be
that there is a “plan failure” so that there is a need to repair the current
plan, or to develop a completely new plan (the frequency of replanning
is generally proportional to the amount of disturbances you have in the
plant). The decision of whether to simply “tweak” the current plan, or
develop a completely new one is difficult and can involve assessments of
available resources (e.g., time), and the extent to which goals are being
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Figure 6.2: Tree representation of the alternative plans that can be considered
at some point in time, along with the costs of executing such plans.

met. Some problem domains are particularly difficult to monitor and
hence there may need to be a parallel process operating that estimates the
“state” of the domain from available sensed information (this is sometimes
called “situation assessment”). Our ability to do this depends on the
“observability” properties of the problem domain (i.e., whether we can
compute the state of the plant from measured inputs and outputs). When
using such estimates, you may need to guess whether the plan is succeeding
and subsequently replan.

Next, it is important to note that there are many cognitive factors that can
influence how we plan. For instance, the amount of knowledge we have and
our ability to learn is critical. Our current stress level, emotions, coping skills,
personality, values, and self-confidence all affect our performance in planning.
Moreover, the capabilities of our biological neural network in working memory
affect the complexity of plans we can consider, and rate at which we can develop
plans. Our attentional skills play a key role in ensuring that we stay focused on
our goals, and on the most important planning task at hand.

6.2 Design Example: Vehicle Guidance

In this section we will develop a simple planning strategy for control of the
position of an autonomous vehicle to move it toward a goal position (i.e., to
guide the vehicle). This example only illustrates the first of several ways in
which we use planning concepts for control in this book. It is primarily used to
give intuitive insights into how planning strategies operate. In the next section
we will explain more advanced concepts on how to design planning strategies for
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nonlinear dynamical systems. In Section 9.4.5 we will discuss how learning and
planning can be combined in adaptive control. In Chapter 16.5 we will use basic
ideas from planning systems to formulate an approach to evolutionary adaptive
control. Finally, in Section 19.6 we will discuss how biomimicry of learning and
planning of social foraging animals can be used in distributed coordination and
control for vehicles.

6.2.1 Obstacle Course and Vehicle Characteristics

The particular type of vehicle guidance problem we will consider will be one
where we seek to guide the vehicle from some initial position to a goal position
while avoiding collisions with obstacles. For example, you might think of trying
to guide a vehicle through the halls of your building without running into walls.
We will assume that we have perfect information about where obstacles are, and
for convenience we assume that the vehicle is in a rectangular room and that
the obstacles are poles with known (x, y) positions. In particular, we consider a
room such that the x-coordinate, x ∈ [0, 30], and the y-coordinate, y ∈ [0, 30],
with the poles shown from a top view in Figure 6.3. We assume that the initial
vehicle position is (5, 5) and that the goal position is (25, 25) as shown in the
figure via the square and “×” respectively.
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Obstacles (o), initial vehicle (square), and goal (x) positions

Figure 6.3: Initial vehicle position, goal position, and obstacles.

We assume that our vehicle is as shown in Figure 6.4 and that each side of
the cubical vehicle measures 2.5 units so that it cannot fit in between the three
poles shown in Figure 6.3 that are at positions (8, 10), (10, 10), and (10, 12),
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but it can fit in between the other obstacles. We assume that the vehicle knows
its own position (e.g., via an overhead computer vision system) and the goal
position that it seeks to move to.

One sensor focus
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Vehicle
top
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avoided

r

Wall (to be avoided)

θλ

Figure 6.4: Autonomous vehicle guidance problem.

We will essentially ignore vehicle dynamics and assume that when a vehicle
decides to move from one position to another position, it can approximately do
so in one time step (but we do not put explicit units on distance or length of the
time step). The “approximate” part is due to the fact that we assume it may
not reach the precise desired position (e.g., due to inaccuracies in the vehicle
drive system). In particular, if the vehicle’s current position is (x(k), y(k)) and
the onboard computer commands it to move at an angle θ a distance of λ (see
Figure 6.4), it does so according to[

x(k + 1)
y(k + 1)

]
=
[

x(k)
y(k)

]
+ λ

[
cos(θ)
sin(θ)

]
+ ∆λ

[
cos(∆θ)
sin(∆θ)

]

where the sum of the first two terms on the right side of the equation represent
the desired position. Here, we choose λ = 0.1. The last term is a noise term
that represents effects of uncertainty that result in the vehicle not perfectly
achieving the desired position. We choose ∆λ to be a random number chosen
at each time step uniformly on [−0.1λ, 0.1λ] representing that there is a 10%
uncertainty in achieving the commanded radial movement. Also, we assume that
∆θ is uniformly distributed on [−π, π]. Hence, when the vehicle is commanded
to go to a particular position in one time step, all we know is that it ends
up somewhere in a circular region of radius 0.1λ around the desired position.
Notice that in order to make such movements, the vehicle needs to sample its
own position at each time step. Hence, feedback control is used in the following
way for guidance: the current position is sensed, and the command is made to
move the vehicle to the new position. The vehicle may not end up where it
was commanded to go, but at the next time instant, we will sense the vehicle’s
position and make adjustments from that point, and so on.
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6.2.2 Path Planning Strategy

The assumption that we know exactly where all the obstacles are greatly sim-
plifies the planning problem and allows us to focus only on some basic features
of planning strategies; later we will remove this assumption and discuss how
a vehicle could learn where obstacles are, plan based on that information, and
even cope with moving obstacles. It should be clear that since we assume that
we know where the vehicle and all the obstacles are, there is no need for a sensor
that measures proximity to, or characteristics of obstacles. In a certain sense
we have a perfect model of a part of our environment. We do not have a perfect
model of the entire environment due to the uncertainty in reaching a desired
commanded position that was discussed above.

Obstacle and Goal Functions

How can we represent and utilize the information given in Figure 6.3 about
where the vehicle starts, where it should go, and where the obstacles are? First,
since we are using a planning strategy, it is critical to realize that we need to
formulate the path-finding problem as an optimization problem. To do this, we
take the simple approach of constructing a surface (sometimes called a “potential
field”) that represents where the obstacles are. In particular, to represent the
obstacles in Figure 6.3, we take Gaussian functions of unity height and center
them at each of the obstacles and compute an “obstacle function” Jo(x, y) that
is the maximum value of each of those functions at each point (x, y) as shown in
Figure 6.5 (the use of the maximum of the six Gaussian functions representing
the six obstacles, rather than, for instance, simple addition of the six Gaussian
functions, ensures that each obstacle position is represented independent of the
others). In Figure 6.6 we show the contour plot of Jo(x, y) along with the initial
vehicle position and goal position. The contour nicely shows the “spreads”
(variances) of the Gaussian functions and that there is a type of overlap such
that values of Jo(x, y) are at least a bit above zero for any position where the
vehicle should not be in order to avoid collision with obstacles. Also, we will
scale the obstacle function with a positive constant w1 > 0 in our planning
strategy below; however, here we choose w1 = 1. Note that if you moved the
vehicle about the environment in a way that the vehicle position is moved to
points that try to minimize Jo(x, y) (e.g., via hill climbing), then the vehicle
will avoid the obstacles, due to the tails of the Gaussian functions. For many
vehicle initial positions, the vehicle would move to the edge of the region, and
when it arrives there, we always keep it on the edge.

Next, we show how to represent the goal of being at the position (25, 25).
To do this, suppose that we think of penalizing not being at this position by
placing the minimum point of a quadratic (bowl) function

w2Jg(x, y) = w2

[
[x, y]� − [25, 25]�

]� [
[x, y]� − [25, 25]�

]
where w2 > 0 is a scale factor we choose as w2 = 0.0001 (we will explain
this below) that will multiply this function. The scaled function is shown in
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Figure 6.5: Obstacle function Jo(x, y) (scaled by w1).

Figure 6.6: Obstacle function Jo(x, y) (scaled), contour form, with initial vehicle
position and goal position.
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Figure 6.7 as a contour plot. If at each time step the vehicle moved to go down
the surface, it will move toward the goal, but it may run into an obstacle.
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Figure 6.7: Goal function w2Jg(x, y), contour form, with initial vehicle position
and goal position.

Plan Generation and Selection

How does the planning strategy generate, evaluate, and select plans so that
it can select which direction to move? To explain this, we first form our cost
function for the planning strategy.

Multiobjective Cost Function: From the discussion in the previous subsec-
tion, it should be clear that if you commanded the vehicle to move a distance of
λ in a direction θ that is chosen by simply moving in the “direction of steepest
descent” on the function Jo(x, y), then the vehicle would avoid obstacles but not
reach the goal position and stay there. Similarly, if the direction was chosen to
be the one with steepest descent for the Jg(x, y) function, then it would move
to the goal position but may collide with some obstacle for some initial vehicle
positions.

Multiple goals can be
represented by a
multiobjective cost
function.

To solve this problem we will use a “multiobjective cost function” (actually
a special case where a “scalarization” approach is used to form a multiobjective
cost, which is one of many ways to generate a Pareto cost)

J(x, y) = w1Jo(x, y) + w2Jg(x, y)
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shown in Figure 6.8 where the weights w1 and w2 specify the relative importance
of achieving obstacle avoidance and reaching the goal (but you must take into
consideration the magnitudes of the values of each term in selecting these).
Our choices of the weight values above represent that obstacle avoidance is
important, but you must also keep moving toward the goal position. The choice
of the weights will affect the shape of the trajectory that the vehicle will move
on toward the goal position.
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Figure 6.8: Multiobjective cost function J(x, y) for evaluating plans.

Plan Generation and Selection: We take a very simple approach to plan
generation and evaluation. If the vehicle is at a position (x, y), we simply
compute the value of J at Ns values (xi, yi), i = 1, 2, . . . , Ns, regularly spaced
on a circle of radius r around the vehicle position (see Figure 6.4, where we
have Ns = 8). Here, we will use r = 1 and Ns = 16. This generates 16 plans,
where we “predict” one step ahead (clearly we could compute more values of J
that are along other longer paths). We view the set of plans as “the vehicle is
at (x, y), move it to (xi, yi).” We choose the plan to execute by finding a value
i∗ such that

J(xi∗ , yi∗) ≤ J(xi, yi), i = 1, 2, . . . , Ns

(i.e., by finding the direction which will result in minimization of the multiob-
jective cost function). We then call this direction θ(k) and command the vehicle
to take a step of length λ in the direction θ(k).
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Notice that the above approach will approximate the “steepest descent ap-
proach” (hill-climbing) discussed above but we do not need analytical gradient
information since we do not explicitly compute the gradient of the multiobjective
cost function. Higher values of Ns cost more computations in plan generation
and evaluation, but they also provide for more precise directional commands.
Notice that using the above strategy, we expect that for any initial position
on Figure 6.8, the vehicle will navigate so as to avoid the obstacles and move
toward the goal by simply moving down the surface. Finally, notice that there
is nothing special about the circular “pattern” of points that are evaluated on
the J function. Other choices could work equally well. In fact, in Part V we will
consider many other choices for the pattern of points that are used in deciding
which direction to move to find the minimum point of a function (e.g., via pat-
tern search methods), some of which are motivated by how animals search for
food (a goal).

6.2.3 Simulation of the Guidance Strategy

Using the planning strategy, obstacle course, and vehicle, we get the trajectory
shown in Figure 6.9. Clearly, the vehicle moves so as to avoid the obstacles (via
the effect of Jo) but tries to stay on course to the goal (via the effect of Jg). The
effects of the uncertainty in reaching commanded positions is seen by the small
deviations on the trajectory that are “corrected” at each step since we assume
that the vehicle gets a measurement of its own position at each time step. Other
vehicle paths result from other choices of obstacle and goal functions and their
scale factors (e.g., for this example, higher weight on the goal function tends to
reduce deviations away from obstacles). Moreover, a different pattern of points
where the multiobjective cost function is evaluated can result in a different path.
For instance, using fewer points on the circular pattern results in trajectories
that are not as smooth.

6.2.4 More Challenges: Complex Mazes, Mobile Obsta-
cles, and Uncertainty

In this section we have studied a highly idealized planning problem. For in-
stance, the assumption of perfect knowledge of the obstacle positions will not
hold in any real obstacle avoidance problem. Removing the assumptions can
quickly complicate the use of planning strategies, as we will see next.

Dead Ends and Circular Loops

Above, our type of obstacle course is quite simplistic. In some environments
it is better to think of the obstacle course as a type of complex “maze” with
many possible paths, many of which may not lead to the ultimate goal position
(i.e., there may be “dead ends” or circular loops). See Figure 6.10(a). Suppose
that we use the same basic approach as for our obstacle course in Figure 6.3
where we place functions that indicate that we should stay away from obstacles.
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Figure 6.9: Vehicle path for obstacle avoidance and goal seeking.

How? While you could invent many types of functions, you could simply use
a fine grid of appropriate Gaussian functions to get the proper shape for the
Jo(x, y) surface. A problem arises, however, with specifying the goal function
and hence the multiobjective cost function. Suppose that we choose it as we
did for the above example to be a simple quadratic function with a minimum
point at the goal position. To see where the problem arises, suppose that we use
the same planning strategy as in the previous subsection. In this case, it should
be clear that for that obstacle course, with reasonable choices for the obstacle
function and multiobjective cost function weights, the vehicle trajectory would
move roughly diagonally (e.g., on paths 2, 3, or 4 in Figure 6.10(b)) toward the
goal position similar to how it did in Figure 6.9 until it got to the curved wall
in the “northeast” part of the maze. There, provided that r (the radius of the
circular pattern of points where J is computed) is relatively small and we do not
predict ahead more than one step, the vehicle will get stuck against the curved
wall since it will listen to the goal function, but still try to avoid hitting the
curved wall. It will get stuck at a “local minimum” on the multiobjective cost
function. Notice that it does this even though if it could simply “see a little
farther,” it could navigate around the curved wall by going northwest, then back
to the east to the goal position.

How can we solve this problem? One way is to use the a priori knowledge
of the obstacle course and design the multiobjective cost function so that there
is only one minimum, the global one, at the goal position. Another way is
to design the obstacle and goal functions in a simplistic way as we did in the
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Figure 6.10: (a) Obstacle path viewed as a maze (notice dead ends), (b) Possi-
ble paths through the maze as computed by prediction in a planning strategy
(numbered 1–6).

last section, then to exploit the “look-ahead” capabilities of planning strategies
to find local minima on the multiobjective cost function that result in dead
ends. To do this, suppose that at each step, the vehicle computer computes
a tree of paths rooted at the current vehicle position (where it is assumed in
the generation of that tree that the vehicle actually reaches the position desired
on each move even though this will not be the case according to our model).
For instance, suppose that it is constrained so that as shown in Figure 6.10(b),
it computes six potential paths of the same length (length is not given by the
physical length of the path, but by how many steps are taken, so in the figure
each of the cases, 2–6, shows paths where the vehicle is stuck up against a
wall for some time). It may come up with these potential paths by sampling the
known multiobjective function, and some strategies even use minimization in the
choice to limit the number of potential paths. For instance, in Figure 6.10(b)
we show only six potential paths, not the many possible small deviations from
these six. Next, we have to choose the best path. For this, we may use some
method to detect when a plan will result in deadlock (no progress for a fixed
number of steps), or we may try to minimize the number of required steps to
get to the goal. The paths that are clearly unsuccessful can be eliminated from
consideration and the first step suggested by the most successful plan can be
taken. In the case where the maze is known perfectly and there is no uncertainty
in reaching a desired position, there is no need for replanning at each step. You
just follow the generated plan. However, in our model when we do not reach the
commanded desired position, replanning (regeneration of plans and selection of
new plans) is needed. How much replanning needs to be done? It depends on
the magnitude of the uncertainty. Large uncertainty will lead to the need for
frequent replanning.
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Mobile Obstacles and Uncertainty

Next, note that if the obstacle environment is dynamic in the sense that, for
instance, obstacles can move, our approaches require extensions. For instance,
if some obstacle suddenly appeared at some position and we did not know about
it, our vehicle can simply collide with it. Or if the walls and obstacles in Fig-
ure 6.10(a) moved in predictable ways, it should be clear that a “look-ahead
strategy” may be needed. If the obstacles moved in unpredictable ways, then
our model may not be able to accurately represent this so the vehicle will need
to sense the environment while it navigates it and try to learn about obsta-
cle positions and movements. Clearly this creates a very challenging obstacle
avoidance problem.

6.3 Planning Strategy Design

Next, we distill the essential ideas from the psychology of planning in Section 6.1,
some of which were explained via the path planning example of the last section,
and show more clearly how they can be utilized in controllers for dynamical
systems. Our focus here is on plants of the type that are typically considered in
conventional control. First, we will think of planning systems as being computer
programs that emulate the way experts plan to solve a control problem; notice
the connection to how we thought of the heuristic design process for fuzzy and
expert controllers. Note, however, there is an essential difference from how we
thought of fuzzy and expert control: a planning system uses an explicit model
of the plant. We will discuss several issues surrounding the choice of this model,
plan generation, and selection. For simplicity, we will first ignore the hierarchical
issues involved in planning and simply focus on how to plan at one “node” of an
action hierarchy to achieve what might be a sequence of changing goals. Later
in this section, however, we will discuss hierarchical planning.

6.3.1 Closed-Loop Planning Configuration

A generic planning system can be configured in the architecture of a standard
control system as shown in Figure 6.11. In the context of human planning prob-
lems, the problem domain is the plant and environment. There are measured

Planning (and
replanning) often utilizes
feedback to correct for
prediction model errors.

outputs y(k) at step k (variables of the problem domain that can be sensed in
real time), control actions u(k) (the ways in which we can affect the problem
domain), disturbances d(k) (which represent random events that can affect the
problem domain and hence the measured variable y(k)), and goal r(k) (what
we would like to achieve in the problem domain) which is called the reference
input in conventional control terminology. There are closed-loop specifications
that quantify performance specifications and stability requirements.

The types of plants we consider in this section are those with

y(k + 1) = f(x(k), u(k), d(k)) (6.1)
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Figure 6.11: Closed-loop planning system.

where y(k) is the measured output and f is a generally unknown smooth function
of the state u(k) and measurable state x(k),

x(k) = [y(k), y(k − 1), . . . , y(k − n), u(k − 1), u(k − 2), . . . , u(k − m)]� (6.2)

Let
e(k + 1) = r(k + 1) − y(k + 1)

be the tracking error. Generally, our objective here will be to make the tracking
error as small as possible for all time, and in particular, we would like it to
asymptotically approach zero so that the output follows the reference input.

Consider a plan to be a sequence of possible control inputs, where the ith

plan of length N at time k is denoted by

ui[k, N ] = ui(k, 0), ui(k, 1), . . . , ui(k, N − 1)

Our objective is to develop a controller that is based on a planning strategy. To
do this, we will use a model and an optimization method to evaluate the quality
of each plan. This will provide a ranking of the quality of the plans. After that
we will choose the plan that is best (call it plan i∗), and let the control input
at each time instant k be

u(k) = ui∗(k, 0)

That is, at each time k we choose the best plan ui∗ [k, N ], then use the first input
from the control sequence as the input to the plant. The process is repeated
at each time instant. Clearly, you could use a lower frequency of replanning,
where, for example, you could generate a new plan every other sampling instant,
and execute the first two inputs from the optimal plan each time.

6.3.2 Models and Projecting into the Future

There are a wide range of possibilities for the type of model that is used, and
Good models lead to good
plans; bad models can
lead to unstable behavior
and poor performance.

the type depends on the problem domain, the capabilities of the planner to store
and use the model, and also the goals. For instance, a model used for planning
could be continuous or discrete (e.g., a differential or difference equation), and
it could be linear or nonlinear. It may be deterministic, or it may contain an
explicit representation of the uncertainty in the problem domain so that plans
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can be chosen taking the uncertainty into account. In industrial practice, in the
so-called “model-predictive control” (MPC) method, linear models are often
used for the plant and this approach is considered in Design Problem 6.2.

Just like the design model used for control design, it will always be the
No model is perfectly
accurate; hence,
predictions based on it
are always in error.

case that the model will not be a perfect representation of the plant and the
environment. This implies that there will always be uncertainty in planning, and
hence there will always be a bound on the amount of time that it makes sense
to project (simulate the model) into the future. Projecting into the future too
far becomes useless at some point since the predictions will become inaccurate
at some point, and hence provide no good information on how to select the best
plan. The difficulty is knowing how good your model is and how far to project
into the future. Finally, note that you may actually want your model to be able
to predict what goal is going to occur in the future since in the formulation in
this section we could have a time-varying goal. If the goal can be predicted,
contingencies can be developed, and earlier plans may be modified to try to
ensure success for not only the current goals, but anticipated ones.

Here, we use a general nonlinear discrete time model

ym(j + 1) = fm(xm(j), u(j))

with output ym(j), state xm(j), and input u(j) for j = 0, 1, 2, . . . , N −1. Notice
that this model can be quite general if needed; however, in practice, sometimes
a linear model is all that is available and this may be sufficient. Let yi

m(k, j)
denote the jth value generated at time k using the ith plan ui[k, N ]; similarly
for xm(k, j). In order to predict the effects of plan i (project into the future) at
each time k you compute for j = 0, 1, 2, . . . , N − 1,

yi
m(k, j + 1) = fm(xm(k, j), ui(k, j))

At time k to simulate ahead in time, for j = 0 you initialize with xm(k, 0) =
x(k). Then, generate ym(k, j + 1), j = 0, 1, 2, . . . , N − 1, using the model (note
that you will need to appropriately shift values in xm at each step) and generate
values of ui(k, j), j = 1, 2, . . . , N − 1, for each i.

6.3.3 Optimization Criterion and Method for Plan Selec-
tion

Next, the set of plans (strategies) is “pruned” to one plan that is the best
one to apply at the current time (where “best” can be determined based on,
e.g., consumption of resources). Hence, optimization is central to the activity of
planning (just as we will later see that optimization is central to the activities of
attention, learning, evolution, and foraging). The specific type of optimization
approach that is used for plan selection depends on the goals, cost function,
and type of model that is used to predict into the future. For instance, if the
model of the plant is a finite automaton the optimization problem can in some
cases be formulated as a “shortest path” problem where you choose the plan
(sequence of actions) that results in minimizing a cost function (e.g., the sum
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of the costs for the steps of a candidate plan) in a manner similar to how we
choose the best plan for Figure 6.2. Such a shortest path problem can be solved
with a number of methods. For instance, you could use dynamic programming
or standard combinatorial optimization methods. Alternatively, when the state
space is large it may be advantageous to use some “heuristic search” methods,
such as the A∗ algorithm. For more details on such approaches, see the “For
Further Study” section at the end of this part.

Criteria for Selecting Plans

We need a criterion to decide which plan is the best. Here, we will use a cost
function J(ui[k, N ]) that quantifies the quality of each candidate plan ui[k, N ]
using the fm model. First, assume that the reference input r(k) is either known
for all time, or at least that at time k it is known up till time k + N . Generally,
you want the cost function to quantify over the next N steps how well the
tracking objective is met. One cost function that we could use would be

J(ui[k, N ]) = w1

N∑
j=1

(
r(k + j) − yi

m(k, j)
)2

+ w2

N−1∑
j=0

(
ui(k, j)

)2
(6.3)

where w1 > 0 and w2 > 0 are scaling factors that are used to weight the im-
portance of achieving the tracking error closely (first term) or minimizing the
use of control energy (second term) to achieve that tracking error. Other cost
functions could use the output of a “reference model” as we do for several adap-
tive control approaches in Part III (see “For Further Study” for more details),
an error measure on the other past values of the inputs and outputs, or an
error measure on some other system variable. The choice of the cost function
for evaluating the quality of the plans is application-dependent. To specify the
control at time k you simply take the best plan, as measured by J(ui[k, N ]),
and call it plan ui∗ [k, N ] and generate the control using u(k) = ui∗(k, 0) (i.e.,
the first control input in the sequence of inputs that was best).

Note that this specifies a variety of methods to achieve what is called “model
predictive control” (or “receding horizon control”) in conventional control the-
ory. Clearly, different models, cost functions, and optimization methods will
lead to different closed-loop system performance characteristics. It can be diffi-
cult to know which optimization method to choose for a particular application.
Often, however, practical aspects of the problem govern many aspects of the
choice as we discuss next.

Nonlinear Optimization for Plan Selection

The challenge is to pick an optimization method that will converge to the op-
timal plan, and one that can cope with the complexity presented by the large
number of candidate plans. Why is this a “challenge”? First, focusing on the
complexity aspect, note that the inputs and states for the plant under consid-
eration can in general take on a continuum number of values (i.e., an infinite
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number of values, with as many possibilities as there are real numbers), even
though in particular applications they may only take on a finite number of
values. This is the case in analog control systems even considering actuator
saturation. For digital control systems you may have a data acquisition system
that results in a certain quantization and hence, theoretically speaking there
are a finite number of inputs, states, and outputs, for the model specified by
fm since it is typically simulated on a digital computer. However, this number
can be very large! There is then, in general, an infinite (continuum) number of
possible plans that you must compute the cost of (in a brute-force approach) in
order to form the ranking of plans according to cost, and select the best plan.

But, in the conventional model predictive control approach that is widely
successful in industrial applications, this problem has been solved. How? There,
most often linear plant models are used, a manageable size is chosen for the
prediction horizon N (and perhaps a longer sampling interval is used for the
model, than for the digital controller), and it then becomes feasible to specify
an analytical solution to finding the optimal plan (sequence of inputs). The
optimization approach can actually choose the best plan from the infinite set of
plans. That analytical solution is the so-called “least squares” solution that is
only possible due to the use of the linear model. But, of course, no real plant is
linear (even though it may act as though it is almost linear in some situations).

What if the nonlinear and uncertain characteristics dominate to the extent
that a linear model is not sufficient for generating plans? Then, we could use a

Nonlinear or
combinatorial
optimization can be used
for plan selection.

nonlinear model in the planner and try to employ some type of nonlinear opti-
mization method where the “parameters” that are adjusted by the optimization
method are ones that parameterize the infinite set of possible plans. Practically
speaking, however, this can become problematic since if you use a nonlinear
model for plan generation, you are confronted with a nonlinear optimization
problem for which there is generally no analytical solution. There are, how-
ever, many algorithms that one could employ to try to solve this problem (e.g.,
steepest descent, Levenberg-Marquardt, etc., that are discussed in Part III).
The problem is that none of these methods guarantees convergence to an opti-
mal plan. They could even diverge and provide no solution, but typically they
will converge to a local minimum. The plan that results from such a nonlin-
ear optimization process cannot then be guaranteed to be the optimal one, and
closed-loop performance can suffer. Having said all that, it is worthy to note,
however, that in some practical industrial problems, engineers have managed to
develop effective solutions via such a nonlinear optimization approach.

Brute-Force Approach to Plan Selection

Next, suppose that you do not want to take the standard nonlinear optimization
approach, yet you want to use a nonlinear model since its use seems essential
to represent the salient features of your plant. Is there another approach? One
standard approach is to discretize the input, state, and output spaces, generate
all possible plans and compute the cost of each of them explicitly (sometimes
it is even possible to simultaneously generate plans and evaluate costs, and
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thereby greatly reduce the number of potential plans since ones that are of very
high cost may not need to be generated). Creating such a discrete model is
not a trivial exercise since you want it to be not only discrete in time, but also
in space. The discretization typically (virtually always) leads to the creating
of a less accurate model so that in taking this approach you are trading off
complexity management and optimization ease with accuracy in evaluating the
plans. Also, unless you use a very coarse quantization you may still end up with
too many plans to consider. Why? Suppose that there are Nu possible input

Creation and evaluation
of all possible plans is
often computationally
prohibitive.

values obtained via discretization, and that the model is deterministic so that
one control input leads to only one possible state, then there are

(Nu)N

possible plans at each time k. Suppose that we simulate ahead in time N =
100 steps, and Nu = 1000 (not unreasonable considering the types of levels
of discretization that could be accurate for many plants). Clearly, due to the
exponential growth in the number of plans, we can quickly encounter problems
with computational complexity if we take the brute-force approach of generating
all possible plans. Moreover, even if we generate all the plans, we will also have
to evaluate the cost of each one. And, this must be done at each sampling
instant. Having said all that, however, there are classes of problems where a
discrete model provides a reasonably good representation of the plant, even with
a small Nu, and sometimes only a small N is needed to evaluate the quality of
a plan. In this case, the brute-force approach may work very well. Besides,
specific application-dependent characteristics often allow you to “prune” the
tree of possible plans. For instance, if you have rate constraints on your plant,
then typically for every state only certain inputs are possible, since the input
cannot change too much from what it was the last time. Moreover, sometimes
coarser quantizations in time and space may work adequately for some plants.

There are ways to trade
off computational
complexity for the
quality of plan selection
and ultimately,
performance.

6.3.4 Planning Using Preset Controllers and Model Learn-
ing

Next, we will discuss another approach to solve the complexity and optimization
challenges involved in plan generation and selection. This approach can be
thought of as a method to prune the tree of possible plans that is generated at
each sampling instant.

Planning Using Multiple Controllers

Consider a specific controller (a “preset” controller) applied to the current state
and reference input to be a type of “plan template” in that it specifies one way to
respond for a sequence of times into the future, but the precise manner in which
it generates inputs depends on what occurs over time as the plan is implemented.
There is an analogy with how humans plan. In some problem domains we may
have learned a finite set of possible approaches to solve a problem and we start
solving it, picking what seems to be the best approach at each step.
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Suppose that there are S such plan templates, which have the form of func-
tions F i

u

ui(k, j) = F i
u(x(k, j), r(k + 1)) i = 1, 2, . . . , S

where we assume we can measure r(k + 1). Hence, at each step we take each
of these S plans and project into the future how each will perform, pick the
best one, then let the control input be ui∗(k, 0) where i∗ is the best plan as
measured by some cost function. For some practical applications the value of
S need not be too large, and hence, if we take the “brute-force” approach of
the last section, we overcome the problems discussed there in complexity and
optimization.

In a related approach, it is also possible to use planning systems as general
supervisory controllers in a similar manner to how expert controllers are used
for supervision. In this case, the planner will, for instance, coordinate the use
of a set of controllers where different controllers are used for different operating
conditions. We will discuss such methods in Sections 9.4.5 and 16.5.

Planning Using Multiple Models or Tuned Models

Suppose that upon entering some problem domain you know that it is best
modeled by one of S models that you have learned. Suppose that as you begin
taking actions in the problem domain, you gather information that tells you
which model is most appropriate at the current time. If you enter it at a different
time, a different model may be more appropriate. Also, some environments are
dynamic in that their characteristics change over time so that as you are taking
actions in the domain with one model, you continually monitor the quality of
the predictions it makes, and if appropriate, you can switch to another model.
How do you plan with the model possibly switching at each time? You can do
it just the same as discussed above. You simply change the model that you
predict with over time. You can think of this as learning the appropriate type
of model and using it to plan (the optimization method employed to select the
model is implementing a type of learning).

Other planning systems may perform “world modeling,” where a model of
the problem domain is developed or modified (tuned) in an online fashion (simi-
lar to online system identification), and “planner design” uses information from
the world modeler to tune the planner (so that it makes the right plans for the
current problem domain). The reader will, perhaps, think of such a planning
system as a general adaptive controller. It integrates learning of models directly
into the planning process, in a manner reminiscent of how humans learn while
planning. While we will not illustrate the operation of such strategies in this
chapter, in Part III and Part IV we will discuss how to use such strategies in
adaptive control.

6.3.5 Hierarchical Planning Systems

First, suppose that there is a hierarchy of models available for generating plans.
To provide a simple illustration of some key ideas in hierarchical planning, sup-
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pose that we are performing route planning for a mobile robot at an industrial
complex that has several buildings. Moreover, suppose that we organize our
planner according to the description of the hierarchy in Figure 1.11 where we
have a higher-level management level, and lower-level coordination and execu-
tion levels.

Suppose that we have several models, detailed ones of each room in every
building, maps of each building that simply show how the rooms are connected
via hallways, and maps of possible connection routes between the buildings.
Suppose that we want to plan how to move the mobile robots around the indus-
trial complex. Suppose that at the highest level the human operator specifies
that the robot should go to building 3, room 416, to deliver a part that is needed
in some manufacturing process. A planner at the management level could gen-
erate a set of routes between buildings and pick the best one considering other
traffic and minimization of time of travel. A planner at the coordination level
could be used to plan how to move to the desired room once the building is
reached, and the planner at the lower level could specify how to navigate the
room.

There are other types of hierarchical planners that will use multiple planners
at the coordination and execution levels. For instance, sometimes the goals
specified by the human can be broken down into multiple sequences of tasks at
the management level, each one representing a different way to reach the human-
specified goal. One approach could be selected and passed to the coordination
level. At the coordination level we could view the sequence of tasks chosen at the
management level as a sequence of goals, and each planner at the coordination
level may then develop sequences of operations to try to achieve those (sub)goals.
Clearly this sets up a recursion and we can view the chosen coordination level
as plans, and the execution level can view those as goals and develop plans to
meet them. Implementation is achieved by executing the low level sequences
that try to meet the subsubgoals, and thereby the subgoals, and hence the goal
specified by the human.

There are many design issues involved in constructing such a hierarchical
planning system. For instance, the accuracy of the models at the various levels
and the form of the cost functions used will significantly affect the performance
of the system. Computational complexity is affected by the choice of the plan-
ning horizons at the various levels, and the lengths of these horizons is in turn
affected by the quality of the models we use in planning (and uncertainty in
the environment). Moreover, one approach to coping with computational com-
plexity in some planning applications is to split the planning problem into a
hierarchical functionality, since sometimes this can simplify plan generation and
evaluation. Finally, we note that it is possible to incorporate adaptation and
learning into the planning processes at the various levels.

6.3.6 Discussion: Concepts for Stable Planning

It is possible to perform stability analysis of control systems whose controller
uses a planning strategy; in such cases you may study, for example, convergence
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of tracking error. For instance, there has been extensive work on the study
of stability conditions (e.g., in terms of horizon length) for conventional linear
model predictive control methods. Moreover, there has been other work focus-
ing on stability of planning systems for plants with a discrete event character
(see Design Problem 6.3). These studies show that there are several essential
characteristics that affect stability properties, several of which can be thought
of in terms similar to the discussion in Section 6.2.4, where we discussed dead
ends, circular loops, obstacle mobility, and obstacle position uncertainty:

Stability analysis of
closed-loop planning
strategies depends
critically on model
accuracy, plant
uncertainty, and plant
nonlinearities.

• Model accuracy: The accuracy of the model used to project into the future
significantly affects the analysis. In most analysis it is assumed that a
perfect model is known or that the model perfectly represents all possible
ways that the plant will respond to inputs.

• Navigating through uncertainty: Your ability to achieve a goal state in a
tree of possible paths that are simulated (e.g., as shown in Figure 6.2)
depends on the uncertainty present in the plant. You can think of the
uncertainty as a type of adversary, and that your objective is to keep
moving in directions so that the uncertainty will not over time conspire
to make it impossible for you to navigate to your goal state (in terms of
Figure 6.2, the actual structure of the tree is random so at some points in
time some paths may lead to the goal with a certain cost, while at other
times the cost may increase/decrease, or may not even lead to the goal
state). The planning strategy tries to navigate the tree in a way so that
even though the plant may make unpredictable moves, it will not be able
to make moves that will make it impossible to reach the goal. Clearly, the
number of steps you project in the future can critically affect your ability
to navigate through the uncertainty. If you do not look far enough into
the future, for some plants it may be possible that you will enter a region
of the state space such that the effects of the uncertainty dominate and
there is no way to navigate out of that region and to the goal state (e.g.,
in Figure 6.2, note that there are some “dead-ends” in the tree that is
shown). On the other hand, it may not make sense to project more than
one or two steps into the future for some plants since longer projections
may neither result in better plans, nor help navigate through the space.

• Avoiding traps: For some plants, without projecting far enough into the
future, it may be possible to get “trapped” in a cycle where you repeatedly
visit a finite sequence of states on a loop. Moreover, it is of course possible
that such circular traps arise in a nondeterministic manner, essentially
combining the concerns of the last point with those of this one (i.e., random
dead-ends and cyclical traps can arise).

The above discussion is simply intended to provide the interested reader
with some intuitions about some issues that significantly affect our ability to
perform stability analysis of planning systems for some classes of plants. For
further study on this topic, see Design Problem 6.3 and the “For Further Study”
section at the end of this part.
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6.4 Design Example: Planning for a Process Con-

trol Problem

In this section we will develop a planning strategy for a very simple yet repre-
sentative process control problem. We begin by introducing the control problem
and then we design and test a planning strategy.

6.4.1 Level Control in a Surge Tank

Consider the “surge tank,” shown in Figure 6.12, that can be modeled by

dh(t)
dt

=
−d̄
√

2gh(t)
A(h(t))

+
c̄

A(h(t))
u(t)

where u(t) is the input flow (control input), which can be positive or negative
(it can both pull liquid out of the tank and put it in); h(t) is the liquid level
(the output of the plant); A(h(t)) = |āh(t) + b̄| is the cross-sectional area of the
tank and ā > 0 and b̄ > 0 (their nominal values are ā = 0.01 and b̄ = 0.2);
g = 9.8; c̄ ∈ [0.9, 1] is a “clogging factor” for a filter in the pump actuator where
if c̄ = 0.9, there is some clogging of the filter and if c̄ = 1, the filter is clean so
there is no clogging (we will take c̄ = 1 as its nominal value); and d̄ > 0 is a
parameter related to the diameter of the output pipe (and its nominal value is
d̄ = 1). We think of all these plant parameters as being fixed (but unknown)
for a particular surge tank; however, we could consider other values for these
parameters and test the controller for these. This models the situation where
you want to develop one controller for many different surge tanks.

h(t)

u(t)

Figure 6.12: Surge tank.

Let r(t) be the desired level of the liquid in the tank (the reference input) and
e(t) = r(t) − h(t) be the tracking error. Assume that you know the reference
trajectory a priori and assume that r(t) ∈ [0.1, 8] and that we will not have
h(t) > 10. Assume that h(0) = 1.

To convert to a discrete-time approach, use an Euler approximation to the
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continuous dynamics to obtain

h(k + 1) = h(k) + T

(
−d̄
√

19.6h(k)
|āh(k) + b̄| +

c̄

|āh(k) + b̄|u(k)

)

where T = 0.1. We assume that the plant input saturates at ±50 so that if the
controller generates an input ū(k), then

u(k) =

⎧⎨
⎩

50 if ū(k) > 50
ū(k) if −50 ≤ ū(k) ≤ 50
−50 if ū(k) < −50

Also, to ensure that the liquid level never goes negative (which is physically
impossible), we simulate our plant using

h(k + 1) = max

{
0.001, h(k) + T

(
−d̄
√

19.6h(k)
|āh(k) + b̄| +

c̄

|āh(k) + b̄|u(k)

)}

Note that all the simulations in this section will include these constraints.

6.4.2 Planner Design

Here, for the sake of illustration we will use a nonlinear discrete-time model for
the nonlinear discrete-time plant (the “truth model”). We will generate candi-
date plans using this model using the “preset controllers” approach discussed
in the last section.

Taking the model of the last subsection as the truth model for the plant, the
model that we will use in our planning strategy will have

A(h(t)) = ām(h(t))2 + b̄m

with ām = 0.002 and b̄m = 0.2. For the model we use the same nonlinear
equations as given in the last section, but we do not assume that we know the
values of c̄ and d̄, so for these we use c̄m = 0.9 and d̄m = 0.8. It is interesting
to note that if you plot the cross-sectional area of the actual plant, and the one
used in the model, you get Figure 6.13, so you can see that they are somewhat
different so that our model is clearly not the same as the plant (model).

So, is the model accurate enough to be used in projection? To answer this
question we develop a simple controller and test it on the plant and controller.
We use a proportional integral (PI) controller as the “plan template.” In par-
ticular, if e(k) = r(k) − h(k), we use

u(k) = Kpe(k) + Ki

k∑
j=0

e(j) (6.4)

Suppose that the goal is to get a reasonably fast response, with no overshoot in
the tracking error e(k).
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Figure 6.13: Cross-sectional area A(h) for the plant (solid) and model to be
used for projection (dashed).

Suppose that via experience in designing PI controllers for surge tanks with
various cross-sectional areas, you know that typically

Kp ∈ [0, 0.2]

and
Ki ∈ [0.15, 0.4]

For instance, if you pick Kp = 0.01 and Ki = 0.3 and use the PI controller
in Equation (6.4), you get the response in Figure 6.14. Notice that while the
response is relatively fast, there is overshoot and that is undesirable.

You actually get a similar response if you use the same gains for the above
model that will be used for projection in our planning strategy. To see this
consider Figure 6.15, where we see that the difference between the regulated
heights for the cases where we use the truth model for the plant, and where
we use the projection model, are relatively small (there is more overshoot when
the controller is used for the model rather than the plant). This gives us some
confidence that our model is reasonably accurate; but of course to properly
evaluate its accuracy, we need to consider how good a performance we can
obtain when we use the model in a planning strategy for projection, and at the
same time, use the truth model in the closed-loop.

We use the cost function in Equation (6.3) with N = 20 (for two seconds
projection into the future), w1 = 1, and w2 = 1. Also, we assume at each
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Figure 6.14: Closed-loop behavior of the surge tank using a PI controller.
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Figure 6.15: Error between cases where the truth model and projection model
are used as the plant.
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time instant that the reference input remains constant while we project into the
future; this is equivalent to assuming that our evaluation of which controller is
best is based on the reference input being constant.

Our plan templates are the PI controllers, with different values of Kp and Ki.
In fact, we simply create a grid on the above ranges for the gains by considering
all possible combinations of

Kp ∈ {0, 0.05, 0.1, . . . , 0.2}

and
Ki ∈ {0.15, 0.2, . . . , 0.4}

Hence, in this case there are 5 × 6 = 30 different plans (controllers) that are
evaluated at each time step. To do this evaluation, we simulate using the pro-
jection model into the future two seconds for each PI controller. We initialize
the simulations into the future with current error, and integral of the error.

6.4.3 Closed-Loop Performance

To see how the planning strategy operates, see Figure 6.16. Here, we see that
we get a slower rise-time than in Figure 6.14 when we used the PI controller,
but that we were able to tune the planning strategy (by adjusting w1, w2, and
the grid on the PI gains) so that there is no overshoot, and still a reasonably
good rise-time, and that was our main objective.
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Figure 6.16: Closed-loop behavior of the surge tank using a planning strategy.
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How does it achieve this performance? It switches controllers online and
to see this, consider Figure 6.17. Note that we define the indices so that they
are proportional in size to the Kp and Ki values (e.g., the (1, 1) controller
has Kp = 0 and Ki = 0.15) so that it seeks to increase the Kp value to reduce
tracking error and get a good rise-time, and lowers the Ki value to try to reduce
overshoot. If you choose different values of the planning horizon N , you will get
different switching sequences.
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Figure 6.17: Indices of PI controllers that are used at each time step for the
tank.

Similar performance to that shown above is found if you perturb some of
the plant parameters. For example, if for the plant you let c̄ = 0.8 (representing
more clogging), you get similar results to the above. Or, if you use the nominal
value for c̄ and use ā = 0.05, you get the cross-sectional area shown in Figure 6.18
and we get the closed-loop response in Figure 6.19.

Notice that while we still get an adequate rise-time, for this plant the plan-
ning strategy results in a small amount of overshoot; hence, you may want to
tune the planner in order to improve the response. This shows that while the
planning strategy may provide good performance for some plants, for some oth-
ers the performance can degrade (not surprising). How robust is the controller
to plant perturbations? It can be a challenging problem to design a single plan-
ning strategy that will perform adequately for all plants of a certain class (e.g.,
for a known set of structured perturbations about the nominal plant).
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Figure 6.18: Cross-sectional area A(h) for the plant (solid) and model to be
used for projection (dashed).

6.4.4 Effects of Planning Horizon Length

Next, we return to using the parameters for the nominal plant and study the
effect of changing the projection length N with all the same choices as in the
previous subsection. In particular, we plot the tracking energy

1
2

∑
k

(e(k))2

and control energy
1
2

∑
k

(u(k))2

vs.
N ∈ {1, 5, 10, 15, 17, 20, 25, 30, 33, 35, 36, 37, 38, 39, 40, 45, 50}

as shown in Figures 6.20 and 6.21. This range of N was chosen by adding more
points where the values of the tracking and control energy changed fast.

These plots show some justification for the choice of N = 20 in our earlier
simulations. This choice did not cost too much computational complexity in
projecting into the future, and yet gave a low tracking error (our main objec-
tive), with a reasonable amount of control energy. If you are not concerned
about computational complexity, you may want to further increase the plan-
ning horizon, to get a similar value for the tracking energy, but with even lower
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Figure 6.19: Closed-loop behavior of the surge tank using a planning strategy
(different cross-sectional area).

control energy. Why did the values of the control energy change so quickly
around the value of N = 37? Why does the tracking energy increase in the
region from N = 20 to N = 33? Why is it the case that the control energy
increases from N = 1 to N = 10? In general, how do you change the shape of
the plots? Clearly, changing the w1 and w2 weights will change the shape, and

Prediction horizon
choice is difficult.
Prediction too far into
the future is
computationally
expensive and sometimes
not useful due to plant
uncertainty.

hence, what choices you might make for what you call a “best” value of N . The
model used for prediction, and the types of controllers that are simulated into
the future will also change the shape. Moreover, the reference input can change
it. Even though the generation of such plots can help you choose the planning
horizon, it does not completely solve the problem. It simply provides insights.

Finally, in some cases it is possible that longer planning horizons can actu-
ally degrade performance since the longer you simulate into the future with an
inaccurate model, the less reliable the predictions tend to be. Hence, the opti-
mization for plan choice can become inappropriate for selecting a good plan.

6.5 Exercises and Design Problems

Exercise 6.1 (Planning for Obstacle Avoidance):

(a) For the path planning problem in the chapter, use the simulation
to generate plots that explain the effect of increasing the amount
of uncertainty in where the vehicle ends up after a single step (i.e.,
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explain the qualitative effects of the noise on the quality of planning).
Can you choose the noise large enough so that the planning strategy
fails to guide the vehicle to the goal after 500 steps?

(b) Next, study the effects of changing the value of r, the sensing radius.
What happens if it is chosen smaller? Larger? If its value is too
large, can the guidance algorithm fail? Illustrate your answer with a
simulation.

(c) Illustrate the effects of changing Ns. What happens if Ns = 4? Il-
lustrate with a simulation and explain how the movements of the
vehicle change. What is the effect of using large values for Ns? Dis-
cuss smoothness of trajectories and computational complexity issues.

Exercise 6.2 (Model Predictive Control for a Simple Process Control
Problem):

(a) For the MPC for the surge tank problem in the chapter, investigate
the robustness of the strategy to measurement noise. To do this,
you should precisely define what you mean by good performance,
and investigate in simulation the effects of characteristics of noise
(e.g., mean and standard deviation) on performance for a fixed MPC
strategy.

(b) For the MPC for the surge tank problem in the chapter, investigate
the robustness of the strategy to unknown characteristics of the tank
cross-sectional area A(h(t)) (but for reasonable physical choices of the
cross-sectional area). To do this, you should precisely define what
you mean by good performance, and investigate in simulation the
effects of characteristics of shape of the tank (e.g., if you characterize
the shape with some nonlinear function, vary the parameters of the
function) on performance for a fixed MPC strategy.

Design Problem 6.1 (Planning Ahead for Obstacle Avoidance):

(a) Simulate the obstacle avoidance problem in the chapter using the
guidance algorithm defined there, but study a different placement of
obstacles in the environment. Show a placement that the guidance
strategy can successfully navigate, and one that it cannot successfully
navigate.

(b) Repeat (a), but for a guidance strategy that predicts into the future
multiple steps. Invent a placement of obstacles in the environment
for which multistep prediction into the future allows successful nav-
igation, where the strategy used in (a) does not. Hint: Consider a
strategy that generates a tree of points with a root at the current
position. For example, one approach would be to generate a circular
pattern, pick the best point on that circle, then generate a circle of
points around that point, and so on. The “best” plan is the path
of best points found. You could experiment with different planning
horizons and the frequency of replanning.
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(c) Invent a placement of obstacles such that the strategy that you de-
signed in (b) will fail in the sense that the robot will get stuck at
a location other than the goal position. Redesign the look-ahead
strategy so that it can successfully navigate it. Hint: Make the plan-
ning horizon vary with time in a way so that if it detects that it is
“stuck,” it lengthens its planning horizon until it finds its way around
the obstacle (out of the local minimum). Illustrate the performance
of the algorithm in simulation. Clearly explain your strategy and its
operation. Discuss algorithm complexity.

Design Problem 6.2 (Model Predictive Controller Design for Tanker
Ship Steering)�: In this problem you will study “model predictive con-
trol” (MPC) [192] for tanker ship steering. The tanker ship model that
you will use as the truth model (to represent the plant) in all simula-
tions should be the one given in Equation (4.5) that is simulated with a
Runge-Kutta method in Section 4.3.1.

(a) For planning (prediction), use the linear model in Equation (4.4).
Suppose this model is used with parameters specified for nominal
conditions for the tanker ship; however, suppose that you use a dis-
cretized version of this model with a sampling period of T = 1.
Hence, your discrete time model transfer function is

(−5.58e − 05)z3 − (5.635e − 05)z2 + (5.469e − 05)z + 5.524e− 05
z3 − 2.97z2 + 2.939z − 0.9696

which is obtained via a Tustin (bilinear) transformation when the
nominal parameters (“ballast” conditions) are used and T = 1. Ver-
ify this. How accurate is this model? Simulate this linear discrete
model and the nonlinear one. Highlight the similarities and differ-
ences in how the two models behave. In making this comparison
induce disturbances in the nonlinear model (e.g., weight changes,
wind, sensor noise, and speed variations) and explain how the plant
differs from the linear discrete model in each case.

(b) Next, develop a method to project into the future and determine
which sequence of inputs is best, then pick the first one to input to
the plant for the current sampling instant. Let N denote the number
of sampling instants that you simulate into the future. Suppose that
you use a linear batch least squares approach (see Section 10.1 and
in particular Equation (10.2)) to pick the best sequence of inputs to
the plant, based on the linear discrete model. The key to solving
this problem is to assume that the reference input trajectory is a
constant, and to formulate the optimization problem as a linear least
squares optimization problem. Show how to formulate the problem,
and give an example where you code the example and actually find
an optimal sequence of inputs to the plant. That is, simulate the
closed-loop system when the MPC is used.
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(c) Evaluate the performance of the MPC. Use similar reference inputs,
and a similar sequence of investigations into the effects of distur-
bances, to what we did for the neural and fuzzy control methods.
Develop a single numeric measure of performance (e.g., some quan-
tification of tracking and control energy) and study how this measure
changes for a range of values of the planning horizon N (make a plot).
Repeat this for each disturbance condition. What is the best value
to choose for N?

Design Problem 6.3 (Stability Analysis of Planning Systems)�: In
this problem you will study stability analysis of planning strategies for
two different plants that were studied in [196].

(a) Tank: Stability in the presence of uncertainty. Simulate, prove the
strongest type of stability property possible.

(b) Load balancing in flexible manufacturing systems: Stability in the
presence of traps. Repeat (a).
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Attention is a key component of all higher-level reasoning. A simplistic view
is that the mechanism of attention seems to turn parts of the brain on and off in
order to focus on what is currently important and ignore other things, but that
does not tell the whole story. Characteristics of such attention processes depend
on instincts, experiences and learning, and the human’s goals and motivations.
Attention helps us to cope with the large amount of information that can be
acquired with our sensory systems in a short amount of time. In a sense, atten-
tion is one method that has evolved to ensure that we can succeed in the face of
information overload. It helps us cope with complexity. Attention “filters out”
less useful information from our senses (it “selects” the useful information), and
thereby tries to optimally allocate cognitive resources. It also helps manage
the complexity of internal reasoning (e.g., problem solving) by allowing us to
focus on different internal representations, subproblems, and abstractions (i.e.,
it “selects” what to focus on when we are reasoning). Identifying components
of attention is in fact complicated, as it closely intermixes with what are often
considered other types of cognitive functions (e.g., planning and learning).

Due to its fundamental role in cognition, attention affects each type of con-
trol function that we have already considered in this part. On the other hand,
control functions can affect attention since they dictate the behavior of dynam-
ical attentional focusing. We may plan what to attend to, and have specific
“attentional control rules” for how to focus. We can learn that certain stim-
uli are important to attend to since they help us reach our goals, or that such
stimuli may play a significant detrimental role in our survival. We may learn
that other stimuli can be ignored (i.e., learn that attending to some stimuli has
no value to meeting our objectives). Indeed, we may even learn strategies for
improving our attentional capabilities (e.g., how to concentrate better). We will
not treat integrated attention-learning-planning in detail in this book. Instead,
we will focus on the principles of dynamic focusing of attention, and analyze
how control strategies can be used in attentional processes. We only briefly
discuss how attentional strategies can be used in engineering applications for
control and automation.

7.1 Neuroscience and Psychology of Attention

Attention is the process of focusing or concentrating. Often, we think of a
hierarchy involving, in order of higher to lower levels, consciousness, sleeping,
awareness, and attentiveness (e.g., you cannot be highly attentive when you
are unconscious or asleep). At different points in our day we may turn off our
attentional system. At others times our attentional system may be quite ac-
tively switching focus among different types of sensory data. For example, it
may at one time disengage from one focus, move, and then engage on another
focus. (Sometimes this is called “vigilance”.) Attentional processes in the hu-
man brain are implemented with neural networks, but we will not consider this
here (however, Design Problem 7.5 does request that you study the simulation
of connectionist models of attentional systems).
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We have certain types of attentional capabilities with all of our senses. For
vision, we can pay attention to the object that we are looking at (e.g., focusing
on these words as you read, while ignoring other peripheral visual stimuli or
sounds). For auditory sensing, we may learn how to ignore background noise so
that we are not distracted by it (e.g., if you have lived by a railroad track for a
long time you may find yourself not even noticing a periodic passing train). For
taste or smell, you can focus your attention on a certain spice in a food to try
to identify it. For touch, we often ignore certain tactile senses (e.g., if you are
holding this book, just an instant ago you probably did not notice the feeling
of touching the book because you were probably attending to comprehension of
the writing).

Attention allows us to
amplify some sensory
signals or internal
thought processes and
attenuate others.

A classical example of characteristics of our attentional system is given by
the so-called “cocktail party effect.” If you are at a party and there are many
small groups of people talking, you have the useful ability to ignore (attenuate)
what everyone is saying except for one person. The intriguing aspect, however,
is that the person you are attending to (amplifying their signal) is not necessarily
the one who is right next to you and talking the loudest. You may be able to
virtually ignore this person to listen in from a distance on a quieter conversation
that you are interested in (i.e., you may “eavesdrop”).

In one famous experiment on human attention, “event-related potentials”
(ERP) are measured via sensors on the scalp of a man via detection of electro-
magnetic waves. A specific ERP signal is the so-called “auditory N1 potential.”
The average voltage response for this ERP to an auditory stimulus that is at-
tended to is relatively large in magnitude compared to an auditory stimulus that
is not attended to. Some signals in the brain are amplified due to attention,
and attenuated via lack of attention.

7.1.1 Dynamically Changing Focus

In the context of vision it is useful to think of our focus of attention as a type
of “spotlight.” This spotlight may coincide with where our eyes are focused
(“overt” attention) or it may be that our eyes are focused at one point, and we
attend to (shine our attentional spotlight) a different point (“covert” attention).
Generally, we think of the spotlight as illuminating (amplifying) a region of
sensory input. The dark region outside the spotlight is the region you are not
attending to, and that visual sensory data are significantly attenuated.

There are two general types of control of attention, split according to what
dictates the changes in attentional focus (i.e., what controls the dynamics of
how the spot light moves). These are as follows:

Dynamic refocusing of
attention can be driven
by sensory data or
explicit cognitive control.

• Goal-driven (often “voluntary”) attention reorientation: Executive func-
tions in the brain may reorient the focus of attention. This is thought
of as a “top-down” refocusing that may be based on our problem-solving
strategy and goals. For example, if you are reading and you decide to
review a topic, you may go to the index of the book, find a key word,
then go to another page and shift your focus of attention to another topic.
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Typically, goal-driven reorientation of attention is slower and somewhat
less “potent” than the stimulus-driven reorientation of attention that we
discuss next.

• Stimulus-driven (often “involuntary”) attention reorientation: Sensory
signals can control the focus of attention in a “bottom-up” fashion. For
example, we seem to have an instinct to pay attention to certain visual
stimuli such as an object that is moving on a trajectory toward us, a
bright flash of light (e.g., a fire), or blood (with evolutionary forces likely
at work). Sensory inputs can achieve an automatic reorienting of atten-
tion, and often stimulus-driven attention reorientation is faster and more
potent than goal-driven reorientation. For instance, if while reading this
book, suddenly someone calls your name, yells in your ear, or your shirt
catches on fire, it is likely that your attention will be diverted from this
topic, no matter how interesting it is! Note, however, that if we repeatedly
receive some external cue, and that cue does not indicate danger and we
are not interested in it, we can typically learn to ignore it (i.e., learn not
to allow sensory signals to reorient our attention). Hence, learning can
play a key role in how our attentional dynamics operate.

Often, the two above methods to reorient attention are combined, or are inter-
laced over time. Clearly, both are influenced by knowledge acquired, and our
instincts that have been established via evolution.

7.1.2 Multistage Processing: Filtering, Selection, and Re-
source Allocation

A functional model of the multistage attention process is given in Figure 7.1.
There are sensory inputs that are “registered” (e.g., the receptor neurons detect
sensory stimuli), then information is passed to the perceptual analysis and se-
mantic encoding and analysis stages, where objects are recognized and processed
for meaning. Information is then passed to executive functions, decision-making,
memory, planning, etc. At the same time, there is feedback from executive
functions that indicate what should be focused on (e.g., for voluntary control of
attention).

Attention involves
filtering out (discarding)
some information.

There is evidence that at times, very early in the sensory processing process,
there is selection of which stimuli are important, and which can be “filtered
out.” Evidence shows that in some situations this can be done before perceptual
analysis or sensory encoding and analysis. For example, it seems that we have
instinctual rules about certain types of stimuli that result in stimulus-driven
reorientation of attention. It is this type of attentional control process that
is involved in “early selection.” On the other hand, “late selection” occurs in
some situations, where more abstract analysis and processing of sensory signals
(e.g., semantic encoding where meaning is determined) is conducted in order to
reorient attention. For example, in some cases there might be some processing
that determines whether the stimulus should gain full access to awareness, be
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Figure 7.1: Multistage attention process.

encoded in memory, or result in some response. This type of processing may
result in a goal-driven reorientation of attention.

Clearly, attention is a multistage process with feedback control paths. There
is a cascaded filtering process that occurs where the most important information
is focused on (“selected”), and less important information is ignored. Clearly,
such a process is essential for high level cognitive functioning in humans. We
have a finite amount of memory and processing power in our brain, and this
naturally leads to “bottlenecks” in information processing. Attention allows us
to allocate our cognitive resources to help us meet our goals. Hence, a key aspect
of attention is the strategies used to allocate cognitive resources, especially in
an “optimal” manner.

7.2 Dynamics of Attention: Search and Opti-

mization Perspective

Here, we briefly discuss how to represent some of the underlying mechanisms
of the dynamic focusing of attention as a search and optimization process. We
will only focus on the dynamics of tracking objects in an attentional focus, how
switching occurs from focusing on one object to another, and then the fine-
tuning of the focus of attention after refocusing and during dynamic movement
of an object. Our “model” is only based on the brief description in Section 7.1 of
the psychology of attention, not neurophysiological studies, biophysics, or any
of the other relevant underlying science. Hence, this is certainly of limited or
possibly no value from a scientific perspective. Then, why provide such a model?
First, the objective is to provide more detailed insight into the explanation of
attention in Section 7.1. Second, we do not necessarily need a good model
for the development of control and automation systems. The objective is to
get the reader to think about dynamically focusing on information and hence
ignoring other information. This is an essential feature of a complex automation
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problem where there is potential for “information overload” for the decision-
making system, and hence the need to focus on the most important information.

We assume that there is a search component that finds objects in the “field
of view” of the sensor and there is an optimization strategy at work that chooses
the highest priority object and tracks it as it moves through the field of view.
We do not focus on issues of the difference between where the sensor is directed
versus where the focus of attention lies. Consider the model of attentional

Dynamic focusing of
attention can be modeled
as optimization of a
time-varying cost
function.

focusing provided in Figure 7.2. There, we have sensory data entering from the
left into a block that processes these data to recognize objects, which we label
with i = 1, 2, . . . , N (we assume a finite number of objects are in the field of
view). For convenience, we assume in our discussion that the data are sensed
about objects in an (x, y) plane. Next, the objects are prioritized by assigning
a number pi > 0, i = 1, 2, . . . , N , where an object that is more important to
focus on is given a higher value of pi. Next, we assume that an “attention map”
Ja(x, y, t) is adjusted to represent the object positions and priorities at time
t. Then, the priorities and attention map are input to a module that controls
the focus point (i.e., where the focus is located in the (x, y) plane). To achieve
control, it first compares the priorities to each other and picks the object i∗(t)
to focus on at time t that has the highest priority. That is, it lets

i∗(t) = arg max
i=1,2,...,N

{pi}

(argmax is simply the notation for finding the index of the priority that has
the maximum value). Next, to pick the focus point, which we call (xa, ya), it
considers which object should be focused on, where the current focus is relative
to that object, and updates the focus point. It is assumed that it cannot move
the focus point arbitrarily fast when it is trying to maintain focus on a particular
object (e.g., as it moves across the plane), but that it can switch focus from one
object to another very fast.

Sensory
data Recognition

of objects

Assign
priorities
to objects

Adjust
spatial
attention
map

Control of
attention focus

Control of
focus point

Select object
to focus on

Focus attention
on (x ,y )

List of 
objects

List of 
objects and
priorities

Attention
map, J (x,y,t)a

a a

Focus point affects type of sensory data that are collected

Figure 7.2: Functions involved in dynamically focusing attention.
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7.2.1 Attentional Map

The key to our model of the dynamic focusing of attention lies in the definition
of the attentional map Ja(x, y, t). Here, we think of this map being generated
internally (e.g., via pattern recognizer/semantic analysis), and assume that it is
being used to indicate where it is important to focus on. In particular, we will
define it as a continuous surface with Ja(x, y) ∈ [−1, 0], where the point

(xa, ya) ∈ {(x∗, y∗) : Ja(x∗, y∗) ≤ Ja(x, y) ∀x, y}
is a minimum point on the surface (note that there could be more than one such
point, representing the possibility of a demand for split attention between equal
priority points).

An example attentional map is shown in Figure 7.3. Here, we show an
example attentional map that represents that there are two objects in the field
of view: one that is high priority (the deeper valley) and one that is not as
important (the shallow valley). The point that we want to focus on is the one
defined by the point where the minimum is achieved on this map; that is, where
the highest priority object is located.

Figure 7.3: Example attentional map.

It is important to note that the map shown in Figure 7.3 is not static. It
changes in several ways. First, if the objects move, the valleys move dynamically
about the field of view. Also, if the field of view of the sensor is changed, the
positions of the valleys change. The shape of the valleys may change (e.g., the
widths of the valleys) depending on object positions. Moreover, the pi priorities
of the objects may change, which would dynamically change the depths of the
valleys. For example, it may be possible that as relative positions of the objects



7.2 Dynamics of Attention: Search and Optimization Perspective 271

changes, the shallow valley gets deeper and the deeper valley more shallow. If
this happens, we would want the attentional focus to change from one object
to another. If the valleys move, we want the attentional system to “track” the
object that is of highest priority. Finally, note that as the field of view changes,
and new objects appear and some disappear, it is possible that the number of
valleys changes dynamically over time.

7.2.2 Optimization/Search Process for Focusing

It should be clear that in order to implement an attentional strategy using the
attentional map, one could take an optimization/search perspective that has
the following two components:

• High priority object tracking: Suppose that the current focus of attention
(xa, ya) is located at the global minimum of the attentional map Ja(x, y, t)
(all other points on the Ja map are strictly above this point). Suppose
that the field of view is constant, that objects do not leave the field of
view, and that priorities of objects in the field of view stay constant.
Suppose, however, that all the objects are moving and that some cognitive
process keeps the attentional map up to date by dynamically adjusting
the map. This will result in the centers of the valleys moving about the
field of view dynamically. How does the attentional system work with
the attentional map in order to maintain focus directly on the highest
priority target? We could use a hill-climbing algorithm to continually
climb down the attentional map at each step (e.g., it could move the focus
of attention point in steps according to how someone would walk down a
hill, moving in directions at each step toward the most significant decrease
in the attentional map). Then, if the map does not move too fast, and
the hill-climbing algorithm can keep up, it will tend to keep the focus
of attention near the center of the valley that corresponds to the highest
priority object. As the object moves about the field of view, the algorithm
will tend to track the object.

• Changing focus: Next, suppose that the objects move about the field of
view, and their priorities change dynamically. In this situation, the at-
tentional tracking algorithm may track the highest priority object for a
period of time, but its priority may decrease, and the priority of another
object may increase. At the point where the global minimum of the atten-
tion function changes to correspond to the object with increasing priority,
it should be the case that the strategy can switch focus from one object
to another. How can this be achieved? Well, if the minimum points are
known, switching is easy via a simple monitoring of the values of the min-
imum points of the attention function, ranking those values, and choosing
to focus on the smallest one (a simple type of optimization). If those min-
imum points are not known, then one would need some type of “global”
optimization procedure to determine when to switch. One approach would
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be to have N tracking algorithms of the type described above, and sim-
ply select for focusing the one that achieves the lowest value. There is
some evidence that an analogous strategy is used in some cases in some
biological attentional systems.

In summary, we see that one way to view the attentional process is as an opti-
mization process for a cost function that is time-varying. Such an optimization
problem can be very difficult to solve, but ideas from the optimization methods
discussed in Part III and Part V provide many approaches to the problem.

7.3 Attentional Strategies for Multiple Preda-
tors and Prey

Consider an organism that is in some environment with multiple predators, and
it is trying to attend to all of them to maintain as accurate a picture of its
environment as possible in order that it can defend itself. Moreover, we assume
that in the same environment, there are multiple prey that the organism would
like to pay attention to in case it decides to pursue one of these to kill and
eat. How should the organism dynamically focus its attention on the predators
and prey to ensure its success in foraging and surviving? In this section we
will model such a problem and introduce a variety of attentional (“scheduling”)
strategies for focusing attention. Hence, we think of needing to schedule our
cognitive resources in order to maintain an accurate view of the environment.
We will simulate the strategies and discuss issues in their design.

7.3.1 Cognitive Resource Allocation Model

We will assume that there is a recognizer for predators and prey that provides
information to our attention strategy, so that it simply needs to decide what
to focus on (cognitively process). The focus here is on the selection process
that can be occurring in either early or late selection, or both. The key is
that there is a “limited channel” or one resource that must be shared, and the
attention strategy must decide how it is shared. We ignore issues of the possible
differences in where the organism’s sensor is pointed (e.g., where its vision is
directed), versus where the center of the focus of attention is.

Quantifying Length of Time Predators/Prey Are Ignored

Suppose that we assume that the number of predators and prey is constant and
that we number them and denote the set of predators and prey as

P = {1, 2, . . . , N}

Let t denote time. Let
Ti(t), i ∈ P, t ≥ 0
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denote the last time at which predator/prey i was detected (later you will see
that this is defined by the instant t′ when, by focusing on predator/prey i,
we get Ti(t′) = 0). By “detected” we mean that the organism has focused its
attention on the predator or prey, and has identified it and its characteristics
(e.g., its position).

Generally, we will view the attentional strategies as “controllers” that take
as inputs the Ti(t), i ∈ P , and choose which predator/prey to focus on next.
This is shown in Figure 7.4. We will assume that there is a cognitive tracking

An organism seeks to
schedule its cognitive
resources over time to
enhance its chance of
survival.

mechanism that is trying to estimate where predators/prey are moving, and
that it has a certain level of accuracy in achieving this task. We will not require
perfect accuracy in tracking multiple predators/prey; we will allow them to be
“lost” for a period of time. Loss of tracking could result from predators or prey
hiding (e.g., behind a tree), due to the sensor having only a limited “field of
view,” or from possible additional (but finite) time required to reacquire tracking
when attentional focus is shifted. We will discuss how we model such issues in
a moment.

Predator/prey
environment

Strategy
(controller)

Focus on
predator/prey

Attentional strategy
picks which 
predator/prey to focus on

Ti

Figure 7.4: Attentional strategy viewed as a controller.

Suppose that initially
Ti(0) = 0, i ∈ P

so that we act as though initially we had simultaneously detected all the preda-
tors/prey, which is clearly physically impossible. Note, however, that this is a
good initialization considering the fact that our attentional strategies will make
decisions about which predator/prey to focus on based on the sizes of the Ti(t),
i ∈ P (i.e., based on how long they have been ignored). Basically, for many
strategies this initialization indicates that at t = 0, there is no priority to seek
one predator/prey rather than any other one. For many strategies, an initial-
ization with Ti(0) > Ti′(0) for i �= i′ would indicate an initial preference to first
focus on the ith predator/prey over predator/prey i′.

Note that if the organism was not actively engaged in paying attention to
its environment (e.g., it was sleeping or doing something else), then clearly

Ti(t) → ∞, i ∈ P, t → ∞

since it will never detect a predator/prey. The goal of the attentional strategy is
to try to avoid Ti(t) → ∞ for any i ∈ P and indeed it will try to keep the Ti(t)
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values as small as possible since this represents that the organism has recently
detected each predator/prey and hence has good information about the preda-
tors/prey. It is assumed that each predator/prey will persistently periodically
“appear” (i.e., not be occluded by some object, or lost due to poor cognitive
tracking) so that there is a finite amount of time between predator/prey appear-
ances to the attentional strategy; this is assumed since, if some predator/prey
i ∈ P only appears for a finite amount of time, and never appears again, then
at some point it will clearly be impossible to detect it again so that Ti(t) → ∞
as t → ∞.

The organism wants to
minimize the amount of
time it ignores any
predator/prey to ensure
it has accurate
information about its
environment.

Environmental and Cognitive Delays Affecting Attentional Switching

Let δ(t) > 0 denote a “processing delay” that may represent the delay from the
environment (e.g., due to a predator being occluded for a brief period of time)
and a “cognitive processing delay.” The cognitive processing delay may be used
to represent the amount of time that it takes for the organism to switch from
paying attention to one predator/prey i to another predator/prey j, j �= i. We
will call this type of delay δi,j and assume it is a fixed known delay (if it were
unknown but bounded, then the attentional strategies and analysis still hold).
For convenience, we will assume that these attentional switching delays are all
the same and will denote that value by δs = δi,j for all i, j ∈ P .

The variable δ(t) may also incorporate delays in being able to detect a preda-
tor/prey. For instance, each predator/prey has a type of frequency of appear-
ance that is driven by a variety of characteristics such as how effectively the prey
can hide in the current environment, or how fast a predator can run. Suppose
that for a known predator/prey type i, there is some bound δi on the amount of
time that it would take for the organism to first realize that the predator/prey
may be at some location, if that was the only predator/prey that the organ-
ism focused on (clearly, this would depend on the predator/prey appearance
period). Getting the first indication of the presence of a predator or prey does
not correspond to achieving a detection of a predator/prey. Suppose that δe(t)
denotes the delay incurred by the organism in first getting an indication of the
presence of a predator/prey, from the time that it gets switched to focus on
that predator/prey. It could be that many characteristics contribute to this de-
lay, including cognitive tracking mechanisms and environmental characteristics.
Note that if we let

δ̄ = max
i

{
δi
}

then δe(t) ≤ δ̄. Let
δ(t) = δs + δe(t)

For convenience, we let δ denote a constant that is the least upper bound on
δ(t) so that δ(t) ≤ δ (i.e., we simply remove the time index to denote the least
upper bound on the variable).

To summarize, when the attentional strategy issues a command to focus on
predator/prey i, there is a delay to switch to the attention to focus on it, and
then there is an additional (time-varying) delay since the predator/prey may
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not have appeared. This additional delay is shorter than δ̄. After these two
types of delays occur we assume that the organism knows that a predator/prey
is where it is focusing (but we do not assume that the organism has identified
all the characteristics of the predator/prey and hence, has not yet “detected”
it).

Rate of Cognitive Processing

We will suppose that the organism may take additional time to detect a preda-
tor/prey that it has not detected for a long period of time. That is, we think of
the organism as having successively more difficult times finding a predator/prey
that it has not found for longer periods of time since it, in a sense, becomes
“desynchronized” with that predator/prey and cannot easily determine when or
where it will appear, or its other characteristics. To quantify this phenomenon,
we will use parameters

ai, i ∈ P

where 1/ai represents a “rate” at which the organism cognitively processes in-
formation about predators/prey in order to detect them. These ai parameters
require further explanation. Consider the case where there is only one preda-
tor/prey (N = 1), named “predator/prey 1.” Suppose that at some time t′,
the amount of time that has elapsed since the last time predator/prey 1 was
detected is T1(t′) > 0 as shown in Figure 7.5.

Predator/prey appearances

T (t')1

δ
δ

s

e(t')

Last time
predator/prey 1 was
detected

Declare predator/prey 1
detected

Time, t

Decide at time
t' to focus on 
predator/prey 1

Choice of a  parameter changes
the slope of this line

Slope=1

1

Figure 7.5: Illustration of timing of organism decision-making and preda-
tor/prey appearances (note that pulses represent the first times that preda-
tors/prey appear).

At time t′ + δs, the organism has switched its focus to predator/prey 1.
So, starting at t′ + δs, the organism is looking for predator/prey 1 and before
t′ + δs + δ1, we know that a predator/prey appearance will occur. Name the
delay between achieving a switch in focus to the time where a predator/prey
appearance is first found δe(t′). Then, at time t′ + δs + δe(t′), the organism
initiates the completion of the “detection” of predator/prey 1 and the amount
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of time that it takes to do that is dictated by the a1 parameter. (As you will
see below, smaller values of a1 correspond to it taking shorter amounts of time
to fully detect the predator/prey.) We declare predator/prey 1 “detected” at
the time at which T1 is decreased to zero. Next, we need to further clarify
the meaning of the ai parameters by explaining how they produce the slope
of the bold line in Figure 7.5 and hence quantify how long it takes to detect
a predator/prey. Also, we need to explain how the organism chooses which
predator/prey to focus on. To do this, we will introduce a specific attentional
strategy and explain how to interpret the ai, i ∈ P parameters.

7.3.2 Focus on a Predator/Prey Ignored for the Longest
Time

First, let Dkr denote the time at which the attentional strategy chooses a preda-
tor/prey to focus on (i.e., it is the decision time), and suppose that D1 = 0. An
attentional strategy that focuses on the predator/prey that was ignored for the
longest time makes choices of which predator/prey to focus on such that at Dkr ,
the attentional strategy chooses to focus on predator/prey i∗(kr) such that

Ti∗(kr)(Dkr ) ≥ Ti(Dkr ), ∀i ∈ P (7.1)

and focuses on it until it detects it. If there is more than one maximizer, then
the attentional strategy will simply choose one of these at random.

Decision-Timing for Attentional Switches

First, notice that the actual time when focusing starts for predator/prey i∗(kr)
occurs after some delay, and then it may take some additional (but finite time)
for the predator/prey to appear (δe(Dkr ) ≤ δ̄), and still more time based on how
long it has been since the predator/prey was last detected (i.e., the effect of the
ai). Note also that while the delays occur, the time since the last detection is
still increasing. Hence, the times when the attentional strategy makes decisions
are given by

Dkr+1 = Dkr + δ(Dkr) + ai∗(kr)Ti∗(kr)(Dkr ) + (Dkr+1 − Dkr) ai∗(kr) (7.2)

Here, the next decision point Dkr+1 is the time when the detection of the last
predator/prey that was focused on is detected and this formula gives the time
Dkr+1 when the next decision will be made. The value of Dkr+1 is given by the
sum of four terms. The first term is simply the last decision point Dkr . The
second term is the delay δ(Dkr ) where

δ(Dkr ) = δs + δe(Dkr )

Third, the term ai∗(kr)Ti∗(kr)(Dkr ) is the amount of time it takes to detect
predator/prey i∗(kr) that arises due to the fact that we have not detected it
for some time. (Note the proportionality—if it has not been detected for a
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long time, then it will take more time to find it and this represents that preda-
tors/prey that have not been detected for a long time become more difficult
to detect.) Finally, the fourth term quantifies that additional time is needed
to detect the predator/prey simply because during the time that the cognitive
processing for the predator/prey is occurring, even when it is focused on, the
length of time since the last detection continues to increase (we do not consider
a predator/prey i∗(kr) fully detected until Ti∗(kr)(Dkr+1) = 0).

Using simple algebra to rearrange Equation (7.2), we get

Dkr+1 = Dkr +
δ(Dkr ) + ai∗(kr)Ti∗(kr)(Dkr )

1 − ai∗(kr)
(7.3)

Notice that as expected, the delay δ directly influences the rate at which we
can switch attentional focus. Also, this equation shows us that the length of
time between decisions can be lengthened if a particular predator/prey has been
ignored for too long due to the effects of the ai parameters.

The Cognitive Capacity Constraint

In fact, using Equation (7.2), it is now possible to complete the explanation of
Figure 7.5 and further explain how to interpret the ai parameters. What is the
effect of the ai parameters on how fast a predator/prey is detected? Notice that
we incur the delay δ(t), and from Figure 7.5 we see that the slope of the bold
line dictates then how fast we achieve detection. What is the slope of the bold
line in Figure 7.5? We use simple geometry to determine this. First, notice that
the peak value

Ti∗(kr)(Dkr + δs + δe(Dkr )) = Ti∗(kr)(Dkr) + δs + δe(Dkr )

since the slope of the dashed line in Figure 7.5 is unity. Next, notice that
Equation (7.3) gives the amount of time between the decision time Dkr and
time of detection Dkr+1 so that the slope of the bold line in Figure 7.5 is

−
⎧⎨
⎩ Ti∗(kr)(Dkr) + δs + δe(Dkr )

δs+δe(Dkr )+ai∗(kr )Ti∗(kr )(Dkr )

1−ai∗(kr )
− (δs + δe(Dkr ))

⎫⎬
⎭

which with some simple algebra reduces to

− (1 − ai∗(kr))
ai∗(kr)

(7.4)

In a moment you will see that it is necessary that ai∗(kr) < 1. Using this fact,
Equation (7.4) indicates how fast detection occurs as shown in Figure 7.6 (i.e.,
how fast cognitive processing occurs). With small values of ai (high values
of 1/ai, the rate of processing by the organism in trying to detect) we get
fast detection, and with larger ones we get slower detection. So, how do we
interpret the ai parameters? They are parameters used to model how difficult
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Figure 7.6: Magnitude of the slope of the bold line in Figure 7.5 for various
values of a1.

it is to detect a predator/prey, where if a predator/prey has not been detected
for a long period of time, it can become more difficult to detect.

Clearly, it is necessary that the “capacity condition”

ρ =
N∑

i=1

ai < 1 (7.5)

be satisfied in order for any attentional strategy to ensure that the values of Ti(t),
i ∈ P , remain bounded. How should this capacity condition be interpreted?
Intuitively, it says that it must be the case that even if the predators/prey can
become more difficult to detect if they have not been detected for a long time,
the organism must be able to operate “fast enough” to be able to find them.
For instance, Equation (7.5) is satisfied if for each i ∈ P ,

Cognitive capacity
quantifies when an
environment presents too
large of an attentional
load for an organism so
that it will miss
important information.

ai <
1
N

This shows us that as the number of predators/prey grows, it is possible that
the cognitive capacity of the organism is overwhelmed and it is being given too
much work, so that there is no way that it can keep up, so it will end up being
the case that Ti → ∞ for at least some i ∈ P (or more than one i).

Equation (7.5) can be used to gain insight into the operation of attentional
strategies by using the ideas in [418]. First, note that you can think of ai as the
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amount of “load” (or the number of time units of “work”) that is brought to
the organism for the attentional task at each time instant by predator/prey i.
Hence, if the organism is to succeed, on average the organism can only afford to
spend a portion (1−ρ) of its total time being idle. If you assume that the delay
δ(t) is a constant δ, then each decision time when we switch from focusing on
one predator/prey to another costs δ time units of idle time; hence, the average
frequency of decision times is bounded above by

1 − ρ

δ

Now, if ρ is very close to 1 (representing an organism that is heavily loaded),
(1− ρ)δ−1 is very small so the frequency of switching attentional focus between
different predators/prey is low (which means that it can take a long time for
the organism to find each predator/prey, so the organism will tend to have large
Ti(t) values and hence will not perform as well).

7.3.3 Additional Attentional Strategies

There are a wide variety of possible attentional strategies. Next, we consider
one that is more general than the one of the previous subsection given in Equa-
tion (7.1), in the sense that at each decision point Dkr it could make exactly
the same decision as it did there, but could also make other choices.

Focus on a Predator/Prey Ignored More Than the Average One

The particular strategy is given by choosing the predator/prey to focus on that
has been ignored more than the average time that all the predators/prey have
been ignored. In particular, at Dkr , the attentional strategy chooses to focus

Attentional strategies are
feedback controllers that
dynamically refocus.

on predator/prey i∗(kr) such that

Ti∗(kr)(Dkr ) ≥ 1
N

N∑
i=1

Ti(Dkr) (7.6)

and focuses on it until it detects it (in a similar way to the strategy of the
last section). Note that Equation (7.3) also holds for this strategy, and that of
course the capacity condition Equation (7.5) must hold.

Note that for this strategy, any predator/prey that has been ignored for
more time than the average predator/prey has can be focused on. How does
the strategy choose which particular predator/prey to focus on? One simple
approach is to randomly choose one. However, more sophisticated criteria are
possible. For instance, it could try to optimize some other system quantity, or it
may use Equation (7.6) to provide a set of possible predators/prey to choose and
then use “predator/prey priorities” (some indication of which predator/prey is
most important) to choose the one to focus on. In the simulations of the next
section, when we study this strategy, we will assume that predator/prey i has
priority i and higher values of i correspond to higher priorities.
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Focus on a Predator/Prey That May be Most Difficult to Find

An attentional strategy that focuses on the most difficult to find predator/prey
makes choices of which predator/prey to focus on such that at Dkr , the atten-
tional strategy chooses to focus on predator/prey i∗(kr) such that

ai∗(kr)Ti∗(kr)(Dkr ) ≥ aiTi(Dkr ), ∀i ∈ P (7.7)

and focuses on it until it detects it. If there is more than one maximizer, then
the attentional strategy will simply choose one of these at random.

Clearly, this is similar to the attentional strategy that focuses on the preda-
tor/prey that has been ignored for the longest time that was given in Equa-
tion (7.1). Here, however, we have the scalings by the ai parameters and this
changes the attentional strategy. Intuitively, since ai is the amount of “load,”
you can think of this attentional strategy as choosing the the most difficult one
to find predator/prey to focus on.

Focus on a Predator/Prey Expected to be Most Difficult to Detect

The strategy to be developed next is motivated by the above strategy and is
modeled after the one in [418] that has been found to be very effective in a
different class of resource allocation problems. Recall from our earlier analysis
that if you pick predator/prey i∗(kr) to focus on,

Ti∗(kr)(Dkr ) + δs + δe(Dkr )

is the peak that Ti∗(kr)(Dkr ) reaches before the predator/prey is detected. Note
that in general we do not know δe(Dkr ) since it depends on how the organism
decision times are aligned with the predator/prey appearance times. A known
bound, however, on the peak value is given by

Ti∗(kr)(Dkr ) + δs + δe(Dkr ) ≤ Ti∗(kr)(Dkr ) + δs + δi∗(kr)

Hence, predators/prey with larger δi values (i.e., ones with possibly lower fre-
quency appearances) can be considered on average more difficult to detect in
this framework. Also, the ai parameters, which model another characteristic of
the difficulty of predator/prey detection, will also affect how soon detection can
occur.

Consider choosing predator/prey i∗(kr) to focus on at time Dkr if

i∗(kr) = argmax
i

{
wi

(
Ti(Dkr ) + δs + δi

(1−ai)
ai

)}
(7.8)

where wi > 0, i ∈ P are weighting factors. Notice that in this formula, the
numerator is the bound on the peak value and the denominator is the magnitude
of the slope of the bold line in Figure 7.5 given by Equation (7.4). Why divide by
the slope in the above formula? If the slope is greater in magnitude (smaller ai

value), this corresponds to an easier-to-detect predator/prey and this will result
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in Equation (7.8) with a reduced emphasis on focusing on that predator/prey.
Hence, the strategy picks the predator/prey to focus on that is expected to be
the most difficult to detect in the sense that it estimates which predator/prey
will take the longest time to detect and selects it (assuming wi = 1 for all i). To
see this geometrically, notice via Figure 7.5 that the numerator Ti(Dkr )+δs +δi

in Equation (7.8) should be thought of as an estimate of where the peak occurs
and we divide it by the slope; hence, this value is the length of time that elapses
from the time that the peak occurs, until detection.

The weighting factors wi can be chosen to force the organism to focus on
some predators/prey more than others. Equal weighting would correspond to
the choice of wi = 1 for all i ∈ P . If wi >> wj , i �= j, then Equation (7.8) will
tend to choose i rather than j to focus on. This may be useful in some preda-
tor/prey environments since it provides a way to indicate which predator/prey
should be focused on. Another possibility is to weight predators more than
prey so that the organism always focuses on those more. While the weighting
factors provide an opportunity to tune the strategy, there is no guarantee that
this strategy will be better than any of the others introduced above according to
typical performance measures. Generally, you would want to choose the weights
so as to make the attentional strategy perform as successfully as possible (where
you define what is meant by “successfully”).

7.3.4 Attentional Strategies Based on Predator/Prey Pri-
ority

In the last subsection, we introduced two ways to incorporate priorities of preda-
tors/prey into scheduling strategies. First, in Equation (7.6) we used priority
as a “secondary” selection mechanism to choose from the set of predators/prey
that has been ignored longer than the average one. Second, in Equation (7.8) we
introduced the weighting factors wi which allow us to emphasize the processing
of one predator/prey more than another (and this will be illustrated in the simu-
lation examples in Section 7.4). In this subsection we will introduce yet another
priority scheme, but one that integrates the consideration of predator/prey pri-
orities so that predator/prey priority is neither a secondary consideration nor
set by secondary weighting parameters that have loose connections with the
predator/prey priorities.

Attentional strategies
can include information
on which predators/prey
are most important to
pay attention to.

To do this, we introduce a set of parameters pi > 0, pi ∈ 	, i ∈ P , that repre-
sent the predator/prey priorities (larger values correspond to higher priorities).
We allow the designer to take two different views of the priority parameters:

1. Predator/prey environment information: You can assume that the values
of the parameters pi, i ∈ P , are set a priori and remain constant through-
out the activity (e.g., foraging) of the organism. Hence, you can view them
as part of the a priori information about the predator/prey environment.

2. Design parameters: Alternatively, you may view the priority parameters as
design parameters that can be tuned (e.g., via extensive simulations of the
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predator/prey environment) before an organism engages in the attentional
task.

How do we integrate the priority parameters into each of the strategies de-
fined in the previous subsections? For example, how can we use them to modify
the strategy in Equation (7.1) where we chose to focus on the predator/prey
that was ignored the longest. Here, we simply scale Ti by pi, i ∈ P in each of
the cases and then make all decisions based on the same formulas as above, but
with Ti replaced by piTi, i ∈ P . What is the effect of such a scaling? It serves
to scale the lengths of times that the predators/prey have been ignored, with
higher weights given to predators/prey with higher priorities. Thereby, it biases
the attentional strategy toward higher priority predators/prey.

For such strategies to be stable, it is clearly necessary that we modify our
capacity condition. With priorities, we require that

ρp =
N∑

i=1

piai < 1 (7.9)

be satisfied to ensure that the values of Ti(t), i ∈ P , remain bounded.
How does the scaling affect the behavior of the strategies? While it is clear

that predators/prey i ∈ P with Ti scaled by higher values of pi will have piTi

grow faster (the slope of the line representing the growth is pi), the behavior
is also affected by the range of values that you allow for the priorities. For
instance, if you dictate that your priorities pi ∈ (0, 1], i ∈ P , then if you were
given some ai values that satisfied Equation (7.5), the pi and ai values would
also satisfy Equation (7.9). Hence, if you use a proper range of values for the
priority parameters, any strategy that satisfies the capacity condition without
priorities will satisfy Equation (7.9). Note that there is really no reason why
you cannot make the choice of pi ∈ (0, 1], i ∈ P , since the parameters are simply
used to rank order the predators/prey. It is also interesting to note that if you
repeat the analysis in Sections 7.3.1 and 7.3.2, the result in Equation (7.4) still
holds (due to cancellations of the priority parameters in the algebra); hence,
simulation of the class of priority strategies discussed here is quite similar to
the earlier strategies.

To summarize, you can embed the priority parameters into any of the above
strategies. For instance, Equation (7.1), when converted to a priority scheme
using this approach, becomes one where the attentional strategy chooses to focus
on predator/prey i∗(kr) such that

pi∗(kr)Ti∗(kr)(Dkr ) ≥ piTi(Dkr ), ∀i ∈ P (7.10)

In this way you can have a strategy that selects predators/prey based on both
priorities and how long they have been ignored. The scheduling strategies in
earlier subsections are modified in a similar manner. Finally, note that you can
still use the two priority schemes we discussed earlier in conjunction with this
priority scheme.
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7.3.5 Viewpoint of Attention Scheduling as Online Opti-
mization

Next, note that we can provide an interpretation of the above attentional strate-
gies in terms of optimization. The key is to think of the attentional decision-
making in terms of optimizing a cost function Jp, and that Jp is the result of a
computation made in the scheduler (controller) so that it can make scheduling
decisions. With this view, we have the following:

Attentional strategies
make decisions that
optimize some
short-term performance
measure in hopes of
optimizing a long-term
one.

• Focus on a Predator/Prey Ignored for the Longest Time: Here, for the
strategy in Equation (7.1), we have

Jp = −max{Ti(Dkr ) : i = 1, 2, . . . , N}

and hence in trying to maximize Jp, we try to minimize the longest time
that the organism ignores any predator/prey. In this way, the scheduler
tries to focus on predators/prey so as to keep the values of Ti(t) low so
that the organism has good information about the predators/prey.

• Focus on a Predator/Prey Ignored More Than the Average One: Here, for
the strategy in Equation (7.6), we have

Jp = −
N∑

i=1

Ti(Dkr )

and hence in trying to maximize Jp, we try to minimize the average time
that the organism ignores any predator/prey (it attempts this even though
there is not a single maximizer at each decision time). Again, the scheduler
tries to focus on predators/prey so as to keep the values of Ti(t) low so
that the organism has good information about the predators/prey. Here,
however, it makes decisions in a different manner since it tries to maximize
a different Jp.

Using this same approach, it is simple to specify Jp measures for the other
strategies we defined above. For instance, for the strategy in Equation (7.7), we
have Jp = −max{aiTi(Dkr ) : i = 1, 2, . . . , N} and hence, in trying to maximize
Jp, we try to minimize the longest time that the organism ignores any preda-
tor/prey, but scaled by the “load” of the predator/prey. For Equation (7.8), our
Jp would quantify the desire to keep the peaks of the Ti(t) as low as possible
(which may or may not result in a lower average delay). Clearly, if you embed
a priority scheme via the priority parameters pi, i ∈ P , the same concepts hold.

Note that the above Jp measures should not be thought of as measures
of attentional success over the long term, but as instantaneous measures that
are used to guide decisions about which predator/prey to focus on. Achieving
an instantaneous optimization does not necessarily result in making optimal
decisions to try to ensure that the organism gets the best information over the
long term.
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7.4 Design Example: Attentional Strategies

In this section, we will simulate the attentional strategies of the last section in
order to provide insights into their operation. Moreover, we will discuss several
issues in how to design attentional strategies.

7.4.1 Simulation Approach and Performance Measures

For convenience, we simulate the predator/prey environment and organism as
a discrete-time system. We will use a sampling period of Ts = 0.01 and in
all our simulations we will have N = 4 predators/prey. Each predator/prey
will be characterized by a sequence of appearances, which we simply model as
unity height signal at some sampling instant. When there is no appearance, the
signal height is zero. For instance, for all our simulations below we will have
the predator/prey appearance sequences shown in Figure 7.7. We use different
frequencies of appearance for different predators/prey, but for simplicity we keep
the appearance frequencies constant (for predators/prey i = 1, 2, 3, 4 we have
them appear every 1, 1.1, 1.2, and 1.3 sec.).

Figure 7.7: Predator/prey appearance sequences, for N = 4 predators/prey
(predator/prey i = 1 is the top plot, i = 2 is the next one down, i = 3 is below
that, and i = 4 is the bottom plot).

Suppose that we know that the bounds on the spacing between appearances
are

δ1 = 1.05, δ2 = 1.15, δ3 = 1.25, δ4 = 1.35



7.4 Design Example: Attentional Strategies 285

Notice that these are simply bounds for periods given in Figure 7.7. We choose
δs = 0.03. To model detection difficulty, and in order to satisfy the capacity
condition, we choose

a1 = 0.1, a2 = 0.2, a3 = 0.3, a4 = 0.1

This gives
∑4

i=1 ai = 0.7, which represents that the organism will be quite busy
in detecting predators/prey (lower values of this sum correspond to light loads).

There are several ways to measure performance of the attentional strategies.
Here we will compute the average of the length of time since any predator/prey
has been detected

1
N

N∑
i=1

Ti(k)

at each step k. We will also compute the time average of this quantity (i.e., the
time average of the average values) and the maximum average value achieved
over the entire simulation run. We will compute the maximum time that any
predator/prey has been ignored at each time step k

max
i

{Ti(k)}

We will also compute the time average of this quantity (i.e., the time average of
the maximum values) and the maximum of the maximum values achieved over
the entire simulation run. In order to measure how well we have focused on
higher priority predators/prey, we will use

1
N

∑
k

i∗(k)

where i∗(k) is the predator/prey chosen as step k. Clearly, higher values of this
measure will correspond to the case where on average, higher priority preda-
tors/prey were focused on, in the case where we use i to both label the preda-
tors/prey and as a priority parameter.

7.4.2 Attentional Strategy Behavior: Focus on Longest
Ignored

Here, we will illustrate the performance of the attentional strategy in Equa-
tion (7.1) that chooses the predator/prey to focus on that has not been detected
for the longest period of time.

First, consider Figure 7.8 where the top plot shows i∗(t), the predator/prey
being focused on at each time. The plot below it shows T1(t), and the bottom
plot shows T2(t). From the top plot it is interesting to note that the sequence
of predators/prey that is focused on is: 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . .. But, the
lengths of time that each is focused on is different, due to how the organism
decision times happen to line up with the predator/prey appearances and due
to the ai values. Notice the periodic behavior of the T1(t) and T2(t) plots (due
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to the switching from focusing on one predator/prey to another). Figure 7.9
shows a similar plot, but for predators/prey 3 and 4. Notice that the periodic
behavior of T3 and T4 is different from those shown in Figure 7.8. Ultimately,
the pattern of the behavior of the Ti(t) depends on the pattern of predator/prey
pulses, the ai values, the delay values, and how the predator/prey appearances
align with the decision times.
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Figure 7.8: Attention scheduler decisions, and Ti(t) for predators/prey 1 and 2.

Figure 7.10 shows a summary view of the dynamics of the attentional schedul-
ing process. There, in the top plot, we also plot the average of the priorities
of the predators/prey (assuming that priorities are defined by the i indices).
The bottom plot shows the dynamics by showing all the Ti(t) functions on one
plot so that you can see the pattern of switching, and the maximum amount of
time that the organism ignores any predator/prey. In Figure 7.11, we plot the
performance measures of the average length of time since the last detection and
maximum length of time since the last detection (and their average values as
the straight lines).

Next, the program outputs some numeric values of the performance mea-
sures: (i) The time average of the priorities is 2.5670, (ii) the time average of
the average values of the lengths of times waited is 3.4066, (iii) the maximum of
the average values of the lengths of times waited is 5.7949, (iv) the time average
of the maximum values of the lengths of times waited is 5.8297, and (v) the
maximum of the maximum values of the lengths of times waited is 9.6199.

The time average of the average values is 3.4066, and this provides a good
measure of scheduler performance. What does this value mean? It means that
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Figure 7.9: Scheduler decisions, and Ti(t) for predators/prey 3 and 4.

on average, the organism detected each predator/prey every 3.4066 seconds. Is
this good performance? Notice that the predator/prey appearances occurred
every 1, 1.1, 1.2, and 1.3 seconds (predators/prey i = 1, 2, 3, 4 respectively).
Considering the relative low rates of processing to detect the predators/prey,
and the delays in switching and waiting for appearances, this appears to be
reasonably good performance. Clearly, the performance could go up or down if
the frequency or timing of the predators/prey appearances changed.

7.4.3 Effect of Focusing on Higher Priority Predators/Prey

Next, we use the strategy in Equation (7.6) that picks the predator/prey that
has been ignored longer than the average one. For the set of predators/prey
that has been ignored longer than the average one, we choose the one that
has highest priority (i.e., predator/prey i with the greatest value of i). In this
way, we study how priorities enter into attentional strategies by augmenting
the strategy with a priority scheme. In this case, we get Figures 7.12 and 7.13.
We see in Figure 7.12 that the sequence of predators/prey that is focused on
is different from the previous strategy, and that the sequence is not periodic
in the same way (e.g., it is not a simple 1, 2, 3, 4 sequence). Also, we see that
the average value of the priority of the predator/prey that is focused on is a
bit higher, as we would expect. The bottom plot in Figure 7.12 shows quite a
different behavior than the bottom plot in Figure 7.10; notice that here there
is not an equal “balance” in focusing, since we see that the average values of
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Figure 7.10: Attention scheduler decisions, and Ti(t) for predators/prey i =
1, 2, 3, 4.

the Ti(t) are quite different (e.g., see the occasional peaks). Next, notice that
in Figure 7.13 we get poorer performance than that shown in Figure 7.11.

To quantify the performance further, notice that the numeric performance
Frequent focusing on
high priority
predators/prey generally
requires you to ignore
others for longer periods
of time.

measures are: (i) the time average of the priorities is 2.6896, (ii) the time
average of the average values of the lengths of times waited is 3.8204, (iii) the
maximum of the average values of the lengths of times waited is 6.4525, (iv) the
time average of the maximum values of the lengths of times waited is 7.6574,
and (v) the maximum of the maximum values of the lengths of times waited is
15.7399. This clearly shows that while we get slightly better focusing on higher
priority predators/prey, we get poorer performance for all the other performance
measures. We have paid a price in focusing on high priority predators/prey by
ignoring other predators/prey for longer periods of time.

7.4.4 Tuning Attentional Strategy Parameters

As we saw with Equations (7.8) and (7.10), there are ways to define attentional
strategies in terms of a set of parameters that specify how they make decisions
(e.g., weights or priorities that modify Jp). For instance, we could specify the wi

weights such that there is a high emphasis on focusing on one predator or prey.
To do this, you simply make one wi value much larger than the others. This will
result in frequent focusing on the corresponding predator/prey. Suppose that
we are not concerned with predator/prey priority, or that all the predators/prey
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Figure 7.11: Performance measures (average and maximum times since last
detection) and the time averages of their values.

have the same priority.
Can we tune the wi values in Equation (7.8) in order to try to improve

the performance measures? That is, can we use the parameters to simply try
to improve performance, rather than emphasize focusing on a particular high
priority predator/prey? The answer is yes, and to illustrate this, we ran a
few simulations, tuning the wi values with a focus on trying to minimize time
average of the average values of the lengths of times waited. We obtained w1 = 4,
w2 = 2, w3 = 1, and w4 = 4 and we get the performance in Figure 7.14. The
tuning strategy used was to try a set of wi values and look at the Ti(t) plots.
Then the value of wi was increased a bit for the predator/prey that had higher
peak values in order to try to make the strategy focus on that predator/prey
more heavily.

The performance for this new set of wi values is quantified via the following:
(i) the time average of the priorities is 2.5802, (ii) the time average of the average
values of the lengths of times waited is 3.2755, (iii) the maximum of the average
values of the lengths of times waited is 5.3599, (iv) the time average of the
maximum values of the lengths of times waited is 5.6423, and (v) the maximum
of the maximum values of the lengths of times waited is 9.0899.

Notice that compared to the result in Section 7.4.2, we have tuned the wi

values to get a better value for time average of the average values of the lengths
of times waited (there we obtained 3.4066). Is there further room to improve
the performance of the scheduler? This seems likely, as the tuning process used
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Figure 7.12: Attention scheduler decisions, and Ti(t) for predators/prey i =
1, 2, 3, 4.

did not involve consideration of too many values of the parameters. It should
be clear that the tuning problem can be quite difficult, especially if there are
many predators/prey.

7.5 Stability Analysis of Attentional Strategies

In this section, the first three attentional strategies defined earlier will be proven
to be stable, given that the capacity condition in Equation (7.5) holds. Stability
of the strategy defined in Equation (7.8) can be studied using a similar proof
procedure. Moreover, it is simple to extend the analysis below to the case
where priority parameters are added as discussed in Section 7.3.4. At the end
of this section, we will explain how to design a strategy that will stabilize any
scheduling strategy, such as the ones that we will discuss in the next section.

7.5.1 Stability Properties of Attentional Strategies

We begin with the strategies defined in Equations (7.1) and (7.6).

Theorem 1: Assume that Equation (7.5) holds. The attentional strategies
where the predator/prey that was ignored the longest time, or one that has been
ignored longer than the average one, as defined in Equations (7.1) and (7.6),
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Figure 7.13: Performance measures (average and maximum times since last
detection) and the time averages of their values.

have the following properties: They are stable in that

sup
t≥0

{Ti(t)} < Bi, i ∈ P

for some Bi > 0, i ∈ P so that they will not ignore any predator/prey for
too long. A specific bound on the ultimate longest time that the organism will
ignore any predator/prey is given by

lim
t→∞ sup

N∑
i=1

Ti(t) ≤ δ

⎡
⎣∑N

i=1 ai

a
+

āN

a
(
1 −∑N

i=1 ai

) max
i

{
−ai +

∑N
i=1 ai

ai

}⎤⎦
where a = mini{ai} and ā = maxi{ai}.
Proof: Let

V (t) =
N∑

i=1

aiTi(t)

be a “Lyapunov-like” function (strictly speaking it is not a Lyapunov function
because Ti(t) is not the state of the system, e.g., due to the presence of the
delays). You can think of V (t) as the amount of work that the organism needs to
do at time t in order to obtain perfect information about all the predators/prey.
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Figure 7.14: Attention scheduler decisions, and Ti(t) for predators/prey i =
1, 2, 3, 4.

The proof to follow focuses on the strategy where the predator/prey is chosen
that has been ignored longer than the average one; however, a special case of
this is when the one that is ignored the longest is chosen at each decision point
so the above bounds hold for that attentional strategy also.

Note that since Ti∗(kr)(Dkr+1) = 0 (i∗(kr) was the predator/prey that was
just detected),

V (Dkr+1) =
N∑

i=1

aiTi(Dkr+1) =
N∑

i�=i∗(kr)

aiTi(Dkr+1)

Also,
N∑

i�=i∗(kr)

aiTi(Dkr+1) =
N∑

i�=i∗(kr)

ai (Ti(Dkr ) + (Dkr+1 − Dkr))

since when the organism is focusing on predator/prey i∗(kr), the amount of time
that all other predators/prey are ignored increases by (Dkr+1 − Dkr) for each
i, i �= i∗(kr). Rearrange this equation to obtain

V (Dkr+1) = V (Dkr ) − ai∗(kr)Ti∗(kr)(Dkr) + (Dkr+1 − Dkr)
N∑

i�=i∗(kr)

ai (7.11)
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Now, use Equation (7.3) to obtain

V (Dkr+1) ≤ V (Dkr ) − α(i∗(kr))Ti∗(kr)(Dkr ) + β(i∗(kr)) (7.12)

where

α(i) =
ai

(
1 −∑N

j=1 aj

)
1 − ai

and

β(i) = δ

(
−ai +

∑N
j=1 aj

)
1 − ai

Note that α(i) > 0 and β(i) > 0 for all i ∈ P . To understand how Equa-
tion (7.12) is found, using Equation (7.3), note that since δ(Dkr ) ≤ δ

V (Dkr+1) ≤ V (Dkr ) − ai∗(kr)Ti∗(kr)(Dkr )

+

⎡
⎣ N∑

j �=i∗(kr)

aj

⎤
⎦ (1 − ai∗(kr))−1

[
δ + ai∗(kr)Ti∗(kr)(Dkr )

]
The term due to δ creates β(i∗(kr)). For the remaining terms, besides V (Dkr),
by grouping we get

−ai∗(kr)

(
1 −

∑N
j �=i∗(kr) aj

1 − ai∗(kr)

)
Ti∗(kr)(Dkr ) =

−ai∗(kr)

(
1 −∑N

j=1 aj

1 − ai∗(kr)

)
Ti∗(kr)(Dkr )

and this is used to define α(i∗(kr)).
Next, notice that due to the definition of either attentional strategy

α(i∗(kr))Ti∗(kr)(Dkr ) ≥ α(i∗(kr))
1
N

N∑
i=1

Ti(Dkr )

and due to the definition of ā,

α(i∗(kr))
1
N

N∑
i=1

Ti(Dkr ) ≥ α(i∗(kr))
1
N

ā−1
N∑

i=1

aiTi(Dkr )

(since ai

ā ≤ 1). But notice that

α(i∗(kr))
1
N

ā−1
N∑

i=1

aiTi(Dkr ) = α(i∗(kr))
1
N

ā−1V (Dkr ) (7.13)

Combine this with Equation (7.12) to get

V (Dkr+1) ≤
[
1 − ā−1N−1α(i∗(kr))

]
V (Dkr ) + β(i∗(kr)) (7.14)
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Subtract āN maxi
β(i)
α(i) from both sides of Equation (7.14) and after a bit of

algebra, you get

V (Dkr+1) − āN max
i

β(i)
α(i)

≤
[
V (Dkr ) − āN max

i

β(i)
α(i)

] [
1 − ā−1N−1α(i∗(kr))

]
+ β(i∗(kr))

[
1 − α(i∗(kr))

β(i∗(kr))
max

i

β(i)
α(i)

]
Focus for a moment on the last term in this equation, and notice that

β(i∗(kr))
[
1 − α(i∗(kr))

β(i∗(kr))
max

i

β(i)
α(i)

]
≤ 0

How do you get the last inequality? Note that β(i) > 0. If the maxi
β(i)
α(i) term

is maximized at some particular value j, then clearly this value divided by any
value considered in the maximization will be greater than or equal to 1.

Now, we have [
V (Dkr+1) − āN max

i

β(i)
α(i)

]

≤
[
V (Dkr ) − āN max

i

β(i)
α(i)

] [
1 − ā−1N−1α(i∗(kr))

]
(7.15)

But, notice that the second term on the right-hand side of this equation

[
1 − ā−1N−1α(i∗(kr))

] ≤ 1 − ā−1N−1 min
i

⎧⎨
⎩

ai

(
1 −∑N

j=1 aj

)
1 − ai

⎫⎬
⎭

≤ 1 − ā−1N−1

⎡
⎣a
(
1 −∑N

j=1 aj

)
1 − a

⎤
⎦

Notice that

0 <

(
1 −∑N

j=1 aj

)
1 − a

< 1

and
0 <

a

ā
< 1

so that
0 < 1 − ā−1N−1α(i∗(kr)) < 1

which makes the mapping in Equation (7.15) contractive so that

lim
kr→∞

sup
{

V (Dkr ) − āN max
i

β(i)
α(i)

}
= 0
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But this (ultimate) bound is in terms of only the decision points Dkr , kr =
1, 2, 3, . . . Due to the delay δ, the Ti(t) values can rise higher at times t not at
the decision points. However, for Dkr ≤ t ≤ Dkr+1

V (t) ≤ V (Dkr + δ)

But notice that

V (Dkr + δ) =
N∑

i=1

aiTi(Dkr + δ) =
N∑

i=1

aiTi(Dkr ) + δ
N∑

i=1

ai = V (Dkr ) + δ
N∑

i=1

ai

This gives us

lim
t→∞ sup V (t) ≤ δ

N∑
i=1

ai + āN max
i

β(i)
α(i)

and since

lim
t→∞ sup

N∑
i=1

Ti(t) ≤ 1
a

lim
t→∞ sup V (t)

we know

lim
t→∞ sup

N∑
i=1

Ti(t) ≤ δ
∑N

i=1 ai

a
+

āN

a
max

i

δ
(
−ai +

∑N
j=1 aj

)
ai

(
1 −∑N

j=1 aj

)
which gives the desired result.

Note that since the above bound for Theorem 1 may be conservative for some
situations, it would be of interest to specify “tight” bounds since this would
provide good guarantees for bounding the maximum time that a predator/prey
is ignored.

Next, we will study the stability properties of the other strategy defined in
the last section where we get a different bound on the maximum length of time
that a predator/prey will be ignored by the organism. The analysis, is however,
only slightly different and depends on the above proof.

Theorem 2: Assume that Equation (7.5) holds. The attentional strategies
defined in Equation (7.7) have the following properties: It is stable in that

sup
t≥0

{Ti(t)} < Bi, i ∈ P

for some Bi > 0, i ∈ P so that it will not ignore any predator/prey for too long.
A specific bound on the ultimate longest time that the organism will ignore any
predator/prey is given by

lim
t→∞ supV (t) ≤ δ(N − 1)

1 −∑N
i=1 ai

(
−a +

N∑
i=1

ai

)
+ δ

N∑
i=1

ai

≤ δ

[
N∑

i=1

ai

]
N −∑N

i=1 ai

1 −∑N
i=1 ai
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where a = mini{ai} and ā maxi{ai}.
Proof: Use the ideas from the proof for Theorem 1 and note that Equa-
tion (7.13) in this case is

α(i∗(kr))Ti∗(kr)(Dkr ) =
α(i∗(kr))
ai∗(kr)

ai∗(kr)Ti∗(kr)(Dkr )

≥ α(i∗(kr))
(N − 1)ai∗(kr)

N∑
i=1

aiTi(Dkr ) =
α(i∗(kr))

(N − 1)ai∗(kr)
V (Dkr )

The N − 1 factor appears, rather than N , for one i, Ti = 0. To complete the
proof, simply take the same approach as in the remainder of the proof of The-
orem 1, below Equation (7.13).

So, do these bounds give an indication of which of the three strategies is
“best”? Unfortunately, they generally do not since the bounds can be con-
servative. It is for this reason that simulation analysis is generally needed to
analyze the performance of particular strategies and determine which is best for
a particular predator/prey environment.

7.5.2 Stabilizing Mechanism for Attentional Strategies

At times there is significant knowledge about the predator/prey environment
and organism that is relevant to the design of attentional strategies. There is
then a natural tendency to incorporate this information in the specification of
the attentional strategy, often in the form of “scheduling heuristics.” We will
briefly discuss two such approaches in the next section. The problem with this
approach, however, is that the resulting strategies may end up being somewhat
nonstandard and there may be concerns about whether they will be stable.

Fortunately, the approach in [290] to specifying a “universal stabilizing
mechanism” (USM) for any scheduling strategy actually holds for the atten-
tion scheduling problem. (Actually, the approach in [290] was developed for a
fixed size delay and we have a time-varying but bounded delay; however, the
proofs there can be directly extended to our case with no difficulty.) This mech-
anism can then be applied to any heuristically constructed attentional strategy,
and you will be ensured that the overall strategy will be stable. In this sec-

The USM allows the
designer to focus on
improving performance
of the attentional
strategy.

tion, we introduce the USM from [290]. In the next two sections, we introduce
two types of schedulers that exploit predator/prey domain information to try
to enhance scheduler performance, and which can be stabilized by the USM
introduced here.

The key fact is that for the resource allocation problems we consider here,
as long as the capacity condition is satisfied, it is possible to define a USM
which, when used to supervise a scheduling strategy, will always result in stable
operation. To define the USM, let Q denote a first-come first-serve (FCFS)
priority queue for predators/prey that have been ignored for a long time. For
instance, if predator/prey’s Ti value becomes too large, we will have criteria for
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entering the queue at some time t′. If predators/prey i and j are in the priority
queue, and j entered it before i,

Q = (. . . , i, j, . . .)

then when this priority queue is serviced, predator/prey j will be taken off
the queue and focused on before predator/prey i (the “tail” of the queue is
the first predator/prey listed after the “(” and the “head” of the queue is the
predator/prey listed just before the “)” in the definition of Q above). We need
some additional parameters to specify the USM. Let L > 0 be a large number
satisfying

L >
Nδ

1 − ρ

where ρ is specified in Equation (7.5), N is the number of predators/prey, and
δ is the bound on the maximum delay. Next, let

Hi > 0, i ∈ P

denote a set of parameters, the interpretation of which will become clear as we
define the USM.

The USM is implemented by the following set of rules:

1. Truncation rule: The organism can process no predator/prey i longer than
Lai time units. This means that if at time t′+δs+δe(t′) the organism starts
to try to detect predator/prey i, then it can only try to detect it no longer
than up to the time t′ + δs + δe(t′) + Lai. If detection occurs before that
time, then the strategy acts as usual and selects another predator/prey
to focus on. If, however, it has not yet detected predator/prey i by this
time, it is forced to make a new decision (which could entail switching
predators/prey). Note that if it does switch to another predator/prey, we
assume that the progress it had made on predator/prey i is used, but that
the time since it was last detected, Ti, begins to increase again.

2. Rule for entering Q: Predator/prey i enters the tail of the priority queue
Q at time t if we have not just decided to focus on i or are currently
focusing (cognitively processing) to detect i, and Ti(t) > Hi (hence, the
Hi are thresholds for when a predator/prey is placed in the queue).

3. Predator/prey selection rule: If Q is not empty when the organism has
finished focusing on a predator/prey (either by achieving Ti = 0 or via
rule 1 above), then the predator/prey at the head of the priority queue Q
(i.e., FCFS) is chosen.

4. Rule for leaving Q: A predator/prey i leaves Q at the time t′ + δs + δe(t′)
where t′ is the time point when predator/prey i was selected by rule 3.

5. Rule for processing-time for a predator/prey from Q: If predator/prey i
from Q is chosen to be focused on, then beyond the time t′ defined in
rule 4, it is processed for Lai time units unless it is detected (i.e., Ti = 0)
before this time elapses.
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Notice that this is not simply another attentional strategy. It actually de-
fines a “supervisor” for any attentional strategy (e.g., ones that exploit heuristic
information from the problem domain) that ensures it will result in stable op-
eration. If you have constructed a stable strategy, and you choose L and the
Hi, i ∈ P , large enough, then the USM will never intervene. The USM simply
truncates the processing of predators/prey that are not found fast enough, and
via Q makes sure that predators/prey that have been ignored for too long will
get attention. How do we pick L and the Hi parameters? If you pick Hi = 0,
i ∈ P , then the USM simply enforces a type of FCFS strategy on predators/prey
with Ti > 0, but it stops processing any predator/prey that is focused on too
long. In this case, the USM always intervenes. As you increase the size of L
and the parameters Hi, i ∈ P , the USM intervenes less frequently.

What is the value of the USM? In a sense, it frees the designer of attentional
strategies from being concerned about the stability of the myriad possible atten-
tional strategies (but of course, the stability analysis of Section 7.5 is still useful,
particularly if the analysis helps to clarify how to design the strategy to achieve
high performance operation). You can adopt a design philosophy where you
construct a very complicated attentional strategy, possibly exploiting heuristic
ideas about how to achieve the best performance. Then, you can augment such
strategies with the USM and be assured that you will obtain stable operation.
Essentially, the USM allows the designer to focus on the design of attentional
strategies to improve attention scheduling performance. To illustrate this point,
in the next section we will briefly discuss the design of two heuristic strategies,
ones based on our intuitions about the problem domain.

7.5.3 Planning and Attention

In this section, we discuss two ways to use planning concepts from Chapter 6
in attentional strategies. Intuitively, this should make sense. We can plan how
to pay attention to a set of predators and prey if we have some idea of how
the environment might behave, and if we consider alternative predators/prey to
focus on based on predictions about how they might behave. We consider the
alternatives and choose what we think is the best one to focus on based on these
predictions. As an example, per our discussion in Sections 7.3.3 and 7.3.5, it
should be clear that even our earlier strategies used a type of online optimiza-
tion to choose which predator/prey to focus on. Moreover, for the strategy in
Equation (7.8), we used a type of prediction in determining which was the best

If environmental or
organism information is
available, it can be used
to plan what to attend
to.

predator/prey to focus on (there we predicted which Ti would be highest after a
delay, scaled that prediction, and then used it to decide which predator/prey to
focus on). For that strategy, the information we used was quite simple, and only
incorporated some information about delays in the organism and environment.

Hence, in a limited way we have already considered the use of planning con-
cepts in attentional strategies. Here, however, we will consider two explicit ways
to incorporate more detailed information about the environment. We invite the
reader to evaluate the performance of these strategies in Design Problem 7.6.
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Attentional Strategies that Use Predator/Prey Behavioral Charac-
teristics

The strategies considered up to this point do not incorporate a significant
amount of a priori information that may be available about the likely tim-
ing of predator/prey appearances. For example, if the organism has identified
the predator/prey type, it may have a good guess of when the next appearance
time will be, or if it has observed a fixed pattern of appearances in the past,
it may have a guess of when it will appear again. Without using such a pri-
ori information, the attentional strategies may focus on a predator/prey even
though it is unlikely that it will appear or be found for some period of time,
and during this time, the organism could more profitably search for and detect
other predators/prey.

How can such a priori information be incorporated? We simply provide a
few ideas here. First, suppose that we use a “certainty of appearance” function

Ck
i (t, tki )

for each predator/prey i, which is defined along the time-line t ≥ tki starting
from the time tki when predator/prey i was last detected (i.e., from the time that
the predator/prey was detected for the kth time). Suppose that this function
has values in the range of [0, 1], with 0 representing that it is unlikely that there
will be an appearance, 0.5 representing uncertainty about whether there will be
an appearance, and 1 representing that you are certain that there will be an
appearance (based on a priori information). Now, suppose we define a strategy
that at each decision point simply picks the predator/prey to focus on that is
most likely to appear (and perhaps taking into account any delay in switching
focus to a different predator/prey). See Figure 7.15.

In Figure 7.15, notice that there are appearance certainty functions for four
predators/prey. Predator/prey 1 is predicted to appear with a higher frequency,
and the width of each of the humps quantifies the certainty of occurrence of ap-
pearance; hence, appearances are most certain at the peaks. Notice that preda-
tors/prey 2 and 3 are predicted to have similar (lower) frequency appearances,
but the precise timing of the appearances is not as certain and this is quantified
via the spreads of the humps being larger. Predator/prey 4 is predicted to be
a lower frequency illuminator, but the certainties of when the appearances will
occur is similar to that specified for predator/prey 1. Note that the parameters
defining the Ck

i (t, tki ) functions (e.g., the points where the peaks occur and the
spreads) could be estimated in some situations by some other cognitive subsys-
tem, and then the Ck

i (t, tki ) functions used by the attention scheduler could be
changed. Finally, note that these certainties could be scaled by predator/prey
“priorities” so that the strategy could choose to focus on the highest priority
predator/prey that is likely to produce an appearance.

Will this result in a stable strategy? No, not if that is all that is used in the
attentional strategy. It could be that you have bad a priori information so that
bad guesses are made and the appearances are never found for a predator/prey
and so the length of time that it is ignored goes to infinity (representing that
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Figure 7.15: Attention strategy that exploits information about likely times of
appearance of predators/prey.

ultimately it knows nothing about the predator/prey). We can, however, use
the USM of the previous section to ensure stable operation. Moreover, if the
Ck

i (t, tki ) represent good predictions about the predators and prey, it is possible
that very good scheduling performance can be achieved.

Attentional Strategies Based on Model Predictive Control

In most engineering applications we can simulate, to a reasonable degree of ac-
curacy, the domain in which we make decisions. For instance, in this chapter
we have simulated the predator/prey environment in Section 7.4. The actual
predator/prey environment is certainly somewhat different from what our simu-
lations would lead us to believe. Let us suppose, however, that we can simulate
the predator/prey environment reasonably well, at least in its broad character-
istics. Furthermore, suppose that the organism can simulate this model of the
predator/prey environment in real-time in some cognitive module. Would such
a simulation provide useful information to help decide which predator/prey to
focus on? Below, we study this question by providing one way to incorporate a
simulated predator/prey environment into a scheduling strategy.

Suppose that we use the model of the predator/prey environment to predict
how the organism will perform using different strategies or orders of focusing on
predators/prey. Suppose that we use the model to predict M different behaviors
that result from M different candidate sequences of predators/prey to focus on
of length Nh (a specification of a sequence of Nh predators/prey to focus on).
The strategy is shown in Figure 7.16.

As shown in the figure, for the MPC strategy we rank order the M different
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Figure 7.16: Model predictive control (MPC) for use in an attentional strategy.

predator/prey focus sequences and choose the best one, and then we focus on
the predator/prey specified as the first one to focus on in the best predator/prey
sequence. The process repeats at the next decision point, i.e., when that preda-
tor/prey is detected. You can think of the MPC attentional strategy as a more
sophisticated version of the attentional strategy discussed in the last section.
We think of Nh as specifying a “receding horizon” or length of time we predict
ahead in time. For a very uncertain predator/prey environment it typically
does not make sense to make Nh very large since the predictions will typically
become more inaccurate as we predict farther ahead in time. If, however, your
model is good and you have sufficient computational resources you may want
to predict into the future for longer periods of time so that the best possible
predator/prey is chosen to focus on.

Clearly, if information was gathered online, you may be able to profitably
update the model that is used in the MPC strategy (this would then result
in the incorporation of learning and planning into attention). Moreover, it is
not difficult to incorporate a predator/prey priority scheme. Will MPC-type
strategies result in stable scheduling? Probably not. However, once again we
can use the USM to ensure that we obtain stable operation.
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7.6 Attentional Systems in Control and Automa-

tion

In this section we will overview how attentional systems and multisensor inte-
gration can be used in control and automation. For more information on each
of these topics, see the “For Further Study” section at the end of this part.

7.6.1 Attentional Strategies for Control

In this section, we briefly explain how to augment the control strategies consid-
ered so far with attentional mechanisms. Later, in Chapter 9, we briefly discuss
relationships between learning and attention and in Section 9.4.5, we discuss
how to augment adaptive (learning) controllers with attentional mechanisms.

At the neural level, attentional mechanisms can be implemented by neurons
so that an organism focuses on the most important aspects of its environment
in achieving a control task (e.g., stimulus-driven attention reorienting that is
implemented in a network of neurons). There has been a variety of neural
network models introduced for attentional systems, and some of these have
been experimentally validated to a certain extent. Some of the models have
incorporated the hierarchical aspects of attention, while others have illustrated
how attention is integrated with visual processing such as object recognition.
Here, we do not investigate neural network models for attention, but in Design
Problem 7.5 we provide some references and invite the reader to do so.

Attentional strategies
can be employed in
rule-based planning and
learning controllers.

Typically, the central issue in augmenting a fuzzy or expert controller with
an attentional mechanism is to add a mechanism that manages the matching
process since that is typically the most complex part of those systems, and the
part where sensory data are processed to determine how they should be used.
The attentional system in this case could try to prune the number of rules that
are on at any one time based on contextual information that is gathered. For
instance, suppose that you have a controller with many inputs (e.g., 1000 or
more). In this case, you could define priorities for your control objectives and
then you could only consider inputs that help you to meet those objectives, or
you could process the inputs to capture the essential features. This would be
a supervisory strategy that managed the flow of input information so that the
computational complexity is reduced. This strategy is shown in Figure 7.17.

To achieve “attentive planning,” the ideas for integrating planning and at-
tention in the last section could be useful, or, the attentional system could prune
projections into the future (as in Figure 6.2) since that is often the most compu-
tationally complex part of the planning process. This is pictured in Figure 7.18.
Goals, hard constraints, and other inputs may provide the information for how
to prune. Attention can make the complex problem of predicting the many ways
that the system can behave in reaction to different sequences of inputs, but it
could result in a performance degradation in control performance. Essentially,
attention tries to reduce complexity to a manageable level, without sacrificing
too much performance.



7.6 Attentional Systems in Control and Automation 303

If ... and ... and ... Then ...
If ... and ... and ... Then ...
If ... and ... and ... Then ...

If ... and ... and ... Then ...
If ... and ... and ... Then ...

.

.

.

If ... and ... and ... Then ...
If ... and ... and ... Then ...

.

.

.

Rule-based controller rule base

Attentional supervisor

Controller
outputs

Controller inputs
(plant outputs, reference input)

Plant information,
goals, reference input

Figure 7.17: Attentional strategy for rule pruning for rule-based control.

2

1

2

5

1

7

8

5
5

1
1

Planning into the future

5
1

4
4j=0

j=1

j=2

j=3

Current
time

Attentional focus
(in shaded area)

Remove all
paths not
in focus

(i.e., all paths
not in shaded 
area)

Figure 7.18: Attentional strategy for plan pruning.

7.6.2 Filtering and Focusing: Multisensor Integration

In complex highly automated systems, it is often necessary to use multiple
types of sensors for obtaining information about the environment (plant). For
instance, a mobile robot may need sensors for velocity, acceleration, yaw, etc.
It may also need a vision system for obstacle avoidance, coupled perhaps with
radar or an ultrasonic sensor for reliability in achieving obstacle avoidance.
The robot must decide how to combine this information for object recognition,
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decision-making, and other tasks. For some tasks it may ignore some sensor
data, and pay attention to other data. For other tasks it may “fuse” data from
two or more different sensors. The general task for a “multisensor integration
system” is to distill the most useful information from the suite of sensors. A
general sensor integration system is shown in Figure 7.19.
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Figure 7.19: Multisensor integration and fusion (adapted from [339], c© IEEE,
used with permission).

Sensor fusion and
integration are closely
related to key
functionalities in
attentional systems.

Here, we see that there are N sensors, each possibly of a different type, or
copies of one type of sensor (e.g., for reliability purposes). There is a sensor
selector that decides which sensors should be enabled. Then, there is a sensor
fusion strategy. In Figure 7.19, we show one strategy where information from
sensor 1 is fused with information from sensor 2, and then that fused information
is fused with the information from sensor 3, and so on. Other strategies are also
possible (e.g., having two fusion strategies combine information from two sensors
each, then you could have another fusion approach for the fused information
from those). There are a wide variety of methods for multisensor fusion (e.g.,
Kalman filtering, Bayesian estimation, etc.), world modeling, sensor selection,
and data transformation. The interested reader should consult the references in
the “For Further Study” section at the end of this part.

The fusion strategies may have guidance from the higher level functional-
ity. The fused information is passed to the higher level and may be stored in a
“world model” (a representation of aspects of the environment that are useful
for decision-making to reach the goals, but which may also help guide the overall
strategy as to how to fill information that is needed). To achieve world model-
ing and ultimately sensor integration, we will often have to also perform data
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transformations. Ultimately then, multisensor integration systems do possess
some key features of learning, and that topic is covered in Part III. Next, note
that there is a general process of filtering that is naturally involved in sensor
fusion where some information is discarded and other information is derived
by combining data. This results in a “low” level of representation early in the
fusion process and a “high” level of representation at the end where the most
useful information has been obtained.

There are several possible advantages to integrating information from mul-
tiple sensors. For instance, some sensors may provide redundant information
which can reduce overall uncertainty about what is being sensed, or it can
provide for fault tolerance in case a sensor fails. Sometimes information is com-
plementary in the sense that it may allow, via appropriate processing, for the
perception of some objects that could not be perceived otherwise. Sometimes,
multisensor integration can speed up the overall process of decision-making by
providing the proper information faster. Other times, it may be possible that
using multisensor integration strategies will result in a less-expensive system.

Finally, we note that the focus in this chapter is largely not on attentional
strategies for control or on multisensor integration, but on how to use control
concepts (scheduling for resource allocation) for attentional strategies.

7.7 Exercises and Design Problems

Exercise 7.1 (Simulation of Attentional Strategies):

(a) Simulate all the attentional strategies in Section 7.4, reproducing the
results found there.

(b) Let N = 3 and use

δ1 = 0.9, δ2 = 1, δ3 = 1.2

Synthesize sequences similar to those shown in Figure 7.7 that satisfy
these constraints (make the appearances periodic). Choose δs = 0.03
and

a1 = 0.3, a2 = 0.2, a3 = 0.1

Simulate the three attentional strategies studied in Sections 7.4.2
and 7.4.3 and evaluate the performance of each attentional strategy.
Tune the wi parameters to obtain as good performance as you can
via manually tuning these parameters.

Exercise 7.2 (Stability Analysis of Priority-Based Attentional Strate-
gies): Prove that the policy defined by embedding priorities via the ap-
proach in Section 7.3.4 into the strategy defined by Equation (7.1) is stable
if appropriate conditions are met (state these, and show each step in your
proof). Provide explicit ultimate bounds on the Ti values.
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Exercise 7.3 (Stability Analysis of an Attentional Strategy): Prove
that the attentional strategy defined in Equation (7.8) is stable if appro-
priate conditions are satisfied (specify the conditions and show each step
in your proof). Provide explicit ultimate bounds on the Ti values.

Design Problem 7.1 (Tuning Attentional Strategies with Priorities):
This problem focuses on how to tune attentional strategies to improve their
performance.

(a) Specify priority parameters pi ∈ P and explain how to embed a
priority scheme into the attentional strategy in Section 7.3.2 using
the ideas in Section 7.3.4. For a specific set of priority parameters,
develop a simulation of the priority attentional strategy and evaluate
its performance for the scheduling problem defined in Section 7.4.
Tune the priority parameters to try to improve performance, where
you measure performance by the time average of the average values
of the lengths of times waited.

(b) Next simulate the strategy given by Equation (7.8) and tune the wi

parameters to obtain better performance, as measured by the time
average of the average values of the lengths of times waited, than
what we obtained in the chapter. Compare the performance that
you obtained to that which you obtained in (a).

Design Problem 7.2 (Stable Attentional Strategy Design):

(a) Suppose that you consider the set P of labels for the predators/prey
as specifying the sequence that they should be focused on (and sup-
pose that this sequence is fixed a priori by the labeling). Suppose that
you define a policy that at each decision point simply picks preda-
tor/prey 1, 2, . . . , N in sequence, and after it finishes with preda-
tor/prey N , it returns to predator/prey 1 and repeats the process.
Will this result in a stable attentional strategy? Why? Why not?
Can you generate a counterexample to stability, or provide a proof
of stability that does not use the USM?

(b) Can you define an attentional strategy that will result in stable op-
eration, but is different from the others discussed in this chapter and
does not use the USM? Specify the strategy and prove stability.

Design Problem 7.3 (Design of Universal Stabilizing Mechanisms):
For the scheduling problem in Section 7.4, employ the attentional strategy
defined in Design Problem 7.2(a). Augment the strategy with the USM.
Simulate the strategy for various choices of USM parameters and explain
the effects of these parameters on attentional strategy behavior and perfor-
mance (measure performance by the time average of the average values of
the lengths of times waited). Be sure to simulate the attentional strategy
for a sufficient period of time so that the performance measures represent
the long-term performance of the attentional strategy. To get accurate
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performance measures, do you need to repeat the simulation many times
with different sequences of choices of predators/prey to focus on?

Design Problem 7.4 (Design of “Optimal” Attentional Strategies):
This problem builds on Design Problem 7.1 by exploring systematic ways
to pick the best attentional strategy parameters. Choose a stable atten-
tional strategy (you may use the USM) that seems to have the potential
to obtain a better value for the time average of the average values of the
lengths of times waited than the one in Section 7.4.2. One approach to this
is to tune the priority or weighting parameters for the attentional strate-
gies in Design Problem 7.1 to try to obtain better performance. Tune the
parameters of the attentional strategy with a goal of obtaining a better
value for the time average of the average values of the lengths of times
waited than the one in Section 7.4.2. Hint: You may want to produce a
systematic approach to tuning the parameters of the scheduler rather than
just manually tuning them. One approach to do this is to use ideas from
the “response surface methodology” discussed in Chapter 15. A simple
version of this approach is to simply create a grid of attentional strategy
parameters and simulate the strategy for each point on the grid (which
can take significant computational resources) and pick the parameters that
correspond to the best performance. Another approach would be to use
the “simultaneous perturbation stochastic approximation” algorithm that
is studied in Chapter 15.

Design Problem 7.5 (Neural Models of Attentional Systems)�: There
is research in the literature on how to develop neural network models of
attentional mechanisms and this problem studies the simulation of atten-
tional systems via such models.

(a) For background reading, read the article [372]. Search the literature
on this topic to supplement this study.

(b) Implement code necessary to study the attentional system and re-
produce the simulations shown in [372]. Focus on the simulation of
the “spotlight” view of attention.

(c) Explain how such an attentional mechanism may be useful in a con-
trol system. Identify at least two ways in which it can be used.

Design Problem 7.6 (Attentional Strategies Based on Planning and
Learning)�: In Section 7.5.3 we introduced two ways to use planning
concepts in attentional strategies. Here, you will completely specify such
a strategy, simulate it, and evaluate its performance.

(a) Using the ideas in Section 7.5.3, develop an attentional strategy that
incorporates planning concepts. You do not have to precisely fol-
low the methodologies specified earlier; you can invent your own
method. Specify the attentional strategy, explain what environmen-
tal/organism information it needs in order to predict how the atten-
tional strategy will operate, explain what cost function will be used
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to select a single sequence of predator/prey focuses (plan) from the
set that is generated, and explain how the overall approach seeks to
improve attentional performance. Specify the strategy in a way that
will ensure that it is stable (you may use the USM).

(b) Specify a single performance measure that you would like to optimize.
Develop a simulation of the attentional strategy that you specify in
(a) and tune the strategy to try to optimize your chosen performance
measure. You should use a scheduling problem and performance
measure similar to the ones in Section 7.4.

(c) Next, expand on your strategy by incorporating a method to learn
the model that is used by your planning strategy to predict. Repeat
(b) for this strategy.

Design Problem 7.7 (Cooperative Attentional Systems)�: Suppose that
there are M agents, each with an attentional system given by the model
used in the chapter. Suppose that they are seeking predators and prey, but
that they do so cooperatively in the sense that they identify N predators or
prey and then cooperate on paying attention to them. With cooperation
we expect that there will be an increased “capacity” to pay attention.

(a) Define two cooperative attention strategies. For instance, suppose
that the M < N agents act autonomously but share an “unattended”
set of things that are not paid attention to at the current time. There
is then a corresponding set of predators/prey that the group of M
agents is attending to. A decision strategy can be defined in terms
of what each agent does at its decision times. For instance, it may
“check out” (using a mutual exclusion strategy) the unattended set
and pick a particular predator/prey to focus on; then it can “return”
the new unattended set to the others. It can then focus on that
predator/prey until it is detected. The agents would then make all
their decisions asynchronously. What predator/prey should be cho-
sen from the unattended set? Mathematically define two strategies
for the agents to make these choices.

(b) Simulate the cooperative attentional strategy and show plots as we
did in the chapter to evaluate their performance (e.g., relative to the
M = 1 case).

(c) Augment your strategies with the learning/planning methods you
studied in Design Problem 7.6 and then evaluate their performance
in simulation.

(d) Find conditions under which the strategies of (a) will result in sta-
bility in the sense that it was studied in the chapter.
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For Further Study

To deepen your understanding of the wide variety of neural network methods
and applications, see [238], and for neural bio-foundations, see [268, 269, 558,
130]. More details on fuzzy control theory and applications are given in [412].
For more details on planning for autonomous robots, see [278] and a tutorial
on model predictive control is given in [192]. The approach to the study of
attentional systems was based on viewing the problem as a resource allocation
problem and there is a large amount of literature on this topic. Here, the
development was based on [418].

Neural Networks and Motor Control: We must emphasize that there are
many topics in the area of neural networks that are not covered here. For
instance, we do not discuss associative memories and recurrent networks, or
Boltzmann machines. We refer the reader to [238, 262, 356] for treatment of
these topics, or for references to sources where these topics can be studied. A
recent theoretical treatment of modeling and analysis methods for theoretical
neuroscience is in [130]. There, the authors cover a variety of topics including
encoding and decoding information, neuron and neural network models, and
adaptation and learning. By studying [130], the reader can gain a better un-
derstanding of “firing rate models,” and “tuning curves,” of neurons and hence,
how accurate our neural network models are.

There has been extensive work on neurophysiological studies of motor con-
trol (e.g., on the hierarchy of the controls) in [206, 268, 269, 558], and the
interested reader is recommended to see [274] and the current literature where
close connections to control system methodology are found.

A method that has been popular in the control of robots has been the cere-
bellar model articulation controller (CMAC), which was first introduced in [9],
and later applied in a different form in [362, 286]. Other neural network appli-
cations to robotic systems are contained in [279, 207].

Fuzzy and Expert Control: A recent, and relatively detailed, overview of
the literature and methods of fuzzy control is given in [412]. You may also want
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to consider [155, 531, 262, 134]. Fuzzy logic is covered in [350, 280, 559, 440]
and other places (here, we do not emphasize fuzzy logic formalisms for their
own sake, but only use ideas from fuzzy logic needed for control systems, and
in Section 11.6, for clustering methods in pattern recognition). For a detailed
overview of how to perform stability analysis (absolute stability and via Lya-
punov’s first and second methods), how to study limit cycles via describing
function analysis, and how to analyze tracking error for fuzzy control systems,
see [263]. For an analysis of complexity of fuzzy systems and problems of the
curse of dimensionality, see [235].

Expert systems are covered in many different books, so it is best, perhaps,
to start with a general book on artificial intelligence, such as [444, 387, 136, 97,
82, 166]. The reader interested in studying stability analysis of expert control
systems should consult [410, 338].

Planning Systems: The section on psychology and cognitive neuroscience
of planning was based on [188, 206], and the work in [408] that was developed
by using conventional control-theoretic concepts together with how the field of
artificial intelligence views planning. Physiological foundations, particularly for-
mation of cognitive maps for planning, are discussed in [239]. Planning systems
are also discussed in [444, 387, 136] (a nice discussion on hierarchical and adap-
tive planning is in [136]) and in [137, 189]. Methods of anticipating the future
(prediction) in microorganisms are discussed in [161]. These involve “circadian
rhythms” and biological “clocks” [541]. Clearly, the use of regularly appearing
events can be used to predict and hence react (early) quickly to stimuli, and
these ideas are all related to the predictive nature of planning.

Planning in robotic applications has been studied extensively, and some
papers you may want to study are [76, 77, 78, 44, 550], or the books [11, 258,
520]. For more information on path planning for robots, see [278, 90] where
the “potential field method” is described (basically the method we introduce in
this chapter where we use optimization over functions to guide a robot through
a maze). In fact, some other functions that can be useful to build “obstacle
functions” are given in [278]. A bibliography for heuristic search which has
been used in planning is provided in [493] and an introductory treatment is
given in [413]. The reader should be aware that there is a very large literature
on combinatorial optimization methods, including many good books [400, 218]
that provide methods to select a plan (e.g., by searching trees or graphs). One
investigation on neural substrates for planning is given in [453].

A survey of model predictive control (which is also studied in Design Prob-
lem 6.2), what you can think of as the existing body of knowledge on planning
methods in conventional control, is given in [192]. References on scheduling the-
ory, which has many relevant concepts and techniques to planning, are provided
below.

Attentional Systems: Discussions in cognitive neuroscience, clinical neu-
ropsychology, and computational studies of attentional systems are contained
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in [404, 206, 522, 401]. The section in the chapter was developed using primarily
[404, 206]. For other mathematical models of attentional systems that (unlike
the one here) have been experimentally validated, at least to some extent, see
[85, 482]. There is also a large literature on attention deficit disorder (a common
disorder in children) that may provide insights into the operation and modeling
of the human attentional system.

There are many books that treat the topic of scheduling and the topics
treated there are relevant to both planning systems and attentional systems.
Two books to consider are [419, 210]. Building on basic ideas in sequencing
and scheduling [40, 109, 186], the approach to the development of attentional
strategies here depends critically on the work in [418, 290] by using the time-
based policies that were first studied in [81] and a discrete-event system [95, 244]
theoretic framework for stability analysis that is described in detail in [411, 409].

Recently, some discussion on the use of attentional systems for control ap-
peared in [11]. Earlier, it was shown in [296] how to augment adaptive controllers
with attentional mechanisms.

The attentional systems approach of this part has been extended to the
case where there are multiple agents cooperatively paying attention to multiple
predators/prey in [212]. Also, the approach in [211] shows how such ideas can
be used to allocate the focusing of multiple vehicle activities.

The section on multisensor integration is based on [339, 556, 158]. There are,
however, many other papers on the theory and particularly the application of
multisensor integration and management ideas. For more information on “world
modeling,” see [11].

Bayesian Belief Networks: One method that we did not introduce here,
since to date it has found little use in control, is that of “Bayesian belief net-
works.” This method has, however, found some use in a variety of engineer-
ing applications, such as diagnostic systems and decision-support applications.
Moreover, it has potential for use in developing and implementing expert sys-
tems that reason under uncertainty and act as controllers. The reader interested
in this method should consult [414, 96, 444] and the book [383] on learning
Bayesian networks from data.
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Sequence of Essential Concepts

• Learning theories from psychology and neuroscience form the foundations
of biomimicry for incorporating learning into control and automation sys-
tems. The key underlying theories are classical conditioning, operant con-
ditioning (reinforcement learning), and function approximation.

• Learning can be represented as an optimization process (e.g., gradient
method) that involves sensing aspects of the environment and forming the
associations or representations in memory that are best for trying to max-
imize performance and hence, survival chances. The type of association
or representation sought depends on the situation. For instance, some-
times an organism learns to predict a stimulus from the occurrence of
another stimulus (classical conditioning); other times, it learns the action
that will result in a reward in a certain situation (operant conditioning,
reinforcement learning).

• Neural networks and fuzzy systems can serve as tunable function approxi-
mators (interpolators) that hold associations or representations for making
control decisions. We think of them as “approximators” for an unknown
ideal mapping, one that we view as the target of our optimization pro-
cess for incrementally learning the mapping. The neural or fuzzy systems
can be trained (tuned) online to control a plant via reinforcement learning.
For this, control decisions that lead to more reward (good closed-loop per-
formance) are reinforced, and others are not. Under certain conditions,
this iterative reinforcement leads to an appropriately shaped controller
mapping after a long time period. If later the plant changes, then earlier
“good actions” may not lead to rewards but other actions may lead to
rewards. Then, the iterative reinforcement process reshapes the controller
mapping in response to plant changes. Reinforcement learning control
leads to what we call “adaptive control” for the plant.

• The key feature of using neural or fuzzy systems as tunable mappings for
adaptive control is how to train them from data. There are a wide variety
of training methods that you can use to learn functions from data. In linear
least squares methods, we focus on tuning only a subset of the parameters
of the approximator that enter linearly. Batch least squares methods focus
on processing of data gathered offline, and recursive least squares methods
focus on incrementally adjusting the approximator mapping as data are
gathered in real time. The gradient methods that we discuss provide ways
to tune all the parameters in an approximator structure, including the
ones that enter in a nonlinear fashion, either in a batch or online mode.
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• There are several fundamental issues involved in training approximators.
The information in the training data is best in a specific form, but for
control applications, it is often beyond the direct control of the training
algorithm. The choice of the approximator structure, its complexity, and
which parameters to tune has a significant impact on the quality of ap-
proximation and hence learning. The training method, initialization of the
approximator parameters, and the parameters used to specify it (e.g., step
size, termination method) can significantly affect learning performance.
Moreover, there are fundamental issues to pay attention to in the training
and testing process, including “generalization” (the ability of the trained
approximator to respond similarly for similar inputs, or to discriminate
between inputs that you would like it to), “local learning” (the ability of
the method to learn the shape of the function in one region, and not to
disturb what it has learned there when it learns in some other region),
approximator “complexity” (while increases in approximator complexity
generally give you an ability to approximate more complex functions, if
the approximator is too complex, it can lead to poor generalization), and
“overfitting” and “overtraining” (so that the approximator tries to match
noise in the data, or tries to match the data gathered so closely that it
does a poor job at generalization).

