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José A. De Doná
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Preface

This book gives an introduction to the fundamental principles underlying
constrained control and estimation. This subject has a long history in practice,
particularly in the control of chemical processes and in channel equalisation in
digital communications. Recently, significant advances have also been made in
the supporting theory. In this context, the objective of this book is to describe
the foundations of constrained control and estimation. The treatment is aimed
at researchers and/or practitioners and builds on core principles in signals
and systems, optimisation theory and optimal control. We also emphasise
the common links and connections that exist between estimation and control
problems.

What Is Constrained Control?

It is generally true in control system design that higher levels of performance
are associated with “pushing the system hard”. The latter, however, is usually
limited by the presence of physical constraints on system components. As a
simple, common world example, consider the case of automobile control. It is
well known that rapid acceleration and deceleration are associated with large
throttle displacement and strong braking action, respectively. It is also known
that there exist maximum and minimum available throttle displacements and
braking capacity, that is, the input to the system is constrained. Furthermore,
we might suspect that variables other than the system input are subject to
constraints; for example, acceleration and deceleration have to be limited to
prevent wheels from losing traction. These are constraints on the output or
state of the system. Similar constraints arise in virtually all control problems.
For example, valves in chemical process control have a maximum displacement
(when fully open) and a minimum displacement (when fully closed). These are
examples of input constraints. Also, for safety or other operational reasons,
it is usual to impose limits on allowable temperatures, levels and pressures.
These are examples of state constraints.
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One possible strategy for dealing with constraints is to modify the design
so that limits are never violated. However, it is heuristically reasonable that
this may be counterproductive. Indeed, because it is usually true that higher
performance levels are associated with pushing the limits, there is a strong
incentive to operate the system on constraint boundaries. Within this con-
text, the subject of optimal constrained control provides the necessary tools
required to solve this class of problems. Specifically, the aim is to maximise
performance whilst ensuring that the relevant constraints on both inputs (ma-
nipulated variables) and states (process variables) are not violated.

What Is Constrained Estimation?

Constraints occur in estimation problems for similar reasons as they do in
control problems, save that in estimation, the constraints typically arise as
a priori known conditions rather than as required conditions. For example,
in estimating the concentration in a distillation column, it is typically known
that the liquid levels in the trays must lie between given lower and upper
limits. By enforcing these kinds of constraints during estimation, one should
expect more accurate and realistic results. Another area in which constrained
estimation occurs is the case where the signal to be estimated is known, a
priori, to belong to a finite alphabet. This is the core problem, for example, in
signal recovery in digital communications. Well-known constrained estimators
used in the latter context include decision feedback equalisers and the Viterbi
algorithm.

Why a Special Treatment of Constrained Control and
Estimation?

Most of the existing literature on the topic of control and estimation deals
with unconstrained problems. However, as discussed above, there are strong
practical reasons why constraints cannot be ignored if one is seeking high
performance. Also, from a theoretical perspective, constrained control and
estimation represents the obvious “next step” beyond traditional linear theory.
In fact we shall see that adding constraints to an otherwise linear control or
estimation problem still leads to a problem that is computationally tractable.
Indeed, at the present state of development, the theory of constrained control
and/or estimation for linear systems is approaching the completeness of the
traditional theory for the unconstrained case. Thus there remains no real
impediment to teaching this theory alongside traditional treatments of linear
estimation and control. In summary, constrained control and estimation lies
at the junction of practical importance and theoretical tractability.
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Why a Book at this Particular Time?

There has recently been a surge of interest in constrained estimation and con-
trol problems and many new results have appeared which underpin practical
applications in many areas.

For example, constrained control has been utilised in industry for three
or four decades, primarily in the area of process control where long-time con-
stants of the systems facilitated the necessary calculations. However, there
have recently been several advances that have significantly broadened the
realm of application of constrained control. These advances include:

• Computer speeds have increased dramatically making it feasible to apply
constrained control methods to high speed systems, including electrome-
chanical and aerospace systems.

• New insights have been obtained into constrained control which show that,
in many cases of practical interest, the necessary computations can often be
significantly simplified. This has further enhanced the domain of potential
application of the ideas.

• Theoretical support for the topic is growing. This gives increased confi-
dence in the application of the methods.

• The topic builds on many core principles from mathematical systems the-
ory. Thus, it is a useful vehicle by which neophyte researchers can be
acquainted with a broad range of tools in systems theory, convex optimi-
sation, and optimal control and estimation.

Book Philosophy

This book is aimed at going a step beyond traditional linear control theory to
include consideration of constraints. Our premise is that one should accept the
existence of constraints and deal with them rather than avoid them. Thus, this
book addresses high performance control system design and signal estimation
in the presence of constraints. We adopt an optimisation-based approach to
these problems. The principal tools used are prediction and optimisation.
Prime topics are receding horizon control and moving horizon estimation. We
treat related approaches in so far that they can be viewed as special cases
of this philosophy. For example, it has recently been shown that anti-windup
methods can sometimes be viewed as simplified forms of receding horizon
control. Also, decision feedback equalisers turn out to be a special case of a
more general moving horizon optimisation problem.

Book Content

The book gives a comprehensive treatment of constrained control and estima-
tion. Topics to be addressed include:
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• an overview of optimisation;
• linear and nonlinear receding horizon control;
• links to classical optimal control theory, including the discrete minimum

principle;
• input and state constraints in control system design;
• constrained control solutions having a finite parameterisation for specific

classes of problems;
• stability of constrained controllers;
• numerical procedures for solving constrained optimisation problems;
• output feedback;
• an overview of Bayesian estimation theory;
• constrained state estimation;
• links between constrained estimation and constrained control.

Related Literature

The book includes a comprehensive set of references to contemporary liter-
ature. We also note that there have recently been several excellent books
published that complement the material in the current book. In particular,
we point to the books by Camacho and Bordons (1999), Maciejowski (2002),
Borrelli (2003), and Rossiter (2003).

Intended Audience

The current book is aimed at those wishing to gain an understanding of the
fundamental principles underlying constrained control and estimation. The
book could be used as the basis of a junior level course for research students
or as the basis of a self-study program by practising engineers.

Flavour and Structure of the Book

The book emphasises the mathematical underpinnings of the topic. It sum-
marises and utilises core ideas from signals and systems, optimisation theory,
classical optimal control and Bayesian estimation. Also, the book deals with
dual problems that arise in control, state estimation and signal recovery. The
book assumes that the reader has appropriate background in systems theory,
including linear control theory, stability theory and state space methods. With
this as background, the book is self-contained and encompasses all necessary
material to understand constrained control and estimation, including:

• optimisation and quadratic programming;
• controller design in the presence of constraints;
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• stability;
• Bayesian estimation;
• estimator design in the presence of constraints;
• optimisation with finite set constraints.

The book also contains three case studies. These case studies are intended
to show how the theory described in the book can be put into practice on
problems of practical relevance. The chosen case studies are:

• rudder roll stabilisation of ships;
• cross directional control;
• control over communication networks.

These applications are described in sufficient detail so that the reader can
gain an appreciation of the practical issues involved.

The book is divided into three parts:

• Part I: Foundations
• Part II: Further Developments
• Part III: Case Studies

Part I was written by the principal authors. Parts II and III are based
on contributions prepared by other authors within our working group. Note,
however, that Parts II and III are not simply a collection of contributions;
the contents have been carefully chosen, edited and arranged by the principal
authors and thus form an integrated presentation in combination with Part I.
The split into three parts is aimed at dividing the material into distinct ar-
eas (foundations, further developments and case studies) and at providing
appropriate recognition to those who assisted with the overall book project.

The book is accompanied by a website, which contains related material
such as papers by the authors, lecture slides, worked examples, Matlab rou-
tines, and so on (see http://murray.newcastle.edu.au/cce/).

Newcastle, Australia Graham C. Goodwin
June 2004 Maŕıa M. Seron

José A. De Doná
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1

Introduction

1.1 Overview

The goal of this chapter is to provide a general overview of constrained control
and estimation. This is intended to motivate the material to follow. Section 1.2
treats constrained control, Section 1.3 deals with constrained estimation, and
Section 1.4 draws parallels between these two problems.

1.2 Introduction to Constrained Control

Handling constraints in control system design is an important issue in most,
if not all, real world problems.

It is readily appreciated that all real world control systems have an as-
sociated set of constraints; for example, inputs always have maximum and
minimum values and states are usually required to lie within certain ranges.
Of course, one could proceed by ignoring these constraints and hope that no
serious consequences result from this approach. This simple procedure may be
sufficient at times. On the other hand, it is generally true that higher levels
of performance are associated with operating on, or near, constraint bound-
aries. Thus, a designer really cannot ignore constraints without incurring a
performance penalty.

As an illustration of these facts consider a simple automobile control prob-
lem. We mentioned in the Preface that there exist maximum and minimum
available throttle displacements, that is, the system input is constrained.
Other variables are also subject to constraints; for example, acceleration and
deceleration have to be limited to prevent the vehicle’s wheels from loosing
traction. These factors constitute a constraint on the state of the system.
Thus, modern cars incorporate both traction control (for acceleration) and
anti-skid braking [ABS] (for deceleration). Both mechanisms ensure safe op-
eration when variables are pushed to their limits.
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As another simple example, consider the problem of rudder roll stabil-
isation of ships. The prime function of the rudder is to maintain the ship’s
heading. However, the rudder also imparts a rolling moment to the ship. Thus,
the rudder can be used to achieve a measure of roll stabilisation. Since the
rolling moment induced by the rudder is relatively small, it can be appre-
ciated that large rudder displacements will be called upon, especially under
heavy sea conditions. Of course, practical rudders must operate subject to
constraints on both their total displacement (typically ±30 degrees) and slew
rate (typically ±15 degrees per second). Indeed, it is generally agreed that
rudder roll stabilisation can actually be counterproductive unless appropri-
ate steps are taken to adequately deal with the presence of constraints. We
will devote Chapter 14 to a more comprehensive introduction to rudder roll
stabilisation. Other practical problems are discussed in Chapters 15 and 16.

Most of the existing literature on control theory deals with unconstrained
problems. Nonetheless, as discussed above, there are strong practical reasons
why a system should be operated on constraint boundaries. Thus, this book
is aimed at going a step beyond traditional linear control theory to include
consideration of constraints.

Our view of the existing methods for dealing with constraints in control
system design is that they can be broadly classified under four headings:

• cautious
• serendipitous
• evolutionary
• tactical

In the “cautious” approach, one aims to explicitly deal with constraints
by deliberately reducing the performance demands until the point where the
constraints are not met at all. This has the advantage of allowing one to
essentially use ordinary unconstrained design methods and hence to carry out
a rigorous linear analysis of the problem. On the other hand, this is achieved
at the cost of a potentially important loss in achievable performance since we
expect high performance to be associated with pushing the boundaries, that
is, acting on or near constraints.

In the “serendipitous” approach, one takes no special precautions to handle
constraints, and hence occasional violation of the constraints is possible (that
is, actuators reach saturation, states exceed their allowed values, and so on).
Sometimes this can lead to perfectly acceptable results. However, it can also
have a negative impact on important performance measures, including closed
loop stability, since no special care is taken of the constrained phase of the
response.

In the “evolutionary” approach, one begins with an unconstrained design
philosophy but then adds modifications and embellishments to ensure that
the negative consequences of constraints are avoided, or at least minimised,
whilst ensuring that performance goals are attained. Examples of evolutionary
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approaches include various forms of anti-windup control, high gain-low gain
control, piecewise linear control and switching control.

One might suspect that, by careful design and appropriate use of intu-
ition, one can obtain quite acceptable results from the evolutionary approach
provided one does not push too hard. However, eventually, the constraints
will override the usual linear design paradigm. Under these conditions, there
could be advantages in “starting afresh”. This is the philosophy of the so-
called “tactical” approaches, in which one begins afresh with a formulation
that incorporates constraints from the beginning in the design process. One
way of achieving this is to set the problem up as a constrained optimisation
problem. This will be the approach principally covered in this book.

Of course, the above classification does not cover all possibilities. Indeed,
many methods fall into several categories.

To provide further motivation for this subject, we will present a simple
example illustrating aspects of the cautious, serendipitous and tactical ap-
proaches.

We will base our design on linear quadratic regulator [LQR] theory. Thus,
consider an objective function of the form:

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk) , (1.1)

where {uk} denotes the control sequence {u0, u1, . . . , uN−1}, and {xk} denotes
the corresponding state sequence {x0, x1, . . . , xN}. In (1.1), {uk} and {xk} are
related by the linear state equation:

xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1,

where x0, the initial state, is assumed to be known.
In principle one can adjust the following parameters to obtain different

manifestations of performance:

• the optimisation horizon N
• the state weighting matrix Q
• the control weighting matrix R
• the terminal state weighting matrix P

Actually, adjusting one or more of these parameters to manipulate key
performance variables turns out to be one of the principal practical attributes
of constrained linear control. We illustrate some of the basic features of con-
strained control using the objective function (1.1) via the following simple
example.

Example 1.2.1. Consider the specific linear system:

xk+1 = Axk + Buk, (1.2)
yk = Cxk,
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with

A =
[
1 1
0 1

]
, B =

[
0.5
1

]
, C =

[
1 0

]
,

which is the zero-order hold discretisation with sampling period 1 of the double
integrator

d2y(t)
dt2

= u(t).

We take the initial condition (for illustrative purposes) to be x0 =
[−6 0

]t
and suppose that the actuators have maximum and minimum values (satura-
tion) so that the control magnitude is constrained such that |uk| ≤ 1 for all k.
We will design cautious, serendipitous, and tactical feedback controllers for
this system. A schematic of the feedback control loop is shown in Figure 1.1,
where “sat” represents the actuator modelled by the saturation function

sat(u) �

⎧⎪⎨⎪⎩
1 if u > 1,

u if |u| ≤ 1,

−1 if u < −1.

(1.3)

Note that the section of Figure 1.1 in the dashed-line box is part of the
physical reality and is not subject to change (unless, of course, the actuator
is replaced).

uk xk

controller
linear
systemsat

Figure 1.1. Feedback control loop for Example 1.2.1.

(i) Cautious Design

A cautious strategy would be, for example, to design a linear state feedback
with low gain such that the control limits are never reached.

For example, using the objective function (1.1) with infinite horizon (N =

∞, P = 0) and weighting matrices Q = CtC =
[
1 0
0 0

]
and R = 20 gives the

linear state feedback law:
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uk = −Kxk = − [
0.1603 0.5662

]
xk.

This control law never violates the given physical limits on the input for the
given initial condition. The resulting input and output sequences are shown
in Figure 1.2.

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0

1

k

k

u
k

y
k

Figure 1.2. uk and yk for the cautious design uk = −Kxk with weights Q = CtC
and R = 20.

We can see from Figure 1.2 that the input uk has a maximum value close
to 1 (achieved at k = 0) which clearly satisfies the given constraint for this
initial condition. However, the achieved output response is rather slow. Indeed,
it can be seen from Figure 1.2 that the “settling time” is of the order of eight
samples.

(ii) Serendipitous Design

Now, suppose that for the same Q = CtC in the infinite horizon objective
function we try to obtain a faster response by reducing the control weight to
R = 2. We expect that this will lead to a control law having “higher gain.”

The resultant higher gain control would give the input and output se-
quences shown in dashed lines in Figure 1.3 provided the input constraint could
be removed (that is, if the saturation block were removed from Figure 1.1).
However, we can see that the input constraints would have been violated in
the presence of actuator saturation. (The input at k = 0 is well beyond the
allowed limit of |uk| = 1.)
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To satisfy the constraints we next incorporate the saturation function (1.3)
in the controller and simply saturate the input signal when it violates the
constraint. This leads to the control law:

uk = sat(−Kxk) = −sat(Kxk).

Note that, in terms of performance, this is equivalent to simply letting the
input saturate through the actuator in Figure 1.1. We call this control law
serendipitous since no special considerations of the presence of the constraints
have been made in the design calculations. The resulting input and output
sequences are shown by circle-solid lines in Figure 1.3.

0 5 10 15 20 25
−1

0

1

2

3

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0

1

k

k

u
k

y
k

Figure 1.3. uk and yk for the unconstrained LQR design uk = −Kxk (dashed line),
and for the serendipitous strategy uk = −sat(Kxk) (circle-solid line), with weights
Q = CtC and R = 2.

We see from Figure 1.3 that the amount of overshoot is essentially the
same whether or not the input is constrained. Of course, the response time
achieved with a constrained input is longer than for the case when the input
is unconstrained. However, note that the constraint is part of the physical
reality and cannot be removed unless we replace the actuator. On the other
hand, the serendipitous design (with R = 2) appears to be making better use
of the available control authority than the cautious controller (with R = 20).
Indeed, the settling time is now approximately five samples even when the
input is constrained. This is approximately twice as fast as for the cautious
controller, whose performance was shown in Figure 1.2.
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Encouraged by the above result, we might be tempted to “push our luck”
even further and aim for an even faster response by further reducing the
weighting on the input signal. Accordingly, we decrease the control weighting
in the LQR design even further, for example, to R = 0.1.

In Figure 1.4 we can see the resulting input and output sequences (when
the input constraint, that is, the saturation block in Figure 1.1, is removed)
for the linear controller uk = −Kxk (dashed line). We now observe an un-
constrained settling time of approximately three samples. However, when the
input constraint is taken into account by setting uk = −sat(Kxk), then we
see that significant overshoot occurs and the settling time “blows out” to 12
samples (circle-solid line).

Perhaps we should not be surprised by this result since no special care has
been taken to tailor the design to deal with constraints, that is, the approach
remains serendipitous.

0 5 10 15 20 25
−6

−4

−2

0

2

4
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0 5 10 15 20 25
−6
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−2

0
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4

k

k

u
k

y
k

Figure 1.4. uk and yk for the unconstrained LQR design uk = −Kxk (dashed line),
and for the serendipitous strategy uk = −sat(Kxk) (circle-solid line), with weights
Q = CtC and R = 0.1.

We have seen above that as we try to push the system harder, the serendip-
itous strategy ultimately fails to give a good result leading to the output having
large overshoot and long settling time. We can gain some insight into what
has gone wrong by examining the state space trajectory corresponding to the
serendipitous strategy. This is shown in Figure 1.5, where x1

k and x2
k denote

the components of the state vector xk in the discrete time model (1.2).
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The control law u = −sat(Kx) partitions the state space into three regions
in accordance with the definition of the saturation function (1.3). Hence, the
serendipitous strategy can be characterised as a switched control strategy in
the following way:

u = K(x) =

⎧⎪⎨⎪⎩
−Kx if x ∈ R0,

1 if x ∈ R1,

−1 if x ∈ R2.

(1.4)

Notice that this is simply an alternative way of describing the serendipitous
strategy since for x ∈ R0 the input actually lies between the saturation limits.
The partition is shown in Figure 1.5.

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

x1
k

x
2 k

R0

R1

R2

Figure 1.5. State space trajectory and space partition for the serendipitous strategy
uk = −sat(Kxk), with weights Q = CtC and R = 0.1.

Examination of Figure 1.5 suggests a heuristic argument as to why the
serendipitous control law may not be performing well in this case. We can
think, in this example, of x2 as “velocity” and x1 as “position.” Now, in our
attempt to change the position rapidly (from −6 to 0), the velocity has been
allowed to grow to a relatively high level (+3). This would be fine if the
braking action were unconstrained. However, our input (including braking)
is limited to the range [−1, 1]. Hence, the available braking is inadequate to
“pull the system up”, and overshoot occurs.
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(iii) Tactical Design

Perhaps the above heuristic argument gives us some insight into how we could
remedy the problem. A sensible idea would seem to be to try to “look ahead”
and take account of future input constraints (that is, the limited braking
authority available). To test this idea, we take the objective function (1.1) as
a starting point.

We use a prediction horizon N = 2 and minimise, at each sampling in-
stant i and for the current state xi, the two-step objective function:

V2({xk}, {uk}) =
1
2
xt

i+2Pxi+2 +
1
2

i+1∑
k=i

(xt
kQxk + ut

kRuk) , (1.5)

subject to the equality and inequality constraints:

xk+1 = Axk + Buk,

|uk| ≤ 1,
(1.6)

for k = i and k = i + 1.
In the objective function (1.5), we set, as before, Q = CtC, R = 0.1. The

terminal state weighting matrix P is taken to be the solution of the Riccati
equation P = AtPA+Q−Kt(R+BtPB)K, where K = (R+BtPB)−1BtPA
is the corresponding gain.

As a result of minimising (1.5) subject to (1.6), we obtain an optimal fixed-
horizon control sequence {ui, ui+1}. We then apply the resulting value of ui

to the system. The state evolves to xi+1. We now shift the time instant from
i to i + 1 and repeat this procedure. This is called receding horizon control
[RHC] or model predictive control. RHC has the ability to “look ahead” by
considering the constraints not only at the current time i but also at future
times within the prediction interval [i, i+N −1]. (This idea will be developed
in detail in Chapter 4.)

The input and output sequences for the LQR design u = −Kx (dashed
line) that violates the constraints and the sequences for the receding horizon
design (circle-solid line) are shown in Figure 1.6.

We can see from Figure 1.6 that the output trajectory with constrained
input now has minimal overshoot. Thus, the idea of “looking ahead” and
applying the constraints in a receding horizon fashion has apparently “paid
dividends.”

Actually, we will see in Chapter 6 that the receding horizon strategy de-
scribed above also leads to a partition of the state space into different regions
in which affine control laws hold. The result is shown (for interest) in Fig-
ure 1.7. The region R2 corresponds to the region R2 in Figure 1.5 and repre-
sents the area of state space where u = −1 is applied. Comparing Figure 1.5
and Figure 1.7 we see that the region R2 has been “bent over” in Figure 1.7
so that u = −1 occurs at lower values of x2 (velocity) than was the case in
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Figure 1.6. uk and yk for the unconstrained LQR design uk = −Kxk (dashed line),
and for the receding horizon design (circle-solid line), with weights Q = CtC and
R = 0.1.

Figure 1.5. This is in accordance with our heuristic argument about “needing
to brake earlier.” ◦
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Figure 1.7. State space plot for the receding horizon tactical design.
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Obviously we have not given full details of the above example especially
in relation to the tactical approach; the example has been introduced only to
“wet the readers’ appetite” as to what might appear in the remainder of the
book. Indeed, in forthcoming chapters, we will analyse, in some detail, the
concepts raised in the above simple example.

1.3 Introduction to Constrained Estimation

Constraints are also often present in estimation problems. A classical exam-
ple of a constrained estimation problem is the case in which binary data (say
±1) are transmitted through a communication channel where it suffers dis-
persion causing the data to overlay itself. In the field of communications, this
is commonly referred to as intersymbol interference [ISI]. The associated es-
timation problem is: Given the output of the channel, provide an estimate of
the transmitted signal.

To illustrate some of the ideas involved in the above problem, let us assume,
for simplicity, that the intersymbol interference produced by the channel can
be modelled via a finite impulse response [FIR] model of the form:

yk =
m∑

�=0

g�uk−� + nk, (1.7)

where yk, uk, nk denote the channel output, input and noise, respectively.
Also, (g0 . . . gm) denotes the (finite) impulse response of the channel. We as-
sume here (for simplicity) that g0 . . . gm are known. Also, for simplicity, we
assume that the channel is minimum phase (that is, has a stable inverse).

Now, heuristically, one might expect that one should “invert” the channel
so as to recover the input sequence {uk} from a given sequence of output
data {yk}. Such an inverse can be readily found by utilising feedback ideas.
Specifically, if we expand the channel transfer function as:

G(z) = g0 + . . . + gmz−m = g0 + G̃(z),

then we can form an inverse by the feedback circuit shown in Figure 1.8.
To verify that the circuit of Figure 1.8 does, indeed, produce an inverse,

we see that the transfer function from yk to ũk is

T (z) =

1
g0

1 +
G̃(z)
g0

=
1

g0 + G̃(z)
=

1
G(z)

.

Thus, we have generated an inverse to the system transfer function G(z).
Hence, in the absence of noise and other errors, we can expect that the signal
ũk in Figure 1.8 will converge to uk following an initial transient (note that
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1

g0

G̃(z)

yk ũk+

−

Figure 1.8. Feedback inverse circuit.

we have assumed that G(z) has a stable inverse). Under ideal conditions this
is exactly what does happen. However, in practice, the presence of the noise
term in (1.7) will lead to estimation errors. Indeed, a little thought shows that
ũk may not even belong to the set {+1,−1} even though we know, a priori,
that the true transmitted signal, uk, does.

An improvement seems to be to simply take the nearest value from the set
{+1, −1} corresponding to ũk. This leads to the circuit shown in Figure 1.9,
where

sign(ũk) �
{

+1 if ũk ≥ 0,

−1 if ũk < 0.

Comparing Figure 1.9 with Figure 1.8 may lead us to develop a further

1

g0

G̃(z)

yk ũk

sign
ûk+

−

Figure 1.9. Constrained feedback inverse circuit.

embellishment of this simple idea. In particular, we see in Figure 1.8 that the
feedback path through the transfer function G̃(z) uses the estimated input ũk.
Now, in Figure 1.9 our belief is that ûk should be a better estimate of the input
than ũk since we have forced the constraint ûk ∈ {+1,−1}. This suggests that
we could try feeding back ûk instead of ũk, as shown in Figure 1.10.

The arguments leading to Figure 1.10 are rather heuristic. Nonetheless,
the constrained estimator in Figure 1.10 finds very widespread application in
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1

g0

G̃(z)

yk

sign

ûk+

−

Figure 1.10. Constrained estimation with decision feedback, or “decision feedback
equaliser [DFE].”

digital communications, where it is given a special name—decision feedback
equaliser [DFE].

The reader might now be asking how one could improve on the circuit of
Figure 1.10. We can gain some insight as to from where further improvements
might come by expressing the result shown in Figure 1.10 as the solution to
an optimisation problem. Specifically, assume that we are given (estimates of)
past values of the input, {ûk−1, . . . , ûk−m, . . .}, and that we model the output
ŷk as

ŷk = g0u
′
k + g1ûk−1 + . . . + gmûk−m.

We can now ask what value of u′
k causes ŷk to be, at time k, as close as

possible to the observed output yk. We measure how close ŷk is to yk by the
following one-step objective function:

V1(ŷk, u′
k) = [yk − ŷk]2.

We also require that u′
k ∈ {+1,−1}. The solution to this constrained optimi-

sation problem is readily seen to be:

ûk = sign
{

1
g0

[yk − g1ûk−1 − . . . − gmûk−m]
}

. (1.8)

However, the reader can verify that this precisely corresponds to the arrange-
ment illustrated in Figure 1.10. One might anticipate that by exploiting the
connection with constrained optimisation one can obtain better performance,
since more elaborate objective functions can be employed. How this might be
achieved is discussed below, and a more detailed description will be given in
Chapter 13.

The following example illustrates the above ideas.

Example 1.3.1. Consider the channel model

yk = uk − 1.7uk−1 + 0.72uk−2 + nk,
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where uk is a random binary signal and nk is an independent identically
distributed [i.i.d.] noise having a Gaussian distribution of variance σ2. We
first assume the ideal situation in which the channel has no noise, σ2 = 0.
Since the channel model has a stable inverse, we implement the inversion
estimator depicted in Figure 1.8. The result of the simulation is represented
in Figure 1.11. Notice that the estimator yields perfect signal recovery. This

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

k

u
k
,
ũ
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Figure 1.11. Data uk (circle-solid line) and estimate ũk (triangle-solid line) using
the feedback inverse circuit of Figure 1.8. Noise variance: σ2 = 0.

is very encouraging. However, this situation in which no noise is present is
unrealistic.

Next, we simulate the inversion estimator of Figure 1.8 when the received
signal is affected by noise nk of variance σ2 = 0.1. The result of the simulation
is shown in Figure 1.12. Note that in this case the estimate ũk differs from uk

and does not belong to the range ±1. We conclude that not taking account of
the constraints in the estimation leads to a poor result.

We next simulate the estimator represented in Figure 1.9 with noise of
variance σ2 = 0.1. In this implementation, the nearest value of the estimate
of the previous scheme from the set {+1,−1} is taken. The result is shown
in Figure 1.13. It can be observed that now the estimate ûk belongs to the
set {+1,−1}, but the result is still poor. The reason is that we have not
“informed” the estimator about the constrained estimates but have simply
applied the constraint ûk = sign(ũk) ∈ {+1,−1} “after the event.”

As a further improvement to our estimator, we next implement the estima-
tor of Figure 1.10 (the DFE) where we now feed back ûk ∈ {+1,−1} instead
of ũk, thereby informing the estimator about the presence of constraints. The
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Figure 1.12. Data uk (circle-solid line) and estimate ũk (triangle-solid line) using
the feedback inverse circuit of Figure 1.8. Noise variance: σ2 = 0.1.
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Figure 1.13. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the constrained feedback inverse circuit of Figure 1.9. Noise variance: σ2 = 0.1.

result of the simulation, for a noise of variance σ2 = 0.1, is shown in Fig-
ure 1.14. Note that, despite the presence of noise in the channel, the DFE
recovers the signal perfectly.
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Figure 1.14. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the DFE of Figure 1.10. Noise variance: σ2 = 0.1.

One might wonder if the DFE circuit would always perform so well. We
next investigate the performance of the DFE of Figure 1.10 when the noise
variance is increased by a factor of 2; that is, σ2 = 0.2. The result of the
simulation is shown in Figure 1.15. Note that we have poor performance. The
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Figure 1.15. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the DFE of Figure 1.10. Noise variance: σ2 = 0.2.
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reason is that we are only considering one observation at a time (as mentioned
earlier, this scheme is equivalent to solving a one-step optimisation problem).
It is a well-known phenomenon with this circuit that, once a detection er-
ror occurs, it may propagate. Thus, errors typically occur in “bursts.” The
reason for this error propagation is that previous estimates are assumed to
be equal to the true signal. As we will study later in Chapter 13, other esti-
mation mechanisms can be implemented in which multiple observations are
considered simultaneously and some “degree of belief” in previous estimates
is incorporated. We will give a first taste of these ideas below. ◦

The reader has probably noticed that there is a very close connection
between the above problem and the tactical approach to the control problem
discussed in Section 1.2. This suggests a route by which we may be able to
improve the estimate given in (1.8). Referring to Example 1.2.1, we found that
looking ahead so as to account for future consequences of current actions was
helpful. Thus, we might be led to ask what would happen if we did not fix
u′

k based only on the observation yk but waited until we had observed both
yk and yk+1. Of course, yk+1 also depends on uk+1, but this consideration
could be dealt with by asking that values of u′

k and u′
k+1 belonging to the

set {+1,−1} be chosen such that the following two-stage objective function
is minimised:

V2(ŷk, ŷk+1, u
′
k, u′

k+1) = [yk − ŷk]2 + [yk+1 − ŷk+1]2, (1.9)

where

ŷk = g0u
′
k + g1ûk−1 + . . . + gmûk−m, (1.10)

ŷk+1 = g0u
′
k+1 + g1u

′
k + g2ûk−1 + . . . + gmûk−m+1, (1.11)

and where the past estimates {ûk−1, ûk−2, . . .} are again assumed fixed and
known.

The solution to the above problem can be readily computed by simple
evaluation of V2 for all possible constrained inputs; that is, for

{u′
k, u′

k+1} ∈ {{−1,−1}, {−1, 1}, {1, 1}, {1,−1}}. (1.12)

Notice that there are four possibilities and the optimal solution is simply the
one that yields the lowest value of V2. We could then fix the estimate of uk

(denoted ûk) as the first element of the solution to this optimisation problem.
We might then proceed to measure yk+2 and re-estimate uk+1, plus obtain a
fresh estimate of uk+2 by minimising:

V2(ŷk+1, ŷk+2, u
′
k+1, u

′
k+2) = [yk+1 − ŷk+1]2 + [yk+2 − ŷk+2]2,

where

ŷk+1 = g0u
′
k+1 + g1ûk + . . . + gmûk−m+1,

ŷk+2 = g0u
′
k+2 + g1u

′
k+1 + g2ûk + . . . + gmûk−m+2,
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and where {ûk, ûk−1, . . .} are now assumed fixed and known.
By the above procedure, we are already generating constrained esti-

mates via a moving horizon estimator [MHE] subject to the constraint
u′

k ∈ {+1,−1}. This kind of estimator will be studied in detail in Chapter 13.

Example 1.3.2. Consider again the channel model of Example 1.3.1. Here we
implement a moving horizon estimator as described above. That is, we min-
imise, at each step, the two-stage objective function (1.9), subject to (1.10)–
(1.11) and the constraints (1.12). We then take as the current estimate ûk the
first value u′

k of the minimising sequence {u′
k, u

′
k+1}.

The corresponding simulation results, for noise variance σ2 = 0.2, are
shown in Figure 1.16. We can see from this figure that the estimator recovers
the signal perfectly. Comparing with Figure 1.15 (which shows the estimate
provided by the DFE for the same noise variance), we can see that “looking
ahead” two steps has been beneficial in this case. ◦
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Figure 1.16. Data uk (circle-solid line) and estimate ûk (triangle-solid line) using
the moving horizon two-step estimator. Noise variance: σ2 = 0.2.

1.4 Connections Between Constrained Control and
Estimation

The brief introduction to constrained control and estimation given in Sec-
tion 1.2 and Section 1.3 will have, no doubt, left the reader with the impression
that these two problems are, at least, very similar. Indeed, both have been
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cast as finite horizon constrained optimisation problems. We will see later
that these problems lead to the same underlying question, the only difference
being a rather minor issue associated with the boundary conditions. Actu-
ally, we will show that a strong connection between constrained control and
estimation problems is revealed when looked upon via a Lagrangian duality
perspective. This will be the topic of Chapter 10.

1.5 The Remainder of the Book

The remainder of the book is devoted to expanding on the ideas introduced
above. We will emphasise constrained optimisation approaches to the topics
of control and estimation. Thus, we begin in the next chapter with a review
of basic optimisation theory. This will be followed in Chapter 3 by a review
of classical optimal control theory, including the discrete minimum principle.
In Chapter 4, and following chapters, we will apply these ideas to the specific
issues that arise in control and estimation problems.

1.6 Further Reading

For complete list of references cited, see References section at the end of book.

General

An introduction to unconstrained (linear) control can be found in a host of
textbooks, such as Anderson and Moore (1989), Åström and Wittenmark
(1990), Bitmead, Gevers and Wertz (1990), Goodwin, Graebe and Salgado
(2001), Zhou, Doyle and Glover (1996).

The following books complement the material presented in the current
chapter and give further information on receding horizon control: Camacho
and Bordons (1999), Maciejowski (2002), Borrelli (2003), Rossiter (2003).

The book Proakis (1995) gives further background on channel equalisation
in digital communications. See also the survey papers Qureshi (1985), Tugnait,
Tong and Ding (2000).
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Overview of Optimisation Theory

2.1 Overview

As foreshadowed in Chapter 1, the core idea underlying the approach de-
scribed in this book to constrained control and estimation will be optimisa-
tion theory. This will be the topic of the current chapter. Optimisation theory
has huge areas of potential application which extend well beyond the bound-
aries of control and estimation. However, control and estimation do present
an ideal framework within which the basic elements of optimisation theory
can be presented.

Key ideas that we present in this chapter include convexity, the Karush–
Kuhn–Tucker optimality conditions and Lagrangian duality. These ideas will
be drawn upon in following chapters when we apply them to the specific
topics of constrained control and estimation. The material for this chapter has
been extracted mainly from Bazaraa, Sherali and Shetty (1993). We refer the
reader to this reference, as well as to the others mentioned in Section 2.8, for a
more complete treatment of optimisation theory and a number of illustrative
examples.

2.2 Preliminary Concepts

In this section we review some basic topological properties of sets that will be
used throughout the book. Also, we review the definition of differentiability
of real-valued functions defined on a subset S of Rn.

2.2.1 Sets and Sequences

Given a point x ∈ Rn, an ε-neighbourhood around x is defined as the set
Nε(x) = {y ∈ Rn : ||y − x|| < ε}, for ε > 0, where || · || denotes the Euclidean
norm of a vector in Rn.
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Let S be an arbitrary set in Rn. A point x is said to be in the closure of S,
denoted by cl S, if S ∩Nε(x) �= ∅ for every ε > 0. In other words, the closure
of a set S is the set of all points that are arbitrarily close to S. If S = cl S,
then S is called closed. A point x ∈ S is in the interior of S, denoted by int S,
if Nε(x) ⊂ S for some ε > 0. If S = intS, then S is called open.

A point x is in the boundary of S, denoted by ∂S, if Nε(x) contains at least
one point in S and one point not in S for every ε > 0. Hence, a set S is closed
if and only if it contains all its boundary points. Moreover, cl S ≡ S ∪ ∂S is
the smallest closed set containing S. Similarly, a set S is open if and only if
it does not contain any of its boundary points. Clearly, a set may be neither
open nor closed, and the only sets in Rn that are both open and closed are the
empty set and R

n itself. Also, note that any point x ∈ S must be either an
interior or a boundary point of S. However, in general, S �= intS ∪ ∂S, since
S need not contain its boundary points. On the other hand, since int S ⊆ S,
we have, int S = S − ∂S, whilst, in general, ∂S �= S − intS.

A sequence of points, or vectors, {x1, x2, x3, . . .}, is said to converge to the
limit point x̄ if ||xk − x̄|| → 0 as k → ∞; that is, if for any given ε > 0, there
is a positive integer N such that ||xk − x̄|| < ε for all k ≥ N . The sequence
will be denoted by {xk}, and the limit point x̄ is represented by xk → x̄
as k → ∞. Any converging sequence has a unique limit point. By deleting
certain elements of a sequence {xk}, we obtain a subsequence, denoted by
{xk}K , where K is a subset of all positive integers. To illustrate, let K be
the set of all even positive integers, then {xk}K denotes the subsequence
{x2, x4, x6, . . .}.

An equivalent definition of closed sets, that is useful when demonstrating
that a set is closed, is based on sequences of points contained in S. A set S is
closed if and only if, for any convergent sequence of points {xk} contained in
S with limit point x̄, we also have x̄ ∈ S.

A set is bounded if it can be contained in a neighbourhood of sufficiently
large but bounded radius. A compact set is one that is both closed and
bounded. For every sequence {xk} in a compact set S, there is a convergent
subsequence with a limit in S.

2.2.2 Differentiable Functions

We next investigate differentiability of a real-valued function f defined on a
subset S of Rn.

Definition 2.2.1 (Differentiable Function) Let S be a set in Rn with a
nonempty interior, and let f : S → R. Then, f is said to be differentiable at
x̄ ∈ int S if there exists a vector ∇f(x̄)t ∈ Rn, called the gradient vector,1

and a function α : Rn → R, such that

1 Although nonstandard, here we will consider the gradient vector ∇f a row vector
to be consistent with notation used in the remainder of the book.
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f(x) = f(x̄) + ∇f(x̄)(x − x̄) + ‖x − x̄‖α(x̄, x − x̄) for all x ∈ S, (2.1)

where limx→x̄ α(x̄, x − x̄) = 0. The function f is said to be differentiable on
the open set S′ ⊆ S if it is differentiable at each point in S′. The above
representation of f is called a first-order (Taylor series) expansion of f at x̄.

◦
Note that if f is differentiable at x̄, then there can be only one gradient vector,
and this vector consists of the partial derivatives, that is,

∇f(x̄) =
(

∂f(x̄)
∂x1

,
∂f(x̄)
∂x2

, . . . ,
∂f(x̄)
∂xn

)
.

Definition 2.2.2 (Twice-Differentiable Function) Let S be a set in Rn

with a nonempty interior, and let f : S → R. Then, f is said to be twice-
differentiable at x̄ ∈ int S if there exists a vector ∇f(x̄)t ∈ Rn, and an
n × n symmetric matrix H(x̄), called the Hessian matrix, and a function
α : Rn → R, such that

f(x) = f(x̄) + ∇f(x̄)(x − x̄) +
1
2
(x − x̄)tH(x̄)(x − x̄)+

‖x − x̄‖2α(x̄, x − x̄) for all x ∈ S,

where limx→x̄ α(x̄, x− x̄) = 0. The function f is said to be twice-differentiable
on the open set S′ ⊆ S if it is twice-differentiable at each point in S′. The
above representation of f is called a second-order (Taylor series) expansion of
f at x̄. ◦
For a twice-differentiable function, the Hessian matrix H(x̄) comprises the
second-order partial derivatives, that is, the element in row i and column j of
the Hessian matrix is the second partial derivative ∂2f(x̄)/∂xi∂xj .

A useful theorem, which applies to differentiable functions defined on a
convex set, is the mean value theorem, stated below. (Convex sets are formally
defined in the next section.)

Theorem 2.2.1 (Mean Value Theorem) Let S be a nonempty open con-
vex set in Rn, and let f : S −→ R be differentiable. Then, for every x1 and
x2 in S, we must have

f(x2) = f(x1) + ∇f(x)(x2 − x1),

where x = λx1 + (1 − λ)x2 for some λ ∈ (0, 1). ◦

2.2.3 Weierstrass’ Theorem

The following result, based on the foregoing concepts, relates to the exis-
tence of a minimising solution for an optimisation problem. We shall say



26 2. Overview of Optimisation Theory

that min{f(x) : x ∈ S} exists if there exists a minimising solution x̄ ∈ S
such that f(x̄) ≤ f(x) for all x ∈ S. On the other hand, we say that
α = inf{f(x) : x ∈ S} if α is the greatest lower bound of f on S. We now
prove that if S is nonempty, closed and bounded, and if f is continuous on S,
then a minimum exists.

Theorem 2.2.2 (Weierstrass’ Theorem: Existence of a Solution)
Let S ⊂ Rn be a nonempty, compact set, and let f : S −→ R be continuous
on S. Then f(x) attains its minimum in S, that is, there exists a minimising
solution to the problem min{f(x) : x ∈ S}.
Proof. Since f is continuous on S, and S is both closed and bounded, f is
bounded below on S. Consequently, since S �= ∅, there exists a greatest lower
bound α = inf{f(x) : x ∈ S}. Now, let 0 < ε < 1, and consider the set Sk =
{x ∈ S : α ≤ f(x) ≤ α + εk} for k = 1, 2, . . .. By the definition of an infimum,
Sk �= ∅ for each k, and so we can construct a sequence of points {xk} ⊆ S by
selecting a point xk ∈ Sk for each k = 1, 2, . . .. Since S is bounded, there exists
a convergent subsequence {xk}K → x̄, indexed by the set K. By the closedness
of S, we have x̄ ∈ S; and by the continuity of f , since α ≤ f(xk) ≤ α + εk

for all k, we have α = limk→∞,k∈K f(xk) = f(x̄). Hence, we have shown that
there exists a solution x̄ ∈ S such that f(x̄) = α = inf{f(x) : x ∈ S}, and so
x̄ is a minimising solution. This completes the proof. �

2.3 Convex Analysis

One of the main concepts that underpins optimisation theory is that of con-
vexity. Indeed, the big divide in optimisation is between convex problems and
nonconvex problems, rather than between, say, linear and nonlinear problems.
Thus, understanding the notion of convexity can be a crucial step in solving
many real world problems.

2.3.1 Convex Sets

We have the following definition of a convex set.

Definition 2.3.1 (Convex Set) A set S ⊂ Rn is convex if the line segment
joining any two points of the set also belongs to the set. In other words, if
x1, x2 ∈ S then λx1 + (1 − λ)x2 must also belong to S for each λ ∈ [0, 1]. ◦

Figure 2.1 below illustrates the notions of convex and nonconvex sets. Note
that in Figure 2.1 (b), the line segment joining x1 and x2 does not lie entirely
in the set.

The following are some examples of convex sets:

(i) Hyperplane. S = {x : ptx = α}, where p is a nonzero vector in Rn,
called the normal to the hyperplane, and α is a scalar.
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Figure 2.1. Illustration of a convex and a nonconvex set.

(ii) Half-space. S = {x : ptx ≤ α}, where p is a nonzero vector in Rn, and
α is a scalar.

(iii) Open half-space. S = {x : ptx < α}, where p is a nonzero vector in Rn

and α is a scalar.
(iv) Polyhedral set. S = {x : Ax ≤ b}, where A is an m × n matrix, and

b is an m vector. (Here and in the remainder of the book the inequality
should be interpreted elementwise.)

(v) Polyhedral cone. S = {x : Ax ≤ 0}, where A is an m × n matrix.
(vi) Cone spanned by a finite number of vectors. S = {x : x =∑m

j=1 λjaj , λj ≥ 0, for j = 1, . . . , m}, where a1, . . . , am are given vectors
in Rn.

(vii) Neighbourhood. Nε(x̄) = {x ∈ Rn : ||x − x̄|| < ε}, where x̄ is a fixed
vector in Rn and ε > 0.

Some of the geometric optimality conditions presented in this chapter use
convex cones, defined below.

Definition 2.3.2 (Convex Cone) A nonempty set C in Rn is called a cone
with vertex zero if x ∈ C implies that λx ∈ C for all λ ≥ 0. If, in addition, C
is convex, then C is called a convex cone. ◦
Figure 2.2 shows an example of a convex cone and an example of a nonconvex
cone.

2.3.2 Separation and Support of Convex Sets

Almost all optimality conditions and duality relationships use some sort of
separation or support of convex sets. We begin by stating the geometric facts
that, given a closed convex set S and a point y �∈ S, there exists a unique
point x̄ ∈ S with minimum distance from y (Theorem 2.3.1) and a hyperplane
that separates y and S (Theorem 2.3.2).

Theorem 2.3.1 (Closest Point Theorem) Let S be a nonempty, closed
convex set in Rn and y �∈ S. Then, there exists a unique point x̄ ∈ S with
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Figure 2.2. Examples of cones.

minimum distance from y. Furthermore, x̄ is the minimising point, or closest
point to y, if and only if (y − x̄)t(x − x̄) ≤ 0 for all x ∈ S.

Proof. We first establish the existence of a closest point. Since S �= ∅, there
exists a point x̂ ∈ S, and we can confine our attention to the set S̄ = S ∩ {x :
‖y − x‖ ≤ ‖y − x̂‖} in seeking the closest point. In other words, the closest
point problem inf{‖y − x‖ : x ∈ S} is equivalent to inf{‖y − x‖ : x ∈ S̄}.
However, the latter problem involves finding the minimum of a continuous
function over a nonempty, compact set S̄, and so by Weierstrass’ theorem
(Theorem 2.2.2) we know that there exists a minimising point x̄ in S that is
closest to the point y.

Next, we prove that the closest point is unique. Suppose that there is an
x̄′ ∈ S such that ‖y − x̄‖ = ‖y − x̄′‖ = γ. By convexity of S, 1

2 x̄ + 1
2 x̄′ ∈ S.

By the triangle inequality, we obtain∥∥∥∥y −
(

1
2
x̄ +

1
2
x̄′
)∥∥∥∥ ≤ 1

2
‖y − x̄‖ +

1
2
‖y − x̄′‖ = γ.

If strict inequality holds, we have a contradiction to x̄ being the closest point
to y. Therefore, equality holds, and we must have y − x̄ = λ(y − x̄′) for some
λ. Since ‖y − x̄‖ = ‖y − x̄′‖ = γ, |λ| = 1. Clearly, λ �= −1, because otherwise
we would have y = 1

2 x̄ + 1
2 x̄′ ∈ S, contradicting the assumption that y �∈ S.

So, λ = 1, x̄′ = x̄, and uniqueness is established.
Finally, we prove that (y− x̄)t(x− x̄) ≤ 0 for all x ∈ S is both a necessary

and sufficient condition for x̄ to be the point in S closest to y. To prove
sufficiency, let x ∈ S. Then,

‖y − x‖2 = ‖y − x̄ + x̄ − x‖2 = ‖y − x̄‖2 + ‖x̄ − x‖2 + 2(x̄ − x)t(y − x̄).

Since ‖x̄−x‖2 ≥ 0 and (x̄−x)t(y−x̄) ≥ 0 by assumption, ‖y−x‖2 ≥ ‖y−x̄‖2,
and x̄ is the minimising point. Conversely, assume that ‖y − x‖2 ≥ ‖y − x̄‖2
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for all x ∈ S. Let x ∈ S and note that x̄ + λ(x − x̄) ∈ S for all 0 ≤ λ ≤ 1 by
the convexity of S. Therefore,

‖y − x̄ − λ(x − x̄)‖2 ≥ ‖y − x̄‖2. (2.2)

Also

‖y − x̄ − λ(x − x̄)‖2 = ‖y − x̄‖2 + λ2‖x − x̄‖2 − 2λ(y − x̄)t(x − x̄). (2.3)

From (2.2) and (2.3), we obtain

2λ(y − x̄)t(x − x̄) ≤ λ2‖x − x̄‖2, (2.4)

for all 0 ≤ λ ≤ 1. Dividing (2.4) by any such λ > 0 and letting λ → 0+, the
result follows. �

The above theorem is illustrated in Figure 2.3.
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Figure 2.3. Closest point to a closed convex set.

Definition 2.3.3 (Separation of Sets) Let S1 and S2 be nonempty sets in
Rn. A hyperplane H = {x : ptx = α} separates S1 and S2 if ptx ≥ α for
each x ∈ S1 and ptx ≤ α for each x ∈ S2. If, in addition, ptx ≥ α + ε for
each x ∈ S1 and ptx ≤ α for each x ∈ S2, where ε is a positive scalar, then
the hyperplane H is said to strongly separate the sets S1 and S2. (Notice that
strong separation implies separation of sets.)

Figure 2.4 illustrates the concepts of separation and strong separation of
sets.

The following is the most fundamental separation theorem.

Theorem 2.3.2 (Separation Theorem) Let S be a nonempty closed con-
vex set in Rn and y �∈ S. Then, there exists a nonzero vector p and a scalar
α such that pty > α and ptx ≤ α for each x ∈ S.
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Figure 2.4. Separation and strong separation of sets.

Proof. S is a nonempty closed convex set and y �∈ S. Hence, by Theorem 2.3.1
there exists a unique minimising point x̄ ∈ S such that (y − x̄)t(x − x̄) ≤ 0
for each x ∈ S. Letting p = (y − x̄) �= 0 and α = (y − x̄)tx̄ = ptx̄, we obtain
ptx ≤ α for each x ∈ S. We also have pty−α = (y− x̄)t(y− x̄) = ‖y− x̄‖2 > 0
and, hence, pty > α. This completes the proof. �

Closely related to the above concept is the notion of a supporting hyper-
plane.

Definition 2.3.4 (Supporting Hyperplane at a Boundary Point)
Let S be a nonempty set in R

n, and let x̄ ∈ ∂S. A hyperplane
H = {x : pt(x − x̄) = 0} is called a supporting hyperplane of S at x̄
if either pt(x − x̄) ≥ 0 for each x ∈ S, or else, pt(x − x̄) ≤ 0 for each x ∈ S.

Figure 2.5 shows an example of a supporting hyperplane.
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Figure 2.5. Supporting hyperplane.

The next result shows that a convex set has a supporting hyperplane at
each boundary point. As a corollary, a result similar to Theorem 2.3.2, where
S is not required to be closed, follows.

Theorem 2.3.3 (Supporting Hyperplane) Let S be a nonempty convex
set in Rn, and let x̄ ∈ ∂S. Then there exists a hyperplane that supports S at
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x̄; that is, there exists a nonzero vector p such that pt(x − x̄) ≤ 0 for each
x ∈ cl S.

Proof. Since x̄ ∈ ∂S, there exists a sequence {yk} not in cl S such that
yk → x̄. By Theorem 2.3.2, corresponding to each yk there exists a pk such that
pt

kyk > pt
kx for each x ∈ cl S. Without loss of generality, we can normalise the

vector in Theorem 2.3.2 by dividing it by its norm, such that ‖pk‖ = 1. Since
{pk} is bounded, it has a convergent subsequence {pk}K with limit p whose
norm is also equal to 1. Considering this subsequence, we have pt

kyk > pt
kx

for each x ∈ cl S. Fixing x ∈ cl S and taking limits as k ∈ K approaches
∞, we obtain, pt(x − x̄) ≤ 0. Since this is true for each x ∈ cl S, the result
follows. �

Corollary 2.3.4 Let S be a nonempty convex set in R
n and x̄ �∈ int S. Then

there is a nonzero vector p such that pt(x − x̄) ≤ 0 for each x ∈ clS.

Proof. If x̄ �∈ cl S, then the result follows from Theorem 2.3.2 choosing y = x̄.
On the other hand, if x̄ ∈ ∂S, the result follows from Theorem 2.3.3. �

The next theorem shows that, if two convex sets are disjoint, then they
can be separated by a hyperplane.

Theorem 2.3.5 (Separation of Two Disjoint Convex Sets) Let S1 and
S2 be nonempty convex sets in Rn and suppose that S1 ∩ S2 is empty. Then
there exists a hyperplane that separates S1 and S2; that is, there exists a
nonzero vector p in Rn such that

inf{ptx : x ∈ S1} ≥ sup{ptx : x ∈ S2}.
Proof. Consider the set S = S1 � S2 � {x1 − x2 : x1 ∈ S1 and x2 ∈ S2}.
Note that S is convex. Furthermore, 0 �∈ S, because otherwise S1 ∩ S2 would
be nonempty. By Corollary 2.3.4, there exists a nonzero p ∈ Rn such that
ptx ≥ 0 for all x ∈ S. This means that ptx1 ≥ ptx2 for all x1 ∈ S1 and
x2 ∈ S2, and the result follows. �

The following corollary shows that the above result holds true even if the two
sets have some points in common, as long as their interiors are disjoint.

Corollary 2.3.6 Let S1 and S2 be nonempty convex sets in Rn. Suppose
that int S2 is not empty and that S1 ∩ int S2 is empty. Then, there exists a
hyperplane that separates S1 and S2; that is, there exists a nonzero p such
that

inf{ptx : x ∈ S1} ≥ sup{ptx : x ∈ S2}.
Proof. Replace S2 by int S2, apply Theorem 2.3.5, and note that

sup{ptx : x ∈ S2} = sup{ptx : x ∈ int S2}.
The result then follows. �
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2.3.3 Convex Functions

Convex functions have many important properties for optimisation problems.
For example, any local minimum of a convex function over a convex set is
also a global minimum. We present here some properties of convex functions,
beginning with their definition.

Definition 2.3.5 (Convex Function) Let f : S → R, where S is a
nonempty convex set in Rn. The function f is convex on S if

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ (0, 1).
The function f is strictly convex on S if the above inequality is true as a

strict inequality for each distinct x1, x2 ∈ S and for each λ ∈ (0, 1).
The function f is (strictly) concave on S if −f is (strictly) convex on S.

◦
The geometric interpretation of a convex function is that the value of f

at the point λx1 + (1 − λ)x2 is less than the height of the chord joining the
points [x1, f(x1)] and [x2, f(x2)]. For a concave function, the chord is below
the function itself. Figure 2.6 shows some examples of convex and concave
functions.

Convex function Concave function
Neither convex
nor concave

x1x1x1
x2x2x2

ff

f

λx1+(1−λ)x2λx1+(1−λ)x2

Figure 2.6. Examples of convex and concave functions.

The following are useful properties of convex functions.

(i) Let f1, f2, . . . , fk : Rn → R be convex functions. Then
• f(x) =

∑k
j=1 αjfj(x), where αj > 0 for j = 1, 2, . . . k, is a convex

function;
• f(x) = max{f1(x), f2(x), . . . , fk(x)} is a convex function.

(ii) Suppose that g : Rn → R is a concave function. Let S = {x : g(x) > 0},
and define f : S → R as f(x) = 1/g(x). Then f is convex over S.
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(iii) Let g : R → R be a nondecreasing, univariate, convex function, and let
h : Rn → R be a convex function. Then the composite function f : Rn → R

defined as f(x) = g(h(x)) is a convex function.
(iv) Let g : Rm → R be a convex function, and let h : Rn → Rm be an affine

function of the form h(x) = Ax + b, where A is an m × n matrix, and b
is an m × 1 vector. Then the composite function f : Rn → R defined as
f(x) = g(h(x)) is a convex function.

Associated with a convex function f is the level set Sα defined as Sα =
{x ∈ S : f(x) ≤ α}, α ∈ R. We then have:

Lemma 2.3.7 (Convexity of Level Sets) Let S be a nonempty convex set
in Rn and let f : S → R be a convex function. Then the level set Sα = {x ∈
S : f(x) ≤ α}, where α ∈ R, is a convex set.

Proof. Let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S, and f(x1) ≤ α and f(x2) ≤ α.
Now, let λ ∈ (0, 1) and x = λx1 + (1 − λ)x2 ∈ S (by the convexity of S).
Furthermore, by convexity of f ,

f(x) ≤ λf(x1) + (1 − λ)f(x2) ≤ λα + (1 − λ)α = α.

Hence, x ∈ Sα, and we conclude that Sα is convex. �

An important property of convex functions is that they are continuous on
the interior of their domain, as we prove next.

Theorem 2.3.8 (Continuity of Convex Functions) Let S be a nonempty
convex set in Rn and let f : S → R be a convex function. Then f is continuous
on the interior of S.

Proof. Let x̄ ∈ int S. Hence, there exists a δ′ > 0 such that ||x − x̄|| ≤ δ′

implies that x ∈ S. Consider the vector ei ∈ Rn having all elements equal to
zero except for a 1 in the ith position. Now, construct

θ � max
1≤i≤n

{max [f(x̄ + δ′ei) − f(x̄), f(x̄ − δ′ei) − f(x̄)]} . (2.5)

Note, from the convexity of f , that we have:

f(x̄) = f

[
1
2
(x̄ + δ′ei) +

1
2
(x̄ − δ′ei)

]
≤ 1

2
f(x̄ + δ′ei) +

1
2
f(x̄ − δ′ei),

for all 1 ≤ i ≤ n, from where we conclude that θ ≥ 0.
Now, for any given ε > 0, define:

δ � min
{

δ′

n
,
εδ′

nθ

}
. (2.6)

Choose an x with ||x − x̄|| ≤ δ. Let vi denote the ith element of a vector v.
If xi − x̄i ≥ 0, define zi = δ′ei, otherwise define zi = −δ′ei. Then, x − x̄ =∑n

i=1 αizi, for some αi ≥ 0, 1 ≤ i ≤ n. Furthermore,
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‖x − x̄‖ = δ′
(

n∑
i=1

α2
i

) 1
2

≤ δ. (2.7)

It follows from (2.6) and (2.7) that αi ≤ 1/n and αi ≤ ε/nθ, for i = 1, 2, . . . , n.
From the convexity of f , and since 0 ≤ nαi ≤ 1, we obtain

f(x) = f

(
x̄ +

n∑
i=1

αizi

)
= f

(
1
n

n∑
i=1

(x̄ + nαizi)

)
≤ 1

n

n∑
i=1

f(x̄ + nαizi)

=
1
n

n∑
i=1

f [(1 − nαi)x̄ + nαi(x̄ + zi)]

≤ 1
n

n∑
i=1

[(1 − nαi)f(x̄) + nαif(x̄ + zi)].

Therefore, f(x) − f(x̄) ≤ ∑n
i=1 αi[f(x̄ + zi) − f(x̄)]. From (2.5) and the defi-

nition of zi it follows that f(x̄ + zi) − f(x̄) ≤ θ for each i; and since αi ≥ 0,
it follows that

f(x) − f(x̄) ≤ θ
n∑

i=1

αi. (2.8)

As noted above, αi ≤ ε/nθ, for i = 1, 2, . . . , n and, thus, it follows from (2.8)
that f(x) − f(x̄) ≤ ε.

Now, let y = 2x̄ − x and note that ‖y − x̄‖ ≤ δ. Hence, as above, we
have f(y) − f(x̄) ≤ ε. But, x̄ = 1

2y + 1
2x, and by the convexity of f , we have

f(x̄) ≤ 1
2f(y) + 1

2f(x). Combining the last two inequalities, it follows that
f(x̄) − f(x) ≤ ε.

Summarising, we have shown that for any ε > 0 there exists a δ > 0
(defined as in (2.6)) such that ‖x − x̄‖ ≤ δ implies that f(x) − f(x̄) ≤ ε and
that f(x̄) − f(x) ≤ ε; that is, that |f(x) − f(x̄)| ≤ ε. Hence, f is continuous
at x̄ ∈ int S, and the proof is complete. �

2.3.4 Generalisations of Convex Functions

We present various types of functions that are similar to convex or concave
functions but share only some of their desirable properties.

Definition 2.3.6 (Quasiconvex Function) Let f : S → R, where S is a
nonempty convex set in Rn. The function f is quasiconvex if, for each x1, x2 ∈
S, the following inequality is true:

f(λx1 + (1 − λ)x2) ≤ max {f(x1), f(x2)} for eachλ ∈ (0, 1).

The function f is quasiconcave if −f is quasiconvex. ◦



2.3 Convex Analysis 35

Note, from the definition, that a convex function is quasiconvex.
From the above definition, a function f is quasiconvex if, whenever f(x2) ≥

f(x1), f(x2) is greater than or equal to f at all convex combinations of x1 and
x2. Hence, if f increases locally from its value at a point along any direction, it
must remain nondecreasing in that direction. Figure 2.7 shows some examples
of quasiconvex and quasiconcave functions.

(a) (b) (c)

Figure 2.7. (a) Quasiconvex function. (b) Quasiconcave function. (c) Neither qua-
siconvex nor quasiconcave.

The following result states that a quasiconvex function is characterised by
the convexity of its level sets.

Theorem 2.3.9 (Level Sets of a Quasiconvex Function) Let f : S →
R, where S is a nonempty convex set in Rn. The function f is quasiconvex if
and only if Sα = {x ∈ S : f(x) ≤ α} is convex for each real number α.

Proof. Suppose that f is quasiconvex, and let x1, x2 ∈ Sα. Therefore, x1, x2 ∈
S and max {f(x1), f(x2)} ≤ α. Let λ ∈ (0, 1), and let x = λx1 +(1−λ)x2. By
the convexity of S, x ∈ S. Furthermore, by the quasiconvexity of f , f(x) ≤
max {f(x1), f(x2)} ≤ α. Hence, x ∈ Sα, and thus Sα is convex. Conversely,
suppose that Sα is convex for each real number α. Let x1, x2 ∈ S and take
α = max {f(x1), f(x2)}. Hence, x1, x2 ∈ Sα. Furthermore, let λ ∈ (0, 1) and
x = λx1 +(1−λ)x2. By assumption, Sα is convex, so that x ∈ Sα. Therefore,
f(x) ≤ α = max {f(x1), f(x2)}. Hence, f is quasiconvex, and the proof is
complete. �

We will next define strictly quasiconvex functions.

Definition 2.3.7 (Strictly Quasiconvex Function) Let f : S → R,
where S is a nonempty convex set in Rn. The function f is strictly quasi-
convex if, for each x1, x2 ∈ S with f(x1) �= f(x2), the following inequality is
true

f(λx1 + (1 − λ)x2) < max {f(x1), f(x2)} for eachλ ∈ (0, 1).

The function f is strictly quasiconcave if −f is strictly quasiconvex. ◦
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Note from the above definition that a convex function is also strictly quasicon-
vex. Figure 2.8 shows some examples of quasiconvex and strictly quasiconvex
functions.

(a) (b) (c)

Figure 2.8. (a) Strictly quasiconvex function. (b) Strictly quasiconvex function. (c)
Quasiconvex function but not strictly quasiconvex.

Notice that the definition precludes any flat spots from occurring anywhere
except at extremising points. This, in turn, implies that a local optimal solu-
tion of a strictly quasiconvex function over a convex set is also a global optimal
solution. (Local and global optima for constrained optimisation problems will
be formally defined in Definition 2.5.1.)

We observe that strictly quasiconvex functions are not necessarily quasi-
convex. However, if f is lower semicontinuous2, then it can be shown that
strict quasiconvexity implies quasiconvexity.

We will next introduce another type of function that generalises the con-
cept of a convex function, called a pseudoconvex function. Pseudoconvex func-
tions share the property of convex functions that, if ∇f(x̄) = 0 at some point
x̄, then x̄ is a global minimum of f . (See Theorem 2.4.5.)

Definition 2.3.8 (Pseudoconvex Function) Let S be a nonempty open
set in Rn, and let f : S → R be differentiable on S. The function f is pseudo-
convex if, for each x1, x2 ∈ S with ∇f(x1)(x2 − x1) ≥ 0, then f(x2) ≥ f(x1);
or, equivalently, if f(x2) < f(x1), then ∇f(x1)(x2 − x1) < 0.

The function f is pseudoconcave if −f is pseudoconvex.
The function f is strictly pseudoconvex if, for each distinct x1, x2 ∈ S

with ∇f(x1)(x2 − x1) ≥ 0, then f(x2) > f(x1); or, equivalently, if for each
distinct x1, x2 ∈ S, f(x2) ≤ f(x1), then ∇f(x1)(x2 − x1) < 0. ◦

Note that the definition asserts that if the directional derivative of a pseu-
doconvex function at any point x1 in the direction x2 − x1 is nonnegative,
2 A function f : S → �, where S is a nonempty set in �n , is lower semicontinuous

at x̄ ∈ S if for each ε > 0 there exists a δ > 0 such that x ∈ S and ‖x − x̄‖ < δ
imply that f(x)− f(x̄) > −ε. Obviously, a continuous function at x̄ is also lower
semicontinuous at x̄.
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then the function values are nondecreasing in that direction. Figure 2.9 shows
examples of pseudoconvex and pseudoconcave functions.

(a) (b) (c)

Inflection point

Figure 2.9. (a) Pseudoconvex function. (b) Both pseudoconvex and pseudoconcave.
(c) Neither pseudoconvex nor pseudoconcave.

Several relationships among the different types of convexity can be es-
tablished. For example, one of these relationships is that every pseudoconvex
function is both strictly quasiconvex and quasiconvex. Figure 2.10 summarises
the implications among the different types of convexity. In the particular case
of a quadratic function f it can be shown that f is pseudoconvex if and only
if f is strictly quasiconvex, which holds true if and only if f is quasiconvex.

Convexity at a Point

In some optimisation problems, the requirement of convexity may be too
strong and not essential, and convexity at a point may be all that is needed.
Hence, we present below several types of convexity at a point that are relax-
ations of the various forms of convexity presented so far.

Definition 2.3.9 (Various Types of Convexity at a Point) Let S be a
nonempty convex set in Rn, and f : S → R. We then have the following
definitions:

Convexity at a point. The function f is said to be convex at x̄ ∈ S if
f(λx̄ + (1 − λ)x) ≤ λf(x̄) + (1 − λ)f(x) for each λ ∈ (0, 1) and each
x ∈ S.

Strict convexity at a point. The function f is strictly convex at x̄ ∈ S if
f(λx̄ + (1 − λ)x) < λf(x̄) + (1 − λ)f(x) for each λ ∈ (0, 1) and each
x ∈ S, x �= x̄.

Quasiconvexity at a point. The function f is quasiconvex at x̄ ∈ S if
f(λx̄ + (1 − λ)x) ≤ max {f(x̄), f(x)} for each λ ∈ (0, 1) and each x ∈ S.

Strict quasiconvexity at a point. The function f is strictly quasiconvex at x̄ ∈
S if f(λx̄ + (1 − λ)x) < max {f(x̄), f(x)} for each λ ∈ (0, 1) and each
x ∈ S such that f(x) �= f(x̄).
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Strictly
convex

Convex

Pseudoconvex

   Strictly
quasiconvex

Quasiconvex

     Strictly
pseudoconvex

Under differentiability

Under differentiability

Under lower
semicontinuity

Figure 2.10. Relationship among various types of convexity. The arrows mean
implications and, in general, the converses do not hold. (See Bazaraa et al. (1993)
for a more complete picture of the relationships among the types of convexity.)

Pseudoconvexity at a point. Suppose f is differentiable at x̄ ∈ intS. Then f is
pseudoconvex at x̄ if ∇f(x̄)(x− x̄) ≥ 0 for x ∈ S implies that f(x) ≥ f(x̄).

Strict pseudoconvexity at a point. Suppose f is differentiable at x̄ ∈ intS.
Then f is strictly pseudoconvex at x̄ if ∇f(x̄)(x − x̄) ≥ 0 for x ∈ S ,
x �= x̄, implies that f(x) > f(x̄). ◦

Figure 2.11 illustrates some types of convexity at a point.

2.4 Unconstrained Optimisation

An unconstrained optimisation problem is a problem of the form

minimise f(x), (2.9)

without any constraint on the vector x. Our ultimate goal in this book is
constrained optimisation problems. However, we start by reviewing uncon-
strained problems because optimality conditions for constrained problems are
a logical extension of the conditions for unconstrained problems.
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(a)

(b)

f

f

x1

x1

x2

x2

Figure 2.11. Convexity at a point. (a) f is quasiconvex but not strictly quasi-
convex at x1; f is both quasiconvex and strictly quasiconvex at x2. (b) f is both
pseudoconvex and strictly pseudoconvex at x1; f is pseudoconvex but not strictly
pseudoconvex at x2.

Let us first define local and global minima for unconstrained problems.

Definition 2.4.1 (Local and Global Minima) Consider the problem of
minimising f(x) over Rn and let x̄ ∈ Rn. If f(x̄) ≤ f(x) for all x ∈ Rn,
then x̄ is called a global minimum. If there exists an ε-neighbourhood Nε(x̄)
around x̄ such that f(x̄) ≤ f(x) for each x ∈ Nε(x̄), then x̄ is called a local
minimum, whilst if f(x̄) < f(x) for all x ∈ Nε(x̄), x �= x̄, for some ε > 0,
then x̄ is called a strict local minimum. Clearly, a global minimum is also a
local minimum. ◦

Given a point x ∈ Rn, we wish to determine, if possible, whether or not
the point is a local or global minimum of a function f . For differentiable
functions, there exist conditions that provide this characterisation, as we will
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see below. We will first present a result that allows the characterisation of
descent directions of differentiable functions.

Theorem 2.4.1 (Descent Direction) Suppose that f : Rn → R is differ-
entiable at x̄. If there exists a vector d such that ∇f(x̄)d < 0, then there exists
a δ > 0 such that f(x̄ + λd) < f(x̄) for each λ ∈ (0, δ), so that d is a descent
direction of f at x̄.

Proof. By the differentiability of f at x̄, we have

f(x̄ + λd) = f(x̄) + λ∇f(x̄)d + λ‖d‖α(x̄, λd),

where α(x̄, λd) → 0 as λ → 0. Rearranging the terms and dividing by λ,
λ �= 0, we obtain

f(x̄ + λd) − f(x̄)
λ

= ∇f(x̄)d + ‖d‖α(x̄, λd).

Since ∇f(x̄)d < 0 and α(x̄, λd) → 0 as λ → 0, there exists a δ > 0 such
that the right hand side above is negative for all λ ∈ (0, δ). The result then
follows. �

Corollary 2.4.2 Suppose that f : Rn → R is differentiable at x̄. If x̄ is a
local minimum, then ∇f(x̄) = 0.

Proof. Suppose that ∇f(x̄) �= 0. Then, letting d = −∇f(x̄)t, we get ∇f(x̄)d =
−‖∇f(x̄)‖2 < 0, and by Theorem 2.4.1 there is a δ > 0 such that f(x̄ +
λd) < f(x̄) for each λ ∈ (0, δ), contradicting the assumption that x̄ is a local
minimum. Hence, ∇f(x̄) = 0. �

The above condition uses the gradient vector, whose components are the first
partial derivatives of f ; hence, it is called a first-order condition. Necessary
conditions can also be stated in terms of the Hessian matrix H , which com-
prises the second derivatives of f , and are then called second-order conditions.
One such condition is given below.

Theorem 2.4.3 (Necessary Condition for a Minimum) Suppose that
f : Rn → R is twice-differentiable at x̄. If x̄ is a local minimum, then ∇f(x̄) =
0 and H(x̄) is positive semidefinite.

Proof. Consider an arbitrary direction d. Then, since by assumption f is twice-
differentiable at x̄, we have

f(x̄ + λd) = f(x̄) + λ∇f(x̄)d +
1
2
λ2dtH(x̄)d + λ2‖d‖2α(x̄, λd), (2.10)

where α(x̄, λd) → 0 as λ → 0. Since x̄ is a local minimum, from Corollary 2.4.2
we have ∇f(x̄) = 0. Rearranging the terms in (2.10) and dividing by λ2 > 0,
we obtain
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f(x̄ + λd) − f(x̄)
λ2

=
1
2
dtH(x̄)d + ‖d‖2α(x̄, λd) . (2.11)

Since x̄ is a local minimum, f(x̄ + λd) ≥ f(x̄) for sufficiently small λ . From
(2.11), it is thus clear that 1

2dtH(x̄)d + ‖d‖2α(x̄, λd) ≥ 0 for sufficiently
small λ. By taking the limit as λ → 0, it follows that dtH(x̄)d ≥ 0; and,
hence, H(x̄) is positive semidefinite. �

The conditions presented so far are necessary conditions for a local mini-
mum. We now give a sufficient condition for a local minimum.

Theorem 2.4.4 (Sufficient Condition for a Local Minimum) Suppose
that f : Rn → R is twice-differentiable at x̄. If ∇f(x̄) = 0 and H(x̄) is
positive definite, then x̄ is a strict local minimum.

Proof. Since f is twice-differentiable at x̄, we must have, for each x ∈ R
n,

f(x) = f(x̄) + ∇f(x̄)(x − x̄) +
1
2
(x − x̄)tH(x̄)(x − x̄) + ‖x − x̄‖2α(x̄, x − x̄) ,

(2.12)
where α(x̄, x − x̄) → 0 as x → x̄. Suppose, by contradiction, that x̄ is not a
strict local minimum; that is, suppose there exists a sequence {xk} converging
to x̄ such that f(xk) ≤ f(x̄), xk �= x̄, for each k. Considering this sequence,
noting that ∇f(x̄) = 0 and f(xk) ≤ f(x̄), and denoting (xk − x̄)/‖xk − x̄‖ by
dk, (2.12) then implies that

1
2
dt

kH(x̄)dk + α(x̄, xk − x̄) ≤ 0 for eachk. (2.13)

But ‖dk‖ = 1 for each k; and, hence, there exists an index set K such that
{dk}K converges to d, where ‖d‖ = 1. Considering this subsequence, and the
fact that α(x̄, xk − x̄) → 0 as k ∈ K approaches infinity, then (2.13) implies
that dtH(x̄)d ≤ 0. This contradicts the assumption that H(x̄) is positive
definite since ‖d‖ = 1. Therefore, x̄ is indeed a strict local minimum. �

As is generally the case with optimisation problems, more powerful results
exist under (generalised) convexity conditions. The following result shows that
the necessary condition ∇f(x̄) = 0 is also sufficient for x̄ to be a global
minimum if f is pseudoconvex at x̄.

Theorem 2.4.5 (Necessary and Sufficient Condition for Pseudocon-
vex Functions) Let f : Rn → R be pseudoconvex at x̄. Then x̄ is a global
minimum if and only if ∇f(x̄) = 0.

Proof. By Corollary 2.4.2, if x̄ is a global minimum then ∇f(x̄) = 0. Now,
suppose that ∇f(x̄) = 0, so that ∇f(x̄)(x − x̄) = 0 for each x ∈ Rn. By the
pseudoconvexity of f at x̄, it then follows that f(x) ≥ f(x̄) for each x ∈ Rn,
and the proof is complete. �
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2.5 Constrained Optimisation

We now proceed to the main topic of interest in this book; namely, constrained
optimisation. We first derive optimality conditions for a problem of the fol-
lowing form:

minimise f(x), (2.14)
subject to:
x ∈ S.

We will first consider a general constraint set S. Later, the set S will be
more explicitly defined by a set of equality and inequality constraints. For
constrained optimisation problems we have the following definitions.

Definition 2.5.1 (Feasible and Optimal Solutions) Let f : Rn → R

and consider the constrained optimisation problem (2.14), where S is a
nonempty set in Rn.

• A point x ∈ S is called a feasible solution to problem (2.14).
• If x̄ ∈ S and f(x) ≥ f(x̄) for each x ∈ S, then x̄ is called an optimal

solution, a global optimal solution, or simply a solution to the problem.
• The collection of optimal solutions is called the set of alternative optimal

solutions.
• If x̄ ∈ S and if there exists an ε-neighbourhood Nε(x̄) around x̄ such that

f(x) ≥ f(x̄) for each x ∈ S ∩ Nε(x̄), then x̄ is called a local optimal
solution.

• If x̄ ∈ S and if f(x) > f(x̄) for each x ∈ S∩Nε(x̄), x �= x̄, for some ε > 0,
then x̄ is called a strict local optimal solution. ◦

Figure 2.12 illustrates examples of local and global minima for problem (2.14).

[ ]

A

B

C D
E

Global minimum
Local minima

S

f

Figure 2.12. Local and global minima.

The function f and the constraint set S are shown in the figure. The points
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in S corresponding to A, B and E are also strict local minima, whereas those
corresponding to the flat segment of the graph between C and D are local
minima that are not strict.

In Chapter 13 we will treat a class of problems in which the constraint
set S is not convex. However, in most of the book we will be concerned with
problems in which the function f and set S in problem (2.14) are, respectively,
a convex function and a convex set. Such a problem is known as a convex
programming problem. The following result shows that each local minimum of
a convex program is also a global minimum.

Theorem 2.5.1 (Local Minima of Convex Programs are Global Min-
ima) Consider problem (2.14), where S is a nonempty convex set in Rn, and
f : S → R is convex on S. If x̄ ∈ S is a local optimal solution to the prob-
lem, then x̄ is a global optimal solution. Furthermore, if either x̄ is a strict
local minimum, or if f is strictly convex, then x̄ is the unique global optimal
solution.

Proof. Since x̄ is a local optimal solution, there exists an ε-neighbourhood
Nε(x̄) around x̄ such that

f(x) ≥ f(x̄) for each x ∈ S ∩ Nε(x̄). (2.15)

By contradiction, suppose that x̄ is not a global optimal solution so that
f(x̂) < f(x̄) for some x̂ ∈ S. By the convexity of f , we have that:

f(λx̂ + (1 − λ)x̄) ≤ λf(x̂) + (1 − λ)f(x̄) < λf(x̄) + (1 − λ)f(x̄) = f(x̄),

for each λ ∈ (0, 1). But, for λ > 0 and sufficiently small, λx̂ + (1 − λ)x̄ =
x̄ + λ(x̂− x̄) ∈ S ∩Nε(x̄). Hence, the above inequality contradicts (2.15), and
we conclude that x̄ is a global optimal solution.

Next, suppose that x̄ is a strict local minimum. Then, as just proven, x̄
is a global minimum. Now, suppose that x̄ is not the unique global optimal
solution. That is, suppose that there exist an x̂ ∈ S such that f(x̂) = f(x̄).
Then, defining xλ = λx̂ + (1 − λ)x̄ for 0 ≤ λ ≤ 1, we have, by the convexity
of f and S, that f(xλ) ≤ λf(x̂) + (1 − λ)f(x̄) = f(x̄), and xλ ∈ S for all
0 ≤ λ ≤ 1. By taking λ → 0+ we can make xλ ∈ Nε(x̄) ∩ S for any ε > 0.
However, this contradicts the strict local optimality of x̄ and, hence, x̄ is the
unique global minimum.

Finally, suppose that x̄ is a local optimal solution and that f is strictly
convex. Since strict convexity implies convexity then, as proven earlier, x̄ is
a global optimal solution. By contradiction, suppose that x̄ is not the unique
global optimal solution so that there exists an x̃ ∈ S, x̃ �= x̄, such that f(x̃) =
f(x̄). By strict convexity, we have that f(1

2 x̃ + 1
2 x̄) < 1

2f(x̃) + 1
2f(x̄) = f(x̄).

Since S is convex, 1
2 x̃ + 1

2 x̄ ∈ S, and the above inequality contradicts global
optimality of x̄. Hence, x̄ is the unique global minimum, and this completes
the proof. �
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2.5.1 Geometric Necessary Optimality Conditions

In this section we give a necessary optimality condition for problem (2.14)
using the cone of feasible directions defined below. Note that, in the sequel
and in Sections 2.5.2– 2.5.4, we do not assume problem (2.14) to be a convex
program. As a consequence of this generality, only necessary conditions for
optimality will be derived. In a later section, Section 2.5.5, we will impose
suitable convexity conditions to the problem in order to obtain sufficiency
conditions for optimality.

Definition 2.5.2 (Cones of Feasible Directions and of Improving Di-
rections) Let S be a nonempty set in R

n and let x̄ ∈ cl S. The cone of feasible
directions of S at x̄, denoted by D, is given by

D = {d : d �= 0, and x̄ + λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.
Each nonzero vector d ∈ D is called a feasible direction. Moreover, given a
function f : R

n → R, the cone of improving directions at x̄, denoted by F , is
given by

F = {d : f(x̄ + λd) < f(x̄) for all λ ∈ (0, δ) for some δ > 0}.
Each direction d ∈ F is called an improving direction, or a descent direction
of f at x̄. ◦
We will now consider the function f to be differentiable at the point x̄. We
can then define the sets

F0 � {d : ∇f(x̄)d < 0}, (2.16)

F ′
0 � {d �= 0 : ∇f(x̄)d ≤ 0}. (2.17)

Observe that the set F0 defined in (2.16) is an open half-space defined in terms
of the gradient vector. Note also that, from Theorem 2.4.1, if ∇f(x̄)d < 0,
then d is an improving direction. It then follows that F0 ⊆ F . Hence, the set
F0 gives an algebraic description of the set of improving directions F . Also,
if d ∈ F , we must have ∇f(x̄)d ≤ 0, or else, analogous to Theorem 2.4.1,
∇f(x̄)d > 0 would imply that d is an ascent direction. Hence, we have

F0 ⊆ F ⊆ F ′
0. (2.18)

The following theorem states that a necessary condition for local optimal-
ity is that every improving direction in F0 is not a feasible direction.

Theorem 2.5.2 (Geometric Necessary Condition for Local Optimal-
ity Using the Sets F0 and D) Consider the problem to minimise f(x) sub-
ject to x ∈ S, where f : R

n → R and S is a nonempty set in R
n. Suppose

that f is differentiable at a point x̄ ∈ S. If x̄ is a local optimal solution then
F0 ∩ D = ∅, where F0 = {d : ∇f(x̄)d < 0} and D is the cone of feasible
directions of S at x̄.
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Proof. Suppose, by contradiction, that there exists a vector d ∈ F0 ∩D. Since
d ∈ F0, then, by Theorem 2.4.1, there exists a δ1 > 0 such that

f(x̄ + λd) < f(x̄) for eachλ ∈ (0, δ1). (2.19)

Also, since d ∈ D, by Definition 2.5.2, there exists a δ2 > 0 such that

x̄ + λd ∈ S for eachλ ∈ (0, δ2). (2.20)

The assumption that x̄ is a local optimal solution is not compatible with (2.19)
and (2.20). Thus, F0 ∩ D = ∅. �

The necessary condition for local optimality of Theorem 2.5.2 is illustrated in
Figure 2.13, where the vertices of the cones F0 and D are translated from the
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Figure 2.13. Illustration of the necessary condition for local optimality of Theo-
rem 2.5.2: F0 ∩ D = ∅.

origin to x̄ for convenience.

2.5.2 Problems with Inequality and Equality Constraints

We next consider a specific description for the feasible region S as follows:

S = {x ∈ X : gi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , l} ,
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where gi : Rn → R for i = 1, . . . , m, hi : Rn → R for i = 1, . . . , 
, and X is
a nonempty open set in Rn. This gives the following nonlinear programming
problem with inequality and equality constraints:

minimise f(x),
subject to:
gi(x) ≤ 0 for i = 1, . . . , m, (2.21)
hi(x) = 0 for i = 1, . . . , 
,

x ∈ X.

The following theorem shows that if x̄ is a local optimal solution to prob-
lem (2.21), then either the gradients of the equality constraints are linearly
dependent at x̄, or else F0 ∩G0 ∩H0 = ∅, where F0 is defined as in (2.16) and
the sets G0 and H0 are defined in the statement of the theorem.

Theorem 2.5.3 (Geometric Necessary Condition for Problems with
Inequality and Equality Constraints) Let X be a nonempty open set in
Rn, and let f : Rn → R, gi : Rn → R for i = 1, . . . , m, hi : Rn → R for
i = 1, . . . , 
. Consider the problem defined in (2.21). Suppose that x̄ is a local
optimal solution, and let I = {i : gi(x̄) = 0} be the index set for the binding or
active constraints. Furthermore, suppose that each gi for i /∈ I is continuous
at x̄, that f and gi for i ∈ I are differentiable at x̄, and that each hi for
i = 1, . . . , 
 is continuously differentiable at x̄. If ∇hi(x̄)t for i = 1, . . . , 
 are
linearly independent, then F0 ∩ G0 ∩ H0 = ∅, where

F0 = {d : ∇f(x̄)d < 0},
G0 = {d : ∇gi(x̄)d < 0 for i ∈ I}, (2.22)
H0 = {d : ∇hi(x̄)d = 0 for i = 1, . . . , 
}.

Proof. We use contradiction. Suppose there exists a vector y ∈ F0 ∩G0 ∩H0;
that is, ∇f(x̄)y < 0, ∇gi(x̄)y < 0 for each i ∈ I, and ∇h(x̄)y = 0, where ∇h(x̄)
is the 
 × n Jacobian matrix whose ith row is ∇hi(x̄). We now construct a
feasible arc from x̄. For λ ≥ 0, define α : R → R

n by the following differential
equation and boundary condition:

dα(λ)
dλ

= P(λ)y, α(0) = x̄, (2.23)

where P(λ) is the matrix that projects any vector into the null space of
∇h(α(λ)). For sufficiently small λ, the above equation is well-defined and
solvable because ∇h(x̄) has full row rank and hi, i = 1, . . . , 
, are continu-
ously differentiable at x̄, so that P is continuous in λ. Obviously, α(λ) → x̄
as λ → 0+.

We now show that for sufficiently small λ > 0, α(λ) is feasible and
f(α(λ)) < f(x̄), thus contradicting local optimality of x̄. By the chain rule of
differentiation and using (2.23), we obtain
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dgi(α(λ))
dλ

= ∇gi(α(λ))P(λ)y, (2.24)

for each i ∈ I. In particular, y is in the null space of ∇h(x̄), and so for λ = 0,
we have P(0)y = y. Hence, from (2.24) and the fact that ∇gi(x̄)y < 0, we
obtain

dgi(α(λ))
dλ

∣∣∣∣
λ=0

= ∇gi(x̄)y < 0, (2.25)

for i ∈ I. Recalling that gi(α(0)) = gi(x̄) = 0 for all i ∈ I, this and (2.25)
further imply that gi(α(λ)) < 0 for sufficiently small λ > 0, and for each
i ∈ I. For i �∈ I, gi(x̄) < 0, and gi is continuous at x̄, and thus gi(α(λ)) < 0
for sufficiently small λ. By the mean value theorem (Theorem 2.2.1), we have

hi(α(λ)) = hi(α(0)) + λ
dhi(α(λ))

dλ

∣∣∣∣
λ=µ

= λ
dhi(α(λ))

dλ

∣∣∣∣
λ=µ

, (2.26)

for some µ ∈ (0, λ). However, by the chain rule of differentiation and similarly
to (2.24), we obtain

dhi(α(λ))
dλ

∣∣∣∣
λ=µ

= ∇hi(α(µ))P(µ)y.

By construction, P(µ)y is in the null space of ∇hi(α(µ)) and, hence, from the

above equation we obtain
dhi(α(λ))

dλ

∣∣∣∣
λ=µ

= 0. Substituting in (2.26), it follows

that hi(α(λ)) = 0 for all i. Also, since X is open, α(λ) ∈ X for sufficiently
small λ.