• The view of “learning as optimization” can be exploited to show how on-
line optimization methods can be used to tune approximator structures
to achieve adaptive control. The focus in such approaches is how to use
data gathered online to shape functions (i.e., how to perform online func-
tion approximation). In the “indirect adaptive control” approach, the
focus is on tuning approximators to match the nonlinear plant dynamics,
and then using the approximations to specify the control inputs (using a
“certainty equivalence approach”). In the “direct adaptive control” ap-
proach, the focus is on directly (i.e., without an approximation to the
plant dynamics) tuning an approximator so that it approximates a con-
troller that will achieve adaptive control. Optimization methods arising
from learning (and foraging or evolutionary theory as studied later in this
book) provide ways to adjust parameters for either the indirect or direct
approaches. Since gradient-based adjustments reflect at least some bio-
logical learning/adaptation processes, online optimization approaches can
also be viewed as biologically motivated. However, here we will depart
somewhat from this focus to concentrate on what conventional optimiza-
tion and approximation theory teaches us about the functionality and
operation of adaptation mechanisms.

• Stability characterizes, for instance, how well a controller can achieve
tracking of a desired reference input. Stable adaptive methods focus on
how to construct, for example, online approximation-based controllers that
will achieve stable and robust operation. While at the foundation of such
approaches is Lyapunov stability theory, the methods essentially seek to
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minimize an instantaneous energy-based characterization of tracking per-
formance. Hence, there is a close relationship to the online optimization
methods. In stable adaptive control the focus is, however, on conditions
under which the online optimization method will result in stable closed-
loop control.



Chapter 9

Learning and Control
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Learning seems to be an essential characteristic needed to achieve what we
normally think of as highly intelligent behavior. Learning requires some method
to store information and change behavior based on that stored information. A
wide range of animals exhibit varying degrees of learning capabilities. Learn-
ing, in the forms of “classical” and “operant conditioning,” has been studied
for many years in psychology and neuroscience; actually, these both seem to be
relatively mature fields (e.g., compared to planning and attention), at least for
some types of animals (e.g., rats and pigeons). Classical and operant condition-
ing provide a foundation of concepts for biomimicry of learning processes for
use in control and automation.

Here, we will introduce bio-motivated “heuristic” methods for adaptive con-
trol. In our neural control method, we will use a reinforcement learning approach
to tune a neural network to act as a controller. In our adaptive fuzzy control
method, we use “human mimicry” of adaptation heuristics to specify an adap-
tive control rule tuning method. Both methods use the basic features of learning
via embedded online function approximators to approximate an unknown con-
troller mapping (the one that succeeds in controlling the plant). In the next
two chapters on least squares and gradient methods, we will discuss a number of
offline and online function approximation methods. In the final chapter of this
part, we build on the least squares and gradient methods by showing how they
can form a foundation for optimization-based methods for function approxima-
tion in adaptive control. Finally, at the end of the final chapter of this part,
we show how to achieve stable adaptive control with online function approxi-
mation methods. Hence, this chapter establishes bio-foundations for this entire
part, and heuristic adaptive control methods that are directly based on the bio-
foundations. The later three chapters in this part depart somewhat from the
bio-foundations to focus more on engineering applications and methodology.

9.1 Psychology and Neuroscience of Learning

Learning can be defined as “any process through which experience at one time
can alter an individual’s behavior at a future time” [223] (from a system-
theoretic view, it seems then that any system with memory has the potential to
be a learning system). Alternatively, in [152] the author writes that “learning
is an enduring change in the mechanisms of behavior involving specific stimuli
and/or responses that results from prior experience with similar stimuli and
experiences.” In control engineering, many (including the author) have often
thought of learning as the process of the organism interacting with its envi-
ronment and using that experience to modify its behavior so that it is more
successful in its environment in the future. But, does learning always imply
performance improvement? Actually, many other factors affect performance
(e.g., sensory and motor capabilities) and moreover, we may learn something at
one time and it may not affect performance until much later. It is the case, how-
ever, that in control engineering, performance is typically measured via metrics
over the entire lifetime (or long time periods), and we construct learning sys-
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tems with the objective of improving performance, so it is sometimes useful to
think of learning as leading to performance improvement. It is useful, however,

In control systems,
learning often involves
improving performance
by interacting with the
environment. Memory is
necessary for learning.

to note that even if performance improvement is the objective of our learning
system, and even if performance improvements are achieved, it does not mean
that our systems have learned what you think they need to learn in order to
get the performance improvement (e.g., you will see that in indirect adaptive
control, it may be that a very poor model of the plant is learned but we still
achieve good performance in terms of tracking).

Generally speaking, there are two types of learning: (i) learning aspects of
the environment and storing facts, relations, characteristics, etc., in “explicit
memory” (i.e., memory available to our consciousness so we can deliberately
recall it); and (ii) learning how to do things (e.g., when you acquire motor or
perceptual skills) that we store in “implicit memory” (i.e., a type of memory
that is unavailable to consciousness so it generally cannot be recalled). Some
types of learning involve both explicit and implicit memory. In fact, the process
of “explication” is when an expert manages to explain precisely what she knew
implicitly (something that a nonexpert cannot recognize) and where she pro-
ceeds to improve the process (e.g., a pro explaining how to swing a golf club).
While we can prove that we learned something that is stored in explicit mem-

We acquire information
via our senses, store
information in several
types of memory, and
exploit this information
later via explicit recall
or via motor actions
that were modified via
physiological changes
due to the interaction
with the environment.

ory simply by recalling it, to prove that we learned something that was stored
in implicit memory, we must demonstrate improved performance in some task
(e.g., in learning a motor skill like swinging a golf club). Generally, however,
you must be careful in measuring the extent of what is learned. To quantify
how much is learned, psychologists generally give a task to one group in some
environment, and a similar task to a second (control) group in an identical envi-
ronment. Then, the groups are tested in identical conditions and the difference
in performance between the two groups is a measure of the amount of learning
by the first group.

Before discussing specific types of learning in organisms, it is useful to point
out that there is an area of learning theory called the “ecological perspective”
where it is hypothesized that learning in animals is a process of “fill in the
blanks” in their species-typical behavior. As one example of a conclusion from

Evolution “invented”
and shapes all aspects of
learning processes.

this viewpoint, it seems that animals are much more intelligent when given
problems similar to those in their natural environment (e.g., birds that achieve
a specialized type of place learning for storing food in thousands of locations,
and then later retrieving it). Evolution shaped the animal to be most capable
to learn how to solve problems in its natural environment. Moreover, it is
important to recognize that evolution has shaped the sensory processes and the
ability to perceive stimuli, an organism’s basic physiology and hence constraints
to the generation of actions, and basic goals (reward structure) of learning. (For
example, evolution is the process that resulted in a pigeon being able to see a
seed and retrieve it. The result was that the seed was found to be edible and
nourishing so it is a reward.) Effects of evolution on learning seem fundamental
to learning processes. Both evolution and learning are adaptive processes, and
as we will see later in Part IV, each can affect the other. For now, we only
briefly discuss evolutionary aspects as we discuss learning.
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9.1.1 Habituation and Sensitization

Learning can be broken down into associative methods where associations (e.g.,
between different stimuli) are learned and nonassociative methods. In this sec-
tion we will discuss nonassociative learning and then later we discuss classical
and operant conditioning, which are associative methods. In nonassociative
methods relations between different stimuli are not learned. Only a single type
of stimulus is repeatedly presented, and this brings about changes in how the
organism responds to it.

In “habituation,” after having repeated encounters with the same informa-
tion, the animal may respond differently than when it first encountered the in-
formation (e.g., consider the human’s ability to attenuate certain strong smells
or loud sounds that are encountered over a long period of time). Basically, in
habituation, we witness a decrease in a response to a benign stimulus. At the
neural level, this seems to be implemented by a decrease in synaptic transmis-
sion, and sufficiently strong (long) habituation seems to, in some cases, involve
the actual “pruning” (removal) of synaptic connections.

Habituation involves
learning to ignore benign
stimuli. Sensitization
involves learning to react
to important stimuli.

In “sensitization,” once an animal has encountered a certain stimulus, it
becomes more sensitive to it at later times (e.g., consider a human’s ability
to pick a familiar face out of a crowd). Basically, in sensitization, we witness
an increase in response to important stimuli. At the neural level, this seems
to be implemented by an increase in synaptic transmission, and with sufficient
sensitization, new synaptic connections may be formed in some cases. In some
organisms, sensitization can undo the effects of habituation (this is called “disha-
bituation”). In fact, according to the “dual process theory,” habituation and
sensitization both occur simultaneously and the net effect is in the direction of
the one that has the strongest underlying process. Note, however, that there
is a “stimulus specificity” characteristic to habituation (e.g., some animals can
only be habituated to certain stimuli) that is generally not present for sensi-
tization (many animals can become sensitized to almost any stimuli that they
can sense). Hence, while you can broadly think of habituation and sensitiza-
tion as “duals,” they do have different characteristics. Also, note that there
are other related “homeostatic” (feedback) theories such as the “opponent pro-
cess theory,” which is used to explain affective dynamics (neurophysiological
mechanisms involved in emotional behavior that serve to maintain emotional
stability). A feedback control theorist would also, perhaps, be interested in the
homeostatic “compensatory-response model” [152].

9.1.2 Classical Conditioning: Learning Associations Be-
tween Stimuli

Behaviorism is a branch of psychology that attempts to understand human
behavior generally by only considering observable inputs (stimuli) and outputs
(responses). Classical conditioning is a behaviorist approach to characterize
learning processes.
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The Classical Conditioning Process

Suppose you are given an organism that has a natural (instinctual) reflexive-type
response (called the “unconditioned response,” UR) to some stimulus (called
the “unconditioned stimulus,” US) that could be neutral, rewarding, or nox-
ious. Suppose you also know of a stimulus (called the “conditioned stimulus,”
CS) that will not instinctually elicit this same response. Next, a learning (train-
ing) process is conducted where the unconditioned and conditioned stimuli are
“paired” by presenting the conditioned stimulus somewhat before the uncondi-
tioned stimulus to the organism. The time separation between the presentation
of the two stimuli is called the inter-stimulus interval (ISI). After repeating this
experiment several times, if the stimuli and the ISI are chosen properly, the
organism will actually evoke the unconditioned response, UR (sometimes also
called the “conditioned response,” CR, especially if it is slightly different from
the UR) when only the conditioned stimulus is applied (something that it would
not do instinctually). It learned to pair (associate) the conditioned and uncon-
ditioned stimuli so that even when the unconditioned stimulus is not present,
the conditioned stimulus can evoke the response.

Basically, you may think of classical conditioning as the learning of reflexes
from instinctual reflexes. It is also useful to think of classical conditioning as

Classical conditioning
involves learning to
associate two stimuli
and hence, learn a reflex
between a stimulus and
response.

learning how to predict the unconditioned stimulus by observing the conditioned
stimulus that precedes the unconditioned stimulus. In this way we can see
how an organism can learn to predict events in its environment. It has been
found that for some animals, if the CS and US are “novel” (“surprising”), then
learning is faster. Moreover, some animals seem to have a genetic predisposition
to associating the CS and US (i.e., using one to predict the other).

Classical conditioning
can be viewed as
learning to predict one
stimulus from another.

An early experiment in classical conditioning involved Pavlov’s dog where
the dog was observed to salivate (unconditioned response) when food was placed
in its mouth (unconditioned stimulus), but the dog did not have the instinctive
response to salivate when a bell rang. In his experiments (which were quite
extensive, studying many aspects of the learning process), Pavlov paired the
bell ringing (conditioned stimulus) with placing food in the dog’s mouth (un-
conditioned stimulus). After a sufficient number of such pairings, the dog would
salivate even if only the bell rang. It learned to associate the conditioned stim-
ulus with the unconditioned response.

Conditioned learning is related to Aristotle’s “law of association by conti-
guity” (contiguity means closeness in space or time): “If a person experiences
two environmental events (stimuli) at the same time or one right after the other
(contiguously), those events will become associated in the person’s mind, such
that the thought of one will, in the future, tend to elicit the thought of the
other” [223]. Of course, such a law is more difficult to verify for general learning
of thoughts and concepts because it is more difficult to measure the responses
than it is in an experiment like Pavlov’s.

There are a number of characteristics of classical conditioning. We describe
some of these next to provide a deeper understanding of the training process.
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Blocking Phenomena

There is a phenomenon called “blocking” that can occur in classical condition-
ing. To understand it, consider Figure 9.1. Suppose that you have two condi-
tioned stimuli, CS1 and CS2, and in step 1 of a two stage training process, you
perform classical conditioning so CS1 will evoke the UR as shown. Next, for the

Organisms tend to use
the minimal amount of
information to predict
an event.

organism trained in step 1, train again at step 2 but now with the US paired with
CS1 and CS2 (e.g., via having CS1 and CS2 occur simultaneously; also imagine
what would happen if they are not simultaneous, but still precede the US). Now,
while as expected, CS1 will still evoke the UR, CS2 will not. Learning to predict
the US via CS2 was “blocked” by CS1. Essentially, the amount of conditioning
depends on how “surprising” the UR is (more surprising URs result if there is
new information in the set of conditioned stimuli). In this case, CS1 adequately
predicts the UR so CS2 is not needed for this. The blocking phenomenon may
show the potential to evaluate an organism’s instinctual encoding of Shannon’s
entropy measure of how surprising information is.

(CS , US) UR

CS UR

(CS , CS , US) UR

CS UR

CS UR

Step 1

Step 2
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1

1

1 2

1
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Figure 9.1: Blocking phenomenon in classical conditioning.

Extinction

Next, there is the issue of the permanence of the “conditioned reflex” (e.g., will
the dog, for the rest of its life, always salivate when it hears a bell ring?). In
fact, “extinction” of the conditioned reflex occurs if the bell rings a number of
times without the unconditioned stimulus (food). However, it has been discov-

Learning new
associations can inhibit
past associations that
were learned.

ered that a type of “spontaneous recovery” occurs where, after extinction, the
conditioned reflex is partially strengthened, and that, after extinction, a new
sequence of training can more easily evoke the conditioned reflex (hence, Pavlov
concluded that the conditioned reflex is only suppressed, but not forgotten by
extinction). Extinction should not be thought of as forgetting, but as a process
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of learning something new (e.g., that something will not occur). Some think of
extinction and spontaneous recovery as an influence of habituation on classical
conditioning.

Generalization and Discrimination

Particularly relevant to the studies on learning in this part are phenomena in
conditioned learning associated with “generalization,” where after training with
CS1, other stimuli (CSi, i �= 1) that are similar to the conditioned stimulus will
actually evoke the conditioned reflex in the same way as the conditioned stimu-
lus. A process of “discrimination training” can be used to reduce the effects of

With sufficient sensory
capabilities, some
organisms can learn to
discriminate between
similar stimuli.

generalization. For instance, suppose that two stimuli, CS1 and CS2, are simi-
lar and hence after training an organism, will produce the conditioned reflex in
response to either one. Then, suppose that in another training sequence, CS1 is
again presented with the unconditioned stimulus, but CS2 is presented repeat-
edly without the unconditioned stimulus. The conditioned reflex between CS2

and the unconditioned response will become extinct, and hence the organism
will learn different responses to the two stimuli (we say that it has learned to
discriminate between the two).

Some think of the process of sensitization as having basic influences on gen-
eralization, and so discrimination training is a process of making the organism
more sensitive to (able to discriminate between) slightly different stimuli. It
is interesting to note that this concept has formed the basis of quantifying the
quality of sensory processes in animals and infants (if they can learn to discrim-
inate between two similar stimuli, they must be able to perceive the difference).

9.1.3 Hebbian/Gradient Model of Neural-Level Classical
Conditioning

Here, we give an example of classical conditioning processes at the neural level
and provide a simple model of the learning process that is motivated by ex-
tensions of Hebb’s classical learning rule modeled as a gradient optimization
method.

Neural Mechanisms of Learning in Aplysia

Here, we will consider neural mechanisms of learning in a shell-less sea-dwelling
mollusc called a sea slug or sea hare (referred to as Aplysia). Aplysia only have
about 20,000 neurons and this makes them easier to study than the nervous
system of mammals, for example. Moreover, some of the neurons are quite
large and this makes the neural mechanisms even easier to study. It has been
found that several of its natural behaviors can be modified by learning and some
of these behaviors are only affected by as few as 100 neurons. A behavior of
this type is the so called “gill-withdrawal” reflex where if the Aplysia is touched
anywhere on its skin, it pulls its gill into its body as if it were protecting against
an attack.
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In [267], Kandel and his colleagues report finding that the gill-withdrawal
reflex can be forced to occur in response to a stimulus that would normally not
elicit it. In this case, the unconditioned response is the normal gill-withdrawal
reflex in response to a touch to the skin. Unlike many studies in conditioned
learning, they actually determined how the underlying neural mechanisms op-
erate to achieve classical conditioning, and this is shown diagrammatically in
Figure 9.2. A stimulation of sufficient strength anywhere on the skin excites
the sensory neurons, which then excite the motor neurons that signal muscles
to withdraw the gill. At the same time, the sensory neurons signal “modula-
tory (facilitating) interneurons” but these are only activated when there is a
particularly strong stimulus (e.g., an electric shock, or in nature when bitten
by a predator). When the modulatory interneurons are active, they release a
chemical substance called a “neuromodulator” at some “slow” synapses onto
axon terminals of sensory neurons. When these modulatory interneurons re-
peat this many times, the neuromodulator chemicals have the capability to
start a chain reaction in the sensory neurons where they grow new synaptic
connections onto motor neurons and “strengthen” existing ones. This makes
the motor neurons more sensitive to inputs from the sensory neurons so that a
weak stimulus that normally would not cause a gill reflex becomes capable of
evoking it (this demonstrates the process of sensitization). In fact, the sensory
neurons are affected more significantly by the neuromodulator if they have just
been activated recently, within the ISI; this provides a possible mechanism for
classical conditioning.

Figure 9.2: Neural level learning for gill-withdrawal learning in Aplysia (figure
taken from [223], c© 1991, 1994, and 1999 by Worth Publishers Inc., and used
with permission).

Here, an electrical shock to the tail will serve as the unconditioned stimulus
and a very weak stimulus to the skin (in particular, the “siphon”) can serve as
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the conditioned stimulus. Then, after several times where the conditioned and
unconditioned stimuli are paired at an appropriate ISI, if only the conditioned
stimulus is applied, it will evoke the gill-withdrawal reflex. This is due to the
fact that the motor neurons become more sensitive to the sensory neurons so
that a light touch can evoke the gill-reflex that normally will only occur in
response to a stronger stimulus to the skin.

The relationship between ISI and the strength of conditioning (i.e., how
much is learned) is shown in Figure 9.3. The figure shows that the Aplysia
can best learn to predict events that are spaced at about 0.5 sec. If the events
are simultaneous, it can learn nothing about how to predict one stimulus from
another. If they are spaced too far apart, then it cannot learn how to predict
the US from the CS. Essentially, the ISI affects the rate and extent of learning.
Even though biological evidence for it has not been found (to my knowledge),
it is tempting to hypothesize that evolution can explain why Aplysia learn to
predict best with this ISI (how would you explain this using concepts related to
the speed of predators, physiology of Aplysia, and the stochastic nature of the
environment?).

1 20.5 1.5 ISI, sec.

Strength
of
conditioning

Figure 9.3: Effect of inter-stimulus interval on strength of conditioning for
Aplysia (data taken from [268]; however, only the general shape is plotted here).

Hebbian Learning Modeled as a Gradient Method

Here, we will produce a very simple model of classical conditioning fashioned
after general aspects of how classical conditioning occurs in Aplysia. To do this,
consider Figure 9.4. Here, we have two inputs: the unconditioned stimulus x1

that represents an electrical shock to the tail and the conditioned stimulus x2

that represents a weak stimulus to the skin (particularly, the siphon). Recall
that instinctually the Aplysia will respond to the US with a gill-withdrawal
response, but it will not do this for the CS. Here, we model the sensory neurons
in Figure 9.2 as generating signals x1 and x2 that are passed through synapses
modeled as w1 and w2 to the motor neuron. The function f is the activation
function of the motor neuron and suppose that it is linear so

y(k) = w1x1(k) + w2(k)x2(k) + b
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where k is the index of the conditioning step and w1 and b are fixed and hence,
not influenced by learning. We will suppose for our example here that w1 = 1
and b = −0.5. We consider the UR to occur if y ≥ 0 and not to occur if y < 0.
Suppose that we let x1(k) = 1 represent that the US is applied at conditioning
step k and x2(k) = 0.1 represent that the CS is applied at step k, and in both
cases, these are set to zero if the corresponding stimulus is not applied at step k.
The conditioning process results in learning that is modeled by changing w2(k).

x

x

1

2

US
Electric
shock to tail

CS
Weak
stimulus to
the skin (siphon)

w

w

1

2

b

Σ f

y

UR
Gill-withdrawal
response

Neural processing
in Aplysia

Learning
aspects

Changes

Figure 9.4: Neural network model for Aplysia.

Suppose that initially, before conditioning, w2(0) = 0 and consider the influ-
ence of stimuli at this point. If x1(0) = x2(0) = 0, representing that no stimuli
are applied, then y(0) = −0.5 < 0 so that the UR will not occur. The US
will invoke the gill-withdrawal response since y(0) > 0 if x1(0) = 1 and either
x2(0) = 0 or x2(0) = 0.1 (i.e., whether the CS is present or not). If, however,
x1(0) = 0 and x2(0) = 0.1 representing that only the CS is present, due to
b = −0.5, y(0) < 0 representing that the UR will not occur.

Notice that we have not yet modeled the modulatory interneuron in Fig-
ure 9.2 and the learning process. Here, we will model the learning process with
a synaptic connection (weight) update formula for w2(k) as shown in Figure 9.4.
In particular, we will assume that the neurons operate so as to adjust w2 in or-
der to minimize the “cost function” (a characterization of how much learning
needs to be done)

J(w2) =
1
2

(αx1 − w2x2)
2 (9.1)

Here, α > 0 is defined to represent the modulatory interneuron as a linear
mapping. Suppose that α = 1. We suppose that conditioning amounts to
minimizing J according to a gradient method called “steepest descent.” In
particular, we assume that the w2 weight is adjusted by the formula

w2(k + 1) = w2(k) − λ
∂J

∂w2

∣∣∣∣
w2=w2(k)

(9.2)



332 Learning and Control

where ∂J
∂w2

is the gradient of J with respect to w2 and λ > 0 is the “step size.”
This is the steepest descent gradient method. Why is it called this? Notice
that it updates w2(k) along the direction of the negative gradient to move in
the direction of maximal decrease of J (this amounts to moving down the cost
function surface, like climbing down a hill, taking step at each conditioning
step of size λ). Equation (9.2) represents the change in the weight due to one
pairing of the US with the CS at time k with the appropriate ISI (so it actually
represents the physical presentation of the CS and US at two different times).
For this example,

∂J

∂w2
= − (αx1 − w2x2) x2

so that
w2(k + 1) = w2(k) + λ (αx1(k) − w2(k)x2(k)) x2(k) (9.3)

represents the learning process where the weight is adjusted to minimize how
much learning needs to be done as characterized by Equation (9.1).

Next, consider the effects of long sequences of various values of x1(k) and
x2(k), k ≥ 0, when w2(0) ≥ 0 takes on a fixed positive value. We have the
following:

1. No US or CS: Here x1(k) = x2(k) = 0, k ≥ 0, so via Equation (9.3),
w2(k) = w2(0), k ≥ 0. The weight value stays the same, representing that
there is no learning or extinction.

2. No US, but CS present; Extinction: Here, x1(k) = 0 and x2(k) = 0.1,
k ≥ 0, so via Equation (9.3),

w2(k + 1) = w2(k) − λw2(k)x2
2(k) =

(
1 − λx2

2(k)
)
w2(k)

Assume that 0 < 1 − λx2
2(k) < 1, which we can always achieve for a

fixed size x2(k) > 0 by choosing λ > 0. With such a choice, w2(k) → 0
as k → ∞ for any w2(0) value. This represents the case where there is
extinction since after a certain point, w2(k) will be small enough so that
y(k) < 0 and the CS will not elicit the UR if the US is not present.

3. US present, but no CS: Here, x1(k) = 1 and x2(k) = 0, k ≥ 0, so via
Equation (9.3), w2(k + 1) = w2(k), k ≥ 0, and there is no learning since
the CS is not present.

4. US and CS present; Learning: Here, x1(k) = 1 and x2(k) = 0.1, k ≥ 0, so
via Equation (9.3),

w2(k + 1) =
(
1 − λx2

2(k)
)
w2(k) + λαx1(k)x2(k)

The first term arises in case 2 above and we have 0 < 1 − λx2
2(k) < 1

so that w2(k) will be bounded, and will take on a positive value since
λαx1(k)x2(k) ≥ 0. Also, for our case, each conditioning step will result in
an increasing size to w2(k) which represents that learning occurs.
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As an example, suppose that λ = 20, then the weight trajectory for w2(0) = 0
is shown in Figure 9.5(a) and the UR output y is shown in Figure 9.5(b) for
each w2(k) value (we think of the output y as being proportional to the strength
of the UR). For this simulation in the first 20 conditioning steps, x1 = 1 and
x2 = 0.1 but in the remainder of the steps, x1 = 0 and x2 = 0.1. Hence, in
the first phase we see that with the US present, even at the first step the UR
occurs, and then after a sufficient number of steps, the UR would occur without
the US present, only via the presence of the CS. Why? Notice that with no US
but a CS present

y(k) = 1(0) + w2(k)0.1 − 0.5

What weight value w2(k) must be present before the CS will by itself result
in y(k) ≥ 0? Note that by step k such that w2(k) ≥ 0.5, it has achieved
conditioning. Next, during the second phase when the US is not present but
the CS is, w2(k) decreases and once it is such that w2(k) < 0.5, then y(k) < 0
and extinction has been achieved.
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Figure 9.5: Gradient/Hebbian learning in Aplysia, synaptic strength changes
during classical conditioning (a) and motor neuron output (b).

While the above model of classical conditioning at the neural level seems to
represent some characteristics of learning, is there a neuro-scientific basis for
the model? To explain how learning takes place at the neural level, D.O. Hebb
hypothesized that if an axon of, say, neuron 1, repeatedly helps fire neuron 2,
then the connection between the neurons is modified so that in the future, neu-
ron 1 more easily fires neuron 2. Hence, the “connection” provides a mechanism
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for memory, and it is due to Hebb’s learning rule hypothesis that we often think
of modifying neural network weights as learning since they model the synaptic
connections between neurons. Now, using the view in [206], “associative long-
term potentiation” is an extension of Hebb’s rule that says: if a weak and strong
input act on a cell at the same time, the weak synapse becomes stronger. This
means that the above weight update formula that results from viewing learning
as a gradient method is a form of Hebbian learning.

It must be emphasized, however, that this model of part of the neural pro-
cessing in Aplysia only represents the gross characteristics of its neurophysiology
and learning. There are many aspects of the neural network and learning that
are not modeled. For instance, the feature of extinction where learning will
occur faster during the second training phase is not represented. The shapes of
the curves and training rates are not based on physiological data. Also, there
are a number of other aspects of classical conditioning characteristics that are
not represented. Our intent, however, was not to create an accurate model of
learning in this biological system; it was only to illustrate the plausibility of
modeling learning as a gradient method to motivate the use of gradient meth-
ods. For more work on modeling classical conditioning, see the “For Further
Study” section at the end of the part.

Supervised Vs. Unsupervised Learning Perspectives

In “supervised learning,” there is a “teacher” who provides stimulus-response
pairs repeatedly to a “student” whose goal is to learn the association between
the given stimulus and the response that the teacher provides (like rote memo-
rization). Classical conditioning is often thought of as “unsupervised learning”
since, while stimuli are provided (e.g., the conditioned and unconditioned stim-
uli), the response is not since it is generated by the organism (student), not the
teacher. For example, for the Aplysia example, the US and CS stimuli can be
provided but the teacher cannot specify the gill response.

There is, however, another way to view classical conditioning where it can
also be thought of as supervised learning (training). Recall that classical con-
ditioning can be viewed as learning to predict that a stimulus will occur when
another stimulus is present. Can we view the CS as the stimulus and the US
as the response (that occurs later than the CS by the ISI) so that the organism
(student) then learns to associate the CS to the US? It seems so. To do this,
note that presentation of the US changes the internal state of the organism in
some way so that it will elicit the UR. The CS changes the internal state of the
organism in a way that does not result in the UR. Classical conditioning can be
viewed as changing the internal state generated by the CS so that it elicits the
UR. The changes could be so that the state produced by the CS triggers the
state produced by the US even when the US is not present. Or, it could be that
the changes result in the CS producing the same state as the US. Regardless,
we can view the CS as the stimulus and the internal state produced by the US
as the response that the teacher wants. Repeated presentations of the paired
CS and internal state produced by the US should result in the formation of an
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association between the CS and the internal state produced by the CS so that
when the CS is presented without the US, the UR occurs.

Consider the Aplysia example. Let the training pairs be (x2(k), xus(k))
where x2(k) is the CS and the internal state generated by the US is

xus(k) = αx1(k)

which is generated after the CS by a time interval specified by the ISI. So, part
of what the teacher is demanding as a response is an internal characteristic
of the network that is being trained. Recall that α = 1 and x1(k) = 1(0)
represents the presence (absence, respectively) of the US. A cost function for
supervised learning measures how well the student produces the pairs presented
by the teacher. One way to do this for one training pair is via Equation (9.1)
with xus(k) = αx1(k), since this is a measure of how well the output of the
sensory neuron connected to the motor neuron (what we call w2x2(k)) produces
a signal that is the same as the one produced by the US (what we call xus(k)).
Clearly, if we use the steepest descent gradient method to model the supervised
learning process we get the same general form for the weight update equation
as in Equation (9.2), but since xus(k) = αx1(k),

w2(k + 1) = w2(k) + λ (xus(k) − w2(k)x2(k))x2(k) (9.4)

where (x2(k), xus(k)) are specified at each conditioning step. Clearly this is
the same as Equation (9.3); all we have done is change our interpretation of
what is happening in the conditioning process. Now, we think of conditioning
as teaching to associate two stimuli spaced by an ISI (or later, in some cases,
we think of learning a function that represents the associations; i.e., we think
of it from a “learning as function approximation” perspective). Extinction in-
volves presenting (x2(k), xus(k)) = (0.1, 0) repeatedly so it can be thought of as
teaching the organism not to associate the two stimuli. Due to the view of mod-
eling Hebbian learning via a gradient method discussed above, Equation (9.4)
is sometimes called a model of supervised Hebbian learning.

So, why concern ourselves with the different viewpoints of unsupervised and
supervised learning? In training of artificial neural networks, the distinction is
sometimes important. Here, however, the key reason is that later, in our function
approximation approaches, we will use some supervised learning approaches and
the above discussion clarifies that gradient learning is a plausible model for this
case also. A particular case we will be interested in is when the “response” in
the stimulus-response pair is some value that is specified in order to lead to a
reward for the organism. In this way, the supervised learning model of classical
conditioning can be viewed as closely connected to operant conditioning.

9.1.4 Operant Conditioning: Learning to Predict Conse-
quences of Actions

Generally, the consequences of actions (operations) that an organism takes in
its environment increase or decrease the likelihood that those actions are taken
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again depending on whether they helped the organism achieve its goals (e.g.,
getting food). The effectiveness of the actions can be measured on a contin-
uous scale by some type of performance measure that quantifies how well the
actions help the organism achieve its goals. Psychologists (e.g., E.L. Thorndike
and B.F. Skinner) constructed environments for training animals where if the
animals learned how to take the proper actions, they would be rewarded and
if they did not, they would not be rewarded (e.g., via food). Skinner called
the training process “operant conditioning” (others refer to it as “instrumental
conditioning” or “trial-and-error” learning).

Operant conditioning
involves learning which
actions are most likely
to lead to goal
achievement.

It is interesting to note that some view habituation, sensitization, and clas-
sical conditioning as “building blocks” for learning in the sense that some hy-
pothesize that it would be logical for evolution to build more complex learning
strategies from existing ones in simpler organisms. From this viewpoint, you will
see shadows of the learning strategies we have covered earlier in this treatment
of operant conditioning.

Example: Operant Conditioning for Pigeons

As an example, recall that Skinner trained pigeons to peck at images of boats
projected onto a screen by giving them a food reward each time that they pecked
at the correct position (review Part I, Section 2.3.2 on page 70). You may think
of operant conditioning as the training process depicted in Figure 9.6. In the
figure, at the start of the training process, the pigeons took actions that did
not lead them to a reward (note that the thick black lines are used to represent
more likely actions). Then, they discovered how to take actions that led them to
rewards (e.g., by pecking at various locations). After further training, however,
they discovered that pecking on images of boats produced immediate rewards
so after several trials, the likelihood that they took that action increased signif-
icantly. Notice the change of line thickness through the training process, where
the pigeon incrementally modifies the likelihood of taking the actions and bi-
ases these modifications in the direction of actions that are likely to provide a
reward.

During operant conditioning, there is a typical response dynamic studied
by Skinner where once the pigeon figures out the proper response to get the
reward, it will tend to increase the frequency at which it performs that action
and this produces a type of feedback that allows the pigeon to quickly increase
the likelihood of producing the proper action. Note, however, that this is for
a constant environment and reward system. Clearly, if there is a dynamically
changing environment and reward system, the operant conditioning will have
to “track” the rewards, at least by strengthening/weakening the likelihood of
some actions and possibly by inventing new actions to find the rewards. Some
general theory that studies the rates of responding and rates of reinforcement
is found in the study of the “matching law” and self-control [152].

Next, we provide more details on some characteristics of the operant condi-
tioning process.
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Figure 9.6: Depiction of reinforcement in operant conditioning (Thorndike’s
“law of effect”).

Learning to Predict Consequences of Actions

In an analogous manner to how we viewed classical conditioning as learning
how to predict stimulus events, we can view operant conditioning as learning to
predict consequences of actions. We think of operant conditioning as a process

Operant conditioning
can be viewed as
learning how to predict
consequences of actions.

where the organism modifies its frequency of taking various actions to optimize
the likelihood of getting rewards. Operant conditioning is constrained by the
interval of time between action and reward (but see the section on “chaining”
below) in an analogous way to how the ISI works in classical conditioning. Also,
environmental context can affect operant learning so that the organism can
learn to perform certain actions in specific environments. From an evolutionary
perspective, there may be a strong selective advantage for organisms that have
operant learning capabilities rather than just classical conditioning capabilities.
For instance, operant learning generally gives the organism an ability to shape
its own environment so it is best suited for survival, rather than just trying to
cope with a given environment. Moreover, instincts can affect what is learned
and how it is learned.
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Shaping, Partial Reinforcement, Extinction, Reinforcer Control

Concepts related to “generalization” in classical conditioning have been studied
for operant conditioning. In some environments, an organism may never find
the action that will lead to a reward, and hence the training process can be
viewed as a failure. To solve this problem for specific training exercises, experi-
mentalists have used a concept called “shaping.” For instance, note that in the
pigeon example, if the pigeon pecks at the screen in random locations (a likely
possibility due to the natural behavior of the pigeon), this type of action will
be rewarded occasionally since the pigeon may get lucky and hit a boat image.
The random pecking response is “shaped” so that it is similar to the proper
response in the sense that it will give a “partial reward” (i.e., not as much as
for the correct action for the amount of effort expended). You may think of the
random pecking response as leading the pigeon to the correct response. Skinner
set the pigeons up for success since he already understood their capabilities and
tendencies.

Just as with classical conditioning, the operantly conditioned response be-
comes extinct if the organism does not get a reward for performing it for a
long period of time. As with classical conditioning, the response is not actu-
ally forgotten, it is just inhibited, and “spontaneous recovery” and higher-rate
relearning is normal.

Skinner introduced the term “reinforcer” to use instead of goal or reward
(and this will later lead to “reinforcement learning control” in Section 9.4).
Then, there is the possibility of having a “partial reinforcer” (periodic or lower
magnitude reward), “positive reinforcement” (a process that increases the like-
lihood that a response will occur), and “negative reinforcement” (when the
removal of a stimulus after a response makes the response more likely to occur).
For instance, once positive reinforcement has been used to train the pigeons, it
would be normal for them to continue pecking at boat images, even if each time
they did it properly you did not give them the positive reinforcer. Instead, you
could give it to them only periodically. Essentially, they learn to be persistent
to get their reward.

There are also methods of training that typically result in making it more
difficult for a response to become extinct. Researchers have used different types
of schedules for providing rewards. For example, there are fixed schedules where
reinforcement is given periodically in time or where reinforcement is given after
n occurrences of the correct action. Alternatively, some study variable schedules
where you vary the frequency of reinforcement randomly about a mean value
or number of occurrences of the correct action about some mean value. One
interesting effect from such studies, sometimes called the “partial reinforcement
learning effect,” is that the variable schedule training methods are typically
more resistant to extinction. This should not be surprising since the animal
also learns that it has to be patient.

Next, we briefly note that some animals can learn that some reinforcer is
controllable or uncontrollable, and such concepts are often studied in the control
of aversive stimuli. For example, there is the “learned helplessness effect” where
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an animal can essentially learn that it cannot avoid an aversive stimulus, and
thereby this can adversely affect its ability to later learn. Finally, note that it is
possible to learn to pay attention to some stimulus, but along similar conceptual
lines to the learned helplessness effect, it is also possible to learn to have an
attention deficit (e.g., when an animal receives a bombardment of stimuli and
cannot choose actions to direct behavior at getting rewards fast enough due to
other physiological limitations and hence, it then learns to ignore the stimuli).
This provides some connections between learning and attention.

Discrimination Training and Chaining

In “discrimination training” you can train an animal to recognize the situation
that it is currently in and to only take actions when in that situation. You
reinforce a response when some situation (“contextual information”) is present,
and extinguish the response when that situation is absent. Via discrimination

Training via chaining
results in an ability to
predict sequences of
events.

training, animals can be trained to perform sequences of events. To do this, the
key is to note that after discrimination training, the situation is associated with
receiving a reinforcer so the situation itself acquires some reinforcing value. The
situation is sometimes said to be a “secondary reinforcer” (for humans, money
is a typical secondary reinforcer). Hence, if you set up an additional operant
training sequence with the situation as the reinforcer, it can learn the action it
needs to get to the situation as follows:

action 1 → situation 1 (secondary reinforcer 1),
· · ·

action n − 1 → situation n (secondary reinforcer n) →
action n → goal (reinforcer)

Essentially, the training can occur in a “backward manner” in the learning pro-
cess. You train using operant conditioning so that the animal finds action n so
that it gets a reward. Via this process, it associates the situation it was in while
learning (situation n) with getting a reward so situation n gets some reinforc-
ing value, and thereby can become the reinforcer for an operant conditioning
process for the animal to learn action n − 1 so that it obtains the secondary
reinforcer of situation n. The process then repeats. Long “chains” of sequences
have been taught to animals, and clearly human behavior is affected by such
processes also. Foraging in a variety of animals can be viewed as exploiting a
type of operant conditioning that involves chaining.

9.1.5 Control System Model of Behavioral-Level Operant
Conditioning

Consider the block diagram representation of the operant conditioning process
shown in Figure 9.7. The organism is placed in some environment (just as in
control systems, even though we break the organism and environment into two
boxes, the organism is in the environment). The organism can take actions on
the environment and if it takes the proper actions, it will change the environment
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in a way so that the environment “gives” it a reward. Operant conditioning
occurs if the organism can find an action that will change the environment in a
way so that it gets a reward, and if the likelihood of the organism taking that
action again increases.

EnvironmentOrganism

Actions

(operations)

Information the organism can
sense about the environment

Reward
determination

Figure 9.7: The operant conditioning process.

Feedback Control System Model of Operant Conditioning

In order to model the operant conditioning process, we will think of the organism
as having an ability to act as a controller and the environment as being our
“plant” (process to be controlled). Taking a control-engineering approach, we
will begin by providing an example of how we can model the environment.
In particular, for illustration purposes, suppose that the environment can be
represented by

x(k + 1) = f(x(k), w(k), u(k)) (9.5)
y(k) = h(x(k), w(k), u(k))

where x ∈ 	n is the state, w ∈ 	nw is a disturbance or noise, u ∈ 	nu is the in-
General operant
conditioning processes
can be represented as a
feedback control process.

put, and y ∈ 	ny is the output. Here, the state x(k) at time k is the “situation”
in the environment at time k, u(k) represents the actions the organism takes
on the environment at time k, w(k) is an uncertain influence (e.g., sometimes
taking a specific action in some state may lead to an unpredictable situation
in the environment), and y(k) represents variables that the organism can sense
(generally, due to sensory processing limitations, it is not possible for any one
organism to sense every aspect of its environment and this forces the organism
to make decisions under uncertainty). The functions f and h can generally be
assumed to satisfy certain properties (e.g., they are generally “smooth” in their
arguments) but they are normally unknown by the organism, at least when the
organism first encounters the environment (however, this ignores what instinc-
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tual information the organism may have about the environment it is to live in
that has been “encoded” via evolution).

Reward determination differs for every type of organism. Suppose, however,
that the organism is rewarded if it can make

y(k) = yd(k)

for all k ≥ T , for some finite T , where yd(k) is a vector representing measurable
aspects of the environment that, if the organism can steer the environment to
them, the organism will get a reward (e.g., it may represent that the organism is
in a specific location and has moved some lever so that the environment changes
in a way to make a reward available). Note that if we let

e(k) = yd(k) − y(k)

then
J(k) = e�(k)e(k)

(the sum of the squares) represents a measure of how close the organism is to
a reward so that J represents a way to provide partial reinforcement (note that
small rewards are given for large values of J , and bigger ones are given for
smaller values of J).

To model one type of operant conditioning, suppose that Equation (9.5)
is at some state x̄, that we seek a reward ȳd (a constant), and that there is
no influence from the disturbance w(k) (represented with w = 0). Moreover,
suppose that any action the organism takes results in the next state being x̄ (so
it is put back in the same situation to try to find a more rewarding action again).
The organism experiments with different u(k) values to try to minimize J (to try
to get a big reward). In particular, during operant conditioning the organism
solves an optimization problem by generating the actions u(i), i = 1, 2, . . . , M ,
and

x̄ = f(x̄, 0, u(i))
ȳ(i) = h(x̄, 0, u(i))

with rewards
J(i) = e�(k)e(k) = (ȳd − ȳ(i))�(ȳd − ȳ(i))

After training, given that it is placed in the same environmental situation x̄,
the organism will simply choose the input u(i), say u(i∗), that gave it the most
reward (i.e., we think of learning a function relating x and u to rewards, which
is a function approximation perspective on learning). Mathematically,

i∗ = argmin {J(i) : i = 1, 2, . . . , M}
In fact, the organism’s strategy for finding the highest reward when it is in the
situation x̄ can be viewed as an optimization strategy (controller) that picks a
sequence of actions to maximize J(i) using feedback information from the envi-
ronment (both the situation that the actions take the environment to and the
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resulting amount of reward). What types of optimization strategies might an
organism use to find the action that will provide the most reward and thereby
learn that action? This depends on the physiology of the organism and charac-
teristics of its environment. Here, we will not concern ourselves with modeling
actual organisms using the above formalism for representing operant condition-
ing. Instead, we will explain how it can represent characteristics of operant
conditioning, and then discuss how operant conditioning can be viewed as a
relatively general building block for learning in decision-making systems that
operate as feedback control systems.

Modeling Characteristics of Operant Conditioning

If you think of long sequences of events as forming a tree where at some twig
there is a reward, it should be clear that “chaining” is a way to train the
organism by starting at the reward (twig) and tracing backward to a situation
you want to start the organism in, and be able to find the twig. Characteristics
of shaping, extinction, and discrimination training have clear analogies. How?

It seems that in some ways, the specific way that we modeled operant con-
ditioning in the last subsection represents a set of essential assumptions of the
pure behavioralist view. From the “cognitive perspective,” we should view the
organism itself as a stochastic dynamical system

xc(k + 1) = f c(xc(k), wc(k), yc(k)) (9.6)
uc(k) = hc(xc(k), wc(k), yc(k))

Here, xc is an internal state of the organism (state of the brain and physiological
condition), wc represents unmodeled influences and noise, uc represents the
actions it takes on the environment (e.g., uc = u), and yc represents inputs
from the environment (e.g., yc = y). Note that f c and hc can represent many
aspects of cognition and physiology, but it will certainly represent aspects of the
reward structure (e.g., the J function discussed above).

Equation (9.6) has memory, and possibly parts of the mappings f c and hc

that influence learning (e.g., via existing information in memory) but are not
changed by it (e.g., physiological constraints). The functions f c and hc can
actually be used to represent “internal mental models” of the environment that
can help it succeed (e.g., a cognitive map). In fact, operant conditioning can be
viewed as a process of model building where the organism learns to predict the
consequences of its actions.

9.2 Function Approximation as Learning

Recall that in Chapter 4 we modeled two types of neurons: one with a tuning
curve in the form of a sigmoidal function that led to the multilayer perceptron,
and another with a tuning curve in the form of a Gaussian function that led to
the radial basis function neural network. In Chapter 4 it was also explained how
such networks could be constructed by hand to implement complex input-output
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mappings. Here, we study how to construct these neural networks by using
supervised learning to train the networks to approximate an unknown function
that is represented by a set of input-output data pairs (i.e., more general neural
networks and approaches to training them than what we considered in our
simple Aplysia model). Hence, the function approximation viewpoint here can
be thought of as having bio-foundations in classical and operant conditioning
(e.g., by viewing the teacher’s demanded response as arising from a stimulus,
a reward, or specific value that leads to a reward), and later we will show how
to achieve the training via least squares and gradient methods that have their
bio-foundations in Hebbian learning. You will see a number of characteristics
from classical and operant conditioning arise in this and the remaining sections
of this chapter. However, you will also see a general departure from neural
bio-foundations and an increasing focus on mimicry of the behavioral level and
engineering applications.

First, we provide a mathematical definition of a function approximation
problem. Let

F (x, θ)

denote a tunable nonlinear function that we will use as a “function approxima-
tor.” The input, which is known, is x = [x1, x2, . . . , xn]� and the parameter
vector θ = [θ1, θ2, . . . , θp]� (i.e., there are n inputs to the approximator and p
parameters which can be changed to modify the functional mapping that F im-
plements). The function F could be a standard fuzzy system which we denoted
with Ffs(x, θ), a Takagi-Sugeno fuzzy system, which we denote by Fts(x, θ),
a multilayer perceptron which we denote by Fmlp(x, θ), a radial basis function
neural network Frbf (x, θ), or some other tunable nonlinear function (e.g., a poly-
nomial). The function F is the “approximator structure” and θ is the parameter
vector which holds the set of tunable parameters for the approximator struc-
ture. The value of p will be called the “size” of the approximator. For example,
the size of the multilayer perceptron is given by the number of tunable weights
and biases. In the following chapters, we view the parameters θ as the values
that are learned (tuned to shape the nonlinearity F (x, θ)); however, “structure
learning” provides another way to achieve function approximation and this will
be discussed briefly in Section 9.4.6.

9.2.1 Using Functions to Represent Mappings in Data

Let
y = G(x, z)

where its input is x = [x1, x2, . . . , xn]�, z = [z1, z2, . . . , znz ]� is an unknown
“auxiliary variable,” and its output is the scalar y. Here, n is the number of
inputs, and nz is the number of auxiliary inputs. If nz = 0, then this means
that G(x, z) is not a function of z and in this case we will denote it by G(x).
We assume that G(x, z) is a function for which we do not have an explicit
mathematical form. Suppose, however, that we do have an ability to learn
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about its form by performing experiments and gathering input and output data
from the function.

Suppose that for the ith experiment, we let the input data be

x(i) = [x1(i), x2(i), ..., xn(i)]�

the auxiliary variable

z(i) = [z1(i), z2(i), ..., znz(i)]�

and the output data be
y(i) = G(x(i), z(i))

(hence, xj(i) is the jth element of the ith data vector so it has a specific value
and is not a variable like xj ; similarly for z(i)). Typically, in practice, our
experiments are constrained so that we know that

x(i) ∈ X ⊂ 	n

for some (bounded) set X that we know a priori; similarly for

z(i) ∈ Z ⊂ 	nz

While for the ith experiment we know the value of x(i), it is assumed that we do
not know z(i) but that we can obtain y(i) = G(x(i), z(i)) from our experiment.
For example, x(i) may be the (known) input value to a function, z(i) may
result from some noise or other values that we cannot measure, and y(i) is
the subsequent output that is generated and that we can measure; of course,
the function G(x, z) could generate other unmeasurable outputs but we are not
interested in these.

We will call the pair (x(i), y(i)) an input-output data pair and each such
pair can be used as a piece of “training data.” We call the set of input-output
data pairs the training data set and denote it by

G = {(x(1), y(1)), . . . , (x(M), y(M))} (9.7)

where M denotes the number of input-output data pairs contained in G. Hence,
G is the data set of input-output pairs that is gathered to gain information about
the unknown function G(x, z).

Function approximation
involves constructing an
interpolator for data so
it properly represents the
function from which the
data were gathered.

If you perform many experiments, the set G will contain a significant amount
of information about the mapping that is inherent between the x(i) vectors and
the y(i). In some ideal situation where we could perform an infinite number of
experiments in a way so that all of X is covered (i.e., we pick all possible values
in X ⊂ 	n), then we would still not have complete information about G(x, z)
because of the influence of the unknown variable z on the shape of the function.

The function approximation problem is the problem of how to pick the value
for the parameter vector θ in F (x, θ), a function whose explicit form we know,
so that

G(x, z) = F (x, θ) + e(x, z) (9.8)
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where the approximation error e(x, z) is as small as possible for all x ∈ 	n

and z ∈ 	nz , even at x such that (x, y) /∈ G (which is quite challenging if we
know nothing of the function G(x, z) besides what is in the training data G).
If e(x, z) is small for all x ∈ 	n and z ∈ 	nz , we say that F (x, θ) does a good
job at approximating the function G(x, z); that is, F (x, θ) does a good job at
representing the mapping that is inherent in the data set G.

9.2.2 Choosing the Training Data Set

The fact that classical conditioning can be viewed as a type of function approx-
imation relies on being able to form a training data set G. The choice of how to
structure G so as to represent different types of learning problems, particularly
adaptive estimation and control problems, is an underlying theme of this part.
In this section we will discuss how to pick the particular data pairs after you
have formulated the function approximation problem by specifying what the
(x, y) data pairs in G represent.

While the method for adjusting the parameters θ of F (x, θ) is critical to the
Quality of function
approximation depends
critically on whether the
training data set
provides good
information about the
unknown function.

overall success of the approximation method, there is virtually no way that you
can succeed at having F (x, θ) approximate G(x, z) if there is not appropriate
information present in the training data set G. Basically, we would like G to
contain as much information as possible about G(x, z). Unfortunately, most
often the number of training data pairs is relatively small, or it is difficult to use
too much data since this affects the computational complexity of the algorithms
that are used to adjust θ. The key question is the following: How would we
like the limited amount of data in G structured so that we can adjust θ so that
F (x, θ) matches G(x, z) very closely?

Uniform Coverage May Help

There are several issues involved in answering this question. Intuitively, if we
can manage to spread the data over the input space uniformly (i.e., so that there
is a regular spacing between points and not too many more points in one region
than another) and so that we get coverage of the whole input space, we would
often expect that we may be able to adjust θ properly, provided that the space
between the points is not too large. This is because we would then expect to
have information about how the mapping G(x, z) is shaped in all regions so we
should be able to approximate it well in all regions (assuming small influences
from z). The accuracy will generally depend on the slope of G(x, z) in various
regions. Assuming the influence of z is small, in regions where the slope is high,
we may need more data points to get more information so that we can do good
approximation. In regions with lower slopes, we may not need as many points.
This intuition, though, may not hold for all methods of adjusting θ. For some
methods, you may need just as many points in “flat” regions as for those with
ones that have high slopes. It is for this reason that we seek data sets that have
uniform coverage of the X space. If you feel that more data points are needed,
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you may want to simply add them more uniformly over the entire space to try
to improve accuracy.

We Often Cannot Control What Is in the Data Set

While the above intuitive ideas do help give direction on how to choose G for
many applications, they cannot always be put directly into use. The reason
for this is that for many applications, we cannot directly pick the data pairs in
G. For instance, most often in “system identification,” you cannot directly pick
the data pairs. Recall that in system identification the objective is to use data
from the plant (and perhaps other information) to construct a mathematical
model of that system. It is then a type of function approximation problem.
Notice that our input portion of the input-output training data pairs (i.e., x)
typically contains both the inputs and the outputs of the system (i.e., x is often a
regression vector) since the system has memory and so past inputs and outputs
can affect the current output. It is for this reason that it is not easy to pick
an input to the system that will ensure that the outputs will have appropriate
values so that we get x values that uniformly cover the space X (basically it is
an issue of controllability of the system, which for the nonlinear case can quickly
become complicated).

Another situation that is commonly encountered where you cannot pick the
input to the system is in some “online” function approximation problems. For
instance, in adaptive control, the input may be chosen by a controller whose
prime objective is to achieve tracking, and this may be in conflict with its other
objective of providing a persistently exciting signal.

Similar problems may exist for other applications (e.g., parameter estima-
tion), but for some applications this may not be a problem. For instance, in
constructing a fuzzy controller (a valid approximation structure) from human
decision-making data, we may be able to ensure that we have the human provide
data on how to respond to a whole range of input data (i.e., we may have full
control over what the input portion of the training data in G is).

Relationships to Persistent Excitation

It is interesting to note that there are fundamental relationships between a data
set that has uniform coverage of X and the idea of “sufficiently rich” signals
in system identification (i.e., “persistency of excitation” in adaptive systems).
Intuitively, for system identification we must choose an input signal to “excite”
the dynamics of the system so that we can “see,” via the plant input-output
data, what the dynamics are that generated the output data (i.e., we can see
inside the “black box”). Normally, constraints from conventional linear system
identification will require that, for example, a certain number of sinusoids be
present in the input signal to be able to estimate a certain number of parameters.
The idea is that if we excite more modes of the system, we will be able to identify
these modes. Following this line of reasoning, if we use white noise for the input
signal, then we should excite all frequencies of the system—and therefore, we
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should be able to better identify the dynamics of the plant.
Excitation with a noise signal (or a random binary signal) will have a ten-

dency to place points in X over a whole range of locations; however, there is
no guarantee that uniform coverage will be achieved for nonlinear identification
problems with standard ideas from conventional linear identification. Hence, it
is a difficult problem to know how to pick the input signal so that G is a good
data set for solving a function approximation problem. Sometimes we will be
able to make a choice for the input signal that makes sense for a particular ap-
plication. For other applications, excitation with noise may be the best choice
that you can make since it can be difficult to pick the input signal that results
in a better data set G; however, sometimes putting noise into the system is not
really a viable option due to practical considerations.

Other “Experiment Design” Issues

In system identification, the issue of how to design the experiments to collect
data is a well-studied but complicated problem that offers ideas on how to solve
the problem of choice of the data set G for the function approximation problem.
In practical problems, there can be many issues that arise when working with
data from a physical system. For instance, there is the issue of what to measure
and when to measure it (i.e., what sampling period to use). There is often a need
to preprocess the data to eliminate high frequency effects or noise. Sometimes
there are certain outliers or missing data (discontinuous data records) that must
be dealt with. The interested reader is referred to the “For Further Study”
section at the end of this part for more information.

Data Scaling

There are times when scaling the data can be helpful in the sense that the
algorithms that are used to process the data to find θ can sometimes perform
better if the data are scaled. One simple way to scale the data is to simply
multiply by a number that will force all the data values to be between −1 and
+1. Such scaling can help with numerical issues, and can speed convergence
of some training methods. Again, the interested reader is referred to the “For
Further Study” section at the end of this part for more information.

9.2.3 Example: Collecting Data for Function Approxima-
tion

The process of collecting the training data pairs in the data set G from the func-
tion G(x, z) generally differs for each application; however, there are common
characteristics in the process and we will use a simple problem here to illustrate
them. The particular example we consider has an unknown function G(x, z)
where x is a scalar (n = 1) that we can pick and at first, we assume that nz = 0
so that z does not influence G(x, z) in any way. We collect M = 7 pieces of
training data as shown by the circles in Figure 9.8. Here, the x(i) values are
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given on the horizontal axis and the data values y(i) are shown on the vertical.
We assume that we know the domain of the training conditions is X = [−6, 6],
which is simply an interval on the real line. Note that while we show evenly
spaced input values x(i), it is often the case that in practical applications their
values are not uniformly spaced (and in fact, there may be significant regions in
X where there may be no data). The function approximation problem amounts
to finding a function F (x, θ) by manipulating θ so that F (x, θ) fits these data
as closely as possible. Notice that there is some interesting nonlinear behavior
that is exhibited by the training data. For instance, for values near x = −6,
the function appears to smooth out. As x increases, there seem to be different
slopes to the function. Finally, near x = 6, the function appears to be increasing
quickly.
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Figure 9.8: The training data G generated from the function G(x, z), M = 7,
nz = 0.

Generally, more training data gives us more information about the underlying
Sparse data sets
generally do not show
how a function is
shaped. “Dense” data
sets can provide more
information, but it is
generally impossible to
be perfectly confident
that you have enough
information.

function G(x, z). If M = 1, then little is known about the function. For larger
values of M , you generally get more information about the function. Unfor-
tunately, in practice, you are either constrained in the size of M , the ranges
over which x can be generated, and often you cannot explicitly pick values for
x—they are chosen for you. As an example of how more data gives us more
information, we use M = 121 evenly spaced data points for the same function
as above and we get the data pairs shown in Figure 9.9. With this amount of
data, we now more clearly see the shape of the unknown function. The higher
frequency oscillations were not seen before since our grid size was too large;
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however, it may be that our grid size is still not small enough since with even
higher values of M , we may find even higher frequency oscillations between the
known data points. We see that without additional information about the un-
known function (e.g., the maximum slope of the function), it is quite difficult to
know when you have enough data to have a good representation of the function.
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Figure 9.9: The training data G generated from the function G(x, z), M = 121,
nz = 0.

Moreover, if we considered the auxiliary variable z, there would in essence be
a set of functions that we would like our single function approximator F (x, θ) to
represent. Why? Because we could be given one random value of z and generate
a whole set of data showing the shape of the function. Then, if a different value
of z was chosen and another set of data was gathered, a different shape could
be produced. Clearly, if z has a significant impact on the shape of G(x, z), it
will be very difficult to find a single F (x, θ) to closely approximate it.

As an example of how the z variable can complicate the function approxima-
tion problem, consider the case when nz = 1. There are many types of influences
that z can have on G(x, z). It could be that z is simply fixed but unknown,
z could be additive white Gaussian noise, z could be other types of noise that
influence G(x, z) in complex nonlinear ways, or z could contain time as one of
its components so that G(x, z) is nonlinear, stochastic, and time-varying. Here,
for this example, we will not indicate the type of influence that z has, besides
to show the training data that were gathered. When we collect training data
for the M = 121 case, we get the data shown in Figure 9.10. Now we see
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that G(x, z) appears to be a very complex function to approximate accurately.
First, it appears that there could be very high frequency information in the
function when in actuality, this is not the influence of useful information, but
a type of noise (that has in fact masked some of the behavior of the function
that we saw in Figure 9.9). Second, even though we have gathered a lot of
data, it is not clear how much data should be gathered, since these data might
not be providing useful information, even though they do tell more about the
noise characteristics of the process. Regardless, it is clear that the effects of the
unknown auxiliary variable can be significant and can greatly complicate the
function approximation problem.

Noise often corrupts
training data and masks
the true form of the
underlying nonlinearity.
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Figure 9.10: The training data G generated from the function G(x, z), M = 121,
and influences of the auxiliary variable z are shown.

9.2.4 Measuring Approximation Accuracy: Using a Test
Set

How do we evaluate how closely the function F (x, θ) approximates the function
G(x, z) for a given θ? Notice that

W = sup
x∈X,z∈Z

{|G(x, z) − F (x, θ)|} (9.9)

is a bound on the approximation error e(x, z) (if it exists) and

W ∗ = inf
θ

sup
x∈X,z∈Z

{|G(x, z) − F (x, θ)|} (9.10)
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is the “ideal approximation error” for a given approximator structure. Inter-
preting the mathematics in Equation (9.9), the ideal approximation error is the
value of W when θ is chosen to make W as small as possible. The value (or
values) of θ that achieves W ∗ is called the “ideal parameter value” and it is
denoted by θ∗.

Unfortunately, in practice, specification of such a bound like W requires
that the function G(x, z) be completely known; however, as stated above, we
know only a part of G(x, z) given by the finite set G. Therefore, in practice
we are only able to evaluate the accuracy of approximation by evaluating the
error between G(x, z) and F (x, θ) at certain points x ∈ X given by available
input-output data. We call this set of input-output data the test set and denote
it as Γ, where

Γ = {(x(1), y(1)), . . . , (x(MΓ), y(MΓ))} (9.11)

Here, MΓ denotes the number of known input-output data pairs contained
within the test set. You can use error measures like

eΓ =
1

MΓ

∑
(x(i),y(i))∈Γ

(y(i) − F (x(i), θ))2 (9.12)

(the mean squared error) or

eΓ = sup
(x(i),y(i))∈Γ

{|y(i) − F (x(i), θ)|} (9.13)

(the maximum error for all points in the test set) to measure the approximation
error. Accurate function approximation requires that some expression of this
nature be small; however, this clearly does not guarantee perfect representation
of G(x, z) with F (x, θ), since most often, we cannot test that F (x, θ) matches
G(x, z) over all possible input points x ∈ X and auxiliary variable values z ∈ Z.

It is important to note that the input-output data pairs (x(i), y(i)) contained
Test data generally
should contain training
data that were not used
in training to properly
evaluate how well the
approximator works
(e.g., generalizes).

in Γ may not be contained in G, or vice versa. It also might be the case that
the test set is equal to the training set (Γ = G); however, this choice is often
not a good one. Most often you will want to test the system with quite a bit
of data that were not used to construct F (x, θ) since this will often provide a
more realistic assessment of the quality of the approximation. In fact, one way
to see if you have chosen M large enough is to use a test set with MΓ >> M
(i.e., significantly bigger than M) and find the error that results for the training
data set and the test set and compare them. If the two resulting error measures
are close, then it is likely that you have chosen the training data set size (i.e.,
M) to be large enough.

9.3 Approximator Structures as Substrates for
Learning

The type of function F (x, θ) that you choose to adjust to fit G(x, z) can have a
significant impact on the ultimate accuracy of the approximator. For instance,
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it may be that a radial basis function neural network or a Takagi-Sugeno (or
functional) fuzzy system will provide a better approximator than a standard
fuzzy system, or a multilayer perceptron may provide an even better approxi-
mation, for a particular application. We think of F (x, θ) as a “structure” for
an approximator that is parameterized by θ. In this section, we will summa-
rize the approximator structures we will regularly use in this book. We will
outline properties of these approximators, explain how they can be used on-
line to approximate functions as data are gathered, and then in the next two
chapters, study several methods for picking θ so that F (x, θ) does a good job of
approximation.

9.3.1 Linear and Polynomial Approximator Structures

Linear approximator structures are a special case of polynomial approximator
structures and they have been used in many capacities in estimation and control.

Linear Approximators

A simple approximator structure is a linear or affine function. In this case, the
Linear mappings are
tunable approximators
that can be adjusted to
perfectly match linear
relationships if there is
no noise.

approximator is given by

y = Fl(x, θ) = θ1x1 + θ2x2 + · · · + θnxn + θn+1

(notice that the last term is simply a constant) or in vector notation if we let
φ =

[
x�, 1

]�
y = Fl(x, θ) = θ�φ(x) (9.14)

where x = [x1, x2, . . . , xn]�, θ = [θ1, θ2, . . . , θn, θn+1]�, and we have p = n + 1.
If θn+1 �= 0, then Fl is called an “affine” function while if θn+1 = 0, it is called
a “linear” function (although many refer to an affine function as being linear).

Linear approximators only provide for perfect representation of a class of
functions that are linear (likewise for affine). If you know that the underlying
function G(x, z) generating the training data G is linear, then this type of
approximator is all that is needed and the tuning of θ simply involves fitting
the line to the data (in the case where n = 1 and if nz = 0 so that z has no
influence, and G(x) is truly linear, you would only need two training data pairs
to fully define the line and you would get a perfect fit). Generally, however,
you do not know many properties of the underlying function G(x, z) that is
generating the training data and you may simply try to fit a linear function to
the data to see how accurate it is. As an example, consider Figure 9.11, where
we have fit a line to the data in Figure 9.10. Here, to fit the data, we simply
guessed at the values of the slope and intercept of the line. Clearly this is not
the “best” fit for a line to data (in Chapter 10, we will show how to fit a line to
data by minimizing the sum of the squared errors in the distance from the data
to the line).
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Figure 9.11: Using a line to approximate data.

Polynomial Approximators

Next, consider a polynomial approximator

Fpoly(x, θ) = θ1x1 + θ2x2 + · · · + θnxn + θn+1 + · · ·
+θn+2x1x2 + θn+3x1x3 + · · ·
+θn+kx2

1x2 + · · · (9.15)

where the parameters θi that we adjust are used to scale terms that are products
of the xi (to any finite order), and notice that Fl is a special case of Fpoly . We
can, of course, pick θ so that Fpoly(x, θ) is a linear function of θ (to do this,
simply load in the coefficients of the polynomial) or a nonlinear function of θ
(in this case, in addition to the coefficients, load in the powers of the xi).

Polynomial
approximators can
represent a wider class
of functions than linear
approximators; they
have a more flexible
approximator structure.

Just like for the linear approximator structure, we can pick the vector θ
(that holds all the θi) so that Fpoly(x, θ) best approximates the data. As an
example, consider the data in Figure 9.10. To construct Fpoly , you must first
decide on the structure of the approximator. For polynomial approximators,
the structure is determined by which terms you use (e.g., do you use the x3

1x
5
2x3

term?). Suppose that for our example you choose the polynomial approximator
structure

Fpoly(x, θ) = θ1 + θ2x
2

(i.e., a parabola) that is a linear (affine) function of the parameters. What
values would you choose for θ1 and θ2 to make this function best fit the data?
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Figure 9.12 shows one choice (but not the best one) and the resulting fit to
the data. Does this polynomial fit the data better than the line shown in
Figure 9.11? Can we improve approximation accuracy by using additional terms
(e.g., the x3 term) in the approximator? In this part, we will explain how to
pick the parameter vector θ of a variety of approximators using a variety of
methods, we will show how to evaluate approximation accuracy, and we will
give some ideas on how to pick the approximator structure (including some
automated procedures). Ultimately, however, approximator structure choice is
still a difficult problem, and is likely to be so for a long time.

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(i)

y(
i)=

G
(x

(i)
,z

(i)
),

 a
nd

 p
ar

ab
ol

a
Polynomial approximation

Figure 9.12: Using a polynomial to approximate data.

9.3.2 Neural and Fuzzy System Approximator Structures

In Chapter 5 we introduced standard and functional fuzzy systems, each of
which can take on several forms depending on, for example, the types of mem-
bership functions, inference, and defuzzification strategies used. In Chapter 4
we described two classes of neural networks, the multilayer perceptron and the
radial basis function neural network, each of which can take on several forms
depending on, for example, the number of layers and type of activation function,
or receptive field unit. Overall, we see that there are a wide range of possible
neural and fuzzy system structures that are candidates for approximators. It
is for this reason that we will pick the following three representative structures
and focus on their construction in the remainder of this part (extension to other
approximator structures is straightforward using the ideas in this part).
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Multilayer Perceptron, Two Hidden Layers

The full equations for the two hidden layer case are given in Chapter 4. Suppose
that we denote the output of this particular neural network by

y = F
(2)
mlp(x, θ) (9.16)

where θ holds all the weights and biases. We will assume that for F
(2)
mlp we

use hyperbolic tangent activation functions in the two hidden layers, but in the
output layer, all the activation functions are linear.

Multilayer Perceptron, One Hidden Layer

In this case, the network is shown in Figure 9.13. Notice that we only consider
the case where there is m = 1 output so there is only one linear activation
function in the output layer; however, it is straightforward to treat the multi-
output case by simply constructing m such networks.

x 1

x 2

xn

.

.

.

1

2

y

n

Hidden
layer

φ

φ

φ

Output
layer

1

Input
layer

Figure 9.13: Multilayer perceptron with one hidden layer.

For our single hidden layer network, let φj , j = 1, 2, . . . , n1 denote the output
of the jth neuron in the hidden layer, let bj be the bias, and let

wj = [w1,j , w2,j , . . . , wn,j ]�

Hence, we have
φj = f(bj + (wj)�x)

where f is the activation function (we could have different activation functions
for each neuron, but for simplicity we let them all be the same). We will assume
that the neurons in the hidden layer use nonlinear activation functions (any
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of the nonlinear activation functions we discussed earlier, except for the linear
one).

Let wj , j = 1, 2, . . . , n1 denote a weight in the output layer and let b be the
bias. Let

w = [w1, w2, . . . , wn1 ]
�

With this, and the choice of using a linear activation function in the output
layer, the mathematical formula describing Figure 9.13 is

y = b +
n1∑

j=1

wj

(
f(bj + (wj)�x)

)
= b +

n1∑
j=1

wjφj

Now, if we choose
Parameters of an
approximator can be
classified as entering in
a linear or nonlinear
fashion.

φ = [φ1, φ2, . . . , φn1 , 1]�

so that
y = Fmlp(x, θ) =

[
w�, b

]
φ (9.17)

(note that we could use F
(1)
mlp to denote this single hidden layer perceptron, but

we omit the “(1)” for simplicity).
We will consider two different choices for the parameter θ:

• Nonlinear in the parameters: Choose

θ = [(w1)�, b1, (w2)�, b2, . . . , (wn1 )�, bn1 , w
�, b]�

so that we seek to tune all the weights and biases of the perceptron. Notice
that the output y is a nonlinear function of the parameters wj and bj ,
j = 1, 2, . . . , n1, due to the choice of having nonlinear activation functions
in the hidden layer.

• Linear in the parameters: Suppose that you know the values of the wj

and bj, j = 1, 2, . . . , n1, so they do not need to be tuned. In this case, we
choose

θ = [w�, b]�

Notice that if the wj and bj, j = 1, 2, . . . , n1, are known, then the φj ,
j = 1, 2, . . . , n1 are known once the input x is specified, so φ is known.
For this choice of θ,

y = Fmlp(x, θ) = θ�φ

so y is a linear function of the parameter vector θ.

Clearly, the nonlinear in the parameter case is more general since the added
parameters can be tuned to shape the nonlinear mapping implemented by the
perceptron in more complex ways than when only the parameters that enter
linearly are tuned. We will see, however, that we have better methods to adjust
linear in the parameter approximators.

As an example of what types of nonlinear functions this neural network
can implement, consider the case where n = 1, n1 = 2 (i.e., two neurons in
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the hidden layer and only one input, x1), and let each neuron be the logistic
(sigmoidal) nonlinearity. We have

w1 = [w1,1]�

w2 = [w1,2]�

as the weights and b1 and b2 as the biases for the hidden layer. For the output
It is useful to know how
to manually construct an
approximator to gain
insight. Some parameter
adjustment methods only
apply to the parameters
that enter linearly and
others profit from good
initializations of
parameters.

layer, we have
w = [w1, w2]�

where wj , j = 1, 2, are weights and b is the bias for the neuron in the output
layer. All these weights and biases specify the shape of the nonlinearity that is
implemented by the neural network.

Suppose that we want to shape the nonlinearity of the network to match
the function in Figure 9.10. While later we will examine several methods (e.g.,
least squares and gradient techniques) for tuning the parameters, here we will
study how to use simple heuristic ideas to specify the weights and biases. Our
overall intent is to provide insights into how the choices of various parameters
affect the shape of the nonlinearity implemented by the neural network.

To pick the parameters, first study Figure 4.6, where we show the shape of
the logistic function nonlinearity that is given by

f(x̄) =
1

1 + exp(−x̄)

For this nonlinearity, note that its slope is given by

∂f(x̄)
∂x̄

= 2f(x̄)(1 − f(x̄)) (9.18)

Note that at x̄ = 0, f(0) = 0.5, and hence, the slope of the logistic function
is 0.5. Also note that, as x̄ moves to increasingly large values in the negative
direction f(x̄) → 0, while if it moves to increasingly large values in the positive
direction f(x̄) → 1. As shown in Figure 4.6, by the time that x̄ reaches −5 in
the negative direction (+5 in the positive direction), f(x̄) is quite close to 0 (1).

To construct the network with two neurons in the hidden layer, we will
proceed by first constructing a network with one neuron in the hidden layer.
First, note that we are trying to approximate the function in Figure 9.10 with
a network that has a single sigmoid, which you may think of as a “smooth step
function” where you can shift the step horizontally (i.e., to the left and right) by

To manually construct a
multilayer perceptron, it
is useful to view the
neurons as “smooth
step” building blocks for
the interpolator.

changing the value of the bias b1, change the steepness of the step by adjusting
w1 = w1,1, scale the size of the step by changing w = w1, and offset the step
vertically by adjusting the (output) bias b.

Notice that part of the function in Figure 9.10 (the part for x < 0.5) actually
takes on a shape like a sigmoid, at least to a rough approximation. Now, notice
there is really no hope of perfectly approximating the peaks that appear to occur
at about x = 1, or the apparently linearly increasing behavior for larger values
of x. Hence, we will seek to achieve a gross approximation of the function in
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Figure 9.10 by using the sigmoid where it will be most effective. To do this,
first note that if we pick b = 0.6, that will shift the whole function up so that
for small negative values of x, we should get a close match (see discussion above
on how fast the nonlinearity goes to zero for negative values). Next, notice
that viewed as a smooth step, the unknown nonlinearity increases in magnitude
about 2.5 to 3 units so we pick w = w1 = 3. Next, by inspection we can see that
we will want the value of the neural network to be about 2.1 at x = 0. With our
current choices, we will have a value of 0.6 + 3f(b1 + w1x) at x = 0, so we want
f(b1) = 0.5, so we choose b1 = 0. We pick w1,1 = 1.5 by imagining drawing
a line on Figure 9.10 through x = 0 that tries to approximate the slope of the
function at that point, and we use this value of the slope as the value for w1,1.
This completes our heuristic tuning process for the parameters and Figure 9.14
shows the resulting approximation.
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Neural network approximation, one neuron

Figure 9.14: Neural network approximation, one neuron.

Next, we will add a neuron to the hidden layer to obtain a hidden layer
composed of two neurons. Now, we must accept that with only two neurons,
we will only get the ability to have two smooth steps, but these can be scaled
and translated (note that the steps can be either up or down since we can use
negative values) to try to improve approximation accuracy. To keep things
simple, we will simply try to place a neuron so that the increasing part of the
smooth step is in the region near x = 5 so that the increasing part of the
unknown function can be approximated more accurately. To achieve this goal,
we first choose w = [3, 1]� so that we scale the output of the second neuron
with unity (somewhat arbitrary since we do not need to specify how much this
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neuron contributes for very large x), and b = 0.6 to get matching for large
negative values of x as for the single neuron case. Next, we notice that the
slope of the increasing part of the function on the right of the plot is slightly
lower than that near x = 0, so we pick w1,2 = 1.25 and then we tune by shifting
the step to the left (by tuning b2 to b2 = −6) until we get an improvement in
approximation accuracy. The result is shown in Figure 9.15. We emphasize that
our objective is not to achieve the best possible approximation; it is simply to
show how, by tuning the neural network appropriately, we can get improvements
in accuracy. Indeed, it is very difficult to tune these functions by hand (and
repeated computer simulations) and this is the reason we will study how to use
least squares and gradient methods for tuning neural networks later in this part.

Additional structure,
defined properly, can
lead to more accurate
approximation.
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Figure 9.15: Neural network approximation, two neurons.

Takagi-Sugeno Fuzzy Systems

We will consider two types of Takagi-Sugeno fuzzy systems: ones that are linear
in the parameters and ones that are not. We consider a Takagi-Sugeno fuzzy
system that is given by

y = Fts(x, θ) =
∑R

i=1 gi(x)µi(x)∑R
i=1 µi(x)

where if ai,j are constants,

gi(x) = ai,0 + ai,1x1 + · · · + ai,nxn
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Also, for i = 1, 2, . . . , R,

µi(x) =
n∏

j=1

exp

⎛
⎝−1

2

(
xj − ci

j

σi
j

)2
⎞
⎠

where ci
j is the point in the jth input universe of discourse where the membership

function for the ith rule achieves a maximum, and σi
j > 0 is the relative width

of the membership function for the jth input and the ith rule. Clearly, we are
using center-average defuzzification and product for the premise and implication.
Notice that the outermost input membership functions do not saturate as is
the usual case in control. Also, note that by considering Takagi-Sugeno fuzzy
systems, we are also inherently considering the class of standard fuzzy systems
that is defined by letting all the ai,j = 0 except for the cases where j = 0
(i.e., by only leaving the affine terms we get a standard fuzzy system that uses
center-average defuzzification).

We will consider two different choices for the parameter vector θ:

• Nonlinear in the parameters: One choice for θ above is to let

θ = [c1
1, . . . , c

R
n , σ1

1 , . . . , σR
n ,

a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1, . . . , a1,n, a2,n, . . . , aR,n]�

For this choice, y is a nonlinear function of θ, particularly the premise
membership functions parameters.

• Linear in the parameters: Next, we develop a choice for θ so that y is a
linear function of θ. Note that

y =
∑R

i=1 ai,0µi(x)∑R
i=1 µi(x)

+
∑R

i=1 ai,1x1µi(x)∑R
i=1 µi(x)

+ · · · +
∑R

i=1 ai,nxnµi(x)∑R
i=1 µi(x)

We see that the first term is the standard fuzzy system as we discussed
above. Let

φ = [ξ1(x), ξ2(x), . . . , ξR(x), x1ξ1(x), x1ξ2(x), . . . , x1ξR(x), . . . ,

xnξ1(x), xnξ2(x), . . . , xnξR(x)]�

and

θ = [a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1, . . . , a1,n, a2,n, . . . , aR,n]�

and
ξj =

µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R, so that

y = Fts(x, θ) = θ�φ(x)
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represents the Takagi-Sugeno fuzzy system. This choice of θ will not allow
us to tune the fuzzy system to match as complex mappings as the nonlinear
in the parameter Takagi-Sugeno fuzzy systems above; however, we will
develop several good methods to tune the approximators for the linear in
the parameter case.

As an example, consider a Takagi-Sugeno fuzzy system with one input and
To manually construct a
Takagi-Sugeno fuzzy
system, it is useful to
think of the building
blocks as local linear
mappings that are
connected.

R = 4 rules that we will use to approximate our same unknown function in
Figure 9.10. In this case, we have to pick the parameters for

µi(x) = exp

(
−1

2

(
x1 − ci

1

σi
1

)2
)

i = 1, 2, 3, 4 and the parameters of the corresponding gi functions. Notice that
for the n = 1 case, we have

gi(x) = ai,0 + ai,1x1

which are lines. Hence, in this case, the Takagi-Sugeno fuzzy system uses the
functions µi to interpolate between lines. Each µi will specify the region in
which we want to use the line given by gi. Hence, our overall strategy will be to
examine a plot of the training data, pick a number of lines (i.e., pick R) that will
appear to give reasonable approximation accuracy, sketch lines on the data to
get the slopes ai,1 and intercepts ai,0 for each gi line, then pick the parameters
of µi to specify where we will use each line in the approximation.

Consider Figure 9.16, where we plot the training data and sketch lines (with
circled numbers 1 to 4) that we will use as a basis for constructing our ap-
proximator. In particular, if you use the lines shown and find their slopes and
intercepts, by inspection we get

a1,0 = 1, a1,1 =
0.5
6

a2,0 = 2.25, a2,1 =
4.4
4

a3,0 = 2.9, a3,1 =
1
12

a4,0 = 1.3, a4,1 =
4.8
8

Next, we need to specify the functions µi and to do this, we will explain how
to specify it for the i = 2 rule; then it will be clear how to specify them for the
other three cases. Note that

µ2(x) = exp

(
−1

2

(
x1 − c2

1

σ2
1

)2
)

so we need to specify values for the “center” c2
1 and “spread” σ2

1 . Notice from
Figure 9.16 that the approximate range of validity for rule 2 (and line 2) is
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Figure 9.16: Training data and lines used in the Takagi-Sugeno fuzzy system
approximator.

when −1.2 ≤ x ≤ 0.7 (this range is simply chosen by inspection). Hence, in
this region, we want µ2 to be “on” (i.e., have a value greater than zero) and the
other µi, i �= 2 to be near zero. Pick c2

1 = −0.25 to be the middle of this range
and choose σ2

1 = 0.6 so that µ2 rolls off fast enough so that it is close to zero
outside the range −1.2 ≤ x ≤ 0.7. Continuing in a similar manner, we end up
with

c1
1 = −3.5, σ1

1 = 0.8
c2
1 = −0.25, σ2

1 = 0.6
c3
1 = 2, σ3

1 = 0.4
c4
1 = 4.5, σ4

1 = 0.8

which are shown in Figure 9.17. Notice that the premise membership func-
tions turn on in the regions where we want to use the corresponding lines for
approximation.

To be more precise, however, notice that the lines gi are activated by the
“basis functions”

ξj =
µj(x)∑4
i=1 µi(x)

j = 1, 2, 3, 4. A plot of these functions is shown in Figure 9.18. This clearly
shows when each gi line will be used, and where the transition between using two
different lines occurs. The premise membership functions specify the regions,
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Training data and premise membership functions

Figure 9.17: Training data and membership functions used in the Takagi-Sugeno
fuzzy system approximator.

but notice two important things that the basis functions add. First, at the
outermost edges, the basis functions are constant and the other basis functions
are essentially zero; this ensures that the associated lines (i.e., g1 and g4) are
used for extrapolation at the outer edges. Second, notice that for the two middle
basis functions (i.e., g2 and g3), the functions flatten out in their middles and
the others go to zero to ensure that only their associated lines are used in the
interpolation. Also, notice that

4∑
j=1

ξj(x) = 1

This is the reason why near the outer edges the functions go to unity, and why
the transitions are shaped as they are, crossing at 0.5 in each case.

With this, we have specified the entire approximator and its accuracy is
illustrated in Figure 9.19. Notice that the approximator performs as expected,
using lines to approximate regions that have different slopes. The transition
regions between the lines have curves whose shapes are partially dictated by
the choice for the µi and hence ξi. For instance, the shape near x = 1 could be
changed by moving the c3

1 to the right.
Clearly, we have not achieved the best possible approximation for the un-

known function G(x, z); however, we have improved it over the cases considered
earlier. This improvement came, however, with an increase in approximator
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Training data and basis functions

Figure 9.18: Training data and basis functions used in the Takagi-Sugeno fuzzy
system approximator.

complexity. Notice that for the linear and polynomial approximators, we only
needed two parameters. For the neural network approximator, we only used 7
parameters (but of course we could have chosen to use more and could have
then gotten better approximation accuracy there also). For the Takagi-Sugeno
fuzzy system, we used 16 parameters and this allowed us to get the better
approximation accuracy shown in Figure 9.19. You will often find such a gen-
eral relationship between approximator complexity and its ability to achieve
good approximation; however this will not always be the case. Ultimately, the
achievable accuracy depends on how you tune the approximator structure, the
flexibility of the approximation structure, and on the form of the underlying
unknown nonlinear function.

9.3.3 Universal Approximation Property and Substrate
Capabilities

Neural networks and fuzzy systems have very strong functional capabilities.
That is, if properly constructed, they can perform very complex operations and
implement very complex nonlinear mappings (e.g., much more complex than
those that can be implemented by a linear mapping). Actually, many neural
networks and fuzzy systems are known to satisfy the “universal approximation
property.”

To study this idea, let F denote the set of all possible approximator struc-
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Figure 9.19: Training data and Takagi-Sugeno fuzzy system approximator.

tures of type F (x, θ). For example, if F (x, θ) is a multilayer perceptron with a
single hidden layer, then F would contain an infinite number of approximator
structures, each one with different interconnections, nonlinear activation func-
tions, and numbers of neurons in the various layers and values for the tunable
parameters θ.

Assume in this section that nz = 0 so that there is no influence from the
auxiliary variable z. If G(x) is any real valued continuous function defined on
a closed and bounded set X ⊂ 	n and for an arbitrary ε > 0, there exists an
approximator structure F (x, θ) ∈ F such that

sup
x∈X

|G(x) − F (x, θ)| < ε

then the approximator structure F (x, θ) is said to satisfy the “universal approx-
An approximator that is
a universal approximator
is flexible enough to be
able to represent many
functions; however, this
“flexibility” may require
a large approximator
structure and
extraordinary parameter
tuning capabilities.

imation property.” Using the Stone-Weierstrass theorem, it is easy to show that
multilayer perceptrons, radial basis function neural networks, and standard and
Takagi-Sugeno fuzzy systems all satisfy the universal approximation property.
Clearly, however, the linear approximator structure Fl(x, θ) does not satisfy the
universal approximation property.

Satisfaction of the universal approximation property guarantees that there
exists a way to define the particular approximator structure F (x, θ) and its
parameters θ to represent the unknown nonlinearity as accurately as you would
like. It does not say how to find the particular F (x, θ), which can, in general,
be very difficult (i.e., it does not say how many neurons should be in the hidden
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layer, how many rules should be in the fuzzy system, or anything about how
to pick θ to get good accuracy). Furthermore, for arbitrary accuracy you may
need an arbitrarily large number of parameters (i.e., for θ = [θ1, . . . , θp]� you
may need p to be arbitrarily large).

The value of the universal approximation property is simply that it shows
that if you work hard enough at structure choice, are willing to use a large
structure, and do good parameter tuning, you should be able to make the neu-
ral networks and fuzzy systems achieve what you are trying to get done. For
estimation, this means that there is great flexibility in working with the neural
and fuzzy approximator structures. If you choose enough neurons in the hidden
layers of the multilayer perceptron, or enough rules and membership functions
in a fuzzy system, there is a way to tune the neural or fuzzy system so that it will
perform its estimation task very well. For control, practically speaking, it means
that there is great flexibility in tuning the nonlinear function implemented by,
e.g., the fuzzy controller or a neural network.

To summarize, recall that W is the bound on the representation error of the
unknown function G(x) with the approximator F (x, θ). For a given approxima-
tor structure F (x, θ) that satisfies the universal approximation property, all we
know is that the bound on the approximation error W > 0 exists. We typically
do not know how small it is. The universal approximation property simply says
that we may increase the size of the approximation structure and properly de-
fine the parameters of the approximator to achieve any desired accuracy (i.e., to
make W as small as we want); it does not say how big the approximator must
be or if you fix the structure F (x, θ) how small W is.

9.3.4 Approximator Complexity Vs. Substrate Flexibility

Approximator complexity refers to the complexity of implementing the approx-
imator structure. Clearly, the best approximator is a “flexible” one that can be
tuned to accurately approximate many types of nonlinear functions (e.g., one
that satisfies the universal approximation property) yet only requires minimal
memory and processing time to implement. Generally, there is a proportional
relationship between approximator flexibility and complexity; however, this is
not always the case since, if bad choices are made for the structure, you may have
added significant complexity without providing additional flexibility. Hence, one
goal in approximation structure choice is to make sure that any additions to the
structure (e.g., more neurons in a hidden layer or rules to a rule base) are done
in a way that improves approximator flexibility, hopefully, in a significant and
useful way.

Generally, for neural networks and fuzzy systems, implementation amounts
to coding certain nonlinear functions (e.g., activation functions or membership
functions) and sums, differences, products, or the division of such functions
with other constants and other nonlinear functions. For some applications,
complexity, in terms of the actual number of, for example, multiplications that
are required for implementation, is very important to reduce as much as possible.
How much can complexity be reduced? This depends on the application and
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often the only way to answer this question is to experiment with a variety of
approximators of varying complexities. Often, such analysis can lead you to a
quantification of the trade-off between performance and complexity, leading you
to conclude that performance costs money (not a surprising conclusion).

Next, we identify a few key features of neural and fuzzy approximator struc-
tures as they relate to complexity: First, for multilayer perceptrons, you should

Generally, more complex
approximators are more
flexible in that they can
represent more
functions.

be careful in adding layers to the network since more than two layers may not
add much tuning flexibility, but it certainly adds more complexity. Next, be
careful with creating grids of, for example, membership functions of a fuzzy
system (or receptive field units of radial basis function neural networks) on the
input space, since a grid with N membership functions on each of the n in-
put dimensions results in Nn membership functions (i.e., we get an exponential
growth in approximator complexity). While in this case finer and finer grids
will tend to improve the potential for good approximation accuracy, in practical
applications if n is large, complexity may be prohibitive for implementation.
This does not prohibit the use of fuzzy systems (or radial basis function neu-
ral networks). It just points to the importance of making careful choices for
the approximator structure. For example, in the case outlined above, if the
input x truly spans the whole n-dimensional input space, then the complexity
may be warranted. In practical applications, however, it is often the case that
large regions of the input space will never be visited by x so that portions of
the approximator structure are wasted. There are two approaches to solve this
problem. First, you could simply fix portions of the approximator structure on
the portions of the input space that you know will be visited. Second, if you do
not know which portions will be visited, then you can tune the structure to have
it focus on the portion of the input space that has been visited. Finally, it is
important to note that these comments also hold for some commonly used mul-
tilayer perceptrons since we can think of allocating activation functions (which
provide for an increased flexibility in tuning) to input dimensions in a similar
way.

Regardless of which approximator structure is used, this discussion should
show that it is possible that nonlinear in the parameter approximators (the ones
that allow for tuning of the grid of membership functions or receptive field units,
or positions of activation functions) provide the potential to save complexity, at
the expense of proper tuning of the parameters that enter in a nonlinear fashion.
This is quantified and discussed further in the next section.

9.3.5 Linear Vs. Nonlinear in the Parameter Approxima-
tors: Substrate Tunability

Do we want to use linear or nonlinear in the parameter approximators? Results
from approximation theory (see [45]) give us some clues as to how to answer
this question:

• It has been shown that for a nonlinear in the parameter approximator (like
the multilayer perceptron shown in Figure 9.13 that uses sigmoids for the
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activation functions in the hidden layer and a linear activation function
in the output layer) and for a certain class of functions (with certain
smoothness properties) that we would like to approximate, if we tune the
parameters of the approximator properly, then the integral squared error
over the approximation domain is less than

Nonlinear in the
parameter approximators
have the potential to
provide for low
approximation errors
with a relatively small
approximator structure;
however, in practice it
may be difficult to tune
them so that such gains
are realized.

C

n1

where n1 is the number of neurons in the hidden layer. The value of C de-
pends on the size of the domain over which the approximation takes place
(it increases for larger domains), and how oscillatory the function is that
we are trying to approximate (roughly speaking, with more oscillations C
increases). For certain general classes of functions, C can increase expo-
nentially as the input dimension n increases, but for a fixed n and a fixed
domain size, the results show that by adding more sigmoidal functions and
if we tune the parameters properly, we will get a definite decrease in the
approximation error (and with only a linear increase in approximator size,
i.e., a linear increase in the number of parameters). In summary, what
this says is that if, in this case, the parameters that enter in a nonlinear
fashion are allowed to depend on the function to be approximated (and
the only way they can depend on the function for our problem formulation
is via the training data and hence how the parameters are tuned), then the
size of n1 to achieve a certain level of approximation accuracy is much less
than if these parameters are fixed a priori. In the approaches to follow,
we will consider both the case where we fix the parameters that enter in
a nonlinear fashion (making it a linear in the parameter approximator),
and the case where we try to tune them.

• For linear in the parameter approximators, for the same type of functions
to be approximated as in the nonlinear case discussed above, it has been
shown that there is no way to tune the parameters that enter linearly (for
a given fixed number of “basis functions,” i.e., an approximator structure
with the part where the parameters enter in a nonlinear fashion fixed) so
that the approximation error is better than

Linear in the parameter
approximator structure
complexity can increase
exponentially if you try
to get low approximation
errors; however, there
exist good methods to
tune them.

CL

n
2/n
1

Here, CL has similar dependencies as the nonlinear in the parameter case
discussed above. Note, however that there is a dependence on the dimen-
sion n in the bound so that for high dimensional function approximation
you may need many parameters n1 to achieve good approximation accu-
racy, so you probably want a nonlinear in the parameter approximator
to avoid the “curse of dimensionality.” Also, you will want to be very
careful with the choice of the nonlinear part of the structure or you may
add more approximator structure and not gain any more ability to reduce
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the approximation error. We will study the case where the linear in the
parameter approximator is tuned and discuss issues in the choice of the
size of the approximator structure on approximation accuracy.

To summarize, it is desirable to use approximators that are nonlinear in their
parameters, since a nonlinear in the parameters approximator can be simpler
than a linear in the parameters one (in terms of the size of its structure and
hence number of parameters) yet achieve the same approximation accuracy (i.e.,
the same W above). The general problem: we know how to tune linear in the
parameter approximators, but in certain cases they may not be able to reduce
approximation error very well, and we do not know as much about how to tune
nonlinear in the parameter approximators, but we know that if we can tune
them properly, we can definitely reduce the approximation error. We emphasize,
however, that finding the best approximator structure is a difficult problem that
normally requires trial-and-error in practical applications.

The fundamental guideline that you can use is to view more complex ap-
proximators as more “flexible” in terms of the functions that they can be tuned
to approximate. You do not, however, want to use the most flexible (complex)
approximator, since a simpler solution is often the best (e.g., due to imple-
mentation complexity, and issues with “generalization” that will be discussed
later).

9.3.6 Online Function Approximation: Dynamic Learning

Above, we discussed the case of approximating functions when G is given a priori
and then we train. In control, however, another common situation is where we
obtain the training data in a sequence over time as the system operates and we
need to use it immediately. In this section, we briefly outline general issues of
using training data gathered online to perform “online” function approximation.
The basic ideas of this section form a foundation on which we will later build a
number of adaptive controllers. Assume that each experiment is performed at
the click of a clock, k = 0, 1, 2, . . . and we get an infinite sequence of training
data pairs

(x(k), y(k))

k = 0, 1, 2, . . . (notice that we switch the index of the training data to the
time index k). Suppose that each time we get a new training data pair, we
want to update the parameter vector θ(k) of the approximator F (x, θ(k)) to

Approximator mappings
can be dynamically tuned
as data are gathered.

try to make it match G(x, z) closer. It is hoped that the new training data
gives information about the shape of the G(x, z) nonlinearity, and we want to
immediately use it to update the shape; this will result in F (x, θ(k)) being
a time-varying nonlinear function that is searching for an appropriate shape.
This “online function approximation” scheme is shown in Figure 9.20, where we
illustrate the tuning of θ(k) (illustrated via the diagonal arrow through the box
containing the approximator) using (x(k), y(k)) information.

The goal is to get ε(k) = y(k) − ŷ(k) → 0 as k → ∞. This is, however, a
challenging objective for the following reasons:
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Figure 9.20: Online function approximation scheme.

1. In practical applications, we often cannot pick the explicit values of x(k)
(e.g., they may be chosen by some system) so we cannot ensure that we
have training data in all regions of X , so we can do very poor function
approximation in some regions where we do not get enough data.

2. Often, we do not know z or whether it has spanned the space Z, and often
we do not have a clear picture of how z affects the shape of G(x, z).

3. Choosing the best approximator structure can be difficult. In fact, if
you do not make a good choice for the approximator structure, repeated
retuning of θ may be needed, for example, if the input data x(k) switches
between regions of X . In this case, with repeated encounters of x(k), all
in one region of X , it may tune F (x, θ(k)) to model the shape of G(x, z)
in that region very well. If, however, not enough parameters are used in
the structure, and if repeated encounters are made with x(k) in a different
region of X , the tuning method will need to forget what it learned about
the first region and focus on retuning the parameters for the second region.
In this way, it is possible that a continual reshaping of F (x, θ(k)) is needed
to try to obtain the highest accuracy possible for the current operating
region. Clearly, it would be better if there were enough approximator
structure available so that continual retuning is not needed.

4. The quality of the estimate ŷ(k) depends on how good our training method
is for θ(k). We may not have a good tuning method for some approximator
structures that may be able to achieve high approximation accuracy.

5. Perhaps most important, however, is the fact that as time goes on and the
tuning method shapes the nonlinearity, due to the presence of z, there is
in general a potential need for retuning, even if there is enough approxi-
mator structure and the same x(k) is encountered because z(k) may have
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changed so that G(x(k), z(k)) is different. Hence, via repeated encoun-
ters with a single x value or x values all in one region, we may learn the
approximate shape of G(x, z) only for some value of z. We see that it is
important that the method can forget about past x(k) information it has
encountered and retune the nonlinearity. Clearly, for some applications
where we have many measurements, good control over x(k), and very little
influence from z(k), we can expect to shape F (x, θ) in different regions
of X and as we encounter new regions, we can shape the nonlinearity for
those regions too. In this case, if we return to a region of X in which we
have already learned the shape, very little retuning will be needed and we
can think of continually building a better and better function approxima-
tor. Unfortunately, in practical applications, there is always a need for
retuning, either because it is impossible to perfectly tune the given ap-
proximator structure to match the function as discussed above or because
of the unknown influences of z as we discussed here. In fact, in practice it
is often difficult to separate the adverse influences of poor approximator
structure choice from influences of z, since poor approximator structure
choice can in some ways be modeled by the presence of z and because
both problems always seem to be present to some degree and have similar
effects on the need for retuning.

Later in this part we will study a variety of methods to tune parameters for
online approximators. These include recursive least squares, steepest descent
gradient methods, and Levenberg-Marquardt methods.

9.4 Biomimicry for Heuristic Adaptive Control

While there are some control tasks that seem to be instinctual for the human
(e.g., balancing while standing), there are many others that are learned dur-
ing our lifetime, some of which then seem to become instinctual once they are
learned (e.g., riding a bike), and others which require continual practice and
learning to be able to maintain skill, perhaps because the learning environment
changes somewhat over time (e.g., the operator who manually controls a process
that changes over time due to changing process conditions and process redesigns
by the engineering team). In control engineering, we often think of a controller
as being an artificial decision-maker and hence we naturally think that during
its “lifetime,” it should be able to learn to perform better control by gaining
experience in controlling the plant. Here, we will investigate two approaches to
such adaptive decision-making for control. We will first consider the use of a
neural network to learn the nonlinear plant input-output mapping so it can be
used to specify a control input; we will refer to the general approach as “neural
control” (hence, neural control refers to methods where adaptation is used to
implement learning). Basically, this shows how to augment the instinctual neu-
ral controllers in Chapter 4 with learning capabilities. This will endow them
with the capability to learn how to control a plant, and thereby we will be free
from having to perform the tuning of the shape of the control surface that they
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implement. Following this, we will study how automated rule training in fuzzy
systems can provide fuzzy controller synthesis and tuning in response to plant
changes (adaptive fuzzy control).

To a certain extent, you can view both the approaches in this section as
examples of the direct application, via biomimicry, of principles of classical and
operant conditioning to constructing adaptive controllers. In the neural con-
trol approach, we think of modeling neural-level learning processes (especially
reinforcement learning), whereas in the adaptive fuzzy control approach, we
consider modeling human adaptation expertise. Hence, in a sense we view one
as a cognitive hardware emulation and the other as a software emulation.

It is important to further clarify how you should view these heuristic adap-
tive control methods. First, they are being used here to provide an accessible
introduction to several important concepts in adaptive control of nonlinear sys-
tems. For this reason, extended discussions are provided to give intuition into
the construction and subsequent dynamical learning processes. You will see sim-
ilar concepts emerge in methods in subsequent chapters in this part (e.g., when
we discuss stable adaptive control methods in Chapter 12). Second, there are
many possible different heuristic strategies that can be used; here, we provide
representative methods and discuss the principles of their operation. Third, the
methods of this section have been successfully employed in a variety of applica-
tions; however, the heuristic focus should not mislead the reader into a sloppy
design and evaluation procedure where the most you could hope for is to get
lucky that it will work properly in an implementation.

Finally, note that to connect the learning concepts with the methods of
Part II, we close this section with a brief discussion on the role of learning
in expert, planning, and attentional systems. Moreover, we include a brief
discussion on development and plasticity and how biomimicry for these might
be useful in control and automation.

9.4.1 Reinforcement Learning for Neural Control

This will be the first of several adaptive control methods that we will study in
this part. Since this is the first, we will try to keep it very simple. We will design
a reinforcement learning method for a radial basis function neural network from
Chapter 4.

In “reinforcement learning control,” the controller learns via interactions
with its environment (via generating plant inputs and measuring plant outputs).
The learning controller quantifies the relative success or failure of its actions.
If the action it took tended to lead it closer to its goal, then it strengthens the
tendency to pick that action again (i.e., it reinforces the action), and may in
fact augment that good action in a direction that seems as if it will lead to more

Reinforcement learning
controllers self-adjust to
obtain rewards that
correspond to good
performance.

performance improvements in the future. If, on the other hand, the action that
was taken was unsuccessful, it will weaken the tendency to select that action.
After iteratively interacting with its environment, the controller should learn
what leads to success. The reader should see a clear connection to concepts in
operant conditioning (what are they?).



9.4 Biomimicry for Heuristic Adaptive Control 373

To design a particular reinforcement learning controller, we need to choose
the underlying controller that is to be adjusted (here, as an example, we use
the radial basis function neural network), the reinforcement learning strategy,
which entails picking a reinforcement learning signal, and a method to adjust
the controller based on values of that signal.

Reinforcement Function

The key components of the learning mechanism for a reinforcement learning
approach to neural control are the “reinforcement signal” and how we use this
signal to adjust the neural network. The reinforcement signal is generated via a
(typically scalar) “reinforcement function,” which we will denote with JR, that
uses data that are gathered during the operation of the control system. The
function JR is typically generated using characterizations of how you would like
the closed-loop system to behave that are based on the real time operation of
the system. One way to do this is to use a reference model, as we discuss next.

Use of a Reference Model for a Reinforcement Function Input: A
“reference model” is used to quantify the desired performance of the closed-loop
system. It does this by generating a reference model trajectory that specifies
where the output of the plant should be at each time instant. Basically, for
the reference model, you want to specify a desirable performance, but also a
reasonable one. If you ask for too much, the controller will not be able to deliver
it. Certain characteristics of real-world plants place practical constraints on
what performance can be achieved. It is not always easy to pick a good reference
model, since it is sometimes difficult to know what level of performance we can
expect, or because we have no idea how to characterize the performance for
some of the plant output variables.

In general, the reference model may be discrete or continuous time, linear
or nonlinear, time-invariant or time-varying, and so on. For example, suppose
that we would like to have the response track the output of the continuous time
model

G(s) =
1

s + 1
Suppose that for your discrete-time implementation, you use T = 0.1 sec. Us-
ing a bilinear (Tustin) transformation to find the discrete equivalent to the
continuous-time transfer function G(s), we replace s with 2

T
z−1
z+1 to obtain

Ym(z)
R(z)

= H(z) =
1
21 (z + 1)
z − 19

21

where Ym(z) and R(z) are the z-transform of ym(kT ) and r(kT ), respectively.
Now, for a discrete-time implementation, we would choose

ym(kT + T ) =
19
21

ym(kT ) +
1
21

r(kT + T ) +
1
21

r(kT )
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This choice would then represent that we would like our output y(kT ) to track
a smooth, stable, first-order-type response of ym(kT ). A similar approach can
be used to, for example, track a second-order system with a specified damping
ratio ζ and undamped natural frequency ωn.

The performance of the overall system is computed with respect to the ref-
erence model by the learning mechanism by generating an error signal

ye(kT ) = ym(kT ) − y(kT )

Given that the reference model characterizes design criteria such as rise-time and
overshoot and the input to the reference model is the reference input r(kT ), the
desired performance of the controlled process is met if the learning mechanism
forces ye(kT ) to remain very small for all time no matter what the reference
input is or what plant parameter variations occur. Hence, the error ye(kT )
provides a characterization of the extent to which the desired performance is
met at time kT . If the performance is met (i.e., ye(kT ) is small), then the
learning mechanism should not make significant modifications to the controller.
On the other hand, if ye(kT ) is big, the desired performance is not achieved and
the learning mechanism must adjust the controller.

Use of Other Variables: In practical applications, there are often many ways
to characterize how the closed-loop system is performing at any given time step.
These might include using measures of sizes of trajectories. Along these lines,
one common approach is to use the first derivative (or higher order derivatives)
of the error between the reference model output and the plant output. For
instance, you could use

yc(kT ) =
ye(kT ) − ye(kT − T )

T

This signal measures whether the plant output is moving in a direction to
increase the error between the reference model output and the plant output.
Clearly this can be a useful signal to decide how much to adjust the underlying
controller.

Quantifying When the Response Is Good Enough: Generally, in design-
ing a reinforcement signal, it is good to add a feature where, if the plant output
response is quite close to where it should be, you do not adjust the controller. If
you make adjustments for each small possible deviation, then as time progresses,
these changes can accumulate and force unnecessarily large inputs to the plant.
Essentially, the deviations conspire over time to make the underlying controller
have an increasingly “high gain effect” that results in large plant inputs, and
if there is a positive feedback effect, the small adjustments to increase the gain
can make the system go unstable (a key observation that forms the basis for
robust adaptive control).

Here, to avoid these problems, we will design the reinforcement function so
that when its inputs are small (indicating that the plant response is close to



9.4 Biomimicry for Heuristic Adaptive Control 375

where we want it to be), the reinforcement signal will be zero, indicating that
the underlying controller should not be adjusted. Below, for the ship steering
application, we will show one simple choice to turn off the adaptation when the
response is close to what we want.

Adjusting the Neural Network

There are many methods to adjust the parameters, or even structure of the
neural network given the reinforcement signal. Here, we will only consider the
adjustment of the receptive field unit strengths bi, i = 1, 2, . . . , nR. Consider
the adjustment approach where we choose

Adjustments to the
controller are made to
try to obtain better
closed-loop responses.

bi(kT ) = bi(kT − T ) + JR(kT )Ri(kT − T )

where Ri(kT ) is the output of the ith receptive field unit (we drop the input
arguments of this function and replace them with the time index). Suppose that
inputs to the plant affect the output of the plant in one time step (if it took d
time steps, then we would simply use bi(kT − dT ) and Ri(kT − dT ) rather than
bi(kT−T ) and Ri(kT−T ) above). The input to the plant at kT−T (determined
by the bi(kT −T ) and Ri(kT −T )) is then the input that generated the current
ye(kT ), yc(kT ), and hence JR(kT ). The above formula is designed to modify
the input that was generated so that if the same conditions are encountered
again, a more appropriate input will be generated for the plant.

Notice that since the functions Ri have a type of “local support” (i.e., for
values of their inputs far from the center of the receptive field unit, their outputs
will be near zero), we view the adjustment mechanism as only making local
adjustments to the overall mapping that is implemented by the radial basis
function neural network. This is important so that it learns the shape of the
function in the region where it is operating and this does not destroy what was
learned before (i.e., so that it will not forget). We say that the learning approach
makes local rather than global adjustments.

Finally, note that there are many possible modifications to the adjustment
rule given above. Notice that using the above rule every bi, i = 1, 2, . . . , nR, is
adjusted at each step. It would be easy to specify a threshold ε > 0 such that
we would only modify bi if Ri(kT − T ) > ε and it will have little impact on
the behavior of the adaptation (if ε is chosen small enough), but will simplify
computations since only a subset of the bi would be updated at each step.
Another useful modification is possible when you know a range of values for the
bi values. For example, as in gradient optimization when we know a range on
the parameter values and use a projection method to keep the parameters in the
proper bounds, and then if the above adjustment formula indicates to put a bi

value outside the known set, it simply keeps it on the boundary. However, if it
indicates it should stay on the boundary or move to the interior of the allowable
range, then it uses the update indicated by the formula.



376 Learning and Control

9.4.2 Design Example: Neural Control for the Tanker
Ship

To improve fuel efficiency and reduce wear on ship components, autopilot sys-
tems have been developed and implemented for controlling the directional head-
ing of ships. Often, the autopilots utilize simple control schemes such as PID
control. However, the capability for manual adjustments of the parameters of
the controller is added to compensate for disturbances acting upon the ship
such as wind and currents. Once suitable controller parameters are found man-
ually, the controller will generally work well for small variations in the operating
conditions. For large variations, however, the parameters of the autopilot must
be continually modified. Such continual adjustments are necessary because the
dynamics of a ship vary with, for example, speed, trim, and loading. Also, it is
useful to change the autopilot control law parameters when the ship is exposed
to large disturbances resulting from changes in the wind, waves, current, and
water depth. Manual adjustment of the controller parameters is often a burden
on the crew. Moreover, poor adjustment may result from human error. As a re-
sult, it is of interest to have a method for automatically adjusting or modifying
the underlying controller.

Here we will develop a reinforcement learning strategy for a neural controller
and use simulation studies to evaluate its performance in achieving heading
regulation when there are plant changes and disturbances. In particular, we will
tune the radial basis function neural network that we developed in Chapter 4
using a reinforcement learning strategy as shown in Figure 9.21. This will
provide us with a way to quantify, for this application, possible advantages of
using adaptive rather than fixed controllers.

Tanker ship
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Figure 9.21: Reinforcement learning control strategy for ship heading regulation.
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Learning Mechanism Design

We will use the radial basis function neural network designed in Section 4.5 on
page 133. In particular, we will use the same nR = 121 and the grid of receptive
field units with the same center values and spreads used there. Here, we will
consider the tuning of only the receptive field unit strengths bi, i = 1, 2, . . . , nR.
In each case below, we initialize the radial basis function receptive field unit
strengths to be zero (i.e., bi = 0, i = 1, 2, . . . , nR) to try to represent that the
neural network knows little about how to control the ship heading. Of course,
another option would be to initialize the bi values with the ones we manually
chose in Chapter 4.

To define the reinforcement signal, first define a reference model

G(s) =
1/150

s + 1/150

This choice indicates that we want a smooth first order response for changes in
the desired ship heading. It represents a reasonable but not trivial performance
request for the control system for ship heading. We will discretize this transfer
function in the simulations below, and hence, compute its output ψm(kT ).

We use
ye(kT ) = ψm(kT ) − ψ(kT )

and

yc(kT ) =
ye(kT )− ye(kT − T )

T

as inputs to the reinforcement function. Choose

J̄R(ye(kT ), yc(kT )) = η (−ηeye(kT ) − ηcyc(kT ))

to help define the reinforcement function. Moreover, when the arguments of this
function are small, we will set the output of the reinforcement signal to zero.
The final reinforcement signal is then generated by the function

JR(ye(kT ), yc(kT )) =
{

J̄R(ye(kT ), yc(kT )) if |J̄R(ye(kT ), yc(kT ))| ≥ α
0 if |J̄R(ye(kT ), yc(kT ))| < α

where we choose the design parameter α = 0.005. Here, we consider η, ηe, and
ηc to be design parameters. The parameters ηe and ηc are adjusted to indicate
the importance of achieving tracking and deviations in tracking, respectively.
The parameter η is the “adaptation gain”; if you choose it small, adaptation
will be slow, while if you choose it large, it will try to adapt very fast (which
can sometimes lead to instabilities). Here, after a bit of tuning via simulations,
we choose η = 1, ηe = 1, and ηc = 20.

How do we adjust the receptive field unit strengths bi, i = 1, 2, . . . , nR?
Here, we simply use

bi(kT ) = bi(kT − T ) + JR(kT )Ri(kT − T )
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(note that for the ship, d = 1 so that the input δ affects the next value of the
ship heading).

It is important to recognize the general approach to learning that is being
used here. When the plant output is not big enough, the receptive field unit
strengths that led to the control input that resulted in it not being big enough
are increased. This concept generally holds, whether the signals are positive or
negative.

Closed-Loop Response, Tuned Mapping, Nominal Conditions

We will follow the same sequence of simulations that we used in Chapter 4 in
Section 4.5.3 on page 139. If we use nominal conditions, where we have ballast

Adaptive control can
achieve initial controller
synthesis and later
tuning as it becomes
necessary.

conditions, no wind, no sensor noise, and a speed of 5 meters/sec., we get a
closed-loop response shown in Figure 9.22. Notice that due to the lack of initial
knowledge about how to control the ship heading, there is significant overshoot
of the desired response early in the simulation. Then, as it learns from the
data that are gathered online (the size of the reinforcement signal shown on the
bottom of Figure 9.22 can be thought of as being proportional to the amount
of learning that is taking place at any particular time in that it represents the
magnitude of the local adjustments to the mapping), it improves the response,
giving less and less overshoot until ultimately it very closely tracks the desired
heading ψm. You can think of this as providing for synthesis of the stimulus-
response characteristics of the neural network. To achieve this, it simply tunes
a portion of the parameters of the neural network, and not the structure of the
network (e.g., the number of receptive field units). It is interesting to note that
by the end of the simulation, we could consider the response that is obtained to
be superior to the one obtained in Figures 4.24 and 4.25, where we had manually
constructed the instinctual neural controller for this application.

The stimulus-response characteristics of the synthesized neural network can
Adaptive control may be
able to use online
information to construct
a better controller than
is possible via a priori
manual tuning since it
can exploit information
that was not known
a priori.

be seen by considering the controller surface that is achieved by the end of
the simulation in Figure 9.22. This learned input-output mapping is shown
in Figure 9.23 (although since in Figure 9.22 the reinforcement signal has not
converged to zero, the mapping is still being shaped). First, it is interesting
to compare this mapping that was constructed using online data to the one
we manually synthesized for this application shown in Figure 4.23. There are
three important things to notice. First, the mapping in Figure 9.23 only has
certain regions that have been tuned since the heading error and change in
error values only visited certain regions. When they visit the regions where the
mapping is zero, those regions will also be learned. Second, the general shape
of the mapping in Figure 9.23, in some regions, resembles the one that we had
manually constructed in Figure 4.23 (which makes sense if it is to succeed).
Third, the online tuning approach does not necessarily converge to one that you
construct manually; it may find a better mapping for the current conditions,
or the learning mechanism may not be as effective as you are in specifying a
good controller mapping. (Clearly, different learning mechanisms will result in
different tuned mappings.)
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Figure 9.22: Closed-loop response resulting from using the neural controller for
tanker ship steering.
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Figure 9.23: Final tuned mapping for the neural network for tanker ship steering.
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Effects of Plant Changes and Disturbances

Next, consider the effects of a wind disturbance on the ship. In this case, we get
the response in Figure 9.24. While in Figure 4.26 we found that wind affects
our ability to achieve very good regulation of the ship heading, here we see
that the neural controller learns to compensate for its effects. The map that is
synthesized by the end of the simulation is similar, but not identical, to the one
synthesized for the nominal conditions. The neural controller figures out how to
shape the mapping to reduce the effects of the wind disturbance, even though
the precise characteristics of the wind disturbance are not known, but are only
inferred via the data that are gathered online.
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Figure 9.24: Closed-loop response resulting from using the neural controller for
tanker ship steering, with wind.

Next, consider the effect of a speed change on our ability to steer the ship.
Here, for the first 9000 seconds we will operate the ship at a speed of u =
5 meters/sec., then abruptly at t = 9000 sec. we will change the speed to
u = 3 meters/sec. (the “abrupt” change is certainly physically unreasonable;
however, it seems likely that similar behavior will result for a slower change in
speed). In this case we get the response in Figure 9.25, and the final tuned
controller surface shown in Figure 9.26. Of course, we get the same response
as for nominal conditions for the first 9000 sec. Then, it adapts to the speed
change after it happens, first with a slightly degraded transient response, which
it later improves. Notice that the final tuned controller mapping in Figure 9.26
is different from the one that resulted from nominal conditions (or when there
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was wind) since adapting to the speed change is different from adapting to those
conditions.
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Figure 9.25: Closed-loop response resulting from using the neural network for
tanker ship steering, speed change from 5 to 3 meters/sec. at t = 9000 sec.

If you use, for instance, an additive sensor noise uniformly distributed on
[−0.01, 0.01], just like the nonadaptive case, there is little effect on the response
so we do not show the plot (of course, if you get sensors with worse performance
characteristics, then you will expect tracking errors to arise in an analogous
manner to results for the wind). Next, we will consider the case of how the
ship steers when at t = 9000 sec. we switch from ballast to full conditions
abruptly (again, this is physically unreasonable, but the resulting responses are
representative of what would happen if the weight was changed in a physically
reasonable manner). In this case, we get the response in Figure 9.27 (compare
with the nonadaptive case in Figure 4.28). Notice that while immediately after
the weight change the transient response degrades, soon afterward the neural
controller learns how to compensate for the weight change (essentially it must
“lower the gain” of the controller; why?). Of course, the final tuned controller
mapping that results in this case is different from the previous ones, and its
shape will be discussed in the next subsection.

Controller Map Shape Changes

Next, we will return to the case where there is a weight change from ballast to
full conditions, but show how the map shape changes when the controller adapts
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Figure 9.26: Final tuned mapping for the neural network for tanker ship steering,
speed change from 5 to 3 meters/sec. at t = 9000 sec.
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Figure 9.27: Closed-loop response resulting from using the neural controller for
tanker ship steering, switch from ballast to full conditions at t = 9000 sec.
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from a ballast condition to a full one. First, consider the controller map shown
in Figure 9.28 that is obtained by t = 8999 sec. when nominal conditions are
used (this is similar to the map in Figure 9.23, but different since the lengths
of the simulations are different). Of course, keep in mind that the mapping
shapes are still changing some near the points where we show them, just as
with Figure 9.23.
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Figure 9.28: Controller mapping of the radial basis function neural network
obtained by t = 8999 sec., nominal conditions (before ship weight changes to
full).

At t = 9000 sec. the ship weight abruptly changes from ballast to full condi-
tions. The controller adapts to this situation where the ship suddenly becomes
easier to steer. In particular, the mapping change after the simulation ends
at t = 20, 000 sec. is shown in Figure 9.29. Notice that the mapping shape
has changed compared to Figure 9.28 and it is the change in this map shape
that summarizes what the effects of the adaptation were. Notice that with the
continual changes that are still occurring to the map (see the bottom plot in
Figure 9.27), the peaks in the map in Figure 9.29 have generally been increased.
This can actually cause a problem in that the parameters may be adjusted so
that as t → ∞, the peaks can go to infinity. There are several solutions to this
problem. First, you could use the “projection” method for the parameters so
that no region of the map will increase too much. Second, by adjusting the
reinforcement function, you can generally avoid having the map diverge (e.g.,
you may change the value of the α threshold and the other gains). Generally,
if your adaptation is too aggressive, you can encounter problems of parameter
divergence; here, rather than focus on making sure that we end up with bound-
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edness, we will simply defer the issue to later chapters of this part where we will
use projection, or will design the learning mechanism so that we will be ensured
that stable closed-loop operation will be achieved.
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Figure 9.29: Controller mapping of the radial basis function neural network
obtained by t = 20, 000 sec., nominal ballast weight conditions followed by a
weight change to full at t = 9000 sec.

Next, it is interesting to study the change in the map shapes between t =
8999 and t = 20, 000 sec. To do this, consider Figure 9.30. The positive peaks
indicate areas where the mapping has increased by the end of the simulation,
and the negative ones indicate regions where the mapping has decreased relative
to the shape at the middle of the simulation. To gain more insight into the shape
changes, consider the contour plot in Figure 9.31 where the gray color indicates
increases in the map. Notice that the changes are local, not global, to where
the system was operating. For example, if there were changes in one region of
the contour plot, there were not changes in another region, provided that the
two regions were far enough away from each other, with “far” defined by the
particular values used for the spreads for the receptive field units.

Localized Learning, Forgetting, and Adaptation

Here, we will consider the effects of using a simpler neural network than in the
last subsection for the ship heading regulation. Suppose that we think of radial
basis functions with lower values of nR as being simpler. The parameter nR

controls the size of the parameter update vector, and hence, quantifies how much
flexibility the underlying neural network has for learning. Here, we will study
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Figure 9.30: Difference of controller mappings of the radial basis function neural
network (one obtained by subtracting the one at t = 20, 000 sec. from the one
at t = 8999 sec.).

the effects of reducing the size of nR. Clearly, there can be practical advantages
to reducing nR since the resulting algorithm will be computationally simpler.

Adjustments to the
controller are made
locally, allowing learning
without forgetting.

Consider using a radial basis function neural network with nR = 9 and a
3 × 3 grid for the centers of the receptive field units as shown in Figure 9.32.
For the spreads σi

j , we use

σi
1 = 0.7

π√
nR

and
σi

2 = 0.7
0.02√

nR

for i = 1, 2, . . . , 9 where we consider e to be our first input and c to be our
second. A plot of one of the receptive field units is shown in Figure 9.33.

We use exactly the same reinforcement learning strategy as above, but with
different parameters; in particular, after a bit of tuning we use η = 1, ηe = 0.5,
and ηc = 100. We use α = 0.005, as above.

Simpler is Better—Achieving Similar Performance: It is basic to en-
gineering design that “simpler is better.” Here, roughly the same type of per-
formance can be achieved as compared to the case where we had nR = 121,
which represented a much more complex controller. For instance, consider the
case similar to the one illustrated in Figure 9.27 where, at the middle of the
simulation, we switch from ballast to full conditions. For the new controller,
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Figure 9.31: Contour map of difference of controller mappings of the radial basis
function neural network (one obtained by subtracting the one at t = 20, 000 sec.
from the one at t = 8999 sec.).

we get the results shown in Figure 9.34. Notice that it performs similar (not
the same, notice the oscillations) to the one for nR = 121 shown in Figure 9.27,
yet the computational complexity of the controller here is much simpler. Next,
while we will not show the plots, we note that we also get similar results to the
nR = 121 case if we have a speed decrease, sensor noise, and wind. While this
is certainly not an extensive test for comparing the performance of the simpler

High neural network
complexity can allow for
highly flexible and local
learning, and less
forgetting.

strategy relative to the nR = 121 one, it does give us some confidence that we
could succeed with a less complex design. Moreover, it illustrates an important
engineering principle.

Low Neural Network Complexity Causes More Forgetting and Hence,
Demands More Adaptation: We do, however, pay a price for the simplifi-
cations of going to a nR = 9 controller. We pay in that we end up with a less
flexible learning strategy in that the underlying control surface that is tuned can
only result from changes to larger regions of the (e, c) plane compared to the
nR = 121 case. To illustrate this, consider the mapping obtained by t = 8999
sec. (just before the change from ballast to full) in Figure 9.35. Notice that the
overall map shape is much smoother; this is due to the low number of receptive
field units (we are only adding up 9 scaled Gaussian functions to produce this
plot, compared to 121 in the earlier case). At t = 9000 sec. the ship weight
abruptly changes from ballast to full conditions. The mapping after the simu-
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Figure 9.32: Grid of 9 center points for receptive field units.

lation ends at t = 20, 000 sec. is shown in Figure 9.36.
Next, it is interesting to further study the change in the map shapes between

t = 8999 and t = 20, 000 sec. To do this, consider Figure 9.37. The positive
peaks indicate areas where the mapping has increased by the end of the simu-
lation, and the negative ones indicate regions where the mapping has decreased
relative to the shape at the middle of the simulation. To gain more insight into
the shape changes, consider the contour plot in Figure 9.38, where the gray color
indicates increases in the map. Notice that the changes are local, not global,
to where the system was operating. However, compare this plot to Figure 9.31.
Notice that while broadly speaking the gross changes in the maps are similar,
there are many differences. In particular, note that in Figure 9.38, we can make
less precise changes in the map since we have a much coarser grid of receptive
field unit centers, and since we have spreads that are larger so the receptive field
unit “supports” (i.e., where it is above some small positive number) cover much
larger regions of the (e, c) space. With this larger coverage, changes in the bi

result in “more global” changes in the map shape (i.e., over the whole support
of receptive field unit Ri). With the fine grid of receptive field unit centers for
the nR = 121 case, the effect of the changes in the bi are much more local.

Notice that there are some fundamental principles here. First, with the
finer grid (nR = 121 case), we get more flexibility in learning, and an ability
to learn and not to forget, but this costs computations. With the coarse grid
(nR = 9 case), we save computations, but when we change one bi, it affects a
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Figure 9.33: Receptive field unit mapping when 9 receptive field units are used
in the radial basis function neural network.

larger region. We think of this as having possibly adverse effects. It can result
in “forgetting” the shape of the map in a region where we had already shaped
it (since the spreads are relatively large), and this then requires that we “re-
learn” the map shape if we return to the region where we had shaped it (this
is actually what typically causes the additional oscillations that resulted when
we used nR = 9). Clearly, choice of the grid partition can be very difficult for a
particular application; however, keeping the above principles in mind can help
guide the design. You should be reminded of Section 9.3, where we studied how
to improve approximation accuracy via the use of more complex approximators;
here, we consider similar ideas, but for adaptive control problems.

9.4.3 Adaptive Fuzzy Control: Emulating Adaptation Ex-
pertise

In this section, as one example of an adaptive fuzzy controller where we emulate
operator intuition about adaptation, we introduce the “fuzzy model reference

Humans often have
expertise in how to learn
about how to control a
process.

learning controller” (FMRLC), which is a (direct) model reference adaptive
controller. You will find several similarities between neural control via rein-
forcement learning and this adaptive fuzzy control approach. Here, however, we
provide additional insights into adaptation mechanism design, some of which
are more conveniently discussed in the context of fuzzy systems (e.g., controller
initialization).
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Figure 9.34: Closed-loop response resulting from using the neural controller for
tanker ship steering, switch from ballast to full conditions at t = 9000 sec., using
only 9 receptive field units.

The functional block diagram for the FMRLC is shown in Figure 9.39. It has
four main parts: the plant, the fuzzy controller to be tuned, the reference model,
and the learning mechanism (an adaptation mechanism). The FMRLC uses the
learning mechanism to observe numerical data from a fuzzy control system (i.e.,
r(kT ) and y(kT ) where T is the sampling period). Using these numerical data,
it characterizes the fuzzy control system’s current performance and automati-
cally synthesizes or adjusts the fuzzy controller so that some given performance
objectives are met. These performance objectives (closed-loop specifications)
are characterized via the reference model shown in Figure 9.39. The learning
mechanism seeks to adjust the fuzzy controller so that the closed-loop system
(the map from r(kT ) to y(kT )) acts like the given reference model (the map
from r(kT ) to ym(kT )). Basically, the fuzzy control system loop (the lower part
of Figure 9.39) operates to make y(kT ) track r(kT ) by manipulating u(kT ),
while the upper-level adaptation control loop (the upper part of Figure 9.39)
seeks to make the output of the plant y(kT ) track the output of the reference
model ym(kT ) by manipulating the fuzzy controller parameters.

Next, we describe each component of the FMRLC in more detail for the case
where there is one input and one output from the plant (the same concepts are
easy to extend to the multi-input multi-output case).
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Figure 9.35: Controller mapping of the radial basis function neural network
obtained by t = 8999 sec., nominal conditions (before ship weight changes to
full).

The Fuzzy Controller

Most often, the inputs to the fuzzy controller are generated via some function of
the plant output y(kT ) and reference input r(kT ). Figure 9.39 shows a simple
example of such a map that has been found to be useful in some applications.
For this, the inputs to the fuzzy controller are the error e(kT ) = r(kT )− y(kT )
and change in error

c(kT ) =
e(kT ) − e(kT − T )

T

(i.e., a PD fuzzy controller). There are times when it is beneficial to place a
smoothing filter between the r(kT ) reference input and the summing junction.
Such a filter is sometimes needed to make sure that smooth and reasonable
requests are made of the fuzzy controller (e.g., a square wave input for r(kT )
may be unreasonable for some systems that you know cannot respond instan-
taneously). Sometimes, if you ask for the system to perfectly track an unrea-
sonable reference input, the FMRLC will essentially keep adjusting the “gain”
of the fuzzy controller until it becomes too large. Generally, it is important to
choose the inputs to the fuzzy controller, and how you process r(kT ) and y(kT ),
properly; otherwise, performance can be adversely affected and it may not be
possible to maintain stability.

Returning to Figure 9.39, we use scaling gains ge, gc, and gu for the error
e(kT ), change in error c(kT ), and controller output u(kT ), respectively. A first
guess at these gains can be obtained in the following way: the gain ge can be
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Figure 9.36: Controller mapping of the radial basis function neural network
obtained by t = 20, 000 sec., nominal ballast weight conditions followed by a
weight change to full at t = 9000 sec. with 9 receptive field units.

chosen so that the range of values that e(kT ) typically takes on will not make
it so that its values result in saturation of the corresponding outermost input
membership functions. The gain gc can be determined by experimenting with
various inputs to the fuzzy control system (without the adaptation mechanism)
to determine the normal range of values that c(kT ) will take on. Using this,
we choose the gain gc so that normally encountered values of c(kT ) will not
result in saturation of the outermost input membership functions. We can
choose gu so that the range of outputs that are possible is the maximum range
possible, yet still so that the input to the plant will not saturate (for practical
problems, the inputs to the plant will always saturate at some value). Clearly,
this is a very heuristic choice for the gains and hence, may not always work.
Sometimes, tuning of these gains will need to be performed when we tune the
overall FMRLC.

Rule Base: The rule base for the fuzzy controller has rules of the form

If ẽ is Ẽj and c̃ is C̃l Then ũ is Ũm

where ẽ and c̃ denote the linguistic variables associated with controller inputs
e(kT ) and c(kT ), respectively, ũ denotes the linguistic variable associated with
the controller output u, Ẽj and C̃l denote the jth (lth) linguistic value associ-
ated with ẽ (c̃), respectively, and Ũm denotes the consequent linguistic value
associated with ũ. Hence, as an example, one fuzzy control rule could be
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Figure 9.37: Difference of controller mappings of the radial basis function neural
network (one obtained by subtracting the one at t = 20, 000 sec. from the one
at t = 8999 sec.) with 9 receptive field units.

If error is positive-large and change-in-error is negative-small
Then plant-input is positive-big

(in this case ẽ = “error”, Ẽ4 = “positive-large”, etc.). We use a standard choice
for all the membership functions on all the input universes of discourse, such as
the ones shown in Figure 9.40. Hence, we would simply use some membership
functions similar to those in Figure 9.40, but with a scaled horizontal axis, for
the c(kT ) input.

We will use all possible combinations of rules for the rule base. For example,
we could choose to have 11 membership functions on each of the two input
universes of discourse, in which case we would have 112 = 121 rules in the rule
base. At first glance it would appear that the complexity of the controller could
make implementation prohibitive for applications where it is necessary to have
many inputs to the fuzzy controller. However, we must remind the reader of
the results in Section 5.3.1 on page 199, where we explain how implementation
tricks can be used to significantly reduce computation time when there are input
membership functions of the form shown in Figure 9.40.

We use minimum or product to represent the conjunction in the premise and
the implication (in this book we will use minimum for the FMRLC unless other-
wise stated) and the standard center-of-gravity defuzzification technique. As an
alternative, we could use appropriately initialized singleton output membership
functions and center-average defuzzification since there are certain computa-
tional advantages to this approach.
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Figure 9.38: Contour map of difference of controller mappings of the radial basis
function neural network (one obtained by subtracting the one at t = 20, 000 sec.
from the one at t = 8999 sec.) with 9 receptive field units.
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Figure 9.40: Membership functions for input universe of discourse (figure taken
from [301], c© IEEE, and used with permission).

Rule Base Initialization: The input membership functions are defined to
characterize the premises of the rules that define the various situations in which
rules should be applied. The input membership functions are left constant and
are not tuned by the FMRLC (although we do discuss some approaches to tuning

The fuzzy controller
holds the best guess at
how a fixed controller
should behave.

them below). The membership functions on the output universe of discourse
are assumed to be unknown. They are what the FMRLC will automatically
synthesize or tune. Hence, the FMRLC tries to fill in what actions ought to be
taken for the various situations that are characterized by the premises.

We must choose initial values for each of the output membership func-
tions. For example, for an output universe of discourse [−1, 1], we could choose
triangular-shaped membership functions with base widths of 0.4 and centers at
zero. This choice represents that the fuzzy controller initially knows nothing
about how to control the plant so it inputs u = 0 to the plant initially (well,
really it does know something, since we specify the remainder of the fuzzy con-
troller a priori). Of course, one can often make a reasonable best guess at how
to specify a fuzzy controller that is “more knowledgeable” than simply placing
the output membership function centers at zero. For example, we could pick
the initial fuzzy controller to be the best one that we can design for the nominal
plant. Notice, however, that this choice is not always the best one. Really, what
you often want to choose is the fuzzy controller that is best for the operating
condition that the plant will begin in (this may not be the nominal condition).
Unfortunately, it is not always possible to pick such a controller, since you may
not be able to measure the operating condition of the plant, so making a best
guess or simply placing the membership function centers at zero are common
choices.

Learning, Memorization, and Controller Input Choice: For some ap-
plications you may want to use an integral of the error or other preprocessing
of the inputs to the fuzzy controller. Sometimes the same guidelines that are
used for the choice of the inputs for a nonadaptive fuzzy controller are useful
for the FMRLC. We have found, however, times where it is advantageous to
replace part of a conventional controller with a fuzzy controller and use the
FMRLC to tune it. In these cases the complex preprocessing of inputs to the
fuzzy controller is achieved via a conventional controller. Sometimes there is
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also the need for postprocessing of the fuzzy controller outputs.
Generally, however, choice of the inputs also involves issues related to the

learning dynamics of the FMRLC. As the FMRLC operates, the learning mech-
Controller behavior is
parameterized via its
inputs, so with more
inputs it can learn how
to behave differently in a
wider range of
situations.

anism will tune the fuzzy controller’s output membership functions. In partic-
ular, in our example, for each different combination of e(kT ) and c(kT ) inputs,
it will try to learn what the best control actions are. In general, there is a
close connection between what inputs are provided to the controller and the
controller’s ability to learn to control the plant for different reference inputs
and plant operating conditions. We would like to be able to design the FM-
RLC so that it will learn and remember different fuzzy controllers for all the
different plant operating conditions and reference inputs; hence, the fuzzy con-
troller needs information about these. Often, however, we cannot measure the
operating condition of the plant, so the FMRLC does not know exactly what
operating condition it is learning the controller for. Moreover, it then does not
know exactly when it has returned to an operating condition (you can think
of this as an online function approximation problem, where the unknown func-
tion is a controller that can meet the specifications and there is the influence
of the auxiliary variable whose value we do not know). Clearly, then, if the
fuzzy controller has better information about the plant’s operating conditions,
the FMRLC will be able to learn and apply better control actions. If it does
not have good information, it will continually adapt, but it will not properly
remember.

For instance, for some plants e(kT ) and c(kT ) may only grossly characterize
the operating conditions of the plant. In this situation, the FMRLC is not
able to learn different controllers for different operating conditions; it will use
its limited information about the operating condition and continually adapt to
search for the best controller. It degrades from a learning system to an adaptive
system that will not properly remember the control actions. (This is not to
imply, however, that there will automatically be a corresponding degradation
in performance.)

Generally, we think of the inputs to the fuzzy controller as specifying what
conditions we need to learn different controllers for. This should be one guideline
used for the choice of the fuzzy controller inputs for practical applications. A
competing objective is, however, to keep the number of fuzzy controller inputs
low due to concerns about computational complexity. In fact, to help with
computational complexity, we will sometimes use multiple fuzzy controllers with
fewer inputs to each of them rather than one fuzzy controller with many inputs;
then we may, for instance, sum the outputs of the individual controllers.

The Learning Mechanism

The learning mechanism tunes the rule base of the direct fuzzy controller so that
the closed-loop system behaves like the reference model (here, we use the same
reference model as for the neural controller). These rule base modifications are
made by observing data from the controlled process, the reference model, and
the fuzzy controller. The learning mechanism consists of two parts: a “fuzzy
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inverse model” and a “rule base modifier.” The fuzzy inverse model performs
the function of mapping ye(kT ) (representing the deviation from the desired
behavior), to changes in the process inputs p(kT ) that are necessary to force
ye(kT ) to zero. The rule base modifier performs the function of modifying the
fuzzy controller’s rule base to produce the needed changes in the process inputs.
We explain each of these components in detail next.

Fuzzy Inverse Model: Using the fact that most often a control engineer
will know how to roughly characterize the inverse model of the plant (i.e., how
the input should be changed to get a certain change in the output), we use a

Engineers often know
how to tune their
decision-making strategy
since they generally
understand how to
change inputs to move
the plant output in a
desired direction.

fuzzy system to map ye(kT ), and possibly, functions of ye(kT ) such as yc(kT ) =
1
T (ye(kT )−ye(kT −T )) (or any other closed-loop system data), to the necessary
changes in the process inputs p(kT ). This fuzzy system is sometimes called the
“fuzzy inverse model” since information about the plant inverse dynamics is
used in its specification. Some, however, avoid this terminology and simply
view the fuzzy system in the adaptation loop in Figure 9.39 to be a controller
that tries to pick p(kT ) to reduce the error ye(kT ). A neural control viewpoint
would highlight an analogy between the inverse model and the reinforcement
function (what is it?).

Note that similar to the fuzzy controller, the fuzzy inverse model shown in
Figure 9.39 contains scaling gains, but now we denote them with gye , gyc , and
gp. We will explain how to choose these scaling gains below. Given that gyeye

and gycyc are inputs to the fuzzy inverse model, the rule base for the fuzzy
inverse model contains rules of the form

If ỹe is Ỹ j
e and ỹc is Ỹ l

c Then p̃ is P̃m

where Ỹ j
e and Ỹ l

c denote linguistic values and P̃m denotes the linguistic value
associated with the mth output fuzzy set. In this book, we often utilize mem-
bership functions for the input universes of discourse as shown in Figure 9.40,
symmetric triangular-shaped membership functions for the output universes of
discourse, minimum to represent the premise and implication, and COG de-
fuzzification. Other choices can work equally well. For instance, we could make
the same choices, except use singleton output membership functions and center-
average defuzzification.

While the choice of a particular fuzzy inverse model is application-dependent,
there are, however, some general guidelines for the choice of the fuzzy inverse
model. First, we note that for a variety of applications, we find that the specifi-
cation of the fuzzy inverse model is not much more difficult than the specification
of a direct fuzzy controller. In fact, the fuzzy inverse model often takes on a
form that is quite similar to a direct fuzzy controller. For instance, the rule base
often has some typical symmetry properties. “First guess” values for the input
scaling gains for the inverse model can be often found using a similar approach
to that used for a standard fuzzy controller. Second, to pick gp it is probably
best to pick gp = 0 and tune the fuzzy controller to get a reasonable perfor-
mance for the nominal system (sometimes, however, this is not possible and the
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adaptation mechanism is needed to get reasonable performance levels). If this
is not possible, and no good guess is known for the fuzzy controller, then start
with a small value of gp (the “adaptation gain”) and experiment with choices
for the other values using standard ideas from tuning conventional controllers
as a guideline. Then, slowly increase gp until adequate adaptation speeds are
achieved (perhaps retuning each time you pick a new value for gp).

Rule Base Modifier: Given the information about the necessary changes in
the input, which are represented by p(kT ), to force the error ye to zero, the rule
base modifier changes the rule base of the fuzzy controller so that the previously
applied control action will be modified by the amount p(kT ). Consider the
previously computed control action u(kT − T ), and assume that it contributed
to the present good or bad system performance (i.e., it resulted in the value of
y(kT ) such that it did not match ym(kT )). Hence, for illustration purposes we
are assuming that in one step the plant input can affect the plant output; in
Section 9.4.3 we will explain what to do if it takes d steps for the plant input to
affect the plant output. Note that e(kT −T ) and c(kT −T ) would have been the
error and change in error that were input to the fuzzy controller at that time.
By modifying the fuzzy controller’s rule base, we may force the fuzzy controller
to produce a desired output u(kT −T )+ p(kT ), which we should have put in at
time kT −T to make ye(kT ) smaller. Then, the next time we get similar values
for the error and change in error, the input to the plant will be one that will
reduce the error between the reference model and plant output.

Assume that we use symmetric output membership functions for the fuzzy
controller, and let bm denote the center of the membership function associated
with Ũm. Rule base modification is performed by shifting centers bm of the
membership functions of the output linguistic value Ũm that are associated
with the fuzzy controller rules that contributed to the previous control action
u(kT − T ). This is a two-step process:

1. Find all the rules in the fuzzy controller whose premise certainty

µi(e(kT − T ), c(kT − T )) > 0 (9.19)

and call this the “active set” of rules at time kT −T . We can characterize
the active set by the indices of the input membership functions of each
rule that is on (since we use all possible combinations of rules, there will
be one output membership function for each possible rule that is on).

2. Let bm(kT ) denote the center of the mth output membership function at
time kT . For all rules in the active set, use

bm(kT ) = bm(kT − T ) + p(kT ) (9.20)

to modify the output membership function centers. Rules that are not in
the active set do not have their output membership functions modified.
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Notice that for our development, when COG is used, this update will guarantee
that the previous input would have been u(kT−T )+p(kT ) for the same e(kT−T )
and c(kT − T ) (to see this, simply analyze the formula for COG to see that
adding the amount p(kT ) to the centers of the rules that were on will make
the output shift by p(kT )). For the case where the fuzzy controller has input
membership functions of the form shown in Figure 9.40, there will only be at
most four rules in the active set at any one time instant (i.e., four rules with
µi(e(kT − T ), c(kT − T )) > 0 at time kT ). Then we only need to update at
most four output membership function centers via Equation (9.20). Note the
similarities between this parameter update scheme and the one used in neural
control earlier in this chapter.

Example Rule Parameter Update: As an example of the rule base modifi-
cation procedure, assume that all the scaling gains for both the fuzzy controller
and the fuzzy inverse model are unity. Suppose that the fuzzy inverse model
produces an output p(kT ) = 0.5, indicating that the value of the output to
the plant at time kT − T should have been u(kT − T ) + 0.5 to improve per-
formance (i.e., to force ye ≈ 0). Next, suppose that e(kT − T ) = 0.75 and
c(kT − T ) = −0.2 and that the membership functions for the inputs to the
fuzzy controller are given in Figure 9.40. Then rules

R1: If E3 and C−1 Then U1

and

R2: If E4 and C−1 Then U2

are the only rules that are in the active set (notice that we chose to use the
indices for the rule “1” and “2” simply for convenience). In particular, from
Figure 9.40, we have µ1 = 0.25 and µ2 = 0.75, so rules R1 and R2 are the only
ones that have their consequent fuzzy sets (U1, U2) modified. Suppose that at
time kT −T we had b1(kT −T ) = 1 and b2(kT −T ) = 3. To modify these fuzzy
sets, we simply shift their centers according to Equation (9.20) to get

b1(kT ) = b1(kT − T ) + p(kT ) = 1 + 0.5 = 1.5

and
b2(kT ) = b2(kT − T ) + p(kT ) = 3 + 0.5 = 3.5

Learning, Memorization, and Inverse Model Input Choice: Notice
that the changes made to the rule base are only local ones. That is, the entire
rule base is not updated at every time step, just the rules that needed to be
updated to force ye(kT ) to zero. Notice that this local learning is important
since it allows the changes that were made in the past to be remembered by the
fuzzy controller. Recall that the type and amount of memory depends critically
on the inputs to the fuzzy controller. Different parts of the rule base are “filled
in” based on different operating conditions for the system (as characterized by
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the fuzzy controller inputs), and when one area of the rule base is updated,
other rules are not affected. Hence, if the appropriate inputs are provided to
the fuzzy controller so that it can distinguish between the situations in which
it should behave differently, the controller adapts to new situations and also
remembers how it adapted to past situations.

Rules for how to adapt
that have more inputs
can behave differently in
a wider range of
situations.

Just as the choice of inputs to the fuzzy controller has a fundamental im-
pact on learning and memorization, so does the choice of inputs to the inverse
model. For instance, you may want to choose the inputs to the inverse model so
that it will adapt differently in different operating conditions. In one operating
condition, we may want to adapt more slowly than in another. In some operat-
ing conditions, the direction of adjustment of the output membership function
centers may be the opposite of that in another. If there are multiple fuzzy
controllers, you may want multiple inverse models to adjust them. This can
sometimes help with computational complexity, since we could then be using
fewer inputs per fuzzy inverse model.

The choice of inputs to the fuzzy inverse model shown in Figure 9.39, in-
dicates that we want to adapt differently for different errors and error rates
between the reference model and plant output. The inverse model may be de-
signed so that, for example, if the error is small, then the adjustments to the
fuzzy controller should be small, and if the error is small but the rate of error
increase is high, then the adjustments should be larger. It is rules such as these
that are loaded into the fuzzy inverse model.

Alternative Rule Base Modifiers

Here, we discuss a variety of options for how to define the rule base modifier.

Plants with Delays: Recall that we had assumed that the plant input u(kT )
would affect the plant output in one time step so that y(kT+T ) would be affected
by u(kT ). To remove this assumption and hence generalize the approach, let d
denote the number of time steps that it takes for an input to the plant u(kT )
to first affect its output. That is, y(kT + dT ) is affected by u(kT ). To handle
this case, we use the same approach but we go back d steps to modify the rules.
Hence, we use

µi(e(kT − dT ), c(kT − dT )) > 0 (9.21)

to form the “active set” of rules at time kT − dT . To update the rules in the
active set, we let

bm(kT ) = bm(kT − dT ) + p(kT ) (9.22)

(when d = 1, we get the case in Equations (9.19) and (9.20)). This ensures that
we modify the rules that actually contributed to the current output y(kT ) that
resulted in the performance characterization ye(kT ). For applications we have
found that we can most often perform a simple experiment with the plant to
find d (e.g., put a short-duration pulse into the plant and determine how long
it takes for the input to affect the output), and with this choice we can often
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design a very effective FMRLC. However, this has not always been the case.
Sometimes we need to treat d as a tuning parameter for the rule base modifier.

Thresholds for Entry to the Active Set: There are several alternatives
to how the basic rule base modification procedure can work that can be used
in conjunction with the d-step back approach. For instance, note that an al-
ternative to Equation (9.19) would be to include rules in the active set that
have

µi(e(kT − dT ), c(kT − dT )) > α

where 0 ≤ α < 1. In this case, we will not modify rules whose premise certainty
is below some given threshold α. This makes some intuitive sense, since we will
then not modify rules if the fuzzy system is not too sure that they should be on.
However, one could argue that any rule that contributed to the computation of
u(kT − dT ) should be modified. This approach may be needed if you choose to
use Gaussian membership functions for the input universes of discourse, since it
will ensure that you will not have to modify all the output centers at each time
step, and hence the local learning characteristic is maintained.

Update Formula Alternatives, Parameter Constraints: There are also
alternatives to the center update procedure given in Equation (9.20). For in-
stance, we could choose

bm(kT ) = bm(kT − dT ) + µm(e(kT − dT ), c(kT − dT ))p(kT )

so that we scale the amount we shift the membership functions by the µm cer-
tainty of their premises. Intuitively, this makes sense since we will then change
the membership functions from rules that were on more by larger amounts, and
for rules that are not on as much, we will not modify them as much. Notice
that for our example in this section we have that

R∑
i=1

µi = 1

where R = 121 is the number of rules (this is due to how we overlap the
membership functions, and relies on maintaining this type of overlap if you
adjust the input membership functions over time). We see that with this the
premise membership functions are the same as the basis functions

ξi =
µi∑R
i=1 µi

= µi

and the update formula bears some similarity to the gradient update formulas
studied in Chapter 11.

This approach has proven to be more effective than the one in Equation (9.20)
for some applications; however, it is difficult to determine a priori which ap-
proach to use. We usually try the scaled approach if the one in Equation (9.20)



9.4 Biomimicry for Heuristic Adaptive Control 401

does not seem to work well, particularly if there are some unwanted oscillations
in the system that seem to result from excessive modification of output mem-
bership function center positions. Sometimes, using too few rules in the fuzzy
controller causes such problems.

Another modification to the center update law is also necessary in some prac-
tical applications to ensure that the centers stay in some prespecified range. For
instance, you may want the centers to always be positive so that the controller
will never provide a negative output. Other times you may want the centers
no larger than some prespecified value to ensure that the control output will
become no larger than this value. In general, suppose that we know a priori
that the centers should be in the range [bmin, bmax] where bmin and bmax are
given scalars. We can modify the output center update rule to ensure that if the
centers start in this range, they will stay in the range by adding the following
two rules after the update formula:

If bm(kT ) < bmin Then bm(kT ) = bmin

If bm(kT ) > bmax Then bm(kT ) = bmax

In other words, if the centers jump over the boundaries, they are set equal to
the boundary values. This is same “projection” approach as used in gradient
methods to constrain the update of parameters.

Hybrid Methods, Heuristic Robustification: Notice that you could com-
bine the above alternatives to rule base modification so that we set a threshold
for including rules in the active set, scale the updates to the centers, bound
the updates to the centers, and use any number of time steps back to form
the active set. There are yet other alternatives that can be used for rule base
modification procedures. For instance, parts of the rule base could be left intact
(i.e., we would not let them be modified). This can be useful when we know
part of the fuzzy controller that is to be learned, we embed this part into the
fuzzy controller that is tuned, and do not let the learning mechanism change it.

Overaggressive pursuit
of closed-loop objectives
can require continual
adjustment of
parameters that can lead
to instability.

In the section on stable adaptive control we will show how “robustification”
schemes can be used to ensure stable operation of the adaptive system for uncer-
tain plants. Here, we simply discuss some heuristic methods that try to achieve
robustification. For instance, for many practical applications it is necessary to
define the inverse model so that when the response of the plant is following the
output of the reference model very closely, the fuzzy inverse model turns off the
adaptation. In this way, once the inputs to the fuzzy inverse model get close to
zero, the output of the fuzzy inverse model becomes zero. We think of this as
forcing the fuzzy inverse model to be satisfied with the performance as long as
the plant output is quite close to the reference model; there is no need to make it
exact in many applications. Designing this characteristic into the fuzzy inverse
model can sometimes help ensure stability of the overall closed-loop system.
Another way to implement such a strategy is to directly modify the output of
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the fuzzy inverse model by using the rule:

If |p(kT )| < εp Then p(kT ) = 0

where εp > 0 is a small number that is specified a priori. For typical fuzzy inverse
model designs (i.e., ones where the size of the output of the fuzzy inverse model
is directly proportional to the size of the inputs to the fuzzy inverse model),
this rule will make sure that when the inputs to the fuzzy inverse model are
in a region of zero, its output will be modified to zero. Hence, for small fuzzy
inverse model inputs, the learning mechanism will turn off. If, however, the
error between the plant output and the reference input grows, then the learning
mechanism will turn back on and it will try to reduce the error. Such approaches
to modifying the adaptation online are related to “robustification” methods in
conventional adaptive control.

As another alternative, when a center is updated, you could always wait d
or more steps before updating the center again. This can be useful as a more
“cautious” update procedure. It updates, then waits to see if the update was
sufficient to correct the error ye before it updates again. We have successfully
used this approach to avoid inducing oscillations when operating at a set point.

9.4.4 Design Example: Rule-Tuning for the Tanker Ship

Here, we consider the same tanker ship heading regulation problem as we did
for both the neural control earlier in this chapter, and the instinctual neural
controller and fixed fuzzy controller in Part II. This will provide us with the
opportunity to compare the results to a variety of other cases, and particularly
in the context of fuzzy control, show why adaptation can be valuable.

FMRLC Design for the Tanker Ship

We had chosen the fuzzy controller inputs to be

e(kT ) = ψr(kT ) − ψ(kT )

c(kT ) =
e(kT ) − e(kT − T )

T

where ψr(kT ) is the desired ship heading (we chose T = 10 seconds). We will
use this same choice for the FMRLC. The controller output is the rudder angle,
δ(kT ), of the ship. We use 11 uniformly spaced triangular membership functions
for each controller input as shown in Figure 9.40 (i.e., on normalized universes
of discourse). We chose ge = 2

π , gc = 250, and gu = 8π
18 (the “good” tuned

values). The output membership functions are assumed to be symmetric and
triangular shaped with a base width of 0.4 (on a normalized output universe of
discourse), and centered via the tuning of the fuzzy controller for the “nominal
plant” in Part II.
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The reference model is chosen to be

ψm(s)
ψr(s)

=
1

150

s + 1
150

where ψm(t) specifies the desired system performance for the ship heading ψ(t).
The fuzzy inverse model inputs are chosen to be

ψe(kT ) = ψm(kT ) − ψ(kT )

ψc(kT ) =
ψe(kT ) − ψe(kT − T )

T

We use 11 fuzzy sets defined with symmetric and triangular shaped membership
functions, which are evenly distributed on the appropriate universes of discourse
(the same as shown in Figure 9.40).

For fuzzy inverse model design, note that for a tanker ship, an increase in
the rudder angle δ(kT ) will generally result in a decrease in the ship heading
angle (see Figure 4.8). This is the information about the inverse dynamics of
the plant that we use in the fuzzy inverse model rules. Specifically, we will use
rules of the form

If ψ̃e is Ψ̃i
e and ψ̃c is Ψ̃j

c Then p̃ is P̃m

Our output membership function centers are ci,j (ith membership function for
ψ̃e and jth membership function for ψ̃c). We use the rule base shown in Table 9.1
for the fuzzy inverse model.

Table 9.1: Rule base for the tanker ship fuzzy inverse model.

Ψj
c

ci,j −5 −4 −3 −2 −1 0 1 2 3 4 5
−5 1 1 1 1 1 1 .8 .6 .4 .2 0
−4 1 1 1 1 1 .8 .6 .4 .2 0 −.2
−3 1 1 1 1 .8 .6 .4 .2 0 −.2 −.4
−2 1 1 1 .8 .6 .4 .2 0 −.2 −.4 −.6
−1 1 1 .8 .6 .4 .2 0 −.2 −.4 −.6 −.8

Ψi
e 0 1 .8 .6 .4 .2 0 −.2 −.4 −.6 −.8 −1

1 .8 .6 .4 .2 0 −.2 −.4 −.6 −.8 −1 −1
2 .6 .4 .2 0 −.2 −.4 −.6 −.8 −1 −1 −1
3 .4 .2 0 −.2 −.4 −.6 −.8 −1 −1 −1 −1
4 .2 0 −.2 −.4 −.6 −.8 −1 −1 −1 −1 −1
5 0 −.2 −.4 −.6 −.8 −1 −1 −1 −1 −1 −1

In Table 9.1, Ψi
e denotes the ith fuzzy set associated with the error signal

ψe, and Ψj
c denotes the jth fuzzy set associated with the change in error signal

ψc. The entries of the table represent the center values of symmetric triangular
membership functions ci,j with base widths 0.4 for output fuzzy sets Pm on the
normalized universe of discourse.
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To see that this rule base captures our intuitive knowledge about inverse
model design, we consider a few example rules. First, notice that if i = j = 0,
then we see from the table that ci,j = c0,0 = 0 (this is the center of the table).
This cell in the table represents the rule that says “if ψe = 0 and ψc = 0,
then y is tracking ym perfectly so you should not update the fuzzy controller.”
Hence, the output of the fuzzy inverse model will be zero. If, on the other
hand, i = 2 and j = 1, then ci,j = c2,1 = −0.6. This rule indicates that “if
ψe is positive (i.e., ψm is greater than ψ) and ψc is positive (i.e., ψm − ψ is
increasing), then change the input to the fuzzy controller that is generated to
produce these values of ψe and ψc by decreasing it. This is because we want ψ
to increase so we want to decrease δ to get this (see Figure 4.8). We see that the
inverse model indicates that whatever the input was in this situation, it should
have been less so it subtracts some amount (the amount affected by the scaling
gain gp). Other rules can be explained similarly.

We choose the fuzzy inverse model scaling gains as gψe = 2
π , gψc = 10, and

gp = 0.4, respectively, according to the ideas for tuning these gains presented
earlier.

We use Equation (9.20) to implement the parameter update method. We
use d = 1 and add a heuristic robustification scheme where if

|p(kT )| < 0.01gp

then we let p(kT ) = 0. This way, with the choice of the inverse model, we will
tend to turn off the adaptation when the error between the reference model
(and its change in error) are small. We make the threshold value depend on gp

simply for convenience in tuning since this way, we can think of not updating
when the size of the suggested update is smaller than some percentage of the
adaptation gain.

Performance Using a “Good Guess” Initialization

First, consider the “good” set of gains that we found in Part II when we tuned
the direct fuzzy controller, where g1 = 2/π, g2 = 250, and g0 = 8π/18. As
shown in Figure 9.41, when we start with a good initial guess at the fuzzy
controller, very little tuning occurs and we get good tracking performance. We
will, in fact, use these same gains for the fuzzy controller for the rest of the
simulations in this section.

Also, consider Figure 9.42, which shows the fuzzy controller surface at the
end of the simulation. Notice that the shape of the surface is similar to the
one in Figure 5.27 from the nonadaptive case; this makes sense since we started
with a good guess at the fuzzy controller, so the FMRLC does not adjust it too
much. Compare this to the neural control case and note the difference in the
shapes of the maps due to initialization and adjustment approach differences.

Note that from Figure 9.41, you can see that there are still adjustments
being made to the fuzzy controller; hence, this surface has a shape that is still
changing at the end of the simulation (to see how you could plot the shape over
several time steps). Indeed, in some cases the shape will continually change for
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Figure 9.41: Tanker FMRLC response, good initial controller.

Figure 9.42: Tuned fuzzy controller surface.

all time for some reference inputs. Whether it stops changing shape depends
on several things. First, it depends on the reference input. Second, it depends
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on the adaptation method. Third, it depends on the plant dynamics and what
information is available from the plant, and how that information is used as
inputs to the fuzzy controller and inverse model.

Effects of Plant Changes and Disturbances

Here, we change from “ballast” to “full” conditions at t = 9000 sec. so we
appropriately change the plant parameters (suddenly) at this time to represent
this weight change. (It is of course unreasonable to suddenly change the weight
of the ship; here, we are simply thinking of the simulation as showing what
happens when the FMRLC is used in the nominal conditions for a while, the ship
unloads ballast, and then the ship continues with a lighter load using the same
controller.) As shown in Figure 9.43, while the initial transient performance
just after t = 9000 sec. is not as good, the FMRLC does tune the FMRLC to
achieve good performance by the end of the simulation. Of course, it has tuned
differently to achieve this type of performance so that the shape of the tuned
controller nonlinearity will be different.
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Figure 9.43: Tanker FMRLC response, plant condition change, ballast to full.

Next, we leave everything else the same as in the last simulation, but do not
change the ship weight and add a wind disturbance (the same one described
in Part II). As shown in Figure 9.44, the FMRLC rejects the disturbance
(recall that for the nonadaptive controller, the wind disturbance had a noticeable
adverse impact on the response as shown in Figure 5.29). Next, we study the
effect of changing the speed of the ship from u = 5 to u = 3 meters/sec. As
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shown in Figure 9.45, the FMRLC also performs reasonably well for this case,
certainly much better than in the nonadaptive case shown in Figure 5.30.
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Figure 9.44: Tanker FMRLC response, wind disturbance.

Notice that overall we get similar performance to the neural control case.
In fact, the slight performance differences cannot be used to conclude anything
about the superiority of one approach over the other. This is especially the
case due to the difference in complexity of the two controllers and the fact that
we certainly cannot be sure that both are tuned for “optimal performance,”
however you would define that.

9.4.5 Expert, Planning, and Attentional Systems for Adap-
tive Control

There are several ways that expert, planning, and attentional systems can be
used in an adaptive controller. Here, we outline a few heuristic approaches to
use such methods.

Expert Control for Adaptation Strategies

Expert systems can be used to incorporate high-level heuristic ideas on how to
Rules can be used to
tune adaptive strategies.

tune adaptation mechanisms online. For instance, in a neural controller or the
FMRLC discussed in the last section, an expert controller may monitor plant
information and the reference input and may subsequently tune the adaptation
gain or reference model. There are times when it is known that in certain
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Figure 9.45: Tanker FMRLC response, speed decrease to 3 meters/sec.

conditions (e.g., if there are indications that there is a large plant change),
more significant changes should be made to the controller so that the closed-
loop system maintains high performance operation. One application where this
can happen is in fault tolerant control, where if you receive an indication that
there is a failure, you may want to quickly adapt the controller to recover from
the failure quickly. Then, when some reasonable performance level is achieved,
you may want to slow the changes (i.e., lower the adaptation gain) to help
ensure stable operation. In such a situation it may also be beneficial to tune the
reference model so that it always reflects reasonable performance requirements
for the plant. If there is a failure, then you may want the expert controller to
pick a reference model that reflects less demanding performance specifications.
Then, if the failure is fixed, the expert system should return the reference model
to its nominal choice. Such a scheme could be said to be “performance adaptive”
in the sense that it would try to adapt to achieve the best possible performance,
but one that is reasonable for the current operating conditions. Overall, you
may view the tuning of adaptive controller parameters as adding another level
of adaptation and hence as providing a method to learn how to learn.

Expert systems can also be used to incorporate ideas about how to coordi-
nate the application of a variety of conventional or intelligent controllers. For
instance, in some applications you may know that under certain conditions you
may want to use one type of controller, where in others a different type of con-
troller may be better. Often, this can be quantified with rules in an expert
system. You may think of this as a general sort of “gain scheduling” approach
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where the expert controller supervises the application of different controllers by
picking which controller to apply in each plant operating condition.

Adaptive Planning

Next, after providing some bio-foundations, we explain how learning and plan-
ning can be combined for control.

Place Learning: In other work that has taken the “cognitive perspective,”
E. Tolman and his colleagues performed research that led them to conclude that
animals learn a “cognitive map” of their environment in order to learn about
places. This cognitive map can be thought of as a mental representation of

Humans have an ability
to learn cognitive maps
of their environment and
to learn by observation.

the spatial layout of its environment, and they found that this map is learned
solely through exploration, whether an animal finds a reward or not. Clearly,
acquisition of such cognitive maps has great value when used to predict, and
hence it should be clear that it is reasonable to hypothesize that this ability could
evolve from simpler learning processes. Clearly, the idea of learning cognitive
maps has relevance to adaptive planning system development. For this, see
more discussion below, and also the idea of using a “surrogate model method”
for combined learning and planning that is discussed in Section 19.6 and Design
Problem 19.5.

Planning Mechanisms in Adaptive Model Predictive Control: “Model
predictive control” (MPC) (in some contexts called “receding horizon control”)
is a very popular method in the process control industries, as it has been shown
to provide effective solutions to complex control problems (see Chapter 6). In

Models can be used to
predict reactions to
inputs in order to plan
how to choose the best
input.

MPC, a model of the plant is used at each step to predict into the future how
the plant will respond to a sequence of control inputs. The length of time
of the simulation into the future is called the “prediction horizon” and often
it is a design parameter for the controller. Next, of all the possible control
input sequences, the control sequence is chosen that is predicted to best satisfy
the performance requirements. Then, typically the first control input of this
sequence is applied to the plant and the process repeats. In the linear case,
typically a quadratic cost criterion is used and there is a unique optimal sequence
that can be found using least squares methods. It should be clear that a type
of planning mechanism is used in MPC.

One of the problems with MPC is that if the model is not good, then the
predictions about performance are poor so that the choice of control inputs can
be less than optimal. Methods have been investigated to solve this problem
by using an online model identification method to specify the model used in
MPC. If good identification is performed, and this model is used in the standard
MPC strategy, sometimes a good controller can be obtained. The direct genetic
adaptive control scheme (to be covered in Chapter 16, Section 16.5) employs
a type of planning mechanism, and when integrated with an indirect genetic
adaptive scheme, adaptive model predictive control is achieved.
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To clarify how adaptive model predictive control can be achieved, it is inter-
esting to consider how the ideas can be used to develop an adaptive fuzzy model
predictive control (FMPC) method. To do this, you can simply use a Takagi-
Sugeno fuzzy system model of the plant as the model in the FMPC method and,
if formulated properly, you can solve an optimization problem that will provide
an “optimal” input at each step. Several of the methods of this part can be used
to adapt the Takagi-Sugeno model of the plant. See the “For Further Study”
section at the end of the part for more details.

Finally, to directly use biomimicry of the cognitive map idea at the beginning
of this section, the idea of using a “surrogate model method” for combined
learning and planning is discussed in Section 19.6 and Design Problem 19.5.

Attentional Mechanisms for Adaptation

It is clear that humans can learn how to pay attention to a task. In a similar way,
you can design adaptive controllers that seek to pay attention to a control task.
If you augment a controller with an attentional mechanism, this mechanism can
play a special role in adaptation. To make the ideas concrete, we will discuss
one type of attentive mechanism for the FMRLC that was introduced earlier.
It should then be clear how the methods could be generalized and used in other

Attentional strategies
can augment or serve as
adaptive strategies.

methods (e.g., in neural control).

Human Attentional Mechanisms for Control Tasks: Learning controllers
are often designed to mimic the manner in which a human in the control loop
would learn how to control a system while it operates. Some characteristics of
this human learning process may include the following:

1. A natural tendency for the human to focus his learning by paying particu-
lar attention to the current operating conditions of the system since these
may be most relevant to determining how to enhance performance.

2. After the human has learned how to control the plant for some operating
condition, if the operating conditions change, then the best way to control
the system may have to be relearned.

3. A human with a significant amount of experience at controlling the system
in one operating region should not forget this experience if the operating
condition changes.

To mimic these types of human learning behavior, in this section we discuss three
strategies that can be used to dynamically focus a learning controller onto the
current operating region of the system. The subsequent “dynamically focused
learning” (DFL) can in some situations be used to enhance the performance of
the FMRLC.

Motivation for Dynamically Focused Learning: There are several moti-
vations for using DFL. First, with DFL we will be tuning not only the centers
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of the output membership functions, but also the input membership functions
of the rules. In this sense, we will have more tuning flexibility and hence, it is
possible that we can do a better job at matching the underlying nonlinearities.
We can think of this as using DFL as a way to allocate approximator struc-
ture to the places where it is needed to improve approximation accuracy; hence,
it provides a way to tune the parameters of the approximator that enter in a
nonlinear fashion.

Second, thinking of DFL as an attentional system, there is the possibility
that the amount of needed computations can be decreased. For instance, note
that in the FMRLC, it may be that many of the rules of the fuzzy controller are
never visited so that their corresponding output membership function centers
are never modified. In this case, these rules are never used and are only a waste
of computational resources (e.g., memory for their storage). In other cases, the
FMRLC may only learn a portion of the rule base by a certain point in time,
but later, the other portions may be learned when there are different reference
inputs or plant changes, and in a sense, there is not a waste of memory resources.

Third, you can think of how allocation of structure and computational re-
sources are related. Note that if you can continually reallocate approximator
structure, it may be possible that you can learn (with a “fine-grained” set of
rules) how to control in one region, then when the system operating condition
changes, you can simply reallocate the structure of the approximator to where
it is needed. This can save computational resources, but of course, something
about how to control is forgotten in the process (but this may be satisfactory
if relearning can occur quickly and computational resources are at a premium).
It is for reasons such as these that we turn to DFL strategies. Next, we outline
a few such strategies.

Auto-Attentive Mechanisms: In some FMRLC designs, the reference input
sequence does not excite the whole range of the designated input universes of
discourse. Instead, the rule base learned for the input sequence only covers the
center part of the rule base. Hence, to achieve an adequate number of rules to
enhance the granularity of the rule base near the center, it would be necessary
to design the rule base so that it is located at exactly where most of the rules
are needed. However, we would like to ensure that we can adapt the fuzzy rule
base should a different input sequence drive the operation of the system out of
this center region.

To do this, we can use an “auto-tuning” mechanism that simply focuses
the rule base about the origin by adjusting the two scaling gains on the fuzzy
controller (you might think of the region where the rules’ premises are not
saturated as where a “spotlight” is shining, i.e., where we are currently focusing
our attention). Note that an increase in these two scaling gains results in sharper
focusing, while a decrease in the values results in coarse rule distribution and
hence less-sharp focusing. One scheme that has been investigated to adjust each
of the gains is to simply make the gains the inverse of the maximum absolute
value achieved at each input over a fixed time window. In this way, we avoid
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letting the fuzzy controller have its inputs saturate on the input universes of
discourse. Of course, adjusting the focus will destroy (or at least modify) what
was learned in the past; however, if you learn faster than you focus, then this
problem can be overcome and you can achieve a focusing of the computational
resources by proper allocation of the structure of the approximator.

Next, note that this method will only allow for focusing where the center
of the focus is the origin of the input space of the fuzzy controller. It is of
course possible to use more general auto-attentive strategies where you move the
spotlight (the region where the premise membership functions are not saturated)
across the input space of the fuzzy controller. In this way, if the inputs are only
in one region of the input space, the rule base can be focused there. Clearly, the
use of auto-tuning the size of the spotlight and its position in the input space
can both be used to get the best attentional approach.

Note, however, that in the auto-attentive DFL strategy, every shift of the
rule base (spotlight) will create a new unexplored region. Having to learn the
new regions from scratch after every movement of the rule base can cause degra-
dations in the performance of the auto-attentive FMRLC, since it will require
the learning mechanism to fill in the unknown rules (i.e., additional time for
learning will be needed). For example, if an auto-attentive FMRLC has been
operating for a long time on an input sequence, then at some time instant a
disturbance affected the controller inputs and forced the rule base to leave its
current position, some of the rules are lost and replaced by new rules that will
accommodate the disturbance. When the temporary disturbance is stopped and
the rule base returns to its initial position again, its previous experience is lost
and it has to “relearn” everything about how to control in a region where it
actually has gained a significant amount of experience.

One way to avoid this problem is to add memory to the attentive mecha-
nism. One way to do this is to simply add another fuzzy system, where when
the FMRLC does a good job of learning in one region, before a shift to an-
other region, some information about the shape of the local learned surface is
transferred to the other fuzzy system. Then, when it moves to a new region, it
initializes its learning with what was previously stored (or initialized). Actually,
this can occur as a continuous process where, as the spotlight moves into new
regions, it loads in information that was gathered via experience, and uses it
at the edges of the rule base that is being learned. Clearly, as the spotlight is
moved, it must be the case that learning is occurring at a higher rate than the
spotlight is moved, or at least it must be the case that a good initialization was
used so that even if the spotlight moves quickly, there will be reasonably good
control inputs that can be generated.

9.4.6 Development, Plasticity, and Control

We briefly discuss ideas for using biomimicry of development and plasticity for
control and automation.
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Development and Plasticity

Neural networks grow in animals and humans and incrementally acquire infor-
mation (e.g., rules or plans on how to control). Hence, often learning occurs not
only via parameter tuning, but also via adjustments (e.g., additions or deletions)
to the neural network (e.g., the number of neurons in a neural network). In this
section we briefly overview how development influences learning, and we identify
the concept of plasticity. In Design Problem 11.2 you will be asked to design
methods for “approximator structure synthesis” whose biomimicry foundations
partly lie in the concepts in this section.

It is difficult to separate development from learning since they occur simul-
taneously, at least during our childhood, and some evidence suggests that even
new neural connections can be made at least until we are 20 years old. It is for
this reason that in addition to the standard learning theories, it is important to
consider the effects of development.

Developmental psychologists often view the infant as an “explorer.” Via
“habituation,” infants have been found to look at novel objects, scenes, faces,
etc., longer than ones that they have already looked at for some period of time.
It is thought that they learn after a time and that there is a fundamental drive to
explore to learn more. Moreover, it has been found that infants are much more
interested in the parts of their environment that they can control themselves.
Infants quickly learn how to explore not only with their eyes also but with their
hands and mouths. They are typically quite curious and have been shown to
understand many of the basic laws of physics at a very early age (e.g., “object
permanence,” where if you cover up an object, they know that it did not vanish
but is just hidden). There is even a debate as to how much is learned and how
much of the knowledge of physics is genetically determined (i.e., is instinctual).

J. Piaget and many subsequent researchers have studied how reasoning de-
velops. One fundamental idea that grew from Piaget’s research is that mental
development occurs via a child’s actions on his own environment. Piaget pointed

Mental development is
driven by interactions
with the environment.

out that infants at first seem to only react to events via instinctual reflexes. Then
later they incrementally gain voluntary control of their actions as they construct
mental representations of the types of actions that they can perform on different
classes of objects. Piaget named the mental representations “schemes,” and you
should think of these as “blueprints” for what actions can be taken on different
objects in the world. Piaget felt that part of mental development involved the
growth of schemes in two ways. First, it uses “assimilation,” which is a process
where new experiences are incorporated into existing schemes (e.g., a baby uses
its sucking scheme to explore the shapes of his blocks). Second, it uses “ac-
commodation,” where existing schemes change to accommodate a new object
or event (e.g., extend the sucking scheme to learn how to drink out of a glass).
This assimilation and accommodation process results in a child’s learning about
his environment and how to succeed in it. Piaget proposed that children are
most interested in experiences that can be assimilated into existing ones, but
not easily, so that they use accommodation and over time incrementally try to
maximize their mental growth.
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Next, Piaget proposed that to grow out of infancy, the actions that most con-
tribute to mental development are “operations,” which he defines as “reversible
actions” (e.g., turning a switch on and off). By exploring with operations, chil-
dren gradually develop “operational schemes,” which are blueprints for how to
think about simple actions that they take in their environment. Later stages of
development depend on building on these operational schemes. In fact, Piaget
went on to propose stages of mental development. First, there is the “senso-
rimotor stage” where the child acts on objects that are present, but does not
think about ones that are not present. Objects are assimilated into what you
might call instinctual schemes (e.g., via exploration); after learning properties of
objects, they learn to think of these properties even when they are not present.
Next, in the “preoperational stage,” the child can symbolize objects and events
that are not present. Then, in the “concrete-operational stage,” via their ex-
plorations, they gain the capability to think about the reversible consequences
of actions. Finally, they enter the “formal-operational stage,” where they think
about similarities of actions that can be performed on different objects and
hence are able to reason more abstractly.

In addition to Piaget’s perspective on mental development, which gener-
ally focused on how the brain grew as a single entity, there is an “information
processing perspective” in psychology where researchers focus on how the inter-
acting components of the brain can develop somewhat independently based on
what they encounter and how this can affect cognitive development. For this,
researchers view the brain as an information processor like a computer and try
to explain mental development in terms of, essentially, hardware and software
development (e.g., they may view the brain’s functionality as being analogous
to that of a computer operating system). For instance, they have shown that
mental development is affected by improved abilities in attention, an increased
capacity of working memory (think of this as analogous to RAM in a computer),
and a faster speed of processing as a child develops. From a software perspective,
they propose that we obtain strategies and rules for solving specific problems
over time and this contributes to our mental development. Moreover, one set of
studies proposes that a portion of mental development depends on our ability
to turn “implicit memories” or procedures (ones that we are not conscious of
but use regularly) into “explicit” ones that we have knowledge of and can then
modify to improve them. This process of “explication” or “proceduralization”
gives us creative problem solving capabilities.

How can our neural network be flexible enough (plastic) to learn, yet be
“stable” so that when we learn new information, old information is not forgot-
ten? In some organisms researchers have hypothesized that infants learn easier,
but then as they grow up, it becomes more difficult to learn so that stability is
maintained. Others have hypothesized that the degradation in learning capa-
bilities as we age is due to evolutionary selective pressures (presumably the old
have already reproduced so they do not need the selective advantage of learning
that the young do). Regardless of which scientific explanation turns out to be
true, it is well known that our brains have a variety of plasticity characteristics
where the actual topology of our neural network is adjusted to enable learning.
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Finally, it should be noted that evolution has certainly had significant im-
pacts on development. For instance, it seems reasonable to hypothesize that
evolution must have created the drive in infants to explore. Significant research
activities are under way, however, to further clarify the synergistic effects be-
tween evolution and development.

Development and Plasticity in Control and Automation?

Is there any value to using biomimicry of development and plasticity ideas in
control and automation? To do this, it is profitable to think of development and
plasticity as achieving a very general level of adaptation during an organism’s
lifetime. Do the ideas provide for a general view of achieving high levels of
adaptability in control and automation systems? Consider the following ques-

Development can be
viewed as a very flexible
adaptation strategy.

tions:

• Could a control system recognize a major structural change in a plant
and then rewrite its own code to expand itself to cope (e.g., by adding or
deleting neurons or rules) with the new part of the system?

• If there were a failure of part of the controller, could the code reconfigure
itself to maintain performance, even if the change demanded more than
simple parameter adjustments?

• How would such high levels of adaptation affect the role of learning in
expert, planning, and attentional systems?

Additional relevant discussion is in Section 12.8. Clearly, here we are only
providing some general ideas for using biomimicry of development and plastic-
ity. Relatively little research has been done on biomimicry of development and
plasticity for control and automation.

9.5 Exercises and Design Problems

Exercise 9.1 (Neural Control for a Tanker Ship):

(a) Simulate the neural controller (nR = 121) described in the chapter
and produce all the plots shown for the nominal, plant change, and
disturbance conditions given there.

(b) Repeat (a) but for the case where nR = 9.

(c) Repeat (a) and (b) but for the case where you choose a threshold
ε > 0 for testing whether a particular radial basis function parameter
should be updated. Justify your choice via simulations.

Exercise 9.2 (Neural Control for Cargo Ship Steering):

(a) Develop an nR = 121 reinforcement learning radial basis function
based neural controller for the cargo ship from Design Problem 9.1.



416 Learning and Control

Simulate the closed-loop system to demonstrate its performance for
the nominal, plant change, and disturbance cases considered in the
chapter. You should be able to tune the controller to achieve qualita-
tively similar performance to the tanker ship case, when comparing
to the reference model in each case.

(b) Repeat (a) but use nR = 9.

Design Problem 9.1 (FMRLC for Tanker and Cargo Ship Steering):
In this problem, we will study the use of the FMRLC for steering various
ships.

(a) Verify the results in the chapter for the tanker ship by simulating the
FMRLC under the same conditions.

(b) The key difference in the code for the FMRLC compared to the stan-
dard fuzzy controller lies in the rule base update mechanism, since
the fuzzy inverse model is simply coded in a similar manner to a
standard direct fuzzy controller. In particular, the code fragment
that implements the rule base update for the code that produces the
plots for the tanker ship in the chapter is

for k=(meme_int(d)-meme_count(d)+1):meme_int(d)
for l=(memc_int(d)-memc_count(d)+1):memc_int(d)
rules(k,l)=rules(k,l)+p(index);

end
end

Using the code provided, explain what the e int and e count vari-
ables are used for (in your explanation, draw the rule base table and
show an example of what the e int and e count variables could be
for one particular value of e and c inputs). The variables c int and
c count are used in a similar manner for the c universe of discourse.
Next, explain what the variables meme int(d) and meme count(d)
are for. The variables memc int(d) and memc count(d) are used in
a similar manner for the c universe of discourse. Explain why the
particular ranges

k=(meme int(d)-meme count(d)+1):meme int(d)

and

l=(memc int(d)-memc count(d)+1):memc int(d)

are used in the rule base update formula given above (do not ignore
the “+1”). To do this, use the rule base table drawing you pro-
duced and give an example for d = 1 of what values meme int(d),
meme count(d), memc int(d), and memc count(d) could hold. (You
do not need to do the actual calculations, just use values to explain
what these variables would hold to demonstrate that you understand
the code.)
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(c) Design a 9-rule fuzzy controller that uses center-average defuzzifica-
tion for the tanker ship. To start, use the code that generates the
plots in the chapter (i.e., from (a)) and let gp = 0 specify the member-
ship functions and rule base, and tune the 9-rule (nonadaptive) fuzzy
controller to get performance similar to what we got for the 121-rule
nonadaptive case (i.e., the “good” response we got in Part II that
has little overshoot). Plot the responses for the closed-loop system
and fuzzy controller surface. Then, for your tuned values, show the
response of the closed-loop system for a tanker with a different weight
(i.e., when it is under “full” conditions rather than “ballast” ones).
To do this, simply change the plant parameters and rerun the sim-
ulation (do not attempt to tune for the case where the ship is full;
“optimize” your design by tuning only for the ballast case and simply
test the resulting design on the full case).

Next, design an FMRLC for the tanker that will tune the 9-rule
fuzzy controller that you just developed. Begin with the code that
was used to generate the plots in the chapter. However, use a rule
base update scheme where you multiply the update suggested by the
inverse model by the premise certainty d steps ago (i.e., use bm(kT ) =
bm(kT − dT ) + µm(e(kT − dT ), c(kT − dT ))p(kT )). Use d = 1 as we
had in the chapter. First, try to tune the FMRLC by leaving the
scaling gains on the fuzzy controller alone and focus on the tuning of
the inverse model gains (if, however, this does not work, you may have
to go back and change the scaling gains on the fuzzy controller, then
retune the inverse model gains). To study performance, test both the
nominal case and the case where the weight of the ship changes at t =
9000 sec. from ballast to full conditions. You should tune the FMRLC
so that it overcomes the plant changes and gets good tracking (at least
asymptotically), much better than the tracking you found above in
the nonadaptive case where there was a plant condition change. Plot
the closed-loop responses for the nominal and weight change cases,
and the tuned fuzzy controller surface in each case and discuss. Hints:
(i) start with the “good” tuned values for the scaling gains for the
controller and fuzzy inverse model developed in the chapter for the
121-rule case, and initialize the fuzzy controller with the one you
developed above for the nominal case; (ii) do not change the number
of rules in the inverse model, or any other aspect of its design, except
for possible tuning of its input-output scaling gains; (iii) note that
when you change the number of membership functions, you must
check the remainder of the code to make sure that the change will
work (it will not—you must also change the specification of the base
widths and membership function centers on the e and c universes of
discourse, and the way that the certainties are computed from the
membership functions on the outermost edges of the e and c universes
of discourse); and (iv) the more interesting change relates to making
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the code compute µm(e(kT −dT ), c(kT −dT )) for use in the rule base
update bm(kT ) = bm(kT − dT ) + µm(e(kT − dT ), c(kT − dT ))p(kT )
where you must modify the code to save the four values of the premise
membership functions that were on d steps ago when you make the
computations for the fuzzy controller, and then modify the knowledge
update procedure to use these in the rule base update.

(d) In this part, you will study the steering of a “cargo ship” defined in
[30]. Use the nonlinear model of the tanker ship provided in Equa-
tion (4.5) but with K0 = −3.86, τ10 = 5.66, τ20 = 0.38, τ30 = 0.89,
and l = 161 meters. Assume the rudder saturates at ±80 deg. and
that we have the same types of disturbances as studied for the tanker
ship (wind and speed changes). Also, we will assume that the cargo
ship is traveling in the x direction at a velocity of 5 meters/sec. You
should seek to get as good steering performance as possible, in an
analogous way to how we did this in the chapter for the tanker ship
(i.e., design an FMRLC that will achieve good performance even if
there are significant disturbances and plant changes). Use a reference
model

ψm(s)
ψr(s)

=
1

100

s + 1
100

so that we are requesting a faster response from the cargo ship (rea-
sonable since it is a smaller ship). Use the same reference input as
was used for the tanker ship.

Begin by turning off the adaptation mechanism and tuning the
nonadaptive fuzzy controller so that it gets a closed-loop response
that is similar to that specified by the reference model (use the fuzzy
controller developed for the tanker ship and tune its scaling gains).
Show the closed-loop response and fuzzy controller surface for this
case. Next, develop an FMRLC that performs well for nominal con-
ditions, but also performs well without retuning when the wind dis-
turbance is introduced, or when there is a speed change from 5 to 3
meters/sec. at t = 4000 sec. Show the closed-loop response in each
case and the tuned fuzzy controller surface. Compare to the control
surface for the nonadaptive case and discuss.

Design Problem 9.2 (Generic Adaptive Control for Ship Steering)�:
Suppose that we consider an adaptive controller to be “generic” if it is
meant to be able to achieve good performance for a whole class of appli-
cations, and in particular, in the case where a manufacturer will produce
one type of product that requires a controller, and they want the same
controller to be able to adapt and perform well if it is applied to a prod-
uct they later design. For example, suppose that you work for a company
that has designed controllers for ship heading for many years, and every
few years they introduce a new ship, and so you have to go through the
costly process of controller redesign each time. Design a generic adaptive
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control strategy that will achieve high performance operation, whether it
is installed on a cargo ship or tanker. Suppose that you first design the
controller for the cargo ship, but that you intend to later use it when you
design a controller for the tanker (that will be released in a few years
so you do not have a model when you are designing the cargo ship con-
troller and hence, you cannot evaluate its performance for the tanker ship
when you are designing the cargo ship controller). You may only tune
the controller on the cargo ship, but must be able to show that if it is
later used on the tanker ship, it will adapt and achieve high performance
operation. You may assume that you have a sensor that tells you that
the controller is implemented on a different ship, but you cannot assume
it gives you any more information than that (e.g., the weight or length
of the new ship). Specify a manner to evaluate the performance of your
generic adaptive controller, and illustrate its performance and operation
in simulation. Hint: You may want to consider using a supervisory scheme
to tune an adaptive controller.
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In this chapter, we introduce batch and recursive least squares methods for
tuning approximator structures where the parameters that will be tuned enter
linearly. In particular, we study the tuning of the p × 1 vector θ for the linear
in the parameters approximator

Flip(x, θ) = θ�φ(x)

where φ(x) is a known specified p × 1 vector function. For the tuning, we use
the given set of training data G = {(x(i), y(i)) : i = 1, 2, . . . , M}.

Section 9.3 outlined several approximator structures that fit this form, in-
The batch least squares
method can be used to
find approximator
parameters that enter
linearly when all training
data is given a priori.

cluding the linear approximator Fl(x, θ); the polynomial approximator Fpoly(x, θ)
where the coefficients are tuned; the multilayer perceptron Fmlp(x, θ) with one
hidden layer, a linear activation function at the output, and known activation
functions in the hidden layer; and the Takagi-Sugeno fuzzy system Fts(x, θ) with
known premise membership functions. In each case, the function φ(x) is known
once x is specified, and the form of θ depends on which approximator structure
you use.

In this chapter, we simply focus on tuning of θ and will not concern ourselves
(except in the examples) with which of the approximator structures is used to
implement the approximator (i.e., we will not focus on the construction of φ(x)).

10.1 Batch Least Squares

First, we derive the least squares solution to the approximation problem. Then
we provide a simple example where we fit a line to data, and a more interesting
example where we train a multilayer perceptron and Takagi-Sugeno fuzzy system
to match the function in Figure 9.10.

10.1.1 Batch Least Squares Derivation

In the batch least squares method, we define

Y (M) = [y(1), y(2), . . . , y(M)]�

to be an M × 1 vector of output data where the y(i), i = 1, 2, . . . , M come from
G (i.e., y(i) such that (x(i), y(i)) ∈ G). We let

Φ(M) =

⎡
⎢⎢⎢⎣

φ�(x(1))
φ�(x(2))

...
φ�(x(M))

⎤
⎥⎥⎥⎦

be an M × p matrix that is constructed by stacking the 1 × p φ�(x(i)) vectors
into a matrix (i.e., the x(i) are such that (x(i), y(i)) ∈ G). Let ε(i) = y(i) −
Flip(x(i), θ) = y(i) − θ�φ(x(i)), which is the same as

ε(i) = y(i) − φ�(x(i))θ
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be the error in approximating the data pair (x(i), y(i)) ∈ G where θ is used in
the approximation structure. Define

E(M) = [ε(1), ε(2), . . . , ε(M)]�

so that
E = Y − Φθ

Choose
J(θ, G) =

1
2
E�E

to be a measure of how good the approximation is for all the data in G for a
given θ. J(θ, G) is the sum of the squares of the errors in approximation for
each of the training data pairs. We want to pick θ to minimize J(θ, G) and that
is why we use the term “least squares.” It is “linear” least squares since our
approximator is linear in the parameters.

Notice that J(θ, G) is convex in θ so that a local minimum is a global mini-
mum. Next, we seek to find the value of θ that will achieve the global minimum.
Using basic ideas from calculus, if we take the partial derivative of J with respect
to θ and set it equal to zero, we get an equation for θ, the best estimate (in the
least squares sense) of the unknown θ∗. Leaving this approach to the derivation
(which depends on the use of vector calculus) to a homework exercise, we take
a simple (matrix) algebraic approach to the minimization by noting that

2J = E�E = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

Then, we “complete the square” by assuming that Φ�Φ is invertible and letting

2J = Y �Y − Y �Φθ − θ�Φ�Y + θ�Φ�Φθ

+Y �Φ(Φ�Φ)−1Φ�Y − Y �Φ(Φ�Φ)−1Φ�Y

(where we are simply adding and subtracting the same terms at the end of the
equation). Hence,

2J = Y �(I − Φ(Φ�Φ)−1Φ�)Y
+(θ − (Φ�Φ)−1Φ�Y )�Φ�Φ(θ − (Φ�Φ)−1Φ�Y ) (10.1)

The first term in this equation is independent of θ, so we cannot reduce J(θ, G)
The parameters
computed via batch least
squares minimize the
sum of the squared error
between the
approximator output and
the training data
outputs; however, it only
adjusts the parameters
that enter linearly to
achieve this
minimization.

via this term, so it can be ignored. Hence, to get the smallest value of J(θ, G),
we choose θ so that the second term is zero. We will denote the value of the
parameters that achieves the minimization of J by θ, and we notice that

θ = (Φ�Φ)−1Φ�Y (10.2)

since the smallest we can make the last term in the above equation is zero
(since it is positive). This is the equation for batch least squares that shows
we can directly compute the least squares estimate θ from the “batch” of data
that are taken from G and loaded into Φ and Y . If we pick the inputs to the
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system so that it is “sufficiently excited” [331], then we will be guaranteed that
Φ�Φ is invertible; if the data come from a linear mapping with p (the number
of parameters in the linear in the parameters approximator) as the number of
underlying linear terms in the nonlinear function, then for sufficiently large M
we will achieve perfect estimation of the plant parameters.

In “weighted” batch least squares, we use

J(θ, G) =
1
2
E�WE (10.3)

where, for example, W is an M ×M diagonal matrix with its diagonal elements
wi > 0 for i = 1, 2, . . . , M and its off-diagonal elements equal to zero. These
wi can be used to weight the importance of certain elements of G more than
others. For example, we may choose to have it put less emphasis on older data
by choosing w1 < w2 < · · · < wM when x(2) is collected after x(1), x(3) is
collected after x(2), and so on. One way to select the weights in this case is to
suppose that 0 < λ ≤ 1, then let wi = λM−i, i = 1, 2, . . . , M . In any case, the
resulting parameter estimates can be shown to be given by

θwbls = (Φ�WΦ)−1Φ�WY (10.4)

To show this, simply use Equation (10.3) and proceed with the derivation in the
same manner as above.

10.1.2 Numerical Issues in Computing the Estimate

In practical problems, numerical issues often arise in computing the inverse

(Φ�Φ)−1

needed to compute the batch least squares solution due to Φ�Φ being “ill-
conditioned.” Such issues can arise even for relatively simple “academic” prob-
lems. For example, these issues arise in the examples to be considered in this
book where we typically use the Matlab “backslash” operation to compute the
least squares estimate as

theta = Phi \ Y

where theta is θ, Phi is Φ, and Y is Y. Basically, most view the inverse in
Equation (10.2) as a statement of how the least squares estimate is found the-
oretically. In practice, direct computation of the inverse is generally not used.

In practical applications,
numerical issues in
computing the least
squares estimate must be
confronted.

To avoid numerical issues you have several options. First, if you can select
x(i) explicitly (which you often cannot, either due to physical limitations of the
mapping you are trying to learn, or because you cannot pick x(i) because it
it provided by another system), then you can avoid the problems. To do this,
basically you want to choose the x(i) so that the φ(x(i)) that are loaded into Φ
have values that are aligned in such a way that the inverse can be computed (i.e.,
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so that Φ�Φ is positive definite, with a good “condition number”). Without
getting into details, one way to get “rich” enough data so that the inverse is
computable is to use noise as the components of x(i). Of course, this is not
always possible, so we often have to turn to other methods.

For instance, a common approach to solve numerical problems with comput-
ing the least squares solution is to use a “square root” method. The details of
the variety of possible methods and their advantages and disadvantages are be-
yond the scope of this discussion; however, if you run into numerical problems,
you can basically proceed in four ways. First, you can rely on an existing soft-
ware package to provide a numerically sound solution (i.e., perhaps you should
not just employ a direct method to computing the inverse but use more sophis-
ticated methods). Second, you can see the “For Further Study” section at the
end of this part to find references to learn more about how to overcome nu-
merical problems. Third, you could turn to an RLS (or gradient) approach to
process the data sequentially (e.g., by cycling several times through the data set
G) as we explain in the next sections. Fourth, you could use the singular value
decomposition approach that we discuss next, whose solution has interesting
and useful properties.

It is possible to provide the least squares solution whether or not Φ�Φ is
invertible. The common approach to doing this is to use the singular value
decomposition (SVD) method. If Φ is an M × p matrix and U and V are
M ×M and p×p “unitary” matrices, respectively (i.e., U�U = I and V �V = I
so U−1 = U� and V −1 = V �), then the SVD of Φ is

U�ΦV =
[

Σ 0
0 0

]
= S

where S is M × p, the “0” elements in S are, in general, matrices (what are
their dimensions?),

Σ = diag(σ1, σ2, . . . , σr)

where
σ1 ≥ σ2 ≥, · · · ,≥ σr > 0

are the “singular values” and r = rank(Φ).
The least squares estimate is then

θ = (Φ�Φ)−1Φ�Y = V

[
Σ−1 0
0 0

]
U�Y

Note that the matrix [
Σ−1 0
0 0

]
in this computation is a p × M matrix. Also, note that the SVD computes
(Φ�Φ)−1Φ�, which is the “pseudoinverse” of matrix Φ. To see that this is a
valid computation for the least squares estimate, recall that

J(θ, G) =
1
2
E�E =

1
2
(Y − Φθ)�(Y − Φθ)
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and since U and V are unitary,

J(θ, G) =
1
2
[
U�(Y − ΦV �V θ)

]� [
U�(Y − ΦV �V θ)

]
Now, let

V �θ = v̄ =
[

v̄1

v̄2

]
where v̄1 is r × 1 and v̄2 is (n − r) × 1, and

U�Y = ū =
[

ū1

ū2

]
where ū1 is r × 1 and ū2 is (M − r) × 1. Note that since we can choose θ to
minimize J(θ, G), we can choose v̄. Since

U�ΦV =
[

Σ 0
0 0

]
we know that

J(θ, G) =
[[

ū1

ū2

]
−
[

Σ 0
0 0

] [
v̄1

v̄2

]]� [[
ū1

ū2

]
−
[

Σ 0
0 0

] [
v̄1

v̄2

]]

=
[

ū1 − Σv̄1

ū2

]� [
ū1 − Σv̄1

ū2

]
To get J(θ, G) as small as possible, choose

v̄1 = Σ−1ū1

and also choose v̄2 = 0 (since we can choose it to be anything we would like).
We have V �θ = v̄ so

θ = V v̄ = V

[
Σ−1ū1

0

]
= V

[
Σ−1 0
0 0

] [
ū1

ū2

]
= V

[
Σ−1 0
0 0

]
U�Y

In the weighted batch least squares case, with W a diagonal matrix with all
positive numbers on its diagonal, if you let

W =
√

W
√

W

we know that
√

W =
√

W
�

. Hence, θwbls = (Φ�√W
√

WΦ)−1Φ�√W
√

WY ,
and if we let Φ̄ =

√
WΦ and Ȳ =

√
WY , we have θwbls = (Φ̄�Φ̄)−1Φ̄�Ȳ and so

you can use the same approach as above.
Finally, it is interesting to note that even in the case where M < p, where we

have the “underdetermined case,” the singular value decomposition will provide
a solution even though in this case, there are an infinite number of θ solu-
tions. Actually, out of the infinite number of possible solutions to the linear
least squares problem in this case, the θ computed via the singular value de-
composition is the one solution such that θ�θ has the smallest possible size (so
sometimes it is a reasonable choice).
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10.1.3 Example: Fitting a Line to Data

As an example of how batch least squares can be used, suppose that we would
like to use this method to fit a line to a set of data. Suppose that n = 1. In
this case, our parameterized linear (polynomial) approximator is

y = Flip(x, θ) = θ�φ(x) = θ�[φ1(x), 1]� = θ1x1 + θ2 (10.5)

which is an equation for a line (note that the 1 in the second row of φ(x) =
[φ1(x), 1]� is used to include the affine term θ2). Suppose that the data that we
would like to fit the line to is given by

G = {(1, 1), (2, 1), (3, 3)}
and that these data were generated from an unknown function G(x, z) (we
assume that they are numbered from left to right, so that (x(1), y(1)) = (1, 1)).
Notice that M = 3.

We will use Equation (10.2) to compute the parameters for the line that best
fits the data (in the sense that it will minimize the sum of the squared distances
between the line and the data). First, let

Y =

⎡
⎣ 1

1
3

⎤
⎦

Next, form the φ(x(i)), i = 1, 2, 3, and let

Φ =

⎡
⎣ 1 1

2 1
3 1

⎤
⎦

With this,

θ = (Φ�Φ)−1Φ�Y =
([

14 6
6 3

])−1 [ 12
5

]
=
[

1
− 1

3

]
Hence, the line

y = x1 − 1
3

best fits the data in the least squares sense.
To see that the line fits the data, consider Figure 10.1, where we plot both

the data in G and the line Flip(x, θ). Clearly, the data were not generated by
a linear mapping. The least squares method tries to overcome this problem,
and results in a good fit to the data, the best in the least squares sense that is
possible for a linear approximator. Notice that the line is raised up toward the
two points above it, balancing out the error that is created in the approximation,
considering that there is only one point below it.

The same general approach works for larger data sets. The reader may want
to experiment with weighted batch least squares to see how the weights wi affect
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Fitting a line to data

Figure 10.1: Training data and line that is the best fit to the data.

the way that the line will fit the data (making it more or less important that the
data fit at certain points). In doing this, you will see that you can, by various
choices of the weighting factors, move the line so that it more closely matches
any point that you put a relatively high weight value on.

10.2 Example: Offline Tuning of Approximators

In this section we will show how to use batch least squares to tune a multilayer
perceptron and Takagi-Sugeno fuzzy system to match the training data shown

It is good practice to
first try a linear in the
parameter approximator,
or even one that is
linear in its inputs.

in Figure 9.10 (this defines G and in our case, we have M = 121). In particular,
we will first use the same multilayer perceptron and Takagi-Sugeno fuzzy sys-
tem as studied in Section 9.3 and compare the approximation accuracy when a
least squares approach is used to tune the parameters that enter linearly to the
approximation accuracy that we obtained via manual tuning.

10.2.1 Multilayer Perceptrons

Improved Accuracy Over the Manually Tuned Neural Network

Recall that we were using the perceptron with a single hidden layer shown in
Figure 9.13 with n1 = 2 neurons in the hidden layer. This is represented by

y = Fmlp(x, θ) = θ�φ(x) = [w1, w2, b][φ1(x), φ2(x), 1]�
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where via our heuristic approach, we used f(x̄) = 1
1+exp(−x̄) and had chosen

φ1(x) = f(b1 + w1,1x)

with b1 = 0 and w1,1 = 1.5, and

φ2(x) = f(b2 + w1,2x)

with b2 = −6 and w1,2 = 1.25. We had chosen θ = [3, 1, 0.6]�. We will use the
batch least squares approach to see how it can pick a better θ.

Batch least squares is
often a very effective
method for computing
the parameters that
enter linearly; however,
it relies on your choice
of the parameters that
enter nonlinearly.

To do this, we simply form the matrices Y and Φ and use the batch least
squares formula to find

θ = [2.5747, 1.6101, 0.7071]�

which, when we use these values for the approximator parameters, results in the
approximator shown with the training data in Figure 10.2. The approximation
accuracy is clearly better than what we obtained via manual tuning (see Fig-
ure 9.15) and the batch least squares method provided an automatic method
to pick some of the parameters, in particular, w1, w2, and b. For the other
parameters we relied on our heuristic tuning discussed earlier.
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Figure 10.2: Multilayer perceptron approximator trained with batch least
squares, 2 neurons.
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Seeking More Approximation Accuracy: Increasing the Number of
Hidden Neurons

The main reason for not considering more neurons in the hidden layer when we
were considering manual tuning of the perceptron for this example was that the
tuning can become complicated due to interactions between the tuning param-
eters. With the assistance of batch least squares, however, we can easily tune
approximators with more parameters. Generally, you want to use much more
training data than parameters (to avoid what is called “overfitting” below) so
since we use M = 121, we will now consider n1 = 11 neurons in the hidden layer
(for a total of 11(2) + 11 + 1 = 34 parameters).

Notice, however, that we need a scheme to pick the weights and biases of
the hidden layer. To do this, we will use a simple heuristic approach (others
are possible, some suggested by the application at hand). To pick the biases,
we choose them to be evenly spaced over −5 to 5, so that b1 = −5, b2 = −4,
all the way to b11 = 5. This should help spread the points where the activation
functions turn on across the input space. The choice for the wj , j = 1, 2, . . . , 11,
is more difficult if you take the view that we did in the manual tuning of the
perceptron. Notice that there we assumed that we could examine the training
data and pick off slopes to set these values. This is often unrealistic for complex
real world problems. Here, we will exploit the fact that the scaling factors
in w are used to modify the slopes to what we will need, so we simply pick
wj = 1, j = 1, 2, . . . , 11 (for applications where n > 1, this scheme may not
be as effective; in those cases, you will want the weights to take on values that
will allow for a range of slopes). This completes the specification of the hidden
layer.

Next, we use batch least squares to tune the 12 parameters in θ = [w�, b]�.
We get

θ = [2.7480, 2.0120,−11.9865, 34.7556,−69.6968, 93.4042,

−80.8496, 57.0819,−34.6710, 15.8048,−3.9398, 0.8087]

For this case we get the approximation shown in Figure 10.3, which is a signifi-
cant improvement over Figure 10.2, where we used n1 = 2 neurons in the hidden
layer and Figure 9.15, where we tuned the approximator manually. Notice that
in the vector θ, we have both positive and negative values. The negative ones
help to implement the parts of the nonlinearity where the slope goes negative.
Clearly, it would be quite difficult to tune the approximator manually to get
this kind of accuracy.

Fine-Tuning to Capture High Frequency Behavior

Next, to illustrate what can happen if you use even more parameters in your
approximator, we use n1 = 25 neurons (to get a total of 25(2) + 25 + 1 = 76
parameters). We choose the biases in a similar fashion to the above, but spread
them over the whole range −6 to 6 to get b1 = −6, b2 = −5.5, all the way to b25 =
6. As above, we pick all the weights in the hidden layer to be unity. We use batch
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Neural network approximation,11 hidden neurons

Figure 10.3: Multilayer perceptron approximator trained with batch least
squares, 11 neurons.

least squares to tune the 26 parameters in θ = [w�, b]�. For this case, we get the
approximation shown in Figure 10.4, which is an improvement over Figure 10.3,
where we used n1 = 11 neurons (notice that the approximator is starting to find
some of the structure of the underlying function that is illustrated in Figure 9.9;
least squares is particularly good at finding this structure, in this case, due to

Generally, using a larger
approximator structure
can improve
approximation accuracy;
however, if you use a
structure that is too
complex, it can be too
aggressive in trying to
represent the noise
(overfitting) rather than
seeking to achieve a good
interpolation.

how the noise on z enters). Also, notice that with more neurons we are able to
approximate more and more of the “high frequency” behavior in the function
(with even more neurons, perhaps concentrated in the region around 1, we can
get an even more accurate approximation of the peaking behavior found in that
region).

Overfitting Where the Approximator Seeks to Model Noise

Next, we show that this approach of continually increasing n1 can be taken too
far. Suppose that we choose n1 = 121 (for a total of 121(2) + 121 + 1 = 364
parameters), b1 = −6, b2 = −5.9, all the way to b121 = 6, and the weights in
the hidden layer as all unity. In this case, we have θ as a 122× 1 vector so that
we have more parameters to tune than data pairs. We use batch least squares
to train the network and the result is shown in Figure 10.5. Notice that in
this plot, we have also plotted approximator nonlinearity on top of the function
G(x) (i.e., where we have removed the effects of the noise z). This illustrates
a very important fact: if you use too many parameters, you may start trying
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Figure 10.4: Multilayer perceptron approximator trained with batch least
squares, 25 neurons.

to approximate characteristics of the noise, and not the underlying function.
Even without the presence of z, it is possible to get similar “overfitting” where
in between the training data, the approximator moves far away from where it
should be (but for this example, if you train without the influence of z in the
data, the approximator will do a very good job at approximating the function
and does not exhibit this problem). Basically, this highlights the fact that there
are often situations where it is desirable to capture some of the higher frequency
behavior, but not behavior that is too high a frequency since this may represent
uncertainty (noise) in the system.

10.2.2 Takagi-Sugeno Fuzzy Systems

In this section, we study how to tune the Takagi-Sugeno fuzzy system to match
the function in Figure 9.10. Here, however, we will not consider the many
different cases as we did for the neural network in the last section since the
same basic ideas apply (least squares offers a nice automated method for tuning,
additional parameters can be used to achieve improved accuracy, and if you use
too many parameters, you can get a type of overfitting). Instead, our focus will
simply be on how to construct the premise membership functions.
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Figure 10.5: Multilayer perceptron approximator trained with batch least
squares, 121 neurons, plus comparison to G(x).

Getting Similar Accuracy to the Neural Network

Suppose we use R = 20 rules so that we will have 4R = 80 parameters to tune,
a number close to the 76 parameters used for the neural network above, with
25 neurons in the hidden layer. It is interesting to note that we will tune 40
values of the Takagi-Sugeno fuzzy system compared to 26 for the perceptron
with n1 = 25 neurons in the hidden layer. For this reason, we will have fewer
parameters to tune manually (i.e., the function φ for the Takagi-Sugeno fuzzy
system takes fewer parameters to specify than the one for the neural network).

Comparisons between
approximator structure
types must include
complexity of the
structure, ease of
training, and
approximation accuracy.

For the Takagi-Sugeno fuzzy system, we have to pick the parameters for

µi(x) = exp

⎛
⎝−1

2

(
xj − ci

j

σi
j

)2
⎞
⎠

where j = 1 (since n = 1) and i = 1, 2, . . . , R. A logical strategy is to space the
ci
1 points on a uniform grid across the x axis (especially in cases where you do not

know the form of the underlying function; for this example, since we can easily
examine the data, it would make more sense to use a nonuniform distribution
of the ci

1 points, with more concentrated where there is more high frequency
behavior). To do this, for convenience, we choose to spread the 20 ci

1 points
across the range [−5.4, 6] in increments of 0.6. Next, we pick all the σi

1 = 0.1.
This gives us the ξi functions shown in Figure 10.6 and the approximator shown
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in Figure 10.7. Notice that with our choice of σi
1 = 0.1, we get very steep slopes

between the basis functions so that they switch somewhat abruptly from one
line for the approximator to the next. This results in the somewhat erratic
behavior in the plot.
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Figure 10.6: Takagi-Sugeno basis functions, R = 20, σi
1 = 0.1 case.

Manually Tuning the Nonlinear Part of the Approximator

If we pick σi
1 = 1, we get the ξi functions shown in Figure 10.8 (why are they

There exist good
intuitive ideas on how to
manually tune the
nonlinear part of the
approximator structure.

not perfectly symmetric?) and the approximator shown in Figure 10.9. This
shows that the value of σi

1 = 1 provides for a much smoother transition between
basis functions, which results in smoother transitions between the lines used for
approximation. Overall, in terms of approximator accuracy, we obtain results
similar to those obtained for the perceptron with n1 = 25 neurons in the hidden
layer; however, this may not always be the case. Sometimes, one approximator
will be able to achieve better accuracy with fewer parameters.

Overall, this shows some ideas on how to tune the premise membership
functions (that extend to the more general case where n > 1). As a final note,
we caution against using this discussion—and that given in the last section—to
draw general conclusions about which approximator structure to use. In general,
different applications will dictate the need for different approximator structures,
numbers of parameters to tune, and methods to tune them.
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Figure 10.7: Takagi-Sugeno approximator, R = 20, σi
1 = 0.1 case.
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Figure 10.8: Takagi-Sugeno basis functions, R = 20, σi
1 = 1 case.
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Figure 10.9: Takagi-Sugeno approximator, R = 20, σi
1 = 1 case.

10.3 Design Example: Rule Synthesis Using Op-

erator Data

In this problem, taken directly from [498] (where other estimation methods
are studied), suppose you are given data from how a human operator con-
trols a chemical plant (see the Web site for this book to get the data set). See
Figure 10.10, where we suppose that the operator has measurements of monomer

It is possible to
construct a fuzzy (or
neural) controller from a
set of numeric examples
of how an expert human
would solve the problem.
This offers another
nonmodel-based strategy
to construct a nonlinear
controller.

concentration (u1), change in monomer concentration (u2), monomer flow rate
(u3), some local temperatures in the plant (u4, u5), and with these makes deci-
sions on how to select the set point for the monomer flow rate (y). The actual
value of the monomer flow rate to be put into the plant is controlled by a PID
controller and the value of y is the set point for that controller.

In Chapter 5 we studied how to construct a fuzzy controller using heuristic
ideas about how the plant behaves. Here, we take a different approach where
we gather plant data (that actually represents the heuristic control ideas of the
operator about how to control the plant) and create an interpolator for these
data using a fuzzy controller. After appropriate testing, this controller could
then be put into operation either to provide advice to novice operators or to
completely replace the expert operator.
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Figure 10.10: Operator for controlling a plant.

10.3.1 Data Analysis, Correlation Analysis, and Controller
Input Selection

There are M = 70 data pairs that were obtained by monitoring how the operator
performs this task. In the data set, the first 5 columns hold ui(k), i = 1, 2, 3, 4, 5,
and each row corresponds to a different time k. The last column holds the
corresponding set point values y(k) that are determined by the operator. The
data are shown in Figure 10.11. In practical applications, it is often good to plot
the data and examine them. Here, it is interesting to note that we clearly may
not have enough data to perform a good approximation over a wide range of
values of the inputs since we do not have output settings for a very wide range
of input combinations. Moreover, by examining the plots more carefully you
may suspect that the operator is not using all five data values to make decisions
(the operator is the expert, so while the data might be available, the operator
may not use it to make decisions since the operator may have found a few key
variables are the important ones to consider).

From our examination of the data, we begin by performing some data analy-
sis to study how the operator makes decisions. In particular, using the approach
in [343], we calculate the correlation coefficients between each input and the
output (and in fact, between all the different variables) and we show this in Fig-
ure 10.12. Now, while this is a linear analysis, it does give an indication of which
inputs are important to the operator in making decisions. Notice that u4(k) and
u5(k) do not have a high correlation with the output y(k) (the magnitudes of
the correlation coefficients are less than about 0.2 for both cases), so this leads
us to suspect that the operator is ignoring these inputs in his decision-making
process (perhaps the operator could be asked if this is the case). Moreover,
u2(k) has a correlation coefficient of only about 0.33 so it does not seem to
be a key variable for decision-making either. Notice, however, that u1(k) and
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Figure 10.11: Data that indicate how the operator selects the set point for the
monomer flow rate.

u3(k) have correlation coefficients that are close to 1 in magnitude and this indi-
cates that each of these variables seems to be important in the decision-making
process. Recall that u3(k) is the monomer flow rate (the output of the PID con-
troller) so we expect a correlation with y(k), the set point for the controller (the
correlation indicates that the PID controller is successful in forcing the actual
monomer flow rate to be equal to the one that is commanded by the operator).
The input u1(k) is the monomer concentration and seems to be a key variable
for decision-making.

While the above analysis is instructive, it is also important to consider the
cross-correlation between the inputs that we decide to keep as inputs to the
controller. If one input is significantly correlated to another one that you want
to keep, then it may be that they are carrying basically the same information
so it might be possible to remove one of them. For instance, the correlation
coefficient between u1(k) and u3(k) is −0.9381 so since its magnitude is near 1,
it seems that removing one of these inputs is possible. From the physics of the
problem, it does not make sense to only use the input u3(k) as an input to the
controller since it is the actual value of the monomer flow rate that is input to
the plant, and its value is directly dictated by the monomer flow rate set point
that is set by the controller to be constructed. Hence, when we only want to use
one input variable, we will consider the case where we remove u3(k) and hence,
only use u1(k) as the input to the controller. We will, however, also consider
the use of other inputs as you will see below.

Before proceeding, however, note that there are other methods for selecting
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Figure 10.12: Correlation coefficients between each input, ui(k), i = 1, 2, 3, 4, 5,
and the output y(k).

inputs to the controller and that these of course also apply to general function
approximation problems (note that we are essentially trying here to pick the
regressor vector length and composition). While here we use the approach in
[343], you could, in some situations (e.g., when you have plenty of training
data and not too many inputs), simply use an exhaustive approach where you
train approximators for all possible combinations of input variables. Another
approach is to normalize the data so that they all lie between −1 and 1, and then
construct a linear least squares estimator between the inputs and the output
and consider the magnitude of the regressor coefficients. Then you can discard
regressor components that have coefficients that are small in magnitude. Note
that even though this is also a linear analysis approach, it can lead to different
conclusions from the correlation analysis above. Moreover, all this analysis is
complicated by the fact that the conclusions that you reach can depend on the
controller that you end up constructing (e.g., you may have two sets of inputs
to choose between, and your analysis may say that one is better than the other,
but you may not be able to construct a nonlinear approximator that performs
better for that set of inputs).

10.3.2 Determine if a Linear Controller Is Sufficient

We start by trying to use a linear (actually affine) mapping to fit the operator
data so that we get a linear (affine) controller. We do this first for two reasons.
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First, if the linear controller performs reasonably well, then we will guess that
the linear correlation analysis of the last subsection is valid. Second, if the linear
controller works well, then we will want to use it since it is simpler to implement
than a fuzzy controller.

Due to the lack of a significant amount of training data, we will train the
approximator using all M = 70 data pairs (this specifies G). This approach,
however, creates problems with validating the accuracy of the approximation
since we can only test at the data that the approximator was trained at. Here,
since we cannot access the plant to generate more data, we will artificially
generate a test data set. To do this, we simply create data points in between
each of the given data points by taking the average value of two adjacent points
(i.e., average value of each component), and associating it with the average value
between two output data points. This will give us MΓ = 69 test data pairs in
our test set Γ. We will treat these values as if they were actually generated in
an experimental setting.

Using a linear least squares method to train an affine approximator structure,
we get the results shown in Figure 10.13. For this, if F (x, θ) is the affine
approximator mapping with θ chosen using batch least squares and we use all
the inputs so

x(k) = [u1(k), u2(k), u3(k), u4(k), u5(k)]�

we get a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 1.1142 × 104

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 8.6598× 103

Note that the mean squared error values at the training and testing data are
similar, but in this case the training error is higher (this is a bit atypical; nor-
mally the test error is slightly higher).

Notice that we achieve reasonable approximation accuracy, but there are
several points at which there are significant deviations between what the op-
erator did and what the linear controller does (suppose that the operator feels
that the errors are “significant”). We could conclude from this, however, that a
linear estimator does reasonably well, so we place more confidence in our earlier
correlation analysis. From this, we suspect that we may be able to remove input
variables and achieve similar approximation accuracy.

10.3.3 Study the Effects of Removing Input Variables

We could study the performance of the approximator by successively removing
more input variables. Here, we will trust the earlier correlation analysis and
first consider a two-input linear controller that only uses u1(k) and u3(k) as
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Figure 10.13: Operator settings, linear controller settings, and error between
these.

inputs (the case for using inputs u1(k), u2(k), and u3(k) is similar, with just a
slightly worse approximation error than the case where we use all the inputs).
After that we will consider the case where we only use the input u1(k).

Using a linear least squares method to train an affine approximator structure
with only two inputs, we get the results shown in Figure 10.14. For this, if
F (x, θ) is the affine approximator mapping with θ chosen using batch least
squares and

x(k) = [u1(k), u3(k)]�

we get a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 1.1669× 104

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 9.1087× 103

Notice that our mean squared error did not increase drastically even though we
removed three inputs.

Notice, however, that if we only use u1(k) as an input, then using a linear
least squares method to train an affine approximator structure with only one
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Figure 10.14: Operator settings, linear controller settings, and error between
these, u1(k) and u3(k) as inputs.

input, we get the results shown in Figure 10.15. For this, if F (x, θ) is the affine
approximator mapping with θ chosen using batch least squares and

x(k) = [u1(k)]�

we get a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 5.2090 × 105

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 5.0309× 105

Notice that in this case, we get a significant degradation in performance.
You could be led to several different conclusions. First, you may think, via
the earlier correlation analysis, that even though the cross-correlation between
u1(k) and u3(k) was high, there was still some important information in the
u3(k) input that we are now ignoring. In that case it would seem that the
operator is primarily looking at two inputs to make decisions. However, there is
a second possibility that is important to consider. It is possible that the linear
approach is failing. In particular, it could be that the errors for the single-input
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Figure 10.15: Operator settings, linear controller settings, and error between
these, u1(k) as an input.

case are arising due to the fact that there is a nonlinearity in the underlying
operator decision-making that the linear mapping is not suited to represent. It is
for this reason that we turn to a nonlinear approximator, the fuzzy system, and
try to use only one input (of course you could also construct a neural network
in an analogous manner). We keep in mind, however, that if we do not succeed
in this approach, we will try to add a second input, u3(k).

10.3.4 Construct a Fuzzy Controller from Operator Data

Next, we attempt to reduce the approximation errors so that the decisions made
are closer to those of the operator than what we were able to obtain with a lin-
ear approximator, no matter how many inputs were used. We first construct a
single-input fuzzy controller. We will, in fact, construct a Takagi-Sugeno fuzzy
system with Gaussian input membership functions and affine consequent func-
tions, both with only one input. When this is done, using R = 9 rules and one
choice for the membership function parameters, we do reduce the approximation
error (we get a mean squared testing error of 3.0702×105), but not significantly,
and it is worse than the cases in the last section, where we also used u2(k) and
u3(k) as inputs. Now, you could increase the number of membership functions
on the input universe of discourse to try to improve accuracy; however, we will
take a different approach here since the development of the linear approximators
indicates that the inputs u2(k) and u3(k) do carry some information.
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First Attempt: Problems with Overfitting

Since we have found via the correlation analysis that u1(k) seems to be the most
informative input variable, we will use it as an input to the premise membership
functions; however, for the consequent membership functions we will use either
u1(k), u2(k), and u3(k), or all the inputs to try to get as much information
from the inputs as possible. Notice that this will increase the complexity of the
approximator, but for R rules there are only R(n+1) consequent parameters (n
is the number of inputs to the consequent membership functions). For R rules,
with only one input to the premise membership functions, there are only 2R
parameters needed to define the membership functions. Notice that if you used
all the inputs to the premise membership functions, and all possible combina-
tions of rules (that results from gridding the input space with N membership
functions on each input dimension), then we need 2R parameters but in this
case, R = Nn so that the approximator can easily become very complex. (If
we used n = 5 inputs with N = 3 membership functions on each input universe
of discourse, then there would be R = 35 = 243 rules which would be defined
with 486 parameters, which is far greater than M , not even considering the
additional parameters needed for the consequent functions.)

Here, we will consider two cases. In both cases we will use one input to the
premise membership function and R = 9 rules, so we will need 18 parameters
to define the input membership functions. We will, however, consider different
numbers of inputs to the consequent functions. First, we will consider using 3
inputs to the consequent functions (u1(k), u2(k), and u3(k)); hence, with n = 3
we will need R(n+1) parameters for a total of 18+9(4) = 54 parameters in the
approximator. In the second case, we will consider using all the inputs to the
consequent functions so that there will be 18 + 9(6) = 72, which is greater than
M = 70; hence, in the second case we must be especially concerned that the
approximator will “overfit” the data and hence not generalize well in between
the data.

We use a grid on the input space of 9 input membership functions so we get
R = 9 (we omit the actual values of the centers and spreads of the Gaussian
input membership functions and invite the reader to solve this problem in a
design problem at the end of the chapter). We use a linear least squares method
to train the Takagi-Sugeno fuzzy system approximator. In the first case, we use
u1(k), u2(k),and u3(k) as inputs to the consequent functions and get the results
shown in Figure 10.16. For this, if F (x, θ) is the Takagi-Sugeno fuzzy system
approximator mapping with θ chosen using batch least squares, we get a mean
squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 2.2077 × 103

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 1.1329× 104
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Note that the testing error is significantly higher than the training error. This
result shows that there is some overfitting occurring (in between the training
data there are some excursions where the interpolation is not performing very
well). If we proceeded according to our plan and used all the inputs in the
consequent functions, we find that this overfitting problem gets significantly
worse so we do not present those results (we get a mean squared training error
of 594.1489 and a mean squared testing error of 6.3452× 109). Clearly, the fact
that we have more parameters to tune than training data is causing a significant
problem in this last case. This example clearly shows the importance of using
both training and testing sets; if you only used the training data set you would
think that you had significantly improved approximation accuracy when in fact
all you have done is match the training data very well. While in operation,
when data different from the training data are encountered, the controller could
provide very unreasonable inputs.

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

y 
an

d 
its

 e
st

im
at

e

Estimator performance, y (solid line), estimate of y (dashed line) (1 input)

0 10 20 30 40 50 60 70
-800

-600

-400

-200

0

200

400

Time, k

E
st

im
at

io
n 

er
ro

rs

Figure 10.16: Operator settings, fuzzy controller settings, and error between
these (one input to the premise membership functions, three to the consequent
functions).

Before we continue with the design process for the approximator, consider
Figure 10.17 where, using ideas from [343], we see that by including the u1(k),
u2(k), and u3(k) inputs in producing the result in Figure 10.16, they are uncor-
related with the estimation error (notice that while this correlation analysis is
again linear, it does take into account the nonlinear mapping implemented by
the Takagi-Sugeno fuzzy system). Notice also that the u4(k) and u5(k) inputs
are only a bit correlated with the approximation error so that we expect that
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if we add these inputs, they probably would not help much with approximation
accuracy (but this is just a guess based on the linear analysis).
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Figure 10.17: Correlation coefficients between each input, ui(k), i = 1, 2, 3, 4, 5,
and the output approximation error, using the training data (one input to the
premise membership functions and three to the consequent functions).

Second Attempt: A Good Controller

Notice that we have not improved the approximation accuracy over the previous
cases by using a nonlinear approximator. How do we improve the accuracy? We
could certainly try to improve the accuracy by tuning the premise membership
function parameters or adding more rules (but we are limited in this last ap-
proach by the small amount of training data). Another approach would be to
use more inputs to the premise membership functions. Recall from the past
section that if we add such inputs, we can quickly increase the number of rules
and hence the number of parameters in the approximator; therefore, we only
add one more input, u3(k). This approach may make sense since then it will
provide for a nonlinear map between two variables that the operator seems to
be using in decision-making.

In this case, we grid the membership functions on the input space and get
the results shown in Figure 10.18. For this, if F (x, θ) is the Takagi-Sugeno fuzzy
system approximator mapping with θ chosen using batch least squares, we get
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a mean squared error at the training data of

1
M

∑
(x,y)∈G

((y − F (x, θ))2 = 4.0401× 103

and we get a mean squared error at the test data of

1
MΓ

∑
(x,y)∈Γ

((y − F (x, θ))2 = 3.1657× 103

which is significantly better than any of the controllers that we have constructed
so far.
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Figure 10.18: Operator settings, fuzzy controller settings, and error between
these (u1 and u3 inputs to the premise membership functions and consequent
functions).

Before we continue with the design process for the approximator, consider
Figure 10.19 where, using ideas from [343], we see that by including the u1(k)
and u3(k) inputs in producing the result in Figure 10.18, they are uncorrelated
with the estimation error. Notice also that the u2(k), u4(k) and u5(k) inputs
are only a bit correlated with the approximation error so that we guess that if
we add these inputs, they probably would not help much with approximation
accuracy.
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Figure 10.19: Correlation coefficients between each input, ui(k), i = 1, 2, 3, 4, 5,
and the output approximation error, using the training data (one input to the
premise membership functions and three to the consequent functions).

Third Attempt: No, Nothing Better

At this point, we return to our original correlation analysis and evaluate if there
are other possibilities for improving on the performance. Recall that the analysis
indicated that if we kept u1 as an input, then we may not need to keep u3 since
these are correlated quite strongly. Earlier, in the construction of the linear
estimators, we found that we could eliminate all the variables but these and we
would still do pretty well, and that if we eliminated u3, and hence only used u1,
there was a significant decrease in performance. This led us to conclude that
there must be some useful information in the u3 variable.

There is, however, a different line of reasoning that can be used. Note that
u1 is certainly a useful variable and so suppose that we use it as an input. Then,
based on constraints due to approximator complexity in relation to the size of
the training data set, and the problems we encountered in overfitting, we could
try to pick a second variable that has the highest correlation with the output,
but the lowest correlation with u1. Which variable is this? Recall that u2 had
the third highest correlation with the output (a value of 0.3343), but it has
correlation with u1 of −0.1906. Note that u4 has a relatively low correlation
with the output of only 0.1012 (the u5 variable had a correlation of −0.2068)
but a correlation with u1 of only −0.0283 (and the u5 variable had a correlation
with u1 of 0.0837). To take a different approach, suppose that due to the low
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correlation between u4 and u1, we try to use u4 as an input (u5 may also work).
We will simply take the same approach as in our “second attempt,” but we

will use u4 as an input, rather than u3. We try different numbers of inputs, but
do not find better results than earlier. Hence, while the line of reasoning above
made sense, it did not end up helping to improve approximator accuracy for this
approximator, and this training strategy. It may have been a good approach if
we had used a different approximator or different training method. Why even
discuss a case that does not work well? It helps to illustrate the normal process
that you encounter in a real-world problem. Generally, you need to establish a
logical approach to construction or improvement of an approximator, and try
out the approach. It may or may not work better than your previous approach.
Sometimes you win, sometimes you lose!

10.3.5 Methods to Test Generalization/Extrapolation and
Controller Validity

While the best Takagi-Sugeno fuzzy system (as measured by the mean squared
error) that we constructed in the last subsection gave a good approximation
error, it could be that in between the training and testing data there are large
excursions in the fuzzy controller mapping that intuitively may not be reason-
able interpolations. Similarly, there could be large excursions in certain regions
where there is a need to extrapolate since there is not good data in those regions.
For low dimensional cases, it is possible to test the validity of the approximator
by visually inspecting the approximator mapping (or perhaps a few dimensions
can be studied at a time). Another alternative is to analytically determine the
maximum slope of the approximator mapping. Or, as an approximation, you
could numerically determine the maximum slope of the function on a fine grid
of input data. In particular, in this approach, you would numerically compute
an approximation to

∂F (x, θ)
∂x

for the value of θ that was used in the approximator. You may want to study
the data and analyze two different cases, one where the x is in a region where we
had training data (to test generalization), and the other where x is in a region
where there were no training data (to test extrapolation).

It is important to note that often an integral part of the validation of the
controller will be to consult the operator and ask if it is reasonable. To do this,
it may be convenient to convert the R = 9 rules that were trained into a type
of linguistic equivalent. To do this, you could first assign linguistic values to
the input membership functions that were specified for the Takagi-Sugeno fuzzy
system. Now, if you used a standard fuzzy system you could assign linguistics to
the output membership functions; then the rules would be simple to explain to
the operator to get their “approval” of the rules. When we use a Takagi-Sugeno
fuzzy system, you need to discuss this with the operator as being a “smooth
switching” between the use of different linear (affine) functions of the inputs.
See more details in [498].
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10.4 Recursive Least Squares

While the batch least squares approach has proven to be very successful for
a variety of applications, it is by its very nature a “batch” approach (i.e., all
the data are gathered, then processing is done). For small M , we could clearly
repeat the batch calculation for increasingly more data as they are gathered,
but the computations can become prohibitive due to the computation of the

The recursive least
squares method can be
used to tune the
approximator parameters
that enter linearly, with
adjustments to the
approximator mapping
made online as each new
training data pair is
obtained.

inverse of Φ�Φ and due to the fact that the dimensions of Φ and Y depend on
M . Next, we derive a recursive version of the batch least squares method that
will allow us to update our θ estimate each time we get a new data pair, without
using all the old data in the computation and without having to compute the
inverse of Φ�Φ. This “recursive least squares” approach allows us to implement
an online function approximator, as we will illustrate in our examples in the
next section.

10.4.1 Recursive Least Squares Derivation

Since we will be considering successively increasing the size of G, and we will
assume that we increase the size by one at each time step, we assume that
(x(i), y(i)) as gathered at time k = i. At time k = 0 we have no data. Suppose
that k = M so that you have gathered M pieces of training data and for k ≥ 1,
let the p × p matrix

P (k) = (Φ�Φ)−1 =

(
k∑

i=1

φ(x(i))φ�(x(i))

)−1

(10.6)

(P (k) is called the “covariance matrix”). We will define P (0) when we explain
how to initialize the recursive least squares algorithm. Assume that Φ�Φ is
nonsingular for all k. We have

P−1(k) = Φ�Φ =
k∑

i=1

φ(x(i))φ�(x(i))

so we can pull the last term from the summation to get

P−1(k) =
k−1∑
i=1

φ(x(i))φ�(x(i)) + φ(x(k))φ�(x(k))

and hence
P−1(k) = P−1(k − 1) + φ(x(k))φ�(x(k)) (10.7)

Now, the least squares estimate for k pieces of training data is θ(k), which
using Equation (10.2), is

θ(k) = (Φ�Φ)−1Φ�Y
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=

(
k∑

i=1

φ(x(i))φ�(x(i))

)−1( k∑
i=1

φ(x(i))y(i)

)

= P (k)

(
k∑

i=1

φ(x(i))y(i)

)

= P (k)

(
k−1∑
i=1

φ(x(i))y(i) + φ(x(k))y(k)

)
(10.8)

Hence, from the second to last equation, if we shift the time index back one, we
have

θ(k − 1) = P (k − 1)
k−1∑
i=1

φ(x(i))y(i)

If we multiply both sides of this equation by P−1(k − 1), we get

P−1(k − 1)θ(k − 1) =
k−1∑
i=1

φ(x(i))y(i)

Now, replacing P−1(k − 1) in this equation with the result in Equation (10.7),
we get

(P−1(k) − φ(x(k))φ�(x(k)))θ(k − 1) =
k−1∑
i=1

φ(x(i))y(i)

Using the result from Equation (10.8), this gives us

θ(k) = P (k)(P−1(k) − φ(x(k))φ�(x(k)))θ(k − 1) + P (k)φ(x(k))y(k)
= θ(k − 1) − P (k)φ(x(k))φ�(x(k))θ(k − 1) + P (k)φ(x(k))y(k)
= θ(k − 1) + P (k)φ(x(k))(y(k) − φ�(x(k))θ(k − 1)). (10.9)

This provides a method to compute an estimate of the parameters θ(k) at each
time step k from the past estimate θ(k − 1) and the latest data pair that we
received, (x(k), y(k)). Notice that (y(k) − φ�(x(k))θ(k − 1)) is the error in
predicting y(k) using θ(k − 1).

To update θ in Equation (10.9), we need P (k), so we could use

P−1(k) = P−1(k − 1) + φ(x(k))φ�(x(k)) (10.10)

But then we will have to compute an inverse of a matrix at each time step (i.e.,
each time we get another data pair (x(k), y(k))). Clearly, this is not desirable
for real time implementation, so we would like to avoid this. To do so, recall
that the “matrix inversion lemma” indicates that if A, C, and (C−1 +DA−1B)
are nonsingular square matrices, then A + BCD is invertible and

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1
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We will use this fact to remove the need to compute the inverse of P−1(k) that
comes from Equation (10.10) so that it can be used in Equation (10.9) to update
θ. Notice that

P (k) = (Φ�(k)Φ(k))−1

= (Φ�(k − 1)Φ(k − 1) + φ(x(k))φ�(x(k)))−1

= (P−1(k − 1) + φ(x(k))φ�(x(k)))−1

and that if we use the matrix inversion lemma with A = P−1(k − 1), B =
φ(x(k)), C = I, and D = φ�(x(k)), we get

P (k) = P (k − 1) − (10.11)
P (k − 1)φ(x(k))(1 + φ�(x(k))P (k − 1)φ(x(k)))−1φ�(x(k))P (k − 1)

Now, using the fact that

P (k)φ(x(k)) =
P (k − 1)φ(x(k))

1 + φ�(x(k))P (k − 1)φ(x(k))

(to see this, substitute P (k) from Equation (10.11) into P (k)φ(x(k)) on the left
side of this equation). This gives us

θ(k) = θ(k − 1) + K(k)
(
y(k) − φ�(x(k))θ(k − 1)

)
(10.12)

K(k) =
P (k − 1)φ(x(k))

1 + φ�(x(k))P (k − 1)φ(x(k))

P (k) =
(
I − K(k)φ�(x(k))

)
P (k − 1)

which is called the “recursive least squares (RLS) algorithm.” Basically, the ma-
trix inversion lemma turns a matrix inversion into the inversion of a scalar (i.e.,
the term (1+φ�(x(k))P (k−1)φ(x(k)))−1 is a scalar). Note that K(k) is some-
times viewed as a time-varying gain on the prediction error y(k)−φ�(x(k))θ(k−
1) that dictates how θ(k − 1) is adjusted to get θ(k).

We need to initialize the RLS algorithm (i.e., choose θ(0) and P (0)). One
approach to do this is to use θ(0) = 0 and P (0) = P0 where P0 = αI for some
large α > 0. This is the choice that is often used in practice. Other times, you
may pick P (0) = P0, but choose θ(0) to be the best guess that you have at what
the parameter values are.

10.4.2 Weighted Recursive Least Squares: Using a For-
getting Factor

There is a “weighted recursive least squares” (WRLS) algorithm also. Suppose
that the parameters of the physical system vary slowly. In this case, it may be
advantageous to minimize

J(θ, G)|M=k =
1
2

k∑
i=1

λk−i
(
y(i) − φ�(x(i))θ

)2
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where 0 < λ ≤ 1 is called a “forgetting factor” since it gives the more recent
data higher weight in the optimization (to see this, consider the effect of the
term λk−i in the above summation). See the discussion on weighted batch least
squares in the previous section.

Using a similar approach to the RLS case, you can show that the equations
for WRLS are given by

θ(k) = θ(k − 1) + K(k)
(
y(k) − φ�(x(k))θ(k − 1)

)
(10.13)

K(k) =
P (k − 1)φ(x(k))

λ + φ�(x(k))P (k − 1)φ(x(k))

P (k) =
1
λ

(
I − K(k)φ�(x(k))

)
P (k − 1)

(where when λ = 1, we get the equation for standard RLS given above).

10.4.3 Numerical Issues and Covariance Modifications

Briefly, we note that for practical problems, you can have numerical problems
with the computation of the (weighted) recursive least squares update algorithm.
One solution to this problem is to employ the “factorization” methods that are
highlighted in the “For Further Study” section at the end of this part. Here,
we will discuss other issues that arise in the use of the recursive least squares
method.

RLS with Covariance Resetting

One particular problem that has been encountered in implementations of the
online recursive least squares algorithm (e.g., in adaptive control) is when the
matrix P (k) has elements that become too small so that P−1(k) is difficult to
compute. This can occur, for instance, when you do not get data that gives
sufficient information about the underlying unknown mapping. To be more
concrete, notice that for RLS (λ = 1), we had derived in Equation (10.7) that

P−1(k) = P−1(k − 1) + φ(x(k))φ�(x(k))

Notice that φ(x(k))φ�(x(k)) is a p× p matrix with squared terms so that they
are always positive. From this it is easy to see that it is possible that the
elements of P−1(k) can grow unbounded.

In this situation, sometimes a “covariance resetting method” is used where
at each time instant k, you check to see if

λmin(P (k)) < δ1

(where λmin(P (k)) is the minimum eigenvalue of P (k)) for some fixed δ1 > 0
and if it is, then you let

P (k + 1) = δ2I
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where I is the identity matrix and δ2 ≥ δ1 (e.g., you could choose δ2 = α > δ1

where α was used to initialize P (0)). This ensures that we keep the minimum
eigenvalue of P (k) above some fixed value so that P (k) is positive definite so
the inverse P−1(k) exists (i.e., it is bounded). Now, this modification results in
a method that is not a pure least squares method (of course, between the resets,
it is); however, in adaptive control it is often found to be adequate to maintain
certain desirable closed-loop properties.

WRLS with Covariance Modification

It is interesting to note that for the WRLS method where 0 < λ < 1, we must
proceed differently. In this case, you can show that

P−1(k) = λP−1(k − 1) + φ(x(k))φ�(x(k))

(indeed, this is one step in the derivation of the WRLS formula in Equa-
tion (10.13)) so that P−1(k) will stay bounded (you can think of the above
equation as a stable discrete time system with a bounded input so long as
φ(x(k)) is bounded, which it often is simply by the choice of the structure of
the approximator). However, in this case, P (k) may have elements that grow
without bound. To see this, recall that we had derived

P (k) =
1
λ

P (k − 1) − 1
λ

P (k − 1)φ(x(k))φ�(x(k))P (k − 1)
λ + φ�(x(k))P (k − 1)φ(x(k))

Notice that while
λ + φ�(x(k))P (k − 1)φ(x(k)) > 0

since λ > 0, it could be that

P (k − 1)φ(x(k))φ�(x(k))P (k − 1) = 0

Now, since 1
λ > 1, it is possible that elements of P (k) can grow without bound.

To avoid this, we can modify the WRLS algorithm. To do this, we use
Equation (10.13) as an update formula for P (k) so long as

||P (k)||2 ≤ δ1

for some δ1 > 0 such that
||P (0)||2 < δ1

If, however, at some time k,
||P (k)||2 > δ1

we simply update P (k) by letting P (k) = P (k − 1) (i.e., rather than using
Equation (10.13)). This will ensure that all the elements of P (k) will stay
bounded. Here, note that

||P (k)||2 =
[
λmax

(
P�(k)P (k)

)] 1
2
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where λmax

(
P�(k)P (k)

)
is the maximum eigenvalue of P�(k)P (k). But since

P (k) is symmetric and P (k) ≥ 0 (i.e., it is positive semidefinite), we know that

||P (k)||2 = λmax (P (k))

so that all we need to implement the modification to WRLS is to test eigenvalues.

10.4.4 Example: Fitting a Line to Data

As an example of how recursive least squares can be used, suppose that we
would like to use this method to fit a line to data that are generated by a time-
varying function. Suppose that n = 1. In this case our parameterized linear
approximator is

y = Flip(x, θ) = θ�φ(x) = θ�[φ1(x), 1]� = θ�[x1, 1]� = θ1x1 + θ2 (10.14)

which is an equation for a line. Suppose that the unknown function (we need
to explicitly provide it here for the sake of illustration)

y(k) = G(x(k), z(k)) = sin(0.01k)x1(k) + 1

where x(k) = x1(k) and z(k) captures the time-varying nature of the function
(e.g., we could say that z(k) = k). Notice that we can think of the sin(0.01k)
as a time-varying slope and the 1 as the intercept of a time-varying line. We
assume that we have examined the data and determined that there is some type
of time-varying behavior, so we decide to try to use recursive least squares. We
emphasize, however, that we assume that we do not know the explicit structure
of the unknown function.

First, we must specify the input x(k). Here, we simply choose x(k) to
be a random value that is uniformly distributed on [−1, 1]. Next, we pick
θ(0) = [0, 0]� and P (0) = αI where α = 100. Then we show the performance
of the estimator in Figure 10.20 for the case where λ = 1, 0.98, 0.95, 0.7. First,
notice that in the nonweighted case (λ = 1), the estimate θ1 quickly converges to
the true value of 1 but that the estimate θ2 is quite poor. The reason for this is
that even though the underlying system has a parameter that changes over time,
the estimation algorithm does not forget what the old data told it about how
to do a good estimate. On the other hand, in the case where λ = 0.98, which
represents that we want to forget some old information, the estimator does much
better. Continuing with the tuning in this manner, we see that we get successive
improvements, until the case where λ = 0.7 and we get a very good estimate.
In this case, we tuned λ so that we are forgetting enough old information about
the underlying function so that we are listening enough to what new data are
saying about how the underlying function is shaped. It is clear then that when
you have slowly varying changes in the underlying function, you probably want
a large λ (i.e., near 1), where if the underlying system changes quickly, you
probably want a smaller value of λ so that the algorithm quickly forgets old
information; however, generally you do not want to pick λ to be too small since
then it will quickly forget old information and may not perform well.
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Figure 10.20: RLS parameter estimates, λ = 1 (upper left), λ = 0.98 (upper
right), λ = 0.95 (lower left), λ = 0.7 (lower right).

10.5 Example: Online Tuning of Approximators

In this section, we continue with the examples considered in Section 10.2 where
we considered the use of the batch least squares method to tune the approxi-
mator parameters.

10.5.1 Multilayer Perceptrons

Here, we consider the case where we had n1 = 25 neurons and use all the
same values of the biases and weights in the hidden layer that we developed in
Section 10.2. Here, we use RLS to tune the neural network output layer weights
and bias (these are stacked in the 26 × 1 vector θ). We will focus in particular
on how the training data are presented to the algorithm and how this affects the
accuracy of the approximator, how the forgetting factor affects the algorithm,
and how initialization affects approximator accuracy.

Relatively Uniform Coverage of the Input Space

We will let the input x be uniformly distributed on [−6, 6] and try to train the
neural network to match the function in Figure 9.10. We let λ = 1 and initialize
the algorithm with θ(0) = 0 and P (0) = αI with α = 100. To illustrate how
the shape of the approximator nonlinearity evolves over time, we show the first
10 iterations of the RLS algorithm in Figure 10.21. Notice that for k = 1,
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we actually have two data points shown since we generated one data pair at
k = 0 simply in case you wanted to also evaluate the estimation error of the
approximator at time k = 0. At this time, however, only one data point has

The performance of
recursive least squares in
constructing a mapping
over the entire input
space depends critically
on the gathered data
being properly spread
over this space.

been used to tune the approximator. Notice that with only one data point, the
estimator mapping is far from providing a good approximation of the mapping
in Figure 9.10 (not surprising since with only one data pair, it knows little
about its shape). Notice, however, that as k increases, we get more and more
training data and our representation becomes more and more accurate. Here,
x(k) provides a relatively uniform coverage of the input space so even after only
10 iterations, we get a relatively good approximation.
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Figure 10.21: Neural network mappings generated using increasing amounts of
training data (k = 1 to k = 10).

Nonuniform Coverage of the Input Space

Next, consider what happens when we do not get a good coverage of the input
space. To do this, we simply run the program used to generate Figure 10.21 a
few times, until by random chance it does not place any x data in one region
of the input space. When this happens, we get the sequence of neural network
mappings shown in Figure 10.22, where there are no input data in the region
near x = −6 so we see that the approximation is poor in that region (until at
k = 10, where it gets one more point and it improves the approximation). This
is, of course, not surprising since, in this case the approximator is extrapolating
for k ≤ 9 so we cannot expect it to perform very well. It is also the case that if
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there are “holes” in the input space where there are no data, we will generally
get poor approximation accuracy in that region. The general principle is that
if you want to get good accuracy in any region, you need data to tell you what
the shape of the function in that region is.
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Figure 10.22: Neural network mappings generated using increasing amounts of
training data (no data near x = −6 for k ≤ 9).

Effects of Tuning the Forgetting Factor

In this case we will use a data set that has many input-output data pairs that
are uniformly distributed across the input space. To do this, we will simply
run the RLS algorithm for 300 steps, generating data at each of these steps
(qualitatively, we obtain similar results if we use 1000 steps). To avoid showing
300 plots, we simply show how the last approximator performs compared to
the training data. In particular, see Figure 10.23, and notice that this is a
reasonably good approximation (we rely on random chance to get the uniform
distribution of training data shown). Here, the approximator misses some of
the structure inherent in the function, especially the “high frequency content”
of the function (e.g., the peak at about x = 1 is considered to be an outlier since
it is not encountered often). It seems to smooth out the approximator shape
and does avoid being distracted by noise.

It is interesting to compare the accuracy of this approximator to that which
was trained with batch least squares (see Figure 10.4). The one trained with
batch least squares appears to be more accurate even though it was trained with
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Figure 10.23: Neural network tuned with RLS for 300 steps.

fewer data (i.e., using less information about the unknown function). Notice,
however, that the critical issue here is how the data were used. For batch
least squares, all 121 data pairs were used at the same time to minimize the
approximation error. For RLS, we provide the 300 data pairs in a sequence,
and update the approximator each time we get a new data pair, placing equal
importance on each piece of data obtained (i.e., we have λ = 1 here). Actually,
by training with fewer steps (e.g., 121), you may get better overall accuracy
(similar to that of the batch least squares).

Note, however, that by tuning λ, it is sometimes possible to get the approx-
imator to do a better job at approximating the higher frequency content of the
function. (Of course, another option is to increase the number of neurons in
the hidden layer as we did in the batch least squares case.) For instance, if
we let λ = 0.95, we get the plot shown in Figure 10.24, where we see that the
approximator is trying to model the higher frequency behavior. Why? Well, the
effect of λ = 0.95 is to place less significance on old data (i.e., data encountered
for low values of k when we are at a higher value of k) so that different regions
tend to become somewhat independent of each other so we can shape based
on local data. However, this example is not to be overgeneralized. Sometimes
you can pick λ to take on certain values and get disastrous results (where the
approximator shape diverges from the shape it should have). The parameter λ
offers the potential for performance improvements but cannot be guaranteed to
provide these every time.
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Figure 10.24: Neural network tuned with RLS for 300 steps, λ = 0.95.

Effects of Good Initialization of the Approximator

It should be intuitively clear that if we initialize, via choice of θ(0), the approx-
Generally, better
initialization of the
mapping results in
higher quality
approximators after
training; however,
training could decrease
the quality of the initial
guess.

imator close to the shape that it should ultimately be, that the RLS method
should perform better. How do we initialize θ? One approach is to collect a set
of training data and train with batch least squares first. If you do this for our ex-
ample using the result of the batch least squares training studied in Section 10.2,
then RLS ends up tuning the shape very little, even after 300 iterations (this is
partly because the (y(k) − φ(x(k))�θ(k − 1)) term in Equation (10.12), which
is the error in predicting y(k) using θ(k − 1), is small for a good initialization,
so the updates to θ(k) are small).

We would like to show, however, that if you have a reasonably good initial-
ization this can help the approximator accuracy, but that RLS also can improve
on this accuracy by using more data to tune the approximator. So, how do we
obtain a “reasonably good” initialization? One approach is to simply guess, but
this can be very difficult when there are many parameters. Another approach
is to use fewer training data in the batch least squares approach (in practical
applications, this is typically the approach used). Here, however, simply for
the sake of illustration, we will perturb the θ we had obtained from the batch
least squares training by letting θ(0) = θ + 0.25θ. In this case, we obtain the
results shown in Figures 10.25 and 10.26. Notice that in Figure 10.25, the initial
approximator shape is better than in, for instance, Figure 10.21, but that near
x = 6, the approximation is not very good. As data are gathered, however,
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the RLS further improves the accuracy of the approximator and to see this, the
final approximator is illustrated in Figure 10.26.
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Figure 10.25: Neural network mappings generated using increasing amounts of
training data (reasonably good initialization).

10.5.2 Takagi-Sugeno Fuzzy Systems

Here, we consider the case where we had R = 20 rules and use all the same
values of the centers and spreads for the premise membership functions that we
developed in Section 10.2. Here, we use RLS to tune the Takagi-Sugeno fuzzy
system output function parameters (these are stacked in the 40 × 1 vector θ).

Input Space Coverage

In Figure 10.27 we show what happens in the first 10 steps of the algorithm for
Due to locality properties
of the Takagi-Sugeno
fuzzy system, it tends to
adjust the mapping only
where it gets data and
tends not to destroy
what it has learned in
one area when making
adjustments in another
area.

training the Takagi-Sugeno fuzzy system. Notice that in this case, we are initial-
izing the parameter vector to be all zeros so that the mapping is zero initially.
As it begins to get data, it shapes the mapping, but apparently in a very differ-
ent way from what was done for the neural network (compare to Figure 10.21).
Each time it gets another data point, it tries to pass the approximator mapping
through that data point. In a sense, it trusts the initialization and does not
adjust parameters to match in places where it does not know how to adjust. Of
course, while this does not appear to be a good property in this example, for
early steps of the approximator construction it can be quite beneficial since the
approximator shape only changes locally.
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Figure 10.26: Neural network mappings generated using increasing amounts of
training data, after 300 iterations.

Figure 10.27 dramatically illustrates issues of input space coverage. Bad
coverage can clearly result in bad mappings, just as in the neural network case.
Good coverage is obtained with more data. For example, if we use 300 pieces of
training data, we get the mapping shown in Figure 10.28. The approximation
error is somewhat lower compared to the neural network as you can see by
comparing to Figure 10.23 (but do not draw any general conclusions from that).
The tuning of the forgetting factor acts in a similar way (qualitatively) to that
which was illustrated for the neural network.

Effects of Good Initialization of the Approximator

Here, we briefly illustrate the effects of using a good initialization for the param-
eters of the Takagi-Sugeno fuzzy system. We will follow the same approach as
for the neural network in the last section. First, we show in Figure 10.29 what
happens if you use the exact value of θ found by batch least squares. Notice
that, as compared to Figure 10.27, the initial shapes are quite good due to the
initialization (and if you run this for 300 steps, then it gets the result shown in
Figure 10.30).

Next, we will perturb the good initialization by letting θ(0) = θ + 0.25θ
where θ was found using the batch least squares method. The results for this
case are shown in Figure 10.31. By studying the sequence of plots, you can see
that as data are obtained in new regions, the approximator updates the shape
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Figure 10.27: Takagi-Sugeno fuzzy system mappings generated using increasing
amounts of training data (k = 1 to k = 10).

to more closely approximate the unknown function. In fact, after 300 iterations,
the shape shown in Figure 10.32 is quite good and even similar to the case where
a very good initialization was used. This shows how RLS can improve upon an
initialization to provide good approximation accuracy.

10.6 Exercises and Design Problems

Exercise 10.1 (Batch Least Squares Derivation): Recall that for batch
least squares, we had

J(θ) =
1
2
E�E

(a) Using basic ideas from calculus, take the partial of J with respect to θ
and set it equal to zero. From this, derive an equation for how to pick
the least squares estimate. Compare it to Equation (10.2). Hint: If
m and b are two n×1 vectors and A is an n×n symmetric matrix (i.e.,
A = A�), then d

dmb�m = b, d
dmm�b = b, and d

dmm�Am = 2Am.

(b) Repeat (a) for the weighted batch least squares approach and com-
pare it to Equation (10.4).

Exercise 10.2 (Recursive Least Squares Derivation): In this problem
you will derive the RLS method for two different cases.
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Figure 10.28: Takagi-Sugeno fuzzy system approximator mapping after 300
steps.

(a) Derive the update Equations (10.13) for the weighted recursive least
squares approach (show every step of the derivations).

(b) In some applications we have a vector of measurements at each time
instant (i.e., multiple measurements), rather than a single measure-
ment. Derive the RLS equations for this case, and clearly identify
the dimensions of all the matrices and vectors that you use.

Design Problem 10.1 (Gas Furnace CO2 One-Step Ahead Prediction):
See the Web page for the book and download the Box-Jenkins data for
the gas furnace (it is in the form of a Matlab .dat file, but will download
as a text file that you will remove the .txt extension from, before using
in Matlab; of course, you can examine the file and easily use it in other
programs).

(a) Develop an estimator using a batch least squares approach for y(k),
assuming that you use all the inputs to the estimator. You can think
of this as a one-step ahead predictor since the estimate will depend
on past inputs and outputs, in particular, y(k−1), y(k−2), y(k−3),
y(k−4), u(k−1), u(k−2), u(k−3), u(k−4), u(k−5), and u(k−6).
Use an affine approximator mapping (i.e. linear with bias). There are
290 data pairs in the “boxjenkins.dat” file. Use only the first 145 for
training (i.e., M = 145). Use the last 145 for testing (i.e., MΓ = 145).
Provide values of the mean squared error for the approximator that
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Figure 10.29: Takagi-Sugeno fuzzy system approximator mapping for the first
10 steps, good initialization.

you trained, both at the training data and the testing data. Plot y(k)
vs. k and the estimate of y(k) vs. k on the same plot (use different
line types for each) for k = 1, 2, ..., 145, 146, ...., 290, so that this plot
will show how the estimator will perform at both the training and
testing data (with the plots concatenated). Plot the error between
the approximator estimate and the training data and testing data on
the same type of plot (but on a different graph). Discuss the results.

(b) Suppose that you are constrained to only be able to use two inputs to
your estimator. Pick the best two (with “best” defined by minimiz-
ing the mean squared error for the testing data). Moreover, specify a
methodology for picking these. Use this methodology and repeat the
process for three inputs. Compare, using the same plotting method-
ology and mean squared errors, to part (a).

(c) For (a), switch the training and test data. Repeat the design and
testing of the estimator. Comment on the values of the mean squared
error relative to the ones found in (a).

Design Problem 10.2 (Controller Construction from Process Oper-
ator Data):

In this problem you will follow the development in Section 10.3 to con-
struct a controller using process operator data. (You can get the data at
the Web site for the book.)
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Figure 10.30: Takagi-Sugeno fuzzy system approximator mapping obtained after
300 iterations, good initialization.

(a) Verify the correlation analysis that was used to try to select inputs
to the controller by reproducing Figure 10.12.

(b) Develop using a batch least squares approach linear (affine) con-
trollers for the cases where you use all the inputs, 3 inputs, 2 inputs,
and 1 input, as was done in the chapter. Verify the results there for
the values obtained for the mean square errors in each case. In each
case, produce the same types of plots to illustrate the performance
of the estimator. Also, for each case, compute the correlation coef-
ficients between the inputs and the estimation error and explain the
resulting values using ideas from Section 10.3.

(c) Next, using ideas presented in Section 10.3, develop a fuzzy controller
that obtains a lower mean squared error than you obtained for any
case in (b). Produce the same types of plots as you did in (b) to
illustrate the performance of the estimator and provide the value of
the mean square error. You may use the same type of approach as
given in the chapter (including the correlation analysis), or you may
want to try to tune a neural network, or try a different tuning method.
No matter which approach you take, be certain to pay attention to
the number of parameters that you use in the approximator you are
tuning. In fact, for each approximator structure you study, provide
the number of parameters in the approximator and keep in mind that
it is typically best to use the simplest approximator (where “simple”
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Figure 10.31: Takagi-Sugeno fuzzy system approximator mapping for the first
10 steps, reasonably good initialization.

may be measured by the size of the approximator, i.e., the number
of parameters that are used in its definition).

(e) Optional: If you used a standard fuzzy controller in (c), develop
linguistic rules from the ones that were constructed with data. You
can pick linguistic values. Use these rules to explain some operating
characteristics of the plant.
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Figure 10.32: Takagi-Sugeno fuzzy system approximator mapping after 300 it-
erations, reasonably good initialization.
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Gradient techniques offer practical and effective methods to perform opti-
mization. When applied to either the offline or online function approximation
problems, they seek to find θ to minimize the function approximation error. The
methods operate in an iterative fashion by successively improving on “guesses”
(estimates) of the ideal parameter vector.

Gradient methods can be
used in a batch or online
manner to tune all
parameters of the
approximator. The basic
approach is to iteratively
adjust the parameters to
minimize the
approximation error.

Consider minimizing

J(θ, G) =
1
2

M∑
i=1

|y(i) − F (x(i), θ)|2 (11.1)

by the choice of θ = [θ1, θ2, . . . , θp]� for a given training data set

G = {(x(i), y(i)) : i = 1, 2, . . . , M}

(note that in several cases below, we will develop the theory for the case where
F (x(i), θ) and y(i) are N̄×1 vectors so that it will be clear how to update multi-
input multi-output approximators if you need to do that). In Equation (11.1),
|x̄| =

√
x̄�x̄ if x̄ is an N̄×1 vector. Clearly, if we can pick θ to minimize J(θ, G),

we will have done a good job at function approximation, at least at the training
data pairs in G (perhaps not at the test set Γ where G ⊂ Γ).

At the outset it is important to highlight the fact that, in general, the opti-
mal solution to the function approximation problem is difficult to find. Why?
Basically, the answer lies in the fact that J(θ, G) can be a very complex “land-
scape” with many hills and valleys, such as the one shown in Figure 11.1, which
is also shown in Figure 11.2 as a contour map.

The methods may search for the global minimum of such a function (which
in this case, by inspection, is at (15, 5)), but it can get distracted by the multiple
local minima at other positions (e.g., at (20, 15), which is easier to see on the
contour plot), or the very flat regions of the surface where, if you only have
a local view (i.e., not the perspective you have by looking at the plots from
a bird’s-eye view where you can see the peaks and valleys), it is difficult to
know which direction to head to find the minimum. In fact, on such low slope

Local minima arise
since, in general, the
cost function that
characterizes
approximation error is
not convex. Getting
trapped at a local
minimum corresponds to
not tuning the
approximator in a way
that could further reduce
the approximation error.

portions of the surface, relatively large changes in the parameters make very
little progress in minimizing the function (and such low slope regions are often
found in function approximation problems where the approximator structure is
“overparameterized,” i.e., more approximator structure is used than is needed
to get a low representation error and hence, large changes in some parameters
may have little effect on the shape of the function and hence, the quality of the
approximation).

In general, we will not know that we have converged to a global or local
minima for the gradient methods studied here (except in special cases). The
most we will be able to hope for is to converge to a “stationary point;” that is,
a zero slope region of the surface such as a local minimum or a flat region on
the landscape.
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Figure 11.1: Candidate function for which we may seek to find the minimum.
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Figure 11.2: Candidate function for which we may seek to find the minimum
(contour map).
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11.1 The Steepest Descent Method

Let θ(j) be the current estimate of the parameter vector at iteration j (note
that when we indexed θ with time we used k, but here j is used to emphasize
that the index may simply be for the training data, not time).

11.1.1 Steepest Descent Parameter Updates

The basic form of the update using a gradient method to minimize the function
J(θ, G) via the choice of θ(j), is

θ(j + 1) = θ(j) + λjd(j) (11.2)

where d(j) is the p × 1 “descent direction,” and λj > 0 is a (scalar) positive
“step size” that can depend on the iteration number j.

To see the rationale for the choice of this parameter update formula, consider
the case where θ is a scalar and where we use the simple quadratic function

J(θ, G) = θ2

in Figure 11.3, where we are searching for the point where the function reaches
the minimum by picking the scalar θ. Name the point where the minimum is

It is useful to think of
gradient methods as “hill
climbing” (here,
climbing down hills).

achieved θ∗ and assume that it is unknown and that we want to find its value.
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Figure 11.3: Scalar quadratic J(θ, G).
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The update formula for this scalar case, where λj = λ is a positive constant,
is

θ(j + 1) = θ(j) + λd(j)

Notice that

d(j) =
θ(j + 1) − θ(j)

λ
(11.3)

With λ as a step size, we see that d(j) is a descent direction in the sense that
it is the direction in which the parameter is moving in order to try to minimize
J(θ, G). What direction would we like this to be? We would like the parameter
updates to always move in a direction that decreases J(θ, G) because, if it
does this over a whole sequence of iterations (perhaps an infinite number of
iterations), we may get θ(j) → θ∗ as j → ∞ (so J(θ∗, G) ≤ J(θ, G) for all other
possible θ).

The above formula (Equation (11.3)) suggests that the direction should be
the slope of the function J(θ, G) at θ = θ(j). To see this, consider the example
in Figure 11.3. Suppose that the initial (best) guess of θ∗ is the θ(0) shown.
Based on this guess, how would you next guess at θ? That is, how would you
generate θ(1)? Suppose that we can compute the slope (gradient) of J(θ, G) at
θ(0). For our example, this gradient is

∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(0)

= 2θ|θ=θ(0) = 2θ(0) (11.4)

and it is shown as the black arrow pointing up and to the right in Figure 11.3.
The negative of this gradient is −2θ(0) and it is shown as the black arrow
pointing down and to the left in Figure 11.3. These arrows indicate possible
directions d(j) to update the guess at θ(0). Clearly, to move down the function
J(θ, G) to minimize it, one choice would be to use the direction

Steepest descent involves
updating the parameters
in a direction that
appears to decrease the
cost function the most.

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

(11.5)

(i.e., to move along the negative gradient). Intuitively, this choice is the
“direction of steepest descent” (it corresponds to how a skier often moves down
a snow-covered mountain) and hence, the parameter update formula for the
steepest descent method, even for the p-dimensional case, is given by

θ(j + 1) = θ(j) − λj
∂J(θ, G)

∂θ

∣∣∣∣
θ=θ(j)

(11.6)

11.1.2 Example: Convergence, Step Size, and Termina-
tion Issues

Using the hill climbing (or skiing) perspective, the step size indicates how big a
step to move in the d(j) direction. For instance, for λj = λ = 0.1 for all j, the
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update formula becomes

θ(j + 1) = θ(j) − 0.2θ(j)
= 0.8θ(j)

so clearly as j → ∞, θ(j) → θ∗ = 0, the optimum point.
In optimization you do not know where the minimum point is to begin with,

so you generally do not directly know if you are approaching it (or if you are at
it), so it is difficult to know how to terminate the updates to θ(j). That is, we
do not know when θ(j) has approached θ∗ since θ∗ is unknown. So, how do we
terminate the gradient algorithm if we need a solution after a finite number of
iterations? One way is to monitor

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

and if

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

= 0

clearly Equation (11.6) will stop making changes to θ(j). In practice, we often
simply terminate if

|d(j)| =

∣∣∣∣∣−∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

∣∣∣∣∣ ≤ ε

for some prechosen constant ε > 0; however, there are other termination issues
and methods that will be discussed later.

Next, it is important to further consider the effect of the choice of the step
size, particularly on the convergence of the estimate to its true value. If you
choose λj = λ = 0.2 for all j (i.e., double the step size compared to the choice
above), the update formula becomes

θ(j + 1) = θ(j) − 0.4θ(j)
= 0.6θ(j)

so again as j → ∞, θ(j) → θ∗ = 0, the optimum point. But notice that the “rate
of convergence” is much faster in this case since this choice for λ corresponds to
taking larger steps at each iteration. So this line of reasoning may lead one to
believe that larger step sizes are generally better; this is not, however, the case.
Notice that if you pick λj = λ = 10 for all j, then the update formula is

θ(j + 1) = θ(j) − 20θ(j)
= −19θ(j)

so that as j increases, the value of θ(j) oscillates between larger and larger values
and does not converge (in terms of Figure 11.3 it climbs up the parabola). In
this case, the step size is too big, so the algorithm is too aggressive and fails to
converge to the minimum value of J(θ, G).
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Generally, θ(j) may not have a limit point, it may diverge as in this example,
or it may oscillate; however, gradient methods are generally able to find isolated
stationary points (i.e., ones where you can draw a sphere around them and no
other stationary points are in the sphere) if they start close to them (this is why
initialization of the algorithms is so important). Sometimes, all we can hope to
be able to show is that the parameters will remain bounded, and sometimes we
can do this by appropriately choosing the step size so that at each iteration we
are guaranteed to get descent. In this case, the parameter vector will belong to
a bounded set and so it must have at least one limit point; however, it can be
difficult to guarantee that the parameter vector will converge to a single limit
point. Clearly, the direction of descent and step size are important parameters
in the development of a gradient update formula, especially when J(θ, G) is very
complex, as it often is in practical applications.

11.1.3 Descent Direction Possibilities and Momentum

The above simple example shows intuitively that the choice of

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

(i.e., the negative gradient) is the direction of steepest descent and that as long
as an appropriate choice is made for the step size λj , the algorithm will converge
for this example (since the function we are minimizing is convex and only has
one minimum). There are, however, many other choices that can be made for
the descent direction and these others can be useful in practical applications.
(Indeed, in the case where J(θ, G) is quadratic, there are well-known methods
for the solution to the optimization problem; in practical applications, it is
most often not quadratic.) Notice that any direction d(j) is a descent direction

Iterative update of the
parameters in any
direction that locally
appears to decrease the
cost results in viable
gradient descent
methods.

provided that the angle it makes with

∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

is more than 90◦. Hence, the shaded arrows in Figure 11.3 are also descent
directions for θ(0). The angle is greater than 90◦ if(

∂J(θ(j), G)
∂θ(j)

)�
d(j) < 0

As indicated, this formula also holds for the vector case. In the vector case, d(j)
is a p × 1 vector and the gradient is a p × 1 vector that is denoted by

∇J(θ(j), G) =
∂J(θ(j), G)

∂θ(j)
=

⎡
⎢⎢⎢⎢⎣

∂J(θ(j),G)
∂θ1(j)

∂J(θ(j),G)
∂θ2(j)

...
∂J(θ(j),G)

∂θp(j)

⎤
⎥⎥⎥⎥⎦ (11.7)
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Clearly, the choice of

d(j) = −∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

= −∇J(θ(j), G)

results in the satisfaction of this formula, but clearly many other choices do also.
One modification to the descent direction that has been found to be useful

in some applications is to use a “momentum term.” In this case the update
formula is

θ(j + 1) = θ(j) − λj∇J(θ(j), G) + β (θ(j) − θ(j − 1)) (11.8)

where 0 ≤ β < 1 is a fixed gain and β (θ(j) − θ(j − 1)) is the momentum term.
Basically, momentum accelerates progress of the update where the gradients
∇J(θ(j), G) are pointing in the same direction, but restricts update sizes when
successive gradients are roughly opposite in direction. This can tend to damp
oscillations in the parameter vector and keep the parameter vector moving in
the proper direction.

In the following sections we will consider other choices for the descent direc-
tion, ones that can be particularly effective in practical applications (e.g., for
tuning approximators that are not linear in the parameters). First, however,
we will consider the application of the steepest descent method to the tuning of
linear in the parameter approximators.

11.1.4 The Linear in the Parameter Case

For a linear in the parameter approximator y = F (x, θ) = θ�φ(x) we have, in
the case where N̄ = 1,

d(j) = − ∂J(θ, G)
∂θ

∣∣∣∣
θ=θ(j)

= − 1
2

∂

∂θ

M∑
i=1

(
y(i) − θ�φ(x(i))

)2∣∣∣∣∣
θ=θ(j)

and if we use the notation from Chapter 10, this is expressed as

d(j) = −1
2

∂

∂θ
E�E

∣∣∣∣
θ=θ(j)

where
E = [ε1, ε2, . . . , εM ]� = Y − Φθ

with ε(i) = y(i)− θ�φ(x(i)). Now, if we follow the derivation of the batch least
squares estimate, we find

d(j) = −1
2

∂

∂θ
(Y − Φθ)�(Y − Φθ)

∣∣∣∣
θ=θ(j)

= −1
2

∂

∂θ

(
Y �(I − Φ(Φ�Φ)−1Φ�)Y +
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(θ − (Φ�Φ)−1Φ�Y )�Φ�Φ(θ − (Φ�Φ)−1Φ�Y )
)∣∣

θ=θ(j)

= −1
2

∂

∂θ

(
θ�Φ�Φθ − 2θ�Φ�Φ(Φ�Φ)−1Φ�Y

)∣∣∣∣
θ=θ(j)

= −1
2

∂

∂θ

(
θ�Φ�Φθ − 2θ�Φ�Y

)∣∣∣∣
θ=θ(j)

= −1
2
(
2Φ�Φθ − 2Φ�Y

)∣∣
θ=θ(j)

= Φ�(Y − Φθ)
∣∣
θ=θ(j)

= Φ�E
∣∣
θ=θ(j)

Suppose that λk = λ > 0 is a constant so that the steepest descent update
formula for the linear in the parameters case is

θ(j + 1) = θ(j) + λΦ�E = θ(j) + λΦ�(Y − Φθ(j))

= θ(j) + λ
M∑
i=1

φ(x(i))(y(i) − θ�(j)φ(x(i))) (11.9)

= λ

(
I

1
λ
− Φ�Φ

)
θ(j) + λΦ�Y

Now, if the steepest descent approach converges (and it will, assuming certain
technical conditions are satisfied, for instance, having a diminishing step size),
we get

θ(j + 1) → θ(j) = θsd

as j → ∞ (where we call θsd the value that the steepest descent converges to).
In this case, we have

θsd = λ

(
I

1
λ
− Φ�Φ

)
θsd + λΦ�Y

Now, notice that (
I − λ

(
I

1
λ
− Φ�Φ

))
θsd = λΦ�Y

λΦ�Φθsd = λΦ�Y

so that if the inverse exists

θsd =
(
Φ�Φ

)−1
Φ�Y

and we see that (if it converges) it converges to the least squares solution that
we found in Equation (10.2). Notice, however, that this is an analysis of the
asymptotic behavior of the estimate, and sometimes it is better simply to use
an appropriate software package to compute the least squares estimate.
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This provided a comparison to the batch least squares approach in the case
where the batch of data is used in the steepest descent gradient method. What
if, instead, we proceeded as in the recursive least squares case and processed
the data sequentially? To do this, define

Gk = {(x(k), y(k))}
to be the data set at time k. In this case, since we make an iteration of the
gradient method at each step, our update formula is

θ(k + 1) = θ(k) + λkd(k)

(i.e., we replace j with k) and

d(k) = − ∂J(θ, Gk)
∂θ

∣∣∣∣
θ=θ(k)

so with λk = λ = 1 for all k, using Equation (11.9) (with M = 1 piece of data,
the piece in Gk), we have

θ(k + 1) = θ(k) + φ(x(k))
(
y(k) − θ�(k)φ(x(k))

)
Compare this to the update formula for recursive least squares given in Equa-
tion (10.12) that can be used for online parameter adjustment. Notice that the
two are not the same. The update formula for recursive least squares has the ex-
tra P (k+1) term that multiplies the second term in the above equation. Which
is the better approach? In adaptive control problems, the recursive least squares
approach tends to converge faster but you pay for this faster convergence by hav-
ing to compute P (k) and include it in the update formulas. Hence, sometimes
for simplicity we may use a steepest descent gradient approach (sometimes, with
certain modifications), even for the linear in the parameter case.

11.1.5 Step Size Choice

While in the last section (and in several subsequent ones) we focus on the
selection of the descent direction d(j), here we will consider the choice of the

Step size choice affects
rate of convergence, how
the algorithm copes with
local minima, and
asymptotic behavior of
the algorithm.

scalar step size λj . Clearly, while we will only discuss scalar step sizes, it is
possible to have a diagonal matrix of step sizes, so that different parameters are
updated at different rates.

Constant Step Size

For some applications (e.g., in adaptive control), a fixed step size λj = λ for all
j can be sufficient. Other times, it can be difficult to select λ. For instance,
see the example in Section 11.1, where for a simple example, we showed that it
is possible to pick it so that convergence is not achieved. Generally, as we saw
in that example, if λ is too small, we get slow convergence; if it is too large,
then we can get divergence. Indeed, in many problems a constant step size can
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result in “limit cycling” (oscillations in parameter values) near a local minimum
since, when you are in a region near a local minimum, you must often take
successively smaller steps to ensure that you do not “overshoot” the solution.
Next, we discuss the case where a successively smaller step size is used.

Diminishing Step Size

In this case, the step size converges to zero as j goes to infinity, according to
some formula. That is, we pick an algorithm for forcing

λj → 0

as j → ∞. For instance, we may choose

λj =
λ

j + 1

where λ > 0 is a constant or we could pick

λj = e−αj

for some α > 0. While these rules can be simple to implement, in some cases
λj may be chosen so that it goes to zero too fast so that the algorithm slows
prematurely, before it gets near a solution. It is for this reason that often it is
required that

∞∑
j=0

λj = ∞

which, in effect, forces the step size to persistently update the parameters (pro-
vided the gradient is sufficiently large).

Another way that a diminishing step size is sometimes implemented in prac-
tical applications is to let

λj = max
{

λmin,
λmax

1 + αj

}
where at j = 0 we have λ0 = λmax > 0 and as j increases λj decreases, with
rate governed by the choice of α > 0, to λmin > 0. All these parameters would
need to be tuned for a particular application. Generally, this approach offers a
big step size early in the processing and the step size diminishes as time goes
on, but no lower than the value λmin. This ensures that the step size will not
get too small so that updates are persistently made (but of course in this case,
we do not get λj → 0 as j → ∞).

Regardless, the general problem with a diminishing step size approach for
practical applications is that it often slows convergence too much, or does not
provide a fast enough update early in the processing. Due to this, tuning of the
step size rule is normally needed. This is why in some practical problems, many
have turned to line minimization approaches and the Armijo step size rule that
we discuss next.
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Line Minimization Approaches

For this, pick a scalar λ0 > 0 that is the largest step size you think is reasonable
for the problem at hand (sometimes information from the problem domain can
suggest a choice for λ0, while other times you must guess at it and experiment
with the performance of the algorithm to get a good choice). Then, you pick λj

so that
J(θ(j) + λjd(j), G) = min

λ∈[0,λ0]
J(θ(j) + λd(j), G)

This is simply a one-dimensional “line” minimization problem. The resulting
value of λj yields the greatest reduction in the cost function over all step sizes
such that λj ≥ 0 (to keep the updates moving in the proper direction) and
λj ≤ λ0 as it is specified above. “Line search,” or what are sometimes called
“line minimization” approaches, are used to solve this problem.

There are many line minimization methods. Some, like Newton’s approach,
require the use of second derivatives, while methods like the “secant method”
only require the use of first derivatives. Other approaches use interpolation
with candidate points generated in [0, λ0], or “golden section search,” which is
an interval reduction method. See the “For Further Study” section for more
details.

Armijo Step Size Rule

In practice it is often the case that the line minimization approaches are com-
putationally expensive, so methods that are based on “successive step size re-
duction” are often used. One popular method of this type is the Armijo step
size rule.

In this rule, first pick the following scalars:

1. λ0, an initial guess at the size of the step (often, for applications that are
properly “scaled” you can pick λ0 = 1).

2. γ, 0 < γ < 1, a “reduction factor” (often, for applications, 1
10 ≤ γ ≤ 1

2 ).

3. σ, 0 < σ < 1, a scale factor (often, for applications, 0.00001 ≤ σ ≤ 0.1).

While this provides guidelines for the choice of these parameters, they may need
to be tuned. The Armijo step size rule is actually an iterative process for finding
the step size λj that proceeds as follows for each iteration j:

1. Let m = 0.

2. Let λj = γmλ0.

3. If
J(θ(j), G) − J(θ(j) + λjd(j), G) ≥ −σλj∇J(θ(j), G)�d(j)

then return λj as the step size to be used at iteration j. Otherwise, let
m = m + 1 (i.e., increase m by one) and go to Step 2.
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Suppose that we apply the Armijo step size rule to the steepest descent
method so that d(j) = −∇J(θ(j), G). The test in Step 3 then evaluates if the
advance in reducing J(θ, G) (i.e., the left side of the inequality, J(θ(j), G) −
J(θ(j + 1), G)) is greater than a scaled version of the size of the gradient at
θ(j). The Armijo step size rule decreases the step size from the initial guess λ0

by a factor of γ until it is small enough to ensure a certain amount of decrease
in J(θ(j + 1), G) relative to J(θ(j), G). The amount of reduction is governed
by the parameter σ, while the rate of decrease of λj is governed by the choice
of γ (if γ is chosen too large, it can take too many iterations to find a solution,
while if it is chosen too small, it may miss a larger valid step size that could
have resulted in more decrease in the value of J(θ(j + 1), G)). Note that if
d(j) is a descent direction, ∇J(θ(j), G)�d(j) < 0 so that the Armijo step size
rule algorithm will be guaranteed to converge in a finite number of iterations.
Basically, the Armijo step size rule tries to combine the positive effects of a
constant step size rule and a diminishing step size rule. Generally, when the
gradient is large, it will try to take a big step (the size limited by the choice
of λ0) since it knows that it is probably not near a local minimum. When the
gradient is small, it assumes that it is near a local minimum, and it takes smaller
steps (clearly there is the possibility that it could reduce the steps too much so
that convergence is slowed).

Step Size Choice Via Normalizing the Gradient

While there are many other ways to pick the step size, we will close this sec-
tion with a brief discussion on one approach that has been found to be useful
for online function approximation problems. In particular, we will focus on
picking the step size for the steepest descent case for linear in the parameter
approximators by “normalizing” the gradient.

For a linear in the parameter approximator y = F (x, θ) = θ�φ(x) and the
case where we process one training data pair at a time (i.e., recursive processing
as is often done in online approximation) we have, following the development in
Section 11.1.4 in the case where N̄ = 1,

θ(k + 1) = θ(k) + λkφ(x(k))(y(k) − θ�(k)φ(x(k)))

where k is the time index. Consider the choice of

λk =
λ

1 + γφ�(x(k))φ(x(k))
(11.10)

where we consider λ > 0 to be a type of constant step size and γ to be a tuning
parameter. To see how this works, first, view the term(

y(k) − θ�(k)φ(x(k))
)

in the above update formula as simply a scalar (approximation error) that in-
dicates how close the approximator is to doing a good job at approximation at
time k. If it does well, then this term is small while if it does poorly then this
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term is larger. It does not, however, contribute to the direction of the update
(except in its sign), and only to its size so we will not consider it to be a part of
the “update direction” d(k) (you could think of it as part of the step size that
says that if you are not doing good approximation at that point, then make a
big update, but that if you are doing a good job, then make a small update).
Now, we see that the direction of the update is dictated by the vector φ(x(k))
and of course, depending on its form, it can also affect the magnitude of the
update. Clearly the size of the elements of φ(x(k)) set how big the updates
will be for the corresponding components of θ(k). In fact, φ�(x(k))φ(x(k)) is a
measure of the overall size of the update suggested by φ(x(k)) (“big” updates
result from a large φ�(x(k))φ(x(k)).

Now, with this in mind, and with the step size in Equation (11.10), we
see that if the gradient size, as characterized by φ�(x(k))φ(x(k)), is big, 1 +
γφ�(x(k))φ(x(k)) will be particularly large, so that the step size λk will be
small. If the gradient size, as characterized by φ�(x(k))φ(x(k)), is small, 1 +
γφ�(x(k))φ(x(k)) will be close to 1, so that the step size λk is close to λ. In
this case, we see that the parameter γ scales our characterization of size of the
gradient so that if, for example, γ is very small, then even larger gradients will
still result in a step size near λ.

To summarize, we see that the value of λk will vary between 0 (for a very
big gradient) and λ (for a very small gradient), with γ governing the rate of
variation between the two extremes. Hence, the step size will “diminish” if the
gradient is large, but it does not generally “diminish” to zero as time progresses
since if a local minimum is approached, then the gradient size goes to zero (not
to mention the approximation error) and the step size approaches λ. Notice,
however, that it does have one characteristic that is similar to some of the
other rules. It fixes a maximum step size (λ) no matter how big the gradient is
(compare to the Armijo step size rule).

11.1.6 Parameter Initialization, Constraints, and Update
Termination

In this section we will discuss the practical issues of how to initialize the gradient
methods (i.e., to pick θ(0)), how to incorporate constraints on the parameter
values into the dynamics of the algorithm, and if it is needed, how to terminate
the algorithm.

Parameter Initialization

The choice of θ(0) can obviously have a significant effect on the quality of a
Initialization affects
performance of the
algorithm and ultimately
the achieved
approximation accuracy.

solution provided by the gradient method. While in general you do not know
where the optimal solution θ∗ is, it is clearly best to pick θ(0) as close to this
desired value as possible. The examples in Section 10.5 illustrated this for the
recursive least squares algorithm (for the linear in the parameter case) and the
same general concepts hold here. There are, however, other practical issues in
choosing θ(0) for gradient methods.



486 Gradient Methods

First, note that since the functions J(θ, G) that we seek to minimize are in
general not necessarily bowl-shaped and can have many local minima, it is often
wise to execute the gradient algorithm for several choices of θ(0). This can help
ensure that the value you found is indeed a global minimum. However, simple
tests with multiple θ(0) cannot, in general, guarantee that you have found a
global minimum.

Second, for a neural network with sigmoid nonlinearities, if you pick θ(0)
(which will also have weights and biases of a hidden layer in it) to have certain
components that are all too large, then it could be that all (or many of) the
sigmoids are saturated so that the gradient will be small and updates will be
slow (at least at the beginning). It is for this reason that for neural networks, a
good choice for the weights and biases is often random small values. For a fuzzy
system, there can be similar issues in specifying θ(0) (e.g., if Gaussian shaped
membership functions are used and all the centers are specified to be too large,
and the consequent function parameters are set to be zero, then the gradient
will be small, at least initially).

In addition, when you generate the update formulas for a function approxi-
mator, you may find that the parameters cannot be allowed to take on certain
values (both initially and for j > 0) or there will be a divide-by-zero error or
other numerical problems. Hence, after you derive the update formulas, you
should examine them for such problems and initialize appropriately. Moreover,
you will then also need to make sure that during its operation, the algorithm
never moves the parameters to inappropriate values. We discuss this next.

Constraints on Parameters

Generally, there are several reasons why there are constraints on the parameters
in the optimization problems we study:

1. If the parameters θ(j) take on certain values, there are numerical problems
as we discussed above (e.g., division by zero).

2. Since the parameters correspond to physical values (e.g., parameters for
a neural network), there are practical limitations to their size (even in
software there can be overflows if the values are too large).

3. Sometimes we know a “feasible region” for the optimal parameter values
and hence, impose constraints on the set of values that θ(j) may take on
because searching outside this set is fruitless.

4. Sometimes, we have extra information about the form of the underlying
function that we seek to approximate (e.g., by physical insights or by
simple inspection of the training data), and this can be used to constrain
the choices of the parameters. For instance, in some problems you may
know where on the input domain the unknown function has more nonlinear
or oscillatory behavior, and hence, where you would like to “allocate” more
of the approximator structure, since this is where it is needed to get good
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approximation accuracy. For instance, if there are some oscillations in
the function in a certain region, then you may want more sigmoids or
membership functions there. Often, however you may want to allow the
training method to perform the actual allocation of structure, rather than
fixing it a priori. To do this, you would simply put appropriate constraints
on the parameters to only allow them to move in the region where more
accuracy is needed.

In any of these three cases, the constraints can be captured by requiring that

θ(j) ∈ Θ(j)

for all j ≥ 0 where Θ(j) is the (known) parameter “constraint set” at iteration
j. Often, we know that Θ(j) = Θ; that is, that the constraint set is the same at
each iteration. For convenience, assume this in the discussion below since the
case for a time-varying constraint set is similar.

There are effective ways
to incorporate into the
algorithm constraints on
parameter values that
are known a priori.

How do we ensure that θ(j) ∈ Θ for all j ≥ 0? First, we initialize so that
θ(0) ∈ Θ so that all we need to concern ourselves with is the case for j > 0. In
general, the normal approach is to assume that Θ is a convex set. Then, if for
some update the gradient method places θ(j + 1) outside Θ, you simply require
θ(j +1) to stay on the boundary of Θ. If it is on the boundary, and the gradient
update says to put it outside the boundary, leave it on the boundary. But if it
says to leave it on the boundary, or place it within Θ, you let it do that. While
it is not difficult to characterize this (and “this” is called a gradient method
with “projection” since we project the updates back into the convex feasible
parameter set) precisely in mathematical terms, in practice the implementation
is often easy and we will simply explain this.

The most common case in practice is when we know scalars θmin
i and θmax

i ,
i = 1, 2, . . . , p, such that we want

θmin
i ≤ θi(j) ≤ θmax

i (11.11)

for all j ≥ 0 (this specifies a convex set Θ = {θ : θmin
i ≤ θi ≤ θmax

i , i =
1, 2, . . . , p}). Then, each time you use a gradient update formula to generate
θ(j + 1), you test Equation (11.11) for each i = 1, 2, . . . , p and if it has chosen

θi(j + 1) > θmax
i

you let
θi(j + 1) = θmax

i

and if it has chosen
θi(j + 1) < θmin

i

you let
θi(j + 1) = θmin

i

If any generated θi(j+1) is within the range specified by Equation (11.11), then
you accept the update θi(j + 1) with no modification.
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In this way, for all j ≥ 1 we will never update the parameter vector θ(j) to lie
outside Θ. You can see that this “projection method” is very easy to implement
in practice, and hence, it is often easy to avoid the problems outlined at the
beginning of this subsection.

Parameter Update Termination

In an offline function approximation problem, there is a need to specify a ter-
mination criterion so that when this criterion is met, the algorithm is stopped
and the final computed value of the parameters is taken to be the best solu-
tion (which below, we will call θ�, since the algorithm may not have found the
optimal solution, i.e., it may be that θ� �= θ∗). It is also possible in an online
method, where you decide to do multiple iterations of the gradient method from
one sampling instant to the next (an issue that is discussed more in the next
section), to use a type of termination criterion as we will discuss below.

It is best to use “scale-free” termination criteria such as the following:
Choice of termination
criteria is governed by
the desire to terminate
with the best possible
approximation.

1. Terminate if Parameter Change Rate is Low: Terminate if

(θ(j + 1) − θ(j))�(θ(j + 1) − θ(j)) ≤ εθ(j)�θ(j)

for some ε > 0 and let θ� = θ(j + 1). This requires the relative amount
of change in the parameter values to decrease enough before termination.
In this case, it terminates since the parameters are not changing much
anyway, so the algorithm is not making much progress. Other times, tests
that check that the parameters have not changed much over the last fixed
number of iterations are used.

2. Terminate if the Gradient is Small: Terminate if

∇J(θ(j), G)�∇J(θ(j), G) ≤ ε∇J(θ(0), G)�∇J(θ(0), G)

for some ε > 0 and let θ� = θ(j). In this case, when the size of the gradient
is small relative to its size in the beginning, then you terminate since the
algorithm is operating slowly at this point and will probably not make
many further improvements.

While such methods are often used, in practice they are often augmented
(i.e., used in conjunction with) other criteria such as the following:

1. Terminate Based on a “Validation Set”: For many problems you have an
idea of how much you would like to reduce the cost function and when
you get to this value, you terminate. Along these lines, in the function
approximation problem one common approach is to pick a “validation set”

V = {(x(i), y(i)) : i = 1, 2, . . . , Mv}
on which the cost function value will be evaluated. While some training
data from G may be used in V , it is best if V contains a significant amount
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of data that are not in G so that J(θ(j), V ) is a measure of J(θ(j), Γ)
(recall that Γ is the “test set”) and hence also quantifies how well the
function approximator “generalizes” (i.e., interpolates between training
data points) and achieves its overall function approximation task. Now
using V , terminate when J(θ(j), V ) starts increasing since this will stop
the algorithm before it starts generalizing poorly. Other times, you may
terminate when J(θ(j), V ) < ε (i.e., when you have reduced a measure of
the function approximation error to less than some value) or

J(θ(j), V ) ≤ εJ(θ(0), V )

(i.e., you have reduced a measure of the function approximation error to
some percentage of its initial value) and let θ� = θ(j). Both of these
approaches could make sense for particular applications.

2. Terminate After a Maximum Number of Iterations: In practical problems,
you simply have to set a maximum number of iterations that you will allow.
Otherwise, the above criteria may either never be met or take too long to
reach. If Nmax is the maximum number of iterations that you will allow,
upon termination you will let θ� = θ(Nmax).

Regardless of which termination method(s) you choose, it is important to
view them as something that may also need to be tuned (i.e., modified for each
application to get the best or at least an adequate approach).

11.1.7 Offline and Online, Serial and Parallel Data Pro-
cessing

In this section we discuss how data can be processed by gradient algorithms. We
focus on issues of order of data processing and parallel versus serial processing.
We will, however, discuss such issues in the context of whether we are doing
offline or online (i.e., real time) processing of training data.

The manner in which
you process the given
training data can
significantly affect the
performance of the
approximator.

Offline Processing

In this case we know G a priori and hence its size M is fixed. The gradient
methods discussed up till now (except some in the linear in the parameters
case) process the data set G in “parallel” by repeated application of the gradient
update formula to the entire data set. There are, however, ways to process the
data in G serially and this can, in some cases, lead to savings in computational
complexity, and improved convergence properties.

For instance, sometimes a sequential fixed-order processing of single data
pairs from G can improve the rate of convergence over the case where the data
in G is used in a batch fashion. In this case, you simply order the data in
G and process it in that order many times (cycle through the finite data set G
repeatedly). For each data pair you could execute one (or more) iterations of the
gradient update formula. Normally, in this case you would use the parameter
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set last generated by the algorithm to initialize the algorithm when you start
processing another piece of data.