We have, so far, established that the arc α(λ) defined by (2.23) is a fea-
sible solution to the problem (2.21) for each sufficiently small λ > 0, since
gi(α(λ)) < 0 for all i = 1, . . . , m, hi(α(λ)) = 0 for all i = 1, . . . , 
, and
α(λ) ∈ X . To complete the proof by contradiction we next prove that such
a feasible arc α(λ) would constitute an arc of improving solutions. By an
argument similar to that leading to (2.25), we obtain

df(α(λ))
dλ

∣∣∣∣
λ=0

= ∇f(x̄)y < 0,

and, hence, f(α(λ)) < f(x̄) for sufficiently small λ > 0. This contradicts local
optimality of x̄. Hence, F0 ∩ G0 ∩ H0 = ∅, and the proof is complete. �

2.5.3 The Fritz John Necessary Conditions

In this section we express the geometric optimality condition F0∩G0∩H0 = ∅
of Theorem 2.5.3 in a more usable algebraic form known as the Fritz John
conditions.
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Theorem 2.5.4 (The Fritz John Necessary Conditions) Let X be a
nonempty open set in Rn, and let f : Rn → R, gi : Rn → R for i = 1, . . . , m,
hi : R

n → R for i = 1, . . . , 
. Consider the optimisation problem defined in
(2.21). Let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Furthermore,
suppose that each gi for i /∈ I is continuous at x̄, that f and gi for i ∈ I are
differentiable at x̄, and that each hi for i = 1, . . . , 
 is continuously differen-
tiable at x̄. If x̄ locally solves problem (2.21), then there exist scalars u0 and
ui for i ∈ I, and vi for i = 1, . . . , 
, such that

u0∇f(x̄)t +
∑
i∈I

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

u0, ui ≥ 0 for i ∈ I,

(u0, uI , v) �= (0, 0, 0),

(2.27)

where uI and v are vectors whose components are ui, i ∈ I, and vi, i =
1, . . . , 
, respectively. Furthermore, if gi, i /∈ I are also differentiable at x̄,
then the above conditions can be written as

u0∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

uigi(x̄) = 0 for i = 1, . . . , m,

u0, ui ≥ 0 for i = 1, . . . , m,

(u0, u, v) �= (0, 0, 0),

(2.28)

where u and v are vectors whose components are ui, i = 1, . . . , m, and vi, i =
1, . . . , 
, respectively.

Proof. In the case where the vectors ∇hi(x̄)t for i = 1, . . . , 
 are linearly
dependent, then one can find scalars v1, . . . , v�, not all zero, such that∑�

i=1 vi∇hi(x̄)t = 0. Letting u0 and ui for i ∈ I equal to zero, conditions
(2.27) hold trivially.

Now suppose that ∇hi(x̄)t for i = 1, . . . , 
 are linearly independent. Then,
from Theorem 2.5.3, local optimality of x̄ implies that the sets defined in (2.22)
satisfy:

F0 ∩ G0 ∩ H0 = ∅. (2.29)

Let A1 be the matrix whose rows are ∇f(x̄) and ∇gi(x̄) for i ∈ I, and let A2

be the matrix whose rows are ∇hi(x̄) for i = 1, . . . , 
. Then, it is easy to see
that condition (2.29) is satisfied if and only if the system:

A1d < 0,

A2d = 0,

is inconsistent. Now consider the following two sets:
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S1 = {(z1, z2) : z1 = A1d, z2 = A2d, d ∈ R
n},

S2 = {(z1, z2) : z1 < 0, z2 = 0}.
Note that S1 and S2 are nonempty convex sets and, since the system A1d < 0,
A2d = 0 has no solution, then S1 ∩ S2 = ∅. Then, by Theorem 2.3.5, there
exists a nonzero vector pt = (pt

1, p
t
2) such that

pt
1A1d + pt

2A2d ≥ pt
1z1 + pt

2z2,

for each d ∈ Rn and (z1, z2) ∈ cl S2. Noting that z2 = 0 and since each
component of z1 can be made an arbitrarily large negative number, it follows
that p1 ≥ 0. Also, letting (z1, z2) = (0, 0) ∈ cl S2, we must have (pt

1A1 +
pt
2A2)d ≥ 0 for each d ∈ Rn. Letting d = −(At

1p1 + At
2p2), it follows that

−‖At
1p1 + At

2p2‖2 ≥ 0, and thus At
1p1 + At

2p2 = 0. Summarising, we have
found a nonzero vector pt = (pt

1, p
t
2) with p1 ≥ 0 such that At

1p1 + At
2p2 = 0.

Denoting the components of p1 by u0 and ui, i ∈ I, and letting p2 = v,
conditions (2.27) follow. The equivalent form (2.28) is readily obtained by
letting ui = 0 for i /∈ I, and the proof is complete. �

In the Fritz John conditions (2.28) the scalars u0, ui for i = 1, . . . , m,
and vi for i = 1, . . . , 
, are called the Lagrange multipliers associated, re-
spectively, with the objective function, the inequality constraints gi(x) ≤ 0,
i = 1, . . . , m, and the equality constraints hi(x) = 0, i = 1, . . . , 
. Observe
that the vi are unrestricted in sign. The condition that x̄ be feasible for the
optimisation problem (2.21) is called the primal feasibility [PF] condition. The

requirements u0∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0, with u0, ui ≥ 0

for i = 1, . . . , m, and (u0, u, v) �= (0, 0, 0) are called the dual feasibility [DF]
conditions. The condition uigi(x̄) = 0 for i = 1, . . . , m is called the comple-
mentary slackness [CS] condition; it requires that ui = 0 if the corresponding
inequality is nonbinding (that is, gi(x̄) < 0), and allows for ui > 0 only for
those constraints that are binding. Together, the PF, DF and CS conditions
are called the Fritz John [FJ] optimality conditions. Any point x̄ for which
there exist Lagrange multipliers ū0, ūi, i = 1, . . . , m, v̄i, i = 1, . . . , 
, such that
the FJ conditions are satisfied is called an FJ point.

The FJ conditions can also be written in vector form as follows:

∇f(x̄)tu0 + ∇g(x̄)tu + ∇h(x̄)tv = 0,

utg(x̄) = 0,

(u0, u) ≥ (0, 0),
(u0, u, v) �= (0, 0, 0),

(2.30)

where ∇g(x̄) is the m× n Jacobian matrix whose ith row is ∇gi(x̄), ∇h(x̄) is
the 
 × n Jacobian matrix whose ith row is ∇hi(x̄), and g(x̄) is the m vector
function whose ith component is gi(x̄). Also, u and v are, respectively, an m
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vector and an 
 vector, whose elements are the Lagrange multipliers associated
with, respectively, the inequality and equality constraints.

At this point it is important to note that, given an optimisation problem,
there might be points that satisfy the FJ conditions trivially. For example,
if a feasible point x̄ (not necessarily an optimum) satisfies ∇f(x̄) = 0, or
∇gi(x̄) = 0 for some i ∈ I, or ∇hi(x̄) = 0 for some i = 1, . . . , 
, then we
can let the corresponding Lagrange multiplier be any positive number, set
all the other multipliers equal to zero, and satisfy conditions (2.27). In fact,
given any feasible solution x̄ we can always add a redundant constraint to
the problem to make x̄ an FJ point. For example, we can add the constraint
‖x − x̄‖2 ≥ 0, which holds true for all x ∈ Rn, is a binding constraint at x̄
and whose gradient is zero at x̄.

2.5.4 Karush–Kuhn–Tucker Necessary Conditions

In the previous section we stated the FJ necessary conditions for optimality.
We saw that the FJ conditions relate to the existence of scalars u0, ui ≥ 0 and
vi, not all zero, such that the conditions (2.27) are satisfied. We also saw that
there are instances where there are points that satisfy the conditions trivially,
for example, when the gradient of some binding constraint (which might even
be redundant) vanishes.

It is also possible that, at some feasible point x̄, the FJ conditions (2.27)
are satisfied with Lagrange multiplier associated with the objective func-
tion u0 = 0. In such cases, the FJ conditions become virtually useless since
the objective function gradient does not play a role in the optimality condi-
tions (2.27) and the conditions merely state that the gradients of the binding
inequality constraints and of the equality constraints are linearly dependent.
Thus, when u0 = 0, the FJ conditions are of no practical value in locating an
optimal point. Under suitable assumptions, referred to as constraint qualifica-
tions [CQ], u0 is guaranteed to be positive and the FJ conditions become the
Karush–Kuhn–Tucker [KKT] conditions, which will be presented next. There
exist various constraint qualifications for problems with inequality and equal-
ity constraints. Here, we use a typical constraint qualification that requires
that the gradients of the inequality constraints for i ∈ I and the gradients of
the equality constraints at x̄ be linearly independent.

Theorem 2.5.5 (Karush–Kuhn–Tucker Necessary Conditions) Let
X be a nonempty open set in Rn, and let f : Rn → R, gi : Rn → R for
i = 1, . . . , m, hi : Rn → R for i = 1, . . . , 
. Consider the problem defined in
(2.21). Let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Suppose that
f and gi for i ∈ I are differentiable at x̄, that each gi for i /∈ I is continu-
ous at x̄, and that each hi for i = 1, . . . , 
 is continuously differentiable at x̄.
Furthermore, suppose that ∇gi(x̄)t for i ∈ I and ∇hi(x̄)t for i = 1, . . . , 
 are
linearly independent. If x̄ is a local optimal solution, then there exist unique
scalars ui for i ∈ I, and vi for i = 1, . . . , 
, such that
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∇f(x̄)t +
∑
i∈I

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

ui ≥ 0 for i ∈ I.

(2.31)

Furthermore, if gi, i /∈ I are also differentiable at x̄, then the above conditions
can be written as

∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0,

uigi(x̄) = 0 for i = 1, . . . , m,

ui ≥ 0 for i = 1, . . . , m.

(2.32)

Proof. We have, from the FJ conditions (Theorem 2.5.4), that there exist
scalars û0 and ûi, i ∈ I, and v̂i, i = 1, . . . , 
, not all zero, such that

û0∇f(x̄)t +
∑
i∈I

ûi∇gi(x̄)t +
�∑

i=1

v̂i∇hi(x̄)t = 0,

û0, ûi ≥ 0 for i ∈ I.

(2.33)

Note that the assumption of linear independence of ∇gi(x̄)t for i ∈ I and
∇hi(x̄)t for i = 1, . . . , 
, together with (2.33) and the fact that at least one of
the multipliers is nonzero, implies that û0 > 0. Then, letting ui = ûi/û0 for
i ∈ I, and vi = v̂i/û0 for i = 1, . . . , 
 we obtain conditions (2.31). Furthermore,
the linear independence assumption implies the uniqueness of these Lagrange
multipliers. The equivalent form (2.32) follows by letting ui = 0 for i /∈ I.
This completes the proof. �

As in the FJ conditions, the scalars ui and vi are called the
Lagrange multipliers. Observe that the vi are unrestricted in sign.
The condition that x̄ be feasible for the optimisation problem (2.21)
is called the primal feasibility [PF] condition. The requirement that

∇f(x̄)t +
m∑

i=1

ui∇gi(x̄)t +
�∑

i=1

vi∇hi(x̄)t = 0, with ui ≥ 0 for i = 1, . . . , m

is called the dual feasibility [DF] condition. The condition uigi(x̄) = 0 for
i = 1, . . . , m is called the complementary slackness [CS] condition; it requires
that ui = 0 if the corresponding inequality is nonbinding (that is, gi(x̄) < 0),
and it permits ui > 0 only for those constraints that are binding. Together,
the PF, DF and CS conditions are called the Karush–Kuhn–Tucker [KKT]
optimality conditions. Any point x̄ for which there exist Lagrange multipli-
ers ūi, i = 1, . . . , m, v̄i, i = 1, . . . , 
, that, together with x̄, satisfy the KKT
conditions is called a KKT point.

The KKT conditions can also be written in vector form as follows:
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∇f(x̄)t + ∇g(x̄)tu + ∇h(x̄)tv = 0,

utg(x̄) = 0,

u ≥ 0,

(2.34)

where ∇g(x̄) is the m× n Jacobian matrix whose ith row is ∇gi(x̄), ∇h(x̄) is
the 
 × n Jacobian matrix whose ith row is ∇hi(x̄), and g(x̄) is the m vector
function whose ith component is gi(x̄). Also, u and v are, respectively, an m
vector and an 
 vector, whose elements are the Lagrange multipliers associated
with, respectively, the inequality and equality constraints.

2.5.5 Karush–Kuhn–Tucker Sufficient Conditions

In the previous section we derived the KKT necessary conditions for optimal-
ity from the FJ optimality conditions. This derivation was done by asserting
that the multiplier associated with the objective function is positive at a local
optimum whenever a linear independence constraint qualification is satisfied.
It is important to notice that the linear independence constraint qualifica-
tion is only a sufficient condition3 placed on the behaviour of the constraints
to ensure that an FJ point (and hence, from Theorem 2.5.4, any local opti-
mum) be a KKT point. Thus, the importance of the constraint qualifications
is to guarantee that, by examining only KKT points, we do not lose out on
optimal solutions. There is an important special case; namely, when the con-
straints are linear, in which case the KKT conditions are always necessary
optimality conditions irrespective of the behaviour of the objective function.
(Although we will not prove this result here, it comes from the fact that a
more general constraint qualification to that of linear independence, known as
Abadie’s constraint qualification—see Abadie 1967—is automatically satisfied
when the constraints are linear.) However, we are still left with the problem
of determining, among all the points that satisfy the KKT conditions, which
ones constitute local optimal solutions. The following result shows that, under
moderate convexity assumptions, the KKT conditions are also sufficient for
local optimality.

Theorem 2.5.6 (Karush–Kuhn–Tucker Sufficient Conditions) Let X
be a nonempty open set in Rn, and let f : Rn → R, gi : Rn → R for i =
1, . . . , m, hi : Rn → R for i = 1, . . . , 
. Consider the problem defined in
(2.21). Let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Suppose that
the KKT conditions hold at x̄; that is, there exist scalars ūi ≥ 0 for i ∈ I, and
v̄i for i = 1, . . . , 
, such that

∇f(x̄)t +
∑
i∈I

ūi∇gi(x̄)t +
�∑

i=1

v̄i∇hi(x̄)t = 0. (2.35)

3 It is possible, in some optimisation problems, for a local optimum to be a KKT
point and yet not satisfy the linear independence constraint qualification.
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Let J = {i : v̄i > 0} and K = {i : v̄i < 0}. Further, suppose that f is
pseudoconvex at x̄, gi is quasiconvex at x̄ for i ∈ I, hi is quasiconvex at x̄ for
i ∈ J , and hi is quasiconcave at x̄ (that is, −hi is quasiconvex at x̄) for i ∈ K.
Then x̄ is a global optimal solution to problem (2.21). In particular, if these
generalised convexity assumptions on the objective and constraint functions
are restricted to the domain Nε(x̄) for some ε > 0, then x̄ is a local minimum
for problem (2.21).

Proof. Let x be any feasible solution to problem (2.21). (In the case where
we need to restrict the domain to Nε(x̄), then let x be a feasible solution to
problem (2.21) that also lies within Nε(x̄).) Then, for i ∈ I, gi(x) ≤ gi(x̄),
since gi(x) ≤ 0 and gi(x̄) = 0. By the quasiconvexity of gi at x̄ it follows that

gi(x̄ + λ(x − x̄)) = gi(λx + (1 − λ)x̄) ≤ max{gi(x), gi(x̄)} = gi(x̄),

for all λ ∈ (0, 1). This implies that gi does not increase by moving from x̄ along
the direction x − x̄. Thus, by an analogous result to that of Theorem 2.4.1,
we must have

∇gi(x̄)(x − x̄) ≤ 0 for i ∈ I. (2.36)

Similarly, since hi is quasiconvex at x̄ for i ∈ J and hi is quasiconcave at x̄
for i ∈ K, we have

∇hi(x̄)(x − x̄) ≤ 0 for i ∈ J, (2.37)
∇hi(x̄)(x − x̄) ≥ 0 for i ∈ K. (2.38)

Multiplying (2.36), (2.37) and (2.38) by ūi ≥ 0, v̄i > 0, and v̄i < 0, respec-
tively, and adding the terms, we obtain∑

i∈I

ūi∇gi(x̄)(x − x̄) +
∑

i∈J∪K

v̄i∇hi(x̄)(x − x̄) ≤ 0. (2.39)

Transposing (2.35), multiplying by (x−x̄) and noting that v̄i = 0 for i /∈ J∪K,
then (2.39) implies that

∇f(x̄)(x − x̄) ≥ 0.

By the pseudoconvexity of f at x̄, we must have f(x) ≥ f(x̄), and the proof
is complete. �

An important point to note is that, despite the sufficiency of the KKT
conditions under the generalised convexity assumptions of Theorem 2.5.6, the
KKT conditions are not necessary for optimality for these problems. (This
situation, however, only arises when the constraint qualification does not hold
at a local optimal solution, and hence the local solution is not captured by
the KKT conditions.)
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2.5.6 Quadratic Programs

Quadratic programs represent a special class of nonlinear programs in which
the objective function is quadratic and the constraints are linear. Thus, a
quadratic programming [QP] problem can be written as

minimise
1
2
xtHx + xtc, (2.40)

subject to:
At

Ix ≤ bI ,

At
Ex = bE ,

where H is an n × n matrix, c is an n vector, AI is an n × mI matrix, bI is
an mI vector, AE is an n × mE matrix and bE is an mE vector.

As mentioned in the previous section, since the constraints are linear we
have that a constraint qualification, known as Abadie’s constraint qualifica-
tion, is automatically satisfied and, hence, a local minimum x̄ is necessar-
ily a KKT point. Also, since the constraints are linear, the constraint set
S = {x : At

Ix ≤ bI , At
Ex = bE} is a (polyhedral) convex set. Thus, the QP

problem (2.40) is a convex program if and only if the objective function is
convex; that is, if and only if H is symmetric and positive semidefinite. In
this case we have, from Theorem 2.5.1, that x̄ is a local minimum if and only
if x̄ is a global minimum. And, from Theorems 2.5.5 and 2.5.6 (and from the
automatic fulfilment of Abadie’s constraint qualification), we have that the
above is true if and only if x̄ is a KKT point. Furthermore, if H is positive
definite, then we have that the objective function is strictly convex and we
can conclude from Theorem 2.5.1 that x̄ is the unique global minimum for
problem (2.40).

The KKT conditions (2.34) for the QP problem defined in (2.40) are:

PF: At
I x̄ ≤ bI ,

At
E x̄ = bE,

DF: Hx̄ + c + AIu + AEv = 0,
u ≥ 0,

CS: ut(At
I x̄ − bI) = 0,

(2.41)

where u is an mI vector of Lagrange multipliers corresponding to the inequal-
ity constraints and v is an mE vector of Lagrange multipliers corresponding
to the equality constraints.

2.6 Lagrangian Duality

In this section we present the concept of Lagrangian duality. Given a nonlin-
ear programming problem, known as the primal problem, there exists another
nonlinear programming problem, closely related to it, that receives the name
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of the Lagrangian dual problem. As we will see later in Section 2.6.3, under cer-
tain convexity assumptions and suitable constraint qualifications, the primal
and dual problems have equal optimal objective values.

2.6.1 The Lagrangian Dual Problem

We will first define the primal and dual problems as separate optimisation
problems. Later we will see that these two problems are closely related.

Thus, first consider the following nonlinear programming problem, called
the primal problem.

Primal Problem P

minimise f(x), (2.42)
subject to:
gi(x) ≤ 0 for i = 1, . . . , m,

hi(x) = 0 for i = 1, . . . , 
,

x ∈ X.

Then the Lagrangian dual problem is defined as the following nonlinear
programming problem.

Lagrangian Dual Problem D

maximise θ(u, v), (2.43)
subject to:
u ≥ 0,

where

θ(u, v) = inf{f(x) +
m∑

i=1

uigi(x) +
�∑

i=1

vihi(x) : x ∈ X} (2.44)

is the Lagrangian dual function.
In the dual problem (2.43)–(2.44), the vectors u and v have as their compo-

nents the Lagrange multipliers ui for i = 1, . . . , m, and vi for i = 1, . . . , 
. Note
that the Lagrange multipliers ui, corresponding to the inequality constraints
gi(x) ≤ 0, are restricted to be nonnegative, whereas the Lagrange multipliers
vi, corresponding to the equality constraints hi(x) = 0, are unrestricted in
sign.

Given the primal problem P (2.42), several Lagrangian dual problems D of
the form of (2.43)–(2.44) can be devised, depending on which constraints are
handled as gi(x) ≤ 0 and hi(x) = 0, and which constraints are handled by the
set X . Hence, an appropriate selection of the set X must be made, depending
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on the nature of the problem and the goal of formulating or solving the dual
problem D.

The primal and dual problems can also be written in vector form.
Consider the function f : Rn → R and the vector functions g : Rn → Rm and
h : Rn → R�, whose ith components are gi and hi, respectively. Then, we can
write:

Primal Problem P

minimise f(x), (2.45)
subject to:
g(x) ≤ 0,

h(x) = 0,

x ∈ X.

Lagrangian Dual Problem D

maximise θ(u, v), (2.46)
subject to:
u ≥ 0,

where θ(u, v) = inf{f(x) + utg(x) + vth(x) : x ∈ X}.
The relationship between the primal and dual problems will be explored

below.

2.6.2 Geometric Interpretation of the Lagrangian Dual

An interesting geometric interpretation of the dual problem can be made by
considering a simpler problem with only one inequality constraint and no
equality constraint. Consider the following primal problem P:

Primal Problem P

minimise f(x), (2.47)
subject to:
g(x) ≤ 0,

x ∈ X,

where f : Rn → R and g : Rn → R, and define the following set in R2:

G = {(y, z) : y = g(x), z = f(x) for some x ∈ X},
that is, G is the image of X under the (g, f) map. Figure 2.14 shows an
example of the set G. Then, the primal problem consists of finding a point in
G with y ≤ 0 that has minimum ordinate z. Obviously this point in Figure 2.14
is (ȳ, z̄).
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Figure 2.14. Geometric interpretation of Lagrangian duality: case with no duality
gap.

Now, consider the Lagrangian dual problem D:

Lagrangian Dual Problem D

maximise θ(u), (2.48)
subject to:
u ≥ 0.

The solution of the Lagrangian dual problem (2.48) requires one to first
solve the following Lagrangian dual subproblem:

θ(u) = inf{f(x) + ug(x) : x ∈ X}. (2.49)

Given u ≥ 0, problem (2.49) is equivalent to minimise z+uy over points (y, z)
in G. Note that z + uy = α is the equation of a straight line with slope −u
that intercepts the z-axis at α. Thus, in order to minimise z + uy over G we
need to move the line z + uy = α parallel to itself as far down as possible,
whilst it remains in contact with G. The last intercept on the z-axis thus
obtained is the value of θ(u) corresponding to the given u ≥ 0, as shown in
Figure 2.14. Finally, to solve the dual problem (2.48), we have to find the
line with slope −u (u ≥ 0) such that the last intercept on the z-axis, θ(u), is
maximal. Such a line is shown in Figure 2.14. It has slope −ū and supports
the set G (recall Definition 2.3.4) at the point (ȳ, z̄). Thus, the solution to the
dual problem (2.48) is ū, and the optimal dual objective value is z̄. It can be
seen that, in the example illustrated in Figure 2.14, the optimal primal and
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dual objective values are equal. In such cases, it is said that there is no duality
gap. In the next section we will develop conditions such that no duality gap
exists.

2.6.3 Weak and Strong Duality

In this section we explore the relationships between the primal problem P
and its Lagrangian dual problem D. In particular, we are interested in the
conditions that the primal problem P must satisfy for the primal and dual
objective values to be equal; this situation is known as strong duality. The
first result shows that the objective value of any feasible solution to the dual
problem constitutes a lower bound for the objective value of any feasible
solution to the primal problem.

Theorem 2.6.1 (Weak Duality Theorem) Consider the primal prob-
lem P given by (2.45) and its Lagrangian dual problem D given by (2.46).
Let x be a feasible solution to P; that is, x ∈ X, g(x) ≤ 0, and h(x) = 0. Also,
let (u, v) be a feasible solution to D; that is, u ≥ 0. Then:

f(x) ≥ θ(u, v).

Proof. We use the definition of θ given in (2.44), and the facts that x ∈ X ,
u ≥ 0, g(x) ≤ 0 and h(x) = 0. We then have

θ(u, v) = inf{f(x̃) + utg(x̃) + vth(x̃) : x̃ ∈ X}
≤ f(x) + utg(x) + vth(x) ≤ f(x),

and the result follows. �

Corollary 2.6.2

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} ≥ sup{θ(u, v) : u ≥ 0}. (2.50)

◦
Note from (2.50) that the optimal objective value of the primal problem

is greater than or equal to the optimal objective value of the dual problem.
If (2.50) holds as a strict inequality, then it is said that there exists a duality
gap. Figure 2.15 shows an example for the primal and dual problems defined
in (2.47) and (2.48)–(2.49), respectively. Notice that, in the case shown in
the figure, there exists a duality gap. We see, by comparing Figure 2.15 with
Figure 2.14, that the presence of a duality gap is due to the nonconvexity of
the set G. As we will see in Theorem 2.6.4 below, if some suitable convexity
conditions are satisfied, then there is no duality gap between the primal and
dual optimisation problems. Before stating the conditions that guarantee the
absence of a duality gap, we need the following result.
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Figure 2.15. Geometric interpretation of Lagrangian duality: case with duality
gap.

Lemma 2.6.3 Let X be a nonempty convex set in Rn. Let α : Rn → R and
g : Rn → Rm be convex,4 and h : Rn → R� be affine (that is, assume h is
of the form h(x) = Ax − b). Also, let u0 be a scalar, u ∈ Rm and v ∈ R�.
Consider the following two systems:

System 1: α(x) < 0, g(x) ≤ 0, h(x) = 0 for some x ∈ X.

System 2: u0α(x) + utg(x) + vth(x) ≥ 0 for some (u0, u, v) �= (0, 0, 0),
(u0, u) ≥ (0, 0) and for all x ∈ X.

If System 1 has no solution x, then System 2 has a solution (u0, u, v). Con-
versely, if System 2 has a solution (u0, u, v) with u0 > 0, then System 1 has
no solution.

Proof. Assume first that System 1 has no solution. Define the set:

S = {(p, q, r) : p > α(x), q ≥ g(x), r = h(x) for some x ∈ X}.
The reader can easily verify that, since X , α and g are convex and h is affine,
the set S is convex. Since System 1 has no solution, we have that (0, 0, 0) /∈ S.
We then have, from Corollary 2.3.4, that there exists a nonzero vector (u0, u, v)
such that

(u0, u, v)t[(p, q, r) − (0, 0, 0)] = u0p + utq + vtr ≥ 0, (2.51)
4 That is, each component of the vector-valued function g is a convex function.
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for each (p, q, r) ∈ cl S. Now, fix an x ∈ X . Noticing, from the defini-
tion of S, that p and q can be made arbitrarily large, we have that in or-
der to satisfy (2.51), we must have u0 ≥ 0 and u ≥ 0. Also, note that
[α(x), g(x), h(x)] ∈ clS and we have from (2.51) that

u0α(x) + utg(x) + vth(x) ≥ 0.

Since the above inequality is true for each x ∈ X , System 2 has a solution.
To prove the converse, assume that System 2 has a solution (u0, u, v) such

that u0 > 0 and u ≥ 0, and u0α(x) + utg(x) + vth(x) ≥ 0 for each x ∈ X .
Suppose that x ∈ X is such that g(x) ≤ 0 and h(x) = 0. From the previous
inequality we conclude that u0α(x) ≥ −utg(x) ≥ 0, since u ≥ 0 and g(x) ≤ 0.
But, since u0 > 0, we must then have that α(x) ≥ 0. Hence, System 1 has no
solution. This completes the proof. �

The following result, known as the strong duality theorem, shows that, under
suitable convexity assumptions and under a constraint qualification, there is
no duality gap between the primal and dual optimal objective function values.

Theorem 2.6.4 (Strong Duality Theorem) Let X be a nonempty convex
set in Rn. Let f : Rn → R and g : Rn → Rm be convex, and h : Rn → R�

be affine. Suppose that the following constraint qualification is satisfied. There
exists an x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0, and 0 ∈ inth(X), where
h(X) = {h(x) : x ∈ X}. Then,

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} = sup{θ(u, v) : u ≥ 0}, (2.52)

where θ(u, v) = inf{f(x) + utg(x) + vth(x) : x ∈ X}. Furthermore, if the inf
is finite, then sup{θ(u, v) : u ≥ 0} is achieved at (ū, v̄) with ū ≥ 0. If the inf
is achieved at x̄, then ūtg(x̄) = 0.

Proof. Let γ = inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0}. By assumption there
exists a feasible solution x̂ for the primal problem and hence γ < ∞. If γ =
−∞, we then conclude from Corollary 2.6.2 that sup{θ(u, v) : u ≥ 0} = −∞
and, hence, (2.52) is satisfied. Thus, suppose that γ is finite, and consider the
following system:

f(x) − γ < 0, g(x) ≤ 0 h(x) = 0, for some x ∈ X.

By the definition of γ, this system has no solution. Hence, from Lemma 2.6.3,
there exists a nonzero vector (u0, u, v) with (u0, u) ≥ (0, 0) such that

u0[f(x) − γ] + utg(x) + vth(x) ≥ 0 for all x ∈ X. (2.53)

We will next show that u0 > 0. Suppose, by contradiction that u0 = 0.
By assumption, there exists an x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0.
Substituting in (2.53) we obtain utg(x̂) ≥ 0. But, since g(x̂) < 0 and u ≥ 0,
utg(x̂) ≥ 0 is only possible if u = 0. From (2.53), u0 = 0 and u = 0 imply



2.8 Further Reading 61

that vth(x) ≥ 0 for all x ∈ X . But, since 0 ∈ inth(X), we can choose an
x ∈ X such that h(x) = −λv, where λ > 0. Therefore, 0 ≤ vth(x) = −λ‖v‖2,
which implies that v = 0. Thus, it has been shown that u0 = 0 implies that
(u0, u, v) = (0, 0, 0), which is a contradiction. We conclude, then, that u0 > 0.
Dividing (2.53) by u0 and denoting ū = u/u0 and v̄ = v/u0, we obtain

f(x) + ūtg(x) + v̄th(x) ≥ γ for all x ∈ X. (2.54)

This implies that θ(ū, v̄) = inf{f(x)+ ūtg(x)+ v̄th(x) : x ∈ X} ≥ γ. We then
conclude, from Theorem 2.6.1, that θ(ū, v̄) = γ and, from Corollary 2.6.2,
that (ū, v̄) solves the dual problem. Finally, to complete the proof, assume
that x̄ is an optimal solution to the primal problem; that is, x̄ ∈ X , g(x̄) ≤ 0,
h(x̄) = 0 and f(x̄) = γ. From (2.54), letting x = x̄, we get ūtg(x̄) ≥ 0. Since
ū ≥ 0 and g(x̄) ≤ 0, we get ūtg(x̄) = 0. This completes the proof. �

2.7 Multiconvex Problems

We have emphasised convex optimisation problems since these have many
desirable properties, for example, all local minima are global minima, absence
of duality gap, and so on. Sometimes a problem is nonconvex but can be
partitioned into a finite number of subproblems, each of which is convex within
a convex region. In this case, we can solve each of the convex problems using
constraints to restrict the solution to the appropriate region. Then one can
simply compare the resulting objective values and decide which is best. Of
course, the disadvantage of this idea is that one has to solve as many convex
problems as there are convex regions. Nonetheless, this is a useful strategy in
many problems of interest in practice (see, for example, Chapter 9).

This completes our brief introduction to optimisation theory. Of course,
this is a rich topic and many more results are available in the literature. We
refer the reader to some of the books listed in Section 2.8. However, our brief
introduction will suffice for the problems addressed here. Indeed, we will make
extensive use of the concepts outlined in this chapter. As a prelude of what is
to follow, we note that in Chapter 3 we will use the KKT optimality conditions
in the context of nonlinear optimal control; and in Chapter 10 we will utilise
strong Lagrangian duality to connect constrained control and estimation.

2.8 Further Reading

For complete list of references cited, see References section at the end of book.

General

This chapter is mainly based on Bazaraa et al. (1993).
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The following books complement and extend the material presented in this
chapter: Boyd and Vandenberghe (2003), Nocedal and Wright (1999), Nash
and Sofer (1996), Floudas (1995), Fiacco and McCormick (1990), Fletcher
(2000), Luenberger (1984), (1989), Fiacco (1983), Gill, Murray and Wright
(1981), Abadie (1967).



3

Fixed Horizon Optimal Control
with Constraints

3.1 Overview

Chapter 2 dealt with rather general optimisation problems. As stated earlier,
this theory finds widespread application across a large number of areas. Our
goal in the present chapter is to begin to apply these ideas to one of the specific
problems of interest in this book, namely that of constrained optimal control.
In particular, our goal is to relate fixed horizon optimal control problems to
the classical theory of optimal control. One of the main contributions of the
current chapter is an introduction to the discrete minimum principle. This will
turn out to be an elegant application of many of the concepts introduced in
Chapter 2. Thus, this chapter serves to reinforce these ideas. However, some of
this material is difficult. We thus suggest that some readers who are meeting
this material for the first time might wish to proceed immediately, without
loss of continuity, to Chapter 4 and return to this chapter at a later time.

3.2 Optimal Control Problems

We will begin with a rather general treatment using nonlinear state space
models. However, in future chapters we will specialise the treatment to con-
strained linear systems since much more can be said about this case. In the
deterministic discrete time case we will describe the system via a nonlinear
state space model of the form

xk+1 = f(xk, uk), k ≥ i ≥ 0, xi = x̄, (3.1)

where f : Rn × Rm → Rn is some given nonlinear function, x ∈ Rn is the
system state and u ∈ Rm is the control input. In the context of optimisation,
we can think of the system of equations (3.1) as providing equality constraints
that must be satisfied for all time instants k in an interval of interest. It is
also common to assume that there exist additional constraints on the system
state and input, which can be stated as set constraints of the form
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uk ∈ U for k = i, i + 1, . . . , i + N − 1,

xk ∈ X for k = i, i + 1, . . . , i + N,

xi+N ∈ Xf ⊂ X,

(3.2)

where U ⊂ Rm, X ⊂ Rn, and Xf ⊂ Rn are some sets, and N is the optimisation
horizon. Usually, U is compact, and X and Xf are closed.

The fixed horizon optimal control problem of interest here is the following:

PN (x̄) : V opt
N (x̄) � min VN ({xk}, {uk}),

subject to:
xk+1 = f(xk, uk) for k = i, i + 1, . . . , i + N − 1,

xi = x̄,

uk ∈ U for k = i, i + 1, . . . , i + N − 1,

xk ∈ X for k = i, i + 1, . . . , i + N,

xi+N ∈ Xf ⊂ X,

(3.3)

where {xk} � {xi, . . . , xi+N}, {uk} � {ui, . . . , ui+N−1} are the state and
control sequences, and where VN ({xk}, {uk}) is the objective function given
by

VN ({xk}, {uk}) � F (xi+N ) +
i+N−1∑

k=i

L(xk, uk). (3.4)

F and L are some functions whose properties will be defined later.
The state and control sequences that attain the minimum in (3.3)–(3.4)

are the optimal sequences, or minimisers. The value of the objective function
at the minimisers is V opt

N (x̄). The function V opt
N (·) is called the value function,

and is a function of the initial state only.
The remainder of this chapter is concerned with necessary and sufficient

conditions for the sequences {xi, . . . , xi+N} and {ui, . . . , ui+N−1} to be the
minimisers of the optimisation problem (3.3)–(3.4) for particular instances of
the constraints (3.2). We will build links to traditional optimal control theory,
including the minimum principle and dynamic programming.

For the moment, we will treat general nonlinear systems. Later, in Chap-
ter 5 to Chapter 8, we will focus on a special case in which the model (3.1) is
linear and the constraint sets polyhedral. For this class of problems it will turn
out that remarkable simple characterisations of the optimal control sequence
can be given.

3.3 Necessary Conditions for Optimality

As discussed above, our approach to constrained control (and later constrained
estimation) evolves from classical optimal control theory. Our goal in this
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section is to summarise some of the key features of the latter theory. We will
give an outline presentation and refer the reader to associated literature for
the full technical details.

We will treat the problem in two stages. Section 3.3.1 deals with the “un-
constrained” case, that is, the case where only the equality constraints given
by the state equations (3.1) are present; Section 3.3.2 deals with the “con-
strained” case, that is, where, in addition to the state equations (3.1), set
constraints of the form (3.2) are present.

3.3.1 Necessary Conditions in the Absence of Set Constraints

We assume that the objective function and state equations do not depend
explicitly on time. We can then take the initial time as i = 0 without loss of
generality. We thus consider the following optimal control problem:

PN (x̄) : minimise VN ({xk}, {uk}), (3.5)

subject to:
xk+1 = f(xk, uk) for k = 0, . . . , N − 1, (3.6)
x0 = x̄, (3.7)

where

VN ({xk}, {uk}) � F (xN ) +
N−1∑
k=0

L(xk, uk), (3.8)

and {xk} � {x0, . . . , xN}, {uk} � {u0, . . . , uN−1}. We assume that f : R
n ×

Rm → Rn, F : Rn → R and L : Rn × Rm → R are differentiable functions of
their variables.

We will derive necessary optimality conditions for the sequences
{x∗

0, . . . , x
∗
N} and {u∗

0, . . . , u
∗
N−1} to be minimisers of the optimisation prob-

lem (3.5)–(3.8) using the KKT necessary conditions (see Section 2.5.4 in Chap-
ter 2). Note that problem (3.5)–(3.8) has equality constraints (given by the
state equations (3.6)–(3.7)) and no inequality constraints. In order to apply
the KKT optimality conditions of Theorem 2.5.5, we need to verify the con-
straint qualification that the gradients of the equality constraints are linearly
independent when evaluated at the minimisers. To this end, let us define a
new variable

x �
[
xt

0 · · · xt
N ut

0 · · · ut
N−1

]t ∈ R
(N+1)n+Nm, (3.9)

which comprises all the variables with respect to which the optimisation (3.5)
is performed. We can then write the state equations (3.6)–(3.7) as (N + 1)n
equality constraints on x as follows:

h(x) �

⎡⎢⎢⎢⎣
x̄ − x0

f(x0, u0) − x1

...
f(xN−1, uN−1) − xN

⎤⎥⎥⎥⎦ = 0. (3.10)
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If we now let

xk �
[
x1

k · · · xn
k

]t for k = 0, . . . , N, (3.11)

uk �
[
u1

k · · · um
k

]t for k = 0, . . . , N − 1, (3.12)

f(xk, uk) �
[
f1(xk, uk) · · · fn(xk, uk)

]t
, (3.13)

and define

∂f

∂xk
�

⎡⎢⎢⎢⎢⎢⎣
∂f1

∂x1
k

· · · ∂f1

∂xn
k

...
. . .

...
∂fn

∂x1
k

· · · ∂fn

∂xn
k

⎤⎥⎥⎥⎥⎥⎦ ,
∂f

∂uk
�

⎡⎢⎢⎢⎢⎢⎣
∂f1

∂u1
k

· · · ∂f1

∂um
k

...
. . .

...
∂fn

∂u1
k

· · · ∂fn

∂um
k

⎤⎥⎥⎥⎥⎥⎦ , (3.14)

for k = 0, . . . , N−1, we can compute the (N +1)n× [(N +1)n+Nm] Jacobian
matrix of the vector-valued function h(x) in (3.10) as

∂h

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−In 0 0 · · · 0 0 0 0 · · · 0

∂f

∂x0
−In 0 · · · 0 0

∂f

∂u0
0 · · · 0

0
∂f

∂x1
−In · · · 0 0 0

∂f

∂u1
· · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · ∂f

∂xN−1
−In 0 0 · · · ∂f

∂uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.15)

where 0 denotes zero matrices of appropriate dimensions, and In denotes
the n × n identity matrix. Clearly, ∂h/∂x in (3.15) has full row rank for all
x ∈ R(N+1)n+Nm, and hence the gradients of the equality constraints (3.10)
are linearly independent in R

(N+1)n+Nm. Thus, the constraint qualification
required by the KKT optimality conditions of Theorem 2.5.5 holds for all
x ∈ R(N+1)n+Nm. Notice that this implies that the KKT conditions of The-
orem 2.5.5 and the FJ conditions of Theorem 2.5.4 (the latter are necessary
conditions for optimality without imposing any constraint qualification) are
essentially the same for problem (3.5)–(3.8).

Next, we introduce Lagrange multipliers λ−1 ∈ Rn for the initial state
equation (3.7), and {λk} � {λ0, . . . , λN−1}, λk ∈ Rn (usually referred to as
adjoint variables) for the state equations (3.6), and form the (real valued)
Lagrangian function

L(x, λ) � F (xN )+
N−1∑
k=0

L(xk, uk)+λt
−1(x̄−x0)+

N−1∑
k=0

λt
k[f(xk, uk)−xk+1],

(3.16)
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where λ �
[
λt
−1 λt

0 . . . λt
N−1

]t. Let

x∗ �
[
(x∗

0)
t · · · (x∗

N )t (u∗
0)

t · · · (u∗
N−1)

t
]t

be the minimising vector corresponding to the sequences {x∗
0, . . . , x

∗
N} and

{u∗
0, . . . , u

∗
N−1} that minimise problem (3.5)–(3.8). Observe that the dual fea-

sibility condition in the KKT conditions (see (2.32) in Chapter 2) for the
optimisation problem (3.5)–(3.8) is equivalent to the statement that there ex-
ists λ∗ �

[
(λ∗−1)t (λ∗

0)t . . . (λ∗
N−1)

t
]t such that the partial derivative ∂L/∂x

of the Lagrangian function (3.16) vanishes at (x∗, λ∗). Hence, the following
must hold:

∂L(x∗, λ∗)
∂xk

= 0 for k = 0, . . . , N,

∂L(x∗, λ∗)
∂uk

= 0 for k = 0, . . . , N − 1.

(3.17)

In (3.17),
∂L
∂xk

and
∂L
∂uk

denote the row vectors of partial derivatives

∂L
∂xk

�
[

∂L
∂x1

k

· · · ∂L
∂xn

k

]
,

∂L
∂uk

�
[

∂L
∂u1

k

· · · ∂L
∂um

k

]
,

where xk and uk have the form (3.11) and (3.12), respectively.
Before performing the differentiations in (3.17), we introduce the Hamil-

tonian H : Rn × Rm × Rn −→ R defined as

H(xk, uk, λk) � L(xk, uk) + λt
kf(xk, uk) for k = 0, . . . , N − 1, (3.18)

where L( · , · ) is the per-stage weighting in the objective function (3.8), and
f( · , · ) is the vector-valued function on the right hand side of the state equa-
tions (3.6). Note that

∂H
∂xk

=
∂L

∂xk
+ λt

k

∂f

∂xk
,

∂H
∂uk

=
∂L

∂uk
+ λt

k

∂f

∂uk
,

where

∂L

∂xk
=

[
∂L

∂x1
k

· · · ∂L

∂xn
k

]
,

∂L

∂uk
=

[
∂L

∂u1
k

· · · ∂L

∂um
k

]
,
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and ∂f/∂xk, ∂f/∂uk are defined in (3.14).
Then, if {x∗

0, . . . , x
∗
N}, {u∗

0, . . . , u
∗
N−1} are the minimisers, and

{λ∗
−1, λ

∗
0, . . . , λ

∗
N−1} are the corresponding Lagrange multipliers, we have,

from (3.17), (3.16) and (3.18), that

∂L(x∗, λ∗)
∂xk

=
∂H(x∗

k, u∗
k, λ∗

k)
∂xk

− (λ∗
k−1)

t = 0 for k = 0, . . . , N − 1, (3.19)

∂L(x∗, λ∗)
∂xN

=
∂F (x∗

N )
∂xN

− (λ∗
N−1)

t = 0, (3.20)

∂L(x∗, λ∗)
∂uk

=
∂H(x∗

k, u∗
k, λ∗

k)
∂uk

= 0 for k = 0, . . . , N − 1. (3.21)

Thus, from (3.19)–(3.21), and the state equations (3.6)–(3.7), a necessary
condition for the sequences {x∗

0, . . . , x
∗
N}, {u∗

0, . . . , u
∗
N−1} to be minimisers of

(3.5)–(3.8) is that there exist a sequence of vectors {λ∗−1, λ
∗
0, . . . , λ

∗
N−1} such

that the following equations hold:

(i) State equations:

x∗
k+1 = f(x∗

k, u∗
k) for k = 0, . . . , N − 1,

x∗
0 = x̄.

(ii) Adjoint equations:

(λ∗
k−1)

t =
∂H(x∗

k, u∗
k, λ∗

k)
∂xk

for k = 0, . . . , N − 1.

(iii) Boundary condition:

(λ∗
N−1)

t =
∂F (x∗

N )
∂xN

.

(iv) Hamiltonian condition:

∂H(x∗
k, u∗

k, λ∗
k)

∂uk
= 0 for k = 0, . . . , N − 1. (3.22)

◦
Notice that (3.22) means that the minimising control u∗

k is a stationary point
of the restricted Hamiltonian defined as1

H(x∗
k, uk, λ∗

k) � L(x∗
k, uk) + (λ∗

k)tf(x∗
k, uk) for k = 0, . . . , N − 1.

1 That is, the restricted Hamiltonian is the function of uk obtained by setting
xk = x∗

k and λk = λ∗
k in the Hamiltonian (3.18).
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3.3.2 Necessary Conditions in the Presence of Set Constraints

In the “constrained” case, meaning in the presence of set constraints of the
form (3.2), necessary conditions for optimality are provided by the discrete
minimum principle. Although well established for constrained continuous time
systems, the validity of the minimum principle for constrained discrete time
systems was a subject of great interest and controversy in the 1960s. For
general discrete time systems, the minimum principle does not hold when
constraints on the input are imposed. Indeed, its validity in this case relies
upon a convexity requirement (see Assumption 3.1 for Theorem 3.3.1 that
follows). Actually, this requirement is readily satisfied in the continuous time
case but presents a nontrivial restriction in the discrete time case. We refer
the interested reader to the papers listed in Section 3.6.

In Section 3.3.3 we will present a version of the discrete minimum principle
based on Halkin (1966) where convexity is imposed as an assumption on some
reachable sets of the system. As pointed out by Halkin, the required convexity
condition is always justified in the case of linear difference equations or when
the system of nonlinear difference equations approximates a system of nonlin-
ear differential equations. Actually, the convexity requirement can be relaxed
to that of “directional convexity,” allowing more general discrete systems to
be covered (see the papers in Section 3.6).

In Section 3.3.4, we will make different assumptions on the nature of the
constraints. This will allow us to use the FJ and KKT optimality conditions
of Sections 2.5.3 and 2.5.4 of Chapter 2 to derive a version of the discrete
minimum principle under convexity assumptions.

3.3.3 A Discrete Minimum Principle

We consider the following optimisation problem.

PN (x̄) : minimise VN ({xk}, {uk}), (3.23)

subject to:
xk+1 = f(xk, uk) for k = 0, . . . , N − 1, (3.24)
x0 = x̄, (3.25)
uk ∈ U ⊂ R

m for k = 0, . . . , N − 1, (3.26)
hN (xN ) = 0, (3.27)

where

VN ({xk}, {uk}) � F (xN ) +
N−1∑
k=0

L(xk, uk). (3.28)

As before, {xk} � {x0, . . . , xN}, xk ∈ Rn, and {uk} � {u0, . . . , uN−1},
uk ∈ Rm, are the state and control sequences, and (3.24)–(3.25) are the state
equations. Now, in addition to the equality constraints given by the state
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equations, the minimisation is performed subject to constraints (3.26) and
(3.27) on the input and terminal state, respectively. In (3.26), U is a given
set, and in (3.27), hN : R

n → R
� is a vector-valued function representing 


constraints on the terminal state.
The conditions required on the data of the optimisation problem (3.23)–

(3.28) are given in the following assumption.

Assumption 3.1

(i) The function F (x) is twice-continuously differentiable.
(ii) For every u ∈ U, the functions f(x, u) and L(x, u) are twice-continuously

differentiable with respect to x.
(iii) The terminal constraint function hN (x) is twice-continuously differen-

tiable and satisfies the “constraint qualification” that the Jacobian matrix
∂hN (x)/∂x has full row rank for all x ∈ Rn.

(iv) The functions f(x, u) and L(x, u), and all their first and second partial
derivatives with respect to x, are uniformly bounded on A × U for any
bounded set A ⊂ Rn.

(v) The matrix ∂f( · , · )/∂x is nonsingular on Rn × U.

(vi) The set
{[

f(x, u)
L(x, u)

]
: u ∈ U

}
is convex for all x ∈ Rn. ◦

Similarly to the unconstrained case, we define the Hamiltonian as

H(xk, uk, λk, η) � ηL(xk, uk) + λt
kf(xk, uk) for k = 0, . . . , N − 1, (3.29)

where η is a real number and λk, k = 0, . . . , N − 1, are some vectors in Rn.
We then have the following result.

Theorem 3.3.1 (Discrete Minimum Principle) Subject to Assump-
tion 3.1, if the sequences {x∗

0, . . . , x
∗
N}, {u∗

0, . . . , u
∗
N−1} are minimisers of

problem PN (x̄) defined in (3.23)–(3.28), then there exist a sequence of vectors
{λ∗

−1, . . . , λ
∗
N−1}, λ∗

k ∈ R
n and a real number η∗ such that the following

conditions hold:

(i) Adjoint equations:

(λ∗
k−1)

t =
∂H(x∗

k, u∗
k, λ∗

k, η∗)
∂xk

for k = 0, . . . , N − 1. (3.30)

(ii) Boundary conditions: There exists a real number β ≥ 0 and a vector
γ ∈ R�, such that

λ∗
N−1 =

[
∂hN(x∗

N )
∂x

]t

γ +
[
∂F (x∗

N )
∂x

]t

β, (3.31)

η∗ = β ≥ 0, (3.32)

where η∗ and λ∗
N−1 are not simultaneously zero. Moreover, if η∗ = 0 in

(3.32), then the vectors {λ∗−1, . . . , λ
∗
N−1} satisfying (3.30)-(3.31) are all

nonzero.



3.3 Necessary Conditions for Optimality 71

(iii) Minimisation of the Hamiltonian:

H(x∗
k, u∗

k, λ∗
k, η∗) ≤ H(x∗

k, u, λ∗
k, η∗), (3.33)

for all k = 0, . . . , N − 1 and all u ∈ U.

Proof. (Outline) Assume {x∗
0, . . . , x

∗
N}, {u∗

0, . . . , u
∗
N−1} are minimisers of

(3.23)–(3.28). Define an auxiliary state zk ∈ R satisfying

zk+1 = zk + L(xk, uk) for k = 0, . . . , N − 1,

z0 = 0,
(3.34)

where {x0, . . . , xN−1}, {u0, . . . , uN−1} satisfy the system equations (3.24).
Note that zi =

∑i−1
k=0 L(xk, uk), and, from (3.28),

VN ({xk}, {uk}) = zN + F (xN ). (3.35)

Consider the composite state
[
xt

k zk

]t ∈ Rn+1, satisfying (3.24)–(3.25)
and (3.34).

Comment on notation. The composite state ξk �
[
xt

k zk

]t ∈ R
n+1

satisfies
ξk+1 = ξk + f̄(ξk, uk),

where f̄(ξk, uk) �
[
f(xk, uk) − xk

L(xk, uk)

]
. The initial state ξ0 must belong

to the set {
ξ : h̄i(ξ) = 0 for i = 1, . . . , n + 1

}
,

where h̄i(ξ) � et
i

(
ξ −

[
x̄
0

])
, and where ei is the vector having one

as its ith component and all other components equal to zero. The
terminal state ξN must belong to the set{

ξ : h̄N(ξ) � hN (x) = 0
}

.

The control is constrained by (3.26). The objective function to be
minimised, (3.35), is a function of the terminal state ξN only, that is,

VN ({xk}, {uk}) = zN + F (xN ) � g0(ξN ).

This formulation of the problem was used in Halkin (1966). ◦
Define the set W as the set of reachable composite states

[
xt

k zk

]t at
time N . In other words, W is the set of all [xt

N zN ]t corresponding to all
sequences {x0, . . . , xN}, {u0, . . . , uN−1}, {z0, . . . , zN}, satisfying (3.24)–(3.26)
and (3.34).

Next, consider the optimal sequences {x∗
0, . . . , x

∗
N}, {u∗

0, . . . , u
∗
N−1}, and

let {z∗0 , . . . , z∗N} be the resulting sequence satisfying (3.34). We define the set
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S∗
N as the set of all composite states

[
xt z

]t satisfying the terminal constraint
(3.27), and for which the objective function takes a lesser value than the
optimal value. Using (3.35), this set is given by

S
∗
N =

{[
x
z

]
: hN (x) = 0, z + F (x) < z∗N + F (x∗

N )
}

. (3.36)

We note that the sets W and S∗
N are disjoint—otherwise {x∗

0, . . . , x
∗
N},

{u∗
0, . . . , u

∗
N−1} would not be optimal. Figure 3.1 illustrates these sets in the

composite state space
[
xt z

]t.

x

z

x∗
N

z∗
N

dis
joi

nt

�

�
∗
N

φ(x, z) =
0

h
N

(x
)
=

0

Figure 3.1. The composite state space [xt z]t showing sets � and �
∗
N for the

original (nonlinear) problem. The curve φ(x, z) � [z − z∗
N ] + [F (x) − F (x∗

N)] = 0 is
the set of composite states that give an objective value (3.35) equal to the optimal
value z∗

N + F (x∗
N).

In the case of linear systems, it is easy to prove that the sets W and S∗
N

are convex, and hence separated since they are disjoint (see Theorem 2.3.5 in
Chapter 2).

In the nonlinear case, however, the sets W and S∗
N are not necessarily

convex, and hence not necessarily separated. This is illustrated in Figure 3.1,
where no hyperplane separates the two sets. To circumvent this difficulty, we
will consider a linearised problem using linear approximations with respect
to x of the functions f(x, u) in (3.24), L(x, u) in (3.34), hN (x) in (3.27) and
F (x) in (3.35) around the optimal sequences. That is, we consider the system
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xk+1 = f(x∗
k, uk) +

∂f(x∗
k, u∗

k)
∂xk

[xk − x∗
k] for k = 0, . . . , N − 1, (3.37)

zk+1 = zk + L(x∗
k, uk) +

∂L(x∗
k, u∗

k)
∂xk

[xk − x∗
k] for k = 0, . . . , N − 1, (3.38)

x0 = x∗
0 = x̄, (3.39)

z0 = 0, (3.40)

with constraints

uk ∈ U ⊂ R
m for k = 0, . . . , N − 1, (3.41)

hN(x∗
N ) +

∂hN(x∗
N )

∂x
[xN − x∗

N ] =
∂hN (x∗

N )
∂x

[xN − x∗
N ] = 0, (3.42)

and objective function

V̂N � zN + F (x∗
N ) +

∂F (x∗
N )

∂x
[xN − x∗

N ]. (3.43)

We note that {x∗
0, . . . , x

∗
N}, {u∗

0, . . . , u
∗
N−1} and {z∗0 , . . . , z∗N} are feasible

sequences (but not necessarily optimal) for the linearised problem (3.37)–
(3.43).

x

z

x∗
N

z∗
N

�̂

�̂
∗
N φ̂(x, z) =

0

h
N

(x
)
=

0

separating hyperplane

Figure 3.2. The composite state space [xt z]t showing sets �̂ and �̂
∗
N for the

linearised problem. The line φ̂(x, z) � [z − z∗
N ] +

∂F (x∗
N )

∂x
[x − x∗

N ] = 0 is the set of
composite states that give a linearised objective value (3.43) equal to the optimal
value z∗

N + F (x∗
N).
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We also define Ŵ, Ŝ∗
N as we did for the sets W and S∗

N , but for the linearised
problem. Figure 3.2 illustrates these sets in the composite state space [xt z]t.

It is easy to show that the sets Ŵ and Ŝ∗
N are convex. It is not immediately

obvious, but is proved in Halkin (1966), that the sets Ŵ and Ŝ∗
N are separated2

by a hyperplane passing through the point [(x∗
N )t z∗N ]t (see Definition 2.3.3

of Chapter 2). We conclude that there exists a nonzero vector [πt β]t ∈ Rn+1

such that

[x − x∗
N ]tπ + [z − z∗N ]β ≤ 0 for all

[
x
z

]
∈ Ŝ

∗
N , (3.44)

[x − x∗
N ]tπ + [z − z∗N ]β ≥ 0 for all

[
x
z

]
∈ Ŵ. (3.45)

We define the sequence of nonzero vectors {λ∗−1, . . . , λ
∗
N−1}, as the solution

of (3.30) with boundary condition

λ∗
N−1 = π, (3.46)

and put
η∗ = β. (3.47)

We are now ready to show that conditions (3.30)–(3.33) are satisfied.

(i) Condition (3.30).

This is satisfied by definition.

(ii) Conditions (3.31) and (3.32).

First note from (3.46)–(3.47) that, since [πt β]t �= 0, we have that η∗ and
λ∗

N−1 are not simultaneously zero.

Next, we have from (3.44) and (3.46) that

[x − x∗
N ]tλ∗

N−1 + [z − z∗N ]β ≤ 0 (3.48)

for all [xt z]t ∈ Ŝ
∗
N , that is, all states x, z that satisfy the linearised

terminal constraint (3.42) and such that the linearised objective function
(3.43) has a lesser value than the optimal value z∗N+F (x∗

N ). More precisely,
(3.48) holds for all x, z such that

∂hN (x∗
N )

∂x
[x − x∗

N ] = 0, (3.49)

and
2 Halkin (1966) proves the following linearisation lemma: If the sets � and �∗

N are
disjoint, then the sets �̂ and �̂∗

N are separated.
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[z − z∗N ] +
∂F (x∗

N )
∂x

[x − x∗
N ] < 0. (3.50)

We will show that this implies that conditions (3.31) and (3.32) hold.
Specifically, we define

A1 =

⎡⎣−λ∗
N−1

t −β

∂F (x∗
N )

∂x
1

⎤⎦ , A2 =
[
∂hN (x∗

N )
∂x

0

]
,

d =
[
x − x∗

N

z − z∗N

]
.

Now (3.48)–(3.50) imply that the system

A1d < 0, A2d = 0

is inconsistent. Following the proof of Theorem 2.5.4 in Chapter 2, we
have that there exists a nonzero vector [qt vt]t with q ∈ R2, v ∈ R�,
q ≥ 0, such that

At
1q + At

2v = 0.

Letting q =
[
q1 q2

]t, the above equation implies

−
[
λ∗

N−1

β

]
q1 +

⎡⎣[∂F (x∗
N )

∂x

]t [
∂hN (x∗

N )
∂x

]t

1 0

⎤⎦[
q2

v

]
= 0.

or

−λ∗
N−1q1 +

[
∂F (x∗

N )
∂x

]t

q2 +
[
∂hN (x∗

N )
∂x

]t

v = 0, (3.51)

−βq1 + q2 = 0. (3.52)

If q1 = 0, then q2 = 0 from (3.52), and by linear independence of the rows
of ∂hN/∂x we have from (3.51) that v = 0. However, this contradicts
[qt vt]t �= 0. Hence, q1 �= 0. Thus, from (3.52), we have β = q2/q1 ≥ 0,
which shows (3.32). Also, equation (3.31) follows from (3.51) substituting
β = q2/q1 and choosing γ = v/q1. Finally, if η∗ = β = 0 in (3.32), then
λ∗

N−1 = π �= 0 (since [πt β]t �= 0). Hence, (3.30) yields

λ∗
k−1 =

[
∂f(x∗

k, u∗
k)

∂xk

]t

λ∗
k �= 0 for k = 0, . . . , N − 1,

since ∂f( · , · )/∂x is nonsingular on Rn × U by assumption.

(iii) Condition (3.33).

For any given k ∈ [0, . . . , N ] let Ŵk be the set of all composite states
[xt z]t reachable at time k for the linearised system (3.37)–(3.40) with all
admissible control sequences satisfying (3.41). Clearly ŴN = Ŵ.
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We shall prove by contradiction that for every k ∈ [0, . . . , N ] and all
[xt z]t ∈ Ŵk we have

[x − x∗
k]tλ∗

k−1 + [z − z∗k]β ≥ 0. (3.53)

Indeed, let us assume that for some j ∈ [0, . . . , N ],
[
x̃t

j z̃j

]t ∈ Ŵj and
ε > 0, we have

[x̃j − x∗
j ]

tλ∗
j−1 + [z̃j − z∗j ]β = −ε < 0. (3.54)

We show that this leads to a contradiction. We define {x̃j+1, . . . , x̃N},
{z̃j+1, . . . , z̃N} as the solution of the linearised equations (3.37)–(3.38)
starting at time k = j with xj = x̃j , zj = z̃j and using the optimal
control sequence {u∗

j+1, . . . , u
∗
N−1}. That is,

x̃k+1 = f(x∗
k, u∗

k) +
∂f(x∗

k, u∗
k)

∂xk
[x̃k − x∗

k] for k = j, . . . , N − 1,

z̃k+1 = z̃k + L(x∗
k, u∗

k) +
∂L(x∗

k, u∗
k)

∂xk
[x̃k − x∗

k] for k = j, . . . , N − 1.

Using the above equations and the fact that x∗
k+1 = f(x∗

k, u∗
k) and z∗k+1 =

z∗k + L(x∗
k, u∗

k) we have that the difference between the quantity [x̃k −
x∗

k]tλ∗
k−1 + [z̃k − z∗k]β at step k and its subsequent value at step k + 1

satisfies, for k = j, . . . , N − 1,

[x̃k − x∗
k]tλ∗

k−1 + [z̃k − z∗k]β − [x̃k+1 − x∗
k+1]

tλ∗
k − [z̃k+1 − z∗k+1]β =

[x̃k − x∗
k]tλ∗

k−1 + [z̃k − z∗k]β −
{

∂f(x∗
k, u∗

k)
∂xk

[x̃k − x∗
k]
}t

λ∗
k

−β
∂L(x∗

k, u∗
k)

∂xk
[x̃k − x∗

k] − [z̃k − z∗k]β =

[x̃k − x∗
k]t

{
λ∗

k−1 −
[
∂f(x∗

k, u∗
k)

∂xk

]t

λ∗
k − β

[
∂L(x∗

k, u∗
k)

∂xk

]t}
=

[x̃k − x∗
k]t

{
λ∗

k−1 −
[
∂H(x∗

k, u∗
k, λ∗

k, η∗)
∂xk

]t}
= 0,

(3.55)

where, in the last two equalities, we have also used (3.30), (3.47), and the
definition of H(xk, uk, λk, η) from (3.29). Thus, due to hypothesis (3.54)
we may conclude, using (3.55), that

[x̃N − x∗
N ]tλ∗

N−1 + [z̃N − z∗N ]β = −ε < 0. (3.56)

However, this contradicts (3.45) since λ∗
N−1 = π (see (3.46)) and

[x̃t
N z̃N ]t ∈ Ŵ by construction. Thus (3.53) holds.
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We now use (3.53) to construct a contradiction by assuming that for some
j ∈ [0, . . . , N − 1] there exists ũj ∈ U and an ε > 0 such that (3.33) is
false, that is,

H(x∗
j , ũj , λ

∗
j , η

∗) −H(x∗
j , u

∗
j , λ

∗
j , η

∗) = −ε. (3.57)

Consider the composite state at the next time j +1, [x̃t
j+1 z̃j+1]t ∈ Ŵj+1,

defined by

x̃j+1 = f(x∗
j , ũj),

z̃j+1 = z∗j + L(x∗
j , ũj),

(3.58)

which corresponds to the solution of the linearised equations (3.37)–(3.38)
at time j+1 using at time k = j the values xj = x∗

j , zj = z∗j , and uj = ũj .
Note that the states (3.58) are also solution at time j +1 of the nonlinear
equations (3.24), (3.34) starting from the same values at time k = j. Using
(3.47) and the definition (3.29) of the Hamiltonian in (3.57), we obtain

[f(x∗
j , ũj)]tλ∗

j + L(x∗
j , ũj)β − [f(x∗

j , u
∗
j )]

tλ∗
j − L(x∗

j , u
∗
j )β = −ε.

Substituting (3.58) and x∗
j+1 = f(x∗

j , u
∗
j), z∗j+1 = z∗j + L(x∗

j , u
∗
j) in the

above equation yields

[x̃j+1 − x∗
j+1]

tλ∗
j + [z̃j+1 − z∗j+1]β = −ε.

However, this contradicts (3.53), which we have already established. We
thus conclude that (3.57) is false, and hence the inequality (3.33) holds
for k = 0, . . . , N − 1 and all u ∈ U. This concludes the proof.

�

3.3.4 Connections Between the Minimum Principle and the Fritz
John and Karush–Kuhn–Tucker Optimality Conditions

We consider the following optimisation problem:

PN (x̄) : minimise VN ({xk}, {uk}), (3.59)

subject to:
xk+1 = f(xk, uk) for k = 0, . . . , N − 1, (3.60)
x0 = x̄, (3.61)
gk(uk) ≤ 0 for k = 0, . . . , N − 1, (3.62)
gN(xN ) ≤ 0, (3.63)
hN (xN ) = 0, (3.64)

where
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VN ({xk}, {uk}) � F (xN ) +
N−1∑
k=0

L(xk, uk). (3.65)

As before, {xk} � {x0, . . . , xN}, xk ∈ Rn, and {uk} � {u0, . . . , uN−1},
uk ∈ Rm, are the state and control sequences, and (3.60)–(3.61) are the
state equations. The functions gk : Rm → Rr, k = 0, . . . , N − 1, represent
r (elementwise) inequality constraints on the input uk (compare with (3.26)
where constraints on the input were expressed as the set constraints uk ∈ U,
k = 0, . . . , N − 1). The functions gN : R

n → R
p and hN : R

n → R
�, rep-

resent, respectively, inequality and equality constraints on the terminal state
(compare with (3.27) where only equality constraints on the terminal state
were considered). We will assume that all functions in (3.59)–(3.65) are dif-
ferentiable functions of their variables and that f and hN are continuously
differentiable at the optimal solution.

We will derive necessary optimality conditions for the sequences
{x∗

0, . . . , x
∗
N} and {u∗

0, . . . , u
∗
N−1} to be minimisers of the optimisation prob-

lem (3.59)–(3.65) using the FJ necessary optimality conditions (see Sec-
tion 2.5.3 in Chapter 2). We observe that, in contrast with the “unconstrained”
case of Section 3.3.1, where the linear independence constraint qualification
required by the KKT conditions holds for all feasible points, here a constraint
qualification would need to be imposed if we were to use the KKT conditions
as necessary conditions for optimality. On the other hand, the FJ conditions
are always a necessary condition for optimality under the differentiability as-
sumption, without requiring any constraint qualification.

Recalling the vector definition

x �
[
xt

0 · · · xt
N ut

0 · · · ut
N−1

]t ∈ R
(N+1)n+Nm,

we can express problem (3.59)–(3.65) in the form

minimise φ(x),
subject to:
g(x) ≤ 0, (3.66)
h(x) = 0,

where
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φ(x) � F (xN ) +
N−1∑
k=0

L(xk, uk), (3.67)

h(x) �

⎡⎢⎢⎢⎢⎢⎣
x̄ − x0

f(x0, u0) − x1

...
f(xN−1, uN−1) − xN

hN (xN )

⎤⎥⎥⎥⎥⎥⎦ , (3.68)

g(x) �

⎡⎢⎢⎢⎢⎢⎣
g0(u0)
g1(u1)

...
gN−1(uN−1)

gN (xN )

⎤⎥⎥⎥⎥⎥⎦ . (3.69)

Suppose x∗ =
[
(x∗

0)t · · · (x∗
N )t (u∗

0)t · · · (u∗
N−1)

t
]t

is a minimiser of (3.66).
Then the FJ conditions (see (2.30) in Chapter 2) hold for problem (3.66) at x∗,
that is, there exist a scalar η∗ and vectors {λ∗−1, . . . , λ

∗
N−1}, γ∗, {ν∗

0 , . . . , ν∗
N}

such that

[
∂φ(x∗)

∂x

]t

η∗ +
[
∂h(x∗)

∂x

]t

⎡⎢⎢⎢⎣
λ∗
−1
...

λ∗
N−1

γ∗

⎤⎥⎥⎥⎦ +
[
∂g(x∗)

∂x

]t

⎡⎢⎣ν∗
0
...

ν∗
N

⎤⎥⎦ = 0, (3.70)

⎡⎢⎣ν∗
0
...

ν∗
N

⎤⎥⎦
t

g(x∗) = 0, (3.71)

(η∗, ν∗
0 , . . . , ν∗

N ) ≥ 0, (3.72)
(η∗, λ∗

−1, . . . , λ
∗
N−1, γ

∗, ν∗
0 , . . . , ν∗

N ) �= 0, (3.73)

where

∂φ

∂x
=

[
∂L

∂x0
. . . . . . . . .

∂L

∂xN−1

∂F

∂xN

∂L

∂u0
. . . . . .

∂L

∂uN−1

]
,
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∂h

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−In 0 0 · · · 0 0 0 0 · · · 0

∂f

∂x0
−In 0 · · · 0 0

∂f

∂u0
0 · · · 0

0
∂f

∂x1
−In · · · 0 0 0

∂f

∂u1
· · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · ∂f

∂xN−1
−In 0 0 · · · ∂f

∂uN−1

0 0 0 · · · 0
∂hN

∂xN
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

∂g

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · · · · 0
∂g0

∂u0
0 · · · 0

...
. . .

... 0
∂g1

∂u1
· · · 0

...
. . .

...
...

. . .
...

...
. . .

... 0 0 · · · ∂gN−1

∂uN−1

0 · · · · · · · · · · · · ∂gN

∂xN
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We will next use the Hamiltonian

H(xk, uk, λk, η) � ηL(xk, uk) + λt
kf(xk, uk) for k = 0, . . . , N − 1, (3.74)

in the dual feasibility condition (3.70), and write the FJ conditions (3.70)–
(3.73) component-wise. We thus conclude that a necessary condition for the
sequences {x∗

0, . . . , x
∗
N}, {u∗

0, . . . , u
∗
N−1} to be minimisers of (3.59)–(3.65) is

that there exist a scalar η∗ and vectors {λ∗
−1, . . . , λ

∗
N−1}, γ∗, {ν∗

0 , . . . , ν∗
N},

not all zero, such that the following conditions hold:

(i) Adjoint equations:

(λ∗
k−1)

t =
∂H(x∗

k, u∗
k, λ∗

k, η∗)
∂xk

for k = 0, . . . , N − 1. (3.75)

(ii) Boundary conditions:

λ∗
N−1 =

[
∂hN (x∗

N )
∂xN

]t

γ∗ +
[
∂F (x∗

N )
∂xN

]t

η∗ +
[
∂gN (x∗

N )
∂xN

]t

ν∗
N , (3.76)

(ν∗
N )t gN (x∗

N ) = 0, (3.77)
η∗ ≥ 0, ν∗

N ≥ 0. (3.78)
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(iii) Hamiltonian conditions:[
∂H(x∗

k, u∗
k, λ∗

k, η∗)
∂uk

]t

+
[
∂gk(u∗

k)
∂uk

]t

ν∗
k = 0, (3.79)

(ν∗
k)t gk(u∗

k) = 0, (3.80)
ν∗

k ≥ 0, (3.81)

for k = 0, . . . , N − 1. ◦
Now consider the following related condition:

H(x∗
k, u∗

k, λ∗
k, η∗) ≤ H(x∗

k, uk, λ∗
k, η∗) for all uk such that gk(uk) ≤ 0,

(3.82)

for k = 0, . . . , N − 1, where H(x∗
k, uk, λ∗

k, η∗) is the restricted Hamiltonian

H(x∗
k, uk, λ∗

k, η∗) � η∗L(x∗
k, uk) + (λ∗

k)tf(x∗
k, uk). (3.83)

Notice that the KKT conditions for (3.82) (that is, for the problem: min-
imise H(x∗

k, uk, λ∗
k, η∗) subject to gk(uk) ≤ 0) coincide with (3.79)–(3.81)

(compare with (2.34) in Chapter 2). However, in order to guarantee that
(3.82) is a necessary condition for (3.79)–(3.81), and hence for the original
problem (3.59)–(3.65), we need additional mild convexity assumptions (see
Definition 2.3.9 in Chapter 2). Suppose now that H(x∗

k, uk, λ∗
k, η∗) is pseudo-

convex at u∗
k, and the constraint function gk(uk) in (3.82) is quasiconvex at u∗

k.
We can then apply the KKT sufficient optimality conditions of Theorem 2.5.6
in Chapter 2 to conclude that conditions (3.79)–(3.81) imply (3.82).

Thus, for the original optimisation problem (3.59)–(3.65), under the above
(generalised) convexity assumptions, a necessary condition for the sequences
{x∗

0, . . . , x
∗
N}, {u∗

0, . . . , u
∗
N−1} to be minimisers is that there exist a scalar η∗

and vectors {λ∗−1, . . . , λ
∗
N−1}, γ∗, ν∗

N , not all zero, such that conditions (3.75)–
(3.78) hold, and, furthermore, u∗

k minimises the restricted Hamiltonian for
k = 0, . . . , N − 1; that is, condition (3.82) holds.

Finally, we observe that, if the functions h(x) in (3.68) and g(x) in
(3.69), which define the constraints for the (vector form of the) original prob-
lem (3.66), satisfy a constraint qualification (see discussion preceding Theo-
rem 2.5.5 in Chapter 2), then we can apply the KKT necessary optimality
conditions to the original problem, that is, we can set η = 1 in the FJ condi-
tions (3.70)–(3.73) and in the Hamiltonian (3.74).

3.4 Sufficient Conditions for Optimality Using Dynamic
Programming

The necessary conditions for optimality developed in Section 3.3 are not, in
general, sufficient. However, it is possible to obtain sufficient conditions by
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using the following principle of optimality: “Any part of an optimal trajectory
must itself be optimal.” This principle is captured in the idea of dynamic
programming (Bellman 1957). To develop this idea further, let V opt

N−k(xk) be
the partial value function at time k assuming we are in state xk at time k. Of
course, the catch here is that we do not know a priori which state we will be
in at time k—more will be said on this point later.

We consider the optimisation problem (3.23)–(3.28). To illustrate the idea,
we assume that, in addition to the equality constraints provided by the state
equations, only the input is constrained to belong to a set U ⊂ Rm, that is, the
optimisation is performed subject to (3.24)–(3.26) (no equality constraint on
the terminal state). Clearly, from (3.28), the partial value function at time N
is

V opt
0 (xN ) = F (xN ), (3.84)

by definition of the objective function. The principle of optimality states that
we must satisfy the following sufficient condition at each time k:

V opt
N−k(xk) = min

uk∈U

{
V opt

N−(k+1)(f(xk, uk)) + L(xk, uk)
}

. (3.85)

Unfortunately, we will not know, in advance, which value of xk will be
optimal at time k. For some simple problems, such as for linear quadratic
unconstrained optimal control, V opt

N−k(xk) has a finite parameterisation. How-
ever, in general, V opt

N−k(xk) will be a complicated function of the states. In the
latter case, we really have no option but to store V opt

N−k(xk) for all possible
values of xk. We begin with V opt

0 (xN ). Then using (3.85), we can evaluate
the optimiser u∗

N−1 and hence V opt
1 (xN−1) for all possible values of xN−1.

We continue backwards until we finally reach V opt
N (x0). Having reached this

point, we realise that we actually do know x0, and we can thus find u∗
0. Then,

running forward in time, we can calculate x∗
1 and, provided we have recorded

u∗
1 for all possible x1, we can then proceed to x∗

2 and so on.
The above procedure can be applied, in principle, to very general problems

assuming a finite number of admissible states. This can be achieved, for exam-
ple, by quantisation of the admissible region in the state space. For problems
with large horizons and high state space dimension, however, the number of
computations and the storage required by the dynamic programming tech-
nique may be impractical, or even prohibitive. Bellman called this problem
the “curse of dimensionality.” For some special problems, however, the tech-
nique can be successfully applied, even to obtain closed form expressions for
the optimal constrained control law, as we will see in Chapters 6 and 7.

Dynamic programming can also be used to find the optimal solution of
constrained estimation problems, see Sections 9.5 and 9.6 of Chapter 9.

3.5 An Interpretation of the Adjoint Variables

For a given optimal trajectory {x∗
k}, {u∗

k}, it follows from (3.85) that
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V opt
N−k(x∗

k) = V opt
N−(k+1)(f(x∗

k, u∗
k)) + L(x∗

k, u∗
k). (3.86)

Hence,

∂V opt
N−k(x∗

k)
∂xk

=
∂V opt

N−(k+1)(x
∗
k+1)

∂xk+1

∂f(x∗
k, u∗

k)
∂xk

+
∂L(x∗

k, u∗
k)

∂xk
. (3.87)

However, letting

(λ∗
k)t =

∂V opt
N−(k+1)(x

∗
k+1)

∂xk+1
,

we see that (3.87) is the same as (3.30) using (3.29) with η∗ = 1. (Note
that (λ∗

N−1)
t = ∂V opt

0 (x∗
N )/∂xN = ∂F (x∗

N )/∂xN , which agrees with (3.31)
in the case where there is no equality constraint on the terminal state and
with η∗ = 1.) Hence, we can interpret the adjoint variable (λ∗

k)t as being the
“sensitivity” (partial derivative) of the partial value function with respect to
changes in the current state.

3.6 Further Reading

For complete list of references cited, see References section at the end of book.

General

The minimum principle for systems described by ordinary differential equa-
tions is extensively covered in the literature. See, for example, Pontryagin
(1959), Pontryagin, Boltyanskii, Gamkrelidze and Mischenko (1962), Athans
and Falb (1966), Lee and Markus (1967), Bryson and Ho (1969), Kirk (1970),
Bertsekas (2000).

The discrete minimum principle presented here is based on the work of
Halkin (1966); see also Holtzman and Halkin (1966), Holtzman (1966a), Holtz-
man (1966b).

Connections Between Optimal Control and Optimisation

For more on connections between optimal control and optimisation theory
(mathematical programming), see Canon, Cullum and Polak (1970).



4

Receding Horizon Optimal Control
with Constraints

4.1 Overview

The goal of this chapter is to introduce the principle of receding horizon
optimal control. The idea is to start with a fixed optimisation horizon, of
length N say, using the current state of the plant as the initial state. We
then optimise the objective function over this fixed interval accounting for
constraints, obtain an optimal sequence of N control moves, and apply only
the first control move to the plant. Time then advances one step and the
same N -step optimisation problem is considered using the new state of the
plant as the initial state. Thus one continuously revises the current control
action based on the current state and accounting for the constraints over an
optimisation horizon of length N . This chapter will expand on this intuitively
reasonable idea.

4.2 The Receding Horizon Optimisation Principle

Fixed horizon optimisation leads to a control sequence {ui, . . . , ui+N−1},
which begins at the current time i and ends at some future time i + N − 1.
This fixed horizon solution suffers from two potential drawbacks:

(i) Something unexpected may happen to the system at some time over the
future interval [i, i + N − 1] that was not predicted by (or included in)
the model. This would render the fixed control choices {ui, . . . , ui+N−1}
obsolete.

(ii) As one approaches the final time i+N−1, the control law typically “gives
up trying” since there is too little time to go to achieve anything useful in
terms of objective function reduction. Of course, there do exist problems
where time does indeed “run out” because the problem is simply such
that no further time is available. This is typical of so-called, batch control
problems. However, in other cases, the use of a fixed optimisation horizon
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is principally dictated by computational needs rather than the absolute
requirement that everything must be “wrapped up” at some fixed future
time i + N − 1.

The above two problems are addressed by the idea of receding horizon
optimisation. As foreshadowed in Section 4.1, this idea can be summarised as
follows:

(i) At time i and for the current state xi, solve an optimal control problem
over a fixed future interval, say [i, i + N − 1], taking into account the
current and future constraints.

(ii) Apply only the first step in the resulting optimal control sequence.
(iii) Measure the state reached at time i + 1.
(iv) Repeat the fixed horizon optimisation at time i+1 over the future interval

[i + 1, i + N ], starting from the (now) current state xi+1.

Of course, in the absence of disturbances, the state measured at step (iii)
will be the same as that predicted by the model. Nonetheless, it seems prudent
to use the measured state rather than the predicted state just to be sure. The
above description assumes that the state is indeed measured at time i + 1.
In practice, the available measurements would probably cover only a subset
of the full state vector. In this case, it seems reasonable that one should use
some form of observer to estimate xi+1 based on the available data. More
will be said about the use of observers in Section 5.5 of Chapter 5, and on
the general topic of output feedback in Chapter 12. For the moment, we will
assume that the full state vector is indeed measured and we will ignore the
impact of disturbances.

If the model and objective function are time invariant, then it is clear that
the same input ui will result whenever the state takes the same value. That is,
the receding horizon optimisation strategy is really an “alibi” for generating a
particular time-invariant feedback control law. In particular, we can set i = 0
in the formulation of the open loop control problem without loss of generality.
Then at the current time, and for the current state x, we solve:

PN (x) : V opt
N (x) � min VN ({xk}, {uk}), (4.1)

subject to:
xk+1 = f(xk, uk) for k = 0, . . . , N − 1, (4.2)
x0 = x, (4.3)
uk ∈ U for k = 0, . . . , N − 1, (4.4)
xk ∈ X for k = 0, . . . , N, (4.5)
xN ∈ Xf ⊂ X, (4.6)

where
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VN ({xk}, {uk}) � F (xN ) +
N−1∑
k=0

L(xk, uk), (4.7)

and where {xk}, xk ∈ R
n, {uk}, uk ∈ R

m, denote the state and con-
trol sequences {x0, . . . , xN} and {u0, . . . , uN−1}, respectively, and U ⊂ Rm,
X ⊂ Rn, and Xf ⊂ Rn are constraint sets. All sequences {u0, . . . , uN−1}
and {x0, . . . , xN} satisfying the constraints (4.2)–(4.6) are called feasible se-
quences. A pair of feasible sequences {u0, . . . , uN−1} and {x0, . . . , xN} consti-
tute a feasible solution of (4.1)–(4.7). The functions F and L in the objective
function (4.7) are the terminal state weighting and the per-stage weighting,
respectively.

In the sequel we make the following assumptions:

• f , F and L are continuous functions of their arguments;
• U ⊂ R

m is a compact set, X ⊂ R
n and Xf ⊂ R

n are closed sets;
• there exists a feasible solution to the optimisation problem (4.1)–(4.7).

Because N is finite, these assumptions are sufficient to ensure the existence
of a minimum by Weierstrass’ theorem (see Theorem 2.2.2 of Chapter 2).
Typical choices for the weighting functions F and L are quadratic functions
of the form F (x) = xtPx and L(x, u) = xtQx + utRu, where P = P t ≥ 0,
Q = Qt ≥ 0 and R = Rt > 0. More generally, one could use functions of
the form F (x) = ‖Px‖p and L(x, u) = ‖Qx‖p + ‖Ru‖p , where ‖y‖p with
p = 1, 2, . . . ,∞, is the p-norm of the vector y.

Denote the minimising control sequence, which is a function of the current
state xi, by

U opt
xi

� {uopt
0 , uopt

1 , . . . , uopt
N−1} ; (4.8)

then the control applied to the plant at time i is the first element of this
sequence, that is,

ui = uopt
0 . (4.9)

Time is then stepped forward one instant, and the above procedure is re-
peated for another N -step-ahead optimisation horizon. The first element of
the new N -step input sequence is then applied. The above procedure is re-
peated endlessly. The idea is illustrated in Figure 4.1 for a horizon N = 5.
In this figure, each plot shows the minimising control sequence U opt

xi
given in

(4.8), computed at time i = 0, 1, 2. Note that only the shaded inputs are actu-
ally applied to the system. We can see that we are continually looking ahead
to judge the impact of current and future decisions on the future response
before we “lock in” the current input by applying it to the plant.

The above receding horizon procedure implicitly defines a time-invariant
control policy KN : X → U of the form

KN (x) = uopt
0 . (4.10)

Note that the strict definition of the function KN (·) requires the minimiser to
be unique. Most of the problems treated in this book are convex and hence
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Figure 4.1. Receding horizon optimisation principle. The shaded rectangles indi-
cate the inputs actually applied to the plant.
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satisfy this condition. One exception is the “finite alphabet” optimisation case
of Chapter 13, where the minimiser is not necessarily unique. However, in such
cases, one can adopt a rule to select one of the minimisers (see, for example,
the discussion following Definition 13.3.1 in Chapter 13).

It is common in receding horizon control applications to compute numer-
ically, at time i, and for the current state xi = x, the optimal control move
KN (x). In this case, we call it an implicit receding horizon optimal policy. In
some cases, we can explicitly evaluate the control law KN (·). In this case, we
say that we have an explicit receding horizon optimal policy. We will expand on
the above skeleton description of receding horizon optimal constrained control
as the book evolves. For example, we will treat linear constrained problems
in subsequent chapters. When the system model is linear, the objective func-
tion quadratic and the constraint sets polyhedral, the fixed horizon optimal
control problem PN(·) is a quadratic programme of the type discussed in Sec-
tion 2.5.6 of Chapter 2. In Chapters 5 to 8 we will study the solution of this
quadratic program in some detail. If, on the other hand, the system model is
nonlinear, PN (·) is, in the general case, nonconvex, so that only local solutions
are available.

The remainder of the present chapter is devoted to the analysis of the
stability properties of receding horizon optimal control. However, before we
embark on these issues, we pause to review concepts from stability theory. As
for the results on optimisation presented in Chapter 2, the results on stability
presented below in Section 4.3 find widespread application beyond constrained
control and estimation.

4.3 Background on Stability Theory

4.3.1 Notions of Stability

We will utilise the following notions of stability:

Definition 4.3.1 (Stability Properties) Let S be a set in Rn that contains
the origin. Let f : Rn → Rn be such that f(S) ⊂ S. Suppose that the system

xi+1 = f(xi), (4.11)

with xi ∈ Rn, has an equilibrium point at the origin x = 0, that is, f(0) = 0.
Let x0 ∈ S and let {xi} ⊂ S, i ≥ 0, be the resulting sequence satisfying (4.11).

We say that the equilibrium point is:

(i) (Lyapunov) stable in S: if for any ε > 0, there exists δ > 0 such that

x0 ∈ S and ‖x0‖ < δ =⇒ ‖xi‖ < ε for all i ≥ 0 ; (4.12)

(ii) attractive in S: if there exists η > 0 such that

x0 ∈ S and ‖x0‖ < η =⇒ lim
i→∞

xi = 0 ;
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(iii) globally attractive in S: if

x0 ∈ S =⇒ lim
i→∞

xi = 0 ;

(iv) asymptotically stable in S: if it is both stable in S and attractive in S;
(v) exponentially stable in S: if there exist constants θ > 0 and ρ ∈ (0, 1)

such that
x0 ∈ S =⇒ ‖xi‖ ≤ θ‖x0‖ρi for all i ≥ 0 ; (4.13)

In cases (iii), and (v) above, we say that the set S is contained in the
region of attraction1 of the equilibrium point. ◦

4.3.2 Tests for Stability

Testing for stability properties is facilitated if one can find a function V :
S → [0,∞) (called a Lyapunov function) satisfying certain conditions. The
following results use this fact.

Theorem 4.3.1 (Attractivity in S) Let S be a nonempty set in Rn. Let
f : Rn → Rn be such that f(0) = 0 and f(S) ⊂ S. Assume that there exists a
(Lyapunov) function V : S → [0,∞) satisfying the following properties:2

(i) V (·) decreases along the trajectories of (4.11) that start in S in the follow-
ing way: there exists a continuous function γ : [0,∞) → [0,∞), γ(t) > 0
for all t > 0, such that

V (f(x)) − V (x) ≤ −γ(‖x‖) for all x ∈ S . (4.14)

(ii)for every unbounded sequence {yi} ⊂ S there is some j such that 3

lim sup
i→∞

V (yi) > V (yj) .

Then:

(a) 0 ∈ cl S, and
(b) For all x0 ∈ S, the resulting sequence {xi}, i ≥ 0, satisfying (4.11) is such

that limi→∞ xi = 0, that is, if 0 ∈ S, the origin is globally attractive in S.

1 The region of attraction of an equilibrium point of (4.11) is the set of all initial
states x0 ∈ �

n that originate state trajectories {xi}, i ≥ 0, solution of (4.11),
which converge to the equilibrium point as i → ∞.