Other times, when G is known a priori, you can process the data from G
one at a time in a random order (perhaps with more than one iteration of the
gradient update formula for each piece of data), and sometimes this has been
found to provide better approximation accuracy.

In addition, whether you use fixed-order cycling through the data or a ran-
dom order, you could process a subset of the data in G (i.e., more than one
piece of training data) and perhaps execute more than one iteration for each
subset (again, when you start the processing for one subset you normally would
initialize the gradient update formula with the parameter set found at the last
iteration for the last subset considered). Or, you could process subsets of dif-
ferent sizes at different times. For example, you could start by processing the
data pairs one at a time and then increase the size of the subset processed at
each subsequent step (the rate of the increase in subset size would be a design
parameter) until all the data pairs in G were processed in a batch fashion. The
algorithm could then continue in the normal batch processing mode until some
termination criterion was met.

No matter which type of processing you choose for your application, it is
important to keep in mind that step size choice and data processing choices are
interrelated (e.g., sometimes you want to diminish your step size if you grow
the size of the batch of data that you process at each step).

Online Processing

The data processing issues are different for the online case since we do not know
G a priori since M → ∞ (of course, the number of data considered is never
really infinite, it is just convenient to think of it that way). The most common
case in online (real time) processing is to use one training data pair per time
step and take one iteration of the gradient formula; this aligns time steps, data
acquisitions, and iterations of the gradient update formula.

But, of course, you could gather multiple pieces of data, and iterate the
gradient update formula multiple times for each of these data sets (in this case,
we acquire data at a higher rate than we initiate processing of the gradient
update formula). Again, when you start the processing for one subset, you
normally would initialize the gradient update formula with the parameter set,
found at the last iteration for the last subset considered. Just as with the offline
approach, you could process varying sizes of subsets of data at each step, and
you will have to pay attention to the effects of data processing choice on selection
of the step size.

11.1.8 Stochastic Gradient Optimization Basics

Suppose that we seek to minimize J(θ) ≥ 0 where ∇J(θ(j)) is Lipschitz in θ.
Suppose that we use the gradient method

θ(j + 1) = θ(j) + λjd(j)
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with
d(j) = − (∇J(θ(j)) + n(j)) (11.12)

where ∞∑
j=0

λj = ∞,

∞∑
j=0

λ2
j < ∞ (11.13)

(so the step size results in a persistent parameter update). Also, n(j) ∈ 	p is a
vector noise term with

E[n(j)|Hj ] = 0 (11.14)

where Hj = {θ(i), d(i), λi : i = 0, 1, 2, . . . , j} holds the past information from
the algorithm and E[·] denotes the expected value, and

E[n(j)�n(j)|Hj ] = c1 + c2∇J(θ(j))�∇J(θ(j)) (11.15)

where c1 and c2 are two positive constants. Under these conditions the sequence
J(θ(j)) converges, limj→∞ ∇J(θ(j)) = 0, and every limit point of θ(j) is a
stationary point of J .

Equation (11.12) is a standard deterministic steepest descent approach mod-
ified at each step by perturbing the steepest descent direction with the direction
n(j). How could this help with the performance of the optimization process?
On average, due to Equation (11.14), the algorithm will move in the steepest
descent direction. Due to Equation (11.15), the noise perturbations will not be
so large that they will destroy convergence properties. On a surface J(θ) that
has many local minima, it may be that n(j) will move the updates so as to avoid
local minima (i.e., it could help “jump” out of local minima).

11.2 Levenberg-Marquardt and Conjugate Gra-

dient Methods

In this section we introduce Newton’s, conjugate gradient, and Levenberg-
Marquardt methods, the latter two of which have been found to be quite effective
in solving practical function approximation problems.

11.2.1 Newton’s Method

For the nonlinear in the parameter approximator, the cost function J(θ, G) is
not a quadratic function of θ as it is in the linear in the parameter case. For
this reason, J(θ, G) can take on very complex shapes (with many local min-
ima) with high slope regions in some areas of the parameter space and very low
slope regions in other areas. In the low slope regions, the gradient is (very)
small so if you use a constant step size, the changes to θ(j) will generally be
small and convergence will generally be (very) slow. In the high slope regions,
if a constant step size is used, the changes to θ(j) can be too large so that
convergence is not achieved. While there are a variety of approaches to try to
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solve these problems with the steepest descent approach (e.g., adaptive step size
methods, modifications to the descent direction, such as the “momentum term”
approach), in practice such modifications are often found to be lacking. For
example, the traditional “backpropagation” algorithm is a (stochastic) steep-
est descent method whose direct application has often been found to lead to
slow convergence for practical problems. It is for these reasons that more so-
phisticated methods have been employed for tuning θ that rely on the more
sophisticated use of information from F (x, θ). The methods we are referring
to are the Newton, conjugate gradient and quasi-Newton, Gauss-Newton, and
Levenberg-Marquardt methods.

Newton’s Parameter Update Formula

Let

∇2J(θ(j), G) =
[
∂2J(θ, G)

∂θiθj

]∣∣∣∣
θ=θ(j)

be the (symmetric) p × p “Hessian matrix,” whose elements are the second
partials of J(θ, G) at θ = θ(j). In Newton’s method we make a quadratic ap-
proximation of J(θ, G) at θ(j) at each iteration j and minimize this to generate
θ(j + 1). Let the quadratic approximation at θ(j) be the second order Taylor

Newton’s method is
based on producing a
quadratic approximation
to the cost function at
the current parameter
values and then choosing
the next parameters to
be those that minimize
that quadratic cost.

series expansion of J(θ, G) at θ(j) (i.e., a Taylor series expansion truncated after
the second term), which we will denote by

Jq(θ, G) = J(θ(j), G) + ∇J(θ(j), G)�(θ − θ(j)) +
1
2
(θ − θ(j))�∇2J(θ(j), G)(θ − θ(j))

Since this is quadratic in θ, if we take the derivative with respect to θ and set
it equal to zero and solve for θ, its value will be θ(j + 1), the parameter vector
that minimizes Jq(θ(j), G). In particular,

∇Jq(θ, G) = ∇J(θ(j), G) + ∇2J(θ(j), G)(θ − θ(j))

and if we let ∇Jq(θ, G) = 0, we get θ = θ(j + 1) and Newton’s update formula
is

θ(j + 1) = θ(j) − λj

(∇2J(θ(j), G)
)−1 ∇J(θ(j), G) (11.16)

where we have added the step size λj > 0. In the case where λj = 1 for all
j, the method is called the “pure form” of Newton’s method. In this case, the
Newton direction (which may not be a descent direction since it may be that
∇2J(θ(j), G) is not positive definite, so it may be that J is not decreased at
each iteration) is

Newton’s method is not
generally practical since
it depends on
computation of the
inverse of the Hessian of
the cost function.

d(j) = − (∇2J(θ(j), G)
)−1 ∇J(θ(j), G) (11.17)

Notice here that we have to assume that ∇2J(θ(j), G) is invertible (e.g., if it
is positive definite, then it is invertible). Note also that this pure form for
Newton’s method can be attracted by both local minima and maxima. There
are many methods that have been developed to try to solve these problems with
Newton’s method.
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The Linear in the Parameter Case

For a function J(θ, G) that is quadratic in θ (the linear in the parameter case),
Newton’s method provides convergence in one step. To see this, first consider
our simple scalar quadratic example in Figure 11.3, where J(θ, G) = θ2. Recall
that we had

∇J(θ, G)|θ=θ(j) = 2θ(j)

so that
∇2J(θ, G)

∣∣
θ=θ(j)

= 2

Hence, Newton’s method for this simple example is given by

θ(j + 1) = θ(j) −
(

1
2

)
(2θ(j))

if we pick λj = λ = 1 for all j (i.e., a “pure” Newton update). Clearly, if we
guess any value of θ(0), we get

θ(1) = 0

so we get convergence in one step (i.e., Newton’s method modifies the descent
direction so that it converges very fast). Of course, this one step convergence (to

In tuning only
parameters that enter
linearly, the quadratic
approximation used in
Newton’s method is
exact so its first update
is a batch least squares
solution and convergence
occurs in one step.

the least squares value) only works for quadratic functions and it works because
the quadratic approximation Jq(θ, G) is exact.

In the general linear in the parameter case, using derivatives from the last
section,

∇J(θ, G)|θ=θ(j) = −Φ�E
∣∣
θ=θ(j)

and
∇2J(θ, G)

∣∣
θ=θ(j)

= Φ�Φ

so that the pure Newton method is

θ(j + 1) = θ(j) + (Φ�Φ)−1Φ�E
∣∣
θ=θ(j)

= θ(j) + (Φ�Φ)−1Φ�(Y − Φθ(j))
= (Φ�Φ)−1Φ�Y

and we see that we get one-step convergence no matter what the initial guess
θ(0) is. Note that this simply shows that for the linear in the parameter case,
Newton’s method is equivalent to a batch least squares approach and hence it
relies on the existence of the inverse shown in Equation (11.16). We pay the price
for fast convergence by assuming the existence of the inverse and computing it.

11.2.2 Conjugate Gradient and Quasi-Newton Methods

In the nonlinear in the parameter case, it is very difficult to guarantee the
existence of the inverse in the Newton update formula, and difficult to compute
it. Hence, Newton’s method is rarely used in practice for the tuning of function
approximators. Newton’s method does, however, set up a goal for us in terms of
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convergence rate and hence, many methods try to approximate it but still avoid
the problems with the computation of the inverse. The Levenberg-Marquardt
method is one approach to avoid the computations necessary for the Newton
method but still try to achieve its nice rate of convergence properties. It is
discussed later.

In this section we briefly study other methods to try to speed up the steep-
est descent method without the extra computations associated with Newton’s
method.

Conjugate Gradient Methods

Conjugate gradient methods were originally developed for quadratic optimiza-
tion problems to try to keep the descent directions properly aligned to speed the
convergence of the steepest descent approach. In fact, for a quadratic minimiza-
tion problem with p variables, they can be shown to converge in p steps. For
nonlinear optimization problems they cannot in general be shown to provide
this fast convergence property; however, for many problems they do provide
good convergence and rate of convergence properties. They achieve this with-
out using the Hessian or any matrix inversion; hence, they have sometimes been
found to be useful for problems with a large value of p.

There are many variations on the parameter update formula for conjugate
gradient methods (many of these are equivalent for the quadratic case but dif-
ferent for the nonlinear case). Here, we pick just the most common one that is
given by

θ(j + 1) = θ(j) + λjd(j)

where λj is generated by a line minimization so that

J(θ(j) + λjd(j), G) = min
λ∈[0,λ0]

J(θ(j) + λd(j), G)

The accuracy of the line minimization can affect the performance of the algo-
rithm and often you need to experiment with the choice of parameters of the
line minimization method to get good performance. Here, we will assume that
the Armijo step size rule is used to specify λj . The descent direction d(j) is
given by

d(j) = −∇J(θ(j), G) + β(j)d(j − 1) (11.18)

where

β(j) =
∇J(θ(j), G)� (∇J(θ(j), G) −∇J(θ(j − 1), G))

∇J(θ(j − 1), G)�∇J(θ(j − 1), G)

is called the “Polak-Ribiere” formula.
In the practical application of the method, it has been found to be useful to

make certain modifications to the method to improve its convergence proper-
ties. There are many ways to modify the algorithm. For instance, the method
could be modified by using a steepest descent direction at the first step. Then,
every Ncg steps, the algorithm is “restarted” by using a steepest descent update
direction.



11.2 Levenberg-Marquardt and Conjugate Gradient Methods 495

Quasi-Newton Methods

In “quasi-Newton methods” you try to avoid problems with existence and com-
putation of the inverse in Equation (11.17) by choosing

d(j) = −Λ(j)∇J(θ(j), G)

where Λ(j) is a positive definite p × p matrix for all j and that is chosen to
approximate

(∇2J(θ(j), G)
)−1. In this way, d(j) may approximate a Newton

direction and we may get the associated fast convergence without all the extra
computations.

For example, in some cases the approximation is performed by letting Λ(j) be
a diagonal matrix with its elements set to the corresponding diagonal elements
of
(∇2J(θ(j), G)

)−1 and in this case, the method is often referred to as the
“diagonally scaled steepest descent method.” In some practical applications
this method can be quite effective.

Generally, if Λ(j) is chosen properly, for some applications much of the con-
vergence speed of Newton’s method can be achieved. In other more sophisti-
cated approaches, Λ(j) is chosen to form an approximation to the inverse of the
Hessian. Here, we outline just one, the “Broyden-Fletcher-Goldfarb-Shanno”
(BFGS) method. For this, we have

θ(j + 1) = θ(j) + λjd(j)

where λj is generated by a line minimization (e.g., the Armijo step size rule),
and

d(j) = −Λ(j)∇J(θ(j), G)

We define
c(j) = θ(j + 1) − θ(j)

and
g(j) = ∇J(θ(j + 1), G) −∇J(θ(j), G)

Then, we let Λ(0) be an arbitrary positive definite matrix, and

Λ(j + 1) = Λ(j) +
c(j)c(j)�

c(j)�g(j)
− Λ(j)g(j)g(j)�Λ(j)

g(j)�Λ(j)g(j)

+g(j)�Λ(j)g(j)h(j)h(j)�

where

h(j) =
c(j)

c(j)�g(j)
− Λ(j)g(j)

g(j)�Λ(j)g(j)

Even though storage of Λ(j) and other computational requirements can be heavy
for the BFGS method, there are situations where the BFGS method may be pre-
ferred to the conjugate gradient method. The BFGS method can provide fast
convergence when it is near a solution, and generally seems to be less sensi-
tive to line minimization accuracy. Depending on the complexity of computing
J(θ(j), G) and its gradient, you may, however find one method preferred over
the other.
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11.2.3 Gauss-Newton and Levenberg-Marquardt Methods

Next, we consider the Gauss-Newton method that is used to solve a (nonlinear)
least squares problem, such as finding θ to minimize J(θ, G) in Equation (11.1)
when we do not use a linear in the parameter approximator. To develop the
Gauss-Newton method, we have

J(θ, G) =
1
2

M∑
i=1

|y(i) − F (x(i), θ)|2

and let the N̄ × 1 vectors

ε(i) = y(i) − F (x(i), θ)

(these are the function approximation errors arising at each piece of training
data) and define the N̄M × 1 vector

ε(θ, G) = [ε(1)�, ε(2)�, . . . , ε(M)�]�

= [ε1, ε2, . . . , εN̄M ]�

(where εj, j = 1, 2, . . . , N̄M , are scalars) to be a vector containing all of the
approximation errors. Note that

J(θ, G) =
1
2

M∑
i=1

ε(i)�ε(i) =
1
2
ε(θ, G)�ε(θ, G)

In the Gauss-Newton
method, the
approximation error is
linearized about the
current parameter values
and then least squares is
used to minimize the
linearized error value to
provide the next
parameter update.

For functions J(θ, G) that are quadratic in θ (scalar or vector case), Newton’s
method gave very fast convergence (in one step). For the function approxima-
tion problem, to get J(θ, G) quadratic in θ, we use a linear in the parameter
approximator F (x, θ) = θ�φ(x) so that the approximation errors ε(i) and hence
ε(θ, G) are linear (affine) with respect to the parameters θ, and then J(θ, G) is
quadratic in θ. If F (x, θ) is nonlinear in the parameters, then so are ε(i) and
ε(θ, G).

Gauss-Newton Parameter Update Formula

To tune nonlinear in the parameter approximators in the Gauss-Newton ap-
proach, at each iteration j we proceed according to the following steps:

1. Linearize the error ε(θ, G) about the current value of θ(j).

2. Solve a least squares problem to minimize the linearized error value and
provide the next guess at the parameter, θ(j + 1).

Compared to Newton’s method, in the Gauss-Newton method you create a
quadratic approximation to the function you want to minimize at each itera-
tion, but now it is done via linearization, rather than using second derivative
information. We discuss these two steps in more detail next.
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First, linearize ε(θ, G) around θ(j) using a truncated Taylor series expansion
to get

ε̂(θ, θ(j), G) = ε(θ(j), G) + ∇ε(θ, G)�
∣∣
θ=θ(j)

(θ − θ(j))

where ε̂(θ, θ(j), G) is an approximation of ε(θ, G) since we omitted the higher
order terms (second order and higher) in the Taylor series expansion. We use the
notation ε̂(θ, θ(j), G) to emphasize the dependence on both θ and θ(j). Here,

∇ε(θ, G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ε1
∂θ1

· · · ∂εN̄M

∂θ1

. . .
...

...
. . .

∂ε1
∂θp

· · · ∂εN̄M

∂θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [∇ε1,∇ε2, . . . ,∇εN̄M ] (11.19)

is a p × N̄M matrix and ∇ε(θ, G)� is the “Jacobian.”
Second, minimize the (scaled) squared norm,

Jq(θ, G) =
1
2
ε̂(θ, θ(j), G)� ε̂(θ, θ(j), G)

which is a quadratic approximation to J(θ, G) (at θ(j)), which is nonlinear in
θ, and different from the one used in Newton’s method. Let

θ(j + 1) = arg min
θ

Jq(θ, G)

= arg min
θ

1
2
ε̂(θ, θ(j), G)� ε̂(θ, θ(j), G)

(here, “argminθ” is simply mathematical notation for the value of θ that mini-
mizes the norm—it is the “argument” that provides the value that achieves the
minimization).

We know how to solve this problem. It is the same as the batch least squares
problem for the linear in the parameters case. To see this, note that

Jq(θ, G) =
1
2
E�E

with E = ε̂(θ, θ(j), G). Recall that we had

E = Y − Φθ

Here, we have

ε̂(θ, θ(j), G) =
(
ε(θ(j), G) − ∇ε(θ, G)�

∣∣
θ=θ(j)

θ(j)
)

+ ∇ε(θ, G)�
∣∣
θ=θ(j)

θ

so if we let
Y =

(
ε(θ(j), G) − ∇ε(θ, G)�

∣∣
θ=θ(j)

θ(j)
)
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and
Φ = − ∇ε(θ, G)�

∣∣
θ=θ(j)

our least squares solution (the value of the parameter at the next iteration) is
given by Equation (10.2) as

θ(j + 1) = (Φ�Φ)−1Φ�Y

so θ(j + 1) is

− (∇ε(θ(j), G)∇ε(θ(j), G)�
)−1 ∇ε(θ(j), G)

(
ε(θ(j), G) −∇ε(θ(j), G)�θ(j)

)
where

∇ε(θ(j), G)� = ∇ε(θ, G)�
∣∣
θ=θ(j)

so that the resulting Gauss-Newton update formula is

θ(j + 1) = θ(j) − (∇ε(θ(j), G)∇ε(θ(j), G)�
)−1 ∇ε(θ(j), G)ε(θ(j), G) (11.20)

(If we had included a step size parameter, then the method is sometimes re-
ferred to as a “damped” Gauss-Newton approach.) Notice that compared with
Newton’s method, we do not need the Hessian, only the Jacobian. Essentially, a
Gauss-Newton iteration is an approximation to a Newton iteration (in the sense
that the quadratic approximation at each iteration tries to approximate the one
in Newton’s method that uses second derivative information in its quadratic ap-
proximation) so it can typically provide for faster convergence than, for instance,
steepest descent, but generally not as fast as a pure Newton method. It is also

The Gauss-Newton
method is equivalent to
the extended Kalman
filter if the data are
processed in the same
way.

interesting to note that the Gauss-Newton method is the same as the “extended
Kalman filter” (EKF) except where the linearizations are performed. (In the
EKF, where we process one data pair at a time, we perform the linearizations
at each point; for the Gauss-Newton method where batch processing is used,
we perform the linearizations for each batch.) To make the methods the same
simply involves changing how the data are processed.

Levenberg-Marquardt Parameter Update Formula

To avoid problems with computing the inverse in Equation (11.20), the method
is often implemented as

θ(j + 1) = θ(j) − (∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)
)−1 ∇ε(θ(j), G)ε(θ(j), G)

(11.21)
where Λ(j) is a p × p diagonal matrix such that

∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)

is positive definite so that it is invertible. Sometimes, a “Cholesky factorization”
is used to specify Λ(j) at each iteration. In the Levenberg-Marquardt method,
you choose Λ(j) = λI where λ > 0 and I is the p × p identity matrix. The
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parameter λ serves a role similar to the step size. When λ = 0, we get the
standard Gauss-Newton method and as you increase λ, the descent direction
moves towards the gradient. Hence, generally thinking of λ as a step size, we
expect that for a small value of λ, we will get fast convergence; for a larger
value, we should get slower convergence.

The Linear in the Parameter Case

As a simple example, notice that in the case where J(θ, G) = θ2, ε(θ, G) = θ,
and if we pick λj = λ = 1, Λ(j) = Λ = I for all j, then ∇ε(θ, G) = 1 so the
Gauss-Newton method is

θ(j + 1) = θ(j) − θ(j) = 0

(and the Levenberg-Marquardt method would be the same if you pick λj = λ =
2). Hence, no matter what the choice is for the initial guess θ(0), θ(1) = 0, and
we get convergence in one step (similar to Newton’s method for this example).
Generally, however, this only occurs in the case where J(θ, G) is quadratic and
we have a linear in the parameters approximator.

11.3 Matlab for Training Neural Networks

There exist many software packages for solving optimization problems with gra-
dient methods (you may want to search the Web to find some public-domain
ones), and one that is particularly well-suited for the gradient training of neural
networks is the Matlab Neural Networks Toolbox.

11.3.1 Motivation to Use Software Packages

This toolbox provides a variety of tools that facilitate the construction of neu-
Excellent software
packages exist for
optimization and its
application to training
neural networks and
fuzzy systems.

ral network structures and the training of the parameters in these structures.
The training methods include steepest descent, conjugate gradient methods,
Levenberg-Marquardt, and others. Moreover, many numerical issues for these
algorithms have been tested to help ensure their robustness and numerical ac-
curacy for ease of use.

It is recommended that if you want to construct complex multilayer neural
networks (e.g., a perceptron with two or more hidden layers) or regularly work
with sophisticated practical applications, that you use some software package.
In this part we have shown the basic concepts, but there are more issues to deal
with when the networks get more complex, in addition to how sophisticated the
gradient method is. For instance, for more complex multilayer neural networks,
the recognition of the repeated calculations that are necessary in gradient update
formulas (particularly steepest descent) led to the “backpropagation” method,
which is a method for saving computations in the application of the gradient
method (even though, most often, the term “backpropagation” is used to refer
to the scheme for saving computations, and the gradient method employed).
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The Matlab toolbox exploits the repeated calculations using a backpropagation
method and frees you from these somewhat tedious details so that you can focus
on the fundamental issues in training that are discussed here.

It is also important to point out that many software packages, including
Matlab, provide functions for general nonlinear least squares minimization (e.g.,
using the Levenberg-Marquardt method) and all you have to do is find the gra-
dients and provide the proper information to the software and it will provide a
solution. Hence, with such packages it is not only possible to train neural net-
works but also Takagi-Sugeno fuzzy systems or other approximator structures.

An exercise at the end of the chapter asks you to solve a simple function
approximation problem with software such as the Matlab toolbox. Next, we
show how to train a multilayer perceptron with the Matlab Neural Networks
Toolbox.

11.3.2 Example: Matlab Neural Networks Toolbox

In this section, we will show how to use the Matlab Neural Networks Toolbox to
tune a multilayer perceptron to match the training data shown in Figure 9.10
(this defines G and in our case, we have M = 121). In particular, we will train
a two layer multilayer perceptron with n1 = 11 hidden layer neurons that have
logistic activation functions and a linear activation function in the output layer
(as shown in Figure 9.13). We will test different training methods, and will use
500 training “epochs” in each case. The code used is given at the Web site for
the book listed in the Preface.

Gradient Descent Training

In this case we use the training option traingd which indicates that we want
to use a gradient descent approach (this is the classical “backpropagation” ap-
proach). When you execute the program, it displays data indicating how the
algorithm is performing (e.g., the mean squared error and size of the gradient)
and a plot of the mean square error versus the epoch number as shown in Fig-
ure 11.4. Notice that as training progresses, the mean squared error decreases.
The quality of the approximation for this case is shown in Figure 11.5, where we
can see by inspection that a reasonably good approximation was achieved. Note
that if you run the code at the Web site you will almost surely get a different
plot, since the data are presented in a random order for the training.

Conjugate Gradient Training

In this case we use the training option traincgp, which indicates that we want to
use a conjugate gradient approach (actually the Polak-Ribiere method). When
you execute the program, it displays data indicating how the algorithm is per-
forming (e.g., the mean squared error and size of the gradient) and a plot of the
mean square error versus the epoch number as shown in Figure 11.6. Notice
that as training progresses, the mean squared error decreases at a faster rate
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Figure 11.4: Mean squared error vs. epoch number for backpropagation training.
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Multilayer perceptron trained with Matlab NN Toolbox

Figure 11.5: Approximator mapping and data for training with backpropaga-
tion.
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and achieves a lower value than in the standard backpropagation method shown
in Figure 11.4.
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Figure 11.6: Mean squared error vs. epoch number for conjugate gradient train-
ing.

The quality of the approximation for this case is shown in Figure 11.7, where
we can see by inspection that better approximation was achieved (for this num-
ber of training epochs and specific training run) than was achieved for back-
propagation in Figure 11.5. It is typical to find slow training times for standard
backpropagation and improvements on convergence rates and approximation
errors if you compare to a conjugate gradient method.

Levenberg-Marquardt Training

In this case we use the training option trainlm, which indicates that we want to
use a Levenberg-Marquardt training approach. When you execute the program,
it displays data indicating how the algorithm is performing (e.g., the mean
squared error and size of the gradient) and a plot of the mean square error versus
the epoch number as shown in Figure 11.8. Notice that as training progresses,
the mean squared error decreases at a relatively fast rate (even faster than what
was obtained in the above training run for the conjugate gradient method in
Figure 11.6), then levels off at about the same value as that which was obtained
with the conjugate gradient method.

The quality of the approximation for this case is shown in Figure 11.9, where
we can see by inspection that better approximation was achieved (for this num-
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Figure 11.7: Approximator mapping and data for training with a conjugate
gradient method.

ber of training epochs and specific training run) than was achieved for backprop-
agation in Figure 11.5. The result is, however, different from the one obtained
with the conjugate gradient method in Figure 11.7, in that it does not adjust
the map to the high frequency peak even though it achieves similar accuracy
(of course, this is just for this training run; you should not reach any general

To understand the
“canned” software
packages, it is useful to
build a “homemade”
optimization algorithm
for approximator tuning.

conclusions by this).

11.4 Example: Levenberg-Marquardt Training
of a Fuzzy System

In this section we study the use of the Levenberg-Marquardt method for training
a Takagi-Sugeno fuzzy system with R = 11 rules. We will tune all 44 parameters
of the approximator. Here, we consider offline batch processing of a data set
G = {(x(i), y(i)) : i = 1, 2, . . . , M} from Figure 9.10 (where in this case n = 1).

In this case, our Takagi-Sugeno fuzzy system is given by

y = Fts(x, θ) =
∑R

i=1 gi(x)µi(x)∑R
i=1 µi(x)

where gi(x) = ai,0 + ai,1x1 and the ai,j , i = 1, 2, . . . , R, j = 0, 1 are constants.
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Figure 11.8: Mean squared error vs. epoch number for Levenberg-Marquardt
training.

Also,

µi(x) =
n∏

j=1

exp

⎛
⎝−1

2

(
xj − ci

j

σi
j

)2
⎞
⎠ = exp

(
−1

2

(
x1 − ci

1

σi
1

)2
)

where ci
j is the point in the jth input universe of discourse where the membership

function for the ith rule achieves a maximum, and σi
j > 0 is the relative width

of the membership function for the jth input and the ith rule (since n = 1, the
premise membership functions are the same as the input membership functions).
Recall that we had defined

ξj =
µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R. For our case, we have

θ = [c1
1, . . . , c

R
1 , σ1

1 , . . . , σ
R
1 ,

a1,0, a2,0, . . . , aR,0, a1,1, a2,1, . . . , aR,1]�

for a total of p = 4R = 44 parameters to tune.
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Figure 11.9: Approximator mapping and data for training with the Levenberg-
Marquardt method.

11.4.1 Update Formulas

The update formula, given in Equation (11.21), is

θ(j + 1) = θ(j) − (∇ε(θ(j), G)∇ε(θ(j), G)� + Λ(j)
)−1 ∇ε(θ(j), G)ε(θ(j), G)

(11.22)
where Λ(j) = λI where λ > 0 is a tuning parameter (where if λ is small, we can
generally expect faster convergence, but we may need it to be larger to ensure
the existence of the inverse) and I is the p × p identity matrix.

To make the computations for the update formula we need, for N̄ = 1, the
p × M matrix ∇ε(θ(j), G) and the M × 1 vector ε(θ(j), G). With N̄ = 1, the
scalars

εi = ε(i) = y(i) − Fts(x(i), θ)

for i = 1, 2, . . . , M , and so ε(θ, G) = [ε1, ε2, . . . , εM ]�. Here,

∇ε(θ, G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ε1
∂θ1

· · · ∂εM

∂θ1

. . .
...

...
. . .

∂ε1
∂θp

· · · ∂εM

∂θp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now, notice that for i = 1, 2, . . . , M , j = 1, 2, . . . , p,

∂εi

∂θj
=

∂

∂θj
(y(i) − Fts(x(i), θ))

= − ∂

∂θj
Fts(x(i), θ)

It is convenient to compute this partial by considering various components of the
vector in sequence (not forgetting about the minus sign in front of the partials).

First, consider the update formulas for the centers of the premise member-
Developing the update
formulas simply requires
the use of the partial of
the approximator with
respect to the
parameters.

ship functions. We will use indices i∗ and j∗ to help avoid confusion with the
indices i and j. We find, for j∗ = 1, 2, . . . , R,

∂

∂cj∗
1

Fts(x(i∗), θ) =
∂

∂cj∗
1

(∑R
i=1 gi(x(i∗))µi(x(i∗))∑R

i=1 µi(x(i∗))

)

where

µi(x(i∗)) = exp

(
−1

2

(
x(i∗) − ci

1

σi
1

)2
)

(we replaced x1 with x, since they are the same) and

ξj∗(x(i∗)) =
µj∗(x(i∗))∑R
i=1 µi(x(i∗))

Hence, we have

∂

∂cj∗
1

Fts(x(i∗), θ) =

(∑R
i=1 µi(x(i∗))

)(
gj∗(x(i∗)) ∂

∂cj∗
1

µj∗(x(i∗))
)

(∑R
i=1 µi(x(i∗))

)2

−

(∑R
i=1 gi(x(i∗))µi(x(i∗))

)(
∂

∂cj∗
1

µj∗(x(i∗))
)

(∑R
i=1 µi(x(i∗))

)2

=

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
∂

∂cj∗
1

µj∗(x(i∗))

For this, let

x̄j∗ = −1
2

(
x(i∗) − cj∗

1

σj∗
1

)2

so that using the chain rule from calculus

∂

∂cj∗
1

µj∗(x(i∗)) =
∂µj∗(x(i∗))

∂x̄j∗
∂x̄j∗

∂cj∗
1
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We have
∂µj∗(x(i∗))

∂x̄j∗ = µj∗(x(i∗))

and
∂x̄j∗

∂cj∗
1

=
x(i∗) − cj∗

1(
σj∗

1

)2

so

∂

∂cj∗
1

Fts(x(i∗), θ) =

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
µj∗(x(i∗))

(
x(i∗) − cj∗

1

)
(
σj∗

1

)2

Next, for the spreads on the premise membership functions, we use the same
development above to find

∂

∂σj∗
1

Fts(x(i∗), θ) =

(
gj∗(x(i∗)) − Fts(x(i∗), θ)∑R

i=1 µi(x(i∗))

)
µj∗(x(i∗))

(
x(i∗) − cj∗

1

)2

(
σj∗

1

)3

since

∂x̄j∗

∂σj∗
1

=

(
x(i∗) − cj∗

1

)2

(
σj∗

1

)3

Next, for the parameters of the consequent functions, notice that

∂

∂aj∗,0
Fts(x(i∗), θ) =

∂

∂aj∗,0
(gj∗(x(i∗))ξj∗(x(i∗))) = ξj∗(x(i∗))

and
∂

∂aj∗,1
Fts(x(i∗), θ) = x1(i∗)ξj∗ (x(i∗))

This gives us all the elements for the ∇ε(θ, G) matrix, and hence, we can im-
plement the Levenberg-Marquardt update formula.

11.4.2 Parameter Constraint Set and Initialization

The chosen parameter constraint set simply forces the centers to lie between −6
and +6 (hence, we assume that we know the maximum variation on the input
domain a priori) and spreads to all between 0.1 and 1 and uses projection to
maintain this for each iteration. We place the constraints on the spreads for two
reasons. First, we must keep the values of the spreads above some fixed value
to ensure that we do not have a divide-by-zero error in computing the partials
needed for the update formula. Second, it seems reasonable not to have spreads
cover too much of the input domain, since then its corresponding consequent
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(a line) would have to produce an approximation over that large portion of the
domain. We put no constraints on the parameters of the consequent functions.

The centers are initialized to be on a uniform grid across the input space,
a reasonable choice if you do not know where high frequency behavior occurs;
however, if you know that there is a region with higher frequency oscillations,
then it may be advantageous to put more centers in that region. In particular,
we choose c1

1 = −5, c2
1 = −4, up to c11

1 = 5. The spreads are all initialized to
be 0.5 so that there is a reasonable amount of separation between them when
one consequent function of one rule turns on and the other turns off. We will,
however, experiment with the effects of the size of the initial spreads on the
performance of the method. The parameters of the consequent functions are
simply initialized to be all zero. It must be emphasized that while these choices
make sense for this problem, and as you will see, work reasonably well for this
problem, other initializations may work better (and others, much worse).

11.4.3 Approximator Tuning Results: Effects on the Non-
linear Part

Here, we first consider the M = 121 case for the function shown in Figure 9.10.
We will simply show the mapping shape at various iterations and hence, will
not implement a termination criterion. We choose λ = 0.5 (you can easily tune
this parameter where, if you make it smaller, it tends to make bigger updates).
Figure 11.10 shows the mapping after just one iteration. Clearly, even after
one iteration, even though it has not tuned the centers and spreads much, the
method has chosen reasonable values for the consequent functions and this is
not surprising considering the performance of the batch least squares method
for this approach and the similarities to that method.

Next, we will focus on how the method tunes the nonlinear part of the
approximator (i.e., the µi, and hence ξi functions) but we must keep in mind
that the linear part is also being tuned at the same time. Figure 11.11 shows
that by the second iteration, there is already significant and successful tuning
of the nonlinear part so that approximation errors are reduced, particularly in
the region around x = −2.

As the algorithm continues, it continues to tune the nonlinear part of the
approximator. In particular, consider Figure 11.12 at j = 5, and we see that at
this point, the training method has done quite a good job at shaping the nonlin-
ear part to obtain good accuracy around x = −2. Note that here it is exploiting

Adjustments to the
parameters that enter
nonlinearly provide
significant tuning
flexibility for the shape
of the mapping.

the parameters that enter in a nonlinear fashion to achieve interesting shapes
for the nonlinearity (you could think of this as illustrating the inherent tuning
flexibility associated with approximators, where we tune both the parameters
that enter linearly and the ones that enter in a nonlinear fashion).

As the algorithm continues, it still continues to tune the nonlinear part of
the approximator, both in the region around x = −2 and in the high frequency
region around x = 1. In particular, consider Figure 11.13 at j = 12, and we
see that while it has tuned the parameters some, it is not much different in the
x = −2 region. It is, however, having difficulties in the x = 1 region due to
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Figure 11.10: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1.

the high frequency behavior. It seems that for this example, for higher numbers
of iterations, it tends to leave the approximator structure near x = −2 pretty
much as it is and it tries to “fix” the part near x = 1. Consider the mapping
at iteration j = 15, which is shown in Figure 11.14. Notice that in the x = 1
region, there is a significant change in the nonlinear shape. It tends to keep
moving this shape around near x = 1 to try to improve accuracy.

Now, this is where the issue of termination arises. Do you terminate at
j = 12 and declare success? Do you try to run the algorithm for many more
iterations to see if it can “allocate” more approximator structure to the x =
1 high frequency region to improve the accuracy further? If you use more
iterations will the overall approximation accuracy improve? Or, will it get even
worse that it is here? These are all important issues, but they tend to be very
application dependent. It is best if you are simply aware of all these issues and
experiment with the particular application at hand to try to get the best possible
results (where the definition of “best” certainly depends on the constraints of
the particular application).

11.4.4 Approximator Tuning Results: Effects of Initializa-
tion

Next, consider the same initial parameters as above except let the spreads all be
0.2 instead of 0.5. Figure 11.15 shows the mapping shape at j = 1 and we see
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Figure 11.11: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 2.

that the approximator is not performing too well. The small spread results in
sharp transitions between the rules so that there is a sharp transition between
the lines that are used in the consequents.

Figure 11.16 shows the mapping shape at j = 2. We see that the centers are
updated to values that were similar to the 0.5 initialization case; the algorithm
quickly recovers from what appeared to be a poor initialization (and then the
behavior is qualitatively similar to the case where the spreads were initialized
with 0.5 after j = 2).

Next, we will use the same initial parameters as above, except let the spreads
all be 1 instead of 0.5. Figure 11.17 shows the mapping shape at j = 1 and
this shows that as we smooth out the membership functions, we tend to get
a smoothed out function. This time, however, the method does not recover
from this initialization as fast as when the spreads were initialized at 0.2. For
instance, notice that by j = 15 the mapping shape, which is shown in Fig-
ure 11.18, is not much better in the region around x = −2; it has, however,
done something interesting: up to this point, the algorithm has focused on try-
ing to allocate approximator structure to the high frequency region to try to
improve approximation accuracy there.

Overall, these simulations show that the performance of the algorithm clearly
depends on the initialization. We would like to start with the best possible
initialization; however, for practical problems it can be particularly difficult to
get a good one for a particular application without having significant insights
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Figure 11.12: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 5.

into the physics of the problem or by performing analysis on the data before
training. Hence, even in practical problems, you may want to use the same basic
approaches that we use here for this simple problem.

11.4.5 Overtraining, Overfitting, and Generalization

Next, we consider the case where M = 13, which is a much smaller data set
Poor generalization,
which is bad
interpolation between
training data, can occur
if the approximator is
too complex relative to
the amount of
information in the
training data. You want
your approximator
simple to help avoid poor
generalization, yet
complex enough to
provide flexibility to
match the unknown
function.

than used above. We still use R = 11 rules and tune 44 parameters, so our
number of parameters is greater than the number of data points. We use our
earlier choice of initial parameters as c1

1 = −5, c2
1 = −4, up to c11

1 = 5 with all
the spreads as 0.5. Also, we use λ = 0.5 as earlier. In Figure 11.19, we show the
mapping shape at j = 1, and we see that it picks a reasonable shape considering
how little information it has been given. There is, however, a problem when we
train with so few data and so many parameters, that becomes even clearer if we
allow a few more iterations to occur. In particular, consider Figure 11.20, where
the mapping is shown at j = 12. We see that the algorithm, in one sense, does
a very good job. It matches the training data almost exactly at every point.
However, this causes a problem since at points outside the training data, the
matching to the unknown function is poor (consider, e.g., the large peak near
x = 1, where even though the mapping goes through one point in that region,
we know its shape is not appropriate for the problem at hand). This is called
poor “generalization.” If the approximator generalizes well, then it will produce
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Figure 11.13: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 12.

a good interpolation between the training data, not one that provides large
oscillations between the data. Moreover, if you study Figure 11.20 carefully
(and compare it to Figure 9.9 when noise is not added to the function), as
we have seen in the least squares case, the approximator is failing also in the
sense that it is trying to match the noise in the function (i.e., it is exhibiting
overfitting).

How do we avoid these problems? First, you would normally never pick p >
M ; that is, you will normally have fewer parameters than training data pairs.
Next, in some applications you need to make sure that you do not “overtrain;”
that is, use too many iterations of the gradient update method. Sometimes this
can result in forcing the approximator to match exactly at the data pairs at
the expense of performing poor generalization (i.e., poor interpolation between
the training data). Sometimes, the use of a “validation set” can help to detect
when poor generalization is occurring and the updating can be terminated.

11.4.6 Approximator Reparameterization for Flexibility
and Complexity Reduction

Sometimes an approximator has too much flexibility, in the sense that there
are many ways to tune the parameters to get good approximation accuracy.
One way to reduce this flexibility, and thereby simplify the parameter update
method, is to make some of the parameters of the approximator that enter
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Figure 11.14: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 15.

in a nonlinear fashion a function of some of the other parameters. In this
way we reduce tuning flexibility, but not so much as to reduce it to the case
where we only tune the parameters that enter in a linear fashion. For example,
one way to do this for the Takagi-Sugeno fuzzy system is to simply make the
spreads a function of the centers. One way to do this is to pick the spreads so
that neighboring premise membership functions always cross over each other at
0.5. This way, when many centers are allocated to a region to try to improve
approximation accuracy, the choice of the spreads will allow for the “turning
on” and “off” of the appropriate consequent functions for a high density of
membership functions. This approach could be good for some applications, but
it should be emphasized that it does reduce approximator flexibility and so for
some applications, it may not be a good choice. Moreover, the exact methods
to specify the function specifying how the spreads change based on the centers
will depend on the particular application.

11.4.7 Approximation Error Measures: Using a Test Set

To focus on other issues, we have been glossing over the issues of the use of
a “test set” Γ for evaluating the approximation quality of our approximators.
Instead we have been relying on visual inspection of the plots to comment on
approximation accuracy. Generally, for more complex multidimensional appli-
cations, this is not a good approach and you will want to use some type of
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Figure 11.15: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1, different initialization.

numerical measure of approximation accuracy where you measure the accuracy
both at the training data points and at points in between these. In addition,
you will often want to evaluate the approximator for points where it is “extrap-
olating” from the data (e.g., at the end points of the input domains).

Such approximation error measures, based on, for example, a sum of squares
or the maximum error over the domain, provide a way to quantify accuracy, and
hence to compare different training methods and approximation structures.

11.5 Example: Online Steepest Descent Train-
ing of a Neural Network

For online function approximation, we must choose how we will process the
data that we gather online. Here, we simply use Gk = {(x(k), y(k))} so that we
acquire and process one data pair at each time step. We will assume that N̄ = 1
so that there is only one output and hence y(k) is a scalar (the development
is similar for many outputs). Once again we will train the neural network to
match the function in Figure 9.10.

We will use a single hidden layer neural network. Recall that φj , j =
1, 2, . . . , n1 denotes the output of the jth neuron in the hidden layer, and bj

is its bias. We defined

wj = [w1,j , w2,j , . . . , wn,j ]�
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Figure 11.16: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 2, different initialization.

so φj = f(bj + (wj)�x). Here, for every neuron in the hidden layer, we use the
activation function

f(x̄) =
1

1 + exp(−x̄)

Recall that wj , j = 1, 2, . . . , n1 denotes a weight in the output layer and b is
the bias for the output layer neuron. We have w = [w1, w2, . . . , wn1 ]�. With a
linear activation function in the output layer, the approximator is

y = Fmlp(x, θ) = b +
n1∑

j=1

wj

(
f(bj + (wj)�x)

)
If we tune all the parameters of this approximator, both the ones that enter
linearly and in a nonlinear fashion, we let

θ = [(w1)�, b1, (w2)�, b2, . . . , (wn1 )�, bn1 , w
�, b]�

In this case, if n is the number of inputs to the approximator, the number of
parameters to be tuned is p = nn1 + n1 + n1 + 1 = n1(n + 2) + 1.

Here, we use the steepest descent training method to update the parameter
vector θ = [θ1, θ2, . . . , θp]� and use a constant step size. We will only execute
one iteration of the gradient update formula for each piece of data gathered;
hence, we are aligning gradient iterations with time steps. In particular, for our
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Figure 11.17: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1, different initialization.

online case, our update formula is given in Equation (11.6), which we repeat
here as

θ(k + 1) = θ(k) − λ
∂J(θ, Gk)

∂θ

∣∣∣∣
θ=θ(k)

where λ > 0 is the constant step size. Recall that we have a cost function given
by Equation (11.1), which in our case is

J(θ, Gk) =
1
2

(y(k) − Fmlp(x(k), θ))2

From this, in order to fully specify the parameter update law, it is clear that we
must provide

∂J(θ, Gk)
∂θ

for this case. This is what we do next.

11.5.1 Update Formulas

Clearly, we have

∂J(θ, Gk)
∂θ

=
1
2

∂

∂θ
(y(k) − Fmlp(x(k), θ))2

= −ε
∂Fmlp(x(k), θ)

∂θ
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Figure 11.18: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 15, different initialization.

where we let the scalar ε(k) = y(k) − Fmlp(x(k), θ). Now, using the definition
of the approximator structure

∂Fmlp(x(k), θ)
∂θ

=
∂

∂θ

⎛
⎝b +

n1∑
j=1

wjf
(
bj + (wj)�x

)⎞⎠
At this point, it is convenient to develop the update formula for different com-
ponents of the θ vector individually, since there will be special cancellations in
each case. First, we derive the case for the weights of the hidden layer, then its
biases. Then we will proceed to the case for the parameters that enter linearly,
the weights and bias of the output layer.

Development of update
formulas simply requires
the chain rule from
calculus and some
algebra.

To help avoid confusion with the use of the indices, we will use j∗ and i∗ to
denote the particular parameter value that we seek to derive the update formula
for. Hence, we seek to find, for j∗ = 1, 2, . . . , n1, and i∗ = 1, 2, . . . , n,

∂Fmlp(x(k), θ)
∂wi∗,j∗

=
∂

∂wi∗,j∗

⎛
⎝b +

n1∑
j=1

wjf
(
bj + (wj)�x

)⎞⎠
Now, taking the partial we find, using the chain rule from calculus,

∂Fmlp(x(k), θ)
∂wi∗,j∗

= wj∗
∂

∂wi∗,j∗
f
(
bj∗ + (wj∗ )�x

)
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Figure 11.19: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 1, M = 13.

= wj∗
∂f

∂x̄j∗

∂x̄j∗

∂wi∗,j∗

Here, x̄j∗ = bj∗ + (wj∗ )�x and note that using simple rules from calculus, with
the above definition for the logistic function,

∂f

∂x̄j∗
= f(x̄j∗)(1 − f(x̄j∗))

If we had used the hyperbolic tangent for the activation functions f , then

∂f

∂x̄j∗
= 1 − (f(x̄j∗))2

Returning to the logistic function case, notice that

∂x̄j∗

∂wi∗,j∗
= xi∗

so
∂Fmlp(x(k), θ)

∂wi∗,j∗
= wj∗f(x̄j∗)(1 − f(x̄j∗))xi∗

Hence, the update formula for the weights in the hidden layer is

wi,j(k + 1) = wi,j(k) + (11.23)
λε(k)wjf

(
bj(k) + (wj)�(k)x(k)

) (
1 − f

(
bj(k) + (wj)�(k)x(k)

))
xi(k)
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Figure 11.20: Levenberg-Marquardt training of a Takagi-Sugeno fuzzy system,
mapping shape at iteration j = 12, M = 13.

for j = 1, 2, . . . , n1, and i = 1, 2, . . . , n, where ε(k) = y(k) − Fmlp(x(k), θ(k)).
Next, we will derive the update formula for the biases that enter the n1

neurons in the hidden layer. For this, for j∗ = 1, 2, . . . , n1,

∂Fmlp(x(k), θ)
∂bj∗

= wj∗
∂

∂bj∗
f
(
bj∗ + (wj∗)�x

)
= wj∗

∂f

∂x̄j∗

∂x̄j∗

∂bj∗

= wj∗f(x̄j∗)(1 − f(x̄j∗))

Note that
∂x̄j∗

∂bj∗
= 1

Hence, we get the update formula

bj(k + 1) = bj(k) + (11.24)
λε(k)wj(k)f

(
bj(k) + (wj)�(k)x(k)

) (
1 − f

(
bj(k) + (wj)�(k)x(k)

))
for j = 1, 2, . . . , n1, where ε(k) = y(k) − Fmlp(x(k), θ(k)).

Next, we derive the update formula for the n1 weights in the output layer.
For this, for j∗ = 1, 2, . . . , n1,

∂Fmlp(x(k), θ)
∂wj∗

= f
(
bj∗ + (wj∗ )�x

)
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Hence, we get the update formula

wj(k + 1) = wj(k) + λε(k)f
(
bj(k) + (wj)�(k)x(k)

)
(11.25)

for j = 1, 2, . . . , n1, where ε(k) = y(k)−Fmlp(x(k), θ(k)). Notice that this is the
update formula for parameters that enter linearly, and you will generally find
such a relationship for this case.

Finally, we derive the scalar update formula for the bias b in the output
layer. For this

∂Fmlp(x(k), θ)
∂b

= 1

Hence, we get the update formula

b(k + 1) = b(k) + λε(k) (11.26)

where ε(k) = y(k) − Fmlp(x(k), θ(k)).
To summarize, the update formulas for θ(k) are given by Equations (11.23),

(11.24), (11.25), and (11.26). Clearly, while we use only one constant step size,
you could use different ones for the different update formulas.

Notice that, as a practical computational issue, there are many shared cal-
culations that are used in the update formulas. It is for this reason that it is
probably best to first update the output layer bias, the output layer weights,
the hidden layer biases, then finally the hidden layer weights (and then each
update can use some of the calculations needed for the previous update).

11.5.2 Parameter Constraints and Initialization

Notice that for the update formulas we derived, there are no particular values
of parameters that will cause, for instance, the functions on the right side of
the update formulas to be undefined (which could cause, e.g., a divide-by-zero
error). Hence, we will not have to constrain the parameters to avoid such
situations. Moreover, in this simple example, we will not assume that, due to
implementation concerns, the parameters must lie in certain bounded regions.
For this reason, we will not put any constraints on the parameter update laws
from a parameter constraint set. We emphasize, however, that generally the
more information you have about the underlying function, the more you tend to
know about how to initialize the approximator. Here, for the sake of illustration,
we assume that we know nothing useful for the initialization (even though we
could certainly analyze the data to learn some useful ideas for initialization, just
as we have done in Section 10.5).

How do we initialize the algorithm? That is, how do we specify θ(0)? There
are many ways to choose this, but often in practice the parameters are sim-
ply chosen to be random small values (here in one case we choose θi(0) to be
uniformly distributed on [−0.1, 0.1]). This often tends to be a good choice for
several reasons. First, we get some initial random distribution of the biases
that place the sigmoid functions across at least some small region of the space
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(sometimes, if you know the range of possible values on some input space a pri-
ori, then you can spread the sigmoids randomly across this range). Next, by
choosing the weights to be small but random, we start with “steps” that are
going both up and down with small slopes and this tends to make sure that the
gradient is not too small initially. Finally, the small values for the output layer
provide something close to picking the values at zero, which as we saw in the
recursive least squares case, can be a good choice.

There are many cases for practical applications where you can determine
what may be a better initialization than simply using small random values.
For instance, in Section 10.5, we chose initial values for the parameters of the
approximator that enter in a nonlinear fashion (i.e., the hidden layer weights and
biases) in a way that when it was tuned with the recursive least squares method,
it determined a good approximation to the function after 300 iterations. It did
this whether we chose the initial values for the parameters that enter linearly
(the output layer weights and bias) as all zero, or if we used values perturbed
off the ones that batch least squares finds. Such initialization by some educated
guessing at the nonlinear part and using batch least squares to specify the linear
part is generally a good approach and one that we will study here. We must
keep in mind, however, that in practical applications you are sometimes limited
by how many data are available a priori so that initialization with batch least
squares is not always possible. It is for this reason that we will also study the
case where we simply pick the parameters that enter linearly to be zero.

11.5.3 Approximator Tuning Results: Effects of Step Size

For our example, we pick n1 = 25, the same as we have studied in the recursive
least squares case in Section 10.5. Notice that now, however, we will tune all 76
parameters of the neural network. Tuning this many parameters is probably not
necessary for this problem to get a reasonable level of accuracy (e.g., consider the
similar effects on the shape of the nonlinearity for the weights in the hidden and
output layers), but we will use this example simply for illustration. Without
much tuning, we picked λ = 0.1 or λ = 0.01 to illustrate the differences in
the algorithm’s behavior (and we note that if you pick it too much larger, the
algorithm will diverge in some cases, as it did for the simple scalar quadratic
example considered earlier).

When you use the batch least squares initialization, with λ = 0.1, you get
For a fixed step size,
under very general
conditions,
asymptotically the map
will “oscillate” by
persistently trying to
match the most recent
data. Smaller step sizes
result in smaller
asymptotic oscillations,
but slower convergence.

the results shown in Figure 11.21 for the first 10 steps, in Figure 11.22 for the
last 10 steps, and in Figure 11.23 at k = 1000 steps. Notice that the algorithm
quickly tunes the shape to be a reasonable approximation, but that it does not
ultimately achieve the kind of approximation accuracy that was achieved with
the recursive least squares method in Section 10.5, even though it has what
is most likely a better initialization (the actual values found from batch least
squares, rather than the perturbed ones used there).

If you examine the shapes in Figure 11.22 for the last 10 steps, you find that
the accuracy found at k = 1000 is also found at earlier steps and the shape
changes at each iteration try to accommodate the new piece of training data
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Figure 11.21: Steepest descent training of a neural network, mapping shapes for
first 10 steps, batch least squares initialization, step size λ = 0.1.

(hence, the result in Figure 11.23 should only be taken as representative of the
shapes found). The shape is still moving around at k = 1000 (and will for higher
numbers of iterations also); it is not fixed at that point.

Next, if you use the batch least squares initialization, with λ = 0.01, you
get the results shown in Figure 11.24 for the first 10 steps, in Figure 11.25 for
the last 10 steps, and in Figure 11.26 after 1000 steps. Notice that with a
smaller value for λ, the shape initially changes slowly and also near the end.
Basically, the algorithm is less aggressive in trying to match each new piece of
training data. This may be a desirable characteristic of an algorithm for online
operation in some applications. Generally, larger step sizes will tend to force
the method to pay more significant attention to each new piece of data, while
smaller ones allow for it to partially ignore new data. There is generally a good
choice that will allow the algorithm to slowly shape the nonlinear mapping as
new information is gathered, allowing new information to partially reshape the
nonlinearity, but not too much so that the information encountered in the past
is not forgotten (some think of the algorithm as being “greedy” in seeking to
achieve the minimization, which in this case means that it tries to approximate
the information provided by the new piece of training data, with the amount of
greed proportional to the step size). Sometimes, to keep the shape from moving
around too much at each step, you have to use a very small step size, and then
generally you need more steps in the algorithm to get convergence.

Next, recall that we are presenting data to the algorithm where x is uniformly
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Figure 11.22: Steepest descent training of a neural network, mapping shapes for
last 10 steps, batch least squares initialization, step size λ = 0.1.

distributed on [−6, 6]. Now, if we are unlucky and we only get data in one region
of the x domain over several initial steps, then we generally will not get the kind
of initial accuracy that you see in Figure 11.21. Clearly if it does not have data
in certain regions, then it generally will do poor approximation in that region
(of course you may get lucky and it may do a good extrapolation). Generally,
the performance and convergence properties of the algorithm depend on the
order of presentation of the training data. Finally, note that while we have run
the algorithm for many iterations and the parameters did not diverge, we must
emphasize that this does not prove that they will not; it could be that after only
a few more iterations they will diverge. Generally, you must be very careful to
ensure boundedness for parameters that you adjust online and one way to do
this is to use a parameter constraint set (which we did not do here just to keep
things simple).

11.5.4 Approximator Tuning Results: Effects of Initializa-
tion

In this subsection, we will assume that λ = 0.01. First, we initialize the param-
eters that enter linearly to be all zero, as we did for the recursive least squares
method in Section 10.5. Using this initialization, we get the approximator map-
ping shown in Figure 11.27 after 1000 iterations (the plots for the first and last
ten steps are omitted as they are similar to the case above where we initialized
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Figure 11.23: Steepest descent training of a neural network, mapping shape
after 1000 steps, batch least squares initialization, step size λ = 0.1.

with batch least squares). At 1000 iterations, this approximator shape provides
an approximation accuracy that is clearly close to that shown in Figure 11.23.
It seems that in this case for this choice of training data (which is random), the
steepest descent method ultimately picked the parameters just as well as when
it had (what was probably) a better initialization. We can say that it seemed to
overcome the poor initialization in this case (of course, we cannot always expect
this).

When we initialize with all small random values, the results are shown in
Figure 11.28 after 1000 steps. The mapping shapes for the first 10 iterations
are not shown, but basically, it is as you would guess: little progress is seen
in coming up with a good approximation since λ is small and the initialization
is not very good. The mapping shapes for the last 10 iterations are close to
the one shown in k = 1000 in Figure 11.28, showing that it appears that the
mapping shape has converged. Hence, it seems that we have found that this
initialization, which is often used when you know nothing better about how to
initialize the mapping, results in poorer approximation accuracy as compared
to the others.

11.5.5 Can We Improve Approximation Accuracy?

Well, there are many things that you can try, but the choices depend on the
particular application. For the simple example we have been studying, there is
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Figure 11.24: Steepest descent training of a neural network, mapping shapes for
first 10 steps, batch least squares initialization, step size λ = 0.01.

clearly room for improvement of approximation accuracy, and there are several
options that become apparent after completion of the above investigations.

First, you could try to use a diminishing step size rule, such as the one that
starts with a certain step size and then decreases it to some minimum value.
For some applications, this can ensure that the initial data are quickly used
to tune the approximator to get a reasonable accuracy, but then the step size
decreases so that the oscillations in the shape of the mapping do not occur at
later iterations after it has learned more about the shape.

Second, you could try processing more than one data pair per step, for
instance, by “windowing” the data. Then, at each iteration, you would execute
several iterations of the gradient method to try to get the approximator to match
the function (often you would simply terminate the iterations after some fixed
number, since you will often be constrained by processor resources; however,
other times you could use a termination criterion at each step). This can help
alleviate the problems with the algorithm being too aggressive in seeking to
match the data pair just encountered. In such an approach, you could weight
the old data as being less important than the new data, just as we did in the
least squares approach with a forgetting factor. To do this, you would need to
add weighting factors to the cost function you are trying to minimize. Overall,
such an approach can offer improved accuracy but you are certainly paying for
it in computational complexity.

Third, you could try to use a different gradient method such as the Levenberg-
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Figure 11.25: Steepest descent training of a neural network, mapping shapes for
last 10 steps, batch least squares initialization, step size λ = 0.01.

Marquardt method, and again you may want to consider serially processing
batches of data as we discussed above (with the computational complexity gen-
erally increasing with an increase in the batch size). Why might this have a
chance at improving approximation accuracy? First, it should try to approxi-
mate a Newton method so that it should get fast convergence, but even with
tuning, you may get the type of behavior seen with the steepest descent method
where the mapping shape oscillates. Second, experience has shown that the
Levenberg-Marquardt approach is generally better than the steepest descent al-
gorithm for offline training, so we might find the same or similar benefits for
online training. At the same time, using a more sophisticated method can raise
other problems, such as ensuring that the inverse for the Levenberg-Marquardt
update formulas can be computed.

11.5.6 Local Vs. Global Tuning/Learning

It is interesting to consider how the mapping shape changes over time as we
have done in the recursive least squares case. To do this, we will return to
the first case where we had initialized with the batch least squares and had
λ = 0.1 (see Figures 11.21, 11.22, and 11.23), since this will most dramatically
illustrate the ideas here. Figure 11.21 shows the approximator nonlinearity for
the first 10 steps, and notice that for the first 5 steps, the approximator does
not have much data and hence the quality of approximation is quite poor. Next,
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Figure 11.26: Steepest descent training of a neural network, mapping shape
after 1000 steps, batch least squares initialization, step size λ = 0.01.

however, notice that at k = 6 a data pair is obtained, and the approximator
is tuned to provide a reasonable approximation to the given data (although it
does not match the data near x = 5 very well). At times k = 7, 8, 9, data are
obtained on the left side and the approximator shape changes very little. Now,
at k = 10, a data point is obtained on the right, but it does not modify the
approximator shape much to try to improve the accuracy, because the step size
is relatively small.

For some approximator
structures trained with
some methods, learning
in the present can
destroy what has been
learned in the past (the
stability-plasticity
dilemma).

What would we have liked to see in this initial sequence? Well, by k = 4, we
had data on the right side that the approximator did not match very well, and
we would have liked to see it do better. Then, when at steps k = 5, 6, 7, 8, 9,
it got data on the left side we would have liked to see it let the approximator
pass through the data gathered earlier, but also force the approximator to pass
through these new data. Then, when the data pair is gathered at k = 10, we
would like to have seen it adjust the approximator on the right, without disturb-
ing (forgetting) what it had already done on the left. In summary, we would
have liked it to have made “local” adjustments to the approximator nonlinear-
ity, depending on where it gathered data, so that it incrementally learns the
proper shape.

Such problems arise for a variety of reasons, such as step size choice, the
choice of using a gradient method, and only processing one data point at each
iteration; however, one other significant contributing factor can be the choice
of the approximator structure. For neural networks with sigmoid nonlineari-
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Figure 11.27: Steepest descent training of a neural network, mapping shape
after 1000 steps, parameters that enter linearly initialized to zero.

ties, and other approximators, a change in one parameter can change the whole
mapping shape (like the bias on the output layer, which shifts the whole plot
vertically up and down) so that when it should only be shaping the mapping
locally, where it got the training data it does so “globally.” At times, this is not
a problem as the method can sometimes be designed so that it shapes the non-
linearity appropriately, or since the neural network is a universal approximator,
it can provide for local learning too if it picks the parameters properly. Some-
times, however, it is difficult to achieve this with the neural network or with
other approximator structures. At times, it can be beneficial to force a type
of local learning to help overcome this problem by picking the nonlinear part
of the approximator to have functions that approximately have “local support”
(i.e., they are only positive in a certain domain of the input space) so that only
local adjustments are made. Radial basis function neural networks can achieve
local support as well as the Takagi-Sugeno fuzzy system with Gaussian input
membership functions.

11.6 Clustering for Classifiers and Approxima-
tors

It is important to realize that gradient methods are very general and applicable
to many optimization problems you can encounter in engineering. In particular,
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Figure 11.28: Steepest descent training of a neural network, mapping shape
after 1000 steps, parameters initialized to small random values.

they have been found to be useful in many roles in the development of intelligent
control systems. One area that they can be particularly useful is in the tuning of
nonlinearities to partition data vectors into different “classes” (the data vectors
can be numeric representations of the parameters of many different kinds of
objects, from computer vision and image processing data, to speech signals
and plant input-output data). These can then be used in “classifiers” that
can take a given input vector and indicate which of a finite set of classes that
input corresponds to. There is a wide variety of “pattern recognition” problems
that can use classification methods. In some approaches, the data vectors are
grouped into “clusters” that partition the data. Then, when an input is given,
the membership in each cluster is determined and the one it best matches is
declared to be the cluster that the data vector belongs to. In this way, even if
we get an input vector that is somewhat different from the center of the cluster
(e.g., due to noise), it can still correctly classify the object to the proper class.

There are also times when it is useful to use clustering to tune a portion of
an approximator to solve a function approximation problem. For instance, using
the “input portion” x of the training data set G, we can form clusters around
similar x vectors. Then we can use these clusters in the nonlinear portion of
the approximator (i.e., in the φ function) and train the remaining linear portion
of the approximator to solve a function approximation problem. Indeed, the
classification problem discussed above can be thought of as a type of function
approximation problem where the output portion of the training data y simply
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indicates which class x belongs to, where (x, y) ∈ G. It is for this reason that
many different approximators and training methods of the previous sections can
be used for the classification task.

In this section, after we explain how to use approximators as classifiers, we
show how to form clusters around data. The resulting methods will be shown
to provide either classifiers or function approximators. You can think of the
methods of this chapter as a different approach to tune nonlinear in the pa-
rameter approximators. Here, you first use a cost function that characterizes
quality of clustering to get the clusters, and hence the nonlinear portion of the
approximator. Then you can use a linear least squares criterion that charac-
terizes approximation accuracy to specify a least squares method to find the

Classifiers indicate
which group of data
(cluster) an input vector
belongs to (is associated
with).

parameters that enter linearly.

11.6.1 Using Approximators to Solve Classification Prob-
lems

We must emphasize that any of the methods developed in the previous sections
can be used as function approximators to solve a classification problem. To
explain how this is done in a bit more detail, note that the key to formulating
the classification problem as a function approximation problem is to start by
picking the data set and this will suggest whether you use a single- or multiple-
output approximator.

Single-Output Classifiers

One way is to assume that we have nc different classes that objects can belong to.
Here, our objects are characterized by (parameterized by) a vector of n numbers.
Suppose that these classes are simply labeled with numbers 1, 2, . . . , nc. Suppose
that we have M examples that pair objects with their classes, such as (x(i), y(i))
where x(i) is a specific data vector and y(i) ∈ {1, 2, . . . , nc} is its class. Clearly,
we can use these data to specify the training data set G and the resulting
approximator (which has n inputs and one output) can be trained to classify
the data. In such an approach, the output will be a scalar and you will have to
specify a method to determine which integer 1, 2, . . . , nc the output is closest to
in order to classify it into one of the finite number of possible classes.

Note that the issue of approximator structure choice can be very important
in the design of a classifier. For instance, suppose that nc = n = 2 and that the
input space is simply split by a line where vectors on one side of the line belong
to the first class and the ones on the other side belong to the second class. In this
case, it may be good to use a neural network with a logistic function since it can
then be tuned to provide for the splitting of the space along the line mentioned
above. If the two classes were defined by being in or out of a circular region,
then a different nonlinearity might work better. Which one? Usually the choice
is very application-dependent and requires significant insight into the problem;
however, in this case you may consider a normalized Gaussian function (like ξi

that we had used for the fuzzy systems) since it can then provide a function that
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naturally comes on in a circular region, and a function that comes on everywhere
but in a circular region. (Develop and sketch one to convince yourself of this.)

Similar issues in structure choice arise in the multi-output classifiers that we
discuss next.

Multiple-Output Classifiers

Another perhaps more common way to formulate the classification problem as
a function approximation problem is to construct a multi-output approximator
with nc outputs. View this multi-output system as nc multi-input single-output
systems. Consider how to train the jth output to classify whether the input
vector x is a member of class j where j ∈ {1, 2, . . . , nc}. Suppose that we have
M examples that pair objects with their classes but in a different way than in
the last subsection. Here, suppose that we have Mj data pairs (x(i), y(i)) where
x(i) is a specific data vector and y(i) ∈ {0, 1} where if x(i) is in class j, then
y(i) = 1 and if it is not in class j, then y(i) = 0. The entire data set for training
the classifier is simply the union of the data sets used to train each classifier
(then M =

∑nc

j=1 Mj for the data set G). Now, suppose that we have trained
the nc approximators with these data sets.

How does the classification process work? Suppose that we consider only the
jth classifier that tries to decide if the input vector is in the jth class. Suppose
that we call the approximator that was trained for this task Fj(x, θ) (of course,
θ is the parameter vector that resulted from the training process). For a given
x, we could test if Fj(x, θ) ≥ 0.5 and if it is, then we could indicate that x has
class j (and if it is not, then it is not of class j). There are several possible
problems with such an approach. First, for a given x there may be more than
one output that is greater than 0.5 so that a single vector could be classified as
being in two different classes (and often you would not want this). Second, it is
possible that there is no j such that the value of Fj(x, θ) ≥ 0.5 and in this case,
it does not know how to classify.

Hence, the common approach is to pick the output, say j∗, that has a max-
imum value and then indicate that x has class j∗. Mathematically, we say that
we decide that the given input x is of class j∗ where

j∗ = arg max
j=1,2,...,nc

{Fj(x, θ)}

(if there is more than one value that has the maximum value, then you simply
arbitrarily pick one). Note that with this approach, we will always have a unique
classification. But, of course, if all the values of Fj(x, θ) are close to zero, we
may not be very confident in the classification. In fact, in some applications it
may make sense to use the output of the classifier to indicate the confidence in
the classification.

11.6.2 Clustering Methods: Gradient Approaches

In this section we take a different approach to the classification problem from
in the last subsection. Here, we specify functions that are designed to partition
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data in certain ways and try to adjust the parameters of these functions so that
they group the data into clusters. We do not explicitly focus on a function
approximation problem; however, we note that these methods can be used with
other methods to construct approximators (e.g., see the next section, where
we couple a clustering method with a least squares approach to form a function
approximator). The clustering methods of this section could be used in a similar
role.

Cluster Functions

First, we give some examples of how to specify what we will call “cluster func-
tions” that are nonlinear functions designed to partition data. There are a wide
variety of possibilities for such functions and we only consider two here (the first
one will be studied in more detail in the next section).

Polynomial-Based Function: Let

vj = [vj
1, v

j
2, . . . , v

j
n]�

denote the jth “cluster center” where j = 1, 2, . . . , R. Let

pj(x) =

[
R∑

k=1

( |x − vj |2
|x − vk|2

) 1
m−1
]−1

(11.27)

j = 1, 2, . . . , R be the “polynomial-based” cluster functions. Here, we must have
m > 1. Note that m controls the “width” of all the clusters.

As an example, consider the case where n = 1 and R = 3. Let m = 2. A
plot of pj, j = 1, 2, 3 for the case where v1 = −5, v2 = 0, and v3 = 5 is shown
in Figure 11.29 (see top plot). We use a solid line for p1, a dashed line for p2,
and a dotted line for p3. Notice that the clusters provide “soft” partitions for
the x domain. When one function is near one, the others are near zero. At the
outer edges of the domain of x (i.e., for large |x| values), the cluster function
values all approach the same value.

A plot of pj , j = 1, 2, 3 for the case where v1 = −3, v2 = 6, and v3 = 1 is
shown in Figure 11.30 (see top plot). In this case, notice that it also achieves a
good partitioning of the x axis.

Gaussian-Based Function: For j = 1, 2, . . . , R, let

µj(x) =
n∏

i=1

exp

⎛
⎝−1

2

(
xi − cj

i

σj
i

)2
⎞
⎠

where cj
i is the point in the ith input xi where the function achieves a maximum,

and σj
i > 0 is the “width” of the function for the ith input. (This is simply the

Gaussian premise membership function used earlier for fuzzy systems.) We will
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Figure 11.29: Polynomial and Gaussian-based cluster functions.
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Figure 11.30: Polynomial and Gaussian-based cluster functions.
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use this function to construct another type of cluster function. In particular,
we “normalize the Gaussian functions” by letting

ξj =
µj(x)∑R
i=1 µi(x)

j = 1, 2, . . . , R. We can use these functions as cluster functions. Note that
in Takagi-Sugeno fuzzy systems, we used them to turn on and off different
consequent functions.

As an example, consider the case where n = 1 and R = 3. A plot of ξj ,
j = 1, 2, 3, for the case where c1

1 = −5, c2
1 = 0, and c3

1 = 5, with σ1
1 = 1, σ2

1 = 0.7,
and σ3

1 = 1, is shown in Figure 11.29 (see bottom plot). We use a solid line for
ξ1, a dashed line for ξ2, and a dotted line for ξ3. Notice that these functions
provide a different type of partitioning of the domain from the polynomial-based
function. Besides the shapes being different, at the outer edges of the domain,
all the points would be grouped together into the outermost cluster. Notice also
that the widths for all the functions can be different, while in the polynomial-
based case, the widths are all controlled by one parameter. This added flexibility
may or may not be useful (and of course, the polynomial-based function can be
modified to provide this characteristic).

It is also possible that a cluster of this type exhibits other shapes that may
be useful. For instance, it can be the case that one cluster can come on (i.e.,
achieve a value near one) in more than one region of the space. However, note
that due to the normalization (i.e., the division by the sum of the µi), the sum
of the cluster function values at any one x point must be one. This ensures that
as one cluster function increases, the others must decrease so that any input is
in a cluster in varying amounts and never completely in more than one cluster.

As an example, a plot of ξj , j = 1, 2, 3, for the case where c1
1 = −3, c2

1 = 6,
and c3

1 = 1, with σ1
1 = 1, σ2

1 = 0.1, and σ3
1 = 1, is shown in Figure 11.30 (see

bottom plot). Compare this to the result from the polynomial-based function
and notice that the result is quite different. Notice that here ξ3 is very near
one (i.e., it is on) for x ∈ [0, 5] and x ≥ 7. This characteristic of this cluster
function could be useful in some applications (but may be bad for others) and
provides for some interesting cluster shapes (not just the standard ones). For
instance, in the case where n = 2, it is possible to have what you may call
circular concentric clusters with a circle in the middle and doughnut-shaped
clusters centered around it.

Clustering Cost Functions

In this section we provide cost functions that we will seek to minimize to make
Clustering via a gradient
method involves
adjusting functions
representing clusters to
minimize a measure of
how the data are grouped
and separated.

the cluster functions partition the data.

Cost for Polynomial-Based Function: Consider the function

J(θ) =
M∑
i=1

R∑
j=1

(µij)m|x(i) − vj |2 (11.28)
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where m > 1, vj are the cluster centers, typically M >> R, and the µij are
scalars. Here, the parameter vector θ holds both the cluster centers and the µij

scalars. Intuitively, the µij for i = 1, ..., M and j = 1, ..., R are the grades of
membership of x(i) in the jth cluster. Typically, you would require that for each
i = 1, 2, . . . , M ,

∑R
j=1 µij = 1 so that the centers are placed so that no more

than one will have a value of 1 at any point on the input domain (this forces
us to solve a nonlinear optimization problem with constraints, and this will be
discussed below). The terms |x(i) − vj |2 are included to try to get the clusters
to be in the middle of the data. The (µij)2 values weight the terms |x(i)− vj |2
and they are adjusted so that the cluster centers will separate to find different
groups of data.

Cost for Gaussian-Based Function: Recall that cj
i is the point in the ith

input where the jth cluster center reaches a maximum. Let

cj = [cj
1, c

j
2, . . . , c

j
n]�

and think of this as a cluster center. Consider the function

J(θ) =
M∑
i=1

R∑
j=1

ξj(x(i))|x(i) − cj |2 (11.29)

Here, θ can hold both the cj and σj
i values. Sometimes, however, it may be

convenient to use the same value for all the σj
i and you may only want to adjust

that single value. Alternatively, you may simply want to fix the values of the
spreads, for instance, to be all the same value (this can simplify the optimization
problem). Conceptually, the cost function is closely related to the one used for
the polynomial-based function. Notice, however, that the clustering problem
for the Gaussian-based function is a nonlinear optimization problem without
constraints.

Cluster Adjustment Methods

For the cost function for the Gaussian-based function defined in the last section,
it is possible to define a gradient update formula and use it to iteratively update
the parameters of the cluster functions. The gradient ∇J(θ) can be found and

Specification of gradient
update formulas for
cluster functions requires
the same general
approach as for
approximators.

used with the methods of the last section. For instance, you may want to use
a steepest descent or Levenberg-Marquardt method to solve the minimization
problem. Clearly, standard initialization and termination issues for gradient
algorithms are relevant. Also, we must emphasize that there are no convergence
guarantees, so we will not know if we have found a global minimum of the cost
function.

The cost function for the polynomial-based function can also be minimized
but in doing so, we must guarantee that the method ensures that for each
i = 1, 2, . . . , M ,

∑R
j=1 µij = 1 (this is a constrained minimization problem). In

the next section we will show one method to do this.
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11.6.3 Fuzzy C-Means Clustering and Function Approxi-
mation

As indicated above, “clustering” is the partitioning of data into subsets or groups
We can use clustering
methods to tune the
parameters that enter
nonlinearly, and linear
least squares to tune the
parameters that enter
linearly. This is just one
of many possible
“hybrid” training
methods.

based on similarities between the data. Here, we will introduce a method to per-
form fuzzy clustering, where we seek to use fuzzy sets to define soft boundaries
to separate data into groups. The methods here are related to conventional
ones that have been developed in the field of pattern recognition. In the c-
means approach, we continue in the spirit of the previous methods in that we
use optimization to pick the clusters and, hence, the premise membership func-
tion parameters. The consequent parameters are chosen using the weighted
least squares approach developed earlier. In this way, we show one way to use a
clustering method in the construction of function approximators. The combined
least squares-clustering method has been called “clustering with optimal output
predefuzzification.”

Clustering for Specifying Rule Premises

Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets
or “clusters” based on similarities between the data, and can be implemented
using an algorithm called fuzzy c-means.

C-Means Cost Function: Fuzzy c-means is an iterative algorithm used to
find grades of membership µij (scalars) and cluster centers vj (vectors of di-
mension n × 1) to minimize the cost function

J(θ) =
M∑
i=1

R∑
j=1

(µij)m|x(i) − vj |2 (11.30)

where m > 1 is a design parameter. Here, M is the number of input-output data
pairs in the training data set G, R is the number of clusters (number of rules) we
wish to calculate, x(i) for i = 1, ..., M is the input portion of the input-output
training data pairs, vj = [vj

1, v
j
2, . . . , v

j
n]� for j = 1, ..., R are the cluster centers,

µij for i = 1, ..., M , and j = 1, ..., R is the grade of membership of x(i) in the
jth cluster. Also, |x| =

√
x�x where x is a vector. Intuitively, minimization of

J results in cluster centers being placed to represent groups (clusters) of data.

The Premises and Fuzzy System to be Constructed: Fuzzy cluster-
ing will be used to form the premise portion of the If-Then rules in the fuzzy
system we wish to construct. The process of “optimal output predefuzzifica-
tion” (least squares training for consequent parameters) is used to form the
consequent portion of the rules. We will combine fuzzy clustering and optimal
output predefuzzification to construct multi-input single-output fuzzy systems.
Extension of our discussion to multi-input multi-output systems can be done by
repeating the process for each of the outputs.
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In this section we utilize a Takagi-Sugeno fuzzy system in which the conse-
quent portion of the rule-base is a function of the crisp inputs such that

If Hj Then gj(x) = aj,0 + aj,1x1 + · · · + aj,nxn (11.31)

where n is the number of inputs and Hj is an input fuzzy set given by

Hj = {(x, µHj (x)) : x ∈ X1 × · · · × Xn} (11.32)

where Xi is the ith universe of discourse, and µHj (x) is the membership function
associated with Hj that represents the premise certainty for rule j; and gj(x) =
a�j x̂ where aj = [aj,0, aj,1 . . . , aj,n]� and x̂ = [1, x�]� where j = 1, . . . , R. The
resulting fuzzy system is a weighted average of the output gj(x) for j = 1, ..., R
and is given by

Fts(x, θ) =

∑R
j=1 gj(x)µHj (x)∑R

j=1 µHj (x)
(11.33)

where R is the number of rules in the rule-base. Next, we will use the Takagi-
Sugeno fuzzy model, fuzzy clustering, and optimal output defuzzification to
determine the parameters aj and µHj (x), which define the fuzzy system. We
will do this via a simple example.

Clustering Algorithm

We first discuss the choice of some of the parameters and initialization. Then
we will provide a method to iteratively update the cluster centers and µij . To
do this, we will use a simple example with the training data set

G =
{([

0
2

]
, 1
)

,

([
2
4

]
, 5
)

,

([
3
6

]
, 6
)}

(11.34)

as shown in Figure 11.31. For the clustering method, we will only use the input
portion of the training data; however, when we seek to form our approximator,
we will also use the output data.
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6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 yx

x

1

2

Figure 11.31: A simple training data set G.
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Initialization: To specify the clustering algorithm, we first specify a “fuzzi-
ness factor” m > 1, which is a parameter that determines the amount of overlap
of the clusters. If m > 1 is large, then points with less membership in the jth

cluster have less influence on the determination of the new cluster centers. Next,
we specify the number of clusters R we wish to calculate. The number of clus-
ters R equals the number of rules in the rule-base and must be less than or
equal to the number of data pairs in the training data set G (i.e., R ≤ M). We
also specify the error tolerance εc > 0, which is the amount of error allowed in
calculating the cluster centers. We initialize the cluster centers vj

0 via a random
number generator so that each component of vj

0 is no larger (smaller) than the
largest (smallest) corresponding component of the input portion of the training
data. The selection of vj

0, although somewhat arbitrary, may affect the final
solution.

For our simple example, we choose m = 2 (a typical choice) and R = 2, and
let εc = 0.001. Our initial cluster centers were randomly chosen to be

v1
0 =

[
1.89
3.76

]

and

v2
0 =

[
2.47
4.76

]
so that each component lies in between x1(i) and x2(i) for i = 1, 2, 3 (see the
definition of G in Equation (11.34)).

Cluster Center Calculations: Next, we compute the new cluster centers vj

based on the previous cluster centers to try to minimize the cost function in
Equation (11.30). The necessary conditions for minimizing J are given by using
Lagrange multiplier theory as

vj
new =

∑M
i=1 x(i)(µnew

ij )m∑M
i=1(µ

new
ij )m

(11.35)

where

µnew
ij =

⎡
⎣ R∑

k=1

(
|x(i) − vj

old|2
|x(i) − vk

old|2
) 1

m−1
⎤
⎦−1

(11.36)

for each i = 1, . . . , M and for each j = 1, 2, . . . , R such that
∑R

j=1 µnew
ij = 1

(and |x|2 = x�x). In Equation (11.36), we see that it is possible that there
exists an i = 1, 2, . . . , M such that |x(i) − vj

old|2 = 0 for some j = 1, 2, . . . , R.
In this case, the µnew

ij is undefined. To fix this problem, let µij for all i be any
nonnegative numbers such that

∑R
j=1 µij = 1 and µij = 0, if |x(i) − vj

old|2 �= 0.
Using Equation (11.36) for our example with vj

old = vj
0, j = 1, 2, we find that

µnew
11 = 0.6729, µnew

12 = 0.3271, µnew
21 = 0.9197, µnew

22 = 0.0803, µnew
31 = 0.2254,
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and µnew
32 = 0.7746. We use these µnew

ij from Equation (11.36) to calculate the
new cluster centers

v1
new =

[
1.366
3.4043

]
and

v2
new =

[
2.5410
5.3820

]
using Equation (11.35).

Testing for Termination: Next, we compare the distances between the cur-
rent cluster centers vj

new and the previous cluster centers vj
old (which for the

first step is vj
0). If |vj

new − vj
old| < εc for all j = 1, 2, . . . , R, then the cluster

centers vj
new accurately represent the input data, the fuzzy clustering algorithm

is terminated, and we proceed to the optimal output defuzzification algorithm
(see below) where we use a least squares method. Otherwise, we continue to
iteratively use Equations (11.35) and (11.36) until we find cluster centers vj

new

that satisfy |vj
new − vj

old| < εc for all j = 1, 2, . . . , R. For our example, vj
old = vj

0,
and we see that |vj

new − vj
old| = 0.6328 for j = 1 and 0.6260 for j = 2. Both of

these values are greater than εc, so we continue to update the cluster centers.
Proceeding to the next iteration, let vj

old = vj
new, j = 1, 2, . . . , R from

the last iteration, and apply Equations (11.35) and (11.36) to find µnew
11 =

0.8233, µnew
12 = 0.1767, µnew

21 = 0.7445, µnew
22 = 0.2555, µnew

31 = 0.0593, and
µnew

32 = 0.9407 using the cluster centers calculated above, yielding the new
cluster centers

v1
new =

[
0.9056
2.9084

]
and

v2
new =

[
2.8381
5.7397

]
Computing the distances between these cluster centers and the previous ones,
we find that |vj

new −vj
old| > εc, so the algorithm continues. It takes 14 iterations

before the algorithm terminates (i.e., before we have |vj
new − vj

old| ≤ εc = 0.001
for all j = 1, 2, . . . , R). When it does terminate, name the final membership
grade values µij and cluster centers vj , i = 1, 2, . . . , M , j = 1, 2, . . . , R.

Finding the Final Cluster Center Values: For our example, after 14
iterations the algorithm finds µ11 = 0.9994, µ12 = 0.0006, µ21 = 0.1875,
µ22 = 0.8125, µ31 = 0.0345, µ32 = 0.9655,

v1 =
[

0.0714
2.0725

]

and

v2 =
[

2.5854
5.1707

]
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Notice that the clusters have converged so that v1 is near x(1) = [0, 2]� and v2

lies in between x(2) = [2, 4]� and x(3) = [3, 6]�.

Specifying the Premise Membership Function: The final values of vj ,
j = 1, 2, . . . , R, are used to specify the premise membership functions for the
ith rule. In particular, we specify the premise membership functions as

µHj (x) =

[
R∑

k=1

( |x − vj |2
|x − vk|2

) 1
m−1
]−1

(11.37)

j = 1, 2, . . . , R where vj , j = 1, 2, . . . , R are the cluster centers from the last
iteration that uses Equations (11.35) and (11.36). It is interesting to note that
for large values of m, we get smoother (less distinctive) membership functions.
This is the primary guideline to use in selecting the value of m; however, often
a good first choice is m = 2. Next, note that µHj (x) is a premise membership
function that is different from any that we have considered. With the premises
of the rules defined, we next specify the consequent portion.

Least Squares for Specifying Rule Consequents

We apply “optimal output predefuzzification” to the training data to calculate
the function gj(x) = a�

j x̂, j = 1, 2, . . . , R for each rule (i.e., each cluster center),
by determining the parameters aj . There are two methods you can use to find
the aj .

Approach 1: For each cluster center vj , in this approach we wish to minimize
the squared error between the function gj(x) and the output portion of the
training data pairs. Let x̂(i) = [1, (x(i))�]� where (x(i), y(i)) ∈ G. We wish to
minimize the cost function Jj given by

We may use the µij

from the clusters to
weight the batch least
squares calculation so
that the linear
approximations pertain
to each cluster.

Jj =
M∑
i=1

(µij)2
(
y(i) − (x̂(i))�aj

)2
(11.38)

for each j = 1, 2, . . . , R where µij is the grade of membership of the input
portion of the ith data pair for the jth cluster that resulted from the clustering
algorithm after it converged, y(i) is the output portion of the ith data pair from
G, (x(i), y(i)), and the multiplication of (x̂(i))� and aj defines the output gj(x)
associated with the jth rule for the ith training data point.

Looking at Equation (11.38), we see that the minimization of Jj via the
choice of the aj is a weighted least squares problem. From Equation (10.2)
on page 424, the solution aj for j = 1, 2, . . . , R to the weighted least squares
problem is given by

aj = (X̂�D2
j X̂)−1X̂�D2

j Y (11.39)
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where

X̂ =
[

1 ... 1
x(1) ... x(M)

]�
Y = [y(1), . . . , y(M)]�,

D2
j = (diag([µ1j , . . . , µMj ]))

2

For our example, the parameters that satisfy the linear function gj(x) = a�
j x̂(i)

for j = 1, 2 such that Jj in Equation (11.38) is minimized, were found to be
a1 = [3, 2.999,−1]� and a2 = [3, 3,−1]�, which are very close to each other.

Approach 2: As an alternative approach, rather than solving R least squares
problems, one for each rule, we can use the least squares methods to specify
the consequent parameters of the Takagi-Sugeno fuzzy system. To do this, we
simply parameterize the Takagi-Sugeno fuzzy system in Equation (11.33) in a
form so that it is linear in the consequent parameters; then we can use batch
or recursive least squares methods to find the parameters. Unless we indicate
otherwise, we will always use approach 1 in this book.

Testing the Approximator

Suppose that we use approach 1 to specify the rule consequents. To test how
accurately the constructed fuzzy system represents the training data set G in
Figure 11.31 on page 537, suppose that we choose the test point x′ such that
(x′, y′) �∈ G. Specifically, we choose

x′ =
[

1
2

]
We would expect from Figure 11.31 that the output of the fuzzy system would
lie somewhere between 1 and 5. The output is 3.9999, so we see that the trained
Takagi-Sugeno fuzzy system seems to interpolate adequately. Notice also that
if we let x = x(i), i = 1, 2, 3 where (x(i), y(i)) ∈ G, we get values very close to
the y(i), i = 1, 2, 3, respectively. That is, for this example, the fuzzy system
nearly perfectly maps the training data pairs. We also note that if the input to
the fuzzy system is x = [2.5, 5]�, the output is 5.5, so the fuzzy system seems
to perform good interpolation near the training data points.

Finally, we note that the aj will clearly not always be as close to each other
as for this example. For instance, if we add the data pair ([4, 5]�, 5.5) to G
(i.e., make M = 4), then the cluster centers converge after 13 iterations (using
the same parameters m and εc as we did earlier). Using approach 1 to find the
consequent parameters, we get

a1 = [−1.458, 0.7307, 1.2307]�

and
a2 = [2.999, 0.00004, 0.5]�
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For the resulting fuzzy system, if we let x = [1, 2]� in Equation (11.33), we get
an output value of 1.8378, so we see that it performs differently from the case
for M = 3 but still provides a reasonable interpolated value.

11.7 Neural or Fuzzy: Which is Better? Bad

Question!

If you are asking this question, it shows that you do not understand the funda-
mental concepts!

• You should be concerned about whether your training data carries the
proper information to perform good approximation. Is the training data
set large enough? Is the test set large enough? Does your measure of
approximation accuracy properly reflect your approximation goals? Did
you start with a simple linear (or affine) approximator and a linear least
squares method? For many applications this can be sufficient; you only
need all the capabilities of neural or fuzzy system approximators if you
have a nonlinear approximation problem.

• You should realize that for practical applications, the choice of which is
the best approximator structure is very difficult and you cannot quickly
conclude that one is better than another.

• You should be concerned with approximator complexity and approximator
tunability for your application. For example, via experience have you
found that a certain type of structure works well? Or, based on physical
insights, can you use nonlinear functions of input data as inputs to your
approximator?

• You should ask whether to use a local or globally supported basis function
(i.e., one that only has a local influence on the approximator mapping, or
one that, if it is changed, can change the shape over the whole region of
the mapping).

• You should ask whether you have too many inputs (i.e., too large a value
for n) so that it is not possible to use a grid if you are using a locally
supported basis function (i.e., you should be concerned with the impact
of how many inputs you have on the computational complexity in approx-
imator structure choice).

• You should ask whether you should use a linear or nonlinear in the pa-
rameter approximator, since this affects tuning flexibility and training
algorithm performance.

The names “neural” or “fuzzy” are largely attached simply for historical pur-
poses due to the fields that they came from. Really you need to think of the
basics, not this terminology. Focus on generalization, overfitting, complexity,
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and composition of the data set. Generally, structure choice is quite difficult
so it needs attention; however, methods to automate the construction of the
structure are discussed in the “For Further Study” section at the end of this
part.

11.8 Exercises and Design Problems

Exercise 11.1 (Matlab for Neural Network Training):

(a) Suppose you use a multilayer perceptron with two layers, the first
layer has n1 = 11 logistic function neurons, and the output layer has a
single linear neuron. Use a software package (e.g., the Matlab Neural
Networks toolbox) to match the training data shown in Figure 9.10
(this defines G and here use M = 121). Train with the Levenberg-
Marquardt method. While you train with 121 data pairs, test with
about 10 times that many. Plot the approximator mapping and data
on the same plot to evaluate the accuracy of the interpolation.

(b) Train with a conjugate gradient method and compare to the result
in (a).

(c) Train with steepest descent and compare to the results in (a) and
(b).

Exercise 11.2 (Levenberg-Marquardt Update Formulas for Neural
Networks):

(a) Derive the Levenberg-Marquardt parameter update formulas for a
two-layer multilayer perceptron with a linear output layer and hy-
perbolic tangent activation functions in the hidden layer. Assume
that you update all weights and biases in the network (i.e., both the
parameters that enter linearly and those that enter in a nonlinear
fashion).

(b) Repeat (a), but for a radial basis function neural network where
the output is computed as a sum of Gaussian receptive field units.
Assume that you update all parameters in the network (i.e., both the
parameters that enter linearly and those that enter in a nonlinear
fashion).

(c) For both (a) and (b), solve the function approximation theme prob-
lem given in this chapter. Clearly explain all your choices for the
approximator structure and training method. Illustrate generaliza-
tion properties of the approximators after they are trained.

Design Problem 11.1 (Fuzzy C-Means and Least Squares for Ap-
proximator Tuning):

(a) Use fuzzy c-means and least squares for tuning the special type of
Takagi-Sugeno fuzzy system given in the chapter to solve the function
approximation theme problem studied throughout this chapter.
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(b) Illustrate its generalization capabilities and that it makes reasonable
choices for cluster placement (plot the final clusters on the same plot
as the function you are trying to approximate).

(c) Compare the results to what you obtained in Exercise 11.2 where
neural networks and Levenberg-Marquardt training were used.

Design Problem 11.2 (Structural Plasticity and Approximators)�:
The human brain and the brains of many other animals learn not only via
parameter adjustment (the adjustment of strengths between connections
in the biological neural network), but also by growing new neuronal con-
nections and destroying others. In this problem you will learn methods for
constructing the structure of approximators. For example, in the case of
multilayer perceptrons, some methods automatically pick the number of
neurons used in each layer, and some of the methods use biomimicry con-
cepts based on biological neural networks. Alternatively, with our unified
view of approximators, we can consider how to construct the structure of
a fuzzy system. For instance, we may study how to automatically pick
the number of rules or membership functions.

(a) First, you must conduct some background research. Read the papers
[295, 431] and see the book [412] for ideas on how to construct the
number of rules in a fuzzy system.

(b) Explain in detail how the neural network methods can be used for
fuzzy systems. To do this, pick a standard fuzzy system and define
the algorithms for its construction. Are there methods developed in
the area of neural networks that do not seem to apply to any fuzzy
system?

(c) Choose a method from one of the above references, specify a struc-
ture construction/destruction algorithm, develop code to implement
it, and test it for the theme problem that was studied in this chap-
ter. For many methods this will involve specifying how structure is
adjusted, and the use of a standard training method (e.g, gradient
or least squares) as found in the chapter. Be sure to use appropriate
training and test sets, and clearly illustrate the performance of the
method. If possible, compare it to the results in the chapter where
only the parameters were tuned, not the structure.

(d) Invent a method for tuning structure of an approximator. You choose
the type of approximator you want to study. Hint: Suppose that you
have a low-dimensional function to approximate (e.g., one output and
two inputs). Suppose that your training data set is G and test set
is Γ. Suppose that you grid the input space, calling each subregion
a “cell,” and label these ci, i = 1, 2, . . . , Ng where Ng is the number
of cells created by the number of partitions on the jth input space
xj (we assume that the number of divisions on each input dimension
is the same, but clearly this is just for convenience). Suppose that
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you use a test set Γa and a cost function Ja that is defined to be
the approximation error in each cell ci between the approximator
and the actual function for Γa. In particular, if ci is a cell (e.g., a
square if the dimension of the input space is 2), then Ja(ci) could be
defined to be the average mean squared error over points in the test
set Γa that lie in ci (clearly, then, to make this a reasonable definition
you would want Γa to have points in each cell created by the input
space gridding). Suppose that there are no common points in Γa,
G, and Γ. Suppose that |G| < |Γ| (with the difference in size large
enough so that you can achieve good function approximation for a
fixed size approximator, and for any value that you adjust p to be in
your structure adjustment method). Also, suppose that |Γa| is large
enough to be representative of the approximation error, no matter
how you adjust the structure (e.g., it could be that |Γa| = |Γ|).

Now, view the approximator construction problem as a two-level
optimization problem. In particular, we will view it as a type of mul-
tilevel reinforcement learning approach, and hence, it is a gradient-
type method. For any fixed structure (i.e., fixed p), we will tune
with a standard gradient method (e.g., Levenberg-Marquardt). This
tuning will occur interleaved with structure adjustments; there will
be a structure adjustment, then multiple steps of the standard gra-
dient method will be executed (e.g., until some termination criterion
is satisfied) before the next structure adjustment. How do we then
make structure adjustments? There are many ways. One way is to
adjust the structure of the approximator to try to achieve the min-
imization of Ja. Choose some threshold ε > 0 that represents what
you consider to be an acceptable level of approximation error in any
cell ci. Suppose that we try to adjust an approximator structure
that is based on gridding the input space with basis functions (e.g.,
the radial basis function neural network or several types of fuzzy
systems). To be more concrete, suppose that we adjust radial ba-
sis function neural networks with their radial basis functions defined
to be Gaussian functions with centers that our structure adjustment
method will place (for simplicity, let the parameters that enter lin-
early be adjusted only after structure adjustments are made in the
step where we use gradient training). Adjust structure as follows:

1. Compute Ja(ci), i = 1, 2, . . . , Ng, over the test set Γa.
2. If for some i, Ja(ci) > ε, then randomly place λaddint(|Ja(ci) −

ε|) (int(·) is the integer part of its argument) new radial basis
functions in the region ci, where λadd > 0 can be thought of as
a step size for the structure adjustment algorithm in the case
where structure is added.

3. If for some i, Ja(ci) ≤ ε, then randomly remove λsubint(|Ja(ci)−
ε|) radial basis functions from the region ci, where λsub > 0
can be thought of as a step size for the structure adjustment
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algorithm in the case where structure is deleted.
4. Go to standard gradient method for parameter adjustments.

The goal of the method is to try to achieve an error of ε in each cell.
Why not just try for zero approximation error in each cell? This
will in general require an infinite number of radial basis functions;
we pay for accuracy with complexity. The addition of more radial
basis functions allows for more accurate function approximation in
regions where they are added. Removal of radial basis functions can
result in lower approximation accuracy where they are removed. The
algorithm will tend to redistribute the centers so as to allocate them
where more accuracy is needed.

Fully test this algorithm for both n = 1 and n = 2, showing how it
reshapes the approximator mapping (show plots) and reallocates the
radial basis function centers. Explain why you can view the above
approach as a reinforcement-based learning method for structure,
and in particular, write down the update equation that clearly shows
it is a gradient-type method. What is the reinforcement function?
Next, can you achieve a simpler approximator structure with this
approach than with the one you would construct manually? Does the
gridding approach that this method is based on make it impossible to
apply to high-dimensional function approximation problems? If not,
explain. If so, which method from the literature would do better?
Next, explain how you could redesign the algorithm so that it can be
used for online function construction.
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To illustrate how function approximation and online function approximation
can be used as the basis for learning in control, in this chapter we will show
how they can be used in adaptive control. We first consider online approxi-
mation based control where neural networks or fuzzy systems are used as the
approximator structure for nonlinear discrete-time systems. It should be clear
that we could have just as easily used other approximators (e.g., polynomials or
wavelets). We consider the discrete-time case since we developed our parameter
update formulas for approximators (e.g., least squares and gradient) in this part
for this case and they are easy to understand. For the discrete-time case, we will
not prove that the resulting closed-loop systems are stable, and indeed we will at
times violate certain assumptions that are typically needed to ensure stability.
Hence, strictly speaking, like Section 9.4, the first part of this chapter focuses
on the heuristic construction of adaptive controllers. In contrast to Section 9.4
where we use simple bio-inspired adaptation heuristics, here the focus is on how
to use optimization methods to construct adaptive controllers. Of course, both
cases can be considered to be methods to use heuristics to construct adaptive
systems; it is just that for the case where we consider discrete-time systems, the
optimization methods form a clear basis for our heuristics.

In the last section of this chapter, we will consider the continuous time case
and focus on showing how to achieve stable adaptive control when either neural
or fuzzy systems are used as online approximators. This section is, however,
brief, and the interested reader is referred to the “For Further Study” section
at the end of this part for more detailed treatments.

12.1 Strategies for Adaptive Control

First, we briefly overview the two strategies for adaptive control that are our
primary focus in this chapter. A variety of other ways to incorporate learning
into control systems are discussed in Section 9.4.5. Keep in mind that all of
these methods bear very close relationships to the work in conventional adaptive
control (see “For Further Study” for references).

12.1.1 Indirect Adaptive Control

There are (at least) two general approaches to adaptive control, and in the first
one, which is depicted in Figure 12.1, we use an online identification method to

Indirect adaptive control
entails estimating a
model of the plant and
using it to specify the
control input.

estimate the plant input-output mapping (by estimating the parameters of an
“identifier model”) and a “controller designer” module to subsequently specify
the parameters of the controller. Generally, you can think of indirect adaptive
control as automating the model-building and control design process that we
use for fixed controllers (e.g., in Part II).

If the plant input-output mapping changes, the identifier will provide esti-
mates of these changes and the controller designer will subsequently tune the
controller. It is inherently assumed that we are certain that the estimated plant
mapping is equivalent to the actual one at all times (this is called the “certainty
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PlantController

System
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Controller
designer

r(t) u(t) y(t)

Plant
parameters

Controller
parameters

Figure 12.1: Indirect adaptive control.

equivalence principle”). Then if the controller designer can specify a controller
for each set of plant parameter estimates, it will succeed in controlling the plant.
The overall approach is called “indirect adaptive control” since we tune the con-
troller indirectly by first estimating the plant parameters (as opposed to direct
adaptive control, which is discussed below, where the controller parameters are
estimated directly without first identifying the plant parameters).

The structure used for the identifier model could be linear with adjustable
coefficients. Alternatively, it could be a neural or fuzzy system with tunable pa-
rameters that enter in a linear or nonlinear fashion (e.g., membership function
parameters or weights and biases). In this case, the model that is being tuned
is a nonlinear function. Since the plant is assumed to be unknown, the non-
linear mapping it implements is unknown. In adjusting the nonlinear mapping
implemented by the neural or fuzzy system to match the unknown nonlinear
mapping of the plant, we are solving an online function approximation problem.
Normally, gradient or least squares methods are used to tune neural or fuzzy
systems for indirect adaptive control (although sometimes problem-dependent
heuristics have been found to be useful for practical applications).

Alternatively, you could use an optimization method based on biomimicry of
an individual foraging animal (see Part V); in this case, we think of parameter
adjustments as foraging for model information. Other times, a genetic algorithm
has been employed for such online model tuning, or more generally for the
evolution of the entire indirect adaptive control strategy. In one genetic adaptive
control strategy, a set (population) of identifier models is evolved online, and
the best one is used at each time instant in a certainty equivalence control law
to specify the control input. This is studied in Section 16.5.

12.1.2 Direct Adaptive Control

In the second general approach to adaptive control we study in this chapter,
which is shown in Figure 12.2, the “adaptation mechanism” observes the signals
from the control system and adapts the parameters of the controller to maintain
performance even if there are changes in the plant. Sometimes, in either the
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direct or indirect adaptive controllers, the desired performance is characterized
with a “reference model,” and the controller then seeks to make the closed-loop
system behave as the reference model would, even if the plant changes. This is
called “model reference adaptive control” (MRAC).

PlantController

Adaptation
mechanism

r(t) u(t) y(t)

Figure 12.2: Direct adaptive control.

Direct adaptive control
entails tuning the
controller to improve a
performance measure
that leads to improved
closed-loop performance.

In neural control or adaptive fuzzy control, the controller is implemented
with a neural or fuzzy system, respectively. Normally, gradient or least squares
methods are used to tune the controller. Also, many heuristic direct adap-
tive control methods have been developed, for instance, based on reinforcement
learning control. Two such methods were studied in Section 9.4.

Alternatively, you could use an optimization method based on biomimicry of
foraging; in this case, we think of controller parameter adjustments as foraging
for information on how the controller should behave (see Part V). Clearly, since
the genetic algorithm is also an optimization method, it can be used to tune
neural or fuzzy system mappings when they are used as controllers also. The key
to making such a controller work is to provide a way to define a fitness function
for evaluating the quality of a population of controllers (in one approach, a
model of the plant is used to predict into the future how each controller in the
population will perform). Then, the most fit controller in the population is used
at each step to control the plant. This is studied in Section 16.5.

12.2 Classes of Nonlinear Discrete-Time Systems

In this section we will outline some classes of plants that we will consider in this
chapter, and we provide some simple examples to highlight some key character-
istics of these.

12.2.1 Nonlinear Discrete-Time Systems

Consider the control of plants that can be described with

y(k + d) = f(x(k), u(k)) (12.1)
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where f(x(k), u(k)) is a smooth (but unknown) function of its arguments, u(k)
is the measurable (scalar) input, y(k) is the measurable (scalar) output, d ≥ 1
is the delay between the input and output, and x(k) is the state vector where

x(k) = [y(k), y(k − 1), . . . , y(k − n), u(k − 1), u(k − 2), . . . , u(k − m)]� (12.2)

for some n ≥ 0 and m ≥ 0. Clearly, this class of plants is quite general. It allows
for unknown nonlinear dependencies on plant parameters and the past values
of the inputs and outputs. Note, however, that it is assumed that f depends
on x(k) and u(k), not k (i.e., we do not consider f(x(k), u(k), k)). Hence, we
consider time-invariant systems; the mapping shape is fixed but unknown. Also,
it is assumed that d, m, and n are constant and known (we do not allow for a
time-varying delay between the input and output). In some practical problems
you may not know them, so you may have to try different choices, perhaps with
guidance from some experiments designed to help find their values (e.g., you
may be able to apply some inputs and observe the outputs to see how many
time steps it takes for the effect of the input to reach the output, and this can
be useful to estimate d). Also, note that for practical problems it may be that
some of the elements of the x(k) vector may be missing, yet we will typically
include them unless we have some good a priori knowledge about the plant. We
do this simply because, without knowing any better, it seems best to include
all past inputs and outputs, up to the one that last affected y(k + d) (note that
the amount of “memory” in the system affects the size of n and m). For the
direct adaptive control case, we will consider certain subclasses of this type of
nonlinear system.

In the indirect adaptive control case, we also consider a special subclass of
plants that can be represented by

y(k + d) = α(x(k)) + β(x(k))u(k) (12.3)

where α(x(k)) and β(x(k)) are unknown smooth functions of the state x(k) that
is defined in Equation (12.2). Notice that while in this case we cannot consider
plants where y(k + d) is a nonlinear function of u(k), it can be a nonlinear
function of past values of u. We will also make certain assumptions about
β(x(k)), such as requiring it to be bounded away from zero, or bounded from
above by a constant. This class of plants is one that will also work for the direct
adaptive control case we consider.

12.2.2 Example: Linear Systems with Unknown Constant
Coefficients

Clearly, the above classes of systems include linear discrete-time systems with
constant but unknown coefficients. In particular, let d = 1 and

y(k + 1) = a1y(k) + a2y(k − 1) + · · · + an+1y(k − n)
+b1u(k) + b2u(k − 1) + · · · + bm+1u(k − m)
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where the ai, i = 1, 2, . . . , n + 1, and bi, i = 1, 2, . . . , m + 1, are unknown but
constant scalars. If we let

α(x(k)) = a1y(k)+a2y(k−1)+· · ·+an+1y(k−n)+b2u(k−1)+· · ·+bm+1u(k−m)

and
β(x(k)) = b1

then
y(k + 1) = α(x(k)) + β(x(k))u(k)

so that the model clearly fits the form in Equation (12.3).

12.3 Indirect Adaptive Neural/Fuzzy Control

Here, we introduce an indirect adaptive control scheme based on the use of
online approximation with neural networks or fuzzy systems. We will focus on
developing the controller to track a reference input r(k) where |r(k)| is bounded
by a finite constant. We will define the tracking error as e(k) = r(k) − y(k).

12.3.1 Estimators and Certainty Equivalence Controller

As indicated above, we will consider the discrete-time system of the form

y(k + d) = α(x(k)) + β(x(k))u(k) (12.4)
= αu(x(k)) + αk(k) + (βu(x(k)) + βk(k))u(k) (12.5)

The functions αu(x(k)) and βu(x(k)), defined above, represent the unknown
nonlinear dynamics of the plant (of course, we assume these functions are
smooth). It is these functions that we want to estimate so that we can specify a
controller. Notice also that we have defined αk(k) and βk(k) to be known parts
of the plant dynamics. While these can be set to zero and the approach to be
developed will still work, there are times in practical applications where you
know portions of the nonlinear dynamics and hence, it makes sense to include
this sort of knowledge in the adaptation scheme.

We assume β(x(k)) to satisfy

0 < β0 ≤ β(x(k)) (12.6)

for some known β0 > 0 for all x(k). This places a restriction on the class of
plants that we can consider. Intuitively, we require that the gain on u(k) be
bounded from below due to how an estimate of β will be used to specify the
control. It is also possible to develop a scheme where β(x(k)) is known to be
negative and bounded from above by a constant that is less than zero.
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Estimating an Unknown Ideal Controller

If we assume r(k + d) is known, which is reasonable for many applications since
this is specified by the user, we know that there exists an “ideal” controller

u∗(k) =
−α(x(k)) + r(k + d)

β(x(k))
, (12.7)

that linearizes the dynamics of Equation (12.4) such that y(k) → r(k). To see
this, substitute u(k) = u∗(k) in Equation (12.3) to obtain

y(k + d) = r(k + d)

so that we achieve tracking of the reference input within d steps. The problem
is that u∗(k) above is not known because we do not know α(x(k)) or β(x(k)).
Here, we will develop an estimator for these plant nonlinearities and use them
to form an approximation to u∗(k).

In particular, we estimate the unknown α(x(k)) and β(x(k)) mappings with
two different linear in the parameter approximators. Let

αu(x(k)) = θ∗�α φα(x(k)) + wα(k + d) (12.8)
βu(x(k)) = θ∗�β φβ(x(k)) + wβ(k + d) (12.9)

Here, wα and wβ are the representation errors that arise due to the use of a finite
size approximator. (Recall that from the universal approximation property, if
we let p, the number of parameters of the approximator, be arbitrarily large, we
could make the representation errors arbitrarily small on a closed and bounded
set.) For design, we will often have to experiment with different values of p to
find an approximator that is simple, but still flexible enough, to be tuned to
find the proper shape of the unknown nonlinearity.

Note that above, we assume that θ∗α and θ∗β are the “ideal parameters” for
αu(x(k)) and βu(x(k)), In particular, these are

θ∗α = argmin θα ∈ Ωα

(
sup
x∈Sx

∣∣θ�α φα(x) − αu(x)
∣∣)

θ∗β = argmin θβ ∈ Ωβ

(
sup
x∈Sx

∣∣θ�β φβ(x) − βu(x)
∣∣) (12.10)

Here, Ωα ⊂ 	pα and Ωβ ⊂ 	pβ are the convex and closed bounded sets contain-
ing the feasible parameter vectors θα and θβ , respectively. Here, we will simply
assume that these are defined similar to those in Section 11.1.6; in particular,
we simply assume that we know feasible ranges of values for each component of
the indicated vectors. Note that we assume that θ∗α and θ∗β are unknown con-
stants. We do not need to know them to specify the controller, but will develop
methods to estimate them to try to specify the control. We will see that even if
they cannot be approximated very well, it may still be possible to achieve good
tracking.



12.3 Indirect Adaptive Neural/Fuzzy Control 555

Next, note that Sx ⊂ 	n+m+1 is assumed to be a closed and bounded set
and we assume that we know an a priori bound on its size; we will think of it
as the range of validity of the approximators. In particular, we will define our
approximators to have good accuracy over a range of their domain and then let
Sx be this region of the domain. Basically, you cannot expect to do good control
in regions of the domain where you have not allocated enough approximator
structure; otherwise, you are expecting it to perform good extrapolation which
is often not possible. For physical plants it is often clear how to specify the
approximator to cover an appropriate Sx.

Certainty Equivalence Controller

Using a “certainty equivalence approach,” the control input is defined as
The certainty
equivalence approach
entails specifying a
control input using an
estimate of the plant
model that would cancel
appropriate plant
dynamics and achieve
good tracking if the
estimate was accurate.

u(k) =
−α̂(x(k)) + r(k + d)

β̂(x(k))
, (12.11)

where α̂(x(k)) and β̂(x(k)) are estimates of α(x(k)) and β(x(k)), respectively,
defined as

α̂(x(k)) = θ�α (k)φα(x(k)) + αk(k) (12.12)

β̂(x(k)) = θ�β (k)φβ(x(k)) + βk(k). (12.13)

We will use optimization methods (e.g., gradient or least squares) to pick θα(k)
and θβ(k) to try to minimize the approximation error. We include αk(k) and
βk(k) to provide knowledge that we may have about the nonlinear form of the
plant dynamics (if you have good information, then the approximator will simply
try to estimate the deviation from the known dynamics and sometimes this is
easier and performance can be improved).

Projection algorithms can be used to ensure that θα(k) ∈ Ωα and θβ(k) ∈ Ωβ

for all k. Projection algorithms may also be used to ensure that β̂(x(k)) ≥ β0 so
that the control signal is well defined. Note that, for instance, if we know that
each element of the φβ vector is always positive (which it is for a radial basis
function neural network with receptive field units that are Gaussian functions
and for certain fuzzy systems), then to ensure that β̂(x(k)) ≥ β0, we can simply
use a projection method to keep each component of θβ(k) greater than or equal
to β0.

12.3.2 Error Equations and Representation Error Bounds

Next, we derive an expression for the tracking error that results from the above
definitions. Also, we quantify the “combined” approximation error that results
from using the two linear in the parameter approximators.

Linear Error Equations

The tracking error e(k) = r(k) − y(k) and if we advance time by d steps

e(k + d) = r(k + d) − y(k + d)
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= r(k + d) − α(x(k)) − β(x(k))u(k)

= (α̂(x(k)) − α(x(k))) +
(
β̂(x(k)) − β(x(k))

)
u(k)

where we used the value of r(k + d) obtained from Equation (12.11). It is
interesting to note that if you define

ŷ(k + d) = α̂(x(k)) + β̂(x(k))u(k)

then with this certainty equivalence control law, the output tracking error

e(k + d) = ŷ(k + d) − y(k + d)

which can be viewed as the “identification error” (i.e., it is a measure of the
quality of the model that we are tuning to represent the plant).

The parameter errors for the indirect adaptive controller are defined as

θ̃α(k) = θα(k) − θ∗α

and
θ̃β(k) = θβ(k) − θ∗β

With these definitions, the tracking error becomes

e(k + d) = θ̃�α (k)φα(x(k)) + θ̃�β (k)φβ(x(k))u(k) − wα(k + d) − wβ(k + d)u(k)
(12.14)

With this we see that the representation errors affect the tracking error. Notice
that even though e(k + d) is measurable (since we assume that y(k + d) and
r(k + d) are measurable), θ̃α(k) and θ̃β(k) are not known because we assume
that we do not know the ideal parameters.

Next, we seek to find a linear error equation; this error equation is actually
the quantity that the optimization method seeks to minimize. First, let

θ̃ =
[
θ̃�α , θ̃�β

]�
(12.15)

and
θ(k) =

[
θ�α (k), θ�β (k)

]�
and

φ(x(k), u(k)) =
[
φ�

α (x(k)), φ�
β (x(k))u(k)

]�
Here, notice that φ(x(k), u(k)) is a function of u(k) due to how we multiply
u(k) by φ�

β (x(k)), and we do this to ensure that we get a linear error equation
below.

Next, let
w(k) = wα(k) + wβ(k)u(k − d)

and we will think of this as an equation for the “combined” representation error
that arises from approximating both α(x(k)) and β(x(k)).
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With this, Equation (12.14) becomes the linear error equation (with an offset
defined by the representation error)

e(k + d) = θ̃�(k)φ(x(k), u(k)) − w(k + d) (12.16)

Due to the current state of the theory, we generally need this type of linear error
equation so that we can apply gradient and recursive least squares methods and
be assured we can get stable adaptive systems.

Bounds on the Approximation Errors

Here, we assume that we know Wα and Wβ a priori such that

0 ≤ |wα(k)| < Wα

and
0 ≤ |wβ(k)| < Wβ

Notice that with these, we have

|w(k)| = |wα(k) + wβ(k)u(k − d)| < Wα + Wβ |u(k − d)|

as a time-varying bound on the combined representation error.
It is important to emphasize that we assume that we know bounds Wα

and Wβ on the ideal approximation errors (i.e., the errors that result from
the best possible way to tune the given approximator, using any adjustment
method, not from the current representation error that arises from the current
parameter estimates). Note that for practical applications, you will not typically
know these bounds a priori, because it is difficult to know how good a given
approximator can be tuned to match the unknown nonlinearity. There are,
however, ways to estimate these bounds (or sometimes experience gives insights
into their choice). You could do some experiments with the plant before applying
a control technique and compute estimates of the bounds for finite size data sets.
Often, however, you may want to simply view Wα and Wβ as tuning parameters
for the algorithm.

12.3.3 Adaptation Methods

Here, we introduce two methods, normalized gradient and recursive least squares,
for the training of θ(k) to try to approximate α(x(k)) and β(x(k)).

Normalized Gradient Method

Here, we will use the normalized gradient method that was discussed in Chap-
ter 11. Recall that this is a steepest descent approach with a special choice for
the step size (see the section on step size choice). If we consider a cost function

J(θ) =
1
2
e2(k)
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(i.e., only one data pair is used in the optimization), which is a measure of the
size of the tracking error (and identification error) that we want to minimize,
then the update formula would be

θ(k) = θ(k − d) + λkd(k)

where λk is the step size and d(k) is the descent direction (d here is the constant
scalar delay, and d(k) is the notation used in Chapter 11 for a p×1 vector descent
direction). Note that the delay d appears in θ(k − d) due to the fact that e(k)
depends on θ(k − d). Suppose that we choose a normalized gradient approach
and hence,

d(k) = −∂J(θ)
∂θ

= −e(k)
∂e(k)
∂θ

= −e(k)
∂

∂θ

(
θ�(k − d)φ(x(k − d), u(k − d))

)
= −e(k)φ(x(k − d), u(k − d))

Now, if we pick λk as discussed in Chapter 11 (see selection of step size, nor-
Achieving a linear
relationship between
model error and tracking
error ensures that if our
online optimization
approach seeks to
minimize tracking error,
it will also try to
minimize model error.

malized gradient approach), use the notation φ(k − d) = φ(x(k − d), u(k − d)),
and use a “robustification” approach to modify the tracking error and produce
eε(k), the adaptation law becomes

θ(k) = θ(k − d) +
κ1ηφ(k − d)

1 + γ|φ(k − d)|2 eε(k), (12.17)

where κ1 = −1, γ is a design parameter (see Chapter 11 for a discussion on how
to choose it), and we assume that the constant “adaptation gain” η is such that

0 < η <
2γ

κ2

where for the indirect adaptive control case κ2 = 1 (the κi parameters are differ-
ent for the direct adaptive control case that is treated below). This constraint
on the adaptation gain is specified to help ensure stability. You should think of
it as a step size parameter where we need η > 0 to ensure that we use the neg-
ative gradient and we need η < 2γ to ensure that the step size is small enough
to maintain stability (consider the example in Chapter 11, where we showed a
case where if the step size is too large, the parameters can diverge).

We define eε(k) to be a “dead zone modification” of the tracking error e(k).
In a standard normalized gradient approach, you would use e(k) in place of
eε(k), but due to our finite size approximators, there will be a representation
error that necessitates the use of eε(k) to try to achieve stability (this is what is
sometimes referred to as a “robustification method”). In particular, we define

ε(k) = Wα + Wβ |u(k − d)|
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to be a bound on the combined representation error. Next, we define

eε(k) =

⎧⎨
⎩

e(k) − ε(k) if e(k) > ε(k)
0 if |e(k)| ≤ ε(k)
e(k) + ε(k) if e(k) < −ε(k)

(12.18)

which is shown in Figure 12.3(a) for the case where ε(k) = 1 for all k. As ε(k)
varies the size of the portion of the plot around zero where “e(k) is in the dead
zone” and hence eε(k) = 0 varies. Basically, if we have large representation
errors, then we are doing a poor job at approximating the plant dynamics. If
the tracking error is smaller than the combined representation error, we turn
off the parameter update (so θ(k) = θ(k − d)) since in this case, updates are
futile since the approximator cannot do much better anyway (and updating in
this case when it cannot do better can cause an accumulation of errors that
results in parameter divergence). Clearly we would like to make ε(k) as small as
possible and to do this, we must do a good job in designing our approximators
(e.g., we may need many parameters and a good choice for the nonlinear part of
the structure). Finally, note that unfortunately in the indirect approach, ε(k)
depends on |u(k − d)| (due to the need to obtain a linear relationship between
tracking error and identification error) and hence, this can adversely affect the
size of the dead zone and hence, quality of tracking.
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Figure 12.3: Dead zone nonlinearities used for adaptation laws ((a) used for
normalized gradient, (b) used for recursive least squares).



560 Adaptive Control

Recursive Least Squares

The recursive least squares adaptation law (with forgetting factor λ = 1) is

θ(k) = θ(k − d) − P (k − 2d)φ(k − d)ēε(k)
1 + a(k)φ�(k − d)P (k − 2d)φ(k − d)

(12.19)

P (k − d) = P (k − 2d) −
a(k)P (k − 2d)φ(k − d)φ�(k − d)P (k − 2d)

1 + a(k)φ�(k − d)P (k − 2d)φ(k − d)
(12.20)

Here, θ(k) and φ(k) are p × 1 vectors and P (k) is a p × p matrix. The indices
k − 2d and k − d result from the delay d. Notice that to compute θ(0) we
need θ(−d) and in fact, to compute θ(k) for k = 0, 1, 2, . . . , d − 1, we need
θ(−d), θ(1−d), . . . , θ(−1). Hence, to initialize the algorithm you need to specify
d initial parameter values. One way to do this is to just use all the same values,
either a good guess at their values or zero vectors for each case. Next, note
that to compute P (k− d) when k = 0, we need P (−2d) and in fact, to compute
P (k−d) for k = 0, 1, 2, . . . , d−1, we need P (−2d), P (1−2d), . . . , P (d−1−2d).
Hence, to initialize the algorithm, you need d initial matrices. One way to pick
these is to simply use a p × p diagonal matrix αI where α > 0 is some suitably
large value, for all the initial values. Finally, note that due to the delay, there
is a need to store several past values to implement the update law.

For the above adaptive law,

ēε(k) =

⎧⎨
⎩

e(k) if e(k) > εd(k)
0 if |e(k)| ≤ εd(k)
e(k) if e(k) < −εd(k)

(12.21)

where
εd(k) =

√
2ε(k)

√
1 + φ�(k − d)P (k − 2d)φ(k − d) (12.22)

and ε(k) is the same as for the indirect adaptive control case. This dead zone
is shown in Figure 12.3(b) for the case where εd(k) = 1 for all k (note that in
general, the dead zone size is time-varying). Note that P (k) is positive definite
for all k so that φ�(k − d)P (k − 2d)φ(k − d) ≥ 0, which will be shown below.
This ensures that εd(k) is properly defined (i.e., so that the term in the square
root will not be negative). Next, we define a(k) as

a(k) =
{

0 if |e(k)| ≤ εd(k)
1 otherwise (12.23)

and we think of it as a variable that indicates whether or not the tracking error
is in the dead zone.

When |e(k)| ≤ εd(k), the tracking error is in the dead zone where the er-
ror dynamics are possibly driven not by the parameter error, but by the ideal
approximation error. Therefore, if we update the parameters, there is the pos-
sibility that they will not be updated in the proper direction, so ēε(k) = 0,
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and hence, θ(k) = θ(k − d) and we do not update the parameter vector. The
turning on and off of the updates for P (k) via a(k) is more complex. First, note
that to compute θ(k), we only need P (k − 2d). Now, if at time k, a(k) = 0 so
the tracking error is in the dead zone, we could get an update for P (k − 2d).
However, if a(k − d) = 0 (i.e., d steps ago the tracking error was in the dead
zone), then the P (k − 2d) we generated was such that P (k − 2d) = P (k − 3d)
and we see that the update to the covariance matrix is turned off. Notice that
a(k) also affects the parameter updates.

Finally, we note that while the transient responses from the gradient and
recursive least squares methods may be different, the asymptotic properties for
the parameters and tracking error are basically the same as those we discussed
for the gradient case in the last subsection (in particular, ēε(k) → 0 as k → ∞).

Application to Plants with Known Linear in the Parameter Nonlin-
earities

Suppose that the underlying system is linear with constant but unknown coef-
ficients and that n and m are known and d = 1. Suppose that we use linear
in the parameter approximators with the same structure as those in the plant
(i.e., with regression vectors with the same elements as the underlying unknown
linear functions that we are trying to estimate). Notice that in this case the
ideal approximation errors are zero, so Wα = Wβ = 0, the size of the dead zone
is zero, and the normalized gradient or RLS method will force the tracking error
(not the dead zone modification of it, with a finite size dead zone) to zero, so
that asymptotically we get perfect tracking.

It is interesting, and sometimes practically useful, to note that if there are
nonlinearities in the plant that are known and parameterized linearly in un-
known coefficients, we can get the same type of result. If there are various
types of uncertainty in the plant (e.g., an unknown bias term), the case reverts
to the situation where we get convergence of the tracking error to a neighbor-
hood of zero, where the size of the neighborhood generally depends on the “size”
of the uncertainty in the plant (similar to the case presented earlier).

12.3.4 Discussion: Multiple Model Adaptation Strategies

Another approach to indirect adaptive control is to use multiple identifier mod-
els, each with its own identification strategy. Then, you can specify an online
measure of identification error accuracy (e.g., a sum of squares of past identifi-
cation errors) and use this to pick which model has been adjusted the best, and
hence, should be chosen for use in a certainty equivalence strategy. Sometimes
you may want to adapt several models, other times you may want to use a set
of guesses at the plant model that are simulated online, and one adaptive mech-
anism that attempts to estimate the plant model. This way, if one of the fixed
models is close to the actual model, it will be chosen for use in the certainty
equivalence strategy. However, if none of the fixed models is accurate, then the
adaptive one can be relied on to estimate the plant characteristics. There have
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been a variety of studies of such “multiple model adaptive control” approaches,
some of which have focused on derivation of stability properties. See the “For
Further Study” section for more details.

We will not discuss the use of gradient and least squares methods for mul-
tiple model adaptive control where the underlying approximators are neural
networks or fuzzy systems. Instead we will study in Section 16.5 a variety
of approaches, including direct adaptive methods (to achieve adaptive model
predictive control), which rely on multiple models (or controllers) and employ
evolutionary algorithms for approximator adjustment (to estimate models, con-
trollers, or both). Moreover, in Design Problem 18.4, we ask you to use an
optimization/search algorithm that is based on biomimicry of foraging to im-
plement the same types of adaptive control schemes. Both the evolutionary and
foraging methods offer approaches to tune not only parameters, but structure
of approximators. Also, they show how to use the entire set of model estimates
to help update the estimates for each model (i.e., they show how to share good
information about estimation among the whole set of estimators). If you study
the evolutionary and foraging approaches to multiple model adaptive control, it
will be clear how to use least squares or gradient approaches.

12.4 Design Example: Indirect Neural Control

for a Process Control Problem

In this section we apply the indirect neural controller to the simple process
control problem studied in Section 6.4.1 to illustrate some characteristics of the
behavior of the closed-loop system. For the model there, we choose A(h(t)) =
|āh(t) + b̄| with ā = 0.01 and b̄ = 0.2. Also, we use c̄ = 1 and d̄ = 1. Assume
that you know the reference trajectory a priori and assume that r(t) ∈ [0.1, 8]
and that we will not have h(t) > 10. Assume that h(0) = 1.

12.4.1 The Neural Controller Development

Putting the Plant into the Proper Form

To approximate the tank dynamics, we will ignore the saturation at the actu-
ator input and the fact that the liquid level never goes negative, and view the
dynamics as

h(k + 1) =

(
h(k) + T

−d̄
√

19.6h(k)
|āh(k) + b̄|

)
+
(

c̄T

|āh(k) + b̄|
)

u(k)

and using our notation from the previous section, we let

α(h(k)) =

(
h(k) + T

−d̄
√

19.6h(k)
|āh(k) + b̄|

)
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and

β(h(k)) =
(

c̄T

|āh(k) + b̄|
)

so we have
h(k + 1) = α(h(k)) + β(h(k))u(k)

Hence, we have n = m = 0 and d = 1. Also, we assume that αk = βk = 0
so that we are not assuming that we have any a priori knowledge of the plant
dynamics.

We assume that we know that ā, b̄, and c̄ only vary in ways so that

β0 =
1
4
≤ β(h(k)) ≤ 1

2

For instance, using nominal values for ā, b̄, and c̄, and the above definitions,
together with the constraint that h(k) ∈ [0.001, 10], we know

β0 <
1
3
≤ β(h(k)) ≤ 1

2

(recall that T = 0.1).

Specifying Estimators for the Plant Nonlinearities

Suppose that we use two linear in the parameter approximators

α̂(h(k)) = θ�α φα(h(k))

and
β̂(h(k)) = θ�β φβ(h(k))

where θα and θβ , the parameter vectors, and φα and φβ , are defined so that
these represent a radial basis function neural network that we will define below.
In particular, to estimate h(k), we use ĥ(k) where

ĥ(k + 1) = α̂(h(k)) + β̂(h(k))u(k)

or
ĥ(k + 1) = θ�φ(h(k), u(k))

where
θ =

[
θ�α , θ�β

]�
and

φ =
[
φ�

α , uφ�
β

]�
However, to save computations, we let φα = φβ and we define this as φh. Note
that this way, we use the same nonlinear part for the approximators for α(h(k))
and β(h(k)), but different parameters that enter linearly so that different non-
linearities α(h(k)) and β(h(k)) can be represented. Clearly, however, in some
applications you will want to use different φα and φβ nonlinearities, especially if
you know that one nonlinear function has many more oscillating nonlinearities
than the other.
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Specifying the Approximator Structures

For the radial basis function neural network, we will use

Frbf (x, θrbf ) =
nR∑
i=1

biRi(x)

where θrbf will be either θα or θβ and

Ri(x) = exp
(
−|x − ci|2

(σi)2

)
and

ci = [ci
1, c

i
2, . . . , c

i
n]�

and σi is a scalar (and if z is a vector then |z| =
√

z�z). The ci and σi are
parameters that enter in a nonlinear fashion. Note that we can use initialization
methods (i.e., gridding on the input space) for the centers and spreads that are
similar to those that we discussed earlier for the Takagi-Sugeno fuzzy system.

If we let
θrbf = [b1, b2, . . . , bnR ]�

and
φrbf = [R1, R2, . . . , RnR ]�

then
Frbf (x, θrbf ) = θ�rbfφrbf

is the form of the linear in the parameter approximator that we will use. While
for the Takagi-Sugeno fuzzy system we thought of the basis functions as turning
different lines on and off in different regions, here the Ri functions turn differ-
ent constants bi on and off in different regions (i.e., they interpolate between
different constants), where the position and size of region i is fixed by ci and σi.

Specifying the Control and Projection

Next, note that we will use the estimates α̂(h(k)) and β̂(h(k)) in the certainty
equivalence control law

u(k) =
−α̂(h(k)) + r(k + 1)

β̂(h(k))

and either a gradient or recursive least squares update law. Notice that with
this choice for the control law, as indicated earlier, we have to ensure that

β̂(h(k)) = θ�β φh(h(k)) ≥ β0 > 0

for all h(k) to keep the update algorithm from picking θβ so that β̂(h(k)) = 0,
which would make the control u(k) above undefined. To do this, we simply
use a projection method to keep each element of θβ greater than or equal to
β0 = 0.25.
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12.4.2 Indirect Neural Control Results

In this section we discuss how to choose the design parameters for the con-
troller, provide the results of the neural control scheme, and illustrate several
key characteristics of the closed-loop system behavior.

Approximator and Adaptation Law Design Parameter Choices

First, we chose nR = 50 so that we are using 50 receptive field units for φh. To
initialize the parameters of θβ we let all the elements take on the same value,
the one in the middle of the range [β0, β1] (or 0.375). For simplicity we chose
the values of the elements of θα to all be zero; hence, the initialization for β̂ is
better than the one for α̂. We chose all the spreads σi = 0.2 for the receptive
field units. We let c1

1 = 0, ci
1 = ci−1

1 + 0.2 for i = 2, 3, . . . , nR (for a uniform
spacing).

We chose the gradient update law, and η = 1.25 and γ = 1 after a bit of
tuning. Basically, keeping γ constant, if you lower the adaptation gain η, the
adaptation slows so that tracking suffers. We chose Wα = Wβ = 0.01 simply by
trying out several values (i.e., we view them as tuning parameters). We must
emphasize that we are not guaranteed with this choice to have the respective
approximation errors less than these values and hence, we are not guaranteed
stability (but of course, we are also not guaranteed stability due to the saturation
constraints on the input and the liquid level).

Convergence of Tracking Error to a Dead Zone

In this first set of results, we show how the control system responds to a square
wave input for the desired liquid level height and focus, in particular, on how it
tries to force the tracking error to converge to a dead zone. Figure 12.4 shows
that for this case, the tracking performance improves over time, but that both
at the lower and upper value, there is a tracking error even after the value of
the liquid height settles out. This error results from the use of the dead zone
and the finite size approximator. To remove this error you need to use a better
approximator structure. Note that in this case, the radial basis function does
not seem to be a particularly good choice as it is easy to see that significant
errors can arise unless very many receptive field units are used.

Estimator Performance: Nonlinear Mapping Shape Mismatches

Next, we compare the estimates and actual values of h, α, and β. Figure 12.5
shows that, for this case, the estimate of h improves over time, but that the
steady state error results from improper estimates of α and especially inaccurate
ones of β.

Next, we note that Figure 12.6 and Figure 12.7 show that for this case, the
change in the parameter error is decreasing as we would like, and that the error
is slowly approaching the dead zone (which is depicted there with a black bar—
study the beginning of the plot where the black region is small, and then later
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Figure 12.4: Indirect neural controller, reference input, plant output, and plant
input.

the error decreases toward this). Again, however, we must emphasize that this
is not guaranteed for this case. Figure 12.6 nicely illustrates that the parameter
vector seems to be converging. We must emphasize however, that for a different
reference input, it may behave differently.

Accurate plant model
estimation is not
necessarily needed to
achieve good tracking
performance in indirect
adaptive control.

It is important, however, to note that the mapping shapes at the last it-
eration (1000 iterations total) are not very close to the actual shapes of the
unknown α and β as shown in Figure 12.8. Hence, it is clear that the quality
of the estimate produced by the output of the estimator is not necessarily a
good indication of the quality of the matching between the estimator nonlinear
map that is being trained and the unknown nonlinear map (even though in our
discussion for the development of the controller, you may have thought of it
that way).

Persistency of Excitation to Get Better Matching of Nonlinearities

So, how do we get the estimator nonlinear mapping to more closely match the
Accurate modeling can
sometimes be achieved if
the reference input is
“persistently exciting.”

plant nonlinearity that it is trying to match? The reference input signal has to
be “persistently exciting” in a proper way to ensure that the whole map gets
updated properly. Here, rather than a square wave, we put in a noise sequence
that is uniformly distributed on the same range of values used for the square
wave. In this case we get the results in Figure 12.9, where, comparing to Fig-
ure 12.8, we see that we get quite good matching of the estimator and unknown
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Figure 12.5: Indirect neural controller, estimates and actual values of h, α, and
β.

plant nonlinearities in the region where the plant output visited frequently (i.e.,
roughly in the range [0.001, 6]). You should be reminded of the discussions on
input space coverage and persistency of excitation, and their impact on approx-
imator accuracy from Chapter 11.

12.5 Direct Adaptive Neural/Fuzzy Control

In this section we will discuss direct adaptive neural/fuzzy control where we
do not explicitly estimate the plant dynamics. Instead, we simply design an
optimization algorithm to search for a controller that will stabilize the plant
and try to force a low tracking error.

12.5.1 Development of Controller Estimator and Error
Equations

The Class of Plants

Here, we can consider more general classes of discrete-time nonlinear systems
than in the indirect adaptive control case. As before, we assume that r(k + d)
is known. Rather than providing an explicit form of nonlinear system that
we can treat, we will instead require that there exists some u∗(x(k), r(k + d))
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Figure 12.6: Indirect neural controller, parameter error.

(that is continuous in its arguments) such that the error dynamics e(k + d) =
r(k + d) − y(k + d) may be expressed as

e(k + d) = −ψ(x(k))(u(k) − u∗(k)) + ν(k) (12.24)

where ψ(x(k)) is such that

0 < ψ0 ≤ ψ(x(k)) ≤ ψ1

where ψ0 and ψ1 are known constants related to the plant dynamics, and

sup
k

|ν(k)| ≤ V

for some known V . Hence, we provide the error dynamics and any plant that
can be transformed to have its error dynamics in this form will fall into the class
of plants that the direct adaptive controller will apply to.

Next, we show that control laws u∗ exist, which transform the error dynamics
into the proper form. We must emphasize, however, that we will show general
ways to transform the dynamics, and in particular, show that the class of plants
that can be considered in the indirect adaptive case can also be considered for
the direct adaptive case. You could use similar approaches to transform the
nonlinear dynamics into the form above for particular applications.

Suppose that x(k) = [y(k), y(k−1), . . . , y(k−n), u(k−1), u(k−2), . . . , u(k−
m)]� and consider a nonlinear discrete-time system of the form

y(k + d) = α(x(k)) + β(x(k))u(k) (12.25)
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Figure 12.7: Indirect neural controller, tracking error and dead zone (shaded
black).

which is “linear in the control input” in the sense that u(k) is multiplied by
what we think of as a gain β(x(k)), and that gain is not a function of the input
u(k). We assume β(x(k)) to satisfy

0 < β0 ≤ β(x(k)) ≤ β1 < ∞ (12.26)

We use β0 ≤ β(x(k)) to ensure existence of a control law below, and the param-
eter β1 in the specification of constraints on the adaptation gain for a gradient
update law.

In direct adaptive
control, we view the
ideal controller as one
that the adaptation
mechanism is searching
for.

Note that for this class of plants, the control law

u∗(x(k), r(k + d)) =
−α(x(k)) + r(k + d)

β(x(k))

exists if β(x(k)) is bounded away from zero. With this choice of u∗, we find
that

e(k + d) = r(k + d) − y(k + d)
= r(k + d) − α(x(k)) − β(x(k))u(k)
= β(x(k))u∗(k) − β(x(k))u(k)
= −β(x(k))(u(k) − u∗(k))
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Figure 12.8: Indirect neural controller, final estimator mapping shapes com-
pared to the actual nonlinearities they are trying to estimate (solid lines for top
two plots are actual nonlinearities, dashed lines are the estimates).

From this last equation, considering Equation (12.24), ψ(x(k)) = β(x(k)), ψ0 =
β0, ψ1 = β1, and ν(k) = 0; hence, this class of plants can be considered in the
direct adaptive control case. In this case we seek to tune the neural network or
fuzzy system so that it finds a feedback linearizing controller where an important
assumption in the existence of the feedback linearizing controller is that the
control enters linearly. However, we do not necessarily require this; we only

The linear relationship
between controller
estimate error and
tracking error allows us
to adjust the controller
to minimize tracking
error and thereby also
try to minimize the
error between the
controller estimate and
the unknown ideal
controller.

require that a plant is used so that the error equation (Equation (12.24)) results
and more general classes of plants can satisfy this (see the “For Further Study”
section at the end of this part for more details).

We must emphasize that just like the indirect case, we will not be able to
ensure that we will get parameter convergence and hence, while we may think
of the estimator to be developed below as searching for a feedback linearizing
controller, it may never find it, and it may still stabilize the plant. It may find
a different controller that performs well, or its continual search may proceed
in such a way that it will stabilize the plant. Finally, it is interesting to note
that e(k + d) is a measure of the (instantaneous) tracking error and how close
the current control is to some current ideal one (notice the analogy with the
indirect case where the tracking error is also a measure of the instantaneous
identification error).
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Figure 12.9: Indirect neural controller, noise for reference input (solid lines for
top two plots are actual nonlinearities, dashed lines are the estimates).

Error Dynamics and Controller Estimator

To develop the error dynamics for the direct adaptive control case, first express
u∗ as

u∗(x(k), r(k + d)) = uu(x(k), r(k + d)) + uk(k) (12.27)

where uu(x(k), r(k+d)) and uk(k) represent the unknown and known portions of
the ideal control law, respectively (notice the analogy with the indirect adaptive
case where we had unknown and known parts of the dynamics that we were
trying to estimate). In an analogous manner to the indirect adaptive case, the
signal uk(k) is not required for implementation and we may assign uk(k) = 0,
for all k ≥ 0. Sometimes, however, it can be convenient to include uk. If you
know a controller that works reasonably well for nominal operation of the plant,
then it can be included as uk and the neural network or fuzzy controller that is
tuned will then tend to correct for its deficiencies and subsequent performance
improvements can be obtained in some cases.

Using the online approximation-based approach, we may represent u∗(k) as

u∗(k) = θ∗�u φu(x(k), r(k + d)) + uk(k) + wu(k) (12.28)

where

θ∗u = argmin θu ∈ Ωu

(
sup

x∈Sx,r∈Sr

|θ�u φu(x(k), r(k + d)) − uu(x, r)|
)

(12.29)
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Ωu ⊂ 	pu is the convex compact set of allowable controller parameters, Sx ⊂
	n+m+1 is the known compact set through which the state may travel, and Sr

is the space through which the reference input may travel (we assume that r(k)
is bounded as we did in the indirect adaptive case so naturally, Sr is bounded).
The current estimate of the ideal controller is given by

u(k) = θ�u (k)φu(x(k), r(k + d)) + uk(k), (12.30)

where the current parameter vector θu(k) will be updated online and a projec-
tion algorithm can be used to make sure that θu(k) ∈ Ωu, if that is needed.
It is important to highlight the fact, however, that sometimes we may have
no constraints on the controller parameters so then we will not need a projec-
tion method for the direct adaptive control case. Note that for plants of the
form given in Equation (12.25), while we needed to assume that β(x(k)) was
bounded away from zero to ensure the existence of u∗, we are not trying to
estimate β(x(k)), so there is no need for projection to ensure that an estimate
of it does not take on a value of zero.

Next, defining the parameter error as

θ̃u(k) = θu(k) − θ∗u

the output error dynamics e(k + d) = r(k + d) − y(k + d) may be expressed as

e(k + d) = −ψ(x(k))θ̃�u (k)φu(x(k), r(k + d)) + ψ(x(k))wu(k) + ν(k) (12.31)

where 0 ≤ |wu(k)| < Wu. We will assume that we can define Wu, such that if
|θ̃u|2 is bounded, then 0 ≤ |wu(k)| < Wu for all k. It can be shown that |θ̃u|2 is
bounded so as long as you pick Wu to overbound the ideal representation error.

12.5.2 Adaptation Method

Here, we will only discuss the use of the gradient method, which can be de-
rived in a similar manner to the indirect adaptive control case by tuning the
parameter vector to minimize the (instantaneous) tracking error and hence, the
instantaneous error between the current control and some ideal one. Doing this
for the direct adaptive control case, with attention given to specifying the adap-
tive laws to achieve a stable closed-loop system, results in the adaptation law in
Equation (12.17) with κ1 = 1 (the minus sign difference comes from the minus
sign in Equation (12.31)), κ2 = ψ1, and

ε(k) = ψ1Wu + V
for all k ≥ 0, where for the class of plants we discussed above, we had ψ1 = β1

and V = 0. Hence, for the direct adaptive control case, we get a fixed size dead
zone, not one that is time-varying as in the indirect adaptive control case. Note
that in the direct adaptive control case, we must have a bound on the nonlinear
gain on the plant input and this affects the possible choices for the adaptation
gain.



12.6 Design Example: Direct Neural Control for a Process Control Problem 573

Considering that we do not necessarily need a projection method to im-
plement the adaptation law, and the possibility that a more general class of
plants can be used, sometimes makes the direct adaptive approach more desir-
able than the indirect approach. However, in some applications, the indirect
approach may show some advantages such as the fact that, unlike the direct
case, the approximators do not need r(k + d) as an input. So, in general, they
may need fewer inputs and this can affect the complexity of the approximators
(on the other hand, we need two approximators for the indirect case and only
one for the direct case).

12.6 Design Example: Direct Neural Control
for a Process Control Problem

Here, we use the same plant as for the indirect adaptive control example, with
all the same parameters. For the approximator for the controller, we use a
radial basis function neural network with n = 2 inputs, h(k) and r(k + 1), and
nR = 100, so we will adjust 100 strengths that are loaded into the vector θu

and we initialize them all to zero. We let uk = 0. We use the same spread
σi = 1 for all the Ri(h(k), r(k +1)) and create a uniform grid for the ci centers,
i = 1, 2, . . . , nR. In particular, recall that r(k) ∈ [0.1, 8] and h(k) ∈ [0.001, 10].
For convenience, we simply create a uniform grid with its four outer corners
at (0, 0), (9, 0), (0, 9), and (9, 9) (hence it has nR = 100 centers). For the
adaptation, we use η = 1.25 and γ = 1. We chose Wu = 0.01.

12.6.1 Direct Neural Controller Results

The results for the direct adaptive controller are shown in Figure 12.10, where we
see that due to the poor initialization of the controller, we get poor performance
early in the simulation; however, the adaptive controller quickly recovers from
this and provides better tracking as time progresses. The bottom plot shows the
control input generated by the online approximator and the “ideal” feedback
linearizing control input. It is interesting to note that in this case, the gradient
method seems to have adjusted the controller to provide the ideal control. (Note,
however, that this does not imply that the entire mapping produced by the
approximator will match the mapping produced by the ideal controller; see the
discussion below.)

To gain more insight into the behavior of the closed-loop system, and the
type of convergence properties we expect, see Figures 12.11 and 12.12, where we
show how the change in the parameter error and tracking error behave. Note
that while this shows a nice parameter convergence and the tracking error is
decreasing, we must emphasize that this is not guaranteed in general, due to
the added constraints on the plant and due to the choice of Wu.
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Figure 12.10: Direct neural control, closed-loop behavior.
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Figure 12.11: Direct neural controller, parameter error.
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Figure 12.12: Direct neural controller, tracking error and dead zone (shaded
black).

12.6.2 Tuned and Ideal Controller Mapping Shapes

To highlight some of the issues with parameter convergence, we provide plots
of the neural controller mapping at the last step in the above simulation in
Figure 12.13, and the corresponding “ideal” controller mapping in Figure 12.14.
Notice that while the approximator has grossly approximated part of the map-

An accurate estimate of
the ideal controller is
not necessarily required
to obtain good tracking
error.

ping, it clearly has not learned the shape of the mapping in every region. Note
that this is consistent with the result shown in Figure 12.11, since that plot
simply shows that the mapping has largely stopped changing its shape by the
end of the simulation. One reason it has not converged to the exact nonlinear
control mapping, is that the input has not driven the system into every region
frequently enough so that it has not been able to learn properly in those regions.
It is possible that, if you use a reference input that more consistently drives the
h(k) and r(k) into different regions, that the mapping shape will become closer
to the ideal one. (Just as in the indirect adaptive control case, this is an issue of
persistency of excitation.) For instance, if you use noise as the reference input
as we have in the indirect adaptive control case, the mapping is adjusted to
become a bit closer to the ideal one.
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Figure 12.13: Direct neural controller mapping shape at the last iteration.

Figure 12.14: Ideal controller mapping shape.

12.7 Stable Adaptive Fuzzy/Neural Control

In this section we will develop stable adaptive fuzzy/neural controllers for a
class of continuous time nonlinear systems. We will introduce both indirect
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and direct adaptive control approaches and show that under certain conditions,
each provides asymptotic tracking of a reference signal and boundedness of all
signals. Several of the concepts in this chapter build on those of the previ-
ous section; however, to develop conditions for stability, we will only consider
gradient update laws for the indirect and direct methods.

For stable adaptive
control, the focus is on
methods that can be
proven to possess
closed-loop properties.

12.7.1 Class of Nonlinear Systems

In this section we will provide a description of the class of systems that we
consider in this chapter, and provide an example physical plant that falls in this
class.

Feedback Linearizable Continuous Time Nonlinear Systems

Consider the plant

ẋ = f(x) + g(x)u (12.32)
y = h(x) (12.33)

where x = [x1, . . . , xn]� is the state vector, u is the (scalar) input, y is the
(scalar) output of the plant, and functions f(x), g(x), and h(x) are smooth.

Let Ld
gh(x) be the dth Lie derivative of h(x) with respect to g. In particular,

define

Lgh(x) =
(

∂h

∂x

)�
g(x)

and, for example,
L2

gh(x) = Lg(Lgh(x))

A system is said to have “strong relative degree” d if

Lgh(x) = LgLfh(x) =, · · · , = LgL
d−2
f h(x) = 0

and LgL
d−1
f h(x) is bounded away from zero for all x. If the system has strong

relative degree d, then

ż1 = z2 = Lfh(x)
...

żd−1 = zd = Ld−1
f h(x)

żd = Ld
fh(x) + LgL

d−1
f h(x)u (12.34)

with z1 = y, which, if we let y(d) denote the dth derivative of y, may be rewritten
as

y(d) = (αk(t) + α(x)) + (βk(t) + β(x))u (12.35)

Here, we assume that y = h(x) = x1. We will assume that d = n here, since it
simplifies the stability analysis. (For a treatment of the more general case, see
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the “For Further Study” section at the end of the part.) We will assume that if
the zi, i = 1, 2, . . . , d = n (i.e., y, ẏ, . . . , y(d)), are bounded, then so are the xi,
i = 1, 2, . . . , d = n.

Furthermore, it is assumed that for some β0 > 0, we have

|βk(t) + β(x)| ≥ β0

so that it is bounded away from zero (for convenience, we assume that βk(t) +
β(x) > 0, however, the following analysis may easily be modified for systems
which are defined with βk(t) + β(x) < 0). We will assume that αk(t) and
βk(t) are known components of the dynamics of the plant (that may depend on
the state) or known exogenous time-dependent signals and that α(x) and β(x)
represent nonlinear dynamics of the plant that are unknown. It is assumed that
if x is a bounded state vector, then α(x), β(x), αk(t), and βk(t) are bounded
signals. Throughout the analysis to follow, both αk(t) and βk(t) may be set to
zero for all t ≥ 0.

Example: Ball on a Beam Experiment

We have found via experimentation in our laboratory (using physical modeling
and some system identification techniques) that the ball on a beam experiment
shown in Figure 12.15 can be accurately represented with

ẋ1(t) = x2(t)
ẋ2(t) = ā tan−1(b̄x2(t))

(
exp(−c̄x2

2(t)) − 1
)− d̄u(t) (12.36)

where x1(t) is the distance from the center of the ball to one end of the beam,
u(t) is the angle the beam makes with the horizontal that is controlled with a
motor, and ā = 9.84, b̄ = 100, c̄ = 104, and d̄ = 514.96. While d̄ is unknown, we
assume due to modeling considerations and physical constraints d̄ ∈ [500, 525].

Motor Beam

x1(t)

u

Ball

Figure 12.15: Ball on a beam experiment.

We have y = x1 and
ẋ = f(x) + g(x)u

where

f(x) =
[

x2

ā tan−1(b̄x2(t))
(
exp(−c̄x2

2(t)) − 1
) ]

and

g(x) =
[

0
−d̄

]
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Notice that f and g are smooth. First, we will determine the relative degree of
the plant. To do this, we simply take derivatives of the output until the input
appears. In particular,

ẏ = ḣ(x) =
(

∂h

∂x

)�
ẋ

=
(

∂h

∂x

)�
f(x) +

(
∂h

∂x

)�
g(x)u

= Lfh(x) + Lgh(x)u

and for our case,
∂h

∂x
= [1, 0]�

so
ẏ = Lfh(x) = x2

(which is easy to see from the definition of the plant). Since Lgh(x) = 0, we need
to find the second derivative of the plant output. Doing this, we find (defining
αk = βk = 0

ÿ = L2
fh(x) + LgLfh(x)u

= ẋ2

= ā tan−1(b̄x2(t))
(
exp(−c̄x2

2(t)) − 1
)− d̄u(t)

= α(x) + β(x)u

and

LgLfh(x) =
(

∂x2

∂x

)� [ 0
−d̄

]
= [0, 1]

[
0
−d̄

]
= −d̄ �= 0

so that the relative degree is d = n = 2. Also, notice that if y = z1 and ẏ = z2

are bounded, then x1 and x2 are bounded. Notice, however, that there does not
exist a β0 > 0 such that β(x) ≥ β0 since β(x) is known to lie in a fixed interval
of negative numbers.

12.7.2 Indirect Adaptive Control

As with the discrete-time case we will seek to approximate the underlying plant
nonlinearities and we will use these in a certainty equivalence controller.

Reference Model, Trajectory to Be Tracked

We want the output y(t) and its derivatives ẏ(t), . . . , y(d)(t) to track a “refer-
ence trajectory” ym(t) and its derivatives ẏm(t), . . . , y(d)

m (t), respectively. We
will assume that ym(t) and its derivatives ẏm(t), . . . , y(d)

m (t), are bounded. A
convenient way to specify the reference trajectory signals is to use a “reference
model.” While such trajectories can be generated by a nonlinear system, we will
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explain how to generate them with a linear system, since this is often how it is
done in practice. In particular, if we have a reference input r(t), with Laplace
transform R(s), and Ym(s) is the Laplace transform of ym(t),

Ym(s)
R(s)

=
q(s)
p(s)

=
q0

sd + pd−1sd−1 + · · · + p0

is a reference model where p(s) is the pole polynomial with stable roots and q0

is a constant.
As an example, suppose that r(t) = 0, t ≥ 0, so we want y(t) → 0 as t → ∞.

For this, we could simply choose

ym(t) = ẏm(t) = · · · = y(d)
m (t) = 0

and this would represent a (perhaps challenging) request to immediately have
the output and its derivatives track zero. To provide a request that the output
go to zero “more gently,” or according to some dynamics, we could use r(t) = 0,
t ≥ 0, so R(s) = 0 and

p(s)Ym(s) = 0

or
(sd + pd−1s

d−1 + · · · + p0)Ym(s) = 0

or
y(d)

m (t) + pd−1y
(d−1)
m (t) + · · · + p0ym(t) = 0

The parameters pd−1, . . . , p0 specify the dynamics of how ym(t) evolves over
time and hence, specifies how we would like y(t) and its derivatives to evolve
over time.

Online Approximators for Plant Nonlinearities

We will approximate the functions α(x) and β(x) with

θ�α φα(x)

and
θ�β φβ(x)

by adjusting the θα and θβ. The parameter vectors, θα and θβ, are assumed
to be defined within the compact parameter sets Ωα and Ωβ , respectively. In
addition, we define the subspace Sx ⊆ 	n as the space through which the state
trajectory may travel under closed-loop control (a known compact set). Notice
that

α(x) = θ∗�α φα(x) + wα(x) (12.37)
β(x) = θ∗�β φβ(x) + wβ(x) (12.38)

where
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θ∗α = arg min
θα∈Ωα

(
sup
x∈Sx

|θ�α φα(x) − α(x)|
)

(12.39)

θ∗β = arg min
θβ∈Ωβ

(
sup
x∈Sx

|θ�β φβ(x) − β(x)|
)

(12.40)

so that wα(x) and wβ(x) are approximation errors, which arise when α(x) and
β(x) are represented by finite size approximators. We assume that

Wα(x) ≥ |wα(x)|

and
Wβ(x) ≥ |wβ(x)|

where Wα(x) and Wβ(x) are known state dependent bounds on the error in
representing the actual system with approximators. Since we will use universal
approximators, both |wα(x)| and |wβ(x)| may be made arbitrarily small by a
proper choice of the approximator, since α(x) and β(x) are smooth (of course,
this may require an arbitrarily large number of parameters p). It is important
to keep in mind that Wα(x) and Wβ(x) represent the magnitude of error be-
tween the actual nonlinear functions describing the system dynamics and the
approximators when the “best” parameters are used, and we do not need to
know these best parameters.

The approximations of α(x) and β(x) of the actual system are

α̂(x) = θ�α (t)φα(x) (12.41)

β̂(x) = θ�β (t)φβ(x) (12.42)

where the vectors θα(t) and θβ(t) are updated online. The parameter errors are

θ̃α(t) = θα(t) − θ∗α (12.43)
θ̃β(t) = θβ(t) − θ∗β (12.44)

Consider the indirect adaptive control law

u = uce + usi (12.45)

The control law is comprised of a “certainty equivalence” control term uce and
a “sliding mode” term usi. We will introduce each of these next.

Certainty Equivalence Control Term

Let the tracking error be
e(t) = ym(t) − y(t)
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Let
K = [k0, k1, . . . , kd−2, 1]�

be a vector of design parameters (whose choice we will discuss below) and

es(t) = e(d−1)(t) + kd−2e
(d−2)(t) + · · · + k1ė(t) + k0e(t)

Also, for convenience, below we let

ēs(t) = kd−2e
(d−1)(t) + · · · + k0ė(t)

so that
ēs(t) = ės(t) − e(d)(t)

Let
L(s) = sd−1 + kd−2s

d−2 + · · · + k1s + k0

and assume that the design parameters in K are chosen so that L(s) has its
roots in the (open) left half plane.

Our goal is to drive es(t) → 0 as t → ∞. Notice that es(t) is a measure of the
tracking error. As an example, consider the case where d = 2 so K = [k0, 1]�

and
es(t) = ė(t) + k0e(t)

For L(s) to have its roots in the left half plane, we have k0 > 0. Suppose that
we have es(t) = 0. Then,

ė(t) + k0e(t) = 0

so that
ė(t) = −k0e(t)

so that e(t) → 0 as t → ∞ and hence, y(t) → ym(t) as t → ∞. The shape of the
error dynamics is dictated by the choice of k0. A large k0 represents that we
would like e(t) to go to zero fast, while a small value of k0 represents that we
can accept that y(t) may not achieve good tracking of ym(t) as fast. Note that
you do not always want to choose k0 large because, if you make an unreasonable
request in the speed of the response, the controller may try to use too much
control energy to achieve it.

The certainty equivalence control term is defined as

uce =
1

βk(t) + β̂(x)
(− (αk(t) + α̂(x)) + ν(t)) (12.46)

where
ν(t) = y(d)

m + γes + ēs

and γ > 0 is a design parameter whose choice we will discuss below. As in the
discrete-time case, we will use projection to ensure that βk(t)+ β̂(x) is bounded
away from zero so that uce is well-defined.

The dth derivative of the output error is e(d) = y
(d)
m − y(d) so

e(d) = y(d)
m − (αk(t) + α(x)) − (βk(t) + β(x)) u(t)
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and since u = uce + usi

e(d) = y(d)
m − (αk(t) + α(x)) − (12.47)

βk(t) + β(x)

βk(t) + β̂(x)
(− (αk(t) + α̂(x)) + ν(t)) − (βk(t) + β(x))usi

Note that the first two terms

y(d)
m − (αk(t) + α(x)) = y(d)

m − (αk(t) + α̂(x)) − α(x) + α̂(x)
= (− (αk(t) + α̂(x)) + ν(t)) − α(x) + α̂(x) − ν(t) + y(d)

m

= (− (αk(t) + α̂(x)) + ν(t)) − α(x) + α̂(x) − γes − ēs

Substituting this into Equation (12.47), we get

e(d) =

(
1 − βk(t) + β(x)

βk(t) + β̂(x)

)
(−(αk(t) + α̂(x)) + ν(t)) − α(x) + α̂(x)

−γes − ēs − (βk(t) + β(x))usi

= (α̂(x) − α(x)) +
(
β̂(x) − β(x)

)
uce (12.48)

−γes − ēs − (βk(t) + β(x))usi

Since ēs = ės − e(d)

We get a type of linear
relationship between a
tracking error measure
and model error.

ės + γes = (α̂(x) − α(x)) +
(
β̂(x) − β(x)

)
uce − (βk(t) + β(x))usi (12.49)

Parameter Update Laws

Consider the following Lyapunov function candidate

Vi =
1
2
e2

s +
1

2ηα
θ̃�α θ̃α +

1
2ηβ

θ̃�β θ̃β (12.50)

where ηα > 0 and ηβ > 0 are design parameters whose choice we will discuss
below. This Lyapunov function quantifies both the error in tracking and in
the parameter estimates. Using vector derivatives, the time derivative of Equa-
tion (12.50) is

V̇i = esės +
1
ηα

θ̃�α
˙̃θα +

1
ηβ

θ̃�β
˙̃θβ (12.51)

Substituting in the derivative of the tracking error, ės from Equation (12.49),
yields

V̇i = es

(
−γes + (α̂(x) − α(x)) + (β̂(x) − β(x))uce − (βk(t) + β(x))usi

)
+

1
ηα

θ̃�α
˙̃
θα +

1
ηβ

θ̃�β
˙̃
θβ (12.52)

Notice that

α̂(x) − α(x) = θ�α φα(x) − θ∗�α φα(x) − wα(x) = θ̃�α φα(x) − wα(x)
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and similarly for β̂(x) − β(x). Hence,

V̇i = −γe2
s (12.53)

+
(
θ̃�α φα(x) − wα(x) + θ̃�β φβ(x)uce − wβ(x)uce − (βk(t) + β(x))usi

)
es

+
1
ηα

θ̃�α
˙̃θα +

1
ηβ

θ̃�β
˙̃θβ (12.54)

Consider the following update laws
The update laws
implement a continuous
time version of the
gradient optimization
update method.

θ̇α(t) = −ηαφα(x)es (12.55)
θ̇β(t) = −ηβφβ(x)esuce (12.56)

We see that ηα > 0 and ηβ > 0 are adaptation gains. Picking these gains to be
larger will indicate that you want a faster adaptation.

Note that since we assume that the ideal parameters are constant ˙̃θα = θ̇α

and ˙̃
θβ = θ̇β . Now with this, notice that

1
ηα

θ̃�α
˙̃
θα = −θ̃�α φα(x)es

and
1
ηβ

θ̃�β
˙̃
θβ = −θ̃�β φβ(x)esuce

so

V̇i = −γe2
s +
(
θ̃�α φα(x) − wα(x) + θ̃�β φβ(x)uce − wβ(x)uce

)
es(12.57)

−(βk(t) + β(x))usies − θ̃�α φα(x)es − θ̃�β φβ(x)esuce

and

V̇i = −γe2
s − (wα(x) + wβ(x)uce)es − (βk(t) + β(x))usies (12.58)

Projection Modification to Parameter Update Laws

The above adaptation laws in Equations (12.55) and (12.56) will not guarantee
that θα ∈ Ωα and θβ ∈ Ωβ, so we will use projection to ensure this (e.g., to
make sure that (βk(t) + β̂(x)) ≥ β0). Suppose in particular that we know that
the ith component of θ∗α (θ∗β) is in the (known) interval

θ∗αi
∈ [θmin

αi
, θmax

αi
]

and
θ∗βi

∈ [θmin
βi

, θmax
βi

]

Suppose we place the initial values of the parameters in these ranges. Also, if
θαi(t) and θβi(t) are strictly within these ranges, then you use the update given
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by the update formulas in Equations (12.55) and (12.56). If, however, θαi(t) or
θβi(t) is on the boundary of its interval and the update formula indicates that it
should be moved outside the interval, then you leave it on the boundary of the
interval. However, if it is on the boundary and the update law indicates that
it should be moved on the boundary or to within the interval, then the update
from Equations (12.55) and (12.56) is allowed.

To show this in more detail, consider how to implement projection for the
case for θβ when it is a scalar (the general vector case follows easily, and clearly
the approach is similar for θα). In this case, suppose that we know

θ∗β ∈ [θmin
β , θmax

β ]

(we remove the i index since we consider the scalar case) and so we want

θβ(t) ∈ [θmin
β , θmax

β ]

Define
θm

β ∈ [θmin
β , θmax

β ]

to be a point in the acceptable range (actually, any such point will work). Let

θud
β (t) = −ηβφβesuce

to be the update that would result if we did not use projection. Projection is
implemented by the following tests:

• If θβ(t) ≤ θmin
β and

– If θud
β (t) > 0, use θ̇β(t) = θud

β (t)

– If θud
β (t) ≤ 0, use θ̇β(t) = 0 (since the update would move it outside

the interval)

• If θβ(t) ≥ θmax
β and

– If θud
β (t) ≥ 0, use θ̇β(t) = 0 (since the update would move it outside

the interval)
– If θud

β (t) < 0, use θ̇β(t) = θud
β (t)

Or, we can summarize these conditions more concisely by using the following
rule: If θβ(t) /∈

(
θmin

β , θmax
β

)
and θud

β (t)(θβ(t) − θm
β ) ≥ 0 let θ̇β(t) = 0 and

otherwise let θ̇β(t) = θud
β (t).

Returning to the stability analysis, clearly since θ∗αi
and θ∗βi

are within the
allowable ranges, this projection modification to the update laws will always
result in a parameter estimation error that will decrease Vi at least as much as
if the projection were not used; hence, the right-hand side of Equation (12.58)
will overbound the V̇i that would result if projection is used. For this reason,
we conclude that

V̇i ≤ −γe2
s − (wα(x) + wβ(x)uce)es − (βk(t) + β(x))usies (12.59)
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Sliding Mode Control Term

To ensure that Equation (12.59) is less than or equal to zero, we choose1

usi =
(Wα(x) + Wβ(x)|uce|)

β0
sgn(es) (12.60)

where

sgn(es) =
{

1 es > 0
−1 es < 0 (12.61)

Note that

−(wα(x) + wβ(x)uce)es ≤ (|wα(x)| + |wβ(x)uce|) |es|
Hence,

V̇i ≤ −γe2
s + (|wα(x)| + |wβ(x)uce|)|es|

−es(βk(t) + β(x))
(

(Wα(x) + Wβ(x)|uce|)
β0

sgn(es)
)

(12.62)

Now, considering the last term in this equation and noting that

(βk(t) + β(x))
β0

≥ 1

we have

V̇i ≤ −γe2
s+ |wα(x)||es|+ |wβ(x)uce||es|−essgn(es)Wα(x)−essgn(es)Wβ(x)|uce|

(12.63)
Notice that |es| = essgn(es) (except at es = 0) and recall that |wα(x)| ≤ Wα(x)
and |wβ(x)| ≤ Wβ(x) so

|wα(x)||es| − essgn(es)Wα(x) = |es|(|wα(x)| − Wα(x)) ≤ 0

and

|wβ(x)uce||es| − essgn(es)Wβ(x)|uce| = |es|(|wβ(x)uce| − Wβ(x)|uce|) ≤ 0

so
V̇i ≤ −γe2

s (12.64)

Since γe2
s ≥ 0 this shows that Vi, which is a measure of the tracking error and

parameter estimation error, is a nonincreasing function of time. Notice that
γ > 0 has an influence on how fast Vi → 0. By picking γ larger you will often
get faster convergence of the tracking error.

1Note that we are introducing a discontinuity here so strictly speaking, we are not guaran-
teed that solutions to the differential equation representing the closed-loop system exist and
are unique. This issue has received significant attention in the literature, particularly, the
sliding mode control literature. Here, we simply highlight the issue and note that if you want
to avoid the problem, you can use the “smoothed control law” defined later in this section so
that you are guaranteed existence and uniqueness of solutions.
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Asymptotic Convergence of the Tracking Error and Boundedness of
Signals

Given the plant assumptions (that the reference signals are bounded, x is mea-
surable, d = n, and that projection ensures that the uce term is well-defined),
the following hold:

Asymptotic tracking of
reference inputs with
bounded signals can be
achieved via indirect
adaptive control.

• The plant output is such that y, ẏ, . . . , y(d−1) are bounded.

• The input signals u, uce, and usi are bounded.

• The parameters θα(t) and θβ(t) are bounded.

• We get asymptotic tracking, that is,

lim
t→∞ e(t) = 0

To see this, first note that since Vi is a positive function and

V̇i ≤ −γe2
s (12.65)

we know that es, θα, and θβ are bounded. Since es is bounded and ym and its
derivatives (i.e., ym, ẏm, . . . , y

(d−1)
m ) are bounded, we know that y, ẏ, . . . , y(d−1)

are bounded. Hence, by assumption we have that z and hence, x are bounded.
Hence, α(x), α̂(x), αk(t), β(x), β̂(x), and βk(t) are bounded. Since x is bounded
and (βk(t)+ β̂(x)) ≥ β0, uce and usi and hence, u are bounded. Next, note that∫ ∞

0

γe2
sdt ≤ −

∫ ∞

0

V̇idt = Vi(0) − Vi(∞) (12.66)

This establishes that es ∈ L2 (L2 = {z(t) :
∫∞
0

z2(t)dt < ∞}) since Vi(0) and
Vi(∞) are bounded. Note that via Equation (12.49), ės is bounded. Hence,
since es and ės are bounded and es ∈ L2, we have that limt→∞ es(t) = 0 (this
is what is called Barbalat’s lemma). It should be clear then, via the definition
of es(t), that limt→∞ e(t) = 0.

Smoothed Control Law

It is possible to augment the above control law with a “bounding control term”
that will ensure that the states stay bounded within some region. This can be
useful in defining the approximator structures to provide good approximation
properties in the region where the states will be. The sliding mode control term
in effect compensates for the approximation errors that arise, since we are using
finite sized approximators. If the approximators are not defined so that it is
possible to make them accurate in the region where the system will operate,
then Wα(x) and Wβ(x) will have to be large and significant actions are then
taken by the sliding mode control term (and these generally result in a “high
gain effect” that can cause undesirable oscillations). It is possible to reduce the
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high frequency signals that can result from the sliding mode control term by
using a “smoothed version” of this signal (i.e., one that has a smooth transition
from negative to positive values, not the sgn(es) term). In this case, however,
you only get convergence to an ε-neighborhood of es = 0 (it seems that our
ability to use the high gain effect from the sliding mode term in continuous
time systems allows us to get asymptotic tracking, not just to a neighborhood
of zero as we had in the discrete-time case). We will discuss the details of such
an approach next.

Define the error
eε = es − εsat (es/ε) (12.67)

where ε > 0 and

sat(x) =

⎧⎨
⎩

1 if 1 ≤ x
x if −1 < x < 1
−1 if x ≤ −1

(12.68)

Hence, eε measures the distance between es and the desired “boundary layer,”
so that eε = 0 when es is within the boundary layer.

The certainty equivalence controller is now defined to be

uce =
1

βk(t) + β̂(x)
(− (αk(t) + α̂(x)) + νε(t)) (12.69)

where
νε(t) = y(d)

m + γeε + ēs

with ēs as defined before. With these changes, Equation (12.49) becomes

ės + γeε = (α̂(x) − α(x)) +
(
β̂(x) − β(x)

)
uce − (βk(t) + β(x))usi (12.70)

Now, consider Equation (12.50) with the eε as the tracking error measure-
ment

Vi =
1
2
e2

ε +
1

2ηα
θ̃�α θ̃α +

1
2ηβ

θ̃�β θ̃β (12.71)

Consider the following update laws

θ̇α(t) = −ηαφα(x)eε (12.72)
θ̇β(t) = −ηβφβ(x)eεuce (12.73)

where ηα > 0 and ηβ > 0 are adaptation gains. Use an appropriate projection
algorithm.

With this, Equation (12.62) is expressed as

V̇i ≤ −γe2
ε + (|wα(x)| + |wβ(x)uce|)|eε| − (βk(t) + β(x))eεusi (12.74)

We now redefine the control term

usi =
Wα(x) + Wβ(x)|uce|

β0
sat(es/ε) (12.75)
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so that we now have smooth control action. Notice that

eεsat(es/ε) = |eε|

to see that
V̇i ≤ −ηe2

ε

which ensures asymptotic stability of eε using Barbalat’s lemma as before. This
implies that es will converge asymptotically to an ε-neighborhood of es = 0,
and also e will converge to a neighborhood of e = 0 (and the size of that neigh-

The smoothed control
law results in
convergence of the
tracking error to a
neighborhood whose size
can be set a priori.

borhood is proportional to ε). Hence, by choosing ε to be small, we get a higher
gain control, and better convergence results (i.e., to a smaller neighborhood).
Clearly, as ε → 0, we get the same results as for the earlier case when we used
the high gain term.

12.7.3 Direct Adaptive Control

In addition to the assumptions we made in the indirect adaptive control case,
we require

βk(t) = αk(t) = 0

for all t ≥ 0, and that there exists positive constants β0 and β1 such that

0 < β0 ≤ β(x) ≤ β1

(which often holds in practical applications). Also, we assume that we can
specify some function B(x) ≥ 0 such that

|β̇(x)| =

∣∣∣∣∣
(

∂β

∂x

)�
ẋ

∣∣∣∣∣ ≤ B(x)

for all x ∈ Sx. This requirement is often met in practice since, if we think of
β̇(x) as the rate of change of the “gain” on the input term, it is often the case
that this will be bounded. For example, notice that if β(x) is a constant that
we know lies in a fixed positive interval, then all these conditions are satisfied
with B(x) = 0, for all x.

Controller Approximator

We know that there exists some ideal controller

u∗ =
1

β(x)
(−α(x) + ν(t)) (12.76)

where ν(t) is defined the same as in the indirect adaptive control case. Let

u∗ = θ∗�u φu(x, ν) + uk(t) + wu(x, ν) (12.77)



590 Adaptive Control

where uk is a known part of the controller (e.g., one that was designed for the
nominal plant) and

θ∗u = arg min
θu∈Ωu

(
sup

x∈Sx,ν∈Sm

|θ�u φu(x, ν) − (u∗ − uk)|
)

(12.78)

so that wu(x, ν) is the approximation error. We assume that Wu(x, ν) ≥
|wu(x, ν)|, where Wu(x, ν) is a known bound on the error in representing the
ideal controller. The approximation is

û = θ�u (t)φu(x, ν) + uk (12.79)

where the matrix θu(t) is updated online. The parameter error is

θ̃u(t) = θu(t) − θ∗u (12.80)

Consider the control law
u = û + usd (12.81)

which is the sum of an approximation to an ideal control law, and a sliding
mode control term. With this, the dth derivative of the tracking error becomes

e(d) = y(d)
m − α(x) − β(x) (û + usd) (12.82)

Adding and subtracting β(x)u∗ and then using the definition of u∗, we get

e(d) = y(d)
m − α(x) − β(x)u∗ − β(x) (û − u∗) − β(x)usd (12.83)

= −γes − ēs − β(x) (û − u∗) − β(x)usd. (12.84)

or in a manner analogous to the indirect case,

ės + γes = −β(x) (û − u∗) − β(x)usd. (12.85)

Controller Parameter Updates

Consider the following Lyapunov function candidate

Vd =
1

2β(x)
e2

s +
1

2ηu
θ̃�u θ̃u (12.86)

where ηu > 0. Since 0 < β0 ≤ β(x) ≤ β1, Vd is radially unbounded. The
Lyapunov candidate, Vd, is used to measure both the error in tracking and the
error between the desired controller and current controller. Taking the time
derivative of Equation (12.86) yields

V̇d =
es

β(x)
ės − β̇(x)e2

s

2β2(x)
+

1
ηu

θ̃�u
˙̃θu (12.87)

(the second term arises since β(x) depends on time). Substituting ės, as defined
in Equation (12.85), we find

V̇d =
es

β(x)
(−γes − β(x) (û − u∗) − β(x)usd) − β̇(x)e2

s

2β2(x)
+

1
ηu

θ̃�u
˙̃θu (12.88)
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Use the update law
θ̇u(t) = ηuφu(x, ν)es(t) (12.89)

so ηu > 0 is an adaptation gain. Since ˙̃
θu = θ̇u,

V̇d = − γ

β(x)
e2

s −
(
θ̃�u φu(x, ν) − wu(x, ν) + usd

)
es − β̇(x)e2

s

2β2(x)
+ θ̃�u φu(x, ν)es

(12.90)
and so

V̇d = − γ

β(x)
e2

s −
(

β̇(x)es

2β2(x)
− wu(x, ν)

)
es − esusd (12.91)

We use a projection method to ensure that θu ∈ Ωu so in an analogous manner
to the indirect case,

V̇d ≤ − γ

β(x)
e2

s −
(

β̇(x)es

2β2(x)
− wu(x, ν)

)
es − esusd (12.92)

Sliding Mode Control Term and Stability Properties

We once again use a sliding mode control term to compensate for the approxi-
mation error in modeling u∗ by a finite size approximator. Notice that

V̇d ≤ − γ

β1
e2

s +

(
|β̇(x)||es|
2β2(x)

+ |wu(x, ν)|
)
|es| − esusd (12.93)

(12.94)

We now define the sliding mode control term for the direct adaptive controller
as

usd =
(

B(x)|es|
2β2

0

+ Wu(x, ν)
)

sgn(es) (12.95)

which ensures that
V̇d ≤ −γe2

s/β1

so that Vd is a nonincreasing function of time.
This gives us the same type of results that we obtained in the indirect case.

In particular, all the signals are bounded and e(t) → 0 as t → ∞, so we get
asymptotic tracking. There are practical applications where some uk can be
designed so that the resulting transient performance can then sometimes be

The same type of
asymptotic tracking
result can be obtained
for the direct adaptive
control case.

improved. In an analogous manner to the indirect case, it is possible to define
a smoothed version of the sliding mode control term that will only result in es

reducing to a neighborhood of zero.

12.7.4 Design Example: Aircraft Wing Rock Regulation

In this section we provide an example of how to design continuous time indirect
and direct adaptive controllers for an aircraft wing rock regulation problem.
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The Aircraft Wing Rock Regulation Problem

Aircraft wing rock is a limit cycling oscillation in the aircraft roll angle φ and
roll rate φ̇. If δA is the actuator output, a model of this phenomenon is given
by

φ̈ = a1φ + a2φ̇ + a3φ̇
3 + a4φ

2φ̇ + a5φφ̇2 + bδA

where ai, i = 1, 2, 3, 4, 5, and b, are constant but unknown. We assume that
we know the sign of b. Choose the state vector x = [x1, x2, x3]� with x1 = φ,
x2 = p = φ̇, and x3 = δA. Suppose that we use a first order model to represent
the actuator dynamics of the aileron (the control surface at the outer part of
the wing). Then we have

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + a3x
3
2 + a4x

2
1x2 + a5x1x

2
2 + bx3

ẋ3 = −1
τ
x3 +

1
τ

u

y = x1

where u is the control input to the actuator and τ is the aileron time constant.
For an angle of attack of 21.5 degrees, a1 = −0.0148927, a2 = 0.0415424,
a3 = 0.01668756, a4 = −0.06578382, a5 = 0.08578836. Also, b = 1.5 and
τ = 1

15 . Take these as constant nominal values that you do not know. Suppose,
however, that you know that b ∈ [1, 2] and τ ∈ [ 1

20 , 1
10 ]. Also, assume that

you know that there is a constant but unknown gain that multiplies the input
u (i.e., assume that you know it is not a nonlinear function of x); however,
suppose that you do not know that the particular plant nonlinearities are of the
form indicated above, or that the parameters appear as they do (i.e., do not use
the fact that they enter linearly).

Suppose that you want the output y(t) to track the reference signal ym(t)
that is zero, and has all its derivatives identical to zero, for all time. Assume
that you have sensors to measure y, ẏ, and ÿ (for the simulation, we will use
the above model to simulate the sensing of all these values, and in particular,
use ÿ = a1φ + a2φ̇ + a3φ̇

3 + a4φ
2φ̇ + a5φφ̇2 + bδA to simulate the sensing of ÿ).

We will use x(0) = [0.4, 0, 0]� in all our simulations.

Indirect Adaptive Controller Development and Results

The relative degree is d = n = 3. Assume that αk = βk = 0 so that we
assume that we have no special information about the form of the underlying
nonlinearities. Next, we need to find a β0 > 0 and later for the direct adaptive
controller a β1 ≥ β0 such that β0 ≤ β(x) ≤ β1. We use β0 = 10 and β1 = 40.
After a bit of tuning, we chose k0 = 100, k1 = 20, and γ = 2. Also, we tuned
the adaptation gains to get fast enough adaptation to meet the objectives. In
particular, we used ηα = ηβ = 2.

To design the approximators that we need, we first note that since we assume
that we know that b is an unknown constant, we can simply use a constant to
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estimate it (i.e., an affine approximator with only the constant term). To keep
things simple, this is what we will do. We use projection to make sure that
the estimate of b stays in the proper range. To estimate the α term, we will
use a Takagi-Sugeno fuzzy system but as an input to the premise terms, we
will only use x1 and x2 (key system variables where nonlinearities enter), while
we will use all three state variables as inputs to the consequent (we are trying
to avoid problems with computational complexity). We placed the centers of
the membership functions on the two universes of discourse at −2, 0, and 2,
with the spread values all equal to 2, and used all possible combinations of rules
so we get R = 9 rules. This means that we will tune 36 parameters for our
approximator. We chose Wα = 0.01 (simply a guess) and Wβ = 0 (since we
know that ideally our approximator can succeed).

The results showing the quality of the tracking are shown in Figure 12.16.
There, we also show the actuator output. Notice that we get fast tracking. Next,
see Figures 12.17 and 12.18, where we show the time history of the parameters
that are used in the approximators. Notice that the parameters estimates move
significantly in the beginning, but reach a steady state.
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Figure 12.16: Wing rock controller results, roll angle.

Direct Adaptive Controller Development and Results

For the direct adaptive controller, we use all the same parameters as in the
indirect case but choose Wu = 0.01 and ηu = 2. For convenience, the controller
approximator structure is implemented using the same approximator structure
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Figure 12.17: Wing rock controller results, θβ.

as we used in the indirect adaptive controller for the α term. Hence, it has
inputs of x1 and x2 for the premise, but all the state variables as inputs to the
consequents. We do not use ν as an input to the controller (even though this
may help further improve performance).

The results showing the quality of the tracking are shown in Figure 12.19.
There, we also show the actuator output. Notice that we get fast tracking as
we did in the indirect case. Next, see Figure 12.20, where we show the time
history of the parameters that are used in the approximator. Notice that the
parameters estimates reach a steady state after a brief transient period.

12.8 Discussion: Tuning Structure and Nonlin-

ear in the Parameter Approximators

There are several ways to tune nonlinear in the parameter approximators that
Tuning approximator
structure or nonlinear in
the parameter
approximators may lead
to a better exploitation
of approximator
flexibility.

are used in either direct or indirect adaptive control schemes. For instance, you
could linearize the approximator structure, assume that the errors from the lin-
earization are bounded, and then the error equations for the adaptation laws will
remain linear so that the same normalized gradient and recursive least squares
methods used in the adaptive neural/fuzzy control approaches in the previous
subsections can be used to tune the approximators. Of course in this case, the
error that results from the linearization may adversely affect the performance
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Figure 12.18: Wing rock controller results, components of θα.
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Figure 12.19: Wing rock controller results, roll angle.
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Figure 12.20: Wing rock controller results, θu.

of the methods. See the “For Further Study” section at the end of this part for
more details.

Another approach to tune nonlinear in the parameter approximators is to
simply apply the gradient methods of Chapter 11 directly to the tuning of all
the parameters of the approximator. Clearly, this will be possible so long as we
can define the gradient of the approximator with respect to its parameters (and
for the approximators we defined in this book, we can always do this). We can
proceed in this case to tune parameters based on the acquisition of only one
data pair (as we did in the last two sections) or many data pairs.

In Section 9.4.5 we overviewed several heuristic methods to use attentive
systems to adjust the parameters of approximators that enter in a nonlinear
fashion. Basically, these methods seek to allocate approximator structure to the
region of interest (e.g., where the system is being regulated to) by tuning the
parameters that enter in a nonlinear fashion. Approaches based on adaptively
tuning approximator structures that are typically used in clustering applications
can also be used.

Finally, note that ideas on approximator structure tuning could be inte-
grated into the adaptive control methods. We leave such an endeavor to the
interested reader. Nongradient methods (e.g., foraging or genetic) could be used
to tune structure, or perhaps ideas from Section 9.4.6 and Design Problem 11.2.
Principles of tuning structure of approximators are not very well established, or
frequently used in applications, even though they may be quite useful.
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12.9 Exercises and Design Problems

Exercise 12.1 (Optimization-Based Adaptive Control Strategies): De-
fine other adaptive control strategies that use the online optimization
viewpoint of learning models or controllers. Include block diagrams and
detailed explanations of how the controllers could operate. Include in the
discussion methods for hierarchical adaptive control (e.g., via supervisory
methods), adaptive model predictive control, and multiple model adaptive
control.

Exercise 12.2 (Stable Adaptive Fuzzy/Neural Control: Derivations):
In this problem you will derive stable adaptive laws under different as-
sumptions from the ones considered in the chapter.

(a) Suppose that we know that

(βk(t) + β(x)) ≤ β̄0

for some β̄0 < 0. Specify an indirect adaptive controller that provides
the same stability and boundedness properties as the case where we
used β0 > 0 (assuming all the other assumptions hold).

(b) Repeat (a) but for the direct adaptive control case assuming that

β̄1 ≤ β(x) ≤ β̄0

for some β̄1 and β̄0 such that β̄1 ≤ β̄0 < 0.

(c) Suppose that for the continuous time indirect adaptive control case,
you used adaptation laws

θ̇α(t) = −Q−1
α φα(x)es (12.96)

θ̇β(t) = −Q−1
β φβ(x)esuce (12.97)

where Qα and Qβ are positive definite and diagonal matrices (hence,
there is a different adaptation gain for each component of the pa-
rameter vector). Show that in this case we can also obtain a stable
indirect adaptive controller. Hint: Begin with a different choice for
the Lyapunov function.

(d) Suppose that for the continuous time direct adaptive control case,
you used adaptation law

θ̇u(t) = Q−1
u φu(x, ν)es(t) (12.98)

where Qu is a positive definite and diagonal matrix (hence, there
is a different adaptation gain for each component of the parameter
vector). Show that in this case we can also obtain a stable direct
adaptive controller. Hint: Begin with a different choice for the Lya-
punov function.



598 Adaptive Control

Design Problem 12.1 (Optimization-Based Adaptive Fuzzy/Neural
Control): In this problem you will study the development of indirect
and direct neural controllers for the process control problem studied in
Sections 12.4 and 12.6.

(a) Develop an indirect neural controller for the process control problem.
You may use the same controller developed in the chapter, or you may
use a different approximator structure (e.g., the multilayer percep-
tron). Regardless of which approach you use, verify the operation
of your controller in the same manner as was done in Section 12.4.
Study the effect of the choice of the reference input on the ability of
the approximator mappings to match the underlying unknown non-
linearities. Provide plots to illustrate the quality of the matching as
was done in the chapter.

(b) Develop a direct neural controller for the process control problem.
You may use the same controller developed in the chapter, or you
may use a different approximator structure (e.g., the multilayer per-
ceptron). Regardless of which approach you use, verify the operation
of your controller in the same manner as was done in Section 12.6.
Study the effect of the choice of the reference input on the ability of
the approximator mapping to match the “ideal” controller nonlinear-
ity discussed in the chapter. Provide plots to illustrate the quality of
the matching as was done in the chapter.

(c) Compare the performance of the indirect and direct methods and
discuss.

(d) Optional: For fun, repeat (a)-(c), but for the case where a Takagi-
Sugeno fuzzy system is used for the approximator structures.

(e) Develop and evaluate a multiple model adaptive control strategy for
this problem.

Design Problem 12.2 (Stable Adaptive Fuzzy/Neural Control for Bal-
ancing a Ball on a Beam): In this problem you will develop stable
(continuous time) indirect and direct adaptive controllers for the ball on
a beam problem described in Section 12.7.1. Note that you need a result
from Exercise 12.2 to solve this problem. Use x(0) = [1, 0]� (one unit
corresponds to 0.75 inches on the beam), and ym(t) = 3 and ẏm(t) = 0
for all t ≥ 0. Take the parameters ā, b̄, c̄, and d̄ as constant nominal
values that you do not know. Also, assume that you know that there is a
constant but unknown gain that multiplies the input u (i.e., assume that
you know it is not a nonlinear function of x); however, suppose that you
do not know that the particular nonlinearities are of the form indicated in
Section 12.7.1, or that the parameters appear as they do (explain, how-
ever, in the development of the controllers below what you do need to
assume about the plant).
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(a) Find a β0 < 0 and β1 ≤ β0 such that β0 ≤ β(x) ≤ β1. Define
the signals es, ēs, and ν. What are the sliding mode terms usi and
usd? With the above assumptions, what is a reasonable choice for
Wβ (noting that you typically want to choose its value as small as
possible) for the indirect adaptive controller? For the direct adaptive
controller, what is a good choice for B(x)?

(b) What signals need to be measured so that they can be used as inputs
to the direct and indirect adaptive controllers? Is it the same set of
inputs to both controllers?

(c) Develop a stable indirect adaptive controller for the ball on a beam
problem and illustrate its performance in simulation. Plot the plant
output, tracking error, and plant input u to illustrate the performance
of the system. Illustrate the effects of the choice of the adaptation
gains and other design parameters, and the choice of the approxima-
tor structures.

(d) Develop a stable direct adaptive controller for the ball on a beam
problem and illustrate its performance in simulation. Plot the plant
output, tracking error, and plant input u to illustrate the performance
of the system. Illustrate the effects of the choice of the adaptation
gains and other design parameters, and the choice of the approxima-
tor structure.

Design Problem 12.3 (Stable Adaptive Control for Aircraft Wing
Rock): Aircraft wing rock is a limit cycling oscillation in the aircraft
roll angle φ and roll rate φ̇. A model of this phenomenon is given by

φ̈ = a1 + a2φ + a3φ̇ + a4|φ|φ̇ + a5|φ̇|φ̇ + bδA

where the constants ai, i = 1, 2, 3, 4, 5 are constant but unknown. If we
model first-order actuator dynamics of the aileron (the control surface at
the outer part of the wing), the model is

φ̇ = p

ṗ = a1 + a2φ + a3p + a4|φ|p + a5|p|p + bδA

δ̇A = −1
τ

δA +
1
τ

u

y = φ

where δA is the aileron deflection angle, u is the control input, τ is the
aileron time constant, and b is an unknown but constant parameter (that
we know the sign of). For an angle of attack of 30 degrees, a1 = 0,
a2 = −26.67, a3 = 0.76485, a4 = −2.9225, a5 = 0, and b = 1.5, and
τ = 1

15 . Take these as constant nominal values that you do not know.
Suppose, however, that you know that b ∈ [1, 2] and τ ∈ [ 1

20 , 1
10 ]. Also,

assume that you know that there is a constant but unknown gain that
multiplies the input u (i.e., assume that you know it is not a nonlinear
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function of x); however, suppose that you do not know that the particular
nonlinearities are of the form indicated above, or that the parameters
appear as they do (explain, however, what you do need to assume about
the plant dynamics in the development of the controllers below). Suppose
that you want the output y(t) to track the reference signal ym(t) where

(s + 10)(s2 + 4s + 24.25)Ym(s) = 0

Assume that you have sensors to measure y, ẏ, and ÿ (for your simulation,
you can use the above model to simulate the sensing of all these values,
and in particular, use ÿ = ṗ = a1 + a2φ + a3p + a4|φ|p + a5|p|p + bδA to
simulate the sensing of ÿ). Use x(0) = [0.4, 0, 0]�, and ym(0) = 0.5, with
the higher order derivatives of ym initialized at zero.

(a) Choose the state vector x = [x1, x2, x3]� with x1 = φ, x2 = p = φ̇,
and x3 = δA. Define f and g for Equation (12.32). Show that the
relative degree d = n = 3. Assume that αk = βk = 0 and find the
form of the plant in Equation (12.35). Find a β0 > 0 and β1 ≥ β0

such that β0 ≤ β(x) ≤ β1.

(b) What signals need to be measured so that they can be used as inputs
to the direct and indirect adaptive controllers? Is it the same set of
inputs to both controllers?

(c) Develop a stable (continuous time) indirect adaptive controller for the
wing rock problem and illustrate its performance in simulation. Plot
the plant output, reference signal ym, tracking error, and plant input
u to illustrate the performance of the system. Illustrate the effects of
the choice of the adaptation gains and other design parameters, and
the choice of the approximator structures.

(d) Develop a stable (continuous time) direct adaptive controller for the
wing rock problem and illustrate its performance in simulation. Plot
the plant output, reference signal ym, tracking error, and plant input
u to illustrate the performance of the system. Illustrate the effects of
the choice of the adaptation gains and other design parameters, and
the choice of the approximator structure.
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For Further Study

To deepen your understanding of the methods of this part, first you can study
optimization theory, as this forms the basis of all the methods. Two good
books on optimization that, among others, have influenced the development
here are [68], and the earlier book [337]. To learn more about neural networks
and their training, see [130, 238]. The reader wishing to strengthen her or
his background in conventional adaptive control should consult [254] (or the
earlier books [448, 376, 219, 30]). For an in-depth treatment of stable adaptive
estimation and control using fuzzy and neural systems, see [484].

Cognitive Neuroscience of Learning: The descriptions of classical and
operant conditioning were based on [152, 223, 268, 269]. The description of the
conditioned learning mechanisms in the Aplysia was taken from [267, 223, 269];
for more relevant literature in this area, see [130]. It is interesting to note
that habituation can occur in microorganisms (e.g., Vorticella and nematodes),
and it seems that learning of simple behavioral rules can occur in flatworms
[161]. The discussion here on Hebbian learning is based on [206, 130]. For
more details on modeling and analysis of learning processes from the field of
theoretical neuroscience, see [130] and the references therein. Of particular
relevance to this book is their coverage of the modified Rescorla-Wagner model
used at the neural level for representing classical conditioning, the discussions
on modeling of Hebbian learning and its connections with both deterministic
and stochastic gradient methods, and the “tuning curves” (e.g., see pp. 14–17)
and their connection to function approximation (see pp. 316–321) by viewing
them as basis functions. The Rescorla-Wagner model studied in psychology and
related mathematical and computer representations of the learning process are
studied in [152] (pp. 109–119) and the references therein.

An early study growing from the field of cybernetics is given in [26] where
the author seeks to explain the origins of adaptive behavior (learning). While
research has often focused on organisms with a neural network when study-
ing learning, there have been studies of microorganisms that can demonstrate
behavioral plasticity via training [208].
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Function Approximation and System Identification: It is helpful if you
study the theory of system identification and for this, it is recommended that you
see [331]. It could be helpful to study approximation and regularization theory,
and one window into the mathematical literature you may want to consider
is [422]. The section on approximation theory, and in particular, the section
on whether to use linear or nonlinear in the parameter approximators, used
the ideas in [45]. An introduction to the topical area of this part is given
in [469, 265], where the authors also cover wavelets, and other approximators
and properties in some detail. Wavelet methods for nonlinear identification are
studied in [175].

Neural Control: A method that has been popular in the control of robots is
the cerebellar model articulation controller (CMAC), which was first introduced
in [9], and later applied in a different form in [362, 286]. An early paper on neural
networks for control is given in [378]. A very nice introduction to learning control
is given in [176]. Although developed independently, the FMRLC approach
discussed in Section 9.4, is related to the neural control method in [286]. A nice
overview of neural control methods is given in [171] and in [252, 361]. For a
method that also adapts the structure of the neural network, see [322]. A related
topic is that of “neural dynamic optimization for control,” where optimal control
laws are approximated [460].

Adaptive Fuzzy Control: The FMRLC was introduced in [300, 301] and
uses ideas from the linguistic self-organizing controller (SOC) presented in [429]
(with applications in [451, 507, 255, 121, 120, 119, 547]) and ideas in conventional
model reference adaptive control. The ship steering application was developed
from the work in [30, 376, 301, 412] and other applications of the FMRLC are
studied in [555, 297, 370, 302, 300, 560, 303]. Other methods and relevant work
are contained in [155, 266, 80, 530, 46, 505, 466, 435, 222, 221, 117, 118, 49,
80, 528, 80, 320], but note that there are many other methods that have been
developed and reported in the literature.

Expert, Planning, and Attentive Systems in Adaptive Control: In
addition to [193], the authors in [521, 395, 132, 516, 373] study fuzzy supervi-
sory controllers that tune conventional controllers, especially ones that tune PID
controllers (there are many conventional PID auto-tuning methods [28, 311]).
Conventional gain scheduling has been studied extensively in the literature, es-
pecially for a wide range of practical applications. See [461, 443, 462] for some
theoretical studies of gain scheduling. The connections between fuzzy supervi-
sion and gain scheduling have been highlighted by several researchers. A more
detailed mathematical study of the connections is provided in [399]. The idea
of using a supervisor for conventional adaptive controllers was studied earlier
in [27, 21]. A case study for supervisory control of a two-link flexible robot
was presented in [371]. The approach to supervision there bears some similarity
to the one in [319]. A case study for a fault-tolerant aircraft control problem,
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where a rule based system supervises an adaptation mechanism to achieve per-
formance adaptive control, is given in [297]. General issues in hierarchical fuzzy
control are discussed in [133].

A survey of model predictive control is given in [192]. Adaptive fuzzy model
predictive control is studied for a process control problem in [389] and there have
been other similar studies for fuzzy model predictive control on which some of
this work was based [237, 236]. The section on dynamically focused learning,
an attentive mechanism for adaptive fuzzy systems, is based on [296].

Next, note that multisensor integration [339] and a variety of applications
[11] utilize a concept called “world modeling” where a model of the environ-
ment is built while the system operates and information from the model is used
in decision-making. While there are some relationships between systems that
exploit a world model, and those in adaptive model predictive control, general
world modeling is an important topic in its own right as it represents a very
general philosophy on model building.

Finally, note that the area of learning automata is relevant to the topics
studied in this part (e.g., in modeling learning systems and analysis of stochastic
learning systems). For an introduction to that area, see [380]. The area of
learning Bayesian networks from data is covered in [383].

Linear Least Squares: There are many methods to train neural networks
and fuzzy systems. There are many books on neural networks (see, e.g., [238,
262]). For other methods to train fuzzy systems, consider [412], [262], [530, 531],
or [242, 37].

The idea of using least squares to train fuzzy systems was first introduced
in [504] and later studied in [532] and other places. Numerical issues for least
squares methods are discussed in [331, 103, 332] and model validity is studied
in [70]. The controller construction problem where process operator data is used
was taken from [498], as was the CO2 estimation problem for the gas furnace
studied in an exercise at the end of Chapter 10. Issues in how to determine
which inputs to use for an estimator are discussed in [331, 104, 260, 498, 262].

Gradient Methods: If you are interested in connections between gradient
methods and learning in neuroscience, the first area to study is modeling Heb-
bian learning [241], specifically when it is modeled as a gradient method. For
this, you can study [130, 238] and the references therein.

For more details on gradient methods, see [337, 68]. The brief discussion
on the stochastic gradient method is based on [69]. For more background on
stochastic optimization, see [439], where the “stochastic approximation” method
was introduced, and [293] (the classical backpropagation method is a stochas-
tic gradient approach, since it uses a steepest descent gradient approach and
random presentation of data from the training data set).

The hybrid methods (e.g., methods that may use one optimization method
for the nonlinear part of the approximator structure and another for the linear
part) have been used by a variety of researchers; a particularly nice set of appli-
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cations were studied in [262, 259, 261]. Some clustering methods are overviewed
in [43]. A method that combines an online clustering and least squares method
is given in [102]. A variety of clustering methods are discussed in [147], where
the authors also focus on construction of local models that are useful for the
development of control systems.

Some other methods related to the topics in this part are given in [251, 48,
545, 306, 1, 253, 378, 80].

Stable Adaptive Fuzzy/Neural Control: Here, the treatment was only
meant to introduce the topic of stable adaptive fuzzy/neural control. A recent
text that covers the full details of many stable adaptive neural/fuzzy methods
is [484]. There, more general direct and indirect adaptive control methods are
introduced, the output feedback and multivariable cases are discussed in detail,
many examples and applications/implementations are provided, and discrete-
time and decentralized adaptive control are covered. It seems that the field of
stable neural control started with [424] and has been significantly affected by
the work in [423, 424, 441, 172, 174, 167, 321, 552, 316, 379, 447, 101, 546,
445, 425, 105], where the authors make use of neural networks as approxima-
tors of nonlinear functions. In [497, 248, 529, 304, 99, 530, 486], the authors
use fuzzy systems for the same purpose and [441, 379] use dynamical neural
networks. The neural and fuzzy approaches are most of the time equivalent,
differing between each other mainly in the structure of the approximator cho-
sen. Indeed, to try to bridge the gap between the neural and fuzzy approaches,
several researchers (e.g., in [486]) introduce adaptive schemes using a class of
parameterized functions that include both neural networks and fuzzy systems.
Linear in the parameter approximators are used in much of the above-referenced
work, and for example, [497, 248, 423, 424, 92, 172, 167, 99, 447, 445, 486] and
nonlinear in, for example, [321, 552, 316, 379, 101, 546, 425]. Note that most of
the papers deal with indirect adaptive control, whereas very few authors use the
direct adaptive control approach (see, however, [486, 442]). Research on decen-
tralized adaptive neural/fuzzy control is given in [487] and for the MIMO case
(both direct and indirect) in [396]. Persistency of excitation issues are studied
in [173, 172]. An interesting study on issues related to the use of local (finite
support) approximators in adaptive control can be found in [170]. Implemen-
tation studies for adaptive neural fuzzy control are given in [397]. For more
information on multiple model adaptive control, see [31, 347, 333, 377, 375] and
the references therein.

The aircraft wing rock model used in the design problem in Section 12.7 was
taken from [382, 165], which is based on wind tunnel data as studied in [309].
The aircraft wing rock design problem at the end of Section 12.7 was taken from
[289] and is based on [247].

Approximator Structure Learning: For an overview of methods for au-
tomatically constructing or pruning neural networks, see [295, 431] and for
discussion on some methods to adjust structure of fuzzy systems, see [412]. The
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issue of structure choice is treated in [103] for linear in the parameter approx-
imators where you want to choose the number of basis functions. There, least
squares methods are used to eliminate basis functions that do not significantly
contribute to making the approximation accurate. Such methods could be em-
ployed in another method to initialize the nonlinear portion of the approximator
[331] where you simply pick a very large approximator structure, then eliminate
the parts that do not contribute in a significant way. Some work in the direction
of trying to tune structure of an approximator in an adaptive control system is
contained in [198] (but also see the references there).

Immune Networks: While not discussed in this chapter, there has been
recent interest in biomimicry of immune systems and subsequent engineering
applications (e.g., in pattern recognition and control) [124]. For more recent
work, see [125]. Some in fact think of the immune system as a second type
of “brain” in the human body, with the ability to learn (e.g., it encounters a
type of pathogen, then “learns” how to more easily recognize it the next time)
and make decisions (e.g., how and when to attack foreign invaders). Immune
networks are models of immune systems and some such networks are “connec-
tionist” in similar ways to how neural networks are [168], and some types of
immune networks have underlying mechanisms that are sometimes thought of
as being similar to evolutionary optimization (e.g., the genetic algorithm) [182],
since their learning strategy can be viewed as a type of nongradient stochastic
optimization process. There have been several studies of underlying mechanisms
for learning in immune networks [169, 417, 66, 63, 67, 249, 250, 65, 471] and the
application of these ideas to control [63, 64] has been considered.

A recent study [146] focuses on tuning approximator structure and param-
eters and these ideas are more firmly connected with the ideas and methods of
this part.

Temporal Difference Learning and Neuro-Dynamic Programming: An
introduction to the area of reinforcement learning, and in particular “tempo-
ral difference learning” is given in [499], and connections to neuroscience are
discussed. Related methods and analysis of temporal difference learning are
studied in the area of “neuro-dynamic programming” [69], where the authors
also study the application to a number of multi-stage decision-making system
problems. In neuro-dynamic programming, an approximator, such as a neu-
ral network, is used to approximate the “optimal cost to go” in the dynamic
programming methodology, and then it is used to make choices of decision vari-
ables. Many other references are available in this general area, so you should
search the current literature.
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Sequence of Essential Concepts

• Evolution is a type of search that continually and incrementally redesigns
the structure and parameters of organisms to maximize organism fitness
for survival in an uncertain environment. To do this, it tends to optimize
the design of the organism for typical characteristics of its environment
(i.e., some type of average environment it encounters) and thereby pro-
duce an organism that is “robust” for survival in its habitat. (Extinction
processes are due to insufficient adaptation rate or “traps” in the search
space due to coupled constraints like physiology and environment.) En-
gineering design is analogous to evolution, but for technological products
and systems.

• Genetic algorithms simulate evolution and hence, can serve as a general
tool for parallel stochastic nongradient based optimization. There are,
however, many closely related deterministic and stochastic conventional
approaches (i.e., not biologically motivated), including response surface,
pattern search, simplex, and stochastic optimization methods. These pro-
vide insights into the operation of biologically motivated optimization
methods, such as the genetic algorithm (or the foraging algorithms of
Part V). Moreover, they provide practical approaches for solving engi-
neering problems that involve robust optimal design.

• Evolution is best viewed as a type of global optimization process (“global”
in time and population space) that can act on all aspects of the organ-
ism, including its ability to perform learning, which can be viewed as a
“local” adaptive search. The environment is the fundamental driver of
this optimization process. Learning is “local” in time, since it applies to a
single generation and local in space, since it occurs in a single individual
(but of course, culture has more global influences on learning in groups of
organisms). Learning can accelerate evolution (the “Baldwin effect”) and
evolution can shape learning (it can design every aspect of the learning
system). Evolution may produce an optimal balance between instincts
and learning capabilities that is dependent on characteristics of the en-
vironment (e.g., the stochastic nature of the environment) and organism.
These ideas provide some principles in the design of robust optimal com-
plex decision-making systems.

• Genetic algorithms are optimization processes that can be employed to
tune approximators in closed-loop systems and hence, can achieve real-
time adaptive control. Direct and indirect adaptive controllers and adap-
tive model predictive controllers can be designed using genetic algorithms.
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Darwin pioneered the idea that biological organisms develop and adapt over
long periods of time via “descent with modification.” For example, organism
“parents,” each with their own genetic makeup, mate, and their children’s ge-
netic makeup is a mixture of their parents so that often in appearance, you
see characteristics of both parents (ideas originally studied by Mendel for va-
rieties of garden peas). Sometimes, there are molecular “mutations” where an
abnormal gene arises, which then affects the formation of the child. Both the
mating and the mutations result in children growing up to be more or less fit to
survive and mate in the environment that they live in. Children who are more
fit tend to have more offspring, while children who are less fit often do not get
the chance to mate, or have fewer offspring. There is then a “natural selection”
that proceeds gradually over time so that populations evolve to be more fit for
their environment.

The genetic algorithm (GA) is a computer simulation that incorporates ideas
from Darwin’s theory on natural selection, and Mendel’s work in genetics on in-
heritance, and it tries to simulate natural evolution of biological systems. From
an engineering perspective, the genetic algorithm is an optimization technique
that evaluates more than one area of the search space and can discover more
than one solution to a problem. (Some would call it a type of stochastic direct
search method.) In particular, it provides a stochastic optimization method
where, if it “gets stuck” at a local optimum, it tries, via multiple search points,
to simultaneously find other parts of the search space and “jump out” of the
local optimum to a global one that represents the highest fitness individuals.

Evolution is the theory and mechanism that is ubiquitous and fundamental
to all of biology (bacteria, plants, and animals are all subject to the mechanisms
of evolution). One would expect it to have a similar pervasive role in all of
intelligent control. As discussed in this part, it applies to evolution of neural,
fuzzy, expert, planning, attentional, and learning systems.

14.1 Biological Evolution

The basic process of biological evolution was explained in Section 2.5 in Part I
on page 80 and it would be good to review that material before proceeding.
Here, however, we also give a brief overview of evolution in biological systems
so that you can easily form appropriate analogies to biological systems as you
learn about genetic algorithms. At the basis of evolution lies selection, mating,
and mutation, and each of these is outlined next.

“Survival of the fittest” refers to fitness in terms of reproductive success.
Natural selection is the process where organisms with higher reproductive suc-
cess generate offspring, and hence, propagate their DNA through time. Less
fit individuals do not have offspring (or have fewer of them) and hence can be-
come extinct over time. For instance, consider the cormorant (large fish-eating
seabirds that catch their prey under water). There are more than one species of
this bird. The one found on the coast of South America has sufficient wingspan
to fly, but the only member of its family that does not fly is the “flightless”
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cormorant that is found on the remote Galapagos Islands (part of Ecuador),
which are quite far from mainland South America in the Pacific Ocean. There
are no natural predators on the islands and a plentiful supply of fish immedi-
ately offshore. Its loss of flight does not seem to have harmed them, and in fact
can be viewed as beneficial since then it does not have to use the extremely

It is often useful to think
of the environment as
the designer of the
organism.

energy-expensive activity for obtaining food. Apparently, there was a selective
pressure on wing length that drove the evolutionary history of the flightless cor-
morant. This example illustrates the powerful force that selection provides in
“designing” organisms.

Mating and reproduction drive evolution. Mating is a process of mixing
(combining) chromosomes of the parents, and it tends to “homogenize” the
gene pool of the population. Different parts of chromosomes from each parent
are combined in a child. It is via this swapping of genetic material on the chro-
mosomes that a child inherits some characteristics of each parent (and thereby,
as you would imagine, characteristics of each grandparent). On average we may
think of each individual as being composed of half of one parent and half of
the other, one fourth of each grandparent, and so on. This swapping of genetic
material, and hence blending of outward characteristics, is apparent in many
living organisms that mate. For example, for some types of corn, pollination
from a dark colored corn stalk to a corn stalk with a “white” gene bears an ear
of corn that is half dark and half white.

Mutations result in variations in the offspring that result from mating. The
mutation rate is dictated by the probability of error in gene replication in biolog-
ical systems (and certain “mutagens,” whose source can lie in the environment,
can affect this rate). While we typically think of mutations as something unde-
sirable in biological systems (e.g., some may think of “mutants” in science-fiction
movies), they can also lead to more fit individuals (i.e., the mutation may rep-
resent a jump to a region of the space where the reproductive fitness increases
significantly).

14.2 Representing the Population of Individuals

The “fitness function” measures the fitness of an individual to survive, mate, and
produce offspring in a population of individuals for a given environment. The
genetic algorithm will seek to maximize the fitness function J̄(θ) by selecting
the individuals that we represent with θ (note that we place the bar over the
cost function to emphasize that we seek to maximize this function, where we
always sought to minimize “J” in the studies on optimization for approximation
in Part III).

14.2.1 Strings, Chromosomes, Genes, Alleles, and Encod-
ings

To represent the genetic algorithm in a computer, we make θ a string. A string
represents a chromosome in a biological system and one is shown in Figure 14.1.



14.2 Representing the Population of Individuals 617

A chromosome is a string of “genes” that can take on different “alleles.” In a
computer, we often use number systems to encode alleles. Here, we adopt the
convention that a gene is a “digit location” that can take on different values
from a number system (i.e., different types of alleles).

We encode the
parameters of the
optimization problem on
the chromosome, which
can simply be a sequence
of base-10 numbers.

Gene = digit location

Values here = alleles

String of genes = chromosome

Figure 14.1: String for representing an individual.

In a base-2 number system, alleles come from the set {0, 1}, while in a base-
10 number system, alleles come from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Hence,
a binary chromosome has zeros or ones in its gene locations. As an example,
consider the binary chromosome

1011110001010

which is a binary string of length 13. If we are seeking to optimize parameters
of a system that come in a base-10 number system, then we will need to encode
the numbers into the binary number system (using the standard method for
the conversion of base-10 numbers to base-2 numbers). We will also need to
decode the binary strings into base-10 numbers to use them. Here, we will
develop the genetic algorithm for base-2 or base-10 number systems, but we will
favor the use of the base-10 representation in our examples, since encoding and
decoding is simple in that case (and it can be computationally expensive for
online, real-time applications if the proper representation is not used).

As an example of a base-10 chromosome, consider

8219345127066

which has 13 gene positions. For such chromosomes we add a gene for the sign
of the number (either “+” or “−”) and fix a position for the decimal point. For
instance, for the above chromosome we could have

+821934.5127066

where there is no need to carry along the decimal point; the computer will just
have to remember its position. Note that we could also use a floating point
representation where we could code numbers in a fixed-length string plus the
number in the exponent. The ideas developed here work just as readily for this
number representation system as for standard base-2 or base-10.

14.2.2 Encoding Examples

It is possible to encode many different problems so that artificial evolution can
be applied. We discuss a few representations here, using a base-10 number
system, that are particularly relevant to the field of intelligent control.



618 The Genetic Algorithm

Proportional-Integral-Derivative Controllers

Suppose that you want to evolve a proportional-integral-derivative (PID) con-
troller (e.g., using a fitness function that quantifies closed-loop performance and
is evaluated by repeated simulations). In this case, suppose that we have three
gains, Kp, Ki, and Kd, and that at some time we have

We can encode a wide
variety of structures
(e.g., controllers) into a
form that the genetic
algorithm can operate
on; hence, the genetic
algorithm is a very
general optimization tool
(and this creates
potential for its misuse).

Kp = +5.12, Ki = 0.1, Kd = −2.137

then we would represent this in a chromosome as

+051200 + 001000− 021370

which is a concatenation of the digits, where we assume that there are six digits
for the representation of each parameter (two before the decimal point and four
after it) plus the sign digit (this is why you see the extra padding of zeros).
The computer will have to keep track of where the decimal points are. We see
that each chromosome will have a certain structure (its “genotype” in biological
terms, and the entire genetic structure is referred to as the “genome”). Each
chromosome represents a point in the search space of the genetic algorithm.
Here, we will use the term “phenotype” from biology to refer to the whole
structure of the controller that is to be evolved; hence, in this case the phenotype
is

Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)
dt

where e = r−y is the error input to the PID controller, r is the reference input,
and y is the output of the plant.

Clearly, a similar approach can be used to encode lead-lag compensators,
state feedback controllers, nonlinear controllers, adaptive controllers, and so on.

Elements of Decision Making

In this case, you simply concatenate the parameters of the fuzzy or neural system
that you would like to evolve. For instance, for a Takagi-Sugeno fuzzy system
you may simply encode the consequent parameters, or you may want to also
encode the membership function parameters (centers and spreads). Similarly,
for a neural network, you could encode all the weights and biases. Hence, in this
case we have θ defined similar to the case where we adjust it with least squares
or gradient methods (except here, θ is often treated as a string of concatenated
parameters, rather than a vector of parameters).

Another interesting, and useful, possibility to consider is the case when you
encode the “structure” of the fuzzy or neural system. For instance, you may
encode the number of rules, different forms of consequent functions (e.g., dif-
ferent nonlinearities), different membership functions (e.g., both Gaussian and
triangular), different inference methods (e.g., use of product or minimum in
premise quantification with fuzzy logic), or different defuzzification methods
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(e.g., center-of-gravity and center-average). In a neural network you could en-
code the number of layers, number of neurons in each layer, existence of con-
nections, methods to combine the inputs to the activation function (e.g., linear,
polynomial functions of the inputs, other nonlinear functions), and activation
function types (e.g., logistic, hyperbolic tangent, linear). Sometimes you may
want to encode certain characteristics of both fuzzy and neural systems (e.g.,
the number of rules and neurons), and then allow them to coexist within a
population.

In these cases, you can evolve the structure of the fuzzy or neural system.
The genetic algorithm should be viewed as a very general optimization tool
that can be used to adapt both parameters and structure of intelligent systems
(of course, structure can be quantified with parameters and this is often done
in practice). Indeed, many think of the genetic algorithm as having its most
natural role in the adjustment (or design) of structure of systems rather than
parameter tuning, which is often associated with learning over a lifetime. Next,
we discuss some very general ways to encode higher-level cognitive functions.

Just like the fuzzy system, the number of rules used by an expert controller
can be encoded. Moreover, all the other functional components can be encoded,
such as the conflict resolution strategies. For planning systems, we could encode
the look-ahead horizon length, the models used for projecting ahead, and so
on. For attentional systems, we can make similar general encodings (e.g., on
response times of refocusing, or intensity levels needed to evoke a response).

14.2.3 The Population of Individuals

Next, we develop a notation for representing a whole set of individuals (i.e.,
a population). Let k denote the generation number. Let θj

i (k) be a single
A population is a set of
candidate solutions
(chromosomes).

parameter at time k (a fixed-length string with sign digit). Here, we number
the chromosomes and the superscript j refers to the jth chromosome. Also, we
number the “traits” on each chromosome. (Note that strictly speaking, a trait
in a biological system is most often thought of as a property of the phenotype,
like hair or eye color, while in our systems, as in the PID controller example
above, genes, which are digits of parameters, are “expressed” as traits of the
phenotype; hence, we think of strings of genes as being expressed as traits in the
phenotype.) With this, the i subscript on θj

i (k) refers to the ith trait on the jth

chromosome. Suppose that chromosome j is composed of p of these parameters
(traits).

Let
θj(k) =

[
θj
1(k), θj

2(k), . . . , θj
p(k)

]�
be the jth chromosome. Note that earlier we had concatenated elements in a
string, while here we simply take the concatenated elements and form a vector
from them. We do this simply because this is probably the way that you will
want to code the algorithm in the computer (e.g., in Matlab). We will at times,
however, still let θj be a concatenated string when it is convenient to do so. It
will be clear from the context which form of representation we are using.
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The population of individuals at time k is given by

P (k) =
{
θj(k) : j = 1, 2, . . . , S

}
(14.1)

(not to be confused with the covariance matrix used in recursive least squares)
and the number of individuals in the population is given by S. We want to pick
S to be big enough so that the population elements can cover the search space.
However, we do not want S to be too big, since this increases the number of
computations we have to perform. In an optimization example below, we will
discuss some issues in the choice of the size of S.

Note that while we will not do so here, you could allow the size of the
population to vary with time (more like it does in nature) and the size of the
population could depend on resources in the environment, competition between
individuals (e.g., as measured by fitness), and physical constraints. Population
size plays a fundamental role in nature. Nature often exploits the use of very
high numbers of individuals and allows for many individuals to be killed so
that population size may vary significantly (at least in some regions). Our
simulations of evolution often do not exploit this due to a lack of computational
resources.

14.3 Genetic Operations

The population P (k) at time k is often referred to as the “generation” of indi-
viduals at time k. Basically, according to Darwin, the most qualified individuals
survive to mate and produce offspring. We quantify “most qualified” via an in-
dividual’s fitness J̄(θj(k)) at time k. For selection, we create a “mating pool”
at time k, something every individual would like to get into, which we denote
by

M(k) =
{
mj(k) : j = 1, 2, . . . , S

}
(14.2)

The mating pool is the set of chromosomes that are selected for mating. Here,
we perform selection to decide who gets in the mating pool, mate the individuals
via crossover, then induce mutations. After mutation we get a modified mating
pool at time k, M(k). Below, we will outline the operations involved in creating
the mating pool, performing mating for individuals in the mating pool, and
subsequent mutations. This will explain how the mj(k) in M(k) above are
created and modified.

To form the next generation for the population, we let

P (k + 1) = M(k)

Evolution occurs as we go from a generation at time k to the next generation at
time k + 1. Hence, in this artificial environment mating is done in parallel and
is synchronized with a clock, which is far different from how it typically occurs
in nature. Parallel asynchronous versions of the algorithm can, however, also
be developed.
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14.3.1 Selection

There are many ways to perform selection, but by far the most common one
used in practice is fitness-proportionate selection.

Fitness-Proportionate Selection

In this case, we select an individual (the ith chromosome) for mating by letting
each mj(k) be equal to θi(k) ∈ P (k) with probability

pi =
J̄(θi(k))∑S

j=1 J̄(θj(k))
(14.3)

To clarify the meaning of this formula and hence the selection strategy, you
Selection dictates that
the best points in the
search space should be
given preferential
treatment in specifying
the composition of the
population at the next
step.

can use the analogy of spinning a unit circumference roulette wheel where the
wheel is divided like a pie into S regions where the ith region is associated
with the ith individual of P (k). Each pie-shaped region has a portion of the
circumference that is given by pi in Equation (14.3). You spin the wheel, and if
the pointer points at region i when the wheel stops, then you place θi into the
mating pool M(k). You spin the wheel S times so that S elements end up in
the mating pool and the population size stays constant.

Clearly, individuals who are more fit will end up with more copies in the
mating pool; hence, chromosomes with larger-than-average fitness will embody a
greater portion of the next generation. At the same time, due to the probabilistic
nature of the selection process, it is possible that some relatively unfit individuals
may end up in the mating pool M(k).

Other Selection Strategies

There are many other options that have been considered for selection besides the
fitness-proportionate approach above. For instance, sometimes the individuals
in the population are ranked by order of fitness and a fixed number of the least
fit ones are “killed” and only the ones in the remaining set are used in the
selection process, perhaps with a fitness-proportionate method (this eliminates
the possibility of very unfit individuals from mating). Other times, some subset
of very fit individuals are allowed to get into the mating pool without spins of
the roulette wheel. Such strategies are often called “elitist” strategies since the
individuals who are most fit (the elite ones) are assured to be able to get into
the mating pool. Sometimes there is only one elite individual that is allowed,
and at other times you could allow more than one. Often, when such elitist
strategies are used, the elite individual(s) are allowed to proceed directly to the
next generation, without modification via the crossover and mutation operations
that are discussed next. (In this sense, we can think of the elite individuals as
having an ability to clone themselves so that their “offspring” are exact copies
of themselves.)
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Using Gradient Information Before or After Selection

There are many relationships between genetic algorithms and other optimization
methods. For instance, there are many stochastic methods for optimization of
nonlinear and nonconvex functions that bear similarities to the genetic algorithm
(see the next chapter). The advantages and disadvantages of these methods
relative to the genetic algorithm tend to be very application dependent, so we
will not comment on relative merits of the methods and which to pick in a
particular situation. There are, however, ways to use ideas from conventional
gradient optimization methods in genetic algorithms and we briefly discuss this
here.

Traditionally, it has been said that one of the key advantages of the genetic
algorithm is that it does not rely on the existence and use of gradient information
(as the gradient methods do). In some contexts, such as for estimation and
control problems, however, it could be that there is useful gradient information
available that you may not want to ignore. For instance, we know that in

Traditional gradient
methods can be
integrated into genetic
algorithms.

adjusting a nonlinear in the parameter approximator (that serves as an estimator
or controller), it can be very difficult for a gradient method to find the global
extremum value since it may get stuck at a local extremum. In such cases, it is
possible that a genetic algorithm can help find the way out of such local extrema
to find the global ones. Now, in such cases, for optimization algorithm design,
you could start with a gradient method and add certain features from the genetic
algorithm (e.g., evolving a population, use of random excursions by random re-
initialization at various steps, etc.). In addition, for your algorithm design, you
could think of the genetic algorithm as the main vehicle for optimization and
interleave gradient updates. To accomplish this, you could, for instance, perform
one or more gradient-based parameter update steps for every individual before
(or after) selection is used to place individuals in the mating pool. In this way,
it is hoped that we gain the benefits of using the directional information used in
the gradient updates, and the benefits of parallel search and random excursions
given by the genetic algorithm. See Section 15.5 at the end of the next chapter
for more discussion on such “interleaved” and hybrid methods. See the “For
Further Study” section at the end of the part for a reference that studies other
approaches.

14.3.2 Reproduction Phase, Crossover

We think of crossover as mating in biological terms, which at a fundamental
biological level involves the process of combining (mixing) chromosomes.

For the computer simulation of evolution, the crossover operation operates on
Crossover adds a
mechanism for both local
and global search, but
near fit individuals.

the mating pool M(k) by “mating” different individuals there. First, you specify
the “crossover probability” pc (usually chosen to be near 1 since, when mating
occurs in biological systems, genetic material is certainly swapped between the
parents). There are many types of crossover (i.e., ways to swap genetic material
on chromosomes), but the simplest one is “single-point” crossover.
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Single-Point Crossover

The procedure for single-point crossover consists of the following steps:

1. Randomly pair off the individuals in the mating pool M(k). There are
many ways to do this. For instance, you could simply pick each individual
from the mating pool and then randomly select a different individual for
it to mate with. Or, you could just have all the individuals mate with the
ones that are right next to each other (where “right next to each other”
is defined by how you label the individuals with a number system). In
this approach, if there are an odd number of individuals in M(k), then,
for instance, you could simply take the last individual and pair it off with
another individual who has already been paired off (or you could pair it
off with the individual with the highest fitness).

2. Consider the chromosome pair θj , θi that was formed in step 1. Generate
a random number r ∈ [0, 1].

(a) If r < pc, then cross over θj and θi. To cross over these chromosomes,
select a “cross site” at random and exchange all the digits to the right
of the cross site of one string with those of the other. This process is
pictured in Figure 14.2. In this example, the cross site is position 5
on the string (be careful in how you count positions), and hence, we
swap the last eight digits between the two strings. Clearly, the cross
site is a random number that is greater than or equal to 1, and less
than or equal to the number of digits in the string minus 1.

θ i 1 2 3 4 5 6 7 8 9 10 11 12 13

θ j 1 2 3 4 5 6 7 8 9 10 11 12 13

Cross site

Switch these two parts of the strings

Figure 14.2: Crossover operation example.

(b) If r > pc, then we will not cross over; hence, we do not modify the
strings, and we go to the mutation operation below.

3. Repeat step 2 for each pair of strings in the mating pool M(k).

As an example, suppose that S = 10 and that in step 1 above, we randomly
pair off the chromosomes. Suppose that θ5 and θ9 (j = 5, i = 9) are paired off
where

θ5 = +2.9845

and
θ9 = +1.9322
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Suppose that pc = 0.9 and that when we randomly generate r, we get r = 0.34.
Hence, by step 2 we will cross over θ5 and θ9. According to step 2, we randomly
pick the cross site. Suppose that it is chosen to be position 3 on the string
(include the sign as a position). In this case, the strings that are produced by
crossover are

θ5 = +2.9322

and
θ9 = +1.9845

Besides the fact that crossover helps to model the mating part of the evo-
lution process, why should the genetic algorithm perform crossover? Basically,
the crossover operation perturbs the parameters near good positions to try to
find better solutions to the optimization problem. It tends to help perform a
localized search around the more fit individuals (since on average the individ-
uals in the mating pool M(k) at time k should be more fit than the ones in
the population P (k) at time k) that could be near each other on the fitness
landscape. However, on a complex landscape, two relatively well-fit individuals
may be on very different parts of the landscape, so that an offspring may lie
“between” them (or extrapolated along a line connecting the two, but not too
far away) at points that represent poor fitness. In this case, you would not think
of crossover as producing local search. Indeed, in this situation it results in a
global type of search.

Other Crossover Methods

There are many other crossover methods that have been studied. For instance,
you could use a two-point crossover, where you pick two crossover points on
each chromosome and swap the elements in between the two points. Or, more
generally, you could have a multi-point crossover where you have one or more
crossovers per trait. Generally, when elitism is used, the elite individuals would
not undergo any type of crossover.

Another option is to make the crossover rate change with time. For instance,
you could start with pc = 1 and then reduce it as the overall fitness of the
population (as measured by, for example, the average of the fitness values of
all the individuals) increases. This way, there will be fewer explorations into
close-by regions when we are likely to be near a local maxima. Sometimes,
however, this can cause “premature convergence” where the algorithm locks on
to some values and does not properly explore other parts of the space to find
the global maximum. Sometimes, for online applications, especially when J̄ is
time-varying, you want to keep the crossover rate at pc = 1 for the entire time,
since this will ensure good exploration of the space. Note that you can think of
the crossover probability as being under genetic control so that its value could
be adapted also.

In other methods, similarity measures between individuals are developed and
only similar individuals are allowed to mate and hence, cross over (you can then
think of the population as having multiple species, with mating only within
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species). This may be a way to cope with having multiple types of structures
(e.g., fuzzy and neural systems) within a population. Or, you could just allow
individuals of similar fitness to mate, or you could pick the most fit individual
and have everyone else mate with that one.

Sometimes, you may want to “spatially” restrict mating so that only those
individuals who are “close” (e.g., with close defined in terms of the Euclidean
distance between two individuals) are allowed to mate and swap genetic material
(otherwise it is possible that two very different individuals mate). This would
then restrict crossover to a local type search.

14.3.3 Reproduction Phase, Mutation

Like crossover, mutation modifies the mating pool (i.e., after selection has taken
place). The operation of mutation is normally performed on the elements in the
mating pool after crossover has been performed. The biological analog of our
mutation operation is the random mutation of genetic material. Again, there
are many ways to perform mutations. Below, we will discuss the most common
methods.

Mutation provides a
mechanism to jump out
of local maxima and to
randomly explore local
and wide areas of the
search space.

Gene Mutations

To perform mutation in the computer, first choose a mutation probability pm.
With probability pm, change (mutate) each gene location on each chromosome
randomly to a member of the number system being used. For instance, in a
base-2 genetic algorithm, we could mutate

1010111

to
1011111

where the fourth bit was mutated to one. For a base-10 number system, you
would simply pick a number at random to replace a digit, if you are going to
mutate a digit location (normally we do not consider a replacement to be valid
if we replace a digit with the same value).

Besides the fact that this helps to model mutation in a biological system, why
should the genetic algorithm perform mutation? Basically, it provides random
excursions into new parts of the search space. It is possible that we will get
lucky and mutate to a good solution. It is the main mechanism (crossover can
also help) that tries to make sure that we do not get stuck at a local maxima
and that we seek to explore other areas of the search space to help find a global
maximum for J̄(θ). Usually, the mutation probability is chosen to be quite small
(e.g., less than 0.01), since this will help guarantee that all the individuals in
the mating pool are not mutated, so that any search progress that was made is
lost (i.e., we keep it relatively low to avoid degradation to exhaustive search via
a random walk in the search space).
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Keep in mind that we can think of mutation as providing both a local and
global search component to the genetic algorithm. If, for instance, the mutation
of a gene at a particular location on the chromosome represents a small (large)
magnitude change, then a random local (global, respectively) search behavior
is exhibited.

Other Mutation Methods

Sometimes, you could mutate an entire trait (i.e., a set of genes). Other times,
you may want to restrict mutation by only allowing certain genes, traits, or
individuals to be mutated. There could be reasons to vary the mutation rate;
indeed, in biological systems, the mutation rate is under genetic control (i.e., it
could evolve to an optimal level to make sure that the population can properly
adapt to its environment). As an example, in some applications you may want
to start with a relatively high mutation rate and then decrease the mutation
rate as the overall fitness of the population increases. Other times you may
simply want to code the mutation rate in a chromosome and try to evolve it.

In applications where the fitness function is fixed in time, you often do not
want to have a great reliance on mutation in generating new solutions, as it
is by simple luck that mutation succeeds. However, when the fitness function
changes with time (e.g., in biological “coevolution”), you may want a higher
mutation rate to ensure that many options are considered. For instance, in
online applications where the fitness function is time-varying, there is sometimes
a need for an exceptionally high mutation rate to ensure that you do not at
any point get stuck in a local maxima (since the actual maxima points can
be changing) and that you actively pursue many different solution options so
as to ensure active adaptation. You have to be careful, however, not to have
the mutation rate too high or any search progress made by the algorithm at
earlier stages can be destroyed. Also, typically in such online approaches, an
“elitism” strategy is used to ensure that at least one good solution is available
at all times (i.e., the elite individual is not subjected to any mutations). Even in
situations where the fitness function is not time-varying, elitism has been used
very effectively as a way to keep the best solution available while searching for
others (this will be illustrated in Section 14.5 for an optimization problem).

14.4 Programming the Genetic Algorithm

In this section we briefly discuss how to code the genetic algorithm, issues you
encounter in choosing the method to code it, memory and computation time
requirements, and termination and initialization issues.

14.4.1 Pseudocode for a Simple Genetic Algorithm

To summarize the operations of the genetic algorithm, and provide some guid-
ance on how to implement the algorithm in a computer, we provide some high-
level pseudocode that could be useful in programming the genetic algorithm in
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any computer language. Here, we assume for convenience that we use fitness-
proportionate selection, single-point crossover with probability pc (below, pc),
gene mutation with probability pm (below, pm), and we terminate after some
fixed number of iterations, Nga (below, Nga).

1. Define the GA parameters (e.g., crossover and mutation probability, pop-
ulation size, termination parameters).

2. Define the initial population P (0).

3. For k = 1 to Nga (main loop for producing generations).

Compute the fitness function for each individual.

Selection: From P (k), form M(k), the mating pool at iteration k, using
fitness-proportionate selection.

Reproduction: For each individual in M(k), select another individual in
M(k), mate the two via crossover with probability pc, mutate each
gene position with probability pm. Take the S children produced by
this process, and put the children in P (k + 1), the next generation.

4. Next k (i.e., return to step 3).

5. Provide results.

Clearly this only provides a high-level view of the operation of the genetic
algorithm. The details of the various steps depend on how you design your
particular genetic algorithm and on the programming language you use.

14.4.2 Alternative Sequencing of Operations

The above pseudocode shows one common way to implement the GA. There
are many possible variations on this approach. First, you could use any of the
options for fitness, crossover, and mutation listed earlier. Moreover, the very
way that the steps are sequenced is sometimes different from shown above.

For instance, note that one common way to implement the GA is to use se-
lection to choose two individuals, then when the two parents are used in mating,
they are allowed to form two children via crossover, and these children are both
subjected to mutation and kept in the next generation (if the population size S
is odd, then one child is randomly removed). In this way, the genetic material
of the two parents is not lost. Above, when a parent mates, it produces one
child who will, in general, only have part of each parent’s genetic material while
the other part is lost (this is what generally happens in biological systems).

Next, note that with the above approach, there are two ways that we could
end up with identical individuals in the mating pool at any iteration:

1. Due to the way that fitness-proportionate selection works, the same indi-
vidual (e.g., the most fit one) can have more than one copy of itself in the
mating pool.
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2. Two individuals could have different ancestors, but just happen to end up
with the same genetic makeup due to crossover and mutation operations
(e.g., by random chance two individuals’ genetic makeup could be the
same).

With normal choices for representations and parameters, case 1 would be much
more common than case 2. Using a biological system analogy, it seems satis-
factory to mate two individuals with different ancestry (ignoring that in most
species it takes a male and female to mate); however, if they were simply due to
the multiple copies of one individual getting in the mating pool due to selection,
it seems inappropriate. In either case, note that if the individual happens to
mate with itself, then crossover has no effect, although mutation still does. Some
researchers like to avoid this situation altogether and one way to do this, is to
allow only different individuals to mate (and if they are all the same, then sim-
ply terminate). In this case, the above pseudocode would have to be modified to
represent the addition of the operations to ensure no identical individuals mate.
Note that if you use the approach discussed above where you do not generate
the whole mating pool at one time, and just two parents, you could generate
one parent, then generate the other one with selection by repeating the process
until a different individual is generated. Of course, in this case that would not
be a pure fitness proportionate selection approach.

Finally, note that you may want to choose the method based on your un-
derstanding of the manner in which evolution occurs in biological systems in
nature. However, we would emphasize that any of the variations described here
are likely only very rough approximations of what is actually happening in na-
ture; hence, in this book we will focus more on the view of the GA as a stochastic
optimization method. If one way of defining and sequencing operations works
better for some application, we will accept it whether or not it models some bi-
ological system (i.e., ours is an engineering focus, not one where we are focusing
on the science of computer modeling of biological systems).

14.4.3 Representations, Complexity, Termination, and Ini-
tialization

For programming the genetic algorithm, one issue that you will encounter is
whether to use special “string operations” in a computer language (some have
better features than others in this regard). Such operations allow, for instance,
conversion of numbers to strings and strings to numbers (which, depending on
how you code the GA, you may need, since we need the numbers in string
format to cross over and mutate, and in numeric format for fitness evaluation
to perform selection, and of course, to plot certain results). They may al-
low for concatenation, swapping, and other features that could be useful in a
string-based approach to implementing genetic algorithms. Another approach
to implementing the genetic algorithm is to only use standard numeric repre-
sentations but ones that allow for us to perform crossover and mutation (in this
case, often integer representations are used).
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Next, in choosing which number system to use (e.g., base-2 or base-10),
be careful in considering that the parameters will have to be encoded to, and
decoded from, this representation. In some computer languages, there are spe-
cial functions that perform these functions and these can be quite useful in
programming the genetic algorithm.

Finally, note that there is often a need to include parameter constraints and
one way to do this is to use the “projection method” used for the gradient
methods.

In implementation, you are typically concerned with memory and computa-
tion time and there are certain choices that can affect these significantly. First,
due to the structure of the algorithm, it is clear that increasing the size of the
population S will increase both memory and computation time requirements.
In online applications, you typically only execute a fixed number (often one) of
iterations of the genetic algorithm (an iteration in a genetic algorithm is the act
of producing the next generation from the current one using the genetic opera-
tions) per sampling period. Clearly, just as in the case of the gradient methods,
if you are solving, for instance, a function approximation problem, then you
need to carefully consider issues involved in how big a batch of data to process
at each step, and how many iterations to perform per sampling period because
these can significantly affect memory and computation time requirements. Fi-
nally, the choice of the parameters of the genetic algorithm can significantly
affect memory and computation time requirements, simply by how they affect
performance of the algorithm and hence, how fast it finds a solution.

The discussion in the previous section showed how to produce successive
generations and thereby simulate evolution. While the biological evolutionary
process continues, perhaps indefinitely, there are many times when we would
like to terminate our artificial one and find the following:

• The individual of the population—say, θ�(k)—that best maximizes the
fitness function (note that we do not use the notation θ∗ as we reserve
this for a global maximum point if it exists (they exist)). Notice that to
determine this, we also need to know the generation number k where the
most fit individual existed (it is not necessarily in the last generation).
You may want to design the computer code that implements the genetic
algorithm to always keep track of the highest J̄ value, and the generation
number and individual that achieved this value of J̄ .

• The value of the fitness function J̄(θ�(k)). While for some applications
this value may not be important, for others it may be useful (e.g., in many
function optimization problems).

• The average of the fitness values in the population.

• Information about the way that the population has evolved, which areas
of the search space were visited, and how the fitness function has evolved
over time. You may want to design the code that implements the genetic
algorithm to provide plots or printouts of all the relevant genetic algorithm
data.
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There is then the question of how to terminate the genetic algorithm. There
are many ways to terminate a genetic algorithm, many of them similar to ter-
mination conditions used for conventional (gradient) optimization algorithms.
To introduce a few of these, let ε > 0 be a small number and M1 > 0 and
M2 > 0 be integers. Consider the following options for terminating the genetic
algorithm:

• Stop the algorithm after generating generation P (M1)—that is, after M1

generations.

• Stop the algorithm after at least M1 generations have occurred and at
least M2 steps have occurred where the maximum (or average) value of J̄
for all population members has increased by no more than ε.

• Stop the algorithm once J̄ takes on a value above some fixed value.

Of course, there are other possibilities for termination conditions (see the dis-
cussion in Section 11.1.6). The above ones are easy to implement on a computer
but sometimes you may want to watch the parameters evolve and decide yourself
when to manually stop the algorithm.

By “initialization” of the genetic algorithm, we mean, for instance, how to
select the initial population. (Of course, to start a genetic algorithm, you need
to specify other parameters.) Sometimes, the initial population is simply set to
be random values. Other times, domain-specific information can be useful in
establishing the initial population. Similar to the gradient methods, we generally
expect better algorithm performance if we start with a better initialization.
You should note, however, that unlike gradient methods, we get to initialize
the parameters to S different values if we want. So we can think of the initial
population as a set of best guesses at the solution. If even one of these is close
to the global maximum of J̄ , then it is possible that the performance of the
genetic algorithm will be improved.

14.5 Example: Solving an Optimization Prob-
lem

In engineering design problems, there are many times when it is useful to solve
some sort of optimization problem, since we often try to produce the “best”
designs within a wide range of constraints (which include, e.g., cost). In practical
engineering problems, such optimization problems can be very difficult and at
times it can be useful to turn to the genetic algorithm. In this section, to
illustrate the operation of the genetic algorithm, how to tune its parameters, and
how to program the genetic algorithm, we study its application to a relatively
simple optimization problem.

Suppose, in particular, that we want to find the maximum of the function
shown in Figure 18.10 using a genetic algorithm. Such a surface is sometimes
called a “fitness landscape” by analogy with mountain climbing. Notice that it
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has many hills and valleys that could confuse, for instance, a gradient optimiza-
tion algorithm. We will act as though we do not know an analytical expression
for the underlying function. We assume, however, that we can provide candi-
date solutions to the function, and it will return (in finite time) the fitness of
these candidate individuals. This is a necessary feature for implementing any
genetic algorithm.

14.5.1 Genetic Algorithm Design

The genetic algorithm used to solve this problem was coded in Matlab using a
base-10 encoding. We use two digits before the decimal point and four after it
for a total number of six digits. (Clearly, this constrains the accuracy that we
can achieve in the solution to the optimization problem.)

We will either initialize with a random population (with values uniformly
distributed on the known optimization variable domains) or with all the param-
eters initially at zero. We assume we know the size of the domain that we want
to optimize over (it is [0, 30] for each dimension) and use “projection” to keep
the parameters in this range.

Note that since the function goes below zero in Figure 18.10, we will shift
the whole plot up by a constant (a value of 5 in this case). This will not change
where the extrema occur on the landscape but it will shift the fitness values
computed and displayed. Why perform this “shift”? For our selection method,
we require that we have all positive fitness values since a negative one can result
in a negative probability of being placed in the mating pool.

We use fitness-proportionate selection, single-point crossover, and to pair off
individuals for mating, we pick each one in the mating pool and randomly select
a mate for it. We use gene mutation. We will explore the use of different values
for the population size S, the crossover probability pc, and mutation probability
pm. We will also study the effects of using elitism, with a single elite member.

For a termination criterion, we allow no more than a fixed maximum num-
ber of iterations (here, M1 = 1000). However, we also add another termination
criterion that may stop the algorithm before this maximum number of itera-
tions is achieved. In particular, we terminate the program if the best fitness
in the population has not changed more than ε = 0.01 over the last M2 = 100
generations.

14.5.2 Algorithm Performance and Tuning

In this section, we run the genetic algorithm program under a variety of condi-
tions to provide insights into its operation, and to provide ideas on how to tune
a genetic algorithm’s parameters.

Random Initial Population

To illustrate the operation of the genetic algorithm, we begin with pc = 0.8
and pm = 0.05 and a population size of S = 20. A random initial population
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is chosen, so that each parameter is uniformly distributed on [0, 30]. To better
view the results of the optimization process, we will plot the contour map of the
function in Figure 18.10 and place points on this plot that represent individuals
at some iteration. Figures 14.3 and 14.4 illustrate the operation of the genetic
algorithm. We see that for these choices, the algorithm performs well, and it

Initialization can
significantly affect
genetic algorithm
performance.

does find the best individual, but then later loses it. Note that if you run the
algorithm again, it may not do as well, since it may be unlucky in its random
initial choices. (This shows why you may want a big population size; if it is big,
it is more likely that it will make at least one good initial choice.) The scatter
pattern shown in Figure 14.3, where there are horizontal/vertical groupings
(bands), is the result of our genetic operator choices (e.g., the group of points
above the global maximum point results from crossover and gene mutation in
one dimension).
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Figure 14.3: Contour plot of surface in Figure 18.10.

Initial Population of all Zeros

Here, with all the other parameters the same, we choose an initial population
with all zeros for the parameter values. With this poor initialization, it fails to
find the optimum point (see Figure 14.5) by the time the algorithm terminates.
If you choose a different termination criterion that allows the algorithm to evolve
more generations, it may find a good solution. Also, note that if you run the
algorithm again, it may be the case that it will succeed, since the algorithm
may make some lucky mutations or crossovers that result in better guesses.
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Figure 14.4: Fitness and optimization parameter evolution.
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Figure 14.5: Contour plot of surface in Figure 18.10.
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Increased Mutation Probability

Next, let pc = 0.8 and pm = 0.1 (a larger value than above) and consider
a population size of S = 20. As you can see in Figures 14.6 and 14.7, with
the higher value for the mutation probability, it fails to lock on to the global
maximum point. Basically, this happens since mutation is destroying good

Large mutation
probabilities can lead to
random and exhaustive
search.

solutions (i.e., it destroys the progress of the method). From this, it should be
clear that if you pick the mutation probability too high, the algorithm executes
what can be considered a “random walk” in the parameter space so, while it
may find a good solution at some point, it may take a long time to do so and
we would basically attribute its success to “dumb luck.”
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Figure 14.6: Contour plot of surface in Figure 18.10 with random initial popu-
lation and higher mutation probability.

Decreased Crossover Probability

Next, let pc = 0.5 (a smaller value than above) and pm = 0.05 (i.e., return it to
its earlier value) and consider a population size of S = 20. With the lower value
for the crossover probability, it does less local search between good solutions
(see Figures 14.8 and 14.9). Note that if you make pc = 0.1, it fails to find
a local optimum (at least for one time the algorithm was run). In this case,
it is passing too many individuals through the mating process without mixing
genetic material; hence, it stagnates.
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Figure 14.7: Fitness and optimization parameter evolution, with random initial
population and higher mutation probability.

Increased Population Size

Next, let pc = 0.8 and pm = 0.05 and consider a population size of S = 40 (i.e.,
twice as big as earlier). With a bigger population size, we still get convergence,
but this shows that increasing its size is not necessarily good (see Figures 14.10
and 14.11). Of course, we have to qualify this statement by saying “for this
run of the program, with these termination criteria, etc.” This simulation was
produced simply to make the point that bigger is not always better (even though
for the population, for some applications, this may generally be true).

Effects of Elitism

Next, let pc = 0.8 and pm = 0.05 and a population size of S = 20. Now, how-
ever, we use elitism with a single elite member. See Figures 14.12 and 14.13.
With elitism we get much quicker convergence (notice that the early termination

In practice, elitism has
often been found to be
useful, especially in
real-time control where
you cannot afford to use
anything but the
best-known controller.

criterion was invoked) since crossover and mutation do not alter the best indi-
vidual. Elitism has, in fact, been found to provide qualitatively similar results
for a variety of applications. Basically, elitism ensures that there is a highly fit
individual that survives in each generation. The other individuals are allowed
to mate with the elite individual, so less fit individuals that do mate with this
very fit individual will tend to have more fit children. This tends to acceler-
ate convergence, while avoiding “premature convergence,” since all the other
individuals are allowed to explore the search space (provided that the other pa-
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Figure 14.8: Contour plot of surface in Figure 18.10 with random initial popu-
lation and lower crossover probability.

rameters, particularly the mutation rate, are set properly). It tends, for some
applications, to provide a nice trade-off between focusing and exploration.

14.6 Approximations to Reduce Algorithm Com-
plexity

When you start programming genetic algorithms, you often get ideas on how to
modify the algorithm, either to better model how evolution works in nature, or
to improve the performance of the algorithm (which may result in an algorithm
that is successful, but quite unlike anything in nature). In this section, we
briefly study some ways to make approximations to the genetic operations so
that computational complexity of the algorithm can be reduced.

14.6.1 Reducing Algorithm Complexity

First, note that the encoding and decoding, even with a base-10 encoding, causes
extra computations because you must convert the base-10 numbers to strings of
integers and back. The only reason that we needed to do this was because we
needed to perform crossover and mutation. We can, however, approximate these
two operations and get reductions in complexity simply because no conversions
will be necessary. Moreover, when we remove the conversions to strings, we get
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Figure 14.9: Fitness and optimization parameter evolution, with random initial
population and lower crossover probability.

all standard operations on vectors so we will then be simply encoding traits
with the natural representation in the computer (e.g., in Matlab, a chromosome
will be a vector with elements that are traits, and the traits are simply the
parameters of the problem).

There are simple ways to
modify the genetic
algorithm so that it still
grossly emulates
evolution, but
computational
complexity is reduced.

For mutation we will perform a simple “trait mutation” where, with prob-
ability pm, we mutate each trait in each individual. If we mutate, we simply
switch the trait to be any number on the known domain of that trait (e.g., for
the optimization problem in the last section, between 0 and 30). With this
approach we will know that mutation cannot generate an out-of-range value so
we will not need to use “projection” to fix it. For other problems, you could
consider simply adding on a random value to the trait, but then this may place
the value out of range, but it can be fixed with projection.

Next, for crossover there are many possibilities. Here, we will consider two
and to illustrate how they work, we will apply them to the function optimization
problem studied in the last section. In both cases, we use pc = 0.8 and pm = 0.05
and a population size of S = 20. A random initial population is chosen, one so
that each parameter is uniformly distributed on [0, 30].

14.6.2 Crossover Option 1

First, we generate a method that approximates what happens when we cross over
strings. In particular, consider an approach where we cross over at a random
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Figure 14.10: Contour plot of surface in Figure 18.10 with random initial pop-
ulation and increased population size.

“trait site.” We use the standard crossover probability pc and suppose that we
choose to cross over the vectors θi and θj where i �= j and i, j ∈ {1, 2, . . . , S}.
To do this, we generate a random trait site number, say i∗, where 1 ≤ i∗ ≤ p
(where p is the number of traits, i.e., parameters), a random number α ∈ (0, 1),
and let the child θ have

θm = θi
m

for m = 1, 2, . . . , i∗ − 1,
θi∗ = αθi

i∗ + (1 − α)θj
i∗

(we think of this as “splitting” the trait at the trait site split point) and

θm = θj
m

for m = i∗, . . . , p. When this approach is used, we get the results shown in
Figures 14.14 and 14.15. Notice that the approach finds the maximum point.

14.6.3 Crossover Option 2

Next, we do everything the same as in “crossover option 1” except we perform
crossover differently. Suppose we choose to cross over the vectors θi and θj

where i �= j and i, j ∈ {1, 2, . . . , S}. To do this, we generate a random number
α ∈ (0, 1), and let the child θ be

θ = αθi + (1 − α)θj
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Figure 14.11: Fitness and optimization parameter evolution, with random initial
population and increased population size.

This θ is a point on the line joining θi and θj . It is a simple type of interpolation
between θi and θj . We think of this as “search in the neighborhood” of the two
individuals, which is effectively what crossover tries to do. When this approach
is used, we get the results shown in Figures 14.16 and 14.17. Notice that the
approach finds the maximum point.

14.7 Exercises and Design Problems

Exercise 14.1 (Genetic Algorithms for Optimization): In this problem
you will use the genetic algorithm to solve some simple optimization prob-
lems. You may use the code that is given at the Web site listed in the
Preface.

(a) Suppose that you are given the function

f(x) = x sin(10πx) + 1

which is taken from [352]. Design and implement on a computer a
genetic algorithm for finding the maximum of this function over the
range x ∈ [−0.5, 1]. Plot the best individual, best fitness, and average
fitness against the generation. Plot the function to verify the results.
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Figure 14.12: Contour plot of surface in Figure 18.10 with random initial pop-
ulation and elitism.

(b) Suppose that you are given the function

f(x) = sinc(x + 2) =
sin(π(x + 2))

π(x + 2)

Design and implement on a computer a genetic algorithm for finding
the maximum of this function over the range x ∈ [−10, 10]. Plot the
best individual, best fitness, and average fitness against the genera-
tion. Plot the function to verify the results.

(c) Suppose that you are given the function

z = 0.8x exp
(−x2 − (y + 1.3)2

)
+ x exp

(−x2 − (y − 1)2
)

+1.15x exp
(−x2 − (y + 3.25)2

)
Design and implement on a computer a genetic algorithm for finding
the maximum of this function over the range x ∈ [−5, 2], y ∈ [−2, 2].
Plot the best individual, best fitness, and average fitness against the
generation. Plot the function to verify the results.

(d) Suppose that you are given the function

z = 1.5sinc(x) + 2sinc(y) + 3sinc(x + 8) + sinc(y + 8) + 2

Design and implement on a computer a genetic algorithm for finding
the maximum of this function over the range x ∈ [−12, 12], y ∈
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Figure 14.13: Fitness and optimization parameter evolution, with random initial
population and elitism.

[−12, 12]. Plot the best individual, best fitness, and average fitness
against the generation. Plot the function to verify the results.

Exercise 14.2 (Approximations of Genetic Algorithms):

(a) Repeat Exercise 14.1(c), but where you use one of the approximations
discussed in Section 14.6. Code the algorithm and evaluate its per-
formance (both complexity and ability to find the global minimum)
in simulation.

(b) Repeat (a) but for Exercise 14.1(d).

Design Problem 14.1 (Design of Genetic Operators for Genetic Al-
gorithms):

(a) Repeat Exercise 14.1(c), but where you use a genetic algorithm with
different genetic operators. You choose which operators to use, but
make the selection, crossover, and mutation operators different from
those coded into the program given at the Web site. Code the algo-
rithm and evaluate its performance (both complexity and ability to
find the global minimum) in simulation.

(b) Repeat (c) but for Exercise 14.1(d).

Design Problem 14.2 (Optimization for Finding Mountain Peaks and
Coffee-Growing Regions in Topographical Data for Colombia):
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Figure 14.14: Contour plot of surface in Figure 18.10 with approximations to
genetic algorithm, crossover option 1.

In this problem, you will study how to use genetic algorithms to search
for the highest mountain peak in a region of the earth. To do this, you
will need to go to the Web site for the book and download a topographical
data set and a program that shows you how to work with the data (the
topographical data were obtained from the US Dept. of Commerce, Na-
tional Inst. of Geophysical Data). The topographical map for the region
around Colombia is given in Figure 14.18. Notice that the data includes
underwater data as negative elevations, and a black line was added at zero
elevation to show roughly where the shorelines are with the Carribean Sea
and Pacific Ocean.

After you download the data set and associated program, study the code to
understand how to work with the data, plot it, and how to interpolate the
data so that you can estimate the elevation for points that are not given
in the data set. Clearly, you do not have analytical gradient information
for this problem; however, you could go to the library or world atlas and
find the solution to the problem for any fixed region on the earth. Hence,
you should simply view the topographical data as providing an interesting
cost function to search over.

(a) Design a genetic algorithm and simulate its operation on the topo-
graphical map of Colombia. As in the chapter, study choices of the
population size and other genetic algorithm parameters.
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Figure 14.15: Fitness and optimization parameter evolution, with approxima-
tions to genetic algorithm, crossover option 1.

(b) What is the highest point on the map? Does this correspond to what
a world atlas (or other source) tells you about the highest mountain
in this region? What is the name of that mountain?

(c) In Colombia, coffee grows best at altitudes between 1000 and 2100
meters. Define a cost function that indicates where it is best to grow
coffee on the region defined by the topographical map of Colombia.
Formulate and solve a problem that evolves where coffee growers
should live in Colombia (assuming they live near their farm). Illus-
trate the performance of the algorithm. Do the points where the
population evolves to correspond to where coffee is actually grown in
Colombia (e.g., “la zona cafetera”)?

Design Problem 14.3 (Genetic Algorithms for Approximator Struc-
ture Construction)�: Read Design Problem 11.2, where we give ideas
on how to construct the structure of an approximator using gradient-type
algorithms. In this problem you want to develop a genetic algorithm that
can evolve the structure of an approximator for a particular function ap-
proximation problem.

(a) First, you must conduct some background research. Search the liter-
ature, evaluate existing methods, and summarize these.

(b) Using ideas from the literature, and perhaps your own ideas, design
a genetic algorithm that can construct the structure of a function
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approximator. You must decide whether to use a genetic algorithm in
conjunction with a least squares or gradient method, and all the issues
associated with representation of the approximator in the genetic
algorithm. Test the performance of the algorithm. Hint: Use the
function approximation problem that was used throughout Part III
and a fitness function that quantifies the inverse of the approximation
error as measured by some test set.

Design Problem 14.4 (Artificial Immune Systems and Evolutionary
Algorithms)�: First, see the discussion in the “For Further Study”
section of this part. Second, study [125, 124] on artificial immune systems.

(a) Choose an artificial immune system and simulate it. Choose one that
provides the capability for either learning or optimization, or both.

(b) Explain in detail the relationships between the algorithm you imple-
ment in (a) and the standard genetic algorithm. Be sure to identify
the fitness function, selection, crossover, and mutation analogies.
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Figure 14.17: Fitness and optimization parameter evolution, with approxima-
tions to genetic algorithm, crossover option 2.
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Evolution is the fundamental theory that unites biology. Here, we will view
evolution as a design process for constructing life forms and use that metaphor
as a basis for our view of stochastic and nongradient optimization algorithms for
designing control and automation systems. As briefly discussed in the last chap-
ter, we can encode both the parameters and structure of neural networks, fuzzy
systems, expert systems, planning systems, attentional systems, and learning
systems, and use a genetic algorithm to evolve (optimize) these systems accord-
ing to some fitness function. Here, rather than exploring the many possible
approaches to genetic algorithms for design, we seek to examine fundamen-
tal issues you encounter when taking a stochastic or nongradient optimization
approach to design (e.g., robustness trade-offs). We will do this via general
stochastic and nongradient optimization algorithms, but throughout and at the
end of the chapter, we will return to the genetic algorithm and discuss its use
in design.

We will overview some relevant theory about how organisms evolve to be ro-
bust in their environment (to achieve “robust yet fragile” operation via “highly
optimized tolerance”). Next, we discuss the use of stochastic optimization al-
gorithms for computer-aided control system design (CACSD) for a tanker ship
heading regulation problem. We introduce the “response surface methodology”
(RSM) that has been used in computer-aided engineering, but our focus will
be on control system design. We will discuss certain robustness trade-offs in
the designs via response surfaces. We will introduce a variety of nongradi-
ent optimization algorithms, each of which involves iteratively making multiple
simultaneous cost function evaluations to try to find a minimum point. We
introduce the stochastic and nongradient “simultaneous perturbation stochas-
tic approximation” (SPSA) algorithm and show how it can be used in control
design. We discuss “set-based” stochastic optimization algorithms, of which the
genetic algorithm is a special case, and show how they can be used in control
design. Finally, while the focus here is on the use of simulations to perform
the design, we will also briefly discuss a hardware-based “Darwinian design”
methodology for control systems.

15.1 Design of Robust Organisms and Systems

Evolution is the design
of optimized robust
organisms. Design
follows the environment.

Evolution is a design process for organisms. It produces organisms that are
“robust” in the sense that they are able to survive and reproduce in the face
of a variety of adverse influences from their uncertain environment. The envi-
ronment tests the fitness of the organism for a wide variety of situations, and
organisms best able to cope will survive to reproduce. The species may become
optimized for the “typical” types of events it encounters in its environment;
it may become “robust” to the environment it lives in. In the evolutionary
process, the organism’s complexity may increase to enable it to cope (e.g., in-
stincts, planning, or learning capabilities may evolve) or fill a new ecological
niche. Other times, simpler designs are maintained, since they fit the ecological
niche and lead to highest reproduction rates (e.g., for bacteria). In optimiz-
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ing reproduction rates, evolution chooses the appropriate level of complexity to
achieve robustness for an ecological niche. The characteristics of the environ-
ment an organism lives in have fundamental influences on its design, since the
environment (which includes adversaries) helps define the cost function that is
optimized by evolution to produce an organism’s design.

Engineering design has produced a wide variety of robust and successful sys-
tems, from the cruise controller on an automobile to the variety of autonomous

Engineering design
focuses on construction
of optimized robust
systems.

vehicles available today. The design constraints presented by the problem at
hand constrain the complexity of the design (e.g., you may only be given an 8-
bit microprocessor for the cruise controller) and the design is optimized to cope
with typically encountered characteristics of the environment it is to operate in
(e.g., in cruise control, hills and wind). Included in this “optimization” are con-
straints such as the time allowed for design, the intelligence of the people doing
the design, and so on. Increased complexity in the cruise controller design (e.g.,
via a faster 16-bit processor, a vision system with sophisticated algorithms) can
allow the design to cope with its environment better (e.g., via anticipating hills
using a camera), but the sales market also defines part of its environment and
frequency of use (its “propagation” in the marketplace as partly dictated by the
cost of the product). The engineering design process generally leads to simple
designs that are “good enough” and that can adequately cope with the most
critical aspects of the environment it will operate in. Sometimes the simplest
designs are best, but to solve some problems, it has been necessary to design
increasingly complex systems (e.g., autonomous vehicles, advanced avionics, or
high levels of automation in manufacturing). For these complex systems, there
is typically a type of progression of design complexity used to achieve higher
levels of automation (e.g., see the discussion in Part I on cruise and temperature
control). However, even for these complex systems, the main focus is on trying
to optimize the system for typically encountered events, and for operation in an
uncertain environment.

It is impossible to ignore the analogy between biological evolution and en-
Optimal robust designs
are for a certain set of
conditions, and these
designs are typically
sensitive to conditions
they were not optimized
for.

gineering design that is highlighted in the previous two paragraphs, and the
fundamental role of optimization in achieving robust operation for both organ-
isms and engineered automation systems. The goal of engineering is to produce
the “best” design, so even if we do not explicitly think of design as an optimiza-
tion process, it usually underlies most engineering design activities. In fact,
recently these relationships have been quantified via the introduction of the
concept of “highly optimized tolerance” (HOT) (see the “For Further Study”
section at the end of this part). This term refers to systems that have been
designed, via engineering methodology or evolution, to have optimized perfor-
mance in an uncertain environment. The studies of systems with HOT focuses,
however, not only on the successful aspects of the optimized designs, but also
on the problems that arise due to trying to optimize designs. That is, the main
focus is on trade-offs inherent in design processes.

To identify these trade-offs, note that when organisms are highly optimized
(highly evolved) to tolerate adverse influences from their environment, roughly
speaking, they are only designed to cope with the types of events (situations)
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that have been encountered over the species’ existence (they are only optimized
to cope with what the species has encountered in evolutionary time in their en-
vironment). If some event occurs that has never occurred before, even though
it may seem rather harmless, the organism might not survive it, even though it
has incredible complexity to be able to cope with a wide array of other adverse
influences. (The organism is said to be “robust yet fragile.”) Such an event may
occur during the lifetime of a single organism of a species or may be species-
wide via some relatively fast environmental change (e.g., a meteor hitting near
México). Hence, HOT explains deaths and extinctions by considering how the
design process operates to optimize performance for only certain situations, and
therefore, it naturally becomes sensitive to other types of failures. There is a
type of robustness trade-off. Due to limited complexity of the organism, and
the focus on achieving a good design for typically encountered events, the op-
timization process of evolution can be thought of as shifting robustness across
the spectrum of possible events, with a focus on getting the most robust per-
formance for the events encountered most often. Evolution makes organisms
tolerant to some events at the expense of being sensitive to others (hence, you
may view the trade-offs as characteristics of a type of “conservation principle”).

Robustness principles
state that it is impossible
to obtain arbitrarily good
performance for all
possible situations; it is
necessary to allocate
good behavior across
typically encountered
situations.

If the environment drives the design of a very complex system, and this sys-
tem is highly optimized, it can be especially fragile. Highly optimized complex
systems can be especially intolerant to small unexpected adverse events.

The control engineer familiar with linear robust control will likely see the
connection to one of the central issues in linear robust control design. The “sen-
sitivity function” shows that if you get highly robust control in some frequency
range, it is at the expense of having a sensitive design for other frequencies (see
any book on robust control, such as the ones listed in the “For Further Study”
section of Part I). This same concept seems to hold for robust organism design
via evolution, and design of complex automation systems via the enterprise of
engineering or stochastic optimization tools used for design.

The optimization theorist is likely to think of the “no free lunch theorems”
while reading this section (see the “For Further Study” section at the end of this
part for references). For that theory, the problem of how to pick an optimization
algorithm for a particular problem is discussed, and a nice perspective on “black
box” optimization approaches is given. For instance, it has been shown that for
a wide class of optimization problems, the average performance of any pair of
algorithms across all possible problems is identical; hence, if one algorithm is
superior to some other algorithm over some set of problems, then it must be
inferior to it for another set of problems (clearly this is related to the “robust
yet fragile” idea if we think of “problem” as “event”). Also, ideas from the
no free lunch theorems explain how average performance of an algorithm is
determined by how it is “aligned” with the underlying probability distribution
of the optimization problems over which it is run; again, this is relevant to the
HOT viewpoint. Clearly, it is also connected to an evolutionary perspective if
we view the optimization algorithm itself as the organism (which is reasonable
for many types of activities that organisms are engaged in, such as foraging,
which is discussed in the next part).



652 Stochastic and Nongradient Optimization for Design

15.2 Response Surface Methodology for Design

While the use of stochastic optimization methods (e.g., the genetic algorithm)
for design has several appealing features, especially since it provides a way to
model environmental uncertainties and account for these in design optimization,
it also has the following drawbacks:

1. Algorithm convergence: For typical design problems, there are multiple
local optima; while stochastic optimization methods typically have mech-
anisms for avoiding these, there are no guarantees. In practical problems
there are typically many optimization variables. This can make the op-
timization problem much more difficult (e.g., to sufficiently explore the
“design space”), and it may be more difficult to determine if the opti-
mization algorithm has converged to a design that is optimal (or close to
optimal).

2. Computational complexity: Simulation of all possible conditions is impos-
sible in practical problems, especially when there are many optimization
variables and conditions to test and high uncertainty in the “environment
of the design.” Is your problem such that you can simulate enough rep-
resentative situations so that the set of simulations represents typically
encountered problems so you are convinced that you have sufficiently ex-
plored the design space? Are you sure that you are not missing some likely
situations?

3. The “don’t think, compute” mentality: Do not get trapped into a mentality
of “don’t think, compute” when using stochastic optimization methods for
design. “Design insights” are very important. You should not ignore the
underlying physics and models when they can be quite useful in design.
For instance, if you have gradient information, this can often be quite
useful for an optimization algorithm and hence, it should not be ignored.
Or, if you have some constraints given by the physics of the problem, these
should be incorporated into the optimization process.

In this section we will introduce the “response surface methodology” (RSM)
that addresses some of these issues and provides useful insights into design.
RSM tries to address item 1 via visualization and optimization over the values
of the cost function in order to pick the best design. It tries to address item 2
by using strategies to pick which design points should be tried, and not by just
trying all possible designs. It addresses item 3 via an established methodology
for process optimization. Here, we only give the essentials of RSM as it is a
rich field composed of a large set of ideas and techniques; the interested reader
should see the “For Further Study” section at the end of this part for more
information.
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15.2.1 Controller Design for a Tanker Ship

In this section we will explain response surface methodology by designing a
proportional-derivative (PD) controller for the tanker ship heading regulation
problem that was first introduced in Section 4.3. We will discuss issues typi-
cally encountered in RSM, and seek to highlight robustness trade-offs in control
design.

Recall that the ship heading is ψ and the rudder input is δ. The reference
input is ψr. We use RSM to design (choose) the Kp and Kd gains for a PD
controller of the form

δ = Kpe + Kdc

where e = ψr − ψ and c denotes an Euler approximation to the derivative (the
“change-in-error”). Hence, we keep the design problem as simple as possible
so that we can focus only on certain principles, and can show two- or three-
dimensional plots to provide insights. When we want to refer to the ith design,
we will use Ki

p and Ki
d.

We need to set a goal, or performance objective, in order to take the op-
timization approach to design. Here, to specify the performance objective, we
will use a linear first-order reference model

G(s) =
1

150

s + 1
150

We discretize it with a bilinear (Tustin) transformation for simulation purposes,
use ψr as the input to this system, and name its output ψm. Next, suppose that
we conduct, for a specified reference input sequence and the ith controller design,
a simulation that produces Ns values (we choose this value via knowledge of
typical settling times that are possible for the tanker ship heading). Here, we
simulate the ship for 1200 s, to obtain 1201 values of the variables. We quantify
the quality of the performance over this entire simulation via

Jcl(Ki
p, K

i
d, ψr) = w1

Ns∑
j=0

(ψ(j) − ψm(j))2 + w2

Ns∑
j=0

(δ(j))2 (15.1)

so that we seek a design which minimizes the deviation in the response from
that of a reference model, and the amount of control energy used to achieve
that response. Here, we choose w1 = 1 and w2 = 0.01.

Control system design
can be formulated as an
optimization problem.
Even if a cost function
is not made explicit, one
is often kept in mind as
a controller is tuned.

We will begin by considering “nominal” conditions where we have “ballast”
conditions, a speed of u = 5 meters/sec., no wind, and no heading sensor noise.
Moreover, we will restrict our attention to a specific reference input sequence
that involves wanting to hold the heading constant at zero for a period, and
then change the heading to 45 deg.

15.2.2 Response Surface and “Optimal Gains”

Suppose that we grid the (Kp, Kd) “design space” with each grid point defining
a pair of proportional and derivative gains for the tanker ship. Due to our
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experience in PD controller design we consider a range of gains, such that

Kp ∈ [−5,−0.5]

and
Kd ∈ [−500,−100]

Suppose that we compute Jcl(Ki
p, K

i
d, ψr) in Equation (15.1) for nominal con-

ditions, the same reference input sequence ψr, w1, and w2. The plot of Jcl for
this case is shown in Figure 15.1. Each intersection point on the mesh showing
the response surface shows a design point (Kp, Kd) that we computed Jcl for.
This plot shows very clearly how to think about tuning the PD gains in terms of
this performance measure, and nicely highlights that tuning is an optimization
process.

-5
-4

-3
-2

-1
0

-500

-400

-300

-200

-100
0

50

100

150

K
p
 gain

Response surface

K
d
 gain

J cl
 p

er
fo

rm
an

ce
 m

ea
su

re

Figure 15.1: Response surface of Jcl for PD controller designs.

The best gains (the ones that result in the lowest point on the surface in
Figure 15.1 that is designated there with a circle) are Kp = −3.3421 and Kd =
−500, and the closed-loop response for the tanker ship for this choice is shown
in Figure 15.2.

15.2.3 Response Surface and “Optimal Gains” for Off-
Nominal Conditions

Next, we simply repeat what we did in the last subsection, but for the case
where we have “full” rather than “ballast” conditions. For this case, we get the



15.2 Response Surface Methodology for Design 655

0 200 400 600 800 1000 1200
0

10

20

30

40

50
Ship heading (solid) and desired ship heading (dashed), deg.

0 200 400 600 800 1000 1200
-80

-60

-40

-20

0

20
Rudder angle, output of controller (input to the ship), deg.

Time, sec

Figure 15.2: Closed-loop tanker response for best (Kp, Kd) gains as indicated
by the response surface in Figure 15.1.

response surface in Figure 15.3. Notice that the shape of the surface changes,
since the underlying plant that is simulated to generate each point on the surface
is different from the last section.

The best gains (the ones that result in the lowest point on the surface in
Figure 15.3) are Kp = −2.8684 and Kd = −500, and the closed-loop response
for the tanker ship for this choice is shown in Figure 15.4. Notice that the best
performance that can be achieved is not as good as in the last section, and the
best proportional gain is smaller for the “full” case than for the ballast case
(which makes sense, since slower changes in the input are needed for a ship that
does not weigh as much).

15.2.4 Design Optimization Over Multiple Response Sur-
faces: Robustness Trade-Offs

You could construct response surfaces for different ψr, noise, wind, speeds, ship
weights, etc. This would give a theoretically infinite number of response surfaces,
each one corresponding to the infinite number of possible conditions that the
plant (environment) can present. Theoretically, you could then combine the
response surfaces to obtain a single performance measure and then find the
minimum point on the resulting surface and call it the “best design” for all the
conditions tested. Such an optimization could “weight” doing better for some
conditions compared to others.
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Figure 15.3: Response surface of Jcl for PD controller designs, “full” tanker
ship.

As an example, suppose that we sum the response surfaces for the full and
ballast conditions to get a “combined” response surface that perhaps indicates
which PD controller is best, if we will encounter both situations with equal
probability. The resulting combined response surface is shown in Figure 15.5.

The best gains (the ones that result in the lowest point on the surface in
Figure 15.5) are Kp = −3.1053 and Kd = −500. Notice that this value of Kp

is in between the two values that were found for the “ballast” and “full” cases
earlier. The best gains are the ones that try to satisfy both conditions. The best
gains to cope with both situations are not as good as the ones specially designed
for each individual situation; there is a performance trade-off. Scaling of the
sum of the response surfaces could result in a redistribution of the performance,
showing favor to achieving good performance in one situation versus the other.

This illustrates, in a very simple way, fundamental trade-offs in design. Note,
however, that in practical situations, there are an infinite number of response
surfaces. For instance, note that all the above results depended on the length
of the simulation used for the evaluation of the closed-loop performance. More-
over, there are clearly an infinite number of possible reference trajectories, and
hence, corresponding response surfaces. (This shows the fundamental challenge
in design of a control system for good tracking of any signal that is presented to
the control system versus regulation of the output to a fixed trajectory.) Next,
note that in any physical plant, there are stochastic effects so that actually you
may need to run many simulations for each point on the response surface (e.g.,
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Figure 15.4: Closed-loop tanker response for best (Kp, Kd) gains as indicated
by the response surface in Figure 15.3.

you could then plot the average closed-loop performance). For example, for the
tanker ship, there can be noisy heading sensor measurements. Finally, there
are certainly other possible plant variations that may need to be considered in
simulating the plant. For instance, for the tanker ship, you may need to con-
sider a range of ship speeds, ship weights, and wind characteristics. Clearly,
the construction of response surfaces can require significant computational re-
sources for practical problems (or experiments if you gather data from an actual
experiment for the design).

Performance and hence,
optimal design choices
are different for different
plant conditions; hence,
finding the “best” single
design entails allocating
good performance across
different situations.

Now, it should be clear that if your response surface is constructed by sim-
ulating stochastic effects and uncertainty in the environment for a practical
problem, the probability that a response surface representing effects from only
a few uncertain characteristics would perfectly match a response surface when
a different set of characteristics is considered is essentially zero. Similarly, the
probability that the set of “optimal gains” indicated by one surface is highly
unlikely to perfectly correspond to the “optimal gains” suggested by another
surface. The implication is that, while you may be able to optimize a design
under a narrow range of conditions, performance will certainly suffer under
conditions other than what the design is for. This clearly shows fundamental
trade-offs in robustness.

To illustrate the need to perform multiple simulations to characterize perfor-
mance when there is uncertainty, in Section 16.2, we will study robust approx-
imator design and in this case, we will need to run many simulations to get a
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Figure 15.5: Response surface resulting from the sum of the response surfaces
for PD controller designs for the “ballast” and “full” conditions.

single value on the response surface that will represent the average performance
for a certain design point.

15.2.5 Choosing Design Points, Approximating Response
Surfaces, and Optimizing Designs

We close this section with a discussion of three central topics in response surface
methodology: how to pick “design points,” how to approximate a complex re-
sponse surface, and how to use optimization methods to find an optimal design.
It is possible to make the discussion quite brief, since many of the concepts are
discussed in Part III (and other related ones are discussed in this part).

Choosing Design Points: “Design of Experiments”

Above, we have ignored issues of complexity that arise due to the possibility
that there may be many “independent” design variables. For the tanker ship we
only consider PD controller design and hence, the number of design variables
was p = 2. In this case, it was simple to grid on each of the two dimensions, and
plot the resulting three-dimensional response surface. What if p is much larger
(e.g., all the parameters of an instinctual neural or fuzzy controller)? Certainly
visualization becomes much more difficult, essentially requiring you to fix all
but two (or three) variables and plot the response surface for the other ones.
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The other problem that arises is due to the “curse of dimensionality” if you
grid the design variable space with a uniform grid. For instance, suppose that
there are nG points (grid partitions) on each dimension, with a total of p design
variables. Then, using uniform gridding, there will be

(nG)p

“design points.” For example, for the tanker ship we had p = 2 and nG = 20 for
a total of 400 design points. What if we had decided to tune a PID controller
(i.e., one that also had an integral gain)? Then, p = 3 and the number of design
points is 8000 if nG = 20. Next, suppose that we tuned an instinctual neural
or fuzzy controller that had 121 parameters (not unrealistic). Then if nG = 20,
there would be 20121 = 2.6585×10157 design points and this would likely present
a serious computational challenge, no matter what type of computer you own!

In practical problems,
there are often many
possible design points;
hence, you must try to
choose a few
representative ones in
searching for the best
design.

The common solution to such a problem is to be very careful about which
design points are considered. We were not careful for the tanker ship, since
the problem is not very complex, and even there it should be clear that we
“wasted” some computations (e.g., notice that in flat regions of the response
surface we could have computed far fewer points). The typical approach in
response surface methodology to choose design points is to use concepts from
“design of experiments” (DOE). For instance, suppose that there are only two
values for each design variable on each dimension. In this case, nG = 2 so that
the number of design points becomes 2p. This choice of design points is called
the “2p factorial design” and is a common choice for practical response surface
methodology (at least for initial “screening” to determine which variables are
key factors influencing response surface shapes). As an example, notice that
for the tanker ship, this choice would correspond to picking the four corners of
the design space considered earlier. How would this have worked for the tanker
ship? By studying the earlier response surfaces, you will notice that this would
have resulted in a choice of Kp = −5 and Kd = −500, which is certainly not as
good as when we used more design points (but it may be acceptable). Note that
the 2p factorial design considers simple slopes in each dimension and hence can,
in general, provide a rough approximation to where the optimal design is. (Of
course, however, nonlinearities in the parameters can result in the approximation
being quite inaccurate.) However, this may be necessary when you work with
practical problems when there are many dimensions (design variables).

Notice, however, that with the 2p factorial design approach, the curse of
dimensionality still holds, due to the exponent. In practical problems, for large
p, it then sometimes becomes necessary to use a “fractional factorial design,”
where a fraction of the set of 2p design points is used (e.g., only one point
on some dimensions). Clearly, for the tanker ship such an approach would
generally result in an even worse design than the 2p factorial design would
provide. Generally, then, you see that the ability to test more design points,
provided that they are chosen judiciously, will generally result in better designs.
We pay for getting a good design by additional computations, and by the need
for good insights into how to choose representative design points.
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Response Surface Construction is Function Approximation

While in this section we simply plotted the surface using actual data from the
simulations, it is clearly also possible to approximate the data using the function
approximation methods discussed in Part III. To do this, you simply choose an
approximator structure and optimization method for constructing the approx-
imator by tuning its parameters. In traditional RSM, linear or polynomial
models are often used (“first-” or “second-order” models), and least squares is
used to fit the models to the data. Clearly, the methods of Part III suggest that
it may be productive to use neural or fuzzy systems as approximators, and least
squares or gradient methods to tune them. DOE provides a method to choose
the training data set and choice of the data set is one of the key issues in RSM,
just as it is in approximator design.

The pairing of design
points to resulting
performance is a
function approximation
problem; approximator
construction corresponds
to constructing an
interpolator that is called
the “response surface.”

It is important to note that the fundamental principles of learning as function
approximation still hold here. For example, the size of the approximator should
be bounded by the number of design points, otherwise poor generalization can
occur. In this case, the surface could suggest an optimal design point that is far
different from the actual one. Clearly, if you only have a few design points, you
will only be able to use a simple (e.g., linear) approximator structure. Moreover,
it is important to keep in mind that if you have a finite amount of data, it may be
just as good to simply find the minimum computed value of the response surface
(just as we did for the tanker ship). Clearly, however, it could be possible that
an interpolation of the data could suggest a better design.

Design Via Optimization Over A Response Surface Without Consid-
ering Additional Design Points

As shown earlier, to obtain an “optimal design,” you find the minimum point on
the response surface (or combination of such surfaces). If you do not use a simple
brute force approach where you find the minimum of all computed points on
the response surface, you can perform an optimization over the response surface
via some gradient method. In fact, the most common approach in traditional
RSM is to use steepest descent gradient methods. Clearly, however, it may
be better to use some other optimization method (e.g., conjugate gradient or
Levenberg-Marquardt).

Finally, note that it is best to think of the approximation of the surface as
providing a way to consider design points without actually having to compute
them; if you have a good interpolator, then working with the response surface
is almost the same as working with the simulator (or experiment) used to gen-
erate response surface points. Hence, practitioners often think of the use of the
approximator and optimization over that surface as showing a path of design
points that leads to an optimal design, that you do not have to compute, since
they are similar to points that you have already computed the performance for.
Hence, the use of the approximator for the actual surface is thought of as a way
to help cope with computational complexity (or experimental complexity).
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15.3 Nongradient Optimization

In this section, we introduce a variety of deterministic and stochastic methods
to perform nongradient optimization (including methods that actually formed
the foundation for the introduction of the genetic algorithm model of evolution
treated in the last chapter). You can think of these as methods to optimize over
response surfaces, and in the stochastic methods, as optimizing over a whole set
of such response surfaces.

15.3.1 Pattern and Coordinate Search

In this subsection, we discuss relatively simple deterministic nongradient opti-
mization methods in order to establish some basic concepts. In the last two sub-
sections, we will consider more sophisticated deterministic nongradient methods.
We begin by building on the methods of Part III on optimization for learning
by discussing how to use approximations to the gradient in optimization algo-
rithms.

Approximations of the Gradient

In some problems, it may be possible to approximate the gradient and then use
this in any of the standard gradient update formulas in place of the analytically
determined gradients. In particular, we can use a “central difference formula”
to provide an approximation to the gradient with respect to each parameter
(that we denote with gi(j), the approximation of the gradient with respect to
the ith parameter at the jth iteration, where θ = [θ1, . . . , θp]�).

If you cannot find an
analytical expression for
the gradient at a point,
it is possible to specify
approximations of it via
computations of the cost
in a region about the
point.

We define this as

∂J(θ(j))
∂θi

≈ 1
2c

(J(θ(j) + cei) − J(θ(j) − cei)) = gi(j) (15.2)

where c is a positive scalar and ei is the ith column of the p× p identity matrix
(i.e., it is the ith “unit vector”). To gain insight into the approximation, it is
useful to consider Figure 15.6, where the p = 2 case is depicted for an iteration
j where θ(j) = [2, 2]�. Here, we show the pattern of points defined by the unit
vectors e1, e2, −e1, and −e2 that are used in Equation (15.2) as perturbations
to θ(j) in order to calculate an approximation to the gradient. The overall
direction of the update to θ(j) would normally be modified by a step size and
could point in any direction from θ(j), depending on the computed values of
the cost. What direction will the update point if J = θ�θ? Note that to
approximate the gradient with this approach, we need 2p calculations of the
cost function. We avoided the need for analytical gradient information but we
now need these calculations of the value of the cost to approximate the gradient.

The quality of the approximation specified in Equation (15.2) can signifi-
cantly affect the performance of the optimization algorithm. Sometimes you
can use the same c for all p of the θi values in Equation (15.2), while for some
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Figure 15.6: Pattern of points for approximation to the gradient, p = 2 case.

problems you may need different choices to get good approximations. Some-
times the “forward difference” approximation is used in place of the “central
difference formula” in Equation (15.2), since it takes fewer computations; how-
ever, it is generally not as accurate. If you use the Hessian in the update formula
(e.g., in Newton’s method), then you could specify an approximation to the sec-
ond derivatives; however, approximations for second-order methods will not be
discussed here (see the “For Further Study” chapter at the end of this part). It
should be clear, however, that you could use the above approximation in any
gradient method that only used first-order information (i.e., first derivatives).

Simple Pattern Search Methods

In this and the next subsection, we will introduce the idea of pattern search
by outlining two simple approaches. Methods discussed later in this chapter
(e.g., the multidirectional search method) are also pattern search methods. The
basic idea in pattern search is to compute the cost at each point in a pattern
of “exploratory” points around the current estimate θ(j), and then decide how
to move the estimate and pattern of points at the next iteration so as to reduce
the cost. In some approaches, you can think of the computations of the cost
as being used for types of approximations to the gradient in a region and the
subsequent movements of the pattern as being driven by these approximations.
This idea is discussed a bit more in Section 15.3.4, where the multidirectional
search method is discussed.

In pattern search, you
compute the cost at a
pattern of points near
the current estimate and
iteratively update the
pattern so that it moves
toward a minimum
point.

At iteration j, we start with a pattern

P =
{
θ0, θ1, θ2, . . .

}
and the method generates another set of points for iteration j +1, j = 0, 1, 2, ....
We will suppose that θ0 is always θ(j) (and in the implementation of the algo-
rithm, we will maintain this). We consider θ(j) to be the current estimate of an
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optimum point. The number of points in the pattern P depends on the pattern
choice, and we will specify some different options for the pattern below. You
should think of the points in P (j) as being candidate solutions to the optimiza-
tion problem. Hence, we think of the method as searching in “parallel” in the

Pattern search methods
are considered “parallel”
in the sense that they
evaluate more than one
region of the search
space at each iteration.

sense that it considers |P | candidate solutions at each step, rather than just one
as we did for the gradient methods of Part III.

To define the pattern of points, let C denote a matrix whose columns specify
perturbations to the current estimate θ(j) to specify the pattern P ; hence, C
has p rows and a number of columns equal to the number of exploratory points
in the pattern. Let θi

s(j) denote the ith exploratory perturbation from θ(j),
i = 1, 2, . . . , |C|. Next, we provide two methods to specify the pattern of points.

Evolutionary Operation Using Factorial Designs: In this method, the
columns of the matrix C are chosen to have elements that are all possible combi-
nations of {−1, 1} and one column of zeros (if the scaling for the problem is such
that some components of θ are much larger than others, you can choose B as a
diagonal matrix of positive values and use BC in place of C). This corresponds
to choosing the 2p corners of a hypercube centered at θ(j), plus a column of
zeros, which represent the center point θ(j) = θ0(j). (What is the relationship
to the design of experiments choice for response surface methodology?) With
this, |C| = 2p + 1 = |P |. Let ci denote the ith column of C.

As an example, if p = 2, then

C =
[

1 1 −1 −1 0
1 −1 −1 1 0

]

Notice that the columns of C specify a pattern P that for the p = 2 case are
large black dots in Figure 15.7(a). Notice that in general, we will compute the
cost at each of the 2p points of the hypercube around θ(j) and the cost at θ(j).
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Figure 15.7: The pattern of points for the p = 2 case in evolutionary operation
using factorial designs is shown in (a), and in (b) for simple coordinate search.



664 Stochastic and Nongradient Optimization for Design

Simple Coordinate Search: In what we will call “simple” coordinate search
(more sophisticated coordinate search methods can be found in the literature
referenced in the “For Further Study” section of this part), we choose a different
pattern of points than the one given above. In particular, we use

C = [I − I 0]

where I is the p × p identity matrix, so that C is a p × (2p + 1) matrix. For
p = 2, this choice corresponds to the pattern of dots in Figure 15.7(b). Hence,
C simply specifies that we should search along each coordinate. As in the last
section, if some components of θ are much larger than others, you may specify
some matrix B with positive diagonal scaling elements and use BC in place of C
above. With this, perturbations in some directions will have a larger magnitude
than others (of course, you would typically want larger perturbations along
coordinates that have higher magnitudes) so that in the p = 2 case, the dots
would lie on a rectangle, not a box.

Pattern Search Algorithm: Suppose that we initialize the algorithm with
θ(0). Note that we do not have to specify the entire initial pattern P (0), since
this is specified via the choice of C once the single point θ(0) = θ0(0) is chosen.
We use a parameter γc to specify how the pattern should contract at the next
iteration if a lower cost exploratory point was not found in the current pattern
(the usual choice for this parameter is γc = 1

2 ). If a lower cost point was found
on the current pattern, then the pattern is not contracted and the parameter λj ,
for example with λ0 = 1, will be used to specify the actual contraction that the
algorithm takes at the next step. Let θs(j) denote the perturbation from θ(j)
that is chosen at step j as the best point in the pattern of exploratory points
(if θs(j) = 0 at some step, this represents that no better point was found, so
θ(j + 1) = θ(j), and the pattern is contracted). At each iteration, let Jmin

denote a scalar that is the lowest cost point found so far in computing the cost
at each point in the pattern.

The algorithm for general pattern search is the following:

1. For j = 0, 1, 2, . . .:

2. Compute J(θ(j)).

3. Exploratory moves:

(a) Let θs(j) = 0, ρj = 0, and Jmin = J(θ(j)).

(b) For i = 1, 2, . . . , |C| − 1:

• Compute J(θi(j)) where

θi
s(j) = λjc

i

and
θi(j) = θ(j) + θi

s(j)
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• If J(θi(j)) < Jmin let ρj = J(θ(j)) − J(θi(j)), Jmin = J(θi(j)),
and choose θs(j) = θi

s(j).
• Next i.

4. Update/contract:

• If ρj > 0, then a better point was found on the pattern, so let θ0(j +
1) = θ(j + 1) where

θ(j + 1) = θ(j) + θs(j)

and let
λj+1 = λj

so that we do not contract, since this pattern size seems to be making
good progress.

• If ρj ≤ 0, a better point was not found on the pattern, so let

θ(j + 1) = θ(j)

and contract the pattern by letting

λj+1 = γcλj

5. Next j.

Clearly, there is a need to add some type of stopping criterion (e.g., based
on changes in the parameter or cost values, or on how close λj is to zero). This
could, for instance, be placed after step 4.