2 Property (ii) can be omitted if � is bounded.
3 We recall that, if {ai} is a sequence in [−∞,∞], and bk = sup{ak, ak+1, ak+2, . . . },

k = 1, 2, 3, . . . , then the upper limit of {ai}, denoted by β = lim supi→∞ ai, is
defined as β � inf{b1, b2, b3, . . . }.
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Proof. Let x0 ∈ S and let {xi}, i ≥ 0, be the resulting sequence satisfying
(4.11). The associated sequence of Lyapunov function values {V (xi)} ⊂ [0,∞)
is nonincreasing, since, from (4.14),

V (xi+1) = V (f(xi)) ≤ V (xi) − γ(‖xi‖) ≤ V (xi) .

Hence, c = limi→∞ V (xi) ≥ 0, exists.
The sequence {xi} is bounded; otherwise, from property (ii) above, there

would exist j such that c > V (xj), but c ≤ V (xi) for all i. Thus, there exists
R > 0 such that ‖xi‖ ≤ R for all i ≥ 0.

Now assume that there exists µ, 0 < µ < R, such that ‖xi‖ ≥ µ for
infinitely many i. Let

α = min
µ≤t≤R

γ(t) .

Note that α exists by Weierstrass’ theorem (Theorem 2.2.2 in Chapter 2) and
that α > 0 since γ(t) > 0 for all t > 0. From

V (xk) = V (x0) +
k−1∑
j=0

V (xj+1) − V (xj),

it follows that

c = V (x0) +
∞∑

j=0

V (xj+1) − V (xj)

≤ V (x0) −
∞∑

j=0

γ(‖xj‖)

= −∞,

since γ(‖xj‖) ≥ α > 0 for infinitely many j and γ(t) ≥ 0 for all t ≥ 0. The
above is a contradiction since c ≥ 0. It follows that xi converges to 0 as i tends
to infinity, showing that 0 ∈ clS and that, if 0 ∈ S, the origin is attractive in
S for (4.11). The theorem is then proved. �

Remark 4.3.1. If the Lyapunov function V : S → [0,∞) is continuous, and
f : S → S in (4.11) is continuous, S is closed, and V (0) = 0, then inequality
(4.14) in Theorem 4.3.1 can be replaced by

V (f(x)) − V (x) < 0 for all x ∈ S, x �= 0 .

◦
Theorem 4.3.2 (Stability) Let S be a set in R

n that contains an open
neighbourhood of the origin Nη(0) � {x ∈ Rn : ‖x‖ < η}. Let f : Rn → Rn

be such that f(0) = 0 and f(S) ⊂ S. Assume that there exists a (Lyapunov)
function V : S → [0,∞), V (0) = 0, satisfying the following properties:
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(i) V (·) is continuous on Nη(0);
(ii) if {yk} ⊂ S is such that limk→∞ V (yk) = 0 then limk→∞ yk = 0;
(iii) V (f(x)) − V (x) ≤ 0 for all x ∈ Nη(0).

Then the origin is a stable equilibrium point for (4.11) in S.

Proof. Let ε ∈ (0, η) and Nε(0) � {x ∈ Rn : ‖x‖ < ε}. We first show that
there exists β > 0 such that V −1[0, β] � {x ∈ S : V (x) ∈ [0, β]} ⊂ Nε(0). Sup-
pose no such β exists. Then for every k = 1, 2, . . . , there exists yk ∈ V −1[0, 1

k ]
such that ‖yk‖ > ε. But, from property (ii), we have that limk→∞ yk = 0,
which is a contradiction. Thus,

V −1[0, β] ⊂ Nε(0) . (4.15)

Since V (·) is continuous on Nη(0) and V (0) = 0, there exists δ ∈ (0, ε) such
that ‖x‖ < δ =⇒ V (x) < β. Then, combining with (4.15), we have

‖x‖ < δ =⇒ V (x) < β =⇒ x ∈ V −1[0, β] =⇒ ‖x‖ < ε .

Now let ‖x0‖ < δ. We show by induction that xi ∈ V −1[0, β] for all i ≥ 0.
It clearly holds for i = 0. Suppose xi ∈ V −1[0, β]. Note that, from (4.15),
‖xi‖ < ε, so that xi ∈ Nη(0). Then, using property (iii), we have

V (xi+1) = V (f(xi)) ≤ V (xi) ≤ β =⇒ xi+1 ∈ V −1[0, β] .

Hence, ‖x0‖ < δ =⇒ x0 ∈ V −1[0, β] =⇒ xi ∈ V −1[0, β] for all i ≥ 0 =⇒
‖xi‖ < ε for all i ≥ 0. We have thus shown that given ε ∈ (0, η) there exists
δ > 0 such that (4.12) holds. The result then follows. �

The following theorem gives a sufficient condition for exponential stability.

Theorem 4.3.3 (Exponential Stability) Let S be a set in Rn containing
a nonzero element. Let f : Rn → Rn be such that f(0) = 0 and f(S) ⊂ S.
Assume that there exists a (Lyapunov) function V : S → R, and positive
constants a, b, c and σ satisfying

(i) a‖x‖σ ≤ V (x) ≤ b‖x‖σ for all x ∈ S,
(ii) V (f(x)) − V (x) ≤ −c‖x‖σ for all x ∈ S.

Then, if 0 ∈ S, the origin is exponentially stable in S for the system (4.11).

Proof. Let f0(x) � x, f1(x) � f(x), . . . , f i+1(x) � f i(f(x)). We first show
that

V (f i(x)) ≤
(
1 − c

b

)i

V (x), for all x ∈ S, (4.16)

for all i ≥ 0. Clearly, (4.16) holds for i = 0. Moreover, from the assumptions
on V (x), we have

V (f(x)) − V (x) ≤ −c‖x‖σ ≤ −c

b
V (x) .
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Thus,
V (f(x)) ≤

(
1 − c

b

)
V (x) for all x ∈ S .

Choose 0 �= y ∈ S. Then V (y) ≥ a‖y‖σ > 0. Thus, 1 − c
b ≥ 0, and therefore

0 ≤ 1 − c
b < 1.

Now assume that (4.16) holds for some i ≥ 1. Then,

V (f i+1(x)) = V (f i(f(x))) ≤
(
1 − c

b

)i

V (f(x)) ≤
(
1 − c

b

)i+1

V (x) .

Hence, by induction, (4.16) holds for all i ≥ 0. Finally, for all x ∈ S and all
i ≥ 0, we have that

∥∥f i(x)
∥∥σ ≤ 1

a
V (f i(x)) ≤ 1

a

(
1 − c

b

)i

V (x) ≤ b

a

(
1 − c

b

)i

‖x‖σ,

from which (4.13) follows with θ =
(

b
a

)1/σ
> 0 and ρ =

(
1 − c

b

)1/σ ∈ (0, 1).
�

4.4 Stability of Receding Horizon Optimal Control

4.4.1 Ingredients

We now return to receding horizon control as described in Section 4.2. Al-
though the receding horizon control idea seems intuitively reasonable, it is
important that one be able to establish concrete results about its associated
properties. Here we examine the question of closed loop stability which is a
minimal performance goal.

Unfortunately, proving/guaranteeing that an optimisation scheme (such
as receding horizon optimal control) leads to a stable closed loop system is a
nontrivial task. One may well ask what possible tool could be used. After all,
the only thing we know is that the fixed horizon control sequence is optimal.
Luckily, optimality can be turned into a notion of stability by utilising the
value function (that is, the function V opt

N (x) in (4.1), which is a function of
the initial state x only) as a Lyapunov function.

However, another difficulty soon arises. Namely, the optimisation problems
that we are solving are only defined over a finite future horizon, yet stability
is a property that must hold over an infinite future horizon. A trick that is
frequently utilised to resolve this conflict is to add an appropriate weighting
on the terminal state in the finite horizon problem so as to account for the
impact of events that lie beyond the end of the fixed horizon. This effectively
turns the fixed horizon problem into an infinite horizon one.

Following this line of reasoning, we will define a terminal control law and
an associated terminal state weighting in the objective function that captures
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the impact of using the terminal control law over infinite time. Usually, the
chosen terminal control laws are relatively simple and only “feasible” in a re-
stricted (local) region. This implies that one must be able to steer the system
into this restricted terminal region over the finite time period available in the
optimisation window. (More will be said about this crucial point later.) It
is also important to ensure that the terminal region is invariant under the
terminal control law, that is, once the state reaches the terminal set, it re-
mains inside the set if the terminal control law is used. Thus, in summary, the
ingredients typically employed to provide sufficient (though by no means nec-
essary) conditions for stability are captured by the following terminal triple:

Ingredients for Stability: The Terminal Triple (Xf ,Kf , F )

(i) a terminal constraint set Xf in the state space which is invariant under
the terminal control law;

(ii) a feasible terminal control law Kf that holds in the terminal constraint
set;

(iii) a terminal state weighting F on the finite horizon optimisation problem,
which usually corresponds to the objective function value generated by
the use of the terminal control law over infinite time.

We will show below how, based on these “ingredients,” Lyapunov-like tests,
such as those described in Section 4.3.2, can be used to establish stability of
receding horizon control.

4.4.2 Stability Results for Receding Horizon Control

As mentioned above, we will employ the value function V opt
N (x) of the fixed

horizon optimal control problem (4.1)–(4.7) as a Lyapunov function to estab-
lish asymptotic stability of the receding horizon implementation. We will first
establish stability under simplifying assumptions. A more general stability
analysis will be given later; however, this will follow essentially the same lines
as the simplified “prototype” proof given below.

Let us define the set SN of feasible initial states.

Definition 4.4.1 The set SN of feasible initial states is the set of initial
states x ∈ X for which there exist feasible state and control sequences for the
fixed horizon optimal control problem PN (x) in (4.1)–(4.7). ◦

We also require the following definition.

Definition 4.4.2 The set S ⊂ Rn is said to be positively invariant for the
system xi+1 = f(xi, ui) under the control ui = K(xi) (or positively invariant
for the closed loop system xi+1 = f(xi,K(xi))) if f(x,K(x)) ∈ S for all x ∈ S.

◦
We make the following assumptions on the data of problem PN (x) in

(4.1)–(4.7).
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A1 The terminal constraint set in (4.6) is the origin, that is, Xf = {0}.
A2 The control constraint set in (4.4) contains the origin, that is, 0 ∈ U.
A3 L(x, u) in (4.7) satisfies L(0, 0) = 0 and L(x, u) ≥ γ(‖x‖) for all x ∈

SN , u ∈ U, where γ : [0,∞) → [0,∞) is continuous, γ(t) > 0 for all t > 0,
and limt→∞ γ(t) = ∞.

A4 There is no terminal state weighting in the objective function, that is,
F (x) ≡ 0 in (4.7).

Under these conditions, we have the following stability result:

Theorem 4.4.1 Consider the system

xi+1 = f(xi, ui) for i ≥ 0, f(0, 0) = 0, (4.17)

controlled by the receding horizon algorithm (4.1)–(4.9) and subject to As-
sumptions A1–A4 above. Then:

(i) The set SN of feasible initial states is positively invariant for the closed
loop system.

(ii) The origin is globally attractive in SN for the closed loop system.
(iii) If, in addition to A1–A4, 0 ∈ int SN and the value function V opt

N (x) in
(4.1) is continuous on some neighbourhood of the origin, then the origin
is asymptotically stable in SN for the closed loop system.

Proof. (i) Positive invariance of SN .

Let xi = x ∈ SN . At step i, and for the current state xi = x, the receding
horizon algorithm solves the optimisation problem PN(x) in (4.1)–(4.7)
to obtain the optimal control and state sequences

U opt
x � {uopt

0 , uopt
1 , . . . , uopt

N−1}, (4.18)

X opt
x � {xopt

0 , xopt
1 , . . . , xopt

N−1, x
opt
N } . (4.19)

Then the actual control applied to (4.17) at time i is the first element of
(4.18), that is,

ui = KN (x) = uopt
0 . (4.20)

Note that, in the optimal state sequence (4.19), we have, from Assump-
tion A1, that

xopt
N = 0 . (4.21)

Let x+ � xi+1 = f(x,KN (x)) = f(x, uopt
0 ) be the successor state. A

feasible (but not necessarily optimal) control sequence, and corresponding
feasible state sequence for the next step i + 1 in the receding horizon
computation PN(x+) are then
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Ũ = {uopt
1 , . . . , uopt

N−1, 0}, (4.22)

X̃ = {xopt
1 , . . . , xopt

N−1, 0, 0}, (4.23)

where the last two zeros in (4.23) follow from (4.21) and f(0, 0) = 0.
Thus, there exist feasible sequences (4.22) and (4.23) for the successor
state x+ = f(x,KN (x)) and hence x+ ∈ SN . This shows that SN is
positively invariant for the closed loop system x+ = f(x,KN (x)).

(ii) Attractivity.

Note first that, since L(0, 0) = 0, F (0) = 0, 0 ∈ U and 0 ∈ Xf , then
the optimal sequences in (4.1)–(4.7) corresponding to x = 0 have all their
elements equal to zero. Thus, KN (0) = 0. Since, in addition, f(0, 0) = 0,
then the origin is an equilibrium point for the closed loop system x+ =
f(x,KN (x)).

We will next use the value function V opt
N (·) in (4.1) as a Lyapunov func-

tion. We first show that V opt
N (·) satisfies property (i) in Theorem 4.3.1.

Let x ∈ SN . The increment of the Lyapunov function, upon using the true
optimal input (4.20) and moving from x to x+ = f(x,KN (x)), satisfies

V opt
N (x+) − V opt

N (x) = VN (X opt
x+ , U opt

x+ ) − VN (X opt
x , U opt

x ) . (4.24)

However, by optimality we know that

VN (X opt
x+ , U opt

x+ ) ≤ VN (X̃ , Ũ ), (4.25)

where Ũ and X̃ are the feasible sequences defined in (4.22)–(4.23). Com-
bining (4.24) and (4.25) yields

V opt
N (x+) − V opt

N (x) ≤ VN (X̃ , Ũ ) − VN (X opt
x , U opt

x ) . (4.26)

Substituting (4.18), (4.19), (4.22) and (4.23) in the objective function
expression (4.7), and using the fact that the optimal and feasible sequences
share common terms, we obtain that the right hand side of (4.26) is equal
to −L(x,KN (x)). It then follows that

V opt
N (x+) − V opt

N (x) ≤ −L(x,KN (x))
≤ −γ(‖x‖),

where, in the last inequality, we have used Assumption A3. Thus, V opt
N (·)

satisfies property (i) in Theorem 4.3.1.

In addition, from Assumptions A3 and A4, V opt
N (·) satisfies

V opt
N (x) ≥ L(x, uopt

0 ) ≥ γ(‖x‖) for all x ∈ SN . (4.27)
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Hence, from the assumption on γ, V opt
N (x) → ∞ when ‖x‖ → ∞, and

therefore V opt
N (·) satisfies property (ii) in Theorem 4.3.1. It then follows

from Theorem 4.3.1 that the origin is globally attractive in SN for the
closed loop system.

(iii) Asymptotic stability.

To show asymptotic stability of the origin, note first that V opt
N (0) = 0

(since, as shown before, the optimal sequences in (4.1)–(4.7) corresponding
to x = 0 have all their elements equal to zero). Next, note from (4.27) and
the properties of γ that V opt

N (·) satisfies property (ii) in Theorem 4.3.2
with S = SN . If, in addition, 0 ∈ int SN and V opt

N (·) is continuous on some
neighbourhood of the origin, then Theorem 4.3.2 shows that the origin
is a stable equilibrium point for the closed loop system, and hence it is
asymptotically stable in SN (that is, both stable and attractive in SN ).

�

Assumptions A1 to A4 were made to keep the proof of Theorem 4.4.1 sim-
ple in order to introduce the reader to the core idea of the stability proof. The
assumptions can be relaxed. (For example, Assumption A1 can be replaced
by the assumption that xN enters a terminal set in which “nice properties”
hold. Similarly, Assumption A3 can be relaxed to requiring that the system
be “detectable” in the objective function.)

We next modify the assumptions given above to provide a more compre-
hensive result by specifying some more general terminal conditions.

Conditions for Stability:

B1 The per-stage weighting L(x, u) in (4.7) satisfies L(0, 0) = 0 and L(x, u) ≥
γ(‖x‖) for all x ∈ SN , u ∈ U, where γ : [0,∞) → [0,∞) is continuous,
γ(t) > 0 for all t > 0, and limt→∞ γ(t) = ∞.

B2 The terminal state weighting F (x) in (4.7) satisfies F (0) = 0, F (x) ≥
0 for all x ∈ Xf , and the following property: there exists a termi-
nal control law Kf : Xf → U such that F (f(x,Kf (x))) − F (x) ≤
−L(x,Kf (x)) for all x ∈ Xf .

B3 The set Xf is positively invariant for the system (4.17) under Kf (x), that
is, f(x,Kf (x)) ∈ Xf for all x ∈ Xf .

B4 The terminal control Kf (x) satisfies the control constraints in Xf , that is,
Kf (x) ∈ U for all x ∈ Xf .

B5 The sets U and Xf contain the origin of their respective spaces.

Using the above conditions, which include more general conditions on the
terminal triple (Xf ,Kf , F ), we obtain the following more general theorem.

Theorem 4.4.2 (Stability of Receding Horizon Control) Consider
the closed loop system formed by system (4.17), controlled by the receding
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horizon algorithm (4.1)–(4.9), and suppose that Conditions B1 to B5 are
satisfied. Then:

(i) The set SN of feasible initial states is positively invariant for the closed
loop system.

(ii) The origin is globally attractive in SN for the closed loop system.
(iii) If, in addition to B1–B5, 0 ∈ int SN and the value function V opt

N (·) in
(4.1) is continuous on some neighbourhood of the origin, then the origin
is asymptotically stable in SN for the closed loop system.

(iv) If, in addition to B1–B5, 0 ∈ int Xf , SN is compact, γ(t) ≥ atσ in B1,
F (x) ≤ b‖x‖σ for all x ∈ Xf in B2, where a > 0, b > 0 and σ > 0 are
some real constants, and the value function V opt

N (·) in (4.1) is continuous
on SN , then the origin is exponentially stable in SN for the closed loop
system.

Proof. (i) Positive invariance of SN .

We will use the optimal sequences (4.18), (4.19) for the initial state x ∈
SN , and the following feasible sequences for the successor state x+ =
f(x,KN (x):

Ũ = {uopt
1 , . . . , uopt

N−1,Kf (xopt
N )}, (4.28)

X̃ = {xopt
1 , . . . , xopt

N−1, x
opt
N , f(xopt

N ,Kf (xopt
N ))} . (4.29)

Indeed, the first N − 1 elements of (4.28) lie in U (see the control con-
straint (4.4)) since they are elements of (4.18); also, by B4, the last el-
ement of (4.28) lies in U since xopt

N ∈ Xf . Finally, by B3, the terminal
state f(xopt

N ,Kf (xopt
N )) in (4.29) also lies in Xf . Thus, there exist feasible

sequences (4.28) and (4.29) for the successor state x+ = f(x,KN (x)) and
hence x+ ∈ SN . This shows the result (i) that SN is positively invariant
for the closed loop system x+ = f(x,KN (x)).

(ii) Attractivity.

As in Theorem 4.4.1, we can show that the origin is an equilibrium point
for the closed loop system x+ = f(x,KN (x)).

We next show that the value function V opt
N (·) satisfies property (i) in

Theorem 4.3.1. The increment of V opt
N (·), upon using the receding hori-

zon optimal input (4.20) and moving from x ∈ SN to x+ = f(x,KN (x))
satisfies (4.24), and, by optimality, (4.25) also holds for the feasible se-
quences (4.28), (4.29). We thus have, in a fashion similar to the proof of
Theorem 4.4.1,

V opt
N (x+) − V opt

N (x) ≤ VN (X̃ , Ũ ) − VN (X opt
x , U opt

x )
= −L(x,KN(x)) + L(xopt

N ,Kf (xopt
N ))

+ F (f(xopt
N ,Kf (xopt

N ))) − F (xopt
N ) .
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From B2, and since xopt
N ∈ Xf , the sum of the last three terms on the

right hand side of the above inequality is less than or equal to zero. Thus,

V opt
N (x+) − V opt

N (x) ≤ −L(x,KN (x)) ≤ −γ(‖x‖) for all x ∈ SN , (4.30)

where, in the last inequality, we have used the bound in Condition B1.
Thus V opt

N (·) satisfies property (i) of Theorem 4.3.1. In a fashion similar
to the proof of Theorem 4.4.1, we can show that

V opt
N (x) ≥ γ(‖x‖) for all x ∈ SN , (4.31)

and hence V opt
N (·) also satisfies property (ii) of Theorem 4.3.1. We then

conclude using Theorem 4.3.1 that the origin is globally attractive in SN

for the closed loop system. The result (ii) is then proved.

(iii) Asymptotic stability.

As in Theorem 4.4.1, we can show that the value function V opt
N (·) satisfies

property (ii) in Theorem 4.3.2 with S = SN , and that V opt
N (0) = 0. If, in

addition, the origin is in the interior of SN and V opt
N (·) is continuous on a

neighbourhood of the origin, then Theorem 4.3.2 shows that the origin is a
stable equilibrium point for the closed loop system, and hence, combined
with attractivity in SN , it is asymptotically stable in SN . This shows the
result (iii).

(iv) Exponential stability.

By assumption, F (x) ≤ b‖x‖σ for all x ∈ Xf , for some constants b > 0 and
σ > 0. It is easily shown that V opt

N (x) ≤ F (x) for all x ∈ Xf . To see this,
let x be an arbitrary point in Xf and denote by {xf

k(x) : k = 0, 1, 2, . . .},
xf

0 (x) � x, the state sequence resulting from initial state x and controller
Kf (x) in (4.17). Then, by B2,

F (x) ≥
N−1∑
k=0

L(xf
k(x),Kf (xf

k(x))) + F (xf
N (x)),

where, by B3, xf
k(x) ∈ Xf for all k = 0, 1, . . . , N and, by B4, Kf (xf

k(x)) ∈
U for all k = 0, 1, . . . , N − 1. Note that the above state and control se-
quences are feasible since xf

N (x) ∈ Xf . Hence, by optimality,

V opt
N (x) ≤

N−1∑
k=0

L(xf
k(x),Kf (xf

k(x))) + F (xf
N (x)).

Thus, V opt
N (x) ≤ F (x) ≤ b‖x‖σ for all x ∈ Xf . We now show that there

exists a constant b̄ > 0 such that V opt
N (x) ≤ b̄‖x‖σ for all x ∈ SN . Consider

the function h : SN → R defined as
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h(x) �
{

V opt
N (x)
‖x‖σ if x �= 0,

b if x = 0 .

Then h(x) is continuous on the compact set cl (SN \Xf ), since V opt
N (x) is

continuous on SN and Xf contains a neighbourhood of the origin. Hence,
h(x) is bounded in cl (SN \ Xf ), say h(x) ≤ M . It then follows that

V opt
N (x) ≤ b̄‖x‖σ for all x ∈ SN ,

where b̄ ≥ max{b, M}. Combining the above inequality with (4.30) and
(4.31), and using the assumption that γ(t) ≥ atσ for some constant a > 0,
it follows from Theorem 4.3.3 that the closed loop system has an exponen-
tially stable equilibrium point at the origin. This shows (iv) and concludes
the proof of the theorem. �

4.5 Terminal Conditions for Stability

In this section, we consider possible choices for the terminal triple (Xf ,Kf , F )
that satisfy conditions B1–B5 of Theorem 4.4.2.

One choice for the terminal state weighting F (x) is the value function
V opt∞ (x) for the associated infinite horizon constrained optimal control prob-
lem, defined as follows:

P∞(x) : V opt
∞ (x) � min V∞({xk}, {uk}), (4.32)

subject to:
xk+1 = f(xk, uk) for k = 0, 1, . . . ,

x0 = x,

uk ∈ U for k = 0, 1, . . . ,

xk ∈ X for k = 0, 1, . . . ,

where {xk} and {uk} are now infinite sequences, and

V∞({xk}, {uk}) �
∞∑

k=0

L(xk, uk) . (4.33)

Note that P∞(x) does not have either a terminal state weighting nor a ter-
minal state constraint; both are irrelevant since, if a solution to the problem
exists, the state must converge to zero as k → ∞ (since L is assumed to sat-
isfy condition B1). In this case, it follows from the principle of optimality (see
Section 3.4 of Chapter 3) that the finite horizon value function for problem
PN (x) in (4.1) is V opt

N (x) = V opt
∞ (x). With this choice, on-line optimisation

is unnecessary, and the advantages of an infinite horizon problem automati-
cally accrue. However, constraints generally render this approach impossible.
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Usually, then, Xf is chosen to be an appropriate neighbourhood of the origin
in which V opt∞ (x) is exactly (or approximately) known, and F (x) is set equal
to V opt

∞ (x) or its approximation.
In the rather general framework discussed so far, it is hard to visualise

how Theorem 4.4.2 might be utilised in practice. However, when we specialise
to linear constrained control problems it turns out that it is rather easy to
satisfy the required conditions. This will be taken up in the next chapter.

4.6 Further Reading

For complete list of references cited, see References section at the end of book.

General

General treatment of nonlinear receding horizon control can be found in the
book Allgöwer and Zhen (2000), and in, for example, the papers Keerthi and
Gilbert (1988), Mayne and Michalska (1990), Alamir and Bornard (1994),
Jadbabaie, Yu and Hauser (2001). See also the recent special issue Magni
(2003).

An overview of industrial applications of receding horizon control is given
in Qin and Badgwell (1997).

For a more detailed treatment of stability for general discrete time systems
see Vidyasagar (2002), Kalman and Bertram (1960), Scokaert, Rawlings and
Meadows (1997).

Stability for continuous-time nonlinear systems is thoroughly covered in
several recent books, including Khalil (1996), Sastry (1999) and Vidyasagar
(2002).

Section 4.4

The idea of using terminal state weighting to turn the finite horizon optimisa-
tion problem into an infinite horizon problem can be traced back to Kleinman
(1970), Thomas (1975), and Kwon and Pearson (1977). More recent work
appears in Chen and Shaw (1982), Kwon, Bruckstein and Kailath (1983),
Garcia, Prett and Morari (1989), Bitmead et al. (1990). Related results for
input-output systems appear in Mosca, Lemos and Zhang (1990), Clarke and
Scattolini (1981) and Mosca and Zhang (1992).

The three main “ingredients” for stability used in Section 4.4 are implicit
(in various combinations) in early literature dealing with constrained receding
horizon control, see Sznaier and Damborg (1987), (1990), Keerthi and Gilbert
(1988), Mayne and Michalska (1990), Rawlings and Muske (1993), Bemporad,
Chisci and Mosca (1995), Chmielewski and Manousiouthakis (1996), De Nico-
lao, Magni and Scattolini (1996), Scokaert and Rawlings (1998). The form in
which we have presented them is based on the clear and elegant synthesis
provided by Mayne, Rawlings, Rao and Scokaert (2000).
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Constrained Linear Quadratic Optimal Control

5.1 Overview

Up to this point we have considered rather general nonlinear receding hori-
zon optimal control problems. Whilst we have been able to establish some
important properties for these algorithms (for example, conditions for asymp-
totic stability), the algorithms remain relatively complex. However, remark-
able simplifications occur if we specialise to the particular case of linear sys-
tems subject to linear inequality constraints. This will be the topic of the
current chapter.

We will show how a fixed horizon optimal control problem for linear sys-
tems with a quadratic objective function and linear constraints can be set
up as a quadratic program. We then discuss some practical aspects of the
controller implementation, such as the use of observers to estimate states and
disturbances. In particular, we will introduce the certainty equivalence princi-
ple and address several associated matters including steady state disturbance
rejection (that is, provision of integral action) and how one can treat time
delays in multivariable plants.

Finally, we show how closed loop stability of the receding horizon con-
trol [RHC] implementation can be achieved by specialising the results of Sec-
tions 4.4 and 4.5 in Chapter 4.

5.2 Problem Formulation

We consider a system described by the following linear, time-invariant model:

xk+1 = Axk + Buk, (5.1)
yk = Cxk + dk, (5.2)

where xk ∈ Rn is the state, uk ∈ Rm is the control input, yk ∈ Rm is the
output, and dk ∈ Rm is a time-varying output disturbance.
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We assume that (A, B, C) is stabilisable and detectable and, for the mo-
ment, that one is not an eigenvalue of A. (See Section 5.4, where we relax the
latter assumption.) So as to illustrate the principles involved, we go beyond
the set-up described in Chapter 4 to include reference tracking and distur-
bance rejection.

Thus, we consider the problem where the output yk in (5.2) is required to
track a constant reference y∗ in the presence of the disturbance dk. That is,
we wish to regulate, to zero, the output error

ek � yk − y∗ = Cxk + dk − y∗. (5.3)

Let d̄ denote the steady state value of the output disturbance dk, that is,

d̄ � lim
k→∞

dk, (5.4)

and denote by us, xs, ys and es, the setpoints, or desired steady state values
for uk, xk, yk and ek, respectively. We then have that

ys = y∗ = Cxs + d̄, (5.5)
es = 0, (5.6)

and hence

us = [C(I − A)−1B]−1(y∗ − d̄), (5.7)

xs = (I − A)−1Bus. (5.8)

Without loss of generality, we take the current time as zero.
Here we assume knowledge of the disturbance dk for all k = 0, . . . , N − 1,

and the current state measurement x0 = x. (In practice, these signals will be
obtained from an observer/predictor of some form; see Section 5.5.)

Our aim is to find, for the system (5.1)–(5.3), the M -move control sequence
{u0, . . . , uM−1}, and corresponding state sequence {x0, . . . , xN} and error se-
quence {e0, . . . , eN−1}, that minimise the finite horizon objective function:

VN,M ({xk}, {uk}{ek}) � 1
2
(xN − xs)tP (xN − xs) +

1
2

N−1∑
k=0

et
kQek

+
1
2

M−1∑
k=0

(uk − us)tR(uk − us), (5.9)

where P ≥ 0, Q ≥ 0, R > 0. In (5.9), N is the prediction horizon, M ≤ N is
the control horizon, and us, xs are the input and state setpoints given by (5.7)
and (5.8), respectively. The control is set equal to its steady state setpoint
after M steps, that is, uk = us for all k ≥ M .

In the following section, we will show how the minimisation of (5.9) is
performed under constraints on the input and output.
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The above fixed horizon minimisation problem is solved at each time step
for the current state and disturbance values. Then, the first move of the re-
sulting control sequence is used as the current control, and the procedure is
repeated at the next time step in a RHC fashion, as described in Chapter 4.

5.3 Quadratic Programming

In the presence of linear constraints on the input and output, the fixed hori-
zon optimisation problem described in Section 5.2 can be transformed into a
quadratic program [QP] (see Section 2.5.6 in Chapter 2). We show below how
this is accomplished.

5.3.1 Objective Function Handling

We will begin by showing how (5.9) can be transformed into an objective
function of the form used in QP. We start by writing, from (5.1) with x0 = x,
and using the constraint that uk = us for all k ≥ M , the following set of
equations:

x1 = Ax + Bu0,

x2 = A2x + ABu0 + Bu1,

...

xM = AMx + AM−1Bu0 + · · · + BuM−1,

xM+1 = AM+1x + AMBu0 + · · · + ABuM−1 + Bus,

...

xN = ANx + AN−1Bu0 + · · · + AN−MBuM−1 +
N−M−1∑

i=0

AiBus.

(5.10)

Using xs = Axs + Bus (from (5.8)) recursively, we can write a similar set of
equations for xs as follows:

xs = Axs + Bus,

xs = A2xs + ABus + Bus,

...

xs = AMxs + AM−1Bus + · · · + Bus,

xs = AM+1xs + AMBus + · · · + ABus + Bus,

...

xs = ANxs + AN−1Bus + · · · + AN−MBus +
N−M−1∑

i=0

AiBus.

(5.11)
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We now subtract the set of equations (5.11) from the set (5.10), and rewrite
the resulting difference in vector form to obtain

x− xs = Γ(u − us) + Ω(x − xs), (5.12)

where

x �

⎡⎢⎢⎢⎣
x1

x2

...
xN

⎤⎥⎥⎥⎦ , xs �

⎡⎢⎢⎢⎣
xs

xs

...
xs

⎤⎥⎥⎥⎦ , u �

⎡⎢⎢⎢⎣
u0

u1

...
uM−1

⎤⎥⎥⎥⎦ , us �

⎡⎢⎢⎢⎣
us

us

...
us

⎤⎥⎥⎥⎦ , (5.13)

(xs is an nN × 1 vector, and us is an mM × 1 vector), and where

Γ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 . . . 0 0
AB B . . . 0 0
...

...
. . .

...
...

AM−1B AM−2B . . . AB B
AMB AM−1B . . . A2B AB

...
...

. . .
...

...
AN−1B AN−2B . . . . . . AN−MB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ω �

⎡⎢⎢⎢⎣
A
A2

...
AN

⎤⎥⎥⎥⎦ . (5.14)

We also define the disturbance vector

d �
[
(d1 − d̄)t (d2 − d̄)t · · · (dN−1 − d̄)t 01×m

]t
, (5.15)

and the matrices

Q � diag{CtQC, . . . , CtQC, P},
R � diag{R, . . . , R},
Z � diag{CtQ, CtQ, . . . , CtQ},

(5.16)

where diag{A1, A2, . . . , Ap} denotes a block diagonal matrix having the ma-
trices Ai as its diagonal blocks. Next, adding −Cxs − d̄ + y∗ = 0 (from (5.5))
to (5.3), we can express the error as

ek = C(xk − xs) + (dk − d̄). (5.17)

We now substitute (5.17) into the objective function (5.9), and rewrite it using
the vector notation (5.13), (5.16) and (5.15), as follows:

VN,M =
1
2
et
0Qe0 +

1
2
(x − xs)tQ(x − xs) +

1
2
(u − us)tR(u− us)

+ (x − xs)tZd +
1
2
dt diag{Q, Q, . . . , Q}d. (5.18)
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Next, we substitute (5.12) into (5.18) to yield

VN,M = V̄ +
1
2
ut(ΓtQΓ + R)u + utΓtQΩ(x − xs)

− ut(ΓtQΓ + R)us + utΓtZd,

� V̄ +
1
2
utHu + ut

[
F (x − xs) − Hus + Dd

]
, (5.19)

where V̄ is independent of u and

H � ΓtQΓ + R, F � ΓtQΩ, D � ΓtZ. (5.20)

The last calculation is equivalent to the elimination of the equality constraints
given by the state equations (5.1)–(5.3) by substitution into the objective
function.

Note that H in (5.20) is positive definite because we have assumed R > 0
in the objective function (5.9).

From (5.19) it is clear that, if the problem is unconstrained, VN,M is min-
imised by taking

u = uopt
uc � −H−1

[
F (x − xs) − Hus + Dd

]
. (5.21)

The vector formed by the first m components of (5.21), uopt
0,uc, has a linear

time-invariant feedback structure of the form

uopt
0,uc = −K(x − xs) + us + Kdd, (5.22)

where K and Kd are defined as the first m rows of the matrices H−1F and
−H−1D, respectively. By appropriate selection of the weightings in the ob-
jective function (5.9), the resulting K is such that the matrix (A − BK) is
Hurwitz, that is, all its eigenvalues have moduli smaller than one (see, for
example, Bitmead et al. 1990). The control law (5.22) is the control used by
the RHC algorithm if the problem is unconstrained. More interestingly, even
in the constrained case, the optimal RHC solution has the form (5.22) in a
region of the state space that contains the steady state setpoint x = xs. This
point will be discussed in detail in Chapters 6 and 7.

5.3.2 Constraint Handling

We now introduce inequality constraints into the problem formulation. Mag-
nitude and rate constraints on the plant input and output can be expressed
as follows:

umin ≤ uk ≤ umax, k = 0, . . . , M − 1,

ymin ≤ yk ≤ ymax, k = 1, . . . , N − 1, (5.23)
δumin ≤ uk − uk−1 ≤ δumax, k = 0, . . . , M − 1,
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where u−1 is the input used in the previous step of the receding horizon
implementation, which has to be stored for use in the current fixed horizon
optimisation.

More generally, we may require to impose state constraints of the form

xk ∈ Xk for k = 1, . . . , N, (5.24)

where Xk is a polyhedral set of the form

Xk = {x ∈ R
n : Lkx ≤ Wk}. (5.25)

For example, the constraint xN ∈ Xf , where Xf is a set satisfying certain
properties, is useful to establish closed loop stability, as discussed in Chapter 4
(see also Section 5.6).

When constraints are present, we require that the setpoint ys = y∗ and the
corresponding input and state setpoints us and xs be feasible, that is, that they
satisfy the required constraints. For example, in the case of the constraints
given in (5.23), we assume that umin ≤ us ≤ umax, and ymin ≤ y∗ ≤ ymax. When
the desired setpoint is not feasible in the presence of constraints, then one has
to search for a feasible setpoint that is close to the desired setpoint in some
sense. A procedure to do this is described in Section 5.4.

The constraints (5.23)–(5.25) can be written as linear constraints on u of
the form

Lu ≤ W, (5.26)

where

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

IMm

Ψ
E

−IMm

−Ψ
−E

L̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax

ymax

δumax

umin

ymin

δumin

W̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.27)

In (5.27), IMm is the Mm × Mm identity matrix (where M is the control
horizon and m is the number of inputs). Ψ is the following (N − 1)m × Mm
matrix:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 . . . 0 0
CAB CB . . . 0 0

...
...

. . .
...

...
CAM−1B CAM−2B . . . CAB CB
CAMB CAM−1B . . . CA2B CAB

...
...

. . .
...

...
CAN−2B CAN−3B . . . . . . CAN−M−1B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

E is the following Mm × Mm matrix:
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E =

⎡⎢⎢⎢⎣
Im 0 . . . 0
−Im Im . . . 0

. . . . . .
0 . . . −Im Im

⎤⎥⎥⎥⎦ ,

where Im is the m × m identity matrix; and

L̃ � diag{L1, L2, . . . , LN}Γ,

where L1, . . . , LN are the state constraint matrices given in (5.25) and Γ is
given in (5.14).

The vectors forming W in (5.27) are as follows

umax =

⎡⎢⎣umax

...
umax

⎤⎥⎦ , umin =

⎡⎢⎣−umin

...
−umin

⎤⎥⎦ ,

δumax =

⎡⎢⎢⎢⎣
u−1 + δumax

δumax

...
δumax

⎤⎥⎥⎥⎦ , δumin =

⎡⎢⎢⎢⎣
−u−1 − δumin

−δumin

...
−δumin

⎤⎥⎥⎥⎦ ,

ymax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ymax − CAx − d1

...
ymax − CAMx − dM

ymax − CAM+1x − dM+1 − CBus

...
ymax − CAN−1x − dN−1 −

∑N−M−2
i=0 CAiBus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ymin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ymin + CAx + d1

...
−ymin + CAMx + dM

−ymin + CAM+1x + dM+1 + CBus

...
−ymin + CAN−1x + dN−1 +

∑N−M−2
i=0 CAiBus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W̃ � − diag{L1, L2, . . . , LN}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax
...

AMx
AM+1x + Bus

AM+2x + ABus

...
ANx +

∑N−M−1
i=0 AiBus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣
W1

W2

...
WN

⎤⎥⎥⎥⎦ ,
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where x is the initial state, umax, umin, δumax, δumin, ymax, ymin are the vectors
of constraint limits defined in (5.23) and L1, . . . , LN , W1, . . . , WN are the
matrices and vectors of the state constraint polyhedra (5.25).

5.3.3 The QP Problem

Using the above formalism, we can express the problem of minimising (5.9)
subject to the inequality constraints (5.23)–(5.25) as the QP problem of min-
imising (5.19) subject to (5.26), that is,

min
u

1
2
utHu + ut

[
F (x − xs) − Hus + Dd

]
,

subject to:
Lu ≤ W.

(5.28)

Note that the term V̄ in (5.19) has not been included in (5.28) since it is
independent of u.

The optimal solution uopt(x) to (5.28) is then:

uopt(x) = arg min
Lu≤W

1
2
utHu + ut

[
F (x − xs) − Hus + Dd

]
. (5.29)

The matrix H is called the Hessian of the QP. If the Hessian is positive
definite, the QP is convex. This is indeed the case for H given (5.20), which,
as already mentioned, is positive definite because we have assumed R > 0 in
the objective function (5.9). In Chapter 11 we will investigate the structure
of the Hessian in detail and formulate numerically stable ways to compute it
from the problem data.

Standard numerical procedures (called QP algorithms) are available to
solve the above optimisation problem. In Chapter 8 we will review some of
these algorithms.

Once the QP problem (5.29) is solved, the receding horizon algorithm
applies, at the current time k, only the first control move, formed by the first
m components of the optimal vector uopt(x) in (5.29). This yields a control
law of the form

uk = K(xk, d̄, y∗,d), (5.30)

where xk = x is the current state, and where the dependency on d̄ and y∗ is via
us, xs and d (see (5.7), (5.8), and (5.15)) as data for the optimisation (5.29).
Then the whole procedure is repeated at the next time instant, with the
optimisation horizon kept constant.

5.4 Embellishments

(i) Systems with integrators. In the above development, we have as-
sumed that one is not an eigenvalue of A. This assumption allowed us
to invert the matrix (I − A) in (5.7) and (5.8).
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There are several ways to treat the case when one is an eigenvalue of
A. For example, in the single input-single output case, when one is an
eigenvalue of A, then us = 0. To calculate xs, we can write the state space
model so that the integrator is shifted to the output, that is,

x̃k+1 = Ãx̃k + B̃uk,

x′
k+1 = C̃x̃k + x′

k,

yk = x′
k + dk,

where Ã, B̃, and C̃ correspond to the state space model of the reduced-
order plant, that is, the plant without the integrator.

With this transformation, (Ã − I) is nonsingular, and hence the state
setpoint is ⎡⎢⎢⎣ x̃

x′

⎤⎥⎥⎦
s

=

⎡⎢⎢⎢⎣
0
...
0

y∗ − d̄

⎤⎥⎥⎥⎦ ,

where y∗ is the reference and d̄ is the steady state value of the output
disturbance.

The optimisation problem is then solved in terms of these transformed
state variables.

(ii) Setpoint Calculation for Underactuated Systems. By “underac-
tuation” we mean that the actuators have insufficient authority to cancel
the disturbance and reach the desired setpoint in steady state, that is, the
desired setpoint is not feasible in the presence of constraints. This is not
an uncommon situation. For example, in shape control in rolling mills, the
actuators are cooling water sprays across the strip. These sprays change
the radius of the rolls and hence influence the cross-directional reduction
of the strip. However, these sprays have limited control authority, and thus
they are frequently incapable of cancelling certain disturbances. More will
be said about this cross-directional control problem in Chapter 15.

Under these conditions, it is clear that, in steady state, we will generally
not be able to bring the output to the desired setpoint. Blind applica-
tion of the receding horizon algorithm will lead to a saturated control,
which achieves an optimal (in the quadratic objective function sense) com-
promise. However, there is an unexpected difficulty that arises from the
weighting on the control effort in the objective function. In particular, the
term (uk − us)tR(uk − us) in (5.9), where us is the unconstrained steady
state input required to achieve the desired setpoint ys = y∗ (see (5.7) and
(5.5)) may bias the solution of the optimisation problem.
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One way to address this issue is to search for a feasible setpoint that is
closest to the desired setpoint in a mean-square sense. In this case, the
values of us and xs that are used in the objective function (5.9) may be
computed from the following quadratic program (see, for example, Muske
and Rawlings 1993):

min
us

[(y∗ − d̄) − Cxs]t[(y∗ − d̄) − Cxs]

subject to:

xs = (I − A)−1Bus,

umin ≤ us ≤ umax,

ymin ≤ Cxs + d̄ ≤ ymax.

(5.31)

The actual value for the output that will be achieved in steady state is
then Cxs + d̄ and us has been automatically defined to be consistent so
that no bias results.

5.5 Observers and Integral Action

The above development has assumed that the system evolves in a deterministic
fashion and that the full state (including disturbances) is measured.

When the state and disturbances are not measured, it is possible to obtain
combined state and disturbance estimates via an observer. Those estimates
can then be used in the control algorithm by means of the certainty equivalence
[CE] principle, which consists of designing the control law assuming knowledge
of the states and disturbances (as was done in Sections 5.2 and 5.3), and then
using their estimates as if they were the true ones when implementing the
controller. (More will be said about the CE principle in Chapter 12.)

In practice, it is also important to ensure that the true system output
reaches its desired steady state value, or setpoint, despite the presence of
unaccounted constant disturbances and modelling errors. In linear control,
this is typically achieved by the inclusion of integrators in the feedback loop;
hence, we say that a control algorithm that achieves this property has integral
action.

In the context of constrained control, there are several alternative ways in
which integral action can be included into a control algorithm. For example,
using CE, the key idea is to include a model for constant disturbances at the
input or output of the system and design an observer for the composite model
including system and disturbance models. Then the control is designed to
reject the disturbance, assuming knowledge of states and disturbance. Finally,
the control is implemented using CE. The resulting observer-based closed loop
system has integral action, as we will next show.

We will consider a model of the system of the form (5.1)-(5.2) with a
constant output disturbance. (One could equally assume a constant input
disturbance.) This leads to a composite model of the form
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xk+1 = Axk + Buk,

dk+1 = dk = d̄, (5.32)
yk = Cxk + dk.

We do not assume that the model (5.32) is a correct representation of the real
system. In fact, we do not assume knowledge of the real system at all, but we
assume that we can measure its output, which we denote yreal

k .
The RHC algorithm described in Sections 5.2 and 5.3 is now applied to

the model (5.32) to design a controller for rejection of the constant output
disturbance (and tracking of a constant reference) assuming knowledge of the
model state and disturbance measurements. At each k the algorithm consists
of solving the QP problem (5.29) for the current state xk = x, with us and
xs computed from (5.7) and (5.8), and with d = 0 (this follows from (5.15),
since dk = d̄ for all k).

To apply the CE principle, we use the model (5.32) and the real system
output yreal

k to construct an observer of the form

x̂k+1 = Ax̂k + Buk + L1[yreal
k − Cx̂k − d̂k],

d̂k+1 = d̂k + L2[yreal
k − Cx̂k − d̂k],

(5.33)

where L1 and L2 are determined via any observer design method (such as the
Kalman filter) that ensures that the matrix[

A − L1C −L1

−L2C I − L2

]
is Hurwitz. Then we simply use the estimates (x̂k, d̂k) given by (5.33) in the
RHC algorithm as if they were the true states, that is, x̂k replaces x (which
is the current state) and d̂k replaces d̄. Specifically, the QP problem (5.29) is
solved at each k for x = x̂k, d = 0 and with us = us,k and xs = xs,k computed
as

us,k � [C(I − A)−1B]−1(y∗ − d̂k), (5.34)

xs,k � (I − A)−1Bus,k. (5.35)

Note that now us,k and xs,k are time-varying variables (compare with (5.7)
and (5.8)). Thus, the resulting CE control law has the form (5.30) evaluated
at xk = x̂k, d̄ = d̂k, y∗ = y∗, and d = 0, that is,

uk = K(x̂k, d̂k, y∗, 0). (5.36)

We will next show how integral action is achieved. We make the following
assumption.

Assumption 5.1 We assume that the real system in closed loop with the
(constrained) control law (5.36) reaches a steady state in which no constraints
are active and where {yreal

k } and {d̂k} converge to the constant values ȳreal, ¯̂
d.
◦
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Note that the assumption of no constraints being active when steady state
is achieved implies that the control law, in steady state, must satisfy equation
(5.22) (with d = 0) evaluated at the steady state values, that is,

ū = −K(¯̂x − x̄s) + ūs, (5.37)

where ū � limk→∞ uk, ¯̂x � limk→∞ x̂k, x̄s � limk→∞ xs,k, and ūs �
limk→∞ us,k. In (5.37), ūs and x̄s satisfy, from (5.34) and (5.35),

ūs = [C(I − A)−1B]−1(y∗ − ¯̂
d), (5.38)

x̄s = (I − A)−1Būs, (5.39)

where ¯̂
d � limk→∞ d̂k.

We make the following assumption on the matrix K in (5.37)

Assumption 5.2 The matrix (A−BK) is Hurwitz, that is, all its eigenvalues
have moduli smaller than one.

We then have the following result.

Lemma 5.5.1 Under Assumptions 5.1 and 5.2, the real system output con-
verges to the desired setpoint y∗, that is

ȳreal = y∗. (5.40)

Proof. From the observer equations (5.33) in steady state we have

(I − A)¯̂x = Bū, (5.41)

ȳreal = C ¯̂x + ¯̂
d. (5.42)

Substituting (5.37) in (5.41) and using (I−A)x̄s = Būs from (5.39), we obtain

(I − A)¯̂x = Būs − BK ¯̂x + BKx̄s = (I − A)x̄s − BK ¯̂x + BKx̄s.

Reordering terms in the above equation yields

(I − A + BK)¯̂x = (I − A + BK)x̄s,

or
¯̂x = x̄s, (5.43)

since (A − BK) is Hurwitz by Assumption 5.2. We then have, from (5.43),
(5.39) and (5.38), that

C ¯̂x = Cx̄s = y∗ − ¯̂
d. (5.44)

Thus, the result (5.40) follows upon substitution of (5.44) into (5.42). �
Note that we have not shown (and indeed it will not be true in general)

that ¯̂
d is equal to the true output disturbance. In fact, the disturbance could

actually be at the system input. Moreover, since we have not assumed that
the model is correct, there need be no connection between x̂ and the states of
the real system. Lemma 5.5.1 is then an important result since it shows that,
subject to the assumption that a steady state is achieved, the required output
setpoint can be achieved despite uncertainty of different sources.
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5.5.1 Observers for Systems with Time Delays

Many systems incorporate time delays between input and output. There is,
thus, an issue of how best to deal with this. Naively, one could simply add
extra states corresponding to the delays on each input. For example, suppose
the delays on inputs 1 to m are τ1 to τm samples, respectively. Let the input
vector at time k be

uk �
[
u1

k u2
k · · · um

k

]t
. (5.45)

Then we can use the model

xk+1 = Axk + Bξk, (5.46)

where
ξk �

[
ξ1
k ξ2

k · · · ξm
k

]t
, (5.47)

and where each component ξi
k, i = 1, . . . , m, has a model of the form

ηi
k+1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ηi
k +

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ui
k,

ξi
k =

[
0 0 · · · 0 1

]
ηi

k,

(5.48)

with ηi
k a vector having τi components. That is, ξi

k is the input ui
k delayed

τi samples. A block diagram illustrating the model (5.46)–(5.48) is shown in
Figure 5.1.

ξ1
k

ξm
k

ξk xk

um
k

u1
k

z−τm

z−τ1

(A,B)

Figure 5.1. Block diagram of the input delayed system modelled by (5.48).

However, there are more parsimonious ways to proceed. As an illustration,
consider the case where all input-output transfer functions contain a common
delay. (This is typical in cases where measurements are made downstream from
a process and all variables suffer the same transport delay. A specific example
is the cross-directional control problem of the type discussed in Chapter 15.)
Let the common delay be τ samples. Then, since the system model is linear,
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we can lump this delay at the output (whether it appears there or not).
Hence, given output data {y0 , . . . , yk}, we can readily estimate x̂k−τ using
a standard observer without considering any delays, other than delaying the
inputs to ensure that we use the correct inputs in the model. By causality,
this will utilise inputs up to uk−τ . The reason is that yk is equivalent to y′

k−τ ,
where y′

k denotes the undelayed output of the system.
For the purpose of the RHC calculations, we need x̂k. Since no measure-

ments are available to compute this value, the best estimate of x̂k is simply
obtained by running the system model in open loop starting from x̂k−τ .

Now we carry out the RHC calculations as usual to evaluate the sequence
{uopt

k , . . . , uopt
k+N} and apply the first element uopt

k to the plant.
The reader will have observed that none of the above calculations have

increased complexity resulting from the delay, save for the step of running the
model forward from x̂k−τ to x̂k. Indeed, those readers who are familiar with
the Smith predictor of classical control (see, for example, Goodwin et al. 2001)
will recognise that the above procedure is a version of the scheme.

Of course, the problem becomes more complicated when there is not a
common delay. In this case, we suggest that one should extract the delay of
minimum value of all delays and treat that as a bulk delay of τ samples as
described above. The residual (interaction) delays can then be dealt with as
in (5.45)–(5.48), save that only the difference between the actual input delay
and the bulk delay needs to be explicitly modelled.

5.6 Stability

In this section, we study closed loop stability of the receding horizon algorithm
described in Sections 5.2 and 5.3. For simplicity, we assume that there are no
reference or disturbance signals (that is, dk = 0 for all k, us = 0 and xs = 0).
Also, in the objective function (5.9) we take M = N , R > 0 and we choose
Q > 0 as the state (rather than output error) weighting matrix. We thus
consider the following optimisation problem:

PN (x) : V opt
N (x) � min

[
F (xN ) +

1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk)

]
, (5.49)

subject to:
xk+1 = Axk + Buk for k = 0, . . . , N − 1, (5.50)
x0 = x, (5.51)
uk ∈ U for k = 0, . . . , N − 1, (5.52)
xk ∈ X for k = 0, . . . , N, (5.53)
xN ∈ Xf ⊂ X, (5.54)

as the underlying fixed horizon optimisation problem for the receding horizon
algorithm.
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Sufficient conditions for stability in the above linear constrained case can
be obtained by specialising the results presented in Sections 4.4 and 4.5 of
Chapter 4. Note that, with the choices Q > 0 and R > 0 in (5.49), condi-
tion B1 of Section 4.4 is satisfied with γ(t) = λmin(Q) t2, where λmin(Q) is
the minimum eigenvalue of the matrix Q. In the remainder of this section we
will assume that the sets U, X and Xf are convex and that the sets U and Xf

contain the origin of their respective spaces (that is, condition B5 is satisfied).
The fixed horizon optimal control problem PN (x) in (5.49)–(5.54) has an

associated set of feasible initial states SN . We recall from Definition 4.4.1
in Chapter 4 that SN is the set of initial states x ∈ X for which there ex-
ist feasible state and control sequences, that is, sequences {x0, x1, . . . , xN},
{u0, u1, . . . , uN−1} satisfying (5.50)–(5.54). The following lemma shows that
SN is convex if the sets U, X and Xf are convex.

Lemma 5.6.1 (Convexity of the Set of Feasible Initial States) Let
the sets U, X and Xf in (5.52)–(5.54) be convex. Then the set SN of feasible
initial states for problem PN (x) in (5.49)–(5.54) is convex.

Proof. Let x ∈ SN . Hence there exist feasible state and control sequences
{x0, x1, . . . , xN}, {u0, u1, . . . , uN−1} satisfying (5.50)–(5.54). Similarly, let x̌ ∈
SN , so that there exist feasible state and control sequences {x̌0, x̌1, . . . , x̌N},
{ǔ0, ǔ1, . . . , ǔN−1} satisfying (5.50)–(5.54).

Let xα � αx + (1 − α)x̌, α ∈ [0, 1], and consider the sequences

{xα
k} � {xα

0 , xα
1 , . . . , xα

N}, (5.55)

{uα
k} � {uα

0 , uα
1 , . . . , uα

N−1}, (5.56)

where xα
k � αxk + (1 − α)x̌k, k = 0, . . . , N , and uα

k � αuk + (1 − α)ǔk,
k = 0, . . . , N − 1. The above sequences are feasible since

xα
k+1 = αxk+1 + (1 − α)x̌k+1

= α(Axk + Buk) + (1 − α)(Ax̌k + Bǔk)
= Axα

k + Buα
k for k = 0, . . . , N − 1,

xα
0 = αx0 + (1 − α)x̌0

= αx + (1 − α)x̌
= xα,

and, also,

uα
k � αuk + (1 − α)ǔk ∈ U for k = 0, . . . , N − 1,

xα
k � αxk + (1 − α)x̌k ∈ X for k = 0, . . . , N,

xα
N � αxN + (1 − α)x̌N ∈ Xf ,

by the convexity of U, X and Xf . Hence, xα ∈ SN , proving that SN is convex.
�
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With the aid of Lemma 5.6.1, we can show that the value function V opt
N ( · )

in (5.49) is convex.

Lemma 5.6.2 (Convexity of the Value Function) Let the sets U, X and
Xf in (5.52)–(5.54) be convex. Suppose that, in (5.49), Q ≥ 0, R ≥ 0 and the
terminal state weighting is of the form F (x) = 1

2xtPx with P ≥ 0. Then the
value function V opt

N ( · ) in (5.49) is convex.

Proof. Let x ∈ SN , with associated optimal (and hence, feasible) state
and control sequences {xopt

k } � {xopt
0 , xopt

1 , . . . , xopt
N } and {uopt

k } �
{uopt

0 , uopt
1 , . . . , uopt

N−1}, respectively, solution of PN (x) in (5.49)–(5.54). Sim-
ilarly, let x̌ ∈ SN , with associated optimal (and hence, feasible) sequences
{x̌opt

k } � {x̌opt
0 , x̌opt

1 , . . . , x̌opt
N } and {ǔopt

k } � {ǔopt
0 , ǔopt

1 , . . . , ǔopt
N−1}.

Let

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk).

Then, V opt
N (x) = VN ({xopt

k }, {uopt
k }) and V opt

N (x̌) = VN ({x̌opt
k }, {ǔopt

k }).
Now consider xα � αx + (1 − α)x̌, α ∈ [0, 1]. Similarly to the proof of

Lemma 5.6.1, we can show that the sequences (5.56) and (5.55), with uα
k �

αuopt
k + (1 − α)ǔopt

k , k = 0, . . . , N − 1, and xα
k � αxopt

k + (1 − α)x̌opt
k , k =

0, . . . , N , are feasible. Hence, by optimality, we have that

V opt
N (xα) ≤ VN ({xα

k }, {uα
k}). (5.57)

Also, by convexity of the quadratic functions F (x) = 1
2xtPx and L(x, u) =

1
2 (xtQx + utRu) we have

VN ({xα
k }, {uα

k}) = F (xα
N ) +

N−1∑
k=0

L(xα
k , uα

k )

≤ αF (xopt
N ) + (1 − α)F (x̌opt

N )

+
N−1∑
k=0

[
αL(xopt

k , uopt
k ) + (1 − α)L(x̌opt

k , ǔopt
k )

]
= αVN ({xopt

k }, {uopt
k }) + (1 − α)VN ({x̌opt

k }, {ǔopt
k })

= αV opt
N (x) + (1 − α)V opt

N (x̌). (5.58)

Combining the inequalities in (5.57) and (5.58), it follows that V opt
N ( · ) is

convex, and the result is then proved. �

Lemmas 5.6.1 and 5.6.2 show that V opt
N ( · ) is a convex function defined on

the convex set SN . Since we have assumed that the sets U and Xf contain the
origin of their respective spaces, then 0 ∈ SN and hence SN is nonempty. From
Theorem 2.3.8 in Chapter 2, we conclude that V opt

N ( · ) is continuous on int SN .
This fact will be used below in the proof of asymptotic (exponential) stability.
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We present in the following sections three instances of the application of
the stability theory for receding horizon control developed in Sections 4.4
and 4.5 of Chapter 4.

5.6.1 Open Loop Stable System with Input Constraints

Assume that the matrix A in (5.50) is Hurwitz, that is, all its eigenvalues have
moduli smaller than one. Suppose that there are no state constraints (that is,
X = Xf = Rn in (5.53) and (5.54)) and, as a consequence, SN = Rn. Then,
to apply Theorem 4.4.2 of Chapter 4, we simply choose the terminal state
weighting as

F (x) =
1
2
xtPx, (5.59)

where P satisfies the discrete Lyapunov equation

P = AtPA + Q. (5.60)

A feasible terminal control is

Kf (x) = 0 for all x ∈ Xf = R
n. (5.61)

Note that, by assumption, the system is open loop stable, hence F (x) is the
infinite horizon objective function beginning in state x and using the terminal
control (5.61).

Recall that, as discussed before, conditions B1 and B5 of Theorem 4.4.2
are satisfied from the assumptions on problem PN (x) in (5.49)–(5.54). Clearly
conditions B3 and B4 hold with the above choices for the terminal triple.
Direct calculation yields that F (x) = xtPx satisfies

F (f(x,Kf (x))) − F (x) =
1
2
(Ax + BKf (x))tP (Ax + BKf (x)) − 1

2
xtPx

=
1
2
xt(AtPA − P )x

= −1
2
xtQx

= −L(x,Kf (x))

so that condition B2 is also satisfied. Thus far, we have verified conditions B1–
B5 of Theorem 4.4.2, which establishes global attractivity of the origin. To
prove exponential stability, we further need to show that the conditions in
part (iv) of the theorem are also fulfilled. Note that F (x) ≤ λmax(P )‖x‖2.
Also, as shown above, V opt

N ( · ) is continuous. Hence, exponential stability
holds in any arbitrarily large compact set of the state space.
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5.6.2 General Linear System with Input Constraints

This case is a slight generalisation of the result in Section 5.6.1. Assume that
the system has no eigenvalue with modulus equal to one. Suppose that X = Rn

in (5.53). We factor the system into stable and unstable subsystems as follows:

xs
k+1 = Asx

s
k + Bsuk,

xu
k+1 = Auxu

k + Buuk,

where the eigenvalues of As have moduli less than one, and the eigenvalues
of Au have moduli greater than one. Next, we choose Q > 0 in (5.49) of the
form

Q =
[
Qs 0
0 Qu

]
and use as terminal state weighting

F (x) =
1
2
(xs)tPsx

s,

where Ps satisfies the discrete Lyapunov equation

Ps = At
sPsAs + Qs.

Finally, we choose Kf (x) = 0 and Xf in (5.54) as

Xf =
{

x =
[
xs

xu

]
∈ R

n : xu = 0
}

.

It can be easily verified, as done in Section 5.6.1, that the conditions B1–
B5 of Theorem 4.4.2 are satisfied with the above choices. Hence, if1 0 ∈
int SN , asymptotic stability of the origin follows, as proved in part (iii) of
Theorem 4.4.2.

Note that the condition xu
N = 0 is not very restrictive because the system

xu
k+1 = Auxu

k +Buuk is bounded input-bounded output stable in reverse time.
Hence the set of initial states xu

0 that are taken by feasible control sequences
into any terminal set is largely determined by the constraints on the input
rather than the values of xu

N ; that is,

xu
0 = A−N

u xu
N −

N−1∑
k=0

A−k−1
u Buuk,

and
A−N

u
exp→ 0 as N → ∞.

(See Sections 11.2 and 11.3 in Chapter 11 for further discussion on solving for
unstable modes in reverse time.)
1 This is the case if 0 ∈ int � and N is greater than or equal to the dimension of

xu, since the system is assumed stabilisable.
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5.6.3 General Linear Systems with State and Input Constraints

In this case, F (x) in (5.49) is often chosen to be the value function of the
infinite horizon, unconstrained optimal control problem for the same system
(see Scokaert and Rawlings 1998, Sznaier and Damborg 1987). This problem,
defined as in (4.32)-(4.33) in Chapter 4, but with no constraints (U = Rm, X =
Rn), is a standard linear quadratic regulator problem whose value function
is xtPx, where P is the positive definite solution of the algebraic Riccati
equation

P = AtPA + Q − KtR̄K,

where
K � R̄−1BtPA, R̄ � R + BtPB. (5.62)

The terminal state weighting used in this case is then

F (x) =
1
2
xtPx.

The local controller Kf (x) is chosen to be the optimal linear controller
Kf (x) = −Kx, where K is given by (5.62).

The terminal set Xf is usually taken to be the maximal output admissible
set O∞ (Gilbert and Tan 1991) for the closed loop system using the local
controller Kf (x), defined as

O∞ � {x : K(A−BK)kx ∈ U and (A−BK)kx ∈ X for k = 0, 1, . . .}. (5.63)

O∞ is the maximal positively invariant set for the system xk+1 = (A−BK)xk

(see Definition 4.4.2 in Chapter 4) in which constraints are satisfied.
With the above choice for the terminal triple (Xf ,Kf , F ), conditions B1–

B5 of Theorem 4.4.2 are readily established, similarly to Section 5.6.1. This
proves attractivity of the origin in SN . To prove exponential stability, we
further need to show that the conditions in part (iv) of the theorem are also
fulfilled. Note that F (x) ≤ λmax(P )‖x‖2. Also, as shown above, V opt

N ( · ) is
continuous on int SN . Hence, exponential stability holds in any arbitrarily
large compact subset contained in the interior of SN .

An interesting consequence of this choice for the terminal triple is that
V opt
∞ (x) = F (x) for all x in Xf and that V opt

N (x) = V opt
∞ (x) for all x ∈ SN .

Actually, the horizon N can be chosen large enough for the predicted terminal
state xopt

N (corresponding to the Nth step of the optimal state sequence for
initial state x) to belong to Xf (see Section 5.8 for references to methods to
compute lower bounds on such N). If N is so chosen, the terminal constraint
may be omitted from the optimisation problem PN(x).

5.7 Stability with Observers

A final question raised by the use of observers and the CE principle in RHC
is whether or not closed loop stability is retained when the true states are
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replaced by state estimates in the control law. We will not explicitly address
this issue but, instead, refer the reader, in Section 5.8 below, to recent lit-
erature dealing with this topic. Again, from a practical perspective, it seems
fair to anticipate that, provided the state estimates are reasonably accurate,
then stability should not be compromised; recall that we have established, in
Sections 5.6.1 and 5.6.3, that exponential stability of the origin holds (under
mild conditions) in the case where the states are known.

5.8 Further Reading

For complete list of references cited, see References section at the end of book.

General

The following books give detailed description of receding horizon control in
the linear constrained case: Camacho and Bordons (1999), Maciejowski (2002),
Borrelli (2003), Rossiter (2003). See also the early paper Muske and Rawlings
(1993), as well as the survey paper Bemporad and Morari (1999).

Section 5.6

A method to compute a lower bound on the optimisation horizon N such that
the predicted terminal state xopt

N in the fixed horizon optimal control problem
(5.49)–(5.54) belongs to the terminal set Xf for all initial conditions in a
given compact set is presented in Bemporad, Morari, Dua and Pistikopoulos
(2002); this method, in turn, uses an algorithm proposed in Chmielewski and
Manousiouthakis (1996).

There are various embellishments of the basic idea described in Sec-
tion 5.6.3. For example, a new terminal triple has been provided for receding
horizon control of input constrained linear systems in De Doná, Seron, Good-
win and Mayne (2002). The new triple is an improvement over those previ-
ously used in that the terminal constraint set Xf , which we define below, is
strictly larger than O∞, thus facilitating the solution of the fixed horizon op-
timal control problem. The improved terminal conditions employ the results
of Section 7.3 in Chapter 7 that show that the nonlinear controller

Kf (x) = −sat(Kx) (5.64)

is optimal in a region Z̄, which includes the maximal output admissible set
O∞. The terminal constraint set Xf is then selected as the maximal positively
invariant set for the system xk+1 = Axk − Bsat(Kx). We refer the reader to
the literature to follow up this and related ideas.

Stability of RHC has been established for neutrally stable systems (that is,
systems having nonrepeated roots on the unit circle) using a nonquadratic ter-
minal weighting (see Jadbabaie, Persis and Yoon 2002, Yoon, Kim, Jadbabaie
and Persis 2003).
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Section 5.7

The stability of the CE implementation of RHC has been addressed for con-
strained linear systems in, for example, Zheng and Morari (1995), where global
asymptotic stability is shown for open loop stable systems, and in Muske,
Meadows and Rawlings (1994), where a local stability result is given for gen-
eral linear systems. Local results for nonlinear systems are reported in, for
example, Scokaert et al. (1997), and Magni, De Nicolao and Scattolini (2001).
A stability result for nonlinear systems using a moving horizon observer is
given in Michalska and Mayne (1995).

See also Findeisen, Imsland, Allgöwer and Foss (2003) for a recent survey
and new results on output feedback nonlinear RHC.
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Global Characterisation of Constrained
Linear Quadratic Optimal Control

6.1 Overview

As stated earlier, a common strategy in applications of receding horizon opti-
mal control is to compute the optimal input uk at time k by solving, on line,
the associated finite horizon optimisation problem. As explained in Chapter 4,
when the system and objective function are time-invariant, then this proce-
dure implicitly defines a time-invariant control policy KN : X → U of the form
KN (x) = uopt

0 (see (4.10) of Chapter 4).
This leads to the obvious question: “Should we repeat the calculation

of KN (x) in the event that x returns to a value that has been previously
visited?” Heuristically, one would immediately answer “No!” to this question.
However, a little more thought reveals that to make this a feasible proposition
in practice, we need to solve three problems; namely,

(i) how to efficiently calculate KN (x) for all x of interest;
(ii) how to store KN (x) as a function of x;
(iii) how to retrieve the value of KN (x) given x.

In a general setting, these problems present substantial difficulties. How-
ever, for the case of constrained linear systems, there exists a relatively simple
finitely parameterised characterisation of KN (x), which can be computed and
stored efficiently for small state dimensions and short horizons. We present
this characterisation in this chapter, leading to an explicit form for the reced-
ing horizon control policy. Even if, on the balance of computational time, one
decides to still solve the quadratic programming [QP] problem at each step,
we believe that this finitely parameterised characterisation of KN (x) gives
practically valuable insights into the nature of the constrained control policy.

We first derive the characterisation using dynamic programming (intro-
duced in Section 3.4 of Chapter 3). We consider systems with a single input
constrained to lie in an interval and optimisation horizon N = 2. We then
analyse the geometric structure of the fixed horizon optimal control problem
PN when seen as a QP of the form discussed in Section 5.3 of Chapter 5.
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Using this geometric structure, we will re-derive the result obtained via dy-
namic programming. This will give insight into the solution by clarifying the
interrelationship between dynamic programming and the inherent geometry
of the QP solution space (the space where the QP is defined).

We then show how the same ideas can be used to characterise the solution
of the fixed horizon optimal control problem PN for cases with arbitrary
horizons and more general linear constraints. As for the simpler case N = 2,
the general solution is obtained by exploiting the geometry of the associated
QP in particular coordinates of its solution space. Once projected onto the
state space, the result is a piecewise affine characterisation, that is, a partition
of the state space into regions in which the corresponding control law is affine.

Finally, we discuss the use of the KKT optimality conditions (Sec-
tions 2.5.4–2.5.5 in Chapter 2) in the derivation of the piecewise affine char-
acterisation.

6.2 Global Characterisation for Horizon 2 via Dynamic
Programming

For ease of exposition, here we will fix the optimisation horizon to N = 2.
We consider single input, linear, discrete time systems in which the mag-

nitude of the control input is constrained to be less than or equal to a positive
constant. In particular, let the system be given by

xk+1 = Axk + Buk, |uk| ≤ ∆, (6.1)

where xk ∈ Rn and ∆ > 0 is the input constraint level. Consider the following
fixed horizon optimal control problem

P2(x) : V opt
2 (x) � min V2({xk}, {uk}), (6.2)

subject to:
xk+1 = Axk + Buk for k = 0, 1,

x0 = x,

uk ∈ U � [−∆, ∆] for k = 0, 1,

where the objective function in (6.2) is

V2({xk}, {uk}) � 1
2
xt

2Px2 +
1
2

1∑
k=0

(xt
kQxk + ut

kRuk) . (6.3)

The matrices Q and R in (6.3) are positive definite and P satisfies the algebraic
Riccati equation

P = AtPA + Q − KtR̄K, (6.4)

where



6.2 Global Characterisation for Horizon 2 via Dynamic Programming 127

K � R̄−1BtPA, R̄ � R + BtPB. (6.5)

Let the control sequence that minimises (6.3) be

{uopt
0 , uopt

1 }. (6.6)

Then the RHC law is given by the first element of (6.6) (which depends on
the current state x0 = x), that is,

K2(x) = uopt
0 . (6.7)

Before proceeding with the solution to the above problem, we observe
that, at this stage, the choice of the matrix P as the solution to (6.4) is not
necessary; however, as we showed in Chapter 5, this choice is useful to establish
stability of the receding horizon implementation given by the state equation
in (6.1) in closed loop with uk = K2(xk). Also, this choice effectively gives an
infinite horizon objective function with the restriction that constraints not be
active after the first two steps. Similarly, the assumption that Q is positive
definite is not required at this stage, but it will be used later in the stability
result of Section 7.2.2 in the following chapter.

In Theorem 6.2.1 below, we will derive the solution of P2 defined in (6.2)–
(6.5) using dynamic programming. Following Section 3.4 of Chapter 3, the
partial value functions at each step of the dynamic programming algorithm,
are defined by

V opt
0 (x2) � 1

2
xt

2Px2, (6.8)

V opt
1 (x1) � min

u1∈U

x2=Ax1+Bu1

1
2
xt

2Px2 +
1
2
xt

1Qx1 +
1
2
ut

1Ru1,

and V opt
2 (x) is the value function of P2 defined in (6.2)–(6.3).

The dynamic programming algorithm makes use of the principle of op-
timality, which states that any portion of the optimal trajectory is itself an
optimal trajectory. That is, for k = 0, 1, (see (3.85) in Chapter 3)

V opt
k (x) = min

u∈U

1
2
xtQx +

1
2
utRu + V opt

k−1(Ax + Bu), (6.9)

where u and x denote, u = uk and x = xk, respectively.
In the sequel we will use the saturation function sat∆(·) defined, for the

saturation level ∆, as

sat∆(u) �

⎧⎪⎨⎪⎩
∆ if u > ∆,

u if |u| ≤ ∆,

−∆ if u < −∆.

(6.10)

The following result gives a finitely parameterised characterisation of the
RHC law (6.7).
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Theorem 6.2.1 (RHC Characterisation for N = 2) The RHC law (6.7)
has the form

K2(x) =

⎧⎪⎨⎪⎩
−sat∆(Gx + h) if x ∈ Z−,

−sat∆(Kx) if x ∈ Z,

−sat∆(Gx − h) if x ∈ Z+,

(6.11)

where K is given by (6.5), the gain G ∈ R1×n and the constant h ∈ R are
given by

G � K + KBKA

1 + (KB)2
, h � KB

1 + (KB)2
∆, (6.12)

and the sets (Z−, Z, Z+) are defined by

Z
− � {x : K(A − BK)x < −∆} , (6.13)

Z � {x : |K(A − BK)x| ≤ ∆} , (6.14)

Z
+ � {x : K(A − BK)x > ∆} . (6.15)

Proof. We start from the last partial value function (6.8), at time k = N = 2,
and solve the problem backwards in time using (6.9).

(i) The partial value function V opt
0 (k = N = 2):

Here x = x2. By definition, the partial value function at time k = N = 2
is

V opt
0 (x) � 1

2
xtPx for all x ∈ R

n.

(ii) The partial value function V opt
1 (k = N − 1 = 1):

Here x = x1 and u = u1. By the principle of optimality, for all x ∈ Rn,

V opt
1 (x) = min

u∈U

{
1
2
xtQx +

1
2
utRu + V opt

0 (Ax + Bu)
}

= min
u∈U

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

}
= min

u∈U

{
1
2
xtPx +

1
2
R̄(u + Kx)2

}
, (6.16)

where R̄ is defined in (6.5). In deriving (6.16) we have made use of (6.4).
It is clear that the unconstrained (u ∈ R) optimal control is given by
u = −Kx. From the convexity of the function R̄(u + Kx)2 it then follows
that the constrained (u ∈ U) optimal control law, which corresponds to
the second element of the sequence (6.6), is given by

uopt
1 = sat∆(−Kx) = −sat∆(Kx) for all x ∈ R

n, (6.17)

and the partial value function at time k = N − 1 = 1 is

V opt
1 (x) =

1
2
xtPx +

1
2
R̄ [Kx − sat∆(Kx)]2 for all x ∈ R

n.
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(iii) The (partial) value function V opt
2 (k = N − 2 = 0):

Here x = x0 and u = u0. By the principle of optimality, we have that, for
all x ∈ R

n,

V opt
2 (x) = min

u∈U

{
1
2
xtQx +

1
2
utRu + V opt

1 (Ax + Bu)
}

= min
u∈U

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

+
1
2
R̄ [K(Ax + Bu) − sat∆(K(Ax + Bu))]2

}
=

1
2

min
u∈U

{
xtPx + R̄(u + Kx)2

+ R̄ [KAx + KBu − sat∆(KAx + KBu)]2
}
. (6.18)

Denote the terms in (6.18) by f1(u) � (u + Kx)2, and f2(u) � [KAx +
KBu−sat∆(KAx + KBu)]2. Notice that the function f2(u) has a “cup”
shape formed by three zones: (a) Half-parabola corresponding to the case
KAx + KBu < −∆; (b) a flat zone corresponding to the case |KAx +
KBu| ≤ ∆, and; (c) half-parabola corresponding to the case KAx +
KBu > ∆. Note also that f1 + f2 is convex. With this information, we
can derive the result (6.11) as follows:

Case (a). x ∈ Z−: In this case, the minimiser of f1(u) (that is, u = −Kx)
is such that KAx + KB(−Kx) = K(A − BK)x < −∆ (see (6.13)),
that is, u = −Kx is in zone (a) of function f2(u). Then, the minimum
of f1(u)+f2(u) (situated between the minimum of f1(u), at u = −Kx,
and the minimum of f2(u)) will also fall in zone (a). We conclude that
the value function is

V opt
2 (x) =

1
2

min
u∈U

{
xtPx + R̄(u + Kx)2 + R̄ [KAx + KBu + ∆]2

}
,

whose unconstrained minimum is easily found to be at u = −(Gx+h),
with G and h as given in (6.12). From the convexity of f1(u)+f2(u) it
then follows that the constrained (u ∈ U) optimal control law, which
corresponds to the first element of the sequence (6.6), is given by

uopt
0 = −sat∆(Gx + h) for all x ∈ Z

−.

This shows the result in (6.11) for this case.

Case (b). x ∈ Z: This case corresponds to the situation where u = −Kx
is in zone (b) of f2(u) and hence, the unconstrained minimum of
f1(u) + f2(u) occurs at u = −Kx. Again, using the convexity of
f1(u)+f2(u), it follows that the constrained optimal control law, which
corresponds to the first element of the sequence (6.6), is
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uopt
0 = −sat∆(Kx) for all x ∈ Z. (6.19)

Case (c). x ∈ Z+: The result follows from a similar analysis to the
case (a).

�

We illustrate the above result by a simple example.

Example 6.2.1. Consider again the double integrator of Example 1.2.1 in
Chapter 1. For this system, we consider an input saturation level ∆ = 1.

In the fixed horizon objective function (6.3) we take Q =
[
1 0
0 0

]
, and

R = 0.1. The gain K is computed from (6.4)–(6.5). Equation (6.12) gives
G = [−0.6154 − 1.2870] and h = 0.4156.
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(a) Partition for control law (6.11).
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(b) Partition for control law (6.20).

Figure 6.1. State space partitions for Example 6.2.1.

In Figure 6.1 (a) we show the sets Z−, Z and Z+ that define the controller
(6.11). In this figure, x1

k and x2
k denote the two components of the state

vector xk.
Actually, we can be even more explicit regarding the form of the control

law. In particular, if we discriminate between the regions where each compo-
nent of the controller (6.11) is saturated from the ones where it is not, we
can parameterise the controller (6.11) in the following equivalent, but more
explicit, form:

K2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆ if x ∈ R1,

−Gx − h if x ∈ R2,

−Kx if x ∈ R3,

−Gx + h if x ∈ R4,

∆ if x ∈ R5.

(6.20)
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In Figure 6.1 (b) we show the state space partition that corresponds to the
parameterisation (6.20) for this example. ◦

Theorem 6.2.1 shows that the solution to the simple RHC problem (6.2)–
(6.7) has the form of a piecewise affine feedback control law defined on a
partition of the state space. We will see below that a similar characterisation
can be obtained for more general cases. Rather than extending the above
procedure, we will utilise alternative geometric arguments.

6.3 The Geometry of Quadratic Programming

As mentioned in Chapter 5, when the system model is linear and the objective
function quadratic, the fixed horizon optimal control problem PN can be
transformed into a QP of the form (5.28). We will start by re-examining the
optimal control problem for horizon N = 2 defined in (6.2)–(6.5). In this
case, the corresponding QP optimal solution is (see (5.29) in Chapter 5 and
(6.4)–(6.5))

QP: uopt(x) = arg min
u∈Ruc

1
2
utHu + utFx, (6.21)

where

u =
[
u0

u1

]
, H = R̄

[
1 + (KB)2 KB

KB 1

]
, F = R̄

[
K + KBKA

KA

]
,

(6.22)
and Ruc is the square [−∆, ∆] × [−∆, ∆] ⊂ R2. Note that the Hessian H is
positive definite since R̄ = R + BtPB is positive because we have assumed
that R > 0 in (6.3).

The QP in (6.21) has a nice geometric interpretation in the u-space. Con-
sider the equation

1
2
utHu + utFx = c, (6.23)

where c is a constant. This defines ellipsoids in R2 centred at uopt
uc (x) =

−H−1Fx. Then (6.21) can be regarded as the problem of finding the smallest
ellipsoid that intersects the boundary of Ruc, and uopt(x) is the point of
intersection. This is illustrated in Figure 6.2.

The problem can be significantly simplified if we make a coordinate trans-
formation via the square root of the Hessian, that is,

ũ = H1/2u. (6.24)

In the new coordinates defined by (6.24), the constraint set Ruc is mapped
into another set, denoted also by Ruc for simplicity of notation. The ellip-
soids (6.23) take the form of spheres centred at ũopt

uc (x) = −H−1/2Fx. Thus
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Ruc

u0

u1

∆

∆

uopt(x)

uopt
uc (x)

Figure 6.2. Geometric interpretation of QP.

(6.21) is transformed into the problem of finding the point in Ruc that is clos-
est to ũopt

uc (x) in the Euclidean distance. This is qualitatively illustrated in
Figure 6.3.

This transformed geometric picture allows us to immediately write down
the solution to the fixed horizon optimal control problem for this special case.
In particular, the solution of the QP is obtained by partitioning R

2 into nine
regions; the first region is the parallelogram Ruc. The remaining regions, de-
noted by R1 to R8, are delimited by lines that are normal to the faces of
the parallelogram and pass through its vertices, as shown in Figure 6.3. The
optimal constrained solution ũopt(x) is determined by the region in which
the optimal unconstrained solution ũopt

uc (x) lies, in the following way: First,
it is clear that ũopt(x) = ũopt

uc (x) if ũopt
uc (x) ∈ Ruc; that is, the optimal con-

strained solution coincides with the optimal unconstrained solution in Ruc.
Next, the optimal constrained solution in each of the regions R1, R3, R5 and
R7 is simply equal to the vertex that is contained in the region. Finally, the
optimal constrained solution in the regions R2, R4, R6 and R8 is defined by
the orthogonal projection of ũopt

uc (x) onto the faces of the parallelogram. This
can be seen from Figure 6.3, where a case in which the solution falls in R8 is
illustrated.

Whilst we have concentrated on the simple case N = 2, it is easy to see
that this methodology can be applied also to more complex cases. Indeed, in
Section 6.5 we will apply these geometric arguments to arbitrary horizons and
multiple input systems.
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ũ0

ũ1

ũopt(x)

ũopt
uc (x)

Figure 6.3. Geometry of QP as a minimum Euclidean distance problem.

We thus see that the geometry of the QP problem gives insight into its
solution. We will expand on these ideas in the following sections.

6.4 Geometric Characterisation for Horizon 2

In this section, we will use the geometric ideas outlined in Section 6.3 to
recover the finitely parameterised characterisation derived via dynamic pro-
gramming in Theorem 6.2.1.

To solve (6.21), we use the transformation (6.24), which maps the square
Ruc into the parallelogram Ruc shown in Figure 6.3. We next note that the
unconstrained solution in the ũ–coordinates is given by

ũopt
uc (x) = −H−1/2Fx. (6.25)

We then derive the constrained solution in the ũ–coordinates using geometric
arguments, and finally use the transformation

ũ = −H−1/2Fx (6.26)

to retrieve the solution in the state space.
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Following Section 6.3, we partition R2 into nine regions; the first region is
the parallelogram Ruc, and the remaining regions, denoted by R1 to R8, are
delimited by lines that are normal to the faces of Ruc and pass through its
vertices, as shown in Figure 6.3.

In Ruc we have

ũopt(x) = ũopt
uc (x) = −H−1/2Fx for all u ∈ Ruc.

That is, in Ruc the optimal constrained solution coincides with the optimal
unconstrained solution.

To describe the solution in regions R1 to R8 in more detail, we introduce
the following notation, which will be used in the remainder of the chapter.

Notation 6.4.1 Given any matrix (column vector) M , and a set of indices 
̄
(with, at most, as many elements as the number of rows of M), the notation
M�̄ identifies the submatrix (subvector) of M formed by selecting the rows with
indices given by the elements of 
̄ and all of its columns. ◦
For example, given H defined in (6.22), and the set 
̄ = {2}, H�̄ = H2 denotes
its second row.

Ruc

R8

n1

n4

f4

ũ0

ũ1

ṽ1

ṽ4

ũopt(x)

ũopt
uc (x)

Figure 6.4. Solution of QP in region R8.

Consider now, for example, region R8 in Figure 6.4. It is delimited by
face f4 and its normals n1 and n4 passing through the vertices ṽ1 and ṽ4,
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respectively. The line that contains face f4 (the line is also denoted by f4,
for simplicity) corresponds to the second control u1 equal to the saturation
level ∆, that is u1 = [0 1]u = ∆ in the original u-coordinates. In the new
ũ-coordinates (6.24), it is then defined by the equation

f4 : [0 1]H−1/2ũ = ∆. (6.27)

Lines normal to f4 are defined by the equation

[1 0]H1/2ũ = c, c ∈ R. (6.28)

Hence, the equation defining n1 is obtained by setting

ũ = ṽ1 = H1/2∆[1 1]t

in (6.28). This yields

n1 : [1 0]H1/2ũ = H1∆[1 1]t. (6.29)

In a similar way, the equation defining n4 is given by

n4 : [1 0]H1/2ũ = H1∆[−1 1]t. (6.30)

Combining (6.27), (6.29) and (6.30), region R8 is defined in the ũ-coordinates
by

R8 :

{
[0 1]H−1/2ũ ≥ ∆
H1∆[−1 1]t ≤ [1 0]H1/2ũ ≤ H1∆[1 1]t,

(6.31)

and, using the transformation (6.26), it is defined in the state space coordi-
nates x ∈ Rn by

R8 :

{
−K(A − BK)x ≥ ∆
H1∆[−1 1]t ≤ −F1x ≤ H1∆[1 1]t.

(6.32)

The optimal constrained solution in R8 is given by the normal projection
of the unconstrained solution ũopt

uc (x) onto face f4; that is, the solution is
obtained by intersecting face f4 with the normal to it passing through ũopt

uc (x).
From (6.27) and (6.28), ũopt(x) satisfies the equations

[0 1]H−1/2ũopt(x) = ∆,

[1 0]H1/2ũopt(x) = [1 0]H1/2ũopt
uc (x).

Using (6.24) and ũopt
uc (x) from (6.25) in the above equations yields

H1

[
uopt

0 (x)
∆

]
= −F1x.

Further substitution of H1 = R̄[1 + (KB)2 KB] and F1 = R̄(K + KBKA)
from (6.22) gives
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uopt
0 (x) = − (K + KBKA)x + KB∆

1 + (KB)2
,

and using the definitions (6.12), we obtain

uopt
0 (x) = −Gx − h. (6.33)

If we proceed in a similar way with the remaining regions, we obtain a
characterisation of the RHC problem (6.2)–(6.7) in the form

K2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Kx if x ∈ Ruc,

∆ if x ∈ R1 ∪ R2 ∪ R3,

−Gx + h if x ∈ R4,

−∆ if x ∈ R5 ∪ R6 ∪ R7,

−Gx − h if x ∈ R8,

(6.34)

where

Ruc :

{
|Kx| ≤ ∆
|K(A − BK)x| ≤ ∆

R1 :

{
−F1x ≥ H1∆[1 1]t

−F2x ≥ H2∆[1 1]t

R2 :

{
−Kx ≥ ∆
H2∆[1 − 1]t ≤ −F2x ≤ H2∆[1 1]t

R3 :

{
−F2x ≤ H2∆[1 − 1]t

−F1x ≥ H1∆[1 − 1]t

R4 :

{
−K(A − BK)x ≤ −∆
H1∆[−1 − 1]t ≤ −F1x ≤ H1∆[1 − 1]t

R5 :

{
−F1x ≤ H1∆[−1 − 1]t

−F2x ≤ H2∆[−1 − 1]t

R6 :

{
−Kx ≤ −∆
H2∆[−1 − 1]t ≤ −F2x ≤ H2∆[−1 1]t

R7 :

{
−F2x ≥ H2∆[−1 1]t

−F1x ≤ H1∆[−1 1]t

(6.35)

and R8 is given in (6.32).

Example 6.4.1. Consider again the system and data of Example 6.2.1. In
Figure 6.5 we show the state space partition that corresponds to the con-
troller (6.34)–(6.35) for this example. As can be seen, the RHC law derived
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using geometric arguments coincides with the one obtained in Example 6.2.1
by dynamic programming. (Compare with Figure 6.1 (b).) In the following
section, we will further discuss this relationship. ◦
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Figure 6.5. State space partitions for Example 6.4.1.

6.4.1 Relationship with the Characterisation Obtained via
Dynamic Programming

We will show here that the characterisation (6.11), obtained using dynamic
programming, and the characterisation (6.34), obtained using geometric ar-
guments, are equivalent. Indeed, faces f2 and f4 of the parallelogram Ruc (see
Figure 6.6) correspond to the second control u1 being equal to the saturation
limits −∆ and ∆, respectively. Hence, using the transformation u = −H−1Fx,
the definitions of H and F from (6.22), and equating the second component
of u to −∆ and ∆, we find that these faces are given in the state space by

f2 : − K(A − BK)x = −∆,

f4 : − K(A − BK)x = ∆.

Comparing the above equations with (6.14), we conclude that region Z cor-
responds, in the ũ-coordinates, to the shaded region in Figure 6.6. Similarly,
the half-planes above and below the shaded region in Figure 6.6 correspond
to Z

− and Z
+, defined in (6.13) and (6.15), respectively. Moreover, since faces

f1 and f3 of the parallelogram Ruc (which correspond to the first control u0

equal to the saturation limits ∆ and −∆, respectively) are given in the state
space by
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f1 : − Kx = ∆,

f3 : − Kx = −∆,

it is not difficult to see, using (6.34), (6.35), that K2(x) in Z is given by
−sat∆(Kx), as stated in (6.11).
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Figure 6.6. Regions that characterise the RHC solution in the case N = 2.

On the other hand, substituting (6.26) in (6.29), (6.30), we find that the
normals n1 and n4 are given in the state space by

n1 : − F1x = H1

[
∆ ∆

]t
,

n4 : − F1x = H1

[−∆ ∆
]t

,

and, using H1 = R̄[1+(KB)2 KB], F1 = R̄(K+KBKA), and the definitions
(6.12), we have

n1 : − Gx − h = ∆
n4 : − Gx − h = −∆.

Thus, comparing with (6.33), we can see that n1 and n4 define the switching
lines where K2(x) = −Gx − h saturates to K2(x) = ∆ and K2(x) = −∆,
respectively. Then, using (6.34), (6.35), it is immediately seen that K2(x) in
Z− is given by −sat∆(Gx + h), as stated in (6.11). A similar analysis can be
performed for region Z+.
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We have thus far obtained a partition of R2 that gives a complete geometric
picture of the solution to the RHC problem for the case of single input, N = 2.
One may anticipate that this kind of argument can be extended to larger
horizons. This is, indeed, the case, as we will show in Section 6.5, where we
will generalise this procedure to higher dimensional spaces.

6.5 Geometric Characterisation for Arbitrary Horizon

In this section we explore the RHC structure for more general problems. We
again focus on linear, time-invariant, discrete time models with a quadratic
objective function, but we consider arbitrary horizons and more general linear
constraints. For these systems, and under a particular constraint qualification,
we derive a finitely parameterised characterisation of the RHC solution. In
particular, let the system be given by

xk+1 = Axk + Buk, (6.36)

where xk ∈ Rn and uk ∈ Rm. Consider the following fixed horizon optimal
control problem:

PN (x) : V opt
N (x) � min VN ({xk}, {uk}), (6.37)

subject to:
xk+1 = Axk + Buk for k = 0, . . . , N − 1,

x0 = x,

uk ∈ Uk for k = 0, . . . , N − 1, (6.38)
xk ∈ Xk for k = 0, . . . , N, (6.39)

where Uk and Xk are polyhedral constraint sets, whose description we leave
unspecified at this stage. The objective function in (6.37) is

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk) , (6.40)

with Q > 0, R > 0 and P ≥ 0.
The associated QP and optimiser are (see (5.29) in Chapter 5)

uopt(x) = arg min
Lu≤W

1
2
utHu + utFx, (6.41)

where u ∈ R
Nm, and where H = ΓtQΓ + R, F = ΓtQΩ, with Γ, Ω, Q, R,

defined as in (5.14) and (5.16) of Chapter 5 (with M = N and C = I).
The constraint set

Lu ≤ W (6.42)
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in (6.41) is a polyhedron in RNm obtained from the sets Uk and Xk in (6.38)
and (6.39), respectively. We will assume that the matrix L and the vector W
have the form

L =
[

Φ
−Φ

]
, W =

[
∆̄
∆

]
+

[−Λ
Λ

]
x. (6.43)

In (6.43), Φ is a q×Nm matrix, ∆̄ and ∆ are q×1 vectors such that ∆̄+∆ > 0
(componentwise), and Λ is a q × n matrix. Note that (6.42)–(6.43) can also
be written as the interval-type constraint −∆ ≤ Φu + Λx ≤ ∆̄. As was
shown in Section 5.3.2 of Chapter 5, the structure of L and W in (6.43)
easily accommodates typical constraint requirements, such as, for example,
magnitude or rate constraints on the inputs or outputs.

As in Section 6.4, we will study the solution to the above RHC problem
using a special coordinate basis for the QP solution space RNm. To this end,
we use the transformation (6.24) to take the original QP coordinates into the
new ũ-coordinates. The convex constraint polyhedron in the u-coordinates
defined by (6.42)–(6.43), is mapped into a convex constraint polyhedron in
the ũ-coordinates, given by

Φ̃ũ ≤ ∆̄ − Λx, (6.44)

−Φ̃ũ ≤ ∆ + Λx, (6.45)

where
Φ̃ � ΦH−1/2.

Notice that the dimension of the constraint polyhedron is the constraint hori-
zon q = rank Φ. A face of the constraint polyhedron is defined by the in-
tersection, with the constraint polyhedron, of the hyperplane defined by a
subset of equalities (or active constraints) within (6.44)–(6.45). To each face
of the constraint polyhedron, we will associate an active pair (
, ∆), whose
elements are defined below. We will use the notation 6.4.1, and introduce the
set J �

{
1, 2, . . . , q

}
of the first q natural numbers. We then define, for each

face with N̄ ∈ J active constraints:

• The active set 
 �
{

1, 
2, . . . , 
N̄ : 
k ∈ J

}
, which identifies the indices

of the constraints that are active; that is, the indices of the rows within
(6.44)–(6.45) that hold as equalities for the face. Note that the gradient of
the active constraints is Φ̃�.

• The active value vector ∆ ∈ RN̄ , which identifies whether the active con-
straint whose index is 
k corresponds to either row 
k of (6.44) or row 
k

of (6.45). More precisely, the kth element of ∆ is given by{
∆k = ∆̄�k

if Φ̃�k
ũ = ∆̄�k

− Λ�k
x,

∆k = −∆�k
if Φ̃�k

ũ = −∆�k
− Λ�k

x.
(6.46)

• The inactive set s � J−
 =
{
s1, s2, . . . , sq−N̄ : sk ∈ J and sk /∈ 


}
, which

identifies the indices of the constraints that are not active in each face. Note
that the gradient of the inactive constraints is Φ̃s.
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In addition, we will impose the constraint qualification that the gradient
of active constraints Φ̃� has full row rank.

Each active pair (
, ∆) fully characterises an active face of the constraint
polyhedron, which is given by the intersection with the constraint polyhedron
of the hyperplane defined by the equality constraint

Φ̃�ũ = ∆ − Λ�x. (6.47)

For example, in Figure 6.7, (6.47) may represent the plane that contains face
f1, in which case one constraint is active, or the line that contains e1, in which
case two constraints are active.

Ruc

R1

f1
f2

f3 e1

(a) Active region associated with a face.

�
�
�
�

�
�
�
�

��
��
��
��

Ruc

R2

f1
f2

f3 e1

v1

v2

(b) Active region associated with an
edge.

Figure 6.7. Illustration of active regions associated with a face and an edge of the
constraint polyhedron.

To each active face, we will then associate an active region of RNm de-
fined as the set of all points v ∈ RNm for which the point of the constraint
polyhedron that is closest to v, in Euclidean distance, belongs to the corre-
sponding active face. For example, region R1 in Figure 6.7 (a) is an active
region associated with face f1 and region R2 in Figure 6.7 (b) is an active
region associated with edge e1. In these regions, the optimal solution ũopt(x)
is simply given by the point on the corresponding active face of the constraint
polyhedron that is closest, in the Euclidean distance, to the unconstrained
solution ũopt

uc (x) = −H−1/2Fx (see, for example, Figure 6.4).
The following lemma characterises, for an arbitrary active pair (
, ∆), the

corresponding active region in RNm.

Lemma 6.5.1 (Active Regions) Suppose that the gradient of active con-
straints Φ̃� has full row rank. Then the active region corresponding to the face
characterised by the equality constraint (6.47) is given by



142 6. Global Characterisation of Constrained LQ Optimal Control

S
{
[Φ̃�Φ̃t

� ]
−1[Φ̃�ũ + Λ�x − ∆]

}
≤ 0, (6.48)

−∆s ≤ Φ̃sũ + Λsx − Φ̃sΦ̃t
� [Φ̃�Φ̃t

� ]
−1[Φ̃�ũ + Λ�x − ∆] ≤ ∆̄s, (6.49)

where ∆ is defined in (6.46) and S is a sign diagonal matrix such that its
(k, k)-entry is Skk = 1 if ∆k = −∆�k

and Skk = −1 if ∆k = ∆̄�k
.

Proof. Geometrically, the active region corresponding to the face characterised
by the active constraints (6.47) is delimited by1:

• Each hyperplane that contains the corresponding active face (6.47) and is
normal to one of the faces that share with the active face all but one of
its active constraints. (For example, in Figure 6.7 (b), these hyperplanes
are the two planes delimiting R2 that are normal to faces f1 and f3 and
contain edge e1.)

We will show that these hyperplanes are given by the equality in each row
of (6.48). First, it is easy to see that these equalities contain (6.47) simply
by substitution of (6.47) in (6.48). Next, note that each face that shares
with (6.47) all the active constraints except constraint 
k is characterised
by the equality constraint

Φ̃�−�k
ũ = ∆′ − Λ�−�k

x, (6.50)

where ∆′ is formed from ∆ by eliminating its kth element. We now rewrite
the equality in (6.48) as

Ψũ = [Φ̃�Φ̃t
� ]

−1[−Λ�x + ∆] (6.51)

where Ψ � [Φ̃�Φ̃t
� ]

−1Φ̃�. Since ΨΦ̃t
� = I, it follows that ΨkΦ̃�−�k

=
01×(N̄−1). Hence, the hyperplane defined by the kth row of (6.51) is nor-
mal to the face (6.50), as claimed. Note that this holds for k = 1, . . . , N̄ ,
which covers all rows of (6.48).

• Each hyperplane that is normal to the corresponding active face (6.47)
and contains one of the faces that share with the active face all its ac-
tive constraints and has one more active constraint. (For example, in Fig-
ure 6.7 (b), these hyperplanes are the two parallel planes delimiting R2

that are normal to e1 and contain vertices v1 and v2.)

We will show that these hyperplanes are given by the equalities in each
row of (6.49). The matrix multiplying ũ in (6.49), Φ̃s[I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�],
satisfies

Φ̃s[I − Φ̃t
� [Φ̃�Φ̃t

� ]
−1Φ̃�]Φ̃t

� = Φ̃s[Φ̃t
� − Φ̃t

� I] = 0, (6.52)

and hence each equality in (6.49) is normal to the active face (6.47). Next,
note that each face that shares with the active face (6.47) all its active

1 See, for example, region R2 in Figure 6.7 (b), corresponding to the edge e1.
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constraints and has one more active constraint, sk, say, satisfies both (6.47)
and an additional constraint of the form

Φ̃sk
ũ = ∆̄sk

− Λsk
x, (6.53)

or of the same form with −∆sk
replacing ∆̄sk

. Then, substituting (6.47)
and (6.53) in (6.49) it is easy to see that the kth row satisfies the right
equality constraint. Thus, the hyperplane defined by the kth row of the
right equality in (6.49) contains the face that is characterised by the equal-
ity constraints (6.47) and (6.53). A similar analysis can be done for the
left equality constraint. Note that this holds for k = 1, . . . , q − N̄ , which
covers all rows of (6.49). The result then follows.

�

For each active region characterised in Lemma 6.5.1 we can then compute
the optimal solution ũopt(x) of the QP (6.41) as the point on the correspond-
ing active face of the constraint polyhedron that is closest, in the Euclidean
distance, to the unconstrained solution ũopt

uc (x) = −H−1/2Fx. Also, to each
active region characterised in Lemma 6.5.1 the transformation (6.26) assigns
a corresponding region in the state space. The following theorem summarises
this procedure by characterising for an arbitrary active pair (
, ∆) the cor-
responding active region in the state space and the corresponding optimal
solution of the QP (6.41) with constraints given by (6.42)–(6.43).

Theorem 6.5.2 (QP Solution in an Active Region) Under the condi-
tions of Lemma 6.5.1, the projection X� onto the state space of the active
region defined by (6.48)–(6.49) is given by

S
{
[Φ̃�Φ̃t

� ]
−1[(−Φ̃�H

−1/2F + Λ�)x − ∆]
}
≤ 0,

−Φ̃sH
−1/2Fx + Λsx − Φ̃sΦ̃t

� [Φ̃�Φ̃t
� ]

−1[−Φ̃�H
−1/2Fx + Λ�x − ∆] ≤ ∆̄s,

Φ̃sH
−1/2Fx − Λsx + Φ̃sΦ̃t

� [Φ̃�Φ̃t
� ]

−1[−Φ̃�H
−1/2Fx + Λ�x − ∆] ≤ ∆s.

(6.54)

Moreover, if x ∈ X�, the optimal constrained control uopt(x) in (6.41) is given
by

uopt(x) = H−1/2Φ̃t
� [Φ̃�Φ̃t

� ]
−1(∆−Λ�x)−H−1/2[I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]H−1/2Fx.
(6.55)

Proof. Equations (6.54) follow immediately upon substitution of (6.26) into
(6.48) and (6.49). We now show that the optimal control inside each region
(6.54) has the form (6.55). Indeed, the optimal constrained control in each
of the active regions is obtained by intersecting the active face (6.47) with
the hyperplane normal to it and passing through the unconstrained solution
ũopt

uc (x). That is, ũopt(x) satisfies both (6.47) and the following equation (see
(6.52)):
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[I − Φ̃t
� [Φ̃�Φ̃t

� ]
−1Φ̃�]ũopt(x) = [I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]ũopt
uc (x).

Substituting (6.47) and ũopt
uc (x) = −H−1/2Fx from (6.25) into the above

equation, and solving for ũopt(x), yields

ũopt(x) = Φ̃t
� [Φ̃�Φ̃t

� ]
−1(∆ − Λ�x) − [I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]H−1/2Fx. (6.56)

Equation (6.55) follows using the transformation (6.24). The theorem is then
proved. �

Theorem 6.5.2 gives the solution of the QP (6.41) if x belongs to the region
X� defined by (6.54). The RHC law KN (x) = uopt

0 (x) is then simply obtained
by selecting the first m elements of uopt(x) in (6.55), that is,

KN (x) = uopt
0 (x) =

[
I 0 · · · 0

]
uopt(x). (6.57)

To obtain the complete solution in the state space, one would require a
procedure to enumerate all possible combinations of active constraints and
compute the corresponding region and optimal control for each combina-
tion using Theorem 6.5.2. An algorithm that implements such a procedure
is described in Seron, Goodwin and De Doná (2003). We observe that, if the
state space dimension n is n < Nm, then the image of the transformation
uopt

uc (x) = −H−1Fx is a lower dimensional subspace of RNm, and so some of
the regions X� in (6.54) will be empty. Hence, the partition has to be post-
processed to eliminate redundant inequalities and empty regions. If n ≥ Nm,
then the computation of the region partition using Theorem 6.5.2 combined
with the enumeration of all possible combinations of active constraints directly
gives the complete state space partition with no need for further processing.

We illustrate the procedure with a numerical example.

Example 6.5.1. Consider a system of the form (6.36) with matrices

A =
[
0.8955 −0.1897
0.0948 0.9903

]
, B =

[
0.0948
0.0048

]
.

In the objective function (6.40) we take N = 4, Q =
[
0 0
0 2

]
and R = 0.01. The

terminal state weighting matrix P is chosen as the solution of the algebraic
Riccati equation P = AtPA + Q − KtR̄K, where K � R̄−1BtPA and R̄ �
R + BtPB. We consider constraints of the form (6.42), with m = 1, N = 4,
Φ = I, Λ = 0Nm×n, and ∆ =

[
2 2 2 2

]t.
The state space partition for this case, computed using Theorem 6.5.2 and

the enumeration algorithm of Seron et al. (2003), is shown in Figure 6.8 (a).
A “zoom” of this partition is shown in Figure 6.8 (b) to display the smaller
regions in more detail. The region denoted by X0 is the projection onto the
state space of the constraint polyhedron; in regions X2, X3 and X4 only one
constraint is active; in regions X5 and X6 two constraints are active; in region
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Figure 6.8. State space partition for Example 6.5.1 for N = 4.
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Figure 6.9. State space partition for Example 6.5.1 for N = 2, 3, 4, 5.

X7 three constraints are active; finally, X1 is the union of all regions where
the control is saturated to the value −2.

The resulting RHC law (6.57) is

K4(x) = Gix + hi, ifx ∈ Xi, i = 0, . . . , 7, (6.58)
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where

G0 = −[4.4650 13.5974], h0 = 0,

G1 = [ 0 0 ], h1 = −2,

G2 = −[5.6901 15.9529], h2 = −0.7894,

G3 = −[4.9226 13.8202], h3 = −0.4811,

G4 = −[4.5946 13.3346], h4 = −0.2684,

G5 = −[6.6778 16.8644], h5 = −1.7057,

G6 = −[5.1778 13.4855], h6 = −0.9355,

G7 = −[7.4034 16.8111], h7 = −2.6783.

Similar expressions hold in the remaining unlabelled regions. These can be
obtained by symmetry.

To see how the partitions are affected by the constraint horizon, we take,
successively, N = 2, N = 3, N = 4 and N = 5 in the objective function
(6.40). The state space partitions corresponding to each value of N are shown
in Figure 6.9.

We next consider an initial condition x0 = [−1.2 0.53]t and simulate the
system under the RHC (6.58). Figure 6.10 shows the resulting state space
trajectory. The trajectory starts in region X4 and moves, successively, into
regions X6, X5, X1, X1, X0, and stays in X0 thereafter. Table 6.1 shows the
trajectory points xk for k = 0, . . . , 6, the regions Xi such that xk ∈ Xi, and
the corresponding RHC controls computed using (6.58). ◦

k xk Region Xi RHC control uk

0 [−1.2000 0.5300]t X4 −[4.5946 13.3346]xk − 0.2684

1 [−1.3480 0.4023]t X6 −[5.1778 13.4855]xk − 0.9355

2 [−1.2247 0.2735]t X5 −[6.6778 16.8644]xk − 1.7057

3 [−0.9722 0.1637]t X1 [0 0]xk − 2.0000

4 [−0.7120 0.0796]t X1 [0 0]xk − 2.0000

5 [−0.4630 0.0209]t X0 −[4.4650 13.5974]xk

6 −[0.2495 0.0146]t X0 −[4.4650 13.5974]xk

...
...

...
...

Table 6.1. Example 6.5.1: Trajectory xk, k = 0, . . . , 6, regions Xi such that xk ∈ Xi,
and corresponding RHC controls (6.58).
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Figure 6.10. State space trajectory for Example 6.5.1 with N = 4, x0 =
[−1.2 0.53]t .

6.6 Characterisation Using the KKT Conditions

The parameterisation given in Theorem 6.5.2 can be related to the KKT
optimality conditions studied in Chapter 2. Consider again the QP (6.41)
with constraints given by (6.42)–(6.43). For convenience, we will work in the
ũ-coordinates given by the transformation (6.24), that is, we consider the
following QP with inequality constraints:

minimise
1
2
ũtũ + ũtH−1/2Fx,

subject to:

Φ̃ũ ≤ ∆̄ − Λx,

−Φ̃ũ ≤ ∆ + Λx.

(6.59)

When solved for different values of x, the above problem is sometimes referred
to as a multiparametric quadratic program [mp-QP], that is, a QP in which the
linear term in the objective function and the right hand side of the constraints
depend linearly on a vector of parameters (the state vector x in this case).

Let ũopt(x) be the optimal solution of (6.59). As discussed in Section 2.5.6
of Chapter 2, the KKT optimality conditions are both necessary and sufficient
conditions for this problem. Using (2.41) of Chapter 2, we can write the KKT
conditions for the above problem as
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−∆ ≤ Φ̃ũopt(x) + Λx ≤ ∆̄, (6.60)

ũopt(x) + H−1/2Fx + Φ̃t(µ − σ) = 0, (6.61)
µ ≥ 0, σ ≥ 0, (6.62)

µt[Φ̃ũopt(x) − ∆̄ + Λx] = 0, (6.63)

σt[Φ̃ũopt(x) + ∆ + Λx] = 0, (6.64)

where µ ∈ Rq and σ ∈ Rq are vectors of Lagrange multipliers corresponding
to the two sets of inequality constraints in (6.59).

Consider now an active pair (
, ∆) for ũopt(x), where ∆ satisfies (6.46),
and let s be the corresponding inactive set. We then have that ũopt(x) satisfies
the equality constraints (6.47), that is,

Φ̃�ũopt(x) = ∆ − Λ�x. (6.65)

From the above equation, the complementary slackness conditions (6.63) and
(6.64), the (second) dual feasibility condition (6.62), and equation (6.46), we
have that

µs = 0, σs = 0, (6.66)

µ�k
− σ�k

{
≥ 0 if ∆k = ∆̄�k

,

≤ 0 if ∆k = −∆�k
.

(6.67)

Using (6.66) in the (first) dual feasibility condition (6.61) and solving for
ũopt(x) yields

ũopt(x) = −H−1/2Fx − Φ̃t
� [µ� − σ�]. (6.68)

Using (6.68) in the active constraint equality (6.65) and solving for [µ� − σ�]
gives

[µ� − σ�] = [Φ̃�Φ̃t
� ]

−1[−Φ̃�H
−1/2Fx + Λ�x − ∆]. (6.69)

Substituting the above equation into (6.68) we obtain

ũopt(x) = Φ̃t
� [Φ̃�Φ̃t

� ]
−1(∆ − Λ�x) − [I − Φ̃t

� [Φ̃�Φ̃t
� ]

−1Φ̃�]H−1/2Fx, (6.70)

which is identical to (6.56). We then recover the expression (6.55) for the
optimal solution using the transformation (6.24).

The inequalities (6.54) that define the region in the state space where
the optimal solution (6.55) is valid can be recovered in the following way:
Combining the expression for the difference of Lagrange multipliers (6.69) and
the sign condition (6.67) yields the first set of inequalities in (6.54) (recall that
S is a sign diagonal matrix such that Skk = 1 if ∆k = −∆�k

and Skk = −1 if
∆k = ∆̄�k

). Finally, the second and third sets of inequalities in (6.54) follow
from primal feasibility (see (6.60)) of the inactive constraints, that is,

−∆s ≤ Φ̃sũopt(x) + Λsx ≤ ∆̄s,

upon substitution of the expression (6.70) for the optimal solution.
In summary, we can see that the characterisation of Theorem 6.5.2 is a

particular arrangement of the KKT optimality conditions.
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6.7 Further Reading

For complete list of references cited, see References section at the end of book.

General

The global characterisation presented here is based on the work of Bemporad
et al. (2002) and Seron et al. (2003).

Section 6.5

A related development to the one presented in Section 6.5 is described in
Seron et al. (2003).

Section 6.6

The approach described in Section 6.6 using KKT conditions was used in
Bemporad et al. (2002) to obtain a local characterisation of the QP solution
in an active region of the state space around a specific solution ũopt(x). In
that work, once a nonempty active region has been defined, the rest of the
state space is explored in the search for new active regions.

In the above context, an algorithm to explore and partition the rest of
the state space in polyhedral regions was originally proposed in Dua and
Pistikopoulos (2000). This algorithm recursively reverses the inequalities that
define each active region to obtain a new region partition. In each new region
of the resulting partition a feasible point x is found (possibly by solving a
linear program). Then, a QP of the form (6.59) is solved for that value of x to
determine the active constraints that characterise the active region using the
KKT conditions as described above. One drawback of this algorithm is that
it can split active regions since the regions to be explored are not necessarily
related to the active regions.

A more efficient algorithm to accomplish the state space partitioning was
proposed by Tøndel, Johansen and Bemporad (2002). The main contribution
of this algorithm is that the active constraints in the region of interest can be
determined from the active constraints in a neighbouring region by examining
the separating hyperplane between these regions. Thus, QPs do not need to be
solved to determine the active set of constraints in each region and, moreover,
unnecessary partitioning is avoided.



7

Regional Characterisation of Constrained

Linear Quadratic Optimal Control

7.1 Overview

In Chapter 6 we provided a global characterisation of receding horizon con-
strained optimal control. This gives practically valuable insights into the form
of the control law. Indeed, for many problems it is feasible to compute, store
and retrieve the function u = KN (x), thus eliminating the need to solve the
associated QP on line.

In other cases, this approach may be too complex. Thus, in Chapter 8
we will explore various numerical algorithms aimed at solving the QP on
line. The current chapter addresses a question with similar motivation but a
different end result. Here we ask the following question: Given that we only
ever apply the first move from the optimal control sequence of length N , is
it possible that the first element of the control law might not change as the
horizon increases beyond some modest size at least locally in the state space?
We will show, via dynamic programming arguments, that this is indeed the
case, at least for special classes of problems. To illustrate the ideas we will
consider single input systems with an amplitude input constraint. This class
of problems is simple and is intended to motivate the idea of local solutions.
In particular, we will consider the simple control law

uk = −sat∆(Kxk), (7.1)

where sat∆( · ) is the saturation function defined in (6.10) of Chapter 6, and K
is the feedback gain resulting from the infinite horizon unconstrained optimal
control problem. We will show that there exists a nontrivial region of the
state space (which we denote by Z̄) such that (7.1) is the constrained optimal
control law with arbitrary large horizon. This is a very interesting result which
has important practical implications. For example, (7.1) can be thought of as
a simple type of anti-windup control law (see Section 7.4) when used in a
certainty equivalence form with an appropriate observer for the system state
and disturbances. Thus, the result establishes a link between anti-windup
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and RHC. Also, the result explains the (local) success of this control law in
Example 1.2.1 of Chapter 1.

We will see that the characterisation of the region Z̄ is relatively compli-
cated for large horizons. Hence, we will first, in Section 7.2, present the result
for horizon N = 2. We will then establish the result for general horizons.

7.2 Regional Characterisation for Horizon 2

We consider again single input, linear, discrete time systems in which the
magnitude of the control input is constrained to be less than or equal to a
positive constant. In particular, let the system be given by

xk+1 = Axk + Buk, (7.2)

where xk ∈ Rn and uk ∈ R. As in Section 6.2 of Chapter 6, we consider the
following fixed horizon optimal control problem with horizon 2:

P2(x) : V opt
2 (x) � min V2({xk}, {uk}), (7.3)

subject to:
xk+1 = Axk + Buk for k = 0, 1,

x0 = x,

uk ∈ U � [−∆, ∆] for k = 0, 1,

where ∆ > 0 is the input constraint level, and the objective function in (7.3)
is

V2({xk}, {uk}) � 1
2
xt

2Px2 +
1
2

1∑
k=0

(xt
kQxk + ut

kRuk) . (7.4)

The matrices Q and R in (7.4) are positive definite and P satisfies the algebraic
Riccati equation

P = AtPA + Q − KtR̄K, (7.5)

where
K � R̄−1BtPA, R̄ � R + BtPB. (7.6)

Let the control sequence that achieves the minimum in (7.3) be

{uopt
0 , uopt

1 }. (7.7)

Then the RHC law is given by the first element of (7.7) (which depends on
the current state x = x0); that is,

K2(x) = uopt
0 . (7.8)

For the above special case, we have the following regional characterisation
of the fixed horizon optimal control (7.7).
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Lemma 7.2.1 (Regional Characterisation of the Fixed Horizon Con-
trol (7.7)) Consider the fixed horizon optimal control problem P2 defined in
(7.3)–(7.6). Then for all x ∈ Z, where

Z � {x : |K(A − BK)x| ≤ ∆} , (7.9)

the optimal control sequence (7.7) that attains the minimum is

uopt
k = −sat∆(Kxk), k = 0, 1. (7.10)

Proof. The result follows from the proof of Theorem 6.2.1 of Chapter 6, in
particular, from equations (6.17) and (6.19). �

The above result is quite remarkable in that it shows that the simple
policy (7.10) provides a solution to the constrained linear quadratic fixed
horizon optimal control problem (7.3)–(7.6) in a region of the state space.
Using induction and similar dynamic programming arguments to the proof
of Theorem 6.2.1, it is possible to show that a characterisation of the form
(7.10) holds for horizon N of arbitrary length. We will establish this result in
Section 7.3. As we will see, in the case of arbitrary horizon the characterisation
is valid in a region Z of the state space having a more complex description
than the one used in Lemma 7.2.1.

In the sequel, we will explore various aspects of the solution provided by
Lemma 7.2.1, including a refinement of the set in which the result holds.

7.2.1 Regional Characterisation of RHC

We have seen above that the simple control law (7.10) solves the fixed horizon
constrained linear quadratic problem in a special region of the state space.
However, before we can use this control law as the solution to the associated
RHC problem (see (7.8)), we need to extend the results to the receding horizon
formulation of the problem. In particular, in order to guarantee that the RHC
mapping (7.8) is regionally given by (7.10), it is essential to know if future
states remain in the region in which the result holds or whether they are
driven outside this region. Clearly, in the former case, we can implement the
RHC algorithm as in (7.10) without further consideration. We thus proceed to
examine the conditions under which the state remains in the region Z where
(7.10) applies. We first define the mapping φnl : Rn → Rn as

φnl(x) � Ax − Bsat∆(Kx), (7.11)

so that when the controller (7.10) is employed, the closed loop system satisfies
xk+1 = φnl(xk). In the sequel we denote by φk

nl the concatenation of φnl with
itself k times; for example, φ0

nl(x) � x, φ1
nl(x) = φnl(x), φ2

nl(x) = φnl(φnl(x)),
and so on.

We also require the following definition.
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Definition 7.2.1 Define the set Z̄ as

Z̄ �
{
x : φk

nl(x) ∈ Z, k = 0, 1, 2, . . .
}

. (7.12)

◦
From its definition it is clear that Z̄ is the maximal positively invari-

ant set contained in Z for the closed loop system xk+1 = φnl(xk) =
Axk − Bsat∆(Kxk) (see Definition 4.4.2 in Chapter 4).

We have from Lemma 7.2.1 that, if the initial state x0 = x ∈ Z, then
K2(x0) = −sat∆(Kx0). But, in general, since Z is not necessarily positively
invariant under φnl(·), after this control is applied there is no guarantee that
the successor state x1 = φnl(x0) will stay in Z. Hence, in general, K2(x1) �=
−sat∆(Kx1). So, in order that the solution (7.10) can be applied to the RHC
problem we must ensure that all successor states belong to Z. We can then
state:

Theorem 7.2.2 For all x ∈ Z̄ defined in (7.12), the RHC law K2 in (7.8) is
given by

K2(x) = −sat∆(Kx). (7.13)

Proof. The proof of the theorem follows from the fact that Z̄ ⊆ Z and that
Z̄ is positively invariant for the system (7.2) under the control K2(x) =
−sat∆(Kx). Then, for all states in Z̄ the future trajectories of the system
will be such that x ∈ Z̄ ⊆ Z, and from Lemma 7.2.1 we conclude that
K2(x) = uopt

0 = −sat∆(Kx). �

Notice that, if the set Z̄, in which the theorem is valid, were small enough
such that the control sequence {uk} = {−sat∆(Kxk)} stayed unsaturated
along the system trajectories, then the result of Theorem 7.2.2 would be triv-
ial, since it would readily follow from the result for the unconstrained case
(see, for example, Anderson and Moore 1989). We will show next that Z̄ is
not smaller than this trivial case.

Consider the maximal output admissible set O∞ (introduced in (5.63) of
Chapter 5), which in this case is defined as

O∞ �
{
x : |K(A − BK)ix| ≤ ∆ for i = 0, 1, . . .

}
. (7.14)

The following proposition shows that the set Z̄ contains O∞.

Proposition 7.2.3 O∞ ⊆ Z̄.

Proof. Z̄ is the maximal positively invariant set in Z for the closed loop system
xk+1 = φnl(xk). The set O∞ is also a positively invariant set for xk+1 =
φnl(xk) (since φnl(x) = (A−BK)x in O∞). It suffices, therefore, to establish
that O∞ ⊆ Z. This is indeed true since, from (7.14), we can write
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O∞ = {x : |Kx| ≤ ∆} ∩ {x : |K(A − BK)x| ≤ ∆}∩{
x : |K(A − BK)2x| ≤ ∆

} ∩ . . .

= {x : |Kx| ≤ ∆} ∩ Z ∩ {
x : |K(A − BK)2x| ≤ ∆

} ∩ . . .

Hence O∞ ⊆ Z and the result then follows. �

We have proved that the set Z̄ contains the maximal positively invariant set
in which the control constraints are avoided. Although a complete characteri-
sation of the set Z̄ is not currently known, examples (see Example 7.3.2 at the
end of the chapter) show that, in general, the set Z̄ is considerably larger than
the set O∞. In other words, that the motions of the system xk+1 = φnl(xk)
involve control sequences {uk} = {−sat∆(Kxk)} which remain saturated for
several steps and, in accordance with Theorem 7.2.2, coincide with the solu-
tion provided by the RHC strategy (see the simulation of Example 7.3.2).

7.2.2 An Ellipsoidal Approximation to the Set Z̄

The set Z̄ is, in general, very difficult to characterise explicitly since it in-
volves nonlinear inequalities. Notice however that, for any positively invariant
set contained in Z̄, the result of Theorem 7.2.2 is also valid. In principle, a
positively invariant inner approximation of the set Z̄ could be obtained by
considering a family of positively invariant sets, which can be represented
with reasonable complexity, and finding the biggest member within this fam-
ily which is contained in Z. The set Z is a polyhedral set, which suggests that
polyhedral sets could be good candidates for this approximation, having also
the advantage of flexibility. However, these sets could be arbitrarily complex
(see, for example, Blanchini 1999).

In this section we will consider an alternative mechanism for obtaining
positively invariant sets under the control u = −sat∆(Kx), based on the
use of ellipsoidal sets. We will show how to construct an ellipsoidal invariant
set E ⊆ Z̄ based on a quadratic Lyapunov function constructed from the
solution P of (7.5)–(7.6). In view of the discussion following Theorem 7.2.2,
we will be interested in positively invariant ellipsoidal sets which extend to
regions wherein the controls are saturated (that is, such that |Kx| > ∆ for
some x in the set). This result is related to the fact that a linear system, with
optimal LQR controller, remains closed loop stable when sector-bounded input
nonlinearities are introduced (see, for example, Anderson and Moore 1989).
This, in turn, translates into bigger positively invariant ellipsoidal sets, under
the control u = −sat∆(Kx), than the case |Kx| ≤ ∆ for all x.

In the sequel we will need the following result.

Lemma 7.2.4 Let K be a nonzero row vector, P a symmetric positive definite
matrix and ρ a positive constant. Then,

min{Kx : xT Px ≤ ρ} = −
√

ρKP−1KT , (7.15)
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and
max{Kx : xT Px ≤ ρ} = +

√
ρKP−1KT . (7.16)

Proof. We first prove (7.15). The KKT conditions (2.32) in Chapter 2 are, in
this case (convex objective function and convex constraint), sufficient for op-
timality. Now, let x̄ be a (the) KKT point and denote by µ ≥ 0 its associated
Lagrange multiplier. From the dual feasibility condition KT +µP x̄ = 0 we can
see that µ > 0 (since KT �= 0) and x̄ = −P−1KT /µ. Moreover, from the com-
plementary slackness condition µ(x̄T P x̄−ρ) = 0 we have that the constraint is
active at x̄, that is x̄T P x̄ = ρ, from where we obtain that µ =

√
KP−1KT /ρ.

Thus, the minimum value is Kx̄ = −KP−1KT /µ = −
√

ρKP−1KT , which
proves (7.15). Finally, (7.16) follows from the fact that max{Kx : xT Px ≤
ρ} = −min{−Kx : xT Px ≤ ρ}. �

We define the ellipsoidal set

E � {x : xtPx ≤ ρ}.
From Lemma 7.2.4 we can see that, if the ellipsoidal radius ρ is computed
from ρ = (1 + β̄)2∆2/(KP−1Kt), β̄ ≥ 0, then the ellipsoid has the property:
|Kx| ≤ (1 + β̄)∆ for all x ∈ E .

Notice that whenever β̄ is bigger than zero the ellipsoid extends to regions
where saturation levels are reached. For this reason, β̄ is called the over-
saturation index. We compute the maximum over-saturation index β̄max from:

β̄max �

⎧⎪⎪⎨⎪⎪⎩
√

KKt
[
R(KKtR̄ − qε) + R̄qε

]
+ qε

KKtR̄ − qε
if

qε

KKtR̄
< 1,

M+ otherwise,

(7.17)

where qε = (1 − ε)λmin(Q), ε ∈ [0, 1) is an arbitrarily small nonnegative
number (introduced to ensure exponential stability; see the result in (7.23)
below), λmin(Q) is the minimum eigenvalue of the matrix Q (strictly positive,
since Q is assumed positive definite), and M+ is an arbitrarily large positive
number.

Then, the maximum radius ρ̄max is computed from

ρ̄max =
(1 + β̄max)2∆2

KP−1Kt
. (7.18)

Theorem 7.2.5 The ellipsoid E = {x : xtPx ≤ ρ}, with radius ρ < ρ̄max,
has the following properties:

(i) E is a positively invariant set for system (7.2) under the control u =
−sat∆(Kx).

(ii) The origin is exponentially stable in E for system (7.2) with control u =
−sat∆(Kx) (and, in particular, E is contained in the region of attraction
of (7.2) for all admissible controls u ∈ U = [−∆, ∆]).
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Proof. Consider the quadratic Lyapunov function: V (x) = xtPx. Let x = xk

and x+ = xk+1. Then, by using the system equation (7.2) with control u =
−sat∆(Kx), and the Riccati equation (7.5), we can express the increment of
V (·) along the system trajectory as

∆V (x) � V (x+) − V (x) = [Ax − Bsat∆(Kx)]tP [Ax − Bsat∆(Kx)] − xtPx

= −εxtQx − (1 − ε)xtQx

+ R̄

[
|Kx|2 − 2|Kx|sat∆(|Kx|) +

BtPB

R̄
sat∆(|Kx|)2

]
.

(7.19)

Next, define the sequence
{
β̄i

}∞
i=1

as

β̄1 = 0, . . . , β̄i+1 =

√
R

R̄
+

qε(1 + β̄i)2

KKtR̄
, . . . , (7.20)

where qε = (1 − ε)λmin(Q) and ε ∈ [0, 1) is an arbitrarily small nonnegative
number. It can be shown that the sequence

{
β̄i

}∞
i=1

grows monotonically,
and converges to β̄max defined by (7.17) in the case when qε/KKtR̄ < 1,
or diverges to +∞ if qε/KKtR̄ ≥ 1, in which case, for any arbitrarily large
positive number M+, there exists i+ such that β̄i > M+ for all i > i+.

Consider now the following cases:

Case (a). |Kx| ≤ (1 + β̄1)∆: Suppose first that x ∈ E , x �= 0, is such that

|Kx| ≤ ∆ = (1 + β̄1)∆,

then ∆V (x) in (7.19) is equal to

∆V (x) = −εxtQx − xt ((1 − ε)Q + KtRK)x < −εxtQx,

(from the positive definiteness of Q and R).

Case (b). (1 + β̄1)∆ < |Kx| ≤ (1 + β̄2)∆: Suppose next that x ∈ E , x �= 0,
is such that

∆ = (1 + β̄1)∆ < |Kx| ≤ (1 + β̄2)∆,

then sat∆(|Kx|) = ∆, and, by the Cauchy-Schwarz inequality we obtain:

|Kx|2 > (1 + β̄1)2 ∆2 ⇒ −xtx < −(1 + β̄1)2
∆2

KKt
. (7.21)

Therefore, an upper bound for ∆V (·) in (7.19) is

∆V (x) < −εxtQx + R̄

[
|Kx|2 − 2|Kx|∆ +

(
BtPB

R̄
− qε(1 + β̄1)2

KKtR̄

)
∆2

]
.

(7.22)
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It is easy to see that the quadratic term in (7.22) is nonpositive if ∆ <
|Kx| ≤ (1 + β̄2)∆, in which case

∆V (x) < −εxtQx.

Case (c). (1 + β̄i)∆ < |Kx| ≤ (1 + β̄i+1)∆, i = 2, 3, . . .: Repeating the above
argument for x ∈ E , x �= 0, such that

∆ < (1 + β̄i)∆ < |Kx| ≤ (1 + β̄i+1)∆,

for i = 2, 3, . . ., and, since β̄i → β̄max (or diverges to +∞, in which case
β̄i eventually becomes bigger than β̄max = M+), we can see that

∆V (x) < −εxtQx

if |Kx| < (1 + β̄max)∆, which (from the construction of E = {x : xtPx ≤
ρ} with ρ < ρ̄max) is true for all x ∈ E .

It follows that,
∆V (x) < −εxtQx for all x ∈ E , (7.23)

and hence:

(i) The trajectories that start in the ellipsoid E � {x : xtPx ≤ ρ} will never
leave it since ∆V (x), along the trajectories, is negative definite on the
ellipsoid. Therefore the ellipsoid E is a positively invariant set under the
control u = −sat∆(Kx).

(ii) From Theorem 4.3.3 in Chapter 4, the origin is exponentially stable in E
for system (7.2) with control u = −sat∆(Kx), with a region of attraction
that includes the ellipsoid E . Notice that if we choose ε = 0 we only
guarantee asymptotic stability.

�
We have thus found an ellipsoidal set E that is positively invariant for the

system (7.2) with control u = −sat∆(Kx). Moreover, this control exponen-
tially stabilises (7.2) with a region of attraction that contains E . However, to
guarantee that u = −sat∆(Kx) is also the receding horizon optimal control
law in E , we need to further restrict the radius of the ellipsoid so that the
trajectories inside E also remain within the set Z̄ defined in (7.12).

Recall that Z̄ is the maximal positively invariant set for the closed loop
system xk+1 = φnl(xk) contained in the set Z given by

Z � {x : |K(A − BK)x| ≤ ∆} . (7.24)

We then compute the ellipsoidal radius equal to

ρ̄ � min
{

(1 + β̄)2∆2

KP−1Kt
,

∆2

(K(A − BK))P−1(K(A − BK))t

}
, (7.25)

where β̄ < β̄max, and β̄max is computed from (7.17) (in practice, one can
choose β̄ arbitrarily close to β̄max). Then we have the following corollary of
Theorems 7.2.2 and 7.2.5.
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Corollary 7.2.6 Consider the ellipsoidal set E = {x : xtPx ≤ ρ̄} where ρ̄ is
computed from (7.25). Then:

(i) The set E is a positively invariant set for system (7.2) under the control
u = −sat∆(Kx).

(ii) The set E is a subset of Z̄.
(iii) The RHC law (7.8) is

K2(x) = −sat∆(Kx) for all x ∈ E . (7.26)

(iv) System (7.2), with the RHC sequence (7.26), is exponentially stable in E.

Proof.

(i) Notice from (7.18), (7.25), and the fact that β̄ < β̄max, that ρ̄ < ρ̄max.
Then it follows from Theorem 7.2.5 (i) that E = {x : xtPx ≤ ρ̄} is
positively invariant.

(ii) From Lemma 7.2.4 and the definitions (7.24) and (7.25) it follows that
x ∈ E ⇒ x ∈ Z, and, since E is positively invariant, this implies that
φk

nl(x) ∈ Z, k = 0, 1, 2, . . .. Clearly then, from the definition of Z̄, x ∈ Z̄.
(iii) This result follows immediately from (ii) above and Theorem 7.2.2.
(iv) This follows from ρ̄ < ρ̄ max and Theorem 7.2.5 (ii).

�

7.3 Regional Characterisation for Arbitrary Horizon

Here we extend the result presented in Section 7.2 to arbitrary horizons. We
will build on the special case presented above. This development is somewhat
involved and the reader might prefer to postpone reading the remainder of this
chapter until a second reading of the book. For clarity of exposition, we present
first in Section 7.3.1 some notation and preliminary results. In particular
various sets in Rn are defined. These sets are used in the characterisation
of the state space regions in which the solution of the form (7.1) holds.

7.3.1 Preliminaries

We consider the discrete time system

xk+1 = Axk + Buk, (7.27)

where xk ∈ Rn and uk ∈ R. The pair (A, B) is assumed to be stabilisable. We
consider the following fixed horizon optimal control problem:
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PN (x) : V opt
N (x) � min VN ({xk}, {uk}), (7.28)

subject to:
xk+1 = Axk + Buk for k = 0, 1, . . . , N − 1,

x0 = x,

uk ∈ U � [−∆, ∆] for k = 0, 1, . . . , N − 1,

where ∆ > 0 is the input saturation level, and the objective function in (7.28)
is

VN ({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk) . (7.29)

We assume that Q and R are positive definite, and P satisfies the algebraic
Riccati equation (7.5)–(7.6).

Let the control sequence that achieves the minimum in (7.28) be
{uopt

0 , . . . , uopt
N−1}. The associated RHC law, which depends on the current

state x = x0, is
KN (x) = uopt

0 . (7.30)

For each i = 0, 1, 2, . . . , N −1, the partial value function, is defined by (see
similar definitions in (6.8) of Chapter 6)

V opt
N−i(x) � min

uk∈U

VN−i({xk}, {uk}), (7.31)

where VN−i is the partial objective function

VN−i({xk}, {uk}) � 1
2
xt

NPxN +
1
2

N−1∑
k=i

(xt
kQxk + ut

kRuk) ,

with xk, k = i, . . . , N satisfying (7.27) starting from xi = x. We refer to V opt
N−i

as the partial value function (or, just the value function) “at time i,” meaning
that the (partial) value function “starts at time i.” The partial value function
at time N is defined as

V opt
0 (x) � 1

2
xtPx.

We also define the functions δi : Rn → R as

δi(x) � Kx − sat∆i(Kx), i = 1, 2, . . . , N, (7.32)

where the saturation bounds ∆i are defined as

∆i �
(

1 +
i−2∑
k=0

|KAkB|
)

∆, i = 1, 2, . . . , N. (7.33)

In summations, it is to be understood that
∑k2

k=k1
( · ) = 0 whenever k2 < k1,

so that, in (7.33) we have
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∆1 = ∆, ∆2 = ∆1 + |KB|∆, . . . , ∆i+1 = ∆i + |KAi−1B|∆, . . . .

We define, for future use, the sets Xi ⊆ Rn:

Xi �
{
x : δi

(
Ai−1(A − BK)x

)
= 0

}
, i = 1, 2, . . . , N − 1. (7.34)

Denote
K̄i � KAi−1(A − BK), i = 1, 2, . . . , N − 1.

Then, the sets Xi are given by the set of linear inequalities:

Xi =
{
x : K̄ix ≤ ∆i, −K̄ix ≤ ∆i

}
, i = 1, 2, . . . , N − 1. (7.35)

Recall the definition of the nonlinear mapping φnl in (7.11), which we
repeat here for convenience:

φnl(x) � Ax − Bsat∆(Kx). (7.36)

Also, φ0
nl(x) = x and φk

nl, k ≥ 1, denotes the concatenation of φnl with itself
k times.

We define, for future use, the sets Yi, Zi ⊆ Rn:

Y0 � Y1 � R
n,

Yi =
⋂i−1

j=1Xj , i = 2, 3, . . . , N, (7.37)

Z0 � Z1 � R
n,

Zi �
{
x : φk

nl(x) ∈ Yi−k, k = 0, 1, . . . , i − 2
}

, i = 2, 3, . . . , N, (7.38)

so that

Z2 = Y2,

Z3 = {x : x ∈ Y3, φnl(x) ∈ Y2},
Z4 = {x : x ∈ Y4, φnl(x) ∈ Y3, φ2

nl(x) ∈ Y2},

and so on.
We have the following properties of these sets:

Proposition 7.3.1

(i) Yi+1 = Yi ∩ Xi, i = 1, 2, . . . , N − 1.
(ii) The set sequence {Zi : i = 0, 1, . . . , N} is monotonically nonincreasing

(with respect to inclusion), that is, Zi+1 ⊆ Zi, i = 0, 1, . . . , N − 1.
(iii) Zi+1 = Yi+1 ∩ {x : φnl(x) ∈ Zi}, i = 0, 1, . . . , N − 1.

Proof.

(i) This follows trivially from (7.37).



162 7. Regional Characterisation of Constrained LQ Optimal Control

(ii) Certainly Zi+1 ⊆ Zi for i = 0 and 1. For i ≥ 2:

Zi+1 =
{
x : φk

nl(x) ∈ ⋂i−k
j=1Xj , k = 0, 1, . . . , i − 1

}
=

{
x : φk

nl(x) ∈ ⋂i−k
j=1Xj , k = 0, 1, . . . , i−2

}
∩ {

x : φi−1
nl (x) ∈ X1

}
=

{
x : φk

nl(x) ∈ ⋂i−k−1
j=1 Xj , k = 0, 1, . . . , i − 2

}
∩ {

x : φk
nl(x) ∈ Xi−k, k = 0, 1, . . . , i − 2

} ∩ {
x : φi−1

nl (x) ∈ X1

}
= Zi ∩

{
x : φk

nl(x) ∈ Xi−k, k = 0, 1, . . . , i − 1
}

.

(iii) This is trivial for i = 0. For i ≥ 1:

Zi+1 =
{
x : φk

nl(x) ∈ ⋂i−k
j=1Xj, k = 0, 1, . . . , i − 1

}
=

{
x : φk+1

nl (x) ∈ ⋂i−k−1
j=1 Xj , k = −1, 0, . . . , i− 2

}
=

{
x : x ∈ ⋂i

j=1Xj

}
∩
{

x : φk
nl(φnl(x)) ∈ ⋂i−k−1

j=1 Xj, k = 0, 1, . . . , i − 2
}

= Yi+1 ∩ {x : φnl(x) ∈ Zi} .
�

Finally, we require the following key result.

Lemma 7.3.2 For any i ∈ {1, 2, . . . , N − 1} define the functions φnl(·) and
δi(·), δi+1(·) as in (7.36) and (7.32), respectively, and the set Xi as in (7.34).
Define, for i ∈ {1, 2, . . . , N − 1} the functions µ1, µ2 : Rn → [0, +∞) as

µ1(x) � δi

(
Ai−1φnl(x)

)2
,

µ2(x) � δi+1

(
Aix

)2
.

Then, µ1(x) = µ2(x) for all x ∈ Xi.

Proof. The functions µ1, µ2 : Rn → [0, +∞) can be written as

µ1(x) � δi

(
Ai−1φnl(x)

)2

=
[
KAix − KAi−1B sat∆(Kx)

−sat∆i

(
KAix − KAi−1B sat∆(Kx)

) ]2

,

µ2(x) � δi+1

(
Aix

)2
=

[
KAix − sat∆i+1

(
KAix

)]2
,

for i ∈ {1, 2, . . . , N − 1}. Notice, from (7.35), that:

x ∈ Xi ⇔
∣∣KAix − KAi−1BKx

∣∣ ≤ ∆i =

(
1 +

i−2∑
k=0

|KAkB|
)

∆. (7.39)
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We will prove that µ1(x) = µ2(x) for all x ∈ Xi by considering two separate
cases, case (a) where x ∈ Xi and |Kx| ≤ ∆, and case (b) where x ∈ Xi and
|Kx| > ∆.

Case (a). x ∈ Xi and |Kx| ≤ ∆:
Suppose

|Kx| ≤ ∆. (7.40)

It follows from (7.39) and (7.40) that

µ1(x) =
[
KAix − KAi−1B sat∆(Kx)

− sat∆i

(
KAix − KAi−1B sat∆(Kx)

) ]2
=

[
KAix − KAi−1BKx − sat∆i

(
KAix − KAi−1BKx

)]2
= 0.

(7.41)

Also, notice from (7.39) and (7.40) that

∆i ≥ |KAix − KAi−1BKx| ≥ |KAix| − |KAi−1B||Kx|
≥ |KAix| − |KAi−1B|∆ (7.42)

⇒
|KAix| ≤ ∆i + |KAi−1B|∆ = ∆i+1, (7.43)

then it follows that

µ2(x) =
[
KAix − sat∆i+1

(
KAix

)]2
= 0, (7.44)

and we conclude that, for case (a):

µ1(x) = µ2(x) = 0.

Case (b). x ∈ Xi and |Kx| > ∆:
Suppose:

|Kx| > ∆. (7.45)

We will consider two cases for case (b): case (b1) where x ∈ Xi satisfies
(7.45) and |KAix| ≤ ∆i+1 and case (b2) where x ∈ Xi satisfies (7.45) and
|KAix| > ∆i+1.

Case (b1). x ∈ Xi, |Kx| > ∆ and |KAix| ≤ ∆i+1:
Suppose

|KAix| ≤ ∆i+1 = ∆i + |KAi−1B|∆. (7.46)

Now, suppose also that KAi−1BKx ≤ 0. Then from (7.39) we have

−KAi−1Bsat∆(Kx) ≤ −KAi−1BKx ≤ −KAix + ∆i, (7.47)

and from (7.45) and (7.46):
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−KAi−1Bsat∆(Kx) = |KAi−1B|∆
≥ |KAix| − ∆i ≥ −KAix − ∆i.

(7.48)

Suppose next KAi−1BKx > 0, then it follows from (7.45) and (7.46)
that

−KAi−1Bsat∆(Kx) = −|KAi−1B|∆
≤ −|KAix| + ∆i ≤ −KAix + ∆i,

(7.47′)

and from (7.39)

−KAi−1Bsat∆(Kx) ≥ −KAi−1BKx ≥ −KAix − ∆i. (7.48′)

We conclude from (7.47) and (7.48) (or, (7.47)′ and (7.48)′) that

|KAix − KAi−1Bsat∆(Kx)| ≤ ∆i, (7.49)

and, hence:

µ1(x) = [KAix − KAi−1Bsat∆(Kx)

− sat∆i

(
KAix − KAi−1Bsat∆(Kx)

)
]2 = 0.

(7.50)

Also, it follows immediately from (7.46) that

µ2(x) =
[
KAix − sat∆i+1

(
KAix

)]2
= 0, (7.51)

and we conclude that, for case (b1),

µ1(x) = µ2(x) = 0.

Case (b2). x ∈ Xi, |Kx| > ∆ and |KAix| > ∆i+1:
Suppose

|KAix| > ∆i+1 = ∆i + |KAi−1B|∆. (7.52)

We will next show that case (b2) is not compatible with

sign(KAix) = −sign(KAi−1BKx). (7.53)

To see this, notice that (7.39), (7.45) and (7.53) imply

∆i ≥ |KAix − KAi−1BKx| = |KAix| + |KAi−1BKx|
> |KAix| + |KAi−1B|∆

⇒
|KAix| < ∆i − |KAi−1B|∆ ≤ ∆i + |KAi−1B|∆,
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which, clearly, contradicts (7.52). We conclude, then, that for
case (b2),

sign(KAix) = sign(KAi−1BKx). (7.54)

We then have from (7.45) and (7.54), that

µ1(x) =
[
KAix − KAi−1Bsat∆(Kx)

− sat∆i

(
KAix − KAi−1Bsat∆(Kx)

)]2
,

= [sign(KAix)(|KAix| − |KAi−1B|∆
− sat∆i

(|KAix| − |KAi−1B|∆)
)]2,

=
[|KAix| − |KAi−1B|∆ − sat∆i

(|KAix| − |KAi−1B|∆)]2
.

(7.55)

Notice, finally, that (7.52) implies

|KAix| − |KAi−1B|∆ > ∆i, (7.56)

which, in turn, implies in (7.55) that

µ1(x) =
[|KAix| − |KAi−1B|∆ − ∆i

]2
=

[|KAix| − ∆i+1

]2
. (7.57)

It also follows from (7.52) that

µ2(x) =
[
KAix − sat∆i+1

(
KAix

)]2
(7.58)

=
[
sign(KAix)|KAix| − sign(KAix)∆i+1

]2
(7.59)

=
[|KAix| − ∆i+1

]2
, (7.60)

and we conclude that, for case (b2),

µ1(x) = µ2(x) =
[|KAix| − ∆i+1

]2
.

We can see that for all the cases considered (which cover all the possibilities
for x ∈ Xi) the equality µ1(x) = µ2(x) is satisfied. �

7.3.2 Main Result

The following theorem gives a characterisation of the partial value function
(7.31). The proof extends to the case of arbitrary horizon the dynamic pro-
gramming arguments used in Theorem 6.2.1 of Chapter 6 for horizon N = 2.

Theorem 7.3.3 For all i ∈ {0, 1, . . . , N}, provided x ∈ ZN−i (see (7.38)),
the partial value function (7.31) is given by

V opt
N−i(x) =

1
2
xtPx +

1
2
R̄

N−i∑
k=1

δk(Ak−1x)2, (7.61)

where δk is the function defined in (7.32).
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Proof. We prove the theorem by induction. We start from the last value func-
tion at i = N , and solve the problem backwards in time by using the principle
of optimality:

V opt
N−i(x) = min

u∈�

{1
2
xtQx +

1
2
utRu + V opt

N−(i+1)(Ax + Bu)
}
,

where u and x denote, u = ui and x = xi, respectively.

(i) The value function V opt
0 (i = N):

By definition, the optimal value function at time N is

V opt
0 (x) � 1

2
xtPx for all x ∈ Z0 ≡ R

n.

(ii) The value function V opt
1 (i = N − 1):

By the principle of optimality, for all x ∈ Rn,

V opt
1 (x) = min

u∈�

{
1
2
xtQx +

1
2
utRu + V opt

0 (Ax + Bu)
}

= min
u∈�

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

}
= min

u∈�

{
1
2
xtPx +

1
2
R̄(u + Kx)2

}
. (7.62)

In deriving the last line we have made use of the algebraic Riccati equation
(7.5)–(7.6). It is clear that the unconstrained optimal control is given by
u = −Kx. From the convexity of the function R̄(u + Kx)2 it then follows
that the constrained optimal control law is given by

uopt
N−1 = sat∆(−Kx) = −sat∆(Kx) for all x ∈ Z1 ≡ R

n, (7.63)

and the optimal value function at time N − 1 is

V opt
1 (x) =

1
2
xtPx +

1
2
R̄δ1(x)2 for all x ∈ Z1 ≡ R

n.

(iii) The value function V opt
2 (i = N − 2):

By the principle of optimality, for all x ∈ Rn,

V opt
2 (x) = min

u∈�

{
1
2
xtQx +

1
2
utRu + V opt

1 (Ax + Bu)
}

= min
u∈�

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

+
1
2
R̄δ1(Ax + Bu)2

}
= min

u∈�

{
1
2
xtPx +

1
2
R̄(u + Kx)2 +

1
2
R̄δ1(Ax + Bu)2

}
.
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Since δ1(Ax − BKx) = 0 for x ∈ X1 (see (7.34)) the unconstrained min-
imum of the right hand side of the above equation occurs at u = −Kx
if x ∈ X1. Because the right hand side is convex in u, the constrained
minimum occurs at

uopt
N−2 = sat∆(−Kx) = −sat∆(Kx) for all x ∈ Z2 ≡ X1,

and the optimal partial value function at time N − 2 is

V opt
2 (x) =

1
2
xtPx +

1
2
R̄δ1(x)2 +

1
2
R̄δ1(φnl(x))2 for all x ∈ Z2 ≡ X1.

Now we can use the result of Lemma 7.3.2 to express V opt
2 (x) as

V opt
2 (x) =

1
2
xtPx +

1
2
R̄δ1(x)2 +

1
2
R̄δ2(Ax)2

=
1
2
xtPx +

1
2
R̄

2∑
k=1

δk(Ak−1x)2 for all x ∈ Z2 ≡ X1.

(iv) The value functions V opt
N−i and V opt

N−(i−1) (i ∈ {1, 2, . . . , N − 1}):

We have established above the theorem for N − i, i = N , N − 1 and
N − 2. We will now introduce the induction hypothesis. Assume that the
value function V opt

N−i, for some i ∈ {1, 2, . . . , N−1}, is given by the general
expression (7.61). Based on this assumption, we will now derive the partial
value function at time i − 1.
By the principle of optimality,

V opt
N−(i−1) = min

u∈�

{
1
2
xtQx +

1
2
utRu + V opt

N−i(Ax + Bu)
}

= min
u∈�

{
1
2
xtQx +

1
2
utRu +

1
2
(Ax + Bu)tP (Ax + Bu)

+
1
2
R̄

N−i∑
k=1

δk(Ak−1(Ax + Bu))2
}

= min
u∈�

{
1
2
xtPx +

1
2
R̄(u + Kx)2

+
1
2
R̄

N−i∑
k=1

δk(Ak−1(Ax + Bu))2
}

, (7.64)

for all x such that
Ax + Buopt

i−1 ∈ ZN−i, (7.65)

(since the expression used above for V opt
N−i(·) is only valid in ZN−i).

Since δk(Ak−1(Ax − BKx)) = 0 for k = 1, 2, . . . , N − i if x ∈ YN−(i−1) =
X1 ∩X2 ∩· · · ∩XN−i (see (7.34)) the unconstrained minimum of the right
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hand side of (7.64) occurs at u = −Kx if x ∈ YN−(i−1). Because the right
hand side of (7.64) is convex in u, the constrained minimum occurs at:

uopt
i−1 = sat∆(−Kx) = −sat∆(Kx),

for all x ∈ YN−(i−1) =
⋂N−i

j=1 Xj and, such that Ax − Bsat∆(Kx) =
φnl(x) ∈ ZN−i (see (7.65), that is, for all x ∈ ZN−(i−1) (Proposi-
tion 7.3.1 (iii)).

Therefore the optimal partial value function at time i − 1 is

V opt
N−(i−1)(x) =

1
2
xtPx +

1
2
R̄δ1(x)2

+
1
2
R̄

N−i∑
k=1

δk(Ak−1φnl(x))2 for all x ∈ ZN−(i−1),

and, using the result of Lemma 7.3.2, we can express V opt
N−(i−1)( · ) as

V opt
N−(i−1)(x) =

1
2
xtPx +

1
2
R̄δ1(x)2 +

1
2
R̄

N−i∑
k=1

δk+1(Akx)2

=
1
2
xtPx +

1
2
R̄

N−(i−1)∑
k=1

δk(Ak−1x)2 for all x ∈ ZN−(i−1).

This expression for V opt
N−(i−1)(·) is of the same form as that of (7.61) for

V opt
N−i(·). The result then follows by induction.

�

The optimal solution of the fixed horizon control problem PN easily follows
as a corollary of the above result. For a horizon N ≥ 1, consider the set

Z � ZN = R
n, if N = 1,

Z � ZN =
{
x : φk

nl(x) ∈ YN−k, k = 0, 1, . . . , N − 2
}

, if N ≥ 2. (7.66)

Note that, for N = 2, (7.66) coincides with (7.9) since φ0
nl(x) = x and, hence,

Z = Z2 = Y2 = X1 = {x : |K(A − BK)x| ≤ ∆} (see (7.37) and (7.35)) in this
case.

We then have:

Corollary 7.3.4 Consider the fixed horizon optimal control problem PN de-
fined in (7.28)–(7.29), where x denotes the initial state x = x0 of system
(7.27). Then for all x ∈ Z the minimum value is

V opt
N (x) =

1
2
xtPx +

1
2
R̄

N∑
k=1

δk(Ak−1x)2, (7.67)
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and, for all x ∈ Z the minimising sequence {uopt
0 , . . . , uopt

N−1} is

uopt
k = sat∆(−Kxk) = −sat∆(Kxk), (7.68)

for k = 0, 1, . . . , N − 1, where xk = φk
nl(x).

Proof. Equation (7.67) follows from (7.61) for i = 0. From Proposi-
tion 7.3.1 (iii) it follows that x = x0 ∈ Z = ZN ⇒ xk = φk

nl(x) ∈ ZN−k, k =
0, 1, . . .N − 1. Then (7.68) follows from the proof by induction of Theo-
rem 7.3.3. �

The above result extends Lemma 7.2.1 to arbitrary horizons. We next
present a simple example for which the solution (7.68) holds globally.

Example 7.3.1 (Scalar System with Cheap Control). Consider a scalar
system xk+1 = axk + buk, x0 = x, with b �= 0 and weights Q = 1, R = 0,
in the objective function (7.29). Such a design, with no weight on the control
input, is a limiting case of the controller considered known as cheap control.

For this case, the unconstrained optimal control is u = −Kx, where K
computed from (7.6) is K = a/b. Now, notice that, with K = a/b, the gain
A − BK is zero and, hence, the sets in (7.34)–(7.38) are: Xi ≡ Rn, Yi ≡ Rn,
Zi ≡ Rn, for all i. It then follows from Corollary 7.3.4 that the optimal control
sequence for all x ∈ R in this case is

uopt
k = sat∆

(−axk

b

)
= −sat∆

(axk

b

)
, (7.69)

for k = 0, 1, . . . , N − 1, where xk = φk
nl(x). Note that here the result (7.69)

holds globally in the state space. ◦

7.3.3 Regional Characterisation of RHC

As in Section 7.2.1, we turn here to the regional characterisation of the RHC
law. That is, we will extend the regional characterisation given in Corol-
lary 7.3.4 for the fixed horizon optimal control problem to its receding horizon
formulation. To this end, we define the set

Z̄ �
{
x : φk

nl(x) ∈ YN , k = 0, 1, 2, . . .
}

, N ≥ 2. (7.70)

Notice that, from the definitions, Z̄ ⊂ Z ⊂ YN . The set Z̄ is the maximal
positively invariant set contained in Z and YN for the closed loop system
xk+1 = φnl(xk) = Axk − Bsat∆(Kxk). It is easy to see that (7.70) coincides
with the set (7.12) introduced in Definition 7.2.1 for horizon N = 2 (since
Z = Z2 = Y2 in this case, see the discussion after (7.66)).

We then have the following result.

Theorem 7.3.5 For all x ∈ Z̄ the RHC law KN in (7.30) is given by

KN (x) = sat∆(−Kx) = −sat∆(Kx). (7.71)
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Proof. The proof of the theorem follows from the fact that Z̄ ⊆ Z and that Z̄

is positively invariant under the control KN (x) = −sat∆(Kx). Then, for all
states in Z̄ the future trajectories of the system will be such that x ∈ Z̄ ⊆ Z,
and from Corollary 7.3.4 we conclude that KN (x) = uopt

0 = sat∆(−Kx) =
−sat∆(Kx). �

As we discussed before, if the set Z̄, in which the theorem is valid, were
such that the control sequence {uk} = {−sat∆(Kxk)} stayed unsaturated
along the system trajectories, then the result of Theorem 7.3.5 would be triv-
ial. Also, if this set were such that only the first control in the sequence
{uk} = {−sat∆(Kxk)} stayed saturated, then the result would also be triv-
ial (although this is not as evident). This fact can be seen from the proof of
Theorem 7.3.3. Assume, for this purpose, that the horizon is N ≥ 2. Notice
that the step i = N − 1 of the dynamic programming procedure involves
the minimisation of the quadratic function in (7.62), whose constrained min-
imum is simply given by uopt

N−1 = −sat∆(KxN−1) ≡ −KxN−1 (since we are
assuming that only the first control saturates; see (7.63)). Following the same
argument backwards in time, and assuming that the controls uopt

i = −Kxi,
i = N − 1, N − 2, . . . , 1 are not saturated, it can be easily seen—since P sat-
isfies (7.5)—that the same quadratic equation (7.62) will propagate until the
initial step i = 0, in which case no assumption would be needed for the opti-
mal control to be uopt

0 = −sat∆(Kx0). In fact, Z̄ can be considerably bigger
than both of these trivial cases, as we will see later in Example 7.3.2.

Proposition 7.2.3 also extends to the case of horizons of arbitrary length,
that is, the set Z̄ defined in (7.70) contains the maximal output admissible
set O∞, defined in (7.14). We show this below.

Proposition 7.3.6 O∞ ⊆ Z̄.

Proof. As in the proof of Proposition 7.2.3, since Z̄ is the maximal positively
invariant set in YN , it suffices to show that O∞ ⊆ YN �

⋂N−1
i=1 Xi (see (7.37)).

Assume, therefore, that x ∈ O∞, so that (see (7.14))

|KAj
Kx| ≤ ∆, j = 0, 1, . . . , (7.72)

where AK � A − BK. For any i ∈ {1, 2, . . . , N − 1},

Ai
K = (A − BK)Ai−1

K = AAi−1
K − BKAi−1

K

= A(A − BK)Ai−2
K − BKAi−1

K = A2Ai−2
K − ABKAi−2

K − BKAi−1
K

= A2(A − BK)Ai−3
K − ABKAi−2

K − BKAi−1
K

= A3Ai−3
K − A2BKAi−3

K − ABKAi−2
K − BKAi−1

K

...

= Ai−1AK −
i−2∑
j=0

AjBKAi−1−j
K ,
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which implies

KAi−1AKx = KAi
Kx +

i−2∑
j=0

KAjBKAi−1−j
K x. (7.73)

From (7.72) and (7.73), we obtain the inequality

|KAi−1AKx| ≤ |KAi
Kx| +

i−2∑
j=0

|KAjB||KAi−1−j
K x| (7.74)

≤
⎛⎝1 +

i−2∑
j=0

|KAjB|
⎞⎠∆ = ∆i (see (7.33)). (7.75)

This implies x ∈ Xi for all i ∈ {1, 2, . . . , N − 1} (see (7.35)), yielding the
desired result. �

7.3.4 An Ellipsoidal Approximation to the Set Z̄

We can also construct an ellipsoidal inner approximation to the set Z̄, as
was done in Section 7.2.2. To this end, recall that Z̄ is the largest positively
invariant set, under the mapping φnl(·), contained in the set YN �

⋂N−1
i=1 Xi.

Also, recall from (7.35) that the sets Xi are given by

Xi =
{
x : |K̄ix| ≤ ∆i

}
, i = 1, 2, . . . , N − 1.

We then compute the ellipsoidal radius from

ρ̄ = min

{
(1 + β̄)2∆2

KP−1Kt
,

∆2
1

K̄1P−1K̄t
1

,
∆2

2

K̄2P−1K̄t
2

, . . . ,
∆2

N−1

K̄N−1P−1K̄t
N−1

}
,

(7.76)
where β̄ < β̄max, and β̄max is computed from (7.17) (in practice, one can
choose β̄ arbitrarily close to β̄max).

Then we have that Corollary 7.2.6 holds for the ellipsoidal set

E = {x : xtPx ≤ ρ̄},
that is,

(i) E is positively invariant for system (7.27) under the control uk =
−sat∆(Kxk).

(ii) E ⊆ Z̄.
(iii) The RHC law (7.71) holds, and it is optimal, for all x ∈ E .
(iv) System (7.27), with the RHC sequence (7.71), is exponentially stable in E .

The following example illustrates the regional characterisation of RHC and
the different sets used to describe it.
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Example 7.3.2. Consider the system xk+1 = Axk + Buk with

A =
[

1 0
0.4 1

]
, B =

[
0.4
0.08

]
,

which is the zero-order hold discretisation with a sampling period of 0.4 sec
of the double integrator

ẋ1(t) = u(t), ẋ2(t) = x1(t).

The input constraint level is taken as ∆ = 1. The fixed horizon objective
function is of the form (7.29) using N = 10, Q = I and R = 0.25. The
matrix P and the gain K were computed from (7.5) and (7.6). The maximum
over-saturation index was computed from (7.17) with ε = 0 and is equal to
β̄max = 1.3397. We then take β̄ = 1.3396 < β̄max and compute the ellipsoid
radius ρ̄ from (7.76).
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Figure 7.1. Set boundaries for Example 7.3.2.

In Figure 7.1 we show the following sets: YN =
⋂N−1

i=1 Xi (from (7.37)); the
maximal output admissible set O∞; and the ellipsoid E = {x : xtPx ≤ ρ̄}.
In this figure, x1

k and x2
k denote the components of the state vector xk in

the discrete time model. The sets O∞ and E are positively invariant and are
contained in Z̄ (Proposition 7.3.6 and (ii) above), and hence we have that
O∞ ∪ E ⊆ Z̄ ⊆ YN , which gives an estimate of the size of Z̄.

In Figure 7.2 we show the boundaries of the sets discussed above, together
with the result of simulating the system with control u = −sat∆(Kx), and
with RHC performed numerically via quadratic programming, for an initial
condition contained in the invariant ellipsoid E = {x : xtPx ≤ ρ̄}. Notice
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(a) State trajectory: with −sat∆(Kx)
(solid-circle) and with (7.30) (dashdot-
plus).

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

k

u
k

(b) Control sequence: −sat∆(Kx)
(solid-circle) and (7.30) (dashdot-plus).

Figure 7.2. State trajectories and control sequence for the initial condition x0 =
[1.27 − 0.1]t. Also shown in the left figure are the set boundaries for YN , O∞, E .
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(a) State trajectory: with −sat∆(Kx)
(solid-circle) and with (7.30) (dashdot-
plus).
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(b) Control sequence: −sat∆(Kx)
(solid-circle) and (7.30) (dashdot-plus).

Figure 7.3. State trajectories and control sequence for the initial condition x0 =
[0.25 4.7]t . Also shown in the left figure are the set boundaries for YN , O∞, E .

that both strategies coincide, and that the control remains saturated during
the initial three steps.

Figure 7.3 shows a case where the initial condition is not contained in
the invariant ellipsoid E = {x : xtPx ≤ ρ̄} but is contained in the set Z̄

(since the trajectory does not leave the set YN ). Therefore, as established in
Theorem 7.3.5, both control sequences coincide and, as Figure 7.3 shows, they
stay saturated during the initial five steps.
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As can be seen from the simulations, the region in which both strate-
gies coincide is such that the control remains saturated during several steps.
Hence, we conclude that this region—the set Z̄—is, in fact, nontrivial (see the
discussion following Theorem 7.3.5). ◦

7.4 Further Reading

For complete list of references cited, see References section at the end of book.

General

Further discussion on the regional solution may be found in De Doná (2000),
De Doná and Goodwin (2000) and De Doná, Goodwin and Seron (2000).

Link to Anti-Windup Strategies

Another line of attack on the problem of input constraints was developed, be-
ginning from a different perspective to the optimisation approach taken here,
grouped under the name of anti-windup techniques. The first versions of these
techniques can be traced back to PID and integral control, where limitations
on the controller’s ability to quickly regulate errors to zero, imposed by input
saturation, led to unnecessarily high values of the state of the controller inte-
grator. The term “anti-windup” is then used to describe the capability of the
technique to prevent the state of the integrator from “winding up” to an ex-
cessively high value. Distinctive characteristics of the anti-windup technique
are (see, for example, Teel 1999): (i) The original controller is used locally as
long as it does not encounter input saturation, and (ii) saturation effects are
minimised by modifying the controller structure when the plant input reaches
its saturation level. In essence, all the algorithms achieve these goals by let-
ting the controller states “know” about saturation being reached. A unified
framework that encompasses many of these algorithms is given in Kothare,
Campo, Morari and Nett (1994). They are prime examples of “evolutionary”
strategies (see Section 1.2 of Chapter 1).

Consider now that the original controller is the static state feedback
u = −Kx, that is, that the controller has no dynamics. Particularising the
unified framework of Kothare et al. (1994) to this case, one easily obtains
that the corresponding anti-windup strategy is equivalent to saturating the
control signal, that is, u = −sat∆(Kx). Comparing with the RHC law (7.71),
we conclude that for all x ∈ Z̄, the RHC and anti-windup strategies have
the identical characterisation u = −sat∆(Kx). That is, the RHC and anti-
windup control laws coincide in the region where RHC has the simple finite
parameterisation (7.71).
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Computational Issues in Constrained
Optimal Control

8.1 Overview

In this chapter, we will consider the implementation of RHC and the com-
putation of the fixed horizon optimal control problem that underlies it. We
will consider linear discrete time systems with quadratic objective function
and linear constraints. We will first discuss possible implementations of the
piecewise affine characterisation developed in Chapter 6. We will then present
two popular algorithms for the computation of the optimal solution of a QP,
namely, active set and interior point methods. Finally, we will briefly turn to
suboptimal solutions.

8.2 Implementation of the Piecewise Affine RHC
Characterisation

In Chapter 6, we showed that the RHC law can be expressed as a “look-up
table” consisting of a partition of the state space into polyhedral regions in
which the corresponding control law has an explicit piecewise affine form. If
the look-up table is precomputed off-line and stored, the RHC control compu-
tation is then reduced to the problem of (i) identifying the “current region,”
that is, deciding in which region the current state belongs, and (ii) computing
the control input using the affine control law corresponding to that region. The
control action is then computed using a simple function evaluation. However,
the problem of identifying the current region may still require a significant
computational load if the number of polyhedral regions is large. It is thus
relevant to find efficient implementations of this current region identification
step.

A direct way of deciding in which region the current state belongs is to
perform a sequential search through the regions of the polyhedral partition.
For each region, the algorithm would check if the state belongs to it by eval-
uating the linear inequalities corresponding to the hyperplanes that delimit
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the region. However, this leads to potentially very long computation times
since, in the worst case, every region and every hyperplane in the partition is
checked. It would therefore be desirable to organise the structure of the data
stored in the look-up table so that the identification of the current region
could be performed by evaluating as few hyperplanes as possible. An efficient
way to organise the data, one which exploits the convexity of polyhedral sets,
is to use a binary search tree where each level, or “node,” is associated with
one hyperplane inequality. When the tree is used on-line for the current state,
at each node one inequality is evaluated, its sign checked, and the left or right
subtree selected based on the sign. By traversing the tree from the “root”
to a “leaf” node, one finds the region corresponding to the current state. To
reduce computation time, it is then important to design a tree of minimum
depth so that the number of hyperplanes to be evaluated in the determina-
tion of the solution is minimised. In Tøndel et al. (2002), this goal is achieved
by constructing a binary search tree with the criterion to reduce the num-
ber of remaining regions as much as possible from one level of the tree to
the next. These authors show that such a tree achieves a computation time
that is logarithmic in the number of polyhedral regions (for details see Tøndel
et al. 2002).

For RHC problems of large dimension, for which the implementation of
the explicit solution would lead to a binary search tree of high complexity, one
could resort to approximations, or suboptimal solutions, of smaller complexity.
Several algorithms have been recently proposed to achieve this. The reader is
referred to Sections 8.4 and 8.5 for a brief description of some of these novel
algorithms.

Although the availability of an explicit characterisation of the RHC law
has the potential to extend the applicability of RHC to processes that require
faster computation times, more research is required to assess its comparative
performance with respect to traditional RHC implementations that employ
on-line QP solvers. In fact, the QP problem is an optimisation paradigm that
has reached a mature level of development, and efficient algorithms exist to
solve it. The following section discusses some of these algorithms.

8.3 Algorithms for Quadratic Programming

There are several approaches for solving a QP problem. One could use, for
example, methods of feasible directions, which solve the problem by moving
from a feasible point to an improved feasible point. These algorithms typically
proceed as follows: Given a feasible point xk, a direction dk is determined such
that for sufficiently small α > 0, xk + αdk is feasible and the objective value
at xk + αdk is better than the objective value at xk. Once such a direction
is determined, a one-dimensional optimisation problem is solved to determine
how far one needs to move along dk. This leads to a new point xk+1 and
the procedure is repeated. Examples of these methods are Beale’s method
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for quadratic programming (Beale 1955), Rosen’s gradient projection method
(Rosen 1960), and the reduced gradient method developed by Wolfe (Wolfe
1963).

Another popular algorithm is the active set method, in which at each step
certain constraints, indexed by the active set, are regarded as equalities whilst
the rest are temporarily disregarded. The method then sequentially solves an
equality-constrained QP and adjusts the active set in order to identify the
correct active constraints at the optimal solution. In Section 8.3.1, we describe
the main ideas used by the active set method; the reader is referred to, for
example, Fletcher (1981) for more details.

Primal-dual interior point algorithms have also been proposed for QP.
One of such methods, the infeasible interior point method (Wright 1997b), is
described in Section 8.3.2.

8.3.1 The Active Set Method

Consider the QP problem

minimise
{

f(x) =
1
2
xtHx + xtc

}
,

subject to:
At

i x = bi for i ∈ E,

At
i x ≤ bi for i ∈ I,

(8.1)

where H is positive definite, and where the index sets E and I correspond to
equality and inequality constraints, respectively. Let xk be a feasible solution
for (8.1) and let Ik = {i ∈ I : At

i xk = bi} be the set that records the active
constraints at xk. We recall from Section 2.5.6 in Chapter 2 that, because the
constraints are linear, and since the optimisation problem is strictly convex,
a necessary and sufficient condition for a feasible solution xk to be the unique
optimal solution of (8.1) is that there exist Lagrange multipliers λi for i ∈ Ik,
and νi for i ∈ E, such that the following KKT conditions hold (see equations
(2.41) in Chapter 2)

Hxk + c +
∑
i∈Ik

λiAi +
∑
i∈E

νiAi = 0,

λi ≥ 0, i ∈ Ik.

(8.2)

The active set method iterates to find the optimal solution of (8.1) in the
following way. At the kth iteration we assume that a feasible solution xk is
available. We define the working active set

Wk = E ∪ Ik, Ik = {i ∈ I : At
i xk = bi}, (8.3)
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and assume that the gradients of the constraints indexed in Wk are linearly
independent.1 The method now seeks to minimise the objective function f(x)
in (8.1) subject only to the equality constraints recorded in Wk and ignoring
the remaining inequality constraints. That is, we seek to solve the problem

minimise
{

f(x) =
1
2
xtHx + xtc

}
,

subject to:
At

i x = bi for i ∈ Wk.

(8.4)

Note that, if we parameterise x as x = xk + d, we have that

f(x) = f(xk + d) = f(xk) +
1
2
dtHd + dt(c + Hxk).

Also, At
i xk = bi for all i ∈ Wk (see (8.3)). Hence, instead of solving (8.4), we

can solve the following equivalent direction-finding problem:

minimise
1
2
dtHd + dt(c + Hxk),

subject to:
At

i d = 0 for i ∈ Wk.

(8.5)

Let dk be the minimiser of (8.5) and let v∗i for i ∈ Wk be the corresponding
optimal Lagrange multipliers in the KKT conditions for (8.5), that is,

Hdk + c + Hxk +
∑

i∈Wk

v∗i Ai = 0, (8.6)

At
i dk = 0 for i ∈ Wk.

We can distinguish between two cases.

Case dk = 0. Suppose dk = 0.

• If v∗i ≥ 0 for i ∈ Ik, then xk is the optimal solution of (8.1). To see
this, recall that Wk = Ik ∪ E and rewrite (8.6) at dk = 0 as

c + Hxk +
∑
i∈Ik

v∗i Ai +
∑
i∈E

v∗i Ai = 0. (8.7)

Hence, if v∗i ≥ 0 for i ∈ Ik, the KKT conditions (8.2) hold for xk and
λi = v∗i for i ∈ Ik and νi = v∗i for i ∈ E. Since xk is feasible for
the original problem, it is thus the optimal solution and the algorithm
stops.

1 This is to obtain well-defined QP problems at each iteration (see, for example,
Fletcher 1981).
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• On the other hand, suppose that there exists an index, p ∈ Ik, say,
such that v∗p < 0. Then the objective function f(x) can be reduced by
allowing the pth constraint to become inactive. To see this, first note
that, using (8.7), we can write

∇f(xk)t = Hxk + c = −v∗pAp −
∑

i∈Wk:i	=p

v∗i Ai. (8.8)

In addition, it is always possible to find a direction s such that stAi = 0
for i ∈ Wk, i �= p, and stAp = −1 (for example, selecting st to be
minus the pth row of A†, where A is the matrix whose columns are
the constraint gradients Ai, i ∈ Wk, and † denotes pseudoinverse).
Premultiplying (8.8) by such a direction st we then have that

st∇f(xk)t = v∗p < 0,

and hence s is a descent direction (see Theorem 2.4.1 in Chapter 2).
It is also a feasible direction, since an incremental step xk + δs, with
δ > 0 sufficiently small, satisfies At

i (xk + δs) = At
i xk = bi for i ∈ Wk,

i �= p, At
p(xk + δs) = At

pxk − δ < bi and At
i (xk + δs) < bi for i ∈ I \ Ik.

Moreover, the strict inequality At
p(xk + δs) < bi, together with the

fact that s is a feasible descent direction, imply that the objective
function f(x) can be reduced by moving away from the boundary of
constraint p.

Hence, the algorithm removes the pth constraint from the working
active set, that is, we let Ik+1 = Ik − {p}, Wk+1 = E ∪ Ik+1, and
xk+1 = xk, and solve problem (8.5) again.

If there is more than one index for which the corresponding Lagrange
multiplier is negative, then it is usual to select p to solve v∗p = min {v∗i :
i ∈ Ik}. This selection works quite well, although it has the slight
disadvantage that it is not invariant to scaling of the constraints. An
invariant but more complex test can be used based on the expected
objective function reduction (Fletcher and Jackson 1974).

Case dk �= 0. Suppose dk �= 0.

• If xk + dk is feasible for (8.1), then we have found a feasible descent
direction since dk �= 0 implies that the optimal value in (8.5) is strictly
negative, which yields f(xk + dk) < f(xk). Hence, the algorithm lets
Wk+1 = Wk, xk+1 = xk + dk, and solves problem (8.5) again.

• If xk +dk is not feasible for (8.1), then a line search is performed in the
direction of dk to find the best feasible point. This can be done in the
following way. Note that xk + dk is feasible for all constraints indexed
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in Wk since At
i dk = 0 for i ∈ Wk. In fact, infeasibility can only occur

amongst constraints with indexes i /∈ Ik such that At
i dk > 0. Thus, to

maintain feasibility, we need to choose a step length αk ∈ [0, 1] such
that

At
i (xk + αkdk) ≤ bi for i /∈ Ik such thatAt

i dk > 0,

or, equivalently, αk ≤ (bi −At
i xk)/(At

i dk) for i /∈ Ik such that At
i dk >

0. We therefore select αk to be

αk = min
i/∈Ik:At

idk>0

bi − At
i xk

At
i dk

�
bp − At

pxk

At
pdk

. (8.9)

Note that the pth constraint becomes active at xk + αkdk, and hence
this index is added to the active set. The algorithm then lets Ik+1 =
Ik ∪{p}, Wk+1 = E ∪ Ik+1, and xk+1 = xk +αkdk, and solves problem
(8.5) again.

Except in degenerate cases where αk = 0 or αk = 1 in (8.9), termination of
the algorithm can be proved easily. First, although we will not prove it, it is a
consequence of (8.9) that if the first active working set has the property that
the set of gradients that it indexes are linearly independent, then any vector
Ap added to the set is not dependent on the other vectors of the set; hence it
is possible to prove by induction that the linear independence condition is re-
tained. This means that the equality-constrained problem (8.5) (equivalently,
(8.4)) is always well-defined. The termination proof uses the fact that there is
a subsequence {xk} of iterates that solve the current problem (8.4). Note that
only when αk < 1 in (8.9) is xk+1 not a solution to (8.4); in this case an index
p is added to the working active set. This can happen, at most, n times (where
n is the dimension of x), in which case xk is then a vertex and so it solves the
corresponding problem (8.4). Since the number of possible problems (8.4) is
finite, since each xk in the subsequence is the unique global minimum of (8.4),
and since the objective function f(xk) is monotonically decreasing, it follows
that termination must occur. The argument fails in cases of degeneracy, where
“ties” or “cycles” can occur, and hence some modifications have to be done
to the algorithm to ensure convergence (see, for example, Fletcher 1981).