Algorithm Complexity and Convergence: Notice that at each iteration,
there is the need to compute |C| cost values so that the algorithm complexity
is dictated partly by the choice of the size of the pattern used. Most pattern

Under mild restrictions,
these pattern search
algorithms can be shown
to possess certain
convergence properties.

search methods do not guarantee a cost decrease for every change in the pattern,
but under mild restrictions, some guarantee a decrease for a certain sequence
of patterns and this leads to convergence properties. In particular, for both the
evolutionary operation using factorial designs method and the simple coordinate
search method under mild restrictions, it can be shown [513] that

lim
j→∞

||∇J(θ(j))|| = 0

Finally, note that if a hypercube is used to specify bounds on the allowable
parameters, then the simple coordinate search method can be modified so as to
still provide convergence properties [317].
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Coordinate Descent Using Gradient Approximations and Line Search

In “coordinate descent” approaches (originally developed for the case when gra-
dient information is available), optimization proceeds by only searching along
one dimension at a time, often in some cyclic order. For instance, in the p = 2
case, it could search alternatively along the north-south direction, then along
the east-west direction. If there is no analytical gradient information available,
you can simply perform a “line minimization” (“line search”) at each step for
the dimension that is considered. There are several methods for solving such
line minimization. For instance, you can compute the cost function at several
points and fit a curve to it (e.g., a quadratic or cubic polynomial), then find
the minimum point on this curve and use it as an approximation to the mini-
mum along a dimension. Another approach is the “golden section” method. See
the “For Further Study” chapter at the end of the part for references for such
approaches.

Another approach to coordinate descent is to simply use the discrete ap-
proximation to the gradient discussed in the last section. Then, for instance,
for a steepest descent-based method you simply pick a dimension, compute an
approximation to the gradient in this dimension using the central difference
formula, and then update the parameter in that dimension using the standard
update formula, but only for that one dimension. That is, you may cycle through
the dimensions, and when you update the ith dimension (i.e., the ith parameter),
you use

θi(j + 1) = θi(j) − λjgi(j)

where gi(j) was defined in the last subsection to be an approximation to the
gradient. Other gradient methods can be modified in an analogous way.

Here, we will not investigate line search methods as it should be clear via the
earlier discussions how to specify the algorithms. Moreover, the multidirectional
pattern search method that we will study in Section 15.3.4 below is a type of
multidirectional line search method, and it is a pattern search method. It is
interesting to note that convergence of line search methods has been studied
extensively, and recent results on convergence and integration of pattern and
line search methods are given in [336].

Example: Solving an Optimization Problem with Simple Coordinate
Search

Here, we solve a low dimensional (p = 2) optimization problem to illustrate
the operation of the simple coordinate search method. We will, in particular,
use the simple coordinate search method to find the minimum of the function
in Figure 18.10 (note that the point [15, 5]� is the global minimum point and
[20, 15]� is a local minimum).

As an example, if we let θ(0) = [20, 2]�, then we get the results in Fig-
ures 15.8 and 15.9, so that, since it started near the global minimum, it found
the global minimum. On the other hand, if θ(0) = [16, 21]�, then we get the re-
sults in Figures 15.10 and 15.11, where we see that it successfully climbed down
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from the high peak, but then got trapped by a local minimum. Notice that in
either case, the movements are along the two coordinates of the optimization
problem. Also, we use a stopping criterion based on how close ρj is to zero with
a maximum possible number of steps as 200; hence, in both cases, the stopping
criterion was invoked.
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Figure 15.8: Parameter trajectories for simple coordinate search optimization
problem.

Finally, note that if we had used the evolutionary operation using factorial
designs method, we would get similar results, qualitatively speaking. For that
method, in this problem, we would have the same number of cost evaluations
per step, but that is just since 2p = 2p for p = 2. For larger values of p, the
simple coordinate search method will use far fewer cost evaluations per step.
So, is the simple coordinate search method preferred? It is not appropriate to
jump to such a conclusion with only the analysis presented here. Note that for
some cost functions, the evolutionary operation using factorial designs method
may find better directions to move along, and hence, the cost calculations at
each step may be worthwhile. For other cost functions, it may be useful to only
use the 2p + 1 points on the simple coordinate search algorithm, since it may
find good directions using only these. Finally, note that we do not modify the
simple coordinate search method so that once it finds one pattern point that is
better than the middle one, it uses that one as the new center point.
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Figure 15.9: Parameter trajectories for simple coordinate search optimization
problem, plotted on the contour plot of the cost function.

15.3.2 Simultaneous Perturbation Stochastic Approxima-
tion Algorithm

In this section, we introduce the simultaneous perturbation stochastic approx-
imation (SPSA) algorithm, compare it with the use of gradient approximation
approaches (e.g., as in Section 15.3.1), and then give an example of how to use
the approach for a simple optimization problem. In the next section, we will
show how it can be used to design a PD controller for the tanker ship. You
should think of SPSA as performing optimization over a set of cost functions
(response surfaces) and hence, as a good candidate for optimal design of robust
systems.

SPSA Algorithm

Consider minimizing J(θ) by adjusting θ ∈ 	p. We assume that the gradient
∇J(θ) is not known analytically and that we cannot measure or compute values
of ∇J(θ) for any θ ∈ 	p. Assume that given any θ, we can compute or measure
J(θ) to obtain

SPSA is designed for the
case when the cost
function has noise.

Jn(θ) = J(θ) + w

where w is noise, so that we can obtain noisy measurements of J(θ) at θ (e.g.,
it could be that the expected value E[w] = 0 and variance E[w2] is finite).
As an example, note that in the function approximation problem of Part III,
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Figure 15.10: Parameter trajectories for simple coordinate search optimization
problem.

we use the unknown function G(x, z) where z could be noise; this makes our
standard measures of approximation accuracy that we use as cost functions
stochastic (even though, unlike in the last section, we often ignored this fact in
the development of our algorithms there). We basically think of noise w leading
to multiple cost functions.

Consider the parameter update formula

θ(j + 1) = θ(j) − λjg(θ(j), j) (15.3)

where g(θ(j), j) ∈ 	p is an estimate of ∇J(θ(j)) at θ(j) and λj > 0 is a
An approximation to the
gradient is used at each
step that is computed
using cost evaluations at
two points specified via a
simultaneous
perturbation from the
current estimate.

scalar step size. (A typical choice for λj is one where its value decreases in
size as the number of iterations increases.) The dependence on j is included
in g(θ(j), j), since at two different iterations with the same θ(j), we may use
different approximations to the gradient (more details will be given on this
below). Note that a standard projection method (as defined in Part III) can be
used to keep the parameters within a known bounded (convex) region.

Here, a “simultaneous perturbation” approximation is used for g(θ(j), j). In
particular, each component of the approximation, i = 1, 2, . . . , p, to the gradient
is chosen as

gi(θ(j), j) =
Jn(θ(j) + cj∆(j)) − Jn(θ(j) − cj∆(j))

2cj∆i(j)
(15.4)

where cj > 0 for all j (a typical choice is to use a sequence of cj whose values
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Figure 15.11: Parameter trajectories for simple coordinate search optimization
problem, plotted on the contour plot of the cost function.

decrease in size as the number of iterations increases) and

∆(j) =

⎡
⎢⎣ ∆1(j)

...
∆p(j)

⎤
⎥⎦

is a random perturbation vector. The components of the vector ∆(j) should
be independently generated from a zero mean probability distribution and one
theoretically valid choice is to use a Bernoulli ±1 distribution for each ±1 out-
come. In this way, the θ(j) ± cj∆(j) lie on corners of a hypercube centered at
θ(j); it is at these values that Jn is computed in Equation (15.4). Note that
projection can be used to keep the generated parameters in a known (convex)
bounded region.

Note that if p = 2, then the ∆(j) are the corners of a unit square (i.e., one
with unit magnitude for each edge) so for each j

∆(j) ∈
{[

1
1

]
,

[
1
−1

]
,

[ −1
1

]
,

[ −1
−1

]}

In general, there are 2p possible ∆(j) values. (How does this compare to the
2p-factorial design used for RSM?) If θ(j) = [2, 2]� and cj = 1, then the four
corners of the square centered at θ(j) where we might make calculations for
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values of Jn in Equation (15.4) are shown in Figure 15.12. For this example, if
∆(j) = [1, 1]�, then

θ+(j) = θ(j) + cj∆(j) =
[

3
3

]

θ−(j) = θ(j) − cj∆(j) =
[

1
1

]

which are the upper right and lower left corners (denoted with large black dots)
of the square centered at θ(j) in Figure 15.12 (and these values are swapped if
∆(j) = [−1,−1]�). The points on the other diagonal of the square are chosen if

SPSA uses the end
points of a randomly
selected diagonal of the
hypercube centered at
θ(j) to compute the
estimate to the gradient.

∆(j) = [1,−1]� or ∆(j) = [−1, 1]�. For the ∆(j) = [1, 1]� case, Equation (15.4)
gives, for this example,

g1(θ(j), j) = g2(θ(j), j) =
Jn(θ+(j)) − Jn(θ−(j))

2cj

so the approximation to the gradient is computed via a type of “central differ-
ence” approximation (see Section 15.3.1). If ∆(j) = [−1,−1]�, then you get
exactly the same approximation for the gradient as for when ∆(j) = [1, 1]�

(why?). Also, the points ∆(j) = [1,−1]� or ∆(j) = [−1, 1]� both lead to the
same approximations for the gradient, but generally a different one from that
obtained when ∆(j) = [−1,−1]�. (Why?)
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Figure 15.12: Illustration of what values are used in computing an approxima-
tion to the gradient in the SPSA method via Bernoulli perturbations.

It is useful to envision, via Figure 15.12, how the SPSA algorithm operates.
Intuitively, at each iteration it generates at random two points on a hypercube
centered at θ(j) that are on a diagonal. Then it uses these to compute the
approximation to the gradient that is used to specify the direction of the update
in Equation (15.3). For instance, consider the case for the above example where
Jn(θ) = θ�θ with no noise (so θ = 0 is the global minimum) and note that
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for one approximation to the gradient it can choose, it will be that Jn(θ+(j))−
Jn(θ−(j)) = 0 (so there will be no update), and for the other choice, Jn(θ+(j))−
Jn(θ−(j)) > 0 so that the parameters will be updated to move toward the
optimum point (and if the step size is of appropriate size, it will not overshoot the
origin). Also note that if you had a no-noise case with Jn(θ) = (θ−θ∗)�(θ−θ∗)
so θ∗ is the global minimum, then clearly there could be a choice of θ∗ such
that for the above case, one gradient approximation would lead to a parameter
update that would decrease the cost, while for the other one, it could increase
the cost. Next, note that since the cj and λj sequences of values decrease at each
iteration, the size of the hypercube and the size of changes to the parameter
values at each iteration do also; hence, for iterations at the beginning, the
algorithm will generally make larger updates and thereby explore larger regions
of the optimization space. As time progresses, the size of the hypercube and
parameter updates decreases and hence (under reasonably general conditions),
the algorithm will converge.

Algorithm Complexity and Convergence

In general, for SPSA if you use the Bernoulli ±1 distribution for ∆, there are
2p possible ∆(j) vectors and 2(p−1) possible diagonals on the hypercube cen-
tered at θ(j). Hence, if there is no noise (i.e., w(j) = 0 for all j), then using
the SPSA approach there are in general 2(p−1) possible approximations to the
gradient at each iteration, and hence, one of 2(p−1) possible update directions
is chosen at each iteration. (Note that it is not 2p possible directions since, for
the no-noise case, specific values of the cost are computed and hence, the sign
of their difference is fixed once the points at which the costs are computed are
fixed.) Contrast this with the stochastic gradient method that was discussed
briefly in Section 11.1.8, and where analytical gradient information is used, no
noise was used for the measurement of J(θ), and one of an infinite number of
possible update directions is chosen. For the stochastic gradient method we
had constraints on the perturbations to the gradient; here, the use of points on
the hypercube centered at θ(j) constrains the size and directions of the update.
Moreover, choosing cj and λj as decreasing sequences for SPSA, is conceptu-
ally consistent with the constraints needed for convergence for the stochastic
gradient method.

Notice that for the SPSA, there are only two perturbations taken and these
are used to compute all components of g(θ(j), j). The approach in Section 15.3.1,
where the central-difference approximation is used for the gradient, has been
called the “Keifer-Wolfowitz finite difference stochastic approximation” (FDSA)
algorithm when it is applied to minimization of Jn. Notice that with FDSA,

FDSA computes the cost
at 2p points (two per
dimension) and uses two
of these per dimension
to approximate the
gradient.

if there is no noise in measuring J(θ), then there is only one possible update
direction at each iteration. Notice that for FDSA, p scaled unit vectors are used,
one for computing each component of g(θ(j), j). To contrast FDSA and SPSA,
use the above example and note that for FDSA, the four points that are used
to compute g(θ(j), j), are the small black dots shown in Figure 15.12. Note
that FDSA needs all four of these points; the large black dots in Figure 15.12
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represent points that SPSA might need.
Hence, the above example illustrates that while there are 2p calculations of

Jn needed by FDSA at each iteration for the computation of the approxima-
tion to the gradient, only two such calculations are needed by SPSA (where, if
p = 1, the methods are equivalent). In fact, it has been shown in [476] that
under reasonably general conditions, SPSA and FDSA achieve the same level of
statistical accuracy for a given number of iterations and

Number of measurements of Jn(θ) in SPSA
Number of measurements of Jn(θ) in FDSA

→ 1
p

as the number of measurements gets large. This is an important property,
since it shows that SPSA could be more efficient for large scale optimization
problems, and that this is certainly the case when comparing to the FDSA
method. The types of conditions for convergence that are needed for the SPSA
method include certain conditions on cj and λj (that are guaranteed with the
choices to be outlined in the next section), the variance on the noise on the cost
function must satisfy certain bounds, the size of θ(k) must “almost surely” be
bounded for all k, a stationary point must be “attractive” in a certain way, and
the estimate must visit a certain region near the stationary point infinitely often
[476].

Guidelines for Choosing SPSA Parameters

There are several parameters that must be specified for the SPSA algorithm and
here we outline some of the guidelines in [477] for their choice. First, choose

λj =
λ

(λ0 + j)α1

where λ > 0, λ0 > 0, and α1 > 0, and

cj =
c

jα2

where c > 0 and α2 > 0. However, if the θi have very different magnitudes,
you may want to use a different λj for each of the p dimensions. This can
be difficult at times in practice, however, so another approach is to scale the
parameter values themselves.

Some actual values that have been found useful in applications are

α1 = 0.602

and
α2 = 0.101

which are effectively the lowest allowable ones that satisfy theoretical conditions.
However, values α1 ∈ [0.602, 1] and α2 ∈ [0.101, 1

6 ] may also work. In fact,
α1 = 1 and α2 = 1

6 are the “asymptotically optimal” values so, if the algorithm
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runs for a long time, it may be beneficial to switch to these values. With this
choice, if the noise is significant, you may need to choose λ smaller and c larger
than in a low-noise case.

With the Bernoulli ±1 choice for the components of ∆(j), set c to a level
that is approximately the standard deviation of the noise w(j) to keep the
components of g(θ(j), j) from being too large in magnitude. If there is no noise
term w(j), then you should choose some small value c > 0. You can choose λ0

to be approximately 10% of the maximum number of iterations and λ to try to
achieve a certain amount of change in the cost function values at each iteration.

Example: Solving an Optimization Problem with SPSA

Here, we solve a low dimensional (p = 2) optimization problem to illustrate
the operation of the SPSA algorithms. Hence, our goal here is not to illustrate
the full advantages of the approach, which are realized for high dimensional
problems, but simply to introduce the method. We will, in particular, use the
SPSA method to find the minimum of the noise-free function in Figure 18.10
(note that the point [15, 5]� is the global minimum point and [20, 15]� is a local
minimum).

Convergence to Local Minimum: Using the guidelines above, and a bit
of tuning, we selected λ = λ0 = 1, c = 0.01, α1 = 0.602, and α2 = 0.101. We
use projection to keep both parameters in [0, 30]. We use 100 iterations of the
algorithm and for θ(0) = [15, 15]�, we get the results shown in Figures 15.13
and 15.14. In this case, due to the initialization, the SPSA converges to a local
minimum. Clearly, if you set the initial condition closer to the global optimum
value, the algorithm will converge to it.

Convergence to the Global Minimum: Next, we use all the same parame-
ters for the SPSA except we use λ = 20 and run the algorithm for 200 iterations.
We choose this value of λ simply to make the step sizes larger so that the al-
gorithm will make larger steps, and, hopefully, avoid the local minimum that
it got stuck in for the last case. We ran the algorithm for twice as many steps
so that the step size will adequately decrease and we will get convergence if it
finds a local (or global) minimum.

In this case, the results are shown in Figures 15.15 and 15.16. In this case,
the algorithm overcomes the bad initialization and finds the global minimum
since, in the early steps of the optimization process, it aggressively investigates
the region around where it was initialized and is lucky to find itself near the
global minimum. Note, however, that to get this result, the algorithm had to be
run several times. Sometimes the algorithm seemed to get stuck at the boundary
of the optimization region. Other times it converged to a local minimum.
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Figure 15.13: Parameter trajectories for SPSA optimization example.
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Figure 15.14: Parameter trajectories for SPSA optimization example, plotted
on contour plot of cost function.
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Figure 15.15: Parameter trajectories for SPSA optimization example.
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Figure 15.16: Parameter trajectories for SPSA optimization example, plotted
on contour plot of cost function.
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15.3.3 Nelder-Mead Simplex Method

One nongradient method that has enjoyed success in several practical optimiza-
tion problems is the Nelder-Mead “simplex method” (not to be confused with
the simplex methods often used for solving optimization problems with linear
cost functions and linear inequality constraints).

Candidate Solutions as Vertices of a Simplex

For this method, at iteration j, we start with a “simplex” (a “convex hull”) of
a set of p + 1 points (vertices)

P =
{
θ0, θ1, . . . , θp

} ⊂ 	p

and the method generates another simplex for iteration j + 1, j = 0, 1, 2, ....
Note that each vertex of the simplex is a p × 1 parameter vector that we will
think of as a candidate solution to the optimization problem.

Using cost information
at each candidate vertex,
the simplex shape is
adjusted by moving the
vertices in directions
that appear to be
promising for reducing
the cost function.

First, we define a convex hull. A “convex combination” of elements of P is
a vector of the form

p∑
i=0

αiθ
i

where θi ∈ P , i = 0, 1, . . . , p, and α0, . . . , αp are scalars such that αi ≥ 0 with

p∑
i=0

αi = 1

The convex hull of P , which is denoted by conv(P ), is the set of all convex
combinations of elements of P .

The set conv(P ) is a “convex set.” Also, conv(P ) is the intersection of all
convex sets containing P . A set C ⊂ 	p is convex if αθ1 + (1 − α)θ2 ∈ C,
for all θ1, θ2 ∈ C, and all 0 < α < 1 (i.e., it is convex if for any two points
in C, the line segment between these two points is in C). There are several
useful properties of convex sets. First, there are set operations that preserve
convexity, in the sense that, if you start with a convex set and perform these
set operations, the resulting set that is produced is also a convex set. If C is a
convex set, and b is a real number, the set {θ : θ = bθc, θc ∈ C} is a convex set
(i.e., we can scale the set and still get a convex set). If C and D are convex
sets, then C + D = {θ : θ = θc + θd, θc ∈ C, θd ∈ D} is convex (i.e., if we add
all possible combinations of elements from C and D, then the resulting set is
convex). Also, the intersection of any collection of convex sets is a convex set.

Initialization and Algorithm Overview

Next, given one simplex at iteration j with the set of vertices

P (j) =
{
θ0(j), θ1(j), . . . , θp(j)

}
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we explain how to generate the next set of vertices P (j+1) for the next simplex.
We will need to initialize the algorithm with a set of vertices P (0) and one way
to do this is to let the elements of P (0) be

θi = θ0 + βiei

where i = 1, 2, . . . , p where θ0 is a guess at where the solution is, the βi are
scalars, and ei is the ith column of the p × p identity matrix. Although not
necessary, one approach that is sometimes used is to try to initialize so that
the minimum point of the cost function is contained within the convex hull of
P (0). This idea provides one set of guidelines on how to choose θ0 and the
βi for the above initialization approach (e.g., pick the βi large enough so that
the solution is likely to be in the initial convex hull). If you do not, however,
use this approach, the method can often still reorient and shift the simplex so
that the optimal solution can still be found. (Here, all we seek to do is provide
one reasonable method to initialize the algorithm; this is certainly not the best
method in all cases.)

To proceed, first define θmin(j) and θmax(j) to be the best and worst vertices
of the set P (j) so

J(θmin(j)) = min
i=0,1,...,p

J(θi(j))

J(θmax(j)) = max
i=0,1,...,p

J(θi(j))

Also, let θcent(j) be the centroid of the face of the simplex formed by all the
vertices in P (j) except θmax(j). Hence,

θcent(j) =
1
p

(
−θmax(j) +

p∑
i=0

θi(j)

)

The algorithm seeks to replace θmax(j) by a point with a lower cost (which
we will call θnew(j) below). To explain how it does this, consider the case where
p = 2 so we have 3 vertices and each simplex is a triangle. Follow the discussion
below by continually referring to the associated figures, where, for instance,
in Figure 15.17, the shaded triangles outlined with solid lines represent the
(current) simplex at iteration j, triangles outlined with dashed lines represent
simplices that could be generated at iteration j + 1, and the ovals represent a
contour map of the surface J(θ) that we are trying to find a minimum point on
(the smaller ovals indicate that the cost function J(θ) has decreased).

To begin with, a “reflection point” θref (j) is generated. (We will think
of this as a test point that will help us decide how to reorient the simplex.)
To do this by hand, draw an imaginary line that passes through θmax(j) and
bisects the line between θmin(j) and θi(j) (the vertex with intermediate cost)
at θcent(j) (see Figure 15.17, where this imaginary line is the dotted one). Place
θref (j) at that point on that line that would result by reflecting θmax(j) about
the θcent(j) point. See Figure 15.17. Next, we evaluate the cost J(θref (j)) and
then decide what to do. There are three possibilities to consider.
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Figure 15.17: Direct search sample steps, for case when θref (j) is better than
any vertex on the current simplex (top sketch, expansion is not used; bottom
sketch, expansion is used).

First, it could be that θref (j) could have the lowest cost of any of the vertices.
This is the case in Figure 15.17. In this case, the direction along the line that
bisects θmin(j) and θi(j) appears to be a good one, so we create an “expansion
point” θexp(j) that is the point that would result if we reflected θmax(j) about
θref (j). If this θexp(j) point is even better than θref (j), then we will replace the
worst point in the existing simplex with θexp(j) to form the new simplex (see
the bottom sketch in Figure 15.17). However, if θexp(j) is worse than θref (j),
we simply use θref (j) to replace θmax(j) to form the new vertex (see the top
sketch in Figure 15.17). In Figure 15.17, the new simplices for each case are
shown in dashed lines. Carefully study the relations between the choice of the
new simplex and the quality of the vertices and other points.

Second, it could be that θref (j) has an intermediate cost relative to the
vertices, besides the worst one (i.e., it is better than the second to the worst
vertex, but not as good as the best one). This is depicted in Figure 15.18. In
this case, we simply form the new simplex by replacing θmax(j) by θref (j), since
the resulting simplex is better in the sense that we will have reduced the cost
of the worst vertex.



680 Stochastic and Nongradient Optimization for Design

xx
θ

max
(j)

θ
min
(j)

θ
cent
(j) θ (j) θ

new
(j)=

Current
simplex

New
simplex

ref

Figure 15.18: Direct search sample step, for case when θref (j) has an interme-
diate cost.

Third, it could be that θref (j) has a cost that is worse than all the vertices,
possibly even θmax(j). In this case, we perform a “contraction” of the simplex,
since stretching it in the direction of θref (j) did not seem to be a good ap-
proach. To contract, we simply let the new vertex be an interpolation between
θmax(j) and θcent(j) if θmax(j) was better than θref (j) (see the bottom sketch
in Figure 15.19). On the other hand, we let the new vertex be an interpolation
between θref (j) and θcent(j) if θmax(j) was worse than θref (j) (see the top
sketch in Figure 15.19). Hence, this tries to place θnew(j) on the line through
θmax(j) and θcent(j), nearer to θmax(j) if it is a better point, and nearer to
θref (j) if it was better than θmax(j).

Finally, note that it is possible that in the contraction step (either case), the
resulting θnew(j) is worse than θmax(j). For instance, if we use the contrac-
tion step and θmax(j) is worse than θref (j), then we can have the situation in
Figure 15.20, where θnew(j) is worse than θmax(j). Clearly, it does not make
sense to use this new vertex so instead, the new simplex is formed by simply
“shrinking” the current simplex towards the best vertex θmin(j) as shown in
Figure 15.20. A simple redrawing of the contours can show the case where
θmax(j) is better than θref (j), and in the contraction step, the algorithm gen-
erates a θnew(j) that is between θmax(j) and θcent(j), but with θnew(j) worse
than θmax(j). In this case, the same new simplex shown in Figure 15.20 is used.

Generally, the method reorients the simplex to the local landscape of the
cost function. It elongates down long inclined planes (e.g., via the expansion
step), changes direction when encountering a valley at an angle, and contracts
in the neighborhood of a minimum (e.g., via shrinking).

The Steps of the Algorithm

We are now prepared to specify the algorithm, which is given by the following
steps:

1. Given P (0), let j = 0. Find θmin(j), θmax(j), and θcent(j).
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Figure 15.19: Direct search sample steps, for case when θref (j) has a bad (high)
cost relative to other vertices.

2. Compute and evaluate the cost of the reflection point. Find

θref (j) = θcent(j) + β
(
θcent(j) − θmax(j)

)
where one common choice for the “reflection coefficient” is β = 1. Now,
depending on how good θref (j) is, we take three different actions:

• If J(θmin(j)) > J(θref (j)), then go to step 3 (in this case, θref (j)
has the minimum cost so it is a good value).

• If

max
{
J(θi(j)) : θi(j) �= θmax(j)

}
> J(θref (j)) ≥ J(θmin(j))

then go to step 4 (in this case, θref (j) is not the best or worst vertex,
it has an intermediate cost).
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Figure 15.20: Direct search sample steps, for case when θnew(j) is worse than
θmax(j), so we shrink the simplex toward the best point θmin(j).

• If
J(θref (j)) ≥ max

{
J(θi(j)) : θi(j) �= θmax(j)

}
then go to step 5 (in this case, θref (j) has the worst cost, except
possibly that of θmax(j), so it is not a good value).

3. Reflection point is the new minimum point so attempt expansion (see
Figure 15.17). Find

θexp(j) = θref (j) + γ
(
θref (j) − θcent(j)

)
(15.5)

(think of the “expansion point” θexp(j) as an attempt to move further in
the direction where it has found cost improvement by finding θref (j)) and
let

θnew(j) =
{

θexp(j) if J(θexp(j)) < J(θref (j))
θref (j) otherwise (15.6)

so that if the expansion point was even better, we take it as the new point
in our simplex (so the simplex tries to stretch toward the minimum). The
size of the expansion is governed by the expansion coefficient γ where one
common choice is γ = 1. Next, go to step 7.

4. Reflection point has an intermediate cost, so replace worst vertex with it
(see Figure 15.18). Define

θnew(j) = θref (j)

In this case, we use θref (j) as a new vertex, since it is better than θmax(j),
the one that will be replaced. Next, go to step 7.
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5. Reflection point is not a good one so “contract” the simplex (see Fig-
ure 15.19). Define

θnew(j) =
{

αθmax(j) + (1 − α)θcent(j) ifJ(θmax(j)) ≤ J(θref (j))
αθref (j) + (1 − α)θcent(j) otherwise

(15.7)
where α is the “contraction coefficient” (0 < α < 1). In this case, θref (j)
was not a good point in step 2 (it was worse than all those, except possibly
θmax(j)). Now, if θref (j) is worse than θmax(j), then we create θnew(j)
by interpolating between θmax(j) and θcent(j) with α parameterizing the
interpolation. If, on the other hand, θref (j) is better than θmax(j), then
we create θnew(j) by interpolating between θref (j) and θcent(j). Next, go
to step 6.

6. If the cost at the new vertex is worse than any existing one, then shrink
the simplex towards the best vertex to form the new simplex (see Fig-
ure 15.20). If

J(θnew(j)) > J(θmax(j))

then it does not make sense to replace θmax(j) with θnew(j). In this case,
replace all vertices in P (j) by letting

P (j + 1) =
{

1
2
(
θi(j) + θmin(j)

)
: i = 0, 1, 2, . . . , p

}

This “shrinks” the old P (j) simplex towards the best vertex θmin(j). Go
to step 8.

7. The new vertex is better than the worst existing one, so replace the worst
one with the new one to form the new simplex. In this case, θnew(j) is
good (at least better than θmax(j)) so we form a new simplex using

P (j + 1) = P (j) − {θmax(j)} + {θnew(j)}

(i.e., remove the worst vertex and replace it with the new one, so the math-
ematical addition and subtraction operations in the previous equation are
set operations). Go to step 8.

8. Let j = j + 1 and go to step 2.

This completes the specification of the Nelder-Mead simplex method. There
are no convergence guarantees for this particular direct search algorithm.

Algorithm Complexity

There are many issues that affect the complexity of the algorithm. First, note
that for high dimensional optimization problems, p is large and there are p +
1 vertices that will require memory and computations. Next, note that the
algorithm requires computing J(θ) for a variety of values of θ, vector addition,
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and scaling of vectors, in addition to computations of maximum values of sets
of values of the cost function, and so on.

For many applications, the computations of the cost J(θ) are the most
computationally intensive; hence, we consider how many such calculations are
needed of the cost function. First, suppose that initially you compute the costs
of all the vertices; this would entail p+1 calculations of the cost initially. Next,
at each iteration, the algorithm requires the following computations for various
paths that the computations can take in the algorithm:

• Steps 2, 4, 7, 8: J(θref ) (one cost calculation)

• Steps 2, 3, 7, 8: J(θref ), J(θexp) (two cost calculations)

• Steps 2, 5, (6), 8: J(θref ) (one cost calculation, not including step 6).
Note, however, that Step 6 is optional and if you put in this optional
“shrink” step, then you must also compute J(θnew(j)) and if J(θnew(j)) >
J(θmax(j)), then to perform the shrink operation, you need to compute
costs for all the vertices of the simplex except the one for θmin(j). Hence,
the total possible calculations if step 6 is included in the algorithm is p+1.

In summary, if the shrink step is not included, then each iteration only requires
two calculations of the cost at most. If the shrink step is included, then there
could be as many as p + 2 calculations of the cost. Clearly, then you may
want to evaluate the utility of adding the shrink step; however, use of the
algorithm in practice has shown that in many applications, it is only used rarely,
so the overhead in calculations may be worthwhile. Keep in mind that in all
these discussions, there is no guarantee that there will be a reduction in cost
from one iteration to the next, and this must be taken into consideration when
comparing the complexity of this method to others. Indeed, there are counter-

There are
counterexamples that
show that the
Nelder-Mead simplex
method can get stuck at
a nonstationary point.

examples that show that the Nelder-Mead simplex method can get stuck at
a nonstationary point and this also must be taken into consideration when
evaluating computational complexity.

Example: Solving an Optimization Problem with Direct Search

In this section, we apply the Nelder-Mead simplex method to finding the mini-
mum point of the function shown in Figure 18.10 (note that the point [15, 5]�

is the global minimum point and [20, 15]� is a local minimum).

Starting with a Good Guess for the Initial Simplex: Here, p = 2, so
we have three vertices. We use β = γ = 1 and α = 0.5. We start the initial set
of vertices as

P (0) =
{[

20
5

]
,

[
15
0

]
,

[
15
15

]}
To see how the algorithm operates in this case, see Figure 15.21, where we show
the simplices on top of a contour plot of Figure 18.10. Here, the vertices of P (0)
are shown with circles, and the simplex of P (0) is outlined with solid lines, in
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the upper left plot. As the algorithm operates, it reorients the simplex. For
instance, from iteration j = 2 to iteration j = 3, it accepts the reflection point
that was generated as a new vertex, so it essentially rotates the simplex to find
the new one. Figure 15.22 shows that the simplex is properly reoriented so that
it “falls” into the portion of the surface where the global minimum is located.
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Figure 15.21: First four simplices of Nelder-Mead simplex algorithm on top of
contour plots of Figure 18.10, where the global minimum is at (15, 5).

To get an idea of how the method operates for later iterations, see Fig-
ure 15.23, where we show the best vertex of simplex at each iteration (notice
that it converges) and the cost of the best vertex at each iteration.

Other Choices for the Initial Simplex: First, consider what happens if we
simply place the simplex so that the points are on the boundaries of the search
region. If you choose

P (0) =
{[

0
0

]
,

[
15
30

]
,

[
30
0

]}
or

P (0) =
{[

0
15

]
,

[
30
0

]
,

[
30
30

]}
or

P (0) =
{[

0
0

]
,

[
0
30

]
,

[
30
15

]}



686 Stochastic and Nongradient Optimization for Design

0 5 10 15 20 25
0

5

10

15

20

25

Ite
ra

tio
n 

j=
4

0 5 10 15 20 25
0

5

10

15

20

25

Ite
ra

tio
n 

j=
5

0 5 10 15 20 25
0

5

10

15

20

25

Ite
ra

tio
n 

j=
6

0 5 10 15 20 25
0

5

10

15

20

25

Ite
ra

tio
n 

j=
7

Figure 15.22: Simplices for iterations j = 4 to j = 7 of Nelder-Mead simplex
algorithm on top of contour plots of Figure 18.10, where the global minimum is
at (15, 5).

the algorithm will find the global minimum at (15, 5). However, if you start it
at

P (0) =
{[

0
30

]
,

[
15
0

]
,

[
30
30

]}
the algorithm finds the local minimum at (20, 15). It will also find this local
minimum if the simplex starts close to it. This shows that a good initialization
can be important for convergence (not surprising).

15.3.4 The Multidirectional Search Method

In this section, we introduce another direct search method. It is one that,
compared to the Nelder-Mead simplex method, has guaranteed convergence
properties and is a type of pattern search method (there is an underlying pattern
of points that is investigated).

The Multidirectional Search Algorithm

Again, consider minimizing J(θ), θ ∈ 	p, and assume that J is continuous in
θ and that ∇J(θ) exists (but we neither assume that we have an analytical
description of ∇J(θ) nor that we can obtain measurements of the gradient).
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Figure 15.23: Best vertex of the simplex at each iteration (where the global
minimum is at (15, 5)) and the cost of the best vertex at each iteration (where
the cost at (15, 5) is J = −4).

Similar to the Nelder-Mead simplex method, multidirectional search iterates
on a simplex of p + 1 candidate solutions

P =
{
θ0, θ1, . . . , θp

} ⊂ 	p

Next, we provide some intuition behind the operation of the multidirectional
search algorithm. First, suppose that at each iteration θ0(j) is the best vertex
of P (j) so

J(θ0(j)) ≤ J(θi(j)), i = 0, 1, . . . , p

The goal at each iteration is to find another candidate solution with a cost that
is strictly less than J(θ0(j)). To do this, it searches along lines passing through
θ0(j) and its p adjacent vertices. To see how it does this, consider the p = 2
case in Figure 15.24, where the current simplex P (j) has its vertices connected
by black lines. First, there is a “rotation” step (analogous to the reflection step
in the Nelder-Mead method), where θ1(j) and θ2(j) are reflected about θ0(j)
on the gray dashed lines to obtain θ1

rot(j) and θ2
rot(j), respectively (hence the

simplex P (j) is rotated about θ0(j)). If the cost at θi
rot(j), i = 1, 2, is better

than the one at θ0(j), then an “expansion” is computed by reflecting about
θ0(j), but more than twice as far as in the rotation step, to produce θi

exp(j),
i = 1, 2. If the cost at any of these two new vertices, θi

exp(j), i = 1, 2, is better
than the cost at θi

rot(j), i = 1, 2, then accept the minimum cost vertex from
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the expansion as the new minimum cost vertex (θ0(j + 1)) and it, with θi
exp(j)

(i so that θi
exp(j) �= θ0(j + 1)) and θ0(j) define the new simplex P (j + 1). If

expansion does not result in points with lower cost than the costs for the new
vertices from the rotation step, then you accept the minimum cost vertex from
the rotation step as θ0(j + 1) and it, together with θ0(j) and the other vertex
from the rotation step, form the new simplex. Now, if θi

rot(j), i = 1, 2, did not
result in a lower cost than the one at θ0(j) (so expansion was not used), then
you take a “contraction” step where you move the adjacent vertices θ1(j) and
θ2(j) toward θ0(j) along the gray dashed lines to the points θi

cont(j), i = 1, 2.
The process of rotation, expansion, and contraction repeats until a stopping
criterion is satisfied. As an example, consider the p = 1 case and if you sketch a
few iterations of the algorithm, you will see a similarity to “line search methods.”

Multidirectional search
can be thought of as a
type of multidimensional
line search where it
expands in directions
that appear promising,
and contracts if
promising points were
not found.

P(j)

θ

θ

θ  (j)

1

2
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θ (j)
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2θ (j)
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θ (j)
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1

2θ  (j)

rot

rot

exp
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Figure 15.24: Illustration of search directions and possible next simplices for
multidirectional search for p = 2.

Finally, note that while the explicit analytical gradient information is not
Simplex methods try to
ignore “noise”
perturbations on the cost
by using a region-based
approximation to the
gradient of the
underlying smooth
function that dictates
how the simplex moves.

available and we do not assume we can get measurements of the gradient, there
is a type of approximation to the gradient that is being used in this simplex
method. The method explores points and uses these to set the direction of
updates of the simplex. Since it does this over a region, we can hope that it
will not get caught in local minima, but try to follow the gross characteristics
of the function to find lower cost values. In fact, a mathematical definition
of the “simplex gradient” is given in [275], where it is explained that simplex
methods can often be effectively used to perform optimization for functions like
the one in Figure 15.25. Note that standard gradient methods will get trapped
in one of the many local minima, depending on how the algorithm is initialized.
The simplex methods sample the cost function in a way to ignore the “noise”
perturbations and try to approximate the gradient of the underlying smooth
function and hence, try to move in directions to minimize its value.
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Figure 15.25: An example cost function with multiple local minima.

Steps of the Algorithm

The multidirectional search algorithm uses two parameters: an expansion factor
γe that is a rational number (i.e., there exist two integers p1 and p2 �= 0 such
that p1/p2 = γe) with

γe ∈ (1,∞),

and a contraction factor
γc =

1
γe

For example, you may use γe = 2 and γc = 1
2 as we did in the example in

Figure 15.24. To initialize the algorithm, compute J(θi(0)), i = 0, 1, . . . , p, and
let j = 0. The algorithm then proceeds according to the following steps until a
stopping criterion is satisfied:

1. Find the best new vertex of P (j). Let

i∗ = arg min{J(θi(j)) : i = 0, 1, . . . , p}
and swap θ0(j) and θi∗(j) (hence, we always keep θ0(j) as the current best
vertex). Check the stopping criterion.

2. Rotation step. Compute for i = 1, 2, . . . , p

θi
rot(j) = θ0(j) − (θi(j) − θ0(j))

and J(θi
rot(j)). Go to step 3.
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3. Expansion step. If

min{J(θi
rot(j)) : i = 1, . . . , p} < J(θ0(j))

compute for i = 1, 2, . . . , p

θi
exp(j) = θ0(j) − γe(θi(j) − θ0(j))

and J(θi
exp(j)), then decide whether to form the new simplex with the

expansion or rotation and form P (j + 1). In particular, if

min{J(θi
exp(j)) : i = 1, . . . , p} < min{J(θi

rot(j)) : i = 1, . . . , p} (15.8)

then accept the expansion by letting θ0(j + 1) = θ0(j) and

θi(j + 1) = θi
exp(j), i = 1, 2, . . . , p

but if Equation (15.8) is not true, then accept the rotation by letting
θ0(j + 1) = θ0(j) and

θi(j + 1) = θi
rot(j), i = 1, 2, . . . , p

Go to step 1.

4. Contraction step. If

min{J(θi
rot(j)) : i = 1, . . . , p} ≥ J(θ0(j))

then compute for i = 1, 2, . . . , p

θi
cont(j) = θ0(j) + γc(θi(j) − θ0(j))

and J(θi
cont(j)). If

min{J(θi
cont(j)) : i = 1, . . . , p} < J(θ0(j))

form the new simplex P (j + 1) by letting θ0(j + 1) = θ0(j) and

θi(j + 1) = θi
cont(j), i = 1, 2, . . . , p

and then go to step 1. However, if

min{J(θi
cont(j)) : i = 1, . . . , p} ≥ J(θ0(j))

replace θi(j) with θi
cont(j), i = 1, 2, . . . , p and then go to step 2 (in this

case we accept the contraction, but do not go to the next iteration j + 1
since no better vertices were found in rotation or contraction).

Note that the algorithm will not go to the next iteration until it has found a
lower cost vertex at the current iteration (for “iterations” in j).
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Algorithm Complexity and Convergence

In practical applications it is often the case that computing J(θ) is the most
computationally intensive operation; hence, we will focus on it here as we did
for the Nelder-Mead method. First, note that we need p + 1 cost evaluations
for initialization. Then for rotation, expansion, and contraction, we need p
cost evaluations each. If rotation is successful, then expansion is used and if
rotation is not successful, then contraction is used; hence, in either case, 2p cost
evaluations are needed. Note, however, that if contraction fails to find a better
cost, then steps 2, 3, and 4 can occur repeatedly and hence, you can incur 2p
cost evaluations in each sequence of these steps before the next iteration; hence,
for N such sequences, we would need 2Np cost evaluations.

How does this compare to the Nelder-Mead method? It is difficult to compare
the two, since the Nelder-Mead method is not guaranteed to provide any cost
reduction at an iteration even if the shrink step is used. The multidirectional

Under mild restrictions,
the multidirectional
search method possesses
convergence properties.

search method, however, guarantees that under mild restrictions there will be
cost reductions, and convergence results exist [512] of the type stated for the
simple pattern search methods.

Example: Solving an Optimization Problem with Multidirectional
Search

In this section, we apply the multidirectional search algorithm to finding the
minimum point of the function shown in Figure 18.10 (note that the point
[15, 5]� is the global minimum point and [20, 15]� is a local minimum). We
do not use projection (to do that, you would need to manage how the vertices
along each dimension are generated).

Here, p = 2, so we have three vertices. We use γe = 2 and γc = 1
2 and a

stopping criterion that is based on how much the parameters change, with the
maximum number of iterations set at 200. If we start the initial set of vertices
as

P (0) =
{[

15.2
20.6

]
,

[
14.9
20.1

]
,

[
16

19.3

]}
we get the results in Figures 15.26 and 15.27, and we see that the termination
criterion was satisfied so the maximum number of iterations was not used. Here,
we see that the algorithm finds a local minimum. If you start the algorithm on
the other side of the peak from what the above initialization does, then it can
drop into the local minimum in the upper left-hand corner of Figure 15.27.

As another example, if we start the initial set of vertices as

P (0) =
{[

30
0

]
,

[
0
0

]
,

[
15
30

]}

(vertices on outer edges of the domain we are interested in), we get the results
in Figures 15.28 and 15.29, where we obtain convergence to the global mini-
mum. Clearly, the convergence properties of the algorithm will depend on the
initialization of the simplex.
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Figure 15.26: Multidirectional search example, parameter trajectories.

15.4 SPSA for Decision-Making System Design:

Examples

In this section we study the use of the SPSA algorithm for the design of two types
of decision-making systems, a controller for the tanker ship heading regulation
problem, and an attentional strategy for predator/prey problem.

Nongradient
optimization methods
can be used for a wide
variety of design
problems.

15.4.1 Design Example: SPSA for Tanker Ship PD Con-
troller Design

Here, we will investigate the use of the SPSA algorithm for the design of a PD
controller for the tanker ship, a problem that was formulated and solved with
an RSM method in Section 15.2. The only difference in the design problem is
that we will add sensor noise to the heading sensor measurement; hence, the
performance measure for a closed-loop response is a random variable. While
here we study a low-dimensional design problem (p = 2), and the shapes of the
response surfaces in Section 15.2 should give you confidence that the method
will find a good design (provided the noise effects are not too significant, and
the algorithm is designed properly), it should be clear that the SPSA could also
be a valuable tool for higher-dimensional design problems.
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Figure 15.27: Multidirectional search example, parameter trajectory on the
contour plot of the cost function.
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Figure 15.28: Multidirectional search example, parameter trajectories.
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Figure 15.29: Multidirectional search example, parameter trajectory on the
contour plot of the cost function.

Design Problem and Algorithm Design

We consider optimization over a domain with Kp ∈ [−1.5,−0.5] and Kd ∈
[−500, 100] as we did in the RSM. We seek to minimize the performance index
Jcl(Ki

p, K
i
d, ψr) in Equation 15.1 when there is sensor noise, and use the same

reference input sequence ψr as with RSM, w1 = 1 and w2 = 0.01, and other
variables that we used earlier.

We use 50 iterations of the SPSA algorithm. Due to the scale differences on
the Kp and Kd domains, we introduce λp = 1 and λd = 500 (in place of λ) so
that the step sizes on each dimension are different, but use the same λ0 = 1
for both dimensions. Moreover, we use cp = 0.5 and cd = 50 (in place of c) so
that the pattern of points considered is scaled different on each dimension and
hence, the gradient is computed accordingly. We use the same α1 = 0.602, and
α2 = 0.101 for both dimensions. To illustrate the operation of the algorithm we
choose θ(0) = [−0.5,−300]�.

The values above were arrived at after a bit of tuning. Note that if the cp

and cd values are not large enough, the algorithm will not explore in a wide
enough region, and if λp and λd are too small, then convergence can be very
slow. Also, if you pick larger values for α1 and α2, you can get a type of
“premature convergence,” where the algorithm locks onto values that may be
far from the best ones. Based on our experience with the RSM method earlier,
we certainly could have guessed better values for the initial gains, but we use
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these to illustrate the performance improvements that can be obtained if you
guess at poor values.

SPSA Design Results

A typical run for the SPSA algorithm is illustrated by showing the values of
the cost function Jcl(Ki

p, K
i
d, ψr) in Equation 15.1 for θ+(j) and θ−(j) in Fig-

ure 15.30, and the corresponding values for θ(j) in Figure 15.31. Notice that
as the algorithm converges, the values of Jcl(Ki

p, K
i
d, ψr) at θ+(j) and θ−(j)

become nearly the same. Figure 15.31 shows the gains that are considered
in the design space. The gains found in the last iteration are Kp = −2.7442
and Kd = −407.4084, which for convenience we take as the best gains. (These
seem reasonable, if the noise effects are not too significant, considering the RSM
results in Figure 15.1.)
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Figure 15.30: Cost function Jcl(Ki
p, K

i
d, ψr) for θ+(j) and θ−(j).

Next, we plot the closed-loop response using the gains provided by the SPSA
in Figures 15.32 and 15.33, where we see that reasonably good performance was
achieved, in spite of the sensor noise that is apparent in Figure 15.33.

Note that we cannot be confident that the gains that the SPSA found are
the “best” ones. Why? Each time you run the algorithm it will provide different
values. Was there premature convergence for the SPSA? What if we initialized
the algorithm differently; would it find a different “optimum” design point?
You should not view the SPSA as an algorithm that will guarantee an optimal
design, just one that will help to make design improvements. Clearly, you would
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Figure 15.31: Kp and Kd gains generated by SPSA.
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Figure 15.32: Closed-loop tanker response for SPSA gains.
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Figure 15.33: Tanker ship heading error (shows measurement noise).

generally have to try multiple initial conditions and trial runs to increase your
confidence in the quality of the design. If you think of SPSA as operating over
an infinite number of response surfaces (using the RSM view), then it should
be clear that achieving an “optimal design” is a difficult problem, and difficult
to verify.

15.4.2 Design Example: SPSA for Attentional Strategy
Design

Next, we show how to use SPSA for the design of attentional strategies, by
continuing the study in Section 7.4.4. There, we tuned the wi parameters of the
attentional strategy in Equation (7.8). Here, we will use the SPSA to automate
the tuning of the parameters of the attentional strategy.

Design Problem and Algorithm Design

Our goal is to obtain performance that is better than that which we obtained
via manual tuning, where we obtained a time average of the average values of
the lengths of times waited of 3.2755 for w1 = 4, w2 = 2, w3 = 1, and w4 = 4.
One approach would be to start with these values to initialize the parameter
vector. Here, we do not do this in order to consider the case where we had done
no a priori tuning. Here, we start with wi = 1, i = 1, 2, 3, 4.
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Recall that we had N = 4 and

δ1 = 1.05, δ2 = 1.15, δ3 = 1.25, δ4 = 1.35

These are bounds for appearance periods given in Figure 7.7. We have δs = 0.03.
We have

a1 = 0.1, a2 = 0.2, a3 = 0.3, a4 = 0.1

and this gives
∑4

i=1 ai = 0.7.
For the SPSA algorithm, we define the cost function to be the time average

of the average amount of time each predator/prey is ignored. We bound the
parameter values to be between 0.1 and 10, α1 = 0.602, α2 = 0.101, λ = 0.5,
λ0 = 10, and c = 0.25. We allow the SPSA algorithm to run for 100 iterations.

SPSA Design Results

The results of running the algorithm are shown via a plot of the cost function
in Figure 15.34, and a plot of the parameters values explored during the search
in Figure 15.35. We see that the cost decreases from the initial value, then the
algorithm searches, but does not improve the performance.
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Figure 15.34: Values of cost function for SPSA for each iteration.

At iteration 22 the cost is 3.1871 and the parameter values are

w1 = 1.9184, w2 = 0.7888, w3 = 0.4585, w4 = 1.4590
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Figure 15.35: Parameter values for attentional strategy explored by SPSA for
each iteration.

Compare this with the values that we obtained via manual tuning. First, the
SPSA did better in terms of reducing the time average of the average amount
of time that predators/prey are ignored (i.e., better than 3.2755). Note, how-
ever, that the SPSA found a similar relative weighting to what we had found
manually, in the sense that it found that the strength of weighting, from highest
to lowest, should be w1, w4, w2, w3. Recall that this ordering was arrived at
in the manual tuning case by iterative tuning, where we raised a weight if a
certain predator/prey was not getting enough attention. SPSA seems to have
tried to automatically achieve a sort of balancing of focusing in order to improve
performance.

15.5 Parallel, Interleaved, and Hierarchical Non-
gradient Methods

“Parallel” methods (“set-based” techniques) are implemented by executing N
Parallel operation
involves executing N
copies of an algorithm
simultaneously.

copies of, for instance, a gradient method from Part III at the same time, with
different initial conditions; note that we use the word “parallel” in a sense that
is similar to how it is thought of in parallel computing. It should be clear that
in this case each of the N algorithms could, for instance, converge to a different
local minimum. Then, at the end of the optimization process, the best one could
be chosen. This provides for an approach to explore more than one region of
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the search space; it is equivalent to simply restarting the same algorithm with
different initial conditions. You could also use such a “parallelization” approach
for the SPSA, line, pattern, and simplex methods so that explicit values of
the gradient are not needed. When N parallel SPSA algorithms are used, we
obtain a stochastic parallel search method (with no communication between
the methods). Of course, the genetic algorithm could also be classified as a
stochastic nongradient parallel search method; however, it shares information
across different individuals in the population, whereas the parallel SPSA would
not (at least in the form we are thinking of at this point). For Part V, you
may think of N foragers that do not communicate as implementing N parallel
algorithms.

“Interleaving” the operation of optimization approaches means that you de-
vise a strategy to switch from one optimization method to another, perhaps
many times, as the algorithm progresses (you think of interleaving in time).
Such methods have been used for many years (e.g., in gradient methods where
you switch from one method to another when you are near a stationary point
to try to speed convergence). Many interleaving strategies are possible, some

Interleaving involves
alternating between the
use of different
algorithms as the
optimization process
proceeds.

where a fixed schedule of alternation between different algorithms is used (you
could think of coordinate search via line search along each successive direction
as one approach), others where various conditions dictate changing algorithms.
Information gathered during the process may allow for modifications to be made
to the methods during or in between applications of a particular method, or to
the schedule of the alternation between the algorithms. Moreover, there are
different methods to pass information from the current method to the one that
it switches to (e.g., you may initialize the algorithm that you switch to with the
parameter values that were found at the last iteration of the algorithm that was
just used). Some such interleaving strategies were discussed in Section 11.1.7 on
page 489, when we discussed offline and online processing of data for function
approximation. Relative to the next part on foraging, it seems possible that
foragers use different strategies depending on cues that they obtain from their
environment.

“Hierarchical” methods may combine the concepts of parallel and interleaved
methods by using one type of optimization strategy to periodically manage the
operation of a parallel set of N algorithms. While multiple levels are possible,
the basic concepts can be illustrated with a two-level hierarchy, where one type
of optimization algorithm (which we call the “high-level” algorithm) manages N
other “low-level” algorithms that operate in parallel. To perform management

Hierarchical methods
employ one algorithm to
supervise the operation
of several algorithms.

of the low-level algorithms, the high-level algorithm may use information from
each of the N low-level algorithms (e.g., how much progress it has made at
reducing cost in the region in which it is operating). Also, it may “tune” each
of the low-level algorithms (e.g., it may try to optimize the operation of the
low-level algorithms by adjusting the step sizes that they use). Relative to the
next part on foraging, you may think of the two-level hierarchy as a type of
social foraging where there is a “leader” (the animal at the top level); clearly,
however, you can think of social foraging as an optimization process that does
not use or need a hierarchy.
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In the next two sections, we briefly discuss two hierarchical methods, one
where pattern search is used to manage N algorithms, and another where an
evolutionary strategy is used to manage the algorithms. Unlike the other meth-
ods in this chapter, we do not specify the full details of such algorithms, as their
specification should be clear from the discussions in this and the last chapter. A
design problem will, however, be given at the end of the chapter, where you are
asked to design your own hierarchical method and apply it to the optimization
problem studied earlier in this chapter.

15.5.1 Pattern Search

Suppose that in this approach you use pattern search with pattern Ph(j) at the
jth iteration for the higher-level algorithm that will manage the N algorithms.
Suppose that there are |Ph| elements in the pattern and that this number is fixed.
Suppose that for the high-level manager, we use any of the pattern search or
simplex methods discussed in this chapter. For instance, if we used the simple
coordinate search method, we would have |Ph| = p + 1, so we would need to
have N = |Ph| = p + 1 algorithms running in parallel.

Next, suppose that each of the N algorithms that are managed are also
pattern search or simplex methods (possibly different from the high-level al-
gorithm). Suppose that we use Pi(j) at the jth iteration to denote the set of
parameter values that are used for the ith pattern. If, for instance, simple co-
ordinate search is used for each of the N algorithms, then |Pi| = 2p + 1 for
i = 1, 2, . . . , N . Note that standard gradient methods and the SPSA here can
be thought of as having |Pi| = 1 or |Pi| = 2, respectively, so that only one (two)
parameter vector(s) is (are) updated at each iteration; using this fact, it should
be clear how to manage the operation of these methods once you understand
how to manage a set of pattern search algorithms.

How does the high-level algorithm manage the N algorithms? While there
are many approaches, explaining one should serve to illustrate the basic idea.
Suppose that we specify a way to abstract the information from the N patterns
of the low-level algorithms. For instance, note that if simple coordinate search

Pattern search can be
used to manage a set of
algorithms, if you view
each point in the pattern
as representing the
current operation of an
algorithm.

is used for each of the N low-level algorithms, each pattern Pi would have
2p + 1 elements (hence, there are N(2p + 1) cost evaluations at each iteration
of all the low-level algorithms). One approach would be to use “representative
points” for each of the N patterns. For instance, suppose that we use the
centroid (see definition in Section 15.3.3) of pattern Pi to represent it (in simple
coordinate search, the centroid is simply the center). Alternatively, we could
use the best (in terms of least cost) point in Pi to represent it (which for simple
coordinate search would also be the center). By “represent” we mean that it
should somehow represent the progress of the entire pattern for that algorithm.
Suppose that we define these N representative points as θi

h and use these to
specify the pattern Ph.

The operation of the method proceeds, for instance, in the following man-
ner, if we use simple coordinate search for both the high-level and N low-level
algorithms:



702 Stochastic and Nongradient Optimization for Design

1. Execute a fixed number of steps of the N low-level algorithms.

2. Form the N representative points θi
h (which, hopefully, will not result in

degeneration of directions in the high-level algorithm), and via these, form
Ph.

3. Take a single iteration of the high-level pattern search method. Use the N
vectors that result from this iteration to define the centers of the patterns
Pi to restart the low-level algorithms.

4. Go to step 1.

In this way, the N low-level algorithms are busy searching in various regions
of the space and there is a periodic intervention from the high-level algorithm
to try to redistribute the patterns, so that they are more effective in finding a
global minimum (it should be clear how more than two layers could be used in
the hierarchy of algorithms). The choice of the frequency at which the higher-
level algorithm intervenes to reinitialize the N algorithms is an important design
parameter. Note that for some approaches, such as when we use simple coor-
dinate search at both the higher and lower levels, we must use N(2p + 1) cost
evaluations at each iteration of the low-level algorithms (this assumes that they
take steps all at the same time), and then 2p + 1 cost evaluations each time the
higher-level algorithm executes. With the evolutionary strategies in the next
section there may be no constraints on the number of algorithms that run in
parallel, or the number of points each of the N algorithms works with.

15.5.2 Evolutionary Strategies

The overall approach to managing N algorithms that operate in parallel should
be clear at this point; hence, all that we will comment on here is how to use
evolutionary strategies for the management of N parallel pattern search meth-
ods (from this, strategies for other algorithms should be clear). Suppose, for
convenience, that we use the simple coordinate search method for each of the
N low-level algorithms and a genetic algorithm for the high-level algorithm.
Of course, you could use N genetic algorithms or N SPSA algorithms for the
low-level algorithms. Moreover, it should be clear that other non-evolutionary
strategies could be designed to manage the set of low-level algorithms, ones that
are not based on pattern search methods. For example, suppose that you use a
set of N SPSA algorithms where N is not chosen according to standard pattern
search ideas, but according to how many regions of the search space you think
need to be investigated. In this case, N could be much larger than the one used
in pattern search. How do we manage the N algorithms? You could simply
take the N1 < N algorithms that have done the best and shift their starting
points at the next iteration towards the centroid of the points that represent
their current progress. Many other similar strategies are possible.

Returning to the issue of how to use evolutionary strategies for the man-
agement of N algorithms, we will use the management algorithm explained in
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the last section; however, we replace step 3 with an evolutionary strategy. Also,
suppose that we use the centroid of each pattern (the center, for the simple
coordinate search method) in selection, crossover, and mutation to define the
reinitialization for the next sequence of iterations of the low-level algorithms.
(Some other representative point could be used also, or it may be possible to
base crossover on patterns rather than points.) It is important that you be able
to envision how the resulting method will operate. The evolutionary strategy
uses a set of N patterns, each of which is searching in a region of the search
space, and when evolution takes place, it will move these search methods around
based on the basic principles of evolution. For instance, note the following:

• Via selection, the genetic algorithm will tend to focus more algorithms in
regions where the most optimization progress has been made.

• Via crossover, the genetic algorithm will generally take two relatively suc-
cessful algorithms and generate “offspring” algorithms that search in a
region near their parents’ region, since that was working well.

• Via mutation, the genetic algorithm will randomly perturb the initial con-
ditions of a low-level algorithm to make sure that all regions of the space
get explored.

The use of elitism would correspond to allowing, for instance, the algorithm that
has found the lowest cost to proceed without modification. Other strategies from
genetic algorithms can be applied also. Moreover, genetic algorithms could be
designed to try to optimize the operation of the N lower-level algorithms by
tuning their parameters (e.g., step sizes).

The methods of this section illustrate the significant flexibility that exists in
the development and implementation of optimization algorithms. While conver-
gence properties for some of the proposed methods may follow from the analysis
of the algorithms on which the methods are based, it should be clear that guar-
antees of convergence to a global minimum cannot generally be made. With the
hierarchical methods in this section, we pay a price in computational complexity
for the possibility that a global minimum may be found.

15.6 Set-Based Stochastic Optimization for De-
sign

At each iteration SPSA considers two design points. The evaluation of the
cost at each of these two points could be computed independently and this
provides an opportunity to parallelize the algorithm on a computer with multiple
processors. In fact, you could run Np SPSA algorithms and compute 2Np cost
evaluations on a parallel computer. This provides a way to consider multiple
initial conditions and SPSA algorithm parameters, and, hopefully, obtain a
better design.
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Suppose that we consider a “set-based” optimization algorithm to be one
that explores multiple parameter vectors at each step. SPSA is set-based with
two parameter vectors considered in the set, but a parallel version of SPSA
could contain many more values in the set. Are there other types of set-based
optimization methods? Genetic algorithms are one class of set-based stochastic
optimization methods with the size of the set given by the number of individuals
in the population. We discuss another such algorithm next; this algorithm will
borrow certain characteristics from the genetic algorithm.

Basic characteristics of
evolutionary algorithms
can be captured and
effectively employed by
stochastic optimization
methods, without the
“overhead” of trying to
emulate biological
evolution.

15.6.1 A Set-Based Stochastic Optimization Method

The optimization method introduced here is based on an evolutionary approach,
but only in certain principles of its operation. We specify the algorithm here
to be applied to the PD controller design problem for the tanker ship, but it
should be clear that it is a general method applicable to other problems.

We use a set (population) of controllers,

P (k) =
{
θi(k)|i = 1, 2, . . . , S

}
with S members. Each member of the population is

θi =
[

Ki
p

Ki
d

]
where the ith controller is given by

δ = Ki
pe + Ki

dc

We constrain the simulation to search for gains such that

Kp ∈ [−5, 0]

and
Kd ∈ [−500, 0]

(a wider range than we used earlier). We initialize the population by choosing
P (0) with θi such that the Ki

p and Ki
d are uniformly distributed (randomly) on

this range.
Now, given the initial population of controllers, how do we produce subse-

quent estimates (generations)? For each controller, i = 1, 2, . . . , S, we simulate
the closed-loop system and compute the Jcl(Ki

p, K
i
d, ψ) performance index given

above. This gives us a ranking of the quality of all the controllers. Next, using
this performance measure, we select the “best” controller and name it i∗. We
then create the next generation of controllers by letting

θi∗(k + 1) = θi∗(k)

(hence, we use what could be called “elitism,” since we keep the best controller)
and for i �= i∗,

θi(k + 1) = θi∗(k + 1) +
[

β1r1

β2r2

]
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where r1 and r2 are random numbers drawn from a normal distribution with zero
mean and unit variance. The parameters β1 and β2 scale the variance. In this
way, intuitively, to produce the next generation, we generate a “cloud” of design
points centered at the best design point found in the current generation (and
the cost at each of these points could be computed in parallel). Clearly, if the βi

are chosen too small, then a sufficient region around the best point may not be
explored. Also, if they are too large, the cloud may result in poor focusing in the
search. A normal distribution is used to allow for the possibility of generating
points at some distance from the mean. Here, after a few simulations, we used
β1 = 0.5 and β2 = 50 (one-tenth the size of the search region for each gain);
however, it was found that other values of the same magnitude worked just
as well. Next, if the generation of gains resulted in values outside the above
ranges, projection was used to place them at the boundaries of the ranges in
the usual way. Note that the above approach tends to select for good controller
characteristics and explore designs in the region of good designs (analogous to
the operations of selection and crossover in genetic algorithms).

Finally, to try to ensure that the method would not get “stuck,” a mutation-
type mechanism was added. For this, we simply selected one i �= i∗ and for this i
generated the design point in the next generation by taking the gains randomly
from a uniform distribution on the range of allowable values defined above.

15.6.2 Design Example: Tanker Controller Design

We use a population size of S = 4 and 40 optimization steps. For one typical
simulation run, the values of Jcl for the “best” controller for each generation is
shown in Figure 15.36. Also, in Figures 15.37 and 15.38, we show the trajectories
of the PD controller gains for the best controller for each generation. Here,
we see that the stochastic optimization approach seems to have been able to
improve on the design as the optimization progressed. Note that while this is
a typical plot provided by the program, it can be different. For instance, if
via the initialization you get lucky and it guesses a good design, there may be
little or no improvement over that design. Alternatively, if it guessed all bad
designs, it may show more drastic performance improvements. Moreover, the
algorithm can get stuck in oscillations (how?). To more fully test the stochastic
optimization method, you may want to run many such simulations and take
averages.

Next, to get an idea of how good the design is, we take the best controller
Optimizing the design
for one condition
typically results in
poorer performance for a
condition that was not
designed for.

from the last generation and in Figure 15.39, show the closed-loop performance.
Note that relatively good performance is achieved, for this reference input, and
the nominal conditions. How does this design work for other cases? Suppose
that we consider how it performs for a ship that is “full.” The particular gains
that it evolved are Kp = −2.9345 and Kd = −436.6634. The performance for
this case is shown in Figure 15.40. The design that was “optimized” for the
nominal condition does not perform nearly as well for the perturbed condition
as we would expect.
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Figure 15.36: Closed-loop tanker control system performance for best controller
for each generation.

15.7 Discussion: Evolutionary Control System

Design

In this section, we briefly discuss the use of evolutionary algorithms for the
design of control systems, both in simulation and in an experimental setting.

15.7.1 Genetic Algorithms for Computer-Aided Control
System Design

The genetic algorithm can be used in the (offline) computer-aided design of con-
trol systems, since it can artificially evolve an appropriate controller that meets
the performance specifications to the greatest extent possible. To do this, the
genetic algorithm maintains a population of strings that each represent a differ-
ent controller (digits on the strings characterize parameters of the controller),
and it uses a fitness measure that characterizes the closed-loop specifications.

Suppose, for instance, that the closed-loop specifications indicate that you
want, for a step input, a (stable) response with a rise-time of t∗r , a percent
overshoot of M∗

p , and a settling time of t∗s. We need to define the fitness function
so that it measures how close each individual in the population at time k (i.e.,
each controller candidate) is to meeting these specifications. Suppose that we let
tr, Mp, and ts denote the rise-time, overshoot, and settling time, respectively,
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Figure 15.37: Gain Kp for the best controller for each generation.
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Figure 15.38: Gain Kd for the best controller for each generation.
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Figure 15.39: Closed-loop performance of the best controller for the last evolu-
tion step.

for a given individual (we compute these for an individual in the population by
performing a simulation of the closed-loop system with the candidate controller
and a model of the plant; of course, we can only perform the simulation for a
finite amount of time). Given these values, we let (for each individual and every
time step k)

J = w1(tr − t∗r)
2 + w2(Mp − M∗

p )2 + w3(ts − t∗s)
2

where wi > 0, i = 1, 2, 3, are positive weighting factors. The function J char-
acterizes how well the candidate controller meets the closed-loop specifications
where, if J = 0, it meets the specifications perfectly. The weighting factors can
be used to prioritize the importance of meeting the various specifications (e.g.,
a high value of w2 relative to the others indicates that the percent overshoot
specification is more important to meet than the others).

Now, we would like to minimize J , but the genetic algorithm is a maximiza-
tion routine for J̄ . To minimize J with the genetic algorithm, we can choose
the fitness function

J̄ =
1

J + ε

where ε > 0 is a small positive number. Maximization of J̄ can only be achieved
by minimization of J , so the desired effect is achieved. Another way to define
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Figure 15.40: Closed-loop performance of the best controller for the last evolu-
tion step (design for nominal condition, test for “full” condition).

the fitness function is to let

J̄(θ(k)) = −J(θ(k)) + max
θ(k)

{J(θ(k))}

The minus sign in front of the J(θ(k)) term turns the minimization problem into
a maximization problem (to see this, consider J(θ) = (θ)2, where θ is a scalar,
as an example). The maxθ(k){J(θ(k))} term is needed to shift the function
up so that J̄(θ(k)) is always positive. We need it positive since, in selection,
Equation (14.3) defines a probability that must always be positive and between
one and zero.

This completes the definition of how to use a genetic algorithm as a set-based
stochastic optimization algorithm for computer-aided control system design,
what you might call “evolutionary control system design.” Note that the above
approach depends in no way on whether the controller that is evolved is a
conventional controller (e.g., a PID controller), neural network, a fuzzy system,
expert system, planning system, or learning system, all possibly augmented with
an attentional system; hence, we can use this approach to design any of these
types of controllers. Typically, however, the problems with this approach are
that you need to define an appropriate fitness function that avoids degradation
to exhaustive search and the connected problems of computational complexity.

Clearly, the above approach can also be used in approximator construction,
just as we used gradient optimization for these problems. One possible advan-
tage that the GA approach could offer over, for example, a gradient method
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is that it may be able to better avoid local optima and hence, find the global
optimum. One possible disadvantage is that it may be difficult to design an
effective evolutionary algorithm, especially one that is computationally efficient
(e.g., one that will not take an extraordinary number of generations).

15.7.2 Darwinian Design for Physical Control Systems

We close this chapter with a brief discussion on the use of evolutionary methods
for the design of “physical” control systems. This represents either a design aid
or alternative to conventional design methods.

Evolution in the Marketplace

Suppose that your company manufactures a product that has a control system
in it, such as an automobile with a cruise controller. Suppose that you engineer a
cruise controller using any design methodology that you like. Next, we will put a
whole fleet of vehicles into operation with this controller. Suppose that we have
enough memory and computing power on the vehicle to monitor its operation
and compute and store a performance measure that quantifies the quality of
the behavior of the control system (e.g., in terms of the rise-time, overshoot,
ability to track). Suppose that minimization of the performance measure results
in meeting the design objectives. Next, suppose that we define the ability of
each controller to survive and reproduce to be inversely proportional to the
performance measure. (A controller that performs well has a low value for
its performance index and is likely to survive and reproduce and hence, have
more copies in the next generation; hence, its reproductive “fitness” is inversely
proportional to the performance index.) Now, suppose that every time that
a vehicle comes in for maintenance and is connected to a computer diagnostic
system, we obtain the overall measure of performance that was stored (of course,
wireless communications may make it unnecessary to physically bring the vehicle
in). We do this for the whole fleet of vehicles. Also, while in maintenance,
we install in the vehicle a “next generation” controller that is an immediate
descendant of the “population” controllers that are currently used (ones that
we have gathered performance measures for). This controller is one that was
more likely to be a good one for operation on the fleet of vehicles. After several
iterations (generations), the controllers that are in use will tend to adapt to
the overall conditions that they are used in. We have then evolved the control
system for this fleet of vehicles, and it may even be robust if implemented on
new vehicles of the same type (why?).

Darwinian design
methodology for physical
systems provides a way
to design control systems
that is analogous to how
evolution designs
organisms.

In addition to the fact that the standard “robust yet fragile” concept dis-
cussed earlier holds, there could be problems with the above approach. First,
besides typical difficulties in defining a fitness function, if the initial population
of controllers is not properly tested, then early versions of the product may not
perform so well (you may be reminded of actual products you buy, and how
later versions are improved). Second, the approach requires processor power
and memory to compute and store the fitness measure. Third, you must prop-
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erly constrain how the controller can evolve or it may be possible that mutations
and perhaps crossovers will produce very substandard controllers (so that after
maintenance where the new generation controller is installed, the product ac-
tually performs worse; clearly, there would be unhappy customers). You want
to explore the design space to find what is both good and bad, but it will cost
you to find where the designs are bad. Fourth, it may perform very badly for
certain unforeseen situations that may arise due to inherent robustness trade-
offs. Fifth, it may be difficult or impossible to guarantee that the process will
converge to an optimal robust design.

Darwinian Design Via Parallel Networked Experiments

A solution to some of these problems would be to set up an artificial environ-
ment to evolve the control system before it is released to the public. Then on
release you could set it up so that it continues to evolve, or you may simply
fix the design. The type of experiment needed to evolve physical control sys-
tems is shown in Figure 15.41. At the lower part of the figure, suppose that we
have S computers (S is the population size), interfaced via a data acquisition
system to S copies of the plant to be controlled. Keep in mind that while we
say “copies,” clearly they will not be exact duplicates; component and manufac-
turing differences will result in at least slightly different plants. Now, suppose
that you design a first guess at a control system (or alternatively, you may
have up to S different members in your control systems group who each design
a controller for the plant), each of the same structure (e.g., PID controllers).
Suppose that we use these initial design(s) to initialize the controllers for the S
plants. Also, place these same controllers in the population of controllers in a
separate “central” computer as shown in the figure. Place a genetic algorithm
with appropriately chosen genetic operations in the central computer (or some
other set-based stochastic optimization algorithm). Also, connect this central
computer to each of the computers used to control each of the plants via a
computer network (e.g., the Internet).

Now we are prepared to exercise the system to simulate the evolution of
a population of control systems for this plant. First, suppose that we have a
standard set of experiments that the computers perform on each of the plants,
all at the same time (i.e., in parallel). Typical choices for this could be a step
input, a square wave input, or a reference input that is likely to be encountered
in actual operation of the plant. While the experiments operate, suppose that
we collect data and compute performance measures that can be represented
in a fitness function. Once the experiments are complete, they will provide a
fitness value that quantifies the performance of each of the S controllers. These
S fitness values are passed to the central computer. Using these, the central
computer makes the calculations necessary to produce the next generation using
the genetic operations (and as indicated above, there may be a need to use
constraints on what values the controller parameters can take on). Then, it
passes the controllers back to the S computers, and the process repeats.

After several generations it is hoped that the population converges to a single
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Figure 15.41: Experiment to perform Darwinian design for physical control
systems.

controller (or at least a population of very similar controllers). This controller is
then implemented on the actual system and the product is distributed. Clearly,
there could be problems with this approach in some situations. First, it could
be that it takes prohibitively long to complete the process, so that too many
experiments have to be performed, and hence, it takes too long to come up
with a design. On the other hand, the method has great potential for some
applications where it is easy to produce many copies, and set up the experiment
described above. It may produce a robust controller (at least it may end up
being robust to the types of behavior that the S plants exhibit), and at the end of
the design process, you have some confidence in how the controller will perform
on the actual system, since it has already been exercised on it many times (i.e.,
there is a type of verification process embedded in the design process).

15.8 Exercises and Design Problems

Exercise 15.1 (Design Strategies that Exploit Robustness Trade-Offs:
Application to Farming): Read the paper [79]. Explain how the “de-
sign strategy,” where scientists recommend planting nongenetically mod-
ified crops near genetically modified ones (e.g., ones that are resistant to
some insects) can be explained in the context of robustness trade-offs in
design. Note that the planting strategies of farmers that try to maxi-
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mize yield are actually “redesigning” insects in the “arms-race” between
farmers and pests.

Exercise 15.2 (Pattern Search Methods):

(a) For a cost function, suppose that you use “Rosenbrock’s function”
y = f(x), x = [x1, x2]�, which is a parabolic valley

y = 100(x2 − x2
1)

2 + (1 − x1)2 (15.9)

with a minimum at (1, 1). Program the simple coordinate search
method and use it to search for the minimum. Experiment with
different choices for the initial condition. Plot the trajectories for the
estimates of the minimum as a function of optimization algorithm
step. Be sure to pick your scale for your plot appropriately so that
you can illustrate the behavior of the algorithm in the plot.

(b) Repeat (a) but for the evolutionary operation via factorial designs
method.

Exercise 15.3 (Nelder-Mead Simplex Method):

(a) Redraw the contours to illustrate the step where θmax(j) is bet-
ter than θref (j), in the contraction step the algorithm generates a
θnew(j) that is in between θmax(j) and θcent(j), but with θnew(j)
worse than θmax(j). This should be a sketch like the one in Fig-
ure 15.20 that illustrates how the simplex is reoriented in this case.

(b) Suppose that you use Rosenbrock’s function in Equation (15.9) as a
cost function. Program the Nelder-Mead simplex method and use it
to search for the minimum. Experiment with different choices for the
initial simplex.

Exercise 15.4 (Multidirectional Search Method):

(a) For p = 2, draw an example simplex on the function J = θ2
1 + θ2

2 .
Develop a definition for the “simplex gradient” and explain, using
geometric arguments, why the update direction suggested by it makes
sense.

(b) Suppose that you use Rosenbrock’s function in Equation (15.9) as a
cost function. Program the multidirectional search method and use
it to search for the minimum. Experiment with different choices for
the initial simplex.

Exercise 15.5 (Simultaneous Perturbation Stochastic Approximation
Method):

(a) Suppose that you use Rosenbrock’s function y = f(x) given in Equa-
tion (15.9), and which has a minimum at (1, 1). This will be the
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“noise-free” cost. Define a noisy cost function to be one that has
an additive white Gaussian noise with zero mean and a variance of
0.1. Program the SPSA method and test its performance for different
initial conditions and the noise-free and noise cases.

(b) Program the FDSA method and test its performance for different
initial conditions and the noise-free and noise cases. Compare its
performance to the results in (a) for SPSA. Compare the complexity
of the two algorithms.

(c) (This part of this problem was provided by J. Spall.) Consider the
skewed-quartic cost function,

J(θ) = θ�B�Bθ + 0.1
∑
i=1

p(Bθ)3i + 0.01
∑
i=1

p(Bθ)4i

where Jn(θ) = J(θ) + w and (·)i represents the ith component of
the argument vector and B is such that pB is an upper triangular
matrix of ones. The minimum occurs at θ∗ = 0 with J(θ) = 0.
Let us compare SPSA with a valid perturbation distribution and two
invalid perturbation distributions. In the valid case, let the perturba-
tions (∆(j) components) be independent and identically distributed
(i.i.d.) Bernoulli ±1 distributed and in the invalid cases, let the per-
turbations be i.i.d. uniformly distributed over [−√

3,
√

3] and i.i.d.
normally distributed with zero mean and unit variance. Note that
the valid and invalid perturbation distributions all have zero mean
and a variance of one. Let p = 10 and the gains be in the form of
ak = a/(k + 1 + A)α, ck = c/(k + 1)γ . Suppose the noise in the mea-
surements (i.e., the cost function) w is i.i.d. normal with zero mean
and a variance of 0.12. Furthermore, let 2000 cost function measure-
ments be used in the search process based on an initial condition
of the parameter vector of [1, 1, . . . , 1]� and let a = 0.5, A = 50,
c = 0.1, α = 0.602, and γ = 0.101. With no constraints imposed
on the movement of the parameter vector, compare one replication
of 2000 measurements for the valid and invalid implementations and
comment on the relative performance of the implementations.

Exercise 15.6 (SPSA for Tanker Controller Design): In this problem
you will study characteristics of SPSA design approach for the tanker
controller in Section 15.4.1.

(a) Explain, via simulations, the effects of changing λp and λd on algo-
rithm performance.

(b) Explain, via simulations, the effects of changing cp and cd on algo-
rithm performance.

(c) Explain, via simulations, the effects of changing α1 and α2 on algo-
rithm performance.
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Design Problem 15.1 (Response Surface Methodology for Design):
In this problem you will expand on the response surface design approach
discussed in Section 15.2 for the tanker ship.

(a) Repeat the same general steps of the design process, but where you
use a ship in “ballast” conditions, and consider the nominal case to
be one where the speed is u = 5 and the “off-nominal” case to be
where u = 3 (or some other appropriate value). What are the optimal
gains for each case, and the performance of these gains for the case
that they were not designed for? Support your answers with response
surfaces and appropriate analysis.

(b) Consider nominal conditions for the ship. Show that the response sur-
face can be different for different reference input sequences. Provide
at least one response surface that is different from the one provided in
the chapter for nominal conditions and the reference input trajectory
provided there. What is the fundamental reason why the response
surface changes when there are different reference input sequences?

(c) Use response surface methodology to design a fuzzy controller for
the tanker ship. Explain all of your choices and compare to the man-
ual designs that were conducted in Chapter 5. Hint: The simplest
approach is to simply tune the three normalizing gains. Another ap-
proach is to use RSM to tune the centers of the output membership
functions, the parameters of the input membership functions, or the
number of rules.

(d) Use RSM to design the parameters of an adaptive controller for a
tanker ship.

Design Problem 15.2 (Nongradient Optimization for Tanker Con-
troller Design): In this problem you will develop deterministic non-
gradient optimization algorithms for the design of the tanker controller in
Section 15.4.1.

(a) Design a simple coordinate search method that can design a tanker
ship controller. Illustrate its performance in simulation and explain
your choice of the algorithm parameters.

(b) Repeat (a), but design a Nelder-Mead simplex algorithm.

(c) Repeat (a), but design a multidirectional search algorithm.

(d) Compare and contrast the performance of the algorithms in (a), (b),
and (c) according to their computational complexity and convergence
properties for this problem.

Design Problem 15.3 (Deterministic Nongradient Optimization for
Approximator Construction): For the single input function approxi-
mation (theme) problem of Part III that is studied, for instance, in Sec-
tion 10.2, design deterministic nongradient optimization algorithms to
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tune the approximator. Evaluate the resulting approximation accuracy,
and explain your choices for the algorithm parameters.

(a) Use the simple coordinate search method.

(b) Use the Nelder-Mead method.

(c) Use the multidirectional search method.

Design Problem 15.4 (Stochastic Pattern Search)�: Suppose that you
are given the cost function with p = 2 in Figure 18.10, but that you
do not have gradient information. The SPSA method chooses only two
points and makes cost evaluations for these, then decides how to update
the parameter vector. Design what you might call a stochastic pattern
search method that uses only a few (e.g., two) of the points on a pattern
at iteration j to compute how to update the parameter estimate. You
should consider modifying the simple coordinate search method, or the
multidirectional search method.

Design Problem 15.5 (Set-Based Stochastic Optimization for Tanker
Ship Controller Design): Your objective in this problem is to expand
on the analysis of the set-based stochastic optimization algorithm that
was introduced and briefly evaluated in Section 15.6.

(a) Explain the effects of different cloud sizes S, and number of opti-
mization steps. Clearly, with other choices you may obtain different
performance from what was found in the chapter. Illustrate via sim-
ulation results.

(b) Explain the effect of w1 and w2 and support your explanation with
simulation results.

(c) How would you perform convergence analysis via simulations for this
approach? Optional: Illustrate your approach with a simulation-
based analysis.

Design Problem 15.6 (Design of Hierarchical Methods for Function
Optimization)�: Suppose that you are given the cost function in Fig-
ure 18.10, but that you do not have gradient information. Design a hierar-
chical parallel interleaved method for finding the global minimum. Fully
specify the pseudocode for the algorithm in an analogous way to how it
was done in the chapter for the other methods, and write a computer
program to simulate the algorithm. Evaluate its performance by trying
different initial conditions. Develop a useful way to graphically illustrate
the operation of the algorithm and explain how to choose the parameters
that specify the method (e.g., step sizes). You may consider using either
pattern search or an evolutionary strategy for managing the N parallel
algorithms. Use the same type of algorithm for each of the N parallel
algorithms; however, you may choose the specific type of algorithm to use
(e.g., you may use SPSA or simple coordinate search)
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Design Problem 15.7 (Nongradient Optimization for Approximator
Structure Construction)�: Design and test a deterministic nongradient
algorithm to solve Design Problem 11.2.

Design Problem 15.8 (Design Problem Formulation and Solution)�:
We have studied design of instinctual neural controllers (mapping shape),
fuzzy controllers (mapping shape), planning systems for control (pre-
diction model, optimization method, planning horizon), attentional sys-
tems (attentional strategy parameters), learning systems (approximator
size, instinct-learning balance, optimization strategy design, structure con-
struction), and adaptive controllers (e.g., adaptation gain, initial model
or controller). Choose a design problem considered earlier in the book.
Show how to formulate it as an optimization problem. Design a stochas-
tic optimization method and illustrate its performance in design. Discuss
algorithm performance (e.g., convergence, rate of convergence, quality of
solution) and computational complexity. Also, discuss robustness trade-
offs.
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Evolution is a design process for constructing life forms, including ones that
have learning capabilities. We can encode both the parameters and structure of
learning systems, and use a genetic algorithm to evolve (optimize) these systems
according to some fitness function to operate in a robust fashion. In the last
chapter we discussed how organisms evolve to be robust in their environment to
achieve “robust yet fragile” operation via “highly optimized tolerance.” Here,
we focus in particular on the interactions between the two adaptive processes of
learning and evolution. We discuss how organisms evolve learning, and how a
balance between learning and instincts may be achieved and maintained, based
on characteristics of the environment that the organism lives in.

We show how the response surface methodology (RSM) of the last chapter
can be used to design learning systems, by showing how to use response surface
methods to find the best approximator size p for a function approximation prob-
lem (a robust learning system design problem from Part III). Moreover, we show
how to use RSM and the set-based stochastic optimization methods of the last
chapter to study instinct-learning balance. We discuss how the instinct-learning
balance concepts help to quantify and clarify certain fundamental design trade-
offs in adaptive controller design. Finally, we show how genetic algorithms can
be used in adaptive control in cases where learning methods were traditionally
used (e.g., the ones in Part III).

16.1 Relevant Theories of Biological Evolution

One way for organisms to achieve robustness to changes in their environment
Learning provides one
approach to achieve
robust behavior.

is to use learning. It seems that learning has evolved in many species since it
provides a selective advantage; animals that can learn may have greater repro-
ductive success in their environments. In Chapter 2, Figure 2.8, on page 85,
we described an experiment where learning capability (based on operant condi-
tioning) seemed to evolve in a small population of rats. Even though drawing
significant conclusions from such studies is problematic, it seems logical that
many aspects of learning could evolve. Indeed it seems likely that sophisticated
learning strategies may evolve from simple ones. For instance, it seems like sim-
ple control and learning functions implemented by networks of neurons, such
as those discussed in Section 4.1.2 on page 109, could incrementally evolve to
form more complex organisms. For example, did the Aplysia, which can exhibit
classical conditioning as discussed in Section 9.1.3 on page 328, evolve from
simple instinctual neural networks by “inventing” (in the evolutionary sense) a
simple learning mechanism? Could the neural networks that implement simple
learning functions, such as classical conditioning, be built upon to achieve the
types of operant conditioning that are possible for pigeons, mice, and rats (see,
e.g., Section 9.1.4 on page 335)?

In this section, we explain how evolution affects learning (e.g., via evolving
learning capabilities) and how learning affects evolution (e.g., via the Baldwin
effect). Also, we discuss the evolution of the balance between instincts and
learning capabilities.
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16.1.1 Genetics of Learning

We begin by providing an example of how genetic influences on learning have
been quantified. This highlights the fact that there is a strong connection be-
tween genes and higher-level cognitive capabilities, and hence, clearly highlights
that learning can be influenced by evolution.

It is possible to show how single gene mutations (“gene knockout”) can
affect learning in mice, and this provides direct evidence for a link between
learning and genetics [268]. In particular, new methods have made it possible
to study the adverse effects of gene knockout (e.g., for the fyn gene) on long-
term potentiation and spatial learning in the intact animal. To begin with, a
group of mice with the fyn gene knocked out are grown. Then another group
of “wild type” mice (without gene knockout) are used. All the mice are trained
(for seven days) to escape from an underwater maze by swimming to find a
platform located beneath the surface of the water. (You can then think of the
platform as a reward.) Then, the platform was removed and the mice swam for
60 sec. The wild type mouse’s pattern of swimming (see [268]) clearly indicates
that it remembered where the platform was. The fyn-deficient mouse, however,
clearly never remembered how to find the platform (i.e., it has a deficiency in
spatial memory).

16.1.2 The Evolution of Learning

The characteristics of the environment that an organism lives in affect its de-
sign over long periods of time. One particular characteristic that is affected is
learning. To see how, suppose that some environment and organism satisfy the

Learning is invented and
shaped by evolution.

following assumptions:

• Environment: Suppose that the environment in which the organism lives
has some features that do not change over very long periods of time (e.g.,
gravity), and others that may change quite frequently in somewhat un-
predictable ways (e.g., the wind direction, how dangerous some predator
is, how fast some prey runs). Hence, there are certain features that can
be thought of as environmental “constants” and other aspects that have
some uncertainty associated with them, but which are not completely
unpredictable (e.g., any two predators of the same species have variabil-
ity and hence, different performance characteristics, but within certain
bounds). Certain events can occur to change the “static” parts of the
environment (e.g., global temperature change), or change the probability
distributions on other characteristics (e.g., evolution of a predator may
shift the probability density function describing the maximum running
speed of the predator to have a higher mean value).

• Organism: Suppose that the organism is of lesser complexity than its en-
vironment. We will think of the environment of a particular organism
as being composed of everything that is not the organism; hence, the
environment for an organism will typically contain other members of its
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species and predators/prey. Suppose that the organism can in some way
sense only certain aspects of its environment. It can store some informa-
tion about its environment, but since it is simpler than its environment, it
cannot store a perfect representation of its environment. Suppose that the
storage and use of information about the environment “costs” the organ-
ism in a physiological and evolutionary sense. (For example, it has been
argued that we lose our ability to learn language as we get older due to
selective pressures [420]; hence, if an organism does not need them, there
will be a selective pressure to abandon information storage and learning
capabilities.)

These constraints imply that the organism will operate in the presence of uncer-
tainty. It will not, however, operate in complete uncertainty, since we suppose
that it has reliable ways to gather information and store it. Also, since there is
not complete uncertainty, it should be able to make effective “decisions” that
lead to the organism meeting its goals (e.g., a survival goal).

Next, suppose that the organism is such that it is highly evolved in its en-
vironment (but it seems unlikely that we could ever be certain that this is the
case). First, will the static part of the environment be, in a sense, encoded in the
organism’s genes and passed from generation to generation? It seems that this
will at times be the case, at least for some characteristics, for some organisms
where it is worth the physiological cost and is physically possible. For instance,
humans seem to be born with a sense of the influences of gravity (and hence,
knowledge of up and down), and as far as tests can tell, “object permanence”
(e.g., for very young babies, if you cover an object up that they can see, they
do know that it is still there, and has not magically disappeared—babies in-
stinctively know some physics). Second, what influence will the nonstatic but
predictable part of the environment have on the organism’s evolution? It is what
leads to the evolution of learning. For uncertain but predictable environments,
if the organism has learning capabilities, it can store information about its ex-
periences, try to predict what will happen when similar situations occur, and
will tend to be more successful than organisms that do not have such capabili-
ties (or ones that have less effective learning capabilities). Hence, the uncertain
but predictable characteristics that are encountered during the lifetime of each
organism in an environment lead to a selective pressure over many generations
for organisms in the species to be able to learn about the environment. Does

Characteristics of the
environment drive the
evolution of specific
types of learning
capabilities.

this mean that every organism has a capability to learn, or will evolve one? No.
It depends on the ecological niche, physiological costs of maintaining informa-
tion storage and learning, and the random nature of evolution. Moreover, it
depends on characteristics of the convergence of the evolutionary process, or
the lack thereof.

What are the implications of the robustness concepts discussed in the last
chapter on the evolution of learning? Clearly, they apply in the same basic
manner. For instance, due to the finite complexity of an organism, there is no
way that it can know how to cope with all situations, and in particular, it is
likely to be optimized to learn about certain types of uncertain environmental
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characteristics, ones that can be quite different from the low-probability events
that can lead to the demise of the organism or species. Learning is a way to
achieve robustness, and organisms typically have good learning capabilities for
aspects of the environment that are most important to their survival. Learning
is the result of an optimization process that minimizes complexity of an or-
ganism operating in a structured uncertain environment with correlated events.
Learning is simply an approach to achieve robustness, but it does not allow the
organism to beat the fundamental robustness trade-offs in the design of complex
systems.

16.1.3 The Baldwin Effect: Learning Can Accelerate Evo-
lution of Instincts

To explain the Baldwin effect, we again think of the environment as driving the
design of characteristics of learning capabilities of an organism. Suppose that
after a long time, some organism has evolved some learning capabilities so that
over its lifetime it can effectively cope with some uncertain but predictable part
of its environment (i.e., it is robust to a certain extent). Now, suppose that some
portion of that predictable part of the environment becomes quite consistent
in its characteristics (i.e., that for some reason, one part of the environment
becomes quite predictable). Further, suppose that each organism then basically
learns the same predictable part of its environment during its lifetime, and this
occurs over many generations. Suppose that learning this characteristic quickly
provides a selective advantage. For example, suppose that many organisms are
killed if they do not know about this characteristic of their environment, but
organisms that encountered this characteristic and survived it will generally
also survive a second encounter with it. Now, suppose that at some point there
is a type of mutation in some organism that represents an encoding of the
information about the environment that allows the organism to instinctively
know how to predict the characteristic of the environment and hence, know how
to cope with it to survive, even on the first encounter (the organism does not
have to engage in the dangerous activity of learning about how to cope with
the adverse event). This mutation would be a successful mutation that would
propagate through the species, since the organisms that needed to learn about
the characteristic would generally be less successful in survival.

Learning can accelerate
evolution by speeding the
incorporation of
instincts.

This “genetic encoding” of information about some aspect of the environ-
ment can actually be thought of as accelerating evolution; hence, we can think
of learning as providing a method to accelerate evolution (this is the “Baldwin
effect”). How? Suppose for a moment that there was no learning capability in
the species. Suppose that there is a beneficial mutation for one organism that
allows it to survive. Unfortunately, it is not likely that another organism in that
species will have the same successful mutation, and even less likely that those
two will mate so that their offspring will also have the characteristic. Hence,
genetically encoding the useful information for survival from the environment is
highly improbable. On the other hand, with learning as a general characteristic
of the species, the possibility of many organisms surviving the characteristic
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improves drastically, and this makes it more likely that several of their offspring
may have successful mutations (or at least mutations that are “partially suc-
cessful” in the sense that they lead to the encoding of part of the information
that gives a slight advantage), and hence, the likelihood that two of the offspring
mate and produce offspring with the useful mutation is increased. In this way,
the learning results in an additional selective pressure to encode consistently
useful information in the environment. In this way we see a shifting of learning
capabilities to instincts via evolutionary pressure, and a faster acquisition of
instincts when learning is present.

Does this imply that all learning will eventually evolve into instincts? No.
Again, the physiological costs for learning and storage of information can be
significant. Hence, in some ecological niches, learning capabilities may stay
constant. Moreover, a fundamental characteristic of the stochastic dynamics of
evolution of the organism may make it so that there is no convergence on a best
design (e.g., there may be an oscillation in the designs over evolutionary time).

16.1.4 Evolving an Instinct-Learning Balance

Uncertain but predictable portions of our environment lead to selective pressures
for evolution of learning capabilities, and static portions can lead to genetic en-
coding of instincts. The Baldwin effect explains one way that an organism with
learning capabilities has a selective pressure for genetic encoding of portions of
the environment that are found over long time epochs to be static (completely
predictable). Both instincts and learning capabilities carry a cost for the or-
ganism (e.g., a maintenance cost for the underlying physiology) so there is a
tendency to be conservative in increasing either of these, and for different or-
ganisms, the costs associated with instincts may be more or less expensive than
those associated with learning capabilities.

Characteristics of the
environment drive the
construction of an
optimal balance between
instincts and learning.

There is then a type of balance between how much instinct an organism has
and how many learning capabilities it has, and this balance can change if the
environment changes. For example, via the Baldwin effect, there may be a shift
where an organism gains more instincts. If the environment changes to be more
static, the organism may lose some learning capabilities, whereas if the environ-
ment acquires certain characteristics that are uncertain but predictable (e.g.,
a new predator), it may gain more learning capabilities. Is this partition be-
tween instinct and learning “stable” (e.g., if there is some type of environmental
change, will it settle to an new equilibrium)? Suppose that we wanted to ex-
perimentally verify these concepts for some organism. Where is the equilibrium
for a particular organism? Could we change the environment in a way that will
increase or decrease instinctual or learning capabilities of an organism? Could
we use it to predict how many learning capabilities the organism has? This
would amount to experiments in how to redesign cognitive capabilities of organ-
isms (not just learning, but redesigning the brain to function differently). Could
we perform analogous experiments or theoretical investigations for control and
automation?

Is the point of equilibrium in the balance between instincts and learning
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a HOT point? Can we show how the HOT point shifts based on changing
characteristics of the environment? For example, can we show that the HOT
point moves towards more learning capabilities if some part of the environment
becomes uncertain but predictable? Will the HOT point move towards more
instincts if some part of the environment becomes static?

What are the implications for the design of adaptive control systems? Could
we evolve in real time an optimal level of learning capabilities? Could we evolve
the best model complexity for adaptive model predictive control? Could we
evolve (optimize) the complexity of a controller?

16.1.5 Cultural Influences on Learning and Evolution

Jean-Baptiste Lamarck had a theory that organisms could inherit acquired char-
acteristics of their parents (e.g., he proposed that offspring could take advantage
of information acquired during the lifetime of the parent). Our modern under-
standing of genetics and reproduction shows that such information is not directly
carried in DNA (e.g., advances in farming methodology learned by a parent are
not somehow encoded in the genes and transferred to children). But, can what
the parent learns help the child survive? Yes, perhaps, but in an indirect way.
Since children often can learn from parents via the parents directly teaching the
children, they can gain survival advantages via education. Of course, educa-
tion can be provided not only by parents, but from the society in general via
schools and conversation with friends and relatives. The information is stored
and transmitted via word-of-mouth, books, libraries, and the Internet in many
cultures. Hence, for example, libraries provide a type of species-wide memory
that if properly exploited may help us to survive. For example, construction
methodology is relatively well-understood, and is well-documented. Hence, you
can go to the library and get a book that will tell you how to build a house that
will withstand the elements and help you to survive. Moreover, you can go to
the library to learn about effective farming methods that could help you and
your family survive. Clearly, you can find similar information via the Internet;
it provides an electronic library.

It should be clear then that learning can be accelerated via cultural influences
(like libraries and conversation). Moreover, it should be clear that cultural
practices can influence the survival of a group of people. In some situations,
cultural influences may provide the necessary information to allow individuals
in the group to be more likely to survive and reproduce. Is the environment we
are living in changing in ways that influences the balance between our instincts
and learning capabilities? Is the human species becoming more robust to certain
situations and more sensitive to others? Is there a Baldwin effect at work in
human evolution (i.e., can cultural influences accelerate learning and thereby
accelerate evolution)? What is the human fitness function? How robust are
humans? Do these concepts teach us anything about how to ensure the survival
of the human species? What are the costs of ensuring such survival?
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16.2 Robust Approximator Size Design

In this section, we study the approximator design problem studied in Sec-
tion 10.2, but with a focus on how to design a “robust” approximator. To
do this, we discuss robust optimal approximator design, the RSM approach to
solving this problem, then show the results for a particular RSM.

16.2.1 Approximator Size Design Problem

What is meant by a “robust” approximator? Note that the function in Fig-
ure 9.10 is actually just one realization for one set of probability draws that
generate the data (i.e., one possible z, for the function G(x, z)). A robust ap-
proximator is the single best approximator, in the sense that it will seek to
optimize its performance for all possible training data sets of a certain size.
Note, however, that here the “optimality” is with respect to the approximator
structure choice and tuning method. Here, our only objective will be to find
the size p of the best approximator for the function in Figure 9.10, for a fixed
data set size M , for a Takagai-Sugeno fuzzy system (a nonlinear interpolator
between lines), trained by a batch least squares method.

Response surface
methodology can be used
to make basic design
choices for
approximators.

First, note that due to the problem of generalization (overfitting) that can
arise if you use more parameters than training data pairs, we will assume in our
RSM that p ≤ M . Second, we note that via our studies in Part III, we found
that M = 121 generally led to reasonably good approximation of the underlying
function. Hence, in order to reduce computational complexity, we choose M =
100 here (and we make it uniform across the domain [−6, 6]). Third, note that
for the studies of the function in Figure 9.10, we know that you need at least
p = 4 to get reasonable approximation accuracy (see Figures 9.16 and 9.18), but
that with p = 40, we should be able to get very good approximation accuracy.
This defines a range of values to consider. Note that such insights should not be
ignored, as they can lead to significant computational savings in constructing
the response surface.

Another principle that we learned in Part III, was that you need a larger
test set than a training set. Hence, we choose MΓ = 2M = 200 and place the
input portion of the data on a uniform grid across the domain [−6, 6]. This
will then test for approximation accuracy and will be likely to uncover problems
with generalization if there are any.

Next, since there is noise on the unknown function, we will need to make
multiple designs for each fixed set of training data (with fixed M = 100, each
time you generate training data it will be different). Hence, for each value of p we
consider, we will generate Nt = 100 trials, where we construct an approximator
and compute the mean squared error relative to the test set.

For a fixed p, each time we construct an approximator, we will need to pick
the centers and spreads of the membership functions. Based on the insights we
gathered in Part III, here we simply place the centers on a uniform grid in the
range [−6, 6] and set all the spreads to be half the distance between two centers.

For the response surface, we first compute the mean squared error (MSE)
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for the Nt approximator designs for each p. Note that in this case, the MSE is a
random variable whose characteristics are driven by the noise on the unknown
function, the value of M , the approximator structure, and the training method
(here, BLS). Clearly, then, it is difficult to know the probability density function
of the MSE. Here, as a simple measure of MSE for a design point, we simply
take an average of all the MSE values at each design point. We chose Nt to try
to obtain reasonable computational demands, and yet large enough so that the
average has a low variance.

16.2.2 Average Mean-Squared Error Response Surface for
Approximator Size

Using the design choices in the last section, for illustrative purposes, we con-
struct the response surface for the MSE for Nt = 1 approximator of size p for a
range of p values, but we do this five times so we obtain five response surfaces.
The response surfaces are shown in Figure 16.1. Each time we run the program,
we get a response surface with a different shape. Why? It is due to the noise
that is on the function that we are trying to approximate. In order to get a
reliable assessment of the quality of the approximation, we will next run several
trials for each design point (i.e., each p value) and then compute the average of
those values.
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Figure 16.1: MSE response surface for approximator size, Nt = 1.

Next, we construct the response surface for the average of the MSE for
Nt = 100 approximators of size p over a range of p values. The response surface
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is shown in Figure 16.2. How do you know that the surface will not change if you
increase the number of trials Nt? One simple way, but one which generally takes
lots of computations, is to simply run the program that constructs the response
surface several times to see if nearly the same surface is generated for increasing
values of Nt. Here, suppose that we run the program five times to generate five
surfaces. In this case, we obtain Figure 16.3, where we have changed the axes
to try to highlight the slight differences in the five cases. Notice, however, that
there is very little difference between each of the five different trials. This gives
us confidence that the plot shown in Figure 16.2 can be used to guide design
decisions.
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Figure 16.2: Average MSE response surface for approximator size, Nt = 100.

In addition to finding that the surface in Figure 16.2 is (essentially) the same
shape on each trial, we also find that its basic shape makes sense. For this range
of p, the estimation error generally decreases for increasing p. We find a typical
“knee” in the curve that shows that it may not pay to arbitrarily increase the
approximator size for a function approximation curve (for increasingly large p,
little is gained in approximation accuracy). For different problems, you will find
that the location of the knee in the curve will shift, but generally you will find
a similar shape. What will the shape of the curve be for larger values of p?
Generally, at some point (e.g., when p > M), the average approximation error
will increase due to problems with overfitting and generalization.
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Figure 16.3: Average MSE response surface for approximator size, Nt = 100, 5
surfaces.

16.3 Instinct-Learning Balance in an Uncertain
Environment

In this section, we will use a simple design problem for a linear (time-varying)
estimator that is set up to have analogies with instincts and learning in an
uncertain environment. This example is used to study characteristics that in-
fluence the “optimal balance” between the use of instincts and learning. In other
words, we will set up a simple model of the trade-offs and processes involved
in the evolution of a balance between how many instincts (or the quality of the
instincts) and the amount (or quality) of learning. Clearly, as discussed earlier

Instinct-learning balance
concepts can be useful in
engineering design (e.g.,
to pick an optimal
trade-off between
amount and quality of a
priori information vs.
information gathered
online).

in this chapter, characteristics of the uncertainty present in the environment
will affect where the optimal balance is. For instance, with more uncertainty it
may be necessary to have more learning capabilities, since fixed instincts will
not predict characteristics of the environment very well. However, if there is not
much uncertainty, then it may be best to simply use instincts and no learning,
and hence little or no memory is needed. The objective here is not to show
how the instinct-learning balance idea is useful in engineering design; indeed,
the estimator design problem considered here is already very well studied so
that there is no contribution to engineering per se. The objective here is more
modest. It is simply to show that the concept of instinct-learning balance is
already used in engineering.

We will be discussing this problem as if we are going to use an evolution-
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ary algorithm, but we do not actually do so in this section. We will construct
the “fitness function” (actually a response surface that represents average per-
formance values). We will show the shape of this surface. We will show how
parameters affect the shape of the surface and hence, the optimum values for
quality of instinct and level of learning capability. Later, in Section 16.3.3, we
will study the use of an evolutionary algorithm for evolution of the optimal pa-
rameters; the development here will provide intuitive insights into why such an
algorithm should work.

16.3.1 Estimator Design Problem and Analogies with In-
stincts and Learning

Recall from Part III that one definition of learning is: “any process through
which experience at one time can alter an individual’s behavior at a future
time” [223] (i.e., any system with memory has the potential to be a learning
system). We will use this definition here. In particular, we will define learning
ability to be the number n of values that can be remembered by an organism
in performing some activity during a lifetime. The value of n affects how the
organism performs the activity (e.g., in helping it to perform the activity better).
The value of n is how much memory the organism has, a key component of
learning. We avoid more sophisticated learning, where the values remembered
are used to change the manner in which the activities are performed. Hence, we
study a primitive form of learning, where there is an action taken that depends
on values that are remembered and the actions taken affect the performance in
executing some task in the environment of the organism.

We assume that the organism can sense some aspect of its environment
and store this in a (scalar) variable y(k, �) at time k, k = 1, 2, . . . , NL, for
“generation” �, � = 1, 2, . . . , Ng. Hence, NL is a measure of the length of the
lifetime of the organism and Ng is the number of generations of evolution (here,
generations simply correspond to lifetimes of a single individual organism).

We use a very simple model of the “environment” that the organism performs
the task in, where

y(k, �) = x(k, �) + z(k, �)

Here, we will assume that x(k, �) = x̄ = 2 is a constant that the organism
wants to estimate in order to be successful in performing some activity (which
enhances its reproductive success), and z(k, �) is noise representing uncertainty
in the environment (and perhaps measurement noise). The particular value
x̄ = 2 is not important, and here is simply chosen for illustrative purposes. We
suppose that z(k, �) is drawn from a normal distribution with zero mean and a
variance

σ2
z(k, �)

that could change over the lifetime, or over generations. Here, at first, we will
consider the case where σ2

z = 0.5 for all k and �.
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We assume that our organism can sense and store (remember) n values of
y(k, �) at each time k and that it estimates x(k, �) via

x̂(k, �) =
1
n

k∑
j=k−n+1

y(j, �)

Hence, it simply uses a “sliding window” of n values that it computes the mean
of as an estimate of the x value (note that the sample mean is a least squares
estimator, assuming that the scalar to be estimated is a constant corrupted by
additive white Gaussian noise). Hence, the task of the organism is to estimate x,
and if it does a good job at this, we assume it has good reproductive success. It is
recognized that in a computer you do not need n memory locations to store the
n values, since you can simply add each new sensed value to one location. Here,
we consider a type of system (organism) where all n values have to be stored
(or at least where the size of n is proportional to the learning capabilities of the
organism, and also to the cost of physiological maintenance of the estimator).

We model instincts as the initial conditions of the estimator. We denote the
initial condition value (instinct value) as x̂0; this is a value that we will want to
evolve. Notice that at k = 1, we need initial values at k− 1, k− 2, . . . , k−n+1.
Here, we assume that all past initial values needed before k = 1 are equal to
x̂0. Hence, for example, if n = 3 and k = � = 1, we will use the sensed value
y(1, 1), and two values of x̂0, for a total of three values in the computation of
the mean.

For evolution we need to define what we mean by the “fittest.” Here, we
quantify this with

J(x̂0, n, �) = w1n + w2
1

NL

NL∑
j=1

(x(j, �) − x̂(j, �))2 + w3 exp

(
− (x(1, �) − x̂0)

2

σ2

)
(16.1)

with wi ≥ 0 as weighting factors and σ = 0.1. First, note that compared to
our study of genetic algorithms, we consider the organism “fit” if the above
cost value is minimized, not maximized. The three above terms in J can be
explained as follows:

• The first term, w1n, quantifies the cost of remembering more sensed val-
ues. It may represent a cost of maintaining physiology of the mechanisms
needed by the organism to sense and store the sensed values (or neural
hardware to sum n values). If w1 is big, this represents that there is a high
cost, in terms of survival ability, to sensing and storing (adding) values.

• The second term is simply the mean-squared estimation error that mea-
sures the quality of estimation for a given organism over its entire lifetime
(one with particular instincts x̂0 and learning abilities n). Notice that
generally speaking, better instincts should lead to better estimation per-
formance, and using more values to compute the mean (higher n) should
also improve performance. We think of performance improvements as
leading to better reproductive success.
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• The third term models the cost of accurate instincts (e.g., physiological
costs) via a Gaussian function centered at the actual value of the variable
to be estimated. The parameter σ2 specifies how quick the cost component
decreases as the instinct quality moves away from the accurate value.
Hence, accurate instincts cost, and the value of w3 can be used to specify
the magnitude of that cost relative to the other two components.

Clearly, other choices can make sense for the components of the cost func-
tion. To summarize, the cost function J quantifies that good instincts may
help estimation quality, but they cost. More learning capability generally helps
estimation quality, but it costs also. Intuitively, there should be an optimum
balance between quality of instincts and learning capability in order to get the
lowest value of J . This point where the minimum is achieved is the optimum
balance point for trade-offs between learning and instinct.

16.3.2 Response Surfaces for Optimal Instinct-Learning
Balance

Here, in order to gain insights, we are going to take an RSM approach, and
hence, remove the mechanisms of evolution. We will show the surface (fit-
ness landscape) that evolution will operate over in trying to find an optimum
instinct-learning balance for a given environment. From this, it should be easy
to envision how evolution will operate over this landscape to find the mini-
mum over the response surface and hence, evolve the optimum instinct-learning
balance.

The fitness landscape is defined via the average of J for Ng = 100 runs for
each x̂0 and n considered. We consider a range of values of x̂0, where

x̂0 ∈ [0, 4]

so that we consider when the instinct value is too low and too high, and there is
no difference in cost for having the instinct value deviate by the same amount
above or below the x̄ value. We consider a range of n values, n = 1, 2, . . . , 20.

For w1 = 0.01, w2 = 1, and w3 = 0.05, we get the response surface in
Figure 16.4. In this case, the lowest (optimal) point on this surface, shown via
the dot, is

x̂∗
0 = 1.6410, n∗ = 5

so that, since very good instincts are costly and learning abilities are relatively
inexpensive (low w1), it is best to have a somewhat accurate instinct, coupled
with an ability to sense and remember several values from the environment.

Next, suppose that you keep all the other parameters the same, except you
let w1 = 0.1, which is ten times the above value. This indicates that it costs
a lot to sense and store values. How will the response surface change, and
what will the new resulting optimum point be? What do you expect? Consider
Figure 16.5, where we show the resulting response surface. In this case

x̂∗
0 = 1.5385, n∗ = 2
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Figure 16.4: Response surface (fitness landscape) for instinct-learning balance
problem, σ2

z = 0.5, optimum point shown with a dot.

Does this make sense? Yes. It is now better to use fewer stored values since
storage costs more. Notice that the ridge due to the cost of instincts is still
present so that it is best not to maintain perfect instincts.

Next, to study the effects of changes in the environment, we let the variance
be σ2

z = 0.75, which is higher than above. This increases the uncertainty in the
environment and hence, we expect that this should shift where the optimum
balance is between instinct and learning capabilities. Also, for the sake of illus-
tration, we use w1 = 0.01 and w2 = 1 (same as above), but w3 = 0.005, which is
one tenth of the above. This indicates that it is less expensive to have accurate
instincts. How should the optimum point shift? We expect it to be such that
it gets better instincts (closer to two) and uses more learning capabilities since
with the higher variance, it will need more values in the computation of the
mean in order to get good estimation accuracy. If you run the program with
the values, you get the response surface shown in Figure 16.6, and from this

x̂∗
0 = 2.2564, n∗ = 8

which validates what we would expect. Notice that due to the lower value of w3,
the ridge in Figure 16.4 is significantly attenuated (but is still there if you study
the surface carefully). It uses a higher value of n (more learning capability)
and more accurate instincts (within 0.2564, compared with 0.359 = 2−1.6410).
What would happen if we lower the variance to σ2

z = 0.25, with the same values
for everything else? What is the effect of σ if we had made it bigger?
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Figure 16.5: Response surface (fitness landscape) for instinct-learning balance
problem, σ2

z = 0.5, w1 = 0.1, optimum point shown with a dot.

In summary, we have developed an optimization model of achieving instinct-
learning balance. Clearly, the various parameters of the cost function J (includ-
ing NL) model various aspects of the organism and the environment, and hence,
different optimum instinct-learning balances are achieved for different J . It is
best, then, to think of the optimum point as being time-varying, since the re-
sponse surface is time-varying if the parameters of the problem change. The
above plot illustrated that the optimum point shifts if the environment becomes
more uncertain. What if we changed the variance slowly? We would get a slow
shift of the optimum point, and next we will show how evolution can adapt to
(track) such changes in the environment.

16.3.3 Evolving Instinct-Learning Balance Via Set-Based
Optimization

Would a set-based stochastic optimization algorithm obtain results similar to
those in the previous subsection? Yes. Here, we will show how. Moreover,
we will show that if the variance of the signal that the organism is trying to
estimate changes, since the fitness function shifts (changes shape), the algorithm
will shift its estimates of the optimum point.

A set-based stochastic optimization algorithm would have to operate over
the positive integers for the n dimension, and at the same time over a continuous
range of values for the x̂0 dimension. Here, we use β = 0.01 for the generation



736 Evolution and Learning: Synergistic Effects

0
0.5

1
1.5

2
2.5

3
3.5

4

0

5

10

15

20

0.1

0.2

0.3

0.4

0.5

0.6

n

Initial condition for estimate (x=2)

Average cost

Figure 16.6: Response surface (fitness landscape) for instinct-learning balance
problem, σ2

z = 0.75, w3 = 0.005, optimum point shown with a dot.

of the “cloud” of points for the x̂0 dimension, and simply randomly generate
n values about the best one at the current generation (e.g., here, if at some
generation n = 6 for the best individual, we randomly place S − 1 points at
values of either n = 5, n = 6, or n = 7). We use weights w1 = 0.01, w2 = 1,
w3 = 0.05, and a mutation probability pm = 0.1. When mutation occurs,
we place x̂0 and n randomly on their allowable domain. We use projection
to keep x̂0 ∈ [0, 4] and n ∈ [1, 2, . . . , 20] (their allowable domains). We use
S = 100 individuals and generate Ng = 200 generations. In the beginning
we use σ2

z = 0.5, but for generations �, such that � ≥ 100, we change the
variance to σ2

z = 0.75. We initialize with all S = 100 organisms with n = 1
(insignificant learning capability) and place the instincts of all the organisms at
x̂0 = 1 (representing poor quality instincts). Recall that the actual value of the
signal we are trying to estimate is x̄ = 2.

The results are shown in Figures 16.7, 16.8, and 16.9. Notice that before
� = 100 generations, the algorithm found that n should be about 4, which
is consistent with our findings with the response surface methodology. When
the standard deviation changed, it increased the amount of learning capability
to around 7, which is close to what we had found via the response surface
methodology (note that for that case, we had also adjusted another weight).
Note that since we did not change the weight on the initial condition cost term in
the cost function, there is little change in the best value of the initial condition.
During the first 100 generations, the average of the values in Figure 16.8 is
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1.9911, while for the last 100 generations, it is 1.9811.
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Figure 16.7: Cost J (fitness function) for set-based stochastic optimization for
instinct-learning balance.

This clearly shows how time-varying features of the environment shift the
fitness landscape, and hence, bring about changes in the design of an organism.
You will obtain qualitatively similar results if you use a genetic algorithm to
perform the evolution.

16.4 Discussion: Instinct-Learning Balance for

Adaptive Control

It should be clear that there are interesting relationships between evolution and
online learning for adaptive control as it was studied in the last part. Evolu-
tionary algorithms could be used to gain insight into (i) challenging adaptive
controller design problems, such as the choice of the size of the approximator(s)
in direct and indirect adaptive control, (ii) choice and needed quality of initial
conditions for estimators, and (iii) interactions between (i) and (ii), such as
whether a poor initialization can be overcome by a more sophisticated approx-
imator or whether with a good initialization and little plant uncertainty, how
you can get away with less tuning flexibility (i.e., a smaller size approximator).
Such issues arise when you consider the balance between instinct and learning
in adaptive controller design.



738 Evolution and Learning: Synergistic Effects

0 20 40 60 80 100 120 140 160 180 200
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Initial condition (solid), average of first and last 100 generations (dashed)

Generation

Figure 16.8: Initial condition x̂0 for set-based stochastic optimization for
instinct-learning balance.

How would you study instinct-learning balance for adaptive controller de-
sign? For a given plant with a quantified level of uncertainty, you could try to
evolve the size of the approximator structure; if you penalize size, there should
be an optimal value to reach a certain performance level. It may be that if the
uncertainty is increased, then a better initial condition is needed, or a larger
sized approximator. Also, it should be clear that if there is too much uncer-
tainty, increasing the size of the approximator may have no benefit. It would be
nice to know how to quantify relationships among uncertainty, quality of initial
condition, approximator capability, learning capability, and evolution, as this
will offer the potential to better understand some fundamental and challenging
problems in the design of adaptive controllers.

16.5 Genetic Adaptive Control

Suppose that each organism in a population of organisms is engaged throughout
its lifetime in controlling some system. Suppose that we measure its fitness via
a measure of the quality of output tracking that it achieves, and use the usual
selection, crossover, and mutation mechanisms. If designed properly, the popu-
lation should evolve (“learn” via genetic encoding?) an ability to achieve high
performance control. This approach was discussed earlier, but there we largely
took the view that we were performing offline a priori design of the control
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Figure 16.9: Learning capability n for set-based stochastic optimization for
instinct-learning balance.

system(s). Here, we will take the view that we will use an online evolutionary
process. Now, one approach that you may consider to perform online evolution-
ary control is to extend the concepts from the last chapter to the online case.
For instance, you could set up a laboratory experiment,1 where a controller is
applied to a plant for a period of time, and a performance measure (fitness func-
tion) is computed to measure tracking performance for a typical reference input
sequence. Then, the process is repeated for each controller in a set (population)
of controllers by repeating the experiment. (By “repeating,” we simply mean
that the same sequence of reference inputs is provided; of course, this could
be done by concatenating the reference sequences.) This provides values of the
fitness function for each controller that are then used by standard selection,
crossover, and mutation methods to generate a new population of controllers.
Each controller in this population is then tested in sequence, and the process
repeats. The evolved set of controllers is designed for the plant in an online fash-
ion. Clearly, such an approach may not work for some fast processes; however,
it may be quite satisfactory for others.

In this section, we take a different approach to the online evolution of con-
trollers, one that borrows ideas from conventional control, and the adaptive

1A successful implementation of such an experiment was demonstrated to me by Prof.
Manuel Betancur and his students at Universidad Pontificia Bolivariana, in Medelĺın, Colom-
bia, in Aug. 1997.
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control approaches studied in Part III. Here, we show how to use a genetic
algorithm as an online optimization technique in the estimators that are used
for indirect and direct adaptive control. How do these methods in this sec-
tion differ from the ones we already studied in Part III? They are similar, in
the sense that we also take an online optimization approach to specify adapta-
tion mechanisms. They are different in that they utilize significantly different
optimization methods. In particular, the methods here are based on sets (pop-
ulations) of estimators for models of the plant or controllers and hence, are
related to “multiple model” adaptive control methods (see “For Further Study”
section at the end of this part). They are not, however, equivalent to multi-
ple model methods; in addition to using different optimization methods, they
show how to combine information from different model (controller) estimates
in the set of estimates. Also, we show how to use the ideas in a type of multi-
ple model direct adaptive control technique, whereas traditional multiple model
methods have typically been achieved via indirect adaptive control. Moreover,
the gradient methods we studied earlier, depend on explicit knowledge of the
gradient of the approximators with respect to the tunable parameters; hence,
those methods do not allow for the possibility of adjusting the structure of the
approximators (since the gradient with respect to parameter vector dimension
changes and basis function-type changes is not well defined). Methods like ge-
netic algorithms (and foraging algorithms and pattern search, as you will see
in Part V) do not need gradient information and hence, they are all candidates
for nongradient adaptation strategies. Here, we will not fully explore this wide
range of possibilities of using genetic algorithms for adaptive control. We will
focus on the basic principles by establishing one class of generic adaptation
schemes that are designed to be able to incorporate a wide range of nongradient
optimization methods. For instance, in addition to the potential for construct-
ing and adjusting the structure of neural and fuzzy approximator structures,
the methods considered here could also be used for tuning of expert controllers,
planning system-based controllers, and attentional mechanisms when gradient
information is not available.

16.5.1 Indirect Genetic Adaptive Control

Like other indirect schemes, here we tune a plant model in order to specify
the controller parameters. Here, however, we tune a set (population) of mod-
els (approximators), and the optimization method we use to tune the set is a
nongradient method such as an online version of a genetic algorithm.

Population of Estimators

We assume that we use the class of plants in Equation (12.3) with the restriction
that β(x(k)) ≥ β0 for some known β0 > 0, and for convenience we assume that
d = 1 and αk = βk = 0 (if we have d > 1, then we need to store a set of
d populations). The method to be developed will, however, work for more
general classes of plants. The main reason for focusing on this class of plants
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is so that we have a way to specify, via a certainty equivalence approach (i.e.,
Equation (12.11)), the control from the estimate of the parameters.

Here, we use a set of approximators to estimate the unknown α(x(k)) and
β(x(k)). Following the development for the neural/fuzzy case, let

α(x(k)) = Fα(x(k), θ∗α) + wα

β(x(k)) = Fβ(x(k), θ∗β) + wβ

where Fα and Fβ are possibly nonlinear in the parameter approximators and
A set (population) of
models is estimated and
the best one is used at
each step in a certainty
equivalence controller.

wα and wβ are once again the resulting approximation errors. Here, θ∗α and
θ∗β are defined as in Equation (12.10), with θ�α φα(x) and θ�β φβ(x) replaced by
Fα(x, θα) and Fβ(x, θβ), respectively. Of course, if the dimension p is specified
to change by the optimization method, this would have to be incorporated into
the definitions.

The certainty equivalence controller is given in Equation (12.11) with the
estimates

α̂(x(k)) = Fα(x(k), θα(k))

and
β̂(x(k)) = Fβ(x(k), θβ(k))

and we may need to use projection methods to keep θα(k) and θβ(k) values
within appropriate bounds.

Due to the fact that, in general, we use a nonlinear in the parameter approx-
imator, the error e(k) = r(k) − y(k) is not a linear function of the parameters
(or parameter error). We do, however, still know that

e(k) = ŷ(k) − y(k)

Suppose that we have a set of S approximators for α and β where the ith ones
are denoted by

Fα(x, θi
α)

and
Fβ(x, θi

β)

for i = 1, 2, . . . , S. Let the ith estimate of the output and identification error be

ŷi(k + 1) = Fα(x(k), θi
α(k)) + Fβ(x(k), θi

β(k))u(k)

and
ei(k) = ŷi(k) − y(k)

for i = 1, 2, . . . , S. We choose the ith individual (e.g., chromosome) at time k
to be given by

θi(k) =
[
θi�

α (k), θi�
β (k)

]�
i = 1, 2, . . . , S. From an evolutionary perspective, we view θi as the chromosome
of the ith individual of the population. This completes the definition of the
population of estimators.
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Searching for Estimator Parameters (Models)

First, consider

J(θi(k − 1)) =
(
ei(k)

)2
=
(
ŷi(k) − y(k)

)2
=
(
Fα(x(k − 1), θi

α(k − 1))+

Fβ(x(k − 1), θi
β(k − 1))u(k − 1) − y(k)

)2
which measures the size of the (instantaneous) estimation error for the ith esti-
mate. Notice that J(θi(k− 1)) is computable, since we know x(k− 1), u(k− 1),
and y(k) at time k. We want to minimize J(θi(k − 1)).

The optimization
achieved by evolutionary
algorithms can be put to
use in seeking to reduce
model identification
error and hence,
tracking error.

In a genetic algorithm, we will evolve parameters to maximize the fitness
function

J̄(θi(k − 1)) =
1

γ + J(θi(k − 1))

where γ > 0 is a design parameter (normally you would choose it to have a
small value, since it is included simply to ensure that we do not divide by zero).
With this, we will have J̄(θi(k − 1)) for i = 1, 2, . . . , S and we pick θi(k), the
population at the next generation (time step), for i = 1, 2, . . . , S using genetic
operations (e.g., selection, crossover, and mutation, perhaps with elitism and
other modifications). In an evolutionary strategy, we view the fitness function
as defining how good each individual is doing in modeling aspects of the plant.
Note that there is a type of information sharing between different estimators in
that the fitness function compares the quality of estimation using each model
(each with, in general, its own parameter values) and then tends to propagate the
good ones over the generations (time steps) and kill ones that are not performing
well.

No matter which parameter adjustment (optimization) method is used for
parameter adjustments, to pick θ(k), the parameter estimates at time k that
are to be used for producing the estimates Fα(x(k), θα(k)) and Fβ(x(k), θβ(k))
that are used in the certainty equivalence control law, we use

θ(k) = argmin
{
J(θi(k − 1)) : i = 1, 2, . . . , S

}
(16.2)

which can be viewed as the parameters for the best model of the plant in the
population of estimators at the last time step. If a genetic algorithm with elitism
is used, as it often is in online genetic schemes, then we are picking the elite
element to define the model parameters, since the parameters that minimize the
above expression are the same ones that maximize the fitness function.

The above θ(k) is determined by considering only the instantaneous value
of the estimation error. Notice, however, that it is possible to define the cost
function so that it quantifies the estimation error that would have resulted if
we had used the model specified via θ(k − 1) over several past time steps. In
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particular, let

Js(θi(k − 1), N) =
k−N∑
j=k

(
ei

s(j)
)2

=
k−N∑
j=k

(
ŷi

s(j) − y(j)
)2

(16.3)

where

ŷi
s(j) = Fα(x(j − 1), θi

α(k − 1)) + Fβ(x(j − 1), θi
β(k − 1))u(j − 1)

This Js(θi(k − 1), N) measures the size of the approximation error over the
last N steps (at N + 1 values) when θi(k − 1) is used for the parameters for
the estimator (notice that we obtained ŷi

s(j) from ŷi(j) by replacing θi(j − 1)
by θi(k − 1)). Hence, Js(θi(k − 1), N) does not consider the actual parameter
estimates that were used to specify the controls over the past time steps; it tests
what the approximation errors would have been if θi(k − 1) had been used.

Notice that if at time k we have some θi(k − 1), we can explicitly compute
Js(θi(k − 1), N), since it depends only on known data from the plant. At time
k we know

y(k − N), . . . , y(k)

To compute ŷi
s(j) for j = (k − N), . . . , k, we need

u(k − N − 1), . . . , u(k − 1)

and note that since

x(j − 1) = [y(j − 1), . . . , y(j − n − 1), u(j − 2), . . . , u(j − m − 1)]�

we need
x(k − N − 1), . . . , x(k − 1)

In summary, we need the values

u(k − N − m − 1), . . . , u(k − 1)

and
y(k − N − n − 1), . . . , y(k)

to be able to compute Js(θi(k − 1), N). We have all these values, so Js(θi(k −
1), N) is computable at time k using past data.

To specify θ(k), we can use the same approach as above in Equation (16.2),
where we use the parameter adjustment method to pick the θi(k), for i =
1, 2, . . . , S, then choose the best estimator of the last generation (where best is
measured by Js(θi(k−1), N)) to pick the θ(k) to use in the certainty equivalence
control law.
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Fixed Models (Controllers) in the Population

If you know good guesses at the approximators (e.g., via application-specific
heuristics or training with a gradient method on plant data), then these guesses
can be placed in the population of models and could be kept fixed. With an
evolutionary approach, fixed members can be viewed as “seeds” in the mating
pool. In particular, if their fitness is good enough, they could be mated with
other individuals to form children. You could think of this as having static
“immortal” individuals who, when their fitness is good, will tend to mate with
others in the population to improve the overall fitness of the population at the
next generation.

Essentially, this shows one way to incorporate a priori information into the
estimation process. We can think of the fixed population members as helping to
guide the estimation process by the continual infusion of new ideas about how
to estimate. If the plant operating conditions change, then one fixed member
may contribute more than one that had a significant impact in the past when
the operating condition was different.

Using Gradient Methods to Iteratively Pick a Model

The above scheme shows just one way to use genetic algorithms in an indirect
adaptive scheme. Another approach is to, at each step, take several iterations
of the genetic algorithm to try to make a better choice for the estimator at
each step. Alternatively, you could try to use a gradient method for these inter-
sample iterative optimization procedures (if gradient information is available).
Regardless, such an approach may provide certain performance benefits, but
clearly you pay for it in computational complexity.

16.5.2 Direct Genetic Adaptive Control

For simplicity, we will consider the same class of plants as we did in the indirect
genetic adaptive control case, except we also assume that β(x(k)) is bounded
from above by a known constant. For the direct case we seek to evolve a set
of controllers without explicitly estimating the plant dynamics. We will use a
controller of the form

u(k) = Fu(x(k), r(k + 1), θ(k))

At each iteration, we will use the best controller in the population at that time
to choose the control input to the plant, as we explain next.

In a direct method, a set
of controllers is evolved
that seeks to minimize
tracking error.

Searching for Controllers

Recall that for the direct adaptive control case, we had

e(k + 1) = r(k + 1) − y(k + 1) = −β(x(k))(u(k) − u∗(k))
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so that the (instantaneous) tracking error can be viewed as proportional to the
(instantaneous) error between the actual and ideal control. This motivates the
choice

ei(k) = r(k) − yi(k)

where
yi(k) = α(x(k − 1)) + β(x(k − 1))ui(k − 1)

and
ui(k − 1) = Fu(x(k − 1), r(k), θi(k − 1))

Choose

J(θi(k − 1)) =
(
ei(k)

)2
=
(
r(k) − yi(k)

)2
= (r(k) − α(x(k − 1))−

β(x(k − 1))Fu(x(k − 1), r(k), θi(k − 1))
)2

where you may want to choose θ(k) to be the best θi(k−1). Notice, however, that
this is not possible, since we cannot compute J(θi(k−1)) due to its dependence
on α(x(k − 1)) and β(x(k − 1)), which are unknown. Hence, we must take a
different approach.

Basically, we cannot proceed as we had in the indirect case, since making
evaluations of different controllers in a population based on past data does
not make sense, since alternative sequences of past control inputs cannot be
considered, since we have already applied one sequence of inputs to the plant.
(In the case where you have S physical plants of the same type with an ability to
communicate between the controllers implemented for these plants, it is possible
to develop an online direct adaptive scheme along similar lines, as we discussed
in Chapter 14). One way to overcome this problem is to assume the existence of
a model of the plant and to use it to predict how each controller in the population
will perform (note the similarity to a planning strategy).

In particular, suppose that our model is given by

ym(j + 1) = fm(xm(j), ui(j))

for j = 0, 1, 2, . . . , N − 1. Notice that this model can be quite general if needed;
however, in practice, sometimes a linear model is all that is available and this
may be sufficient. Let yi

m(k, j) denote the jth value generated at time k using
θi(k); similarly for ui(k, j) and xm(k, j). Suppose that at each time k, you

In a direct approach, you
need a model to predict
how each controller will
behave so that fitness
can be computed.

compute for j = 0, 1, 2, . . . , N − 1,

yi
m(k, j + 1) = fm(xm(k, j), ui(k, j))

where
ui(k, j) = Fu(xm(k, j), r(k + 1 + j), θi(k))

At time k to simulate ahead in time, for j = 0 you initialize with xm(k, 0) =
x(k). Then, generate ym(k, j+1), j = 1, 2, . . . , N−1, using the model (note that
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you will need to appropriately shift values in xm at each step) and computed
values of ui(k, j), j = 1, 2, . . . , N − 1.

There are many possible ways to define the cost function. One cost function
that we could use would be

J(θi(k), N, k) = w1

N∑
j=1

(
r(k + j) − yi

m(k, j)
)2

+ w2

N−1∑
j=0

(
ui(k, j)

)2
where w1 > 0 and w2 > 0 are scaling factors that are used to weight the
importance of achieving the tracking error closely (first term) or minimizing the
use of control energy (second term). Other cost functions could use the output
of a reference model to obtain a model reference adaptive scheme (see “For
Further Study” for more details), an error measure on the other past values of
the inputs and outputs, or an error measure on some other system variable.

To specify the set of controllers at the next time step, you use genetic opera-
tions to specify θi(k+1). If you use a genetic algorithm, you will probably want
to use elitism to ensure that at least one good controller exists in the population
(and when elitism is used, then the mutation rate can generally be increased to
try to force the search method to explore many regions of the space to find a
better controller). To specify the control at time k, you simply take the best
θi(k), as measured by J(θi(k), N, k), and call it θ(k), and generate the control
using u(k) = Fu(x(k), r(k + 1), θ(k)).

Note that this specifies a variety of method to achieve what is called “adap-
tive model predictive control” in conventional control theory. Clearly, different
optimization methods will lead to different closed-loop system performance char-
acteristics. It can be difficult to know which optimization method to choose for
a particular application.

Direct/Indirect Method, Fixed Controllers, Alternative Schemes

It is interesting to note that it is possible to develop a type of “direct/indirect”
scheme, where the model that is generated by the indirect scheme is used to
predict in the direct scheme. In this way, a genetic algorithm is essentially used
to adjust the cost function for the direct adaptive method. It creates a model of
its environment and uses this model to evaluate how to create controllers that
operate in that environment. Of course, you could use a hybrid approach where
a gradient-based method is used for either the direct or indirect scheme, along
with a genetic algorithm for the other.

The prediction model
could be adaptive to
achieve adaptive model
predictive control.

In an analogous way to the indirect case, we could seed the population with
some fixed controllers that we consider to be good guesses at how to control the
plant and these could be preserved in the population as immortal individuals.
These could help guide the search for a suitable controller. For instance, let the
fixed controllers be a set of controllers where each one is designed to perform
well at a different operating condition. Then, as plant conditions change, these
different controllers may have their cost function decrease and hence, be more
likely to influence subsequent parameter adjustments.
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In addition, we could, at each iteration, run several iterations of an opti-
mization algorithm (e.g., the genetic algorithm or a gradient method) to try to
find an optimal controller to specify the control sequence. Moreover, we could
tune the structure of the controller in addition to its parameters.

16.5.3 Design Example: Process Control Problem

For the surge tank problem, we have n = m = 0 so x(k) = h(k). Next, we
pick the approximator structures, design a genetic algorithm and adaptation
mechanism, and provide results showing how the approach works for the tank
example.

Approximator Choice

First, we must pick the approximator structures to be used for the two ap-
proximators for the plant nonlinearities. To keep the approach very simple, we
use

Fα(h(k), θα(k)) = θα(k)h(k)

and
Fβ(h(k), θβ(k)) = θβ(k)

where θα(k) and θβ(k) are scalars (hence, we try to use a linear approximator
for a nonlinear system). Note that in this case, we clearly know the partial of
the approximator with respect to the tunable parameters so clearly, we can use a
gradient method for tuning and we are not then fully illustrating the potential of
the nongradient-based methods of this section. Here, we only seek to illustrate
the operation of the method, and do not explore the interesting issues involved
in tuning approximator structure where we do not have gradient information.
We assume that we know bounds on the underlying nonlinearities so that we
know −2 ≤ θα(k) ≤ 6 and 0.25 ≤ θβ(k) ≤ 0.5, and we will use projection to
ensure that these inequalities hold at each time step.

It is our hope that the approximators will be able to readjust θα(k) and
θβ(k) in a way so that it continually retunes their values to maintain an accurate
enough approximation to achieve good control. This will be necessary, since the
underlying functions we are trying to approximate are nonlinear functions of
the liquid height. Clearly, other choices for the approximator structure may
produce an algorithm that performs better. For instance, you may use a fuzzy
or neural approximator structure, and perhaps tune the parameters that enter
in a nonlinear fashion, or the approximator structure. The algorithm is then,
however, more complex, since you are tuning more parameters.

Indirect Genetic Adaptive Control

We use a representation where we simply have θα as one trait that is con-
catenated with θβ . Hence, the ith population element is θi = [θi

α, θi
β]�, i =

1, 2, . . . , S. We choose S = 10 as the population size. We use a base-10 genetic
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algorithm, where we simply produce one generation per time step (i.e., in this
case, every T = 0.1 sec.). We fix the decimal position so that there is one digit
to its left. We use five digits total, so there are four to the right of the decimal
point. We have an additional gene for the sign of each of the two traits. We ini-
tialize the population of estimators to θi

α(0) = 2 and θi
β(0) = 0.5, i = 1, 2, . . . , S,

and pick the initial estimates as θα(0) = 2 and θβ(0) = 0.5. We use the fitness
evaluation procedure with Js(θi(k−1), N) in Equation (16.3) with N = 100. We
use fitness-proportionate selection. We choose γ = 0.001 to be the parameter
used to form the fitness function J̄(θi(k − 1)) from Js(θi(k − 1), N). We choose
the crossover probability pc = 0.9 (for single-point crossover) and the muta-
tion probability pm = 0.05 (for gene mutation). We use elitism and base the
choice of the best individual on Js. The best individual is used in the certainty
equivalence control law at each time step.

The performance of the closed-loop system is illustrated in Figure 16.10,
where we see that, after an initial transient period that results in part due
to the poor initialization of estimators, we get reasonably good tracking of
the reference input. Next, Figure 16.11 shows that the estimate of the tank
liquid level is quite good, even though at times the individual estimates of the
nonlinearities are not.
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Figure 16.10: Indirect genetic adaptive controller closed-loop response.

To further illustrate some properties of the genetic adaptive controller, see
Figure 16.12, where we plot the average fitness of the population (the average
is 1

S

∑S
i=1 J̄(θi)) and the index i of the best individual in the population for

every time step. First, note that early in the simulation, the average fitness is
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Figure 16.11: Indirect genetic adaptive controller, estimates of liquid level and
nonlinearities.

very low because of the poor choice for the initial population (remember, we are
trying to maximize the fitness so low values are bad). After some time, how-
ever, the genetic operations are somewhat successful at adjusting the population
members so that the average estimation error decreases and hence, the average
fitness increases. Note, however, that the fitness does not simply increase over
time. It can also decrease and one cause of this can be the change in the refer-
ence input. Next, note that in the bottom plot, we show the index of the best
individual in the population at each step. Notice that there are some relatively
long stretches of time where the best individual does not change (and elitism
helps to ensure this); however, there is a significant amount of switching between
different members of the population that provide better estimates at different
times. For some choices of genetic algorithm parameters and some applications,
it could be that all members of the population become the same early in the
operation of the control system (i.e., we could get “premature convergence”);
however, the choice of a reasonably large mutation rate can ensure that new
model parameters are continually tested and elitism tries to ensure that these
random explorations will not adversely affect the estimate that is actually used
in the certainty equivalence controller. Hence, we think of using mutation (and
crossover to some extent) to encourage the search for better models and selec-
tion, and elitism to try to keep a good model available so that a good estimate
of the plant dynamics is available for use in the certainty equivalence controller.
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Figure 16.12: Indirect genetic adaptive controller, average fitness and index of
best individual in the population.

16.6 Exercises and Design Problems

Exercise 16.1 (Indirect Genetic Adaptive Control for the Tank): In
this problem, you will study the indirect adaptive controller for the surge
tank that is developed in the chapter in Section 16.5.3.

(a) Run the code given at the Web site and verify all the results provided
in the chapter.

(b) Tune the algorithm to obtain better performance. To do this, you
may want to consider changing S, N , and the parameters of the
genetic operators. Be sure to quantify performance properly (consid-
ering the stochastic nature of the algorithm).

Exercise 16.2 (Alternative Indirect Genetic Adaptive Controller for
the Tank): In this problem, you will study the tank problem in Sec-
tion 16.5.3; however, here, compared with Exercise 16.1, you will use a
different optimization algorithm. In particular, use one of the approx-
imations in Section 14.6 in place of the genetic algorithm and evaluate
performance relative to that obtained in Exercise 16.1.

Design Problem 16.1 (Response Surface Methodology for Choice of
Approximator Structure Size and Type): In this problem you will
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investigate the use of response surface methodology for the choice of ap-
proximator structure size and type. Be careful not to overgeneralize the
conclusions you draw from this problem: your analysis used to solve the
problems below is only for one particular function approximation problem.

(a) Repeat the approach of Section 16.2, but for the design of a multilayer
perceptron. Clearly explain all of your choices and illustrate your
results via simulations.

(b) Repeat the approach of Section 16.2, but for the design of a radial
basis function neural network. Clearly explain all of your choices and
illustrate your results via simulations.

(c) This problem combines the work in the chapter with the results of
(a) and (b). Suppose that you decide that your criterion for choice
of which type of approximator structure to use is based solely on
approximator size as measured by the number of tuned parameters
p. Create a fair comparative study of approximator complexity for
the multilayer perceptron, radial basis function neural network, and
Takagi-Sugeno fuzzy system. Draw appropriate conclusions and sup-
port them with analysis and response surfaces.

(d) Repeat (a)–(c), but for the case where the Levenberg-Marquardt
method is used for training all the parameters of the approximators.
Is there any fundamental difference compared to (a)–(c)?

Design Problem 16.2 (Stochastic Nongradient Optimization for Ap-
proximator Construction):

(a) For the function approximation (theme) problem of Part III that is
studied, for instance, in Section 10.2, design an SPSA algorithm to
tune the approximator. Evaluate the resulting approximation accu-
racy, and explain your choices for the algorithm parameters.

(b) Repeat (a) but for the set-based stochastic optimization method.

Design Problem 16.3 (Evolving Instinct-Learning Balance): In Sec-
tion 16.3.3, we studied the use of a set-based stochastic optimization
method for evolving instinct-learning balance. Repeat the study there,
but instead use a genetic algorithm as the evolutionary mechanism. You
should be able to show that you get results that are qualitatively similar
to the set-based stochastic optimization method. Next, study the effect
of changing the variance to 0.25 from 0.5. What happens? Illustrate with
simulation results. Also, study the effects of changing the constant value
x̄ to 3. What are the effects on the optimal balance? Illustrate with
simulation results.

Design Problem 16.4 (Indirect/Direct Genetic Adaptive Control):
In this problem, you will study the development of indirect and direct
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genetic adaptive controllers for the process control problem studied in Sec-
tions 12.4 and 12.6, and in Design Problem 18.4. Here, however, you will
use a genetic algorithm as the basis for specifying the parameter update
laws.

(a) Repeat (a)–(c) in Design Problem 12.1, but design genetic operations
for the parameter adjustments for both the direct and indirect strate-
gies. Investigate the relationship between the use of elitism and the
choice of the mutation rate. Illustrate the utility of using fixed models
(indirect case) or controllers (direct case) in the adaptive controllers.

(b) Repeat (a) in Design Problem 18.4, but develop an “indirect/direct”
strategy where you use a genetic algorithm to tune the model that is
used in the cost evaluation for the direct genetic adaptive controller.

Design Problem 16.5 (Response Surface Methodology for Process
Controller Design)�: Use RSM to design controllers of the following
types for the process control problem in Section 6.4.1:

(a) Instinctual neural controller. In this case, focus on the design of the
number of neurons used in the hidden layer of a two-layer network.

(b) Fuzzy controller. In this case, focus on the design of the number of
rules.

(c) A controller based on a planning methodology. In this case, focus on
the design of the planning horizon length.

(d) An adaptive controller. In this case, focus on choice of the size of the
approximator, or the initialization of the approximator mapping(s).

Design Problem 16.6 (Approximator Structure Construction)�: De-
sign and test an SPSA algorithm to solve Design Problem 11.2.

Design Problem 16.7 (Instinct-Learning Balance in Control)�: In Sec-
tion 16.4, we discussed the relevance of the instinct-learning balance to
adaptive control. Develop an application and simulation that will illus-
trate how the instinct-learning balance concept is useful in adaptive con-
troller design.

Design Problem 16.8 (Evolution of Stable Adaptive Systems)�: This
problem is a continuation of Exercise 2.3 on page 93.

(a) Read [273, 272], focusing on the parts where stability and “adaptation
to the edge of chaos” are discussed. Key issues to focus on are self-
organization in complex systems, chaos, and Kauffman’s idea that
evolution keeps complex biological systems at the edge of chaos.

(b) Explain how Kauffman might view parameter adaptation in an adap-
tive control system (e.g., in light of his views in Chapter 5 of [273]).
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(c) Persistency of excitation for system identification makes sure that the
plant input signal is rich enough, so that the input-output data will
contain a sufficient amount of information, so that good system iden-
tification can be performed. In indirect adaptive control, the control
input to the plant is the signal that excites the plant dynamics; the
type of input determines the quality of the online identification of the
plant dynamics. The problem is that the types of control inputs that
are generated to achieve good tracking are not necessarily ones that
lead to good plant identification; a well-designed adaptive control
system must then achieve a type of balance in choice of the control
input to the plant. It must be rich enough so that it can figure out
the plant dynamics, yet still try to achieve tracking. Suppose that
you think of a chaotic signal as being persistently exciting for some
adaptive control system. Kauffman says that complex systems adapt
to the “edge of chaos” and this is the best place for the system to be
in order to adapt. Is there a relationship between his ideas and the
well-understood properties of indirect adaptive controllers discussed
above? What is the relationship? Explain. Can you support your
claims with simulation results for a particular plant?
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For Further Study

A nice introduction to genetic algorithms is given in [363], and another treat-
ment where many related optimization methods are treated (e.g., evolutionary
programming) is given in [355]. Mathematical models of evolution are studied
in [245, 534]. Response surface methodology is covered in [351]. An overview of
stochastic optimization and simulation is given in [480].

Genetic Algorithms and Evolutionary Programming: For more details
on genetic algorithms, see the books [363, 355, 216, 353, 527, 179, 344, 39] or
article [488]. For a study on how to integrate gradient methods and evolutionary
programming, see [474]. For more details on “genetic hill-climbing algorithms,”
see [3]. For a mathematical treatment of genetic and related algorithms, see
[527, 39], and parts of some of the other books above.

Genetic algorithms presented in this part are special cases of the more
general “evolutionary programming” methods, where the same sorts of Dar-
winian/Mendelian principles are applied to, for example, general data struc-
tures or to evolve the code needed to perform a task (e.g., to evolve the lines
of C code needed to implement a nonlinear controller). Such general evolution-
ary programming methods are discussed in, for example, [284, 285] (perhaps of
particular interest is the fact that there the author also considers evolving code
for nonlinear controllers) and in [353, 42]. The topic of how to evaluate the
general success of one genetic optimization strategy over another is a deep and
important problem (see some recent results in [354]).

Robustness, Optimization, and Evolutionary Background: To learn
more about highly optimized tolerance and robustness trade-offs in the design
of complex systems, see [93, 94]. “No free lunch theorems” for optimization
are covered in [543]. An accessible easy-to-read overview of a biologist’s per-
spective on the evolution of complexity is given in [438]. The Baldwin effect
is discussed in [243, 53, 363] and related earlier studies are given in [26]. A
computational perspective on the influence of cultural factors on evolution is
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given in [53]. Lamarckism is discussed in [139] and a computational perspective
on Lamarckian influences on evolution for optimization is given in [5, 4]. To
learn more about neuroscience, learning, and evolution of language, see [420].
The study of genetic influences on learning and memory in mice was taken from
[268], and more recent research is reported in [515, 269]. An area relevant to the
topics of this part is evolutionary game theory [472, 473] (for more comments
on this area, see the “For Further Study” section at the end of the next part).
Evolution/optimization of social insect colony composition is discussed in [539].

Nongradient Optimization: A good introduction to deterministic nongra-
dient methods for optimization is given in [68, 337]. Evolutionary operation
via factorial designs was introduced in [74]. The “simple” coordinate search
method was based on [512], where more sophisticated coordinate search meth-
ods and the Hooke-Jeeves method are also explained. Line search methods are
discussed in most optimization books (e.g., see [68]), and relations between and
convergence results for combined pattern and line search methods are given in
[336]. The Nelder-Mead direct search method was introduced in [385]. It is
shown that it can converge to a nonstationary point in [349], and its conver-
gence properties in low dimensional problems is studied in [298]. The section
on multidirectional search is based on [512], where its convergence properties
are studied; the implementation of such methods on parallel machines is stud-
ied in [140]. Convergence properties of general pattern search methods (e.g.,
coordinate search and multidirectional search) are studied in [513]. Conver-
gence properties of pattern search methods for constrained minimization are
studied in [317] (where the “simple” coordinate search method studied here is
also studied). In [275], the author discusses the “simplex gradient” and direct
search methods and provides Matlab code for these.

It is common in several areas of optimization theory to use “surrogate mod-
els.” For instance, in nongradient optimization, when it is expensive to compute
values of the cost function, sometimes a surrogate model of the cost function is
constructed from the samples taken. Often this model is simply an approxima-
tor structure and the methods discussed in the last part for approximator tuning
can be used. Then, the surrogate model can be used to decide where to take
the next sample of the cost function (sometimes this can be done by executing
an optimization method over the surrogate model where computation at points
on it are typically much less expensive than for the actual cost function). The
surrogate model method is described in [514], and other such approaches are
given in [108] and the references therein. Surrogate model methods are related
to “response surface methods” [351].

Stochastic Nongradient Optimization: Response surface methodology is
covered in detail in [351]. There, you can also learn more about “Taguchi’s
parameter design,” which can be useful in the design of robust processes in some
cases (e.g., for variance reduction). Moreover, you will find that the approach
in [351] of “continuous process improvement with evolutionary operation” bears
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similarity to several concepts discussed in this part, but especially to the use of
online evolutionary algorithms for adaptive control.

An introduction to stochastic search and optimization for estimation, sim-
ulation, and control is given in [480]. The SPSA is also treated there. The
SPSA section was developed using [476, 477, 478, 479]. The SPSA method was
introduced in [476] and some theory is given there. An overview of the method
is given in [478], where Matlab code is included. Guidelines for choosing pa-
rameters of the SPSA algorithm are given in [477]. Monte Carlo optimization
methods are relevant to the methods studied in this book, as are “simulated an-
nealing” techniques that are motivated by physical inorganic phenomena rather
than biological ones. For an overview of the simulated annealing optimiza-
tion approach, and its relation to the SPSA algorithm, see [480, 479]. For some
theoretical comparisons of stochastic optimization methods, including some evo-
lutionary methods, see [480, 481].

Set-based nongradient deterministic and stochastic optimization methods
are discussed in more detail in Part V. The set-based stochastic optimization
method in Section 15.6 grew out of ideas in Part V, the SPSA method, and
[345] (and discussions with the author of that book).

Evolutionary Design: Computer-aided design of fuzzy controllers via ge-
netic algorithms has been studied in a variety of places, including [271, 256,
402, 523, 305]. An example of how to use a genetic algorithm to design direct,
adaptive, and supervisory fuzzy controllers for a robot is given in [81]. Design
of robust control systems with genetic algorithms is studied in [452, 98]. For
more information on using genetic algorithms for constructing neural networks,
see [549]. Darwinian design has been used in several areas, including circuit
design [509] (the authors of this paper also study evolution of controllers im-
plemented with electronics). There is a growing interest in evolvable hardware,
and in connection to this topic and others, you may want to study the area of
“evolutionary robotics” [388].

Evolutionary Adaptive Estimation and Control: The use of genetic al-
gorithms in system identification is studied in [180, 288], and several researchers
have applied genetic algorithm methods to system identification for various
problems. Genetic adaptive estimation is studied in [548, 386, 506, 224, 226].
Genetic adaptive observers and state estimation is studied in [427, 225, 227].

For more information on multiple model adaptive control, see [31, 347, 333,
377, 375] and the references therein. The study of evolving neural controllers is
related to the work in [5], where evolutionary reinforcement learning is studied in
an artificial life simulation. Indirect genetic adaptive control was first introduced
in [288]. The genetic model predictive control method was first introduced in
[426, 428] (there, it was called the “genetic model reference adaptive controller”
(GMRAC), since it is an MRAC scheme that adapts by evolving population of
controllers). Other genetic adaptive strategies (e.g., the direct/indirect scheme)
are studied in [307] and compared to conventional adaptive control methods for
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a specific application. Genetic adaptive control methods were implemented and
compared to other nonlinear and adaptive fuzzy control methods in [366, 367].

Evolutionary Models of Physiological/Behavioral Phenomena: Evo-
lution creates optimization processes: this has been a central theme of this
book (e.g., it created the underlying optimization processes in planning, atten-
tion, and learning systems). As evolution itself can be viewed as an optimization
process, it is natural that we can find physiological processes that seem to de-
mand the use of an evolutionary model (some have even suggested that the
basic cognitive processes in the human brain can be profitably thought of as an
evolutionary process). Now, there exists great potential for confusion on this
point, or wonderful opportunities to gain a deeper understanding of systems
level biological processes. The confusion can arise in having persons intimately
familiar with evolutionary models (which might not be all that accurate) come
to view every stochastic optimization process that operates in nature as being
a type of evolutionary algorithm, perhaps even without any way to verify that
(e.g., experimentally). At the same time, it seems unwise to ignore the possi-
bility that evolution can create other physical evolutionary processes in living
organisms.

So, where are evolutionary models being used in physiological systems?
First, note that there are many connections between evolutionary algorithms
and “artificial immune system” (AIS) models; see [125, 124] and the additional
references sited on this topic in the “For Further Study” section at the end of
the last part. Also, see Design Problem 14.4. AIS models show a way to model
one aspect of a single organism as an evolutionary process. Second, we will
see in Part V that with some types of social foraging of bacteria (e.g., E. coli),
evolutionary processes play an important role, and the optimization algorithm
that the foraging is represented by, bears many similarities to evolutionary al-
gorithms. Third, one part of the physiology of social foraging of honey bees can
be modeled as a type of evolutionary process (and in this case, even the experi-
mentalists that study social foraging use the evolution metaphor to explain how
the overall process operates). Connections between behavior and evolution are
also studied in the field of “evolutionary game theory;” for references on that
topic, see the “For Further Study” section at the end of the next part.
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Sequence of Essential Concepts

• Due to fine-tuning by evolution, the activity of animal foraging can be
modeled as a constrained optimization (search) process. For example,
some bacteria engage in nutrient hill-climbing, and this is an optimization
process, if we view the cost function as modeling the concentration of
nutrients.

• Some animals communicate with others of their species in order to help
each other forage. This is called cooperative or social foraging and it too
can be modeled as an optimization process. Social foraging of groups of
animals can exhibit the same basic decision-making elements as in a single
intelligent animal. For instance, bacteria use simple rules to govern their
foraging, and ants lay pheromones to learn about their environment and
can later use the pheromone trails to decide where to go. Honey bees use
a type of distributed resource allocation of foragers that can be thought
of as a type of attentional process (with more attention given to more
profitable sites).

• Biomimicry of the optimization processes used by animals in (social) forag-
ing provides new nongradient, stochastic, and parallel optimization meth-
ods for solving control, automation, and other engineering problems. Good
examples of application areas in automation for the methods of this part
are in the areas of mobile robots or cooperative robotics.

• Cohesiveness in swarms can be characterized as a stability property, and
conventional Lyapunov stability analysis methods can be used to study
the qualitative behavior of swarms.

• Animal competitive and cooperative foraging behaviors can be modeled
as games. Social foraging can be modeled as a cooperative game, and
competitive foraging as an adversarial game. Game-theoretic strategies,
such as the Nash and Pareto solutions, take on specific and useful meanings
in the context of foraging games.

• Higher animals use learning, planning, attention, and team cooperation
and competition in foraging and fighting. The design of intelligent algo-
rithms to mimic social foraging animals presents significant and interesting
challenges.
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For many organisms, the survival-critical activity of foraging involves trying
to find and consume nutrients in a manner that maximizes energy obtained
from nutrient sources per unit time spent foraging, while at the same time
minimizing exposure to risks from predators. If the organism has a decision-
making mechanism (e.g., a brain), then we can view this mechanism as the
controller and the remainder of the organism and environment as the “plant”
(process to be controlled). “Decisions” involve where and when to move, what to
eat, and so on. Decision heuristics, planning, attention, and learning can all play
a role in foraging (if the organism is endowed with such capabilities). Moreover,
evolution can be viewed as a process that optimizes the foraging strategy; it
redesigns (tunes) all supporting physiology and the foraging decision-making
strategy.

In this chapter, we outline the foundations of foraging and basic concepts
related to how animals work together to “socially” forage. We do this by model-
ing the foraging process of a species of bacteria as optimization processes. You
will see that they use elements of gradient-type search (e.g., approximations
of gradients) without relying on explicit gradient information. Hence, foraging
methods naturally build on the gradient optimization methods of Part III. How-
ever, they also incorporate evolutionary aspects, and are nongradient methods,
so they provide a natural bridge between the optimization methods of Part III
and Part IV, by giving ideas for how the various types of optimization algo-
rithms can be merged (e.g., viewing learning as gradient-based and occurring
over a lifetime, and evolution as nongradient, population-based, and occurring
over long time epochs). You will also see relationships between the foraging
algorithms and the pattern search and SPSA methods of Part IV. Later in
the chapter, we show how to model swarms, characterize their cohesiveness as
a stability property, and provide conditions under which they will converge to
maintain a cohesive group. In simulation, we will study how stable swarms
forage. Moreover, we show how a cooperative robotics problem of guiding a
group of robots around some obstacles to a goal position in a factory can be
formulated and solved via the ideas from foraging swarms.

Broadly speaking, you could simply view this chapter and the next as build-
ing on all the earlier chapters in the sense that the focus here is on the devel-
opment of control strategies for guidance of an organism (e.g., the last section
of this chapter will show a firm connection to Chapter 6, where we study path
planning for obstacle avoidance by an autonomous vehicle) or a group of organ-
isms. Here, however we add details on how specific animals forage (i.e., how
they solve the control problem of guiding themselves successfully through their
environment) and the relevant connections to optimization theory. We study
the case of cooperative foraging, where animals work together in this chapter,
and in the next, we study the case where they compete. Moreover, the final sec-
tion in the next chapter serves to challenge the reader to develop an intelligent
foraging team, and to do this, many of the concepts developed in this and the
next chapter will be quite useful, not to mention the rest of the book.
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18.1 Foraging Theory

In this section we outline the basic principles of foraging theory and highlight
aspects of social foraging where animals cooperate in foraging activities.

18.1.1 Elements of Foraging Theory

A large portion of foraging theory is based on the assumption that animals
search for and obtain nutrients in a way that maximizes their energy intake E
per unit time T spent foraging. Hence, some animals try to maximize a function

Foraging is an
optimization process
created by evolution.

like
E

T

Maximization of such a function gives them the nutrient sources to survive and
additional time for other important activities (e.g., fighting, fleeing, mating,
reproducing, sleeping, or shelter-building). Other possible currencies may be
used in foraging such as “energetic efficiency,” which is the net energy gained,
divided by the energy invested to get it. Some animals seem to switch between
optimizing the net rate of energy gain E/T to optimizing energetic efficiency.
Sometimes variance in energetic gain is the primary variable that drives foraging
behavior (e.g., when there is a need to meet a daily energetic intake requirement
before nightfall), while other times, predation is a significant factor. Regard-
less, most biologists argue that animals seek to optimize some variable that is
correlated with fitness.

Clearly, foraging characteristics can be very different for different species.
Herbivores generally find food easily, but must eat a lot. Carnivores generally
find it difficult to find food, but do not have to eat as much, since their food is
of high energy value. Some other activities are related to foraging. For instance,
seeking favorable environments and avoiding harmful ones (e.g., finding shelter
from the weather), or searching for a suitable mate, are both related to foraging.

The “environment” of the animal establishes the pattern of nutrients that are
available (e.g., via what other organisms and nutrients are available, constraints
such as rivers and mountains, and weather patterns), and it places constraints
on obtaining that food (e.g., small portions of food may be separated by large
distances). It also affects the availability of resources (e.g., weather). Some
foragers have a search rhythm (e.g., daily, nightly, etc.), but others forage op-
portunistically and, depending on their needs, independent of such a rhythm.
During foraging there can be risks due to predators, the prey may be mobile
so it must be chased, and the physiological characteristics of the forager con-
strain its capabilities and ultimate success. Often, in biology, researchers think
of evolution as having optimized the foraging behavior of a species for an eco-
logical niche and within its physiological constraints (which may change due to
evolution also).

For some animals, there are multiple prey types that could be chosen, and the
choice may depend on its diet, the abundances of the prey types, and how easy
they are to find. For other animals, nutrients are distributed in “patches” (e.g.,
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a lake, a meadow, a bush with berries, a group of trees with fruit). Foraging
involves finding such patches, deciding whether to enter a patch and search for
food, and whether to continue searching for food in the current patch or to find
another patch that, hopefully, has a higher quality and quantity of nutrients
than the current patch. Patches or prey are generally encountered sequentially
and sometimes great effort and risk is needed to travel from one patch or prey
to another. Some patches of food or prey naturally appear and disappear, and
appearance can “trigger” certain foraging behavior (as can hunger). Generally,

Decision-making in
foraging is a control
strategy for organism
guidance.

if an animal encounters a nutrient-poor patch or undesirable prey, but based on
past experience it expects that there should be a better patch or prey, then it
will consider risks and efforts to find another patch or prey and, if it finds them
acceptable, it will seek another patch or prey. Also, if an animal has been in a
patch for some time, it can begin to deplete its resources, so there should be an
optimal time to leave the patch and venture out to try to find a richer one. It
does not want to waste resources that are readily available, but it also does not
want to waste time in the face of diminishing energy returns.

Optimal foraging theory formulates the foraging problem as an optimization
problem and via computational or analytical methods, can provide an opti-
mal foraging “policy” that specifies how foraging decisions are made. There are
quantifications of what foraging decisions must be made, measures of “currency”
(the opposite of cost), and constraints on the parameters of the optimization.
For instance, researchers have studied how to maximize long-term average rate
of energy intake, where only certain decisions and constraints are allowed. Con-
straints due to incomplete information (e.g., due to limited sensing capabilities),
predation, and risks (e.g., due to predators) have been considered.

Here, the interesting fact is that the foraging problem can be formulated
as an optimization problem that results in an optimal decision policy, if the
optimization problem can be solved (traditionally, dynamic programming for-
mulations have been used [490]). Essentially, these optimization approaches
seek to construct an optimal controller (policy) for making foraging decisions.
Some biologists have questioned the validity of such an approach, arguing that
no animal can make optimal decisions. However, the optimal foraging formu-
lation is only meant to be a model that explains what optimal behavior would
be like. Biologists have shown that foraging decision heuristics are used very
effectively by animals to approximate optimal policies, given the physiological
(and other) constraints that are imposed on the animal. Such an approach is
quite rational, even in engineering applications. In the construction of a com-
puter decision-making system, dynamic programming is sometimes found to be
impractical due to computational complexity issues. Heuristics and approxima-
tions are then sometimes used to try to provide a suboptimal solution, but one
that is as good as possible, given the available computing resources.

18.1.2 Behavioral/Sensory Ecology of Search

Foraging has been studied for many years from both experimental and theo-
retical perspectives. One aspect of foraging that is particularly relevant here is
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the search strategy (an optimization process) that is employed in finding food.
Here, we outline some relevant theory pertaining to search strategies for forag-
ing. Later, we briefly discuss how nongradient optimization methods might be
useful in modeling some search strategies in foraging.

Cruise, Saltatory, and Ambush Search

In one approach to the study of foraging search strategies [390], predation is
broken into components that are similar for many animals. First, predators
must search for and locate prey. Next, they pursue and attack the prey. Finally,
they handle and ingest the prey. The importance of various components of the
foraging behavior depends on the relationship between the predator and the
prey. If the prey is larger than the predator, then the pursuit, attack, and
handling can be most important. The prey may be easy to find, but the prey’s
size gives it an advantage. If the prey are smaller than the predator, then
generally the search component of foraging is most important. Small size can
be an advantage for the prey. Since prey are often smaller than predators, for
many animals they must be consumed often and in large numbers; this makes
the search time limit other components of the predation cycle. Here, suppose we
consider cases where the searching behavior is the dominant factor in foraging.
This is the case for foragers, such as many birds, fish, lizards, and insects.

Animals use a variety of
search strategies in
foraging that are each
optimization methods.

Some animals are “cruise” or “ambush” searchers. For the cruise approach to
searching, the forager moves continuously through the environment constantly
searching for prey at the boundary of the area being searched (tuna fish and
hawks are cruise searchers). In ambush search, the forager sits and waits for
prey to cross into strike range (rattlesnakes are ambushers). The search strate-
gies of many species are actually in between the cruise and ambush extremes. In
particular, in “saltatory search strategies,” an animal will intermittently cruise
and sit and wait, possibly changing direction at various times when it stops
and possibly while it moves. To envision this strategy, consider Figure 18.1,
where distance traveled while searching is plotted versus time. In cruise search,
distance increases at a constant rate dictated by how fast the animal moves
in search. At the other extreme, the ambusher sits and waits for a long time,
then makes a move to try to obtain a prey. In between, there are many pos-
sible saltatory search strategies that are based on an alternating sequence of
cruising and waiting. Many animals’ foraging strategies seem to lie somewhere
on the continuum between ambush and cruise, and hence, are saltatory search
strategies.

While cruisers tend to search at the boundary of the search space and am-
bushers stay in one place, saltatory searchers generally move throughout the
search space. Saltatory search can be adjusted to suit the environment by chang-
ing rates of movement during cruises, and the lengths of cruises and waits. For
instance, some fish are known to pause more briefly and swim farther and faster
during repositioning when searching for large prey compared to small ones. This
is consistent with foraging theory in that the fish is willing to spend more effort
to obtain more food (energy).
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Figure 18.1: Illustration of the range of search strategies for foraging animals
(figure adapted from [390], c© Sigma Xi, The Scientific Research Society, and
used with permission).

Scanning and Repositioning Relationships

Studies of foraging for some fish have shown that they do not search for prey
while they are moving, but only during the stationary pause between reposition-
ing moves. They stop and look around. Hence, the repositioning moves serve
only to move the fish into regions where they have not looked before. Gener-
ally, if the animal searches only during pauses, then the repositioning moves
(length and direction) depend on the sensing capabilities of the animal. For
instance, consider Figure 18.2, where, at the top, the animal is imagined to be
at the center of the circle which represents a local scan range. Suppose that
for this particular animal, it can search in the pie-shaped region that is shaded.
(Other animals have different shaped regions, some that almost fill the entire
circle.) How large should the repositioning move be? As illustrated, if the move
is too short, then a significant portion of the search space is searched again
after the move and this is generally a waste of resources. If the move is too
large, then there is no overlap and there can be some part of the space that is
not searched, representing possible missed opportunities. For some intermediate
length moves, there will be some overlap but not too much search space ignored.
As illustrated on the bottom, changes in direction are dependent on the shape
of the scan area also. Finally, note that as the geometry of the shaded region
changes (e.g., the pie-shaped region becomes a larger piece of the pie), then
identical intermediate-sized moves result in larger overlap of the search space
(draw a figure and convince yourself of this). It has been shown that some fish
choose repositioning moves so as to maximize net energy gain, consistent with
basic ideas in foraging theory.

In many species the pauses are used for orienting the animal toward prey.
That is, they stop and change their direction based on their scan information.
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Figure 18.2: Illustration of trade-offs between repositioning and scanning; trying
to scan everywhere and not rescan already visited areas (figure adapted from
[390], c© Sigma Xi, The Scientific Research Society, and used with permission).

Then, for instance, if there is not an abundance of prey, in some species of fish,
fewer pursuits follow pauses. Also, in some fish, the length of the stop and wait
generally decreases when they are looking for large, easily located prey. Often
as the difficulty of the search increases, the pauses get longer. In environments
where there are few prey, the fish persistently search.

Finally, note that there are also effects of likelihood and frequency of en-
counter of prey that would influence repositioning and direction-changing be-
havior. Effects of risk of moving (e.g., from some predator) should also be
taken into consideration. All these aspects can result in the animal dynamically
adjusting its saltatory search strategy.

18.1.3 Cooperative/Social Foraging

The foraging concepts discussed above were for individual animals. Foragers,
however, live in environments with both a biotic and abiotic part, so a more
complete formulation includes the other foragers in the environment. There can
be advantages to group cooperative (or “social”) foraging. Some method of
sharing information is necessary for cooperative foraging. The shared informa-
tion could come in many forms. In humans, this could include language. In
other animals, it might be certain movements, noises, or “trail-laying” mecha-
nisms. Such information is in the form of cues or signals. Shared information
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could also arise via possession of shared genetic material.
The advantages of group foraging include:

Group foraging requires
group search strategies
and hence, distributed
cooperation within the
group.

• The per capita rate of energetic gain for each animal may be higher if the
animal is in a group. This can be the case even if the gains are not split
evenly in the group.

• In some cases, the net rate of energetic gain of each individual may go
down if it joins a group. However, it may still be a good strategy to join
a group if the variance in the rate of energetic gain is lower. Sometimes,
when there are more animals searching for nutrients, the likelihood of
finding nutrients may increase. When one animal finds some nutrients, it
can tell others in the group where the nutrients are. You may think of
joining a group as gaining access to an “information center” for helping
with survival.

• There may be increased capabilities to cope with larger prey. The group
can “gang up” on a large prey and kill and ingest it, while a single small
predator may not be able to do this.

• There may be protection from predators that can be provided by members
of the group (e.g., in some species of birds, the members in the middle of
the group are protected by the ones at the edges).

• In some cases, phenotypic diversity is profitably exploited by groups to
produce highly efficient coordinated group behavior (e.g., for some ants
and bees).

Sometimes it is useful to think of a group of animals as a single living creature,
where via grouping, each individual essentially gains additional physiological
capabilities that help it to succeed in foraging (and the gains may offset the
possibility of food-competition problems in groups). Some call this the “super-
organism” viewpoint.

For group foraging, you may think of how a pack of wolves hunts, or a flock of
birds, colony of ants, or school of fish behave. Connections between optimiza-
tion, engineering applications, and foraging behavior of colonies of ants have
been studied [73]. There, it is explained how colonies of ants can solve short-
est path problems, minimum spanning tree problems, and traveling salesperson
problems (all combinatorial optimization problems) among other engineering
applications. (The resulting computer algorithms are called, for instance, “ant
colony optimization” algorithms.) These ants use “indirect” communications
called “stigmergy,” where one ant can modify its environment and later, an-
other ant can change its behavior due to that modification. For instance, if an
ant goes out foraging, it may search far and wide in a relatively random pattern;
however, once it finds a food source, it goes back to the ant hill, laying a trail
of “pheromone” (that can evaporate, but normally stays in place, possibly up
to several months). Then, when other ants go out foraging, they tend to follow
the pheromone trail and find food more easily. You can then think of the first
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ant as having “recruited” additional foragers and the trails as a type of memory
for the whole ant colony (i.e., using communications and working together, they
gain the important physiological capability of learning). Viewed as a superor-
ganism, you may even detect elements of planning. Communications, memory,
and learning, result in more efficient foraging for the group. Other social insects
use other communication methods. For instance, after successful foraging, a bee
will come back to the hive and communicate the profitability and location of the
food source via a “dance.” These dances then proportionally recruit foragers
based on forage site profitability, and the result is a dynamic proportioning of
foragers across a wide area.

To be more concrete about the connections between foraging and optimiza-
tion, consider Figure 18.3. There, initially boxes 1 and 2 hold two colonies of

Social behavior enables
what can be thought of
as higher-level cognitive
functions of the group.

the Argentine ant Iridomyrmex humilis. These colonies interact via ants trav-
eling between the two colonies. Since trail densities on the shorter path tend to
grow faster, more and more ants tend to choose that path and thereby avoid the
longer path (the figure shows ants traveling after they have, as a group, found
the shortest path). A similar behavior is found when one box holds a colony of
ants and the other holds a food source [25] and this illustrates that in foraging,
the ants work together to find the shortest path to food sources.

Figure 18.3: Experiment showing that ants will select a shortest path between
two colonies (figure taken from [25], c© Springer-Verlag GmbH and Co., and
used with permission).

Finally, while we discuss “intelligent foraging” in more detail in Section 19.6,
we briefly note that the individual characteristics of the animal can significantly
affect its success in foraging. If an individual forager can pay attention to the
critical parts of the environment and learn about the environment (e.g., by de-
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veloping and storing a “cognitive map”) and characteristics of its prey, then it
can probably increase its foraging success. If, based on such learned information
it can plan its foraging, then it may gain further increases in efficiency. Fur-
thermore, if groups of foragers can learn and plan their activities together, it
is possible that even greater success might be obtained. Indeed, it seems that
humans often act as group foragers that can collectively learn and plan. We
can think of many individuals working together to achieve something that is
unachievable by any individual.

In the next section, we will consider individual and group foraging in bac-
teria, organisms that are much more simple than an ant or human, yet which
can still work together for the benefit of the group. First, however, we explain
some connections to nongradient optimization.

18.1.4 Nongradient Optimization Models

Before we turn to specific foraging models, it is important to point out that there
are close connections to some of the optimization methods considered earlier
in this book, both gradient and nongradient methods. First, note that it is
impossible for most animals (e.g., bacteria) to know an analytical expression for
the gradient of a nutrient concentration profile (i.e., a mathematical expression
for how the nutrient concentration will change as the bacterium makes small

Nongradient
optimization models can
form a set of tools for
modeling social foraging.

changes in its position). This is both because it does not have the memory to
store it, and also due to the high level of uncertainty about the environment it
lives in (e.g., time-varying and stochastic effects). Moreover, even with sufficient
physiology for remembering an analytical gradient, in general, it is impossible
for any animal (besides perhaps a human) to know an analytical form for the
gradient of the surface being searched (e.g., one that represented food locations,
predators, risk, etc.) with respect to its location in the search domain. Animals
sequentially decide where to explore, and in doing so they encounter new parts
of a search domain, and the environment has significant random effects. In
foraging, animals conduct an optimization process without use of an analytical
expression for the gradient and hence, we say that they perform nongradient
optimization or “search.”

Motivated by the earlier sections, and studies on search strategies for forag-
ing, in this section, we discuss several “conventional” (i.e., not biologically moti-
vated) deterministic and stochastic approaches to perform optimization without
the use of analytical gradient information or measures of the gradient. As you
read about the methods, it will be useful to draw analogies with the basic search
mechanisms of the bacteria discussed later in this chapter. For instance, in one
way or another, most nongradient methods use measurements of the cost func-
tion and form approximations to the gradient to decide which direction to move.
(Some of these are what might be called “regional” approximations, since they
use a pattern of points over possibly a large region to provide a gross approxi-
mation to the gradient.) In the context of foraging, you can then think of the
process of obtaining measurements and deciding where to move (i.e., the steps
of the algorithms we cover in this section) in one of three following ways:
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1. You can view the taking of a measurement of the cost function as a single
forager going to the location in the search domain and taking a single
measurement by using, for example, its vision to assess what food is at
that location (or the likelihood that it is there). The forager may make
several such local “exploratory” moves from its current position before it
tries to move in what it considers to be generally a good direction to find
food. (Of course, it may get lucky and get something worth stopping and
eating in this sampling process.)

2. You can think of the forager as being at a single location, taking several
local measurements at locations in the search domain, processing these,
and then deciding which direction to move. We think of the forager as
having sensors that it can focus on different nearby regions of the opti-
mization domain, and only moving after it has scanned its environment.
Some lower life forms (e.g., E. coli) cannot sense at a distance; they must
go to a position to find out if there is food there. Higher life forms can
generally sense at a distance and this saves them the energy needed to
travel to every position to find out if food is there.

3. You can view the algorithm as modeling a social foraging process, where
there are a finite number of foragers who each make measurements of the
cost function and then via communications decide how to move the entire
group of foragers. For example, in the “pattern search methods” of the last
part, we may think of each point in the pattern of (local) cost function
measurements as representing a location of a forager. We think of the
group as having a capability to communicate how well they are doing to
all the other members of the group, and come to an agreement on which
is the best way to move the group to ensure foraging success.

In a sense, you may ask yourself if biology mimics any of the conventional
strategies; is there an animal that forages according to a particular pattern
search method? If so, why did evolution create this search strategy? What
features of the environment drove the creation of the strategy?

18.2 Bacterial Foraging: E. coli

The E. coli bacterium is shown in Figure 18.4. It has a plasma membrane,
cell wall, and capsule that contain, for instance, the cytoplasm and nucleoid.
The pili (singular, pilus) are used for a type of gene transfer to other E. coli
bacteria, and flagella (singular, flagellum) are used for locomotion. (Only one is
shown, but in the actual cell there are as many as six.) The cell is about 1µm
in diameter, and 2µm in length. The E. coli cell only weighs about 1 picogram,

Think of the E. coli as a
small underwater
vehicle, a
nanotechnology.

and is composed of about 70% water. Salmonella typhimurium is a similar type
of bacterium.

The E. coli bacterium is probably the best understood microorganism. Its
entire genome has been sequenced; it contains 4,639,221 of the A, C, G, and
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Figure 18.4: E. coli bacterium (figure taken from [34], c© Pearson Education
Inc., used with permission).

T “letters”—adenosine, cytosine, guanine, and thymine—arranged into a total
of 4,288 genes. When E. coli grows, it gets longer, then divides in the middle
into two “daughters.” Given sufficient food and held at the temperature of the
human gut (one place where they live) of 37 deg. C, E. coli can synthesize and
replicate everything it needs to make a copy of itself in about 20 min.; hence,
growth of a population of bacteria is exponential with a relatively short “time
to double” the population size. For instance, following [61], if at noon today
you start with one cell and sufficient food, by noon tomorrow there will be
272 = 4.7 × 1021 cells, which is enough to pack a cube 17 meters on one side.
(It should be clear that with enough food, at this reproduction rate, they could
quickly cover the entire earth with a knee-deep layer!)

The E. coli bacterium has a control system that enables it to search for food
and try to avoid noxious substances (the resulting motions are called “taxes”).
For instance, it swims away from alkaline and acidic environments, and towards
more neutral ones. To explain the motile behavior of E. coli bacteria, we will
explain its actuator (the flagella), “decision-making,” sensors, and closed-loop
behavior (i.e., how it moves in various environments—its “motile behavior”).
You will see that E. coli perform a type of “saltatory search,” a concept that is
discussed in Section 18.1.2.

18.2.1 Swimming and Tumbling via Flagella

Locomotion is achieved via a set of relatively rigid flagella that enable it to
“swim” via each of them rotating in the same direction at about 100 − 200
revolutions per second (in control systems terms, we think of the flagella as
providing for actuation). Each flagellum is a left-handed helix configured so
that as the base of the flagellum (i.e., where it is connected to the cell) rotates
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counterclockwise, as viewed from the free end of the flagellum looking towards
the cell, it produces a force against the bacterium so it pushes the cell. You may
think of each flagellum as a type of propeller. If a flagellum rotates clockwise,
then it will pull at the cell. From an engineering perspective, the rotating shaft
at the base of the flagellum is quite an interesting contraption that seems to
use what biologists call a “universal joint” (so the rigid flagellum can “point”
in different directions, relative to the cell). In addition, the mechanism that
creates the rotational forces to spin the flagellum in either direction is described
by biologists as being a biological “motor” (a relatively rare contraption in
biology even though several types of bacteria use it) as shown in Figure 18.5.
The motor is quite efficient in that it rotates a complete revolution using only
about 1000 protons and thereby E. coli spends less than 1% of its energy budget
for motility.

Figure 18.5: E. coli bacterium, flagellar connection, and biological “motor”
(figure taken from [8], c© Garland Science/Taylor and Francis Books, Inc., used
with permission).

An E. coli bacterium can move in two different ways: it can “run” (swim for
a period of time) or it can “tumble,” and it alternates between these two modes
of operation its entire lifetime (i.e., it is rare that the flagella will stop rotating).
First, we explain each of these two modes of operation. Following that, we will
explain how it decides how long to swim before it tumbles.

If the flagella rotate clockwise, each flagellum pulls on the cell and the net
effect is that each flagellum operates relatively independent of the others and so
the bacterium “tumbles” about (i.e., the bacterium does not have a set direction
of movement and there is little displacement). See Figure 18.6(a). To tumble
after a run, the cell slows down or stops first; since bacteria are so small they
experience almost no inertia, only viscosity, so that when a bacterium stops
swimming, it stops within the diameter of a proton. Call the time interval
during which a tumble occurs a “tumble interval.” Under certain experimental
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conditions (an isotropic, homogeneous medium—one with no nutrient or noxious
substance gradients) for a “wild type” cell (one found in nature), the mean
tumble interval is about 0.14 ± 0.19 sec. (mean ± standard deviation, and it
is exponentially distributed) [61, 62]. After a tumble, the cell will generally be
pointed in a random direction, but there is a slight bias toward being placed in
a direction it was traveling before the tumble.

There are two modes of
operation of the
actuator: one leading to
swimming and the other
to tumbling.

Clockwise rotation of flagella, tumble

Counterclockwise rotation of flagella, swim

(a) (b)

(c)

Figure 18.6: Bundling phenomenon of flagella shown in (a), swimming and
tumbling behavior of the E. coli bacterium is shown in (b) in a neutral medium
and in (c) where there is a nutrient concentration gradient, with darker shades
indicating higher concentrations of the nutrient. (Note: Relative sizes of the
bacteria and lengths of runs are not to scale.)

If the flagella move counterclockwise, their effects accumulate by forming
a “bundle” (it is thought that the bundle is formed due to the viscous drag
of the medium) and hence, they essentially make a “composite propeller” and
push the bacterium so that it runs (swims) in one direction (see Figure 18.6(a)).
On a run, bacteria swim at a rate of about 10 − 20 µmeters/sec., or about 10
body lengths per second (assuming the faster speed and an E. coli that is 2 µ
meters long, a typical length), but in a rich medium they can swim even faster



780 Cooperative Foraging and Search

[335]. This is a relatively fast rate for a living organism to travel; consider
how fast you could move through water if you could swim at 10 of your body
lengths per second. (You would certainly win a gold medal in the Olympics!)
Call the time interval during which a run occurs the “run interval.” Under
certain experimental conditions (an isotropic, homogeneous medium—the same
as the one mentioned above) for a wild type cell, the mean run interval is about
0.86 ± 1.18 sec. (and it is exponentially distributed) [61, 62]. Also, under these
conditions, the mean speed is 14.2±3.4 µm/sec. Runs are not perfectly straight
since the cell is subject to Brownian movement that causes it to wander off
course by about 30 deg. in 1 sec. in one type of medium, so this is how much it
typically can deviate on a run. In a certain medium, after about 10 sec. it drifts
off course more than 90 deg. and hence, essentially forgets the direction it was
moving [61]. Finally, note that in many bacteria, the motion of the flagella can
induce other motions, e.g., rotating the bacteria about an axis.

18.2.2 Bacterial Motile Behavior: Climbing Nutrient Gra-
dients

The motion patterns (called “taxes”) that the bacteria will generate in the
presence of chemical attractants and repellents are called “chemotaxes.” For
E. coli, encounters with serine or aspartate result in attractant responses, while
repellent responses result from the metal ions Ni and Co, changes in pH, amino
acids like leucine, and organic acids like acetate. What is the resulting emergent
pattern of behavior for a whole group of E. coli bacteria? Generally, as a group
they will try to find food and avoid harmful phenomena, and when viewed
under a microscope, you will get a sense that a type of intelligent behavior has
emerged, since they will seem to intentionally move as a group (analogous to
how a swarm of bees moves).

Simple control rules are
used to decide whether
to swim or tumble.

To explain how chemotaxis motions are generated, we simply must explain
how the E. coli decides how long to run since, from the above discussion, we
know what happens during a tumble or run. First, note that if an E. coli is
in some substance that is neutral, in the sense that it does not have food or
noxious substances, and if it is in this medium for a long period of time (e.g.,
more than one minute), then the flagella will simultaneously alternate between
moving clockwise and counterclockwise so that the bacterium will alternately
tumble and run. This alternation between the two modes will move the bac-
terium, but in random directions, and this enables it to “search” for nutrients
(see Figure 18.6(b)). For instance, in the isotropic homogeneous environment
described above, the bacteria alternately tumble and run with the mean tumble
and run lengths given above, and at the speed that was given. If the bacteria
are placed in a homogeneous concentration of serine (i.e., one with a nutrient
but no gradients), then a variety of changes occur in the characteristics of their
motile behavior. For instance, mean run length and mean speed increase and
mean tumble time decreases. They do, however, still produce a basic type of
searching behavior; even though it has some food, it persistently searches for
more. As an example of tumbles and runs in the isotropic homogeneous medium
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described above, in one trial motility experiment lasting 29.5 sec., there were
26 runs, the maximum run length was 3.6 sec., and the mean speed was about
21 µm/sec. [61, 62].

Next, suppose that the bacterium happens to encounter a nutrient gradient
(e.g., serine) as shown in Figure 18.6(c). The change in the concentration of
the nutrient triggers a reaction such that the bacterium will spend more time
swimming and less time tumbling. As long as it travels on a positive concentra-
tion gradient (i.e., so that it moves towards increasing nutrient concentrations)
it will tend to lengthen the time it spends swimming (i.e., it runs farther). The
directions of movement are “biased” towards increasing nutrient gradients. The
cell does not change its direction on a run due to changes in the gradient—the
tumbles basically determine the direction of the run, aside from the Brownian
influences mentioned above.

The bacterial foraging
behavior results in a type
of hill-climbing
optimization algorithm.

On the other hand, typically if the bacterium happens to swim down a
concentration gradient (or into a positive gradient of noxious substances), it
will return to its baseline behavior so that essentially it tries to search for a
way to climb back up the gradient (or down the noxious substance gradient).
For instance, under certain conditions, for a wild-type cell swimming up serine
gradients, the mean run length is 2.19± 3.43 sec., but if it swims down a serine
gradient, mean run length is 1.40± 1.88 sec. [62]. Hence, when it moves up the
gradient, it lengthens its runs. The mean run length for swimming down the
gradient is the one that is expected, considering that the bacteria are in this
particular type of medium; they act basically the same as in a homogeneous
medium so that they are engaging their search/avoidance behavior to try to
climb back up the gradient.

Finally, suppose that the concentration of the nutrient is constant for the
region it is in, after it has been on a positive gradient for some time. In this case,
after a period of time (not immediately), the bacterium will return to the same
proportion of swimming and tumbling as when it was in the neutral substance so
that it returns to its standard searching behavior. It is never satisfied with the
amount of surrounding food; it always seeks higher concentrations. Actually,
under certain experimental conditions, the cell will compare the concentration
observed over the past 1 sec. with the concentration observed over the 3 sec.
before that and it responds to the difference [61]. Hence, it uses the past 4
sec. of nutrient concentration data to decide how long to run [459]. Considering
the deviations in direction due to Brownian movement discussed above, the
bacterium basically uses as much time as it can in making decisions about
climbing gradients [60]. In effect, the run length results from how much climbing
it has done recently. If it has made lots of progress and hence, has just had a
long run, then even if for a little while it is observing a homogeneous medium
(without gradients), it will take a longer run. After a certain time period, it
will recover and return to its standard behavior in a homogeneous medium.

Basically, the bacterium is trying to swim from places with low concen-
trations of nutrients to places with high concentrations. An opposite type of
behavior is used when it encounters noxious substances. If the various concen-
trations move with time, then the bacteria will try to “chase” after the more
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favorable environments and run from harmful ones. Clearly, nutrient and nox-
ious substance diffusion and motion will affect the motion patterns of a group
of bacteria in complex ways.

18.2.3 Underlying Sensing and Decision-Making Mecha-
nisms

Consider Figure 18.7, where a cross-section of one corner of the E. coli bacterium
is shown. The sensors are the receptor proteins, which are signaled directly by
external substances (e.g., in the case for the pictured amino acids) or via the
“periplasmic substrate-binding proteins.” The “sensor” is very sensitive, in
some cases requiring less than 10 molecules of attractant to trigger a reaction,
and attractants can trigger a swimming reaction in less than 200 ms. You can
then think of the bacterium as having a “high gain” with a small attractant
detection threshold (detection of only a small number of molecules can trigger
a doubling or tripling of the run length). On the other hand, the corresponding

The decision-making is
implemented by chemical
reactions driven by
sensing of chemicals in
the environment.

threshold for encountering a homogeneous medium after being in a nutrient rich
one is larger. Also, there is a type of time-averaging that is occurring in the
sensing process. The receptor proteins then affect signaling molecules inside
the bacterium. Also, there is in effect an “adding machine” and an ability
to compare values and to arrive at an overall decision about which mode the
flagella should operate in; essentially, the different sensors add and subtract
their effects, and the more active or numerous have a greater influence on the
final decision. Even though the sensory and decision-making system in E. coli
is probably the best understood one in biology, we are ignoring the underlying
chemistry that is needed for a full explanation (the interested reader can see
the “For Further Study” chapter at the end of this part to find references that
explain it in detail).

It is interesting to note that the “decision-making system” in the E. coli
bacterium must have some ability to sense a derivative, and hence, it has a type
of memory! At first glance it may seem possible that the bacterium senses con-
centrations at both ends of the cell and finds a simple difference to recognize a
concentration gradient (a spatial derivative); however, this is not the case. Ex-
periments have shown that it performs a type of sampling, and roughly speaking,
it remembers the concentration a moment ago, compares it with a current one,
and makes decisions based on the difference (i.e., it computes something like an
Euler approximation to a time derivative). Actually, in [553] the authors show
how internal bacterial decision-making processes involve some type of integral
feedback control mechanism.

In summary, we see that with memory, a type of addition mechanism, an abil-
ity to make comparisons, a few simple internal “control rules,” and its chemical
sensing and locomotion capabilities, the bacterium is able to achieve a complex
type of searching and avoidance behavior. Evolution has designed this control
system. It is robust and clearly very successful at meeting its goals of survival
when viewed from a population perspective.
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Figure 18.7: Sensing and internal mechanisms for control in the E. coli bac-
terium (figure taken from [8], c© Garland Science/Taylor and Francis Books,
Inc., used with permission).

18.2.4 Elimination and Dispersal Events

It is possible that the local environment where a population of bacteria lives
changes either gradually (e.g., via consumption of nutrients) or suddenly due
to some other influence. There can be events such that all the bacteria in a
region are killed or a group is dispersed into a new part of the environment. For
example, local significant increases in heat can kill a population of bacteria that
are currently in a region with a high concentration of nutrients (you can think
of heat as a type of noxious influence). Or, it may be that water or some animal
will move populations of bacteria from one place to another in the environment.
Over long periods of time, such events have spread various types of bacteria into
virtually every part of our environment, from our intestines, to hot springs and
underground environments, and so on.

Elimination and
dispersal of bacteria
should be thought of as a
component of their
overall motility.

What is the effect of elimination and dispersal events on chemotaxis? It
has the effect of possibly destroying chemotactic progress, but it also has the
effect of assisting in chemotaxis since dispersal may place bacteria near good
food sources. From a broad perspective, elimination and dispersal is part of the
population-level motile behavior.

18.2.5 Evolution of Bacteria

Mutations in E. coli occur at a rate of about 10−7 per gene, per generation. In
addition to mutations that affect its physiological aspects (e.g., reproductive ef-
ficiency at different temperatures), E. coli bacteria occasionally engage in a type
of “sex” called “conjugation,” where small gene sequences are unidirectionally
transferred from one bacterium to another. It seems that these gene sequences
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apparently carry good fitness characteristics in terms of reproductive capability,
so conjugation is sometimes thought of as a transmittal of “fertility.” To achieve
conjugation, a pilus extends to make contact with another bacterium, and the
gene sequence transfers through the pilus.

It is important to note that there are some very basic differences in evolu-
tion for higher organisms and bacteria. While conjugation apparently spreads
“good” gene sequences, the “homogenizing effect” on gene frequency from con-
jugation is relatively small compared to how sex works in other organisms. This
is partly since conjugation is relatively rare, and partly since the rate of repro-
duction is relatively high, on the order of hours depending on environmental
conditions. Due to these characteristics, population genetics for E. coli may
be dominated by selection sweeps triggered by the acquisition, via sex, of an
adaptive allele.

18.2.6 Taxes in Other Swimming Bacteria

While most bacteria are motile and many types have analogous taxes capabil-
ities to E. coli bacteria, the specific sensing, actuation, and decision-making
mechanisms are different [384, 24]. For instance, while the proton-driven motor

There are a wide range
of foraging behaviors in
bacteria, all of which
can be modeled as
optimization processes.

on E. coli rotates at a few hundred revolutions per second, Na+-driven motors
on some bacteria rotate at speeds up to 1000 revolutions per second, and on
some species, the motor can turn in either direction or stop. Different types of
bacteria can sense different phenomena and have different underlying decision-
making, so they may search for and try to avoid different phenomena. Some
bacteria can sense their own metabolic state and only respond to compounds
currently required for growth and their pattern of responses may change based
on their environment. Studies of the mechanisms for decision and control in var-
ious bacteria do, however, indicate that they have common features and hence,
some have suggested that there was a single early evolutionary event that re-
sulted in the swimming capability of bacteria. Swimming generally moves a
bacterium to a more favorable environment for growth, or it maintains it in its
current position, and hence, it gives the bacteria a survival advantage. Some
scientists have suggested that the shapes of motile bacteria developed to allow
efficient swimming. Some bacteria even change their shape to reduce the ad-
verse effects of moving through more viscous media. Even though there can
be significant differences between species, all swimming bacteria seem to have
similar swimming patterns, where there is an alternation between smooth swim-
ming and a change in direction (i.e., a type of saltatory search, a concept that
is explained in Section 18.1.2). Next, several examples of other types of sensing
and taxes in swimming bacteria are provided.

Some bacteria can search for oxygen, and hence their motility behavior is
based on “aerotaxis,” while others search for desirable temperatures resulting
in “thermotaxis.” Actually, the E. coli is capable of thermotaxis in that it
seeks warmer environments with a temperature range of 20 deg. to 37 deg.
C. Other bacteria, such as Thiospirillum jenense, search for or avoid light of
certain wavelengths and this is called “phototaxis” Actually, the E. coli tries to
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avoid intense blue light, so it is also capable of phototaxis. Some bacteria swim
along magnetic lines of force that enter the earth, so that when in the northern
hemisphere, they swim towards the north magnetic pole, and in the southern
hemisphere, they swim towards the south magnetic pole. (This is due to the
presence of a small amount of magnetic material in the cell that essentially acts
as a compass to passively reorient the cell.)

There are square-shaped bacteria that are propelled either forward or back-
ward via flagella, and when multiple such bacteria naturally collide, their flag-
ella can become “clumped,” and this seems to be responsible for their tumbling.
Hence, their motility behavior is characterized by forward movement, followed
by either forward or backward movement, and an intermittent change in di-
rection via tumbling [7]. Vibrio alginolyticus move differently when free-living
versus living on a surface. Free-living Vibrio alginolyticus swims using a Na+-
driven motor on its flagella but when it is on the surface of a liquid, it senses the
increased viscosity via the flagellar motor and then synthesizes many proton-
driven flagella, which then allow the cell to move over surfaces [24]. The cells
move as groups (“rafts”), since this is thought to help overcome viscous drag
and surface tension. In other bacteria, flagella can be synthesized and discarded
as they are needed.

18.2.7 Other Group Phenomena in Bacteria

A particularly interesting group behavior has been demonstrated for several
motile species of bacteria, including E. coli and S. typhimurium, where intricate
stable spatio-temporal patterns (swarms)1 are formed in semi-solid nutrient me-
dia [84, 71, 83, 544, 24] (see Figure 18.8). When a group of E. coli cells is placed
in the center of a semi-solid agar with a single nutrient chemo-effector (sensor),
they move out from the center in a traveling ring of cells by moving up the nu-

Swarms arise due to
communications, and
can lead to more
successful foraging
(optimization).

trient gradient created by consumption of the nutrient by the group. Moreover,
if high levels of the nutrient called succinate are used as the nutrient, then the
cells release the attractant aspartate, so that they congregate into groups and
hence, move as concentric patterns of groups with high bacterial density; see the
concentric pattern of dots in Figure 18.8. (Note that many cells in those groups
permanently lose motility.) The spatial order results from outward movement
of the ring and the local releases of the attractant; the cells provide an attrac-
tion signal to each other so they swarm together. Pattern formation can be
suppressed by a background of aspartate (since it seems that this will in essence
scramble the chemical signal by eliminating its directionality). The pattern
seems to form based on the dominance of two stimuli (cell-cell signaling and
foraging).

The role of these patterns in natural environments is not understood; how-
ever, there is evidence that stress to the bacteria results in them releasing chem-
ical signals that other bacteria are chemotactic towards. If enough stress is

1Actually, microbiologists reserve the term “swarming” for other characteristics of groups
of bacteria. Here, we abuse the terminology and favor using the terminology that is used for
higher forms of animals such as bees.
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Figure 18.8: Swarm pattern of E. coli (figure taken from [84], c© Macmillan
Magazines, used with permission from Nature).

present, then a whole group can secrete the chemical signal strengthening the
total signal, and hence, an aggregate of the bacteria forms. It seems that this
aggregate forms to protect the group from the stress (e.g., by effectively hiding
many cells in the middle of the group). It seems that the aggregates of the bac-
teria are not necessarily stationary; under certain conditions they can migrate,
split, and fuse. This has led researchers to hypothesize that there may be other
communication methods being employed that are not yet understood.

As another example, there are “biofilms” that can be composed of multi-
ple types of bacteria (e.g., E. coli) that can coat various objects (e.g., roots of
plants or medical implants). It seems that both motility and “quorum sensing”
are involved in biofilm formation. A biofilm is a mechanism for keeping a bac-
terial species in a fixed location, avoiding overcrowding, and avoiding nutrient
limitation and toxin production by packing them at a low density in a “polysac-
charide matrix.” Secreted chemicals provide a mechanism for the cells to sense
population density, but motility seems to assist in the early stages of biofilm
formation. It is also thought that chemotactic responses are used to drive cells
to the outer edges of the biofilm, where nutrient concentrations may be higher.

In a variety of bacteria, including E. coli, complex patterns result primarily
not from motility, but from reproduction [464]. In some bacteria, it seems
that there is a type of signaling that occurs and results in the formation of
regular patterns as the culture of bacteria grows. Formation of such patterns is
sometimes thought of as a type of multicellular “morphogenesis.” For example,
the formation of the “fruiting bodies” by Myxococcus xanthus can be viewed as
a type of morphogenesis, but one that seems to be primarily based on motility
and cell deaths rather than reproduction [467].
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Other types of bacteria exhibit group behaviors [334]. For instance, there
are luminous bacteria that will emit no light until the population reaches a
certain density. For instance, the bacteria Vibrio fischeri lives in the ocean at
low concentrations and its secreted “autoinducer” chemical signal is quite dilute.
However, the squid Euprymna scolopes selects these bacteria to grow in its light
organ. When a sufficiently large population is cultivated in its light organ, the
autoinducer chemical signals given off by each bacterium effectively add to result
in a high concentration of this chemical and, when it reaches a certain threshold,
each cell will switch on its luminescence property so that as a group they emit
a visible light [334]. The squid, which is a nocturnal forager, benefits since the
light camouflages it from predators below, since its light resembles moonlight
and hence, effectively eliminates its shadow. The bacteria benefit by getting
nourishment and shelter. The bacteria and squid are in a symbiont relationship
(i.e., they live together to benefit each other).

Also, the soil-dwelling streptomycete colonies can grow a branching network
of long fiber-like cells that can penetrate and degrade vegetation and then feed
on the resulting decaying matter. (In terms of combinatorial optimization, you
may think of finding optimal trees or graphs.) Under starvation conditions, they
can cooperate to produce spores on a structure called an “aerial mycelium” that
may be carried away.

As another example, in Proteus mirabilis the rod-shaped cells exist as “swim-
mers” that are driven by fewer than 10 flagella when they are in liquid media
and they have chemotactic responses analogous to those of E. coli. If, however,
these swimmers are placed on a solid surface, the swimmer cell “differentiates”
(changes) into a “swarmer cell” that is an elongated rod (of roughly the same
diameter) with more than 10, 000 flagella. On solid surfaces, the cells aggregate
and exhibit swarm behavior in foraging via group chemotaxis. If they are then
placed back in a liquid medium, there is a process of “consolidation” where
swarmer cells split into swimmer cells. Moreover, when swarming they exhibit
the “Dienes phenomenon,” where swarms of the same type of bacteria try to
avoid each other. (The mechanisms of this apparent territorial behavior are not
well-understood.)

18.3 E. coli Bacterial Swarm Foraging for Opti-

mization

Suppose that we want to find the minimum of J(θ), θ ∈ 	p, where we do not
have measurements, or an analytical description, of the gradient ∇J(θ). Here,
we use ideas from bacterial foraging to solve this “nongradient” optimization
problem. First, suppose that θ is the position of a bacterium and J(θ) repre-

The bacterial foraging
algorithm is a
nongradient stochastic
optimization method.

sents the combined effects of attractants and repellents from the environment,
with, for example, J(θ) < 0, J(θ) = 0, and J(θ) > 0 representing that the
bacterium at location θ is in nutrient-rich, neutral, and noxious environments,
respectively. Basically, chemotaxis is a foraging behavior that implements a



788 Cooperative Foraging and Search

type of optimization where bacteria try to climb up the nutrient concentration
(find lower and lower values of J(θ)) and avoid noxious substances and search
for ways out of neutral media (avoid being at positions θ where J(θ) ≥ 0).

18.3.1 An Optimization Model for E. coli Bacterial For-
aging

To define our optimization model of E. coli bacterial foraging, we need to define
a population (set) of bacteria, and then model how they execute chemotaxis,
swarming, reproduction, and elimination/dispersal. After doing this, we will
highlight the limitations (inaccuracies) in our model.

Population and Chemotaxis

Define a chemotactic step to be a tumble followed by a tumble or a tumble
followed by a run. Let j be the index for the chemotactic step. Let k be the
index for the reproduction step. Let � be the index of the elimination-dispersal
event. Let

P (j, k, �) =
{
θi(j, k, �)|i = 1, 2, . . . , S

}
represent the positions of each member in the population of the S bacteria at
the jth chemotactic step, kth reproduction step, and �th elimination-dispersal
event. Here, let J(i, j, k, �) denote the cost at the location of the ith bacterium
θi(j, k, �) ∈ 	p (sometimes we drop the indices and refer to the ith bacterium
position as θi). Note that we will interchangeably refer to J as being a “cost”
(using terminology from optimization theory) and as being a nutrient surface (in
reference to the biological connections). For actual bacterial populations, S can
be very large (e.g., S = 109), but p = 3. In our computer simulations, we will
use much smaller population sizes and will keep the population size fixed. We
will allow p > 3, so we can apply the method to higher dimensional optimization
problems.

Let Nc be the length of the lifetime of the bacteria as measured by the
number of chemotactic steps they take during their life. Let C(i) > 0, i =
1, 2, . . . , S, denote a basic chemotactic step size that we will use to define the
lengths of steps during runs. To represent a tumble, a unit length random
direction, say φ(j), is generated; this will be used to define the direction of
movement after a tumble. In particular, we let

θi(j + 1, k, �) = θi(j, k, �) + C(i)φ(j)

so that C(i) is the size of the step taken in the random direction specified by
the tumble. If at θi(j + 1, k, �) the cost J(i, j + 1, k, �) is better (lower) than
at θi(j, k, �), then another step of size C(i) in this same direction will be taken,
and again, if that step resulted in a position with a better cost value than at
the previous step, another step is taken. This swim is continued as long as it
continues to reduce the cost, but only up to a maximum number of steps, Ns.
This represents that the cell will tend to keep moving if it is headed in the
direction of increasingly favorable environments.
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Swarming Mechanisms

The above discussion was for the case where no cell-released attractants are
used to signal other cells that they should swarm together. Here, we will

Swarm optimization
exploits a regional
approximation to a
gradient and helps it to
climb over noise.

also have cell-to-cell signaling via an attractant and will represent that with
J i

cc(θ, θ
i(j, k, �)), i = 1, 2, . . . , S, for the ith bacterium. Let

dattract = 0.1

be the depth of the attractant released by the cell (a quantification of how much
attractant is released) and

wattract = 0.2

be a measure of the width of the attractant signal (a quantification of the dif-
fusion rate of the chemical). The cell also repels a nearby cell in the sense that
it consumes nearby nutrients and it is not physically possible to have two cells
at the same location. To model this, we let

hrepellent = dattract

be the height of the repellent effect (magnitude of its effect) and

wrepellent = 10

be a measure of the width of the repellent. The values for these parameters
are simply chosen to illustrate general bacterial behaviors, not to represent a
particular bacterial chemical signaling scheme. The particular values of the
parameters were chosen with the nutrient profile in mind, which we will use
later in Figure 18.10. For instance, the depth and width of the attractant is
small relative to the nutrient concentrations represented in Figure 18.10. Let

Jcc(θ, P (j, k, �)) =
S∑

i=1

J i
cc(θ, θ

i(j, k, �))

=
S∑

i=1

[
−dattract exp

(
−wattract

p∑
m=1

(θm − θi
m)2
)]

+
S∑

i=1

[
hrepellent exp

(
−wrepellent

p∑
m=1

(θm − θi
m)2
)]

denote the combined cell-to-cell attraction and repelling effects, where θ =
[θ1, . . . , θp]� is a point on the optimization domain and θi

m is the mth com-
ponent of the ith bacterium position θi (for convenience, we omit some of the
indices). An example for the case of S = 2 and the above parameter values is
shown in Figure 18.9. Here, note that the two sharp peaks represent the cell
locations, and as you move radially away from the cell, the function decreases
and then increases (to model the fact that cells far away will tend not to be
attracted, whereas cells close by will tend to try to climb down the cell-to-cell
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nutrient gradient towards each other and hence try to swarm). Note that as
each cell moves, so does its J i

cc(θ, θi(j, k, �)) function, and this represents that
it will release chemicals as it moves. Due to the movements of all the cells,
the Jcc(θ, P (j, k, �)) function is time-varying in that, if many cells come close
together, there will be a high amount of attractant and hence, an increasing like-
lihood that other cells will move towards the group. This produces the swarming
effect. When we want to study swarming, the ith bacterium, i = 1, 2, . . . , S, will
hill-climb on

J(i, j, k, �) + Jcc(θ, P )

(rather than the J(i, j, k, �) defined above) so that the cells will try to find
nutrients, avoid noxious substances, and at the same time try to move towards
other cells, but not too close to them. The Jcc(θ, P ) function dynamically
deforms the search landscape as the cells move to represent the desire to swarm
(i.e., we model mechanisms of swarming as a minimization process).

Figure 18.9: Cell-to-cell chemical attractant model, S = 2.

Reproduction and Elimination/Dispersal

After Nc chemotactic steps, a reproduction step is taken. Let Nre be the number
of reproduction steps to be taken. For convenience, we assume that S is a
positive even integer. Let

Sr =
S

2
(18.1)

be the number of population members who have had sufficient nutrients so that
they will reproduce (split in two) with no mutations. For reproduction, the



18.3 E. coli Bacterial Swarm Foraging for Optimization 791

population is sorted in order of ascending accumulated cost (higher accumu-
lated cost represents that it did not get as many nutrients during its lifetime of
foraging and hence, is not as “healthy” and thus unlikely to reproduce); then
the Sr least healthy bacteria die and the other Sr healthiest bacteria each split
into two bacteria, which are placed at the same location. Other fractions or
approaches could be used in place of Equation (18.1); this method rewards bac-
teria that have encountered a lot of nutrients, and allows us to keep a constant
population size, which is convenient in coding the algorithm.

Run length,
reproduction,
elimination, and
dispersal all help to
avoid local minima.

Let Ned be the number of elimination-dispersal events, and for each such
elimination-dispersal event, each bacterium in the population is subjected to
elimination-dispersal with probability ped. We assume that the frequency of
chemotactic steps is greater than the frequency of reproduction steps, which is
in turn greater in frequency than elimination-dispersal events (e.g., a bacterium
will take many chemotactic steps before reproduction, and several generations
may take place before an elimination-dispersal event).

Foraging Model Limitations

Clearly, we are ignoring many characteristics of the actual biological optimiza-
tion process in favor of simplicity and capturing the gross characteristics of
chemotactic hill-climbing and swarming. For instance, we assume that con-
sumption does not affect the nutrient surface (e.g., while a bacterium is in a
nutrient-rich environment, we do not increase the value of J near where it has
consumed nutrients) where clearly in nature, bacteria modify the nutrient con-
centrations via consumption. A tumble does not result in a perfectly random
new direction for movement; however, here we assume that it does. Brown-
ian effects buffet the cell, so that after moving a small distance, it is within
a pie-shaped region of its start point at the tip of the piece of pie. Basically,
we assume that swims are straight, whereas in nature they are not. Tumble
and run lengths are exponentially distributed random variables, not constant,
as we assume. Run-length decisions are actually based on the past 4 sec. of
concentrations, whereas here we assume that at each tumble, older informa-
tion about nutrient concentrations is lost. Although naturally asynchronous,
we force synchronicity by requiring, for instance, chemotactic steps of different
bacteria to occur at the same time, all bacteria to reproduce at the same time
instant, and all bacteria that are subjected to elimination and dispersal to do
so at the same time. We assume a constant population size, even if there are
many nutrients and generations. We assume that the cells respond to nutrients
in the environment in the same way that they respond to ones released by other
cells for the purpose of signaling the desire to swarm. (A more biologically
accurate model of the swarming behavior of certain bacteria is given in [544].)
Clearly, other choices for the criterion of which bacteria should split could be
used (e.g., based only on the concentration at the end of a cell’s lifetime, or on
the quantity of noxious substances that were encountered). We are also ignor-
ing conjugation and other evolutionary characteristics. For instance, we assume
that C(i), Ns, and Nc remain the same for each generation. In nature it seems
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likely that these parameters could evolve for different environments to maximize
population growth rates.

18.3.2 Bacterial Foraging Optimization Algorithm

For initialization, you must choose p, S, Nc, Ns, Nre, Ned, ped, and the C(i),
i = 1, 2, . . . , S. If you use swarming, you will also have to pick the parameters
of the cell-to-cell attractant functions; here we will use the parameters given
above. Also, initial values for the θi, i = 1, 2, . . . , S, must be chosen. Choos-
ing these to be in areas where an optimum value is likely to exist is a good
choice. Alternatively, you may want to simply randomly distribute them across
the domain of the optimization problem. The algorithm that models bacterial
population chemotaxis, swarming, reproduction, elimination, and dispersal is
given below (initially, j = k = � = 0). For the algorithm, note that updates
to the θi automatically result in updates to P . Clearly, we could have added a
more sophisticated termination test than simply specifying a maximum number
of iterations.

1. Elimination-dispersal loop: � = � + 1

2. Reproduction loop: k = k + 1

3. Chemotaxis loop: j = j + 1

(a) For i = 1, 2, . . . , S, take a chemotactic step for bacterium i as follows.

(b) Compute J(i, j, k, �). Let

J(i, j, k, �) = J(i, j, k, �) + Jcc(θi(j, k, �), P (j, k, �))

(i.e., add on the cell-to-cell attractant effect to the nutrient concen-
tration).

(c) Let Jlast = J(i, j, k, �) to save this value, since we may find a better
cost via a run.

(d) Tumble: generate a random vector ∆(i) ∈ 	p with each element
∆m(i), m = 1, 2, . . . , p, a random number on [−1, 1].

(e) Move: let

θi(j + 1, k, �) = θi(j, k, �) + C(i)
∆(i)√

∆�(i)∆(i)

This results in a step of size C(i) in the direction of the tumble for
bacterium i.

(f) Compute J(i, j+1, k, �), and then let J(i, j+1, k, �) = J(i, j+1, k, �)+
Jcc(θi(j + 1, k, �), P (j + 1, k, �)).
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(g) Swim (note that we use an approximation, since we decide swimming
behavior of each cell as if the bacteria numbered {1, 2, . . . , i} have
moved, and {i + 1, i + 2, . . . , S} have not; this is much simpler to
simulate than simultaneous decisions about swimming and tumbling
by all bacteria at the same time):

i. Let m = 0 (counter for swim length).
ii. While m < Ns (if have not climbed down too long)

• Let m = m + 1.
• If J(i, j +1, k, �) < Jlast (if doing better), let Jlast = J(i, j +

1, k, �) and let

θi(j + 1, k, �) = θi(j + 1, k, �) + C(i)
∆(i)√

∆�(i)∆(i)

and use this θi(j +1, k, �) to compute the new J(i, j +1, k, �)
as we did in (f) above.

• Else, let m = Ns. This is the end of the while statement.
(h) Go to next bacterium (i + 1) if i �= S (i.e., go to (b) above to process

the next bacterium).

4. If j < Nc, go to step 3. In this case, continue chemotaxis, since the life of
the bacteria is not over.

5. Reproduction:

(a) For the given k and �, and for each i = 1, 2, . . . , S, let

J i
health =

Nc+1∑
j=1

J(i, j, k, �)

be the health of bacterium i (a measure of how many nutrients it
got over its lifetime and how successful it was at avoiding noxious
substances). Sort bacteria and chemotactic parameters C(i) in order
of ascending cost Jhealth (higher cost means lower health).

(b) The Sr bacteria with the highest Jhealth values die and the other Sr

bacteria with the best values split (and the copies that are made are
placed at the same location as their mother).

6. If k < Nre, go to step 2. In this case, we have not reached the number
of specified reproduction steps, so we start the next generation in the
chemotactic loop.

7. Elimination-dispersal: for i = 1, 2, . . . , S, with probability ped, eliminate
and disperse each bacterium (this keeps the number of bacteria in the
population constant). To do this, if you eliminate a bacterium, simply
disperse one to a random location on the optimization domain.

8. If � < Ned, then go to step 1; otherwise end.
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18.3.3 Guidelines for Algorithm Parameter Choices

The bacterial foraging optimization algorithm requires specification of a variety
of parameters. First, you can pick the size of the population, S. Clearly,
increasing the size of S can significantly increase the computational complexity
of the algorithm. However, for larger values of S, if you choose to randomly
distribute the initial population, it is more likely that you will start at least some
bacterium near an optimum point, and over time, it is then more likely that
many bacterium will be in that region, due to either chemotaxis or reproduction.

What should the values of the C(i), i = 1, 2, . . . , S, be? You can choose a
biologically motivated value; however, such values may not be the best for an
engineering application. If the C(i) values are too large, then if the optimum
value lies in a valley with steep edges, it will tend to jump out of the valley, or
it may simply miss possible local minima by swimming through them without
stopping. On the other hand, if the C(i) values are too small, then convergence
can be slow, but if it finds a local minimum, it will typically not deviate too far
from it. You should think of the C(i) as a type of “step size” for the optimization
algorithm.

The size of the values of the parameters that define the cell-to-cell attractant
functions J i

cc will define the characteristics of swarming. If the attractant width
is high and very deep, the cells will have a strong tendency to swarm (they may
even avoid going after nutrients and favor swarming). On the other hand, if the
attractant width is small, and the depth shallow, there will be little tendency to
swarm and each cell will search on its own. Social versus independent foraging is
then dictated by the balance between the strengths of the cell-to-cell attractant
signals and nutrient concentrations.

Next, large values for Nc result in many chemotactic steps, and, hopefully,
more optimization progress, but of course, more computational complexity. If
the size of Nc is chosen to be too short, the algorithm will generally rely more on
luck and reproduction, and in some cases, it could more easily get trapped in a
local minimum (“premature convergence”). You should think of Ns as creating
a bias in the random walk (which would not occur if Ns = 0), with large values
tending to bias the walk more in the direction of climbing down the hill.

If Nc is large enough, the value of Nre affects how the algorithm ignores
bad regions and focuses on good ones, since bacteria in relatively nutrient-poor
regions die (this models, with a fixed population size, the characteristic where
bacteria will tend to reproduce at higher rates in favorable environments). If Nre

is too small, the algorithm may converge prematurely; however, larger values of
Nre clearly increase computational complexity.

A low value for Ned dictates that the algorithm will not rely on random
elimination-dispersal events to try to find favorable regions. A high value in-
creases computational complexity but allows the bacteria to look in more regions
to find good nutrient concentrations. Clearly, if ped is large, the algorithm can
degrade to random exhaustive search. If, however, it is chosen appropriately, it
can help the algorithm jump out of local optima and into a global optimum.
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18.3.4 Relations to Other Nongradient Optimization Meth-
ods

There are algorithmic analogies between the genetic algorithm and the above op-
timization model for foraging. There are analogies between the fitness function
and the nutrient concentration function (both a type of “landscape”), selection
and bacterial reproduction (bacteria in the most favorable environments gain
a selective advantage for reproduction), crossover and bacterial splitting (the
children are at the same concentration, whereas with crossover they generally
end up in a region around their parents on the fitness landscape), and muta-
tion and elimination and dispersal. However, the algorithms are not equivalent,
and neither is a special case of the other. Each has its own distinguishing fea-
tures. The fitness function and nutrient concentration functions are not the
same (one represents likelihood of survival for given phenotypic characteristics,
whereas the other represents nutrient/noxious substance concentrations, or for
other foragers predator/prey characteristics). Crossover represents mating and
resulting differences in offspring, something we ignore in the bacterial foraging
algorithm (we could, however, have made less than perfect copies of the bacteria
to represent their splitting). Moreover, mutation represents gene mutation and
the resulting phenotypical changes, not physical dispersal in an environment.

From one perspective, note that all the typical features of genetic algorithms
could augment the bacterial foraging algorithm by representing evolutionary
characteristics of a forager in their environment. From another perspective,
foraging algorithms can be integrated into evolutionary algorithms and thereby
model some key survival activities that occur during the lifetime of the pop-
ulation that is evolving (i.e., foraging success can help define fitness, mating
characteristics, etc.). For the bacteria studied here, foraging happens to entail
hill-climbing via a type of biased random walk, and hence, the foraging algo-
rithm can be viewed as a method to integrate a type of approximate stochastic
gradient search (where only an approximation to the gradient is used, not ana-
lytical gradient information) into evolutionary algorithms. Of course, standard
gradient methods, quasi-Newton methods, etc., depend on the use of an explicit
analytical representation of the gradient, something that is not needed by a
foraging or genetic algorithm. Lack of dependence on analytical gradient infor-
mation can be viewed as an advantage (fewer assumptions), or a disadvantage
(e.g., since, if gradient information is available, then the foraging or genetic
algorithm may not exploit it properly).

You probably also recognize some similarities between certain features of the
foraging algorithm and SPSA. What are they? What are the relationships to
the nongradient methods of the last part? There are in fact many approaches to
“global optimization” when there is no explicit gradient information available;
however, it is beyond the scope of this book to evaluate the relative merits of
foraging algorithms to the vast array of such methods that have been studied for
many years. To start such a study, it makes sense to begin by considering the
theoretical convergence guarantees for certain types of evolutionary algorithms,
stochastic approximation methods, and pattern search methods (e.g., see [481]
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for work along these lines), and then proceed to consider foraging algorithms
in this context. It also seems useful to consider how well the foraging algo-
rithms will perform for time-varying nutrient landscapes, which occurs in the
underlying biological problem and many engineering problems.

18.3.5 Example: Function Optimization via E. coli For-
aging

As a simple illustrative example, we use the algorithm to try to find the mini-
mum of the function in Figure 18.10 (note that the point [15, 5]� is the global
minimum point).

Figure 18.10: Nutrient landscape.

Nutrient Hill-Climbing: No Swarming

According to the above guidelines, choose S = 50, Nc = 100, Ns = 4 (a bio-
logically motivated choice), Nre = 4, Ned = 2, ped = 0.25, and the C(i) = 0.1,
i = 1, 2, . . . , S. The bacteria are initially spread randomly over the optimiza-
tion domain. The results of the simulation are illustrated by motion trajectories
of the bacteria on the contour plot of Figure 18.10, as shown in Figure 18.11.
In the first generation, starting from their random initial positions, searching
is occurring in many parts of the optimization domain, and you can see the
chemotactic motions of the bacteria as the black trajectories where the peaks
are avoided and the valleys are pursued. Reproduction picks the 25 healthiest
bacteria and copies them, and then, as shown in Figure 18.11 in generation 2,
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all the chemotactic steps are in five local minima. This again happens in going
to generations 3 and 4, but bacteria die in some of the local minima (due es-
sentially to our requirement that the population size stay constant), so that in
generation 3, there are four groups of bacteria in four local minima, whereas in
generation 4, there are two groups in two local minima.
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Figure 18.11: Bacterial motion trajectories, generations 1–4, on contour plots.

Next, with the above choice of parameters, there is an elimination-dispersal
event, and we get the next four generations shown in Figure 18.12. Notice
that elimination and dispersal shifts the locations of several of the bacteria
and thereby the algorithm explores other regions of the optimization domain.
However, qualitatively we find a similar pattern to the previous four generations
where chemotaxis and reproduction work together to find the global minimum;
this time, however, due to the large number of bacteria that were placed near
the global minimum, after one reproduction step, all the bacteria are close to
it (and remain this way). In this way, the bacterial population has found the
global minimum.

Swarming Effects

Here we use the parameters defined earlier to define the cell-to-cell attraction
function. Also, we choose S = 50, Nc = 100, Ns = 4, Nre = 4, Ned = 1, ped =
0.25, and the C(i) = 0.1, i = 1, 2, . . . , S. We will first consider swarming effects
on the nutrient concentration function with contour map shown on Figure 18.13
which has a zero value at [15, 15]� and decreases to successively more negative
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Figure 18.12: Bacterial motion trajectories, generations 1–4, on contour plots,
after an elimination-dispersal event.

values as you move away from that point; hence, the cells should tend to swim
away from the peak. We will initialize the bacterial positions by placing all
the cells at the peak [15, 15]�. Using these conditions, we get the result in
Figure 18.13. Notice that in the first generation, the cells swim radially outward,
and then in the second and third generations, swarms are formed in a concentric
pattern of groups. Notice that with our simple method of simulating health of
the bacteria and reproduction, some of the swarms are destroyed by the fourth
generation. We omit additional simulations that show the behavior of the swarm
on the surface in Figure 18.10, since qualitatively the behavior is as one would
expect from the above simulations. The interested reader can obtain the code
mentioned above and further study the behavior of the algorithm.

18.4 Stable Social Foraging Swarms

In this section, we first overview some biology of swarms, with a focus on the
honey bee in order to provide a concrete example. Then, we introduce a math-
ematical model for a generic swarm of agents. We conduct a mathematical
analysis to prove stability (cohesiveness) of the swarm and perform simulations
to provide insights into swarm dynamics.
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Figure 18.13: Swarm behavior of E. coli on a test function.

18.4.1 Example: The Biology of Honey Bee Swarms

There are many types of animals that swarm, including bacteria, insects, birds,
fish, horses, and so on. (Groupings of different animals are typically given differ-
ent names, but for convenience, here we will call them all swarms.) Such groups
are composed of individuals with different physiological capabilities, and when
operating as a group, they can achieve different types of emergent behaviors.
Here, in order to be more concrete about how swarms operate, we will describe
in more detail how and why one species, the honey bee, swarms.

First, when a hive splits, a group of bees will “cluster” around the queen
on, for example, a nearby branch. This is a type of swarming where the group
contracts together and forms a tightly packed group of relatively stationary bees.
After forming such a cluster, the bees perform nest site selection. Upon liftoff,
after the scouts generally reach agreement on a nest site, the honey bee swarm
forms a spherical group that hovers near the place where the swarm had grouped
while nest site selection occurred. Next, the group slowly starts to move in the
direction of the new nest site, elongating laterally, and accelerating as a group
to about 11 kilometers/hr. There is a type of “inertia” in getting the group
moving due to the swarm dynamics. It seems that several factors contribute to
in-transit swarm cohesiveness, two of which may involve pheromones. First, the
queen releases a pheromone (but the queen is not in the lead so it does not seem
likely that it can steer the bees that are ahead of her). Second, some evidence
suggests that other bees in the swarm release Nasanov pheromones that help
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to maintain cohesiveness, but it seems that this is still not fully verified. How
does the swarm know which direction to go? Again, there seem to be several
factors. First, during the site selection process, it seems that those observing the
final phase of the agreement process may know which direction to go. However,
perhaps not all of the bees will know the direction, and this may explain the
way that some bees in the swarm seem to wander somewhat within the swarm,
apparently lacking knowledge of the direction to the nest. Alternatively, it
seems possible that even if they knew the direction, they may not be able to
easily navigate while in the swarm due to obstruction of navigation cues due
to interference from many other bees. Another factor that certainly seems to
influence the direction of movement of the swarm is the presence of the scouts
that do know the way to the site, and which “pilot” the swarm by “streaking”
through it in the general direction of the nest site. (You could think of this as an
“aerial dance signal” to recruit bees in the proper direction.) Nevertheless, even
with the possibility of several methods of group navigation, there are significant
motions of bees within the swarm that are not directed towards the site. Aside
from navigational obstructions, and possible bee-bee collisions, it also seems that
it may be possible that there are conflicting indictions of the general direction
to move, due to dynamic changes in the dominance of factors that guide the
bee (e.g., pheromones, its own sense of direction, and the indications of scout
piloting). Also, it should be clear that wind (perhaps even currents that are
induced by the swarm) will disrupt a uniform flow of the swarm towards the
nest site. At the same time, it should be clear that some type of “robust” group
guidance and navigation is achieved since they successfully reach the site. Upon
reaching the site the group stops (and it is not understood how that occurs),
some scouts drop into the new nest entrance and release a pheromone, and this
attracts the group to the new nest. A model of the clustering and in-transit
motion of bees has been studied (see the “For Further Study” section at the end
of the part for more details).

18.4.2 Swarm and Environment Models

Here, we describe the agent, communications, and the environment that the
agents move in.

Agent Dynamics and Communications

Here, rather than focusing on the particular characteristics of one type of animal
or autonomous vehicle, we consider a swarm to be composed of an interconnec-
tion of N “agents,” each of which has point mass dynamics given by

ẋi = vi (18.2)

v̇i =
1

Mi
ui

where xi ∈ 	n is the position, vi ∈ 	n is the velocity, Mi is the mass, and
ui ∈ 	n is the (force) control input for the ith agent. We use this simple linear
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model for an agent in order to illustrate the basic features of swarming and
stability analysis of cohesion. Other nonlinear and stochastic models for agents
in swarms have been considered in the literature (see the “For Further Study”
section at the end of this part). Here, we will use n = 3 for swarms moving in a
three-dimensional space. We will assume that each agent can sense information
about the position and velocity of other agents, but only with some noise that
we will define below.

The agents interact to form groups, and in some situations groups will split.
Some think of having local interactions between agents, which “emerge” into a
global behavior for the group. One way to represent which agents can interact
with each other is via a directed graph (G, A) where G = {1, 2, . . . , N} is a set
of nodes (the agents) and

A = {(i, j) : i, j ∈ G, i �= j}

represents a “sensing/communication topology” (in general, then, each “link”
(i, j) could be a dynamical system). For example, if (i, j) ∈ A, then it could be
assumed that agent i can sense the position and velocity of agent j. In some
vehicular systems it may be possible that A is fixed and independent of vehicle
positions and velocities. Clearly, however, for biological systems it is often the
case that A is not fixed, but changes dynamically based on the positions of
the agents (e.g., so that only agents within a line-of-sight and close enough can
be sensed). Here, for simplicity, we will assume that A does not change based
on the positions and velocities of the agents, and that A is fully connected
(e.g., that for all i ∈ G, (i, j) ∈ A). We also assume that there are no delays
or noise in communicating, communications are not range constrained, and
that there is infinite bandwidth. More general formulations may also include
a “communications topology” that specifies which agents can send and receive
messages to other agents. Such messages could represent a wide variety of
communication capabilities of the agents (e.g., bee scout leadership in a swarm,
sounds, and so on.).

Agent to Agent Attraction and Repulsion

Agent to agent interactions considered here are of the “attract-repel” type,
where each agent seeks to be in a position that is “comfortable” relative to its

Agents want to be close
to each other, but not
too close.

neighbors (and for us, all other agents are its neighbors). Attraction indicates
that each agent wants to be close to every other agent and provides the mech-
anism for achieving grouping and cohesion of the group of agents. Repulsion
provides the mechanism where each agent does not want to be too close to every
other agent (e.g., for animals to avoid collisions and excessive competition for
resources). There are many ways to define attraction and repulsion, each of
which can be represented by characteristics of how we define ui for each agent,
and we list a few of these below:
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• Attraction: There can be linear attraction and in this case we have terms
in ui of, for example, the form

−ka

(
xi − xj

)
where ka > 0 is a scalar that represents the strength of attraction. If the
agents are far apart, then there is a large attraction between them, and
if they are close, there is a small attraction. In other cases, there can
be nonlinear attraction terms that can be expressed in terms of nonlinear
functions of

(
xi − xj

)
. Some attraction mechanisms are “local” (i.e., for

range-constrained sensing, where the agent only tries to move to other
agents that are close to it) and others which are “global” (i.e., where
agents can be attracted to move near other agents no matter how far
away they are). Attraction terms can be specified in terms of a variety
of agent variables. For example, the above term is for positions, but we
could have similar terms for velocity so that the agents will try to match
the velocities of other agents. Moreover, the above term is “static” but
we would have a local “dynamic” controller that tries to match agent
variables.

• Repulsion: As with attraction, there are many types of repulsion terms,
some local, global, static, or dynamic, each of which can be expressed
in terms of a variety of agent variables. Sometimes repulsion is defined
in terms that also quantify attraction, other times they quantify only a
repulsion.

– Seek a “comfortable distance”: For example, a term in ui may take
the form [−k

(||xi − xj || − d
)] (

xi − xj
)

where ||xi − xj || =
√

(xi − xj)� (xi − xj), k > 0 is the magnitude
of the repulsion, and d can be thought of as a comfortable distance
between the ith and jth agents. Here, the quantity in the brackets
sets the size of the repulsion. When ||xi − xj || is small (relative to
d), the term in the bracket is positive so that agents i and j try to
move away from each other (there is repulsion). When ||xi − xj || is
big (relative to d), then the term in the brackets is negative so that
the agents are attracted to each other. Balance between attraction
and repulsion (a basic concept in swarm dynamics that is sometimes
referred to as an “equilibrium,” even though it may not be one in
the stability-theoretic sense) may be achieved when ||xi −xj || = d so
that the term above is zero.

– Repel when close: Another type of repulsion term in ui, which may
be used with, for example, a linear attraction term, may take the
form

kr exp
(− 1

2‖xi − xj‖2

r2
s

)(
xi − xj

)
(18.3)
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where kr > 0 is the magnitude of the repulsion, and rs > 0 quantifies
the region size around the agent from which it will repel its neighbors.
When ‖xi −xj‖ is big relative to rs, the whole term approaches zero.

– Hard repulsion for collision avoidance: The above repulsion terms
are “soft,” in the sense that when the two agents are at the same
location, the repulsion force is finite. In some cases, it is appropriate
to use a repulsion term that becomes increasingly large as two agents
approach each other. One such term, that does not have an attraction
component, is in the form of[

max
{(

a

b||xi − xj || − w
− ε

)
, 0
}] (

xi − xj
)

(18.4)

Here, w > 0 affects the radius of repulsion of the agents, a > 0 is a
gain on the magnitude of the repulsion, b > 0 can change the shape
of the repulsion gain, and ε > 0 can be used to define the term so that
it only has a local influence. For instance, the radius of the repulsion
is

R′ =
1
b

(a

ε
+ w
)

For agent positions such that ||xi−xj|| ≥ R′, the term in the brackets
is zero. For given values of w, a, and b, you can choose ε to get any
value of R′ > 0. Note that a key feature of this repulsion term is that
as ||xi −xj || goes from a large value to w/b, the value in the brackets
goes to infinity to provide a “hard” repelling action and hence, avoid
the possibility that two agents ever end up at the same position (i.e.,
to avoid collisions). Another way to define a hard repulsion is to
consider agents to be solid “balls,” where, if they collide, they do not
deform.

For more ideas on how to define attraction and repulsion terms, see the “For
Further Study” section at the end of this part.

Environment and Foraging

Next, we will define the environment that the agents move in. While there are
many possibilities, here we will simply consider the case where they move over
what we will call “resource profile” (e.g., nutrient profile) J(x), where x ∈ 	n.
We will however, think of this profile as being something where the agents want

Agents follow resource
profiles to meet their
objectives.

to be in certain regions of the profile and avoid other regions (e.g., where there
are noxious substances). We will assume that J(x) is continuous with finite
slope at all points. Agents move in the direction of the negative gradient of
J(x)

−∇J(x) = −∂J

∂x
in order to move away from bad areas and into good areas of the environment
(e.g., to avoid noxious substances and find nutrients). Hence, they will use a
term in their ui that holds the negative gradient of J(x).
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Clearly, there are many possible shapes for J(x), including ones with many
peaks and valleys. Here, we simply list two simple forms for J(x) as follows:

• Plane: In this case, we have J(x) = Jp(x) where

Jp(x) = R�x + ro

where R ∈ 	n and ro is a scalar. Here, ∇Jp(x) = R.

• Quadratic: In this case, we have J(x) = Jq(x) where

Jq(x) =
rm

2
‖x − Rc‖2 + ro

where rm and ro are scalars and Rc ∈ 	n. Here, ∇Jq(x) = rm (x − Rc).

Below, we will assume that each agent can sense the gradient of the resource
profile, but only with some noise.

It could be that the environment has many different types of agents in it, or
the same types of agents with different objectives. In this case, there may be
different resource profiles for each agent, or the agents may switch the profiles
it follows, or strategies for following them. Different agents may have different
capabilities to sense the profile (e.g., sensing only at a point, or sensing a range-
constrained region) and move over it. If the agents are consuming food, this
may change the shape of the profile, and of course, an agent may pollute its
environment so it may affect the profile in that manner also. This would create
a time-varying profile that is dependent on agent position, and possibly many
other variables. See the “For Further Study” section at the end of this part for
more discussion on nutrient profiles and, for example, their use in modeling bee
swarming.

18.4.3 Stability Analysis of Swarm Cohesion Properties

Cohesion and swarm dynamics can be quantified and analyzed using stability
analysis (e.g., via Lyapunov’s method). You can pick agent dynamics, interac-
tions, sensing capabilities, attraction/repulsion characteristics, and foraging en-
vironment characteristics, then quantify and analyze cohesion properties. Here,
we will do this for a few simple cases in order to give a flavor of the type of anal-
ysis that is possible, and to provide insight into swarm properties and dynamics
during social foraging.

Sensing, Noise, and Error Dynamics

First, let

x̄ =
1
N

N∑
i=1

xi
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be the center of the swarm and

v̄ =
1
N

N∑
i=1

vi

be the average velocity (vector) which we view as the velocity of the group of
agents. We assume that each agent can sense the distance from itself to x̄, and
the difference between its own velocity and v̄. We assume that each agent knows
its own velocity, but not its own position. Note that for some animals, its senses
and sensory processing may naturally provide the distance to x̄ and v̄, but not
all the individual positions and velocities of all agents that could be used to
compute these. Also, we will consider below the case where there is noise in
sensing these quantities.

The objective of each agent is to move so as to end up at or near x̄ and
have its velocity equal to v̄; in this way, an emergent behavior of the group is
produced where they aggregate dynamically and end up near each other and
ultimately move in the same direction (i.e., they achieve cohesion). The problem
is that since all the agents are moving at the same time, x̄ and v̄ are generally
time-varying; hence, in order to study the stability of swarm cohesion, we study
the dynamics of an error system with

ei
p = xi − x̄

and
ei

v = vi − v̄

Other choices for error systems are also possible and have been used in some
studies of swarm stability. For instance, you could use ẽi

p =
∑N

j=1

(
xi − xj

)
.

This corresponds to computing the errors to each other agent and then trying
to get all those errors to go to zero. Note, however, that

ẽi
p = N

⎛
⎝xi − 1

N

N∑
j=1

xj

⎞
⎠ = N

(
xi − x̄

)
= Nei

p

The same relationship holds for velocity.
Given the above choices, the error dynamics are given by

ėi
p = ei

v

ėi
v =

1
Mi

ui − 1
N

N∑
j=1

1
Mj

uj (18.5)

The challenge is to specify the ui so that we get good cohesion properties and
successful social foraging.

Assume that each agent can sense its position and velocity relative to x̄ and
v̄, but with some bounded errors. In particular, let di

p(t) ∈ 	n, di
v(t) ∈ 	n

be these errors for agent i, respectively. We assume that di
p(t) and di

v(t) are
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sufficiently smooth and are independent of the state of the system. Each agent
will try to follow the resource profile Jp defined earlier. (We use the plane
profile for the sake of illustration, as it will show how swarm dynamics operate
over a simple but representative surface.) We assume that each agent senses
the gradient of Jp, but with some sufficiently smooth error di

f (t) ∈ 	n. You
may think of this as either a sensing error or as variations (e.g., high frequency
ripples) on the resource profile. Below, we will refer to the signals di

p(t), di
v(t),

and di
f (t) as “noise” signals, but clearly there is no underlying probability space

and all signals in this section are deterministic. You may think of these signals
as being generated by, for example, a chaotic dynamic system.

We assume that all the sensing errors are bounded such that

‖di
p‖ ≤ Dp

‖di
v‖ ≤ Dv

‖di
f‖ ≤ Df

where Dp > 0, Dv > 0, and Df > 0 are known constants. Similar results
to what we find below can be found for the more general case, where we have
‖di

p‖ ≤ Dp1

∥∥Ei
∥∥+Dp2 , ‖di

v‖ ≤ Dv1

∥∥Ei
∥∥+Dv2 , and ‖di

f‖ ≤ Df where Dp1 , Dp2 ,
Dv1 and Dv2 are known positive constants and Ei is defined in Equation (18.10).
See the “For Further Study” section at the end of this part.

Thus, each agent can sense noise-corrupted versions of ei
p and ei

v, as

êi
p = ei

p − di
p

êi
v = ei

v − di
v

Also, each agent can sense
∇Jp

(
xi
)− di

f

at the location xi where the agent is located.
Suppose that in order to steer itself, each agent uses

Noise makes it more
difficult to get cohesive
behavior and degrades
foraging effectiveness.

ui = −Mikaêi
p − Mikaêi

v − Mikvv
i

+ Mikr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)
− Mikf

(∇Jp

(
xi
)− di

f

)
(18.6)

Here, we assume that each agent knows its own mass Mi and velocity vi. The
parameter kv > 0 is the gain for a “velocity damping term.” We think of the
scalar ka > 0 as the “attraction gain” that indicates how aggressive the agents
are in aggregating. The gain kr is a “repulsion gain,” which sets how much the
agents want to be away from each other. Note that use of the repulsion term
assumes that the ith agent knows, within some errors, the relative distance of
all other agents from the swarm center. Also, since

êi
p − êj

p =
((

xi − x̄
)− di

p

)− ((xj − x̄
)− dj

p

)
=
(
xi − xj

)− (di
p − dj

p

)
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we are assuming that the ith agent knows its position (and velocity) relative to
each other agent within some bounded errors. Note, however, that when xi and
xj are far apart, the exp(·) term is close to zero. (So in effect, if each agent did
not use distant agents’ values in the repulsion term, we would get approximately
the same results.) Also note that if Dp = Dv = 0, there is no sensing error on
attraction and repulsion, thus, êi

p = ei
p, êi

v = ei
v, and ei

p − ej
p = xi − xj , and

we get a repulsion term of the form explained in Equation (18.3). The sensing
errors create the possibility that agents will try to move away from each other
when they may not really need to, and they may move towards each other when
they should not. Clearly, this complicates the ability of the agents to avoid
collisions with their neighbors. The last term in Equation (18.6) indicates that
each agent wants to move along the negative gradient of the resource profile
with the gain kf proportional to the agent’s desire to follow the profile.

Social Foraging in Noise: Groups Can Increase Foraging Effectiveness

Next, we will substitute this choice for ui into the error dynamics described
in Equation (18.5) and study their stability properties. First, however, we will
study how the group can follow the resource profile in the presence of noise. To
do this, consider ėi

v = v̇i − ˙̄v. First, note that

˙̄v =
1
N

N∑
i=1

1
Mi

ui

= −ka

N

N∑
i=1

(
êi

p + êi
v

)− kv

N

N∑
i=1

vi

+
kr

N

N∑
i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)

−kf

N

N∑
i=1

(
R − di

f

)
(18.7)

Notice that

1
N

N∑
i=1

êi
p =

1
N

N∑
i=1

((
xi − x̄

)− di
p

)
= x̄ − 1

N
Nx̄ − 1

N

N∑
i=1

di
p = − 1

N

N∑
i=1

di
p

Also, the term due to repulsion in Equation (18.7) is zero as we show next. Note
that

N∑
i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)
=

⎡
⎣ N∑

i=1

êi
p

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)⎤⎦
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−
⎡
⎣ N∑

i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
êj

p

⎤
⎦ (18.8)

The last term in Equation (18.8)

N∑
i=1

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
êj

p =
N∑

j=1

êj
p

N∑
i=1,i�=j

exp

(
− 1

2‖êj
p − êi

p‖2

r2
s

)

and since

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
= exp

(
− 1

2‖êj
p − êi

p‖2

r2
s

)

we have this the same as

N∑
j=1

êj
p

N∑
i=1,i�=j

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)
=

N∑
i=1

êi
p

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)

but this last value is the same as the first term on the right-hand side of Equa-
tion (18.8). So overall its value is zero. This gives us

˙̄v =
ka

N

N∑
i=1

di
p +

ka

N

N∑
i=1

di
v +

kf

N

N∑
i=1

di
f − kvv̄ − kfR

Letting d̄p(t) = 1
N

∑N
i=1 di

p(t) and similarly for d̄v(t) and d̄f (t), we get

˙̄v = −kvv̄ + kad̄p + kad̄v + kf d̄f − kfR︸ ︷︷ ︸
z(t)

(18.9)

This is an exponentially stable system with a time-varying but bounded input
z(t) so we know that v̄(t) is bounded. To see this, choose a Lyapunov function

Vv̄ =
1
2
v̄�v̄

defined on D = {v̄ ∈ 	n | ‖v̄‖ < rv} for some rv > 0, and we have

V̇v̄ = v̄� ˙̄v = −kv v̄�v̄ + z(t)�v̄

with ∥∥∥∥∂Vv̄

∂v̄

∥∥∥∥ = ‖v̄‖

Note that ‖z(t)‖ ≤ ∥∥kad̄p

∥∥+
∥∥kad̄v

∥∥+
∥∥kf d̄f

∥∥+ ‖kfR‖ ≤ δ, where δ = kaDp +
kaDv + kfDf + kf‖R‖. If δ < kvθrv for all t ≥ 0 for some positive constant
θ < 1, and all v̄ ∈ D, then it can be proven that for all ‖v̄(0)‖ < rv, and some
finite T , we have

‖v̄(t)‖ ≤ exp [−(1 − θ)kvt] ‖v̄(0)‖ , ∀ 0 ≤ t < T
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and
‖v̄(t)‖ ≤ δ

kvθ
, ∀ t ≥ T

Since this holds globally, we can take rv → ∞ so these inequalities hold for all
v̄(0). If δ and θ are fixed, with increasing kv we get that ‖v̄(t)‖ decreases faster
for 0 ≤ t < T and smaller bound on ‖v̄(t)‖ for t ≥ T . If δ gets larger with
kv and θ fixed, ‖v̄(t)‖ has larger bound for t ≥ T ; hence, if the magnitude of
the noise increases, this increases δ and hence, there can be larger magnitude
changes in the ultimate average velocity of the swarm (e.g., the average velocity
could oscillate). Note that if in Equation (18.9) z(t) ≈ 0 (e.g., due to noise that
destroys the directionality of the resource profile R), then the above bound may
be reduced, but the swarm could be going in the wrong direction.

Regardless of the size of the bound, it is interesting to note that while the
noise can destroy the ability of an individual agent to follow a gradient accu-
rately, the average sensing errors of the group is what changes the direction of
the group’s movement relative to the direction of the gradient of Jp(x). In some
cases when the swarm is large (N big), it can be that d̄p ≈ d̄v ≈ d̄f ≈ 0 to
give a zero average sensing error and the group will perfectly follow the proper
direction for foraging. (This may be a reason why, for some organisms, large
group size is favorable.) In the case when N = 1 (i.e., single agent), there is no

Social groups can climb
noisy gradients better
than individuals.

opportunity for a cancellation of the sensor errors; hence, an individual may not
be able to climb a noisy gradient as easily as a group, and in some cases, a group
may be able to follow a profile where an individual cannot. This characteristic
has been found in biological swarms [230]. From an optimization perspective,
you should think of an individual trying to execute a gradient optimization
method, which we know can result in it getting stuck in local minima. The
group is producing a type of approximation to the gradient by a larger spatial
sampling and attraction/repulsion terms. Intuitively, it filters out the noise and
moves in the proper direction. Of course, the group itself can get stuck in a
local minimum if the basin of attraction of that minimum is large.

It is also important to note that there is an intimate relationship between
sensor noise and observations of biological swarms (e.g., in bee swarms [458])
in that there is a type of “inertia” of a swarm. Note that for large swarms
(N big), there can be regions where the average sensor noise is small, so that
agents in that region move in the right direction. In other regions there may be
alignments of the errors and hence, the agents may not be all moving in the right
direction so they may get close to each other and impede each other’s motion,
having the effect of slowing down the whole group. With no noise, the group
inertia effect is not found, since each agent is moving in the right direction. The
presence of sensor noise generally can make it more difficult to get the group
moving in the right direction (e.g., for foraging, migration, or movement to a
nest site). Large swarms can help move the group in the right direction, but at
the expense of possibly slowing their movement initially in a transient period.
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Cohesive Social Foraging in Noise

Next, we return to the problem of finding the error dynamics and then stability
analysis by considering the v̇i term of ėi

v = v̇i − ˙̄v in the error dynamics of
Equation (18.5). Note that

v̇i =
1

Mi
ui = −kaêi

p − kaêi
v − kvv

i

+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)− kf

(∇Jp

(
xi
)− di

f

)
= −kaei

p + kadi
p − kaei

v + kadi
v − kvv

i

+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)− kf

(
R − di

f

)
Hence, we have

ėi
v = v̇i − ˙̄v = −kaei

p − kaei
v − kvei

v + ka

(
di

p − d̄p

)
+ ka

(
di

v − d̄v

)
+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖
(
xi − xj

)− (di
p − dj

p

) ‖2

r2
s

)((
xi − xj

)
− (

di
p − dj

p

))
+ kf

(
di

f − d̄f

)
To study the stability of the error dynamics, and hence, swarm cohesiveness,

define
Ei =

[
ei

p

�
, ei

v

�]�
(18.10)

and E =
[
E1�, E2�, . . . , EN�]�, and choose a Lyapunov function

V (E) =
N∑

i=1

Vi

(
Ei
)

where
Vi

(
Ei
)

= Ei�PEi

with P = P� and P > 0 (a positive definite matrix). We know that

λmin(P )Ei�Ei ≤ Ei�PEi ≤ λmax(P )Ei�Ei

Notice that with I an n × n identity matrix, we have

Ėi =
[

0 I
−kaI − (ka + kv) I

]
︸ ︷︷ ︸

A

Ei +
[

0
I

]
︸ ︷︷ ︸

B

gi(E)
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where

gi(E) = ka

(
di

p − d̄p

)
+ ka

(
di

v − d̄v

)
+ kr

N∑
j=1,j �=i

exp

(
− 1

2‖êi
p − êj

p‖2

r2
s

)(
êi

p − êj
p

)
+ kf

(
di

f − d̄f

)
(18.11)

Note that any matrix [
0 I

−k1I −k2I

]
with k1 > 0 and k2 > 0 has eigenvalues given by the roots of (s2 + k2s + k1)

n,
which are in the strict left half plane. Since ka > 0 and kv > 0, the matrix A
above is Hurwitz (i.e., has eigenvalues all in the strict left half plane).

We have

V̇i = Ei�PĖi + Ėi
�

PEi = Ei� (PA + A�P
)
Ei + 2Ei�PBgi(E) (18.12)

Note that if −Q =
(
PA + A�P

)
, then Q is such that Q = Q� and Q > 0,

and the unique solution P of PA + A�P = −Q has P = P� and P > 0 as
needed. Also, since ‖B‖ = 1, Ei�QEi ≥ λmin(Q)Ei�Ei, and ‖P‖ = λmax(P )
with P = P� > 0, we have

V̇i ≤ −λmin(Q)
∥∥Ei
∥∥2 + 2

∥∥Ei
∥∥λmax(P )‖gi(E)‖

= −λmin(Q)
(∥∥Ei

∥∥− 2λmax(P )
λmin(Q)

‖gi(E)‖
)∥∥Ei

∥∥ (18.13)

Suppose for a moment that for each i = 1, 2, . . . , N , ‖gi(E)‖ < β for some
known β. Then, if ∥∥Ei

∥∥ >
2λmax(P )
λmin(Q)

‖gi(E)‖ (18.14)

we have that V̇i < 0. Hence, the set

Ωb =
{

E :
∥∥Ei
∥∥ ≤ 2

λmax(P )
λmin(Q)

‖gi(E)‖, i = 1, 2, . . . , N

}
(18.15)

is attractive and compact. Also we know that within a finite amount of time,
Ei → Ωb. This means that we can guarantee that if the swarm is not cohesive,

The positions and
velocities of all agents
can oscillate, yet overall
swarm cohesiveness can
be maintained.

it will seek to be cohesive, but this can only be guaranteed if it is a certain
distance from cohesiveness, as indicated by Equation (18.14).

It remains to show that for each i, ‖gi(E)‖ < β for some β. Note that

‖gi(E)‖ ≤ ka‖di
p−d̄p‖+ka‖di

v−d̄v‖+kf‖di
f−d̄f‖+kr

N∑
j=1,j �=i

exp
(− 1

2‖ψ‖2

r2
s

)
‖ψ‖

(18.16)
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where ψ = êi
p − êj

p =
(
xi − xj

) − (di
p − dj

p

)
. Notice that 1

N

∑N
j=1 ‖dj

p‖ ≤ Dp

since ‖dj
p‖ ≤ Dp. Also

di
p − 1

N

N∑
j=1

dj
p ≤ ‖di

p‖ +
1
N

‖
N∑

j=1

dj
p‖ ≤ ‖di

p‖ +
1
N

N∑
j=1

‖dj
p‖

‖di
p − d̄p‖ ≤ 2Dp, ‖di

v − d̄v‖ ≤ 2Dv, and ‖di
f − d̄f‖ ≤ 2Df .

For the last term in Equation (18.16), note that as ‖xi − xj‖ becomes large
for all i and j, the agents are all far from each other and the repulsion term goes
to zero. Also, the term due to the repulsion is bounded with a unique maximum
point. To find this point, note that

∂

∂‖ψ‖
(
‖ψ‖ exp

(− 1
2‖ψ‖2

r2
s

))
= exp

(− 1
2‖ψ‖2

r2
s

)
− ‖ψ‖2

r2
s

exp
(− 1

2‖ψ‖2

r2
s

)

The maximum point occurs at a point such that

1 − ‖ψ‖2

r2
s

= 0

or when ‖ψ‖ = rs. Hence, we have

‖gi(E)‖ ≤ 2ka (Dp + Dv) + 2kfDf + kr

N∑
j=1,j �=i

exp
(
−1

2

)
rs

= 2ka (Dp + Dv) + 2kfDf + krrs(N − 1) exp
(
−1

2

)
= β

If you substitute this value for β into Equation (18.15), you get the set Ωb that
ultimately all the trajectories will end up in.

Cohesive Social Foraging with No Noise: Optimization Perspective

When there is no noise, tighter bounds and stronger results can be obtained.
First, we can eliminate the effect of P via λmax(P ) on the bound for the no-noise
case. Assume there is no sensor noise so Dp = Dv = Df = 0. Choose

ui = −Mikaei
p − Mikaei

v − Mikvvi

+Mikr

(
B�P−1B

) N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)
−MikfR (18.17)

where P = P�, P > 0 was defined earlier, so P−1 exists. Also

V̇i ≤ −λmin(Q)
∥∥Ei
∥∥2
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+ 2Ei�PB

⎛
⎝krB

�P−1B
N∑

j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)⎞⎠
= −λmin(Q)

∥∥Ei
∥∥2 + 2krE

i�B

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
ei

p − ej
p

)
≤ −λmin(Q)

∥∥Ei
∥∥2 + 2kr

∥∥Ei
∥∥ (N − 1) exp

(
−1

2

)
rs

So V̇i < 0 if
∥∥Ei
∥∥ > 2kr(N−1)rs

λmin(Q) exp
(− 1

2

)
. Let

Ω′
b =
{

E :
∥∥Ei
∥∥ ≤ 2krrs(N − 1)

λmin(Q)
exp
(
−1

2

)
, i = 1, 2, . . . , N

}

Next, note that in the set Ωb, we have bounded ei
p and ei

v but we are not
guaranteed that ei

v → 0 for any i. Achieving ei
v → 0 for all i would be a desirable

property, since this represents that vi = v̄ for all i so that the group will all
move cohesively in the same direction. To study this, consider Ω′

b, and consider
a Lyapunov function V o(E) =

∑N
i=1 V o

i

(
Ei
)

with

V o
i

(
Ei
)

=
1
2
kaei

p

�
ei

p +
1
2
ei

v

�
ei

v + krr
2
s

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)

Note that this Lyapunov function satisfies V o
i

(
Ei
) ≥ 0. You should view the

objective of the agents as being that of minimizing this Lyapunov function;
they try to minimize the distance to the center of the swarm, match the average
velocity of the group, and minimize the repulsion effect (to do that, the agents
move away from each other). We have

∇ei
p
V o

i = kaei
p − kr

N∑
j=1,j �=i

exp

(
− 1

2‖ei
p − ej

p‖2

r2
s

)(
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p − ej
p

)
∇ei

v
V o

i = ei
v

so
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i =

(∇V o
i

(
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))�

Ėi
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p
�
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v − kr

N∑
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p‖2
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s
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)�
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v

�
⎛
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v − kvei

v + kr

N∑
j=1,j �=i
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(
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)(
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= − (1 + kv) ei

v

�
ei

v
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Hence,

V̇ o = − (1 + kv)
N∑

i=1

‖ei
v‖2 ≤ 0

on E ∈ Ω for a compact set Ω. Choose Ω so it is positively invariant, which is
When noise is not
present, ultimately the
velocity of all agents
becomes the same and
the swarm moves
directly down the
resource profile.

clearly possible, and so Ωe ∈ Ω where

Ωe = {E : V̇ o(E) = 0} = {E : ei
v = 0, i = 1, 2, . . . , N}

From LaSalle’s Invariance Principle, we know that if E(0) ∈ Ω then E(t) will
converge to the largest invariant subset of Ωe. Hence,

ei
v(t) → 0

as t → ∞. When R = 0 (no resource profile effect), v̄(t) → 0 and hence vi(t) → 0
as t → ∞ for all i (i.e., ultimately no oscillations in the average velocity). If
R �= 0, then ˙̄v = −kvv̄ − kfR and v̄(t) → −kf

kv
R as t → ∞, and thus, vi(t) →

−kf

kv
R for all i as t → ∞, i.e, the group follows the profile. These results help

to highlight the effects of the noise. The noise makes it so that the swarm may
not follow the profile as well (but makes following it possible when it may not
be possible for a single individual), and it destroys tight cohesion characterized
by getting ei

v(t) → 0. Next, we will study additional characteristics of swarms
by analyzing the results of this and the previous sections in more detail.

18.4.4 Cohesion Characteristics and Swarm Dynamics

Here, we will study the effects of various parameters on cohesion characteristics
and then provide a simulation to provide insight into swarm dynamics, especially
transient behavior. Suppose that ui is given by Equation (18.6).

Effects of Parameters on Swarm Size

The size of Ωb in Equation (18.15), which we denote by |Ωb|, is directly a function
of several known parameters. Consider the following cases:

• No sensing errors: If there are no sensing errors, i.e., Dp = Dv = Df = 0,
Attraction gains should
be set high to get tight
swarm cohesion, but not
too high or the attraction
will amplify the noise
and swarm compactness
can degrade.

and if Q = kaI, we obtain

Ωb =
{

E :
∥∥Ei
∥∥ ≤ 2krrs(N − 1)

ka
λmax(P ) exp

(
−1

2

)
, i = 1, 2, . . . , N

}

If N , kr, and rs are fixed, then if ka increases from zero, we get λmax(P )
ka

→
1 from above and we get a decrease in |Ωb|, but only up to a certain point.

• Sensing errors: There are several characteristics of interest:

– Noise cancellations: In the special situation when di
p = dj

p, di
v = dj

v,
and di

f = dj
f for all i and j, then di

p − d̄p = di
v − d̄v = di

f − d̄f for all
i and it is as if there is no error and |Ωb| is smaller.
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– Repel effects: For fixed values of N , ka, and kr if we increase rs, each
agent has a larger region from which it will repel its neighbors so |Ωb|
is larger. For fixed kr, ka, and rs, if we let N → ∞, then |Ωb| → ∞
as we expect due to the repulsion. (The bound is conservative since
it depends on the special case of all agents being aligned on a line so
there are N − 1 inter-agent distances that sum to make the bound
large.)

– Attraction can amplify noise: Let Ds = Dp + Dv and J quantify
the size of the set Ωb. Next, we study the special case of choosing
Q = kaI. Fix all values of the parameters except ka and Ds. A plot
of J versus ka and Ds is shown in Figure 18.14, where the locus of
points are those values of ka that minimize J for each given value
of Ds. This plot shows that if there is a set magnitude of the noise,
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Figure 18.14: Values of ka that minimize J for given values of noise magnitude
Ds.

then to get the best cohesiveness (smallest Ωb), ka should not be too
small (or it would not hold the group together), but also not too large
since then the noise is also amplified by the attraction gain and poor
cohesion results. Could you interpret the plot as a type of fitness
function, and then come to conclusions about the evolution of the
agent parameters?

• Swarm size N : In some situations, when N is very large, d̄p ≈ d̄v ≈ d̄f ≈ 0
and there is no biasing of sensing errors so that on average they are zero
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and this reduces the above bound on ‖gi(E)‖.
For additional analysis of swarm properties, see the “For Further Study” section
at the end of this part.

Swarm Dynamics: Individual and Group

Here, we will simply simulate a swarm for the no noise case in order to provide
some insights into the dynamics, especially the transient behavior. We will in
particular seek to study the individual motions and how they collectively move
as a group to achieve cohesion, and the dynamics of the motion of the group.
We use linear attraction, velocity damping, the Gaussian form for the repulsion
term, and the resource profile with the shape of a plane. The parameters for the
simulation are N = 50, ka = 1, kr = 10, r2

s = 0.1, kv = kf = 0.1, R = [1, 2, 3]�,
and ro = 0. Simulating for 10 sec. we get the agent trajectories in Figure 18.15.
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Figure 18.15: Agent trajectories in a swarm.

Notice that initially the agents move to achieve cohesion. By the end of
the simulation, the agents are moving at the same velocity and as a group,
with some constant inter-agent spacing between each pair of agents. Moreover,
due to the choice of initial conditions (actually random), the group achieves a
certain level of aggregation relatively quickly, then the group moves to follow
the foraging profile. Of course, some orientation towards following the profile is
achieved during the initial aggregation period, but in this simulation, significant
reorientation towards following the resource profile occurs after there is tight
aggregation.
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18.5 Design Example: Robot Swarms

This problem is an extension of the one in Section 6.2, where we sought to
develop a guidance algorithm for moving a robot from an initial position to
a goal position in a factory while avoiding collisions with obstacles. Here, we
consider one approach to guiding multiple robots through the same maze as was
studied there, using the swarm approach discussed in the last section.

18.5.1 Robot Swarm Formulation

A robot swarm is simply a group of robots that move in some cohesive fashion
in order to perform some task. Here, the task is simply to get the group to a
certain location in a factory, so that they can perform some activity together
there. In moving them from one location to another, the key challenge is to
have them all avoid certain obstacles that appear in their paths. Here, we use

Cooperative guidance
strategies based on
swarms are useful for
groups of robots.

the same maze as described in Section 6.2 with the same final goal position. We
use the same “obstacle function” defined there to represent the positions of the
obstacles and the same “goal function” to represent where we want the group
to go. To solve this problem, we view the combined obstacle/goal functions as
a cost function just as we did in the chapter on planning. Here, however, we
take the view that the group of robots is engaged in social foraging over the cost
function, which we think of as a nutrient profile. The obstacles are thought of as
regions with a noxious substance, and increasing amounts of food are obtained
by moving towards the goal position. We use a different model for the robot
from the one considered in Section 6.2. Here, we use the model of a swarm agent
from the last section with all the masses of the robots the same, at Mi = 1.

We assume that each vehicle knows its own velocity. Here, we will first
consider the case where each robot perfectly knows the swarm center and swarm
average velocity. For some types of robotic systems, this would require each
robot to know the positions and velocities of all the other robots so it can
compute the swarm center and average velocity, but for others there may be a
sensor which could directly sense these. We will also consider the case where
there is noise in sensing, of the type described in Design Problem 18.7, so that
each robot does not perfectly know the swarm center and average velocity.

18.5.2 Performance in Obstacle Avoidance and Noise Ef-
fects

Suppose that there are 30 robots in the swarm. Let kp = 1, kv = 0.1, kf = 0.1,
kr = 10, and r2

s = 1. We pick some random initial locations and velocities,
but within some fixed ranges. We pick w1 = 120 and w2 = 0.1 after some
tuning. Also, to keep the simulation simple, we use an Euler approximation
and simulate the swarm as a discrete-time system. For this, we use a sampling
period of 0.01 and simulate for 80 sec. Clearly, due to the use of a different form
of a “resource profile” and the discrete-time approach, the stability results of the
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previous section do not apply directly; however, the simulations will illustrate
that the basic ideas still do apply.

The noise-free case is shown in Figure 18.16. This shows the position tra-
jectories of the 30 robots in moving from an initial position to the point where
they are around the goal position. As time goes on, the robots slow down and
stop when they are near the goal position. If you study the trajectories you
will see that they successfully avoid the obstacles and still maintain a cohesive
group. The ultimate size of the group is set by the attraction and repulsion
parameters, and the shape of the goal (and obstacle) functions (e.g., if they
resulted in a very steep slope near the goal position, then the group of robots
would be packed tighter in their final position).
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Figure 18.16: Robot swarm, robot position trajectories.

Figure 18.17 shows what happens if the robots sense with noise of the type
discussed in Design Problem 18.7. Here, due to the sensing errors, there are
actually collisions with some of the obstacles by some of the robots (actually due
to noise in use of the obstacle and goal functions in the simulation). Moreover,
the positions and velocities of the robots oscillate near the goal position. Clearly,
noise can adversely affect cohesion and orderly operation of a group of robots.

18.5.3 Additional Robot Swarm Design Challenges

As outlined in Section 6.2.4, there are many additional challenges that can arise
in autonomous vehicle guidance, and these are compounded in the case where
we want to guide multiple autonomous robots. The challenges there included
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Figure 18.17: Robot swarm, robot position trajectories, noise case.

complex mazes that led to dead ends and circular loops, mobile obstacles, and
uncertainty. Dead ends and circular loops that one, or some subset, of the robots
get stuck in may be solved in the swarm case by having some robots that are
moving in the right direction “pull” them out of the problem (via appropriate
desire to stay grouped). However, it can also be that the ones that get stuck in
a dead end or circular loop, hold back the others that are headed in the right
direction. The problems with mobile obstacles are multiplied for the swarm
case, since now the whole group must avoid such obstacles. It may be easier
to avoid mobile obstacles if the robots cooperate by telling each other when
they sense a mobile obstacle, but the very existence of a swarm creates more
problems with mobile obstacles, since each robot in the group can be thought
of as a mobile obstacle to avoid (in the last section, we considered point-sized
vehicles and hence, avoided the whole issue of inter-robot collisions).

Uncertainty makes each of these issues more challenging, and the swarm can
create more problems with uncertainty. For instance, suppose that the group of
robots is connected via a communication network, with its “topology” specifying
which robots are connected. If this communication network is less than perfect
(e.g., via bandwidth constraints, delays, or topology changes), then clearly the
maintenance of cohesive robot swarm behavior will be even more challenging.
Some of these issues will be discussed in more detail in the “Challenge Problem”
in the next chapter.
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18.6 Exercises and Design Problems

Exercise 18.1 (E. coli Swarm Foraging):

(a) Illustrate for the simulations in the chapter the effects of changing
Nc and the parameters of the cell-to-cell attractant function. Ex-
plain how to make poor choices for these parameters (e.g,. ones that
result in swarming, but little optimization progress on the nutrient
concentration profile) and good choices (e.g., ones where cells pull
each other toward minima), and illustrate in each case the resulting
behavior of the algorithm.

(b) Suppose that you use Rosenbrock’s function in Equation (15.9) as
a cost function. Make appropriate algorithm parameter choices and
illustrate the performance of the algorithm for this function.

Exercise 18.2 (Foraging of Square-Shaped Bacteria):

(a) Based on the brief description the foraging behavior of square bac-
teria, develop an optimization algorithm that models its foraging
behavior. To do this, specify how each bacterium moves forward and
backward and changes directions. Ignore reproduction, elimination,
and dispersal. Write a simulation of the algorithm.

(b) Use the algorithm to perform optimization over the multiple-extremum
function in Figure 18.10. Show plots to illustrate the characteristics
of the algorithm.

Exercise 18.3 (ODE Model of Dynamic Labor Force Allocation for
Bees): In [89] the authors develop a nonlinear differential equation model
of the key functional aspects of dynamic labor force allocation of honey
bees and validate the model against T. Seeley and his colleagues’ earlier
experimental work (see [456]).

(a) Simulate this model, compare to Seeley’s results, and explain the key
aspects of the model and its properties.

(b) In what ways is the model inaccurate? What does it not represent?

(c) Can you modify the ODEs with some nonlinearities so that the sim-
ulations will fit Seeley’s data better?

Exercise 18.4 (Effects of Parameters on Swarm Dynamics): In this
problem, you will simulate the swarm in Section 18.4.4 for appropriate
parameter choices to illustrate different behaviors (this is a noise-free case).
Start with the parameter values given there and tune only the parameter
indicated in each part.

(a) Pick a value for ka that will result in a tighter packed ultimate swarm
(i.e., a smaller ultimate swarm size).
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(b) Pick a value for kr that will result in a more loosely packed ultimate
swarm (i.e., a larger ultimate swarm size).

(c) Repeat (b), but for the rs parameter.

(d) Repeat (a)–(c) but for the case where there is noise in sensing. Hint:
Simulate the noise by generating it as the output of a chaotic sys-
tem (e.g., via Duffing’s equation) so that it satisfies the smoothness
requirement on the sensing errors.

Exercise 18.5 (Hard Repulsion, Collision-Avoidance, and Swarm Dy-
namics): Replace the Gaussian-type repulsion term in Section 18.4 with
a repulsion term that will provide a “hard” constraint to avoid collisions
between agents. Add velocity damping, a foraging plane, and an appropri-
ate attraction term. Simulate the swarm and demonstrate via plots that
there are no collisions both during the transient and in the steady-state.
Investigate the effects of all parameters of the controller.

Design Problem 18.1 (Extensions to E. coli Swarm Foraging): Study
how to find the minimum of the function in Figure 18.10, but model,
code, and illustrate the performance and algorithmic characteristics of
the algorithm for the following cases.

(a) Change the nutrient concentration to represent consumption of nu-
trients.

(b) Model Brownian effects so that the bacteria cannot swim straight.

(c) Make the tumble and run lengths exponentially distributed random
variables consistent with what has been found in nature.

(d) Make run-length decisions based on the past 4 sec. of concentrations.

(e) Develop a fully asynchronous model.

(f) Allow a time-varying population size.

(g) A more biologically accurate model of the swarming behavior of cer-
tain bacteria is given in [544]. Simulate the partial differential equa-
tion model given there.

(h) Develop other criteria by which bacteria split. Add effects of conju-
gation and other evolutionary characteristics (e.g., evolve C(i), Ns,
and Nc).

Design Problem 18.2 (M. xanthus Swarm Foraging)�: Review the cur-
rent literature and develop a cellular automaton model of the foraging of
M. xanthus. Include the modeling of fruiting bodies and the full lifecycle
of the bacteria.

Design Problem 18.3 (Robot Swarms): In this problem, you will inves-
tigate aspects of the robot swarm problem studied in Section 18.5.
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(a) Explain via simulations, the effects of kp, kv, kr, and rs on the tran-
sient and ultimate (as t → ∞) swarm behavior (i.e., show in simula-
tion the effects of changing each of these parameters and, for example,
explain whether the swarm size (diameter) increases or decreases).

(b) Design a new control that is based on a “hard repel” and demonstrate
via simulations that you can design it so that there will be no inter-
robot collisions and no collisions with obstacles. This may require
retuning the parameters of the simulation.

(c) Repeat (a) and (b) except simulate the system as a continuous-time
system. Hint: This will require using the gradient of the cost function
that holds the goal and obstacle functions.

(d) Repeat (a), (b), and (c) but for the case where noise of the type
described in Design Problem 18.7 is used.

(e) Define a communication topology and an “intelligent” strategy (e.g.,
one that uses planning, learning, and/or attention) for each of the
robots to coordinate their actions to solve the problem. Simulate to
evaluate performance.

Design Problem 18.4 (Social Foraging Strategies for Indirect/Direct
Adaptive Control): In this problem, you will study the development
of indirect and direct adaptive controllers for the process control problem
studied in Sections 12.4 and 12.6, but where foraging algorithms are used
for the optimization method. First, read the part in the chapter on the
genetic adaptive control strategies in Section 16.5. Basically, you will
simply replace the online genetic algorithm with a foraging algorithm.
This changes how we view the operation of the algorithm. From a foraging
perspective, we view θi as the location of the ith forager in its environment.
In a foraging method, we will move the position of the forager θi so as to
minimize J(θi). The particular manner used to adjust the θi(k−1) to find
θi(k) will depend on the choice of the foraging algorithm steps (e.g., will it
involve swarming, or other communications between individuals that tell
each other when they are doing well?). In an indirect adaptive control
strategy, we view foraging as searching for good model information. If a
foraging strategy is used, we view θ(k) in Equation (16.2) as the forager
who has found the best model information. With a foraging strategy, we
could view the fixed-position members that were discussed in the chapter
as “information centers,” if the foragers were endowed with communication
capabilities. If such centers have good model information, they will tend
to attract foragers. Clearly, you can specify a direct adaptive control
strategy based on social foraging in a similar way to how we did for direct
genetic adaptive control.

Next, we show how to develop an indirect adaptive controller based on
foraging for the tank problem. The problem given after that will focus on
various extensions of the method.
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Our forager’s position in one dimension is given by θα and in the other di-
mension by θβ so our ith forager’s position is θi = [θi

α, θi
β ]�, i = 1, 2, . . . , S.

We choose S = 10 as the population size. The foraging strategy we em-
ploy is the one from Section 18.3, which is based on E. coli chemotaxis,
but without swarming, elimination-dispersal, and reproduction. Hence,
we only use the chemotactic hill-climbing strategy to adjust the parame-
ters. At each time step, we take one foraging step, which for our foraging
strategy means that we use either one tumble-tumble step or part of a
“run.” In this way, the foraging occurs while the control system operates
with foraging (searching) for parameters occurring at each time step. For
instance, if over one time step the cost did not decrease for an individual,
then there is a tumble, and to do this, we generate a random direction
and update the parameters (location of the forager) in that direction. If,
however, the cost improved from the last step, then another step in the
same direction taken last time is made (provided not too many steps in
that direction have already been made). In this case, the forager is on a
“run” in a good direction, down the cost function.

The step size C(i, k) is set to be 0.05 for all bacteria for all times. The
maximum number of steps along a good direction is Ns = 4, and θi

α(0) =
2, θi

β(0) = 0.5, i = 1, 2, . . . , S. We use the cost evaluation procedure
with Js(θi(k − 1), N) in Equation (16.3) with N = 100. To keep things
simple, we will simply use θα(k) = θα(0) and θβ(k) = θβ(0) for k =
1, 2, . . . , N + 1 (i.e., we wait till we have computed all the values needed
for the cost evaluation before we start the adaptation procedure). Clearly,
other initialization choices are possible. For instance, in the beginning you
could use an expanding length window of data to evaluate the quality of
the estimators.

The performance of the closed-loop system is illustrated in Figure 18.18,
where we see that, after an initial transient period that results in part due
to the poor initialization of estimators and the controller start-up method,
we get reasonably good tracking of the reference input. Next, Figure 18.19
shows that the estimate of the tank liquid level is quite good, even though
at times the individual estimates of the nonlinearities are not.

To further illustrate some properties of the adaptive controller, see Fig-
ure 18.20 where we plot the cost of the best individual in the population
(the one that leads to the specification of the controller) and the index i of
the best individual in the population for every time step. First, note that
early in the simulation, cost is zero due to how we start up the controller.
Then, when we start the controller at t = 10 sec., the cost jumps to a rela-
tively high value; this represents that we have a poor initialization for the
population. After some time, however, the foraging strategy is somewhat
successful at adjusting the population members so that the estimation er-
ror decreases and hence, the best cost decreases. Note, however, that the
cost does not always decrease over time. It can also increase and one cause
of this can be the change in the reference input. Next, note that in the
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bottom plot we show the index of the best individual in the population at
each step. Notice that there are some short stretches of time where the
best individual does not change; however, there is a significant amount of
switching between different members of the population that provide better
estimates at different times.
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Figure 18.20: Indirect adaptive controller based on foraging, best cost, and
index of best individual in the population.

(a) Develop an indirect adaptive controller for the process control prob-
lem using a foraging strategy for parameter adjustments. You may
build your approach above where an E. coli chemotactic foraging
strategy was simulated, but you must add some additional feature to
the foraging algorithm that represents a situation in nature, where
foragers can communicate to each other how well they are doing and
subsequently, use that information to improve their foraging success.
Regardless of which approach you use, verify the operation of your
controller in the same manner as was done above. Study the effect of
the choice of the reference input on the ability of the approximator
mappings to match the underlying unknown nonlinearities. Provide
plots to illustrate the quality of the matching as was done in the
chapter.

(b) Develop a direct adaptive controller for the process control problem
that is based on a foraging strategy that includes some type of com-
munication of information between foragers, and subsequent use of
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that information to improve foraging success. Regardless of which
foraging approach you use, verify the operation of your controller in
the same manner as was done above. Study the effect of the choice
of the reference input on the ability of the approximator mapping
to match the “ideal” controller nonlinearity discussed in the chapter.
Provide plots to illustrate the quality of the matching as was done in
the chapter.

(c) Compare the performance of the indirect and direct methods and
discuss. Evaluate the value of using fixed portions of the popula-
tion of models or controllers. Study the effects of good population
initialization.

Design Problem 18.5 (Foraging in Colombia)�: This problem continues
with Design Problem 14.2. Suppose that you have a group of foragers
that find more food at higher elevations. Design a foraging algorithm that
successfully finds the highest point on the topographical map. Compare
its performance to that of the genetic algorithm. Next, suppose that you
have a forager who is searching for coffee beans in Colombia. Formulate
a foraging landscape and develop a simulation that illustrates the success
of foragers across that landscape.

Design Problem 18.6 (Foraging for Approximator Tuning)�: We can
think of learning as a process of foraging for information. Can a foraging
algorithm be used to tune an approximator structure? Is this a good
idea? Why or why not? It is generally not possible to compute a gradient
with respect to a structure change in an approximator (e.g., the change
in the output with respect to the change in the number of neurons in a
hidden layer). Can a foraging algorithm be used to tune the structure of
an approximator? How? Develop an example and method, and test its
performance relative to standard ones.

Design Problem 18.7 (Stable Social Foraging Swarms)�: Use the same
model as in the chapter for a swarm of agents. Suppose that, however,
‖di

p‖ ≤ Dp1

∥∥Ei
∥∥ + Dp2 , ‖di

v‖ ≤ Dv1

∥∥Ei
∥∥ + Dv2 , and ‖di

f‖ ≤ Df where
Dp1 , Dp2 , Dv1 and Dv2 are known positive constants.

(a) Find conditions under which you are guaranteed to have the trajec-
tories of the swarm uniformly ultimately bounded.

(b) Find bounds on the size of the trajectories of the error dynamics in
terms of the parameters of the problem.

(c) Simulate the noise as the output of a chaotic system (e.g., via Duff-
ing’s equation), but one which still satisfies the above bounds. Study
in simulation the effects of the parameters of the problem (e.g., ka,
kr, and the noise bounds). Show simulations of the agent trajectories
to illustrate the transient behavior of the swarm. To see how to do
this for a discrete-time approximation to the continuous-time system,
see Section 18.5.2.
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Design Problem 18.8 (Modeling and Simulation of Honey Bee Clus-
ters and In-Transit Swarms)�: Research the literature on how honey
bees form clusters when a colony splits and then swarm together to a new
nest site. Using the modeling ideas in this chapter, produce an ordinary
differential equation model of both the clustering (aggregation process)
and the in-transit swarm. Try to validate your model against the experi-
mental results found in the literature.

Design Problem 18.9 (Predation and Aggregation)�: Read the paper
entitled “Geometry for the Selfish Herd” by W.D. Hamilton in [240] that
studies why an organism that is trying to protect itself will at times ag-
gregate (group closely) with conspecifics (it also discusses other reasons
for aggregation).

(a) Develop and simulate “jumping rules” (e.g., methods to generate
Figure 1 in [240]). Characterize and analyze emergent aggregation
behaviors by showing differences in aggregation behavior for different
choices of rules. You could consider the case where all the “frogs”
have the same rules, and the case where there are nonhomogeneous
rules.

(b) Consider Hamilton’s statement on p. 296 of [240]: “I know of no
rule of jumping that can prevent them from aggregating.” Why does
Hamilton say this? Can you find a “rule” like the one he is talking
about that can result in them not aggregating?

(c) Model and simulate a two-dimensional case, using some of the ideas
in Section 3 of [240].

Design Problem 18.10 (Stable Dynamic Sphere Packing)�: There is
a problem found in physics and biology of trying to pack objects on the
surface of a sphere.

(a) Suppose that you seek to pack spherical swarm agents on a sphere.
Suppose the agents are modeled as in the chapter via a double in-
tegrator but that a type of “hard-repel” term is used that makes
them into spherical agents. Define the environment to be a sphere
with the objective of each agent to be on the surface of the sphere
by touching it at one point. Define appropriate attract-repel terms
between agents so that only local interactions are allowed (i.e., so
that every agent cannot be influenced by every other one, but only
by its “neighbors”). Simulate the dynamic formation of packing on
the sphere.

(b) Next, perhaps with the help of the literature in mathematics and
physics, characterize the equilibria that represent the sphere being
packed and show in simulation that these equilibria can be achieved.
This is not a trivial problem. Are there equilibria that correspond to
the agents moving about on the sphere?
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(c) Provide conditions for Lyapunov stability or asymptotic stability of
the equilibria specified in (b).

(d) Repeat (a)–(c) but for packing different shapes (e.g., an ellipsoid or
a cube).

Design Problem 18.11 (Distributed Synchronization—From Fireflies
to Simulations and Circuits)�: In this problem, you will investigate
a biological phenomenon, simulate it, and then implement a circuit real-
ization of it.

(a) Some types of fireflies exhibit a property, where they can synchronize
their flashing. Investigate the literature on this and write a descrip-
tion of this phenomenon. Start with [496].

(b) Build a network of electronic fireflies according to the design in [194].
For this, build a line topology of at least four coupled oscillators.

(c) There are mathematical models of coupled nonlinear oscillators that
can be used to represent the distributed sychronization. Study the
one in [495], which has

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi)

for j = 1, 2, . . . , N , where θi is the phase of oscillator i, ωi is its
natural frequency, and K ≥ 0 is a coupling strength. Let N = 10,
the ωi = 1, and K = 1. Develop a simulation of the N coupled
oscillators and simulate for 20 sec. Plot the phase angles.

(d) Use the ideas in [495] to pick parameters and study “phase transi-
tions” by illustrating these via a series of simulations.

(e) Explain the relationship between distributed synchronization and
swarming (e.g., what is the “attraction/repulsion” function in the
above distributed synchronization model?). Can you find conditions
under which the distributed synchronization system is stable? What
type of stability property does it possess?

(f) Model the system that you implemented in (b). Characterize and
analyze the stability properties of the model. Compare to what is
found in actual experiments.



Chapter 19

Competitive and Intelligent
Foraging
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Foraging sometimes involves simply going out and finding nutrients, but
often a key aspect of foraging is competing for resources with other foragers.
This can involve trying to find resources before another forager. In other cases,
it could involve issues in fighting other animals for a resource, or perhaps one
forager is the nutrient source for another forager and then there may be issues of
pursuit and evasion. Clearly, as for the case of noncompetitive foraging, many
aspects of the environment affect competitive foraging behavior and as always,
evolution plays a fundamental role in foraging strategy design.

In this chapter, characteristics of competitive and cooperative foraging in na-
ture are modeled using a game-theoretic perspective. The basic definitions and
rules in game theory are introduced by showing how to set up and solve static
finite two-player games (matrix games) for security and saddle point strategies.
Then, it is shown how to define and solve bimatrix and infinite competitive
(adversarial) games for Nash equilibria, minimax solutions, and Stackelberg so-
lutions. Pareto-optimal solutions for cooperative games are discussed to help
clarify the relationships between competitive and cooperative games. We apply
the methods to the study of adversarial foraging games that involve resource
competition, and then resource allocation when there is cooperation among play-
ers and hence, social foraging. Next, we define a model for a dynamic game,
and discuss aspects of strategies and the information space.

This chapter complements the last one. We treat cooperative foraging here,
but only to show another way to view social foraging, and with the intent of
contrasting it with competitive foraging. This chapter is also important in that
each forager views all the other foragers as part of its environment (plant) and
tries to take actions (generate control inputs) in order to succeed. The other
foragers are not simply treated as uncertainty (a disturbance). Certain aspects
of the other foragers are modeled (e.g., the assumption that they are rational
and hence, will try to maximize their own returns).

In the last section of this chapter, we introduce “intelligent” foraging which
is one example of how other aspects of intelligence affect foraging (e.g., planning,
attention, and learning). The last section is meant to challenge you to think
about how to integrate all the methods of this book, and indeed, its main
objective is to provide a “challenge problem” that you can help define and then
solve (e.g., as a final project in a class).

19.1 Competition and Fighting in Nature

Competition for resources that are critical for survival affects many aspects of
animal behavior and evolution. Some animals use poisoning for self-defense.
Some evolve armor or grow spines. Some fight other animals for food resources

Competition encountered
in an environment
affects organism
evolution.

or mates. Others simply seek to eliminate their competitors. Some recruit
predators of their predators to obtain a defense. Some guard a resource-rich
territory. Complex behaviors of groups of animals have evolved for self-defense.
For instance, when a predator approaches a prey group, the normal response of
the group of prey is to tighten and this can have an effect of maximizing mes-
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sage transmission speed by increasing an ability to detect low strength signals.
Essentially, the size of the group of organisms can change based on actions of
predators, so that a group-level distributed yet coordinated defensive action can
be taken. There is a vast diversity of behaviors that have evolved to ensure that
animals get the resources they need. Here, we will model and analyze some of
these in a game-theoretic framework and hence, will refer to them as “foraging
games.”

19.1.1 Foraging Games

Here, we will model certain aspects of both competitive and cooperative be-
havior via a game theoretic approach. We are not concerned here with the
dynamics and small time-scale strategies of one-on-one “battles” between two
animals (e.g., how a lion may capture, handle, kill, and eat an antelope). Our

Limitations in
availability of resources
naturally leads to
competition in foraging.

focus will be on foraging for resources via the study of “foraging games.” What
is a foraging game? It is a game where players (animals, humans) seek and con-
sume (capture, occupy) “resources” (e.g., food, prey, territory, shelter, mates).
In a foraging game, the “players” from classical game theory are referred to as
“foragers.” The foragers in such games are typically mobile and decide “where
to go and what to do” (e.g., go to a certain location and consume a certain
resource type). There are many types of foraging games, which can arise in
nature and we outline some characteristics of these as follows:

• Environment and resource characteristics: Different types of games arise
depending on characteristics of the environment, resources, and foragers.
Some resources may be higher priority than others and these priorities may
depend on the forager and its current needs (e.g., its diet). Some resources
are static in the sense that they do not move, while others may be able
to move quickly. Other resources are only available for a limited amount
of time, and then they naturally dissipate. The foraging environment
(where the forager forages) affects resource availability and likelihood of
the location of resources.

• Forager characteristics: Forager capabilities significantly affect the char-
acteristics of the game. For example, how fast a forager can move, how
efficient it can move in different environments, its consumption capabili-
ties, fighting capabilities, and cognitive capabilities (e.g., memory, learn-
ing, and reasoning) all affect its ability to forage successfully. Moreover,
foraging games are sometimes dominated by whether there is competition

Foragers may compete
for food, and one forager
may be food (prey) for
the other.

for resources between foragers, or cooperation between multiple foragers
to obtain resources (“social foraging”). Such cooperation requires com-
munication or use of shared information in some way and hence, demands
that a forager has certain capabilities.

• Competitive foraging: A competitive foraging game is one in which the
foragers compete with each other in an adversarial relationship in order
to obtain resources (e.g., if one forager gets the resource, it is no longer
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available for the other forager). In the case where one forager is the
predator and the other is its prey, we have a special foraging game that
may be a “pursuit evasion game.” We can then think of one forager as
being a resource for another and one tries to capture or consume the other.
It can also be the case that each forager is a resource for the other. Then,
each tries to achieve a competitive advantage to capture and consume the
other.

• Cooperative foraging is social foraging: A cooperative foraging game is one
where foragers may share information to try to optimize resource acquisi-
tion for the group (or variance reduction in resource acquisition rates); the
idea is that by working together, every forager does better. Cooperative
foraging is the essence of “social foraging.” A key concept in such coopera-
tion is the “allocation” (distribution of a pattern) of activities that results
in an allocation of resources to each group member (forager) to ensure
that the group does as good as possible. This may involve, at times, sacri-

Cooperative and
competitive foraging
coexist in some foraging
scenarios.

fices by one group member to increase the group’s performance; however,
over the long run it should be better, perhaps in an evolutionary sense,
for the group to cooperate rather than compete. A group of coopera-
tive foragers may compete with another group of cooperative foragers so
that both elements of cooperative and competitive foraging are present.
Indeed, there are often some elements of competition even in groups of
cooperative foragers.

19.1.2 Intelligent Foragers

Attention, learning, and planning may help an individual forager increase energy
intake per unit time spent foraging. Paying attention to the proper aspects of an
environment can help the forager find nutrients and avoid predators. Learning

“Intelligent” foraging
involves the use of
higher-level cognitive
functions such as
planning, attention, and
learning.

helps you not to go back to places where you cannot find food (since it may
not be likely that some food moved there). It helps the organism to remember
where it has not yet gone for food (related to attention), where a past food
source is, or what types of environmental “signs” typically indicate the presence
of a good food source. Such learned information can be used by a planning
system to further improve foraging performance. Planning involves reasoning
over learned information, setting priorities, and optimizing choices locally (e.g.,
it allows the organism to actually perform an optimization of E/T over a short
period of time, using less-than-certain learned information). Via learning and
planning together, the forager can directly try to make locally optimal decisions,
at least for the learned information.

Another relevant topic from planning theory, is the concept of “retrospec-
tive” and “prospective” coding, where it is thought that we recall where we
have been and know where we have not been and use this to plan our activities.
There is some evidence that when we begin planning, we use a retrospective
encoding and then at some point, switch to a prospective encoding since then,
we do not have to hold as much in short-term memory. Basically, early in the
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process, we may be taking actions that help us to learn about the environment,
while later, after we have learned a significant amount about the environment, it
may be best to use the learned information to decide what actions to take, and
to take actions that may not be directed towards learning more, but towards
other objectives.

Some learning theorists have thought of learning as foraging for information
that is then stored in “cognitive maps.” For example, they may think of operant
conditioning as foraging for reinforcement. Particularly relevant is the concept of
“sign tracking” that has been used by learning theorists to explain foraging, and
this approach motivates the use of smooth cost functions that represent where
food is, and where risks are. The theory of “behavioral regulation” proposes
that there are homeostatic mechanisms for behavior, where an organism tries
to choose an optimal distribution of activities for survival. It is thought that
if the balance of activities is upset, behavior is assumed to change to correct
the deviation from the homeostatic level (this is the “behavioral bliss point
approach”).