Important practical features of an active set method, which we will not
discuss here, include the computation of an initial feasible point, the efficient
solution of the equality constrained QP (8.5) by factorisation methods, and
the use of factor updates instead of re-factorising when changes are made
to the active set. In the case of the particular form of QP that arises in
RHC, a more efficient formulation is possible by adding the system dynamic
equations as equality constraints and then rearranging the variables so that
the constraint matrices become “banded” (Wright 1997b). This can speed up
factorisation, albeit at the expense of increasing the dimension of the problem,
so a careful analysis has to be performed for each particular application to
assess the convenience of the “banded” formulation (Maciejowski 2002).
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8.3.2 Interior Point Methods

Consider again the QP problem (8.1), which we write in a more convenient
form below:

minimise
1
2
xtHx + xtc,

subject to:
At

Ex = bE ,

At
Ix ≤ bI .

(8.10)

The KKT optimality conditions for the above problem, including the primal
feasibility conditions, are

Hx + c + AEν + AIλ = 0,

At
Ex = bE,

At
Ix + ξ = bI ,

λ ≥ 0, ξ ≥ 0, λtξ = 0,

(8.11)

where ν and λ are vectors of Lagrange multipliers corresponding to the equal-
ity and inequality constraints, respectively, and where we have introduced a
vector of nonnegative slack variables ξ to transform the inequality constraints
into equalities. We can express (8.11) in the following form:⎡⎣ H AE AI

−At
E 0 0

−At
I 0 0

⎤⎦⎡⎣x
ν
λ

⎤⎦ +

⎡⎣ c
bE

bI

⎤⎦ =

⎡⎣0
0
ξ

⎤⎦ ,

λ ≥ 0, ξ ≥ 0, λtξ = 0.

(8.12)

The above equations have the form of the mixed linear complementarity prob-
lem [mLCP], a standard paradigm in optimisation that generalises the op-
timality conditions for linear and quadratic programming. The mLCP is a
convenient platform for interior point methods (Wright 1997b). We will next
describe one such method, the infeasible interior point algorithm of Wright
(1996), (1997b). We will first use a generic form of the mLCP and then apply
the algorithm to problem (8.12).

The mLCP seeks to find vectors z, λ and ξ that satisfy[
M11 M12

M21 M22

] [
z
λ

]
+

[
q1

q2

]
=

[
0
ξ

]
, (8.13)

λtξ = 0, (8.14)
λ ≥ 0, ξ ≥ 0, (8.15)

where the matrix on the left of (8.13) is positive semidefinite and M11 ∈
Rn1×n1 , M22 ∈ Rn2×n2 , q1 ∈ Rn1 , q2 ∈ Rn2 .
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Note that we can write the system of nonlinear equations formed by the
“feasibility conditions” (8.13) and the “complementarity condition” (8.14), in
compact form as

F (z, λ, ξ) =

⎡⎢⎣ f1(z, λ, ξ)
...

fn1+2n2(z, λ, ξ)

⎤⎥⎦ �

⎡⎣ M11z + M12λ + q1

M21z + M22λ − ξ + q2

ΛΞe

⎤⎦ = 0, (8.16)

where

Λ = diag{λ1, . . . , λn2},
Ξ = diag{ξ1, . . . , ξn2},
e =

[
1 . . . 1

]t
,

(8.17)

and where λi, ξi, for i = 1, . . . , n2, are the components of the vectors λ
and ξ, respectively. The system of nonlinear equations (8.16) can be solved,
for example, using Newton’s method (see, for example, Fletcher 1981). In
Newton’s method, given an estimate of the solution wk � (zk, λk, ξk), the
function F is approximated by the linear function consisting of the first two
terms of its Taylor series at the point wk. The resulting linear system is then
solved to obtain a new estimate of the solution wk+1 � (zk+1, λk+1, ξk+1).
That is, a standard Newton step solves

∂F (wk)
∂wk

∆wk = −F (wk) (8.18)

for ∆wk � (∆zk, ∆λk, ∆ξk) and then sets wk+1 = wk + ∆wk. In (8.18),
∂F ( · )/∂wk is the Jacobian matrix of F , whose (i, j)th entry is ∂fi( · )/∂wk

j ,
for i, j = 1, . . . , n1 + 2n2. We can write (8.18) in terms of the matrices in
(8.16) as ⎡⎣M11 M12 0

M21 M22 −I
0 Ξk Λk

⎤⎦⎡⎣∆zk

∆λk

∆ξk

⎤⎦ =

⎡⎣−rk
1

−rk
2

−rk
3

⎤⎦ , (8.19)

where

rk
1 � M11z

k + M12λ
k + q1,

rk
2 � M21z

k + M22λ
k − ξk + q2,

rk
3 � ΛkΞke.

(8.20)

The infeasible interior point [IIP] algorithm of Wright (1997b) uses a modified
Newton method to solve (8.16), which ensures convergence. The algorithm is
initialised with a point (z0, λ0, ξ0) that satisfies (λ0, ξ0) > 0, that is, interior
to the positive orthant (λ, ξ) > 0, but possibly infeasible with respect to the
constraints (8.13). Then all iterates (zk, λk, ξk) maintain (λk, ξk) > 0, but the
infeasibilities and the complementarity gap, defined by
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µk � (λk)tξk

n2
, (8.21)

are reduced to zero as k → ∞.
In particular, the kth step of the IIP algorithm proceeds as follows. Given

the current estimate of the solution (zk, λk, ξk) with (λk, ξk) > 0, and given
σk ∈ (0, 1), µk defined in (8.21), and rk

i , i = 1, 2, 3 defined in (8.20), the
algorithm solves ⎡⎣M11 M12 0

M21 M22 −I
0 Ξk Λk

⎤⎦⎡⎣∆zk

∆λk

∆ξk

⎤⎦ =

⎡⎣ −rk
1

−rk
2

−rk
3 + σkµke

⎤⎦ (8.22)

for (∆zk, ∆λk, ∆ξk). Then it sets

(zk+1, λk+1, ξk+1) = (zk, λk, ξk) + αk(∆zk, ∆λk, ∆ξk), (8.23)

for some αk ∈ (0, 1] that preserves the positivity condition (λk+1, ξk+1) > 0.
Comparing (8.22) with (8.19), we see that the only modification to the

standard Newton method is the term σkµke on the right hand side of (8.22).
This term ensures that the algorithm converges to the solution of (8.13)–
(8.15), whilst remaining inside the positive orthant (λ, ξ) > 0. The conver-
gence analysis requires the values of σk and αk to satisfy certain conditions
(see Wright (1996) for details). A heuristic rule often used in practice is to
select σk ∈ [0.001, 0.8] and αk = min{1, 0.995ᾱk}, where

ᾱk = sup{α ∈ (0, 1] : (zk, λk, ξk) + αk(∆zk, ∆λk, ∆ξk) > 0}.

The main step of the IIP algorithm is the solution of the linear system
(8.22). Note that (8.22) can be simplified by eliminating ∆ξk, which is possible
since the matrix Λk has positive diagonal entries. From the last block row of
(8.22) we have

∆ξk = (Λk)−1(−rk
3 + σkµke) − (Λk)−1Ξk∆λk,

= −ξk + (Λk)−1σkµke − (Λk)−1Ξk∆λk,

where we have used (Λk)−1rk
3 = Ξke = ξk, which follows from the definitions

(8.17) and (8.20). Substituting the above in the first two rows of (8.22), we
obtain[

M11 M12

M21 M22 + (Λk)−1Ξk

] [
∆zk

∆λk

]
=

[ −rk
1

−rk
2 − ξk + σkµk(Λk)−1e

]
. (8.24)

We can now go back to the original problem (8.12) and, comparing with
the mLCP (8.13)–(8.15), we can make the following identifications of matrices
and variables:



184 8. Computational Issues in Constrained Optimal Control

M11 =
[

H AE

−At
E 0

]
, M12 =

[
AI

0

]
, q1 =

[
c

bE

]
,

M21 =
[−At

I 0
]
, M22 = 0, q2 = bI ,

z =
[
x
ν

]
, λ = λ, ξ = ξ.

(8.25)

Substituting (8.25) into (8.24), we obtain the main linear equation to be solved
at the kth iteration by the IIP algorithm for problem (8.12):⎡⎣ H AE AI

−At
E 0 0

−At
I 0 (Λk)−1Ξk

⎤⎦⎡⎣∆xk

∆νk

∆λk

⎤⎦ =
[ −rk

1

−rk
2 − ξk + σkµk(Λk)−1e

]
. (8.26)

In (8.26), the corresponding values of rk
1 and rk

2 are obtained by substitution
of (8.25) into the first two lines of (8.20). Also, the complementarity gap µ
used in (8.26) has the form (8.21) with n2 equal to the number of inequality
constraints in the QP problem (8.10). Usually, the last two rows of (8.26) are
multiplied by −1 so that the matrix on the left becomes symmetric indefinite,
for which a substantial amount of factorisation software is available. Further
simplifications are possible by eliminating ∆λk from the third row.

As was the case for the active set methods of Section 8.3.1, in the appli-
cation of the IIP algorithm to the particular QP problem that arises in RHC,
it is possible to include the system dynamic equations as equality constraints
and then rearrange the variables so that the matrices in the problem become
block-banded. This has significant computational advantages when perform-
ing matrix factorisations and can lead to dramatic computational savings. The
interested reader is referred to Wright (1997b) for details.

8.4 Suboptimal RHC Strategies

In the previous sections, we discussed computational aspects of the on-line
implementation of RHC, for both the case where the explicit solution is to be
used in the form of a look-up table, and the case where the optimisation is to be
performed on-line by solving the underlying QP. For RHC problems of large
dimension (large state and input dimensions and long constraint horizons),
however, it is probably unrealistic to compute the exact explicit solution, and
even if that were possible, its implementation would be impractical due to the
large amount of memory that would be required to store a complex region
partition. On the other hand, on-line optimisation to solve the associated QP
may also be impractical from the computation time perspective.

These problems motivated the development of suboptimal, or simplified,
solutions aimed at reducing computational burden and controller complexity.
In Section 8.5 below, we briefly mention some novel schemes that implement
suboptimal simplified versions of the explicit solution. Alternative suboptimal
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approaches that avoid, or simplify, on-line optimisation but do not necessarily
exploit the explicit RHC solution have also been recently proposed (see, for
example, Kouvaritakis, Cannon and Rossiter 2002).

Other suboptimal strategies will be explored in Chapter 11 in connection
with the singular value decomposition structure of the Hessian of the associ-
ated QP.

8.5 Further Reading

For complete list of references cited, see References section at the end of book.

General

There is a growing literature in computational issues in constrained control.
The reader is referred to contemporary journals and conference proceedings
for recent applications.

Section 8.2

Several new algorithms that implement approximate explicit solutions to RHC
have been proposed. For example, Tøndel et al. (2002) suggest a method for
generating an approximate state feedback law based on a binary search tree
that only allows orthogonal hyperplanes in the tree nodes. This has the ad-
vantage that the on-line evaluation at each node involves one comparison only.
In Johansen, Petersen and Slupphaug (2002), a suboptimal strategy is con-
sidered where an approximation to the optimal objective function is utilised,
imposing restrictions on the allowed switching between the active constraint
sets during the prediction horizon. Input trajectory parameterisation is stud-
ied in Tøndel and Johansen (2002) in order to reduce the degrees of freedom
in the optimisation problem. In Bemporad and Filippi (2001), approximate
(suboptimal) solutions to the multiparametric QP problem are found by relax-
ing the Karush–Kuhn–Tucker optimality conditions. In Johansen (2002), it is
shown how the system structure can be exploited to derive reduced dimension
multiparametric QPs that lead to suboptimal explicit feedback solutions to
the state and input constrained RHC problems. In Johansen and Grancharova
(2002), approximate explicit solutions to the RHC problem are built in cor-
respondence with given bounds for suboptimality and constraint violation. In
Grancharova and Johansen (2002), approximate multiparametric quadratic
programming is used, structuring the partition as a binary search tree.

Section 8.3

More material on optimisation algorithms can be found in the following books:
Nocedal and Wright (1999), Fletcher (1981), Gill et al. (1981), Polak (1971).
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In particular, interior point algorithms are analysed in detail in the books
Fiacco and McCormick (1990), Wright (1997a), Nesterov and Nemirovskii
(1994), den Hertog (1994), Ye (1997).



9

Constrained Estimation

9.1 Overview

This chapter introduces the reader to the issues involved in constrained esti-
mation. We adopt a stochastic framework and model the underlying system
via a set of stochastic difference equations in which the noise has a known
probability density function. This leads to a stochastic interpretation of the
resulting estimators. Alternatively, one can interpret the resulting optimisa-
tion problems in a purely deterministic framework.

We begin with fixed horizon constrained linear estimation problems. We
will see that the resulting optimisation problems are similar to the prob-
lems that arise in constrained control. Indeed, they only differ by virtue of
the boundary conditions imposed. In the next chapter we will show that the
connection is actually deeper than similarity. Indeed, we will show that, for
the linear constrained case, the problems are formally dual to each other. We
then consider rather general nonlinear estimation problems. Finally, the mov-
ing horizon implementation of these estimators is discussed and illustrated by
examples.

Potential applications of the ideas presented here include any estimation
problem where the variables are known, a priori, to satisfy various constraints.
Examples are:

(i) State estimation problems in physical systems where constraints are
known to apply, for example, in a distillation column where the liquid
levels in the trays are known to lie between two levels (empty and full).

(ii) More general state estimation problems in process control where key vari-
ables (for example, disturbances) are known to lie in certain regions.

(iii) Channel equalisation problems in digital communication systems where
the transmitted signal is known to belong to a finite alphabet (say ±1).

(iv) Estimation problems with general distributions where the distribution can
be approximated in different regions by different Gaussian distributions.
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9.2 Simple Linear Regression

To motivate the more general results to follow, let us first consider a simple
linear regression problem:

xk+1 = xk = x0 for k = 0, . . . , N − 1,

yk = Cxk + vk for k = 1, . . . , N,
(9.1)

where xk ∈ Rn and where {yk} is a given sequence of scalar observations.
Say that {vk} is an i.i.d. sequence having a distribution pv(vk) obtained by
truncating on the interval [−b, b] a Gaussian distribution with zero mean and
variance σ2, that is,

pv(vk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ
√

2π
exp

{
− v2

k

2σ2

}
∫ b

−b
1

σ
√

2π
exp

{− α2

2σ2

}
dα

if |vk| ≤ b,

0 otherwise.

(9.2)

Also, assume that x0 has a Gaussian distribution: N(µ0, P0) with P0 > 0.
In the sequel, we will need to refer frequently to conditional probability

density functions. These take the general form of the probability density for
a random variable a evaluated at â (say), given that another random variable
b takes the specific value b̂. We will express this density as pa|b(a = â|b = b̂).
Often we will simplify the notation to pa|b(â|b̂).

Let yN =
[
y1 . . . yN

]t and let yd
N =

[
yd
1 . . . yd

N

]t
denote the given obser-

vations. Then, using Bayes’ rule and the independence assumption, the joint
probability density function for the data yd

N and initial state estimate x̂0 can
be obtained as follows:

py1,x0(y
d
1 , x̂0) = py1|x0(y

d
1 |x̂0) px0(x̂0),

py2,y1,x0(y
d
2 , yd

1 , x̂0) = py2|y1,x0(y
d
2 |yd

1 , x̂0) py1,x0(y
d
1 , x̂0)

= py2|y1,x0(y
d
2 |yd

1 , x̂0) py1|x0(y
d
1 |x̂0) px0(x̂0)

= py2|x0(y
d
2 |x̂0) py1|x0(y

d
1 |x̂0) px0(x̂0),

...

pyN ,x0(y
d
N , x̂0) = px0(x̂0)

N∏
k=1

pyk|x0(y
d
k|x̂0). (9.3)

Also note from (9.1) and (9.2) that

pyk|x0(y
d
k|x̂0) = pv(yd

k − Cx̂0)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ
√

2π
exp

{
− (yd

k−Cx̂0)
2

2σ2

}
∫ b

−b
1

σ
√

2π
exp

{− α2

2σ2

}
dα

if |yd
k − Cx̂0| ≤ b,

0 otherwise.



9.2 Simple Linear Regression 189

Then, using the above in (9.3), we finally obtain

pyN ,x0(y
d
N , x̂0) =

{
f1(yd

N , x̂0) if |yd
k − Cx̂0| ≤ b, k = 1, . . . , N,

0 otherwise,
(9.4)

where

f1(yd
N , x̂0) � β exp

{
−(x̂0 − µ0)t

P−1
0

2
(x̂0 − µ0)

}

×
N∏

k=1

1
σ
√

2π
exp

{−(yd
k−Cx̂0)

2

2σ2

}
∫ b

−b
1

σ
√

2π
exp

{−α2

2σ2

}
dα

, (9.5)

where β � (2π)−
n
2 (det P0)−

1
2 .

The estimation problem is as follows: Given yd
N , make some statement

about the value of x0. Based on pyN ,x0(yd
N , x̂0) we can express the a posteriori

distribution of x0 given yN as follows:

px0|yN
(x̂0|yd

N ) =
pyN ,x0(yd

N , x̂0)
pyN (yd

N )
, (9.6)

where pyN (yd
N ) is independent of x0 and satisfies

pyN (yd
N ) =

∫
Rn

pyN ,x0(y
d
N , α)dα. (9.7)

The a posteriori distribution px0|yN
(x̂0|yd

N ) summarises “what we know about
x0 given the observations yd

N .” If we require a specific estimate, then we can
obtain this from px0|yN

(x̂0|yd
N ). Possible estimates are:

(i) Conditional mean

x̂
[1]
0 � E{x0|yd

N} =
∫

Rn

α px0|yN
(α|yd

N ) dα. (9.8)

(ii) A posteriori most probable

x̂
[2]
0 � arg max

x̂0

px0|yN
(x̂0|yd

N ) = arg max
x̂0

pyN ,x0(y
d
N , x̂0). (9.9)

Note that, in general, x̂
[1]
0 �= x̂

[2]
0 . A simple two-state case is illustrated in

Figure 9.1. In the unconstrained Gaussian case we have that the conditional
mean coincides with the a posteriori most probable estimate (denoted x̂0 in
the figure). However, in the presence of constraints, the a posteriori probability
density is nonzero only in a restricted region illustrated by the shaded area1 in
1 For simplicity, all the truncated distributions are illustrated in this chapter with-

out scaling.
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x̂0

px0|yN
(x0|yd

N)

x̂
[2]
0 x̂

[1]
0

Figure 9.1. Illustration of the conditional mean and the a posteriori most probable
estimate. (The points shown should actually be on the x0-plane.)

Figure 9.1. In this case, we see that the conditional mean x̂
[1]
0 will, in general,

differ from the a posteriori most probable x̂
[2]
0 .

In the sequel, we will mainly focus on the a posteriori most probable
estimate since this is found via a constrained optimisation procedure which is
similar to the optimal control problems addressed earlier.

Returning to our special case of simple linear regression, we see from (9.9),
that the a posteriori most probable estimate is obtained by maximising (9.4)–
(9.5). In turn, this is equivalent to minimising − ln pyN ,x0(yd

N , x̂0) where

− ln pyN ,x0(y
d
N , x̂0) =

N∑
k=1

1
2σ2

v̂2
k +

1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) + constant,

subject to the constraints

v̂k = yd
k − Cx̂0 for k = 1, . . . , N,

v̂k ∈ [−b, b] for k = 1, . . . , N.

We recognise this as a standard constrained quadratic optimisation problem
in the variable x̂0.
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9.3 Linear State Estimation with Constraints

Here we generalise the ideas presented in Section 9.2 to the following linear
Markov model:

xk+1 = Axk + Bwk,

yk = Cxk + vk,
(9.10)

where xk ∈ Rn, wk ∈ Rm, yk ∈ Rr and vk ∈ Rr. Suppose that {wk}, {vk}, x0

are i.i.d. sequences having truncated Gaussian distributions, that is,

pw(wk) =

⎧⎪⎪⎨⎪⎪⎩
βw exp

{− 1
2wt

kQ−1wk

}
βw

∫
Ω1

exp
{− 1

2νtQ−1ν
}

dν
for wk ∈ Ω1,

0 otherwise,

(9.11)

pv(vk) =

⎧⎪⎪⎨⎪⎪⎩
βv exp

{− 1
2vt

kR−1vk

}
βv

∫
Ω2

exp
{− 1

2νtR−1ν
}

dν
for vk ∈ Ω2,

0 otherwise,

(9.12)

px0(x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βx0 exp

{− 1
2 (x0 − µ0)tP−1

0 (x0 − µ0)
}

βx0

∫
Ω3

exp
{− 1

2 (ν − µ0)tP−1
0 (ν − µ0)

}
dν

for x0 ∈ Ω3,

0 otherwise,
(9.13)

where Q > 0, R > 0, P0 > 0, βw � (2π)−
m
2 (det Q)−

1
2 , βv � (2π)−

r
2 (det R)−

1
2 ,

βx0 � (2π)−
n
2 (det P0)−

1
2 , Ω1 ⊂ Rm, Ω2 ⊂ Rr and Ω3 ⊂ Rn.

We define

yN =
[
yt
1 . . . yt

N

]t
, (9.14)

yd
N =

[
yd
1
t

. . . yd
N

t]t
, (9.15)

xN =
[
xt

0 . . . xt
N

]t
, (9.16)

x̂N =
[
x̂t

0 . . . x̂t
N

]t
. (9.17)

From Bayes’ rule and the Markovian structure of (9.10) we have that

pxk+1,...,x0(x̂k+1, x̂k, x̂k−1, . . . , x̂0) = pxk+1|xk,...,x0(x̂k+1|x̂k, x̂k−1, . . . , x̂0)

× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0)
= pxk+1|xk

(x̂k+1|x̂k)

× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0),
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and also

pyk,xk,...,x0(ŷ
d
k, x̂k, x̂k−1, . . . , x̂0) = pyk|xk,...,x0(y

d
k|x̂k, x̂k−1, . . . , x̂0)

× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0)

= pyk|xk
(yd

k|x̂k)
× pxk,...,x0(x̂k, x̂k−1, . . . , x̂0).

It then follows that the joint probability density function for yN and xN

defined in (9.14) and (9.16), respectively, is given by

pyN ,xN (yN = yd
N ,xN = x̂N ) = px0(x0 = x̂0)

N∏
k=1

[
pyk|xk

(yk = yd
k|xk = x̂k)

× pxk|xk−1(xk = x̂k|xk−1 = x̂k−1)
]
.

(9.18)

We next develop an explicit expression for the joint density function in
(9.18). We begin with the nonsingular case when wk ∈ Rn (m = n) and B is
nonsingular in (9.10).

Lemma 9.3.1 For the model described in (9.10) to (9.17), and subject to
wk ∈ Rn (m = n) and B nonsingular, the joint probability density function
(9.18) for yN and xN satisfies

pyN ,xN (yN = yd
N ,xN = x̂N ) = constant × exp

{
−1

2

N−1∑
k=0

ŵt
kQ−1ŵk

}

× exp

{
−1

2

N∑
k=1

v̂t
kR−1v̂k

}

× exp
{
−1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)
}

,

(9.19)

whenever

ŵk ∈ Ω1 for k = 0, . . . , N − 1,

v̂k ∈ Ω2 for k = 1, . . . , N,

x̂0 ∈ Ω3,

where

x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1,

v̂k = yd
k − Cx̂k for k = 1, . . . , N.
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Proof. From (9.10), (9.11) and (9.12), we have, using the rule of transforma-
tion of probability density functions:

pxk+1|xk
(xk+1 = x̂k+1|xk = x̂k) = constant× pw(ŵk)

= constant× exp
{
−1

2
ŵt

kQ−1ŵk

}
,

whenever ŵk ∈ Ω1 and satisfies x̂k+1 = Ax̂k + Bŵk. Also,

pyk|xk
(yk = yd

k|xk = x̂k) = constant× pv(v̂k)

= constant× exp
{
−1

2
v̂t

kR−1v̂k

}
,

whenever v̂k ∈ Ω2 and satisfies yd
k = Cx̂k + v̂k. Finally, using (9.13), and

substituting all expressions into (9.18), the result follows. �

Remark 9.3.1. In the general case, when wk ∈ Rm with m < n in (9.10),
the linear equality x̂k+1 −Ax̂k = Bŵk, implies that x̂k+1 −Ax̂k can only take
values in the range space of B. Hence, we need to account for the fact that
x̂k+1 − Ax̂k has a singular distribution2 in Rn. We can easily deal with this
situation by introducing a linear transformation in the state space as follows.

Assume that B has full column rank. Let T1 be a basis for the range space
of B (which, in particular, could be chosen equal to B) and choose any T2

such that T = [T1 T2] is nonsingular. We partition T−1 as follows:

T−1 =
[
S1

S2

]
,

where S1 is an m × n matrix. Then T−1T = In implies

S1T1 = Im, S2T1 = 0(n−m)×m.

Hence, since B = T1B̄1 for some nonsingular m×m matrix B̄1, we have, using
the above equations, that

T−1B =
[
S1

S2

]
T1B̄1 =

[
B̄1

0

]
. (9.20)

Partition x̄k+1 as
x̄k+1 � T−1xk+1. (9.21)

Then, from (9.10), x̄k+1 satisfies

x̄k+1 = Āxk + B̄wk, (9.22)

2 A singular distribution is a distribution in �
n which is concentrated in a lower

dimensional subspace, that is, the probability associated with any set not inter-
secting the subspace is zero (Anderson 1958).
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where

Ā � T−1A �
[
Ā1

Ā2

]
, B̄ � T−1B =

[
B̄1

0

]
, (9.23)

using (9.20). Let

x̄k+1 �
[
x̄′

k+1

x̄′′
k+1

]
,

where x̄′
k+1 ∈ R

m. Then, from (9.22)–(9.23), we can write[
x̄′

k+1

x̄′′
k+1

]
=

[
Ā1

Ā2

]
xk +

[
B̄1

0

]
wk. (9.24)

Hence, using the rule of transformation of probability density functions, we
have, from (9.21) and (9.24), that

pxk+1|xk
(x̂k+1|x̂k) = constant × px̄k+1|xk

(ˆ̄xk+1|x̂k)

= constant × px̄′
k+1|xk

(ˆ̄x′
k+1|x̂k) × δn−m[ˆ̄x′′

k+1 − Ā2x̂k]

= constant × pw(ŵk) × δn−m[ˆ̄x′′
k+1 − Ā2x̂k],

whenever ŵk ∈ Ω1 and satisfies ˆ̄x′
k+1 = Ā1x̂k + B̄1ŵk. In the above equations,

δn−m[ · ] is the Dirac delta function defined on Rn−m, that is, δn−m[η] =
δ(η1) × · · · × δ(ηn−m), where η =

[
η1 · · · ηn−m

]t ∈ Rn−m.
We can thus write

pxk+1|xk
(x̂k+1|x̂k) = constant× pw(ŵk) × δn−m[ˆ̄x′′

k+1 − Ā2x̂k], (9.25)

where x̂k+1 is restricted to those values reachable from ŵk, that is, such that
x̂k+1 = Ax̂k + Bŵk for some ŵk ∈ Ω1. We thus see that pxk+1|xk

( · | · )
has a density function in Rn corresponding to those values of xk+1 that are
reachable from wk.

When defining the joint a posteriori most probable [JAPMP] estimator
below, we will maximise the envelope of the delta function in (9.25). For
notational convenience, we define this envelope as

p′xk+1|xk
(x̂k+1|x̂k) � constant × pw(ŵk)

whenever ŵk ∈ Ω1 and satisfies x̂k+1 = Ax̂k + Bŵk. Hence, in the sequel,
probability densities p corresponding to singular distributions should be in-
terpreted as the envelope p′ defined above. ◦

The general estimation problem is: Given the observations yd
N =

[yd
1
t
. . . yd

N

t]t, make some statement about the states xN = [xt
0 . . . xt

N ]t. From
the joint probability density function (9.19), we can express the a posteriori
distribution of xN given yN as follows:

pxN |yN
(x̂N |yd

N ) =
pyN ,xN (yd

N , x̂N )
pyN (yd

N )
, (9.26)
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where pyN (yd
N ) is a data dependent term which does not depend on xN .

The a posteriori distribution pxN |yN
(x̂N |yd

N ) summarises “what we know
about xN given the observations yd

N .” As foreshadowed in Remark 9.3.1, our
aim is to find the joint a posteriori most probable [JAPMP] state estimates
x̂N = [x̂t

0 . . . x̂t
N ]t given the observations ŷd

N ; that is,

x̂∗
N � arg max

x̂N

pxN |yN
(x̂N |yd

N ). (9.27)

Note that (9.27) is equivalent to maximising the joint probability density
function, since, as noticed in (9.26), both functions are related by a term that
does not depend on xN . Thus, the joint maximum a posteriori estimate is
given by

x̂∗
N � arg max

x̂N

pxN |yN
(x̂N |yd

N )

= arg max
x̂N

pyN ,xN (yd
N , x̂N )

= arg min
x̂N

− ln pyN ,xN (yd
N , x̂N ). (9.28)

The preceding discussion leads, upon substitution of (9.19) into (9.28), to the
following optimisation problem.

Estimation Problem

Given the observations {yd
1 , . . . , yd

N} and the knowledge of µ0 (the mean value
of x0), solve:

Pe : V opt
N (µ0, {yd

k}) � min VN ({x̂k}, {v̂k}, {ŵk}), (9.29)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (9.30)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (9.31)

ŵk ∈ Ω1 for k = 0, . . . , N − 1, (9.32)
v̂k ∈ Ω2 for k = 1, . . . , N, (9.33)
x̂0 ∈ Ω3, (9.34)

where

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

ŵt
kQ−1ŵk +

1
2

N∑
k=1

v̂t
kR−1v̂k.

(9.35)
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We see that the above problem is very similar to the constrained lin-
ear quadratic optimal control problems discussed earlier (see, for example,
(5.49)–(5.54) in Chapter 5) save that they have different boundary conditions
and initial and terminal state weightings. The two problems are compared in
Table 9.1.

Constrained control Constrained estimation

Model xk+1 = Axk + Buk x̂k+1 = Ax̂k + Bŵk

Initial condition x0 (given) x̂0 ∈ Ω3

Initial state weighting 1
2
xt

0Qx0 (given) 1
2
(x̂0 − µ0)

tP−1
0 (x̂0 − µ0), µ0 given

Terminal state weighting 1
2
xt

NPxN
1
2
(yd

N − Cx̂N )tR−1(yd
N − Cx̂N),

yd
N given

Table 9.1. Comparison between the optimisation problems corresponding to con-
strained control and constrained estimation.

9.4 Extensions to Other Constraints and Distributions

The development in Section 9.3 was based on an assumption of truncated
Gaussian noise. This result is interesting in its raw form but becomes a pow-
erful tool when utilised as a basic building block to solve more general prob-
lems. Several alternatives are discussed below indicating how the core ideas
of Section 9.3 can be used in more general problems.

9.4.1 Nonzero-mean Truncated Gaussian Noise

It is very straightforward to add a nonzero mean assumption to the truncated
Gaussian noise assumption. The appropriate changes to (9.11) and (9.12) are

pw(wk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βw exp

{− 1
2 (wk − µw)tQ−1(wk − µw)

}
βw

∫
Ω1

exp
{− 1

2 (ν − µw)tQ−1(ν − µw)
}

dν
for wk ∈ Ω1,

0 otherwise,

pv(vk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βv exp

{− 1
2 (vk − µv)tR−1(vk − µv)

}
βv

∫
Ω2

exp
{− 1

2 (ν − µv)tR−1(ν − µv)
}

dν
for vk ∈ Ω2,

0 otherwise,
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where µw and µv are the “prior” means, that is, the means of the Gaussian
distributions before truncation.

The corresponding change in the objective function (9.35) is

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

(ŵk − µw)tQ−1(ŵk − µw)

+
1
2

N∑
k=1

(v̂k − µv)tR−1(v̂k − µv).

The use of a nonzero mean for the underlying distribution allows one, for
example, to build new zero-mean distributions such as the one illustrated in
Figure 9.2.

wµw

pw

Ω1

Figure 9.2. Zero-mean distribution formed by truncating a nonzero-mean Gaussian
distribution.

9.4.2 Combinations of Truncated Gaussian Noise

A further embellishment is to have different truncated Gaussian distributions
in different regions. For example, we could have

pw(wk) =
βwi exp

{− 1
2 (wk − µi)tQ−1

i (wk − µi)
}∑L

i=1 βwi

∫
Ωi

exp
{− 1

2 (ν − µi)tQ−1
i (ν − µi)

}
dν

,

for wk ∈ Ωi, i = 1, . . . , L, and zero otherwise, where Ωi ⊂ Rm are convex
sets that have an empty intersection pairwise. A simple example is shown in
Figure 9.3.

The associated optimisation problem can be solved by partitioning the
problem into constrained sub-problems, each of which is convex in a convex
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wµ1 µ2

pw

Ω1 Ω2

Figure 9.3. Combination of two nonzero-mean truncated Gaussian distributions.

region. One then simply chooses the global optimum as the minimum of the in-
dividual sub-problems. This idea was described in general terms in Section 2.7
of Chapter 2.

Thus, say that we have a scalar disturbance {wk} and an N -step opti-
misation horizon. Also, say that the distribution of {wk} is divided into L
nonoverlapping regions, each containing a different truncated Gaussian distri-
bution. Then one needs to solve LN separate QP problems. As an illustration,
with L = 2 (as in Figure 9.3) and N = 5, then one needs to solve 25 = 32 QP
problems.

Remark 9.4.1. Actually, the above idea is an interesting precursor to ideas
that will be presented in Chapter 13 when we treat finite alphabet estimation
problems. The latter case can be thought of as the limiting version of the idea
presented above in which each region contains a point mass distribution. In
this case, the optimisation problem requires LN objective function evaluations
rather than LN QP problems. ◦

9.4.3 Multiconvex Approximations of Arbitrary Distributions

A further generalisation of these ideas is to use a staircase approximation to
an arbitrary distribution. Thus, consider the smooth, but otherwise arbitrary,
distribution in Figure 9.4, together with a staircase approximation.

In each region, the probability density function is approximated by a uni-
form distribution, that is,

pw(wk) ≈ ci for wk ∈ Ωi,

where ci > 0 is a constant. In this case, we have

ln pw(wk) ≈ ln ci for wk ∈ Ωi.

The objective function (9.35) splits into LN (where L is the number of
regions Ωi in the staircase approximation) convex functions V i

N , each of them
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w

pw

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9

Figure 9.4. Arbitrary distribution and staircase approximation.

having the form:3

V i
N ({x̂k}, {v̂k}, {ŵk}) � 1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

−
N−1∑
k=0

ln 
k +
1
2

N∑
k=1

v̂t
kR−1v̂k,

where 
k ∈ {c1, . . . , cL}, k = 0, . . . , N − 1.
The global solution is computed as the minimum of the LN convex op-

timisation sub-problems. (Note that the term −∑N−1
k=0 ln 
k is constant for

each sub-problem and, hence, it does not affect each minimiser. However,
these terms must be included in the evaluation of each sub-problem when
computing the global optimum.)

9.4.4 Discussion

We have seen above that one can treat very general estimation problems by
combining convex optimisation with constraints. Note that the juxtaposition
of constraints and regional convexity is the key idea to solving these problems.

9.5 Dynamic Programming

As for constrained control problems, we can utilise dynamic programming to
solve the constrained estimation problem. Here it is most convenient to use
forward dynamic programming whereas previously we used reverse dynamic
programming (see Section 3.4 in Chapter 3).

We return to the problem of constrained estimation described in (9.29)–
(9.35). We note that the objective function from time 0 to k (that is, (9.35)
for N = k) is a function of the initial state estimate x̂0, the choice of the input
3 Notice that we assume that vk has a Gaussian distribution, but the idea is readily

extended to arbitrary distributions for vk, also.
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noise sequence ŵ0, . . . , ŵk−1, and the given data µ0, yd
1 , . . . yd

k. If, for given
x̂0, we optimise with respect to ŵ0, . . . , ŵk−1, then the resulting partial value
function (at time k) is a function of x̂0 and µ0, yd

1 , . . . yd
k. For the purposes of

the dynamic programming argument it is actually more convenient to make
the partial value function a function of x̂k and µ0, yd

1 , . . . yd
k. This is possible

since (9.30) allows us to express x̂0 as a function of x̂k (together with the given
sequence ŵ0, . . . , ŵk−1) provided A is nonsingular. Thus, assuming that A is
nonsingular, the partial value function at time k is

V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) � min
ŵ0,...,ŵk−1

{
1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

k−1∑
j=0

ŵt
j Q−1ŵj +

1
2

k∑
j=1

(yd
j − Cx̂j)tR−1(yd

j − Cx̂j)
}

,

subject to:

x̂j = A−1(x̂j+1 − Bŵj) for j = 0, . . . , k − 1, (9.36)
ŵj ∈ Ω1 for j = 0, . . . , k − 1, (9.37)

yd
j − Cx̂j ∈ Ω2 for j = 1, . . . , k, (9.38)

x̂0 ∈ Ω3. (9.39)

Then, the forward dynamic programming algorithm proceeds as follows. We
start with the partial value function at time 0, which, for x̂0 ∈ Ω3, is defined
as

V opt
0 (x̂0, µ0) � 1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0). (9.40)

Next, for x̂1 ∈ Rn such that yd
1 − Cx̂1 ∈ Ω2, the partial value function at

time 1 is computed as

V opt
1 (x̂1, µ0, y

d
1) = min

ŵ0

{
V opt

0 (A−1x̂1 − A−1Bŵ0, µ0) +
1
2
ŵt

0Q−1ŵ0

+
1
2
(yd

1 − Cx̂1)tR−1(yd
1 − Cx̂1)

}
, (9.41)

subject to:
ŵ0 ∈ Ω1, (9.42)

A−1x̂1 − A−1Bŵ0 ∈ Ω3. (9.43)

Finally, for k ≥ 1, and x̂k+1 ∈ Rn such that yd
k+1 − Cx̂k+1 ∈ Ω2,
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V opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k+1)

= min
ŵk

{
V opt

k (A−1x̂k+1 − A−1Bŵk, µ0, y
d
1 , . . . , yd

k) +
1
2
ŵt

kQ−1ŵk

+
1
2
(yd

k+1 − Cx̂k+1)tR−1(yd
k+1 − Cx̂k+1)

}
, (9.44)

subject to:
ŵk ∈ Ω1, (9.45)

yd
k − C(A−1x̂k+1 − A−1Bŵk) ∈ Ω2. (9.46)

In the absence of constraints, the above dynamic programming algorithm
leads to the well-known Kalman filter. This is explained in the next section.

9.6 Linear Gaussian Unconstrained Problems

For the case of linear Gaussian unconstrained problems, the dynamic pro-
gramming algorithm of Section 9.5 can be solved explicitly. As expected, the
optimal estimator in this case is the Kalman filter, as we show in the following
results.

Lemma 9.6.1 ( Dynamic Programming for Linear Gaussian Estima-
tion) Assume that A is nonsingular.4 In the absence of constraints (that is,
Ω1 = Rm in (9.37), Ω2 = Rr in (9.38) and Ω3 = Rn in (9.39)), the dynamic
programming problem specified in (9.40)–(9.46) has the solution

V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) =
1
2
(x̂k − x̂k|k)tP−1

k|k (x̂k − x̂k|k) + constant, (9.47)

where x̂k|k is a function of µ0, y
d
1 , . . . , yd

k defined via the following recursion:

x̂0|0 = µ0, (9.48)
P0|0 = P0, (9.49)

and, for j = 0, . . . , k − 1,

x̂j+1|j = Ax̂j|j , (9.50)

x̂j+1|j+1 = x̂j+1|j + Pj+1|jCt(R + CPj+1|jCt)−1(yd
j+1 − Cx̂j+1|j), (9.51)

Pj+1|j = APj|jAt + BQBt, (9.52)

Pj+1|j+1 = Pj+1|j − Pj+1|jCt(R + CPj+1|jCt)−1CPj+1|j . (9.53)

Proof. We use induction, and assume that V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) is a
quadratic function of x̂k of the form
4 Here we assume A nonsingular, but the result holds for any matrix A.
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V opt
k (x̂k, µ0, y

d
1 , . . . , yd

k) =
1
2
(x̂k − x̂k|k)tP−1

k|k (x̂k − x̂k|k) + constant, (9.54)

where x̂k|k is the function of µ0, y
d
1 , . . . , yd

k defined via (9.48)–(9.53) for
j = 0, . . . , k − 1. We note from (9.40) and (9.48)–(9.49) that the induction
hypothesis holds for k = 0.

We next assume that (9.54) holds for k and show, by performing the
minimisation (9.44), that the results holds for k + 1. (Note that, in this case,
we should obtain that equations (9.50)–(9.53) apply for j = k.)

Step 1: As the first step towards performing the minimisation in (9.44),
we begin by adding the term 1

2 ŵt
kQ−1ŵk to (9.54) and substituting x̂k =

A−1x̂k+1 − A−1Bŵk, and then minimise with respect to ŵk. We denote the
resulting value function by W opt

k+1(x̂k+1, µ0, y
d
1 , . . . , yd

k), that is:

W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) = min
ŵk

{
1
2
(A−1x̂k+1 − A−1Bŵk − x̂k|k)tP−1

k|k

(A−1x̂k+1 − A−1Bŵk − x̂k|k)

+
1
2
ŵt

kQ−1ŵk

}
+ constant. (9.55)

Differentiating the argument of the min in (9.55) with respect to ŵk and
equating to zero gives

BtA−T P−1
k|k

(
x̂k|k − A−1x̂k+1 + A−1Bŵk

)
+ Q−1ŵk = 0,

or

ŵk = −
(
BtA−T P−1

k|kA−1B + Q−1
)−1

BtA−T P−1
k|k

(
x̂k|k − A−1x̂k+1

)
� −(Γ + Θ)−1BtA−T P−1

k|k α, (9.56)

where we have used the definitions

Γ � BtA−T P−1
k|kA−1B, (9.57)

Θ � Q−1, (9.58)

α �
(
x̂k|k − A−1x̂k+1

)
. (9.59)

Back-substituting (9.56) into (9.55), we obtain
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W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) =
1
2

[
α − A−1B(Γ + Θ)−1BtA−T P−1

k|kα
]t

P−1
k|k[

α − A−1B(Γ + Θ)−1BtA−T P−1
k|kα

]
+

1
2
αtP−1

k|kA−1B(Γ + Θ)−1Θ (9.60)

(Γ + Θ)−1BtA−T P−1
k|kα + constant

� 1
2
αtSα + constant, (9.61)

where

S =
[
I − A−1B(Γ + Θ)−1BtA−T P−1

k|k
]t

P−1
k|k[

I − A−1B(Γ + Θ)−1BtA−T P−1
k|k

]
+ P−1

k|kA−1B(Γ + Θ)−1Θ(Γ + Θ)−1BtA−T P−1
k|k

= P−1
k|k − 2P−1

k|kA−1B(Γ + Θ)−1BtA−T P−1
k|k

+ P−1
k|kA−1B(Γ + Θ)−1

{
BtA−T P−1

k|kA−1B
}

(Γ + Θ)−1BtA−T P−1
k|k
(9.62)

+ P−1
k|kA−1B(Γ + Θ)−1Θ(Γ + Θ)−1BtA−T P−1

k|k .

We note that the term in the { } in (9.62) is equal to Γ defined in (9.57).
Hence, the last three terms above can be combined to give

S = P−1
k|k − P−1

k|kA−1B(Γ + Θ)−1BtA−T P−1
k|k . (9.63)

Substituting (9.63) and (9.57)–(9.59) in (9.61), we have

W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) =
1
2
(
x̂k+1 − Ax̂k|k

)t
A−T

{
P−1

k|k − P−1
k|kA−1B[

BtA−T P−1
k|kA−1B + Q−1

]−1

BtA−T P−1
k|k

}
A−1(x̂k+1 − Ax̂k|k) + constant,

� 1
2
(
x̂k+1 − x̂k+1|k

)t (Pk+1|k)−1
(
x̂k+1 − x̂k+1|k

)
+ constant,

where we have used

x̂k+1|k � Ax̂k|k, (which gives (9.50) for j = k),

Pk+1|k � A

{
P−1

k|k − P−1
k|kA−1B

[
BtA−T P−1

k|kA−1B + Q−1
]−1

BtA−T P−1
k|k

}−1

At. (9.64)
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We also we note from (9.64) that

Pk+1|k =
{
A−T P−1

k|kA−1 − A−T P−1
k|kA−1B[

BtA−T P−1
k|kA−1B + Q−1

]−1

BtA−T P−1
k|kA−1

}−1

.

Using the matrix inversion lemma, we have

Pk+1|k = APk|kAt + BQBt,

as in (9.52) for j = k. Thus, summarising step 1, we have shown that

W opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k) =
1
2
(
x̂k+1 − x̂k+1|k

)t
P−1

k+1|k
(
x̂k+1 − x̂k+1|k

)
+ constant, (9.65)

where x̂k+1|k and Pk+1|k satisfy (9.50) and (9.52), respectively, for j = k.

Step 2: We next add the term 1
2 (yd

k+1−Cx̂k+1)tR−1(yd
k+1−Cx̂k+1) to (9.65)

to obtain

V opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k+1) =
1
2
(x̂k+1 − x̂k+1|k)tP−1

k+1|k(x̂k+1 − x̂k+1|k)

+
1
2
(yd

k+1 − Cx̂k+1)tR−1(yd
k+1 − Cx̂k+1)

+ constant. (9.66)

We want to write (9.66) as a perfect square, that is,

V opt
k+1(x̂k+1, µ0, y

d
1 , . . . , yd

k+1) =
1
2
(x̂k+1 − x̂k+1|k+1)tP

−1
k+1|k+1

(x̂k+1 − x̂k+1|k+1) + constant. (9.67)

To find the expression for x̂k+1|k+1 used in (9.67), we note that x̂k+1|k+1 is
the minimum of V opt

k+1(x̂k+1, µ0, y
d
1 , . . . , yd

k+1). Hence, to obtain x̂k+1|k+1, we
differentiate (9.66) with respect to x̂k+1, evaluate at x̂k+1 = x̂k+1|k+1 and set
the result to zero, that is,

P−1
k+1|k(x̂k+1|k+1 − x̂k+1|k) − CtR−1(yd

k+1 − Cx̂k+1|k+1) = 0.

Adding and subtracting CtR−1Cx̂k+1|k, and rearranging, we have

(P−1
k+1|k + CtR−1C)x̂k+1|k+1 = (P−1

k+1|k + CtR−1C)x̂k+1|k

+ CtR−1(yd
k+1 − Cx̂k+1|k).

From the above expression we obtain
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x̂k+1|k+1 = x̂k+1|k + (P−1
k+1|k + CtR−1C)−1CtR−1(yd

k+1 − Cx̂k+1|k)

= x̂k+1|k + Pk+1|k(I + CtR−1CPk+1|k)−1CtR−1(yd
k+1 − Cx̂k+1|k)

= x̂k+1|k + Pk+1|kCt(I + R−1CPk+1|kCt)−1R−1(yd
k+1 − Cx̂k+1|k)

= x̂k+1|k + Pk+1|kCt(R + CPk+1|kCt)−1(yd
k+1 − Cx̂k+1|k),

which gives (9.51) for j = k.
Similarly, to find the expression for Pk+1|k+1 used in (9.67), we differentiate

(9.66) twice with respect to x̂k+1. This gives

P−1
k+1|k+1 � P−1

k+1|k + CtR−1C,

which, using the matrix inversion lemma, gives (9.53) for j = k.
Thus, we have established (9.67) and induction completes the proof. �

We can use the characterisation of the partial value functions given in
Lemma 9.6.1 to derive the optimal estimator where we optimise with respect
to both {ŵ0, . . . , ŵk−1} and x̂0 (or, equivalently, x̂k). In particular, we have
the following important result.

Theorem 9.6.2 (Kalman Filter) The optimal estimate x̂k for xk given the
data µ0, yd

1 , . . . yd
k, satisfies

x̂k = x̂k|k,

where x̂k|k satisfies the recursions (9.48) to (9.53).

Proof. The optimal choice x̂k = x̂k|k follows immediately by minimising (9.47)
with respect to x̂k since x̂k is unconstrained here. �

Remark 9.6.1 (Optimal Smoother). Actually, the minimisation of (9.47)
with respect to x̂k yields optimal estimates of all states x0, . . . , xk given
data up to time k. These are called optimal smoothed estimates, and will be
denoted by x̂j|k for j = 0, . . . , k. They can be computed simply by running
x̂k−1 = A−1x̂k − A−1Bŵk−1 backwards starting from x̂k = x̂k|k and using
ŵk−1, ŵk−2, . . . , ŵ0 as in (9.56). Defining ŵj|k � ŵj , for j = 0, . . . , k − 1, the
optimal smoother is then given by the recursion

x̂j|k = A−1x̂j+1|k − A−1Bŵj|k for j = 0, . . . , k − 1,

where

ŵj|k = −
(
BtA−T P−1

j|j A−1B + Q−1
)−1

BtA−T P−1
j|j

(
x̂j|j − A−1x̂j+1|k

)
,

and x̂j|j and Pj|j are given by (9.50)–(9.53). ◦
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9.7 Nonlinear Problems

The above circle of ideas can be extended to nonlinear and/or non-Gaussian
problems. Consider the following nonlinear Markov model:

xk+1 = f(xk, wk), (9.68)
yk = h(xk) + vk, (9.69)

where f and h are continuously differentiable functions of their arguments, and
∂f/∂wk is nonsingular. In (9.68)–(9.69), {wk} and {vk} are i.i.d. sequences
having probability density functions that satisfy

pw(wk) =

{
p1(wk) for wk ∈ Ω1,

0 otherwise,

and such that − ln p1(wk) = 
1(wk); and

pv(vk) =

{
p2(vk) for vk ∈ Ω2,

0 otherwise,

and such that − ln p2(vk) = 
2(vk). Also, we assume

px0(x0) =

{
p3(x0) for x0 ∈ Ω3,

0 otherwise,

and − ln p3(x0) = 
3(x0).
Using the rule of transformation of probability density functions for the

model (9.68)–(9.69) we have:

pyk|xk
(yk = yd

k|xk = x̂k) = pv(vk = yd
k − h(x̂k)),

pxk+1|xk
(xk+1 = x̂k+1|xk = x̂k) = pw(wk = ŵk)

∣∣∣∣∣det
∂xk+1

∂wk

∣∣∣∣
x̂k,ŵk

∣∣∣∣∣
−1

= pw(wk = ŵk)
∣∣∣∣det

∂f(x̂k, ŵk)
∂wk

∣∣∣∣−1

,

for all ŵk ∈ Ω1 such that x̂k+1 = f(x̂k, ŵk).
Then, using the vector definitions in (9.14)–(9.17), the negative logarithm

of the joint probability density function for states and outputs satisfies

− ln pyN ,xN (yN = yd
N ,xN = x̂N ) = 
3(x̂0) +

N∑
k=1


2(yd
k − h(x̂k))

+
N−1∑
k=0

[

1(ŵk) + ln

∣∣∣∣det
∂f(x̂k, ŵk)

∂wk

∣∣∣∣] ,

(9.70)
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subject to the constraints

x̂k+1 = f(x̂k, ŵk) for k = 0, . . . , N − 1, (9.71)
ŵk ∈ Ω1 for k = 0, . . . , N − 1, (9.72)

yd
k − h(x̂k) ∈ Ω2 for k = 1, . . . , N, (9.73)

x̂0 ∈ Ω3. (9.74)

Hence, we can find the JAPMP estimate (9.27) by minimising (9.70) subject
to (9.71)–(9.74) (see (9.28)).

9.8 Relationship to Chapman–Kolmogorov Equation

We next relate the above ideas to the Chapman–Kolmogorov5 equation for
recursive nonlinear filtering. The latter equation allows one to recursively
compute pxk|yk,...,y1(xk|yk, yk−1, . . . , y1). Specifically, using the Markovian
structure of (9.68), (9.69), we have, from Bayes’ rule:

Time Update6 (Chapman-Kolmogorov Equation)

pxk|yk−1,...,y1(xk|yk−1, . . . , y1)

=
∫

Rn

pxk,xk−1|yk−1,...,y1(xk, xk−1|yk−1, . . . , y1)dxk−1 (9.75)

=
∫

Rn

pxk|xk−1,yk−1,...,y1(xk|xk−1, yk−1, . . . , y1)

× pxk−1|yk−1,...,y1(xk−1|yk−1, . . . , y1)dxk−1 (9.76)

=
∫

Rn

pxk|xk−1(xk|xk−1)pxk−1|yk−1,...,y1(xk−1|yk−1, . . . , y1)dxk−1, k ≥ 1.

(9.77)

Observation Update7

pxk|yk,...,y1(xk|yk, . . . , y1)

=
pyk|xk,yk−1,...,y1(yk|xk, yk−1, . . . , y1) pxk|yk−1,...,y1(xk|yk−1, . . . , y1)

pyk|yk−1,...,y1(yk|yk−1, . . . , y1)
(9.78)

=
pyk|xk

(yk|xk) pxk|yk−1,...,y1(xk|yk−1, . . . , y1)
pyk|yk−1,...,y1(yk|yk−1, . . . , y1)

, k ≥ 0, (9.79)

5 Sometimes misspelled in Australia as Kolmogoroo.
6 In passing from (9.75) to (9.76) we use Bayes’ rule, and from (9.76) to (9.77) we

use the Markovian property of (9.68).
7 Equality (9.78) follows from Bayes’ rule, and, in passing from (9.78) to (9.79) we

use the Markovian property of (9.69).
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where

pyk|yk−1,...,y1(yk|yk−1, . . . , y1)

=
∫

Rn

pyk|xk
(yk|xk)pxk|yk−1,...,y1(xk|yk−1, . . . , y1)dxk. (9.80)

Notice that pxk|xk−1 and pyk|xk
, needed in the evaluation of equa-

tions (9.77) and (9.79)–(9.80) are given in Section 9.7 above.
Given pxk|yk,...,y1(xk|yk, . . . , y1), one can then compute various estimates,

for example:

(i) Conditional mean

x̂
[1]
k =

∫
Rn

xk pxk|yk,...,y1(xk|yk, . . . , y1)dxk. (9.81)

(ii) A posteriori most probable

x̂
[3]
k = arg max

xk

pxk|yk,...,y1(xk|yk, . . . , y1). (9.82)

Thus the Chapman–Kolmogorov equation (9.77) and the observation up-
date equation (9.80) offer more flexibility than the optimisation approach
presented in Section 9.3 (for the linear constrained case) and Section 9.7 (for
the nonlinear constrained case) since they describe the entire conditional dis-
tribution of xk given the (past) data y1, . . . , yk. Given this distribution, one
can then compute various estimates, for example, those given in (9.81) and
(9.82). On the other hand, the Chapman–Kolmogorov equation is, in general,
difficult to solve and require various approximations to be used, for exam-
ple, those used in particle filtering (see, for example, Doucet, de Freitas and
Gordon 2001). By way of contrast, the optimisation approach of Sections 9.3
and 9.7 can be solved via optimal control methods.

Finally, we note that the following two estimates are not, in general, equal:

(i) Joint a posteriori most probable [JAPMP][
x̂

[2]
0 , . . . , x̂

[2]
N

]
� arg max

x0,...,xN

px0,...,xN |y1,...,yN
(x0, . . . , xN |y1, . . . , yN ).

(9.83)
(ii) A posteriori most probable [APMP]

x̂
[3]
N � arg max

xN

pxN |y1,...,yN
(xN |y1, . . . , yN) (9.84)

= arg max
xN

∫
Rn×···× Rn

px0,...,xN |y1,...,yN
(x0, . . . , xN |y1, . . . , yN )dx0 . . . dxN−1.

(9.85)
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x1

x2

px1,x2(x1, x2)

joint max a posteriori

probability of x1 and x2

marginal probability for x2

max a posteriori after

integrating by x1

Figure 9.5. Difference between joint a posteriori maximum probability and a pos-
teriori maximum probability.

This is illustrated in Figure 9.5.

However, if we use the conditional mean (9.81) as an estimate then we get
the same answer whether we use the joint distribution for {x0, . . . , xN} or the
marginal distribution for xN . This follows because

x̂
[1]
N =

∫
Rn

xN pxN |yN ,...,y1(xN |yN , . . . , y1)dxN

=
∫

Rn

xN

[∫
Rn×···×Rn

pxN ,...,x0|yN ,...,y1(xN , . . . , x0|yN , . . . , y1) dxN−1 . . . dx0

]
dxN

=
∫

Rn×···×Rn

xN pxN ,...,x0|yN ,...,y1(xN , . . . , x0|yN , . . . , y1)dxN . . . dx0,

since

pxN |yN ,...,y1(xN |yN , . . . , y1)

=
∫

Rn×···×Rn

pxN ,...,x0|yN ,...,y1(xN , . . . , x0|yN , . . . , y1)dxN−1 . . . dx0.
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9.9 Moving Horizon Estimation

As with control, we can readily convert the fixed horizon estimators discussed
above into moving horizon estimators [MHE]. An issue to be addressed in
this context is whether or not the situation allows data-smoothing; that is,
whether one can collect data beyond the time at which the state estimate is
required.

In some applications, for example, control, one requires that the estimate
apply to the most recent state; that is, it is not possible to collect data be-
yond the point where the state estimate is defined. In other applications, for
example, telecommunications, one can tolerate a delay between the last time
at which the data are collected and the time at which the estimate is defined.
In the latter situation we say that a smoothed state estimate is required.

To cover both of the above scenarios, we let i denote the “time” at which
the estimate is required. We also fix integers L1 ≥ 0 and L2 ≥ 0 and suppose
for the moment that

xi−L1 ∼ N(zi−L1 , Pi−L1), (9.86)

where zi−L1 is a given a priori estimate for xi−L1 having a Gaussian distribu-
tion. The matrix P−1

i−L1
reflects the degree of belief in this a priori estimate.

We will treat the data in blocks of length N = L1 + L2. We assume that the
estimate of xi can be based on data collected between i − L1 and i + L2 − 1.
We then formulate the fixed horizon optimisation problem as in (9.29)–(9.35)
over the interval [i−L1, i + L2 − 1]. That is, the corresponding sequences are
indexed by k = i − L1, i − L1 + 1, . . . , i + L2 − 1. This yields the required
estimate (or smoother for L2 > 1, see Remark 9.6.1) of xi.

The next question is how to turn this into a moving horizon procedure.
The idea is to store the final state estimate x̂i+L2−1 obtained from the above
fixed horizon optimisation together with some measure of our degree of belief
in this estimate, which we denote P−1

i+L2−1. The pair (x̂i+L2−1, Pi+L2−1) will
be used to initialise a fixed horizon optimisation problem L1 +L2 steps ahead
(that is, they will take the role of (zi−L1 , Pi−L1) in (9.86)).

We use again a Gaussian approximation when we return to this estimate.
Of course, due to the constraints, we appreciate that the a posteriori distri-
bution of the state will not be Gaussian. However, a Gaussian approach is
justified on the following grounds:

(i) The “initial state information” is of diminishing importance as the block
length N increases.

(ii) Making a Gaussian approximation greatly simplifies the problems.
(iii) We can, at least, be compatible with the unconstrained case by determin-

ing Pi−L1 from ordinary linear estimation theory.

Finally, the MHE is organised as illustrated in Figure 9.6. (Note that we
need storage for L1 + L2 past state estimates to initialise subsequent blocks.)
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initial estimate

feed forward

Figure 9.6. Graphical representation of MHE.

We next illustrate the idea of constrained estimation by three simple ex-
amples.

Example 9.9.1. Consider the same model as used in Example 1.3.1 of Chap-
ter 1, which we repeat here for convenience:

yk = wk − 1.7wk−1 + 0.72wk−2 + vk. (9.87)

Rather than a binary signal, we here consider that the input noise wk has a
truncated Gaussian distribution. We assume that the measurement noise vk

has a Gaussian distribution. The details are:

• input noise variance prior to truncation: Q = 1;
• input noise mean prior to truncation: µw = 0;
• measurement noise variance: R = 0.2;
• truncation interval: wk ∈ [−1, 1];
• input noise variance after truncation: ≈ 0.293;
• input noise mean after truncation: 0.
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Two estimators were compared, namely the MHE using N = L1 + 1 = 2,
L2 = 1, incorporating the constraint |wk| ≤ 1, and a standard linear Kalman
filter based on R = 0.2 and the true input variance of 0.293. The initial
estimates as in (9.86) were selected as follows: zi−N is stored and propagated
as in Figure 9.6; Pi−N is set equal to the corresponding value for the Kalman
filter. The results are shown in Figure 9.7. Some observations from this figure
are:

(i) The linear Kalman filter performs quite well in this example. (This is not
surprising since it is, after all, the best linear unbiased estimator.)

(ii) The estimates provided by the linear Kalman filter occasionally lie out-
side the range ±1. (Again, this is not surprising since this estimator is
unconstrained.)

(iii) The MHE is slightly better but the result is marginal. (Again, this is not
surprising in view of observation (i).) ◦

0 5 10 15 20 25

−1

0

1

k

Noise Variance R = 0.2, Horizon Length = 2

Data w
k

MHE
KF

Figure 9.7. Comparison of MHE and Kalman filter with correct variance: data
(circle-solid line), estimate provided by the MHE (triangle-dashed line) and estimate
provided by the Kalman filter (star-dashed line).

Example 9.9.2. Here we consider the same model (9.87) as in Example 9.9.1,
save that we change the input to a nonzero-mean truncated Gaussian distri-
bution as illustrated in Figure 9.2. The details are:
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• input noise variance prior to truncation: Q = 1;
• input noise mean prior to truncation: µw = 1.5;
• truncation interval: wk ∈ [−1.5, 0.5];
• input noise variance after truncation: ≈ 0.175;
• input noise mean after truncation: ≈ 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n 
S

qu
ar

ed
 E

rr
or

Noise Variance R

Kalman Filter
Moving Horizon Estimation

Figure 9.8. Comparison of mean square estimation error achieved by the MHE
(dashed line) and the Kalman filter with correct variance (solid line).

Two estimators were compared, namely, MHE with N = L1 + 1 = 5,
L2 = 1, and using the given constraints; and a standard linear Kalman filter
based on the true variance. Figure 9.8 compares the mean square estimation
errors for a range of measurement noise variances R.

It can be seen from Figure 9.8 that the MHE outperforms the Kalman
filter save in the presence of large measurement noise. This result is in good
accord with intuition since, for large measurement noise, the observations are
basically ignored. This means that the Kalman filter gives the a priori mean,
which is zero, whereas the MHE gives wk = 0.5 since this corresponds to the
point where the a priori probability is maximal.

◦
Example 9.9.3. Here we consider the same channel model (9.87) as in Ex-
amples 9.9.1 and 9.9.2, save that now the input wk is distributed as the combi-
nation of two nonoverlapping, nonzero-mean truncated Gaussian distributions
as in Figure 9.9. The distribution can be described by two regions: the “left re-
gion” is a Gaussian distribution N(−1.5, 0.1) truncated between [−1, 0], and
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the “right region” is a Gaussian distribution N(1.5, 0.1) truncated between
[0, 1]. The resulting distribution has mean ≈ 0 and variance ≈ 0.872.

1.5−1.5 0−1 1

0.10.1

Ω

Figure 9.9. Combining the tails of two truncated Gaussian distributions.

We will compare the performance of the Kalman filter and the MHE for the
above problem. The Kalman filter assumes a Gaussian approximation of the
distribution, with zero mean and variance 0.872. For the MHE, we consider
no smoothing, that is, L2 = 1. The initial weighting P is set equal to the
value of the steady state error covariance of the Kalman filter, and the initial
estimate is forwarded as in Figure 9.6. To find the optimal input sequence
{ŵ0, . . . , ŵN−1} the estimator solves, at each step, 2N separate QP problems
(see Section 9.4.2). The global optimum is the minimum of the individual
sub-problems.

In Figure 9.10, we compare the Kalman filter estimates with those of the
MHE for different measurement noise variances and different horizon lengths.
In Figure 9.10 (a), incorporating mixed distributions with the MHE method
and horizon 1 gives estimates that are closer to the boundary. On the other
hand, the unconstrained Kalman filter exceeds the limits and tends to esti-
mate near the zero mean. In Figure 9.10 (b) we see that the MHE performs
more poorly as more measurement noise is introduced, since, in this case, the
MHE tends to give the point where the a priori probability is maximal. By in-
creasing the horizon length to 2 (see Figure 9.10 (c)), the estimator uses more
data, resulting in better estimates. However, the number of sub-problems also
increases. In Figure 9.10 (d), the horizon was increased to 4, showing a slight
improvement in performance.

It should be observed that, since the distribution of the data points wk is
close to the boundary, and with additive measurement noise, the MHE will
give estimates that are close to the boundary. In the limiting case, when the
distribution approaches a point mass distribution, the estimation problem will
resemble that of the finite alphabet estimation problem, which is discussed in
Chapter 13.

◦
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(d) Noise Variance R = 0.4, Horizon = 4

Figure 9.10. Data wk (circle-solid line), Kalman filter estimates (star-dashed line),
MHE estimates (triangle-dashed line) for different measurement noise variances R
and different horizons N .

9.10 Further Reading

For complete list of references cited, see References section at the end of book.

General

A useful introduction to estimation is given in Jazwinski (1970). The original
derivation of the discrete Kalman filter used the concept of orthogonal projec-
tion (Kalman 1960a). The variational approach to estimation was first taken
by Bryson and Frazier (1963). The solution of the continuous least square
problem via dynamic programming was first given by Cox (1964).

Section 9.4.3

The idea of utilising constraints in the context of approximating arbitrary
distributions appears in Robertson and Lee (2002).
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Section 9.9

Early work on moving horizon estimation appears in Michalska and Mayne
(1995). See also Rao, Rawlings and Lee (2001) and Rao, Rawlings and Mayne
(2003).



10

Duality Between Constrained Estimation and
Control

10.1 Overview

The previous chapter showed that the problem of constrained estimation can
be formulated as a constrained optimisation problem. Indeed, this problem
is remarkably similar to the constrained control problem—differing only with
respect to the boundary conditions. (In control, the initial condition is fixed,
whereas in estimation, the initial condition can also be adjusted.) In the cur-
rent chapter we show that the similarity between the two problems of con-
strained estimation and constrained control has deeper implications.

In particular, we derive the Lagrangian dual (see Section 2.6 of Chapter 2)
of a constrained estimation problem and show that it leads to a particular un-
constrained nonlinear optimal control problem. We then show that the origi-
nal (primal) constrained estimation problem has an equivalent formulation as
an unconstrained nonlinear optimisation problem, exposing a clear symmetry
with its dual.

10.2 Lagrangian Duality of Constrained Estimation and
Control

Consider the following system

xk+1 = Axk + Bwk for k = 0, · · · , N − 1,

yk = Cxk + vk for k = 1, · · · , N,
(10.1)

where xk ∈ Rn, wk ∈ Rm, yk ∈ Rp. For clarity of exposition, we begin with
the case where only the process noise sequence {wk} is constrained.1 We thus
assume that {wk} is an i.i.d. sequence having truncated Gaussian distribution

1 The case of general constraints on wk, vk and x0 will be treated in Sections 10.6
and 10.7.
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of the form given in (9.11) of Chapter 9, with Ω1 = Ω. We further assume
that {vk} is an i.i.d. sequence having a Gaussian distribution N(0, R), and x0

has a Gaussian distribution N(µ0, P0).
For (10.1) we consider the optimisation problem defined in (9.29)–(9.35) of

Chapter 9, which yields the joint a posteriori most probable state estimates.
According to the assumptions, we set Ω1 = Ω, Ω2 = Rp, and Ω3 = Rn in
(9.29)–(9.35). Thus, we consider:

Pe : V opt
N (µ0, {yd

k}) � min
x̂k,v̂k,ŵk

VN ({x̂k}, {v̂k}, {ŵk}), (10.2)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (10.3)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (10.4)

{x̂0, . . . , x̂N , v̂1, . . . , v̂N , ŵ0, . . . , ŵN−1} ∈ X, (10.5)

where, in (10.5),

X = R
n × · · · × R

n︸ ︷︷ ︸
N+1

×R
p × · · · × R

p︸ ︷︷ ︸
N

×Ω × · · · × Ω︸ ︷︷ ︸
N

. (10.6)

In (10.2), the objective function is

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

ŵt
kQ−1ŵk +

1
2

N∑
k=1

v̂t
kR−1v̂k, (10.7)

where P0 > 0, Q > 0, R > 0 are the covariance matrices in (9.11)–(9.13).
The following result establishes duality between the constrained estimation

problem Pe and a particular unconstrained nonlinear optimal control problem.

Theorem 10.2.1 (Dual Problem) Assume Ω in (10.6) is a nonempty
closed convex set. Given the primal constrained fixed horizon estimation prob-
lem Pe defined by equations (10.2)–(10.7), the Lagrangian dual problem is

De : φopt(µ0, {yd
k}) � min

λk,uk

φ({λk}, {uk}), (10.8)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.9)
λN = 0, (10.10)
ζk = Btλk for k = 0, · · · , N − 1, (10.11)

ζ̄k = Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1. (10.12)

In (10.8), the objective function is
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φ({λk}, {uk}) � 1
2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
1
2

N∑
k=1

(uk − R−1yd
k)tR(uk − R−1yd

k)

+
N−1∑
k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
+ γ (10.13)

where γ is the constant term given by

γ � −1
2
µt

0P
−1
0 µ0 − 1

2

N∑
k=1

(yd
k)tR−1yd

k. (10.14)

In (10.12), ΠΩ̃ denotes the minimum Euclidean distance projection onto Ω̃ �
{z : Q1/2z ∈ Ω}, that is,

ΠΩ̃ : R
m −→ Ω̃

s �−→ s̄ = ΠΩ̃s � arg min
z∈Ω̃

‖z − s‖. (10.15)

Moreover, there is no duality gap, that is, the minimum achieved in (10.2) is
equal to minus the minimum achieved in (10.8).

Proof. Consider the primal constrained fixed horizon estimation problem Pe,
defined by equations (10.2)–(10.7). From (2.44) in Chapter 2, the Lagrangian
dual function θ is given by:

θ
({λk}, {uk}

)
= inf

ŵk∈Ω,x̂k,v̂k

L
({x̂k}, {v̂k}, {ŵk}, {λk}, {uk}

)
, (10.16)

where the function L is defined as,

L
({x̂k}, {v̂k}, {ŵk}, {λk}, {uk}

)
= VN ({x̂k}, {v̂k}, {ŵk})

+
N−1∑
k=0

λt
k

[
x̂k+1 − Ax̂k − Bŵk

]

+
N∑

k=1

ut
k

[
yd

k − Cx̂k − v̂k

]
. (10.17)

In (10.17), VN is the primal objective function defined in (10.7), and {λk} and
{uk} are the Lagrange multipliers corresponding, respectively, to the linear
equalities (10.3) and (10.4). Using (10.7) in (10.17), and combining terms, the
function L can be rewritten as
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L
({x̂k}, {v̂k}, {ŵk}, {λk}, {uk}

)
=

1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) − λt
0Ax̂0

+
N∑

k=1

{1
2
v̂t

kR−1v̂k − ut
kv̂k + ut

kyd
k

}

+
N−1∑
k=0

{1
2
ŵt

kQ−1ŵk − λt
kBŵk

}

+
N−1∑
k=1

{
(λk−1 − Atλk − Ctuk)tx̂k

}
+ (λN−1 − CtuN)tx̂N . (10.18)

Notice that the terms that depend on the constrained variables ŵk are inde-
pendent of the other variables, x̂k and v̂k, with respect to which the minimi-
sation (10.16) is carried out. The values that achieve the infimum in (10.16),
denoted ŵ∗

k, x̂∗
k and v̂∗k, can be computed from

ŵ∗
k = arg min

ŵk∈Ω

{1
2
ŵt

kQ−1ŵk − λt
kBŵk

}
for k = 0, · · · , N − 1, (10.19)

∂L(·)
∂x̂0

= P−1
0 (x̂∗

0 − µ0) − Atλ0 = 0, (10.20)

∂L(·)
∂v̂k

= R−1v̂∗k − uk = 0 for k = 1, · · · , N, (10.21)

provided that the following two conditions are satisfied

λk−1 − Atλk − Ctuk = 0 for k = 1, · · · , N − 1, (10.22)
λN−1 − CtuN = 0. (10.23)

Notice from (10.18) that the infimum in (10.16) is −∞ whenever {λk} and
{uk} are such that (10.22) and (10.23) are not satisfied. However, since we will
subsequently choose {λk} and {uk} so as to maximise θ({λk}, {uk}) in (10.16)
(see (2.43) and (2.44) in Chapter 2), we are here interested only in those values
of {λk} and {uk} satisfying (10.22) and (10.23).

We next define the variables

ζk � Btλk, (10.24)

s � Q−1/2ŵk, (10.25)

s∗ � Q−1/2ŵ∗
k, (10.26)

which transform the minimisation problem (10.19) into the minimum Eu-
clidean distance problem

s∗ = arg min
s∈Ω̃,

{1
2
sts − (ζt

kQ1/2)s
}

, (10.27)
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where Ω̃ � {z : Q1/2z ∈ Ω}. The solution to (10.27) can be expressed as

s∗ = s̄ � ΠΩ̃Q1/2ζk, (10.28)

where ΠΩ̃ is the Euclidean projection (10.15). Using (10.26) and (10.28), the
solution to (10.19) is then

ŵ∗
k = Q1/2ΠΩ̃Q1/2ζk. (10.29)

Finally, we define

ζ̄k � Q−1ŵ∗
k = Q−1/2ΠΩ̃Q1/2ζk, (10.30)

and introduce an extra variable, λN � 0, for ease of notation. Thus, from
(10.19)–(10.24) and (10.30), we obtain:

ŵ∗
k = Qζ̄k for k = 0, · · · , N − 1, (10.31)

ζ̄k � Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1, (10.32)

ζk � Btλk for k = 0, · · · , N − 1, (10.33)
λN � 0, (10.34)

λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.35)
x̂∗

0 = P0A
tλ0 + µ0, (10.36)

v̂∗k = Ruk for k = 1, · · · , N. (10.37)

Substituting (10.31)–(10.37) into (10.18) we obtain, after some algebraic ma-
nipulations, the Lagrangian dual function:

θ
({λk}, {uk}

)
= L

({x̂∗
k}, {v̂∗k}, {ŵ∗

k}, {λk}, {uk}
)

= −1
2
{
λt

0AP0A
tλ0 + 2λt

0Aµ0

}
− 1

2

N∑
k=1

{
ut

kRuk − 2ut
kyd

k

}
+

N−1∑
k=0

{1
2
ζ̄t
kQζ̄k − ζt

kQζ̄k

}
.

(10.38)

Finally, completing the squares in (10.38), and after further algebraic manip-
ulations, we obtain:

θ
({λk}, {uk}

)
= −1

2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

− 1
2

N∑
k=1

(uk − R−1yd
k)tR(uk − R−1yd

k)

−
N−1∑
k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
− γ,
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where γ is the constant defined in (10.14). Defining φ � −θ, the formulation of
the dual problem De in (10.8)–(10.15) follows from (2.43)–(2.44) in Chapter 2,
and the fact that max θ = −min(−θ) = −min φ and the optimisers are the
same. Also, from Theorem 2.6.4 in Chapter 2, we conclude that there is no
duality gap, that is, the minimum achieved in (10.2) is equal to minus the
minimum achieved in (10.8). �

We can think of (10.9)–(10.11) as the state equations of a system (running
in reverse time) with input uk and output ζk. Theorem 10.2.1 then shows that
the dual of the primal estimation problem of minimisation with constraints
on the system inputs (the process noise wk) is an unconstrained optimisation
problem using projected outputs ζ̄k in the objective function.

A particular case of Theorem 10.2.1 is the following result for the uncon-
strained case.

Corollary 10.2.2 In the case in which the variables ŵk in the primal problem
Pe are unconstrained (that is, Ω = Rm), the dual problem becomes:

De : min
λk,uk

1
2

{
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
N∑

k=1

(uk − R−1yd
k)tR(uk − R−1yd

k) +
N−1∑
k=0

λt
kBQBtλk

}
+ γ,

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N,

λN = 0,

where γ is the constant defined in (10.14).

Proof. Note that ζ̄k = ζk in (10.12) since the projection (10.15) reduces to
the identity mapping in the unconstrained case. The result then follows upon
substituting ζ̄k = ζk = Btλk in expression (10.13). �

10.3 An Equivalent Formulation of the Primal Problem

In the previous section we have shown that problem De is dual to problem Pe

in (10.2)–(10.7). We can gain further insight by expressing Pe in a different
way. This is facilitated by the following results.

Lemma 10.3.1 Let Ω̃ ⊂ Rm be a closed convex set with a nonempty interior.
Let s ∈ Rm such that s /∈ Ω̃. Then there exists a unique point s̄ ∈ Ω̃ with min-
imum Euclidean distance from s. Furthermore, s and s̄ satisfy the inequality

(s − s̄)t(s̄ − ξ) > 0 (10.39)

for any point ξ in the interior of Ω̃.
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Proof. By assumption, Ω̃ is a nonempty closed convex set. From Theorem 2.3.1
of Chapter 2, we have that there exists a unique s̄ ∈ Ω̃ with minimum Eu-
clidean distance from s, and s̄ is the minimiser if and only if

(s − s̄)t(z − s̄) ≤ 0 for all z ∈ Ω̃. (10.40)

Now, let ξ ∈ int Ω̃. We will show that (10.39) holds. Since ξ ∈ Ω̃, (10.40)
holds for z = ξ. Thus we only need to show that (10.40) for z = ξ ∈ int Ω̃ can
never be an equality. Suppose, by contradiction, that

(s − s̄)t(ξ − s̄) = 0. (10.41)

Note that ‖s − s̄‖ > 0 since Ω̃ is closed, and s /∈ Ω̃, s̄ ∈ Ω̃. Since ξ ∈ int Ω̃,
there exists an ε > 0 such that the ball Nε(ξ) � {z : ‖z− ξ‖ < ε} is contained
in Ω̃. Define

ξ̃ = ξ + α
s − s̄

‖s − s̄‖ , 0 < α < ε; (10.42)

hence, ‖ξ̃ − ξ‖ = α < ε and ξ̃ ∈ Nε(ξ). We then have, using (10.41) and
(10.42), that

(s − s̄)t(ξ̃ − s̄) = (s − s̄)t(ξ − s̄) + α
(s − s̄)t(s − s̄)

‖s − s̄‖ = α‖s − s̄‖ > 0.

Thus, we have found a point ξ̃ ∈ Ω̃ (since Nε(ξ) is contained in Ω̃) such that
(s − s̄)t(ξ̃ − s̄) > 0, which contradicts (10.40). Thus, (10.39) must be true,
and the result follows. �
Lemma 10.3.2 Let f : Rm → R be any function and let Ω ⊂ Rm be a closed
convex set that contains an interior point c. Consider the optimisation problem

P ′
1 : min

w
V (w), (10.43)

with

V (w) � f(w̄) + (w − w̄)tQ−1(w̄ − c), (10.44)

w̄ � Q1/2ΠΩ̃Q−1/2w, (10.45)

where ΠΩ̃ is the mapping that assigns to any vector s in Rm the vector s̄ in
Ω̃ that is closest to s in Euclidean distance, that is,

ΠΩ̃ : R
m −→ Ω̃

s �−→ s̄ = ΠΩ̃s � arg min
z∈Ω̃

‖z − s‖, (10.46)

and set Ω̃ is defined as

Ω̃ � {z : Q1/2z ∈ Ω}. (10.47)

Then,
V (w̄) < V (w) for all w ∈ R

m\Ω.
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Proof. Suppose that w∗ ∈ Rm\Ω and let

w̄∗ � Q1/2ΠΩ̃Q−1/2w∗. (10.48)

Notice that w̄∗ ∈ Ω since (10.45), with ΠΩ̃ and Ω̃ defined in (10.46) and
(10.47), respectively, defines a projection of Rm onto Ω.

Define,
s∗ � Q−1/2w∗, s̄∗ � Q−1/2w̄∗. (10.49)

Then, by construction, s∗ and s̄∗ satisfy,

s̄∗ = ΠΩ̃s∗, (10.50)

and, in particular, s̄∗ ∈ Ω̃. Using (10.48) and (10.49) in (10.44)–(10.45), we
obtain,

V (w∗) = f(w̄∗)+(w∗−w̄∗)tQ−1(w̄∗−c) = f(Q1/2s̄∗)+(s∗−s̄∗)t(s̄∗−Q−1/2c).
(10.51)

Also, since w̄∗ ∈ Ω, we have (w̄∗) � Q1/2ΠΩ̃Q−1/2w̄∗ = w̄∗. Thus,

V (w̄∗) = f(w̄∗) + (w̄∗ − w̄∗)tQ−1(w̄∗ − c) = f(Q1/2s̄∗). (10.52)

It is easy to see, from the assumptions on Ω, that Ω̃ in (10.47) is a closed
convex set and Q−1/2c ∈ int Ω̃ since Q1/2 > 0. From Lemma 10.3.1, equation
(10.50), the definition of ΠΩ̃ in (10.46), and noticing that s∗ � Q−1/2w∗ /∈ Ω̃,
we conclude that

(s∗ − s̄∗)t(s̄∗ − Q−1/2c) > 0.

Hence, from (10.51) and (10.52), we have

V (w∗) − V (w̄∗) = (s∗ − s̄∗)t(s̄∗ − Q−1/2c) > 0.

The result then follows. �

In the sequel, we consider two optimisation problems to be equivalent if
they both achieve the same optimum and if the optimisers are the same.

Corollary 10.3.3 Under the conditions of Lemma 10.3.2, problem P ′
1 defined

by (10.43)–(10.47) is equivalent to the following problem

P1 : min
w∈Ω

f(w). (10.53)

Proof. It follows from Lemma 10.3.2 that for any point w in Rm\Ω we can find
a point w̄ in Ω that yields a strictly lower objective function value. Hence, we
can perform the minimisation of (10.44) in Ω without losing global optimal
solutions. Since the mapping Q1/2ΠΩ̃Q−1/2 used in (10.45) reduces to the
identity mapping in Ω, we conclude that (10.44) is equal to the objective
function in (10.53) for all w ∈ Ω, and thus the problems are equivalent. �
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Corollary 10.3.4 Let f : Rn × Rm × · · · × Rm → R be any function and let
Ω ⊂ Rm be a closed convex set that contains zero in its interior. Consider the
optimisation problem

P ′
2 : min

x0,w0,...,wN−1
V (x0, w0, . . . , wi, . . . , wN−1), (10.54)

with

V (x0, w0, . . . , wi, . . . , wN−1) � f(x0, w̄0, . . . , w̄i, . . . , w̄N−1)

+
N−1∑
k=0

(wk − w̄k)tQ−1w̄k, (10.55)

and
w̄i = Q1/2ΠΩ̃Q−1/2wi for i = 0, . . . , N − 1, (10.56)

where ΠΩ̃ and Ω̃ are defined as in (10.46) and (10.47), respectively.
Then, if wi ∈ Rm\Ω for some i ∈ {0, . . . , N − 1}, we have

V (x0, w0, . . . , w̄i, . . . , wN−1) < V (x0, w0, . . . , wi, . . . , wN−1)

for all x0 ∈ Rn and w0, . . . , wi−1, wi+1, . . . , wN−1 ∈ Rm.

Proof. Consider the sequence {x∗
0, w

∗
0 , . . . , w

∗
i , . . . , w∗

N−1} and suppose w∗
i ∈

Rm\Ω for some i. Via a similar argument to that used in the proof
of Lemma 10.3.2 (with c = 0), we can show that the sequence
{x∗

0, w
∗
0 , . . . , w̄∗

i , . . . , w∗
N−1}, with w̄∗

i = Q1/2ΠΩ̃Q−1/2w∗
i , gives a lower value

of the objective function (10.55). The result then follows. �
Corollary 10.3.5 Under the conditions of Corollary 10.3.4, problem P ′

2 de-
fined by (10.54)–(10.56) is equivalent to the problem

P2 : min
wk∈Ω,x0

f(x0, w0, . . . , wi, . . . , wN−1). (10.57)

Proof. Similar to the proof of Corollary 10.3.3. �
We are now ready to express the primal estimation problem Pe defined by

equations (10.2)–(10.7) in an equivalent form. This is done in the following
theorem.

Theorem 10.3.6 (Equivalent Primal Formulation) Assume that Ω is a
closed convex set that contains zero in its interior. Then the primal estimation
problem Pe defined by equations (10.2)–(10.7) is equivalent to the following
unconstrained optimisation problem:

P ′
e : V opt

N (µ0, y
d
k) � min

x̂k,v̂k,ŵk

V ′
N ({x̂k}, {v̂k}, {ŵk}), (10.58)

subject to:
x̂k+1 = Ax̂k + Bw̄k for k = 0, · · · , N − 1, (10.59)

v̂k = yd
k − Cx̂k for k = 1, · · · , N, (10.60)

w̄k = Q1/2ΠΩ̃Q−1/2ŵk for k = 0, . . . , N − 1, (10.61)
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where

V ′
N ({x̂k}, {v̂k}, {ŵk}) � 1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) +
1
2

N∑
k=1

v̂t
kR−1v̂k

+
N−1∑
k=0

[
1
2
w̄t

kQ−1w̄k + (ŵk − w̄k)tQ−1w̄k

]
, (10.62)

where ΠΩ̃ and Ω̃ are defined in (10.46) and (10.47), respectively.

Proof. First note that, using the equations (10.3) and (10.4), the objective
function (10.7) can be written in the form

VN

({x̂k}, {v̂k}, {ŵk}
)

= f(x̂0, ŵ0, . . . , ŵi, . . . , ŵN−1).

Since the minimisation of the above objective function is performed for x̂0 ∈
Rn and for ŵk ∈ Ω, we conclude that problem Pe can be written in the form
(10.57). Using Corollary 10.3.5 we can then express Pe in the form of problem
P ′

2 defined by (10.54)–(10.56). However, this is equivalent to (10.58)–(10.62)
(note the presence of w̄k in (10.59)), and the result then follows. �

Theorem 10.3.6 shows that the primal estimation problem of minimisation
with constraints on the system inputs (the process noise wk) can be trans-
formed into an equivalent unconstrained minimisation problem using projected
inputs w̄k both in the objective function and in the state equations (10.59).

Comparing the primal problem in its equivalent formulation (10.58)–
(10.62) with the dual problem (10.8)–(10.13) we observe an interesting sym-
metry between them. This is discussed in the following section.

10.4 Symmetry of Constrained Estimation and Control

In summary, we have shown that the two following problems are dual in the
Lagrangian sense.

Primal Constrained Problem (Equivalent Unconstrained Form)

P ′
e : min

x̂k,v̂k,ŵk

{1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0) +
1
2

N∑
k=1

v̂t
kR−1v̂k

+
N−1∑
k=0

[1
2
w̄t

kQ−1w̄k + (ŵk − w̄k)tQ−1w̄k

]}
,

subject to:
x̂k+1 = Ax̂k + Bw̄k for k = 0, · · · , N − 1,

v̂k = yd
k − Cx̂k for k = 1, · · · , N,

w̄k = Q1/2ΠΩ̃Q−1/2ŵk for k = 0, . . . , N − 1.
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−
+

yd
k

v̂kŵk

Q−1/2

w̄k

ΠΩ̃ Q1/2
(A,B, C)

Cx̂k

Figure 10.1. Configuration for the primal problem (equivalent formulation).

Dual Unconstrained Problem

De : min
λk,uk

{1
2
(λ−1 − µ̃0)tP0(λ−1 − µ̃0) +

1
2

N∑
k=1

ût
kRûk

+
N−1∑
k=0

[1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]}
+ γ,

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N,

λN = 0, λ−1 � Atλ0,

ûk � R−1yd
k − uk for k = 1, · · · , N,

ζk = Btλk for k = 0, · · · , N − 1,

ζ̄k = Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1,

where µ̃0 � −P−1
0 µ0 and γ is the constant defined in (10.14).

ζk =Btλk

Q1/2

ζ̄k

ΠΩ̃ Q−1/2
(At, Ct, Bt)

uk

R−1yd
k+

−

ûk

Figure 10.2. Configuration for the dual problem.

In the above two problems, ΠΩ̃ is the minimum Euclidean distance pro-
jection defined in (10.46) onto the set Ω̃ defined in (10.47).

Figures 10.1 and 10.2 illustrate the primal equivalent problem P ′
e and

the dual problem De, respectively. Note from the figures and corresponding
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equations the symmetry between both problems; namely, input variables take
the role of output variables in the objective function, system matrices are
swapped : A −→ AT , B −→ CT , C −→ BT , time is reversed and input
projections become output projections.

10.5 Scalar Case

The above duality result takes a particularly simple form in the scalar input
case, that is, when m = 1 in (10.1). We assume Ω = {w : |w| ≤ ∆}, where
∆ is a positive constant, and take Q = 1 in the objective function (10.7),
without loss of generality, since we can always scale by this factor. In this
case, Ω̃ = Ω and the minimum Euclidean distance projection reduces to the
usual saturation function defined as sat∆(u) = sign (u) min(|u|, ∆).

The (equivalent) primal and dual problems for the scalar case are then:

Primal Problem

P ′
e : min

x̂k,v̂k,ŵk

{1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N∑
k=1

v̂t
kR−1v̂k +

1
2

N−1∑
k=0

[
ŵ2

k − (ŵk − sat∆(ŵk))2
]}

,

subject to:
x̂k+1 = Ax̂k + Bsat∆(ŵk) for k = 0, · · · , N − 1,

v̂k = yd
k − Cx̂k for k = 1, · · · , N.

Dual Problem

De : min
λk,uk

{1
2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
1
2

N∑
k=1

ût
kRûk +

1
2

N−1∑
k=0

[
ζ2
k − (ζk − sat∆(ζk))2

]}
+ γ, (10.63)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.64)
λN = 0, (10.65)

ûk � R−1yd
k − uk for k = 1, · · · , N, (10.66)

ζk = Btλk for k = 0, · · · , N − 1, (10.67)

where γ is the constant defined in (10.14).
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Example 10.5.1. Consider the model (10.1) with matrices

A =
[

0.50 0.01
−0.70 0.30

]
, B =

[
0.40
0.90

]
and C =

[
0.90 −0.50

]
.

The initial state x0 has a Gaussian distribution N(µ0, P0), with µ0 = [1 2]t.
The output noise {vk} is an i.i.d. sequence having a Gaussian distribution
N(0, R), with R = 0.1. The process noise {wk} has a truncated Gaussian
distribution of the form (9.11) in Chapter 9. For this example, we take Ω1 =
Ω = {w : |w| ≤ 1} and Q = 1. The weighting matrix P0 was obtained from
the steady state error covariance of the Kalman filter for the system above.
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Figure 10.3. Primal problem: constrained estimation. (a) Measurement data. (b)
Optimal primal input estimate. (c),(d) Optimal primal state estimates.

Given the measurement data {yd
k} � {yd

1 , · · · , yd
N} plotted in Fig-

ure 10.3 (a), we solve the primal problem (10.2)–(10.7). Note that by using
equations (10.3)–(10.5) the minimisation is performed for x̂0 and for ŵk ∈ Ω.
We can then use QP to obtain the optimal initial state estimate x̂∗

0, and the
optimal input estimate ω̂∗

k. The latter is plotted in Figure 10.3 (b). In ad-
dition, using the state equations (10.3) with the optimal values x̂∗

0 and ω̂∗
k,
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we obtain the optimal state estimates x̂∗
1,k and x̂∗

2,k, k = 0, . . . , N (the two
components of the state estimate vector x̂∗

k), shown in Figure 10.3 (c) and (d),
respectively.

The dual of the above estimation problem is the nonlinear optimal control
problem (10.63)–(10.67), where the saturation value is ∆ = 1. Note that
using equations (10.64)–(10.67), the decision variables of the minimisation
problem (10.63) are u1, . . . , uN only. The dual problem has swapped the role
of the inputs and outputs in the objective function. In the primal problem,
the system outputs were the measurement data yd

k. For the dual problem (see
(10.66)), yd

k has been scaled as the input reference R−1yd
k to system (10.64)–

(10.65). This scaled input reference is shown in Figure 10.4 (a). We solve the
nonlinear unconstrained optimisation problem (10.63)–(10.67) to obtain the
optimal input u∗

k shown in Figure 10.4 (b). Similarly, the dual system states
λ∗

k, whose components are plotted in Figure 10.4 (c)–(d), respectively, can be
obtained, in reverse time, via equations (10.64)–(10.65) by using the optimal
values of u∗

k.

5 10 15 20 25
-15

-10

-5

0

5

10

15

0 5 10 15 20 25
-15

-10

-5

0

5

10

15

0 5 10 15 20 25
-15

-10

-5

0

5

10

15

5 10 15 20 25
-15

-10

-5

0

5

10

15

k

kk

k

(a)

R
−

1
y

d k

(b)

u
∗ k

(c)

λ
∗ 1
,k

(d)

λ
∗ 2
,k

Figure 10.4. Dual problem: nonlinear optimal control. (a) Scaled data. (b) Optimal
dual input. (c),(d) Optimal dual states.
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The relation of strong Lagrangian duality between constrained estimation
and control defines a relation between the optimal values in the primal and
dual problems. From equation (10.67), the “dual output” ζ∗k = Btλ∗

k (shown
in Figure 10.5 (a)) is a combination of the states λ∗

k, and from the proof of
Theorem 10.2.1 (see (10.31)–(10.32)), we have

ŵ∗
k = Qζ̄∗k , where ζ̄∗k = sat∆(ζ∗k).

That is, the optimal input values ŵ∗
k of the primal problem are the scaled

projections of the optimal dual outputs ζ∗k , as can be seen by comparing
Figure 10.3 (b) with Figure 10.5 (b). ◦
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Figure 10.5. Relation between optimal values of the primal and dual problems. (a)
Optimal dual output. (b) Optimal primal input equal to scaled projected optimal
dual output.

10.6 More General Constraints

We have seen above that the dual of the estimation problem with constraints
on the process noise sequence {wk} is an unconstrained nonlinear control prob-
lem defined in terms of projected outputs. Here we generalise the estimation
problem by considering constraints on the process noise sequence {wk}, the
measurement noise sequence {vk} and the initial state x0. In this case, the
dual problem will turn out to be an unconstrained nonlinear control problem
defined in terms of projected outputs, projected inputs and projected terminal
states.

Thus, consider the following system

xk+1 = Axk + Bwk for k = 0, · · · , N − 1,

yk = Cxk + vk for k = 1, · · · , N,
(10.68)
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where xk ∈ Rn, wk ∈ Rm, yk ∈ Rp. We assume that {wk}, {vk}, x0 have
truncated Gaussian distributions of the forms given in (9.11), (9.12) and (9.13)
of Chapter 9, respectively, where

wk ∈ Ω1 for k = 0, · · · , N − 1,

vk ∈ Ω2 for k = 1, · · · , N,

x0 ∈ Ω3.

For (10.68) we consider the following optimisation problem:

Pe : V opt
N (µ0, y

d
k) � min

x̂k,v̂k,ŵk

VN ({x̂k}, {v̂k}, {ŵk}), (10.69)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1, (10.70)

v̂k = yd
k − Cx̂k for k = 1, . . . , N, (10.71)

{x̂0, x̂1, . . . , x̂N , v̂1, . . . , v̂N , ŵ0, . . . , ŵN−1} ∈ X, (10.72)

where, in (10.72),

X = Ω3 × R
n · · · × R

n︸ ︷︷ ︸
N

×Ω2 × · · · × Ω2︸ ︷︷ ︸
N

×Ω1 × · · · × Ω1︸ ︷︷ ︸
N

, (10.73)

and where, in (10.69), the objective function is

VN ({x̂k}, {v̂k}, {ŵk}) � 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑
k=0

ŵt
kQ−1ŵk +

1
2

N∑
k=1

v̂t
kR−1v̂k. (10.74)

The following result establishes duality between the constrained estimation
problem Pe and an unconstrained nonlinear optimal control problem.

Theorem 10.6.1 (Dual Problem) Assume Ω1, Ω2, Ω3 in (10.73) are
nonempty closed convex sets such that there exists a feasible solution
{x̂0, x̂1, . . . , x̂N , v̂1, . . . , v̂N , ŵ0, . . . , ŵN−1} ∈ intX for the primal problem Pe.
Given the primal constrained fixed horizon estimation problem Pe defined by
equations (10.69)–(10.74), the Lagrangian dual problem is

De : φopt(µ0, {yd
k}) � min

λk,uk

φ({λk}, {uk}), (10.75)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N, (10.76)
λN = 0, λ−1 = Atλ0, (10.77)
ζk = Btλk for k = 0, · · · , N − 1. (10.78)
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In (10.75), the objective function is

φ({λk}, {uk}) � 1
2
(λ̄−1 + P−1

0 µ0)tP0(λ̄−1 + P−1
0 µ0)

+ (λ−1 − λ̄−1)tP0(λ̄−1 + P−1
0 µ0)

+
N∑

k=1

[
1
2
(ūk − R−1yd

k)tR(ūk − R−1yd
k)

+ (uk − ūk)tR(ūk − R−1yd
k)
]

+
N−1∑
k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
+ γ (10.79)

where γ is the constant term given by

γ � −1
2
µt

0P
−1
0 µ0 − 1

2

N∑
k=1

(yd
k)tR−1yd

k. (10.80)

In (10.79) the projected variables are defined as

λ̄−1 � P
−1/2
0 ΠΩ̃3

P
1/2
0 λ−1, (10.81)

ūk � R−1/2ΠΩ̃2
R1/2uk for k = 1, . . . , N, (10.82)

ζ̄k � Q−1/2ΠΩ̃1
Q1/2ζk for k = 0, . . . , N − 1, (10.83)

where ΠΩ̃i
, i = 1, 2, 3, denote the minimum Euclidean distance projections

(defined as in (10.15)) onto the sets

Ω̃1 � {z : Q1/2z ∈ Ω1}, (10.84)

Ω̃2 � {z : R1/2z ∈ Ω2}, (10.85)

Ω̃3 � {z : P
1/2
0 z + µ0 ∈ Ω3}. (10.86)

Moreover, there is no duality gap, that is, the minimum achieved in (10.69)
is equal to minus the minimum achieved in (10.75).

Proof. The proof follows the same lines as the proof of Theorem 10.2.1, save
that we must consider the constraints on x̂0 and v̂k, as well as on ŵk, when
optimising (10.18). Thus, instead of (10.20) and (10.21), we need to carry out
a constrained optimisation as was done for ŵk in (10.19). �

10.7 Symmetry Revisited

We have seen in Section 10.6 that the Lagrangian dual of the general con-
strained estimation problem is an unconstrained nonlinear control problem
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involving projected variables. The symmetry in this result is revealed by
transforming the primal problem into an equivalent unconstrained estima-
tion problem using projected variables. To derive this equivalent problem, we
will use the following extensions of Corollaries 10.3.4 and 10.3.5:

Corollary 10.7.1 Let f : Z → R and h : Z → Rq, with Z = Rn × Rp ×
· · · × Rp × Rm × · · · × Rm, be any functions and let Ω1 ⊂ Rm, Ω2 ⊂ Rp and
Ω3 ⊂ Rn be closed convex sets. Let 0 ∈ intΩ1, 0 ∈ intΩ2 and µ0 ∈ intΩ3.
Consider the optimisation problem

P ′ : min
x0,vk,wk

V (x0, v1, . . . , vN , w0, . . . , wN−1), (10.87)

subject to:
h(x̄0, v̄1, . . . , v̄N , w̄0, . . . , w̄N−1) = 0, (10.88)

with

V (x0, v1, . . . , vN , w0, . . . , wN−1) � f(x̄0, v̄1, . . . , v̄N , w̄0, . . . , w̄N−1)

+ (x0 − x̄0)tP−1
0 (x̄0 − µ0)

+
N∑

k=1

(vk − v̄k)tR−1v̄k

+
N−1∑
k=0

(wk − w̄k)tQ−1w̄k, (10.89)

and

x̄0 = P
1/2
0 ΠΩ̃3

P
−1/2
0 (x0 − µ0) + µ0, (10.90)

v̄k = R1/2ΠΩ̃2
R−1/2vk for k = 1, . . . , N, (10.91)

w̄k = Q1/2ΠΩ̃1
Q−1/2wk for k = 0, . . . , N − 1, (10.92)

where ΠΩ̃i
, i = 1, 2, 3, are the minimum Euclidean distance projections (de-

fined as in (10.15)) onto the sets (10.84)–(10.86), respectively.
Then any global optimal solution {x∗

0, v
∗
1 , . . . , v∗i , . . . , v∗N , w∗

0 , . . . ,
w∗

i , . . . , w∗
N−1

}
of (10.87)–(10.92) satisfies x∗

0 ∈ Ω3, v∗i ∈ Ω2 for i = 1, . . . , N
and w∗

i ∈ Ω1 for i = 0, . . . , N − 1.

Proof. As in the proof of Corollary 10.3.4 we can show that given any feasible
sequence {x∗

0, v
∗
1 , . . . , v∗i , . . . , v∗N , w∗

0 , . . . , w∗
i , . . . , w∗

N−1} for problem (10.87)–
(10.92) and such that x∗

0 ∈ Rn\Ω3, and/or v∗i ∈ Rp\Ω2 for some i and/or
w∗

i ∈ Rm\Ω1 for some i, a lower value of the objective function is achieved
by replacing these variables by their projected values x̄∗

0 ∈ Ω3, v̄∗i ∈ Ω2 and
w̄∗

i ∈ Ω1, computed as in (10.90)–(10.92). Since the sequence so obtained
satisfies the equality constraint (10.88), it is feasible and hence the result
follows. �
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Corollary 10.7.2 Under the conditions of Corollary 10.7.1, problem P ′ de-
fined by (10.87)–(10.92) is equivalent to the problem

P : min
x0∈Ω3,vk∈Ω2,wk∈Ω1

f(x0, v1, . . . , vN , w0, . . . , wN−1).

Proof. Similar to the proof of Corollary 10.3.3. �
We then have the following equivalent formulation for the primal estima-

tion problem Pe defined by equations (10.69)–(10.74).

Theorem 10.7.3 (Equivalent Primal Formulation Revisited)
Suppose Ω1 ⊂ Rm, Ω2 ⊂ Rp and Ω3 ⊂ Rn are closed convex sets such
that 0 ∈ intΩ1, 0 ∈ intΩ2 and µ0 ∈ intΩ3. Then the primal estimation
problem Pe defined by equations (10.69)–(10.74) is equivalent to the following
unconstrained optimisation problem:

P ′
e : V opt

N (µ0, y
d
k) � min V ′

N (x̂0, {v̂k}, {ŵk}), (10.93)

subject to:
x̄k+1 = Ax̄k + Bw̄k for k = 0, · · · , N − 1, (10.94)

v̄k = yd
k − Cx̄k for k = 1, · · · , N, (10.95)

x̄0 = P
1/2
0 ΠΩ̃3

P
−1/2
0 (x̂0 − µ0) + µ0, (10.96)

v̄k = R1/2ΠΩ̃2
R−1/2v̂k for k = 1, . . . , N, (10.97)

w̄k = Q1/2ΠΩ̃1
Q−1/2ŵk for k = 0, . . . , N − 1, (10.98)

where ΠΩ̃i
, i = 1, 2, 3 are the minimum Euclidean distance projections (defined

as in (10.15)) onto the sets (10.84)–(10.86), respectively, and where

V ′
N (x̂0, {v̂k}, {ŵk}) � 1

2
(x̄0 − µ0)tP−1

0 (x̄0 − µ0)

+ (x̂0 − x̄0)tP−1
0 (x̄0 − µ0)

+
N∑

k=1

[
1
2
v̄t

kR−1v̄k + (v̂k − v̄k)tR−1v̄k

]

+
N−1∑
k=0

[
1
2
w̄t

kQ−1w̄k + (ŵk − w̄k)tQ−1w̄k

]
. (10.99)

Proof. Immediate from Corollary 10.7.2 on interpreting h in (10.88) as

h(x̄0, v̄1, . . . , v̄N , w̄0, . . . , w̄N−1) =⎡⎢⎢⎢⎣
CAx̄0 + v̄1 + CBw̄0 − yd

1

CA2x̄0 + v̄2 + CABw̄0 + CBw̄1 − yd
2

...
CAN x̄0 + v̄N +

∑N−1
k=0 CAN−k−1Bw̄k − yd

N

⎤⎥⎥⎥⎦ .

�
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If we compare the equivalent form of the primal problem (10.93)–(10.99)
with the dual problem (10.75)–(10.83) then aspects of the symmetry between
these problems are revealed. In particular, we see that the following con-
nections hold: time is reversed, system matrices are swapped (A −→ AT ,
B −→ CT , C −→ BT ), input projections become output projections and vice
versa, and initial state projections become terminal state projections. These
connections and other observations are summarised in Table 10.1.

Primal Equivalent Primal Dual

State
equations

x̂k+1 =
Ax̂k + Bŵk

x̄k+1 = Ax̄k + Bw̄k λk−1 = Atλk + Ctuk,
λ−1 = Atλ0

Output
equation

v̂k =
yd

k − Cx̂k

v̄k = yd
k − Cx̄k ζk = Btλk

Input/output
connection

Input
constraints
ŵk ∈ Ω1

Unconstrained minimisation
using the projected input w̄k

in the objective function.
Projected input used in the
state equations: x̄k+1 =
Ax̄k + Bw̄k.

Unconstrained minimisa-
tion using projected out-
put ζ̄k in the objective
function.

Output/input
connection

Output
constraints

v̂k ∈ Ω2

Unconstrained minimisation
using the projected output v̄k

in the objective function.
Projected output required to
satisfy the output equation:
v̄k = yd

k − Cx̄k.

Unconstrained minimisa-
tion using the projected
input ūk in the objective
function.

Initial/final
state

connection

Initial state
constraints

x̂0 ∈ Ω3

Unconstrained minimisation
using the projected initial
state x̄0 in the objective
function.
Projected initial state used
as initial state for the state
equations.

Unconstrained minimisa-
tion using the projected
terminal state λ̄−1 in the
objective function.

Table 10.1. Connections between the primal problem, its equivalent formulation
and the dual problem.

10.8 Further Reading

For complete list of references cited, see References section at the end of book.

General

The relationship between linear estimation and linear quadratic control is
well-known in the unconstrained case. Since the original work of Kalman and
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others (see Kalman 1960b, Kalman and Bucy 1961), many authors have con-
tributed to further understand this relationship. For example, Kailath, Sayed
and Hassibi (2000) have explored duality in the unconstrained case using the
geometrical concepts of dual bases and orthogonal complements. The connec-
tion between the two unconstrained optimisation problems using Lagrangian
duality has also been established in, for example, the recent work of Rao
(2000).

The results in the current chapter are based on Goodwin, De Doná, Seron
and Zhuo (2004).
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11

The Hessian in the QP Problem: Singular
Value Structure and Related Algorithms

Contributed by Osvaldo J. Rojas

11.1 Overview

We saw in earlier chapters that a core ingredient in quadratic constrained
optimisation problems is the Hessian matrix H . So far we have simply given an
“in principle” approach to the evaluation of this matrix. That is, for a system
with state equations xk+1 = Axk+Buk, we have from (5.20) in Chapter 5, that
we can compute the Hessian as H = ΓtQΓ+R, where Γ, Q, R are defined in
(5.14) and (5.16). This will be satisfactory for simple problems. However, for
more complex problems (for example, high order systems or problems having
mixed stable and unstable modes) this “brute force” approach may fail. A
hint as to the source of the difficulties is that the direct way of computing the
Hessian depends on powers of the system matrix A, as can be readily seen
from the matrix Γ in (5.14). Clearly, if the system has unstable modes, then
some entries of Γ will diverge as N increases.

We will show in this chapter that this problem can be resolved by focusing
attention on the stable and unstable parts of the system separately.

We note, in passing, that the problem can be addressed by several other
routes. Two alternatives to the idea described here are:

(i) Introducing prestabilising feedback, for example, Rossiter, Kouvaritakis
and Rice (1998); that is, putting

uk = −Kxk + ūk,

where K is chosen so that (A−BK) is Hurwitz; then solving the optimi-
sation problem for the new input sequence {ūk}.
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(ii) Introducing the system equations as (a set of) linear equality constraints,
that is,

xk+1 = Axk + Buk for k = 0, 1, . . . , N − 1; (11.1)

then treating both {x1, . . . , xN} and {u0, . . . , uN−1} as decision variables
in the optimisation, instead of eliminating the states in the objective func-
tion using (11.1).

These alternative approaches resolve the problem at the expense of mi-
nor disadvantages. In particular, approach (i) implies that simple constraints
on uk become state-dependent constraints on the new control variable, ūk =
uk + Kxk. Approach (ii) implies that one must deal with Nn additional lin-
ear equality constraints in the optimisation where n is the state dimension
and N is the optimisation horizon. By way of contrast, the methodology pre-
sented here avoids these two difficulties by considering a different formulation
of the QP, one which is a function only of exponentially decaying terms. This
leads to an alternative Hessian (which includes a submatrix that we will call
the “regularised sub-Hessian”). An important consequence of using the regu-
larised sub-Hessian is that it provides a direct link to the system frequency
response. This latter property can be exploited to gain heuristic insights into
the performance of the algorithms.

We also describe algorithms that arise from the singular value decompo-
sition of the regularised sub-Hessian, which underlies the frequency domain
viewpoint.

11.2 Separating Stable and Unstable Modes

Our eventual goal in this chapter is to gain a better understanding of the
structure of the Hessian matrix particularly for large optimisation horizons.
However, as mentioned in Section 11.1, the straightforward approach to eval-
uating the Hessian will often meet difficulties for open loop unstable plants
due to exponential divergence of the system impulse response. One way of
addressing this problem is to recognise that there is an intimate connection
between “stability” and “causality.” In particular, a system having all modes
unstable becomes stable if viewed in reverse time, that is, as an anti-causal
system. This line of reasoning leads to an alternative viewpoint in which un-
stable modes are treated differently. The new formulation of the QP problem
that we propose separates the stable and unstable responses. We show below
that this leads to an equivalent problem formulation with a different Hessian
having different properties. In particular, the new Hessian has improved nu-
merical properties and also provides a direct link to frequency domain insights
for large horizons (as we will show in Section 11.5).

Consider a discrete time linear system and suppose that it has no eigen-
values on the unit circle. We can then partition the state vector xk ∈ Rn as
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xk =
[
xs

k

xu
k

]
,

where the states xs
k and xu

k are associated with the stable and unstable modes,
respectively. Correspondingly, we can factor the state equations into stable
and unstable parts as follows:

[
xs

k+1

xu
k+1

]
=

[
As 0
0 Au

] [
xs

k

xu
k

]
+

[
Bs

Bu

]
uk, (11.2)

yk = C xk =
[
Cs Cu

] [xs
k

xu
k

]
,

where uk ∈ Rm and yk ∈ Rp (p ≥ m). The eigenvalues of As have moduli less
than one, and the eigenvalues of Au have moduli greater than one.

We can then express the solution of (11.2) as

xs
k = Ak

sxs
0 +

k−1∑
j=0

Ak−1−j
s Bsuj for k = 1, . . . , N, (11.3)

xu
k = A−(N−k)

u µ −
N−1∑
j=k

Ak−1−j
u Buuj for k = 0, . . . , N − 1. (11.4)

Equation (11.3) is the result of solving the stable states in forward time, whilst
equation (11.4) results from solving the unstable states in reverse time starting
from

xu
N � µ,

that is, the unstable state at time k = N .

Note that since the initial condition xu
0 is given, setting k = 0 in (11.4)

effectively determines an equality constraint that both µ and the sequence of
control signals {u0, . . . , uN−1} need to satisfy in order to bring the unstable
states back to their correct initial values, that is,

A−N
u µ −

N−1∑
j=0

A−j−1
u Buuj = xu

0 . (11.5)

We are thus led to the following equivalent statement of the optimisation
problem.
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PN (x) : V opt
N (x) � min VN ({xk}, {uk}, µ), (11.6)

subject to:

xk =
[
xs

k

xu
k

]
for k = 0, . . . , N,

xs
k = Ak

sxs
0 +

k−1∑
j=0

Ak−1−j
s Bsuj for k = 1, . . . , N,

xu
k = A−(N−k)

u µ −
N−1∑
j=k

Ak−1−j
u Buuj for k = 0, . . . , N − 1,

x0 =
[
xs

0

xu
0

]
= x,

uk ∈ U for k = 0, . . . , N − 1,

xk ∈ X for k = 0, . . . , N − 1,

xN =
[
xs

N

µ

]
∈ Xf ⊂ X,

where

VN ({xk}, {uk}, µ) � 1
2

[
xs

N

µ

]t

P

[
xs

N

µ

]
+

1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk). (11.7)

The above formulation of the problem, at the expense of the introduction
of the additional optimisation variable µ, avoids exponentially diverging terms
in the computation of the Hessian matrix. Thus, at least intuitively, it would
seem to be more apposite for studying the structure of the problem for large
horizons.

In the next sections we will explore the consequences of this alternative
formulation of the QP problem.

11.3 Numerical Issues in the Computation of the Hessian

We first show how the split into stable and unstable modes can be a useful
strategy to deal with numerical problems involved in evaluating the Hessian.

We represent the time evolution of the system output using the usual
vector notation. Thus, let

y =
[
yt
1 yt

2 . . . yt
N

]t
,

u =
[
ut

0 ut
1 . . . ut

N−1

]t
.

(11.8)

We then have, using (11.3) and (11.4), that
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y = (Γs + Γu)︸ ︷︷ ︸
Γ̄

u + Ωsx
s
0 + Ωuµ, (11.9)

where

Ωs =

⎡⎢⎢⎢⎣
CsAs

CsA
2
s

...
CsA

N
s

⎤⎥⎥⎥⎦ , Γs =

⎡⎢⎢⎢⎣
CsBs 0 · · · 0

CsAsBs CsBs · · · 0
...

...
. . .

...
CsA

N−1
s Bs CsA

N−2
s Bs · · · CsBs

⎤⎥⎥⎥⎦ ,

and

Ωu =

⎡⎢⎢⎢⎢⎢⎣
CuA

−(N−1)
u

CuA
−(N−2)
u

...
CuA−1

u

Cu

⎤⎥⎥⎥⎥⎥⎦ , Γu = −

⎡⎢⎢⎢⎢⎢⎣
0 CuA−1

u Bu CuA−2
u Bu . . . CuA

−(N−1)
u Bu

0 0 CuA−1
u Bu . . . CuA

−(N−2)
u Bu

...
...

. . . . . .
...

0 0 · · · 0 CuA−1
u Bu

0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ .

The matrix Γ̄ � Γs + Γu has the form

Γ̄ � Γs + Γu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̄0 h̄−1 h̄−2 . . . . . . h̄−(N−1)

h̄1 h̄0 h̄−1 . . . . . . h̄−(N−2)

...
...

. . . . . .
...

...
...

. . . . . .
...

...
... h̄0 h̄−1

h̄N−1 h̄N−2 . . . . . . h̄1 h̄0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11.10)

where {h̄k : k = −(N − 1), . . . , N − 1}, is a finite subsequence of the infinite
sequence {h̄k : k = −∞, . . . ,∞} defined by

{h̄k : k = 0, . . . ,∞} � {CsBs, CsAsBs, CsA
2
sBs, . . . }, (11.11)

{h̄k : k = −1, . . . ,−∞} � {−CuA−1
u Bu,−CuA−2

u Bu,−CuA−3
u Bu, . . . }.

(11.12)

In what follows, we will set the terminal state weighting matrix P = Q in
(11.7) (note that this choice is not restrictive here since our main interest is
in the case N → ∞). Also, we consider

Q = CtC and R = ρIm > 0.

If we adopt the vector notation (11.8), we can express the objective function
VN as follows1:
1 We keep the function VN but change its arguments as appropriate.
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VN (x,u,y, µ) =
1
2
(xtQx + yty + ρutu).

Replacing the expression for y provided in (11.9) we have

VN (x,u, µ) =
1
2

[
xtQx +

(
Γ̄u + Ωsx

s
0 + Ωuµ

)t (Γ̄u + Ωsx
s
0 + Ωuµ

)
+ ρutu

]
=

1
2
ut[Γ̄tΓ̄ + ρI]u + utΓ̄t (Ωsx

s
0 + Ωuµ)

+
1
2

(Ωsx
s
0 + Ωuµ)t (Ωsx

s
0 + Ωuµ) . (11.13)

With respect to the new optimisation variables (u, µ), the modified Hessian
of the quadratic objective function (11.13) is

H ′ �
[
Γ̄tΓ̄ + ρI Γ̄tΩu

Ωt
uΓ̄ Ωt

uΩu

]
. (11.14)

For future use, we extract the left-upper submatrix, which we call the
“regularised sub-Hessian”:

H̄N � Γ̄tΓ̄ + ρI. (11.15)

Note that we have made use of the subindex N in (11.15) in order to make
explicit the dependence on the prediction horizon.

The standard Hessian H can be recovered from (11.13) on noting from
(11.5) that

µ = AN
u xu

0 +
[
AN−1

u Bu . . . AuBu Bu

]
u

� AN
u xu

0 + Luu. (11.16)

Hence, substituting into (11.13), we obtain

VN (x,u) =
1
2
ut[Γ̄tΓ̄ + ρI]u + utΓ̄t

[
Ωsx

s
0 + Ωu

(
AN

u xu
0 + Luu

)]
+

1
2
[
Ωsx

s
0 + Ωu

(
AN

u xu
0 + Luu

)]t [
Ωsx

s
0 + Ωu

(
AN

u xu
0 + Luu

)]
.

Forming the Hessian H of the above equation and comparing it with the
expression for the regularised sub-Hessian (11.15), it follows that

H = H̄N + Γ̄ΩuLu + Lt
uΩt

uΓ̄ + Lt
uΩt

uΩuLu. (11.17)

The problem formulation adopted in Section 11.2 has the ability to amelio-
rate the numerical difficulties encountered when dealing with unstable plants.
Indeed, comparing (11.14) with (11.17) we see that all terms in (11.14) de-
pend only on exponentially decaying quantities whereas (11.17) also depends
on Lu, which as seen from (11.16), contains exponentially exploding terms.

The following example illustrates this point.
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Example 11.3.1. Consider a single input-single output system of the form
(11.2) with stable and unstable modes defined via the following matrices:

As =
[
1.442 −0.64

1 0

]
, Bs =

[
1
0

]
, Cs =

[
0.721 −0.64

]
,

and
Au = 2, Bu = 1, Cu = −1.

In the objective function (11.7) we take

Q =
[
Cs Cu

]t [
Cs Cu

]
, R = 0.1, P = Q.

We consider input constraints of the form |uk| ≤ 1 and no state constraints.
We we will formulate the optimisation problem for the above system in

the following two ways:

(i) solving both stable and unstable modes in forward time using the proce-
dure described in Section 5.3.1 of Chapter 5; the Hessian of the associated
QP is the “standard Hessian;”

(ii) solving the stable modes in forward time and the unstable modes in reverse
time using the procedure described in Sections 11.2 and 11.3; the Hessian
of the associated QP is the “modified Hessian.”

We will compare the numerical conditioning of the optimisation problem for
the above two formulations.

Figure 11.1 shows the condition number of the standard Hessian and the
modified Hessian (11.14), plotted as a function of the prediction horizon. We
see that the condition number of the modified Hessian is never excessively
large even when long prediction horizons are used. On the other hand, when
the Hessian is constructed with both stable and unstable modes solved in
forward time, the condition number explodes dramatically fast. When N = 5
the condition number of H is already equal to 4484, reaching values of the
order of 1039 when N = 50.

The poor conditioning of the standard Hessian will inevitably generate
difficulties with the solution to the QP problem. If the condition number
of H is large, the solution to the QP problem can become unreliable. This
is illustrated in Figure 11.2 where the computed objective function values of
the optimisation problem for the two cases analysed here are compared for
different prediction horizon. We observe that the solution to the QP prob-
lem based on the modified Hessian quickly settles to its infinite horizon value
of 2.2546. However, the solution to the QP problem based on the standard
Hessian, produces a nonoptimal objective function value from N = 30 on-
wards. This behaviour suggests that the optimisation algorithm has not been
able to find the optimal solution to the problem due to the poor conditioning
of the Hessian.

◦
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Figure 11.1. Condition number of the modified Hessian (11.14) (circle-dashed line)
and that of the standard Hessian (plus-solid line).
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Figure 11.2. Comparison of the objective function value for different prediction
horizons: values achieved using the modified Hessian (circle-dashed line) and using
the standard Hessian (plus-solid line).
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Our goal in the next two sections will be to examine the properties of the
regularised sub-Hessian (11.15) in the limit as N increases. Using a large value
of N together with a time domain 
2 norm in the objective function suggests,
via the application of Parseval’s theorem, that there should be a connection
to the system frequency response. Before formally establishing this connection
we pause to review aspects of frequency response.

11.4 The System Frequency Response

Consider again the system split into stable and unstable parts as in (11.2).
The system transfer function is clearly

G(z) = Gs(z) + Gu(z), (11.18)

where

Gs(z) = Cs(zI − As)−1Bs, (11.19)

Gu(z) = Cu(zI − Au)−1Bu, (11.20)

are the transfer functions of the stable and unstable parts of (11.2), respec-
tively.

In Section 11.5, we will study properties of the frequency response of
(11.2), G(ejω), via its singular value decomposition [SVD], which has the form

G(ejω) = U(ejω)Σ(ω)V H(ejω). (11.21)

In (11.21), U and V are matrices containing the left and right singular vectors
of G, satisfying U ∈ Cp×p, UHU = UUH = Ip, V ∈ Cm×m, V HV = V V H =
Im, and

Σ(ω) = diag{σ1(ω), . . . , σm(ω)}, (11.22)

is the matrix of singular values of G, sometimes referred to as the principal
gains of the system. Note that σ1(ω) = ‖G(ejω)‖2.

We next state a simple, though important, result, which is key to the
discussion that we will present in the following section.

Lemma 11.4.1 Let Ḡ(z) be the two-sided Z-transform of the sequence {h̄k :
k = −∞, . . . ,∞} embedded in Γ̄ as shown in (11.10). Then Ḡ(z) is given by

Ḡ(z) = zG(z), (11.23)

where G(z) is the system transfer function defined in (11.18). Moreover, the
region of convergence of Ḡ(z) is given by

max{|λi(As)|} < |z| < min{|λi(Au)|},
where {λi(·)} is the set of eigenvalues of the corresponding matrix.
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Proof. The two-sided Z-transform Ḡ(z) is, by definition,

Ḡ(z) =
∞∑

k=−∞
h̄kz−k =

−1∑
k=−∞

h̄kz−k +
∞∑

k=0

h̄kz−k.

By replacing the corresponding values of {h̄k} as per (11.11) and (11.12), we
obtain

Ḡ(z) = −
−1∑

k=−∞
CuAk

uBuz−k

︸ ︷︷ ︸
a

+
∞∑

k=0

CsA
k
sBsz

−k

︸ ︷︷ ︸
b

. (11.24)

Expressing Gs(z) in (11.19) as

Gs(z) =
∞∑

k=0

CsA
k
sBsz

−(k+1),

we see that the “b” term in (11.24) is

b = zGs(z) (11.25)

and the region of convergence is |z| > max{|λi(As)|}. For the “a” term in
(11.24) we can let l = −k to obtain

a = −
∞∑

l=1

CuA−l
u Buzl. (11.26)

Define

G̃(z) � Cu(zI − A−1
u )−1A−1

u Bu =
∞∑

k=1

CuA−k
u Buz−k. (11.27)

Then we have, comparing (11.26) and (11.27), that

a = −G̃(z−1), (11.28)

with region of convergence

|z| <
1

max{|λi(A−1
u )|} = min{|λi(Au)|}.

Next, note from (11.27) and (11.20), that

−G̃(z−1) = −z Cu(I − A−1
u z)−1A−1

u Bu

= −z Cu(Au − z)−1Bu

= z Gu(z).

Substituting the above into (11.28), and combining with (11.25), we obtain

Ḡ(z) = a + b = z[Gs(z) + Gu(z)],

which, using (11.18), yields the final result (11.23). �
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We observe that the region of convergence of the Z-transform Ḡ(z) includes
the unit circle, and this allows us to refer to the frequency response of Ḡ(z)
by taking z = ejω . The frequency domain approach to the infinite horizon
optimisation problem is the topic of the next section.

11.5 Connecting the Singular Values of the Regularised
Sub-Hessian to the System Frequency Response

Here we explore another feature arising from the use of the regularised sub-
Hessian. In particular, we will see that there is a direct connection between
the singular values of H̄N in (11.15), for large N , and the system frequency
response.

Consider the sequence
{
h̄k : k = −∞, . . . ,∞}

embedded in Γ̄ as shown in
(11.10). The result of Lemma 11.4.1 ensures that given any ε > 0 there exists
k0 > 0 such that∣∣∣∣∣∣∥∥Ḡ(ejω)

∥∥2

2
−

∥∥∥∥∥
k0∑

k=−k0

h̄ke−jωk

∥∥∥∥∥
2

2

∣∣∣∣∣∣ < ε for all w ∈ [−π, π], (11.29)

since the sequence
{
h̄k

}
contains only exponentially decaying terms. The

above is equivalent to saying that, for k > k0 and k < −k0, the terms of{
h̄k

}
are negligible, that is, we can effectively assume a finite sequence of

length 2k0 + 1. (Actually, the result is also readily provable in the infinite
sequence case if we bound the terms outside a finite interval. However, we
adopt the finite impulse response approximation for clarity of exposition.) As
a result, the autocorrelation matrix of the sequence

{
h̄k : k = −∞, . . . ,∞}

can be approximated by

Ψ� ≈
k0−�∑

k=−k0

h̄t
kh̄k+� for 0 ≤ 
 ≤ 2k0,

Ψ� ≈ 0 for 
 > 2k0, (11.30)
Ψ−� = Ψt

� .

Recalling the structure of Γ̄ in (11.10) and using the definition of Ψ� given
in (11.30), we see that the regularised sub-Hessian (11.15) can be written as

H̄N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 | 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ψ−2k0 . . . Ψ0 . . . Ψ2k0 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 Ψ−2k0 . . . Ψ0 . . . Ψ2k0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 | X2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ρI, (11.31)
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provided N ≥ (4k0 + 1)m. Also, X1 and X2 are appropriate submatrices.
Finally, consider the Nm × m matrix

EN,ω �
[
e1

N,ω · · · em
N,ω

]
� 1√

N
ĒN,ωV (ejω), (11.32)

where

ĒN,ω �

⎡⎢⎢⎢⎣
Im

e−jωIm

...
e−j(N−1)ωIm

⎤⎥⎥⎥⎦ , ω =
2π

N

 for 
 ∈ {0, . . . , N − 1}.

We then have the following result.

Theorem 11.5.1 Consider the discrete time linear system (11.2), and the
SVD of its frequency response given by (11.21)–(11.22). Let k0 > 0 be such
that (11.29) holds. Consider H̄N in (11.31) for N ≥ 4k0 +1 and ρ = 0, which
is the regularised sub-Hessian of the quadratic objective function VN in (11.13)
with ρ = 0. Then, for every given frequency ω0 = 2π

N0

0, 
0 ∈ {0, . . . , N0 − 1},

we have that

lim
N

N0
→∞

∥∥H̄N ei
N,ω0

∥∥
2

= σ2
i (ω0) for i = 1, . . . , m,

where ei
N,ω0

is the ith column of EN,ω0 defined in (11.32), and N/N0 ∈
{1, 2, . . .}.

Proof. Let

Ψ(ω) =
∞∑

k=−∞
Ψke−jωk ≈

2k0∑
k=−2k0

Ψke−jωk for ω ∈ [−π, π], (11.33)

be the discrete time Fourier transform of the autocorrelation sequence in
(11.30). Note that

Ψ(ejω) = Ḡ(ejω)HḠ(ejω),

and, by means of Lemma 11.4.1,

Ψ(ejω) = G(ejω)He−jωejωG(ejω) = G(ejω)HG(ejω).

Using (11.21) we have that

Ψ(ejω)V (ejω) = V (ejω)Σ2(ω). (11.34)

Next, consider N0 > 0, 
0 ∈ {0, . . . , N0 − 1}, and ω0 = 2π
N0


0. By direct
calculation, we can write:
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HN0EN0,ω0 =
1√
N0

⎡⎢⎢⎢⎢⎣
W1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ĒN0,ω0 [2k0m + 1 : N0m − 2k0m, :] Ψ(ejω0)V (ejω0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W2

⎤⎥⎥⎥⎥⎦ ,

(11.35)
where ĒN0,ω0 [2k0m + 1 : N0m − 2k0m, :] denotes the section of the matrix
ĒN0,ω0 that starts at the (2k0m+1)th row and finishes at the (N0m−2k0m)th
row. In addition, W1 and W2 are some submatrices of dimension 2k0m × m.

Replacing (11.34) in (11.35) and using the definition (11.32), we have

HN0EN0,ω0 =

⎡⎢⎢⎢⎢⎣
1√
N0

W1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EN0,ω0 [2k0m + 1 : N0m − 2k0m, :] Σ2(ω0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1√
N0

W2

⎤⎥⎥⎥⎥⎦ ,

which can be considered columnwise as follows:

HN0e
i
N0,ω0

=

⎡⎢⎢⎢⎢⎣
1√
N0

c1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
σ2

i (ω0)ei
N0,ω0

[2k0m + 1 : N0m − 2k0m]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1√
N0

c2

⎤⎥⎥⎥⎥⎦ for i = 1, . . . , m,

where ei
N0,ω0

[2k0m+1 : N0m−2k0m] denotes the section of the vector ei
N0,ω0

that starts at the (2k0m+1)th element and finishes at the (N0m−2k0m)th el-
ement. Subtracting σ2

i (ω0)ei
N0,ω0

from both sides of the above equation yields

HN0e
i
N0,ω0

− σ2
i (ω0)ei

N0,ω0
= dN0,ω0 , (11.36)

where

dN0,ω0 � 1√
N0

⎡⎣ d1

0N0−4k0

d2

⎤⎦ . (11.37)

Both d1 and d2 are column vectors of the same dimension of vectors c1 and
c2, respectively, and 0N0−4k0 is a column vector with zero entries and length
N0 − 4k0. It can be easily shown that the norms of both vectors d1 and d2

are bounded. They are determined by the entries of submatrices X1 and X2

in (11.31) (which remain unchanged whenever the prediction horizon N is
increased), the fixed value σ2

i (ω0) and the entries of vector ei
N0,ω0

which are
bounded. As a result, we can find Tω0 > 0 such that

‖dN0,ω0‖2 =
1√
N0

√
‖d1‖2

2 + ‖d2‖2
2 ≤ 1√

N0

Tω0 . (11.38)

We now choose N = LN0 and 
 = L
0, for some L ∈ {1, 2, . . .}, such that



254 11. The Hessian in the QP Problem: SVD and Related Algorithms

ω =
2π


N
=

2π
0

N0
= ω0. (11.39)

Then, evaluating (11.36) at N instead of N0 and ω = ω0, that is,

H̄Nei
N,ω0

− σ2
i (ω0)ei

N,ω0
= dN,ω0 , (11.40)

and bounding from below, we have∣∣∣∥∥H̄Nei
N,ω0

∥∥
2
− σ2

i (ω0)
∣∣∣ ≤ ∥∥H̄Nei

N,ω0
− σ2

i (ω0)ei
N,ω0

∥∥
2

= ‖dN,ω0‖2 ,

where we have used the fact that ‖ei
N,ω0

‖2 = 1. Combining the above inequal-
ity with the bound derived in (11.38) (with N instead of N0), and noting that
N = LN0, we obtain∣∣∣∥∥H̄Nei

N,ω0

∥∥
2
− σ2

i (ω0)
∣∣∣ ≤ ‖dN,ω0‖2 ≤ 1√

LN0

Tω0 .

Hence, for every ε0 > 0, there exists L∗ (for example, take the nearest integer
towards infinity to T 2

ω0
/(N0ε

2
0) such that∣∣∣∥∥H̄Nei

N,ω0

∥∥
2
− σ2

i (ω0)
∣∣∣ < ε0 for all N = LN0 > L∗N0 and L ∈ {1, 2, . . .}.

The result then follows. �

Corollary 11.5.2 Consider the same conditions of Theorem 11.5.1 and
choose ρ > 0 in (11.31). Then

lim
N

N0
→∞

∥∥H̄N ei
N,ω0

∥∥
2

= σ2
i (ω0) + ρ for i = 1, . . . , m, (11.41)

where N/N0 ∈ {1, 2, . . .}.

Proof. Directly from Theorem 11.5.1. �

The importance of the above result is that it establishes a direct link
between the eigenvalues of the regularised sub-Hessian (for large N) and the
principal gains of the system frequency response.

In the single input-single output case, (11.41) takes the simple form

lim
N

N0
→∞

∥∥H̄NEN,ω0

∥∥
2

=
∣∣G(ejω0)

∣∣2 + ρ,

where EN,ω0 is defined as in (11.32) for m = 1 and V = 1, and G is the
transfer function (11.18).

The following example illustrates the result.
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Example 11.5.1. Let (11.2) be a 2 input-2 output system with stable and
unstable modes defined via the following matrices.

As =
[
1.442 −0.64

1 0

]
, Bs =

[
1 0
0 0

]
, Cs =

[
0.721 −0.64
−0.36 0.32

]
,

and

Au = 2, Bu =
[
0 1

]
, Cu =

[−0.1
−0.1

]
.

Consider the finite horizon optimal control problem (11.6)–(11.7) and select

Q =
[
Cs Cu

]t [
Cs Cu

]
, R = 0, P = Q.

We construct the regularised sub-Hessian H̄N as described in Section 11.3
solving the stable modes in forward time and the unstable modes in reverse
time. We then compute the singular values of H̄N and compare them with
the square of the principal gains of the system. The results are presented in
Figure 11.3 for N = 61 and in Figure 11.4 for N = 401.

We observe that, as the prediction horizon N is increased, the singular val-
ues of the regularised sub-Hessian converge to the continuous line representing
the square of the principal gains of the system as predicted by Theorem 11.5.1.
Also, observe that some singular values are very small. This property will be
exploited in Section 11.6. ◦
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Figure 11.3. Singular values of the regularised sub-Hessian H̄N (circles) with N =
61. The continuous lines represent the square of the two principal gains of the system.

11.6 Suboptimal Algorithms

We have seen above that the singular values of the regularised sub-Hessian are
well-defined for large prediction horizons. Here we explore other possible ap-
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Figure 11.4. Singular values of the regularised sub-Hessian H̄N (circles) with N =
401. The continuous lines represent the square of the two principal gains of the
system.

plications of the formulation of the optimisation problem using the regularised
sub-Hessian.

The idea of using an SVD decomposition of the (regularised sub-) Hessian
of the QP leads to interesting possibilities in constructing suboptimal algo-
rithms. We explore two such possibilities below. In Section 11.6.1 we show
how the SVD decomposition can be used in conjunction with any QP solver
(including active set and interior point methods) to obtain a suboptimal al-
gorithm. In Section 11.6.2, we describe a related, but even simpler, strategy
based on a line search.

11.6.1 A Restricted SVD-Based Strategy for RHC

For simplicity, we first consider the case of a stable system. Note that, in this
case, the standard Hessian is equal to the regularised sub-Hessian.

Consider the system

xk+1 = Axk + Buk, (11.42)

where xk ∈ Rn is the state vector and uk ∈ Rm is the input vector. Assume
that the pair (A, B) is stabilisable. Consider the objective function as in (5.19)
of Chapter 5 (here we take d = 0 and N = M). We can rewrite this objective
function as

VN (x,w) � VN,M =
1
2
wtHw + wtF (x − xs) + constant, (11.43)

where x = x0 is the current state (or an estimate of it) and
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w � u− us �
[
ut

0 ut
1 . . . ut

N−1

]t − [
ut

s ut
s . . . ut

s

]t
. (11.44)

In (11.43), the Hessian H and the matrix F are computed from the problem
data (H = ΓtQΓ + R, F = ΓtQΩ, with Γ, Ω, Q, R, defined as in (5.14) and
(5.16) of Chapter 5, using M = N and C = I). The matrices Q = Qt and
R = Rt in (5.16) are chosen to be positive definite, and P in (5.16) is chosen
as the solution of the algebraic Riccati equation:

P = Q + AtPA − Kt(R + BtPB)K, (11.45)
K = (R + BtPB)−1BtPA. (11.46)

Suppose that we require the input and states of (11.42) to satisfy the con-
straints

uk ∈ U for k = 0, . . . , N − 1,

xk ∈ X for k = 1, . . . , N, (11.47)
xN ∈ Xf ⊂ X,

where U, X and Xf are some sets that contain the origin. The constraints in
(11.47) can be expressed, using the vector (11.44), as

w + us ∈ U
N ,

Ωx + Γ(w + us) ∈ X
N ,

ANx +
[
AN−1B . . . AB B

]
(w + us) ∈ Xf ,

(11.48)

where Ω and Γ are defined in (5.14) of Chapter 5 (with M = N), and where
UN = U × . . . × U, XN = X × . . . × X are N -Cartesian products.

Let
H = V SV t (11.49)

be the SVD of the Hessian H = Ht > 0 of the objective function VN (x,u)
in (11.43). In (11.49), V ∈ RNm×Nm contains the singular vectors of H and
S ∈ RNm×Nm is the diagonal matrix

S = diag
{
σ1, σ2, . . . , σNm

}
, (11.50)

with the singular values of H arranged in decreasing order. Observe that the
left and right singular vectors of H are identical since H is symmetric, and
that the singular values are strictly positive since H is positive definite.

Using the coordinate transformation w = V w̃, the vector of control moves
w in (11.44) can be expressed as a linear combination of the singular vectors
of H :

w = V w̃ =
Nm∑
j=1

vjw̃(j),
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where vj , j ∈ {1, . . . , Nm}, are the columns of V and w̃(j) are the components
of the vector w̃. We can then express the objective function (11.43) in the new
w̃ variables as

VN (x, w̃) =
1
2
w̃tSw̃ + w̃tV tF (x − xs) + constant, (11.51)

whose unconstrained minimum is

w̃opt
uc = −S−1V tF (x − xs). (11.52)

Using (11.52) and (11.50) in (11.51), the objective function can be expressed
as

VN (x, w̃) =
1
2

Nm∑
j=1

σj [w̃(j) − w̃opt
uc (j)]2 + constant, (11.53)

where w̃opt
uc (j) is the jth component of w̃opt

uc .
We then have the following result.

Lemma 11.6.1 For some j ∈ {1, . . . , Nm}, fix w̃(k) for k �= j. Then

(i) the change in objective function achieved by changing w̃(j) from 0 to
w̃opt

uc (j) is

∆Vj =
−1
2σj

[x̃(j)]2;

(ii) the change in input “energy”, that is, w̃(j)2, resulting from changing w̃(j)
from 0 to w̃opt

uc (j) is

∆Ej =
1
σ2

j

[x̃(j)]2,

where x̃(j) is the jth component of V tF (x − xs).

Proof. We note from (11.53) that

∆Vj =
1
2
σj [w̃opt

uc (j)]2.

The result is then immediate on noting, from (11.52), that

w̃opt
uc (j) = − 1

σj
x̃(j),

where x̃(j) is the jth component of V tF (x − xs). �

We can think of |∆Vj |
∆Ej

=
σj

2
(11.54)

as a ratio between “benefit” (in terms of objective function reduction) and
“cost” (in terms of input energy). This suggests that a “near optimal” strat-
egy may be to restrict the optimisation so as not to utilise the singular vectors
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associated with small singular values since these singular directions are asso-
ciated with poor benefit-to-cost ratio. (A more compelling reason for doing
this in the context of RHC will be given in Section 11.7.)

Limiting the optimisation using only a subset (I, say) of singular vectors,
leads to the following restricted optimisation problem:

minimise
{

V ′
N (x, w̃) =

1
2

∑
j∈I

σj [w̃(j) − w̃opt
uc (j)]2

}
, (11.55)

subject to (11.48), expressed in the w̃-coordinates,

V w̃ + us ∈ U
N ,

Ωx + Γ(V w̃ + us) ∈ X
N ,

ANx +
[
AN−1B . . . AB B

]
(V w̃ + us) ∈ Xf ,

(11.56)

where
w̃ =

[
w̃(1) . . . w̃(Nm)

]t
and

w̃(j) = 0 for j /∈ I. (11.57)

Of course, the set I must be chosen so that there exists a control sequence
satisfying (11.57) that is feasible. (More will be said about feasibility in Sec-
tion 11.6.2.) Subject to this caveat, we can apply any of the standard QP
solvers to this restricted problem. It has the following features:

(i) The number of free variables is reduced to {w̃(j) for j ∈ I}. (The cardi-
nality of this set could be much less than the dimension of the original
problem.)

(ii) The number of constraints remains the same.

An important practical reason for restricting the set of singular values used
in the optimisation will be discussed in Section 11.7.2.

Remark 11.6.1. The above restricted optimisation problem (11.55)–(11.57)
can be used in a receding horizon fashion to compute the current control
action for the current state x by simply applying the first m components of the
resulting vector u = V w̃+us at each time step. If this controller is combined
with an observer as described in Section 5.5 of Chapter 5, it is easy to see that
integral action is retained. The key idea presented in Section 5.5 to achieve
integral action was that the observer for the disturbance only stops integrating
when the observer output, that is, Cx̂k+d̂k (see (5.33) in Chapter 5), converges
to the true system output yreal

k . It then follows that, provided the control law
ensures the observer output be brought (in steady state) to y∗ − ¯̂

d, then the
true system output will be brought to y∗ (see Lemma 5.5.1 in Chapter 5).
Hence, zero steady state error depends on the control law being consistent
with the observer (irrespective of the nature of the true system). We thus
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utilise us = us,k and xs = xs,k based on the observer, exactly as was done in
(5.34) and (5.35) of Chapter 5. Hence, the steady state values are ūs and x̄s,
given by (5.38) and (5.39), respectively. However, we also need to ensure that
the control law has ūs and x̄s as consistent steady state values. In the case of
full QP, equation (11.52) gives u = us when x = xs. This is also the case for
the restricted optimisation problem (11.55)–(11.57), since, when x = xs, we
have that w̃opt

uc = 0 in (11.52), and hence w̃ = 0 minimises (11.55)–(11.57) in
this case. It follows that w = V w̃ = 0 and, from (11.44), u = us. Thus, us

and xs are consistent solutions of the control problem (solved in the restricted
singular value space) as required to ensure integral action. ◦
Remark 11.6.2. In the case where there are unstable modes and the objec-
tive function used in the optimisation is formulated as (11.13) (where us = 0
for simplicity), one way to proceed is to limit the singular value restriction
to the variables u whilst always including µ in the optimisation problem. We
then use the transformation [

u
µ

]
=

[
V̄ 0
0 I

] [
ũ
µ

]
,

where V̄ is the matrix of singular vectors corresponding to the SVD of the
regularised sub-Hessian, that is,

H̄N = V̄ S̄V̄ t.

We can then limit the optimisation using only a subset of the singular vectors
contained in V̄ . ◦

11.6.2 A Line Search Algorithm Based on SVDs

Here we consider, for simplicity, the standard formulation, and thus the sub-
sequent singular value analysis applies to the standard Hessian H .

The result presented in Lemma 11.6.1, leading to the “benefit-to-cost”
ratio (11.54), motivates an algorithm that uses a line search in the singular
vector space. Specifically, suppose, for simplicity, that xs = 0 and us = 0 in
(11.43) and (11.44), and consider the unconstrained optimal solution (11.52),
that is,

w̃opt
uc = ũopt

uc = −S−1V tFx. (11.58)

The key idea of the algorithm is to construct a suboptimal solution to the QP
problem by approximating (11.58) using the basis vectors starting from the
largest singular values and proceeding downwards until a constraint boundary
is reached. Heuristically, this algorithm examines the components of the input
having largest benefit-to-cost ratio first (see (11.54)), that is, it sequentially
decides whether to use ũopt

uc (j) or not, starting from j = 1. Thus, the SVD
strategy constructs a control vector usvd ∈ RNm using the components of
(11.58) from the first one onwards until a constraint boundary is reached.
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Then the first m components of usvd are used at the current time, and the
algorithm proceeds in an RHC fashion. More precisely:

Algorithm 11.6.1 (SVD–RHC Line Search Algorithm)

(i) At time k, let x = xk.
(ii) SVD control vector construction:

a) Calculate the unconstrained optimal solution ũopt
uc defined in (11.58).

b) Let ũi ∈ RNm be a vector whose first i, i ∈ {1, . . . , Nm}, components
are equal to the first i components of ũopt

uc , and having the remaining
components equal to zero, that is,

ũi �
[
ũopt

uc (1) ũopt
uc (2) . . . ũopt

uc (i) 0 . . . 0
]t

,

where ũopt
uc (j), j = 1, . . . , Nm, are the components of ũopt

uc .
c) Find the integer

r � max i for i ∈ {1, . . . , Nm}, (11.59)

such that vector ũr is feasible. That is, the vector

ur � V ũr =
r∑

j=1

vj ũopt
uc (j)

satisfies the control, state and terminal constraints (11.48), namely

V ũr ∈ U
N ,

Ωx + ΓV ũr ∈ X
N ,

ANx +
[
AN−1B . . . AB B

]
V ũr ∈ Xf .

(11.60)

d) Set

usvd � V ũr =
r∑

j=1

vjũopt
uc (j), (11.61)

and let
U svd = {usvd

k , usvd
k+1, . . . , u

svd
k+N−1}, (11.62)

be the associated control sequence. That is, element j, j = 1, . . . , N ,
of (11.62) is equal to the vector formed by components (j − 1)m + 1
to jm of (11.61).

(iii) Apply, as the current control move, the first element of the sequence
(11.62), that is,

uk = K svd(x) � usvd
k .

(iv) Set k = k + 1 and return to step (i). ◦
The basic Algorithm 11.6.1 is not in a form where one can readily establish

stability. We thus present below a simple modification that ensures closed loop
stability, provided the initial state belongs to an admissible set, defined next.
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Definition 11.6.1 (Admissible Set SN) Let SN be the set of all initial
states x ∈ Rn for which there exists an admissible control sequence U svd

of the form (11.62), computed as in step (ii) of Algorithm 11.6.1. ◦

Note that if we start with an initial state x ∈ SN , then there exists an
admissible control sequence U svd of the form (11.62) that steers the resulting
system’s state trajectory into the terminal constraint set Xf in N steps. Sup-
pose that we choose Xf in (11.60) to be the maximal output admissible set
O∞ of system (11.42) with the unconstrained control law uk = −Kxk, where
K is the gain defined in (11.46), and with respect to the input and state con-
straints given by the first two lines of (11.47) (as in (5.63) of Chapter 5), that
is,

O∞ � {x : K(A − BK)kx ∈ U and (A − BK)kx ∈ X for k = 0, 1, . . .}.
(11.63)

Note that for states inside O∞, we can keep applying the control uk = −Kxk

and remain inside O∞ since it is positively invariant. Hence, if the N -move
sequence U svd is applied to the system (11.42) in open loop, and subsequently,
the unconstrained control uk = −Kxk is applied for k = N, N + 1, . . . , then
(i) the resulting sequence is feasible, and (ii) the resulting state trajectory
will converge to the origin since A − BK is a Hurwitz matrix. Moreover, the
objective function

VN = ({xk}, {uk}) =
1
2
xt

NPxN +
1
2

N−1∑
k=0

(xt
kQxk + ut

kRuk), (11.64)

with Q > 0, R > 0, can be used as a Lyapunov function V ∗(x) that decreases
along the resulting state trajectory.

An algorithm with provable stabilising properties can then be developed
as follows. Starting with a state x ∈ SN and choosing Xf = O∞, we apply
Algorithm 11.6.1 once. At the next time step, we check if the successor state
x+ belongs to SN . If x+ /∈ SN , we apply the second move of the SVD se-
quence U svd obtained in the previous step. If x+ ∈ SN , we compute a new
SVD sequence U svd+ using step (ii) of Algorithm 11.6.1 and check whether
applying the first move of U svd+ would decrease the value of the Lyapunov
function V ∗(x). If so, we apply the first control move of U svd+. If not, we
apply the second move of the sequence U svd obtained in the previous step. At
each time step, the value of V ∗(x) is updated and the procedure is repeated.
The resulting algorithm ensures that the Lyapunov function V ∗(x) decreases
at each step.

We formalise the above procedure in the following:

Algorithm 11.6.2 (Stable SVD–RHC Line Search Algorithm)

(i) At time k = 0, and given an initial state x = x0 ∈ SN :
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a) Compute U ∗ = U svd = {u∗
0, u

∗
1, . . . , u

∗
N−1}, the sequence of control

moves determined by the SVD strategy, based on step (ii) of Algorithm
11.6.1. Let X ∗ be the corresponding state sequence resulting from the
application of U ∗ to system (11.42) with initial state x0 = x.

b) Initialise the value function using the corresponding value of the ob-
jective function as per (11.64), that is,

V ∗(x) = VN (X ∗, U ∗).

c) Apply as the initial control action, the first element of U ∗, that is,

u0 = K svd(x) � u∗
0.

d) Set k = 1, xk = Ax + Bu∗
0, and go to step (ii).

(ii) At time k set x = xk. Then:
a) If x /∈ SN , go to step (iii).
b) If x ∈ SN , determine the sequence of control moves U svd generated

by the SVD strategy following step (ii) of Algorithm 11.6.1. Let X svd

be the corresponding state sequence.
c) If VN (X svd, U svd) ≥ V ∗(x), go to step (iii).
d) If VN (X svd, U svd) ≤ V ∗(x) − 1

2xtQx, set

U ∗ = U svd = {u∗
0, u

∗
1, . . . , u

∗
N−1}, (11.65)

X ∗ = X svd,

V ∗(x) = VN (X ∗, U ∗).

e) Apply as the current control action, the first element of U ∗, that is,

uk = K svd(x) � u∗
0. (11.66)

f) Set k = k + 1, xk = Ax + Bu∗
0, and return to step (ii).

(iii) a) Apply as the current control action the second element of U ∗ in
(11.65), that is,

uk = K svd(x) � u∗
1. (11.67)

b) Update the sequence of control moves U ∗ by retaining the last N − 1
elements of the previous U ∗ in (11.65) and adding, as the last element,
the unconstrained optimal control move, that is,

U ∗ = {u∗
1, u

∗
2, . . . , u

∗
N−1,−Kx∗

N}, (11.68)

where K is the optimal feedback gain defined in (11.46).
c) Update the value of the objective function V ∗(x) using the updated

control sequence U ∗ in (11.68), and the corresponding state sequence
X ∗, that is, V ∗(x) = VN (X ∗, U ∗).

d) Set k = k + 1, xk = Ax + Bu∗
1, and return to step (ii). ◦
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The above algorithm ensures that the closed loop trajectories converge to
the origin, as proved in the following theorem.

Theorem 11.6.2 (Stability of the SVD–RHC Strategy) Let the ter-
minal constraint set Xf ⊂ X in (11.60) be the maximal output admissible
set O∞ defined in (11.63). Then the SVD–RHC strategy described in Al-
gorithm 11.6.2 ensures attractivity of the origin for all initial states in SN .
Moreover, the origin is an exponentially stable equilibrium point for the closed
loop system x+ = Ax + BK svd(x) in O∞.

Proof. We will show that the function V ∗(x) is a Lyapunov function for the
SVD–RHC strategy.

At any time k, with state x = xk, Algorithm 11.6.2 generates a control
sequence U ∗ that is given either by (11.65) or by (11.68). Note that in both
cases the sequence U ∗ is feasible by construction. The corresponding value of
the objective function is V ∗(x) = VN (X ∗, U ∗), where X ∗ is the correspond-
ing state sequence, and the controller applied to the system is uk = K svd(x),
given either by (11.66) or (11.67).

Let x+ = Ax + Buk be the successor state. If x+ ∈ SN and the control
sequence U ∗+ is computed as in (11.65), we have

V ∗(x+) ≤ V ∗(x) − 1
2
xtQx

by construction. On the other hand, if the control sequence U ∗+ is computed
as in (11.68), we obtain, by direct calculation:

V ∗(x+) = VN (X ∗+, U ∗+)

= VN (X ∗, U ∗) − 1
2
xtQx − 1

2
u∗

0
tRu∗

0 −
1
2
x∗

N
tPx∗

N

+
1
2
x∗

N
t[(A − BK)tP (A − BK) + KtRK + Q]x∗

N

= V ∗(x) − 1
2
xtQx − 1

2
u∗

0
tRu∗

0,

where x∗
N is the last element of the state sequence X ∗, and where we have

used P = (A − BK)tP (A − BK) + KtRK + Q, which follows from (11.45)–
(11.46). Since R > 0, we then have that

V ∗(x+) ≤ V ∗(x) − 1
2
xtQx.

Since Q > 0, the objective function V ∗(x) decreases along the trajectories of
the system under the SVD–RHC strategy according to property (i) in The-
orem 4.3.1 of Chapter 4. Also, V ∗(x) ≥ xtQx, and hence V ∗(x) satisfies
property (ii) in Theorem 4.3.1. The attractivity result then follows from sim-
ilar arguments to those used in the proof of Theorem 4.3.1.
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To show exponential stability, note that inside the terminal constraint set
Xf = O∞, the SVD–RHC control coincides with the unconstrained control law
uk = −Kxk, that is, K svd(x) = −Kx for all x ∈ O∞. Since O∞ is positively
invariant for x+ = Ax + BK svd(x) = (A − BK)x, it follows that the origin
is exponentially stable in O∞ for the closed loop system since A − BK is a
Hurwitz matrix. �

We observe that it is possible, depending on the initial state x0, that
the SVD strategy of Algorithm 11.6.1 might be used only once, to initialise
Algorithm 11.6.2. This would imply that the control sequence U ∗ computed
in step (i) be applied entirely in open loop. However, the control moves in U ∗,
followed by the unconstrained control law uk = −Kxk for k = N, N + 1, . . . ,
are guaranteed to stabilise system (11.42), as discussed before, and proved in
Theorem 11.6.2.

When the system (11.42) is stable, and the state constraint set X in (11.47)
is the whole space Rn, the region of attraction of the SVD–RHC strategy can
be trivially extended to be Rn. Outside the region SN we can simply apply
uk = 0, in which case the system’s states would evolve asymptotically towards
the origin. Once the state trajectory enters the admissible set SN , stability is
ensured by means of Theorem 11.6.2.

Characterisation of the admissible set SN

For Algorithm 11.6.2 to be useful, we need a practical characterisation of the
admissible set SN . This is done in the following result.

Lemma 11.6.3 The set of admissible initial conditions SN is given by

SN =
Nm⋃
r=1

Cr, (11.69)

where Cr is the set

Cr �
{

x ∈ R
n : V ũr =

r∑
j=1

vjũopt
uc (j) satisfies constraints (11.60)

}
, (11.70)

and where ũopt
uc (j) is the linear function of x given by the jth component of

vector ũopt
uc defined in (11.58).

Proof. If x ∈ SN , then by Definition 11.6.1 of the admissible set SN , there
exists a sequence U svd which satisfies the constraints in (11.47). However, this
is equivalent to the fact that the corresponding vector of control moves (11.61)
satisfies the constraints (11.60). Thus x ∈ Cr for the value of r determined
using Algorithm 11.6.1. From this we conclude that x ∈ ⋃Nm

j=1 Cj .
Conversely, suppose that x ∈ Ci for some i ∈ INm. Then i is feasible for

the maximisation in (11.59), and thus there exists a sequence U svd which
satisfies the constraints in (11.60). Thus, x ∈ SN , and the result follows. �
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It is useful to notice that, if Xf in (11.60) is chosen to be the maximal
output admissible set O∞ defined in (11.63), then the admissible region SN

is, at least, as large as O∞. This is established in the following lemma:

Lemma 11.6.4 Let Xf in (11.60) be the maximal output admissible set O∞
defined in (11.63). Then O∞ ⊂ SN .

Proof. Assume x ∈ O∞. Compute the unconstrained optimal control sequence
that minimises VN ({xk}, {uk}). It is easy to verify that this sequence has the
form {−Kx,−K(A − BK)x, . . . ,−K(A − BK)N−1x}. By the definition of
O∞, this sequence is feasible with respect to the constraints (11.47), and so
it is a feasible control sequence U svd corresponding to r = Nm in (11.59).
Thus, x ∈ SN , and the proof is completed. �

Note that whenever the set of constraints (11.60) can be expressed via
a finite set of linear inequalities, the same is true for the sets Cr in (11.70).
Hence, the test x ∈ SN required in Algorithm 11.6.1 is computationally simple.
This is illustrated in Example 11.6.1 below.

Example 11.6.1. Consider the discrete time resonant system defined by the
following state space matrices:

A =
[

1.5293 −0.7408
1 0

]
, B =

[
0.5
0

]
, C =

[
0.2222 0.2009

]
.

In the objective function (11.64) we use

Q = CtC, R = 1, N = 5,

and we assume that the system is subject to input constraints and a terminal
state constraint as follows:

uk ∈ U � [−1, 1] for k = 0, 1, . . . , N − 1, (11.71)
xN ∈ O∞.

The maximal output admissible set O∞ is defined in terms of a finite set of
inequalities

O∞ =
{
x ∈ R

n : −LK(A − BK)jx ≤ W for j = 0, 1, . . . , t∗
}

,

where

L =
[

1
−1

]
, W =

[
1
1

]
,

are defined based on (11.71) and t∗ is the output admissibility index (Gilbert
and Tan 1991). For this particular example, it can be shown that t∗ = 3, that
is, O∞ is characterised via a set of eight inequalities.

The sets Cr, r = 1, 2, . . . , 5, defined in Lemma 11.6.3 are given by:
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Cr =
{
x ∈ R

n : L̄x ≤ W̄
}

for r = 1, . . . , 5, (11.72)

where

L̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
V PjS

−1V tF
−V PjS

−1V tF
−LKĪ(Ω − ΓV PjS

−1V tF )
−LK(A − BK)Ī(Ω − ΓV PjS

−1V tF )
−LK(A − BK)2Ī(Ω − ΓV PjS

−1V tF )
−LK(A − BK)3Ī(Ω − ΓV PjS

−1V tF )

⎤⎥⎥⎥⎥⎥⎥⎦ , W̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
1N×1

1N×1

W
W
W
W

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and
Ī =

[
0n×(N−1)n In

]
, Pj = diag{Ij , 0(N−j)×(N−j)}.

The union of all five sets Cr in (11.72) determines the set of admissible initial
conditions SN . The resulting SN is depicted in Figure 11.5 where we also
include the maximal output admissible set O∞ for comparison. As we proved
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Figure 11.5. Set �N of admissible initial conditions for Example 11.6.1.

in Lemma 11.6.4, O∞ ⊂ SN . Moreover, for the particular example presented
here, we see that SN is clearly larger than O∞.

Now, let us consider the initial condition x0 = [16.66 19.43]t ∈ SN .
Figure 11.6 shows the corresponding state space trajectory for the closed loop
system using the SVD–RHC strategy of Algorithm 11.6.2. We observe that
the trajectory converges to the origin. Also observe that the trajectory is
outside the set SN during two steps in which no control sequence U svd of
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Figure 11.6. Closed loop state space trajectory using the SVD–RHC strategy of
Algorithm 11.6.2 and x0 = [16.66 19.43]t .

the form (11.62) is feasible. However, the SVD–RHC strategy steers the state
trajectory towards the origin by successively using the elements of the control
sequence U svd (step (iii) in Algorithm 11.6.2) computed when initialising the
algorithm.

Figure 11.7(a) shows the time evolution of the number of components r
used in the basis function expansion of usvd in (11.61). Note that at time
k = 0 we have r = 1 which corresponds to x0 ∈ C1 (see (11.70)). At times
k = 1 and k = 2 there is no feasible solution to (11.59), therefore no values
for r are plotted in Figure 11.7(a). This is in agreement with the observation
that xk /∈ SN for k = 1 and k = 2 as shown in Figure 11.6.

Figure 11.7(b) shows the time evolution of V ∗(xk). We observe that the
objective function is strictly decreasing along the state trajectory of the closed
loop system.

We finally compare the closed loop performance obtained using the SVD–
RHC strategy with the closed loop performance obtained using the standard,
QP-based, RHC solution. Figure 11.8 shows that, although the inputs applied
to the system are dissimilar, the time evolution of the output of the system is
very similar in both cases.

◦
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Figure 11.7. Time evolution of the number of components r used in the basis
function expansion of usvd and time evolution of V ∗(x) using the SVD–RHC strategy
of Algorithm 11.6.2 for x0 = [16.66 19.43]t .
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Figure 11.8. Comparison between standard RHC (plus-dashed line) and the SVD–
RHC strategy of Algorithm 11.6.2 (circle-solid line) for x0 = [16.66 19.43]t .

11.7 Further Insights from the SVD Structure of the
Regularised Sub-Hessian

Here we investigate further insights arising from the SVD decomposition of
the regularised sub-Hessian. Our development here is heuristic2 in nature since
we will blur the distinction between the exact SVD representation obtained
for a given value of the prediction horizon N and the associated asymptotic

2 The problem with “heuristics” is that they are like Argentinian mate (a drink)—a
matter of individual taste.
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frequency domain results. However, in view of the results in Section 11.5, this
blurring is well-justified for large prediction horizons.

Indeed, the motivation for the ideas presented here arises from the lim-
iting results in Section 11.5. There it was shown that the singular values of
the regularised sub-Hessian approach the principal gains of the system fre-
quency response. This connection is not surprising in view of the fact that the
objective function is a time-domain 
2 design criterion. Therefore, subject to
suitable regularity condition, this criterion can be evaluated in the frequency
domain for large N .

We restrict our arguments here to the single input-single output case but
the results can be extended to the multivariable case using the idea of principal
gains. We assume that the system has input uk ∈ R and output yk ∈ R. We
take the system transfer function as G(z) and we assume an objective function
of the form

VN =
N∑

k=0

[
(yk − ys

k)2 + R(uk − us
k)2

]
, (11.73)

where ys
k, us

k are given reference trajectories.
Assuming that the appropriate regularity conditions hold, we can use Par-

seval’s theorem to express the asymptotic (that is, N → ∞) objective function
in the frequency domain as

V∞ =
∫ π

0

{|Y (ejω) − Y s(ejω)|2 + R|U(ejω) − Us(ejω)|2} dω, (11.74)

where Y (ejω), U(ejω), Y s(ejω), Us(ejω) denote the Fourier transforms of yk,
ys

k, uk, us
k, respectively. We also note that the Z-transform of yk can be written

as
Y (z) = G(z)U(z) + Y0(z), (11.75)

where Y0(z) is the Z-transform of the initial condition response. Since we have
assumed that the Fourier transform of yk exists (although not necessarily that
of the initial condition response), we can set z = ejω in (11.75). Substituting
into (11.74) gives

V∞ =
∫ π

0

{
|G(ejω)U(ejω) + Y0(ejω) − Y s(ejω)|2

+ R|U(ejω) − Us(ejω)|2
}
dω. (11.76)

If we approximate the integral in (11.76) by a summation, then the objec-
tive function becomes

V∞ ≈
∑

i

(GiUi + Y0i − Y s
i )∗ (GiUi + Y0i − Y s

i ) + R(Ui − Us
i )∗(Ui − Us

i ),

where ∗ denotes conjugate. We then see that the “square term” in the input
has weighting |Gi|2 + R, which is consistent with the earlier rigorous analysis
of the singular values of the regularised sub-Hessian.

Further insights arising from (11.76) are discussed below.
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11.7.1 Achieved Closed Loop Bandwidth

There appear to be two ways one could achieve a desired closed loop band-
width. These options are:

(i) Adjusting R.

Equation (11.76) suggests that the value of R should determine the
resultant closed loop bandwidth as follows: (a) For those frequencies
such that |G(ejω)|2 � R, then the first term in (11.76) will dominate the
optimisation problem and near perfect reference tracking should occur.
(b) Similarly, for those frequencies such that |G(ejω)|2 � R, then the
second term in (11.76) will dominate the optimisation problem and the
input should then be set to the corresponding steady state value. This
argument suggests that the closed loop bandwidth will approximately
occur at the frequency where |G(ejω)|2 = R. Of course, between these
two conditions, there will be a transition. The nature of the transition
will depend on the system, especially the relationship between the critical
frequency where |G(ejω)|2 = R and the system nonminimum phase zeros
and unstable poles.

(ii) Limiting the set of singular values used in the optimisation.

An alternative direct way of limiting the closed loop bandwidth would
be to set R = 0 in the objective function but then restrict the range of
singular values used in the optimisation to include only those frequencies
up to the desired bandwidth.

11.7.2 Robustness

It is usually the case that the model of a system gives only an approximate
description. Moreover, the model error between the true system and the model
typically grows with frequency. On the other hand, it is well-known (Goodwin
et al. 2001) that closed loop stability cannot be guaranteed if the nominal
closed loop bandwidth exceeds the frequency where the magnitude of the
relative model error exceeds unity. With this as background, then the SVD
frequency domain insights outlined in this chapter suggest that there are two
ways that robustness can be achieved:

(i) Via choice of R.

We can choose R sufficiently large so that the resulting closed loop
bandwidth is less than the frequency ω̃ where the magnitude of the
relative model error approaches unity. (Based on the arguments presented
in Section 11.7.1, this implies that R needs to be greater than the
magnitude squared of the model frequency response at the frequency ω̃.)
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(ii) Via limits on the set of singular values used in the optimisation.

A more direct way of restricting the bandwidth is simply to limit the set
of singular values employed in the optimisation (whether constrained or
unconstrained) to include only those “frequencies” where the magnitude
of the relative model error is significantly below unity. (This is readily
achieved using the algorithms described in Section 11.6.)

We illustrate the above heuristic ideas by a simple example.

Example 11.7.1. Consider the system

ẋ(t) = −x(t) + u(t),

sampled with period Ts = 0.025 sec. We develop the example in several steps.

(i) Closed loop bandwidth issues:

• Unconstrained response:

We use the objective function (11.73) with yk = xk, R = 0.01, and
horizon N = 251 (that is, 6.25 sec).

Figure 11.9 shows the magnitude (in dB) of the open loop system
frequency response. We see that this cuts the line 20 log10

√
R with

R = 0.01 at ω = 10 rad/sec. The line of argument presented in Sec-
tion 11.7.1 suggests that using R = 0.01 should yield a closed loop
bandwidth of approximately 10 rad/sec.

This is confirmed in Figure 11.10, which shows the resultant closed
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Figure 11.9. Frequency response of the open loop system.

loop responses for the input u and the output y = x with a reference
ys(t) = 1. Indeed we see that a closed loop time constant of the order
of 0.1 sec has resulted.
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Figure 11.10. Input-output closed loop response with R = 0.01 and no constraints.

• Adding input constraints:

We see that the input in Figure 11.10 reaches a maximum value of 9.
We next add a mild input constraint of |uk| ≤ 8. The resulting input-
output closed loop response is shown in Figure 11.11.
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Figure 11.11. Input-output closed loop response with R = 0.01 and mild input
constraints. RHC implementation using all singular values.

• RHC with restricted singular values:

We next set R = 0 in (11.73), which would give a very large closed
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loop bandwidth in normal RHC if no other restrictions were added.
However, utilising the link between singular values and frequency re-
sponse, we anticipate that restricting the singular values to the most
significant values should allow us to limit the closed loop bandwidth. In
particular, Figure 11.12 shows the location of the 21st singular value in
relation to the magnitude of the open loop system frequency response.

Comparing Figures 11.9 and 11.12 we see that the two critical frequen-
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Figure 11.12. Frequency response of the open loop system with location of the
21st singular value.

cies are very close.

Restricting the optimisation to the first 21 singular values (and us-
ing R = 0) gives the response shown by the solid line in Figure 11.13.
Also shown in this figure (in dotted lines) is the earlier response ob-
tained using all of the singular values, but with R = 0.01. As predicted,
the two responses are qualitatively the same, that is, essentially the
same closed loop bandwidth has been achieved.

(ii) Robustness issues:

• Effect of R on robustness:

We set R to the value 0.01. We then add a small unmodelled time
delay of eight samples (that is, 0.2 sec) to the system. The relative
model error is shown in Figure 11.14. We see that there is significant
relative model error at ω = 10 rad/sec. Thus, since R = 0.01 gives
an effective closed loop bandwidth of about 10 rad/sec, we anticipate
difficulties with the closed loop system when all singular values are
utilised in the optimisation. This is confirmed in Figure 11.15, which
shows that the closed loop system begins to oscillate. Note that the
input signal essentially swings between the limits at ±8.
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Figure 11.13. Input-output closed loop response with R = 0 and input constraints.
RHC implementation with restricted singular values. The plots of Figure 11.11 are
repeated in dotted lines.
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• Effect of using a restricted set of singular values on robustness:

Based again on the frequency domain link, we can see from Fig-
ure 11.14 that restricting to the first seven singular values should cause
high feedback gain beyond about ω = 3 rad/sec to be avoided, and
intuitively this should yield robust stability for the given unmodelled
dynamics. This hypothesis is confirmed in Figure 11.16, which shows
that the response achieved with the restricted SVD algorithm using
R = 0.01 and restricting the optimisation to the first seven singular
values does indeed restore closed loop stability.

◦

The above example confirms the link between closed loop bandwidth and
robustness on the one hand and the choice of input weighting R and restrict-
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Figure 11.15. Input-output response with mild input constraint, R = 0.01 and
plant-model mismatch. RHC implementation using all singular values.
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Figure 11.16. Input-output response with mild input constraint, R = 0.01 and
plant-model mismatch. RHC implementation with restricted singular values.

ing the set of singular values in the optimisation on the other hand. These
observations are consistent with the heuristic ideas outlined in this section.

11.8 Further Reading

For complete list of references cited, see References section at the end of book.
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Section 11.6.2

More details regarding the SVD–RHC strategy described in Section 11.6.2 can
be found in Rojas, Goodwin, Seron and Feuer (2004), and Rojas, Goodwin and
Johnston (2002). The stability properties of the strategy are also addressed in
Rojas, Seron and Goodwin (2003). The results regarding the singular values
of the sub-Hessian for long prediction horizons were first derived for stable
SISO plants and presented in Rojas et al. (2002).



12

Output Feedback Optimal Control
with Constraints

Contributed by Tristan Perez and Hernan
Haimovich

12.1 Overview

In Chapters 1 through 9 of the book (with the exception of a brief discussion
on observers and integral action in Section 5.5 of Chapter 5) we considered
constrained optimal control problems for systems without uncertainty, that
is, with no unmodelled dynamics or disturbances, and where the full state was
available for measurement. More realistically, however, it is necessary to con-
sider control problems for systems with uncertainty. This chapter addresses
some of the issues that arise in this situation. As in Chapter 9, we adopt
a stochastic description of uncertainty, which associates probability distribu-
tions to the uncertain elements, that is, disturbances and initial conditions.
(See Section 12.6 for references to alternative approaches to model uncer-
tainty.)

When incomplete state information exists, a popular observer-based con-
trol strategy in the presence of stochastic disturbances is to use the certainty
equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for de-
terministic systems. In the stochastic framework, CE consists of estimating
the state and then using these estimates as if they were the true state in
the control law that results if the problem were formulated as a determinis-
tic problem (that is, without uncertainty). This strategy is motivated by the
unconstrained problem with a quadratic objective function, for which CE is
indeed the optimal solution (Åström 1970, Bertsekas 1976).

One of the aims of this chapter is to explore the issues that arise from
the use of CE in RHC in the presence of constraints. We then turn to the
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obvious question about the optimality of the CE principle. We show that CE
is, indeed, not optimal in general.

We also analyse the possibility of obtaining truly optimal solutions for
single input linear systems with input constraints and uncertainty related to
output feedback and stochastic disturbances. We first find the optimal solution
for the case of horizon N = 1, and then we indicate the complications that
arise in the case of horizon N = 2. Our conclusion is that, for the case of
linear constrained systems, the extra effort involved in the optimal feedback
policy is probably not justified in practice. Indeed, we show by example that
CE can give near optimal performance. We thus advocate this approach in
real applications.

12.2 Problem Statement

We consider the following time-invariant, discrete time linear system with
disturbances

xk+1 = Axk + Buk + wk,

yk = Cxk + vk,
(12.1)

where xk, wk ∈ Rn and uk, yk, vk ∈ R. The control uk is constrained to take
values in the set

U = {u ∈ R : −∆ ≤ u ≤ ∆},
for a given constant value ∆ > 0. The disturbances wk and vk are i.i.d.
random vectors, with probability density functions (pdf) pw( · ) and pv( · ),
respectively. The initial state, x0, is characterised by a pdf px0( · ). We assume
that the pair (A, B) is reachable and that the pair (A, C) is observable.

We further assume that, at time k, the value of the state xk is not avail-
able to the controller. Instead, the following sets of past inputs and outputs,
grouped as the information vector Ik, represent all the information available
to the controller at the time instant k:

Ik =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{y0} if k = 0,

{y0, y1, u0} if k = 1,

{y0, y1, y2, u0, u1} if k = 2,
...

...
{y0, y1, . . . , yN−1, u0, u1, . . . uN−2} if k = N − 1.

Then, Ik ∈ R2k+1, and also Ik+1 = {Ik, yk+1, uk}, where Ik ⊂ Ik+1.
For system (12.1), under the assumptions made, we formulate the optimi-

sation problem:

minimise E

{
F (xN ) +

N−1∑
k=0

L(xk, uk)
}

, (12.2)
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where

F (xN ) = xt
NPxN ,

L(xk, uk) = xt
kQxk + Ru2

k,

subject to the system equations (12.1) and the input constraint uk ∈ U, for
k = 0, . . . , N −1. Note that, under the stochastic assumptions, the expression
F (xN ) +

∑N−1
k=0 L(xk, uk) is a random variable. Hence, it is only meaningful

to formulate the minimisation problem in terms of its statistics. A problem of
practical interest is to minimise the expected value of this expression, which
motivates the choice of the objective function in (12.2).

The result of the above minimisation problem will be a sequence of func-
tions {πopt

0 ( · ), πopt
1 ( · ), . . . , πopt

N−1( · )} that enable the controller to calculate
the desired optimal control action depending on the information available to
the controller at each time instant k, that is, uopt

k = πopt
k (Ik). These functions

also must ensure that the constraints be always satisfied. We thus make the
following definition.

Definition 12.2.1 (Admissible Policies for Incomplete State Infor-
mation) A policy ΠN is a finite sequence of functions πk( · ) : R2k+1 → R for
k = 0, 1, . . . , N − 1, that is,

ΠN =
{
π0( · ), π1( · ), · · · , πN−1(·)

}
.

A policy ΠN is called an admissible control policy if and only if

πk(Ik) ∈ U for all Ik ∈ R
2k+1, for k = 0, . . . , N − 1.

Further, the class of all admissible control policies will be denoted by

Π̄N =
{
ΠN : ΠN is admissible

}
.

◦
Using the above definition, we can then state the optimal control problem of
interest as follows.