19.1.3 Evolution and Foraging

Foraging strategies are fine-tuned by evolution since more successful foragers
tend to have more offspring that possess aspects of their successful foraging
strategies. In a sense, evolution seeks to perform a robust optimization of a
forager’s strategy in the face of the following constraints:

Foraging strategies
evolve, and there is a
complex dynamic
interaction between
environmental and
forager changes.

• Environment and resource characteristics (e.g., a typical environment where
the forager lives, along with a typical spread of the resources).

• Forager capabilities (e.g., motor and cognitive).

The environment and resources can change. Indeed, in a predator-prey situa-
tion, both the predator and the prey are evolving and hence, “coevolution” can
occur, which in some cases can be thought of as a type of “arms race.”

Anyone familiar with evolutionary optimization will quickly see how it can
be used for robust foraging strategy design. Hence, we will not concern our-
selves with that here. Another area of relevant study from theoretical biology
is “evolutionary game theory.” See the “For Further Study” section at the end
of this part.

19.2 Introduction to Game Theory

In this section, we introduce basic definitions for concepts that form the foun-
dation for the game-theoretic view of competition and cooperation, and show
how to compute several types of player strategies.
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19.2.1 Strategies and Information for Decisions

We start by defining a simple “matrix game” and explaining how it is played.
This leads us to define strategies and a discussion on what information is used
in making decisions.

Players, Rules, and Payoffs

Suppose that we have two “players” (“decision-makers”) that we denote by P1

and P2. Let θ1 and θ2 denote the “decision variables” of the two players, respec-
tively. Let J1 and J2 denote the cost functions of the players (i.e., what they
gain or lose for a given set of decisions). The cost J1 could represent, for exam-
ple, a payment in cash from P1 to P2. In this case P1 (P2) wants to minimize
(maximize) J1. The problem will be, however, that P1 (P2) cannot unilaterally
minimize (maximize) the cost. Each player’s losses and gains are also influenced
by the actions of the other player; that is the essence of a competitive game.

If
J1(θ1, θ2) + J2(θ1, θ2) = 0

for all θ1 and θ2, then we have a “zero sum game” so that gains of one player
are losses of the other and they are in an adversarial relationship. If J1(θ1, θ2)+
J2(θ1, θ2) = c for some known constant c, then we can simply redefine the cost
functions to incorporate the value of c to obtain a zero sum game.

To keep things simple, initially suppose that

θ1 ∈ {1, 2, . . . , D1}
and

θ2 ∈ {1, 2, . . . , D2}
so that there are only a finite number of D1 decisions for P1 and D2 decisions
for P2. For simplicity, we will refer to the different decisions (which sometimes
we will call “strategies”) as θ1 = i and θ2 = j for P1 and P2, respectively. We
then denote the costs by J1(i, j) and J2(i, j).

Here, we will often think of J1(i, j) as being a cash payoff (clearly, many
other interpretations for cost are possible) of P1 to P2 given the decisions i
and j by P1 and P2, respectively. In the zero sum case J1(i, j) = −J2(i, j)
(player 2 gets all the payoff of player 1 and vice versa) and if J1(i, j) ≤ 0,
this represents that player 2 pays player 1 if P1 uses a decision i and P2 uses
a decision j. In the two-player case, it is sometimes convenient to represent
the payoff functions J1(i, j) and J2(i, j) as D1 × D2 matrices, J ij

1 and J ij
2 ,

Each player tries to
maximize its own gains
in a competitive game,
possibly at the expense
of the other player.

respectively (then J1(i, j) = J ij
1 , an element of the matrix, for all i and j). This

will be especially useful below when we consider “matrix games” where J ij
1 and

J ij
2 will be called “payoff matrices.”

Suppose that the game is only played once (i.e., P1 and P2 only make de-
cisions once). The players make decisions with full information about payoffs,
they make their decisions simultaneously, and are “rational.” Assuming that
P1 and P2 are “rational” players, means that P1 tries to minimize J1(i, j) and
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P2 tries to maximize it. Particular values of θ1 and θ2 are called “actions.” A
“strategy” is an established way of acting that depends on the possible actions of
another player (e.g., if the player’s decisions depended on gathered information
about the decision process).

Generally, players are concerned with what strategies to use in playing a
game. A pair of decision strategies for a two-player finite game is denoted by
(i, j). The “outcome” of the game is J ij

1 . An “optimal” strategy, or simply one
that we choose from a fixed set of possibilities, will be something that will be
denoted by (i∗, j∗).

Security Strategies, Saddle Point Strategies, and Information

Let D1 = 5 and D2 = 3. Suppose that

J ij
1 =

⎡
⎢⎢⎢⎢⎣

−3 4 4
0 −5 2

−2 1 −4
2 3 −4
2 −2 −5

⎤
⎥⎥⎥⎥⎦ (19.1)

Note that rows of this matrix correspond to P1 decisions and columns correspond
to P2 decisions.

In a “security strategy,” a player makes decisions to secure losses against
whatever the other player might do (i.e., it minimizes its maximum possible
loss). Hence, P1 picks row i∗ such that any value in any column of this row is

For a security strategy, a
player chooses so as to
minimize its maximum
loss.

no bigger than the largest value of any other row i �= i∗ (i.e., pick the row that
minimizes the maximum size column value). For low values of D1 and D2, it is
possible to specify the solution by inspection of the matrix in Equation (19.1)
above. For larger values of m or n, you may want to write a computer program
to solve for the security strategy.

For Equation (19.1), the list of maximum values for each row is

4
2
1
3
2

and so the security strategy is for P1 to pick i∗ = 3 to minimize what it has to
pay to P2. The “loss ceiling” (i.e., the most it can lose) is 1, which is less than
the other possible losses, and this is called the “security level” of P1. Similarly,
P2 can adopt a security strategy by choosing the column j∗ whose row values
are smaller than the smallest value found for another column j �= j∗. In this
case, the list of minimum values is

−3 −5 −5

so that the security strategy for P2 is j∗ = 1 and P2 secures gains at the “gain
floor” (its security level) of −3 (i.e., he pays no more than 3). Clearly the
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security level of P1 is never below the security level of P2. The “outcome” of
the game, which in this case is

J i∗j∗
1 = J31

1 = −2

will lie between the two security levels.
In the special case where the security levels of the two players are the same,

the security strategies of the two players are in “equilibrium” with each other
since they are “optimal” with respect to each other; in this case, they are called
“saddle point strategies.” A pair of strategies is said to be in a “saddle point
equilibrium” if unilateral deviations by one player from its strategy will not
benefit that player. In general, for a D1 ×D2 matrix game if (i∗, j∗) is the pair
of chosen strategies, and if

J i∗j
1 ≤ J i∗j∗

1 ≤ J ij∗
1

for all i ∈ {1, 2, . . . , D1} and j ∈ {1, 2, . . . , D2}, then (i∗, j∗) constitutes a saddle
point equilibrium. The value of J i∗j∗

1 is called the “saddle point value.” Is there
a saddle point equilibrium for the above example matrix game?

Next, we discuss the issue of the quantity and type of information that is
used by a player for its strategy, but only via our above simple example for
security strategies. Note that if in the example above we changed the game so

Strategies depend
critically on what
information is available
to a player.

that P1 plays first, then P2, with P2 knowing what P1 had chosen, then the
outcome will be different. We can actually deduce the outcome of the game by
simple inspection of the matrix in Equation (19.1). First, note that it makes
sense for P1 to use a security strategy, since we assume that it does not know
anything about the decision tendencies of P2. This gives i∗ = 3 just like above.
If P2 is informed of this choice, then it would pick j∗ = 2 to get a gain of 1,
which is more than what it got with a security strategy. This simple example
shows that the best strategy to use depends on what information is available to
the player, and when it is available. This is a fundamental principle that drives
the design of strategies. Games of the type where players can use information
from the process of the evolving game are called “dynamic” games, whereas the
above example is called a “static game,” since only a priori information is used
to play it.

The development of strategies above assumes that each player is rational
and that each player knows this about the other player. If we assume that
a probability distribution is known by one player P1 about the other player’s
decisions (i.e., that it knows the probability that it will make each decision),
then we can design a so-called “mixed strategy” (as opposed to the cases above,
which are sometimes called “pure strategies”), where the decisions each player
makes are based on the outcome of random events (i.e., a derived probability
distribution on P1 decisions, given the information on P2). For example, the
design of the strategy of P1 could involve choosing a probability distribution on
its decisions so that it would be most likely to minimize what it pays to P2.

The security strategy concept extends to having more than two players and
then results in a multidimensional matrix game. For instance, we could imagine
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adding a third player to the above game (which we could call “nature”) that
makes random decisions, and then develop security strategies for P1 and P2.
The above example, and several others in this section, are “noncooperative
games,” where there is a clear adversarial relationship between the players (e.g.,
one’s losses are the other’s gains). There are also games where there is not a
diametrically opposed relationship between the two players or where they are
truly “cooperative” and try to help each other achieve their goals (so long as they
also do well). Some such games are called “cooperative games” and typically,
they involve sharing information so that each gains as much as possible. These
will be discussed below when we discuss the Pareto-optimal solution.

Extensive Forms and Decision Trees

The matrix form of a game is called its “normal form.” The normal form does
not depict a complete representation of a game, for example, if there are repeated
steps of play where players use different information from past player decisions.
An “extensive form” of a game involves creating a type of labeled “decision tree”
to represent the game. We discuss the extensive form via a simple example.

The game we consider is depicted in Figure 19.1. Figure 19.1(a) shows
the extensive form representation for the matrix game in Equation (19.1), so
consider it first. The game starts at the “top” of the (upside down) tree and
evolves to the tip of one of its branches by a sequence of decisions starting
with P1 in “level 1” of decision-making and then P2 at level 2. In level 1, P1

chooses among its five alternatives, each represented with a separate labeled
branch, and in level 2, P2 chooses among its three alternatives, represented by
the three labeled branches. The outcomes for the various decisions are shown
at the tips of the branches. For example, in the security strategy case, we
had (i∗, j∗) = (3, 1) so we get an outcome of −2 as shown in Figure 19.1(a).
The dashed line encirclement of the “decision nodes” at level 2 depicts the
“information set” of P2. It represents that in Figure 19.1(a), P2 does not know
which branch (decision) P1 has chosen. This is then equivalent to the two players
simultaneously making their decisions (how we interpreted the matrix game).

Figure 19.1(b) shows the case discussed in the last subsection where P1 makes
the decision first, then P2 makes its decision, knowing the choice of P1. The
information sets in this case are again shown with the dashed encirclements
of the decision nodes at level 2. As we noted above, due to the change in
available information, there is a change in strategy and hence, outcome. The
dashed encirclements clearly represent the inherent difference in the two games
in Figure 19.1, whereas the normal form representation does not. This is one
more reason why the extensive form is a convenient and intuitive representation
for games, at least finite games without too many decision alternatives so that
the trees are not too “bushy.”

Finally, note that in general, decision trees may have many levels (multiple
decisions), for example, with P1 and P2 taking turns so that at odd levels, P1

would act and at even levels, P2 would act. Moreover, it should be clear how to
make an extensive form for the case where there are more than two players.
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Figure 19.1: Example of an extensive representation, in this case in (a) for the
matrix game in Equation (19.1) and in (b) for the same payoff matrix, but when
P1 chooses first and then P2 knows its decision before choosing.

Decisions Versus Strategies

Figure 19.1 allows us to define the concept of a “strategy” relative to a “deci-
sion” more clearly. Suppose that we let Gi(·) denote the strategy for player i,
where “·” is the information that is available for decision-making. Note that
the security strategies for P1 and P2 in Figure 19.1(a) are simply

G1 = 3, G2 = 1

(Note that there is no argument for the Gi functions, since there is no in-
formation from the decision-making process, in addition to available a priori
information that is used to make the choices.)

The player strategies for the game in Figure 19.1(b) are G1 = 3 (the security
strategy), and the strategy of P2 is what we might call “pick the best payoff
given the decision of P1.” The representation for this strategy could be

G2(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if i = 1
3 if i = 2
2 if i = 3
2 if i = 4
1 if i = 5

(Of course, we could use G2(1) = 3 also, since it results in the same payoff to
P2.) Note that since there is information used from the decision-making process,
particularly the decision of P1 at level 1, the strategy is defined in terms of what
decision i that P1 might use.

The definition of a strategy is in general quite different from the meaning
of a “decision” (action) as long as there is more than one “information set”
(i.e., a dashed encirclement in Figure 19.1). The strategy is a mapping that
specifies what action to take (decision to make) depending on what is known,
as specified via an information set. If a player has an ability to distinguish
something about a decision process as it evolves, then to keep the strategy of
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the player independent of what the other player does, it must have different
ways of reacting, depending on what the other player did. For example, this is
perhaps clarified if we considered a strategy for P1 that was simply based on a
random choice for its options. In this case, P2 would have to be ready to react
no matter what P1 did, and the above strategy G2(i) would define that.

Finally, note that if there are multiple levels, with many players, there are
many options for how to define information sets, and hence, strategies for games.
Finding strategies for the case where there are such dynamic games is, in general,
a challenging problem.

19.2.2 Nash, Minimax, and Stackelberg Strategies

In this section, we introduce the Nash equilibrium strategy and provide an
example of how to compute it. Moreover, we introduce infinite games (i.e., ones
where there are an infinite number of strategies by at least one player), the
concept of a reaction curve, and use an example to illustrate the basic ideas.
This is followed by an introduction to minimax and Stackelberg strategy design.

Nash Equilibrium Strategies

Up till now, we had considered the zero sum case, and now we move beyond
that to consider the nonzero sum case, that is, when it can be that

J1(i, j) + J2(i, j) �= 0

Now, we have two payoff matrices J ij
1 and J ij

2 denoting losses of P1 and P2,
respectively. Assume that both players are rational, so they try to minimize
their losses. Unless otherwise stated, we assume that there is no cooperation
and decisions are made independently.

The basic problem for each player is that the outcome resulting from their
decision also depends on what the other player decides. So, what strategies
should the players use? Recall that a pair of strategies is said to be in a “saddle
point equilibrium” if unilateral deviations by one player from its strategy will
not benefit that player. There are actually a variety of “equilibrium” solutions
for a pair of strategies of a game.

A strategy pair (i∗, j∗) is a noncooperative (Nash) equilibrium solution to a
If players use the Nash
equilibrium solution,
then they have no reason
after playing the game to
regret their decisions.

“bimatrix” game (J ij
1 , J ij

2 ) if the inequalities

J i∗j∗
1 ≤ J ij∗

1 (19.2)

and
J i∗j∗

2 ≤ J i∗j
2 (19.3)

are both satisfied for all i ∈ {1, 2, . . . , D1} and all j ∈ {1, 2, . . . , D2}. The pair
(J i∗j∗

1 , J i∗j∗
2 ) is the noncooperative (Nash) equilibrium outcome of the game.

For a given bimatrix game, there can be no Nash solutions, one Nash solu-
tion, or many Nash solutions. If J ij

1 = −J ij
2 for all i and j, then we have a zero

sum game, and a Nash solution is a saddle point equilibrium for the game.
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As an example, let D1 = 5 and D2 = 3. Suppose that

J ij
1 =

⎡
⎢⎢⎢⎢⎣

−1 5 −3
−2 5 1

4 3 −2
−5 −1 5

3 0 2

⎤
⎥⎥⎥⎥⎦ , J ij

2 =

⎡
⎢⎢⎢⎢⎣

−1 2 −3
2 −3 1

−2 3 1
−1 1 −1

4 −4 1

⎤
⎥⎥⎥⎥⎦ (19.4)

To solve for the Nash equilibria, consider candidate (i∗, j∗) pairs in turn and
test if they satisfy both the inequalities in Equations (19.2) and (19.3). To do
this, consider (1, 1) and see if J11

1 is less than all other row elements of column
one to test Equation (19.2). Since it is not, (1, 1) cannot be a Nash solution.
If you test (1, 2), you will also find it is not a Nash solution. However, if you
test (1, 3), you will see that J13

1 ≤ J i3
1 for all i so it is a candidate, so test the

inequality in Equation (19.3) and you will find that J13
2 ≤ J1j

2 for all j; hence,
(i∗, j∗) = (1, 3) is indeed a Nash equilibrium. The Nash equilibrium outcome is
(−3,−3) so that both players gain 3. Show that (4, 1) is also a Nash solution,
with an outcome of (−5,−1), but that all others are not.

Note that a Nash equilibrium solution is special since, if the players adopt it,
then they have no reason after playing the game to regret their decisions. Note,
however, that there can be more than one Nash equilibrium so the question of
which one to use arises. However, it is not possible to totally order the Nash
strategies according to the values of their outcomes, because they are defined
by pairs of numbers. We can, however, say that “one Nash strategy is better”
than another if both outcomes are better than the other. Then, we will call a
Nash strategy “admissible” if there is no better Nash strategy. For the above
example, there were two Nash solutions and each one is admissible since one
is not better than the other. Note that in this case, if P1 picks (1, 3) and P2

picks the other Nash solution (one thinks that the other is picking the other
strategy to play by, since there is no reason to think that they would definitely
pick the same Nash strategy to play without some type of cooperation), then
the strategy pair that is employed is (1, 1), which as the above example showed,
is not a Nash solution. In fact, (1, 1) results in an outcome of (−1,−1), which
is worse for both players. This creates a problem with implementing a Nash
solution for a noncooperative game when the Nash solution is not unique.

If there is only one (admissible) Nash solution, this problem will not arise.
However, if the two payoff matrices are the same, this problem can still arise.
Why? There are then many cases where the situation can arise where there
are multiple Nash equilibria, so that the players cannot use the solutions ef-
fectively without some type of cooperation. Essentially, this problem with the
Nash solutions arises, since bimatrix games may not be “antagonistic,” so that
a noncooperative solution concept can be inappropriate (i.e., elements of coop-
eration can be reflected in the payoff matrices). We will revisit this issue when
we discuss Pareto-optimal solutions below.
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Infinite Games and Reaction Curves

An infinite game is one in which there are an infinite number of strategy choices
by one or both of the players. The concept of Nash equilibria is also valid for
this case, and we illustrate this via a simple example here.

First, suppose that the actions of P1 can be

θ1 ∈ [−4, 4]

and for P2 they can be
θ2 ∈ [−5, 5]

Suppose that cost functions for the two players are

J1(θ1, θ2) = − exp
(
− (θ1 − 2)2

8
− (θ2 − 4)2

2

)

and

J2(θ1, θ2) = − exp
(
− (θ1 − 1)2

1
− (θ2 + 1)2

6

)
each of which has one global minimum, and also for which, if you fix θ1 (θ2),
there is a unique minimum point in the other value. (This will simplify the
discussion.)

Define the “reaction curve” of P1 to be

R1(θ2) = argmin
θ1

J1(θ1, θ2)

where we are using the assumption of uniqueness of the minimum point, so that
there is only one point at which the minimum is achieved. The reaction curve
R1(θ2) defines how P1 should react for every possible action of P2 in order to
minimize its losses. Similarly, the reaction curve of P2 is

R2(θ1) = argmin
θ2

J2(θ1, θ2)

and it defines how P2 should react for every possible action of P1 in order to
minimize its losses. Contour plots of J1 and J2 are shown in Figure 19.2(a) for
the above loss functions, along with the reaction curves R1(θ2) and R2(θ1).

It is interesting to note that any intersection point of the two curves in Fig-
ure 19.2(a) is a Nash equilibrium, so (2,−1) is the unique Nash equilibrium. For
other cost functions, it is possible that the curves take on different shapes and
have multiple intersection points, with each intersection point corresponding to
a Nash equilibrium. It is also possible that the reaction curves do not intersect,
indicating that there are no Nash equilibria. In the case where there are multiple
minimum points for each fixed value of θ1 (or θ2), we may not have connected
“curves,” but more generally reaction “sets” and in this case, it should be clear
that there can be multiple or no intersection points. Figure 19.2(b) shows a dif-
ferent set of cost functions and reaction curves, but with one Nash equilibrium
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Figure 19.2: (a) Contour plots of J1 and J2 and reaction curves R1 (solid) and
R2 (dashed); (b) same but for different cost functions J1 and J2.

corresponding to the intersection point (2, 0). Note that the reaction curve for
P1 is the locus of points that is tangent to lines corresponding to fixed values of
θ2 across a range of such fixed values. Clearly, adjustment of the shape of these
functions can easily result in an intersection point that lies outside the allowed
ranges of decisions for the players and this would correspond to the case where
there are no Nash equilibria.

Finally, note that since the plots in Figure 19.2 were generated on a digital
computer, we actually discretized each of the axes and computed a finite number
of cost values and points on the reaction curves (as is usual, discrete points are
connected by lines in the plots to give a visual effect of continuity when it does
not actually exist). Hence, we are actually discussing finite bimatrix games, but
ones with many possible actions for each player.

Stable Nash Equilibria

It is possible to further refine the characterization of Nash equilibrium solutions
and we do this in this section via a simple example. Suppose that for the
game pictured in Figure 19.2(b), we have P1 play first, then P2, followed by
P1, and so on; hence the players alternate moves with P1 going first. Suppose
that we number the moves with an index k so that at k = 1, P1 moves, at
k = 2, P2 moves, and so on. Suppose that each player knows the other’s last
move, and takes an action that minimizes its losses given this past move. For
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an arbitrarily chosen first decision by P1, the “trajectory” in decision-space is
shown in Figure 19.3. Since the reaction curves were already computed for this
case, it is easy to construct the trajectory since, once P1 makes a decision θ1(k)
at iteration k (k odd), we have

θ2(k + 1) = R2(θ1(k))

and once P2 makes a decision θ2(k) at iteration k (k even), we have

θ1(k + 1) = R1(θ2(k))

It is this iterative sequence that results in the trajectory. Clearly, if we have
nonuniqueness of minimum points and hence, reaction sets rather than simple
curves, then appropriate adjustments to this discussion would be needed.
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Figure 19.3: Contour plots of J1 and J2, reaction curves R1 (solid) and R2

(dashed), and iteration trajectory (arrows indicate direction of time).

If for every initial choice by P1 (i.e., θ1(1)), the trajectory in the decision
space moves to the point (2, 0), then the point (2, 0) is said to be a “stable
Nash equilibrium.” If only small variations in θ1(1) from 2 (its ultimate value
for the Nash equilibrium) are possible for it to still converge to 2, then (2, 0)
is said to be a “locally stable Nash equilibrium.” If a Nash equilibrium point
is not stable, it is said to be an “unstable Nash equilibrium.” Different cost
functions generally result in different reaction curves (sets), which in turn result
in different trajectories and hence, different types of stability.
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Note that stability is a qualitative property of the trajectories, whose gen-
eration depends on the given iteration method. Hence, we generally speak of
stability relative to the given iteration method. Clearly, the ideas extend to
the multiplayer case and then the iteration method depends on that, too. For
example, the iteration may involve taking turns in some fixed or dynamically
changing order so that the choice by one player at a current time may depend
on the movements of some players at the last time instant, and the decisions
others made at perhaps random points in the past.

Minimax Strategies

Next, we develop security strategies for each player of a bimatrix game which
we will call “minimax strategies” (solutions). These solutions may or may not
be the same as a Nash solution.

To find the minimax strategy, you simply find the security strategy for P1

based on J ij
1 and the security strategy for P2 based on J ij

2 and then, taken to-
gether, these directly provide a strategy pair that is the “minimax” strategy for
the bimatrix game. (Of course, here, since we view the payoff matrices J ij

1 and
J ij

2 as “loss” matrices, there is a slight difference in the mechanics of finding a
security strategy for P2, since now it also tries to minimize its loss under all pos-
sible actions of P1, where before it tried to maximize its gain.) It is interesting
to note that P1 (P2) does not need knowledge of J ij

2 (J ij
1 ) to compute its strat-

egy. Moreover, the minimax concept essentially ignores whether the opponent
is rational or not. These facts can be important in practical applications.

The security levels of the players are called the minimax values of the bima-
trix game. These minimax values are not better than those of a Nash equilibrium
outcome, even if the Nash and minimax strategies are the same. Why? Also,
note that if a minimax strategy is not a Nash strategy (i.e., not an equilibrium),
it can still be quite useful in games where there are multiple Nash equilibria,
when a player is not completely certain about values of the cost matrix, or
whether the other player will be rational. On the other hand, these features
can lead to very conservative strategies in some applications. Clearly, minimax
strategies can be extended to a multiplayer game in an obvious way.

As an example, show that the minimax strategy for the cost matrices in
Equation (19.4), where we had two Nash equilibria, is (5, 3) with an outcome
(2, 1). Recall that for this case, the Nash solutions were (1, 3) and (4, 1) with
outcomes (−3,−3) and (−5,−1). Note that the minimax strategy is not as good
as either Nash solution. Note, however, that for the cost matrices

J ij
1 =

⎡
⎢⎢⎢⎢⎣

4 1 −4
−2 5 3
−3 2 −1

4 4 4
−3 −5 2

⎤
⎥⎥⎥⎥⎦ , J ij

2 =

⎡
⎢⎢⎢⎢⎣

2 −1 0
−2 4 0
−3 0 −1
−3 3 4
−3 0 −5

⎤
⎥⎥⎥⎥⎦

there is one Nash solution and it is also a minimax solution. Show this.
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As another example, consider the game in Figure 19.2(a). Show that the
Nash equilibrium is a minimax solution. However, show that for the game of
Figure 19.2(b), a minimax solution is (4,−1). In this case, is the Nash solution
a minimax solution? Is the minimax solution unique?

Stackelberg Strategies

Until now, for our solution concepts we had a type of symmetry where no one
player dominated the decision process. What if one player can enforce her or
his strategy on the other players? With this approach we get a “hierarchical
equilibrium solution” concept introduced by Stackelberg. For such games, the
“policy enforcer” will be called the “leader” and the other player(s) will be called
follower(s). We assume that the players act rationally. We could have multiple
levels of leaders and followers, but here we just consider the case where we have
one leader and one follower.

The basic idea is that P1 tries to pick i∗ to minimize its loss, assuming
that with i∗ enforced on P2, P2 will pick its strategy in a rational way (by
minimizing its losses), and then this choice defines the outcome, and hence,
allows P1 to rank its alternatives. In summary, P1 evaluates its m alternatives
by considering what P2 will pick in response to each one. There is, however, an
added complication. There may be more than one P2 strategy that minimizes
its losses for a given P1 strategy. This creates the possibility that P1 has more
than one different possible loss for each enforced strategy, since P2 can react in
different (rational) ways. Here, we will adopt the convention that we will use
a security strategy approach to resolve the ambiguity (i.e., P1, in the face of
several possible answers from P2, will pick the alternative that will minimize its
maximum possible losses).

To compute a strategy pair (i∗, j∗) that is a Stackelberg solution, we execute
the following two steps:

1. Compute Follower Reactions: For each possible strategy choice i by P1,
compute the set of rational reactions by P2 as

R(i) =
{

j∗(i) : j∗(i) = arg min
j

J ij
2

}
This is done by having P2 execute an optimization over its responses for
each given i. Note that |R(i)| ≥ 1 and if, for example, |R(i)| = 2 for some
i, then there are two possible rational strategies for P2 which give P2 the
same loss (i.e., two optima).

2. Leader Finds Best Strategy: The leader, taking into account the follower
reactions, chooses its strategy via

i∗ = arg min
i

max
j∈R(i)

J ij
1

which is the P1 strategy that achieves the lowest loss considering rational
P2 reactions, and which is secure against ambiguities in the response of
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P2 represented in R(i). Note that in finding the “max” and “min” in the
computations for i∗, it is possible that there is more than one maximizer
and minimizer. For each case, however, it does not matter which you
choose, since the “Stackelberg cost” (defined next) is the same. Hence, a
normal approach is to resolve ties with an arbitrary choice.

The “Stackelberg strategy” of P1 is i∗. The Stackelberg solution strategy pair
is (i∗, j∗(i∗)) and the “Stackelberg cost” for the leader is J

i∗j∗(i∗)
1 . Finally, it is

interesting to note that the leader P1 never does worse in a Stackelberg game
relative to if it had played a Nash game. Why?

As an example, to find the Stackelberg solution for the cost matrices in
Equation (19.4), with P1 as the leader and P2 as the follower, we find that:
if i = 1, R(i) = {3}; if i = 2, R(i) = {2}; if i = 3, R(i) = {1}; if i = 4,
R(i) = {1, 3}; and if i = 5, R(i) = {2}. The loss to P1 in each case is then (this
takes into account the security component for the i = 4 case): if i = 1, P1 loses
−3; if i = 2, P1 loses 5; if i = 3, P1 loses 4; if i = 4, P1 loses 5 = max{−5, 5}; and
if i = 5, P1 loses 0. Hence, the Stackelberg solution is (i∗, j∗) = (1, 3) and the
Stackelberg cost for P1 is −3. Note that if we had, for the computation of the
P1 losses, found equal values for more than one i, then there would have been
more than one valid Stackelberg solution (but this does not create the problems
that we found when we had multiple Nash solutions, since the Stackelberg costs
would be the same).

As another example, consider the game in Figure 19.2(b). Clearly the Stack-
elberg solution will lie on the curve R2(θ1). Why? Show in this case that the
Stackelberg solution is (3.45, 0.75), which can be roughly approximated from
the plots in Figure 19.4. How? To see how, note that the Stackelberg solution
is the pair (θ1, θ2) such that θ1 minimizes J1(θ1, R2(θ1)) and this is simply the
point where the R2(θ1) curve is tangent to the contour plot of J1.

19.2.3 Cooperation and Pareto-Optimal Strategies

In the cases above, we generally considered the games to be noncooperative
so we assumed that there was a type of adversarial relationship between the
two players. In the Nash game, each player is trying to do as well as possible,
taking into consideration the other player’s actions. In a minimax game, each
player assumes the worst possible reactions of the other player (i.e., a highly
adversarial, perhaps irrational, opponent) to pick the strategy. There are, how-
ever, games where the two players may be able to share information to try to
do better; that is, they may cooperate. In a certain sense, the leader-follower

In a cooperative game, a
player may give up some
gains so that the group
it is collaborating with
gains more.

game with Stackelberg solutions can be considered a type of cooperative game,
if you view the leader-enforced strategy as information that is used by the fol-
lower. Whether a Stackelberg game is truly cooperative depends, however, on
the application domain and particularly on whether the cost functions of the
players have relationships such that the leading actions by P1 and the subse-
quent following actions by P2 are achieving (or trying to achieve) the same type
of goal.
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Figure 19.4: Contour plots of J1 and J2, reaction curves R1 (solid) and R2

(dashed), and “×” marks the Stackelberg solution.

At the other end of the spectrum, there are games that can be considered to
be “cooperative” in the sense that each player is willing to share all information
and help every other player do as well as possible, so long as it does not degrade
its gains too much. A key concept for such games is the idea of a Pareto-
optimal (equilibrium) solution, where no other such joint decision exists that
can improve the outcome for P1 or P2 without degrading the outcome of the
other.

Multiobjective Optimization and Pareto Optimality

Here, we begin by defining Pareto optimality in a general setting and then dis-
cuss its use in games via some examples. A multiobjective optimization problem
is in the form of

minimize: {J1(θ), . . . , JN (θ)}
subject to: θ = [(θ1)�, . . . , (θN )�]� ∈ Θ

Here, we want to simultaneously minimize a set of cost functions (called a “cost
function vector”) by changing the same parameter vector θ. You can think of
this as a type of general optimization problem, where you want to minimize not
one cost function, but many, each representing the desire to achieve a different
objective. Here, we assume that θi = [θi

1, . . . , θ
i
n]�, i = 1, 2, . . . , N , so that

decisions are n × 1 vectors, rather than just scalars, and there are N costs to
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minimize (e.g., in a two-player game, we will have N = 2). Also, Θ is used to
represent constraints on the decisions (e.g., constraints on the size of the values
of the elements of θi, often characterized via functions and inequalities).

A decision vector θ∗ ∈ Θ is Pareto optimal if there does not exist any other
θ ∈ Θ such that

Ji(θ) ≤ Ji(θ∗)

for all i = 1, 2, . . . , N , and at the same time

Jj(θ) < Jj(θ∗)

for at least one index j. A cost function vector is called Pareto optimal, if
the corresponding decision vector is Pareto optimal. Hence, intuitively, a cost
function vector is Pareto optimal, if you cannot improve one cost value without
degrading others.

It should be clear that there can be many Pareto optimal solutions. In
multiobjective optimization, there is a need to specify preferences to be able to
pick which Pareto optimal solution specifies an acceptable solution (e.g., one
that balances the wins and losses of two players). In many approaches, it is
hypothesized that there is a “decision maker” who will specify these preferences
in some manner. Sometimes the decision maker will specify a “value function”
that can be viewed as a specification of what the decision maker wants in terms
of the minimizations of each of the cost functions (i.e., it specifies the trade-offs
between players), and other times the decision maker has to be repeatedly asked
for its preferences. There are many ways to define such value functions for the
decision maker, and the examples below will discuss one way.

Before turning to games, to illustrate the idea of Pareto-optimal solutions,
consider the case where θ1 and θ2 are scalars, so that θ is a 2×1 vector. Assume
that we have quadratic costs so they are convex. Suppose in particular that we
have

J1(θ) = J1(θ1, θ2) =
(
θ1 − 2

)2
+
(
θ2 − 3

)2
J2(θ) = J2(θ1, θ2) =

(
θ1 + 2

)2
+
(
θ2 + 2

)2
Contour plots of these two functions are shown in Figure 19.5. In this case,
it is possible to determine Pareto-optimal solutions by inspection. To do this,
ignore the plotted Pareto points in Figure 19.5 and note that the (unique global)
minimum points on the two cost functions are at the centers of the two sets of
concentric circles. Next, note that if a line on this contour plot is tangent to
a contour of both costs, then the point of tangency for both costs is a Pareto-
optimal solution. (Of course, there are only a finite number of contour lines
drawn on the plot so you must imagine where the other ones are.) Where are
these “tangency points”? Simple inspection shows that they are at the “×”
marks on the plot. Why are these Pareto-optimal solutions? Note that the
gradient at such a point θ∗ is ∂J1

∂θ

∣∣
θ=θ∗ and suppose this is pointing in the same

direction as − ∂J2
∂θ

∣∣
θ=θ∗ . Imagine that you are at some Pareto-optimal solution

θ∗ in Figure 19.5. The direction of the negative gradient is the direction to move
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from θ∗ in order to get a steepest amount of decrease in the value of one cost
function (the basic idea behind steepest descent gradient optimization). The
key observation is that if you perturb θ∗ along the gradient in direction of the
minimum point for J1 (J2), the cost for J1 (J2) goes down, but the cost for
J2 (J1) goes up. So, we cannot reduce one cost without increasing the other,
which is the very definition of Pareto optimality. Note that there are actually
an infinite number of points that lie on a line that is tangent to the contour
of the two costs, and hence, an infinite number of Pareto-optimal solutions in
this case, all of which lie on the line between the minimum points of the two
cost functions. The set of all Pareto-optimal solutions is sometimes called the
“family” of Pareto-optimal solutions.
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Figure 19.5: Example family of Pareto-optimal points for two quadratic cost
functions (“×” marks Pareto solutions).

It is interesting to note that, for this example, if we define a “Pareto cost”
to be

The scalarization
approach is only one
way to define the Pareto
cost.

Jp(θ) = pJ1(θ) + (1 − p)J2(θ)

for p ∈ [0, 1] (this is called the “scalarization” approach to constructing the
Pareto cost), then the family of Pareto points is the set of (unique) global min-
ima for Jp(θ) as p varies from zero to one, which is just the equation for the
line between the two minimum points in Figure 19.5. Hence, we can view this
Pareto cost as a “value function” for the underlying multiobjective optimiza-
tion problem; it is, however, a special one, since it shows how, for this special
quadratic case, it is possible to find all Pareto-optimal solutions via standard
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optimization of one cost function. Intuitively, note that the value of p scales
the depth of one minimum and (1 − p), the depth of the other. We can think
of the above weighting scheme via p as interpolating between the two minimum
points on the two cost functions, with a specific value of p providing more value
to minimizing one cost function over the other.

Pareto-Optimal Solutions for Games

Motivated by the above example, a standard way to define Pareto optimality
for two-player bimatrix games is to define a new loss matrix (sometimes called
the Pareto cost) that represents a combination of the losses for the two players,

J ij
p = pJ ij

1 + (1 − p)J ij
2

for p ∈ [0, 1]. This Pareto cost can be thought of as a “value function” for the
decision maker in a multiobjective minimization problem. Any minimum point
in the matrix J ij

p is called a Pareto-optimal solution for the bimatrix game (and
note that there may be several minimum points for any one value of p). If p = 1
(p = 0), all the emphasis is placed on the two players collaborating to minimize
the losses of P1 (P2). With appropriate values for the cost functions, the value
of p = 1

2 may represent equal emphasis on minimizing the losses of the two
players.

As an example, suppose that we use the bimatrix game with payoff matrices
in Equation (19.4). Note that these cost values are not specified via a convex
function, so there are additional complexities that arise here with uniqueness of
the Pareto solutions for fixed values of p. Also, in general, finding a minimum
of the Pareto cost J ij

p for all values of p may not provide all possible Pareto-
optimal solutions. Why? Returning to our example, note that the minimum
element in J41

1 is −5, which is also the minimum of Jp for the case where p = 1.
The minimum element J52

2 = −4, which corresponds to the minimum of Jp for
p = 0. As p varies from zero to one, the minimum point (points?) of Jp will
move. Assuming Jp always has a unique minimum point for every value of p, as p
varies continuously from zero to one, the minimum point will move continuously
from J52

2 to J41
1 . (If there are multiple minimum points for different values of p,

then clearly the situation can be significantly more complex and the family of
Pareto points may not all lie on a trajectory.) This is depicted in Figure 19.6,
where the indices and outcomes for a set of Pareto-optimal points are shown for
this case (note, however, that here we are ignoring the possibility of multiple
optima and just finding one for each value of p). Also shown are the losses
that result for each player due to the choice of a Pareto-optimal strategy; due
to the way that the p parameter results in an interpolation between J ij

1 and
J ij

2 elements, the Pareto value will lie between the two costs as shown for this
example.

It should be clear that it is not possible for the outcome to go below the
minimum of the two smallest values in the two payoff matrices; hence, the
very fact that cooperation is taking place means that one of the two players is
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Figure 19.6: Example family of Pareto-optimal points for a bimatrix game (bot-
tom two plots provide the indices of the points), and the resulting outcome (top
plot).

sacrificing by losing more than if they were able to minimize their own loss. In
applications, however, we are most often interested in the manner in which the
Pareto-optimal solution “balances” the optimization to achieve a compromise
that is the true goal (cooperation is for achieving a higher goal than individual
selfish ones).

Finally, it is interesting to note that (1, 3) and (4, 1) are strategy pairs that
we found earlier to be Nash equilibrium solutions for a noncooperative game.
Recall that in our analysis of nonunique Nash equilibria, the essential problem
was that bimatrix games could exhibit elements of “cooperation.” Note that
here for a cooperative version of the same bimatrix game, as seen in Figure 19.6,
we find that for some values of p, the Pareto-optimal solution corresponds to
each of the two Nash solutions. This shows in another way that the Nash
solutions required cooperation of a certain type. For some ways of balancing
objectives (values of p), cooperation results in one Nash solution, and for other
values of p, it characterizes a different type of cooperation and hence, a different
Nash solution.

Defining the Pareto Cost and Finding Pareto Solutions

In this section, we will outline a few problems that you encounter in trying to
define Pareto costs and compute Pareto solutions. We will do this via the game
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in Figure 19.2(b) and, analogous to the above example, let

Jp(θ1, θ2) = pJ1(θ1, θ2) + (1 − p)J2(θ1, θ2)

for p ∈ [0, 1]. To give insight into the shape of the cost surface Jp, see Figure 19.7,
which is the case for p = 0.5. Clearly there are multiple local minima so finding
the global one can be challenging. Also, note that the p parameter will in this
case scale the “depth” of the two minima.

Figure 19.7: Pareto cost Jp(θ1, θ2) for p = 0.5.

Problems with Forming Pareto Costs via Scalarization: Figure 19.8
shows two possible Pareto solutions for this case, which are (0,−1) (roughly
for p ∈ [0, 0.455]) and (0.55, 2.99) (roughly for p ∈ (0.455, 1]). Neither of these

It can be difficult to pick
an appropriate Pareto
cost for an application.

Pareto solutions corresponds to a Nash, minimax, or Stackelberg solution for
this game. Intuitively, as p varies from zero to one, there is a point at which
the deepest “well” in Figure 19.7, switches from one well to another. The
“family” of Pareto solutions lies only on two isolated points. Hence, in this
special case, there is the curious property that the Pareto points lie on the
reaction curve of one or the other player. Hence, for some values of p, even with
cooperation, P1 (P2) ends up gaining significantly and P2 (P1) loses significantly
(i.e., cooperation here entails sacrifice by one player for the other). For some
applications this may be satisfactory; however, for others, you may need to
choose a different form for Jp(θ1, θ2) that allows for a smooth balancing between
the selfish objectives of P1 and P2.
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Figure 19.8: Contour plots of J1 and J2, reaction curves R1 (solid) and R2

(dashed), and “×” marks the two Pareto solutions.

The Family of Pareto Points—Other Ways to Balance Cooperation:
By inspection, it should also be clear that there are many other Pareto-optimal
solutions. Can you sketch additional Pareto-optimal points on Figure 19.8?

Choice of Pareto cost
affects how cooperation
between players is
achieved.

Would a point such that the gradients of both cost functions point in opposite
directions be a Pareto point? If it were, then, where are such points on Fig-
ure 19.8? How would you compute all Pareto-optimal solutions for this case? A
computationally intensive approach to approximating the set of all Pareto points
is to simply directly apply the definition of Pareto optimality (given m and n,
how many comparisons are needed to compute all Pareto solutions for a bima-
trix game?). When we do this, we get all the Pareto points shown in Figure 19.9
(notice the rough edges on the contour plot due to the coarse discretization).
Of course, these points include the ones that result from the scalarization ap-
proach of the above example. The others represent other ways to balance the
two performance objectives. Notice that the family of Pareto points is not a
point or a curve, but a set. In general, it is difficult to characterize or compute
the entire set of Pareto points, except in certain special cases (e.g., like the one
we examined earlier).

Essentially, the definition of our value function Jp via scalarization results in
missing all these other Pareto-optimal points. Is this good or bad? If you con-
sider the value function found via scalarization to specify your true preferences,
then missing other Pareto-optimal solutions is not a problem. If, however, other
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Figure 19.9: Family of Pareto points.

types of preferences are needed, it may be difficult to know how to parameterize
and define the Jp function, so that conventional optimization can be used to find
what you consider to be good Pareto points. One other way to parameterize
the above function would be to have p and (1− p) scale the minimum points of
the functions; however, in practical examples you may not know the minimum
points a priori. In short, this example shows some of the problems one can
encounter by using a simple weighting scheme to turn a multiobjective opti-
mization problem into a conventional single-objective optimization problem to
find a Pareto-optimal solution. Other ways of forming the Pareto cost can result
in a better balancing and hence, a more “fair” cooperation may be obtained.

19.3 Design Example: Static Foraging Games

In this section, we study the basics of competition and cooperation in foraging
games by considering a static, full-information, one-stage (i.e., one decision)
game to illustrate the Nash, minimax, Stackelberg, and Pareto solution concepts
of Section 19.2.

19.3.1 Static Foraging Game Model

We start by formulating a very simple model of a foraging game; after its de-
velopment it will become clear how to extend this model to more general cases.
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We consider a two-forager (N = 2), static, discrete, full-information “foraging
game on a line.” This is the one-dimensional case, where we consider multiple
resources to be distributed over the real line and the foragers move on that line
to get the resources.

Foraging games have
foragers as players and
nutrients as payoffs.

Suppose that the resources are distributed in “cells” (bins) along the real
line. Suppose that there are M different types of resources in Q cells and denote
the initial distribution of resources of type m to be rm(q), q = 1, 2, . . . , Q, m =
1, 2, . . . , M . Here, we assume that rm(q) ≥ 0, q = 1, 2, . . . , Q, but the model is
easily extended to the negative resource case (where one could think of moving to
avoid regions where resources are lost). Let D1 (D2) be the number of decisions
that forager 1 (2) can make and θ1 ∈ {1, 2, . . . , D1} (θ2 ∈ {1, 2, . . . , D2}) be
those decisions, which correspond to forager 1 (2) moving to a cell q if θ1 = q
(θ2 = q), q = 1, 2, . . . , Q. We assume that D1 = D2 = Q, so that each forager
can move to any available cell.

Effort and Resource Consumption

Let z1 (z2) denote the effort allocated by forager 1 (2) to consume resources.
For simplicity, we assume that the same amount of effort is expended for con-

Effort expenditure can be
counted against nutrient
returns in computing
payoff.

sumption of each resource type m = 1, 2, . . . , M when a forager goes to a cell.
Let P (q) be the set of foragers that decides to go to the same position q to
consume resources there; hence,

P (q) =
{
i : θi = q

}
Notice that 0 ≤ |P (q)| ≤ N for all q and

∑
i∈P (q) zi, the total consumption

effort at q, is zero if |P (q)| = 0.
Assume that αm, m = 1, 2, . . . , M , is used to model the depletion rate of

resource m in the presence of consumption effort. We model the amount of
resource of type m remaining at cell q after one play (one unit of expenditure
of effort) as

rm(q)e−αm
∑

i∈P (q)
zi

This type of model, which is used in foraging theory, represents that initial
expenditures of effort in a cell yield more resources than later ones. Hence, as
resources diminish in a cell, there is a need for increasing amounts of effort to
get the same return. With the exponential model, effort expenditure always
provides a return on the investment; other models could represent complete
depletion of a resource after a finite amount of effort.

Next, we define the amount of consumption given that a strategy pair (θ1, θ2)
is played by foragers 1 and 2. To do this, note that if both foragers are in the
same cell expending effort to consume the same resource, then they have to
split the resource, since there is a type of competition for it. Here, we simply
assume that if two foragers are at the same cell, then they split the resources
evenly. Let the amount of consumption of resource m for decision pair (θ1, θ2)
for foragers 1 and 2 be defined as follows:
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1. Foragers at different locations: If θ1 �= θ2, then for i = 1, 2,

Cm
i (θ1, θ2) = rm(θi)

(
1 − e−αmzi

)
2. Foragers at the same location: If θ1 = θ2 = θ̄, then for i = 1, 2,

Foragers going to the
same location results in
a type of competition.Cm

i (θ1, θ2) =
1

|P (θ̄)|r
m(θ̄)

(
1 − e

−αm
∑

i∈P (θ̄)
zi

)
=

1
2
rm(θ̄)

(
1 − e−αm(z1+z2)

)
(19.5)

So, in cases where forager 1 (2) goes to a cell that forager 2 (1) does not go to,
rm(θ1) (rm(θ2)) is the initial amount of resource of type m and rm(θ1)e−αmz1

(rm(θ2)e−αmz2) is the amount remaining after consumption. When both for-
agers go to the same cell, then they both expend effort, but they have to split
the returns in half. This results in a resource conservation property of: “all that
is consumed plus what is remaining is equal to what was initially there.”

Forager Payoffs: Consumption, Energy, and Danger Avoidance

We assume that each forager has certain priorities to consume different re-
sources. We denote these by pm

1 (pm
2 ) for forager 1 (2), m = 1, 2, . . . , M . You

can think of these priorities as representing preferences or “tastes” for resources.
One aspect of the cost to forager 1 (2) that it wants to minimize is given by the
negative total consumption weighted by the priorities

J ij
1c = J1c(θ1, θ2) = −

M∑
m=1

pm
1 Cm

1 (θ1, θ2)

J ij
2c = J2c(θ1, θ2) = −

M∑
m=1

pm
2 Cm

2 (θ1, θ2)

where θ1 = i, θ2 = j, and J ij
1c and J ij

2c constitute a matrix representation of the
game. So the problem for forager 1 (2) is how to pick θ1 (θ2). The adversarial
nature of the foraging game will dictate what to choose (e.g., in a competitive
game, each forager may get less than if they cooperate).

Foraging often requires energy consumption to go to a cell from some initial
location (e.g., for locomotion). Here, we will think of the foragers as being
located at position “0” (i.e., on one edge outside the foraging area) initially.
Then, we model the cost to move along the line to go to position i (j) for
forager 1 (2) as

J i
1e = J1e(θ1) = we1i

(
Jj

2e = J2e(θ2) = we2j
)

where θ1 = i, θ2 = j, we1 ≥ 0 and we2 ≥ 0 represent the unit amount of energy
expenditure to move one unit (e.g., from cell 1 to cell 2), and we assume that
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energy expenditure is not affected by the actions of the other forager. When
the energy to conduct foraging is taken into account, then it may be possible
that even though a resource is plentiful, a forager may choose a closer one that
would provide less return on its effort investment, so that it tries to maximize its
amount of resource return for a certain investment in foraging energy. Clearly,
there are many ways to model this basic aspect of foraging.

For many foragers, there are areas of the foraging environment that are
more “dangerous” than others. This may be due to a predator who is trying
to consume the forager, or other environmental characteristics (e.g., presence of
a noxious chemical). Clearly, one could model the situation where one forager
“consumes” the other. Here, we consider a simple model of location-dependent
danger for forager 1 (2) with

J i
1d ≥ 0

(
Jj

2d ≥ 0
)

where bigger values of the costs represent worse areas to be in and actions of
the other forager do not affect the danger to a forager.

A forager generally wants to get as many high priority resources for a given
energy investment, while avoiding as many dangers as possible. Hence, we can
think of forager 1 (2) trying to minimize

J ij
1 = J ij

1c + J i
1e + J i

1d

(
J ij

2 = J ij
2c + Jj

2e + Jj
2d

)
so that it maximizes the amount of resources it gets and minimizes the energy
expenditure and exposure to dangers to get them. With this, if J ij

1c = J ij
2c = 0,

J i
1e > 0, and Jj

2e > 0 for all i and j, and J i
1d > 0 and Jj

2d > 0 for all i and j,
then the foragers would not even want to move to a location, since there would
be no return of resources for an energy expenditure and exposure to danger
(however, for our model we force them to move, so they are not able to choose
the option of not playing the game). Generally, the foragers will move farther
for resources that are more important to them, but that assumes there is not
too much danger.

Notice that we have set this up as a static bimatrix game. Hence, each
forager knows everything about the game (e.g., the payoffs, costs of movement,
dangers, the other forager’s objectives, etc.). Next, for the sake of illustration,
we will provide a numeric example.

19.3.2 Competition and Cooperation for a Resource

Choose D1 = D2 = Q = 21, M = 1, z1 = z2 = 1, α1 = 1, p1
1 = p1

2 = 1, and
we1 = we2 = 0 (no energy required for foraging). Assume that J i

1d = Jj
2d = 0

for all i and j. The initial resource distribution is shown in Figure 19.10.
The cost functions J ij

1 and J ij
2 are plotted in Figures 19.11 and 19.12. No-

tice in Figure 19.11, that if you hold j constant, then forager 1 generally gets
more consumption and hence, more payoff if it moves to where there are more
resources; however, if both foragers move to the same location, they get less,
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Figure 19.10: Example initial resource distribution.

since they will then compete for resources at that cell. This competition is rep-
resented by the ridges of increased cost (a competition cost) that cut diagonally
through Figures 19.11 and 19.12.

First, suppose that we have an adversarial (noncooperative) game, so that
In competitive foraging,
forgers may gain less
than if they foraged
cooperatively.

the foragers do not coordinate where to go to forage. There are four Nash
solutions

(10, 11), (11, 10), (11, 12), (12, 11)

Does this make sense? From Figure 19.10, the cell with the most resources is
cell 11. In the presence of competition, one forager gets the most resources
and the other gets the second highest amount possible and these are the four
strategy pairs that represent this. Note, however, that the problem of nonunique
Nash solutions arises. Forager 1 may pick 11, and with no communication and
coordination, forager 2 may also pick that point and there will then be less payoff
than if the above solutions were chosen. In fact, the minimax solution in this case
is (11, 11), since if each forager tries to minimize its maximum possible losses,
then it will go to the location with a maximum number of possible resources,
since if it goes to a cell with fewer resources, then the other forager can go
there also and both would get even fewer resources. A Stackelberg solution
with forager 1 as the leader is (11, 12). Why?

Next, consider a cooperative foraging game. First, suppose that the two
foragers cooperate by using a Pareto cost found via scalarization as J ij

p = pJ ij
1 +

(1−p)J ij
2 with p as the Pareto parameter that balances the cooperation. Pareto
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points found in this case are shown in Figure 19.13. We get Pareto points (which
are also Nash solutions) (10, 11) or (11, 10), depending on the Pareto parameter
p so long as p ∈ (0, 1). The two foragers would communicate to decide who
goes to which location, which, as opposed to the Nash game, is possible since
the two foragers are cooperating. The one that goes to position 11 will get the
most resources. When p is close to zero, it favors forager 2, so forager 2 goes to
position 11, and when p is close to one, it favors forager 1, so forager 1 goes to
position 11. The p parameter can be used to balance the cooperation to favor
one forager or the other. What happens in the case where p = 0? Then, the
J ij

1 cost does not enter into J ij
p since it is multiplied by p = 0. This means that

forager 2 makes its best decision and goes to position 11, and forager 1 can go
anywhere else. In Figure 19.13, it goes to position 1, simply due to how the
code was written. The case for p = 1 is explained similarly.
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Figure 19.13: Set of all Pareto points for a cooperative foraging game, scalarized
Pareto cost.

The scalarization approach is, however, only one way to form the Pareto cost.
The set of all Pareto points for the game is shown in Figure 19.14, and you can
see that the ones that arise from the above scalarization approach are a subset
of all possible Pareto points. These other Pareto points represent different ways
to balance the payoffs to each of the two foragers. First, notice that all the
Nash solutions are a subset of the Pareto points. Why do the other Pareto
points make sense (e.g., the one at (11, 20))? What type of Pareto cost might
be used for those cases?

It is interesting to note that you can view a cooperative foraging game as one
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Figure 19.14: Set of all Pareto points for a cooperative foraging game.

where you try to allocate resources to all the foragers so that everyone “wins,”
with the relative payoffs given by which Pareto points you choose. In this case,
scalarization provides a nice way to balance the allocation.

19.3.3 Energy Constraints and Multiple Resources

Energy expenditure
considerations
drastically influence
foraging decisions.

Choose M = 2, p1
1 = p2

1 = 1, p1
2 = 1, and p2

2 = 2, so that forager 2 places a
high priority on getting resource 2. We let we1 = we2 = 0.1, so that moving
to cell locations with higher values of q costs more energy. As before, we have
D1 = D2 = Q = 21, z1 = z2 = 1, α1 = α2 = 1, and J i

1d = Jj
2d = 0 for all i and j.

The initial resource distribution for the two resources is shown in Figure 19.15.

The cost functions J ij
1 and J ij

2 are plotted in Figures 19.16 and 19.17. The
“ridge” arises as in the last section and it represents the case where the two
foragers choose the same cell and hence, compete. Focus on Figure 19.16, and
notice that, even though it sets an equal priority for both resources, the costs
generally increase as i increases (ignoring the ridge) due to the presence of the
J i

1e term that represents the energy needed to forage at each position. This
raises the cost of the second resource. Notice that in Figure 19.17, we have the
presence of this same effect, and the effect of the higher priority of resource 2
for forager 2 so that for forager 2, even though it has to travel farther to get
resource 2, since it is higher priority, it may be willing to do that.

Consider the competitive case first. The unique Nash solution is (5, 14).
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Figure 19.15: Initial resource distribution (darker shaded bars on the right are
the second resource) with an “overlap” of resources in the middle designated by
“stacking” the plots).

Essentially, with the above choices, forager 1 chooses resource 1 since it is close,
but forager 2 picks resource 2, since its level of priority is high, so it is willing to
expend the energy to get it. Notice that the maximum for the second resource is
achieved at three contiguous positions, but forager 2 picks the smallest of these
to minimize energy. The minimax and Stackelberg strategies are both (5, 14).
Why?

If the foragers enter into a cooperative game, with a scalarized Pareto cost
Cooperative foraging
strategies can be viewed
as a type of allocation of
foragers to resources to
maximize payoff to the
group.

J ij
p = pJ ij

1 + (1 − p)J ij
2 , then we get the Pareto solutions all at (5, 14) for all p.

In this case, the two foragers’ objectives are so different that there is nothing to
be gained by cooperation (and nothing to be lost by competition) and hence,
there is really no need for communication.

19.4 Dynamic Games

Dynamic games are ones where players use information about how the game has
Dynamic games consider
repeated decisions,
actions, and
observations by the
players.

evolved in order to make decisions. This notion is perhaps closer to the common
notion of a game, where there are repeated observations, decisions, and actions
by each player, and a resulting dynamic interaction between players in some
“arena.”
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19.4.1 Modeling the Game Arena and Observations

We assume that there are N players and use a discrete-time formulation. To
define the dynamic game, we will produce a model of the game, including all
the players, rules, and payoffs. First, let

x(k) ∈ X ⊂ 	nx

denote the state of the game at time k, k ≥ 0. The admissible controls (actions)
by player i are for k ≥ 0

ui(k) ∈ U i(k) ⊂ 	nu

The outputs (measurements of what is happening in the game) are, for k ≥ 0,

yi(k) ∈ Y i(k) ⊂ 	ny

Let
u(k) =

[
(u1(k))�, (u2(k))�, . . . , (uN (k))�

]�
and

y(k) =
[
(y1(k))�, (y2(k))�, . . . , (yN (k))�

]�
Define the “arena” in which the game is played as f where

x(k + 1) = f(x(k), u(k), k) (19.6)

and suppose that the initial state of the game is x(0) ∈ X . This is a deterministic
game model, but it can be time-varying. A stochastic game could be represented
with x(k + 1) = f(x(k), u(k), w(k), k) where w(k) is used to model stochastic
effects.

The observations that player i can make about the arena of the game are
specified by the function yi(k) = hi(x(k), k) for k ≥ 0, and if we let h(x(k), k) =[
(h1)�, (h2)�, . . . , (hN )�

]�, then

y(k) = h(x(k), k) (19.7)

You could view h as part of the representation of the arena of the game as it
models what can be observed by each player while the game is played. The
dynamic game evolves by players iteratively making a sequence of decisions and
taking a sequence of actions. Observations lead to decisions, which lead to
actions, which lead to observations, and so on.

Let Ji(x(k), u(k)) denote the loss (cost) function of the ith player at the
kth stage of play. When there are multiple stages of play (e.g., Ns stages), one
typical choice for the loss of each player is the additive one,

JNs

i =
Ns−1∑
k=0

Ji(x(k), u(k)) (19.8)



866 Competitive and Intelligent Foraging

Hence, each player tries to choose a sequence of ui(k) that will minimize its own
loss JNs

i after Ns actions, within the constraints of the game listed above. One
other typical choice for the loss function is

JNs

i =
Ns−1∑
k=0

Ji(x(k + 1), x(k), u(k)) (19.9)

so that losses are assigned based on the type of change in the state and the
player actions, for Ns actions. Note that in general, player i does not know its
own cost function Ji(x(k), u(k)) since it may not know x(k) and u(k). Moreover,
use of other players’ cost functions Jj(x(k), u(k)), j �= i, in the strategy of a
player i requires special assumptions.

19.4.2 Information Space and Strategies

How are player’s strategies defined? This is a bit more complicated than in the
static game case. Why? Because, now each player may make decisions based
on “what they know and when they know it” and hence, it is not assumed that
each player knows everything at one time and only one action is taken by each
player at that time. To make this more precise, it should be clear that if a player
has memory, it can store and recall past observations. Then, for any player i,
at the kth stage of play, it may base its decisions to choose ui(k) on a subset of{

y1(0), . . . , y1(k); · · · ; yN (0), . . . , yN (k);

u1(0), . . . , u1(k − 1); · · · ; uN (0), . . . , uN(k − 1)
}

(clearly the elements of the subset are defined by what information is available
to each player i and when it is available). Note that ui(k), i = 1, 2, . . . , N , is
not allowed in the above set, since these are the decisions that the players are
trying to reach based on the available information at time k. Also, if k = 0, then
there are no ui elements available. Each such subset is called an “information
structure” and the information structure of the game is the set of all such subsets
that are used. Let

Ii(k) ⊂ (Y 1(0) × · · · × Y 1(k)) × · · · × (Y N (0) × · · · × Y N (k)) ×
(U1(0) × · · · × U1(k − 1)) × · · · × (UN (0) × · · · × UN (k − 1))

denote the “information space” of player i at time k ≥ 0 (again, for k = 0,
the information space along the ui dimensions collapses, since there is no past
decision information).

Note that the information space Ii(k) is implemented via an appropriately
defined communication network between the players and memory within each
player to store past values. In an adversarial game, there may be no communi-
cation links between the players, but there may need to be memory to hold past
information that was encountered. However, in a cooperative game, the sharing
of information that is necessary for real-time cooperation comes via commu-
nication. A communication network has a “topology” of communication links
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between players, each of which may provide for uni- or bi-directional transfer of
information between players. (It is sometimes useful to think of the communi-
cation network as a graph with nodes as players, arcs as communication links,
and the topology as being defined via the interconnection pattern of the nodes.)
There can be bandwidth constraints and random but bounded communication
delays on any link. Moreover, the topology may be “dynamic,” in that it may
change based on aspects of the environment or player actions.

In some cases, the constraints of the game may specify Ii(k), but other times,
the designer may be able to choose it. For example, if all players only make
decisions based on their own current observations of the arena of play and the
previous actions of all other players and itself, then

Ii(k) ⊂ (Y i(k)) × (U1(k − 1) × · · · × UN (k − 1))

A strategy for a player i at the kth stage of play is Gi
k, k ≥ 0,

Gi
k : Ii(k) → U i(k)

The design of strategies involves designing both Ii(k) and Gi
k. For example, if

each player i can observe at stage k, only yi(k) (i.e., its only observation) and
all actions ui(k−1), i = 1, 2, . . . , N , the strategies of the players are defined via
a Gi

k mapping for each player that specifies its actions,

ui(k) = Gi
k(yi(k), u1(k − 1), . . . , uN(k − 1))

(and at k = 0, there are no elements in the ui slots). The “full state feedback”
case is when yi(k) = x(k) for all i and k and is the case where each player has
“perfect information” about the arena of play. Note that for each fixed initial
state x(0) and fixed player strategies, unique sequences of ui(k), x(k), and yi(k)
and loss values are generated.

The standard concepts of saddle point, Nash, and Stackelberg equilibrium
solutions can be extended to dynamic games. For instance, if the initial state
is known, the strategies are fixed, and there are a fixed number of stages of
play, then the above provides a normal form description. For this case, we get
unique loss values for all the players for a given strategy. Note, however, that
there are additional solution concepts, depending on the information space that
is assumed. For instance, depending on whether you know the initial state, the
sequence of states up to the current one, or only the current state, you get dif-
ferent solution concepts (e.g., the “feedback Nash solution”). Here, we will not
consider these additional solution concepts and methods for solving for strate-
gies for those cases. Our focus will be on using only the basic game concepts of
the last section, but within the context of dynamic games. This choice is driven
by practical issues, such as a desire not to consider only the well-understood
“linear system with quadratic cost” case (it is covered in detail elsewhere), yet
the need to avoid very general dynamic game formulations that cannot be solved
analytically, or that sometimes demand computationally intractable solutions.
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19.4.3 Decision and Action Timing

It is useful to clarify some issues related to timing of when decisions (actions)
are taken in a dynamic game. First, we think of the game as proceeding over a
finite number of Ns stages (time steps), or in some cases it may be appropriate
to consider k → ∞. Second, while we use a discrete-time model, the actions
need not be synchronous, in the sense that you think of the index k as being
associated with real time t = kT and t′ = kT + T for a fixed sampling period T
for all k. The actions of the players may occur asynchronously, in the sense that
the real time duration between indices k and k + 1 may be nondeterministic.
Third, note that for the above model, all players act at each stage k. We
can often, however, for specific applications, define a “null play” choice that
corresponds to an action that is equivalent to doing nothing. Fourth, in some
games, “simultaneous play” by two or more players may be possible.

Combining these four points, we see that we can represent a dynamic game
where players can independently act at random points in time and do not have
to be in “lockstep” with each other (e.g., in a two-player game with the two
players taking turns). There is a new index k + 1 whenever any player acts. If
at that time no other player acts, we represent this via using their null plays.
These issues of representation can be important in practical games, where the
timing of play is a critical aspect of the arena of play.

19.5 Example: Dynamic Foraging Games

We begin by using the model of a dynamic game to represent a foraging game.
Next, we use biomimicry of foraging in nature to specify some candidate foraging
strategies.

19.5.1 Dynamic Foraging Game Model

To define the model of a dynamic foraging game, we explain each part of the
dynamic game model in the last section.

State and Inputs

We have N ≥ 2 foragers. The state x ∈ 	nx is composed of aspects of the forag-
ing environment and the positions of the foragers in that environment. Assume
that you have a two-dimensional foraging environment (a “foraging plane”).
Extension to the three-dimensional case is straightforward. The position of the
ith forager is given by

The state holds
information on the
environment and
foragers.

xi(k) =
[
xi

1(k), xi
2(k)

]� ∈ {1, 2, . . . , Q1} × {1, 2, . . . , Q2} = F

with xi
1(k) its horizontal and xi

2(k) its vertical position on a discrete grid. Here,
Q1 (Q2) sets the upper boundary for horizontal (vertical) movements. The
variable F is used here to denote the set of all points in the foraging environment.
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The decisions by forager i are commands to move itself to each of the cells
that are adjacent to the current position, and which resource type to consume
there. That is, at time k, so long as the movement is in the valid foraging region
so that xi(k) ∈ F , we have that ui

p(k) is in the set{[
xi

1(k), xi
2(k)

]�
,
[
xi

1(k) + 1, xi
2(k)
]�

, . . . ,
[
xi

1(k) + 1, xi
2(k) + 1

]�}⋂
F

which we will denote by U i
p(k). Here U i

p(k) is then the set of feasible moves at
time k by forager i. The first element in the above set indicates that the forager
should stay at the same location, the second indicates that it should move to
the right horizontally, and not vertically, and so on (to all positions around the
current one). Clearly, in this case, there are nine possible locations that any
forager can move to at each step, provided that the forager is well within the
region F . Disallowing movements outside the foraging region F is represented
by the intersection with F . In particular, if a forager is at the upper horizontal
boundary and tries to move to the right, we will say that it stays at the same
place, thereby employing the basic idea of “projection” used in optimization
theory. For convenience, we let up(k) =

[
(u1

p(k))�, (u2
p(k))�, . . . , (uN

p (k))�
]�.

Assume that there are M resources that are indexed with the variable m. We
represent the choice of resource by player i at time k as ui

r(k), i = 1, 2, . . . , N ,
where

ui
r(k) ∈ U i

r(k) ⊂ {1, 2, . . . , M}
represents the resource type m that forager i chooses to consume at time k,

The input holds the
decision of the foragers,
where to go and what to
do.

and U i
r(k) can be used to model the set of resources that it can choose from

(extension to the case where each player can consume more than one resource
at a time is straightforward). Define ur(k) =

[
u1

r(k), u2
r(k), . . . , uN

r (k)
]�. The

decision ui(k) of forager i at time k is composed of a position choice and resource
choice. In particular, we let

ui(k) =
[
(ui

p(k))�, ui
r(k)
]� ∈ U i

p(k) × U i
r(k)

and u(k) =
[
(u1(k))�, (u2(k))�, . . . , (uN (k))�

]�.
The distribution of resources is also part of the state. Extending the devel-

opment of the static case, let

q = [q1, q2]� ∈ F

denote a cell in the foraging plane. Let zm
i denote the effort allocation to

consume resource m by forager i. Let

Pm(q) =
{
i : ui

p = q, ui
r = m

}
be the set of foragers that decide to go to position q to consume resource m at
time k. Notice that 0 ≤ |Pm(q)| ≤ N , but below, we will only use Pm(q) for
q = ui

p for some i = 1, 2, . . . , N , so |Pm(q)| > 0.
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We use the depletion rate αm, m = 1, 2, . . . , M , for the mth resource. The
amount of resource at time k of type m at cell q is rm(q, k) with rm(q, 0) the
initial distribution. The resources change over time due to growth (e.g. plants),
weather, disease, farming, and foraging. For foraging, resources may diminish
due to consumption, and in some cases, such consumption may result in the
increase of other resources (e.g., since the resources may be living, so foraging
influences their competitive balance). In other cases, foraging for one type of
resource at one time may make it possible to forage for other resources later (e.g.,
if one forager eats one type of resource and this gives rise to other resources due
to, for example, a forager leaving behind remains). Suppose that we consider
the effects due to foraging where resources diminish according to

rm(q, k + 1) = rm(q, k)e−αm
∑

i∈Pm(q)
zm

i (19.10)

for all q ∈ F . For this equation, notice that Pm(q) is a function of u. Let
Forager actions affect
the environment and
hence, subsequent
decisions.

xp(k) =
[
(x1(k))�, (x2(k))�, . . . , (xN (k))�

]�
denote the vector of places where the foragers are located. Let

xr(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1([1, 1]�, k)
...

r1([Q1, Q2]�, k)
...

rM ([1, 1]�, k)
...

rM ([Q1, Q2]�, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

be a vector that holds a vectorized representation of the resource distribution
(maps). The state of the game is

x(k) =
[

xp(k)
xr(k)

]
Finally, we need to define how to generate the next state (to define f in the

game model in Equation (19.6)). First, note that xp(k + 1) = up(k), so that at
Foragers naturally
operate somewhat
independently of each
other, at least with
respect to some of their
decisions and timing of
actions.

the next time instant, each forager will have moved to the position that it was
commanded to move to at the current time step. This represents that we are
assuming no dynamics and kinematics for our forager (e.g., constraints on how
fast it can move, turn, etc.), or at least, that the time scale is sufficiently slow
relative to such physical phenomena. Second, note that xr(k + 1) is defined via
Equation (19.10). This completes the definition of how to generate the next
state given the current state and the current input to the game; however, we
still need to clarify issues related to the timing of decisions by the players.

First, we assume that the real time between k and k + 1 is fixed so that the
real time is t = kT , where T is a sampling period. Then, the real time at the next
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sampling instant is t′ = kT + T . So, we require that time proceeds according
to a clock with a certain tick-length. This is necessary, due to how we model
depletion of resources. Why? Because, it makes the effort allocation taken at
each step for each resource by each player a constant as we had specified. (If we
had random time lengths between decision times, then the fact that one forager
makes a decision would affect the consumption rate of other foragers.) We have,
however, still created a type of asynchronous game model, in the sense that if a
forager does not make a move at time k, then it “chooses” its next position to
be the same as its current one (the “null play” discussed in Section 19.4.2), so
that it continues to forage at the same position. Additionally, the model allows
for multiple (up to N) players to simultaneously take actions at each time step
and the above formulas define how the state evolves with such simultaneous
actions. So, our decisions occur asynchronously, but only at times given by the
tick of some clock. If the clock period T is very small, then we can approximate
fully asynchronous behavior.

Sensing and Outputs

The observations that forager i can make about the foraging environment at
time k are denoted by yi(k). Clearly, the physiology of the animal constrains
what sensing is possible. For instance, some animals can only sense via sampling
chemicals in their immediate surrounding environment (e.g., certain bacteria),
while others can sense light or sound and hence “see” for long distances. In
terms of the mathematical representation, some possibilities for representing
the feasible observations are the following:

1. Full observations: If for each forager, i = 1, 2, . . . , N , and time k,

yi(k) = x(k) (19.11)

then each forager can sense the distribution of all the resources over the
entire foraging environment and the positions of all the other foragers at

Sensing is never perfect,
so foragers always make
decisions under
uncertainty.

each time step k.

2. Resource observations and own position: If

yi(k) = hi(x(k), k) =
[

xi(k)
xr(k)

]

then each forager knows its own position and where all the resources are,
but does not know the positions of the other foragers.

3. Range-constrained sensing: Let S(q) denote the set of cell locations that
a forager can sense resources in, or other forager positions, when it is
located at cell q. This set can be used to specify characteristics of the
sensing capabilities of the foragers. For example, suppose that foragers
have constraints on how far they can sense resources that are independent
of time and resource type (you could also make sensing range depend on
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resource type and time). Then, as the forager moves, the set of cells that it
can sense resources in changes. Suppose that this set of cells is defined via
a circular region with radius Rs about the current location of the forager,
provided that this sensing region is within the foraging region F . In this
case, we could define

S(q) =
{

q̄ :
√

(q − q̄)�(q − q̄) ≤ Rs

}⋂
F

First, form a vector of the forager locations, for foragers that can be sensed,
from elements of xp, as xsi

p with elements xj(k), where xj(k) ∈ S(xi(k))
for all j = 1, 2, . . . , N . Second, form a new vector of the currently sensed
cells from elements of xr, as xsi

r with elements rm(q, k), where q ∈ S(xi(k))
for all m = 1, 2, . . . , M . If

yi(k) = hi(x(k), k) =
[

xsi
p

xsi
r (k)

]

then the forager can sense resources in a region around its current location
and it knows its own position, and the positions of the other foragers within
its sensing range. If Rs is large enough, so that the forager can sense the
whole environment no matter where it is in the environment, then this
reduces to case 1 above.

Clearly, there are many other possible sensor models. For instance, sensing
quality could depend on the resource, forager type, position in the environment,
or time (e.g., to represent aging effects). The size of the sensing range may
change over time. Different foragers may have different sensing capabilities.

Consumption, Energy, and Payoff to Foragers

Next, we must define the payoff for each forager. To do this, first define the
amount of consumption of resource m by forager i, i = 1, 2, . . . , N , at time k
for a set of forager decisions u1, u2, . . . , uN , as

Cm
i (u1(k), u2(k), . . . , uN (k))

=
1

|Pm(ui
p(k))|

(
rm(ui

p(k), k) − rm(ui
p(k), k + 1)

)
=

1
|Pm(ui

p(k))|r
m(ui

p(k), k)
(

1 − e
−αm

∑
i∈P m(ui

p(k))
zm

i

)

Notice that |Pm(ui
p(k))| > 0. The factor 1

|P m(ui
p(k))| is used to represent that if

there are |Pm(ui
p(k))| foragers at location ui

p(k) foraging for resource m at time
k, then the returns from foraging are split evenly among those foragers. (Other
definitions of splitting the resource returns could represent more capable foragers
winning more returns when they forage next to some less capable forager.)
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The cost due only to consumption for one move is, given that forager i has
priority pm

i for resource m,

Jic(x(k + 1), x(k), u(k)) = −
M∑

m=1

pm
i Cm

i (u1(k), u2(k), . . . , uN(k))

Each forager must expend energy to forage, and we define this via

Jie(x(k + 1), x(k)) = wie

(
xi(k + 1) − xi(k)

)� (
xi(k + 1) − xi(k)

)
where wie ≥ 0 sets the amount of energy needed to move a certain distance. We
assume that energy is independent of resource type being sought and consumed.
The “danger” aspect could be modeled as in the last section, but we ignore this
possibility here. Our total payoff to forager i at time k is

Ji(x(k + 1), x(k), u(k)) = Jic(x(k + 1), x(k), u(k)) + Jie(x(k + 1), x(k))

If there are Ns steps in the game, we have a payoff JNs

i for playing the entire
multistage game as given in Equation (19.9). Each forager wants to minimize
JNs

i and thereby maximize consumption with minimal energy expenditure. This
can require considerable finesse, as it may be a good strategy to give up payoffs
at some points in time in order to realize more benefits at some other later time.

Information Space and Strategy Design Challenges

Designing a strategy involves picking the information space Ii(k) and strategy
Gi

k, and of course, there are many possibilities. Here, for the remainder of this
section, we pick one simple approach and invite you to consider others. Suppose
that Equation (19.11) holds and each forager only uses yi(k) so

Ii(k) = Y i(k)

and we need to choose Gi
k where ui(k) = Gi

k(x(k)). This corresponds to allowing
each forager to observe all forager positions and resources in all cells at each time
k. The forager does not, however, have memory so it cannot store, for example,
sequences that characterize the pattern of resource depletion or motion of the
other players (which could be useful in estimating the intent of other players).

Who knows what and
when they know it
significantly affects
distributed
decision-making.

Recall that the information space is also defined via specification of a com-
munication network between the players. In an adversarial game, there may be
no communications or communications may be present, but the adversaries may
try to mislead each other so that they can gain more themselves. However, in
many cooperative games, there may be significant sharing of information over
the network. Recall that the network may be defined via a communication
topology that says who can communicate with whom. (Think of the topology
as a directed graph with nodes as the foragers and arrows pointing from any
forager to a forager that can receive or sense information about it.) There can
be bandwidth constraints for the communication links, or random but bounded
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delays in transmitting/sensing information. The topology and communication
network characteristics may depend on the locations of the foragers (e.g., if two
foragers move too far away from each other, then their communication link may
get “broken” and, if two other foragers get close enough to each other, they may
be able to “create” a communication link). Moreover, activities of the group of
foragers may dictate how the topology should be configured and dynamically
reconfigured. Here, we will assume that the communication topology enables
the sharing of sensed information for Ii(k) above. This will allow each forager
to compute all the decisions of all the other foragers, so that they do not need
to share information on u(k).

19.5.2 Biomimicry for Foraging Strategies

Biomimicry may provide
a way to define practical
(computationally feasible
and scalable) distributed
and cooperative
controllers for
autonomous vehicles.

Here, we introduce the idea of using biomimicry of foraging strategies found in
nature.

Rules, Planning, Learning

How do we define Gi
k? There are many approaches. One, which may corre-

spond to how simply organisms find food in some environments, would be to
use simple “rules” to search for and find food. For instance, such rules may use
environmental cues to tell them where to move to be likely to find food.

Another more sophisticated approach is to observe the environment and use
past information about how a typical environment holds food, and then to use
this model in a planning strategy. The traditional approach in game theory
in engineering is in fact to assume some ordering for player decisions and to
then use dynamic programming to find optimal paths for Ns steps. Clearly,
this can be computationally prohibitive, especially for high values of N , Qi, L,
and Ns. So typically, one approach is to use a “receding horizon” controller
(i.e., a planning system), where you use a (perhaps simplified) model of the
plant and simulate ahead in time, find the best input sequence, implement the
first decision in each sequence, and then repeat. Clearly, this can also have
computational problems, except perhaps for the case where you look ahead
only one or two steps, or where the model used to simulate ahead in time
has appropriate simplifications that reduce complexity, yet still lead to good
decisions. (It is generally quite difficult to balance these objectives to get a
good simplified model.) This is, moreover, the common approach that has been
investigated in many contexts for many problems in the past (e.g., for linear
systems with quadratic costs, “model predictive control” (MPC), and more
general decision-making systems).

Some animals actually learn the strategy of their opponent, then take ap-
propriate actions in order to optimize their gains. For this, they may have a
model of a typical opponent and then observe their actions to guess what type of
strategy they are currently using. Then, if they assume that the opponent will
not switch strategies soon, they may be able to work more effectively against
the opponent.
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A Generic Saltatory Strategy

In order to be more concrete about biomimicry of competitive and cooperative
foraging, suppose that we want to model “saltatory search” and foraging, where
an animal alternates moving and thinking about where to move next. This takes
into account physiological constraints for many animals, where they alternate
between moving and stopping to sense and decide where to move next.

The set of steps we use to model a “saltatory strategy” is the following:

1. Play a static matrix game of the type studied in the last section at k = 0
to determine where each forager should seek to go. Call the resulting goal
position xi

∗(k̄), where k̄ is the index of the times when the forager stops
to sense and decide where to go next. Hence, the game played at k = 0
results in xi

∗(0) for all i = 1, 2, . . . , N and these specify the first set of goal
positions that the foragers try to move to. (Issues in path choice from the
current forager position to the goal position are discussed below.)

2. If player i gets to xi
∗(k̄) at time k′, it plays a matrix game with all other

players even if they did not get to their goal positions that time. This
gives us xi

∗(k̄ + 1), the next set of goal positions. This can result in some
foragers switching from one goal position to another if they evaluate that
to be profitable.

3. Go back to step 2 if the termination condition (e.g., Ns time steps) is not
achieved.

This is a type of “asynchronous” saltatory strategy, where the time it takes
between decisions in the m index depends on how far it decides to move each
time. How do the foragers move from xi

∗(k̄) to xi
∗(k̄ + 1) (i.e., what path do

they take)? This depends on many factors. If the foragers can sense and make
decisions during movement, then they may try to move towards the new goal
position along a path that will maximize their consumption. Depending on the
forager’s goals, it may be willing to make significant deviations from a straight-
line path between xi∗(k̄) and xi∗(k̄ + 1), where the goal is simply to minimize
energy consumption to get to the goal position. For instance, the forager may
compute a type of optimal path, one that minimizes energy consumption while
maximizing resource consumption, between xi

∗(k̄) and xi
∗(k̄ + 1), and thereby

obtain more resources (i.e., it tries to do some consumption along the way to
its goal cell). It should be clear that overall this strategy could be viewed as
a type of planning (or receding horizon) strategy, since it does involve looking
ahead in time; however, it is only using very simplified information to decide
successive goal positions. Moreover, extension to the case where it looks ahead
more than one step across the k̄ index should be clear.

The type of game that is played at the times k̄, k̄ + 1, . . . depends on what
information is used to play the game. For instance, a forager may inherently
know that another forager will go to some region and then spend significant time
there, since it will minimize its energy expenditures by staying in that region
for some time. A forager may then try to “keep its distance” from another
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forager and pick a “foraging region” rather than a point (of course, this depends
on the physical dimensions that correspond to our cell sizes). How can we
represent this? One approach would be to define an “abstraction” of the resource
distribution part of the state, where elements of the abstraction correspond to,
for example, sums of resources of a certain type in sets of contiguous cells.
Then decisions about where to go can depend on “super-cells” created by the
abstraction. This will result in a computationally simpler game, since there
are fewer super-cells to consider moving to. Moreover, it is possible to define a
“nested” strategy where once a region is chosen, a game is played between all
players that decide to go to that region (and multiple levels of abstraction, and
hence, nested games can be played).

It is also the case that some types of foragers know what type of separation to
keep with other foragers, especially in the case of cooperative (social) foraging.
They do not want to be too close, so they crowd each other and each forager
does not get enough resources to survive, but they do not want to be so far
from each other that they cannot benefit from communicating with the other
foragers so they can be led in the best directions towards the most profitable
sites.

Coping with Complexity: Space and Time Abstractions

So, what are the basic concepts employed in foraging in nature that allow an-
imals to overcome computational complexity in deciding how to forage? First,
there is the prevailing fact that while foragers do not want to die, the overall
species has extraordinary reproductive capability so if they do die, they can be
replaced. This is a basic fact of life, but it may not have too much relevance in
the case, where we use biomimicry to design automated systems in engineering
(e.g., for cooperative robotics). Second, evolution essentially generates practical
and robust foraging strategies by optimizing them in the face of complexity con-
straints (e.g., forager physiology that dictates how much memory it can have).
Again, however, at the present time in engineering, it is often impractical to use
such a fact. At other times, such as in the area of “evolutionary cooperative
robotics,” researchers try to evolve good behavior over time. Certainly, there
may be the possibility that such evolution could take place a priori and in sim-
ulation rather than in actual hardware. Regardless, the problem is that there
may be little guidance on how successful such an evolutionary foraging strategy
design approach will be.

Here, we simply assume that we will observe existing foraging strategies and
use biomimicry to capture the essential principles of their operation that help

We cope with complexity
via hierarchies and space
or time abstractions.

the forager cope with complexity. While it is clear that there are many principles
used to cope with complexity, and that it may be difficult to observe the basic
principles used to cope with complexity for any given species, here we will focus
on the principles that seem to arise when one studies how saltatory strategies
operate as we discussed. There seem to be at least the two following general
principles:

• Spatial abstraction: Decision-making often involves having animals “group”
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aspects of the foraging environment in order to make decisions. For in-
stance, an animal may look in a few directions and pick the general direc-
tion that seems to have the most resources. In this way, it avoids being too
greedy by favoring resource “peaks” that may have few resources around
them, and hence, does a type of prediction since it knows that it will con-
tinue to forage and try to minimize energy consumption by not moving
out of a region.

• Time abstraction: Next, there is a type of “asynchronous time decima-
tion,” where the animal does not decide what it will do at each small time
step, but only where it should be (or what it should be doing) at certain
future times. As they move toward their current goals, they solve the
problem of what to do along the way.

These seem to be fundamental principles driving the design of practical foraging
strategies, and how to cope with complexity in decision making.

Finally, note that complexity presents significant challenges in distributed
decision making. Even for the simple strategy defined in the past section, com-
plexity can be significant, especially for large N . For instance, for a full informa-
tion cooperative game, there are three decision variables (horizontal and vertical
position to move to and nutrient to seek there) for each of the N players and so
computing the cost involves finding and computing an optimal value for a very
large matrix game. (How large is the matrix for the case described above?)

19.6 Challenge Problems: Intelligent Social For-
aging

Bacteria forage according to relatively simple rules that dictate how they climb
up nutrient surfaces, or aggregate for the purpose of survival. Their biochemical
“brain” is very simple, essentially a bag of molecules where chemical reactions
implement foraging “decisions.” Recall that we assume that there is a “cogni-
tive spectrum” of intelligence in making foraging decisions. For instance, some

Multiple vehicle guidance
and decentralized
decision-making
problems provide nice
classes of applications to
integrate the methods of
this book.

higher animals have central nervous systems and via these they can achieve
planning, attention, and learning. We can think of such animals as “intelligent
foragers.” Intelligent foragers typically also have an ability to communicate so
that they can achieve “social foraging.” For instance, they may work together
as a group to improve their foraging success and survival chances. Some ani-
mals are of relatively low intelligence, but enhance their foraging success with
communications (e.g., bacteria and ants) to gain an “emergent” intelligence
for the group. Other animals have significant intelligence but may not exploit
their communication capabilities to a great extent, since a “loner” approach in
foraging in their environment is more successful.

Here, we first focus on intelligent individual (i.e., nonsocial) foraging by ex-
plaining how to use planning, attention, and learning methods for foraging. To
do this, and in order to be concrete, we discuss yet another nongradient opti-
mization method that is based on the use of “surrogate models” (in a foraging
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problem, a model of the foraging landscape that includes information about
where predators and prey are). We challenge the reader to solve a particular
type of intelligent foraging problem with a surrogate model method, by present-
ing it as a “design challenge problem” for students, where they can integrate
earlier methods from this book. (For this problem, there may or may not be
multiple foragers and competition.) Next, we discuss the social foraging prob-
lem by introducing it as a second design challenge problem, which also requires
the use of coordination (and hence communications) among multiple agents.
The main challenge is to implement distributed rule-based, planning, attention,
or learning strategies in order to coordinate the behavior of a group of foraging
agents. Varying levels of intelligence, distribution, and communications are dis-
cussed. Aspects of competition are discussed, and in general, there are multiple
teams of foragers that compete for various resources in the environment.

Finally, note that other problems not related to foraging could be used in
place of the problems defined in this section to provide a challenge problem for
the student (e.g., process-wide control/automation for a factory).

19.6.1 Intelligent Foraging

In this section, we explain how to develop a nongradient optimization method
that relies on planning, attention, and learning and hence, provides an algo-
rithmic approach to intelligent (nonsocial) foraging. This is only one of many
possible methods that can be envisioned for the solution of this problem. We
discuss intelligent foraging in the context of this method simply to be concrete
about the ideas, the connections to optimization, and how a simulation might
be constructed.

Surrogate Model Method Representation of Intelligent Foraging

For some optimization problems, it is not only the case that it is impossible
to compute or know the analytical gradient, but it can also be the case that it

A surrogate model
method simultaneously
learns an approximation
to the cost function and
uses it to guide where to
search the cost function.

is very expensive to compute a value of the cost function for each point in the
optimization space (e.g., if the computation requires extensive simulations using
a very complex model, use of experimental apparatus, or physical rearrangement
of physical elements in an environment to determine the value). One approach
to such problems is to use a “surrogate model” to represent the cost function.
The idea is that each time you compute a value of the cost function, you use the
pairing between the test point in the optimization domain and the cost function
value that is computed to form a training data pair, and then construct an
approximator for the cost function (perfectly analogous to how we did this in
Part III, but here the focus is on learning the mapping implemented by the cost
function). How could an approximation of a cost function be useful? The key
is to note that it can be difficult to compute points on the actual cost function,
but it can be very easy to compute test points on the approximation to the
actual cost function. (If the approximation is good, the values will be close.)
Moreover, if the approximation is reasonably good, it can suggest points that
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are good candidates for testing on the actual cost function. Remember the
response surface methodology of Section 15.2, where we approximated a cost
function with an approximator and used it to pick an optimal design point.
The difference here is that our surrogate model method will operate in real time
via sequential acquisition of information (not in the “batch-mode” that RSM
typically uses).

The surrogate model method proceeds as follows:

1. Pick a test point (or set of test points) for J and compute J at this
point (these points). Note that the method can be “set-based” so that
it computes in parallel the cost function at several test points (e.g., via
parallel processing).

2. Store the pairing(s) between the test point(s) and value(s) of J in a train-
ing data set G for an approximator f for J .

3. Construct an approximator (interpolator) for the data in G (perhaps re-
moving some points as others are added). This approximator retuning
can be achieved via repeated application of recursive least squares over a
linear in the parameters approximator, or via application of a Levenberg-
Marquardt method to training a nonlinear in the parameter approximator.

4. Perform an optimization over the approximator surface (not the cost func-
tion) to find a minimum point on that surface. (You may use gradient
methods or pattern search methods to perform this optimization.) Call
this a new test point, compute J at this point (and for a set-based method,
perhaps at a pattern of points around it), and add this (these) to the train-
ing data set. Go back to step 3.

You can think of this as constructing an approximation of the cost function to
guide you to make choices about where to explore the cost function to find the
minimum (the “search” proceeds via the optimization over the learned surface
with periodic updates via sampling the actual cost function and updating the
approximation surface). You can think of the optimization process over the
approximator surface as providing a strategy for picking points to include in the
training data set G. Clearly, when applied to specific problems, the strategy for
picking points to include in G may be constrained by the problem at hand (e.g.,
if applied to a foraging problem, the surrogate model may be a representation
of some aspect of the environment and you may be constrained in choosing
candidate points on the surrogate model by how fast the vehicle can move and
what sensing resources it has—e.g., whether it can sense at a distance).

If you use a pattern search method, it may make sense to think of points on
A surrogate model
method can be thought of
as a method for
integrated learning and
planning.

the pattern as predictions about J , and the selection of points as a selection of
a plan, and the approximation process as learning. In this way, you can think of
the surrogate model method as defining a class of learning-planning methods,
where it is possible to choose a whole variety of pattern search methods as the
basis for planning and gradient optimization methods as a basis for learning (of
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course, as pointed out in the last section, it is possible to use the pattern search
methods as a basis for learning).

Example: Intelligent Foraging Over Nutrient Surfaces

Here, we provide a brief explanation of one way to define aspects of the envi-
ronment as a cost function that can then be used in a surrogate model method
to emulate intelligent foraging.

• Define a nutrient surface, analogous to how we did it for bacteria. This is
the surface that we want to learn about and plan over.

• Add an attentional map defined over that same domain that simply says
where we have searched and where we have not (so if we have visited one
region, then change the map to indicate that, and make it so that climbing
down the attentional map surface corresponds to looking in unexplored
areas; in the theory of surrogate optimization, this is sometimes called a
“merit function”).

• Add the nutrient surface to the attentional map and call that the cost
function. Use planning over the currently learned map so that there is a
type of look-ahead for the forager to decide where to move; however, it
can only make its decisions on the learned map, not the actual one (but it
does know the entire attentional map). This way, in seeking to minimize
the cost, it will try to achieve competing objectives: (i) try to find the
lowest point which corresponds to good food, and (ii) try to search the
entire surface (as dictated by the attentional map). It balances a desire to
search far and wide, possibly finding a better food source, with the desire
to eat now. The attentional map helps it to avoid getting stuck in a local
minimum.

What are the key elements to coding this? First, it seems logical to use a
set-based method, some pattern of sensed points of the nutrient cost function,
placed around the current position of the forager. Second, vehicle dynamics
should be kept simple but must be present in some form (e.g., it cannot be
that you can move the vehicle in one time step an arbitrary distance across
the optimization domain—this is a key difference from standard nongradient
optimization methods). One way to model this is to use a “momentum-term”
(see gradient methods) in the optimization algorithm update formula. Third,
it seems logical to use a linear in the parameter approximator for the nutrient
function, perhaps with RLS to compute the approximator update at each step
(so run RLS for each point in the pattern, at every time step). Fourth, an
RBF could be used for the attentional map, with a simple strategy to update
it based on where the forager actually visits (e.g., it could simply change the
map to represent that the pattern of sensed points was there). Fifth, we see
then that planning corresponds simply to the optimization over the surrogate
model (which here would be the approximation of the nutrient cost function,
plus the attentional map), and since you want the planning method to consider
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many directions from the current forager position, it seems logical to try a
pattern search method (e.g., simple coordinate search or multidirectional search
over the combined approximator/attentional map). It should be possible to
show a movie of learning a nutrient map, the updates to the attentional map,
and it should be that these maps would give good insights into design of the
strategy. How computationally complex will the method be? Well, this depends
on the resolution you choose for your approximator for the nutrient map, and
the attentional map. Also, it depends on the optimization method that you use
for the approximator surface, how big the set is in the set-based method, and
how long your planning horizon is.

19.6.2 Intelligent Social Foraging

In this section, you are asked to consider the wide range of possibilities for
how to design the control and guidance algorithms for automating a group
of intelligent social foraging vehicles. Hence, this section serves to specify a
“capstone” design problem for this book that challenges the student to integrate
the various methods to solve a particularly challenging problem. The design
challenge problem of the previous subsection is relatively simple compared to
the one discussed here (and is included as only a part of the more general
problem here).

The intelligent social vehicular foraging problem also provides a glimpse
into potential topics for further investigation. For instance, there has been
little discussion on the relevance of language and communications in groups of
intelligent systems, let alone aspects related to learning language. There has
been little discussion of distributed learning by groups, distributed planning,
distributed attention, etc. Moreover, there has been little discussion on learning
and evolution of the structure of controllers and estimators. This challenge
problem provides a framework to study such issues (of course, you may want
to start by more thoroughly studying each of these topics in isolation, before
confronting the more challenging social foraging problem).

The main problem for the student will be how to even attack this problem,
provide a solution that shows you understand the basic methods of this book,
and yet integrate the methods to solve a meaningful problem. This is a design
problem where you help design the problem! Perhaps your instructor will help
you, but this still makes the problem more challenging, since your objectives
will not be explicitly listed. You will have to invent them, and the very design
of the objectives is something you will be graded on. You should be careful to
adopt a scientific approach to solving this problem. You should not simply con-
struct some ad hoc combination of earlier methods, so that you can get lucky
in simulation to show that it works. You must evaluate the methods fairly,
provide biological motivations if appropriate (and if you like doing that), and
it would be especially nice if you can augment your study with mathematical
analysis that verifies the operation of the system (e.g., in the spirit of the stabil-
ity analysis that we have studied for neural/fuzzy control, attentional systems,
adaptive control, or swarm cohesion). If you have the opportunity to implement
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your methods on a group of vehicles, this can provide another way to study the
validity of your approach. Keep in mind that standard engineering/scientific
principles apply here, as they were discussed in Part I.

The problem statement, which is very simple, is given in Design Prob-
lem 19.5. So, what is the first step to solve this problem? Read this section as
its basic focus is to give you ideas on how to integrate methods and concepts
from this book to specify decision-making strategies for foraging. It may also
give you ideas for how to extend some of the methods in the book, and you
may be particularly attracted to doing so for a method that you were particu-
larly intrigued with. Next, study the current literature. See the “For Further
Study” section at the end of this part for some ideas on where to start; however,
you should search the library or Internet for other current literature. Next, see
the Web site for this book where some relevant literature and ideas are posted.
Finally, work hard and have fun!

Vehicles, Environment, and Objectives

Here, we define the challenge problem.

Groups of Vehicles—Dynamics, Communications, and Control Struc-
ture: The first challenge is to define the type of vehicle that you will use. In
particular, you need to define the following:

• Vehicle dynamics: For instance, if you use an automobile as your vehi-
cle, what are the differential equations that you will use to simulate its
motion? You can choose the vehicle type. It could be any type of au-
tonomous land (e.g., automobile, truck, cross-country), water (surface or
underwater), air (e.g., helicopter or airplane), or space vehicle (e.g., mobile
satellite, explorer vehicle, etc.). You probably want to pay attention to
the complexity of the dynamics. If you use extremely complex dynamics,
and later try to define a sophisticated control strategy with many vehicles,
your simulation may be too computationally complex. Hence, it is likely
that you will want to use simple point-mass dynamics for your vehicle,
and perhaps saturations on turn rates and velocity.

• Vehicle sensors/actuators: You will need to define which sensors and ac-
tuators you need for “inner-loop” control (e.g., in order to force the vehicle
to track a trajectory that it chooses to follow; for example, doing heading
regulation for the tanker ship). Moreover, you need to define what it can
sense about its environment (e.g., types of prey, elevation of the earth,
motion of predators, etc.), and how it can change its environment (e.g.,
by killing a prey, or building a bridge to be able to cross a river).

• Vehicle communications: You need to define the characteristics of the com-
munications that each vehicle is capable of. Do they all have the same
capabilities? Are the communications noisy or bandlimited? Are there
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random but bounded communication delays? Are the communication ca-
pabilities range-limited, so that if one vehicle moves too far away, it will
not be able to communicate with some other vehicles (e.g., simply due to
the distance, or possibly due to being behind some obstacle)?

• Hierarchy and distribution in the group of vehicles: Building on the last
point, you need to define the allowable communication channels between
vehicles, whether the structure of these channels (i.e., the topology of the
interconnections between all vehicles) can change over time, and whether
there is a type of hierarchy where some vehicles command others to per-
form tasks. For example, there may be no leaders in the group and all the
vehicles may be able to communicate. Perhaps there is a single leader who
is not endowed with any special communication capabilities, but who may
behave differently. Perhaps there is a leader with special communication
capabilities, multiple leaders with different objectives, or a hierarchy of
leaders and followers for command and control. In some problems, you
may be able to design the hierarchy or change it during operation of the
system, and in others you may be given the hierarchy and have to work
with it with no changes.

What types of vehicles are actually used in groups to achieve some objective?
While there are clearly military applications, there are also commercial ones.
For example, an “automated highway system” can be viewed as a group of au-
tonomous vehicles that operate within a type of command and control structure
(see Figure 1.13 on page 40). Or, groups of autonomous vehicles could be used in
pollution clean-up, farming, exploration, or inventory control in manufacturing
systems.

Environment Model and Goals: Your vehicles need to operate in some
environment and hence, your simulation will need to represent its characteristics.
For instance, you may want to consider the inclusion of the following:

• Media: What media do your vehicles move through? Air, water, out-
erspace? Are there disturbances that affect the motion of the vehicle?
Solar pressure? Wind or water currents? For land vehicles, are there hills
and roads?

• Predator/prey (or noxious substance/nutrient) characteristics: If your ve-
hicles seek to consume prey while avoiding predators, what are the char-
acteristics of your predators and prey? How fast can they move? What
types of evasive or pursuit strategies do they use? What is their energy
value if they are consumed? What is the probability that you will en-
counter them? What are the predator/prey densities? You could set this
up as a game, where two students design teams of predators to operate
in a single environment and compete for food sources. Alternatively, each
predator could be prey for the other. Regardless, other predator and prey
strategies help to define the environment for a set of vehicles.
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• Environmental changes: Do the characteristics of the environment change
over time? Do the characteristics of the media change? Does preda-
tor/prey density change? Do predator and prey strategies change?

What is the overall goal of the group of vehicles? The goal may involve
characteristics, such as the following:

• Energy consumption: Find and ingest as much energy as possible (in the
form of prey or nutrients of some type), while avoiding getting killed and
eaten by some predator.

• Achieving goal positions: In some problems, the goal is simply for the
group of vehicles to navigate their environment and achieve some goal
positions.

• Gathering information: The group of vehicles may simply want to create
as accurate a picture as possible about the environment that they operate
in. For example, such an objective may be useful in space exploration via
a set of vehicles.

• Changing the environment: There may be a collective goal to modify
the environment that the group of vehicles operate in. For instance, in
cooperative robotics, the problem of how to use a group of autonomous
vehicles to move an object has been studied. For other problems, there
may be a desire to eliminate targets, cultivate land, build a home, or
gather food into a certain location.

It should be clear that there are certain principles that govern trade-offs in
achieving goals. For example, typically the desire to achieve a wide-area search
(e.g., to find prey) competes with a desire to focus activities in a single local
region (e.g., in consuming prey). You should focus on uncovering such funda-
mental principles/trade-offs and illustrating them via simulations.

As an example, in the IVHS application the media is air, friction with a road
that may turn, wind can influence dynamics, and there are hills and valleys.
Temperature, snow, and rain may also affect vehicle dynamics. Destinations
can be thought of as goal positions.

Elements of Distributed Decision-Making

While each of the foraging vehicles could have neural networks that implement
various control functions, and hence, there would be a distributed neural net-
work for instinctual control, here, we discuss the cases where groups of vehicles
share information and implement distributed rule-based, planning, or atten-
tional schemes for cooperative control that are not necessarily implemented by
neural networks. In a sense, this section indicates how methods of Part II can
be extended to the social foraging problem. Hence, the focus is not on use of the
methods there for the development of controllers for a single control loop, but
how to coordinate the use of information to meet the objectives of the group of
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vehicles (for “outer-loop” control, or guidance) that possibly has an opposing
team (or teams) of vehicles.

A key component of the problem of foraging for many organisms is the
search for food, and hence, this can be a key component for the case where
groups search for food. Hence, in all the elements of decision-making, there is an
element of distributed search. There are, however, several other key components
including cooperative identification of prey, cooperative avoidance of predators,
and cooperative attack of prey. The approaches outlined below show different
ways to look at these basic elements of the group foraging problem.

Distributed Rule-Based Foraging: Some organisms (e.g., ants) actually
use simple rules to specify how to forage for food, and when taken together, a
group of such organisms seems to have an “emergent intelligence.” For example,
such rule-based behavior can indicate when to move in certain directions, and
when all the organisms follow such simple rules, the group appears to move with
purposeful behavior, acting as if they were a single organism rather than many
individual ones. The key difference, compared with the rule-based systems
in Part II, is that communications with other organisms are possible. Rules
basically have two parts: antecedents and consequents. Each of these can be
different for rule-based cooperative control in the following manner:

• Using neighbor’s information in rule antecedents: The type of information
that arrives for use by each organism depends on what type of communi-
cations the organism is capable of achieving. How should the information
from other group members be used? Sometimes it simply would be used
as an additional term in the antecedent of the rules for behavior of an
organism. For instance, without communications, an organism may sim-
ply move greedily about looking for food so its rules’ antecedents simply
depend on direct sensing of environmental variables. If there are commu-
nications from neighbors, this may modify the behavior. How? It could
be there are rules that indicate that the organism is supposed to look for
food, but also follow its neighbors. If such a desire is followed by many
organisms in a group, swarm behavior may emerge (individual rules can
lead to interesting higher-level emergent patterns of behavior). Notice
that in this case, the organism is using rules that depend not only on
the environment, but also on communications from neighbors (e.g., a rule
might say to move towards food, if you do not crowd a neighbor).

• Rules for sending information to neighbors: Rule consequents may con-
tain not only information about which direction to move to get food, but
also a specification of what to communicate to your neighbors about your
experiences, actions, or goals. For instance, if a forager decides to pursue
some prey, it may send a signal to some of its neighbors to come help it
(e.g., in the case of some fish when they try to kill and ingest a much
larger animal). Alternatively, an organism may communicate its intent to
search some region for food and rules in other organisms may then trigger
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to indicate that they should not also look there (e.g., based on expected
prey densities).

This provides a simple introduction as to how rules could be used in coop-
erative control (e.g., we did not discuss the fact that inference strategies could
be communicated and shared between organisms). It is important to emphasize
that even a set of simple rules implemented on each organism (identical or dif-
ferent rules) can lead to seemingly intelligent emergent behavior. That is why,
by working together in simple ways, great things can be achieved. In this case,
it can be that they simply enjoy greater foraging success. But, it is important
to recognize that even what are thought of as higher-level cognitive capabilities
can be achieved as the result of many simple communicating organisms (e.g.,
think of trail-laying by ants as implementing a type of learning to improve the
success of the colony of ants). Moreover, note that rule-based strategies may
be employed in hierarchies, and in conjunction with the planning and attention
methods discussed below.

Distributed Planning for Foraging: You should think of distributed plan-
ning as an advanced form of distributed rule-based cooperative control, where
models are used for prediction, and optimization is used for plan selection. To
fully exploit the capabilities of distributed planning you may need higher band-
width communication channels, since you may want to communicate models,
plans, or plan selection strategies between organisms. The following show some
ideas for how to achieve distributed planning:

• Sharing models: While operating independent of others, an organism that
employs planning would use its own model to decide the best way to forage.
In a cooperative strategy, an organism could get model information from
other organisms in the group. For example, the model may indicate where
other organisms have searched or what they have found. Sharing of model
information between organisms essentially results in a type of adaptive
planning, since models can be updated online while the planning by a
single organism that uses that model is taking place. (Again, we see that
learning emerges via the cooperation.)

• Sharing plans or sets of plans: It is also possible that an organism may
share its current plan, or set of possible plans, with other organisms in
the group. These may indicate where it intends to move, or the set of
possible places that it intends to move. Or, it may indicate its strategies
for attacking a prey or avoiding a predator.

• Sharing plan selection strategies: The cost function that is minimized in
order to select plans could be communicated to other organisms to indicate
aspects of the planning strategy that an organism is using (e.g., to indicate
its intent to try to minimize the use of a certain resource).

Clearly, distributed planning can become very complex and complex behav-
ior can emerge from even simple planning strategies. It should be clear that
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hierarchical planning strategies may be useful, with similar sharing of informa-
tion between planning strategies, and the possibility that subordinates execute
steps of plans specified by higher-level organisms.

Distributed Attention for Foraging: If one organism is given the task
of attending to a set of mobile objects, it allocates its cognitive resources by
dynamically refocusing its attentional focus (and perhaps the field of view of
its sensors). Suppose that we want a group of social foraging vehicles to attend
to a group of mobile predators/prey. Consider the following approaches to this
problem:

• Distributed agreement on focus regions: One approach is to try to develop
a strategy to divide the region into subregions and have each organism
focus only in that subregion. This is, however, a difficult problem since
the foraging group can move and there may be less than perfect commu-
nications between the organisms. This can result in one organism being
responsible for attending to a subregion with too many mobile preda-
tors/prey to cope with (i.e., the capacity condition for that organism may
not be satisfied so that there is no way it can succeed in its task). Or, it
could be that there are too many organisms focusing on one subregion so
that their cognitive resources are essentially wasted.

• Leaders and hierarchical strategies: For the above case, our intent was to
consider a predator/prey focused on if any organism focused on it. This
did not require global communications. What can we achieve if we have
global communications? First, this enhances the possibilities to allocate
organisms to groups of predators and prey. (We think of allocating whole
organisms that in turn allocate their cognitive resources over time to at-
tending to certain predators/prey; notice that the global communications
enables the implementation of a type of hierarchy in the group’s atten-
tional strategy.) Second, this enables the group of organisms to construct a
composite “snapshot” of its predator/prey environment for use in making
foraging decisions.

Clearly, it may be possible to enhance the effectiveness of the attentional
strategies with rule-based, planning, and learning capabilities (e.g., via dis-
tributed adaptive model predictive control as an attentional strategy). We will
discuss distributed learning in more detail in the next section.

Distributed Learning

This section indicates how methods of Part III could be used to augment the
strategies in Part II for use in the social foraging problem. The focus here is
again on the distributed implementation of the methods, where special problems
arise due to, for instance, the lack of global information.
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Distributed Learning in Groups of Foragers: Learning can affect all
aspects of each of the strategies discussed in the last section, from the func-
tionalities that focus on the search for prey to ones concerned with cooperative
avoidance of predators. Learning should be thought of as gathering and storing
information to change future behavior. Hence, rather than try to list all the
ways that learning can be used in social foraging, we will focus on what types
of information can be learned, and why it might be useful in enhancing foraging
success. Some ideas include the following:

• Learning characteristics of the environment: Individuals or the group may
try to learn as much about the environment as possible. For instance, they
may remember locations and quality of food sources, evasive maneuvers of
prey, attack patterns of predators, etc. Learning of these characteristics
may be facilitated by certain instincts in each of these cases (e.g., built-in
expectations about food distribution and density or understanding typical
rates of movement of predators and prey).

• Learning foraging strategies from other group members: It may be possible
for one forager to cooperatively forage with other foragers and at the same
time learn how its neighbors (or predators) succeed at foraging to improve
its own performance, and at the same time improve the performance of
the group (i.e., it may obtain gains that are not at the expense of others
in the group).

• Learning how to communicate: It may be possible that a forager may learn
how to communicate with the group to enhance foraging success.

To make these ideas more concrete, we briefly discuss a specific example of
how learning can be integrated with planning and attention in foraging.

Distributed and Integrated Planning, Attention, and Learning: You
can imagine that there are many ways to combine learning, planning, and at-
tention to achieve effective group foraging strategies. Here, only one is outlined,
essentially expanding a bit on the concepts in Section 19.6.1. You could certainly
generate many more; in the next section, we will discuss the issue of ranking the
quality of such proposed group foraging strategies via an evolutionary perspec-
tive. Here, we ignore the quality of the resulting strategy and simply outline a
way that what you might call “intelligent” social foraging could be achieved.

Suppose that we have a group of foragers searching on an (x, y) plane for
nutrients. Consider an individual forager. Suppose that this forager has a
dynamical “attentional map” that indicates, for instance, where the forager has
not looked for food (i.e., where it needs to pay attention in case there is food
present), and where it has (and hence, where it may have found food and need to
have a mechanism to track it). Corresponding concepts work for predators. The
attentional map amounts to a type of memory, and hence, its dynamic updating
corresponds to a type of learning. The forager can use this map to try to focus
its attention in the proper way to make sure that it has as accurate a view as
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possible of the predator/prey environment, where this process is basically driven
by the inherent goal of survival and reproduction.

Next, suppose that the forager maintains a “cognitive map” of its envi-
ronment that it learns while moving throughout the environment. It stores
information about physical characteristics of its environment (e.g., locations of
rivers or forests), and perhaps also the location and characteristics of predators
and prey. Next, suppose that we endow our forager with an ability to plan using
both its cognitive map of the environment, and its attentional map. That is,
think of the maps as constituting a type of model of the foraging environment
that is learned during the foraging activity, or during the lifetime of the forager.
Now, with a planning capability, the forager can use its current best information
about the environment in order to project into the future and pick the best way
to forage (e.g., it may predict how a prey will react to its movements or how a
predator may behave). Clearly, this predictive capability depends critically on
the quality of the learned information (and hence on the process of learning),
and its own abilities to simultaneously consider a large number of possible predi-
cations and responses by the environment and predators/prey (e.g., the amount
of memory and computational throughput of the forager directly constrain the
plan generation and selection process).

Now, suppose that each forager has the attention, learning, and planning ca-
pabilities, and it has a certain type of ability to communicate with its neighbors.
For example, suppose that each forager can communicate its own attentional
and cognitive map to any other forager that is within a fixed distance from its
current position. Can the group achieve more effective foraging? This seems
quite plausible, since foragers will generally have more accurate attentional and
cognitive maps without expending more energy (i.e., if the communications are
cheaper than gathering information independently). This improved information
should directly affect the quality of the attentional strategies and predictions
made in planning, and hence, the quality of the foraging decisions that are
made. It should be clear that if you increase the allowable range of communica-
tions, there should be corresponding improvement in the quality of information
in each forager, and hence, an overall improvement in the quality of foraging by
the group (assuming of course, that intergroup competition does not dominate).
Clearly, it is also the case that if a forager has a poor sensor or is not honest,
then if this information is passed to other team members, the overall foraging
success could degrade. Indeed, when there are two teams, a key strategy may
be how to deceive the opponent so that they make bad decisions.

Evolution of Foragers

In this final section, we make a few remarks about the relevance of evolution
as discussed in Part IV to the intelligent social foraging problem (Chapter 18
serves as a concrete introduction to this rather philosophical section, since it
integrates foraging concepts and evolution for E. coli).
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Evolving Foraging Strategies: A key idea here is that via natural selection,
the environment both influences an organism’s physiology, and helps to define
foraging success. Hence, the environment dictates what is an optimal group
foraging strategy via the process of evolution. It should be the case then that
optimal social vehicular foraging can only be achieved by careful consideration of
vehicular “physiology” (e.g., amount of computing resources and communication
capability) and the vehicle’s environment.

It should be immediately clear that it is possible to simulate the effects of an
evolutionary process on the design (redesign, “tweaking”) of a social foraging
strategy, and even the communications infrastructure that is used by the group
of foragers. Clearly, foraging success would be a part of the fitness function,
and neural, rule-based, planning, attentive, and learning strategies could all be
encoded and evolved. Just because this is possible, does not mean that it is easy
to do. Moreover, the focus in such studies should be on uncovering principles,
rather than on the ad hoc construction of complex simulations that loosely
emulate biological processes, but which may perhaps get lucky and provide an
occasional good solution.

What principles? We must recognize that the design of social foraging strate-
gies can be very difficult. Hence, it would be nice if we had some design principles
for social foraging vehicles. Consider the following ways to uncover intuitions
about design principles:

• Designing parameters of the decision-making elements: The complexity of
the social foraging problem can make it quite difficult to pick some design
parameters of the decision-making strategies, ones that may be relatively
easy to pick in a single-forager problem. For instance, there should be an
evolved optimal prediction horizon for planning strategies, and optimal
resolution needed for the attentional and cognitive maps discussed in the
last section.

• Achieving balance between decision-making functionalities: It is very diffi-
cult to know how much sophistication is needed for each type of decision-
making mechanism (e.g., planning, learning, attention), and whether it is
possible to use a complex learning strategy, but a simple planning strategy.

• Evolving simple designs: There should be a way to optimize the “cognitive
complexity” (onboard computational resources) of the vehicle, to provide
an effective yet simple engineering design. The question is whether we can
use evolutionary design principles to realize the “keep it simple” principle
in engineering design.

• Studying trade-offs between computational and communication resources:
Could we study questions about whether it is possible to evolve a balance
between how many communications are needed (e.g., bandwidth, commu-
nication range, level of locality) and how many learning, planning, and
attentional capabilities are needed? Is it better to use lots of commu-
nications with simple decision-makers, or limited communications with
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sophisticated decision-making? Clearly, some aspects of such a study may
be constrained by the particular vehicular problem being studied.

• Coevolution: What we call the “environment” includes intelligent adver-
saries (predators and prey) and for some organisms, a type of “arms race”
occurs where one predator evolves some capability, then another evolves
a way to counteract it, and so on. This is called coevolution. Suppose
that you work on a student team, where each student designs an artifi-
cial organism that is both a predator and prey for ones designed by other
students. Could we evolve an “evolutionary stable strategy” (see the “For
Further Study” section at the end of this part) for these organisms? Could
you do this for two groups of vehicles that compete?

• Darwinian design of the software: Could an analogous approach to the
one described in Section 15.7.2, be used to synthesize/tune the software
for cooperative foraging strategies (i.e., where the software is constructed
via implementation in a test bed and evolution)?

Evolving Vehicular Hardware: Suppose that the actual robot or vehicular
hardware can evolve. What are the implications? Here, we simply ask the
following questions:

• How do you make the hardware replicate itself with fecundity and vari-
ation, and instill inheritance into the process? How do you implement
(un)natural selection via environmental influences? A central problem is
one of available resources to support the fecundity and the waste that re-
sults from selection. Biological evolution is based on selection of a few of
many to be the ones that reproduce; the rest are in a sense “wasted.” This
resource/waste problem may be a key limitation that may drive any truly
evolutionary strategy to exist on the molecular scale. But, considering
nanotechnology advances, molecular vehicles or robots may not be out of
the question.

• Could you make this emulate evolution of biological organisms, however
simple they might be?

• Would this be useful for understanding biological evolution?

• Could you argue that your hardware is alive?

• What is the engineering utility of performing hardware evolution for pop-
ulations? Could it be a way to make a group of vehicles or robots more
adaptable to changes in its environment?

• If you can achieve some of these objectives, then will biological evolution
have spawned another type of evolution? Or is this just a natural pro-
gression that is expected from evolution that can be thought of as being
subsumed in what we now think of as evolution? Evolution did spawn
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many other types of optimization processes as we have discussed in this
book, so why not another? It would seem that if it could, it would con-
stitute an important event in evolutionary time.

Via combined hardware-software evolution, learning, planning, attention, rule-
based, and neural systems approaches, could you implement a truly “intelligent”
system?

19.7 Exercises and Design Problems

Exercise 19.1 (Properties of Static Games): This problem provides ex-
ercises to support the tutorial introduction to game theory in this chapter.
You may use the code available at the Web site for the book to solve the
problems.

(a) Using the examples given in the chapter, define a bimatrix game that
has no Nash solution.

(b) Find a bimatrix game that has two Nash solutions.

(c) Find a game that has a Nash solution that is not stable.

(d) Find a bimatrix game where a Nash solution is the same as the
minimax solution.

(e) Find a two-player game that has only one Pareto solution.

Exercise 19.2 (Static and Iterative Foraging Games): For the static
foraging game studied in the chapter:

(a) Investigate the effect of changing the amount of energy it takes to
travel to get a resource. (To do this, assume it is zero and show the
results, then slowly increase the cost of travel to get a resource and
each time, study the choices made in foraging.)

(b) Add a third resource type and develop a simulation to illustrate prop-
erties of the Nash, minimax, and Pareto solutions.

(c) Iterate the static foraging game and show how the resource profiles
decrease. Study the effects of parameters of the costs on the rate of
decrease (i.e., the rate that resources are eliminated from the envi-
ronment).

Design Problem 19.1 (Static Foraging Games—Extensions):

(a) Extend the model developed in the chapter to a two-dimensional
foraging plane. Define all details of the model.

(b) Introduce a way for each animal to find its path in the plane (e.g.,
via a shortest path method over the cells, with a cost from the energy
to travel). Simulate to show that it finds the shortest path.
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(c) Define foraging strategies, both cooperative and competitive, and
evaluate their performance in simulation. Study the “iterated” case
where multiple steps are taken.

Design Problem 19.2 (Evolution of Cooperation and the Iterated
Prisoner’s Dilemma)�: Read [35] and the chapter on evolution of strate-
gies in [36].

(a) Produce a mathematical model of a two-person iterated prisoner’s
dilemma. Explain clearly what the allowable costs are for the game
to represent an iterated prisoner’s dilemma and why it is representa-
tive of some of the typical problems found in cooperation (and give
specific examples of where iterated prisoner’s dilemmas arise, not just
in prisons).

(b) Using the “tit-for-tat,” “tit-for-two-tats,” and random strategies [35],
plus two others of your choice, simulate 200 iterations of the strategies
playing against each other. Compare. Discuss.

(c) Develop, using the ideas from [35, 36], an evolutionary algorithm for
the strategies (i.e., one that in some way eliminates, after a certain
number of iterations, strategies that are not performing well and
generates extra copies of ones that perform well). Run the algorithm
in a Monte Carlo simulation and explain the results. Which strategy
wins? What does it mean for a strategy to be an “evolutionary stable
strategy”?

(d) Explain the relevance of the theory of cooperation from [35, 36] on co-
operation in multivehicle applications. Develop a specific simulation
to illustrate your ideas.

Design Problem 19.3 (Evolutionary Stable Strategies)�: Read the parts
of [245, 534, 213] relevant to evolutionary stable strategies and evolution-
ary dynamics. Write a brief introduction to evolutionary stable strategies
using a matrix games approach to introduce the main ideas. Develop a
simple example and simulation to illustrate the key ideas. Repeat, but for
evolutionary dynamics. Explain the relevance of these ideas to engineering
applications in general, and vehicular applications in particular.

Design Problem 19.4 (Challenge Problem: Foraging Games)�: De-
velop a dynamic foraging game, in two or more dimensions (i.e., it cannot
be a foraging game on a line, like the one we studied in the chapter).
Write out the full details of the mathematical model and strategies that
you choose. The foraging strategy could involve the use of rules, planning,
attention, or learning. Justify the choice for your strategy and quantify
its computational complexity. Evaluate the performance of the strategy
in simulation. Depending on your strategy (e.g., how it is parameterized),
you may also want to study its evolution via a genetic algorithm.
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Design Problem 19.5 (Challenge Problems: Design of Intelligent So-
cial Foraging Strategies)�: The problems below are designed to inte-
grate a number of the methods studied in this book.

(a) Develop a surrogate model method for intelligent foraging and eval-
uate its performance in simulation. Clearly, a key aspect of this
challenge problem is how to formulate a problem that you can solve,
and one that is amenable to at least simulation-based analysis of
performance. You may need to consider nontraditional performance
measures.

(b) Define a foraging problem (nonsocial) different from (a), and design
a decision-making strategy for each forager. Include aspects of com-
petition by having more than one noncooperative forager. Evaluate
the design in simulation.

(c) Define a social vehicular foraging problem and design a decision-
making strategy for each vehicle that leads to foraging success for
the group. Include two opposing (adversarial) teams. Evaluate the
design in simulation. Several approaches to this problem are dis-
cussed in Section 19.6.2.



Chapter 20

For Further Study

Introductions to solitary and social foraging theory are given in [490] and [214],
respectively. Biology foundations for intelligent social multiagent applications
can be found in the emerging field of cognitive ecology [157]. Game theory is
introduced in a variety of books, but one that has a treatment more consistent
with a control-theoretic viewpoint is [47]. The literature on cooperative control
for multivehicle systems is rapidly growing, so the reader should search it for
other relevant and more recent studies.

Foraging, Search, and Optimization: Foraging theory is described in [490,
214] and the section on search strategies of foraging animals is based on [390]. A
good reference on dynamic programming is [55], but there are several other more
recent books. Animal behavior, including foraging theory and its ecological
validity, is discussed in [12, 490, 214] and the behavioral ecology of finding
resources is also discussed in [54].

A seminal treatment of the biology of social organisms, “sociobiology,” is
given in [540]. Sensing, guidance, and navigation by organisms is discussed
in [160, 161]; such issues significantly affect foraging. General issues in time
and energy management for animal behaviors are discussed in [112]. Aspects
of intelligent foraging are discussed in [188, 152, 453]. Neural substrates of
planning and learning are considered in [453], and some of the discussions there
are relevant to foraging concepts. An overview of the biology and behavioral
ecology of swarms is given in [403]. The view that social foraging evolved for
improving climbing of noisy gradients of nutrient resources is introduced in [230].

Simulation of group behavior of organisms is discussed in the areas of swarm
intelligence and artificial life [73, 6, 434, 313]. In these areas, distributed opti-
mization and learning-evolution synergy has been studied in a variety of con-
texts. “Ant colony optimization” is an optimization method that was developed
by modeling foraging in ant colonies, and it is discussed in [73] (the discussion
on the Argentine ants was taken from [25]). There, the focus is on biomimicry
for solution of combinatorial optimization algorithms (e.g., shortest path algo-
rithms). In Section 18.2.7, we discuss some other biomimicry concepts for com-
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binatorial optimization methods (e.g., the streptomycete). The reader should be
aware that there is a very large literature on combinatorial optimization meth-
ods, including many good books [400, 218]. A relevant book on self-organization
in biological systems is [88], and this book also discusses foraging of several
types of organisms, synchronization of firefly flashing, and other types of self-
organization properties of groups of organisms (e.g., construction of structures
such as honeycombs). The book [276] models swarming as an optimization
process (see also [107]).

The problem of how to search for an object has been studied for many
years, and there is a field called “search theory” that grew out of applications
in WWII. The two key seminal references for search theory and its methods
are [494, 283] where the authors discuss theoretical principles of search in a
stochastic environment when sensors are not perfect. There is significant focus
on how to allocate search effort across the environment. The methods that are
developed have been used profitably in applications, and have even been related
to search strategies of animals and used to explain animal search strategies
[160]. The reader who wishes to gain a deeper understanding of search by
autonomous agents is encouraged to see [494, 283] or perhaps the survey article
[58]; however, there has been a recent growing interest of how to apply search
theory to multiple communicating autonomous vehicles so the reader should be
aware that articles continue to appear in this topical area (see, e.g., [138]).

Bacterial Foraging: The description of the biological details of the E. coli
bacteria and their motile behavior were taken from [342, 384, 8, 62, 61, 459, 60].
The chemotactic pathways are simulated in [369] and elsewhere. More details on
the flagellar motor are given in [141, 369, 61]. Computer simulations of growth
of E. coli populations are explained in [287]. Pattern formation in E. coli and
S. typhimurium is discussed in [84, 71, 83, 544, 24, 464] (and a mathematical
swarm model and simulations are provided in [544]). Integral feedback control
mechanism models of internal bacterial decision-making processes are studied
in [553].

An overview of tactic responses that were used to explain motile behavior of
bacteria other than E. coli is given in [24]. Motility behavior of square bacteria is
discussed in [7]. The view of bacteria as multicellular organisms is given in [463].
Motile behavior of bacterial swarms of M. xanthus and some related bacteria
are described in [334, 24, 467, 432]. A swarm motility model for M. xanthus
that is based on a high-frequency gene mutation, called the “Pied piper model,”
is given in [281, 282] (computer simulations of some aspects of this model are
given in [282]). The discussion on P. mirabilis is based on [52]. Simulations of
myxobacteria based on a stochastic cellular automata approach are described in
[491, 492, 323].

While we may often think of studying learning or other higher functions for
organisms that have a neural network, some have studied behavioral plasticity
properties of Paramecium aurelia as classical learning characteristics [208].

Finally, note that the conjugation of bacteria has been modeled in genetic
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algorithms and used for optimization [381]. There, taxes and foraging were not
considered, just the particular mechanism of “sex” for gene transfer and how
this affects the optimization process of the genetic algorithm.

Social Foraging of Insects: See [88, 73] and the references therein for dis-
cussion on several types of social insects. Some very good references on social
insects include [539, 246, 540]. Evolution/optimization of social insect colony
composition is discussed in [539]. In [246], the idea of viewing each individual
in a social insect colony as an energy unit that is expended to get food for the
group is discussed at length. The book [145] discusses information processing
in social insects. General references on bees, several of which focus on foraging,
include [456, 454, 455].

Swarms: Swarming of honey bees is studied in [86, 14, 458, 455, 542, 541,
457]. For more on factors that contribute to in-transit swarm cohesiveness, see
[14, 458, 455, 542].

General references relevant to swarming in the biology literature include
[403, 163, 374]; swarm modeling and analysis is studied in [231, 393, 533, 159,
232, 233, 229, 364, 330]. An article that has a model like the one we used
here is given in [393], where the author also provides examples of modeling
actual biological swarms. Physicists take an approach to modeling swarms where
they model each individual as a particle, which they usually call a self-driven
or self-propelled particle, and they study the collective behavior due to their
interactions [430, 510, 511, 110, 524, 114, 115, 113, 525, 116, 358, 468, 310].

Swarms have also been studied in the context of engineering applications,
particularly in collective robotics, where there are teams of robots working to-
gether by communicating over a communication network [41, 500]. Particularly
relevant to the treatment in this part, is the work in [433], which considers
a distributed control approach based on artificial force laws between individ-
ual robots and robot groups that they call “social potential functions.” For
an overview of autonomous search strategies by robots and animals, see [209].
Special cases of swarms have also been studied in “intelligent vehicle highway
systems” [56, 502, 501, 123]. Also quite relevant is the study of stable formation
control for robots [148], aircraft, and in cooperative control for uninhabited au-
tonomous (air) vehicles [142, 143, 164, 391, 308, 215, 270, 503, 394]. Early work
on swarm stability is in [264, 57]. Later work, where there is asynchronism and
time delays, appears in [326, 325, 327, 329, 199, 328]. Particularly relevant is
the study in [308], where the authors use virtual leaders and artificial potentials
and the work in [392, 38], where climbing noisy gradients is studied. See also the
work in [204, 202, 200], where the authors provide a class of attraction/repulsion
functions and provide conditions for swarm stability (size of ultimate swarm size
and ultimate behavior). The work in [203, 201, 205, 324] represents progress
in the direction of combining the study of aggregating swarms and how, dur-
ing this process, decisions about foraging or threat avoidance can affect the
collective/individual motion of the swarm/swarm members (i.e., typical char-
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acteristics influencing social foraging). There, results are provided on swarm
stability (cohesiveness) in the presence of an attractant/repellent profile. Fi-
nally, note that the literature in the area of swarms is rapidly expanding; the
reader should consult the current literature to find recent developments.

Evolution, Cooperation, and Competition: An introduction to the “it-
erated prisoner’s dilemma” and cooperation is given in [35]. That work is ex-
panded on in [36], where the author also explains a number of topics relevant
to the work in this part (e.g., his landscape theory of aggregation where general
political and economic alignments in large groups are modeled). A biologist’s
evolutionary perspective on cooperation is given in [437]. Cooperation and com-
petition in foraging are also discussed in [490, 214].

Game theory is introduced in a variety of books, but the one that most
affected the development here was [47]. The classic reference for dynamic pro-
gramming is [55], but there are several more recent books. For more information
on combinatorial optimization and complexity theory, see [400, 218]. Predatory
impacts on swarms are discussed in [403]. Competition in insects is discussed
in [246]. An area relevant to the topics of this part is evolutionary game theory
[472, 473] and the analysis of the stochastic dynamics of population evolution
(e.g., stability analysis of “replicator dynamics”) [245, 534, 213]. For this work,
authors study the dynamics of the evolutionary process, sometimes using con-
cepts based on ideas used in this book (e.g., Lyapunov stability).

Intelligent Social Foraging: Cooperative Robotics Applications: Use
of some of the ideas of the static and dynamic games formulation in the last
chapter for vehicular applications, is studied in [191, 190]. Cooperative search
with multiple vehicles is studied in [50]. The use of surrogate optimization
for cooperative control of multiple autonomous vehicles is studied in [554]. A
task load balancing approach to cooperative control for multiple vehicles is
studied in [178]. A distributed task scheduling approach to cooperative control
is studied in [212]. The work in [212] uses ideas from [211] and Chapter 7. The
literature in the area of intelligent networked autonomous vehicular teams is,
however, relatively immature and currently expanding; hence, as part of the
“challenge” problem in Chapter 19.6, it is recommended that you familiarize
yourself with the current literature. The reader interested in the application to
groups of mobile robots may find the book [148] useful for developing models
and nonlinear controls for the individual mobile robots. A natural choice for a
vehicle model for some applications is the “Dubins car;” for instance, see how
it is used in [178, 212] for on application.
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of hybrid systems. In IEEE Interna-
tional Symposium on Intelligent Con-
trol, Columbus, OH, 1994.

[151] M. Dogruel and Ü. Özgüner. Model-
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[552] A. Yeşildirek and F.L. Lewis. Feed-
back linearization using neural net-
works. Automatica, 31(11):1659–1664,
1995.

[553] T.-M. Yi, Y. Huang, M.I. Simon, and
J.C. Doyle. Robust perfect adapta-
tion in bacterial chemotaxis through
integral feedback control. PNAS,
97(9):4649–4653, April 25 2000.

[554] C. Zhang and R. Ordóñez. Decentral-
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action plans, 227
activation function, 112

hyperbolic tangent function, 113
linear function, 113
logistic function, 113
sigmoid function, 113
threshold function, 112

active set, 397
adaptation mechanism, 375, 395, 550
adaptive model predictive control, 409
adaptive planning, 409
admissible, 841
affine mapping, 187
agent, 800
aircraft wing rock regulation, 591, 599
alleles, 617
α-cut, 218
ant colony optimization, 773, 895
antecedent, 161
approximations of the gradient, 661
approximator complexity, 366
approximator flexibility, 366
approximator structure, 343
approximator structure construction, 643
approximator structure learning, 604
architecture, 53, 54
arena, 865
Armijo step size rule, 483
attentional map, 270
attentional mechanisms for adaptation, 410
attentional strategy, 276, 279, 280, 282
attentional strategy design, 697
attentional systems, 265
attraction, 801
autonomy, 42, 54, 91
auxiliary variable, 343

backpropagation method, 492, 499
bacterial foraging, 776
Baldwin effect, 724, 755
ball on a beam plant, 578, 598
batch least squares, 423, 464
Bayesian belief networks, 311
bias, 112
blocking phenomena, 327

Broyden-Fletcher-Goldfarb-Shanno method,
495

c-means clustering, 536
capacity condition, 278
cargo ship steering, 221, 415, 416
center of gravity, 179
central difference formula, 661
certainty equivalence, 553, 555
certainty equivalence control, 581
certainty equivalence controller, 553, 555
chaining, 339
chemotaxis, 780
chromosome, 616
circular loop, 238
classical conditioning, 325
classification problems, 530
cluster, 536
cluster adjustment methods, 535
cluster center, 536
cluster functions, 532
clustering cost functions, 534
clustering methods, 528, 536
cognitive map, 229, 775
Colombia, 641, 826
computational complexity, 17
conditioned response, 326
conditioned stimulus, 326
conflict set, 216
conjugate gradient method, 491
consequent, 161
controllability, 21
conventional control methods, 23
convex combination, 677
convex hull, 677
convex set, 677
cooperative attentional systems, 308
cooperative foraging, 772
cooperative games, 838
cooperative robot swarm, 817, 821
cooperative robotics, 817
coordinate descent methods, 666
coordinate search, 661
covariance modifications, 454
crisp set, 165
cross site, 623
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crossover, 622
crossover probability, 622
cybernetics, 98

Darwinian design for controllers, 710
data processing, 489

offline, 489
online, 489
parallel, 489
serial, 489

data scaling, 347
data set, 344
data set choice, 345
dead end, 238
decision tree, 838
decision variable, 835
decode, 617
defuzzification, 155

center of gravity, 179
design model, 20, 52
design of experiments, 658
design point, 658
development, 412
direct adaptive control, 550
direction of steepest descent, 476, 478
discrete event system, 51
discrimination, 328
discrimination training, 328, 339
distribution, 34
domain of attraction, 144
dynamic foraging game, 868
dynamic game, 837, 863
dynamically focused learning, 410, 411

elimination and dispersal, 783
encode, 617
epoch, 500
equilibrium, 142, 837
Euler’s method, 118
evolution, 80, 615, 721
evolution of cooperation, 893
evolutionary control system design, 706
evolutionary operation using factorial de-

signs method, 663
evolutionary programming, 755
evolutionary stable strategy, 893
expansion point, 679
expert control, 214
expert control for adaptation, 407
explicit memory, 324
exploratory points, 662
extended Kalman filter, 498
extensive form, 838
extinction, 327, 338

feasible region, 486
feedback linearization, 577

firefly, 828
fires, 112
firing rate model, 111, 133
fitness function, 616, 621, 708
fitness landscape, 630
floating point representation, 617
forage, 768
foraging game, 855
forgetting factor, 454, 459
function approximation problem, 343
function approximator, 343
functional architecture, 33, 53, 54
functional fuzzy system, 186
fuzzification, 155, 170
fuzzy complement (not), 219
fuzzy control rule synthesis from data, 437
fuzzy dynamic systems, 194
fuzzy intersection (and), 172
fuzzy inverse model, 396
fuzzy model reference learning control, 388
fuzzy set, 165

α-cut, 218
convex, 218
height, 218
implied, 176
normal, 218
support, 218

fuzzy system approximator, 354
fuzzy-neural, 193

gain floor, 836
Gauss-Newton method, 496
generalization, 328, 450, 489, 511
generation, 620
generic adaptive control, 418
genes, 617
genetic adaptive control, 738
genetic algorithm, 615, 639

control system design, 706
initialization, 630
termination condition, 629

genetic algorithm pseudocode, 626
genetic encoding, 724
genetic operations, 620

crossover, 622
mutation, 625
selection, 621

genotype, 618
global asymptotic stability, 144
global learning, 526
global minimum, 473
gradient methods, 473

habituation, 325
Hebbian learning, 328
Hessian matrix, 492
heuristic adaptive control, 371
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hidden layer, 114
hiearchical rule-based control, 217
hierarchical neural network, 149
hierarchical optimization methods, 700
hierarchical planning, 247
hierarchy, 34
highly optimized tolerance, 650
honey bee swarm, 799, 827
human-mimicry, 72
hybrid system, 51
hyperbolic tangent function, 113

ideal controller, 554, 572, 589
ideal parameters, 554
immune networks, 605, 644
immune system, 605, 644, 758
implicit memory, 324
implied fuzzy set, 176
indirect adaptive control, 550
inference mechanism, 155, 175
infinite games, 842
information space, 866
information structure, 866
initialization, 628
instinct-learning balance, 725, 730
instrumental conditioning, 336
integration step size, 119
intelligent control, 59
intelligent foraging, 877
intelligent social foraging, 877
intelligent transportation system, 39
inter-stimulus interval, 326
interleaving, 700
interpolation, 186
inverted pendulum, 143, 222
isolated equilibrium, 142
iterated prisoner’s dilemma, 893, 898

Jacobian, 497

Kalman filter, 498

Lamarck, 726
landscape, 473
learning mechanism, 395
least squares methods, 423
Levenberg-Marquardt method, 491, 496,

498
line minimization approaches, 483
line search, 483, 666, 688
linear approximator, 352
linear function, 113
linear in the parameter approximators, 367
linguistic hedge, 219
linguistic information, 193
linguistic rule, 161
linguistic value, 158

linguistic variable, 157
linguistic-numeric value, 159
local learning, 526
local minimum, 473
local support, 375
localized learning, 384
logistic function, 113
look-ahead strategy, 241
loss ceiling, 836
Lyapunov function, 145
Lyapunov stability, 144, 145, 221
Lyapunov’s direct method, 145

matching, 174
mathematical representation of fuzzy sys-

tem, 187
mating pool, 620
Matlab for neural network training, 499
matrix game, 835
membership function, 163

α-cut, 218
convex, 218
height, 218
linguistic hedge, 219
normal, 218

minimax strategy, 845
model predictive control, 243, 259, 260,

300, 874
momentum, 479
momentum term, 479
motile behavior, 777, 780
motor control, 309
multidirectional search, 686
multilayer perceptron, 111, 193
multiobjective optimization, 848
multiple model methods, 561
multisensor integration, 303
mutation, 625

Nash equilibrium, 840
Nelder-Mead simplex method, 677
neural network, 107, 193

multilayer perceptron, 111, 193
radial basis function, 131, 193

neural network approximator, 354
neural networks, 61
neuro-dynamic programming, 605
neuro-fuzzy, 193
neuron, 112
Newton method, 491
no free lunch theorem, 651
nonassociative learning, 325
noncooperative games, 838
nonlinear in the parameter approximators,

367, 594
normal form, 838
normalized gradient method, 557
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normalizing the gradient, 484

observability, 21
obstacle avoidance, 232, 817
online function approximation, 369
operant conditioning, 335
optimal output predefuzzification, 540
outcome, 836
output layer, 114
overfitting, 432, 511
overparameterized, 473
overshoot, 15
overtraining, 511

parallel methods, 699
parameter constraints, 486
parameter initialization, 485
parameter update termination, 488
Pareto cost, 850, 853
Pareto optimal solution, 851
Pareto-optimal, 849
partial reinforcement, 338
pattern search, 661
payoff matrix, 835
persistent excitation, 346, 566
phenotype, 618
planner design, 247
planning domain, 229
planning horizon length, 256
planning system, 227
plasticity, 412, 544
player, 835
Polak-Ribiere formula, 494
polynomial approximator, 353
population, 619
positive reinforcement, 338
potential field, 234
premise, 161

membership function, 172
probability, 163
problem domain, 241
projection, 487, 584, 670
projection method, 488
pseudoinverse, 426
pure strategy, 837

quasi-Newton method, 493, 495

radial basis function neural network, 131,
193

rank of a matrix, 426
rational, 835
reaction curve, 842
receding horizon control, 244
receding horizon controller, 874
recency, 216
receptive field unit, 131

recursive least squares, 451, 560
reference model, 373, 551
reflection point, 678
refraction, 216
reinforcement function, 373
reinforcement learning control, 372
reinforcement signal, 373
reinforcer, 338
reproduction, 622
repulsion, 801
Rescorla-Wagner model, 601
resource allocation, 267
resource profile, 803
response surface, 653
response surface methodology, 652
rise-time, 15
robust, 649
robustification, 401
Rosenbrock’s function, 713
rule

linguistic, 161
rule base, 155, 160

table, 162
rule base modifier, 397
rule base modifier alternatives, 399
Runge-Kutta method, 119

saddle point equilibrium, 837
saddle point strategy, 837
saltatory search, 875
saltatory search strategy, 770
sampling interval, 119
scalarization, 850, 853
scaling data, 347
scheduling, 272
search theory, 896
security level, 836
security strategy, 836
selection, 621

fitness-proportionate, 621
use of gradient information, 622

sensitization, 325
set-based optimization, 735
set-based stochastic optimization, 703
set-based techniques, 699
settling time, 16
shaping, 338
sigmoid function, 113
simple coordinate search, 664
simple pattern search method, 662
simplex, 677
simulation, 118

Euler’s method, 118
fuzzy controller, 194
Runge-Kutta method, 119

simultaneous perturbation stochastic ap-
proximation algorithm, 668, 692
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singular value, 426
size of an approximator, 343
sliding mode control term, 586, 591
smooth step, 123
social foraging, 772
social foraging for adaptive control, 822
social foraging of honey bees, 820
software engineering, 43
sphere packing, 827
spikes, 111
spiral method, 45
stability, 14

asymptotic stability, 144
domain of attraction, 144
global asymptotic stability, 144
Lyapunov, 144

stable adaptive control, 576
stable adaptive fuzzy control, 576
stable attentional strategies, 290
stable expert control, 216
stable fuzzy control, 212
stable instinctual neural control, 147
stable Nash equilibria, 843
stable neural control, 576
stable planning systems, 248
stable swarms, 798
Stackelberg solution, 846
static foraging game, 855
static game, 837
stationary point, 473
steady-state error, 16
steepest descent, 476
step size, 475
step size choice, 481
stigmergy, 773
stochastic gradient optimization, 490
stochastic pattern search, 716
strength, 131
string, 616
structural plasticity, 544
structure learning, 343, 604
structure tuning, 594, 618
sufficient excitation, 346
sufficiently excited, 425
supervised learning, 334
support, 218
surge tank, 250
surrogate model, 878
surrogate model method, 878
survival of the fittest, 615
swarm, 798
swarms, 785
synchronization, 828
system identification, 602

Takagi-Sugeno fuzzy system, 186, 359
tank, 250

tanker ship steering, 121, 133, 151, 194,
201, 260, 376, 402, 416, 714–
716

model, 116
taxes, 780, 784
temperature control, 10

multizone, 37
temporal difference learning, 605
termination, 628
termination criteria, 488

scale free, 488
validation set, 488

test set, 351
threshold function, 112
tracking, 12
training data, 344
training data set choice, 345
traits, 619
triangular membership function, 188
truth model, 19, 52, 53
tumble, 778
tuning curve, 114, 133
tuning function, 114

uncertainty, 13
unconditioned response, 326
unconditioned stimulus, 326
unitary matrix, 426
universal approximation property, 365
universal approximator, 365
universal stabilizing mechanism, 296
universe of discourse, 165
unknown function, 343
unstable, 144
unsupervised learning, 334

validation set, 488
value function, 849
vector derivatives, 464
vehicle guidance, 231

waterfall method, 43
weighted batch least squares, 425, 464, 540
weighted recursive least squares, 453, 465
weights, 112
world modeling, 247
World Wide Web site, xiv

zero sum game, 835
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