Definition 12.2.2 (Stochastic Finite Horizon Optimal Control Prob-
lem) Given the pdfs px0( · ), pw( · ) and pv( · ) of the initial state x0 and the
disturbances wk and vk, respectively, the problem considered is that of finding
the control policy Πopt

N , called the optimal control policy, belonging to the class
of all admissible control policies Π̄N , which minimises the objective function

VN (ΠN ) = E
x0,wk,vk

k=0,...,N−1

{
F (xN ) +

N−1∑
k=0

L(xk, πk(Ik))
}

, (12.3)

subject to the constraints
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xk+1 = Axk + B πk(Ik) + wk,

yk = Cxk + vk,

Ik+1 = {Ik, yk+1, uk},

for k = 0, . . . , N − 1. In (12.3) the terminal state weighting F ( · ) and the
per-stage weighting L( · , · ) are given by

F (xN ) = xt
NPxN ,

L(xk, πk(Ik)) = xt
kQxk + Rπ2

k(Ik),
(12.4)

with P > 0, R > 0 and Q ≥ 0.
The optimal control policy is then

Πopt
N = arg inf

ΠN∈Π̄N

VN (ΠN ),

with the following resulting optimal objective function value

V opt
N = inf

ΠN∈Π̄N

VN (ΠN ). (12.5)

◦
It is important to recognise that the optimisation problem of Defini-

tion 12.2.2 takes into account the fact that new information will be available to
the controller at future time instants. This is called closed loop optimisation, as
opposed to open loop optimisation where the control values {u0, u1, . . . , uN−1}
are selected all at once, at stage zero (Bertsekas 1976). For deterministic sys-
tems, in which there is no uncertainty, the distinction between open loop and
closed loop optimisation is irrelevant, and the minimisation of the objective
function over all sequences of controls or over all control policies yields the
same result.

In what follows, and as in previous chapters, the matrix P in (12.4) will
be taken to be the solution to the algebraic Riccati equation,

P = AtPA + Q − KtR̄K, (12.6)

where
K � R̄−1BtPA, R̄ � R + BtPB. (12.7)

12.3 Optimal Solutions

The problem described in the previous section belongs to the class of the
so-called sequential decision problems under uncertainty (Bertsekas 1976,
Bertsekas 2000). A key feature of these problems is that an action taken at
a particular stage affects all future stages. Thus, the control action has to be
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computed taking into account the future consequences of the current decision.
The only general approach known to address sequential decision problems is
dynamic programming.

The dynamic programming algorithm was introduced in Section 3.4 of
Chapter 3 and was used in Chapters 6 and 7 to derive a closed form solution
of a deterministic finite horizon optimal control problem. We next briefly show
how this algorithm is used to solve the stochastic optimal control problem of
Definition 12.2.2.

We define the functions

L̃N−1(IN−1, πN−1(IN−1)) = E
{
F (xN ) + L(xN−1, πN−1(IN−1))

|IN−1, πN−1(IN−1)
}

,

L̃k(Ik, πk(Ik)) = E
{
L(xk, πk(Ik))|Ik, πk(Ik)

}
for k = 0, . . . , N − 2.

Then, the dynamic programming algorithm for the case of incomplete state
information can be expressed via the following sequential optimisation (sub-)
problems [SOP ]:

SOPN−1 : JN−1(IN−1) = inf
uN−1∈U

L̃N−1(IN−1, uN−1),

subject to:
xN = AxN−1 + BuN−1 + wN−1,

(12.8)

and, for k = 0, . . . , N − 2,

SOPk : Jk(Ik) = inf
uk∈U

[
L̃k(Ik, uk) + E

{
Jk+1(Ik+1)|Ik, uk

}]
,

subject to:
xk+1 = Axk + Buk + wk,

Ik+1 = {Ik, yk+1, uk},
yk+1 = Cxk+1 + vk+1.

The dynamic programming algorithm starts at stage N − 1 by solving
SOPN−1 for all possible values of IN−1. In this way, the law πopt

N−1( · ) is
obtained, in the sense that given the value of IN−1, the corresponding optimal
control is the value uN−1 = πopt

N−1(I
N−1), the minimiser of SOPN−1. The

procedure then continues to solve the sub-problems SOPN−2, . . . ,SOP0 to
obtain the laws πopt

N−2( · ), . . . , πopt
0 ( · ). After the last optimisation sub-problem

is solved, the optimal control policy Πopt
N is obtained and the optimal objective

function (see (12.5)) is

V opt
N = VN (Πopt

N ) = E{J0(I0)} = E{J0(y0)}.
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12.3.1 Optimal Solution for N = 1

In the following proposition, we apply the dynamic programming algorithm
to obtain the optimal solution of the problem in Definition 12.2.2 for the
case N = 1.

Proposition 12.3.1 For N = 1, the solution to the optimal control problem
stated in Definition 12.2.2 is of the form Πopt

1 = {πopt
0 ( · )}, with

uopt
0 = πopt

0 (I0) = −sat∆(K E{x0|I0}) for all I0 ∈ R, (12.9)

where K is given in (12.7) and sat∆ : R → R is the saturation function defined
as

sat∆(z) =

⎧⎪⎨⎪⎩
∆ if z > ∆,

z if |z| ≤ ∆,

−∆ if z < −∆.

Moreover, the last step in the dynamic programming algorithm has the value

J0(I0) = E
{
xt

0Px0|I0
}

+ R̄Φ∆(K E{x0|I0})
+ tr(KtK cov{x0|I0}) + E{wt

0Pw0},
(12.10)

where P and R̄ are defined in (12.6) and (12.7), respectively, and where Φ∆ :
R → R is given by

Φ∆(z) = [z − sat∆(z)]2. (12.11)

Proof. For N = 1, the only optimisation sub-problem to solve is SOP0 (see
(12.8)).

J0(I0) = inf
u0∈U

E
{
F (x1) + L(x0, u0)|I0, u0

}
= inf

u0∈U
E

{
(Ax0 + Bu0 + w0)tP (Ax0 + Bu0 + w0)

+ xt
0Qx0 + Ru2

0|I0, u0

}
.

(12.12)

Using the fact that E{w0|I0, u0} = E{w0} = 0 and that w0 is neither cor-
related with the state x0 nor correlated with the control u0, (12.12) can be
expressed, after distributing and grouping terms, as

J0(I0) = E{wt
0Pw0} + inf

u0∈U
E

{
xt

0(A
tPA + Q)x0

+ 2u0B
tPAx0(BtPB + R)u2

0|I0, u0

}
.

Further, using (12.6) and (12.7), the above becomes
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J0(I0) = E{wt
0Pw0} + inf

u0∈U
E

{
xt

0Px0 + R̄(xt
0K

tKx0

+ 2u0Kx0 + u2
0)|I0, u0

}
= E{wt

0Pw0} + E{xt
0Px0|I0} + R̄ inf

u0∈U
E
{
(u0 + Kx0)2|I0, u0

}
,

where we have used the fact that the conditional pdf of x0 given I0 and
u0 is equal to the pdf where only I0 is given. Finally, using properties of
the expected value of quadratic forms (see, for example, Åström 1970) the
optimisation problem to solve becomes

J0(I0) = E{wt
0Pw0} + E{xt

0Px0|I0} + tr(KtK cov{x0|I0})
+ R̄ inf

u0∈U

[
(u0 + K E{x0|I0})2] .

(12.13)

It is clear from (12.13) that the unconstrained minimum is attained at
u0 = −K E{x0|I0}. In the constrained case, equation (12.9) follows from
the convexity of the quadratic function. The final value (12.10) is obtained by
substituting (12.9) into (12.13). The result is then proved. �

Note that when N = 1 the optimal control law πopt
0 depends on the

information I0 only through the conditional expectation E{x0|I0}. Therefore,
this conditional expectation is a sufficient statistic in this case, that is, it
provides all the necessary information to implement the control.

We observe that the control law given in (12.9) is also the optimal control
law for the cases in which:

• the state is measured (complete state information) and the disturbance
wk is still acting on the system;

• the state is measured and wk is set equal to a fixed value or to its mean
value (see (6.17) in Chapter 6 for the case wk = 0).

Therefore, CE is optimal for horizon N = 1, that is, the optimal control law
is the same law that would result from an associated deterministic optimal
control problem in which some or all uncertain quantities were set to a fixed
value.

12.3.2 Optimal Solution for N = 2

We now consider the case where the optimisation horizon is N = 2.

Proposition 12.3.2 For N = 2, the solution to the optimal control problem
stated in Definition 12.2.2 is of the form Πopt

2 = {πopt
0 ( · ), πopt

1 ( · )}, with

uopt
1 = πopt

1 (I1) = −sat∆(K E{x1|I1}) for all I1 ∈ R
3,
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uopt
0 = πopt

0 (I0) = arg inf
u0∈U

[
R̄(u0 + K E{x0|I0})2

+ R̄ E
{

Φ∆(K E{x1|I1})|I0, u0

}]
for all I0 ∈ R,

(12.14)

where Φ∆( · ) is given in (12.11).

Proof. The first step of the dynamic programming algorithm (see (12.8)) gives

J1(I1) = inf
u1∈U

E
{

F (Ax1 + B u1 + w1) + L(x1, u1)|I1, u1

}
.

We see that J1(I1) is similar to J0(I0) in (12.12). By comparison, we readily
obtain

πopt
1 (I1) = −sat∆(K E{x1|I1}),
J1(I1) = E{wt

1Pw1} + E{xt
1Px1|I1} + tr(KtK cov{x1|I1})

+ R̄Φ∆(K E{x1|I1}).
The second step of the dynamic programming algorithm proceeds as follows:

J0(I0) = inf
u0∈U

[
E{L(x0, u0)|I0, u0} + E

{
J1(I1)|I0, u0

} ]
,

subject to:
x1 = Ax0 + Bu0 + w0,

I1 = {I0, y1, u0},
y1 = Cx1 + v1.

The objective function above can be written as

J0(I0) = inf
u0∈U

[
E{xt

0Qx0 + Ru2
0|I0, u0} + E{wt

1Pw1}
+ E{E{xt

1Px1|I1}|I0, u0} + tr(KtK cov{x1|I1})
+ R̄ E

{
Φ∆(K E{x1|I1})|I0, u0

} ]
.

(12.15)

Since {I0, u0} ⊂ I1, using the properties of successive conditioning (Ash and
Doléans-Dade 2000), we can express the third term inside the inf in (12.15)
as

E{E{xt
1Px1|I1}|I0, u0} = E{xt

1Px1|I0, u0}
= E

{
(Ax0 + Bu0 + w0)tP (Ax0

+ Bu0 + w0)|I0, u0

}
.

Using this, expression (12.15) becomes
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J0(I0) = inf
u0∈U

[
E{xt

0Qx0 + Ru2
0 + (Ax0 + Bu0 + w0)tP (Ax0

+ Bu0 + w0)|I0, u0} + E{wt
1Pw1} + tr(KtK cov{x1|I1})

+ R̄E
{
Φ∆(K E{x1|I1})|I0, u0

} ]
. (12.16)

Note that the first part of (12.16) is identical to (12.12). Therefore, using
(12.13), expression (12.16) can be written as

J0(I0) = E{xt
0Px0|I0} +

1∑
j=0

[
tr(KtK cov{xj |Ij}) + E{wt

j Pwj}
]

+ inf
u0∈U

[
R̄(u2

0 + K E{x0|I0})2 + R̄ E
{
Φ∆(K E{x1|I1})|I0, u0

} ]
,

(12.17)

where tr(KtK cov{x1|I1}) has been left out of the minimisation because it
is not affected by u0 due to the linearity of the system equations (Bertsekas
1987, Bertsekas 2000). By considering only the terms that are affected by u0,
we find the result given in (12.14). �

To obtain an explicit form for πopt
0 , we would need to express E{x1|I1} =

E{x1|I0, y1, u0} explicitly as a function of I0, u0 and y1. The optimal law
πopt

0 ( · ) depends on I0 not only through E{x0|I0}, as was the case for N = 1.
Indeed, Haimovich, Perez and Goodwin (2003) have shown that, even for
Gaussian disturbances, when input constraints are present, the optimal control
law πopt

0 ( · ) depends also on cov{x0|I0}.
To calculate E{x1|I1}, we need to find the conditional pdf px1|I1( · |I1). At

any time instant k, the conditional pdfs pxk|Ik( · |Ik) satisfy the Chapman–
Kolmogorov equation and the observation update equation (see Section 9.8
in Chapter 9):

Time update

pxk|Ik−1,uk−1
(xk|Ik−1, uk−1) =

∫
Rn

pxk|xk−1,uk−1(xk|xk−1, uk−1)

× pxk−1|Ik−1,uk−1
(xk−1|Ik−1, uk−1)dxk−1, (12.18)

Observation update

pxk|Ik(xk|Ik) = pxk|Ik−1,yk,uk−1
(xk|Ik−1, yk, uk−1)

=
pyk|xk

(yk|xk)pxk|Ik−1,uk−1
(xk|Ik−1, uk−1)

pyk|Ik−1,uk−1
(yk|Ik−1, uk−1)

,
(12.19)

where
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pyk|Ik−1,uk−1
(yk|Ik−1, uk−1) =

∫
Rn

pyk|xk
(yk|xk)

× pxk|Ik−1,uk−1
(xk|Ik−1, uk−1)dxk.

Remark 12.3.1. In general, depending on the pdfs of the initial state and the
disturbances, it may be very difficult or even impossible to obtain an explicit
form for the conditional pdfs that satisfy the recursion given by (12.18) and
(12.19). If the pdfs of the initial state and the disturbances are Gaussian,
however, all the conditional densities that satisfy (12.18) and (12.19) are also
Gaussian. In this particular case, (12.18) and (12.19) lead to the well-known
Kalman filter algorithm (see Section 9.6 in Chapter 9). The latter is a recursive
algorithm in terms of the (conditional) expectation and covariance, which
completely define any Gaussian pdf. ◦

Due to the way the information enters the conditional pdfs, it is, in general,
very difficult to obtain an explicit form for the optimal control. On the other
hand, even if the recursion given by (12.18) and (12.19) can be found explicitly,
the implementation of such optimal control may also be complicated and
computationally demanding. We illustrate this point by suggesting a way of
implementing the optimal controller in such a case.

Let us first discretise the set U of admissible control values, and suppose
that the discretised set Ud = {u0i ∈ U : i = 1, 2, . . . , r} contains a finite
number r of elements. We then approximate the optimal control as

uopt
0 ≈ arg inf

u0∈Ud

[
R̄(u0 + K E{x0|I0})2 + R̄E{Φ∆(K E{x1|I1})|I0, u0}

]
.

(12.20)
Hence, to solve the above minimisation, only a finite number of values of u0

have to be considered for a given I0 = y0. To do this, given the measurement
I0 = y0 and for every value u0i, i = 1, . . . , r, of u0, we can evaluate the
expression between square brackets in (12.20) in the following way:

(i) Given y0, we evaluate the function W2( · ) given by

W2(y0) = E{x0|I0} = E{x0|y0} =
∫

Rn

x0 px0|y0(x0|y0)dx0. (12.21)

(ii) Given y0, pv( · ), pw( · ) and px0( · ), we obtain py0|x0( · |x0) and
px1|y0,y1,u0( · |y0, y1, u0) in explicit form (as assumed) using the recursion
(12.18) and (12.19) together with the system and measurement equa-
tions (12.1).

(iii) Using px1|y0,y1,u0( · |y0, y1, u0), the expectation E{x1|y0, y1, u0} can be
written as

h(y0, y1, u0) = E{x1|y0, y1, u0}
=

∫
Rn

x1px1|y0,y1,u0(x1|y0, y1, u0)dx1,
(12.22)
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which may not be expressible in explicit form even if (12.18) and (12.19)
are so expressed. However, it may be evaluated numerically if y0, y1 and
u0 are given.

(iv) Using px0|y0( · |y0), pv( · ), together with the measurement equation,
we can obtain py1|y0,u0( · |y0, u0). We can now express the expectation
E

{
Φ∆ (Kh(y0, y1, u0)) |I0, u0

}
as

W1(y0, u0) = E
{
Φ∆ (Kh(y0, y1, u0)) |I0, u0

}
=

∫
R

Φ∆ (Kh(y0, y1, u0)) py1|y0,u0(y1|y0, u0)dy1.
(12.23)

Note that, in order to calculate this integral numerically, the function
h(y0, y1, u0) has to be evaluated for different values of y1, even if u0 and
y0 are given.

To find the value of the objective function achieved by one of the r values u0i,
expressions (12.21), (12.22) and (12.23) may need further discretisations (for
x0, x1 and y1, respectively).

From the previous comments, it is evident that the approximation of the
optimal solution can be very computationally demanding depending on the
discretisations performed. Note that in the above steps all the pdfs are as-
sumed known in explicit form so that the integrals can be evaluated. As al-
ready mentioned in Remark 12.3.1, this may not always be possible.

As an alternative approach to brute force discretisations, we could use
Markov chain Monte Carlo [MCMC] methods (Robert and Casella 1999).
These methods approximate continuous pdfs by discrete ones by drawing sam-
ples from the pdfs in question or from other approximations. However, save
for some very particular cases, the exponential growth in the number of com-
putations as the optimisation horizon is increased seems to be unavoidable.
We observe, in passing, that the application of MCMC methods to the recur-
sion given by (12.18) and (12.19) gives rise to a special case of the, so-called,
particle filters (Doucet et al. 2001).

The above discussion suggests that, not only does it seem impossible to
analytically proceed with the optimisation for horizons greater than two but
also the implementation of the optimal law (even for N = 2) appears to be
quite intricate and computationally burdensome. This leads us to consider
suboptimal solutions. In the next section, we analyse two alternative subop-
timal strategies.

12.4 Suboptimal Strategies

12.4.1 Certainty Equivalent Control

As mentioned before, certainty equivalent control [CEC] uses the control law
obtained as the solution of an associated deterministic control problem de-
rived from the original problem by removing all uncertainty. Specifically, the
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associated problem is derived by setting the disturbance wk to a fixed typical
value (for example, w̄ = E{wk}) and by also assuming perfect state infor-
mation. The resulting control law is a function of the true state. Then, the
control is implemented using some estimate of the state x̂(Ik) in place of the
true state.

For our problem, we first obtain the optimal policy for the deterministic
problem

Πdet
N =

{
πdet

0 ( · ), . . . , πdet
N−1( · )

}
, (12.24)

where πdet
k : Rn → R for k = 0, 1, . . . , N − 1. Then, the CEC evaluates the

deterministic laws at the estimate of the state, that is,

uce
k = πdet

k

(
x̂(Ik)

)
. (12.25)

As we saw in Section 6.2 of Chapter 6, the associated deterministic prob-
lem for linear systems with a quadratic objective function is an example of
a case where the control policy can be obtained explicitly for any finite op-
timisation horizon. The following example illustrates this for an optimisation
horizon N = 2.

Example 12.4.1 (Closed Loop CEC). For N = 2, the deterministic policy
Πdet

2 = {πdet
0 ( · ), πdet

1 ( · )} is given by (see Theorem 6.2.1 in Chapter 6):

πdet
1 (x) = −sat∆(Kx) for all x ∈ R

n

πdet
0 (x) =

⎧⎪⎨⎪⎩
−sat∆(Gx + h) if x ∈ Z

−,

−sat∆(Kx) if x ∈ Z,

−sat∆(Gx − h) if x ∈ Z+.

K is given by (12.7) and

G =
K + KBKA

1 + (KB)2
, h =

KB

1 + (KB)2
∆.

The sets Z−, Z, Z+ form a partition of Rn, and are given by

Z
− = {x : K(A − BK)x < −∆} ,

Z = {x : |K(A − BK)x| ≤ ∆} ,

Z
+ = {x : K(A − BK)x > ∆} .

Therefore, a closed loop CEC applies the controls

uce
0 = πdet

0

(
x̂(I0)

)
,

uce
1 = πdet

1

(
x̂(I1)

)
,

where the estimate x̂(Ik) can be provided, for example, by the Kalman filter.
◦
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12.4.2 Partially Stochastic CEC

This variant of CEC uses the control law obtained as the solution to an as-
sociated problem that assumes perfect state information but takes stochastic
disturbances into account. To actually implement the controller, the value of
the state is replaced by its estimate x̂k(Ik).

In our case, given a partially stochastic CEC [PS–CEC] admissible policy

ΛN =
{
λ0( · ), . . . , λN−1( · )

}
, (12.26)

that is, a sequence of admissible control laws λk( · ) : Rn → U that map the
(estimates of the) states into admissible control actions, the PS–CEC solves
the following perfect state information problem.

Definition 12.4.1 (PS–CEC Optimal Control Problem) Assuming
that the state x̂k will be available to the controller at time instant k to
calculate the control, and given the pdf pw( · ) of the disturbances wk, find the
admissible control policy Λopt

N =
{
λopt

0 ( · ), . . . , λopt
N−1( · )

}
that minimises the

objective function

V̂N (ΛN ) = E
wk

k=0,...,N−1

{
F (x̂N ) +

N−1∑
k=0

L(x̂k, λk(x̂k))
}

,

subject to x̂k+1 = Ax̂k + Bλk(x̂k) + wk for k = 0, . . . , N − 1. ◦
The optimal control policy for perfect state information thus found will be
used, as in CEC, to calculate the control action based on the estimate x̂k

provided by the estimator; that is,

uk = λopt
k (x̂k).

Next, we apply this suboptimal strategy to the problem of interest for horizons
1 and 2.

PS–CEC for N = 1.

Using the dynamic programming algorithm, we have

Ĵ(x̂0) = inf
u0∈U

E
{

x̂t
1P x̂1 + x̂t

0Qx̂0 + Ru2
0|x̂0, u0

}
.

As with the true optimal solution for N = 1, the PS–CEC optimal control
has the form

ûopt
0 = λopt

0 (x̂0) = −sat∆(Kx̂0),
Ĵ0(x̂0) = x̂t

0P x̂0 + R̄Φ∆(Kx̂0) + E{wt
0Pw0}.

We can see that if x̂0 = E{x0|I0} then the PS–CEC for N = 1 coincides with
the optimal solution.
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PS–CEC for N = 2.

The first step of the dynamic programming algorithm yields

ûopt
1 = λopt

1 (x̂1) = −sat∆(Kx̂1),
Ĵ1(x̂1) = x̂t

1P x̂1 + R̄Φ∆(Kx̂1) + E{wt
1Pw1}.

For the second step, we have, after some algebra, that

Ĵ0(x̂0) = inf
u0∈U

[
E{L(x̂0, u0) + Ĵ1(x̂1)|x̂0, u0}

]
,

subject to:
x̂1 = Ax̂0 + Bu0 + w0,

ûopt
0 = arg inf

u0∈U

[
R̄(u0+Kx̂0)2+R̄E{Φ∆[K(Ax̂0+Bu0+w0)]|x̂0, u0}

]
. (12.27)

Comparing ûopt
0 with expression (12.14) for the optimal control, we can ap-

preciate that, given x̂0, even if E
{
Φ∆[K(Ax̂0 + Bu0 + w0)]|x̂0, u0

}
cannot be

found in explicit form as a function of u0, the numerical implementation of
this suboptimal control action is much less computationally demanding than
its optimal counterpart.

12.5 Simulation Examples

In this section we compare the performance of the suboptimal strategies CEC
and PS–CEC by means of simulation examples. The performance is assessed
by computing the achieved value of the objective function. The objective
function is defined as the expected value of a random variable, which is a
quadratic function of the states and controls in our case. Hence, a comparison
between the values of the objective function incurred by using different policies
is only meaningful in terms of these expected values. To numerically compute
values of the objective function for a given control policy, different realisations
of the initial state plus process and measurement disturbances have to be
obtained and a corresponding realisation of the objective function evaluated.
Then, the expected value can be approximated by averaging over the different
realisations.

The following examples are simulated for the system:

A =
[

0.9713 0.2189
−0.2189 0.7524

]
, B =

[
0.0287
0.2189

]
, C = [0.3700 0.0600].

(12.28)
The disturbances wk are assumed to have a uniform distribution with support
on [−0.5, 0.5] × [−1, 1] and likewise for vk with support on [−0.1, 0.1]. The



12.6 Further Reading 293

initial state x0 is assumed to have a Gaussian distribution with zero mean and
covariance diag{300−1, 300−1}. A Kalman filter was implemented to provide
the state estimates needed. Although this estimator is not the optimal one
in this case because the disturbances are not Gaussian, it yields the best
linear unbiased estimator for the state. The parameters for the Kalman filter
were chosen as the true mean and covariance of the corresponding variables
in the system. The saturation limit of the control was taken as ∆ = 1. The
optimisation horizon is in both cases N = 2.

For PS–CEC, we discretise the set U so that only 500 values are considered,
and the expected value in (12.27) is approximated by taking 300 samples of
the pdf pw( · ) for every possible value of u0 in the discretised set. For CEC,
we implement the policy given in Example 12.4.1.

We simulated the closed loop system over two time instants and repeated
the simulation a large number of times (between 2000 and 8000). For each
simulation, a different realisation of the disturbances and the initial state
was used. A realisation of the objective function was calculated for every
simulation run for each one of the control policies applied (PS–CEC and
CEC). The sample average of the objective function values achieved by each
policy was computed, and the difference between them was always found to
be less than 0.1%.

Although the examples are based on a simple simulated model, the com-
parison between the objective function values for the two control policies seems
to indicate that the trade-off between better performance and computational
complexity favours the CEC implementation over the PS–CEC.

It would be of interest, from a practical standpoint, to extend the optimi-
sation horizon beyond N = 2. However, as we explained in a previous section
and observed in the examples, due to computational issues this becomes very
difficult. In order to achieve this extension, one is led to conclude that CEC
may be, at this point, the only way forward.

Of course, the ultimate test for the suboptimal strategies would be to con-
trast them with the optimal one. It would be expected that, in this case, an
appreciable difference in the objective function values may be obtained due to
the fact that the optimal strategy takes into account the process and measure-
ment disturbances in a unified manner, as opposed to the above mentioned
suboptimal strategies, which use estimates provided by an estimator as if they
were the true state.

12.6 Further Reading

For complete list of references cited, see References section at the end of book.
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General

For more details on general sequential decision problems under uncertainty
and the use of dynamic programming, the reader is referred to Bellman (1957),
Bertsekas (1976) and Bertsekas (2000).

Section 12.3

The use of CE in RHC, due to its simplicity, has been advocated in the
literature (Muske and Rawlings 1993) and reported in a number of appli-
cations (see, for example, Angeli, Mosca and Casavola 2000, Marquis and
Broustail 1988, Perez, Goodwin and Tzeng 2000).

For RHC literature for uncertain systems using a stochastic uncertainty
description, see Haimovich, Perez and Goodwin (2003) and Perez, Haimovich
and Goodwin (2004) (on which this chapter is based). Also, in Filatov and Un-
behauen (1995) output-feedback predictive control of nonlinear systems with
uncertain parameters is addressed. The control is assumed unconstrained and
only suboptimal solutions are considered. Batina, Stoorvogel and Weiland
(2001) consider the RHC problem for the case of state feedback, input con-
straints and scalar disturbances. The optimal solution is approximated via a
randomised algorithm (Monte Carlo sampling). Examples for an optimisation
horizon of length 1 are presented. In Batina, Stoorvogel and Weiland (2002),
the authors extend their previous result to the state constrained case.

An alternative approach to model uncertainty is via a set-membership
description, which only gives information regarding the sets in which the un-
certain elements take values. When addressing uncertain systems, the RHC
literature has somewhat favoured the set-membership description; see, for ex-
ample, Shamma and Tu (1998) and Lee and Kouvaritakis (2001). For example,
Shamma and Tu (1998) propose an observer-based strategy that assumes un-
known but bounded disturbances, and generates a set of possible states based
on past input and output information. Then, to each estimated state the strat-
egy associates a set of control values that meet the constraint requirements.
The actual control applied to the system is selected to belong to the intersec-
tion of all the control value sets. As another example, Lee and Kouvaritakis
(2001) present an extension of the dual-mode paradigm of Mayne and Michal-
ska (1993), in which invariant sets of estimation errors are used for the case
of unknown-but-bounded measurement noise and disturbances.
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Finite Alphabet Controllers and Estimators

Contributed by Daniel Quevedo

13.1 Introduction

In this chapter we address the issue of control and estimation when the deci-
sion variables must satisfy a finite set constraint. We will distinguish between
finite alphabet control and estimation problems. As in the case of convex con-
straints, the essential difference is whether or not the initial state is given or
can be considered a decision variable.

Finite alphabet control occurs in many practical situations including: on-
off control, relay control, control where quantisation effects are important (in
principle this covers all digital control systems and control systems over digital
communication networks), and switching control of the type found in power
electronics.

Exactly the same design methodologies can be applied in other areas; for
example, the following problems can be directly formulated as finite alphabet
control problems:

• quantisation of audio signals for compact disc production;
• design of filters where the coefficients are restricted to belong to a finite

set (it is common in digital signal processing to use coefficients that are
powers of two to facilitate implementation issues);

• design of digital-to-analog [D/A] and analog-to-digital [A/D] converters.

Finite alphabet estimation problems are also frequently encountered in
practice. Common examples are:
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• estimation of transmitted signals in digital communication systems where
the signals are known to belong to a finite alphabet (say ±1);

• state estimation problems where a disturbance is known to take only a
finite set of values (for example, either “on” or “off”).

In this chapter we show how these problems can be formulated in the same
general framework as described in earlier chapters. However, special care is
needed to address the finite set nature of the constraints. In particular, this
restriction gives rise to a hard combinatorial optimisation problem, which is
exponential in the dimension of the problem. Thus, various approximation
techniques are necessary to deal with optimisation problems in which the
horizon is large. Commonly used strategies are variants of well-known branch
and bound algorithms (Land and Doig 1960, Bertsekas 1998).

We will show how the receding horizon principle can be used in these
problems. A key observation in this context is the fact that often the “first”
decision variable is insensitive to increasing the optimisation horizon beyond
some modest value (typically 3 to 10 in many real world problems).

Also, a closed form expression for the control law is derived by exploiting
the geometry of the underlying optimisation problem. The solution can also
be characterised by means of a partition of the state space, which is closely
related to the partition induced by the interval-constrained solution,1 as de-
veloped in Chapter 6. As a consequence, the controller can be implemented
without relying upon on-line numerical optimisation. Furthermore, the insight
obtained from this viewpoint into the nature of the control law can be used
to study the dynamic behaviour of the closed loop system.

13.2 Finite Alphabet Control

Consider a linear system having a scalar input uk and state vector xk ∈ Rn

described by
xk+1 = Axk + Buk. (13.1)

(Here we treat only the scalar input case, but the extension to multiple inputs
presents no additional conceptual difficulties.) A key consideration here is that
the input is restricted to belong to the finite set

U = {s1, s2, . . . , snU
}, (13.2)

where si ∈ R and si < si+1 for i = 1, 2, . . . , nU − 1.
We will formulate the input design problem as a receding horizon quadratic

regulator problem with finite set constraints. Thus, given the state xk = x,
we seek the optimising sequence of present and future control inputs:

1 The explicit solution in problems with “interval-type” constraints of the form
|u| ≤ ∆.
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uopt(x) � arg min
uk∈U

N

VN (x,uk), (13.3)

where

uk �

⎡⎢⎢⎢⎣
uk

uk+1

...
uk+N−1

⎤⎥⎥⎥⎦ , U
N � U × · · · × U. (13.4)

As in previous chapters, in (13.3) VN is the finite horizon quadratic objective
function2

VN (x,uk) � ‖xk+N‖2
P +

k+N−1∑
t=k

(‖xt‖2
Q + ‖ut‖2

R), (13.5)

with Q = Qt > 0, P = P t > 0, R = Rt > 0 and where xk = x. Note that, as
usual, the formulation of VN ( · , · ), uses predictions of future plant states.

Whilst we concentrate here upon plant state deviations from the origin,
nonzero references can also be encompassed within this framework. In order
to accomplish this, the objective function (13.5) needs to be modified by con-
sidering shifted coordinates as is common when dealing with nonzero constant
references in standard receding horizon control schemes (see Chapter 5).

The minimisation of (13.5) subject to the finite set constraint on uk and
the plant dynamics expressed in (13.1) yields the optimal sequence uopt(x).
It is a function only of the current state value xk = x.

Following the usual receding horizon principle (see Chapter 4), only the
first control action, namely

uopt(x) �
[
1 0 · · · 0

]
uopt(x), (13.6)

is applied. At the next time instant, the optimisation is repeated with a new
initial state and the finite horizon window shifted by one.

In the next section we present a closed form expression for uopt(x). This is
directly analogous to the geometric interpretation of the constrained solution
developed in Chapter 6. This result will allow us to characterise the control law
as a partition of the state space and provide a tool for studying the dynamic
behaviour of the resulting closed loop system.

13.3 Nearest Neighbour Characterisation of the Solution

Since the constraint set U
N is finite, the optimisation problem (13.3) is non-

convex. Indeed, it is a hard combinatorial optimisation problem whose solution
requires a computation time that is exponential in the horizon length. Thus,

2 ‖ν‖2
S denotes νtSν, where ν is any vector and S is a matrix.
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one needs either to use a relatively small horizon or to resort to approximate
solutions. We will adopt the former strategy based on the premise that, due
to the receding horizon technique, the first decision variable is all that is of
interest. Moreover, it is a practical observation that this first decision variable
is often insensitive to increasing the horizon length beyond some relative mod-
est value. To proceed, it is useful to vectorise the objective function (13.5) as
follows:

Define

xk �

⎡⎢⎢⎢⎣
xk+1

xk+2

...
xk+N

⎤⎥⎥⎥⎦ , Φ �

⎡⎢⎢⎢⎣
B 0 . . . 0 0

AB B . . . 0 0
...

...
. . .

...
...

AN−1B AN−2B . . . AB B

⎤⎥⎥⎥⎦ , Λ �

⎡⎢⎢⎢⎣
A
A2

...
AN

⎤⎥⎥⎥⎦ , (13.7)

so that, given xk = x and by iterating (13.1), the predictor xk satisfies

xk = Φuk + Λx. (13.8)

Hence, the objective function (13.5) can be re-written as

VN (x,uk) = V̄N (x) + ut
kHuk + 2ut

kFx, (13.9)

where

H � ΦtQΦ + R ∈ R
N×N , F � ΦtQΛ ∈ R

N×n,

Q � diag{Q, . . . , Q, P} ∈ R
Nn×Nn, R � diag{R, . . . , R} ∈ R

N×N ,

and V̄N (x) does not depend upon uk.
By direct calculation, it follows that the minimiser to (13.9), without tak-

ing into account any constraints on uk, is

uopt
uc (x) = −H−1Fx. (13.10)

Our subsequent development will utilise a nearest neighbour vector quan-
tiser in order to characterise the constrained optimiser. This is defined as
follows:

Definition 13.3.1 (Nearest Neighbour Vector Quantiser) Given a
countable (not necessarily finite) set of nonequal vectors B = {b1, b2, . . . } ⊂
RnB , the nearest neighbour quantiser is defined as a mapping qB : RnB → B

that assigns to each vector c ∈ RnB the closest element of B (as measured by
the Euclidean norm), that is, qB(c) = bi ∈ B if and only if c belongs to the
region{

c ∈ R
nB : ‖c − bi‖2 ≤ ‖c − bj‖2 for all bj �= bi, bj ∈ B

}
\{c ∈ R

nB : there exists j < i such that ‖c − bi‖2 = ‖c− bj‖2
}

. (13.11)

◦
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Note that in the special case, when nB = 1, this vector quantiser reduces
to the standard scalar quantiser.

In the above definition, the zero measure set of points that satisfy (13.11)
with equality have been arbitrarily assigned to the element having the smallest
index. This is done in order to avoid ambiguity in the case of frontier points,
that is, points equidistant to two or more elements of B. If this aspect does
not matter, then expression (13.11) can be simplified to{

c ∈ R
nB : ‖c − bi‖2 ≤ ‖c− bj‖2 for all bj �= bi, bj ∈ B

}
. (13.12)

Given Definition 13.3.1, we can now restate the solution to (13.3). This
leads to:

Theorem 13.3.1 (Closed Form Solution) Let U
N = {v1, v2, . . . , vr},

where r = (nU)N . Then the optimiser uopt(x) in (13.3) is given by

uopt(x) = H−1/2q
Ũ

N (−H−t/2Fx), (13.13)

where the nearest neighbour quantiser q
Ũ

N (·) maps RN to Ũ
N , defined as

Ũ
N � {ṽ1, ṽ2, . . . , ṽr}, ṽi = H1/2vi, vi ∈ U

N . (13.14)

Proof. For fixed x, the level sets of the objective function (13.9) are ellip-
soids in the input sequence space RN . These are centred at the point uopt

uc (x)
defined in (13.10). Thus, the optimisation problem (13.3) can be geometri-
cally interpreted as the one where we find the point uk ∈ U

N that belongs to
the smallest ellipsoid defined by (13.9) (that is, the point which provides the
smallest objective function value whilst satisfying the constraints).

In order to simplify the problem, we introduce the same coordinate trans-
formation utilised in Chapter 6, that is,

ũk = H1/2uk, (13.15)

which transforms the constraint set U
N into Ũ

N defined in (13.14). The opti-
miser uopt(x) can be defined in terms of this auxiliary variable as

uopt(x) = H−1/2 arg min
ũk∈Ũ

N

JN (x, ũk), (13.16)

where
JN (x, ũk) � ũt

kũk + 2ũt
kH−t/2Fx. (13.17)

The level sets of JN are spheres in RN , centred at

ũopt
uc (x) � −H−t/2Fx. (13.18)

Hence, the constrained optimiser (13.3) is given by the nearest neighbour to
ũopt

uc (x), namely

arg min
ũk∈Ũ

N
JN (x, ũk) = q

Ũ
N (−H−t/2Fx). (13.19)

The result (13.13) follows by substituting (13.19) into (13.16). �



300 13. Finite Alphabet Controllers and Estimators

We observe that, with N > 1, the optimiser uopt(x) provided in Theo-
rem 13.3.1 is, in general, different to the sequence obtained by direct quanti-
sation of the unconstrained minimum (13.10), namely, q

U
N (uopt

uc (x)).
As a consequence of Theorem 13.3.1, the receding horizon controller (13.6)

satisfies
uopt(x) =

[
1 0 · · · 0

]
H−1/2q

Ũ
N (−H−t/2Fx). (13.20)

This solution can be illustrated as the composition of the following transfor-
mations:

x ∈ R
n −H− t

2 F−−−−−−−→ ũopt
uc ∈ R

N
H− 1

2 q
Ũ

N (·)
−−−−−−−−−→ uopt ∈ U

N [1 0 · · · 0]−−−−−−−→ uopt ∈ U .
(13.21)

It is worth noticing that q
Ũ

N (·) is a memoryless nonlinearity, so
that (13.20) corresponds to a time-invariant nonlinear state feedback law.
In a direct implementation, at each time step, the quantiser needs to perform
r − 1 comparisons. However, in some cases, it is possible to exploit the na-
ture of the problem to obtain more efficient search algorithms (Quevedo and
Goodwin 2003a).

13.4 State Space Partition

Expression (13.11) partitions the domain of the quantiser into polyhedra,
called Voronoi partition. Since the constrained optimiser uopt(x) in (13.13)
(see also (13.21)) is defined in terms of q

Ũ
N (·), an equivalent partition of the

state space can be derived, as shown next.

Theorem 13.4.1 The constrained optimising sequence uopt(x) in (13.13)
can be characterised as

uopt(x) = vi ⇐⇒ x ∈ Ri,

where

Ri �
{
z ∈ R

n : 2(vi − vj)tFz ≤ ‖vj‖2
H − ‖vi‖2

H for all vj �= vi, vj ∈ U
N
}

\
{
z ∈ R

n : there exists j < i such that 2(vi − vj)tFz = ‖vj‖2
H − ‖vi‖2

H

}
.

(13.22)

Proof. From expressions (13.13) and (13.14) it follows that uopt(x) = vi if
and only if q

Ũ
N (−H−t/2Fx) = ṽi. On the other hand,

‖ − H−t/2Fx − ṽi‖2 = ‖H−t/2Fx‖2 + ‖ṽi‖2 + 2ṽt
i H−t/2Fx,

so that
‖ − H−t/2Fx − ṽi‖2 ≤ ‖ − H−t/2Fx − ṽj‖2
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holds if and only if

2(ṽi − ṽj)tH−t/2Fx ≤ ‖ṽj‖2 − ‖ṽi‖2.

This inequality together with expressions (13.14) and (13.11) shows that

q
Ũ

N (−H−t/2Fx) = ṽi

if and only if x belongs to the region Ri defined in (13.22). This fact completes
the proof. �

The nN
U

regions Ri defined in (13.22) are polyhedra. Without taking into
account constraint borders, we can write these in a compact form as

Ri =
{
x ∈ R

n : Dix ≤ hi

}
,

where the rows of Di are equal to all terms 2(vi − vj)tF as required, whilst
the vector hi contains the scalars ‖vj‖2

H − ‖vi‖2
H .

Some of the inequalities in (13.22) may be redundant. In these cases, the
corresponding regions do not share a common edge, that is, they are not
adjacent. This phenomenon is illustrated in Figure 13.4 of Example 13.8.1,
where the regions R1 and R4 are not adjacent. The inequality separating
them is redundant.

Also, depending upon the matrix H−t/2F , some of the regions Ri may be
empty. This might happen, in particular, if N > n. In this case, the rank of
F is smaller than N and the transformation H−t/2F does not span the entire
space RN . Figure 13.1 illustrates this for the case n = 1, nU = 2 and N = 2.
As can be seen from this figure, depending on the unconstrained optimum
locus given by the (dashed) line −H−t/2Fx, x ∈ R, there exist situations in
which some sequences ṽj will never be optimal, thus yielding empty regions
in the state space.

On the other hand, if the pair (A, B) is completely controllable and A is
invertible, then the rank of F is equal to min (N, n). In this case, if n ≥ N ,
then H−t/2F is onto, so that for every ṽj ∈ Ũ

N there exists at least one x
such that q

Ũ
N (−H−t/2Fx) = ṽj and none of the regions Ri are empty.

13.5 The Receding Horizon Case

In the receding horizon law (13.20), only nU instead of (at most) (nU)N regions
are needed to characterise the control law. Each of these nU regions is given
by the union of all regions Ri that correspond to vertices vi having the same
first element. The appropriate extension of Theorem 13.4.1 is presented below.
This result follows directly from Theorem 13.4.1.

Corollary 13.5.1 (State Space Partition) Let the constraint set U be
given in (13.2) and consider the partition into equivalence classes
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��

��

��

��

ṽ3

ṽ1

ṽ2

ṽ4
are empty
No regions

Regions R2 and R3

are empty

Figure 13.1. Partition of the transformed input sequence space with N = 2 (solid
lines) and two examples of −H−t/2Fx, x ∈ � (dashed lines).

U
N =

⋃
i=1,...,nU

U
N
i ,

where
U

N
i �

{
v ∈ U

N :
[
1 0 · · · 0

]
v = si

}
.

Then, the receding horizon control law (13.20) is equivalent to

uopt(x) = si, if x ∈ Xi, i = 1, 2, . . . nU. (13.23)

Here, the polyhedra Xi are given by

Xi �
⋃

j : vj∈U
N
i

Xij ,

where

Xij �
{

z ∈ R
n : 2(vj − vk)tFz ≤ ‖vk‖2

H − ‖vj‖2
H for all vk ∈ U

N\U
N
i

}
\
{
z ∈ R

n : there exists vk ∈ U
N\U

N
i , k < j, such that

2(vj − vk)tFz = ‖vk‖2
H − ‖vj‖2

H

}
.

It should be emphasised that this description requires evaluation of less
inequalities than the direct calculation of the union of all Rj (as defined in
(13.22)) with vj ∈ U

N
i , since inequalities corresponding to internal borders

are not evaluated. Moreover, the definition of Xi (and of Ri) can be simplified
if the ambiguity problem is not addressed.

The state space partition obtained can be calculated off-line so that on-
line computational burden can be reduced. The partition induced is related
to the partition that characterises the interval-constrained case, as detailed in
the following section.
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13.6 Relation to Interval Constraints

If in the setup described above, the input is not constrained to belong to a
finite set U, but instead, needs to satisfy the interval-type constraint

−∆ ≤ uk ≤ ∆ for all k, (13.24)

where ∆ ∈ R is fixed, then a convex optimisation problem is obtained.
For this case, as shown in Chapter 6, the control law can be finitely param-

eterised and calculated off-line. The state space is partitioned into polytopes
in which the receding horizon controller is piecewise affine in the state.

The partition of the ũ-space using the transformation (13.15) and a ge-
ometric argument similar to the one used in the proof of Theorem 13.3.1 is
sketched in Figure 13.2 for the case N = 2 and the restriction (13.24). In Fig-
ure 13.2, the polytope Θ0 is obtained by applying the transformation (13.15)
to the region in which the constraints are not active. It is the allowed set. The
regions denoted as Θsi are adjacent to a face of Θ0.

��

��

��

��

Θ0 Θs2

Θs4

Θs3

ũopt
uc

ũopt
I

Θs1

Figure 13.2. Partitions of ũ-space with the interval constraint set (13.24).

As shown in Section 13.3, in the finite set-constrained case, the constrained
solution uopt is related to ũopt

uc by means of a nearest neighbour quantiser as
stated in (13.13). (For ease of notation, the dependence on x of this and other
vectors to follow has not been explicitly included.) A similar result holds in the
interval-constrained case. Given (13.24), the constrained optimiser, denoted
here as ũopt

I , is related to ũopt
uc via a minimum Euclidean distance projection

to the allowed set. This result was shown earlier in Chapter 6 and can be
summarised as follows:

Remark 13.6.1. (Projection in the Interval-Constrained Case) If ũopt
uc

lies inside of Θ0, then it holds that ũopt
I = ũopt

uc . On the other hand, if ũopt
uc �∈
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Θ0, then the constrained solution is obtained by the minimum Euclidean
distance projection (see, for example, (10.15) in Chapter 10) onto the border
of Θ0. In particular, if the unconstrained solution lies in any of the regions
adjacent to a face of Θ0, then ũopt

I is obtained by an orthogonal projection
onto the nearest face (as illustrated in Figure 13.2 by means of a dotted line).

◦
As a consequence of the foregoing discussion, we obtain the following the-

orem, which establishes a connection between the partition of the ũ-space
in the interval-constrained case and the Voronoi partition of the quantiser
defining the solution with a special finite set constraint.

Theorem 13.6.1 (Relationship Between the Binary and Interval-
Constrained Cases) Consider the binary constraint set U = {−∆, ∆} and
the region outside of Θ0. Then, the borders of the Voronoi partition of the
quantiser in (13.13) are parallel and equidistant to the borders of those regions
of the interval-constrained case, which are adjacent to an (N −1)-dimensional
face of Θ0. (These regions are denoted in Figure 13.2 as Θsi.)

Proof. From (13.18) it follows that the solution (13.13) can be stated alter-
natively as uopt(x) = H−1/2q

Ũ
N (ũopt

uc (x)). The result is a consequence of the
fact that, as can be seen in Figure 13.3, the borders of the regions Θsi are
formed by orthogonal projections to ṽi, and that the Voronoi partition is
formed by equidistant hyperplanes, which are also orthogonal to the corre-
sponding (N − 1)-dimensional face of Θ0. �

This result is illustrated in Figure 13.3, where the Voronoi partition is
depicted via dashed lines. Due to linearity of the mapping H−t/2F in (13.21),
the induced partition of the state space given the constraint (13.24) and the
partition defined in (13.22) are similarly related.

13.7 Stability

In Chapters 4 and 5, we found that, for the case of interval-type constraints,
one could utilise the value function of the optimal control problems as a can-
didate Lyapunov function to establish stability. The situation in the finite
alphabet case is more difficult. Indeed, asymptotic stability is, in general, too
strong a requirement for the finite alphabet problem. In this section we explore
various stability issues associated with this case.

The closed loop that results when controlling the plant (13.1) with the
receding horizon law (13.23) is described via the following piecewise-affine
map, which follows from Corollary 13.5.1:

xk+1 = g(xk),

g(xk) � Axk + Bsi, if xk ∈ Xi, i = 1, 2, . . . nU.
(13.25)
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Figure 13.3. Relationship between partitions induced by binary constraints
(dashed line) and interval-type constraints (solid line).

Piecewise-affine maps are mixed mappings and also form a special class of
hybrid systems with underlying discrete time dynamics (see, for example, Be-
mporad, Ferrari-Trecate and Morari (2000), Heemels, De Schutter and Bem-
porad (2001) and the references therein). They also appear in connection with
some signal processing problems, namely arithmetic overflow of digital filters
(Chua and Lin 1988) and Σ∆-modulators (Feely 1997, Norsworthy, Schreier
and Temes 1997) and have also been studied in a more theoretical mathe-
matical context (see, for example, Adler, Kitchens and Tresser 2001, Wu and
Chua 1994).

Since there exist fundamental differences in the dynamic behaviour
of (13.25), depending on whether the plant (13.1) is open loop stable or un-
stable, that is, on whether the matrix A is Hurwitz or not, it is convenient to
divide the discussion that follows accordingly.

13.7.1 Stable Plants

If the plant (13.1) is stable, then its states are always bounded when controlled
by means of any finite set constraint law. This follows directly from the fact
that U is always bounded.

Moreover, it can also be shown that all state trajectories3 of (13.25) either
converge towards a fixed point or towards a limit cycle (see, for example, Wu
and Chua 1994, Ramadge 1990).

The properties stated so far apply to general systems described by (13.25),
where Xi defines any partition of the state space. In contrast, the following
theorem is more specific. It utilises the fact that the control law uopt(x) is
optimising in a receding horizon sense in order to establish a stronger result.
3 Exceptions are limited to trajectories that emanate from initial conditions be-

longing to a zero-measure set.



306 13. Finite Alphabet Controllers and Estimators

Theorem 13.7.1 (Asymptotic Stability) If A is Hurwitz, 0 ∈ U and P =
P t > 0 satisfies the Lyapunov equation AtPA + Q = P , then the closed
loop (13.25) has a globally attractive, locally asymptotically stable, equilibrium
point at the origin.

Proof. The proof follows standard techniques used in the receding horizon
control framework as summarised in Chapter 4 (see also Section 5.6.1 in
Chapter 5). In particular, we will use Theorem 4.4.2 of Chapter 4. We choose
Xf = Rn and Kf (x) = 0 for all x ∈ Xf . Clearly conditions B1, B3, B4 and
B5 hold and SN = Rn.

Direct calculation yields that F (x) = xtPx satisfies

F (f(x,Kf (x))) − F (x) + L(x,Kf (x)) = (Ax + BKf (x))tP (Ax + BKf (x))
− xtPx + xtQx + (Kf (x))tRKf (x)

= xt(AtPA + Q − P )x
= 0 for all x ∈ Xf ,

so that condition B2 is also satisfied. Global attractivity of the origin then
follows from Theorem 4.4.2.

Next, note that there exists a region containing an open neighbourhood
of the origin where uopt(x) = 0, hence local asymptotic stability of the origin
follows since A is Hurwitz. �

As can be seen, if the conditions of this theorem are satisfied, then the
receding horizon law (13.6) ensures that the origin is not only a fixed point,
but also that it has region of attraction Rn.

It should be emphasised here that, in a similar manner, it can be shown
that a finite alphabet control law can steer the plant state asymptotically
to any point x�, such that there exist si ∈ U that allow one to write x� =
(I − A)−1Bsi.

13.7.2 Unstable Plants

In case of strictly unstable plants (13.1), the situation becomes more involved.
Although fixed points and periodic sequences may be admissible, they are
basically nonattractive.

Moreover, with control signals that are limited in magnitude, as is the case
with finite set constraints (and also with interval constraints), there always
exists an unbounded region, such that initial states contained in it lead to
unbounded state trajectories. This does not mean that every state trajectory
of (13.25) is unbounded. Despite the fact that the unstable open loop dynamics
(as expressed in A) makes neighbouring trajectories diverge locally, under
certain circumstances the control law may keep the state trajectory bounded.

As a consequence of the highly nonlinear (non-Lipschitz) dynamics result-
ing from the quantiser defining the control law (13.13), in the bounded case
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the resulting closed loop trajectories may be quite complex. In order to anal-
yse them without exploring their fine geometrical structure, it is useful that
we relax the usual notion of asymptotic stability of the origin. A more useful
characterisation here is that of ultimate boundedness of state trajectories. This
notion refers to convergence towards a bounded region of Rn, instead of to a
point or a specific periodic orbit (Blanchini 1999). (Ultimate boundedness has
also been considered in Li and Soh (1999), and by several other authors in the
context of practical stability.) We refer the reader to the literature, especially
Quevedo, De Doná and Goodwin (2002), where these more detailed issues are
discussed and analysed for the case of finite alphabet receding horizon control
of unstable open loop plants.

13.8 Examples

13.8.1 Open Loop Stable Plant

Consider an open loop stable plant described by

xk+1 =
[
0.1 2
0 0.8

]
xk +

[
0.1
0.1

]
uk, (13.26)

and the binary constraint set U = {−1, 1}. The receding horizon control law
with R = 0 and

P = Q =
[
1 0
0 1

]
, (13.27)

partitions the state space into the regions depicted in Figure 13.4, for con-
straint horizons N = 2 and N = 3. In this figure x1

k and x2
k denote the two

components of the state vector xk.
The receding horizon control law is

uopt(x) =

{
−1 if x ∈ X1,
1 if x ∈ X2,

where

X1 =
⋃

i=2N−1+1,2N−1+2,...,2N

Ri, X2 =
⋃

i=1,2,...,2N−1

Ri.

13.8.2 Open Loop Unstable Plant

We next analyse a situation when the plant is open loop unstable. For that
purpose, consider

xk+1 =
[
1.02 2
0 1.05

]
xk +

[
0.1
0.1

]
uk, (13.28)
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Figure 13.4. State space partition for the plant (13.26).

controlled with a receding horizon controller with parameters U, P , Q and R
as in Example 13.8.1 above. The constraint horizon is chosen to be N = 2.

Figure 13.5 illustrates the induced state space partition and a closed loop
trajectory, which starts at x = [−10 0]t. As can be seen, due to the limited
control action available, the trajectory becomes unbounded.

The situation is entirely different when the initial condition is chosen as
x = [0.7 0.2]t. As depicted in Figure 13.6, the closed loop trajectory now
converges to a bounded region, which contains the origin in its interior. Within
that region, the behaviour is not periodic, but appears to be random, despite
the fact that the system is deterministic. Neighbouring trajectories diverge
due to the action of the unstable poles of the plant. However, the control law
manifests itself by maintaining the plant state ultimately bounded. As already
mentioned in Section 13.7.2, the complex dynamic behaviour obtained is a
consequence of the insertion of a nonsmooth nonlinearity in the feedback loop.
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Figure 13.5. State trajectories of the controlled plant (13.28) with initial condition
x = [−10 0]t.
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13.9 Finite Alphabet Estimation

As we have seen in Chapter 9, the problems of constrained control and esti-
mation are very similar (differing essentially only with respect to the nature of
the boundary conditions). Here we give a brief description of finite alphabet
estimation. To fix ideas, we refer to the specific problem of estimating a signal
drawn from a given finite alphabet that has been transmitted over a noisy
dispersive communication channel.

This problem, which is commonly referred to as one of channel equal-
isation, can be formulated as a fixed-delay maximum likelihood detection
problem. The resultant detector estimates each symbol based upon the entire
sequence received to a point in time and hence constitutes, in principle, a
growing memory structure. In the case of finite impulse response [FIR] chan-
nels, the Viterbi algorithm can be used for solving the resultant optimisation
problem. However, for more general infinite impulse response [IIR] channels,
the complexity of the Viterbi Algorithm is infinite. This is a direct conse-
quence of the requirement to take into account the finite alphabet nature of
the transmitted signal, which makes this a hard combinatorial optimisation
problem.

In order to address this problem, various simplified detectors of fixed mem-
ory and complexity have been proposed. The simplest such scheme is the deci-
sion feedback equaliser [DFE] (Qureshi 1985), which is a symbol-by-symbol de-
tector. It basically corresponds to the scheme depicted in Figure 1.10 in Chap-
ter 1. It is a feedback loop comprising linear filters and a scalar quantiser. The
DFE is extended and outperformed by more complex multistep detector struc-
tures, which estimate channel inputs based upon blocks of sampled outputs
of fixed size (see, for example, Williamson, Kennedy and Pulford 1992, Duel-
Hallen and Heegard 1989).

In these schemes, decision feedback (also called genie-aided feedback) is
used to overcome the growing memory problem. The information contained in
the sampled outputs received before the block where the constraints are taken
into account explicitly is summarised by means of an estimate of the channel
state. This estimate is based upon previous decisions, which are assumed to
be correct. Not taking into account that various decisions may contain errors
can lead to error propagation problems (see also Cantoni and Butler 1976).

Here we show how the idea of the “benevolent genie” can be extended by
means of an a priori state estimate and a measure of its degree of belief.

13.10 Maximum Likelihood Detection Utilising An A
Priori State Estimate

Consider a linear channel (which may include a whitening matched filter and
any other pre-filter) with scalar input uk drawn from a finite alphabet U. The
channel output yk is scalar and is assumed to be perturbed by zero-mean
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additive white Gaussian noise nk of variance r, denoted by nk ∼ N(0, r),
yielding the state space model

xk+1 = Axk + Buk,

yk = Cxk + Duk + nk,
(13.29)

where xk ∈ Rn. The above model may equivalently be expressed in transfer
function form as

yk = H(ρ)uk + nk, H(ρ) = D + C(ρI − A)−1B = h0 +
∞∑

i=1

hiρ
−i,

where4

h0 = D, hi = CAi−1B, i = 1, 2, . . . . (13.30)

We incorporate an a priori state estimate into the problem formulation.
This is achieved as follows:

As described in Section 9.9 of Chapter 9, we fix integers L1 ≥ 0, L2 ≥ 1
and suppose, for the moment, that

xk−L1 ∼ N(zk−L1 , P ), (13.31)

that is, zk−L1 is a given a priori estimate for xk−L1 which has a Gaussian
distribution. The matrix P−1 reflects the degree of belief in this a priori state
estimate. Absence of prior knowledge of xk−L1 can be accommodated by using
P−1 = 0, and decision feedback is achieved by taking P = 0, which effectively
locks xk−L1 at zk−L1 .

Additionally, we define the vectors

uk �
[
uk−L1 uk−L1+1 · · · uk+L2−1

]t
,

yk �
[
yk−L1 yk−L1+1 · · · yk+L2−1

]t
.

The vector yk gathers time samples of the channel output and uk contains
channel inputs, which are the decision variables of the estimation problem
considered here.

The maximum a posteriori [MAP] sequence detector, which at time t = k
provides an estimate of uk and xk−L1 based upon the received data contained
in yk, maximises the probability density function (see Chapter 9 for further
discussion)5

p

([
uk

xk−L1

] ∣∣∣ yk

)
=

p

(
yk

∣∣∣ [ uk

xk−L1

])
p

([
uk

xk−L1

])
p (yk)

, (13.32)

4 ρ denotes the forward shift operator, ρvk = vk+1, where {vk} is any sequence.
5 For ease of notation, in what follows we will denote all (conditional) probability

density functions by p. The specific function referred to will be clear from the
context.
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where we have utilised Bayes’ rule.
Note that only the numerator of this expression influences the maximisa-

tion. Assuming that uk and xk−L1 are independent (which is a consequence
of (13.29) if uk is white), it follows that

p

([
uk

xk−L1

])
= p (xk−L1) p (uk) .

Hence, if all finite alphabet-constrained symbol sequences uk are equally likely
(an assumption that we make in what follows), then the MAP detector that
maximises (13.32) is equivalent to the following maximum likelihood sequence
detector [

ûk

x̂k−L1

]
� arg max

uk,xk−L1

{
p

(
yk

∣∣∣ [ uk

xk−L1

])
p (xk−L1)

}
. (13.33)

Here,
ûk �

[
ûk−L1 ûk−L1+1 · · · ûk · · · ûk+L2−1

]t
, (13.34)

and uk needs to satisfy the constraint

uk ∈ U
N , U

N � U× · · · × U, N � L1 + L2, (13.35)

in accordance with the restriction uk ∈ U. Our working assumption
(see (13.31)) is that the initial channel state xk−L1 has a Gaussian proba-
bility density function

p (xk−L1) =
1

(2π)n/2(detP )1/2
exp

{−‖xk−L1 − zk−L1‖2
P−1

2

}
. (13.36)

In order to derive analytic expressions for the other probability density
functions in (13.33), we rewrite the channel model (13.29) at time instants
t = k − L1, k − L1 + 1, . . . , k + L2 − 1 in block form as

yk = Ψuk + Γxk−L1 + nk.

Here,

nk �

⎡⎢⎢⎢⎣
nk−L1

nk−L1+1

...
nk+L2−1

⎤⎥⎥⎥⎦ , Γ �

⎡⎢⎢⎢⎣
C

CA
...

CAN−1

⎤⎥⎥⎥⎦ , Ψ �

⎡⎢⎢⎢⎢⎣
h0 0 . . . 0

h1 h0
. . .

...
...

. . . . . . 0
hN−1 . . . h1 h0

⎤⎥⎥⎥⎥⎦ .

The entries of Ψ obey (13.30), that is, its columns contain truncated impulse
responses of the model (13.29).

Since the noise nk is assumed Gaussian with variance r, it follows that
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p

(
yk

∣∣∣ [ uk

xk−L1

])
=

1
(2π)N/2(det R)1/2

exp
{−‖yk − Ψuk − Γxk−L1‖2

R−1

2

}
,

(13.37)
where the matrix R � diag{r, . . . , r} ∈ RN×N .

After substituting expressions (13.36) and (13.37) into (13.33) and apply-
ing the natural logarithm, one obtains the sequence detector[

ûk

x̂k−L1

]
= arg min

uk,xk−L1

V (uk, xk−L1), (13.38)

subject to the constraint (13.35). In (13.38), the objective function V is defined
as

V (uk, xk−L1 ) � ‖xk−L1 − zk−L1‖2
P−1 + ‖yk − Ψuk − Γxk−L1‖2

R−1

= ‖xk−L1 − zk−L1‖2
P−1 + r−1

k+L2−1∑
j=k−L1

(yj − Cx̌j − Duj)2,

(13.39)

and the vectors x̌j denote predictions of the channel states xj . They sat-
isfy (13.29), that is,

x̌j+1 = Ax̌j + Buj for j = k − L1, . . . , k + L2 − 1,

x̌k−L1 = xk−L1 .
(13.40)

Remark 13.10.1. (Notation) Since ûk and x̂k−L1 in (13.33) are calculated
using data up to time t = k +L2 − 1, they could perhaps be more insightfully
denoted as ûk|k+L2−1 and x̂k−L1|k+L2−1, respectively (see Chapter 9). How-
ever, in order to keep the notation simple, we will here avoid double indexing,
in anticipation that the context will always allow for correct interpretation.

◦

As a consequence of considering the joint probability density func-
tion (13.32), the objective function (13.39) includes a term which allows one
to obtain an a posteriori state estimate x̂k−L1 which differs from the a priori
estimate zk−L1 as permitted by the confidence matrix P−1.

13.11 Information Propagation

Having set up the fixed horizon estimator as the finite alphabet opti-
miser (13.38)–(13.40), in this section we show how this information can be
utilised as part of a moving horizon scheme. Here we essentially follow the
methodology outlined in Section 9.9 of Chapter 9.
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13.11.1 Moving Horizon Implementation

Minimisation of the objective function V in (13.39) yields the entire optimising
sequence ûk defined in (13.38). However, following our usual procedure, we
will utilise a moving horizon approach in which only the present value6

ûopt
k �

[
0L1 1 0L2−1

]
ûk, (13.41)

will be delivered at the output of the detector.
At the next time instant the optimisation is repeated, providing ûopt

k+1 and
so on. Thus, the data window “slides” (or moves) forward in time. The scheme
previews L2 − 1 samples, hence has a decision-delay of L2 − 1 time units.

The window length N = L1 +L2 fixes the complexity of the computations
needed in order to minimise (13.39). It is intuitively clear that good perfor-
mance of the detector can be ensured if N is sufficiently large. However, in
practice, there is a strong incentive to use small values for L1 and L2, since
large values give rise to high complexity in the associated computations to be
performed at each time step.

13.11.2 Decision-Directed Feedback

The provision of an a priori estimate, zk−L1 , together with an associated
degree of belief via the term ‖xk−L1−zk−L1‖2

P−1 in (13.39) provides a means of
propagating the information contained in the data received before t = k−L1.
Consequently, an information horizon of growing length is effectively obtained
in which the computational effort is fixed by means of the window length N .

One possible approach to choose the a priori state estimate is as follows:
Each optimisation step provides estimates for the channel state and input
sequence (see (13.38)). These decisions can be re-utilised in order to formulate
a priori estimates for the channel state xk. We propose that the estimates be
propagated in blocks according to7

zk = AN x̂k−N + M ûk−L2 ,

where M �
[
AN−1B AN−2B . . . AB B

]
. In this way, the estimate obtained

in the previous block is rolled forward. Indeed, in order to operate in a moving
horizon manner, it is necessary to store N a priori estimates. This is depicted
graphically in Figure 13.7.

13.11.3 The Matrix P as a Design Parameter

Since channel states depend on the finite alphabet input, one may well ques-
tion the assumption made in Section 13.10 that xk−L1 is Gaussian. (This
6 The row vector 0m ∈ �1×m contains only zeros.
7 Since zk is based upon channel outputs up to time k − 1, it could alternatively

be denoted as x̂k|k−1; see also Remark 13.10.1.
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Figure 13.7. Information propagation with parameters L1 = 1 and L2 = 2.

situation is similar to that of other detectors that utilise Gaussian approxi-
mations; (see, for example, Lawrence and Kaufman 1971, Thielecke 1997, Bac-
carelli, Fasano and Zucchi 2000). However, we could always use this structure
by interpreting the matrix P in (13.39) as a design parameter.

As a guide for tuning P , we recall that in the unconstrained case, where
the channel input and initial state are Gaussian, that is, uk ∼ N(0, Q) and
x0 ∼ N(µ0, P0), the Kalman filter provides the minimum variance estimate
for xk−L1 (see, for example, Anderson and Moore 1979). Its covariance matrix
Pk−L1 obeys the Riccati difference equation (see Chapter 9),

Pk+1 = APkAt − Kk(CPkCt + r + DQDt)Kt
k + BQBt, k ≥ 0, (13.42)

where Kk � (APkCt + BQDt)(CPkCt + r + DQDt)−1.
A further simplification occurs if we replace the recursion (13.42) by its

steady state equivalent. In particular, it is well-known (Goodwin and Sin 1984)
that, under reasonable assumptions, Pk converges to a steady state value P
as k → ∞. The matrix P satisfies the following algebraic Riccati equation:

P = APAt − K(CPCt + r + DQDt)Kt + BQBt, (13.43)

where K = (APCt + BQDt)(CPCt + r + DQDt)−1. Of course, the Gaus-
sian assumption on uk is not valid in the constrained case. However, the
choice (13.43) may still provide good performance. Alternatively, one may
simply use P as a design parameter and test different choices via simulation
studies.

13.12 Closed Loop Implementation of the Finite
Alphabet Estimator

Here we follow similar arguments to those used with respect to finite alphabet
control in Section 13.3 to obtain a closed form expression for the solution to
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the finite alphabet estimation problem. This closed form expression utilises a
vector quantiser as defined earlier in Definition 13.3.1.

For general recursive channels, it is useful to assume that, whilst the input
is always constrained to a finite alphabet, the channel state xk in (13.29) is
left unconstrained. In this case, the optimisers (13.38) are characterised as
follows:

Lemma 13.12.1 (Closed Form Solution) The optimisers corresponding
to (13.38) given the constraint uk ∈ U

N are given by

ûk = Ω−1/2q
Ũ

N

(
Ω−1/2(Λ1yk − Λ2zk−L1)

)
, (13.44)

x̂k−L1 = Υ
(
P−1zk−L1 + ΓtR−1yk − ΓtR−1Ψûk

)
, (13.45)

where

Ω = Ψt
(
R−1 − R−1ΓΥΓtR−1

)
Ψ, Ωt/2Ω1/2 = Ω,

Υ = (P−1 + ΓtR−1Γ)−1,

Λ1 = Ψt
(
R−1 − R−1ΓΥΓtR−1

)
,

Λ2 = ΨtR−1ΓΥP−1.

(13.46)

The nonlinear function q
Ũ

N (·) is the nearest neighbour vector quantiser de-
scribed in Definition 13.3.1. The image of this mapping is the set

Ũ
N = Ω1/2

U
N � {ṽ1, ṽ2, . . . , ṽr} ⊂ R

N , with ṽi = Ω1/2vi, vi ∈ U
N . (13.47)

Proof. The objective function (13.39) can be expanded as

V (uk, xk−L1) = ‖xk−L1‖2
Υ−1 + ‖zk−L1‖2

P−1 + ‖yk‖2
R−1

+ ‖uk‖2
ΨtR−1Ψ + ut

kΨtR−1Γxk−L1 + xt
k−L1

ΓtR−1Ψuk

− 2
[
ut

kΨtR−1yk + xt
k−L1

(
P−1zk−L1 + ΓtR−1yk

)]
, (13.48)

with Υ defined in (13.46). This expression can be written as

V (uk, xk−L1) = α(uk,yk, zk−L1) + ‖xk−L1‖2
Υ−1

− 2xt
k−L1

[
P−1zk−L1 + ΓtR−1yk − ΓtR−1Ψuk

]
,

where α(uk,yk, zk−L1) does not depend upon xk−L1 .
Since xk−L1 is assumed unconstrained, it follows that, for every fixed

value of uk, the objective function is minimised by means of xopt
uc =

Υ
(
P−1zk−L1 + ΓtR−1yk − ΓtR−1Ψuk

)
from where (13.45) follows.

In order to obtain the constrained optimiser ûk ∈ U
N , observe that

ûk = arg min
uk∈U

N

J(uk), (13.49)

where J(uk) � V (uk, xopt
uc ). Substitution of (13.45) into (13.48) yields
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J(uk) = β(yk, zk−L1) + ut
kΩuk − 2ut

k(Λ1yk − Λ2zk−L1), (13.50)

where Ω, Λ1 and Λ2 are defined in (13.46) and β(yk, zk−L1) does not depend
upon uk.

As in the proof of Theorem 13.3.1, it is useful to introduce the coordinate
transformation ũk � Ω1/2uk. This transforms U

N into Ũ
N defined in (13.47).

Equation (13.50) then allows one to rewrite (13.49) as

ûk = Ω−1/2 arg min
ũk∈Ũ

N

J̃(ũk), (13.51)

with J̃(ũk) � ũt
kũk − 2ũt

kΩ−1/2(Λ1yk − Λ2zk−L1). The level sets of J̃ are
spheres in RN , centred at Ω−1/2(Λ1yk − Λ2zk−L1). Hence,

arg min
ũk∈Ũ

N

J̃(ũk) = q
Ũ

N

(
Ω−1/2(Λ1yk − Λ2zk−L1)

)
,

which, after substituting into (13.51) yields (13.44). �

13.13 Example

Consider an FIR channel described by

H(z) = 1 + 2z−1 + 2z−2. (13.52)

In order to illustrate the performance of the multistep optimal equaliser pre-
sented, we carry out simulations of this channel with an input consisting of
10000 independent and equiprobable binary digits drawn from the alphabet
U = {−1, 1}. The system is affected by Gaussian noise with different vari-
ances. The following detection architectures are used: direct quantisation of
the channel output, decision feedback equalisation and moving horizon esti-
mation, with parameters (L1, L2) = (1, 2) and also with (L1, L2) = (2, 3).

Figure 13.8 documents the results. It contains the empirical probabilities of
symbol errors obtained at several noise levels. It can be appreciated how mov-
ing horizon estimation clearly outperforms direct quantisation of the channel
output and also the DFE for this example.

13.14 Conclusions

In this chapter we have presented an approach that addresses control and
estimation problems where the decision variables are constrained to belong to
a finite alphabet.

It turns out that concepts introduced in previous chapters, namely re-
ceding horizon optimisation, exploration of the geometry of the underlying
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Figure 13.8. Bit error rates of the communication systems simulated.

optimisation problem and information propagation can be readily utilised.
It is also apparent that some aspects, such as dynamics and stability of the
closed loop, demand for other, more specialised, tools.

Bearing in mind the wide range of applications that can be cast as fi-
nite alphabet-constrained control and estimation problems, we invite the
reader to apply the acquired expertise in these nontraditional areas. The
cross-fertilisation of ideas gives new insight and may lead to improved de-
sign methodologies in various realms of application.

13.15 Further Reading

General

A more detailed presentation of the ideas outlined in this chapter, including
several application studies can be found in Quevedo and Goodwin (2004c).
More information on computational complexity of combinatorial optimisation
problems can be found in Garey and Johnson (1979). Vector quantisers and
Voronoi partitions are described thoroughly in Gersho and Gray (1992), Gray
and Neuhoff (1998).

Finite Set Control

In relation to finite set-constrained control problems, Quevedo, Goodwin and
De Doná (2004) forms the basis of our presentation. Alternative views are



13.15 Further Reading 319

given, for example, in Brockett and Liberzon (2000), Ishii and Francis (2003),
Richter and Misawa (2003), Sznaier and Damborg (1989), and Bicchi, Marigo
and Piccoli (2002).

Channel Equalisation

Channel equalisation is an important problem in digital communications. It
is described in standard textbooks, such as Proakis (1995) and also in the
survey papers Qureshi (1985), Tugnait et al. (2000). The presentation given
in this chapter follows basically Quevedo, Goodwin and De Doná (2003) and
is also related to the multistep estimation schemes described in Williamson
et al. (1992), Duel-Hallen and Heegard (1989).

Other Application Areas

Design of networked control systems based upon the ideas presented in this
chapter can be found, for example, in Quevedo, Goodwin and Welsh (2003),
Goodwin, Haimovich, Quevedo and Welsh (2004), Kiihtelys (2003) and also
in Chapter 16. Other interesting references include Bushnell (ed.) (2001),
Wong and Brocket (1999), Ishii and Francis (2002), Zhivoglyadov and Mid-
dleton (2003), Hristu and Morgansen (1999), Elia and Mitter (2001). The
related problem of state estimation with quantised measurements has also
been treated in Curry (1970) and Delchamps (1989), Haimovich, Goodwin
and Quevedo (2003). (See also Chapter 16.)

Applications to the design of FIR filters with finite set constrained coeffi-
cients can be found in Quevedo and Goodwin (2003b), Goodwin, Quevedo and
De Doná (2003). These problems have been studied extensively in the signal-
processing literature, see, for example, Evangelista (2002), Lim and Parker
(1983b), Kodek (1980), Lim and Parker (1983a).

Audio quantisation and A/D conversion can be dealt with in a way sim-
ilar to finite alphabet-constrained control problems, as detailed in Goodwin,
Quevedo and McGrath (2003), Quevedo and Goodwin (2003a), Quevedo and
Goodwin (2004b). Other references include Norsworthy et al. (1997), Lip-
schitz, Vanderkooy and Wannamaker (1991) and the collection Candy and
Temes (1992).

Applications of finite set-constrained control in power electronics abound.
One particular case resides in the design of the switching signal for switch-
mode power supplies, as described in Quevedo and Goodwin (2004a). The
book Rashid (1993) is a good introductory level textbook on power electronics.
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Rudder Roll Stabilisation of Ships

Contributed by Tristan Perez

14.1 Overview

In this chapter, we present a case study of control system design for rudder-
based stabilisers of ships using RHC. The rudder’s main function is to correct
the heading of a ship; however, depending on the type of ship, the rudder
may also be used to produce, or correct, roll motion. Rudder roll stabilisation
consists of using rudder-induced roll motion to reduce the roll motion induced
by waves. When this technique is employed, an automatic control system is
necessary to provide the rudder command based on measurements of ship
motion. The RHC formulation provides a unified framework to address many
of the difficulties associated with this control system design problem.

14.2 Ship Roll Stabilisation

The success or failure of a ship’s mission (fishing, landing a helicopter on
deck, serving meals during transit, and so on) is judged by comparing the
ship’s performance indices with levels that are deemed satisfactory for the
particular mission, type of ship and sea environment considered. To accom-
plish missions successfully, and to improve the performance, marine vehicles
are often equipped with sophisticated devices and control systems. Amongst
the many different control systems encountered on board a marine vehicle,
there is often the so-called roll stabilising system, or simply stabiliser, whose
function is to reduce undesirable roll motion.
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Reduced roll motion is important for it can affect the performance of the
ship, as indicated in the following considerations.

• Transverse accelerations that occur due to roll interrupt tasks performed
by the crew. This increases the amount of time required to complete a
mission.

• Roll accelerations may produce cargo damage, for example, on soft loads
such as fruit.

• Roll motion increases hull resistance.
• Large roll angles limit crew capability to handle equipment on board,

and/or to launch and recover systems.

Several type of stabilisers and stabilisation techniques have been developed
and are commonly used: bilge keels, water tanks, fins and rudder (see Sellars
and Martin (1992) for a description and benefits of each of these stabilisers).

Amongst the different types of stabilisers, rudder-based stabilisation is a
very attractive technique. The reasons for this are that almost every ship has
a rudder (thus no extra equipment may be necessary), and also this technique
can be used in conjunction with other stabilisers (such as water tanks and
fins) to improve performance under various conditions. In this chapter, we
will focus on the control system design of rudder-based stabilisers. As we
shall see, this design problem is far from trivial.

14.3 A Challenging Control Problem

Using the rudder for simultaneous course keeping and roll reduction is not a
simple task. The ability to accomplish this depends on the dynamic charac-
teristics of the ship, and also on the control strategy used to command the
rudder. The design of such a control strategy must then be performed so as
to best deal with the following issues:

• Underactuated System. One control action (rudder force) achieves two
control objectives: roll reduction and low heading (yaw) interference. A
key fact that must be understood for the successful application of this
technique is that the dynamics associated with the rudder-induced roll
motion are faster than the dynamics associated with the rudder-induced
yaw motion. This phenomenon depends on the shape of the hull and the
location of the rudder and the centre of gravity of the ship. The difference
in dynamic response between roll and yaw is characterised by the location
of a nonminimum phase zero [NMP] associated with the rudder to roll
response. The closer the NMP zero is to the imaginary axis, the faster the
roll response to the rudder will be with respect to the response in yaw;
and, thus, the better the potential for successful application of rudder roll
stabilisation (Roberts 1993). Nevertheless, this effect of the NMP zero will
not, per se, guarantee good performance in all conditions; see Perez (2003)
for details.
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• Uncertainty. There are three sources of uncertainty associated with the
control problem. First, there is incomplete state information available to
implement the control law. Although, complete measurement of the state
is possible, the necessary sensors can be very expensive. Second, there
are disturbances from the environment (wave-induced motion) that, in
principle, cannot be known a priori. Third, in the case of model-based
control (such as RHC), there is uncertainty associated with the accuracy
of the model.

• Disturbance Rejection with a Nonminimum Phase System. As
already mentioned, the response of roll due to rudder action presents
nonminimum phase dynamics. This imposes fundamental limitations and
trade-offs regarding disturbance rejection and achievable roll reduction in
different sailing conditions (ship speed and heading relative to the waves).
The energy of the disturbance shifts in frequency according to the sea state
and sailing conditions. Because these changes can be significant, roll am-
plification can be induced if the controller is not adapted to the changes in
the disturbance characteristics (see, for example, Blanke, Adrian, Larsen
and Bentsen 2000, Perez 2003). This is a consequence of reducing the
sensitivity close to the frequency of the NMP zero.

• Input constraints. The rudder action demanded by the controller should
satisfy rate and magnitude constraints. Rate constraints are associated
with safety and reliability. By imposing rate constraints on the rudder
command, we ensure an adequate lifespan of the hydraulic actuators and
avoid their saturation. However, this produces time delays that could lead
to stability problems. Magnitude constraints are associated with perfor-
mance and economy. Large rudder angles induce flow separation (loss of
actuation and poor performance), and a significant increase in drag (re-
sistance). Also, it is desirable to reduce the maximum rudder action at
higher speeds to reduce the mechanical loads on the rudder and the steer-
ing machinery.

• Output constraints. Since the rudder affects the ship heading, it may
be necessary to include constraints on the maximum heading deviations
allowed when the rudder is used to reduce roll.

• Unstable plant. The response of yaw to rudder action is marginally un-
stable: there is an integrator. Indeed, if the rudder is offset from its central
position with a step-like command, there will be a ramp-like increase in
the heading angle. Some vessels are even directionally unstable, requiring
permanent rudder offset to keep a heading.

Based on the above considerations, it is evident that the problem of rudder
roll stabilisation of ships is a challenging one and, as such, the chosen control
strategy plays an important role in achieving high performance. In what fol-
lows, we will further describe the different effects that give rise to the issues
mentioned above, define the performance criteria and carry out the design.
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14.4 Ship Motion Description and Modelling for Control

The motion of a marine vehicle can be considered in six degrees of freedom.
The motion components are resolved into translation components in three
directions: surge, sway and heave, and rotation components about three axis:
roll, pitch and yaw. Table 14.1 shows the notation used to describe the different
motion components.

translation surge sway heave

position x y z
linear rate u v w

rotation roll pitch yaw

angle φ θ ψ
angular rate p q r

Table 14.1. Adopted nomenclature for the description of ship motion.

To describe the motion of a vehicle, two reference frames are considered:
an inertial frame and a body-fixed frame. Figure 14.1 shows the two reference
frames together with the variables often expressed relative to these frames.
This figure also indicates the adopted positive convention.

O
xφ

θ

y
ψ

z

α

O0

Body-fixed frame

Inertial frame

Roll
p

Surge
x, u

Pitch
q

Sway
y, vYaw

r

Heave
z, w

Figure 14.1. Notation, reference frames and sign conventions for ship motion de-
scription.

For marine vehicles position and orientation are described relative to the
inertial reference frame, whilst linear and angular velocities are expressed in
the body-fixed frame. This choice is convenient since some of these magnitudes
are measured on board, and thus, relative to the body-fixed frame. In addition,
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by choosing the appropriate location of the body-fixed frame, the resulting
equations of motion that describe the dynamic behaviour of the vessel are
simplified—see Fossen (1994) for details.

A convenient abstraction to obtain a mathematical model that captures
the different effects that give rise to ship motion, is to separate the motion
due to control action (rudder motion) from the motion due to the waves. This
abstraction results in two models that can be combined using superposition
(Faltinsen 1990).

The first part of the model can be obtained using Newton’s laws. This
approach yields a nonlinear model that describes the motion components in
terms of the forces and moments acting on the hull (Fossen 1994). By lin-
earising this model and incorporating a linear approximation of the forces
and moments generated by the rudder, we can obtain a linear state space
model that describes the ship response due to the rudder (control) action. A
discrete time version of this model can be expressed as

xc
k+1 = Acx

c
k + Bcuk, (14.1)

where the state xc
k and control uk, are given by (see Figure 14.1 and Table 14.1)

xc
k =

[
vc

k pc
k rc

k φc
k ψc

k

]t and uk = αk, (14.2)

with αk being the current rudder angle.
For the particular motion control problem being considered, it is a common

practice to decouple the vertical motion components of pitch and heave and
to consider a constant forward speed. Hence, the surge equation can also be
decoupled leaving a model that captures the couplings between roll, sway and
yaw, that is, the state indicated in (14.2).

The parameters of the model (14.1), the values of the entries of the matrices
Ac and Bc, will vary with the forward speed of the vessel. However, this
variation is such that constant values can be considered for different speed
ranges; usually close to the nominal speed of the vessel. Because of this, system
identification techniques and data collected from tests in calm water can be
used to estimate the parameters for different speed ranges; see, for example,
Zhou, Cherchas and Calisal (1994). The different sets of parameters can then
be used in a gain scheduling-like approach to update the model. This helps to
minimise model uncertainty.

The second part of the model incorporates the motion induced by the
waves. The sea surface elevation can be described in stochastic terms by its
power spectral density; or, simply, sea spectrum. The ship motion induced by
the waves can be interpreted as a filtering process made by the ship’s hull,
which has a selected response to certain frequencies and attenuates others.
The frequency response of the hull due to wave excitation is called the ship
response operator. The total effect can be incorporated into our model as a
coloured noise output disturbance. The roll motion induced by the waves will
thus be modelled with a shaping filter:
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xw
k+1 = Awxw

k + wk,

yw
k = xw

k + vk,
(14.3)

where xw = [pw φw ]t, and wk and vk are sequences of i.i.d. Gaussian vectors
with appropriate dimensions.

For a given hull shape, the filtering characteristics of the hull depend
on the forward speed of the ship U , and the heading angle relative to the
waves: the encounter angle χ, which is defined as indicated in Figure 14.2.
The variations in the characteristics of the motion response due to speed and
encounter angle are the consequence of a Doppler-like effect. Indeed, if the ship
is moving with a forward speed, the wave frequency observed from the ship
is, in general, different from that observed from a fixed zero-speed reference
frame. The frequency observed from the ship is called the encounter frequency
ωe. Expression (14.4) shows the relationship between the wave frequency ωw

(observed from a fixed-reference frame), and the encounter frequency:

ωe = ωw − ω2
wU

g
cosχ. (14.4)

x0

y0

c

λ

Wave profile

U
0 deg

90 deg

180 deg
χFollowing seas

Quartering seas

Beam seas

Bow seas

Head seas

Figure 14.2. Encounter angle definition and usual denomination for sailing condi-
tions.

The encounter effect produces significant variations in the motion response
of the ship even for the same sea state, hereby defined by the sea spectrum.
Consequently, the values of the parameters of the model (14.3) should be
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updated for changes in different sea states and sailing conditions. We will
address this point in a latter section.

The complete state space model can then be represented via state aug-
mentation as

xk+1 = Axk + Buk + Jwk,

yk = Cxk + nk,

where xt = [xc
k xw

k ]. The following measurements are assumed available to
implement the control:

yk =
[
pk rk φk ψk

]t + nk

=
[
(pc

k + pw
k ) rf

k (φc
k + φw

k ) ψf
k

]t
+ nk,

(14.5)

where, nk is noise introduced by the sensors, and rf
k and ψf

k are the filtered
yaw rate and yaw angle respectively.

The ramifications of an output disturbance model shall be evident when
we estimate the parameters of the disturbance part of the model. Note also
that we have only considered the wave disturbance affecting the roll angle
and the roll rate but not the yaw. The reason for this is that, in conventional
autopilot design, the yaw is filtered and only low frequency yaw motion is
corrected. This is done to avoid the autopilot making corrections to account
for the first-order (sinusoidal) wave-induced yaw motion. Therefore, in the
problem we are assuming that the yaw is measured after the yaw wave filter;
see Fossen (1994) and Blanke et al. (2000) for details.

14.5 Control Problem Definition

The basic control objectives for the particular motion control problem being
addressed here are as follows:

(i) minimise the roll motion, which includes roll angle and accelerations;
(ii) produce low interference with yaw;
(iii) satisfy input constraints.

In a discrete time framework, all the above objectives are captured in the
following optimisation problem.

Definition 14.5.1 (Output Feedback Control Problem with Input
Constraints) Find the feedback control command uk = K(yk) that minimises
the objective function

V = lim
N→∞

1
N

E

{ N∑
k=0

yt
kQyk + (yk+1 − yk)tS(yk+1 − yk) + ut

kRuk

}
(14.6)

subject to the system equations
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xk+1 = Axk + Buk + Jwk,

yk = Cxk + nk,

and the input constraints

|uk| ≤ umax and |uk+1 − uk| ≤ δumax,

with yk given in (14.5). ◦
Choosing the matrices Q and S as:

Q = diag{0, Qp, 0, Qφ, Qψ},
S = diag{0, Sp, 0, 0, 0},

the objective function (14.6) becomes (assuming no sensor noise)

V = lim
N→∞

1
N

E

{ N∑
k=0

[
Qpp

2
k + Qφφ2

k + Sp(pk+1 − pk)2
]
+ Qψψ2

k + Rα2
k

}
,

(14.7)
which can be interpreted as

V ∝ Qp var[p] + Qφ var[φ] + Sp var[ṗ] + Qψ var[ψ] + R var[α].

The objective function (14.7) is a discrete time version of the objective func-
tion proposed by van Amerongen, van der Klught and Pieffers (1987). The
function (14.7), however, incorporates an extra term that weights the roll
accelerations via the difference pk+1 − pk. The reason for incorporating this
extra term is that both roll angle and roll acceleration affect the performance
of the ship; these are directly related to the criteria often used to evaluate
ship performance in the marine environment (see Lloyd 1989, Graham 1990).

We next show how the above problem can be cast in the RHC framework.

14.6 A Receding Horizon Control Solution

As discussed in Chapter 12, the problem defined above is not easy to solve
due to the presence of constraints.

We will approximate its solution using the certainty equivalent solution of
an associated finite horizon problem, together with a receding horizon imple-
mentation.

In this context, we define the following associated finite horizon problem.

Definition 14.6.1 (Finite Horizon Optimal Control Problem) Given
the initial condition x̌0, we seek the sequence of control moves

{ǔopt
0 (x̌0), . . . , ǔopt

N−1(x̌0)} (14.8)
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that minimises the objective function

VN � 1
2
x̌t

N P̌ x̌N +
N−1∑
j=0

1
2
(x̌t

j Q̌x̌j + ǔt
j Řǔj + ǔt

j Ť x̌j + x̌t
j Ť

tǔj), (14.9)

subject to

x̌j+1 = Ax̌j + Bǔj ,

y̌j = Cx̌j ,
(14.10)

and the constraints

|ǔj | ≤ umax and |ǔj+1 − ǔj| ≤ δ|umax.

The augmented state x̌ in (14.10) is given by

x̌ =
[
v̌c p̌c řc φ̌c ψ̌c φ̌w p̌w

]t
.

NB. The notation x̌ is used here to distinguish the predicted state (predicted
using the model (14.10)) from the true state x.

The matrices in the objective function are

Q̌ = (A − I)t(CtSC)(A − I) + CtQC,

Ř = Bt(CtSC)B + R,

Ť = Bt(CtSC)(A − I).

The matrices Q, S and R are the parameters defining the objective function
(14.6), and the matrices A, B describing the augmented system are

A =
[
Ac 0
0 Aw

]
, B =

[
Bc

0

]
, (14.11)

where the zeros denote zero matrices of appropriate dimensions. The matrix
P̌ in (14.9) is taken as the solution of the following discrete time algebraic
Riccati equation:

P̌ = AtP̌A + Q̌ − KtR̄K.

with K = R̄−1BtP̌A and R̄ = Ř + BtP̌B. ◦
The cross terms in the objective function (14.9), which were not considered

in the earlier RHC formulation given in Chapter 5 (see (5.9)), appear due to
the terms in the objective function penalising the difference pk+1 − pk. These
cross terms only affect the matrices that define the associated quadratic pro-
gram [QP]. The QP solution of the above problem is given by (see Section 5.3
in Chapter 5)

uopt(x̌0) = arg min
Lu≤W

1
2
ut(H1 + H2)u + ut(F1 + F2)x̌0, (14.12)
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where

H1 = ΓtQΓ + R, H2 = TΓ̄ + Γ̄tTt,

F1 = ΓtQΩ, F2 = TΩ̄,

Q = diag{Q̌, . . . , Q̌, P̌},
R = diag{Ř, . . . , Ř},
T = diag{Ť , . . . , Ť},

and

Ω =

⎡⎢⎢⎢⎣
A
A2

...
AN

⎤⎥⎥⎥⎦ , Ω̄ =

⎡⎢⎢⎢⎣
I
A
...

AN−1

⎤⎥⎥⎥⎦ ,

Γ =

⎡⎢⎢⎢⎣
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B

⎤⎥⎥⎥⎦ Γ̄ =

⎡⎢⎢⎢⎣
0 0 · · · 0
B 0 · · · 0
...

...
. . .

...
AN−2B AN−3B · · · 0

⎤⎥⎥⎥⎦ .

The matrices L and W that define the constraint set in (14.12) are given by
(see Section 5.3.2 in Chapter 5)

L =

⎡⎢⎢⎣
I
E
−I
−E

⎤⎥⎥⎦ ; W =

⎡⎢⎢⎣
M̄mag

M̄rate

M̄mag

M̄rate

⎤⎥⎥⎦
where I is the N × N identity matrix and E is the N × N matrix

E =

⎡⎢⎢⎢⎣
1 · · · 0
−1 1 0
...

. . . . . .
...

0 · · · −1 1

⎤⎥⎥⎥⎦ ,

and

M̄mag =

⎡⎢⎣umax

...
umax

⎤⎥⎦ ; M̄rate =

⎡⎢⎢⎢⎣
u−1 + δumax

δumax

...
δumax

⎤⎥⎥⎥⎦ .

The above problem is be solved on line, and the implicit receding horizon
feedback control law is implemented, that is,
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uk = KN (x̌0(yk)) = ǔopt
0 (x̌0(yk)),

the first element of the optimal sequence (14.8).
Using the certainty equivalence principle as described in Chapter 12 the

initial condition for solving the above problem is provided by a Kalman filter
(see Theorem 9.6.2 in Chapter 9). That is, at each step k we take x̌0 = x̂k|k,
where:

Prediction:

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1,

Σk|k−1 = AΣk−1|k−1A
t + Rw.

(14.13)

Measurement update:

Lk = Σk|k−1C
t(CΣk|k−1C

t + Rv)−1,

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1),
Σk|k = (In − LkC)Σk|k−1,

(14.14)

The predictions x̌j used in the finite horizon problem (see (14.10)) are then
j-step predictions given the measurement yk at the time instant k, that is,

x̌j = x̂k+j|k.

To summarise the proposed control strategy, the following steps are envis-
aged at each sampling instant:

(i) Take measurements, that is, obtain yk (see (14.5)) and the previous control
action uk−1.

(ii) Update the state prediction (14.13) and estimate the state x̂k|k using
(14.14) and the measured output.

(iii) Using uk−1 and the initial condition x̌0 = x̂k|k solve the QP (14.12) to
obtain the sequence of controls (14.8).

(iv) Update the control command uc
k = ǔopt

0 (x̌0).

Thus far, we have defined the control and the estimation problem. The
only missing element of the proposed strategy is a method to update the
parameters of the model that describes the wave-induced motion, that is, the
matrix Aw in (14.11).

14.7 Disturbance Model Parameter Estimation

The solution proposed in the previous section assumes that a model is available
to predict the output disturbance; namely, (14.3). Here, we present a simple
approach to estimate the parameters based on the control scheme shown in
Figure 14.3. If the stabiliser control loop is open (see Figure 14.3)—that is,
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Figure 14.3. Block diagram of the control system architecture used for design.

the rudder is kept to zero angle, and only minor corrections are applied to the
rudder to keep the course—we can then use the roll angle and roll rate mea-
surements to estimate the parameters of a second order shaping filter. Under
these conditions, the measurements coincide with the state of the following
shaping filter: [

φw
k+1

pw
k+1

]
=

[
θ11 θ12

θ21 θ22

] [
φw

k

pw
k

]
+

[
wφ

k

wp
k

]
.

By defining the vector

θk =
[
θ11(k) θ12(k) θ21(k) θ22(k)

]t
,

we can express the available measurements as

θk+1 = θk + θwk,[
φw

k

pw
k

]
=

[
φw

k−1 pw
k−1 0 0

0 0 φw
k−1 pw

k−1

]
θk + vk.

(14.15)

The system (14.15) is in a form that we can apply a Kalman filter (see (14.14)
and (14.13)) to estimate θ̂k|k from the measurements φw

k and pw
k . The variable

θwk represents a small random variable that accounts for unmodelled dynam-
ics, so the Kalman filter does not assume a perfect model and eventually stops
incorporating the information provided by the measurements. This method is
a recursive implementation of the least-squares estimation method; see, for
example, Goodwin and Sin (1984).
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To assess the proposed method to estimate the parameters of the filter and
the quality of the prediction using the above model, a series of simulations
were performed generating the roll angle and roll rate as a sum of regular
components using parameters corresponding to different sea states and sailing
conditions.

The parameters to describe the sea state that were used are the average
wave period T and the significant wave height Hs (average of the highest one
third of the wave heights). These parameters are used in the International
Towing Tank Conference (ITTC, 1952, 1957) recommended model for the
wave power spectral density, commonly termed ITTC spectrum in the marine
literature (Lloyd 1989):

Sζζ(ωw) =
172.75H2

s

T 4ω5
w

exp
{−691

T 4ω4
w

}
(m2sec/rad). (14.16)

The above sea state description is combined with the ship roll response opera-
tor to obtain the roll power spectral density and then simulate the time series
used to estimate the parameters. The process for obtaining the ship roll power
spectral density is indicated via an example in Figure 14.4. The first two plots
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Figure 14.4. Roll motion spectral density used in the simulations.

on the left hand side show the sea elevation spectrum (ITTC spectrum) and
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the sea slope spectrum for the adopted sea state. The third plot on the left
hand side shows the ship roll response operator from a particular vessel for the
adopted sailing conditions (see Perez (2003) for this particular vessel model).
The wave slope spectrum is filtered by the hull, and this effect is depicted
in the first plot on the right hand side. This plot is called a pseudo-spectrum
because it is in the wave frequency domain and it is the product of the wave
slope spectrum and the roll response operator. The roll power spectral den-
sity is finally obtained by transforming the pseudo-spectrum to the encounter
frequency domain according to (14.4). This transformation is depicted in the
second plot on the right hand side. The roll power spectral density is depicted
in the last plot on the right hand side of Figure 14.4.

Once the roll power spectral density has been obtained, the roll motion
realisations (time series) can be computed as

φ(t) =
∑

i

φ̄i sin(ωeit + θi), (14.17)

where the phases are chosen randomly with a uniform distribution in [−π, π]
and the amplitudes calculated from

φ̄2
i = 2Sφφ(ωei)∆ωi, (14.18)

where Sφφ(ωe) represents the roll power spectral density (S-roll in Fig-
ure 14.4). The number of regular (sinusoidal) components used to simulate
the time series is normally between 500 and 1000 to avoid pattern repetition
depending on the total simulation time. This procedure for simulating time
series for a ship response is a standard practice in naval architecture and
marine engineering; see, for example, Faltinsen (1990).

The measurements taken from one of the realisations were used to esti-
mate the parameters. Figure 14.5 shows the evolution of the estimates of the
parameters for the model at a particular sea state and sailing condition. A
sampling period of 0.25 sec was adopted based on the value of the roll natural
period of the vessel (approximately 7 sec). Finally, Figure 14.6, shows the roll
angle and roll rate predictions for two other different realisations using 5 and
10 step-ahead predictions. This consists of using the measured state as initial
condition for the model (14.3) with the noises set to their mean values and
then running this model forward in time.

From the above example we can see that the filter converges relatively
quickly, and the quality of predictions for the behaviour of the ship can be
deemed satisfactory. We note that, for the chosen sailing conditions, the use
of a second order disturbance model seems to give good results. For other sea
conditions, it may be necessary to resort to higher order models, but this shall
not be considered here.

This process should be performed before closing the control loop. Then, the
proposed control strategy can be considered a quasiadaptive control strategy.
That is, if the sailing condition (heading and speed) or the sea state changes,



14.7 Disturbance Model Parameter Estimation 337

0 50 100 150 200
−1

−0.5

0

0.5

1
ITTC Hs [m]:4,  T [sec]:7 Speed [kt]: 15,  Enc. Angle [deg]:90

Av last 10 est =0.96631

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

0 50 100 150 200
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
Av last 10 est =−0.26367

0 50 100 150 200
0.88

0.9

0.92

0.94

0.96

0.98

1
Av last 10 est =0.95752

Av last 10 est =0.24582

t [sec]t [sec]

t [sec]t [sec]

θ 1
1

θ 1
2

θ 2
1

θ 2
2

Figure 14.5. Estimated parameters for beam seas.
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Figure 14.6. Roll angle and roll rate predictions in beam seas.
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it may be necessary to open the loop and re-estimate the parameters of the
disturbance model to avoid significant degradation in the closed loop perfor-
mance.

14.8 Constrained Predictive Control of Rudder-Based
Stabilisers

In this section, we will present simulation results aimed at assessing the perfor-
mance of a rudder-based stabiliser designed according to the proposed strat-
egy. In our simulations we will use as a ship a high fidelity nonlinear (calibra-
tion) model of a naval vessel adapted from Blanke and Christensen (1993).
This model is a very comprehensive model that includes features that are
not captured by the simple model used for control system design. However,
these features have a direct bearing on the ship dynamic response descrip-
tion. In this fashion, we preserve the degree of uncertainty present in the real
application. For the complete model see Perez (2003).

We have selected a speed of 15 kts for the simulations. This is the nominal
speed of the vessel and also the speed at which this vessel performs its missions
most of the time. The performance will be assessed for the following scenarios:

• Case A: Beam seas (χ = 90 deg), Hs = 2.5 m, T = 7.5 sec;
• Case B: Quartering seas (χ = 45 deg), Hs = 2.5 m T = 7.5 sec;
• Case C: Bow seas (χ = 135 deg), Hs = 4 m, T = 9.5 sec.

The wave heights (Hs) have been chosen to represent moderate and rough
conditions under which a vessel the size of this naval vessel can be expected to
perform. The particular wave average periods T are the most probable periods
for the chosen wave heights in ocean areas around Australia (Perez 2003). The
control action will be updated with a sampling rate of 0.25 sec. Finally, the
maximum rudder angle will be limited to 25 deg, and maximum rudder rate
will be limited to 20 deg/sec.

We will assess the performance via

(i) percentage of reduction in roll angle variance and RMS value;
(ii) yaw angle RMS value induced by the rudder;
(iii) percentage of reduction of motion induced interruptions [MII].

MII is an index that depends on the roll angle and roll acceleration and yields
the number of interruptions per minute that a worker can expect due to
tipping and loss of balance. The value of this index depends on the particular
location on the ship at which it is evaluated. It is a commonly used index to
evaluate ship performance in the marine environment (Graham 1990). We will
consider a location 7 m above the vertical centre of gravity [VCG] such that
we can neglect the effect of vertical motion on the MII. Thus we can simplify
the calculations and consider only roll motion. This location coincides with
the rear part of the bridge of the vessel.
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14.8.1 Tuning

The tuning was performed in beam seas, and then the parameters of the
controller were fixed for the rest of the simulation scenarios. The only part
of the controller that changed with each sailing condition was the model for
the disturbance, which was estimated prior to closing the loop, as indicated
in Section 14.7.

Different prediction horizons were tested. As expected, for short predic-
tion horizons (N = 1 and N = 2), the performance was poorer than for
longer horizons (N = 5 and N = 10). For a horizon of 10 samples periods,
an improvement of 10% in roll reduction was achieved with respect to that
obtained with N = 1. For horizons longer than 10 sample periods there was
no significant improvement. Therefore, this is the horizon that was adopted
so as to limit the size of the QP problem.

We next present some simulation results. For each case we present a table
with the data calculated from the simulated time series and, also, a plot of
the corresponding time series.

Case A: Beam Seas

The data for the case of beam seas are shown in Table 14.2.

CASE A. Rudder Roll Stabilisation Simulation Report.
Perez (2003), 14-Jul-2003.

RHC parameters:
Prediction horizon --------------------> 10 samples
Sampling time --------------------> 0.25 [sec]
Rudder magnitude constraint --------------------> 25 [deg]
Rudder rate constraint --------------------> 20 [deg/sec]
Controller tuning parameters:
Sp=1000; Qp=0; Qr=1; Qphi=100; Qpsi=1; R=0.25

Sailing Conditions:
Wave spectrum ---------------------> ITTC
Significant wave height ---------------------> 2.5 [m]
Average Wave period ---------------------> 7.5 [sec]
Encounter angle ---------------------> 90 [deg]

Yaw due to stabiliser (RMS) --------------------> 1.7283 [deg]
Roll open loop (RMS) --------------------> 7.2533 [deg]
Roll closed loop (RMS) --------------------> 2.7845 [deg]
Reduction (RMS) --------------------> 61.6111 %
Reduction (VAR) --------------------> 85.2629 %

Motion Induced Interruptions @ bridge (7m above VCG):
MII open loop -------------------> 4.9124 [per min]
MII closed loop -------------------> 0.28575 [per min]
Reduction -------------------> 94.1831 %

Table 14.2. Data from the simulated time series for case A: beam seas.
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The time series corresponding to the data in Table 14.2 are shown in Fig-
ure 14.7. This case is close to the worst condition that the ship can experience
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Figure 14.7. Case A. Simulation in beam seas.

in regard to roll motion for the assumed sea state: beam seas. The wave pe-
riod in this case is close to the natural roll period, which is approximately
7 sec. Therefore, the roll excitation due to the waves is close to resonance.
Notwithstanding this, we can still observe good performance.
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Results obtained from over 20 different realisations indicate roll reductions
on the order of 55–60% for roll RMS values. A significant improvement is
achieved, however, in regard to MII: 80–90% reduction.

The inclusion of the term in the objective function that weights roll ac-
celeration ṗ yields a smoother control action and a better MII reduction with
respect to the case that does not consider this term (between 5–15% higher
reduction for the MII), and it yields only a small improvement in the roll angle
reduction (less than 5%). This seems to indicate that weighting the roll accel-
erations in the objective function can be beneficial for operations (missions)
that require low MII.

From the rudder action depicted in Figure 14.7, we can see that the con-
troller generates a command that satisfies the magnitude constraints.

Case B: Quartering Seas

The data for the case of quartering seas are shown in Table 14.3.

CASE B. Rudder Roll Stabilisation Simulation Report.
Perez (2003), 14-Jul-2003.

RHC parameters:
Prediction horizon --------------------> 10 samples
Sampling time --------------------> 0.25 [sec]
Rudder magnitude constraint --------------------> 25 [deg]
Rudder rate constraint --------------------> 20 [deg/sec]
Controller tuning parameters:
Sp= 1000; Qp=0; Qr=1; Qphi=100; Qpsi=1; R=0.25

Sailing Conditions:
Wave spectrum ---------------------> ITTC
Significant wave height ---------------------> 2.5 [m]
Average Wave period ---------------------> 7.5 [sec]
Encounter angle ---------------------> 45 [deg]

Yaw due to stabiliser (RMS) --------------------> 6.8057 [deg]
Roll open loop (RMS) --------------------> 4.0204 [deg]
Roll closed loop (RMS) --------------------> 2.6248 [deg]
Reduction (RMS) --------------------> 34.7126 %
Reduction (VAR) --------------------> 57.3755 %

Motion Induced Interruptions @ bridge (7m above VCG):
MII open loop ------------------> 0.38515 [per min]
MII closed loop ------------------> 0.0016905 [per min]
Reduction ------------------> 99.5611 %

Table 14.3. Data from the simulated time series for case B: quartering seas.

The time series corresponding the data in Table 14.3 are shown in Fig-
ure 14.8. The performance in quartering seas decreases significantly. This is
expected due to the low encounter frequency of the disturbance. In these con-
ditions, the fundamental limitations associated with the NMP zero and the
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Figure 14.8. Case B. Simulation in quartering seas.

underactuated nature of the system swamp the limitations imposed by the in-
put constraints. Note that the rudder angle depicted in Figure 14.8 rarely hits
the constraints. The analysis of the performance in these conditions is beyond
the scope of this chapter. The interested reader is encouraged to examine the
broader discussion given in Perez, Goodwin and Skelton (2003) and in Perez
(2003).

As depicted in Figure 14.8, due to the high interference with yaw for sailing
conditions having low encounter frequency, it may be necessary to incorpo-
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rate an output constraint in order to limit the maximum heading deviation.
The low encounter frequency, here appearing in quartering seas, may also be
present in other sailing conditions if the sea state is given by very low period
waves produced in severe storms.

Case C: Bow Seas

The data for the case of bow seas are shown in Table 14.4.

CASE C. Rudder Roll Stabilisation Simulation Report.
Perez (2003), 14-Jul-2003.

RHC parameters:
Prediction horizon --------------------> 10 samples
Sampling time --------------------> 0.25 [sec]
Rudder magnitude constraint --------------------> 25 [deg]
Rudder rate constraint --------------------> 20 [deg/sec]
Controller tuning parameters:
Sp=1000; Qp=0; Qr=1; Qphi=100; Qpsi=1; R=0.25

Sailing Conditions:
Wave spectrum ---------------------> ITTC
Significant wave height ---------------------> 4 [m]
Average Wave period ---------------------> 9.5 [sec]
Encounter angle ---------------------> 135 [deg]

Yaw due to stabiliser (RMS) --------------------> 1.1673 [deg]
Roll open loop (RMS) --------------------> 4.2398 [deg]
Roll closed loop (RMS) --------------------> 1.4856 [deg]
Reduction (RMS) --------------------> 64.9593 %
Reduction (VAR) --------------------> 87.7215 %

Motion Induced Interruptions @ bridge (7m above VCG):
MII open loop ---------------------> 1.4513 [per min]
MII closed loop ---------------------> 9.6e-5 [per min]
Reduction ---------------------> 99.9934 %

Table 14.4. Data from the simulated time series for case C: bow seas.

The time series corresponding the data in Table 14.4 are shown in Fig-
ure 14.9. This case presents the best performance despite the more severe sea
state: 4 m waves. If we compare the RMS of roll in open loop with that of
case B, we can see that these are similar. However, due to the higher encounter
frequency of the disturbances in case C, the roll reduction is significantly bet-
ter. The reason for this is the relative location of the NMP zero (which appears
in the response of roll due to rudder) with respect to the bulk of energy of
the disturbance (Perez 2003).

14.8.2 The Role of Adaptation

Table 14.5 shows how the adaptation improves the performance of the pro-
posed control strategy for a particular example in which changes in course
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Figure 14.9. Case C. Simulation in bow seas.

from quartering seas to beam seas (χ [deg]: 45→90) and from beam seas to
bow seas (χ [deg]: 90→135) were simulated. The second column shows the
performance obtained if the disturbance model is not adapted (NA) after the
change in course. The third column shows the performance after opening the
loop to re-estimate the disturbance model, that is, the model is adapted (A).

We can see a significant improvement in performance due to the adaptation
for the course change from quartering to beam seas. However, there is a small
improvement for the course change from beam to bow seas. The reason for
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this is that the first course change produces more variation in the roll response
of the vessel than the second. Therefore, after re-estimating the parameters
of the model the performance improves significantly. For the second course
change the nonadapted model is still good for the predictions; hence, after
adaptation, only a small improvement is obtained.

Although we have only showed, as an illustrative example, variations due
to a course change, one should bear in mind that changes in speed and, more
importantly, in the sea, determine the characteristics of roll motion. Adapta-
tion plays an important role for the proposed control strategy.

ITTC, Hs=2.5m,T=7.5s χ [deg]: 45→90 (NA) χ [deg]: 45→90 (A)

Roll red % 41.5 61.2
MII red % 81.2 99.1
Yaw rms 0.70 0.86

Rudder rms 6.2 10.1

ITTC, Hs=2.5m,T=7.5s χ [deg]: 90→135 (NA) χ [deg]: 90→135 (A)

Roll red % 62.0 66. 4
MII red % 100 100
Yaw rms 0.33 0.4

Rudder rms 4.2 5.2

Table 14.5. Performance after a change in course from quartering to beam seas
(χ [deg]: 45→90) and from beam to bow seas (χ [deg]: 90→135) with no adaptation
(NA) and after adapting the disturbance predictor (A).

14.9 Summary and Discussion

In this chapter, we have presented a case study and control system design for
a problem of significant practical importance. The simplifying assumptions
under which we performed the design have been kept to a minimum. Hence,
almost all aspects of the design process have been addressed to some degree,
including choosing the appropriate model, adopting the type of disturbance
description and selecting the performance criteria.

The RHC formulation offers a unified framework to address many of the
difficulties associated with the control system design for this particular prob-
lem: multivariable nature, constraints, uncertainty, stochastic disturbance re-
jection. The simulations presented illustrate the performance of RHC and
suggest that the methodology should be successful in practical applications.

14.10 Further Reading

For complete list of references cited, see References section at the end of book.
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General

Further information on rudder roll stabilisation of ships can be found in, for
example, Perez (2003) and van Amerongen, van der Klugt and van Nauta
Lemke (1990).

For more information on ship dynamics and control, see, for example,
Fossen (1994) and Fossen (2002).
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Cross-Directional Control

Contributed by Osvaldo J. Rojas

15.1 Overview

In this chapter we describe a practical application of receding horizon control
to a common industrial problem, namely web-forming processes. Web-forming
processes represent a wide class of industrial processes with relevance in many
different areas such as paper making, plastic film extrusion, steel rolling, coat-
ing and laminating.

In a general set up, web processes (also known as film and sheet forming
processes) are characterised by raw material entering one end of the process
machine and a thin web or film being produced in (possibly) several stages
at the other end of the machine. The raw material is fed to the machine in a
continuous or semi-continuous fashion and its flow through the web-forming
machine is generally referred to as the machine direction [MD].

Sheet and film processes are effectively two-dimensional spatially dis-
tributed processes with several of the properties of the sheet of material vary-
ing in both the machine direction and in the direction across the sheet known
as the cross direction [CD].

The main objective of the control applied to sheet and film processes is to
maintain both the MD and CD profiles of the sheet as flat as possible, in spite
of disturbances such as variations in the composition of the raw material fed
to the machine, uneven distribution of the material in the cross direction, and
deviations in the cross-directional profile. The weight, moisture and calliper
of the sheet are the most commonly controlled properties of the web. Usu-
ally their average values are controlled in the machine direction whilst their
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deviations from the mean are controlled in the cross direction (Featherstone,
VanAntwerp and Braatz 2000).

Figure 15.1 shows a typical web-forming process. In order to control the
cross-directional profile of the web, several actuators are evenly distributed
along the cross direction of the sheet. The number of actuators can vary from
only 30 up to as high as 300. The film properties, on the other hand, are either
measured via an array of sensors placed in a downstream position or via a
scanning sensor that moves back and forth in the cross direction. The number
of measurements taken by a single scan of the sensor can be up to 1000.

cross direction

actuators

sensors

machine direction

Figure 15.1. Generic web-forming process.

It is generally recognised that the cross-directional control problem in web-
forming processes is much more challenging than the machine direction control
problem. This is due to several difficulties; some of these difficulties are:

• the high dimensionality of the cross-directional system;
• the high cross-direction spatial interaction between actuators;
• the uncertainty in the model;
• the limited control authority of the actuators.

We present this application problem as an example to illustrate the con-
cepts and approaches studied in previous chapters.

15.2 Problem Formulation

It is generally the case that web-forming processes can be effectively mod-
elled by assuming a decoupled spatial and dynamical response (see, for exam-
ple, Laughlin, Morari and Braatz 1993, Bergh and MacGregor 1987). This is
equivalent to saying that the effect of one single actuator movement is almost
instantaneous in the cross direction whilst its effect in the machine direction



15.2 Problem Formulation 349

shows a certain dynamic behaviour. This behaviour, as measured by the array
of sensors in the downstream position, is commonly assumed to be identical
across the web.

These observations allow one to consider a general model for a cross-
directional system of the form

yk = q−dh(q)B̄uk + dk, (15.1)

where q−1 is the unitary shift operator.
The vector yk ∈ Rm represents the sensor measurements whilst uk ∈ Rm

is the vector of control signals. The vector dk ∈ Rm represents an output
disturbance. Note that the model (15.1) is assumed to have the same number
of inputs and outputs. In practice, the sensor measurements often outnumber
the actuators. In that case, the sensor data can be filtered in the spatial do-
main to reduce its order whilst minimising the loss of controllable information
(Stewart, Gorinevsky and Dumont 1998).

It is assumed that the system dynamics are the same across the machine
and thus h(q) can be taken to be a scalar transfer function. In addition, h(q) is
typically taken to be a low order, stable and minimum-phase transfer function.
A typical model is a simple first-order system with unit gain (Featherstone
et al. 2000):

h(q) =
(1 − α)
q − α

. (15.2)

The transport delay q−d in (15.1) accounts for the physical separation that
exists between the actuators and the sensors in a typical cross-directional
process application (see Figure 15.1).

The matrix B̄ is the normalised steady state interaction matrix and rep-
resents the spatial influence of each actuator on the system outputs. In most
applications it is reasonably assumed that the steady state cross-directional
profile generated by each actuator is identical. As a result, the interaction ma-
trix B̄ usually has the structure of a Toeplitz symmetric matrix (Featherstone
et al. 2000, Featherstone and Braatz 1997). In other applications the structure
of B̄ is that of a circulant symmetric matrix. This is the case, for example, in
paper machines where edge effects are neglected, in dyes for plastic films and
in multizone crystal growth furnaces (Hovd, Braatz and Skogestad 1997).

As the system model (15.1)–(15.2) suggests, the main difficulties in dealing
with cross-directional control problems are related to the spatial interaction
between actuators and not so much to the complexity of dynamics, which
could reasonably be regarded as benign.

A key feature is that a single actuator movement not only affects a single
sensor measurement in the downstream position but also influences sensors
placed in nearby locations. Indeed, the interaction matrix B̄ is typically poorly
conditioned in most cases of practical importance.

The poor conditioning of B̄ can be quantified via a singular value decom-
position
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B̄ = USV T (15.3)

where S, U, V ∈ Rm×m. S = diag{σ1, σ2, . . . , σm} is a diagonal matrix with
positive singular values arranged in decreasing order, and U and V are or-
thogonal matrices such that UUt = UtU = Im and V V t = V tV = Im, where
Im is the m × m identity matrix. If B̄ is symmetric then U = V .

If B̄ is poorly conditioned then the last singular values on the diagonal
of S are very small compared to the singular values at the top of the chain
{σi}m

i=1. This characteristic implies that the control directions associated with
the smallest singular values are more difficult to control than those associated
with the biggest singular values, in the sense that a larger control effort is
required to compensate for disturbances acting in directions associated with
small σi. (See also the discussion in Section 11.6.1 of Chapter 11.)

This constitutes not only a problem in terms of the limited control au-
thority usually available in the array of actuators, but it is also an indication
of the sensitivity of the closed loop to uncertainties in the spatial components
of the model in (15.1).

The control objective in cross-directional control systems is usually stated
as the requirement to minimise the variations of the output profile subject
to input constraints. This can be stated in terms of minimising the following
objective function:

V∞ =
∞∑

k=0

‖yk‖2
2

subject to input constraints

‖uk‖∞ ≤ umax. (15.4)

Another type of constraint typical of CD control systems is a second-order
bending constraint defined as1

‖∆ui+1
k − ∆ui

k‖∞ ≤ bmax for i = 1, . . . , m, (15.5)

where ∆ui
k = ui

k − ui−1
k is the deviation between adjacent actuators in the

input profile at a given time instant k. Constraints of this type are necessary
to prevent damage to the array of actuators, in particular, in paper making
applications where excessive variation between adjacent actuators can com-
promise the physical integrity of the slice lip (Kristinsson and Dumont 1996).

15.3 Simulation Results

To illustrate the ideas involved in cross-directional control, we consider a 21-
by-21 interaction matrix B̄ with a Toeplitz symmetric structure and exponen-
tial profile:
1 The superscript indicates the actuator number.
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bij = e−0.2|i−j| for i, j = 1, . . . , 21, (15.6)

where bij are the entries of the matrix B̄. For illustrative purposes we assume
that the transport delay in the model (15.1) is negligible and we consider the
transfer function

h(q) =
1 − e−0.2

q − e−0.2
, (15.7)

which is a discretised version of the first-order system ẏ(t) = −y(t)+u(t) with
sampling period Ts = 0.2 sec. (Note that a nonzero delay can be treated as
in Section 5.5.1 of Chapter 5.)
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Cross-directional index

Figure 15.2. Cross-directional profile for a unit step in actuator number 11.

Figure 15.2 shows the steady state CD profile created by a unit step in
actuator number 11. Although the chosen profile is not necessarily represen-
tative of real sheet and film processes, it captures the main characteristics
of such systems, namely the wide spatial influence of one actuator over the
entire output profile.

Figure 15.3 shows the singular values of the interaction matrix B̄. We
observe that there exists a significant difference between the largest singular
value σ1 and the smallest singular value σ21, indicating that the matrix is
poorly conditioned. Dealing with the poor conditioning of B̄ is one of the
main challenges in CD control problems as we will show later.

In order to estimate the states of the system and the output disturbance
dk, a Kalman filter is implemented as described in Section 5.5 of Chapter 5
for an extended system (see (5.32)) that includes the dynamics of a constant
output disturbance:
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Figure 15.3. Singular values of the interaction matrix B̄.

xk+1 = Axk + Buk,

dk+1 = dk,

yk = Cxk + dk,

where in our case

A = diag{e−0.2, . . . , e−0.2},
B = (1 − e−0.2)B̄,

C = Im.

The state noise covariance

Qn =
[
Im 0
0 100Im

]
,

and output noise covariance
Rn = Im,

were considered in the design of the Kalman filter (see, for example, Goodwin
et al. 2001).

In what follows we will illustrate how some of the constrained control
strategies described in previous chapters perform on a large scale control
problem such as the one described here. We will consider the finite hori-
zon quadratic objective function of the form (5.9) in Chapter 5 with both
prediction and control horizons set equal to one, that is
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V1,1 =
1
2
(yt

0Qy0 + ut
0Ru0 + xt

1Px1). (15.8)

We have chosen a “one-step ahead” prediction horizon owing to the simplicity
of the first-order dynamics of the system. However, it is perhaps worth noting
that the minimisation of the objective function V1,1 subject to the constraints
described in (15.4) and (15.5) could still be a computationally intensive prob-
lem considering the high dimensionality of a general CD control system.

In the objective function (15.8) we use the weighting matrices

Q = Im, R = 0.1Im. (15.9)

The first control strategy that we try on the problem is a linear quadratic
Gaussian [LQG] controller designed with the same weighting matrices as in
(15.9). This design clearly does not take into consideration the constraints
imposed on the input profile. As might be expected, the application of such
a blind (or serendipitous) approach to the problem would, in general, not
achieve satisfactory performance (see comments made in Chapter 1).

To illustrate, let us assume the system is subject to physical constraints
on the inputs of the form:

|ui
k| ≤ 1 for all k, i = 1, . . . , 21.

We then apply the controller

uk = −Kx̂k,

where x̂k is the state estimated by the Kalman filter and K is the optimal
feedback gain.

The system is allowed to settle after a first transient in order to adequately
reduce the state estimation error. After that, a specified constant disturbance
profile is applied to the output of the system. The disturbance is selected to
contain large components in the directions of the small spatial singular values.

Figure 15.4 shows the time response of the input-output pair number 10
compared to the response achieved when no constraints are imposed on the
system. We observe that the closed loop response with the unconstrained con-
troller is faster than the constrained response and, perhaps more important,
that the controller subject to hard input constraints is not able to compensate
the disturbance in steady state due to its limited control authority.

In Figure 15.5 we can observe the achieved steady state input and output
profiles across the strip. The dotted lines in Figure 15.5 (a) represent the
input constraint levels whilst the dotted line in Figure 15.5 (b) is the applied
constant disturbance profile d. Figure 15.5 (a) illustrates a phenomenon that
is well known in the area of cross-directional control, namely alternate inputs
across the strip converge to large alternate values, that is, “input picketing”
occurs. We will see below, when we test alternative design methods, that
this picketing effect can be avoided by careful design leading to significantly
improved disturbance compensation.
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(b) Output time response.

Figure 15.4. Time response of the input clipping strategy (dashed line) compared
to the unconstrained LQG response (solid line).

2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

1.5
Input clipping

Cross-directional index

(a) Input profile.

2 4 6 8 10 12 14 16 18 20

−1.5

−1

−0.5

0

0.5

1

Input clipping
disturbance

Cross-directional index
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Figure 15.5. Input-output steady state profiles with input clipping.

We next try RHC considering initially only input constraints (see Chap-
ter 5). The achieved steady state input and output profiles are presented in
Figure 15.6 where we have also included, for comparison, the profiles obtained
with the input clipping approach.

We observe, perhaps surprisingly, that the steady state response achieved
with RHC does not seem to have improved significantly compared with the
result obtained by just clipping the control in the LQG controller. In addition,
the input profile obtained with RHC seems to be dominated by the same
high spatial frequency modes as those that resulted from the input clipping
approach. This is an indication of the difficulties inherent in dealing with CD
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(a) Input profile.
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Figure 15.6. Input-output steady state profiles using RHC (square-dashed line)
and input clipping (circle-solid line).

control systems which, in turn, arise from the strong spatial “interference”
between actuators.

However, this is a reasonably well understood difficulty in CD control sys-
tems: The “picket fence” profile in the input arises from the controller trying
to compensate for the components of the disturbance in the high spatial modes
which, in turn, require bigger control effort, driving the inputs quickly into
saturation. With limited control authority no controller can completely com-
pensate for a disturbance that contains high spatial frequency components.
In addition, Figure 15.6 shows that even when the compensation of high fre-
quency disturbance modes is performed optimally (since the RHC strategy
solves a QP at each step) large and usually unacceptable deviations between
adjacent actuators occur.

The commonly accepted solution to this inherent difficulty is to let the
controller seek disturbance compensation only in the low spatial frequencies
(Heath 1996, Kristinsson and Dumont 1996). Note that this is the spatial
version of the algorithm described in Section 11.6.2 of Chapter 11.

This is indeed how the SVD–RHC line search algorithm described in Sec-
tion 11.6.2 generates a control signal that meets the constraints. If the predic-
tion horizon chosen is N = 1 then in the vector formulation of the quadratic
optimisation problem described in Chapter 5 we can write

Γ = B

and the Hessian of the objective function (see (5.20) in Chapter 5) is simply

H = BtQB + R

= B̄tB̄ + R.
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Figure 15.7. Input and output steady state profiles using the SVD–RHC strategy
(circle-solid line) and RHC (square-dashed line).

This implies that the singular values of the Hessian are simply the singular
values squared of the interaction matrix B̄ shifted by the weighting in the
input R (recall the analysis presented in Chapter 11).

Figure 15.7 shows the steady state input and output profiles obtained by
using the SVD–RHC strategy when input constraints of the type in (15.4) are
considered. We observe that in this case the picket fence profile has disap-
peared from the input whilst the output profile has not changed significantly.
Clearly a slight degradation of the output variance is to be expected ow-
ing to the suboptimality of the strategy. The steady state profiles obtained
with RHC are repeated in Figure 15.7 for comparison purposes. Note that
the output profile obtained with the SVD–RHC strategy contains the higher
spatial frequency components that the strategy avoids compensating. These
components are less evident in the output profile obtained with RHC but they
generate the undesirable input variations observed in Figure 15.7 (a).

Figure 15.8 shows the spatial components considered by the SVD–RHC
strategy at each sampling time. We observe that, in steady state, the strategy
only retains the first seven spatial modes completely whilst scaling the eighth
mode and discarding the higher frequency modes.

Finally, we compare the performance obtained using RHC with the perfor-
mance obtained using the SVD–RHC strategy when the second-order bending
constraint in (15.5) is also considered. One might suspect that a constraint
imposed on the maximum acceleration that neighbouring actuators are al-
lowed to have will necessarily “smooth out” the input profile. This is in fact
the case as it is shown in Figure 15.9.

Note that the input profiles obtained with both strategies are remarkably
similar. Figure 15.9 (b) shows the second-order bending profile achieved in
steady state. Both strategies meet the constraint imposed on the second-order
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Figure 15.8. Time evolution of the number of singular values considered by the
SVD–RHC strategy.
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Figure 15.9. Steady state input and second-order bending input profiles using the
SVD–RHC strategy (circle-solid line) and RHC (square-dashed line).

bending even though the SVD–RHC profile is once again smoother, for only
low spatial modes are included in the solution.

Figure 15.10 shows the resultant steady state output profiles. As antici-
pated from the similarities already observed in the input profiles, the output
profiles are very similar as well. When observing the spatial modes included
in the output profiles (see Figure 15.10 (b)) the SVD–RHC strategy clearly
achieves complete disturbance compensation in the first six spatial modes and
significant attenuation in the seventh mode. However, no attenuation is ob-
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Figure 15.10. Steady state output profile and spatial components profile using the
SVD–RHC strategy (circle-solid line) and RHC (square-dashed line).

tained in any of the other higher spatial frequency modes. The RHC solution,
on the other hand, gives the optimal balance that results when compensating
the disturbance both in the low and high spatial frequency modes. In this
particular case, it seems that no significant improvement is achieved when
adopting a QP solution.

This observation may suggest that in certain specific applications, alter-
native sub-optimal strategies like the SVD–RHC can achieve a performance
that is comparable to that of the full QP solution, but with only a fraction of
the computational load.

15.4 Further Reading

For complete list of references cited, see References section at the end of book.

General

Further details regarding cross-directional control problems can be found in
Featherstone et al. (2000); Wellstead, Zarrop and Duncan (2000); Stewart,
Gorinevsky and Dumont (2003). In particular, Chapter 3 in Featherstone
et al. (2000) presents a detailed literature review of cross-directional con-
trol. Web-forming processes are industrial applications that need high cap-
ital investments due to the complexity and scale of the machinery involved
(Duncan 2002). As such, increased effort has been devoted to devise and im-
plement more sophisticated controllers to improve the performance of cross-
directional control systems and reduce operational costs. This interest has
been reflected in a growing number of publications analysing the control and
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identification aspects of the problem. See, for example, two recent special is-
sues on cross-directional control (Duncan 2002, Dochain, Dumont, Gorinevsky
and Ogunnaike 2003).

Different representations of the steady state output profile have been used
by several authors, including Gram polynomials (Kristinsson and Dumont
1996, Heath 1996), splines (Halouskova, Karny and Nagy 1993) and singular
value decomposition (Duncan and Bryant 1997, Featherstone et al. 2000).

It is perhaps interesting to notice that although input constraints play an
important role in the formulation of cross-directional control problems, it is
only recently that constrained control formulations such as receding horizon
control have been applied to such large scale systems (see, for example, Heath
1996, Rawlings and Chien 1996). The idea of using QP to obtain the optimal
steady state cross-directional profile was however proposed by Boyle as early
as 1977 (Boyle 1977). Constraint handling is also addressed in Dave, Willing,
Kudva, Pekny and Doyle (1997), where a linear programming formulation is
adopted.

In Bartlett, Biegler, Backstrom and Gopal (2002) different QP algorithms
are compared in terms of their computational costs and a new fast QP al-
gorithm is proposed particularly tailored to large scale CD control systems.
A suboptimal solution to QP applied to cross-directional control problems is
studied in VanAntwerp and Braatz (2000) based on an ellipsoidal approxi-
mation of the constraint polytope. A further interesting topic is the analysis
of the achievable steady state performance in cross-directional control (Wills
and Heath 2002).

Section 15.3

The main idea underpinning the SVD–RHC strategy used here and described
in Section 11.6.2 of Chapter 11 was initially developed as an anti-windup
strategy applied to cross-directional control problems, reported in Rojas et al.
(2002).
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Control over Communication Networks

Contributed by James Welsh, Hernan Haimovich
and Daniel Quevedo

16.1 Overview

This chapter presents a case study of constrained control and estimation in
the area of networked control. Networked control is a term used to describe
control actions that take place over a networked communication system. A
key issue that arises in this context is the need to quantise data so that it
can be communicated over the network. Quantisation occurs in both time
and space and is needed on both the “up-link” (between the plant and the
control computer) and the “down-link” (between the control computer and
the plant). In this chapter, we show how this problem can be formulated in
the framework of constrained control and estimation.

16.2 Description of Networked Control Systems

Networked control systems are of substantial interest in a variety of applica-
tions. They are control systems in which controller and plant are connected
via a communication channel. There are many practical applications of these
systems. They have been made possible by technological developments, in-
cluding the development of MEMS arrays, and may deploy wireless links (for
example, Bluetooth or IEEE 802.11), Ethernet (for example, IEEE 802.3) or
specialised protocols such as CAN. A special feature of networked control
systems is the need for signal quantisation.
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Due to the digital nature of the communication channel, every signal trans-
mitted is expressed as a finite number of bits, hence the signal needs to be
quantised to a finite set; see, for example, Ishii and Francis (2002).

The specific problem addressed in this chapter is the design of a method-
ology for minimising network traffic between a centralised controller and a
multivariable plant or collection of plants. We split the design problem into
two sub-problems, namely: up-link and down-link.

On the down-link side, we restrict the controller such that only one actua-
tor can be addressed at any given time. Moreover, only one of a finite number
of levels can be transmitted. The design of the resulting system is aimed at op-
timising performance subject to these constraints. In this context, we choose
to send increments in the control signal, rather than the actual values. Be-
tween updates, all inputs are kept at their previous values. We utilise receding
horizon optimisation to deal with the associated computational issues.

On the up-link side, we employ signal quantisation to minimise data rate
requirements. In particular, at each sampling time, we transmit only data
specifying the region in which the measurements lie. We propose two design
strategies for dealing with these quantised measurements. First, we adopt a
stochastic problem formulation and develop an approximate minimum vari-
ance state estimator. Second, by adopting a deterministic formulation, we
propose a set-valued observer that is able to approximate the smallest region
of the state space in which the state to be estimated has to lie. For both
estimators, we resort to moving horizon techniques in order to limit compu-
tational complexity.

As outlined above, the design methodology described here divides the
problem into the up-link and down-link problems as depicted in Figure 16.1.
Implicit in this division is the assumption that we will utilise certainty equiv-
alence (see Chapter 12), that is, we base the down-link design on the state
estimates provided by the up-link state estimator. The scheme described here

Controller

Plant(s)

Communication

Estimator

Up-link Down-link

Sensors Actuators

channel

Figure 16.1. System overview.

is particularly suited to protocols where the message size can be manipulated.
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16.3 Down-Link

Here we assume knowledge of the system states (the state estimation problem
will be addressed in Section 16.4) and use xk to denote the current state. We
consider optimisation over the future time interval k, k + 1, . . . , k + N , and
use yk:k+N to denote future output predictions.

We consider a linear time-invariant noiseless plant with m inputs and s
outputs. We assume a given and fixed reference vector r�. We also assume that
the link between the controller and actuators is characterised by a known and
fixed time-delay and that data are sent at a bounded rate. This last assump-
tion is achieved by imposing the following two communication constraints on
the design:

Constraint 1 The data sent from the controller to each actuator is restricted
to belong to a (small and fixed) finite set of scalars, U. ◦
Constraint 2 Only data corresponding to one input of the plant can be trans-
mitted at a time. Between updates (which may be separated by several sampling
periods), all plant inputs are held at their previous values. ◦

The delay between controller and plant can be incorporated into the noise-
less1 predicted plant response

x′
j+1 = Ax′

j + Buj for j ≥ k,

y′
j = Cx′

j ,
(16.1)

with initial condition
x′

k = xk. (16.2)

In (16.1), x′
j ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rs×n, uj ∈ Rm and y′

j ∈ Rs.
For future reference, we note that uj can be expanded as:

uj =
[
(u1)j (u2)j . . . (um)j

]t
. (16.3)

The design problem can thus be stated as that of developing a control strategy,
which regulates the model (16.1) to the constant reference r�, whilst not
violating Constraints 1 or 2. Thus, the control strategy for the networked
system is characterised by choosing, at each time step, which of the m inputs
in (16.3) to access and what to send, that is, the controller needs to divide its
attention between all plant inputs. We will see that this can be formulated as
a receding horizon finite alphabet control problem.

Note that the above formulation encompasses the problem of controlling
a collection of geographically separated plants. Simply note that a set of p
plants, each described by

(xi)k+1 = Ai(xi)k + Bi(ui)k,

(yi)k = Ci(xi)k for i = 1, . . . , p,
(16.4)

1 Compare with (16.21).
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can be put into the form (16.1) by defining x as the overall state

xk �
[
((x1)k)t . . . ((xp)k)t

]t
.

With this, the matrices in the realisation (16.1) are given by

A = diag{A1, . . . , Ap},
B = diag{B1, . . . , Bp},
C = diag{C1, . . . , Cp}.

Rather than sending the control signals directly, we propose to send their
increments

∆(ui)k � (ui)k − (ui)k−1 (16.5)

when such increments are nonzero. This generally requires fewer bits to spec-
ify the control signal. The pair (∆(ui)k, i) is received at the actuator node
specified by the index i. The actual signal (ui)k is readily reconstructed by
discrete time integration as shown in Figure 16.2.2

ρ

ρ − 1

ρ

ρ − 1

ρ

ρ − 1

1 i m

Controller

Plant

Digital Channel

∆(u1)k . . . ∆(ui)k . . . ∆(um)k

(u1)k . . . (ui)k . . . (um)k

Figure 16.2. Down-link design.

The communication Constraints 1 and 2 can be summarised by means of a
simple finite set constraint on the increments (16.5). More precisely, at every
time instant k, the vector
2 ρ denotes the forward shift operator, ρvk = vk+1, where {vk} is any sequence.
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∆uk �
[
∆(u1)k ∆(u2)k . . . ∆(um)k

]t ∈ R
m

is restricted to belong to the set V, which is defined as

V �
{
v ∈ R

m such that there exists ξ ∈ U : v =
[
0 . . . 0 ξ 0 . . . 0

]t}
.

As depicted in Figure 16.3 for V in R2, this set contains all column vectors
formed by one element of U, whilst all its other components are zero.

�

0 0

∆(u1)k

∆(u2)k

�

Figure 16.3. Construction of the set �.

The performance of the model (16.1) over a finite horizon N starting at
time k is quantified by means of the quadratic objective function

VN �
k+N∑

j=k+1

‖y′
j − r�‖2 +

k+N−1∑
j=k

‖uj − u�‖2
R, (16.6)

where R = Rt > 0 and u� is defined via3

r� = C(In − A)−1Bu�. (16.7)

In (16.6), y′
j and uj are predicted trajectories satisfying (16.1).

The control increments ∆uj are to be sent down the channel. Thus, the
decision variables in the minimisation of (16.6) are the predicted control in-
crements

∆uj � uj − uj−1 for j = k, . . . , k + N − 1. (16.8)

These can be gathered into the vector

∆uk:k+N−1 �
[
(∆uk)t (∆uk+1)t . . . (∆uk+N−1)t

]t ∈ R
Nm, (16.9)

which needs to satisfy the finite set constraint ∆uk:k+N−1 ∈ VN , where

V
N � V × · · · × V.

In the remainder of this section, we will write VN (∆uk:k+N−1) in order to
make explicit the dependence of the objective function (16.6) on the control
increments.
3 We assume that A has no eigenvalue at one.
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Remark 16.3.1. The framework can be extended to plants whose inputs uk

are affected by saturation. In this case, the predicted increments ∆uk:k+N−1

can be restricted to belong to a subset of V
N , which keeps predicted inputs

uk+i, i = 0, . . . , N −1, within the unsaturated region. Naturally, the resulting
subsets are time-varying, since they depend upon the value of the last control
input, uk−1. ◦

Based upon the objective function (16.6), we propose, as in Chapter 13,
to utilise a receding horizon scheme. Therefore, at each time step, we solve
the finite set constrained optimisation problem

∆uopt
k:k+N−1 � arg min

∆uk:k+N−1∈VN

VN (∆uk:k+N−1). (16.10)

Instead of implementing the entire control sequence contained in the vector
∆uopt

k:k+N−1, we only utilise its first m components (where m is the number of
actuators):

∆uopt
k � Lt∆uopt

k:k+N−1, (16.11)

where4

Lt �
[
Im 0m . . . 0m

] ∈ R
m×Nm. (16.12)

The vector (16.11) contains the data corresponding to all m inputs. Since
∆uopt

k ∈ V, not more than one of its components is nonzero. Only this value
is sent to the plant input determined by its index (see Figure 16.2). The other
m− 1 inputs are left unchanged as prescribed in Constraint 2. It can be seen
that the strategy consists of only sending the most relevant control increment,
as quantified by the objective function (16.6). Note that not only the control
increment to be applied at each time is provided by solving (16.10), but also
the question of which input to access is addressed.

As shown in Chapter 13, the control scheme can be implemented by util-
ising linear filters and a nearest neighbour vector quantiser.

For that purpose, it is useful to define the vectors

uk:k+N−1 �

⎡⎢⎢⎢⎣
uk

uk+1

...
uk+N−1

⎤⎥⎥⎥⎦ , y′
k+1:k+N �

⎡⎢⎢⎢⎣
y′

k+1

y′
k+2
...

y′
k+N

⎤⎥⎥⎥⎦ , r� �

⎡⎢⎢⎢⎣
r�

r�

...
r�

⎤⎥⎥⎥⎦ , u� �

⎡⎢⎢⎢⎣
u�

u�

...
u�

⎤⎥⎥⎥⎦ ,

and to note that (16.6) can be re-written in vector form as

VN (∆uk:k+N−1) = ‖y′
k+1:k+N − r�‖2 + ‖uk:k+N−1 − u�‖2

R̄, (16.13)

where
R̄ � diag{R, . . . , R}.

4 Im denotes the m × m identity matrix and 0m � 0 · Im.
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Furthermore, iteration of (16.1) yields

y′
k+1:k+N = Φuk:k+N−1 + Λxk, (16.14)

where

Φ �

⎡⎢⎢⎢⎢⎣
CB 0 . . . 0

CAB CB
. . .

...
...

. . . . . . 0
CAN−1B . . . CAB CB

⎤⎥⎥⎥⎥⎦ , Λ �

⎡⎢⎢⎢⎣
CA
CA2

...
CAN

⎤⎥⎥⎥⎦ .

In order to include the predicted increments (16.9) in these expressions,
notice that

∆uk:k+N−1 = Euk:k+N−1 − Luk−1, (16.15)

where

E �

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im . . . . . . 0m

−Im Im

...

0m
. . . . . .

...
. . . . . . . . .

...
0m . . . 0m −Im Im

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

Nm×Nm,

and L is defined in (16.12).
Using the nearest neighbour vector quantiser (see Definition 13.3.1 in

Chapter 13) we can describe the control law as follows:

Theorem 16.3.1 (Closed Form Solution) The optimiser in (16.10) sat-
isfies

∆uopt
k:k+N−1 = H−1/2q

�VN (−H−T/2f), (16.16)

where

H � E−T
(
ΦtΦ + R̄

)
E−1,

f � HLuk−1 − E−T
[
R̄u� + Φt (r� − Λxk)

]
,

(16.17)

and the square matrix H1/2 is defined via HT/2H1/2 = H.
The nonlinear mapping q

�VN (·) is the nearest neighbour quantiser described
in Definition 13.3.1 of Chapter 13. The image of this mapping is the set:

Ṽ
N �

=
{
ṽ ∈ R

Nm such that there exists v ∈ V
N : ṽ = H1/2v

}
. (16.18)

Proof. The proof follows closely that of Quevedo et al. (2004).
Given expressions (16.13) to (16.15) it follows that
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VN (∆uk:k+N−1) = ‖Φuk:k+N−1 + Λxk − r�‖2 + ‖uk:k+N−1 − u�‖2
R̄

= ‖ΦE−1(∆uk:k+N−1 + Luk−1) + Λxk − r�‖2

+ ‖E−1(∆uk:k+N−1 + Luk−1) − u�‖2
R̄

= ‖∆uk:k+N−1‖2
H + 2(∆uk:k+N−1)tf + V̄N (xk, r�, uk−1),

(16.19)

where V̄N (xk, r�, uk−1) does not depend upon ∆uk:k+N−1, and f and H are
defined in (16.17).

We introduce the change of variables,

∆ũk:k+N−1 = H1/2∆uk:k+N−1.

This transforms VN into ṼN defined in (16.18). Expression (16.19) then allows
us to rewrite the optimiser (16.10) as

∆uopt
k:k+N−1 = H−1/2 arg min

∆ũk:k+N−1∈�VN

ϕ(∆ũk:k+N−1), (16.20)

ϕ(∆ũk:k+N−1) � (∆ũk:k+N−1)t∆ũk:k+N−1 + 2(∆ũk:k+N−1)tH−T/2f.

The level sets of ϕ(·) are spheres in RNm, centred at −H−T/2f . Hence, the
constrained optimiser is given by the nearest neighbour:

arg min
∆ũk:k+N−1∈�VN

ϕ(∆ũk:k+N−1) = q
�VN (−H−T/2f).

Using the above in (16.20) then establishes the result given in (16.16). �

As a consequence of Theorem 16.3.1, the scheme can be characterised by
means of the closed loop depicted in Figure 16.4.

1
ρ − 1

LT H−1/2q
�VN (·)H−T/2E−T

+

−

ΦT Λ

+

r�

u� +

ΦT

R

(ΦT Φ + R)E−1L

+

−

xk

uk−1

∆u opt
k (∆(ui)k, i)

Figure 16.4. Implementation of the receding horizon networked controller.

The term f in the solution (16.16) contains the previous control value
uk−1. We propose to calculate it directly in the controller by integrating all
previous increments as illustrated in Figure 16.4.
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16.4 Up-Link

The up-link problem contains some novel challenges not met elsewhere in the
book. The key issue here is that of quantised measurements. This is a form of
constraint on how we “look at” the system rather than the system itself. Thus,
the methodologies needed differ somewhat from those described in Chapter 9,
where we treated constrained estimation with constraints that were integral
to the system operation. In this section we will describe two approaches to
deal with quantised measurements. In the first approach we use a stochastic
problem formulation and design an approximate minimum variance state es-
timator. In the second approach we adopt a deterministic formulation with
unknown-but-bounded description of uncertainty and design a recursive set-
valued observer. Here we give a brief outline of the algorithms and refer the
reader to Haimovich, Goodwin and Quevedo (2003) and Haimovich, Goodwin
and Welsh (2004) for details.

We take k as the current sample time and use ya:b to denote past output
data from sample time a to b inclusive.

16.4.1 Stochastic Formulation

We consider a noisy discrete time, linear time-invariant plant described by

xj+1 = Axj + Buj + wj

yj = Cxj + vj ,
(16.21)

where xj , wj ∈ R
n, uj ∈ R

m, yj, vj ∈ R
s, and wj and vj are i.i.d. samples

of white Gaussian noise processes having covariance matrices Q and R, re-
spectively. We further assume that the measurements are quantised prior to
transmission:

yq
j = σ(yj), (16.22)

where yq
j is the measured variable. Here, the finite range mapping σ(·) corre-

sponds to a general quantiser, defined as

σ(yj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 if yj ∈ Rσ1 ,
σ2 if yj ∈ Rσ2 ,
...

...
...

σl if yj ∈ Rσl ,

(16.23)

where l is the number of quantisation regions and {Rσi : i = 1, . . . , l} is a
given partition of Rs.

Note that we have assumed that (quantised) measurements are available
at each discrete time-step. However, it would be a straightforward extension
to also use time-stamped data with event-based sampling to further limit
transmission rates so that we only transmit when a measurement changes
zones.
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The statistical behaviour of the system is described by

x0 ∼ N(x00, P00), wi ∼ N(0, Q), vi ∼ N(0, R), (16.24)

E(wiw
t
j ) = 0 and E(viv

t
j ) = 0 if i �= j, (16.25)

E(wiv
t
j ) = 0, E(wix

t
0) = 0, E(vix

t
0) = 0. (16.26)

The input uj is assumed to be known at the controller.
We are interested in determining the conditional mean of the current state,

xk, given the collection of measurements from time instant 1 to the present
time instant k. Let yq

1:k denote the vector containing all the measurements up
to the current time instant. Then, the required state estimate at time instant
k is given by the following expected value:

E(xk|yq
1:k) = E(xk|yq

1, . . . , y
q
k) = E(xk|y1 ∈ Ryq

1
, . . . , yk ∈ Ryq

k
). (16.27)

The estimate given by (16.27) can be obtained in a conceptually simple
way by taking advantage of the linear structure of the system between input,
state and the unavailable (unmeasured) variable yk. Using a property of the
expectation operator, we can write

E(xk|yq
1:k) = E(xk|yq

1, . . . , y
q
k) = E(E(xk|y1, . . . , yk)|yq

1, . . . , y
q
k)

= E(E(xk|y1:k)|yq
1:k), (16.28)

where y1:k denotes the collection of variables y1, . . . , yk. The inner expected
value on the right hand side of (16.28) is provided by the equations of the
Kalman filter (see Theorem 9.6.2 in Chapter 9), which are summarised below
in equations (16.29) to (16.35):5

E(x0) � x00, (16.29)
P0|0 � P00, (16.30)

E(xk|y1:k−1) = AE(xk−1|y1:k−1) + Buk−1, (16.31)
Pk|k−1 = APk−1|k−1A

t + Q, (16.32)

Kk = Pk|k−1C
t(CPk|k−1C

t + R)−1, (16.33)

E(xk|y1:k) = E(xk|y1:k−1) + Kk [yk − C E(xk|y1:k−1)] , (16.34)
Pk|k = (In − KkC)Pk|k−1. (16.35)

The analysis that follows depends on interpreting E(xk|y1:k) as a function of
the random variable y1:k rather than as a function of a given realisation of
the output, {yj}. Once this function is determined, the outer expected value
in (16.28) has to be evaluated as follows:

5 In denotes the n × n identity matrix.
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E(xk|yq
1, . . . , y

q
k) =

∫
ρ1:k

py1,...,yk
(γ1, . . . , γk)E(xk|y1=γ1, . . . , yk=γk)dγ1 . . . dγk∫

ρ1:k

py1,...,yk
(γ1, . . . , γk)dγ1 . . . dγk

,

(16.36)
where ρ1:k is the region Ryq

1
× · · · × Ryq

k
(in R

s×k), and py1,...,yk
is the joint

probability density function (pdf) of the random variables y1, . . . , yk. This
joint pdf can be expressed as in the following lemma.

Lemma 16.4.1 The joint pdf of the random variables y1, . . . , yk is Gaussian
and given by

py1,...,yk
(γ1, . . . , γk) =

exp
{− 1

2 [Γ − E(y1:k)]t[cov(y1:k)]−1[Γ − E(y1:k)]
}

(2π)sk/2| cov(y1:k)|1/2
,

(16.37)
with Γ = (γt

1 , . . . , γt
k)t, and where E(y1:k) and cov(y1:k) are defined as

E(y1:k) = Λk E(x0) + Φku0:k−1 = Λkx00 + Φku0:k−1, (16.38)

cov(y1:k) =

⎡⎢⎢⎢⎣
cov(y1, y1) cov(y1, y2) · · · cov(y1, yk)
cov(y2, y1) cov(y2, y2) · · · cov(y2, yk)

...
...

. . .
...

cov(yk, y1) cov(yk, y2) · · · cov(yk, yk)

⎤⎥⎥⎥⎦ ,

cov(yi, yj) = CAiP00(CAj)t +
min{i,j}∑

l=1

CAi−lQ(CAj−l)t + δijR,

i, j = 1, . . . , k, (16.39)

with δij the Kronecker delta, u0:k−1 =
[
ut

0 ut
1 . . . ut

k−1

]t
, and for suitable

constant matrices Λk and Φk.

Proof. By iterating (16.21), we can write⎡⎢⎢⎢⎣
y1

y2

...
yk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
CA
CA2

...
CAk

⎤⎥⎥⎥⎦x0 +

⎡⎢⎢⎢⎣
CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...
CAk−1B CAk−2B · · · CB

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u0

u1

...
uk−1

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
C 0 · · · 0

CA C · · · 0
...

...
. . .

...
CAk−1 CAk−2 · · · C

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w0

w1

...
wk−1

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
v1

v2

...
vk

⎤⎥⎥⎥⎦ ,

(16.40)

which can be succinctly written as
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y1:k = Λkx0 + Φku0:k−1 + Ωkw0:k−1 + v1:k, (16.41)

with the obvious definitions for Λk, Φk, u0:k−1, Ωk, w0:k−1 and v1:k. It can
be appreciated that y1:k results from a linear combination of (jointly) Gaus-
sian random variables and hence it is also Gaussian. Its mean and covariance
(equations (16.38) to (16.39)) can be straightforwardly obtained from (16.40)
and (16.41), noting that cov(x0, x0) = P00. �

Thus, the desired estimate could, in principle, be obtained by performing
the multivariate integration shown in (16.36). However, direct application of
(16.36) becomes impractical for the following reasons:

(i) The multiple integration in (16.36) has to be solved numerically since,
typically, no explicit closed form solution exists.

(ii) As new measurements become available, the complexity of the integration
in (16.36) increases since it is performed over the region ρ1:k in Rs×k with
growing k (recall that k denotes the current time).

A practical approach to this problem is achieved by bringing together ideas
from Monte Carlo sampling and moving horizon estimation.

To provide a numerical solution to (16.36), we propose the use of Monte
Carlo sampling. Denote by Sk a set of Ns samples drawn from the Gaussian
density py1,...,yk

at time instant k. Define Sρ1:k ⊂ Sk as the set of samples that
fall inside the region ρ1:k, that is,

Sρ1:k � Sk ∩ ρ1:k. (16.42)

Equation (16.36) can then be approximated by

E(xk|yq
1:k) = E(xk|yq

1, . . . , y
q
k) ≈ 1

Nρ1:k

∑
z∈Sρ1:k

E(xk|y1:k = z), (16.43)

where Nρ1:k is the number of samples that fall inside the region ρ1:k, that is, the
cardinality of the set Sρ1:k . The closeness of the Monte Carlo approximation
to the true value of the estimate will directly depend on Nρ1:k : Larger values
of this number yield better approximations.

As far as the growing complexity is concerned, we adopt a moving horizon
approach as in Section 9.9 of Chapter 9. At time instant k, we will explic-
itly take into account only the last Ne measurements available, yq

k−Ne+1:k,
whereas the older measurements, yq

1:k−Ne
, will be dealt with by summarising

the history of the system before time instant k − Ne by adopting a suitable
conditional distribution for the state xk−Ne . Consequently, at time instant k,
the state xk−Ne will be regarded as the initial state. The parameter Ne will
be called the estimation horizon and will allow us to trade performance for
complexity.

At the outset, the distribution ascribed to the initial state x0 given in
(16.24) could be interpreted as the summary of the system history prior to
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time instant 1. This Gaussianity assumption for the initial state, together
with the corresponding ones for the process and measurement noises and the
linearity of the system defined in (16.21) rendered the equations of the Kalman
filter suitable for determining the expected value E(xk|y1:k) needed for the
two-step evaluation procedure described in (16.28).

It follows from the Chapman–Kolmogorov equation (see Section 9.8 in
Chapter 9) that knowledge of the conditional probability density function of
the state xk−Ne of the form p(xk−Ne |yq

1:k−Ne
) is all that is needed in order to

summarise the history of the system if we are interested only in subsequent
estimates of the form

E(xk−Ne+i|yq
1:k−Ne+i) for i = 1, 2, . . . . (16.44)

Due to the quantised nature of the measurements, the conditional density of
the state xk−Ne given the measurements yq

1:k−Ne
is not Gaussian. However,

approximating this density as Gaussian enables us to utilise the two-step
procedure shown in (16.28) because the inner expected value can again be
provided by the equations of the Kalman filter, regarding xk−Ne as the initial
state.

The proposed approach works as follows. The initial estimates E(xk|yq
1:k)

for k = 1, . . . , Ne are found exactly as described so far in this section
and the multivariate integrals in (16.36) are approximated with the aid of
Monte Carlo sampling. From time instant Ne +1 on, the conditional densities
p(xk−Ne |yq

1:k−Ne
) are approximated by N(x′

k−Ne
, P ′

k−Ne
), where x′

k−Ne
and

P ′
k−Ne

are design parameters. Equations (16.29) and (16.30) are replaced by

E(xk−Ne |y1:k−Ne) � x′
k−Ne

, (16.45)

Pk−Ne|k−Ne
� P ′

k−Ne
, (16.46)

whilst equations (16.31) to (16.35) remain unchanged. The approximate esti-
mate of E(xk|yq

1:k) is then computed as

E(xk|yq
1:k) ≈ I1

I2
, (16.47)

where

I1 �
∫

ρk−Ne+1:k

pyk−Ne+1,...,yk
(γ1, . . . , γNe)

× E(xk|yk−Ne+1 = γ1, . . . , yk = γNe)dγ1 . . . dγNe ,

I2 �
∫

ρk−Ne+1:k

pyk−Ne+1,...,yk
(γ1, . . . , γNe)dγ1 . . . dγNe ,

and where ρk−Ne+1:k is the region Ryq
k−Ne+1

× · · · × Ryq
k

in Rs×Ne . The mul-
tivariate integrals I1 and I2 are performed with the aid of Monte Carlo
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sampling. The density pyk−Ne+1,...,yk
is now the joint pdf of the variables

yk−Ne+1, . . . , yk under the Gaussianity assumption for xk−Ne . This density
is quantified in the following lemma.

Lemma 16.4.2 The joint pdf of the random variables yk−Ne+1, . . . , yk, under
the assumption that the distribution of the state xk−Ne is Gaussian, is given
by

pyk−Ne+1,...,yk
(γ1, . . . , γNe) =

exp
{
− 1

2 [Γ1:Ne − E(yk−Ne+1:k)]t[cov(yk−Ne+1:k)]−1[Γ1:Ne − E(yk−Ne+1:k)]
}

(2π)sNe/2| cov(yk−Ne+1:k)|1/2
,

with Γ1:Ne = (γt
1 , . . . , γt

Ne
)t, and where E(yk−Ne+1:k) and cov(yk−Ne+1:k) are

given by

E(yk−Ne+1:k) = ΛNe E(xk−Ne) + ΦNeuk−Ne:k−1

= ΛNex
′
k−Ne

+ ΦNeuk−Ne:k−1, (16.48)

cov(yk−Ne+1:k) =⎡⎢⎢⎢⎣
cov(yk−Ne+1, yk−Ne+1) cov(yk−Ne+1, yk−Ne+2) · · · cov(yk−Ne+1, yk)
cov(yk−Ne+2, yk−Ne+1) cov(yk−Ne+2, yk−Ne+2) · · · cov(yk−Ne+2, yk)

...
...

. . .
...

cov(yk, yk−Ne+1) cov(yk, yk−Ne+2) · · · cov(yk, yk)

⎤⎥⎥⎥⎦ ,

(16.49)

cov(yk−Ne+i, yk−Ne+j) = CAiP ′
k−Ne

(CAj)t +
min{i,j}∑

l=1

CAi−lQ(CAj−l)t

+ δijR, i, j = 1, . . . , Ne,

where δij is the Kronecker delta and uk−Ne:k−1, ΛNe and ΦNe are as in
Lemma 16.4.1.

Proof. The result follows as in Lemma 16.4.1, by iterating (16.21), starting
from time instant k − Ne, and under the Gaussianity assumption for the
state xk−Ne . �

A graphical representation of the suggested strategy is depicted in Fig-
ure 16.5.

The values adopted for the parameters x′
k−Ne

and P ′
k−Ne

will affect the
approximate estimate sought. The quantity x′

k−Ne
can be adopted as the

(approximate) estimate of xk−Ne found Ne time instants before. As regards
P ′

k−Ne
, different options can be considered:
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Initial state

Initial
state

Initial
state

Monte Carlo
simulation

Moving
horizon

+

Monte Carlo
simulation

10 2 3

x0

k=1

k=2

...

k=Ne

. . .

k=Ne+1

k=Ne+2

k=Ne+3

· · ·Ne

Ne+3

E(x1|yq
1)

E(x2|yq
1:2)

E(xNe |yq
1:Ne

)

≈E(xNe+3|yq
1:Ne+3)

x1 x3

Figure 16.5. Moving horizon Monte Carlo state estimation strategy.

(i) P ′
k−Ne

= 0. In this case, perfect knowledge of xk−Ne is assumed.
(ii) P ′

k−Ne
→ ∞. This corresponds to assuming very little precision of the

estimate of the initial state.
(iii) 0 < P ′

k−Ne
< ∞, arbitrary. Here, P ′

k−Ne
is regarded as a tuning parameter.

(iv) P ′
k−Ne

≈ cov(xk−Ne |yq
1:k−Ne

). Here, P ′
k−Ne

is set equal to an approxima-
tion of the true conditional covariance of the initial state.

Option (i) is analogous to the idea of decision feedback equalisers in digital
communications; see for example, Proakis (1995).

The procedure described above can be summarised in the following algo-
rithm, which holds for k > Ne.

Algorithm 16.4.1 (Moving Horizon Monte Carlo State Estimation)

(i) Adopt the parameters for the initial state distribution (x′
k−Ne

and P ′
k−Ne

).
(ii) Calculate the mean and covariance of yk−Ne+1:k as in (16.48) and (16.49).
(iii) Draw Ns samples from N(E(yk−Ne+1:k), cov(yk−Ne+1:k)) and determine

which ones fall inside the region ρk−Ne+1:k.
(iv) Approximate E(xk|yq

1:k) as in (16.47) and (16.43).
(v) Set k ← k + 1 and go to step (i). ◦

16.4.2 Deterministic Formulation

Here we consider an alternative discrete time, deterministic linear time-
invariant system with quantised state measurements

xk+1 = Axk + Buk + wk, (16.50)
yq

k = σ(xk + vk), (16.51)
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where xk ∈ Rn, uk ∈ Rm, and yq
k is the measured variable. {vk} and {wk} are

unknown disturbance sequences that comply with

||wk||p < δ for k = 0, 1, . . . , (16.52)
||vk||p < ε for k = 0, 1, . . . , (16.53)

where ε and δ are known constants, and p is either 1 or ∞. (Although assumed
deterministic, we will refer to vk and wk as measurement noise and process
noise, respectively.) In (16.51), σ(·) is a finite range mapping that defines the
state quantiser

σ(xk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 if xk ∈ Y1,
σ2 if xk ∈ Y2,
...

...
...

σl if xk ∈ Yl,

(16.54)

where l is the number of quantisation regions.
We make the following assumptions:

A1. Yi, i = 1, . . . , l, are dense in Rn, nonempty, convex and polytopic.6

A2. The regions {Yi : i = 1, . . . , l} form a partition of a given convex polytope
H, defined in Rn.

A3. xk ∈ H, k = 0, 1, . . . .

Assumptions A2 and A3 imply that at any time instant, the state will
belong to the domain of definition of the quantiser function.

Note that the system model defined in (16.50), (16.51) and (16.54) is
completely deterministic. There exists, however, uncertainty from the observer
point of view due to the presence of the disturbance sequences {wk} and {vk},
and since all that is known about the initial state x0 is that is must belong
to the region H.

At the current time instant k we would like to combine the information
provided by the available measurements in order to obtain the smallest region
of the state space where the state xk+1 has to lie. We will henceforth refer to
this region as the set-valued state estimate.

If no measurement noise were present (vk ≡ 0), the event of receiving
the quantised measurement yq

k = σi would imply that xk ∈ Yi (see (16.54)).
However, measurement noise could cause a measurement indicating a different
region to be received whenever the state xk is closer than ε (see (16.53)) to
the border of region Yi. We overcome this problem in the following way.
Whenever a measurement yq

k = σi is received, the observer assumes that
xk ∈ Expand(Yi, ε) ∩H, where Expand(·, ·) is defined by

Expand(Y, ε) � {x ∈ R
n : x = z + v, for some z ∈ Y

and some v such that ‖v‖p ≤ ε}.
6 A polytopic set, or polytope, is a bounded polyhedral set.
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If p = 1 or ∞ and Yi is polytopic, we can readily see that Expand(Yi, ε) is
also polytopic. We thus define

Yobs
i � Expand(Yi, ε) ∩H for i = 1, . . . , l. (16.55)

Hence, xk ∈ Yobs
i whenever the measurement yq

k = σi is received.
We will next describe how the set-valued estimate is obtained. We start by

explaining the initialisation procedure and how the first iteration is performed.
Then we develop a recursive algorithm to be utilised by the observer at each
successive time instant. In what follows, let Xj+1 denote the set-valued state
estimate of xj+1 based on measurements yq

0 to yq
j .

Initialisation. By assumption A3, the initial state, x0, belongs to the
region H. Since no additional information is available at time k = 0, the
set-valued estimate at time k = 0 is just X0 � H.

First Iteration. The measurement yq
0 = σi becomes available. From (16.55),

it is now known that x0 ∈ Yobs
i . It is also known that x0 ∈ X0. Hence,

x0 ∈ Yobs
i ∩ X0.

We now define the region

Xm
0 � Yobs

i ∩ X0,

where the superscript m is used to denote that the region has been updated
using the information provided by the last available measurement.

To obtain the set-valued estimate X1, for the state at time instant k = 1,
we must transform the region Xm

0 by means of the system equation (16.50).
This can be performed in two steps:

X̃1 = {x1 ∈ R
n : x1 = Ax0 + Bu0, for some x0 ∈ Xm

0 }, (16.56)

X1 = Expand(X̃1, δ) ∩H. (16.57)

The region X1 is the set-valued estimate of the state xk+1. All available
information has already been used in order to calculate it. We will denote
the calculation in equation (16.56) by

X̃1 = AXm
0 + Bu0.

The procedure described above obtains the set-valued estimate of the state
at time k + 1 = 1 based on all the information available at time k = 0. We
describe the procedure at an arbitrary time instant k > 0 in the following
recursive algorithm.

Algorithm 16.4.2 (Set-valued State Estimate) The set-valued state es-
timate at time k + 1 based on the information available at time k requires the
following steps:
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(i) Measurement update: Xm
k = Expand(σ−1(yq

k), ε) ∩ Xk.
(ii) Time update: X̃k+1 = AXm

k + Buk.
(iii) Noise correction: Xk+1 = Expand(X̃k+1, δ) ∩H. ◦

The following properties of Algorithm 16.4.2 readily follow.

Proposition 16.4.3 (Convexity of Set-valued Estimates) The regions
Xk, k = 0, 1, . . ., calculated by Algorithm 16.4.2 are either empty or convex
polytopes.

Proof. By induction on k. By assumption A2, X0 = H is a convex polytope.
Assume that the region Xk is a convex polytope. By assumption A1, σ−1(yq

k)
is also a convex polytope. Since the expansion operation preserves the convex-
polytopic nature of the set, step (i) of Algorithm 16.4.2 then shows that Xm

k

is either a convex polytope or empty (since it is the result of intersecting two
convex polytopes, see for example, Grünbaum (1967)). From step (ii), X̃k+1 is
obtained via an affine transformation of a convex-polytopic or empty region
and hence it also must be either convex-polytopic or empty (Grünbaum 1967).
step (iii) is similar to step (i). The result then follows. �

Proposition 16.4.4 (Empty Set-valued Estimates) If, whilst iterating
Algorithm 16.4.2, an empty region is obtained as the result, then all the fol-
lowing regions obtained will also be empty.

Proof. By induction. Assume Xk = ∅. Then, by step (i) of Algorithm 16.4.2,
Xm

k = ∅. By this and steps (ii) and (iii), we have that Xk = ∅ ⇒ Xk+1 = ∅.
The result then follows. �

The occurrence of an empty region as the result of Algorithm 16.4.2 im-
plies that the measurements obtained up to that moment could not have been
generated by the system defined in (16.50) and (16.51) under the assumptions
made. This implies that the set-valued observer is unable to supply any useful
information regarding the location of the state. We will henceforth assume
that this situation can only be caused by a disturbance that may instantly
change the position of the state to any point in the region H. Accordingly, to
overcome the empty-region difficulty, we add the following modification to the
observer strategy: Whenever an empty region is obtained, the observer will re-
set, discarding all previous information, except for the very last measurement,
and begin again from that time instant.

By including this modification, we obtain the final version of the observer
algorithm.

Algorithm 16.4.3 (Set-valued Observer Algorithm)

(i) Measurement update: Xm
k = Expand(σ−1(yq

k), ε) ∩ Xk.
(ii) Disturbance detection: If Xm

k = ∅, set Xm
k = Expand(σ−1(yq

k), ε).
(iii) Time update: X̃k+1 = AXm

k + Buk.
(iv) Noise correction: Xk+1 = Expand(X̃k+1, δ) ∩H. ◦
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To use the observer in combination with a state feedback controller (such
as the receding horizon controller described in Section 16.3), we require a point
state estimate for the current state xk. Whenever the set-valued estimate Xk

is nonempty, any point contained in it is a possible value for the state xk. We
propose to use a Chebyshev centre of Xk as the required state estimate. A
Chebyshev centre of Xk is defined as a point inside Xk that is farthest from
the exterior of Xk. Note that, by definition, a Chebyshev centre of a convex
region is a point that belongs to the region and may not be unique.

Computational Issues. A crucial aspect in the computational imple-
mentation of Algorithm 16.4.2 is bounding the complexity of the polytopic
regions obtained. Complexity may increase in every iteration of the algorithm
due to the need for intersecting polytopes, that is, the polytope Xk+1 may
contain a higher number of vertices than Xk.

Complexity may be dealt with by deploying a block moving horizon strat-
egy. This strategy consists of running N0 parallel observers at every time
instant and combining them in a moving horizon manner. We propose a set-
valued observer strategy where no less than the last Ne · (N0 − 1)/N0, but
no more than the last Ne, measurements received are explicitly considered
in order to calculate the region. As in the stochastic formulation, previous
measurements are suitably summarised. The summarising step is carried out
by bounding the polytopic region obtained with an axis-aligned hypercube.
This bounding step is responsible for reducing the worst-case computational
complexity of all the polytopic regions obtained.

Figure 16.6 shows the suggested scheme when only two observers are
utilised. Each observer bounds the polytopic region obtained after running

1

1

2

Ne

boundbound

time
k1 k2

Xk1+1 Xk2+1

Figure 16.6. Block moving horizon strategy.

for a period of Ne time instants. At any time instant, both observers calculate
a set-valued estimate. The required set-valued estimate is provided by the ob-
server that performed the region-bounding step the longest time ago. In the
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figure, Xk1+1 is provided at time k1 by observer number 1 whereas at time k2,
observer number 2 provides Xk2+1.

In a similar way, a strategy comprising more than two parallel observers
could be devised. Note that the parameters Ne and N0 allow one to trade
off observer performance for computational complexity. If N0 = Ne, the sug-
gested strategy becomes the exact deterministic counterpart to the stochastic
observer designed in Section 16.4.1.

16.5 Experimental Results

We consider a practical experiment undertaken on a pilot-scale plant where
level control for four similar tanks was configured. We study both the up-link
and down-link problems of controlling the plants over a limited bandwidth
channel.

In each of the four tanks we seek to maintain a constant level by control-
ling the inflow by adjusting the voltage applied to a pump, where outflow is
through an orifice of constant size. Control is required to reject disturbances
from unmeasured inflows and increased outflows. In our setup, a single tank
having the fluid level as output and, as input, the pump voltage, is described
around the chosen operating point by the discrete time model (16.4) with a
sampling period of 2 sec and matrices

Ai = 0.9826, Bi = 0.0452, Ci = 1.

On the up-link, we transmit only one bit of information per tank corre-
sponding to whether the tank level is above or below the set-point, that is,
Y = {−1, 1} (Note that this is deliberately specified as a very poorly quan-
tised system to highlight performance issues). Since we have 4 tanks and a
2-second sampling period, we need only send 4 bits over a 2-second period,
that is, the required up-link data rate is 2 bits/sec.

We use the deterministic set-valued observer described in Section 16.4.2 to
provide the state estimates. (We have also tested the alternative Monte Carlo
scheme described in Section 16.4.1 and found it to be more computationally
intensive than the deterministic algorithm, although it did actually give more
accurate state estimates.)

Noise (var = 0.04) is deliberately added to the measured signal prior quan-
tisation to provide a small dithering signal. To account for this noise, a region
expansion of ε = 0.6 is utilised in the estimator. The estimation horizon is
set to 100 and we run two parallel observers to reduce the computational
complexity.

On the down-link side, we emphasise the quantised nature of the problem
and choose the (small) set U = {−1, 0, 1}. This requires only 1 bit in each
sampling interval corresponding to an increase or decrease of the input signal
since 0 ∈ U can be specified by sending nothing. We also need to send address
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information for the tank whose input is to be changed. This requires 2 bits
for our application. Hence, the down-link data rate will be 1.5 bits/sec.

We control the four tanks by means of the receding horizon networked con-
troller with horizon N = 2 based on the algorithm described in Section 16.3.
We remove from the possible control actions the possibility of sending no
control action to any plant. This provides the system with some degree of
excitation when the plant output is close to the setpoint.

Once the tanks have reached the desired level (0 V) after the initial start-
up, unmeasured inflow disturbances were introduced as follows:

(i) a disturbance inflow was applied to Tank 4 at approximately 250 sec and
removed at approximately 800 sec;

(ii) a disturbance inflow was applied simultaneously to Tanks 1 and 2 at ap-
proximately 1080 sec and removed at 1950 sec.

We first focus on the disturbance into Tank 4 applied at 250 sec and
removed at 800 sec. The effect of this can be clearly seen in the actual tank
level shown in Figure 16.7 (Note that the data shown in Figure 16.7 were
not available to the control law, but they are presented here to highlight the
resulting performance). Figure 16.8 shows the estimated tank levels. It can
be seen that the observer detects the disturbance in Tank 4 at approximately
370 sec. Figure 16.9 shows the estimated disturbance. Once the disturbance
is detected the controller begins to act. This can be observed in Figure 16.10,
which shows the control signal increments sent to each plant. Note that Tank
4 begins to receive attention once the disturbance is detected. The control
signal applied to the actuators is shown in Figure 16.11.

We next consider the disturbances applied to Tanks 1 and 2 at approx-
imately 1080 sec and removed at 1950 sec. The effect of these disturbances
can be seen in the actual levels shown in Figure 16.7. Again the estimator can
be seen (Figure 16.9) to lock onto the disturbances. The controller then pays
attention to the necessary tanks, in this case Tanks 1 and 2 (see the control
increments shown in Figure 16.10).

The attention-sharing facility by the controller is also apparent in the stem
plots given in Figure 16.12. We see that most control attention (∆ui = ±1)
was applied to those tanks to which the disturbances were applied.

16.6 Further Reading

For complete list of references cited, see References section at the end of book.

General

Further information on networked control systems can be found in the book
Ishii and Francis (2002). The current chapter is based on references Goodwin,
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Figure 16.7. Actual levels.
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Figure 16.8. Estimated levels.

Haimovich, Quevedo and Welsh (2004), Haimovich, Goodwin and Quevedo
(2003), Quevedo, Goodwin and Welsh (2003).
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Figure 16.9. Estimated disturbance inflow.
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Figure 16.10. Control increments sent over network.

In relation to the estimation problem, in Curry (1970) different estima-
tors for quantised discrete time linear systems affected by noise are pre-
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Figure 16.11. Control signal at actuators.
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Figure 16.12. Stem Plots of Control Increments.

sented. In some situations the quantisation effect may be neglected or approx-
imated by white noise (Gray and Neuhoff 1998, Curry 1970, Uchino, Ohta and
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Hatakeyama 1991). However, this is not appropriate when only a few quan-
tisation levels are available (see, for example, Delchamps 1989, Delchamps
1990, Koplon and Sontag 1993, Lunze 1994, Lunze 1998). It is also known
(Feely 1997, Baillieul 2002) that the introduction of quantisers has a strong
impact on closed loop dynamics. As well, the relationship between sampling
rate and the size of the quantised sets has been explored by several authors,
such as Tatikonda, Sahai and Mitter (1998), Wong and Brocket (1999), Nair
and Evans (2003), Elia and Mitter (2001), Kao and Venkatesh (2002), Ishii
and Francis (2002).

Another consequence of utilising channels with limited bandwidth is the
introduction of time delays. Since the medium is data rate-limited, signals
may have to queue before being transmitted (Lian, Moyne and Tilbury 2001),
leading to delays in the up-link (from sensors to controller) and in the down-
link (from controller to actuator). Without taking into account quantisation
effects, several problems have been studied in the literature (see, for exam-
ple, Liou and Ray (1991), Nilsson, Bernhardsson and Wittenmark (1998),
Lincoln and Bernhardsson (2000), which address control system design with
random time delays; and Branicky, Phillips and Zhang (2000)). In many cases
it is possible to time-stamp the up-link data (Chan and Özgüner 1995), so that
the delays are known at the receiving end. Thus (without taking into account
quantisation issues), plant state estimates can be obtained at the controller
side by simply solving a standard Kalman filtering problem (Goodwin and
Sin 1984, Anderson and Moore 1979), see also Beldiman and Walsh (2000),
Bauer, Sichitiu, Lorand and Premaratne (2001) and Zhivoglyadov and Mid-
dleton (2003). One can deploy event-based (nonuniform) sampling of the plant
outputs, as described in Åström (1999). Sensor data should be sent only when
needed (see also Bauer et al. 2001).

The down-link design problem considered in this chapter includes the issue
of allocating communication time and thus has connections to limited commu-
nication control as treated in Brockett (1995), Hristu and Morgansen (1999),
Hristu (1999), Hristu (2001), Rehbinder and Sanfridson (2000), see also Lin-
coln and Bernhardsson (2002), Palopoli, Bicchi and Sangiovanni-Vincentelli
(2002). Allocation of different forms of network resources has also been ex-
plored in Xiao, Johansson, Hindi, Boyd and Goldsmith (2003), Walsh, Ye and
Bushnell (2002), Walsh, Beldiman and Bushnell (2002), Branicky, Phillips and
Zhang (2002), Park, Kim, Kim and Kwon (2002), and Hong (1995).
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